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Calibration of System Parameters Under Model Uncertainty

Ghina N. Absi and Sankaran Mahadevan

Abstract This paper investigates the quantification of errors and uncertainty in Bayesian calibration of structural dynamics
computational models, affected by choices in model fidelity. Since Bayesian calibration uses an MCMC approach for
sampling the updated distributions, using a high-fidelity model for calibration can be prohibitively expensive. On the
other hand, use of a low-fidelity model could lead to significant error in calibration and prediction. This paper investigates
model parameter calibration with a low-fidelity model corrected using higher fidelity simulations, and the trade-off between
accuracy and computational effort. Different fidelity models may have different mesh resolutions, physics assumptions,
boundary conditions, etc. The application problem used is of a curved panel located in the vicinity of a hypersonic aircraft
engine, subjected to acoustic, thermal and aerodynamic loads. Two models are used to calibrate the damping characteristics of
the panel: frequency response analysis and full time history analysis, and the trade-off between accuracy and computational
effort is examined.
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1.1 Introduction

Finite element analysis (FEA) is commonly used in the dynamic simulation of engineering structures with complicated
geometry and under complex loading conditions. However, construction of the FEA model is subjective, affected by
the engineer’s assumptions. High-fidelity dynamic finite element analysis of complex systems is quite expensive, and
considerable research has been done to construct cheaper and simpler surrogate models, equivalent static models, or reduced-
order models. However, the errors and uncertainties increase with the reduction in model fidelity.

Two principal qualities are desired in a functional finite element model [1]: (1) physical significance: the model should
correctly represent how the mass, stiffness and damping are distributed, and (2) correctness, where the response from
dynamics experiments is accurately predicted by the model. Mottershead and Friswell [2] group modeling errors into three
types: (a) model form errors (due to assumptions regarding the underlying physics of the problem, especially with strongly
nonlinear behavior), (b) model parameter uncertainty (due to assumptions regarding boundary conditions, parameters
distributions and simplifying assumptions), and (c) model order errors (arising from the discretization of complex geometry
and loading). Computationally efficient models have to be cheap enough to allow multiple repetitions of the simulations, but
also retain precious information available from rigorous more expensive models.

Many studies have concentrated on developing reduced-order models (ROM) to replace full fidelity dynamic analyses.
McEwan [3, 4] proposed the Implicit Condensation (IC) method that included the non-linear terms of the equation of motion,
but restricted the nonlinear function to cubic stiffness terms, and can only predict the displacements covered by the bending
modes. Other methods explicitly include additional equations to calculate the membrane displacements in the ROM, such as
those by Rizzi et al. [5, 6] and Mignolet et al. [7, 8].

Another direction of research to deal with inaccurate FEA is model updating. Direct updating methods have been proposed
by computing closed-form solutions for the global stiffness and mass matrices using the structural equations of motion
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[9, 10]. The generated matrices are faithful to modal analyses, but do not always maintain structural connectivity, and may
not always retain physical significance. Iterative methods study the changes in model parameterization to evaluate the type
and the location of the erroneous parameters. and try to minimize the difference between the experimental data and the FE
model predictions by varying these parameters [11]. In these cases, the mathematical model used in the model updating can
sometimes be ill conditioned.

Liang and Mahadevan [12] replaced the expensive computational model with a surrogate model using Polynomial
Chaos Expansion (PCE), and developed a systematic error quantification methodology. This approach facilitates running
inexpensive simulations, while taking into account the resulting errors and uncertainties.

This paper considers Bayesian calibration of model parameters with experimental data, using a corrected low-fidelity
model. It uses the information available in high-fidelity simulation to adjust the low-fidelity model, for better agreement
with experimental results. The aim is to reduce the uncertainty in the parameters ahead of the final calibration (especially
when a small number of experimental data is available), thus providing a stronger prior that takes into account additional
high-fidelity information that may be missing in the low-fidelity model (such as non-linearity, additional variables, etc.). In
the same way, information available in the low-fidelity model and missing from the high-fidelity one is retained, such as
modeling the full domain (i.e. the full time history vs. a small segment). The corrected low-fidelity model is inexpensive, and
becomes more accurate. This is particularly useful when limited experimental data are available, and the need of a reliable,
yet fast model is essential.

1.2 Multi-fidelity Calibration Method

In this section, the concept of calibration is extended from a simple calibration using experimental data with a single
model, to a sequential one, combining models of different fidelities. Assume that we have two models G1(X) and G2(X)
of different fidelities. In order to achieve computational efficiency in Bayesian calibration, each model is replaced by fast
running surrogate models S1(X) and S2(X). In order to build these surrogate models, the original models need to be evaluated
multiple times. Assuming higher fidelity models run much slower than lower fidelity ones, time constraints will only allow
fewer higher fidelity simulations.

1.2.1 Surrogate Model: Polynomial Chaos Expansion

Many surrogate modeling techniques have been developed in the literature, such as linear/quadratic polynomial-based
response-surface [13], artificial neural networks [14], support vector machine (SVM) [15], polynomial chaos expansion
(PCE) [16], and Gaussian process (GP) interpolation (or Kriging) [17]. In this paper, a PCE is used to replace the original
models for inexpensive sampling in the calibration process. PCE is a regression-based surrogate model that represents the
output of a model with a series expansion in terms of standard random variables (SRVs). Consider a model y D f (x) where
x D fx1, x2, : : : , xkgT is a vector of input random variables. We construct a PCE to replace f (x) using n multi-dimensional
Hermite polynomials as basis functions:

y D
nX

j D0

�j �j .�/ D �T ' .�/ C "surr (1.1)

where � is a vector of independent standard normal random variables which correspond to the original input x [18].
'(.) D f�0(.),�1(.), : : : ,�n(.)gT are the Hermite polynomial basis functions, and ™ D f�0,�1, : : : ,�n,gT are the corresponding
coefficients that can be estimated by the least squares method. A collocation point method can be used to efficiently select
training points where the original model is evaluated [19]. Suppose that m training points (� i, yi), i D 1, 2, : : : , m are available.
Under the Gauss-Markov assumption [20], the surrogate model error "surr asymptotically follows a normal distribution with
zero mean and variance given by

Var Œ"surr � � s2 C s2'.�/T
�
ˆT ˆ

��1
' .�/ (1.2)

where ˆ D f' .�1/ ; ' .�2/ ; : : : ; ' .�m/gT and s2 D 1
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Fig. 1.1 Simple implementation
of slice sampling

1.2.2 Uncertainty Quantification

The experimental output Yobs is expressed in terms of the experimental input X, the errors and the model output as follows:

Yobs C "obs D G .X C "in; �/ C "surr C "mf (1.3)

where

"in: input experimental error
"mf : model form error (calculated automatically within the code)
"surr: surrogate model error
"obs: output experimental error

In order to get accurate calibration results, these errors need to be included in the calibration [21]. The experimental
measurement errors "in and "obs are represented as random variables, with known (or assumed) distributions. The surrogate
model error "surr reflects the uncertainty we have regarding the replacement of the original model with a response surface
model, as is shown in Eq. 1.2. As for the model form error "mf , it is calibrated along with model parameters using
experimental data, following Eq. 1.3.

1.2.3 Bayesian Calibration

Three approaches are available for calibration: least squares, maximum likelihood, and Bayesian calibration. This paper
uses Bayesian calibration since it is the most comprehensive approach, allowing uncertainty quantification of the calibration
result.

The Bayesian calibration is based on Bayes’ theorem:

fX.xj D/ / fX.x/:L.x/ (1.4)

where fX(x j D) is the posterior distribution of the variable X after calibration using the data D, fX(x) is the prior distribution of
X (assumed by the user), and L(x) is the likelihood function (probability of observing the data D, given a calibration parameter
value). Sampling from the posterior is done using a Markov Chain Monte Carlo (MCMC) algorithm. Several algorithms are
available for MCMC sampling: Metropolis-Hastings [22], Gibbs sampling [23], slice sampling [24], etc. Slice sampling is
used in the numerical example to evaluate Eq. 1.4. It is based on the observation that to sample a random variable, one can
sample uniformly from the region under the PDF. The simplest implementation (for a uni-variate distribution without the
need to reject any points) consists of first sampling a random value y between 0 and the maximum PDF value ymax. The next
step is to sample x from the slice under the PDF, as shown in Fig. 1.1.

Slice sampling requires many simulations of the model used. Low-fidelity models are fast, but inaccurate. High-fidelity
models are more reliable, but time-consuming. Therefore we propose correcting the low-fidelity model first with high-fidelity
simulations, and using the corrected model for calibration with experimental data.
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Fig. 1.2 Variation of "sur and "mf with model fidelity

1.2.4 Validation

Model validation is used to determine the degree of agreement of a model prediction with observed experimental data, and
compare multiple models to determine which one is better supported by the data. Many methods have been proposed that
include parametric uncertainty [25]. For two models (denoted by Mi and Mj) with prior probabilities of acceptance P(Mi) and
P(Mj), the relative posterior probabilities can be computed using Bayes’ rule [26, 27]:

P
�
Mi

ˇ̌
ˇObservation

�

P
�
Mj

ˇ̌
ˇObservation

� D
P
�

Observation
ˇ̌
ˇMi

�

P
�

Observation
ˇ̌
ˇMj

� P .Mi/

P
�
Mj

� (1.5)

The likelihood ratio
P
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Observation
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! is referred to as “Bayes factor”, and is used as the metric to assess the data support

to Model Mi relative to model Mj. If the Bayes factor is greater than 1.0, then it can be concluded that the model Mi is more
supported by the data.

1.2.5 Multi-fidelity Implementation

Let N1 and N2 denote the number of simulations available for each original model G1 and G2, uniformly distributed over
the problem domain. These realizations are used to build the corresponding surrogate models. Because of time and budget
constraints, we assume that higher the fidelity of the model, the lower the number of simulations available, i.e.: N2�. N1.
This results in a surrogate model error for G2 larger than that for G1. However, since G2 is of a higher fidelity than G1, the
model form error in G1 is larger than that for G2, i.e., "mf (1) � "mf (2). Figure 1.2 shows a notional diagram of how the surrogate
model error and model form error might vary with the fidelity of the model.

The proposed approach avoids the need to build a surrogate model for the high-fidelity simulations, and thus avoids the
high surrogate model error that comes with it. It uses the available simulations of the high-fidelity model to correct the
low-fidelity surrogate model, and uses the latter in the calibration process.

The multi-fidelity calibration algorithm is as follows:

(i) Run the Low (G1) and High (G2) fidelity models to obtain N1 and N2 sets of outputs, respectively.
(ii) Build S1, the surrogate model replacing G1. In this step, the variance of S1 is calculated to account for the surrogate

model error.
(iii) Define the priors of the calibration parameters, and the discrepency between the models D2,1.
(iv) Calibrate the parameters of low-fidelity model as well as the discrepency with the high-fidelity simulations.
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(v) Set the corrected low-fidelity model as: LFcorr D LF C D’2,1, where D’2,1 is the posterior of D2,1 obtained from step iv.
(vi) Assume a prior distribution for the model form error "mf .

(vii) Re-calibrate the dynamics model parameters along with "mf with the available experimental data. Use the posteriors
of the dynamics model parameters from step iv. as priors (D’2,1 is fixed in this step based on the result in step v).

This approach allows the use of the information from both fidelity models, with minimal surrogate model error.

1.3 Numerical Example

1.3.1 Problem Description

The application problem is of a hypersonic airplane fuselage panel located next to the engine, subjected to dynamic acoustic
loading (AL). The panel is curved, as shown in Fig. 1.3, and is modeled using the FEA software ANSYS. The strain at seven
different locations of the panel is recorded.

The damping—to be calibrated—is modeled as frictional damping for a width of “1” around the perimeter of the panel,
and material damping for the rest of the panel area. The boundary fixity is also a calibration variable, and is described by a
fixity ratio FR D length of plate perimeter fixed/total boundary length (see Fig. 1.4).

Two models of different fidelities were considered:

– Model 1: A power spectral density analysis, which consists of a linear combination of mode shape effects
– Model 2: A full transient analysis where the acoustic loading is applied as a dynamic time history input.

Model 1 and Model 2 have the finite element mesh, and the materials, the boundary conditions and the mesh resolution
are the same. They differ in the application of loads, the analysis method, and the output type.

In Model 1, the input acoustic load applied is the Welch power spectral density (PSD) [28] of the experimental 140 dB
acoustic load. The PSD describes how the power of a signal or time series is distributed over the different frequencies. For a
signal X(t), it is calculated as follows:

Fig. 1.3 Curved panel
dimensions

http://en.wikipedia.org/wiki/Power_(physics)#Power%20(physics)


6 G.N. Absi and S. Mahadevan

Fig. 1.4 Example of FR D 1 and 0.5
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where E[] is the expected value, and FXT .!/ D
1Z

�1
XT .t/e�j wt dt the Fourier transform of X(t).

The PSD is calculated with the entire 140 dB signal, for the full duration of 60 s. However, it is not unique to the signal
it is calculated from, because the phase component is discarded. For different phase relationships, different time-domain
signals fit the same PSD. Also, the spectrum analysis in ANSYS is a linear combination of the mode effects on the structure.
Finally, even though Model 1 is inexpensive to run (one simulation takes about 9.5 min to complete), it does not allow the
user to add initial conditions on the structure such as initial stress resulting from fixing the plate on the test-rig (a uniform
load has a PSD of 0, and will not contribute to the RMS strain output).

Model 2, in contrast, is a full transient dynamic analysis of the panel. The model run is quite time-consuming, allowing
only 0.2 s of the input signal (of the full 60 s of data available) to be simulated, and each simulation takes 5.5 h (35 times
slower than Model 1). However, Model 2 does allow us the addition of initial stress on the model, and preliminary test runs
have shown that a uniform initial load on the panel is consistent with the experimental observation (see Fig. 1.5).
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The hypothesis of this paper is that initial correction of the low-fidelity model with the higher fidelity model allows us to
use information from both in the final calibration of the system parameters, i.e., the full length of the signal in the form of
the PSD, and the transient behavior as well as the initial conditions incorporated in the full dynamic analysis.

1.3.2 Results

Four calibration results are being compared in this section: The low-fidelity model calibrated with experimental data
(LF_exp), the high-fidelity model calibrated with experimental data (HF_exp), the low-fidelity model calibrated with the
high-fidelity simulations (LF_HF) and the corrected low-fidelity model calibrated with the experiments data (LFcorr_exp).

The following priors are assumed for the calibration parameters:

"mf �U [�10�1, 10�1]
FR_DC�U [10�4, 10�2]—Frictional damping coefficient
MT_DC�U [5.10�7, 10�4]—Material damping coefficient
FR�U [0.7, 1]—Fixity ratio

"obs�N (0, �obs) where the prior of �obs follows a Jeffreys distribution [29] with bounds [10�5; 10�2]: with a fixed
�obs D 0, the prior of �obs is assumed as  (�) / 1/� . The low-fidelity model was run 40 times, whereas the high-fidelity was
run nine times. We only have one set of experimental data available (one observation at each strain gage location). Four strain
gage outputs are used for calibration, and a fifth is used to compute the Bayes factor (likelihood ratio) to compare the results
of the different calibration options. The following figures show the posteriors of the model form errors (Fig. 1.5), frictional
(Fig. 1.6) and material (Fig. 1.7) damping and the fixity ratio (Fig. 1.8).

Using the fifth (validation) data set, the likelihood ratios among the three calibration options were computed as

LF W LFcorr W HF D 1 W 1:31 W 1:29

1.3.3 Discussion

The main difference between Models 1 and 2, besides the analysis type, is the initial stress added in Model 2, in the form
of a distributed uniform load. Preliminary testing of Model 2 with and without initial stress showed that, without adding a
uniform load on the panel, the strain amplitude was much lower than the experimental output, as seen in Fig. 1.9.
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The calibration results show the effect of ignoring the initial stress. The posteriors from the calibration with Model 1 (the
low-fidelity model) underestimate the damping and the fixity ratio, in an attempt to recover the energy under the PSD curve
(strain RMS) which is directly proportional to the signal amplitude. This loss of accuracy is also shown in the model form
error, which is much greater (in magnitude) than the rest of the models.

Not only were the results in favor of the use of the corrected low-fidelity model in the calibration process, but its
convergence was faster than both low-fidelity and high-fidelity calibrations with experimental data. Slice sampling was
required to give 8,000 accepted samples of the parameters posterior distributions. The corrected low-fidelity model needed
25,284 samples to accept 8,000, whereas using the high-fidelity model alone for calibration needed 40,352 samples, and
using the low-fidelity model alone needed 95,327 samples.

Furthermore, the likelihood ratio calculated in Sect. 1.3.2 shows that the calibration result of the corrected low-fidelity
model is almost as acceptable as the high-fidelity model. When this likelihood comparison is considered along with the
computational efficiency of the two-step approach, it appears that the proposed methodology offers a reasonable trade-off
between accuracy and computational effort.

1.4 Conclusion

This paper investigated the use of multi-fidelity models in the calibration of model parameters. Time-consuming high-fidelity
simulations were used to correct the inexpensive low-fidelity model, and the corrected low-fidelity model was used for
parameter calibration with experimental data. This efficient two-step method allows the fusion of information from both
model fidelities, and is particularly useful when only a small number of experimental data points is available.

Future work needs to investigate the efficacy of this approach when more than two models are available, and find
a systematic quantitative way of using the available information. The calibration becomes more complicated when the
damping is load-dependent, and future work needs to account for this dependence. The extension to multiple physics with
the application of thermal and aerodynamic loads also needs to be studied in the future.
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