
Chapter 11
Embedded Gaussian Unitary Ensembles:
Results from Wigner-Racah Algebra

A long standing question for the embedded ensembles is about their analyti-
cal tractability. Amenability to mathematical treatment is one of the four con-
ditions laid down by Dyson [1] for the validity of a random matrix ensemble.
To address this issue, in this chapter we will consider embedded unitary ensem-
bles. It is important to recall that out of the three classical ensembles, GUE is
mathematically much easier. Simplest embedded unitary ensemble is the embed-
ded Gaussian unitary ensemble of two-body interactions [EGUE(2)] for spinless
fermion systems. For m fermions in N sp states, the embedding is generated
by the SU(N) algebra. Although EE are known for many years, only recently
[2], after the first indications implicit in [3, 4], it is established that the SU(N)

Wigner-Racah algebra solves EGUE(2) and also the more general EGUE(k) [as
well as EGOE(k)]. These results, with U(N) algebra, extend to BEGUE(k) for
spinless bosons in N sp states (see Sects. 11.2 and 11.3 and [5]). For EGUE(2)-
s for fermions with spin and EGUE(2)-SU(4) for fermions with Wigner’s spin-
isospin SU(4) symmetry, the embedding algebras, with Ω number of spatial de-
grees of freedom for a single fermion, are U(Ω) ⊗ SU(2) and U(Ω) ⊗ SU(4)

respectively [6, 7]. Similarly, the embedding algebras for BEGUE(2)-F for two-
species boson systems with F -spin and BEGUE(2)-SU(3) for spin one bosons
are U(Ω) ⊗ SU(2) and U(Ω) ⊗ SU(3) respectively [8, 9]. Again, the Wigner-
Racah algebra of these algebras solve the corresponding embedded unitary en-
sembles. As discussed in Sect. 11.3, all these ensembles can be unified into
EGUE(2)-[U(Ω) ⊗ SU(r)]. All these results, discussed in some detail in the next
seven sections, obtained after more than 30 years of the introduction of em-
bedded ensembles, conclusively establish that two-body random matrix ensem-
bles are amenable to mathematical treatment and thus satisfy Dyson’s criterion.
Here, Wigner-Racah algebra of the embedding Lie algebras plays the central
role.
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11.1 Embedded Gaussian Unitary Ensemble for Spinless
Fermions with k-Body Interactions: EGUE(k)

In this section we deal with EGUE(k), i.e. fermions with a general k-body Hamil-
tonian although for nuclei, atoms and mesoscopic systems k = 2 is most important.
For a system of m spinless fermions in N sp states, one has the unitary groups
SU(N), U(Nk) and U(Nm), Nr = (

N
r

)
, with EGUE(k) invariant under U(Nk) and

the embedding in m-particle spaces is defined by SU(N); note that a GUE in m parti-
cle spaces is invariant under U(Nm) but not the EGUE(k), k < m. Analytical results
for EGUE(k) follow from the tensorial decomposition of H with respect to SU(N)

and the SU(N) Wigner-Racah algebra; in the end Wigner coefficients disappear as
expected [note that the Wigner coefficients involve the sub-algebras of SU(N)] and
all the expressions for the moments involve only SU(N) Racah coefficients. Firstly,
sp creation operator a

†
i for any i-th sp state transforms as the irrep {1} of U(N) and

similarly a product of r creation operators transform, as we have fermions, as the
irrep {1r} in Young tableaux notation. Let us add that a U(N) irrep {λ1, λ2, . . . , λN }
defines the corresponding SU(N) irrep as {λ1 − λN,λ2 − λN, . . . , λN−1 − λN }
with N − 1 rows. The U(Ω) ↔ SU(Ω) correspondence is used throughout and
therefore we use U(Ω) and SU(Ω) interchangeably. A normalized r-particle cre-
ation operator A†(frαr) behaves as the SU(N) irrep (tensor) {1r}. Similarly a r-
particle annihilation operator behaves as {1r} = {1N−r}. Tensorial multiplication
gives, {1r} ⊗ {1r} → ∑

gν⊕ = ∑{2ν1N−2ν}⊕, ν = 0,1, . . . , r . Note that g0 = {0}
for SU(N) and gν = gν . Also, the ν here is same as the tensorial rank ν used in
Chaps. 5 and 6. SU(N) irreducible tensors Bk(gνων) are defined by,

Bk(gνων) =
∑

αk,α
′
k

A†({1k
}
αk

)
A
({

1k
}
α′

k

)〈{
1k

}
αk

{
1k

}
α′

k

∣
∣gνων

〉
, (11.1)

where 〈−− | −−〉’s are SU(N) Wigner coefficients and α’s are the other labels for
completely specifying the k particle states [they can be specified by any subgroup
chain contained in SU(N)]. An important property of Bk(gνων) is that they are
orthogonal with respect to the traces over k particle spaces. Given a k-body Hamil-
tonian

H(k) =
∑

va,vb

Vvavb
(k)A†({1k

}
va

)
A
({

1k
}
vb

)
, (11.2)

where Vvavb
(k) are matrix elements of H(k) in k-particle space, the V (k) matrix is

chosen to be GUE, i.e. Vvavb
(k) are independent Gaussian variables with zero center

and variance given by (with bar denoting ensemble average),

Vvavb
(k)Vvcvd

(k) = (
λ2/Nk

)
δvavd

δvbvc . (11.3)

Action of H(k) on a given complete set of m-particle basis states will generate
EGUE(k) in m-particle spaces. The m-particle matrix elements of H(k) are, with
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s = m − k,

Hv1
mv2

m
(k)

= 〈{
1m

}
v1
m

∣∣H(k)
∣∣{1m

}
v2
m

〉

=
(

m

k

) ∑

va,vb,vs

〈{
1k

}
va

{
1s

}
vs

∣∣{1m
}
v1
m

〉∗〈{1k
}
vb

{
1s

}
vs

∣∣{1m
}
v2
m

〉
Vvavb

(k).

(11.4)

Unitary decomposition of H(k) in terms of the SU(N) tensors Bk(gνων) is,

H(k) =
∑

gν,ων

Wgνων (k)Bk(gνων) (11.5)

and the W ’s will be independent Gaussian variables with

Wgνων (k)Wgμωμ(k) = λ2

Nk

δgνgμδωνωμ. (11.6)

Using Eqs. (11.1)–(11.5) and the sum-rules for SU(N) Wigner coefficients, the re-
sult given by Eq. (11.6) can be proved.

Correlations generated by EGUE(k) in m particle spaces follow from the matrix
A of the second moments, i.e.

Aα1
mα4

m;α3
mα2

m
= 〈{

1m
}
α1

m

∣∣H(k)
∣∣{1m

}
α2

m

〉〈{
1m

}
α3

m

∣∣H(k)
∣∣{1m

}
α4

m

〉
. (11.7)

First substituting the H(k) in terms of Bk’s as given by Eq. (11.5), then using the
Wigner-Eckart theorem for SU(N) and finally applying Eq. (11.6) for carrying out
the ensemble average will give

〈{
1m

}
α1

m

∣∣H(k)
∣∣{1m

}
α2

m

〉〈{
1m

}
α3

m

∣∣H(k)
∣∣{1m

}
α4

m

〉

= λ2

Nk

∑

gνων,ν=0,1,...,k

∣∣〈{1m
}∣∣∣∣Bk(gν)

∣∣∣∣{1m
}〉∣∣2

× 〈{
1m

}
α1

m

{
1m

}
α2

m

∣∣gνων

〉〈{
1m

}
α3

m

{
1m

}
α4

m|gνων〉;
∣∣〈{1m

}∣∣∣∣Bk(gν)
∣∣∣∣{1m

}〉∣∣2

=
(
N
m

)2(m
k

)2

d(gν)
(

N
m−k

)
[
U
({

1m
}{

1N−k
}{

1m
}{

1k
};{1m−k

}{
2ν1N−2ν

})]2

= Λν(N,m,m − k),

Λν(N,m, r) =
(

m − ν

r

)(
N − m + r − ν

r

)
.

(11.8)

In Eq. (11.8), U(− − −) are SU(N) Racah coefficients, 〈−− || −− || −−〉 are

SU(N) reduced matrix elements and d(gν) = d(ν) = (
N
ν

)2 − (
N

ν−1

)2
. In the final
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step used is the formula given in [10] for SU(N) U -coefficients. An alternative
expression for the covariance in Eq. (11.7) follows from the Biedenharn-Elliott sum
rule for SU(N) [2, 11, 12],

〈{
1m

}
α1

m

∣∣H(k)
∣∣{1m

}
α2

m

〉〈{
1m

}
α3

m

∣∣H(k)
∣∣{1m

}
α4

m

〉

=
∑

gμωμ,μ=0,1,...,m−k

λ2

Nk

Λμ(N,m,k)

× 〈{
1m

}
α1

m

{
1m

}
α4

m

∣∣gμωμ

〉〈{
1m

}
α3

m

{
1m

}
α2

m

∣∣gμωμ

〉
. (11.9)

To derive Eq. (11.9), the two SU(N) Wigner coefficients in Eq. (11.8) are first trans-
formed into the two Wigner coefficients appearing in Eq. (11.9) multiplied by a
SU(N) Racah coefficient by a Racah transform. This new Racah coefficient mul-
tiplied by the two Racah coefficients in Eq. (11.8) is then reduced to the square
of a Racah coefficient using Biedenharn-Elliott sum rule. Then the final Racah co-
efficient [see Eq. (11.10) below] is simplified using the formulas in [10]. Equa-
tion (11.9) gives the eigenvalue decomposition of the matrix of second moments
with the first part in the sum giving eigenvalues Eμ and the product of the two
Wigner coefficients giving eigenvectors. The eigenvalues Eμ are given by,

Eμ = λ2

Nk

Λμ(N,m,k) = λ2

Nk

(Nm)2(mk )2

d(gμ)(Nk)

[
U(fmfN−m+kfmfm−k;fkgμ)

]2
.

(11.10)
Equations (11.8) and (11.9) lead to remarkably simple expressions for the variance
and the excess parameter for the eigenvalue density. Obviously, ensemble averaged
centroid is zero and the variance is

〈
H 2

〉m = 1

Nm

∑

vi
m,v

j
m

H
vi
mv

j
m
H

v
j
mvi

m
= λ2

Nk

Λ0(N,m,k). (11.11)

This result follows easily from (11.9) and the sum rule
∑

vi
m
〈{1m}vi

m{1m}vi
m |

gμωμ〉 = √
Nmδμ,0. Now the fourth moment, dropping λ2/Nk factor, is

〈
H 4

〉m

= 1

Nm

∑

vi
m,v

j
m,vk′

m ,vl
m

H
vi
mv

j
m
H

v
j
mvk′

m
H

vk′
m vl

m
Hvl

mvi
m

= 1

Nm

∑

vi
m,v

j
m,vk′

m ,vl
m

{
2

[ ∑

gν,ων

〈
fmvi

m

∣∣Bk(gνων)
∣∣fmv

j
m

〉〈
fmv

j
m

∣∣Bk(gνων)
∣∣fmvk′

m

〉]

×
[ ∑

gμ,ωμ

〈
fmvk′

m

∣∣Bk(gμωμ)
∣∣fmvl

m

〉〈
fmvl

m

∣∣Bk(gμωμ)
∣∣fmvi

m

〉]
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+
[ ∑

gν,ων

〈
fmvi

m

∣∣Bk(gνων)
∣∣fmv

j
m

〉〈
fmvk′

m

∣∣Bk(gνων)
∣∣fmvl

m

〉]

×
[ ∑

gμ,ωμ

〈
fmv

j
m

∣∣Bk(gμωμ)
∣∣fmvk′

m

〉〈
fmvl

m

∣∣Bk(gμωμ)
∣∣fmvi

m

〉]}
. (11.12)

Here we have used Eqs. (11.5) and (11.6) and applied Wigner Eckart theorem. Now,
formula for the excess parameter follows easily by using both Eqs. (11.8) and (11.9)
together with the orthonormal properties of SU(N) Wigner coefficients. The final
formula is [2],

γ2(N,m,k) = 〈H 4〉m
[〈H 2〉m]2

− 3

=
[

(Nm)−1
min{k,m−k}∑

ν=0

Λν(N,m,m − k)Λν(N,m,k)d(gν)

[Λ0(N,m,k)]2

]

− 1.

(11.13)

In the dilute limit Eq. (11.13) reduces to the binary correlation result given by
Eq. (4.32). Thus EGUE(k) generates Gaussian densities. For a complete proof,
higher order cumulants should be studied. In principle, the formalism given above
applies to k6 but the exact formula is not yet derived. At this stage it is useful to
remark that for EGOE(k),

Vvavb
(k)Vvcvd

(k) = (
λ2/Nk

){δvavd
δvbvc + δvavc δvbvd

}, (11.14)

and in the dilute limit EGUE(k) result for γ2 reduces to that of EGOE(k); see [3]
for details.

Going beyond the lower order moments of the state density, it is also possible to
derive formulas for the lower order moments

Σrr

(
m,m′) = 〈

Hr
〉m〈

Hr
〉m′ − 〈

Hr
〉m〈

Hr
〉m′

(11.15)

with r = 1 and 2, of the two-point correlation function,

Sm,m′(
E,E′) = ρm(E)ρm′(

E′) − ρm(E)ρm′(
E′). (11.16)

The final formulas are [13],

Σ̂11
(
m,m′) = Σ11(m,m′)

√
〈H 2〉m 〈H 2〉m′

=
√

Λ0(N,m,m − k)

NmΛ0(N,m,k)

Λ0(N,m′,m′ − k)

Nm′Λ0(N,m′, k)
,

(11.17)
and
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Σ̂22
(
m,m′) = Σ22(m,m′)

〈H 2〉m 〈H 2〉m′

= 2

NmNm′

k∑

ν=0

Λν(N,m,m − k)Λν(N,m′,m′ − k)

Λ0(N,m,k)Λ0(N,m′, k)
d(ν). (11.18)

The result for 〈H 〉m〈H 〉m′ and hence for Σ̂11, follows easily from the simple trace
formula 〈H(k)〉m = (

m
k

)〈H(k)〉k or alternatively by applying Eq. (11.8) and using
the fact that only ν = 0 terms will contribute to 〈H 〉m. Similarly, Σ22 formula has
been derived using

〈
H 2

〉m〈
H 2

〉m′ = [NmNm′ ]−1
∑

a,b,c,d

∣
∣Ha,b(m)

∣
∣2
∣
∣Hc,d

(
m′)∣∣2

= 〈
H 2

〉m〈
H 2

〉m′ + 2[NmNm′ ]−1
∑

a,b,c,d

{
Ha,b(m)Hc,d

(
m′)}2

(11.19)

where Ha,b(m) = 〈m,a|H |m,b〉 is a m-particle matrix element. Note that we have
used x2y2 = x2 y2 + 2(xy)2. Applying Eq. (11.8) to the second term in the sec-
ond equality and using orthonormal properties of SU(N) Wigner coefficients will
give finally the formula for Σ̂22(m,m′). The formulas for Σ̂rr (m,m), r = 1,2 were
derived first in [2, 3]. It is important to remind that Σrr is the (rr)-th bivariate mo-
ment of the two point function. Before turning to EGUE/EGOE with spin degree of
freedom, it is important to mention that in the standard applications of GUE/GOE,
correlations between levels with different m will be zero [i.e. Σ̂11(m,m′) = 0 and
Σ̂22(m,m′) = 0] as independent GUE/GOE description for levels with different m

has to be used. Therefore results given by Eqs. (11.17)–(11.19) provide useful sig-
natures for EGUE/EGOE and in Chap. 12 this will be discussed in more detail.

11.2 Embedded Gaussian Unitary Ensemble for Spinless Boson
Systems: BEGUE(k)

For spinless bosons in N sp states with a general k-body Hamiltonian, we have
BEGUE(k). As pointed out in [2], it is striking that all the EGUE(k) results of
Sect. 11.1 translate directly to those of BEGUE(k) by applying the well known
N → −N symmetry [14, 15], i.e. in the fermion results replace N by −N and then
take the absolute value of the final result. For example, the m boson space dimension
NB

m is

NB
m =

∣∣
∣∣

(−N

m

)∣
∣∣∣ =

(
N + m − 1

m

)
. (11.20)
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More importantly the eigenvalues Eμ of the matrix of the second moments follow
from Eq. (11.10) by using N → −N symmetry,

Λν
B(N,m,k) →

∣∣∣∣

(
m − ν

k

)(−N − m + k − ν

k

)∣∣∣∣ =
(

m − ν

k

)(
N + m + ν − 1

k

)
.

(11.21)
This result was explicitly derived in [5]. Moreover, for bosons {k}⊗{kN−1} → gν =
{2ν, νN−2}, ν = 0,1, . . . , k. Also, the N → −N symmetry and Eq. (11.20) will
give dB(gν) = {(N + ν − 1)ν}2 − {(N + ν − 2)ν−1}2 and this is same as Eq. (15)
of [5]. Similarly Eqs. (11.11), (11.13), (11.17) and (11.18) for 〈H 2〉, γ2(N,m,k),
Σ11 and Σ22 respectively extend directly to BEGUE(k) with Λν(N,m,k) replaced
by Λν

B(N,m,k) defined in Eq. (11.21) and similarly replacing Nm by NB
m and d(gν)

by dB(gν). Detailed derivations given in [5] are in agreement with these. In addi-
tion, for fermions to bosons there is also a m ↔ N symmetry and this connects
fermion results (say for Mp and Σpq ) in dilute limit to boson results in dense limit
as discussed in Sect. 9.4 and [14].

11.3 EGUE(2)-SU(r) Ensembles: General Formulation

Consider a system of m fermion or bosons in Ω number of sp levels each r-fold
degenerate. Then the SGA is U(rΩ) and it is possible to consider U(rΩ) ⊃
U(Ω)⊗ SU(r) algebra. Now, for random two-body Hamiltonians preserving SU(r)

symmetry, one can introduce embedded GUE with U(Ω) ⊗ SU(r) embedding and
this ensemble is called EGUE(2)-SU(r). Ensembles with r = 2 and 4 for fermions
correspond to fermions with spin (or isospin [16]) and spin-isospin SU(4) symme-
try [17–19] respectively. Similarly, for bosons r = 2,3 are of interest. Also r = 1
gives back EGUE(2) and BEGUE(2) both. It is important to note that the distinction
between fermions and bosons is in the U(Ω) irreps that need to be considered. Now,
we will give a formulation in terms of SU(Ω) Wigner-Racah algebra that is valid
for any r ≥ 1 [20].

Let us begin with the normalized two-particle states |f2F2;v2β2 〉 where the
U(r) irreps F2 = {12} and {2} and the corresponding U(Ω) irreps f2 are {2} (sym-
metric) and {12} (antisymmetric) respectively for fermions and {12} (antisymmetric)
and {2} (symmetric) respectively for bosons. Similarly v2 are additional quantum
numbers that belong to f2 and β2 belong to F2. As f2 uniquely defines F2, from
now on we will drop F2 unless it is explicitly needed and also we will use the
f2 ↔ F2 equivalence whenever needed. With A†(f2v2β2) and A(f2v2β2) denoting
creation and annihilation operators for the normalized two particle states, a general
two-body Hamiltonian operator Ĥ preserving SU(r) symmetry can be written as

Ĥ = Ĥ{2} + Ĥ{12} =
∑

f2,v
i
2,v

f
2 ,β2;f2={2},{12}

H
f2v

i
2v

f
2
(2)A†(f2v

f

2 β2
)
A
(
f2v

i
2β2

)
.

(11.22)
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Fig. 11.1 (a)
EGUE(2)-SU(4) ensemble
for fermions in the defining
space. (b) Decomposition of
the H matrix in (Ω = 10,
m = 6) space into direct sum
of matrices with fixed SU(Ω)

irrep fm. There is a
EGUE(2)-SU(4) ensemble in
each fm space corresponding
to each diagonal block in the
figure. Shown also next to
each fm in the figure, is the
eigenvalue 〈Ĉ2(SU(4))〉fm of
the quadratic Casimir
invariant of SU(4). Similarly,
below each fm shown is the
matrix dimension

In Eq. (11.22), H
f2v

i
2v

f
2
(2) = 〈f2v

f

2 β2 | H | f2v
i
2β2〉 independent of the β2’s. The

uniform summation over β2 in Eq. (11.22) ensures that Ĥ is SU(r) scalar and there-
fore it will not connect states with different f2’s. However, Ĥ is not a SU(r) invari-
ant operator. Just as the two particle states, we can denote the m particle states by
|fmv

f
mβF

m 〉; Fm = f̃m for fermions and Fm = fm for bosons. Action of Ĥ on these

states generates states that are degenerate with respect to βF
m but not v

f
m. Therefore

for a given fm, there will be dΩ(fm) number of levels each with dr(f̃m) number of
degenerate states. Formula for the dimension dΩ(fm) is [21],

dΩ(fm) =
Ω∏

i<j=1

fi − fj + j − i

j − i
, (11.23)

where fm = {f1, f2, . . .}. Equation (11.23) also gives dr(Fm) with the product rang-
ing from i = 1 to r and replacing fi by Fi . As Ĥ is a SU(r) scalar, the m particle H

matrix will be a direct sum of matrices with each of them labeled by the fm’s with
dimension dΩ(fm). Thus

H(m) =
∑

fm

Hfm(m) ⊕ . (11.24)

Figure 11.1 shows an example for Eq. (11.24) with r = 4 for fermions. As seen from
Eq. (11.22), the H matrix in two particle spaces is a direct sum of the two matrices
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Hf2(2), one in the f2 = {2} space and the other in {12} space. Similarly, for the 6
particle example shown in Fig. 11.1 there are 9 fm’s and therefore the H matrix is
a direct sum of 9 matrices. It should be noted that the matrix elements of Hfm(m)

matrices receive contributions from both H{2}(2) and H{12}(2).
Embedded random matrix ensemble EGUE(2)-SU(r) for a m fermion or boson

systems with a fixed fm, i.e. {Hfm(m)}, is generated by the ensemble of H operators
given in Eq. (11.22) with H{2}(2) and H{12}(2) matrices replaced by independent
GUE ensembles of random matrices,

{
H(2)

} = {
H{2}(2)

}
GUE ⊕ {

H{12}(2)
}

GUE. (11.25)

In Eq. (11.25), {−−} denotes ensemble. Random variables defining the real and
imaginary parts of the matrix elements of Hf2(2) are independent Gaussian vari-
ables with zero center and variance given by (with bar representing ensemble aver-
age),

Hf2v
1
2v2

2
(2)Hf ′

2v
3
2v4

2
(2) = δf2f

′
2
δv1

2v4
2
δv2

2v3
2
(λf2)

2. (11.26)

Also, the independence of the {H{2}(2)} and {H{12}(2)} GUE ensembles imply,

[
H{2}v1

2v2
2
(2)

]P [
H{12}v3

2v4
2
(2)

]Q

= {[
H{2}v1

2v2
2
(2)

]P }{[
H{12}v3

2v4
2
(2)

]Q}
for P and Q even,

= 0 for P or Q odd. (11.27)

Action of Ĥ defined by Eq. (11.22) on m particle basis states with a fixed fm,
along with Eqs. (11.26)–(11.27) generates EGUE(2)-SU(r) ensemble {Hfm(m)}; it
is labeled by the U(Ω) irrep fm with matrix dimension dΩ(fm).

As discussed before for EGUE(k) for fermions in Sect. 11.1 and similarly for
bosons in Sect. 11.2, tensorial decomposition of Ĥ with respect to the embedding
algebra U(Ω)⊗SU(r) plays a crucial role in generating analytical results; as before
U(Ω) and SU(Ω) are used interchangeably. As Ĥ preserves SU(r), it transforms as
the irrep {0} with respect to the SU(r) algebra. However with respect to SU(Ω), the
tensorial characters, in Young tableaux notation, for f2 = {2} are Fν = {0}, {21Ω−2}
and {42Ω−2} with ν = 0,1 and 2 respectively. Similarly for f2 = {12} they are Fν =
{0}, {21Ω−2} and {221Ω−4} with ν = 0,1,2 respectively. Note that Fν = f2 × f2

where f2 is the irrep conjugate to f2 and the × denotes Kronecker product. Young
tableaux for the Fν are same as those in Figs. 9.2 and 5.1b for f2 = {2} and {12}
respectively with N replaced by Ω in the figures. Now, we can define unitary tensors
B’s that are scalars in SU(r) space,

B(f2Fνων) =
∑

vi
2,v

f
2 ,β2

A†(f2v
f

2 β2
)
A
(
f2v

i
2β2

)〈
f2v

f

2 f2 vi
2

∣∣Fνων

〉

× 〈F2β2F2 β2 | 00〉. (11.28)



258 11 Embedded Unitary Ensembles

In Eq. (11.28), 〈f2 −−−〉 are SU(Ω) Wigner coefficients and 〈F2 −−−〉 are SU(r)

Wigner coefficients. The expansion of Ĥ in terms of B’s is,

Ĥ =
∑

f2,Fν ,ων

W(f2Fνων)B(f2Fνων). (11.29)

The expansion coefficients W ’s follow from the orthogonality of the tensors B’s
with respect to the traces over fixed f2 spaces. Then we have the most important
relation needed for all the results given ahead,

W(f2Fνων)W
(
f ′

2F′
νω

′
ν

) = δf2f
′
2
δFνF′

ν
δωνω′

ν
(λf2)

2dr(F2). (11.30)

This is derived starting with Eq. (11.29) and using Eqs. (11.25)–(11.28). Also used
are the sum rules for Wigner coefficients appearing in Eq. (11.28).

Turning to m particle H matrix elements, first we denote the U(Ω) and U(r)

irreps by fm and Fm respectively. Correlations generated by EGUE(2)-SU(r) be-
tween states with (m,fm) and (m′, fm′) follow from the covariance between the
m-particle matrix elements of H . Now using Eqs. (11.29) and (11.30) along with
the Wigner-Eckart theorem applied using SU(Ω) ⊗ SU(r) Wigner-Racah algebra
(see for example [22]) will give

H
fmvi

mv
f
m
H

fm′vi
m′v

f

m′

= 〈
fmFmv

f
mβ

∣∣H
∣∣fmFmvi

mβ
〉〈
fm′Fm′vf

m′β ′∣∣H
∣∣fm′Fm′vi

m′β ′〉

=
∑

f2,Fν ,ων

(λf2)
2

dΩ(f2)

∑

ρ,ρ′
〈fm|∥∥B(f2Fν)

∥∥|fm〉ρ〈fm′ |∥∥B(f2Fν)
∥∥|fm′ 〉ρ′

× 〈
fmvi

mFνων

∣
∣fmv

f
m

〉
ρ

〈
fm′vi

m′Fνων

∣
∣fm′vf

m′
〉
ρ′ ;

〈fm|∥∥B(f2Fν)
∥∥|fm〉ρ =

∑

fm−2

F(m)
Nfm−2

Nfm

U(fmf2fmf2;fm−2Fν)ρ

U(fmf2fmf2;fm−2{0}) .

(11.31)

Here the summation in the last equality is over the multiplicity index ρ and this
arises as fm × Fν gives in general more than once the irrep fm. In Eq. (11.31),
F(m) = −m(m − 1)/2, dΩ(fm) is dimension with respect to U(Ω) as given by
Eq. (11.23) and 〈. . . | . . .〉 and U(. . .) are SU(Ω) Wigner and Racah coefficients
respectively. Similarly, Nfm is dimension with respect to the Sm group,

Nfm = m!∏r
i<k=1(i − k)

1!2! · · ·r ! ; i = fi + r − i. (11.32)

Note that r denotes total number of rows in the Young tableaux for fm.
Lower order cross correlations between states with different (m,fm) are given by

the normalized bivariate moments Σ̂rr (m,fm : m′, fm′), r = 1,2 of the two-point



11.3 EGUE(2)-SU(r) Ensembles: General Formulation 259

function Sρ where, with ρm,fm(E) defining fixed-(m,fm) density of states,

Smfm:m′fm′ (E,E′) = ρm,fm(E)ρm′,fm′ (E′) − ρm,fm(E)ρm′,fm′ (E′);

Σ̂11
(
m,fm : m′, fm′

) = 〈H 〉m,fm〈H 〉m′,fm′/
√
〈
H 2

〉m,fm
〈
H 2

〉m′,fm′
,

Σ̂22
(
m,fm : m′, fm′

) = 〈
H 2

〉m,fm
〈
H 2

〉m′,fm′/[〈
H 2

〉m,fm
〈
H 2

〉m′,fm′ ] − 1.

(11.33)

In Eq. (11.33), 〈H 2〉m,fm is the second moment (or variance) of the eigenvalue
density ρm,fm(E) and its centroid 〈H 〉m,fm = 0 by definition. We begin with

〈H 〉m,fm〈H 〉m′,fm′ . As 〈H 〉m,fm is the trace of H (divided by dimensionality) in
(m,fm) space, only Fν = {0} will generate this. Then trivially,

〈H 〉m,fm〈H 〉m′,fm′ =
∑

f2

(λf2)
2

dΩ(f2)
P f2(m,fm)P f2(m′, fm′);

P f2(m,fm) = F(m)
∑

fm−2

[Nfm−2/Nfm ].
(11.34)

In terms of m particle H matrix elements, 〈H 2〉m,fm is

〈
H 2

〉m,fm = [
d(fm)

]−1 ∑

v1
m,v2

m

Hfmv1
mv2

m
Hfmv2

mv1
m
.

Applying Eq. (11.31) and the orthonormal properties of the SU(Ω) Wigner coeffi-
cients lead to

〈
H 2

〉m,fm =
∑

f2

(λf2)
2

dΩ(f2)

∑

ν=0,1,2

Qν(f2 : m,fm) (11.35)

where

Qν(f2 : m,fm) = [
F(m)

]2 ∑

fm−2,f
′
m−2

Nfm−2

Nfm

Nf ′
m−2

Nfm

XUU

(
f2;fm−2, f

′
m−2;Fν

)
.

(11.36)
The XUU function involves SU(Ω) Racah coefficients,

XUU

(
f2;fm−2, f

′
m−2;Fν

)

=
∑

ρ

U(fm,f2, fm,f2;fm−2,Fν)ρU(fm,f2, fm,f2;f ′
m−2,Fν)ρ

U(fm,f2, fm,f2;fm−2, {0})U(fm,f2, fm,f2;f ′
m−2, {0}) . (11.37)

Summation over the multiplicity index ρ in Eq. (11.37) arises naturally in applica-
tions to physical problems as all the physically relevant results should be indepen-
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dent of ρ which is a label for equivalent SU(Ω) irreps. Let us add that,

Qν=0(f2 : m,fm) = [
P f2(m,fm)

]2
. (11.38)

Equations (11.34)–(11.36) and Table 4 of [7] will allow one to calculate covariances
Σ̂11 in energy centroids. For the covariances Σ̂22 in spectral variances, the formula
is [7]

Σ̂22(m,fm;m′, fm′) = X{2} + X{12} + 4X{12}{2}
〈H 2〉m,fm〈H 2〉m′,fm′

;

Xf2 = 2(λf2)
4

[dΩ(f2)]2

∑

ν=0,1,2

[
d(Fν)

]−1
Qν(f2 : m,fm)Qν

(
f2 : m′, fm′

)
,

X{12}{2} =
λ2{2}λ2

{12}
dΩ({2})dΩ({12})

∑

ν=0,1

[
d(Fν)

]−1
Rν(m,fm)Rν

(
m′, fm′

)
.

(11.39)

Here d(Fν) are dimension of the irrep Fν , and we have d({0}) = 1, d({2,1Ω−2}) =
Ω2 − 1, d({4,2Ω−2}) = Ω2(Ω + 3)(Ω − 1)/4, and d({22,1Ω−4}) = Ω2(Ω −
3)(Ω + 1)/4. Note that Qν(f2 : m,fm) are defined by Eq. (11.36). The function
Rν(m,fm) also involve SU(Ω) U -coefficients,

Rν(m,fm) = [
F(m)

]2 ∑

fm−2,f
′
m−2

Nfm−2

Nfm

Nf ′
m−2

Nfm

YUU

(
fm−2, f

′
m−2;Fν

);

YUU

(
fm−2, f

′
m−2;Fν

)

=
∑

ρ

U(fm, {1Ω−2}, fm, {12};fm−2,Fν)ρU(fm, {2Ω−1}, fm, {2};f ′
m−2,Fν)ρ

U(fm, {1Ω−2}, fm, {12};fm−2, {0})U(fm, {2Ω−1}, fm, {2};f ′
m−2, {0}) .

(11.40)
In YUU(fm−2, f

′
m−2;Fν), fm−2 comes from fm ⊗ {1Ω−2} and f ′

m−2 comes from
fm ⊗ {2Ω−1}. Similarly, the summation is over ν = 0 and 1 only as ν = 2 parts for
f2 = {2} and {12} are different. It is useful to note that,

Rν=0(m,fm) = P {2}(m,fm)P {12}(m,fm). (11.41)

Formulas for XUU and YUU are given in [7] and they are simplified version
of the formulas given in [23]. For illustration, some of these results are col-
lected in Table 11.1. These and Eqs. (11.33)–(11.41) will allow one to derive
analytical/numerical results for spectral variances and covariances in energy cen-
troids and spectral variances for any EGUE(2)-SU(r) for fermion or boson sys-
tems.
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Table 11.1 Formulas for XUU(f2;fm−2, f
′
m−2;Fν) and YUU (fm−2, f

′
m−2;Fν) with ν = 1,2

{fm−2}{f ′
m−2} XUU({12};fm−2, f

′
m−2; {2ν ,1Ω−2ν})

{f (ab)}{f (ab)} Ω
(Ω−2)

{δν,2 + (Ω−1)(Ω−2)

2Π
(b)
a Π

(a)
b

δν,2 + (3 − 2ν)
(Ω−1)

2

× [(1 + 1
τab

) 1
Π

(a)
b

+ (1 − 1
τab

) 1
Π

(b)
a

− 4
Ω

δν,1]}
{f (ab)}{f (ac)} Ω(Ω−1)

2(Ω−2)
{ 2

(Ω−1)
δν,2 − 4

Ω
δν,1 + (3 − 2ν) 1

Π
(bc)
a

}

{fm−2}{f ′
m−2} XUU({2};fm−2, f

′
m−2; {2ν, νΩ−2})

{f (ab)}{f (ab)} Ω(Ω+1)
2 { 1

Π
(b)
a Π

(a)
b

δν,2 + 2
(Ω+1)(Ω+2)

δν,2

+ (3 − 2ν) 1
(Ω+2)

[ (τab−1)2

τab(τab+1)
1

Π
(a)
b

+ (τab+1)2

τab(τab−1)
1

Π
(b)
a

− 4
Ω

δν,1]}
{f (aa)}{f (aa)} Ω

(Ω+2)
{δν,2 + (3 − 2ν)

2(Ω+1)
Π ′

a
+ (Ω+1)(Ω+2)

2Π ′′
a

δν,2 − 2(Ω+1)
Ω

δν,1}

{f (aa)}{f (bb)} − 2(Ω+1)
(Ω+1)

δν,1 + Ω
(Ω+2)

δν,2

{f (aa)}{f (ab)} Ω
(Ω+2)

{δν,2 + (3 − 2ν)
(Ω+1)(τab+1)

(τab−1)Π
(b)
a

− 2(Ω+1)
Ω

δν,1}

{fm−2}{f ′
m−2} YUU (fm−2, f

′
m−2; {2,1Ω−2})

{f (ab)}{f (ab)} −Ω
2 [ (Ω2−1)

(Ω2−4)
]1/2{(1 + 1

τab
) 1

Π
(b)
a

+ (1 − 1
τab

) 1
Π

(a)
b

− 4
Ω

}

{f (ab)}{f (ac)} −Ω
2 [ (Ω2−1)

(Ω2−4)
]1/2{(1 + 1

τac
) 1

Π
(b)
a

− 4
Ω

}

{f (ab)}{f (aa)} −Ω[ (Ω2−1)

(Ω2−4)
]1/2{ 1

Π
(b)
a

− 2
Ω

}

11.3.1 Results for BEGUE(2): r = 1

Simplest of the EGUE(2)-SU(r) are the EGUEs with r = 1 and they corresponds
to EGUE(2) and BEGUE(2) depending on totally antisymmetric or symmetric fm

one considers. Also they correspond to k = 2 in Sects. 11.1 and 11.2 respectively.
For illustration we consider BEGUE(2) in some detail. For this ensemble, in order
to apply the formulas for 〈H 2〉, Σ̂11 and Σ̂22, first we need the formulas for XUU

and YUU . Some of these, taken from Tables 4 and 7 of [7], are given in Table 11.1.
For applying these formulas, we need the ‘axial distances’ τij for the boxes i and j

in a given Young tableaux. Given a fm = {f1, f2, . . . , fΩ} we have,

τij = fi − fj + j − i. (11.42)

In terms of τij the functions Π
(b)
a , Π

(a)
b , Π

(bc)
a , Π ′

a and Π ′′
a are defined as,
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Fig. 11.2 Young tableaux denoting the SU(Ω) irreps fm = {m} and {1m} as appropriate for
(i) spinless boson and (ii) spinless fermion systems. Removal of two boxes generating m − 2
particle irreps fm−2 for these systems are also shown in the figure. For (i) only the irrep f2 = {2}
will apply and similarly for (ii) only {12} will apply. Figure is taken from [20] with permission
from American Institute of Physics (Color figure online)

Π
(b)
a =

∏

i=1,2,...,Ω;i =a,i =b

(1 − 1/τai)

Π
(a)
b =

∏

i=1,2,...,Ω;i =a,i =b

(1 − 1/τbi)

Π
(bc)
a =

∏

i=1,2,...,Ω;i =a,i =b,i =c

(1 − 1/τai); a = b = c,

Π ′
a =

∏

i=1,2,...,Ω;i =a

(1 − 1/τai)

Π ′′
a =

∏

i=1,2,...,Ω;i =a

(1 − 2/τai).

(11.43)

With these we can calculate XUU and YUU ; see [7] for full discussion. For BE-
GUE(2), the algebra U(Ω) ⊗ SU(r) with r = 1 reduces to just U(Ω) or SU(Ω).
Similarly, fm is the totally symmetric irrep {m} and fm−2 = {m − 2}. Therefore to
generate fm−2 only the action of removal of {2} from fm is allowed. Denoting the
last two boxes of fm by a and a (note that we can remove only boxes from the right
end to get proper Young tableaux and also boxes in a given row must have the same
symbol to apply the results in Table 11.1) as shown in Fig. 11.2, we have

τai = m + i − 1,

Π ′
a = m

m + Ω − 1
,

Π ′′
a = m(m − 1)

(m + Ω − 1)(m + Ω − 2)
.

(11.44)
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Similarly Nfm = 1 and Nfm−2 = 1 as both are symmetric irreps. Now the formulas
in Table 11.1 will give XUU and there by Qν in Eq. (11.36),

Qν=0
({2};m, {m}) = m2(m − 1)2

4
,

Qν=1
({2};m, {m}) = m2(m − 1)2

4

2(Ω + m)(Ω2 − 1)

m(Ω + 2)
,

Qν=2
({2};m, {m}) = m2(m − 1)2

4

Ω2(Ω − 1)(Ω + m)(Ω + m + 1)

2(Ω + 2)m(m − 1)
.

(11.45)

These and Eq. (11.35) will give,

〈
H 2〉{m} = λ2{2}

(
m

2

)(
Ω + m − 1

2

)
= λ2{2}Λ0

B(Ω,m,2). (11.46)

This agrees with the result stated in Sect. 11.2. As P {2}(m, {m}) = −m(m − 1)/2,
we have easily,

Σ̂11
({m},{m′})

= 2
√

m(m − 1)(m′)(m′ − 1)

Ω(Ω + 1)
√

(Ω + m − 1)(Ω + m − 2)(Ω + m′ − 1)(Ω + m′ − 2)
. (11.47)

Again, this agrees with the result stated in Sect. 11.2. Further, Σ̂22 is determined
only by X{2} defined in Eq. (11.39) and then, using Eq. (11.45), we have

Σ̂22
({m},{m′})

= 2

36
(
Ω+2

3

)2
(Ω + 3)

(
Ω+m−1

2

)(
Ω+m′−1

2

)

×
[

4Ω2(Ω − 1)

(
Ω + m + 1

2

)(
Ω + m′ + 1

2

)

+ 4(Ω + 2)2(Ω + 3)

(
m

2

)(
m′

2

)

+ 4
(
Ω2 − 1

)
(Ω + 3)(m − 1)(Ω + m)

× (
m′ − 1

)(
Ω + m′)

]
. (11.48)
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For m = m′, it can be verified that Eq. (11.48) reduces to

Σ̂22
({m}, {m}) = 2

(ΩB
m)2

2∑

ν=0

[Λν
B(Ω,m,m − 2)]2dB(gν)

[Λ0
B(Ω,m,2)]2

(11.49)

as expected from Sect. 11.2; Eq. (11.49) agrees with the result given for BEGUE(k)
in [5]. Finally, it is useful to mention that in the m −→ ∞ and N finite limit we
have,

Σ̂11
({m}, {m}) = 2

Ω(Ω + 1)
,

Σ̂22
({m}, {m}) = 8

Ω2(Ω − 1) + (Ω + 2)2(Ω + 3) + 4(Ω2 − 1)(Ω + 3)

Ω2(Ω + 1)2(Ω + 2)2(Ω + 3)
.

(11.50)
Non-vanishing of Σ̂11 and Σ̂22 for finite N in the m −→ ∞ is interpreted in [5,
24] as non-ergodicity of BEGUE ensembles. See the discussion in Chap. 9 for the
resolution of this problem.

In the next four sections we will consider specific SU(r)’s and present results
that are appropriate for some physical systems.

11.4 Embedded Gaussian Unitary Ensemble for Fermions
with Spin: EGUE(2)-SU(2) with r = 2

Embedded Gaussian Unitary Ensemble for fermions with spin s = 1
2 degree of free-

dom corresponds to r = 2 in Sect. 11.3 and this ensemble, applicable to meso-
scopic systems with mobile electrons carrying spin degree of freedom, is denoted by
EGUE(2)-SU(2) or EGUE(2)-s. For this ensemble, the U(Ω) irreps for m fermion
systems with spin S are fm = {2p1q} where m = 2p +q and S = q/2. Formulas for
〈H 2〉m,S and the normalized bivariate moments Σ̂rr (m,S : m′, S′), r = 1,2 of the
two-point correlation function SmS:m′S′

(E,E′) follow from the formulation given
in Sect. 11.3. It is easily seen that with 〈S2〉 = S(S + 1),

〈H 〉m,S〈H 〉m′,S′ =
∑

f2(s2)

(λf2)
2

dΩ(f2)
P s2(m,S)P s2(m′, S′);

P s2(m,S) = [
(2s2 + 1)m(m − 4s2 + 2) + 4(2s2 − 1)

〈
S2

〉]/
8, s2 = 0,1.

(11.51)
To proceed further we need XUU and YUU . The fm−2 irreps obtained by removing
{2} or {12} from fm follow from Fig. 11.3. Note that all three choices (i)–(iii) shown
in the figure will apply for {12} and only (i) will apply to {2}. Using the formulas in
Table 11.1, the final formula for 〈H 2〉(m,S), in terms of mx = (Ω − m

2 ) is
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Fig. 11.3 Young tableaux
denoting the two-column
SU(Ω) irreps fm = {2r1s}
appropriate for
EGUE(2)-SU(2). Removal of
two boxes generating m − 2
particle irreps fm−2 are also
shown in the figure. For
(i) both the irreps f2 = {2}
and {12} will apply while for
(ii) and (iii) only {12} will
apply (Color figure online)

〈
H 2

〉m,S =
∑

f2

(λf2)
2

d(f2)

∑

ν=0,1,2

Qν(f2 : m,S);

Q0
({2} : m,S

) = [
P 0(m,S)

]2
,

Q1
({2} : m,S

) = [
(Ω + 1)P 0(m,S)/2

][
mx(m + 2)/2 + 〈S2〉],

Q2
({2} : m,S

) = [
Ω(Ω + 3)P 0(m,S)/4

][
mx(mx + 1) − 〈

S2
〉]
,

Q0
({

12
} : m,S

) = [
P 1(m,S)

]2
,

Q1
({12} : m,S

) = (Ω − 1)

16(Ω − 2)

[
8(Ω + 2)P 1(m,S)P 2(m,S)

+ 8Ω(m − 1)(Ω − 2m + 4)
〈
S2

〉]
,

Q2
({

12
} : m,S

) = Ω

8(Ω − 2)

[(
3Ω2 − 7Ω + 6

)(〈
S2〉)2

+ 3m(m − 2)mx
(
mx − 1

)
(Ω + 1)(Ω + 2)/4

+ 〈S2〉{−mmx(5Ω − 3)(Ω + 2)

+ Ω(Ω − 1)(Ω + 1)(Ω + 6)
}];

P 2(m,S) = 3mx(m − 2)/2 − 〈
S2

〉
.

(11.52)

Further, Eqs. (11.51) and (11.52) will give Σ̂11 for any (m,S,m′, S′,Ω). For Σ̂22

the only unknowns are Rν and they are given by

R0
({2}{12

} : mS
) = P 0(m,S)P 1(m,S),

R1
({2}{12

} : mS
) = −1

2

√
(Ω2 − 1)(Ω + 2)

(Ω − 2)
P 0(m,S)P 2(m,S).

(11.53)
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Finally, let us consider the excess parameter γ2(m,S) = {〈H 4〉m,S/[〈H 2〉m,S]2} − 3
and this is the most important (as 〈H 3〉m,S = 0) lower order shape parameter for
fixed-(m,S) density of states ρm,S(E). General expression, derived using SU(Ω)

algebra given in [11], for the fourth moment 〈H 4〉m,S in terms of U -coefficients
involves the multiplicity labels ρ’s. However, for the physically interesting situation
with S = 0 (i.e. fm = {2r}, r = m/2), all the multiplicity labels will be unity and
then γ2(m,S = 0) is given by [6],

[
γ2(m,S = 0) + 1

] = [〈
H 2

〉m,S=0]−2 ∑

f a
2 ,f b

2

(λf a
2
)2(λf b

2
)2

dΩ(f a
2 )dΩ(f b

2 )

×
∑

ν1,ν2

dΩ(fm)
√

dΩ(Fν1)dΩ(Fν2)

∣∣〈fm|∥∥B
(
f a

2 Fν1

)∥∥|fm

〉∣∣2

× ∣∣〈fm|∥∥B
(
f b

2 Fν2

)∥∥|fm〉∣∣2U(fmfmfmfm;Fν1Fν2).

(11.54)

In Eq. (11.54), f a
2 = {2}, {12} and similarly f b

2 . This expression is pleasing and
it is possible to obtain the triple barred coefficients using the tables in [23] and
Eq. (11.31). But still we need U(fmfmfmfm;Fν1Fν2) coefficient and deriving a
formula for this needs further advances in SU(N) Racah algebra. Thus, our present
knowledge of SU(N) Wigner-Racah algebra will not allow us to go too far in ana-
lytically solving EGUE(2)-s and even the simpler EGUE(2).

11.5 Embedded Gaussian Unitary Ensemble for Fermions with
Wigner’s Spin-Isospin SU(4) Symmetry: EGUE(2)-SU(4)
with r = 4

Wigner introduced in 1937 [17] the spin-isospin SU(4) supermultiplet scheme for
atomic nuclei. There is good evidence for the goodness of this symmetry in some
parts of the periodic table [25] and also more recently there is new interest in SU(4)

symmetry for heavy N ∼ Z nuclei [18, 19]. Therefore it is clearly of importance to
study embedded Gaussian unitary ensemble of random matrices generated by ran-
dom two-body interactions with SU(4) symmetry and this corresponds to EGUE(2)-
SU(4) with r = 4 in Sect. 11.3. Before giving some analytical results for EGUE(2)-
SU(4), we will first turn to a brief discussion of the SU(4) algebra.

Let us consider a system with m nucleons distributed in Ω number of orbits
each with spin (s = 1

2 ) and isospin (t = 1
2 ) degrees of freedom. Then the total num-

ber of sp states is N = 4Ω and the spectrum generating algebra is U(4Ω). The sp
states in uncoupled representation are a

†
i,α|0〉 = |i, α〉 with i = 1,2, . . . ,Ω denoting

the spatial orbits and α = 1,2,3,4 are the four spin-isospin states |ms,mt〉 = | 1
2 , 1

2 〉,
| 1

2 ,− 1
2 〉, |− 1

2 , 1
2 〉 and |− 1

2 ,− 1
2 〉 respectively. The (4Ω)2 number of operators Ciα;jβ
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generate U(4Ω) algebra. For m fermions, all states belong to the U(4Ω) irrep
{1m}. In uncoupled notation, Ciα;jβ = a

†
i,αaj,β . Similarly U(Ω) and U(4) alge-

bras are generated by Aij and Bαβ respectively, where Aij = ∑4
α=1 Ciα;jα and

Bαβ = ∑Ω
i=1 Ciα;iβ . The number operator n̂, the spin operator Ŝ = S1

μ, the isospin

operator T̂ = T 1
μ and the Gamow-Teller operator στ = (στ)

1,1
μ,μ′ of U(4) in spin-

isospin coupled notation are [26],

n̂ = 2
∑

i

A 0,0
ii;0,0, S1

μ =
∑

i

A 1,0
ii;μ,0, T 1

μ =
∑

i

A 0,1
ii;0,μ

,

(στ)
1,1
μ,μ′ =

∑

i

A 1,1
ii;μ,μ′ ; A s,t

ij ;μs,μt
= (a

†
i ãj )

s,t
μs,μt

.
(11.55)

Note that ãj ;μs,μt = (−1)1+μs+μtaj ;−μs,−μt . These 16 operators form U(4) algebra.
Dropping the number operator, we have SU(4) algebra. For the U(4) algebra, the
irreps are characterized by the partitions {F } = {F1,F2,F3,F4} with F1 ≥ F2 ≥
F3 ≥ F4 ≥ 0 and m = ∑4

i=1 Fi . Note that Fα are the eigenvalues of Bαα . Due to
the antisymmetry constraint on the total wavefunction, the U(Ω) irrep {f } = {F̃ }
which is obtained by changing rows to columns in {F }; note that Fi ≤ Ω and fi ≤ 4.
Before proceeding further, let us examine the quadratic Casimir invariants of U(Ω),
U(4) and SU(4) algebras. For example,

C2
[
U(Ω)

] =
∑

i,j

AijAji = n̂Ω −
∑

i,j,α,β

a
†
i,αa

†
j,βaj,αai,β,

C2
[
U(4)

] =
∑

α,β

Bα,βBβ,α ⇒ C2
[
U(Ω)

] + C2
[
U(4)

] = n̂(Ω + 4).

(11.56)
Also, in terms of spin, isospin and Gamow-Teller operators, C2[SU(4)] = S2 +T 2 +
(στ) · (στ) and

〈
C2

[
U(4)

]〉{F } =
4∑

i=1

Fi(Fi + 5 − 2i) =
〈
C2

[
SU(4)

] + n̂2

4

〉{F }
. (11.57)

The space exchange or Majorana operator M̃ that exchanges the spatial coordi-
nates of the particles (the index i) and leaves the spin-isospin quantum numbers
unchanged allow us to understand the significance of SU(4) symmetry,

M̃
∣∣i, α,α′; j,β,β ′〉 = ∣∣j,α,α′; i, β,β ′〉, (11.58)

where α,β are labels for spin and α′, β ′ are labels for isospin. As |i, α,α′; j,β,β ′〉 =
a

†
i,α,α′a

†
j,β,β ′ |0〉, Eqs. (11.58), (11.56) and (11.57) in that order will give,



268 11 Embedded Unitary Ensembles

Fig. 11.4 Young tableaux
denoting the special SU(Ω)

irreps f
(p)
m = {4r ,p},

p = 0,1,2,3 considered in
EGUE(2)-SU(4) analysis
with U(Ω) ⊗ SU(4)

embedding algebra. The
corresponding SU(4) irreps
are also given in the figure
(Color figure online)

Table 11.2 P f2 (m,fm) for
fm = {4r ,p}; p = 0,1,2 and
3 and {f2} = {2}, {12}

fm P f2 (m,fm)

f2 = {2} f2 = {12}

{4r } −3r(r + 1) −5r(r − 1)

{4r ,1} − 3r
2 (2r + 3) − 5r

2 (2r − 1)

{4r ,2} −(3r2 + 6r + 1) −5r2

{4r ,3} − 3
2 (r + 2)(2r + 1) − 5r

2 (2r + 1)

2κM̃ = 2κ
∑

i,j,α,β,α′,β ′

(
a

†
j,α,α′a

†
i,β,β ′

)(
a

†
i,α,α′a

†
j,β,β ′

)†

= κ
{
C2

[
U(Ω)

] − Ωn̂ = 4n̂ − C2
[
U(4)

]}

= 2κ

{
2n̂

(
1 − n̂

16

)
− 1

2
C2

[
SU(4)

]}
. (11.59)

The preferred U(Ω) irrep for the ground state of a m nucleon system is the most
symmetric one. Therefore 〈C2[U(Ω)]〉 should be maximum for the ground state ir-
rep. This implies, as seen from Eq. (11.59), the strength κ of M̃ must be negative.
As a consequence, as follows from the last equality in Eq. (11.59), the ground states
are labeled by SU(4) irreps with smallest eigenvalue for the quadratic Casimir in-
variant consistent with a given (m,Tz), T = |Tz|. Therefore, for N = Z even-even,
N = Z odd-odd and N = Z ± 1 odd-A nuclei the U(Ω) irreps for the gs are {4r},
{4r ,2}, {4r ,1} and {4r ,3} with spin-isospin structure being (0,0), (1,0) ⊕ (0,1),
( 1

2 , 1
2 ), and ( 1

2 , 1
2 ) respectively. For convenience, the gs U(Ω) irreps are denoted by
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Table 11.3 〈H 2〉m,fm , Qν=1,2(f2 : m,fm) and Rν=1(m,fm) for some examples

fm 〈H 2〉m,fm

{4r } r(Ω−r+4)
2 [λ2{2}3(r + 1)(Ω − r + 3) + λ2

{12}5(r − 1)(Ω − r + 5)]
{4r ,1} r(Ω−r+4)

4 [λ2{2}{6r(Ω − r + 1) + 9Ω + 15}
+ λ2

{12}5{2r(Ω − r + 5) − Ω − 9}]
{4r ,2} λ2{2}

1
2 [3r4 − 6(Ω + 2)r3 + (3Ω2 + 6Ω − 5)r2

+ (Ω + 2)(6Ω + 17)r + Ω(Ω + 1)]
+ λ2

{12}
5r
2 (Ω − r + 4){(Ω + 4)r − r2 − 3}

{4r ,3} 1
4 [λ2{2}3(r + 2)(Ω − r + 2)(2rΩ − 2r2 + 6r + Ω + 1)

+ λ2
{12}5r(Ω − r + 4)(2rΩ − 2r2 + 6r + Ω − 1)]

fm f2 ν Qν(f2 : m,fm)

{4r } {2} 1 9r(r+1)2(Ω−r)(Ω+1)(Ω+4)
2(Ω+2)

2 3rΩ(r+1)(Ω−r+1)(Ω−r)(Ω+4)(Ω+5)
4(Ω+2)

{12} 1 25r(r−1)2(Ω−r)(Ω−1)(Ω+4)
2(Ω−2)

2 5rΩ(r−1)(Ω+3)(Ω+4)(Ω−r)(Ω−r−1)
4(Ω−2)

fm Rν=1(m,fm)

{4r } − 15r
2

√
Ω2−1
Ω2−4

(r2 − 1)(Ω − r)(Ω + 4)

f
(p)
m where

f
(p)
m = {

4r ,p
}; m = 4r + p and p = mod(m,4). (11.60)

For the special SU(Ω) irreps in Eq. (11.60), and shown in Fig. 11.4, analytical
formulas are much simpler than for a general SU(Ω) irrep [7].

The formalism given in Sect. 11.3 was applied in detail in [7]. For example,
formulas for P f2(m,fm) are given in Table 11.2 for {f (p)

m } irreps. Evaluating
all the Q’s as given in detail in [7], analytical formulas for Qν(f2 : m,fm) and
also for 〈H 2〉m,fm are obtained for {f (p)

m } irreps. Some of these results are given
in Table 11.3. Equations (11.34)–(11.36) and Tables 4 and 7 of [7] will allow
us to calculate covariances Σ̂11 in energy centroids for any irrep. On the other
hand, the results in Tables 11.2 and 11.3 will give formulas for Σ̂11 for {f (p)

m }
irreps. Similarly, the R formula given in Table 11.3 will us to calculate Σ̂22 for
the irrep {4r}. Note that, Qν=0(f2 : m,fm) = [P f2(m,fm)]2 and Rν=0(m,fm) =
P {2}(m,fm)P {12}(m,fm).
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11.6 Embedded Gaussian Unitary Ensemble for Bosons with
F -Spin: BEGUE(2)-SU(2) with r = 2

For two species boson systems with F -spin, following the discussion in Chap. 10,
we have BEGUE(2)-SU(2) or BEGUE(2)-F . For this ensemble, results in Sect. 11.3
with r = 2 will be applicable. For such a m boson system, the SU(Ω) irreps will be
two rowed denoted by fm = {m − r, r} with F = m

2 − r . With this, there are three
allowed fm−2 irreps as shown in Fig. 11.5. The irreps in (i) and (iii) in the figure
can be obtained by removing f2 = {2} from fm. However for (ii) in the figure both
{2} and {12} will apply. For fm−2 = {m − r − 2, r} irrep [this corresponds to (i) in
Fig. 11.5] we have

τa2 = m − 2r + 1,

τai = m − r + i − 1; i = 3,4, . . . ,Ω,

Π ′
a = (m − 2r)(m − r + 1)

(m − 2r + 1)(m − r + Ω − 1)
,

Π ′′
a = (m − 2r − 1)(m − r)(m − r + 1)

(m − 2r + 1)(m − r + Ω − 1)(m − r + Ω − 2)
.

(11.61)

Similarly for fm−2 = {m − r, r − 2} irrep [this corresponds to (iii) in Fig. 11.5] we
have

τb1 = 2r − m − 1,

τbi = r + i − 2, i = 3,4, . . . ,Ω

Π ′
a = (r)(2r − m − 2)

(2r − m − 1)(r + Ω − 2)
,

Π ′′
a = (2r − m − 3)(r)(r − 1)

(2r − m − 1)(r + Ω − 2)(r + Ω − 3)
.

(11.62)

Finally, for fm−2 = {m − r − 1, r − 1} irrep [this corresponds to (ii) in Fig. 11.5]
we have

τab = m − 2r + 1 = 2F + 1,

τai = m − r + i − 1, τbi = r + i − 2; i = 3,4, . . . ,Ω,

Π
(b)
a = (m − r + 1)

(m − r + Ω − 1)
,

Π
(a)
b = (r)

(r + Ω − 2)
.

(11.63)



11.6 BEGUE(2)-SU(2) for Bosons with F -Spin 271

Fig. 11.5 Young tableaux
denoting the two-rowed
SU(Ω) irreps fm = {m − r, r}
appropriate for
BEGUE(2)-SU(2). Removal
of two boxes generating
m − 2 particle irreps fm−2
are also shown in the figure.
For (ii) both the irreps
f2 = {2} and {12} will apply
and for (i) and (iii) only {2}
will apply. Figure is taken
from [20] with permission
from American Institute of
Physics (Color figure online)

These and Nfm−2/Nfm will give the formulas for the lower order moments of one
and two point functions as described in Sect. 11.3. The dimension ratios are,

N{m−r−2,r}
N{m−r,r}

= (m − r)(m − r + 1)(m − 2r − 1)

m(m − 1)(m − 2r + 1)
,

N{m−r−1,r−1}
N{m−r,r}

= r(m − r + 1)

m(m − 1)
,

N{m−r,r−2}
N{m−r,r}

= r(r − 1)(m − 2r + 3)

m(m − 1)(m − 2r + 1)
.

(11.64)

Using Eqs. (11.61)–(11.64) and the expressions in Table 11.1, it is possible to derive
analytical formulas for the P ’s, Q’s and R’s that define 〈H 2〉, Σ̂11 and Σ̂22. The
final formulas (obtained in [20] using MATHEMATICA) are, with (m,F ) defin-
ing fm,

P {2}(m,F ) = 1

8

[
3m(m − 2) + 4F(F + 1)

]
,

P {12}(m,F ) = 1

8

[
m(m + 2) − 4F(F + 1)

]
,

Qν=0({2} : m,F
) = [

P {2}(m,F )
]2

,

Qν=0({12} : m,F
) = [

P {12}(m,F )
]2

,

Qν=1({2} : m,F
) = (Ω + 1)

16(Ω + 2)

× [
2(Ω − 2)P {2}(m,F )

{
3(2Ω + m)(m − 2) + 4F(F + 1)

}

+ 8Ω(m − 1)(Ω + 2m − 4)F (F + 1)
]
,
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Qν=1({12} : m,F
) = (Ω − 1)P {12}(m,F )

8

[
(2Ω + m)(m + 2) − 4F(F + 1)

]
,

Qν=2({2} : m,F
) = (Ω)

8(Ω + 2)

[(
3Ω2 + 7Ω + 6

)[
F(F + 1)

]2

+ 3

16
m(m − 2)(2Ω + m)(2Ω + m + 2)(Ω − 1)(Ω − 2)

+ F(F + 1)

2

{
m(2Ω + m)(5Ω + 3)(Ω − 2)

+ 2Ω
(
Ω2 − 1

)
(Ω − 6)

}
]
,

Qν=2({12} : m,F
) = Ω(Ω − 3)P {12}(m,F )

16

× [
(2Ω + m)(2Ω + m − 2) − 4F(F + 1)

]
,

Rν=0(m,F ) = P {2}(m,F )P {12}(m,F ),

Rν=1(m,F ) =
√

Ω2 − 1

Ω2 − 4

(2 − Ω)P {12}(m,F )

8

{
4
[
F(F + 1) − 3Ω

]

+ 3m(2Ω + m − 2)
}
.

(11.65)

Note that Eq. (11.65) is closely related to the BEGOE(2)-F results given by
Eq. (10.7). More importantly, they are related to the EGUE(2)-SU(2) results by
Ω → −Ω transformation.

11.7 Embedded Gaussian Unitary Ensemble for Spin One
Bosons: BEGUE(2)-SU(3) with r = 3

Spin one boson systems, as discussed in Chap. 10, posses U(3Ω) ⊃ U(Ω) ⊗
[SU(3) ⊃ SO(3)] symmetry. For these systems, it is possible to consider interac-
tions preserving the SU(3) symmetry. This gives, for the GUE version, BEGUE(2)-
SU(3) that corresponds to r = 3 in Sect. 11.3. As U(3) irreps will have, in Young
tableaux representation, maximum 3 rows, the U(Ω) irrep also will have maximum
three rows. Given m bosons in Ω number of sp levels, the allowed U(Ω) irreps are
{f1, f2, f3, f4, . . . , fΩ} = {f1, f2, f3} with f1 + f2 + f3 = m, f1 ≥ f2 ≥ f3 ≥ 0
and fi = 0 for i = 4,5, . . . ,Ω . For f2 = 0 and f3 = 0, we have totally symmetric
irreps with {f1} = {m} and for these irreps all the results derived in Sect. 11.3.1
will apply directly. Similarly, for f2 = 0 and f3 = 0, all the results of Sect. 11.6
will apply. Thus, the non-trivial irreps for BEGUE(2)-SU(3) are the m-boson ir-
reps fm = {f1, f2, f3} with f3 = 0. Given a fm, in general there will be six fm−2
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Fig. 11.6 Young tableaux
denoting the three-rowed
SU(Ω) irreps fm = {r, r, r},
m = 3r appropriate for
BEGUE(2)-SU(3). Removal
of two boxes generating
m − 2 particle irreps fm−2 are
also shown in the figure. For
(i) only the irrep f2 = {2} will
apply while for (ii) only {12}
will apply. Figure is taken
from [20] with permission
from American Institute of
Physics (Color figure online)

and they are {f1 − 2, f2, f3}, {f1, f2 − 2, f3}, {f1, f2, f3 − 2}, {f1 − 1, f2 − 1, f3},
{f1 − 1, f2, f3 − 1}, {f1, f2 − 1, f3 − 1}. Therefore, as seen from Sect. 11.3, de-
riving analytical formulas for P ’s, Q’s and R’s that determine 〈H 2〉, Σ̂11 and Σ̂22

will be cumbersome. One situation that is amenable to analytical treatment is for the
irreps {n + p,n,n} where m = 3n + p with p = 0, 1 and 2 [these are similar to the
{4r ,p} irreps considered for EGUE(2)-SU(4)]. Here we will present the results for
p = 0 and for others see [20]. For this class of irreps, the fm−2 are simple as shown
in Fig. 11.6. For fm−2 = {n,n,n − 2}, Π ′

a and Π ′′
a are needed and they are given

by,

Π ′
a = 3n

Ω + n − 3
, Π ′′

a = 6n(n − 1)

(Ω + n − 3)(Ω + n − 4)
. (11.66)

Similarly, for fm−2 = fn,n−1,n−1 we need τab , Π
(b)
a and Π

(a)
b and they are,

τab = −1, Π(b)
a = 3n

2(Ω + n − 3)
, Π

(a)
b = 2(n + 1)

(Ω + n − 2)
. (11.67)

In addition, ratio of the SΩ dimensions needed are,

Nn,n,n−2

Nn,n,n

= 2(n − 1)

(3n − 1)
,

Nn,n−1,n−1

Nn,n,n

= n + 1

(3n − 1)
. (11.68)

With these, carrying out simplification of the formulas given in Table 11.1 will give
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the following formulas (with π = 1 for {2} and −1 for {12}) ,

P f2
(
m, {n,n,n}) = − 6

3 − π
n(n − π),

Qν=0(f2 : m, {n,n,n}) = [
P f2

(
m, {n,n,n})]2

,

Qν=1(f2 : m, {n,n,n}) = 3(3 + π)2(Ω + π)(Ω − 3)n(n − π)2(Ω + n)

8(Ω + 2π)
,

Qν=2(f2 : m, {n,n,n})

= 3(3 + π)Ω(Ω − 3 + π)(Ω − 3)n(n − π)(Ω + n)(Ω + n + π)

16(Ω + 2π)
,

Rν=0(m, {n,n,n}) = P {2}(m, {n,n,n})P {12}(m, {n,n,n}),

Rν=1(m, {n,n,n}) = −
√

Ω2 − 1

Ω2 − 4
3(Ω − 3)n

(
n2 − 1

)
(Ω + n).

(11.69)

Using these equations one can calculate the variances 〈H 2〉 and the covariances Σ̂11

and Σ̂22 for irreps of the type {n,n,n}. For example, Eq. (11.35) can be simplified
to give a compact formula for spectral variances,

〈
H 2〉m,{n,n,n} = λ2{2}

[
3

2
n(n − 1)(Ω + n − 3)(Ω + n − 4)

]

+ λ2
{12}

[
3

4
n(n + 1)(Ω + n − 2)(Ω + n − 3)

]
. (11.70)

Using the tables in [7] and the results in Sect. 11.3, one can calculate numerically
Σ̂11 and Σ̂22 for any fm. Applications of this will be discussed in Chap. 12.
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