
Chapter 3
Interpolating and Other Extended Classical
Ensembles

Changes in the nature of level fluctuations in the situations such as (i) a symme-
try is gradually broken, (ii) two good symmetry subspaces are gradually admixed,
(iii) ordered (integrable) spectra gradually become chaotic and so on are studied by
using interpolating and/or partitioned random matrix ensembles [1–7]. A simple yet
useful approach for deriving the NNSD’s for interpolating ensembles is to extend,
as pointed out in [8–12], the simple Wigner’s 2×2 matrix formalism. The appropri-
ate 2 × 2 random matrix ensemble for Poisson to GOE and GUE and GOE to GUE
transitions is [8, 12],

H =
[
α(X1 + X2) + pvλ αX3 + iα′X4

αX3 − iα′X4 α(X1 − X2) − pvλ

]
. (3.1)

In Eq. (3.1) X1, X2, X3 and X4 are G(0, v2) variables and the usefulness of p and
λ will later become clear. The H matrix in Eq. (3.1) for λ = 0, α′ = 0 is GOE,
λ = 0, α′ = α is GUE, and Xi = 0 and λ a Poisson gives a Poisson spectrum. Thus
the matrix in Eq. (3.1) interpolates Poisson, GOE and GUE (in fact also a uniform
spectrum). Given λ1 and λ2, the two eigenvalues of the H matrix, we have

(λ1 − λ2)
2 = S2 = 4

[
(αX2 + pvλ)2 + (

α2X2
3 + α′2X2

4

)]
. (3.2)

Let us define

x2 = 2αX2 + 2pvλ → G
(
2pvλ, (2αv)2

)
,

x3 = 2αX3 → G
(
0, (2αv)2

)
,

x4 = 2α′X4 → G
(
0,
(
2α′v

)2)
.

(3.3)

Therefore,

P(x2, x3, x4) dx2 dx3 dx4 = dx2 dx3 dx4

(2π)3/2(2αv)2(2α′v)

× exp−
(

(x2 − 2pvλ)2 + x2
3

2(2αv)2
+ x2

4

2(2α′v)2

)
. (3.4)
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Changing the variables (x2, x3, x4) to (S, θ,φ) such that x2 = S sin θ cosφ, x3 =
S sin θ sinφ, x4 = S cos θ , we get

P(S)dS = S2dS

(2π)3/2(2αv)2(2α′v)
exp

(
−p2λ2

2α2

)∫ 2π

0
exp

{
pλ

2vα2
S sin θ cosφ

}
dφ

×
∫ π

0
exp−1

2

[
S2 sin2 θ

4α2v2
+ S2 cos2 θ

4α′v2

]
sin θ dθ. (3.5)

The integral over φ is 2πI0(
pλ

2vα2 S sin θ) where I0 is Bessel function. With
S cos θ = z, the final result is,

P(S : λ)dS = SdS

4v3α2α′√2π
exp

(
−p2λ2

2α2
− S2

8v2α2

)

×
∫ S

0
dzI0

(
pλ

2vα2

√
S2 − z2

)
exp

[
(α′)2 − α2

8v2α2(α′)2
z2
]
. (3.6)

With λ = 0, α = 1 and α′ → α we have GOE to GUE transition. Similarly, assuming
a distribution f (λ)dλ for λ (with λ independent of Xi , i = 1,2,3,4), Eq. (3.6) de-
fines for example the Poisson to GOE and GUE interpolations. Combining Eq. (3.6)
with

P(S)dS =
[∫ +∞

−∞
P(S : λ)f (λ)dλ

]
dS

for Poisson f (λ)dλ = e−λdλ for 0 ≤ λ ≤ ∞ and 0 for λ < 0 (3.7)

gives the spacing distributions for Poisson to GOE and GUE. With f (λ) = 1 for
0 ≤ λ ≤ 1 and 0 for λ < 0 and also for λ > 1 will give uniform to GOE and GUE
transitions; Ref. [13] gives a numerical study of uniform to GOE and GUE transi-
tions. It is also possible to consider f (λ) = δ(λ − λc). Note that we have always∫∞
−∞ f (λ)dλ = 1. Before going further, it is important to mention that an extension

of the matrix in Eq. (3.1) including GSE with 4 × 4 matrices was given in [14].
Before going further, it is important to point out that the results in Refs. [15–18]

are used in the simplifications of various integrals we need ahead. A list of some
useful integrals are,

In(a, c) =
∫ ∞

0
xn
[
exp−ax2]Φ(cx)dx,

I1 = c

2a(a + c2)1/2
,

I2 = 1

2
√

π

[
1

a3/2
tan−1 c

a1/2
+ c

a(a + c2)

]
,

I3 = 1

2a2

c√
a + c2

+ c

4a(a + c2)3/2
.

(3.8)
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In Eq. (3.8), Φ(x) = 2√
π

∫ x

0 exp−t2dt is the Error function. An integral with the
Bessel function I0 is,

∫ ∞

0

[
exp−a2t2]tμ−1I0(bt) dt = Γ (μ/2)

2aμ 1F1
(
μ/2,1, b2/4a2). (3.9)

Finally,
∫ ∞

0
[exp−at]Φ(bt)dt = 1

a
exp

(
a2

4b2

)[
1 − Φ

(
a

2b

)]
. (3.10)

The hyper-geometric function 1F1 in Eq. (3.9) is also denoted as M(μ/2, 1,

b2/4a2).

3.1 GOE-GUE Transition

3.1.1 2 × 2 Matrix Results

Substituting λ = 0, α = 1 and α′ → α in Eq. (3.6), spacing distribution interpolating
GOE to GUE is obtained [1, 8],

PGOE-GUE(S) dS = dS
S

4v2(1 − α2)1/2
exp− S2

8v2
Φ

[√
1 − α2

8α2v2
S

]
. (3.11)

Using Eq. (3.8) it is seen that P(S) is normalized to unity and the average spacing
Dα = ∫∞

0 SP (S)dS is,

Dα = 1√
π(1 − α2)

[√
8v2 tan−1

√
1 − α2

α
+
√

8α2v2
(
1 − α2

)]
. (3.12)

Note that D0 is the average spacing between the unperturbed levels,

D0 = √
2πv. (3.13)

To proceed further it is useful to introduce the transition parameter Λ which is the
r.m.s. admixing GUE matrix element α2v2 divided by D2

0 ,

Λ = α2v2

D2
0

= α2

2π
. (3.14)

Note that Λ = 0 gives GOE and Λ = 1/2π gives GUE. The importance of the Λ

parameter is that it will allow us to extend the 2×2 matrix results to N ×N matrices;
see [1, 8, 12] and the results ahead. Although this was pointed out first in [8], it was
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rediscovered in [9, 10]. It is easy to see that P(x)dx with x = S/D0 will depend
only on Λ. For example, x = S/D0 is

x = 2

π
√

1 − 2πΛ

[
tan−1

√
1 − 2πΛ

2πΛ
+√

2πΛ(1 − 2πΛ)

]

Λ�1−→ (1 + πΛ) + O
(
Λ3/2). (3.15)

Now we can write down the expression for the variance σ 2(0 : Λ) of the NNSD.
Note that from Eq. (3.2) we have easily S2 = 8v2 + 4α2v2 and then,

σ 2(0 : Λ) = S2

(S)2
− 1

= S2

(D0)2x2
− 1 = 4(1 + πΛ)

πx2
− 1

Λ�1−→
(

4

π
− 1

)
− 4Λ

= σ 2(0 : 0) − 4Λ. (3.16)

Equation (3.16) extends to any N × N matrix and for most purposes this small Λ

result is adequate for data analysis.
A different parametrization that gives GOE for Λ = 0 and GUE for Λ = ∞ is

to put in Eqs. (3.1), (3.6), λ = 0, α → α + √
1 − α2, α′ → α and finally divide all

the matrix elements by
√

1 − α2. This gives GOE + [α/
√

1 − α2] GUE ensemble.
Then

Λ = 1

D2
0

[
α√

1 − α2

]2

v2, D2
0 = √

2πv. (3.17)

Now, with Ŝ = S/D0, the NNSD is

P(Ŝ) dŜ = dŜ
π

2

√
1 + 2πΛ Ŝ exp−π

4
Ŝ2 Φ(Ŝ/

√
8Λ). (3.18)

Equation (3.18) gives correctly the GOE and GUE NNSD for Λ = 0 and Λ = ∞;
note that Φ(ax) → 2(ax)/

√
π as a → 0. The variance of the NNSD, with Λ defined

by Eq. (3.17), is

σ 2
GOE-GUE(0 : Λ)

= π(1 + 3πΛ)

[(1 + 2πΛ) tan−1{(2πΛ)−1/2} + √
2πΛ]2

− 1

Λ�1−→
(

4

π
− 1

)
− 4Λ = σ 2(0 : 0) − 4Λ. (3.19)
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It is important to mention that all the results given here reproduce exactly the results
discussed in [9, 10]. Finally, it should be mentioned that 2 × 2 GOE-GUE transition
results were first given in [19] although the transition parameter was not identified
by the authors.

3.1.2 N × N Ensemble Results for Σ2(r) and Δ3(r)

Let us consider H = HR + iαHI and then α = 0 gives GOE and α = 1 gives
GUE. The matrix elements of H satisfy the following properties (with a = HR

ij and

b = HI
ij ),

HijHij = (a + iα b) (a + iα b) = a2 − α2b2,

HijHji = (a + iα b) (a − iα b) = a2 + α2b2.
(3.20)

Using the normalization v2d(1 + α2) = 1 (a2 = b2 = v2), we have

HijHij = 1 − α2

d(1 + α2)
= η

d
,

HijHji = 1

d
,

η = 1 − α2

1 + α2
.

(3.21)

In the product 〈Hζ 〉〈Hζ 〉 there are d number of Hij terms and each with its partner

comes ζ times. Hence,

〈
Hζ

〉〈
Hζ

〉 = ζ

d2
dζ

[
1

dζ
+ ηζ

dζ

]
= ζ

d2

(
1 + ηζ

)= Aζ

ζ

d2
;

Aζ = 1 + ηζ .

(3.22)

Equation (3.22) correctly reproduces the values for α = 0 and α = 1 given in
Eq. (2.60). Now, extending Eq. (2.62) we have

SF (x, y) = 1

π2d2

d∑
ζ=1

Aζ ζ
−1 sin ζψ(x) sin ζψ(y)


 SF
GUE(x, y) + 1

π2d2

∞∑
ζ=1

(η′)ζ ζ−1 sin ζψ(x) sin ζψ(y)

= SF
GUE(x, y) + 1

4π2d2
ln

1 + (η′)2 − 2η′ cos(ψ(x) + ψ(y))

1 + (η′)2 − 2η′ cos(ψ(x) − ψ(y))

r�d⇒ SF
GUE(x, y) + 1

4π2d2
ln

(1 − η′)2 + 4π2ρ2η′

(1 − η′)2 + r2η′/4π2d2ρ4
; (3.23)
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with

|x − y| r�d⇒ rD,

η′ r�d⇒ η′(x) = η exp
(−τ/d sin2 ψ

)= η exp
(−τ/dπ2ρ2

)
.

(3.24)

In Eq. (3.23) we have introduced an exponential cut-off in ζ in order to extend
the ζ summation to ∞. The details are as follows: With a cut-off e−α0ζ the ζ sum
is extended to ∞ as in the case of GOE. Then ηζ e−α0ζ = (ηe−α0)ζ = (η′)ζ . The
choice for α0 is α0 = τ/d sin2 ψ = τ/π2dρ2. Using the simplification as it is done
in the case of GOE we get step no. 3 in Eq. (3.23). Now cos(ψ1 + ψ2) is cos 2ψ for
x ∼ y and cos(ψ1 − ψ2) is 1 − (δψ)2/2. Therefore,

cos 2ψ = 1 − 2 sin2 ψ = 1 − 2π2ρ2

1 − (δψ)2

2
= 1 −

[
r

2dπρ2

]2

.
(3.25)

Equation (3.25) will give the fourth equality in Eq. (3.23). Then

Σ2
α(r) = Σ2

GUE + 1

4π2

{
2 ln

(1 − η′)2 + 4π2ρ2η′

(1 − η′)2
− 2 ln

(1 − η′)2 + 4π2ρ2η′

(1 − η′)2 + r2η′
4π2d2ρ4

}

= Σ2
GUE + 1

2π2
ln

[
1 + r2η′

4π2d2ρ4(1 − η′)2

]
. (3.26)

At this stage it is convenient to introduce the transition parameter

Λ(α) = α2dρ2 (3.27)

η
α�1⇒ exp−2α2

η′ = exp

(
−2α2 − τ

dπ2ρ2

)

 1 (3.28)

⇒ 1 − η′ 
 2α2 + τ

dπ2ρ2
= τ + 2π2Λ(α)

dπ2ρ2
.

Using Eq. (3.28) in Eq. (3.26) we obtain

Σ2(r : Λ)
α2�1, Λ�1=⇒ Σ2

GUE(r) + 1

2π2
ln

[
1 + π2r2

4[τ + 2π2Λ(α)]2

]
(3.29)

and the small Λ expansion is,

Σ2(r : Λ) = Σ2
GUE(r) + 1

2π2
ln

(
1 + π2r2

4τ 2

)
− 2Λ(α)

τ [1 + 4τ 2

π2r2 ]
+ · · · (3.30)
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Also note that Σ2(r : Λ) → Σ2
GUE(r) for Λ → ∞. The parameter τ is fixed from

GOE-GUE difference for r = 1; ΔΣ2(1) = 0.446−0.344 = 0.102 and this gives τ =
0.615. Equation (3.29) was reported first in [1, 8] and later Dupuis and Montambaux
[20] derived the same formula in the study of statistical behavior of the spectrum for
a metallic ring pierced by a magnetic field. Here the parameter τ has a clear physical
meaning. Finally we mention that an exact solution for GOE to GUE transition for
N × N matrices was given by Pandey and Mehta [21].

The Δ3 statistic for GOE to GUE transition follows by combining Eqs. (3.29)
and (C.8),

Δ3(n,α) = Δ
GUE
3 (n) + 1

π2n4

∫ n

0

(
n3 − 2n2r + r3) ln

[
1 + B(Λ)r2]dr. (3.31)

Here we have used Eq. (3.29) with the substitution B(Λ) = π2/4[τ + 2π2Λ(α)]2.
Solving the integral in Eq. (3.31) using MATHEMATICA gives,

Δ3(n : Λ) = Δ
GUE
3 (n) + 1

n4π2

[
2 n3

√
B(Λ)

tan−1(n√B(Λ)
)

+
[
B2(Λ)n4 − 1 − 4B(Λ)n2

4B2(Λ)
ln
(
1 + B(Λ)n2)]− n4

+ (1 + B(Λ)n2)

16B4(Λ)

(
6B2(Λ) − 2B3(Λ)n2 − 3

)]
. (3.32)

3.1.3 Application to TRNI in Nucleon-Nucleon Interaction

Following the fact that GOE generates stronger level repulsion compared to GOE,
as seen from 2 × 2 P(S)dS, Wigner [22] suggested that this could be used to detect
time reversal breaking in nuclear force. This and the close agreement between neu-
tron resonance data (i.e. NDE) and GOE coupled with the GOE to GUE transition
theory, i.e. the transition curve defined by Eq. (3.29) for r = 1, allows us to derive a
bound on time reversal non invariant (TRNI) part of the nucleon nucleon interaction.
Firstly the NDE data with 1336 levels gives Σ2(1) value to be 0.445 and the GOE
value is 0.446. Adding the sample size error on the theory value, within 3σ (99.7 %
confidence), the upper bound on π2Λ is 0.145 [1]. As Λ = α2v2/D2, the bound on
αv is αv 
 0.1D. Note that v is r.m.s. many particle nuclear matrix element for the
TRI part of H . To convert this to a bound on α, i.e. TRNI in the effective nucleon-
nucleon interaction, v has been determined using statistical spectroscopy methods
(see Chap. 7). The deduced bound is α ≤ 10−3 [23]. Recently, Morrison et al. [24]
suggested that a similar analysis for T -odd, P -even interactions in atoms should be
possible.
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3.2 Poisson to GOE and GUE Transitions

3.2.1 2 × 2 Matrix Results for Poisson to GOE Transition

Substituting α′ = 0 in Eq. (3.6) and applying Eq. (3.7) will give the NNSD for
Poisson (P) to GOE transition. To this end we use the result

lim
α′→0

[√
2π

(
2vα′)]−1

exp
[−z2/8

(
vα′)2]= (1/2)δz,0

and the factor 1/2 comes as we have z ≥ 0. Then, in terms of the transition parameter

Λ = α2v2

D2
0

, (3.33)

where the mean spacing D0 of the unperturbed Poisson spectrum is D0 = 2pv and
the mean square admixing GOE matrix element is α2v2, the NNSD for P to GOE
transition, with Ŝ = S/D0, is [9, 12],

PP-GOE(Ŝ) dŜ = dŜ
Ŝ

4Λ
exp

{−Ŝ2/8Λ
}∫ ∞

0
exp

{
−λ − λ2

8Λ

}
I0

(
λŜ

4Λ

)
dλ. (3.34)

For Λ = 0, Eq. (3.34) gives Poisson and for Λ → ∞ the Wigner (GOE) form. Using
Eq. (3.9) with a2 = 1/8Λ, μ = 2 and b = λ/4Λ (for the integral over Ŝ), it is easily
proved that PP-GOE(Ŝ) is normalized to unity.

Although we can compare PP-GOE(S) with P(S) for various Λ values, it is more
instructive to examine the Λ → 0 and Ŝ small limit. As Λ → 0, we can approximate
exp−(λ + λ2/8Λ) by exp−λ2/8Λ. Now applying Eq. (3.9) and the results given
in p. 509 of [15], i.e. 1F1(

1
2 ,1, z) = [exp z/2]I0(z/2), will give

PP-GOE(Ŝ) dŜ = dŜ

√
π

8

Ŝ

Λ1/2
exp

{
− Ŝ2

16Λ

}
I0

(
Ŝ2

16Λ

)
. (3.35)

Let us mention that perturbation theory also gives Eq. (3.35) for a general N × N

matrix [25]. One important result that follows from Eq. (3.35) is that P(S) goes to
zero as S goes to zero for non-zero values of Λ (i.e. there is level repulsion as soon
as GOE is switched on).

In the data analysis and applications, more useful is the variance of the NNSD,

σ 2(0 : Λ) = (S2/S
2
) − 1 for P to GOE transition, which defines a transition curve.

Using Eq. (3.9) with a2 = 1/8Λ, μ = 3 and b = λ/4Λ for the integral over Ŝ and

then applying Eq. (7.628) on p. 871 in [16] will give Ŝ = √
πΨ (− 1

2 ,0,2Λ) where

Ψ is Kummer’s function [15]. As λ2 = 2 for Poisson, Eq. (3.2) gives S2 = 8α2v2 +
8p2v2. Then, with D0 = 2pv,

σ 2
P-GOE(0 : Λ) = S2[

Ŝ
]2

D2
0

= 8Λ + 2

π[Ψ (−1/2,0,2Λ)]2
− 1. (3.36)
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Fig. 3.1 Variance σ 2(0) of
NNSD vs transition
parameter Λ for Poisson to
GOE and GUE transitions.
Figure is constructed using
the results given in [12]. See
Sect. 3.2 for details

The complete transition curve, i.e. plot of σ 2(0 : Λ) vs Λ is given in Fig. 3.1. It is
instructive to consider small Λ expansion of σ 2(0 : Λ). To this end we start with the
identity Ψ (−1/2,0,2Λ) = (2Λ)Ψ (1/2,2,2Λ) and carry out small Λ expansion for
Ψ (1/2,2,2Λ). Using Eq. (13.1.6) on p. 504 of [15] we have,

Ψ (1/2,2, z)

= 1

Γ (− 1
2 )

[{
1 + O(z)

}
ln z +

{
ψ

(
1

2

)
− ψ(1) − ψ(2)

}
+ O(z)

]
+ 1

Γ ( 1
2 )z

= 1√
π z

{
1 − z ln z

2
− z

2

[
ψ

(
1

2

)
− ψ(1) − ψ(2)

]}
+ O

(
z2). (3.37)

Here we used Γ (− 1
2 ) = −2

√
π and Γ ( 1

2 ) = √
π . With z = 2Λ, ψ( 1

2 ) = −γ −
2 ln 2, ψ(1) = −γ and ψ(2) = −γ + 1 in Eq. (3.37), Ŝ is

Ŝ = 2
√

πΛ Ψ (1/2,2,2Λ) = 1 − Λ ln(2Λ) + Λ[2 ln 2 + 1 − γ ] + O
(
Λ2). (3.38)

Therefore the small Λ expansion for σ 2(0 : Λ) is

σ 2
P-GOE(0 : Λ)

Λ�1−→ 1 + 4Λ
{
ln(2Λ) + 1 + γ − 2 ln 2)

}
(3.39)

where γ is Euler’s constant. Note the Λ lnΛ term also appears in the small Λ ex-
pansion for the number variance Σ2(1); see Eq. (3.51) ahead.
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3.2.2 2 × 2 Results for Poisson to GUE Transition

Let us now consider the Poisson to GUE transition. Simplifying Eq. (3.4) after
putting α = α′ will give,

P(S)dS = S2dS√
2π(2αv)3

exp−S2 + 4p2v2λ2

8α2v2

×
∫ π

0
dθ sin θ exp

pvSλ cos θ

2α2v2
. (3.40)

Now carrying the θ integration and applying Eq. (3.7), we obtain the NNSD for P
to GUE and the final result is, with Λ defined in Eq. (3.33),

PP-GUE(Ŝ) dŜ = dŜ
Ŝ√

2πΛ1/2
exp

{−Ŝ2/8Λ
}

×
∫ ∞

0
λ−1 exp

{
−λ − λ2

8Λ

}
sinh

(
Ŝλ

4Λ

)
dλ. (3.41)

It should be noted that the mean squared GUE admixing matrix element is 2α2v2

and hence in this case the transition parameter Λ, used in Eq. (3.41), is mean squared
admixing GUE matrix element divided by two times the square of the mean spacing
of the Poisson spectrum. Using the integrals given in p. 365 of [16], it is easy to
prove that PP-GUE(Ŝ) is normalized to unity. Similarly, using Eq. (3.10) we have,

Ŝ = 4Λ

∫ ∞

0

1

y
[exp−√

8Λy]Φ(y)dy

+
[√

8Λ

π
+ [exp 2Λ](1 − Φ(

√
2Λ)

)]
. (3.42)

Carrying out further simplifications using MATHEMATICA (the functions used
here are ExpIntegralEi(–), HypergeometricU(–) and HypergeometricPFQ[{a, b},
{c, d}, z]), the final result is

Ŝ = X(Λ) = 2Λ

[
−Ei(2Λ) + 4

√
2Λ/π2F2

(
1/2,1

3/2,3/2
; 2Λ

)]

+√
8Λ/π + [exp 2Λ][1 − Φ(

√
2Λ)

]
. (3.43)

Then, the exact expression for σ 2(0 : Λ) is

σ 2
P-GUE(0 : Λ) = 12Λ + 2

[X(Λ)]2
− 1. (3.44)
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In Eq. (3.43) Ei is exponential integral (see p. 228 in [15]),

Ei(x) = γ + lnx +
∞∑

n=1

xn

n(n!) .

Similarly 2F2 is generalized hyper-geometric function,

2F2

(
a, b

c, d
; x

)
= 1 + ab

cd
x + a(a + 1)b(b + 1)

c(c + 1)d(d + 1)

x2

2! + · · · .

The complete Poisson to GUE transition curve for σ 2(0 : Λ) vs Λ, from Eq. (3.44)
is given in the Fig. 3.1. Once again it is instructive to consider the small Λ expansion
for σ 2

P-GUE(0 : Λ). Note that,

X(Λ) = 2Λ

[{−γ − ln(2Λ) + O(Λ)
}+ 4

√
2Λ

π
+ O

(
Λ3/2)]

+
√

8Λ

π
+ [

1 + 2Λ + O
(
Λ2)][1 − 2√

π

√
2Λ + O

(
Λ3/2)]

= 1 + 2Λ[1 − γ − ln 2 − lnΛ] + O
(
Λ3/2). (3.45)

Now Eq. (3.44) gives,

σ 2
P-GUE(0 : Λ)

Λ�1−→ 1 + 8Λ

(
ln(Λ) + 1

2
+ γ + ln 2

)
. (3.46)

Just as in the case of Poisson to GOE, here also there is the Λ lnΛ term. The ap-
proximation in Eq. (3.46) is good for Λ � 0.05.

3.2.3 Relationship Between Λ Parameter for Poisson to GOE and
the Berry-Robnik Chaos Parameter

There are several different formulas, given by Brody [26], Berry and Robnik [27,
28], Izrailev [29, 30], Blocki [31] and many others for the NNSD PP-GOE(S) dS and
PP-GUE(S) dS. For example, the well known Brody (Br) distribution for Poisson to
GOE transition, with the Brody parameter ω is [26]

P B
P-GOE(S) dS = aSω exp

{−bSω+1}; a = (ω + 1)b, b =
{
Γ

(
ω + 2

ω + 1

)}ω+1

(3.47)
and it reduces to Poisson for ω = 0 and Wigner (GOE) form for ω = 1. For
0 < ω < 1, the distribution given by Eq. (3.47) vanishes as S → 0 but has an infinite
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derivative at that point, an unrealistic feature. Recently a physical process that gen-
erates the Brody distribution has been identified [32] and here the Brody parameter
corresponds to an appropriate fractal dimension.

The one parameter (ρ) Berry-Robnik (BR) formulas for Poisson to GOE and
GUE are,

P BR
P-GOE(S) dS = (1 − ρ)2 exp

{−(1 − ρ)S
}

erfc(
√

πρS/2)

+ (
2(1 − ρ)ρ + πρ3S/2

)
exp

{−(1 − ρ)S − πρ2S2/4
}
,

P BR
P-GUE(S) dS = (

2ρ(1 − ρ) − (1 − ρ)2 ρ S
)

exp
{−(1 − ρ)S

}
erfc

(
2√
π

ρ S

)

+
(

32

π2
ρ4S2 + 8

π
(1 − ρ)ρ2S + (1 − ρ)2

)

× exp

{
−(1 − ρ)S − 4

π
ρ2S2

}

(3.48)
where ρ is fractional volume, in phase space, of the chaotic region and 1−ρ is frac-
tional volume of all regular regions put together. The BR forms are good when there
is only one dominant chaotic region coexisting with regular regions. Note that ρ = 0
gives Poisson and ρ = 1 Wigner (GOE or GUE). Modification of BR distribution
(flooding- and tunneling-improved BR) has been discussed recently in [33]. Now
we will consider the relationship between the 2 × 2 results and the BR distribution
given by Eq. (3.48) in order to give a physical meaning to the Λ parameter.

The transition curves given in Fig. 3.1 show that the Poisson to GOE and Poisson
to GUE transitions are nearly complete for Λ ∼ Λc = 0.3. The results in Eqs. (3.36)
and (3.44) are in fact applicable to general N × N matrices (or for any interacting
many particle system) through the transition parameter Λ by giving appropriate in-
terpretations to α2v2 and D0 in the expression for Λ; this is indeed verified by the
results in Fig. 4 of [10]. With this, the results in Eqs. (3.36) and (3.44) can be applied
to realistic systems. An important question is: what is the significance of the numer-
ical value 0.3 of Λc for Poisson to GOE (similarly for Poisson to GUE)? Toward
this end, in [12] relationship between Λ and the BR parameter ρ (ρ representing
fractional volume, in phase space, of the chaotic region of a complex dynamical
system) for P-GOE transition was explored. Equation (30) of [27] gives σ 2(0 : ρ)

for the BR P(S)dS as a function of the ρ parameter (ρ changing from 0 to 1),

σ 2
P-GOE:BR(0 : ρ) = 2

1 − ρ

[
1 − exp

1 − ρ2

πρ2
Φ

(
1 − ρ√

π ρ

)]
. (3.49)

Say ΛBR = ρ/(1−ρ) so that ΛBR changes from 0 to ∞ just as Λ. Fitting Eq. (3.49)
to the curves in the Fig. 3.1, it is seen that [12],

Λ 
 ΛBR

20
= ρ

20(1 − ρ)
for Λ � 0.05. (3.50)
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However for Λ � 0.01 results of Eq. (3.36) and the corresponding BR formula differ
significantly. Equation (3.50) gives ρ = 0.85 for Λ = 0.3. Thus 85 % chaoticity can
be used as a guide for deciding the marker for order (Poisson) to chaos (GOE)
transition. For example, using sufficient number of energy levels near ground states
or near the yrast line at high spins as the case may be in atomic nuclei (similarly in
other interacting many particle systems such as atoms, molecules etc.), it is possible
to deduce the corresponding σ 2(0) values. Then from Fig. 3.1 one can read-off the
value of Λ (or, depending on the sample size errors, determine a bound on Λ) for
Poisson to GOE transitions in these systems. Converting this to ρ gives information
about the amount of chaoticity in the system. If it is 85 % (i.e. Λ ≥ 0.3), then one
can argue that chaos has set in. This approach was used in deriving the order-chaos
border in interacting fermion [34] and boson systems [35].

3.2.4 Poisson to GOE, GUE Transitions: N × N Ensemble Results
for Σ2(r)

Without going in details here we give the formulas, valid for N × N matrices, for
Σ2(n,Λ) for Poisson to GOE and GUE transitions. They, valid for n � Λ1/2, are
[1]

Σ2
P-GOE(n,Λ)

Λ�1−→ n − 2Λ

(
ln

n2

2Λ
+ γ − 1 + ln 4

)
,

Σ2
P-GUE(n,Λ)

Λ�1−→ n − 4Λ

(
ln

n2

2Λ
+ γ

)
.

(3.51)

More general discussion of Poisson to GUE (and GOE) transitions for N × N ma-
trices is given in [3, 5–7].

3.2.5 Onset of Chaos at High Spins via Poisson to GOE Transition

Stephens et al. [36, 37] developed a novel technique to measure the chaoticity pa-
rameter (Λ1/2) for order-chaos transition in rotational nuclei. With D giving the
average spacing of the levels that are mixed and v giving the r.m.s. admixing matrix
element, Λ1/2 = v/D. Extending Wigner’s 2 × 2 matrix formalism, the variance
of the NNSD for Poisson to GOE transition is given by Eqs. (3.36) and (3.39). As
discussed before, the Poisson to GOE transition is nearly complete for Λ ∼ 0.3. and
Λ 
 ρ

20(1−ρ)
where ρ represents fractional volume, in phase space, of the chaotic

region of a complex dynamical system. From the experiments for Yb isotopes,
Stephens et al. deduced that Λ1/2 ∼ 0.15 to 1.5. Thus at present it is not possible to
make a definite statement about onset of chaoticity in the Yb isotopes.
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3.3 2 × 2 Partitioned GOE

Let us consider the H matrix H = H0 + αV where H0 is a 2 × 2 block matrix
with dimension d = d1 + d2 (d1 is dimension of the upper block and d2 of the
lower block) and V is a d dimensional GOE(v2). Note that GOE(v2) stands for
GOE random matrix ensemble with diagonal matrix elements of the matrices in
the ensemble being G(0,2v2) and off-diagonal matrix elements G(0, v2). We put
the off-diagonal blocks of H0 to zero and represent the upper block {H0;11} with
dimension d1 by a GOE(v2

1) where v2
1 = v2(d1 + d2)/d1 and similarly the lower

block {H0;22} with dimension d2 by a GOE(v2
2) with v2

2 = v2(d1 + d2)/d2. Thus,
α = 0 corresponds to a superposition of two GOE’s and α → ∞ gives a single GOE.
For this 2 × 2 partitioned GOE, binary correlation approximation gives Aζ = 2(1 +
[1 + α2]−ζ ) ∼ 2(2 − ζα2). Recall that for GOE to GUE transition we have Aζ =
1 + ( 1−α2

1+α2 )ζ ∼ 2(1 − ζα2). Therefore it is easy to modify the GOE-GUE derivation

and derive the following result, with the transition parameter Λ = α2v2/D
2
, for the

number variance [1],

Σ2
2×2(r,Λ) = Σ2(r,∞) + 1

π2
ln

{
1 + π2r2

4(τ + π2Λ)2

}
. (3.52)

The cut-off parameter τ is determined using the result

Σ2
2×2(r,0) = Σ2

GOE

([d1/d]r)+ Σ2
GOE

([d2/d]r)

and Eq. (3.52) is good for r > 2. Note that Σ2(r,∞) is the GOE value. As discussed
before, Σ2(r) formula gives the expression for Δ3(r),

Δ3:2×2(r,Λ) = Δ3(r,∞) + 1

π2

{[
1

2
− 2

X2r2
− 1

2X4r4

]
ln
(
1 + X2r2)

+ 4

Xr
tan−1(Xr) + 1

2X2r2
− 9

4

}
; X = π

2(τ + π2Λ)
. (3.53)

A direct and good test of Eq. (3.53) came recently from experiments with two cou-
pled flat superconducting microwave billiards [38].

3.3.1 Isospin Breaking in 26Al and 30P Nuclear Levels

Shriner and Mitchell [39, 40] considered complete spectroscopy for levels up to
∼8 MeV excitation in 26Al and 30P. For 26Al, there are 75 T = 0 and 25 T = 1
levels with Jπ = 1+ to 5+. Similarly in 30P there are 69 T = 0 and 33 T = 1 levels
with Jπ = 0± to 5±. With Coulomb interaction breaking isospin, the appropriate
random matrix model here is 2×2 GOE giving 2GOE to 1GOE transition. Analysis
of data for 26Al and 30P is in good agreement with 2GOE to 1GOE transition. In
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particular, using 26Al the data was analyzed using a slightly different 2 × 2 random
matrix ensemble [41],

[
GOE((d/d0)v

2) αVc(2v2)

α ˜Vc(2v2) GOE((d/d1)v
2)

]
(3.54)

in |T = 0〉 and |T = 1〉 basis with the dimension d0 of the T = 0 space being d0 = 75
and the dimension d1 of the T = 1 space being d1 = 25. Then the total dimension

d = 100. Analysis of data gave α = 0.056 and H 2
ij (c) = α2V 2

c;ij ∼ (20 keV)2. The

corresponding spreading width Γ = 2πH 2
ij (c)/D is Γ ∼ 32 keV. There is also an

analysis of reduced transition probabilities (with about 1500 transitions) in 26Al
showing deviations from P-T [42]. Let us consider this in some detail.

For GOE, given the strengths R(Ei,Ef ) = |〈Ei |O|Ef 〉|2, the locally renormal-
ized transition strengths x = R(Ei,Ef )/R(Ei,Ef ) are distributed according to the
Porter-Thomas (P-T) law. Deviations from P-T law could be ascribed to symmetry
breaking and then the questions are: (i) where to look for good data; (ii) what is the
appropriate random matrix ensemble and what are its predictions. Adams et al. [42]
collected data for reduced electromagnetic transition matrix elements in 26Al from
ground state to 8 MeV excitation. The data divides into 120 different transition se-
quences with each of them having about 10 matrix elements; a transition sequence is
defined by initial J

πi

i Ti going to all J
πf

f Tf (with no missing transitions in between)

for a given BL
T (E or M) where L is multipole rank and T = 0 for isoscalar (IS) and

T = 1 for isovector (IV) transitions. In the data set there are 211 E1 IS, 172 E1 IV,
358 M1 IV and 132 E2 IS transition matrix elements. Instead of the locally renor-
malized strengths x, distribution of z = log(x) is plotted by combining all the data
with a proper prescription. The P-T form gives maximum at z = 0 while data shows
the peak at ≈−0.5. It is conjectured that this deviation is a consequence of isospin
breaking. The random matrix model now consists of the 2 × 2 partitioned GOE for
the Hamiltonian as given by Eq. (3.54) and in the same basis an independent 2 × 2
partitioned GOE for the transition operator O [43],

O = βIS

[
O(0) 0

0 O(1)

]
+ βIV

[
0 Oc

Õc 0

]
. (3.55)

Here, βIS = 1 and βIV = 0 for IS and βIS = 0 and βIV = 1 for IV transitions. De-
termining appropriately the scale parameters of the various GOE’s in the H and O
ensembles, Barbosa et al. [43] recently constructed P(z)dz via numerical calcu-
lations by transforming the ensemble in Eq. (3.55) into {H } basis via the unitary
matrices that diagonalize H ’s. The random matrix model correctly predicts the shift
in the peak with respect to P-T. However the data are more strongly peaked and at
present there is no quantitative understanding of this feature.
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3.4 Rosenzweig-Porter Model: Analysis of Atomic Levels and
Nuclear 2+ and 4+ Levels

Rosenzweig-Porter model [44] is the appropriate random matrix model when we
consider a set of levels in a spectrum S and the levels in S differ containing con-
served quantum numbers which are either unknown or ignored. Then, the spec-
trum can be broken into r sub-spectra Sj of independent sequences of levels with
j = 1,2, . . . , r . In the set of levels considered for the analysis of P(S) (i.e. NNSD),
say the fraction of levels from Sj is fj . Then, 0 < fj ≤ 1 and

∑r
j=1 fj = 1. Now

an appropriate random matrix model is to represent each subspace Sj by indepen-
dent GOE’s of dimension dj = dfj where d is the size of S . NNSD for such an
ensemble was first considered by Rosenzweig-Porter (RP) [44] and they showed
that, with fj = 1/r; r → ∞, P(S) goes to Poisson. This model has been employed
in discussing LS to JJ coupling change in atomic spectra. Exact solutions for the
RP model are given very recently [45, 46] but they are not useful in data analysis.
Abul-Magd derived a simplified formula for P(S) in terms of the chaoticity param-
eter f =∑r

j=1 f 2
j and it is [47],

P(S)dS = [
1 − f + Q(f )πS/2

]
exp

[−(1 − f )S − Q(f )πS2/4
]

(3.56)

where Q(f ) = f (0.7 + 0.3f ). With f = 1/r , r → ∞, P(S) goes to Poisson and
f = 1 gives GOE. Abul-Magd, Harney, Simbel and Weidenmüller [48, 49] analyzed
the NNSD of low-lying 2+ levels (up to ∼4 MeV excitation) for Poisson to GOE
transition using Eq. (3.56). They considered 1306 levels belonging to 169 nuclei
(with a minimum of 5 consecutive 2+ levels in a given nucleus). The nuclei are
grouped into classes defined by the collectivity parameter E(4+

1 )/E(2+
1 ). In the

system considered, departures from GOE arise due to the neglect of possibly good
quantum numbers. Using Bayesian inference method, values of f are deduced and
it is found to be small for nuclei with IBM symmetries while for the intermediate
nuclei f ∼ 0.6.

Equation (3.56) was also applied in the analysis NNSD for 2+ levels of prolate
and oblate deformed nuclei by Al-Sayed and Abul-Magd [50]. They considered 30
nuclei of oblate deformation having 246 levels and 83 nuclides of prolate defor-
mation having 590 energy levels ranging from 28Si to 228Ra. Analysis showed that
the chaoticity parameter f is ∼0.73 for prolate nuclei and ∼0.59 for oblate nuclei
suggesting that oblate nuclei are more regular compared to prolate nuclei.

It may be useful to note that a formula for the number variance Σ2(r) for the
RP model was given in [1] and this is not yet used in any data analysis. All the
nuclear data that is analyzed so far using RMT is shown in Fig. 3.2 in the angular
momentum and energy plane.
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Fig. 3.2 Schematic diagram
giving the regions, in the
excitation energy vs angular
momentum plane for nuclei,
where data was analyzed for
evidence for random matrices
(GOE and its extensions).
Details of BHP [51], SM-B
[39, 40, 43], AHSW-AA
[48–50], GRFJ-E [52, 53],
and SDLM [36, 37] are given
in the text (Color figure
online)

3.5 Covariance Random Matrix Ensemble XXT : Eigenvalue
Density

Let us consider a N ×M matrix X with matrix elements real and chosen to be inde-
pendent G(0, v2) variables. Then the N × N random matrix ensemble C = XXT ,
where XT is the transpose of X, represents a GOE related covariance random ma-
trix ensemble (GOE-CRME). It is possible to consider many other types of CRME’s
as discussed for example in [54–56]. The CRME’s have wide ranging applications.
For example: (i) they are important in multivariate statistical analysis [57]; (ii) they
are used in the study of cross-correlations in financial data [58–60]; (iii) they appear
in a model for mixing between distant configurations in nuclear shell model [61];
(iv) they are relevant for statistical analysis of correlations in atmospheric data [62];
(v) they determine statistical bounds on entanglement in bipartite quantum systems
due to quantum chaos [63].

In this section we consider the ensemble averaged density ρC(E) of the eigen-
values of GOE-CRME C = XXT . Dyson [64, 65] first derived the result for ρC(E)

for the matrices X with N = M . In most applications the eigenvalue density for
N �= M is needed. The result for this situation was derived using many different
techniques; see [54, 55, 57, 66] and references therein. Equation (3.73) ahead gives
the final result. It is indeed possible to obtain ρC(E) using the 2×2 partitioned GOE
(p-GOE:2) employed in nuclear structure studies as a statistical model for mixing
between distant nuclear shell model configurations [61, 67]. This gives an easy to
understand derivations of the final result [68].
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3.5.1 A Simple 2 × 2 Partitioned GOE: p-GOE:2(Δ)

Let us consider two spaces #1 and #2 with dimensions d1 and d2 respectively . For
a simple statistical model for the mixing between the spaces #1 and #2, one can
assume, as a first step, that all the eigenvalues in #1 are degenerate and say their
value is 0. Similarly one may assume that the eigenvalues in #2 are also degenerate
with their value say Δ. More importantly, these two spaces will mix and the mixing
Hamiltonian X will be a d1 ×d2 matrix. A plausible model for X is to replace it by a
GOE, i.e. assume that the matrix elements of X are independent G(0, v2) variables.
Then we have a 2 × 2 block structured random matrix ensemble,

HΔ =
[

0I1 X

XT Δ I2

]
. (3.57)

This ensemble is called p-GOE:2(Δ). Note that the matrices I1 and I2 are unit
matrices with dimensions d1 and d2 respectively and the H matrix dimension is
d = d1 + d2. Now let us consider the eigenvalue density ρΔ(E) for the matrix HΔ.
The ρΔ(E) is simply,

ρΔ(E) = 〈
δ(HΔ − E)

〉1+2
, (3.58)

and its decomposition into sum of the partial densities ρΔ;1 and ρΔ;2 defined over
the spaces #1 and #2 respectively is given by,

ρΔ;i (E) = 〈
δ(HΔ − E)

〉i; ρΔ(E) = d−1[d1ρ
Δ;1(E) + d2ρ

Δ;2(E)
]
. (3.59)

As we will see ahead, the densities ρΔ;1(E) and ρΔ;2(E) differ only in a delta
function. Therefore from now on we will consider only ρΔ;1(E) and also assume
that d1 < d2. For mathematical simplicity, as an intermediate step, we will consider
the matrix ensemble H±Δ′ ,

H±Δ′ =
[−Δ′I1 X

XT Δ′I2

]
(3.60)

and the corresponding ρ±Δ′;1(E). Denoting the p-th moment of this density by
M

±Δ′;1
p , we have, with [p

2 ] being the integer part of p
2 ,

M±Δ′;1
p = (−1)p

[ p
2 ]∑

ν=0

([p
2 ]
ν

)(
Δ′)p−2ν 〈(

XXT
)ν 〉1

. (3.61)

Equation (3.61) is derived by multiplying H±Δ′ p-times and then using the

first diagonal block of the resulting 2 × 2 block matrix. Similarly M
±Δ′;2
2ν =

(d1/d2)M
±Δ′;1
2ν and M

±Δ′;2
2ν+1 = −(d1/d2)M

±Δ′;1
2ν+1 with M

±Δ′;1
0 = M

±Δ′;2
0 = 1.

Equation (3.61) shows that there should be a generalized convolution form for
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ρ±Δ′;1(E) with one of the factors being ρΔ′=0;1 as the moments for a den-
sity written as a convolution of two functions follow the law Mp(ρA ⊗ ρB) =∑(

p
s

)
Ms(A)Mp−s(B); here ⊗ denotes convolution. From Eq. (3.61) we have

M
±Δ′;1
2ν+1 = −Δ′M±Δ′;1

2ν . Then
∫∞
−∞ E2ν(E + Δ′)ρ±Δ′;1(E)dE = 0 and also∫∞

−∞ E2ν(E − Δ′)ρ±Δ′;1(−E)dE = 0. They imply that ρ±Δ′;1(E) is of the form

|E−Δ′
E+Δ′ |1/2 f (E) where f (E) is an even function of E. This and the fact that

〈(XXT )ν〉1 is the 2ν-th moment of ρ0:1(E), allow us to identify the following
important result,

ρ±Δ′;1(E) =
∣∣∣∣E − Δ′

E + Δ′

∣∣∣∣
1
2

ρΔ′=0;1(√E2 − (
Δ′)2)

, |E| ≥ Δ′. (3.62)

Now, putting Δ′ = Δ
2 and shifting all the eigenvalues E by Δ/2 so that E → (E −

Δ
2 ), the final result for ρΔ;1 is obtained,

ρΔ;1(E) =
∣∣∣∣E − Δ

E

∣∣∣∣
1
2

ρΔ=0;1(√E(E − Δ)
)
, E ≥ Δ, E ≤ 0. (3.63)

Equation (3.63) was reported first in [61]. Now we will consider ρΔ=0;1(E) for
p-GOE:2(Δ = 0).

3.5.2 Moments and the Eigenvalue Density for p-GOE:2(Δ = 0)

Given H0 = [ 0I1 X

XT 0I2

]
, mathematical induction gives,

(H0)
2ν =

[
(XXT )ν 0

0 (XT X)ν

]
, (H0)

2ν+1 =
[

0 (XXT )νX

(XT X)νXT 0

]
.

(3.64)
Then, immediately we have 〈〈(H0)

p〉〉1 = 〈〈(H0)
p〉〉2 for p �= 0 and for p = 0, they

are d1 and d2 respectively. Secondly, all the odd moments of ρΔ=0;1(E) are zero.
Also, for d1 < d2, ρΔ=0;2(E) = d1

d2
ρΔ=0;1(E) + (1 − d1

d2
)δ(E). One way of con-

structing ρΔ=0;1(E) is via its moments. From Eq. (3.64) we have M2ν(ρ
Δ=0;1) =

〈(XXT )ν〉1 and they can be evaluated for p-GOE:2 using BCA discussed earlier.
Firstly, the ensemble averaged second moment simply is,

M2
(
ρΔ=0;1)= (d1)

−1
∑
i,j

Xij

(
XT

)
ji

= (d1)
−1

∑
i,j

X2
ij = v2d2. (3.65)

Similarly, defining M̃p = d1Mp = 〈〈(H0)
p〉〉1, we have

M̃4
(
ρΔ=0;1)=

∑
i,j,k,l

Xij

(
XT

)
jk

Xkl

(
XT

)
li

=
∑

i,j,k,l

XijXkjXklXil .
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In the sum here, applying BCA, we need to consider only terms that contain pairwise
correlations. Then, with k = i or l = j ,

M̃4
(
ρΔ=0;1) =

∑
i,j,l

[XijXijXilXil] +
∑
i,j,k

[XijXkjXkjXij ]

=
∑
i,j,l

[XijXij XilXil] +
∑
i,j,k

[XijXij XkjXkj ]

= v4[d1d
2
2 + d2

1d2
]
. (3.66)

The two terms in Eq. (3.66) can be written as 〈XXT XXT 〉 and 〈XXT XXT 〉. The

terms that are dropped in Eq. (3.66) involve cross correlations, i.e. terms with odd
number of matrix elements in between those that are correlated. They will be smaller
by a factor of d2 (or d1). Thus BCA here is good if d1 and d2 both are large. Pro-
ceeding further we have for M̃6,

M̃6
(
ρΔ=0;1) =

∑
i,j,k,l,m,n

XijXkjXklXmlXmnXin

=
∑

i,j,l,n

XijXijXilXilXinXin +
∑

i,j,l,m

XijXijXilXmlXmlXil

+
∑

i,j,k,n

XijXkjXkjXijXinXin +
∑

i,j,k,m

XijXkjXkjXmjXmjXij

+
∑

i,j,k,l

XijXkjXklXklXkjXij

= v6(d1d
3
2 + 3d2

1d2
2 + d3

1d2
)
. (3.67)

The binary correlation structure in Eq. (3.67) is clear and let us apply it to M̃8.
Writing Xij as Xa , symbolically M̃8 = ∑

XaXbXcXdXeXf XgXh. Now: (i) with
Xa and Xb correlated, the correlations in the remaining XcXdXeXf XgXh are same
as those in M̃6; (ii) with Xa and Xd correlated, necessarily Xb and Xc must be
correlated and the remaining XeXf XgXh correlations are same as those in M̃4;
(iii) with Xa and Xf correlated, necessarily Xg and Xh must be correlated and the
remaining XbXcXdXe correlations are same as those in M̃4; (iv) with Xa and Xh

correlated, the correlations in the remaining XbXcXdXeXf Xg are same as those
in M̃6. Then the expression for M̃8 is,

M̃8
(
ρΔ=0;1)= v8[d4

1d2 + 6d3
1d2

2 + 6d2
1d3

2 + d1d
4
2

]
. (3.68)
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Continuing this will lead to a recursion formula for the moments,

M̃2ν

(
ρΔ=0;1)= v2

∑
r=0,2,...,2ν−2

M̃2ν−2−r

(
ρΔ=0;1)M̃r

(
ρΔ=0;2); ν ≥ 1,

M̃2ν

(
ρΔ=0;1)= M̃2ν

(
ρΔ=0;2) for ν �= 0, M̃0

(
ρΔ=0;1)= d1,

M̃0
(
ρΔ=0;2)= d2.

(3.69)

For example using Eq. (3.69) we have M̃10 = v10[d5
1d2 + 10d4

1d2
2 + 20d3

1d3
2 +

10d2
1d4

2 + d1d
5
2 ]. With all the moments determined, it is possible to identify the

density ρΔ=0;1. Integral tables in [69], the expression for M4 given by (3.66) and
M̃2ν, ν = 1,2,3,4 for d1 = d2 allow us to write the final solution,

ρΔ=0;1(E)dE = 1

2πv2d1

√
(R2+ − E2)(E2 − R2−)

|E| dE, R− ≤ |E| ≤ R+;

R± = v(
√

d2 ±√
d1). (3.70)

Note that ρΔ=0;1(E) = 0 for |E| < R− or |E| > R+ and also it is a semicircle for
d1 = d2. The reduced moments M̃2ν = M2ν/(M2)

ν of ρΔ=0;1(E) are,

M̃2ν

(
ρΔ=0;1)= (1 + √

R0)
2ν+2

πR0

∫ 1

R0

x2ν−1
√(

1 − x2
)(

x2 − R0
2)

dx;

R0 = d1

d2
, R0 = 1 − √

R0

1 + √
R0

. (3.71)

3.5.3 Eigenvalue Density for GOE-CRME

Our primary interest is to determine the eigenvalue density ρC(E) for the GOE-
CRME C = XXT where X is a d1 × d2 matrix with its matrix elements being in-
dependent G(0, v2) variables; we assume d1 ≤ d2. From Eq. (3.64) it is seen easily
that the ν-th moment of ρC and the 2ν-th moment of ρΔ=0;1 are simply related,
Mν(ρ

C) = M2ν(ρ
Δ=0;1). As ρΔ=0;1 is an even function, we have

M2ν

(
ρΔ=0;1)= 2

∫ ∞

0
E2νρΔ=0;1(E)dE =

∫ ∞

0
yν

[
ρΔ=0;1(y1/2)

y1/2

]
dy

=⇒ ρC(y) = ρΔ=0;1(y1/2)

y1/2
. (3.72)

Now, the formula for ρC follows simply from Eq. (3.70),

ρC(λ)dλ = 1

2πv2d1

√
(λ+ − λ)(λ − λ−)

λ
dλ, λ− ≤ λ ≤ λ+;
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Fig. 3.3 Eigenvalue density
for GOE-CRME ensemble for
different values of
R0 = d1/d2. Equation (3.74)
gives the formula for the
eigenvalue density

λ± = v2(
√

d2 ±√
d1)

2 = (
v2d1d2

) 1

d1

[
1 + R0 ± 2

√
R0

]
. (3.73)

With the normalization v2d2 = 1, we have

ρC(λ)dλ = 1

2πR0

√
(λ+ − λ)(λ − λ−)

λ
dλ, λ− ≤ λ ≤ λ+;

λ± = [1 + R0 ± 2
√

R0], R0 = d1

d2
, d1 < d2. (3.74)

The final solution given by Eq. (3.74) is same as the result reported for example
in [59] with Q = 1/R0 and σ 2 = 1. Thus, ρC(E) follows from p-GOE:2(Δ) and it
is simple to deal with this ensemble. Figure 3.3 gives a plot of ρC(λ) for various
values of R0 and used here is Eq. (3.74). Before going further, some comments on
generalization of p-GOE will be useful.

Given ρ(x), its Stieltjes transform f (z) is

f (z) =
∫ +∞

−∞
ρ(x)

z − x
dx (3.75)

where z is a complex variable. Since −πδ(x) = �〈 1
x+i0 〉, we have

ρ(x) = − 1

π
�
{[

lim
ε→0

f (x + iε)
]}

. (3.76)

Given a general 2 × 2 block matrix
[

H11 H12
HT

12 H22

]
that is real symmetric with dimen-

sions for the diagonal blocks being d1 and d2 respectively, following Eqs. (3.58)
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and (3.59), we have dρ(x) = ∑2
i=1 diρ

i(x). Let us denote the Stieltjes transforms
of ρ, ρ1 and ρ2 by f , f1 and f2 respectively. We assume that the matrix elements
of Hij are independent Gaussian variables with variances v2

ij . Moreover, we can
assume that all matrix elements are zero centered except that the diagonal matrix el-
ements of H22 have centroid Δ. Then, using the moments recursion, one can prove
that [4]

df1 = 1

z − v2
11d1f1 − v2

12d2f2

df2 = 1

z − Δ − v2
22d2f2 − v2

12d1f1
.

(3.77)

Solving these equations for f1 with v11 = v22 = 0 and Δ = 0 and applying
Eq. (3.76) will give ρΔ=0;1(x). This will be an alternative derivation of Eq. (3.70)
given earlier. However, Eq. (3.77) allows one to solve the most general 2 × 2 block
matrix problem with v11 �= 0, v22 �= 0 and Δ �= 0, i.e. most general p-GOE:2 ran-
dom matrix problem. Deriving an analytical form for ρ1 (similarly for ρ2) for the
general p-GOE:2 is of considerable interest in nuclear physics [67]. Its further gen-
eralization to p-GOE:N was analyzed in [70] and the partial densities ρi are reduced
to multiple integrals involving commuting and anticommuting variables.

3.6 Further Extensions and Applications of RMT

Here below will give a list of various extensions and applications of RMT. This list
is only partial as the subject of “Random Matrices: Theory and Applications” is too
vast to be covered in completeness at one place.

1. There are many new class of random matrix ensembles that are not covered
in this book and some of them are: (i) β ensembles and more general random
matrix ensembles related to orthogonal polynomials [71, 72]; (ii) critical ran-
dom matrix ensembles [73, 74]; (iii) ensembles with non-extensive q entropy
[75–77]; (iv) ensemble with super statistics [78]; (v) special constrained Gaus-
sian ensembles [79]; (vi) Cyclic random matrix ensembles [80]; (vii) Hussein
and Pato’s deformed ensembles based on maximum entropy principle [81–84];
(viii) Transition ensemble for harmonic oscillators to GUE transition [85];
(ix) New versions and new applications of circular ensembles [86–90]. (x) Non-
Hermitian random matrix ensembles; see [91–98] and references therein. (x)
Random density matrices for entanglement related studies [99, 100].

2. There is a nice relationship between ensembles of 2 × 2 Hermitian matrices
and Gaussian point process [101] and similarly between Poisson point pro-
cess and 2 × 2 complex non-Hermitian random matrices [102]. Construction
and applications of many other 2 × 2 random matrix ensembles are discussed
in [76, 103, 104]. For example, introduced in [103] are 2 × 2 pseudo-Hermitian
random matrix ensembles and in [76] introduced are ensembles based on Tsal-
lis entropy. Thus, 2×2 ensembles have much wider relevance. As an additional
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example, briefly discussed in Appendix E are 2 × 2 matrix results and their
extensions for open quantum systems [105–112].

3. Going beyond 2 × 2 ensembles, recently 3 × 3 random matrix ensembles (first
discussion on 3 × 3 random matrix ensembles was given in [113]) are found
to be useful in deriving some new results. Using 3 × 3 GE, derived in [114]
is the probability distribution for the ratio of consecutive level spacings (see
Chap. 16). This distribution and its relatives are suggested [115–117] to be use-
ful in understanding localization in interacting many particle systems.

4. RMT for missing levels and incomplete spectra has been discussed for example
in [65, 118–120] and this is of considerable interest in data analysis and for
predictions of missing levels.

5. Using the analogy between energy levels and time series, methods of time se-
ries analysis are applied to RMT spectra showing for example 1/f 2 noise for
Poisson systems and 1/f noise for GOE/GUE/GSE. There are several investi-
gations in this direction as given for example in [118, 121–126].

6. There are applications of RMT for biological networks [127], neural networks
[128], small world networks [129], terrace-width distributions on vicinal sur-
faces of vicinal crystals [130], finding words in literary texts [131] and so on.

7. There is extensive literature on results for the rate of convergence of probabil-
ity distributions in RMT and on asymptotic properties of a variety of random
matrices; see for example [54, 96, 132–135].

8. Extreme statistics in RMT is another important topics that is not discussed in
this Section. An example is the probability distribution for the largest or the
lowest eigenvalue in GOE. Tracy-Widom distribution is the starting point for
all these investigations. See [134–144] and references therein.

9. New classification of random matrices, extending Dyson’s 3-fold way to 10
classes, based on group theory is given in [145–147]. These new classes have
applications in condensed matter physics. They also include chiral ensembles
for QCD related applications [148–152].

10. Random matrix theory for random phase approximation (RPA), a widely used
quantum many-body approximate method, has been introduced in [153].

11. Random matrix theory for scattering and Ericson fluctuations is an important
topic that is not discussed in this section. Good references for these are [154–
158].

12. Numerical methods and algorithms for constructing and analyzing random ma-
trices of large dimensions are available for example in [159, 160].
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