
Chapter 12
Bayesian FE Model Updating in the Presence of Modeling Errors

Iman Behmanesh and Babak Moaveni

Abstract A new likelihood function is proposed for probabilistic damage identification of civil structures that are usually
modeled with many simplifying assumptions and idealizations. Data from undamaged and damaged states of the structure
are used in the likelihood function and damage is identified through a Bayesian finite element (FE) model updating process.
The new likelihood function does not require calibration of an initial FE model to a baseline/reference model and is based
on the difference between damaged and healthy state data. It is shown that the proposed likelihood function can identify
structural damage as accurately as two other types of likelihood functions frequently used in the literature. The proposed
likelihood is reasonably accurate in the presence of modeling error, measurement noise and data incompleteness (number
of modes and number of sensors). The performance of FE model updating for damage identification using the proposed
likelihood is evaluated numerically at multiple levels of modeling errors and structural damage. The effects of modeling
errors are simulated by generating identified modal parameters from a model that is different from the FE model used in the
updating process. It is observed that the accuracy of damage identifications can be improved by using the identified modes
that are less affected by modeling errors and by assigning optimum weights between the eigen-frequency and mode shape
errors.

Keywords Probabilistic damage identification • Modeling error • Bayesian FE model updating • Uncertainty
quantification • Likelihood function

12.1 Introduction

In the structural health monitoring research community, damage identification is defined as the process of determining:
(1) existence of damage; (2) location of damage; (3) severity of damage; and (4) remaining useful life of structures [1].
Among many methods that have been proposed in the past two decades [2–4], finite element (FE) model updating methods
are popular for damage identification [5–9] because they directly provide information about the existence, location, and
extent of damage, and because in some cases the updated FE model can also be used for damage prognosis. These methods
have been successfully applied for damage identification of civil structures in recent years [10–14]. In the FE model updating
methods, a set of structural model parameters, usually stiffness of finite elements, is adjusted so that the model predicted
quantities of interest, modal parameters in this study, best match those obtained from the test data. Damage identification
through FE model updating is usually performed in two steps: a baseline/reference model is calibrated in the first step to
match the data at the undamaged state of the structure, and in the second step, another model is fitted to the data of the
damaged structure. The difference between the two models indicates the location and extent of damage.

The baseline model parameters are expected to be close to their corresponding values assigned in the initial FE model, as
the initial model and its parameters are created based on the best level of engineer’s knowledge and based on the experimental
test data. This expectation is not fulfilled when large modeling errors exist. In this case, the model parameters of the initial
model usually need large and in many cases unrealistic modifications to fit to the undamaged state data. These unrealistic
modifications often try to compensate for different sources of modeling errors. Moreover, our previous studies [14, 15]
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indicated that the estimated damage and updated model parameters are highly sensitive to the variability and uncertainty of
identified modal parameters used in model updating and to the relative weights between the modal parameters.

This paper proposes a damage identification process through a single set of FE model updating, i.e., there is no need
for a reference/baseline model. To this end, a new likelihood function is defined based on data from both the damaged and
undamaged states of the structure. The initial FE model is directly used for damage identification in one step.

Performance of the proposed method is studied when applied to numerically simulated responses of a nine-story building.
Effects of different factors such as modeling errors, measurement noise, data incompleteness in terms of number of modes
and number of mode shape components (number of sensors), and different weight factors are on the accuracy of damage
identification results are studied. Moreover, the obtained results are compared to those from two other types of likelihood
functions used by other researchers. The considered test bed structure is the nine-story SAC building [16]. The original
model is modified to reflect the effects of modeling errors. To evaluate the performance of the proposed likelihood for
different severity of structural damage, three levels of damage are considered.

12.2 SAC Nine-Story Building

The original SAC nine-story steel moment frame, designed for Los Angeles, California, is shown in Fig. 12.1. The floor
masses are reported as 73.10 kips s2/ft for the roof, 67.86 kips s2/ft for floors 9 to 3, and 69.04 for floor 2. For simplicity,
the floor masses are all considered as lumped masses and only in horizontal direction in this study. Steel elastic Young’s
modulus is considered as 29,000 ksi.

To simulate the effects of fabrication and construction errors, the following changes are assumed for the real building.
The true/exact structural model is shown in Fig. 12.2 as model M0 and includes the following changes to the original SAC
model:

Fig. 12.1 Original SAC nine-story steel moment frame [16]
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Fig. 12.2 Models M0–M3 (modeling errors circled)
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Fig. 12.2 (continued)
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Table 12.1 MAC values
between mode shapes of models
M1 to M3 to those of model M0

Mode # of M0 1 2 3 4 5 6 7 8 9 10

M1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00
M2 1.00 1.00 1.00 1.00 0.99 0.96 0.76 0.59 0.73 0.98
M3 1.00 1.00 0.99 0.99 0.99 0.98 0.95 0.83a 0.81a 0.99a

aMAC is calculated for M3 mode shapes of modes 8, 8, 9 respectively

Table 12.2 Natural frequencies
of models M0–M3 in undamaged
state

Mode 1 2 3 4 5 6 7 8 9 10

M0 0.460 1.207 2.052 2.945 3.793 4.637 5.317 5.956 6.401 7.077
M1 0.463 1.213 2.068 2.973 3.838 4.684 5.403 6.022 6.470 7.171
M2 0.458 1.202 2.050 2.950 3.806 4.633 5.233 5.702 6.337 7.148
M3 0.477 1.248 2.104 3.011 3.888 4.744 5.499 6.287 7.165

(a) Second floor is moved 100 downward.
(b) Fourth floor is moved 200 upward.
(c) Sixth floor is moved 200 downward.
(d) Ninth floor is moved 200 upward.
(e) Axe B is moved 200 to the right, while axes A and C are fixed.
(f) Axe E is moved 100 to the left, while axes D and F are fixed.
(g) Elastic Young’s modulus of W14x500 and W36x160 is set as 29,011 ksi.
(h) Elastic Young’s modulus of W14x455 and W36x135 is set as 29,021 ksi.
(i) Elastic Young’s modulus of W14x283 and W30x99 is set as 29,008 ksi.
(j) Elastic Young’s modulus of W14x257, W14x233, W24x68, and W27x84 is set as 29,015 ksi.
(k) First floor’s support is horizontally bounded with a spring of stiffness 2.9 � 105 kips/in.
(l) The supports on the basement are modeled with rotational springs with the stiffness of 1.16 � 107 kips-in/rad.

(m) Mass of the roof is set as 73.25 kips s2/ft; floor 9 to 6 as 67.20 kips s2/ft; floor 6 to 3 as 68.30 kips s2/ft; and floor 2 as
68.54 kips s2/ft. Mass of first floor is also set as 68.54 kips s2/ft.

In order to evaluate the accuracy of damage identifications in the existence of modeling errors, the model updating process
will be performed for the true model (labeled as M0) as well as the following three structural models each with different
level of modeling errors:

M1. Minor modeling errors: all the changes to the original SAC model (points a to m) are considered. The modeling error is
in the column sections. Sections between the second floor and third floor are modeled as the section used in the first story
(in the true model, upper half and lower half have different sections). Sections between fourth and fifth floors are assigned
as the sections used between third to fourth floor; sections between sixth and seventh floors are assigned as sections used
between fifth to sixth floor; and finally sections between eighth and ninth floors are assigned as sections used between
seventh to eighth floors.

M2. Moderate modeling errors: contains modeling errors of M1 and also neglects points g to j and point l. The basement
supports are all modeled as pins.

M3. Large modeling errors: contains all the errors of M1 plus those induced by neglecting points a to m. The bay lengths
and story heights are modeled as shown in Fig. 12.1. The story masses in this model are assumed as: 73.10 for the roof,
67.86 for floors 9 to 3, and 69.04 for floor 2. The first floor’s support is modeled as a pin in the horizontal direction.

The four considered structural models M0–M3 are shown in Fig. 12.2. Modeling errors in the plot of each model are
circled. Note that these FE models are not considered as different model classes during the Bayesian FE model updating.
The modal assurance criterion (MAC) values between mode shapes of model M1–M3 and those of the true model (M0) are
reported in Table 12.1. Since model M3 has nine DOFs with non-zero masses, a maximum of nine modes are considered
for damage identification. Modes 8 and 9 of the true model cannot both be formed in the model M3. For the eighth mode of
model M3, MAC values are calculated with both eighth and ninth mode of model M0. As it can be seen from Table 12.1,
higher modes are more affected by modeling errors. The MAC values of the first five modes are all close to one, but they
reduce for higher modes (0.59 for eighth mode of model M2). Natural frequencies of the four models are also reported in
Table 12.2.
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12.3 Bayesian FE Model Updating

This section presents a summary of the Bayesian FE model updating formulation used in this study. More detailed
formulation of the Bayesian model updating process can be found in seminal publications on this topic [17–20]. According
to the Bayes theorem, conditional posterior probability distributions of updating parameters ™ and ¢ given the measured data
D (identified modal parameters in this study) and the model class M can be obtained by multiplying the likelihood function
p(Dj™, ��, �ˆ), the conditional prior probability distribution of model parameters p(™, ��, �ˆjM), and a constant c.

p
�
™; ��; �ˆ

ˇ̌
ˇD; M

�
D cp

�
D

ˇ̌
ˇ™; ��; �ˆ; M

�
p

�
™; ��; �ˆ

ˇ̌
ˇM

�
(12.1)

The likelihood function is the probability of the measured data given the updating model parameters, and the normalization
constant c is to ensure that the posterior probability density function (PDF) integrates to one. Three likelihood functions are
considered in this study, the first two have been used by many researchers in the past, labeled as likelihoods A and B, and
the third likelihood, labeled as likelihood C, is proposed in this paper.

12.3.1 Likelihood A

This likelihood function is based on the assumption of independent zero-mean Gaussian error functions, each defined as the
difference between the model-calculated and identified modal parameters [17].
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where Q�m; Q̂
m are identified eigen-frequency and mode shape of mode m, and �m, ˆm are the model-calculated modal

parameters. Nm is number of identified modes, Ns is number of mode shape components, and am is the mode shape scaling
factor. For simplicity, the number of updating model parameters are reduced by assuming a fixed ratio between the standard
deviations of eigen-frequency and mode shape errors, Ns�

2
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eigen-frequency errors for all the modes. The posterior PDF can then be written as:
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If the prior PDF is taken as a uniform distribution, the posterior can be further simplified to:
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The most probable structural model parameters can be obtained as:

b™ D arg
™
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NmX

mD1
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In order to estimate structural damage using this likelihood function, the most probable (maximum a-posteriori or MAP)
structural model parameters need to be calculated once using the data of the undamaged structure (baseline model parameters)
and once using the data of the damaged structure. The difference of the two is regarded as the most probable structural
damage.

12.3.2 Likelihood B

This likelihood is based on the assumption of zero-mean Gaussian error functions, each defined as the residuals of eigen-
equation using FE model’s stiffness and mass matrixes and identified modal parameters [20]:
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The posterior probability of the model parameters can be written as Eq. 12.9 if the prior is taken as a uniform distribution:
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By assuming identical prediction error standard deviations for different modes, the most probable (MAP) estimates of
structural model parameters can be obtained as:

b™ D arg
™
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mD1

.em/2 (12.10)

Same as likelihood A, two sets of model updating are needed to estimate structural damage.

12.3.3 Likelihood C

This proposed likelihood function contains the information of modal parameters both in the damaged and undamaged states
of the structure. Therefore, there is no need for updating a reference model using the undamaged data; the initial model
can be used for damage identification. The error functions are defined based on the differences between changes from the
undamaged to the damaged modal parameters computed from the model and those obtained from measured data. In this
likelihood, it is assumed that the ratio of model-predicted eigen-frequencies in the damaged and undamaged states is close
to the ratio of identified eigen-frequencies in the damaged and undamaged states. Also the difference of the model-predicted
mode shapes in the damage and undamaged states is assumed to be similar to the difference of identified mode shapes in the
damaged and undamaged states. The prediction errors are defined as:
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Table 12.3 Model parameters in
undamaged state (using six
modes)

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M1 A 1.01 0.97 0.99 0.95 1.03 0.89 1.05 0.95 0.99
B 1.02 0.96 1.03 0.91 1.03 0.90 1.02 0.97 0.98
C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M2 A 1.11 1.13 0.92 1.02 0.99 0.90 1.03 0.94 1.01
B 0.82 1.12 0.99 0.94 1.03 0.90 1.02 0.97 0.98
C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M3 A 0.80 0.94 0.92 1.01 1.04 0.86 1.07 0.92 1.05
B 0.74 0.98 0.96 0.97 1.04 0.87 1.05 0.93 1.04
C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

where bm is either 1 or �1 to assure the two mode shapes are in the same direction. The superscript d denotes the modal
parameters in the damaged state and the superscript h denotes the undamaged/healthy state modal parameters. The likelihood
will be obtained as:
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Q�h is the mean value of identified eigen-frequencies for a certain mode in the undamaged condition and Q̂ h
is the mean

identified mode shape in the undamaged condition. The estimated model parameters obtained from this likelihood are very
close to their initial values if the structure is not damaged. Thus the main sources of error for the damage estimates will be
due to the measurement noise or other sources of variations in the measured data, but not due to the modeling errors (when
the above-mentioned assumptions are valid). In this case, although modeling errors still exist, their effects do not significantly
affect the model updating results.

Considering the same assumptions on the standard deviation terms as in likelihood A, Eq. 12.13 can further be
simplified as:
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The most probable structural damage can be identified as in Eq. 12.7.
FE model updating is performed for the three likelihood functions using the first six eigen-frequencies and full mode

shapes of the structure at undamaged state. Note that no noise is added to the data. The estimated MAP values are listed
in Table 12.3. As it can be seen, the model M0 does not need any modification in its stiffness regardless of the likelihood
type as it has no modeling errors. However, likelihoods A and B imply modifications in the structural stiffness of model
M1–M3. These changes in structural stiffness are estimated to compensate the modeling errors and are not due to damage.
Larger modeling errors require larger changes in structural stiffness: change in story stiffness is up to 11 % for model
M1, 18 % for model M2, and 26 % for model M3. These large modifications for undamaged condition cannot be easily
justified and accepted by practicing engineers who use these FE models for design and reliability analysis of structures.
These modifications can be much larger for real-world, full-scale structures with larger modeling errors. However, this
problem can be avoided by using the proposed likelihood function, as no modification is required in the initial model. This
will help the understanding of engineers as the models are created based on the best level of engineer’s knowledge and the
model parameter values are set as the expected values derived from experiences or experimental/laboratory tests.
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12.4 Damage Identification

Overall ten model parameters are updated: one standard deviation (��), and nine structural model parameters (™) each defined
as the effective Young’s modulus of all the beams and columns of a story. Four damage scenarios are considered:

D0 (no damage)
D1 (small damage): ™2 D 0.9, i.e., 10 % loss of stiffness in the beams and columns of the second story.
D2 (moderate damage): [™2 ™3 ™7] D [0.7 0.8 0.8]
D3 (severe damage): [™1 ™2 ™3 ™4 ™7] D [0.7 0.5 0.6 0.8 0.7]

The effective elastic Young’s moduli of the finite elements in damaged structure are defined as Ei D � iE0, where � i is
the model parameter of ith story, E0 is the undamaged effective Young’s modulus and Ei is the damaged effective Young’s
modulus of ith story. Natural frequencies of the exact model (M0) in all four damage states are listed in Table 12.4. These
natural frequencies and their corresponding mode shapes will be considered as the “identified” modal parameters in the
absence of noise and are used for FE model updating. The identified modal parameters of the structure in the undamaged
state are those obtained similarly from model M0 in the undamaged state D0.

Performance of the three likelihood functions (A-C) for structural damage identification is studied in Sect. 12.4.1 in the
presence of modeling errors but absence of measurement noise. Effects of number of identified modes are studied by using 3,
6, and 9 modes during FE model updating process. Effects of measurement noise are studied in Sect. 12.4.2. Section 12.4.3
investigates the effects of using incomplete mode shapes (i.e., number of sensors) for likelihood functions A and C. Finally,
effects of weight factor between the eigen-frequency errors and mode shape errors are studied in Sect. 12.4.4 for likelihood C.

12.4.1 Effects of Modeling Errors and Number of Modes

The effects of number of modes used in the model updating process are studied in the absence of measurements noise
and assuming the identified mode shapes are complete. The most probable damage values are calculated by Eq. 12.7 for
likelihoods A and C and Eq. 12.10 for likelihood B.

The estimated MAP values for the stiffness parameters of damage scenario D2 are listed in Tables 12.5, 12.6 and 12.7
for different number of modes used during FE model updating. The results for damage scenarios D1 and D3 are not listed,
but will be explained in the following. If the absolute difference of the identified damage and the true damage is more than
0.05E0 (i.e., 5 %), the identified damage is shown by bold font and is considered as poor identification. The un-conservative
damage (underestimated damage) identification cases are underlined in the tables to provide a better sense of the reliability
of the results.

Table 12.4 Natural frequencies
of model M0 for damage
scenarios

Mode 1 2 3 4 5 6 7 8 9 10

Damage D1 0.456 1.203 2.049 2.936 3.776 4.611 5.285 5.927 6.382 6.985
Damage D2 0.437 1.161 2.013 2.825 3.637 4.456 5.027 5.689 6.313 6.618
Damage D3 0.390 1.093 1.878 2.652 3.407 4.167 4.695 5.228 5.886 6.120

Table 12.5 Model updating
results for damage scenario D2
(using all modes except 8)

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
B 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
C 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00

M1 A 0.99 0.72 0.80 0.99 1.00 1.00 0.79 1.00 1.00
B 1.00 0.72 0.80 0.99 1.01 1.00 0.79 1.00 1.00
C 1.02 0.72 0.79 0.94 1.03 1.00 0.81 0.99 1.01

M2 A 0.99 0.80 0.71 1.02 1.01 1.00 0.81 0.99 1.00
B 1.04 0.77 0.79 0.97 1.01 1.00 0.79 1.00 1.00
C 0.97 0.81 0.76 0.95 0.97 1.01 0.84 1.01 0.99

M3 A 0.97 0.83 0.83 0.90 1.08 0.97 0.77 1.02 1.01
B 1.15 0.72 0.80 1.00 1.00 1.00 0.79 1.00 1.00
C 0.92 0.87 0.82 0.89 1.05 0.97 0.80 1.03 1.00



128 I. Behmanesh and B. Moaveni

Table 12.6 Model updating
results for damage scenario D2
(using the first six modes)

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
B 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
C 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00

M1 A 1.00 0.70 0.81 0.99 1.00 1.00 0.79 1.00 1.00
B 1.00 0.71 0.80 0.99 1.01 1.00 0.79 1.00 1.00
C 1.01 0.69 0.82 0.96 1.03 0.99 0.80 0.99 1.01

M2 A 0.99 0.63 0.85 0.96 1.02 0.99 0.80 1.00 0.99
B 0.99 0.65 0.81 0.99 1.00 1.00 0.79 1.00 1.00
C 1.00 0.69 0.83 0.94 1.04 0.98 0.80 0.99 1.02

M3 A 1.00 0.71 0.84 0.99 1.01 1.00 0.78 1.00 1.00
B 1.01 0.69 0.82 0.99 1.01 1.00 0.78 1.00 1.00
C 1.00 0.68 0.82 0.96 1.02 1.00 0.81 1.00 0.99

Table 12.7 Model updating
results for damage scenario D2
(using the first three modes)

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
B 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
C 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00

M1 A 1.00 0.71 0.80 0.99 1.01 1.00 0.78 1.00 1.00
B 1.00 0.72 0.80 0.99 1.01 1.00 0.79 1.00 1.00
C 1.00 0.70 0.81 0.99 1.00 1.01 0.80 1.00 1.00

M2 A 0.99 0.78 0.76 0.99 1.01 1.00 0.78 1.00 1.00
B 1.00 0.75 0.82 0.98 1.01 1.00 0.79 1.00 1.00
C 1.00 0.67 0.85 0.97 1.01 1.00 0.79 1.00 1.00

M3 A 1.01 0.61 0.80 1.00 1.00 1.00 0.79 1.00 1.00
B 1.00 0.68 0.82 0.99 1.01 1.00 0.78 1.00 1.00
C 0.99 0.78 0.72 1.03 0.99 1.02 0.81 0.99 1.00

For the exact model M0, damage is always predicted accurately with no bias since there are no modeling errors. One
interesting observation is that the number of poor identifications (bold values), regardless of the likelihood type, is 11 when
nine modes are used, 2 when six modes are used, and 4 when only three modes are used. The same trend is observed for
damage case D3 as well, and overall, number of poor identification cases for all the damage states and all the models and
likelihood types are 38, 19, and 14 for the cases of using 9, 6, and 3 modes, respectively. Number of un-conservative damage
identifications are 20, 7, and 7 for the cases of using 9, 6, and 3 modes in the updating. Therefore, the extra information of
modes 7–10 did not improve the accuracy of damage identifications in the presence of modeling errors. This might be due to
the fact that modeling errors have larger effects on the higher modes as discussed in Sect. 12.2. Based on this observation, it
is recommended to avoid using the experimental mode shapes that cannot be perfectly paired (i.e., has low MAC) with one
of the initial FE model mode shapes during FE model updating.

The identification results from the damage case D3 have larger errors than the results from less severe damage cases D1
and D2, i.e., the error in damage estimates increases by increasing damage levels for all the three likelihoods. In damage
case D1 all the three likelihoods predict the damage with reasonable accuracy. Number of poor identification cases is 30, 11,
and 30 and number of un-conservative identifications is 14, 7, and 10 for likelihoods A, B, and C respectively considering all
the models and damage states. Likelihood B is much more successful because it can consider the dependency of the natural
frequencies and mode shapes. However, it should be mentioned that in a real application when few DOFs are measured,
the errors of likelihood B will increase because of the errors in the prediction of missing mode shape components. This
likelihood is not easily applicable in practice as mode shapes are usually incomplete. Model reduction techniques and mode
shape expansion techniques are not accurate enough and therefore the added errors will undermine benefits of using this
likelihood function in practice. In addition, 17 and 16 cases of poor identifications of likelihoods A and C belong to the case
of using nine modes, therefore, by excluding the modes that are highly affected by the modeling errors, these two likelihoods
become reliable as well.
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12.4.2 Effects of Noisy Measurements

To study the effects of measurement noise and modal identification errors, the “identified” modal parameters are polluted
by Gaussian white noise. Noise vectors with coefficients-of-variations (COVs) of 0.5 and 2 % are added to the exact
modal parameters to simulate the noisy “identified” modal parameters. Twenty realizations of the noisy modal data sets
are simulated for each damage case (D0–D3) and FE model updating is performed for each of the data sets separately. The
estimated damage is defined as the average of difference between model parameters in the damaged and undamaged states.
The results are very similar to the results of previous section and therefore are not presented here. It is concluded that all
the three likelihoods are capable of predicting the damage with reasonable accuracies in the presence of measurement noise.
Nevertheless, the updating model parameters have large variations in the case of using only three modes, indicating that
the amount of information provided by the first three modes may not be enough for estimation of the nine structural model
parameters.

Figure 12.3 shows the histograms of the most probable structural model parameters �1 to �4 in the undamaged state and
the damage state of damage scenario D2 for the three likelihoods. The first column corresponds to likelihood A, the second
column to likelihood B and the third column shows the results from likelihood C. All the results are obtained using model
M2 and consider the first six modes for model updating process. The first and fourth model parameters are not damaged;
therefore their updated model parameters are distributed almost in the same area for both damaged and undamaged states
for all the three likelihood. However, these regions are not the same. For example, the �1 are distributed from 1.0 to 1.3
for likelihood A, 0.7–0.9 for likelihood B, and 0.9–1.1 for likelihood C. This substructure is not damaged and its expected
updated value is around 1.0 for both the damaged and undamaged states. This expectation is only satisfied for likelihood
C. Same is true for the other three model parameters, as their updated model parameters are distributed around 1.0 in the
undamaged state and in the damage state if the substructure is not damaged.

12.4.3 Effects of Number of Sensors

In this section, the effects of having incomplete mode shapes are studied on the performance of FE model updating for
damage identification using likelihood functions A and C. Two cases of sensor configurations are considered, the first
configuration considers seven sensors at stories 2, 3, 4, 5, 7, 8, and 10, and the second considers five sensors at stories
2, 4, 6, 8, and 10. Overall, damage identification results based on both likelihood functions are acceptable. Tables 12.8, 12.9
and 12.10 report the model updating results when using five sensors and the first six modes for the three damage scenarios
D1–D3, respectively. In the case of having seven sensors (three mode shape components missing), overall 10 and 14 cases
of poor identifications are observed for likelihoods A and C. Number of un-conservative damage identifications is 4 and
6. In the case of having five sensors, number of poor identification is 13 and 23, and number of un-conservative damage
identifications is 5 and 11 for likelihoods A and C respectively. Obviously, using more sensors improve the accuracy of the
results. Note that likelihood A provides more accurate results than likelihood C, however, likelihood C has the advantages
described in previous sections. Also, the performance of this likelihood can be improved by using proper modes during
identification process and using the optimal weight factor.

12.4.4 Effects of Weight Factors

The resultsof previous sections are all based on specific assumptions (fixed ratios) between the standards deviations of the
error terms. Assigning higher standard deviation for an error term (specific modal parameter) corresponds to giving lower
weight to that modal parameter. The model updating results are sensitive to the assumed relationship between error variations.
This section investigates the effects of different assumptions on the weight factors between eigen-frequency errors and mode
shape errors. The study is performed only for likelihood C with the first six modes identified and using five sensors. Similar
studies is performed for evaluating the effect of weight factor on likelihood A in [21, 22].

It is still assumed that the COVs of errors for all the modes are all identical. A weight factor is defined for the relation
between the COVs of eigen-frequency errors and mode shape errors:

�2
ˆ D wNs�

2
� (12.15)
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Fig. 12.3 Histograms of updating model parameters using model M2 and the first six modes. Undamaged state (gray bars) and damaged state D2
(dark bars)
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Table 12.8 Model updating
results for damage scenario D1,
using six modes and five sensors

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M1 A 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C 1.00 0.89 1.00 0.99 1.01 1.00 1.00 1.00 1.00

M2 A 1.00 0.90 1.00 1.00 1.01 1.00 1.00 1.00 1.00
C 1.00 0.90 1.00 0.99 1.01 1.00 1.00 1.00 1.00

M3 A 1.00 0.87 1.01 0.99 1.00 1.00 1.00 1.00 1.00
C 1.01 0.88 1.01 0.99 1.00 1.00 1.00 1.00 1.00

Table 12.9 Model updating
results for damage scenario D2,
using six modes and five sensors

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00
C 1.00 0.70 0.80 1.00 1.00 1.00 0.80 1.00 1.00

M1 A 1.00 0.69 0.80 0.99 1.01 1.00 0.79 1.01 0.99
C 1.00 0.69 0.81 0.97 1.02 0.99 0.81 0.99 1.01

M2 A 1.00 0.71 0.76 0.99 1.00 1.01 0.79 1.01 0.99
C 1.00 0.71 0.79 0.98 1.01 0.98 0.81 0.98 1.02

M3 A 1.00 0.65 0.85 0.98 1.01 1.00 0.79 1.00 1.00
C 1.00 0.68 0.84 0.95 1.03 1.00 0.81 1.00 0.99

Table 12.10 Model updating
results for damage scenario D3,
using six modes and five sensors

Model Likelihood ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

M0 A 0.70 0.50 0.60 0.80 1.00 1.00 0.70 1.00 1.00
C 0.70 0.50 0.60 0.80 1.00 1.00 0.70 1.00 1.00

M1 A 0.70 0.50 0.61 0.78 1.02 1.00 0.69 1.02 0.99
C 0.70 0.49 0.61 0.74 1.11 0.94 0.73 0.96 1.03

M2 A 0.65 0.53 0.53 0.80 0.98 1.01 0.68 1.04 0.98
C 0.69 0.52 0.57 0.76 1.07 0.92 0.74 0.94 1.04

M3 A 0.81 0.43 0.69 0.75 1.03 1.00 0.68 1.01 1.00
C 0.72 0.44 0.69 0.69 1.22 0.97 0.74 0.97 1.00

Accordingly, the likelihood function can be written as:
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Table 12.11 presents the updating parameters at damage state D3, using model M2, the first six identified modes, and five
sensors. These results can be viewed as pareto optimal solutions. The weight factor, w, was set as 1 in previous sections. The
maximum change for an updating parameter is 0.14, however, some parameters show less sensitivity to the variations of the
weight factor. It can be seen that the accuracy of identification results in this specific application can be improved by using
lower weight factors, which increases the relative importance of mode shape residuals.

12.5 Conclusions

A new likelihood function is proposed to be used in the FE model updating of civil structures. This likelihood function
is expected to provide more accurate model updating results for damage identification in the presence of modeling errors.
The identified modal data at both undamaged and damaged state of the structure are used in this likelihood function and
therefore, damage identification can be performed through just one FE model updating, i.e., the new likelihood function does
not require estimation of reference/baseline model at the undamaged state. This has an important practical advantage because
the initial FE model is usually created based on the best level of engineer’s knowledge, and is based on experimental tests
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Table 12.11 Identified damage
for damage case of D3, for
different weight factors

w ™1 ™2 ™3 ™4 ™5 ™6 ™7 ™8 ™9

0.01 0.69 0.54 0.55 0.80 0.96 0.99 0.70 1.02 0.99
0.05 0.69 0.54 0.55 0.79 0.98 0.98 0.70 1.01 0.99
0.075 0.69 0.54 0.55 0.79 0.98 0.97 0.71 1.00 1.00
0.1 0.69 0.54 0.55 0.78 0.99 0.97 0.71 1.00 1.00
0.125 0.69 0.54 0.56 0.78 1.00 0.97 0.71 0.99 1.00
0.15 0.69 0.54 0.56 0.78 1.00 0.96 0.72 0.99 1.00
0.2 0.69 0.53 0.56 0.78 1.01 0.96 0.72 0.98 1.01
0.3 0.69 0.53 0.56 0.77 1.02 0.95 0.73 0.97 1.02
0.5 0.69 0.53 0.56 0.77 1.04 0.93 0.73 0.96 1.03
1 0.69 0.52 0.57 0.76 1.07 0.92 0.74 0.94 1.04
2 0.69 0.51 0.58 0.76 1.08 0.90 0.74 0.92 1.06
5 0.70 0.50 0.59 0.75 1.10 0.89 0.74 0.91 1.07
10 0.70 0.49 0.60 0.75 1.10 0.89 0.74 0.91 1.07

and measurements. Large modifications of the initial model may not be physically meaningful. It is shown that the proposed
likelihood provides the similarly accurate damage identification results as the other types of likelihoods that are commonly
used in the literature.

Three different levels of modeling errors and three damage scenarios are considered to evaluate the performance of the
three considered likelihood functions for damage identification. It is observed that all the three likelihoods can successfully
identify damage in the absence of modeling error or when modeling errors are small. Moreover, it is observed that regardless
of the level of modeling errors and the likelihood function used, the identification results are accurate for small amounts
of damage (D1). However, the identification errors increase by increasing the severity of damage and modeling errors. In
this application modeling errors affect the higher modes much more significantly than the lower modes. Therefore, the
FE model updating results can be improved by avoiding using the identified modes with low MAC values with the FE
model counterparts. This study also reveals that assigning optimal relative weights between the eigen-frequency and mode
shape error functions can slightly improve the damage identification results. The proper choice of vibration modes and the
optimum weight factor in the likelihood function can be determined using Bayesian model class selection or Bayesian model
averaging.
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