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Preface

Sparse grids have gained increasing interest in recent years for the numerical
treatment of high-dimensional problems. While classical numerical discretization
schemes fail in more than three or four dimensions, sparse grids make it possible to
overcome the “curse of dimensionality” to some degree—extending the number of
dimensions that can be dealt with.

The second Workshop on Sparse Grids and Applications (SGA2012), which
took place from July 2 to 6 in 2012, demonstrated once again the importance
of this numerical discretization scheme. Organized by Hans-Joachim Bungartz,
Jochen Garcke, Michael Griebel, Markus Hegland and Dirk Pflüger, more than 40
researchers from 11 different countries have presented and discussed the current
state of the art of sparse grids and their applications. Thirty-three talks covered their
numerical analysis as well as efficient data structures, and the range of applications
extended to uncertainty quantification settings and clustering, to name but a few
examples. This volume of LNCSE collects selected contributions from attendees of
the workshop.

More than 20 years after the term “sparse grids” was coined by Christoph
Zenger in Munich, the SGA was hosted by his former institution, the Department of
Informatics of the Technische Universität München, together with the new Institute
for Advanced Study (IAS). Financial support of the IAS is kindly acknowledged.
We especially thank Christoph Kowitz and Valeriy Khakhutskyy for their effort and
enthusiasm in the local organization of the workshop, and the IAS staff, especially
Stefanie Hofmann and Sigrid Wagner, for their assistance.

Bonn, Germany Jochen Garcke
Stuttgart, Germany Dirk Pflüger
December 2013
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Efficient Pseudorecursive Evaluation Schemes
for Non-adaptive Sparse Grids

Gerrit Buse, Dirk Pflüger, and Riko Jacob

Abstract In this work we propose novel algorithms for storing and evaluating
sparse grid functions, operating on regular (not spatially adaptive), yet potentially
dimensionally adaptive grid types. Besides regular sparse grids our approach
includes truncated grids, both with and without boundary grid points. Similar to the
implicit data structures proposed in Feuersänger (Dünngitterverfahren für hochdi-
mensionale elliptische partielle Differntialgleichungen. Diploma Thesis, Institut für
Numerische Simulation, Universität Bonn, 2005) and Murarasu et al. (Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Programming.
Cambridge University Press, New York, 2011, pp. 25–34) we also define a bijective
mapping from the multi-dimensional space of grid points to a contiguous index,
such that the grid data can be stored in a simple array without overhead. Our
approach is especially well-suited to exploit all levels of current commodity
hardware, including cache-levels and vector extensions. Furthermore, this kind
of data structure is extremely attractive for today’s real-time applications, as it
gives direct access to the hierarchical structure of the grids, while outperforming
other common sparse grid structures (hash maps, etc.) which do not match with
modern compute platforms that well. For dimensionality d � 10 we achieve good
speedups on a 12 core Intel Westmere-EP NUMA platform compared to the results
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2 G. Buse et al.

presented in Murarasu et al. (Proceedings of the International Conference on
Computational Science—ICCS 2012. Procedia Computer Science, 2012). As we
show, this also holds for the results obtained on Nvidia Fermi GPUs, for which we
observe speedups over our own CPU implementation of up to 4.5 when dealing
with moderate dimensionality. In high-dimensional settings, in the order of tens to
hundreds of dimensions, our sparse grid evaluation kernels on the CPU outperform
any other known implementation.

1 Introduction

Sparse grids, as introduced in [19] for the solution of high-dimensional partial
differential equations, are widely used to tackle problems that are hard or impossible
to solve with conventional discretizations because of the curse of dimensionality.
In contrast to full isotropic grids that require O.N d / sampling points to discretize
a d -dimensional domain with mesh-width 1=N , the number of sparse grid points
has a much weaker dependency on the dimensionality d . For sufficiently smooth
functions only O.N � .logN/d�1/ grid points are necessary to obtain a similar
approximation quality as for full grids. The trade-off are complicated hierarchical
data structures and algorithms which are difficult to match with modern compute
platforms, and since the gap between existing implementations’ requirements and
future hardware features seems to widen, there is constant need for improvement.
Where real-time requirements meet the need for incremental algorithms in high-
dimensional settings, efficient and hardware-aware algorithms and data structures
become crucial. Just consider applications in the context of computational steering
or other parameter-dependent simulation tasks that require to store whole vector
fields (e.g., a 3-D pressure field) for each grid point in the parameter space [4].

The settings that triggered our work were such real-time applications with
the need for incremental algorithms and the minimization of storage space. The
corresponding core algorithms (evaluation, hierarchization, dehierarchization, etc.)
have been developed and optimized for the most general case of spatial adaptivity
[18]. As a consequence, the underlying data structures are designed for flexibility
and performance in arbitrary settings, but make no use of any regularity in the grids.
In contrast, the closely related combination technique as introduced in [10] is widely
used to tackle similar problems, though with a completely different algorithmic
approach. It does not require complex data structures in its direct form, but where
large vector fields have to be stored for each grid point either a large memory
overhead has to be invested, or one is back to less efficient data structures. Besides
the loss of the inherently incremental representation this is another reason to restrict
ourselves to the use of direct sparse grids.

A comparison of the characteristics of both approaches in our setting yields, that
often spatial adaptivity is not crucial, and dimensional adaptivity as used with the
combination technique [7] leads to good results. We therefore focus on so-called
truncated sparse grids [1, 15], a special form of dimensionally adaptive grids, for
which storage efficient data structures exist. We propose a slim, array-based data
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structure that preserves the intrinsic recursive property of sparse grids, and we
show how evaluation, one of the sparse grid core algorithms, can perfectly take
advantage of this. Our goal is to achieve maximum performance for our specifically
designed evaluation kernels on modern multicore architectures as well as Nvidia
Fermi GPUs. Comparisons with similar approaches are presented that demonstrate
how a pseudorecursive implementation is superior to both a sophisticated spatially
adaptive and thus recursive implementation and the most optimized implementation
known to us that has been designed for our setting.

An overview of related work (Sect. 2) and a brief introduction of the notation
we use (Sect. 3) are followed by the description of our array-based data structure
in Sect. 4. Section 5 motivates the term pseudorecursive, and it is shown why these
algorithmic variants are superior to current state-of-the-art implementations. Results
for all sparse grid bases introduced in Sect. 3 are presented in Sect. 6. Finally, the
paper is summarized and concluded in Sect. 7.

2 Related Work

Examples of applications that depend on the performance of the function evaluation
can be found, e.g., in interpolation, classification or regression settings. In [11],
classification and regression are performed with spatially adaptive sparse grids with
tens of thousands of grid points in moderate dimensionalities but for large data sets.
There, evaluation is the hot spot, and in order to avoid recursive algorithms and
data structures, the authors rely on a brute force approach instead of investing in
algorithmic optimizations and complex data structures. Performance is drawn from
the massive parallelism of a hybrid compute environment, consisting of several
CPUs and accelerators. The authors observe, that it does not hurt to carry out
unnecessary computations as long as the code is tailored to the specific platform
and a high degree of parallelism is maintained at all times.

The authors of [12] try to achieve a performance boost for evaluation in adaptive
tensor approximation spaces through the use of multi-dimensional segment trees.
As will become clear when discussing our compact data structure in Sect. 4,
such memory intensive support constructs are not required here, and thus bear no
advantage for our setting.

In other applications, spatial adaptivity is not generally required. The inter-
polation problem of the astrophysics scenario described in [6] could be solved
with competitive quality of results for both regular and spatially adaptive sparse
grids. In [9], dimensionally adaptive sparse grids had been employed for numerical
quadrature as a more generalized form of regular sparse grids with the combination
technique. The combination technique (see [10]), which is bound to work with
grids of a regular nature, has successfully been employed on the same kind of grid
structure in classification and machine learning [7].

From these settings and applications we draw our motivation to use truncated
sparse grids as described in [1, 15]. For example, truncation can be very helpful in
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Fig. 1 Illustration of a truncated sparse grid in 2-D for level n D 4 and truncation vector c D
Œ2; 4�T . Left: the subspace table and indicated constraints n and c. Right: the resulting truncated
sparse grid with omitted grid points grayed out. Note that dimension 1 is not truncated since c1 D
4 D n

settings where high-dimensional singularities violate the smoothness assumptions
such as for option pricing in finance. These grids also allow for anisotropic grid
resolution; they are, however, more restrictive than general dimensionally adaptive
grids. Figure 1 gives an idea of a truncated sparse grid for d D 2, for which a
truncation vector c D Œ2; 4�T was specified (for more details see Sect. 3). From
an algorithmic point of view these grids are extremely attractive for us. While
they provide a higher degree of flexibility than regular sparse grids, the a priori
known structure enables one to optimize algorithms and data structures with respect
to certain data access patterns. Truncated sparse grids also resemble anisotropic
sparse grids as introduced in [8], for which the sparse-grid-typical hyperplane-cut
jlj1 D n C d � 1 at the diagonal of the subspace tableau can be tilted to allow for
arbitrary cutting planes. With truncated sparse grids on the other hand, up to d axis-
aligned hyperplanes can be introduced in addition to the diagonal cut, such that grid
refinement can be truncated in each dimension separately.

A fully implicit data structure for regular sparse grids is based on a linear array
and an enumeration of the grid points and was first suggested in [5]. The idea of
such a no-overhead data structure had been adapted in similar, hardware-aware
implementations in [3,14,15], where the sparse grid core algorithms hierarchization
and evaluation were optimized for commodity hardware.

The idea we follow here builds upon these two approaches. We also design a
slim sparse grid data structure requiring only a linear coefficient array and a small
lookup table to compute the unique location of each grid point’s coefficient in
the data array. We additionally optimize for data locality, the use of caches, and
the vectorization capability of the algorithms and data structure, which is urgently
necessary on modern commodity computers. Sections 4 and 5 provide a thorough
comparison of state-of-the-art implementations and our approach. Note that in the
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simultaneous publication [13], the author shows that a variation of the implicit data
structure presented in this paper is also suitable for an efficient implementation of
the hierarchization algorithm.

3 Notation and Sparse Grid Bases

In the following, we assume that the concept of sparse grids and hierarchical bases
is known and refer for further reading to [2]. Therefore, this section does not contain
an extensive introduction to sparse grids, but merely a brief summary of the notation
we adopt from [2,18]. We will consider three different hierarchical bases commonly
used with sparse grids, all of which were implemented and benchmarked for this
work and are briefly described in this section. More information on the whys and
hows of these bases and the results of the experiments are found in Sect. 6.

3.1 The Piecewise Linear Hat Function Basis

Our domain is the d -dimensional hypercube without and with boundaries, and it is
denoted by

˝ D Œ0I 1�d : (1)

A common choice of one-dimensional basis functions is the linear hat function
basis. It builds upon the “mother function of all hat functions”

�.x/ D
8
<

:

x C 1 for � 1 � x < 0 ;

1 � x for 0 � x < 1 ;

0 else :
(2)

The hierarchical basis functions �l;i .x/ on levels l 2 N with supports Œ.i � 1/=2l;

.i C 1/=2l� and grid points located at xl;i D i=2l are then obtained by scaling and
translation according to

�l;i .x/ D �.2l � x � i/ ; i 2 Il ; (3)

where Il is the hierarchical index set given as

Il D fi 2 N W 1 � i � 2l � 1; i oddg: (4)

This leads to a multi-level subspace splitting of the space of piecewise linear
functions Vn on a full grid with mesh width hn WD 2�n
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Fig. 2 Left: the piecewise linear hat function basis in 1-D. Center: the piecewise polynomial basis
in 1-D. Right: the extended hat function basis with boundary grid points

Vn D
M

l�n
Wl ; (5)

with hierarchical increments or subspacesWl

Wl D spanf�l;i .x/ W i 2 Ilg: (6)

The first three levels of the one-dimensional hat function basis can be seen in the
left part of Fig. 2.

For d dimensions the level-index notation l; i is extended to multi-variate indices
l D .l0; : : : ; ld�1/; i D .i0; : : : ; id�1/ and index sets Il D fi j ij 2 Ilj ; j D 0;

: : : ; d � 1g. The d -dimensional basis functions are defined via a tensor product
construction as

�l;i.x/ D
d�1Y

jD0
�lj ;ij .xj / (7)

and accordingly span the d -dimensional subspacesWl D spanf �l;i j i 2 Il g.
The approximation space of a regular sparse grid of level n is then obtained via

Vn D
M

jlj1�nCd�1
Wl; (8)

and in the case of a truncated sparse grid with truncation vector c 2 f1; : : : ; ngd by

Vn;c D
M

jlj1�nCd�1;l�c

Wl; (9)

with l0 � l , l 0j � lj ; 0 � j < d .
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3.2 The Piecewise Polynomial Basis

The piecewise polynomial basis functions are introduced in [2] as a generalization
of the piecewise linear hat functions. Following the tensor product approach, the
d -dimensional basis functions �.p/l;i .x/ are defined as

�
.p/
l;i .x/ D

d�1Y

jD0
�
.pj /

lj ;ij
.xj / ; (10)

where p D .p0; : : : ; pd�1/ denotes the respective polynomial degree of the one-

dimensional functions �
.pj /

lj ;ij
. As before, they have supports Œ.ij � 1/=2lj ; .ij C 1/=

2lj � and grid points at xlj ;ij D ij =2
lj .

Each one-dimensional �.p/l;i is a hierarchical Lagrangian basis polynomial
uniquely constructed with roots at the locations of its ancestors’ grid points. One
typically starts with a quadratic function on level one (first two roots at x D 0 and
x D 1), and increases the polynomial degree with every level l such that p D l C 1

holds. Of course, the maximum degree can be limited. Figure 2 (center) shows the
first three levels of the one-dimensional basis functions.

3.3 The Piecewise Linear Hat Function Basis with Boundaries

To account for the case of non-zero boundaries, the two hierarchical bases can be
extended by two linear basis functions �0;0 and �0;1 that are associated with grid
points on the boundaries:

�0;0.x/ D 1 � x ;

�0;1.x/ D x : (11)

In Fig. 2 (right), these functions are included for the piecewise linear hat basis on
the first level l D 0.

3.4 Sparse Grid Evaluation

The sparse grid interpolant uh W ˝ ! R of level n is defined as

uh.x/ D
X

jlj1�nCd�1

X

i2Il

˛l;i � �l;i.x/: (12)
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Evaluating uh at a point x 2 ˝ corresponds to the task of collecting all non-zero
contributions of basis functions �l;i at position x. Because of the disjoint supports
of basis functions of the same subspace Wl, at most one basis function in Wl has a
non-zero contribution at position x. This property can be exploited in an efficient
implementation of sparse grid evaluation.

4 Data Structures for Regular Sparse Grids

This section provides an overview of common sparse grid data structures and
explains in detail the data layout used in our implicit array-based data structure.
Special focus is also set on the comparison with the data structure described in
[14, 15], as results later are given in terms of speedup over results obtained for that
data structure.

4.1 Common Data Structures for Hierarchical Bases

In the world of spatially adaptive sparse grids, hash maps are currently the domi-
nating data structure [18]. Level and index vectors can be used as hash keys which
allows programmers to stick close to the mathematical notation when implementing
complex algorithms. But one has to pay for this convenience by giving up control.
The hash map fully takes care of the data storage. This guarantees good mean
performance for random data access but barely leaves space for algorithm- or cache-
specific optimizations in the case that data access patterns are known. As a result,
even compute-intensive algorithms may happen to be memory latency bound.

In [14,15], the authors employ an implicit data structure for regular and truncated
sparse grids, which facilitates the use of a plain array to efficiently store the grid’s
coefficients. Its storage overhead is negligible, as it merely requires a small lookup
table to efficiently calculate a bijective mapping between the grid’s points and
a range of unique integer indices. The mapping relies on the enumeration of all
subspaces in the grid, treating each subspace as a small- to medium-sized full grid,
which is why we will refer to it as the subspace-based data structure from now on.
One can also think of the subspace tableau, for which an efficient iterator exists. The
subspace-based data structure shares many properties of our pseudorecursive data
structure and was shown to be able to store the same kinds of sparse grids. It was
also previously employed in a similar setting like ours, which renders it a perfect
object for comparisons. A more detailed discussion of its characteristics follows in
the next subsection.

For completeness, pointer-based tree structures need to be mentioned as a good
fit for settings requiring spatial adaptivity, even though the hash map variant is
nowadays generally preferred over them. The major downsides of the trees are
a large memory footprint (2 d pointers per node typically reflect parent-children
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Fig. 3 Left: a regular sparse grid in 2-D is composed of a 1-D sparse grid of the same level, and
two 2-D sparse grids of lower level (which are in turn composed of three smaller grids of lower
level resp. dimensionality). Middle and right: the recursive application of the decomposition rule is
indicated for sparse grids in 3-D and 2-D, eventually leading to a sequence of 1-D grids (depicted
as rows of points in the image on the right)

relationships) and lack of support for random data access. Furthermore, the exper-
iments on pointer-based variants of sparse grids done in [14] have already shown
their inferiority to the implicit data structures in the context of regular grids.

4.2 A Recursive Data Layout

The recurrent patterns and formulas that are inherent to sparse grids have already
been addressed in [2]. A d -dimensional regular sparse grid of level n can be
decomposed into one .d � 1/-dimensional sparse grid of the same level and two
d -dimensional sparse grids of level n � 1. For the 2-D case this decomposition is
illustrated in the left part of Fig. 3. The center and the right hand side of Fig. 3 show
how a 3-D grid (set of planes in the center image) can thus be decomposed into
a sequence of 1-D grids (rows of points in the image to the right). Using a level-
wise enumeration scheme like indicated in the binary trees in Fig. 3 rather than
recursive in-place expansion of subgrids leads to a sequence of one-dimensional
grids, which reminds of a multi-dimensional breadth first traversal of the resulting
tree-like structure. Figure 4 depicts this for the case of d D 4 dimensions and sparse
grid level n D 3. Transforming the 4-D grid into a sequence of 1-D grids leads
to a serialized representation in which each grid point can be assigned a unique
index from a set of contiguous integer indices. Note how the four subgrids on the
right are listed after the two “parent” grids in the center, following the level-wise
approach. It is also exactly these four subgrids that would be cut off from the 4-D
grid, if a truncation vector c D Œ3; 3; 3; 2�T were defined. This is because these
subgrids contain grid points that are on level 3 with respect to the 4th dimension.
As a general rule, specifying truncation corresponds to omitting subgrids in the
recursive representation. Since this changes other subgrids’ sizes, the lookup table
used to calculate grid point indices needs to be adjusted accordingly.

Finally, we provide yet another graphical representation to illustrate how the
order of the stored coefficients aligns with the geometrical order of the grid points.



10 G. Buse et al.

Fig. 4 A 4-D sparse grid .n D 3/ of 49 points is recursively decomposed into all of its lower-
dimensional constituents: Each row of dots corresponds to a 1-D subgrid. Horizontal separators
denote where 2-D subgrids start and end. Colored boxes frame the 3-D subgrids. Vertical lines
(in rows) further mark the levels of the sparse grid. The offset before each row allows to match
sizes of subgrids with the numbers of grid points in the lookup table (right bottom). Note how
appending two 4-D grids of level 2 and four 4-D grids of level 1 would lead to a 5-D grid of level
3 with 71 points

0 : • | • • | • • • • | • • • • • • • •
15 : • | • • | • • • •
22 : • | • • | • • • •
29 : • | • •
32 : • | • •
35 : • | • •
38 : • | • •
41 : •
42 : •
43 : •
44 : •
45 : •
46 : •
47 : •
48 : •

0 3 13 41

1

17

5 25

9 33

Fig. 5 The positions of coefficients of a regular sparse grid are compared (d D 2; n D 4) for our
recursive data layout (left) and the subspace-based data layout (right)

Figure 5 compares the new recursive layout and a classical data layout motivated
by the subspace-wise treatment of coefficients. The latter one is the subspace-based
layout proposed in [14]. It is a level-wise enumeration of all subspaces in the grid,
each of them stored as a full grid. The numbers in front of the rows (left image) and
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next to the subspaces (right image) denote the offset of the respective sequence of
coefficients in its corresponding data structure.

The example of the four marked grid points (or coefficients, respectively) shows
how in both layouts sequences of these coefficients are aligned with respect to the
x0 (first) dimension. This property proves advantageous when implementing fast
transformations between both layouts. We have already accomplished this in an
efficient parallel implementation, but the discussion of the resulting permutation is
not part of this work.

5 Recursive and Pseudorecursive Algorithms and Traversals

This section revolves around one of the classical prototypes of sparse grid algo-
rithms: the evaluation of a sparse grid function uh (12), which is implemented based
on our implicit pseudorecursive data structure. First, a closer look at the properties
of our data structure points out its main advantages. This is the basis for the novel
algorithms. We then sketch recursive and pseudorecursive algorithms for efficient
grid traversal and explain why the pseudorecursive approach leads to better results,
especially in high-dimensional settings. A separate discussion of algorithms for
truncated grids is not contained in this section, as the presented algorithms for
regular sparse grids only need to be modified in a single line to support these grids
as well.

5.1 Data Access Patterns

The red-colored squares in Fig. 6 correspond to the trace of our algorithm for sparse
grid evaluation at a certain point. We call coefficients that correspond to basis
functions which are affected by the evaluation relevant or affected coefficients. We
refer to a basis function as being affected, if the evaluation point either lies within
the interior of its support or on its left boundary.

The underlying grid in Fig. 6 is a regular three-dimensional sparse grid of level
n D 4. While most of the rows do not contain red squares at all and thus need
not to be visited, those rows which do often contain more than one square. This is
due to the hierarchical structure of the sparse grid basis: Each row contains a one-
dimensional subgrid in level-wise representation. If the root node of such a grid is
affected (potentially non-zero) by the evaluation, so will be exactly one child on
each level below it. This leads to a clustering of affected coefficients, which is very
desirable from the perspective of computer caches and will be advantageous for the
pseudorecursive evaluation algorithm. Consequently, large chunks of coefficients
can be skipped between such clusters, as there are possibly large sub-structures of
the sparse grid that do not contribute to the result.
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Fig. 6 The relevant coefficients of a regular sparse grid (d D 3; n D 4) in the recursive data
layout are marked as red squares for a run of evaluation at point x D Œ0:35; 0:15; 0:8�T

Fig. 7 Affected coefficients of a regular sparse grid (d D 3; n D 3) in the recursive data layout
extended for boundary grid points. Relevant coefficients are marked as red squares for a run of
evaluation at point x D Œ0:35; 0:15; 0:8�T . From left to right, the framed boxes contain the two
projected 2-D grids of level 3 on the boundaries, the 2-D grid of level 3 at z D 0:5, the two grids
of level 2 at z D 0:25 and z D 0:75 as well as the four grids of level 1 sitting in between the other
grids

Another observation is that the pattern of relevant coefficients within each
affected row is the same. This is because the recursive descent in each of the
one-dimensional subgrids depends on the same coordinate x0. As a very effective
optimization, the offsets per row as well as the evaluated one-dimensional basis
functions �l;i .x0/ (bold in the formula in Fig. 6) can be precomputed and stored in
stencil form. A function EVAL1D can then be defined to compute this simple sum,
and it can be applied to each of the affected rows efficiently. How these partial
results are in turn combined to the global result in an efficient manner is the topic of
Sect. 5.4.

Figure 7 shows how the layout presented in Sect. 4 is extended in a consistent way
to support boundary grid points. Just as in Fig. 6, the trace of a run of evaluation
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Algorithm 1 Recursive sparse grid traversal for evaluation. Result computations are
stripped from the algorithm for readability and generality. The output is a sequence
of offsets of visited rows in the grid, e.g., “0, 15, 29, 42, 66, 73, 79, 98, 101, 109”
for the setup in Fig. 6

�
arrived at affected row,
do work (e.g., EVAL1D)

�
recursive descent into dimension

9
>>>>>=

>>>>>;

“refine” in this dimension,
turn left or right

�
top level function call

function RECDIM(offset; d; l; ref , i)
if d D 0 then

print(offset)
return

end if
subgrid gridSize.d; l/
recDim(offsetC i � subgrid; d � 1; l; 0; 0)
if l > 1 then

if liesLeftOfGridPoint.xd ) then
Oi  2 � i

else
Oi  2 � i C 1

end if
recDim(offsetC 2ref � subgrid; d; l � 1; ref C 1; Oi )

end if
end function
: : :

recDim(0; dim� 1; level; 0; 0)

is again highlighted, clearly showing that affected coefficients form even larger
clusters when compared to the case of no boundaries. Data locality is thus even
better. Note that what we see here are what we call “trapezoidal grids” (boundary
grid points are only introduced at the positions of projections of inner grid points,
see [18]), for which we just need to extend the recursive description by a prepended
level 0 consisting of two boundary functions.

5.2 A Recursive Algorithm

Algorithm 1 uses the classical recursive scheme for sparse grid traversal that couples
a recursive descent in the dimension with a recursive traversal of the sparse grid’s
levels. We will refer to the latter part as refining. The algorithm reflects the recursive
grid construction (see Sect. 4.2), but due to the evaluation only one of the .d � 1/-
dimensional subgrids is affected. The respective sizes of all lower-dimensional
subgrids can be precomputed and stored in a small lookup table (cf. Fig. 4). In the
given algorithm this table is accessed via the function gridSize.

Note that in order to reduce code complexity as much as possible, the code only
covers the case of no-boundary grids (extension to grids with boundaries is however
straightforward). Furthermore, all statements specific to the accumulation of the
result have been stripped from the code, and instead a sequence of row offsets is
printed out, belonging to those rows relevant to the evaluation.
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The formal parameter d of the recursive function RECDIM marks the currently
focused dimension. It defines the context of parameter ref , which counts the steps of
recursive refinement in dimension d , and parameter i , which encodes the path taken
during refining. While parameter offset intuitively logs the current index position in
the grid structure, parameter l globally tracks how many higher sparse grid levels
still exist for the current position in the grid.

The algorithm is already quite efficient, but it still bears the downside that the
recursive call stack needs to be almost fully discarded for changes in the slow
dimensions d (e.g., d D dim � 1), which then requires an immediate rebuilt. The
pseudorecursive solution presented in the following section manages to circumvent
this problem.

5.3 A Pseudorecursive Formulation

Algorithm 2 can be seen as an iterative version of Algorithm 1. The formal param-
eters of function RECDIM that used to lie on the recursive call stack are mapped
almost one-to-one to variables on an actual stack s. Traversal order and output of
both algorithms are exactly the same, however, there is a significant difference in
the runtime complexity.

Obviously, the number of visited rows is identical when both algorithms are
executed on the same grid. But the cost of a jump from one affected row to the
next differs. The pseudorecursive variant in Algorithm 2 manages to compute this
jump in constant time. For the variant relying on actual recursion the cost of the
jump is defined by the depth of the call stack of function RECDIM. In the worst case
this depth is limited by the number of dimensions d , and so the complexity of this
jump is O.d/. Since the amortized cost is lower than that, there is barely a notable
difference in the runtime for smaller grids. This changes for higher dimensional-
ity d , and the lower runtime complexity of the pseudorecursive variant leads to a
considerable speedup over the recursive variant, as the empirical results will show.

5.4 Efficient Calculation of the Tensor Product

The clustering of affected coefficients is only one beneficial property of the recursive
data layout. Additionally, algorithms descending recursively into the dimension
offer the opportunity to successively combine the d one-dimensional basis functions
�lj ;ij ; 0 � j < d to the final tensor product (7).

Figure 8 demonstrates a function evaluation of our implementation (left) and
of the subspace-based implementation (right) at the example of a small three-
dimensional sparse grid. Our procedure resembles Horner’s method, where the
computational effort is kept to a minimum. In the given example, only 9 instead
of 20 multiplications need to be computed. But more importantly, we achieve a
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Algorithm 2 Pseudorecursive sparse grid traversal for evaluation. Result computa-
tions are stripped from the algorithm for readability and generality. The output is a
sequence of offsets of visited rows in the grid, e.g., “0, 15, 29, 42, 66, 73, 79, 98,
101, 109” for the setup in Fig. 6

o arrived at affected row,
do work (e.g., EVAL1D)

)

return from “refining”

�
recursive descent into
dimension

9
>>>>>>>>>=

>>>>>>>>>;

“refine” in this dimen-
sion, turn left or right

(s:l.2/ is 2nd
element from top)

o

finished

o
top level function call

function PSEUDOREC(dim; level)
s:push.offset D 0; d D dim� 1; l D level; i D 0/

finished false
while Š finished do

offsetnew s:offsetC s:i � gridSize.s:d; s:l/
print(offsetnew)
dnew 0

if s:l D 1 then
dnew s:dC 1
s:pop./
offsetnew s:offsetC s:i � gridSize.s:d; s:l/

end if
if s:d ¤ dnew then

s:push.offset D offsetnew; d D dnew; l D s:l; i D 0/

end if
if dnew ¤ dim� 1 then

if liesLeftOfGridPoint.xd ) then
Oi  2 � s:i

else
Oi  2 � s:iC 1

end if
s:i Oi
ref  s:l.2/� s:l
s:offset s:offsetC 2ref � gridSize.dnew C 1; s:l/
s:l s:l� 1

else
finished true

end if
end while

end function
: : :

pseudoRec(d; n)

considerable reduction of the number of 1-D basis function evaluations (19 vs. 30),
which can be rather expensive. Numerically this makes sense, too, as partial results
of expectedly similar size are combined additively, reducing the risk of cancellation
and floating point errors.

An implementation of this approach requires to manage additional stacks for
partial products and results, which are eventually merged into a global result. For
piecewise linear and polynomial bases it is possible to seamlessly integrate these
computations into both traversal algorithms presented in the previous subsections.
In the case of these two bases, 2 resp. 3 more stacks are required compared to the
algorithm shown above, and the low runtime complexity of the pseudorecursive
variant can be preserved.



16 G. Buse et al.

Fig. 8 Scheme of tensor product calculation during the evaluation of a regular sparse grid (d D 3;

n D 3). Boxes represent parentheses, ˚ denotes classical addition, ˝ multiplication. Left: our
successive approach. Right: subspace-wise computation

5.5 A Pseudorecursive Variant for GPUs

Evaluation is typically not executed for a single data point, but rather for a large
number of sampling points or training data. A high degree of parallelism is therefore
desirable which makes GPUs an adequate choice.

The subspace-based approach has led to good results for evaluation on Nvidia’s
Tesla C1070 [14]. While the on-chip resources like registers and fast scratchpad
memory were too scarce to run complex traversals like Algorithm 2 on the C1070,
devices from Nvidia’s Fermi generation ship with an increased amount of fast
scratchpad memory (48 or 16 kB, depending on the execution mode) and 32k
registers per streaming processor. Targeting “full occupancy” of the Fermi device,
i.e. the optimum of 1,536 active threads on each streaming processor, this still leaves
merely 21 registers and 32 bytes of scratchpad memory to each thread, which poses
a challenge to the pseudorecursive variant of our algorithm. Even for the case of
d D 3, with an unmodified algorithm we already need to store at least 48 bytes
for the evaluation point x and the d -, l- and i -stacks from Algorithm 2. Note that
even though recursion is generally supported on Fermi, explicit control over the
recursive stack is still our only chance to achieve good performance, which renders
the pseudorecursive variant our only option.

To account for the shifted constraints of an efficient GPU implementation,
we devised a Fermi-tailored variant of the pseudorecursive traversal algorithm
using Nvidia OpenCL [17]. Note that in the beginning, we used Nvidia’s CUDA
framework [16], but our decision for OpenCL was then mainly motivated by the JIT
compiler’s capabilities, which helps saving scarce resources (e.g., registers, scratch-
pad memory) by allowing source code modifications at application runtime. In our
explanations we stick to OpenCL terminology rather than CUDA terminology, as
no Nvidia-specific extensions to the OpenCL API are used.
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Table 1 The table shows how certain constructs from Algorithm 2 were mapped to more GPU-
friendly ones

CPU Fermi GPU

Construct Required space Required space Construct

x d � sizeof .float/ d � sizeof .float/ x: unchanged
eval1d.offset n � sizeof .int/ 1 int register path1d: binary tree path

encoded in bits
eval1d.phi n � sizeof .float/ – –
s.d min.d; n/ � sizeof .int/ – –
s.i min.d; n/ � sizeof .int/ 1 int register iint: array entries dynamically

encoded in bits
s.l min.d; n/ � sizeof .int/ d � sizeof .int/=32 l: level vector shared across a

warp
s.offset min.d; n/ � sizeof .int64/ 1 int register offset: simple offset counter
2 stacks for tensor

product
2d � sizeof .float/ 1 float register phid2: keeps

Qd�1
jD2 �lj ;ij .xj /

Each thread must not exceed the usage of 21 registers and 32 bytes of shared memory, otherwise
full occupancy is not possible and performance breaks down

5.5.1 Optimizing Storage Consumption

Table 1 yields a comparison of variables and arrays used in the original implemen-
tation of Algorithm 2 and the GPU-adjusted one, for which optimization of memory
consumption was the top design goal. The most important changes are that

1. bitwise encoding is used to get rid of integer arrays,
2. the two stencil arrays for EVAL1D are replaced by one integer, and
3. we ceased to rely on stacks.

The actual OpenCL source code with its explicit thread and memory management
is too technical and lengthy to be included here. We therefore focus on giving
remarks on the implications of the changes listed in Table 1.

Evaluating a sparse grid function means traversing a multi-dimensional tree on
a complex path. On this traversal the current position is typically encoded in a
level-index-vector-pair .l; i/ or a similar construct like the set of stacks we use in
our pseudorecursive algorithm. For our GPU implementation we go back to actual
vectors, because it gives us the opportunity to compress the index vector i into a
single integer iint as described in Fig. 9. The image shows that we can encode i into
a sequence of

Pd�1
jD0.lj � 1/ D n� 1 bits, and so an integer of 32 bits is big enough

for a sparse grid of level n D 33. But we can also decrease memory consumption
for the level vector l by taking advantage of the GPU’s threading model. On Fermi,
a streaming processor has one instruction unit for simultaneous control of 32 scalar
processors. In OpenCL, the threads running on these processors are called work
items, and the 32 work items of a streaming processor make up a warp. With the
work items of a warp being perfectly synchronized, the level vector l can be made a
shared resource, reducing its memory footprint by a factor of 32.
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Fig. 9 Left and center: The previously introduced enumeration of grid points (cf. Fig. 3) can be
translated to a level-index-like one. A pair .l; i / describes each point’s respective level l and its
index i on this level. i is given as bit sequence to show how it encodes the path to a point like in
a bitwise trie, giving access to all its parents via subtraction and bit shifts. Right: a whole index
vector i is encoded into one integer iint. The level vector l is needed to decode iint again, as the
number of bits used to encode ij into iint is given by lj � 1, respectively

Algorithm 3 GPU implementation of EVAL1D, using integer path1d to reconstruct
the 1-D evaluation

function EVAL1D(offset; l; path1d; x)
result 0

for 1 � l 0 � l do
idx .2l

0

�1 � 1/C .path1d >> .l � l 0//
i  2 � .path1d >> .l � l 0//C 1
� max.0; 1� j2l0 � x � i j/
result resultC � � ˛ŒoffsetC idx�

end for
return result

end function

However, replacing the stacks of the original algorithm by vectors brings us back
to the complexity of the recursive algorithm 1. It requires adding an inner loop
(maximum loop size d ) to the main loop. In this loop the vector pair .l; i/ and the
offset in the coefficient array need to be updated. In order to avoid full computation
of the tensor product, we introduce a variable phid2 D Qd�1

jD2 �lj ;ij .xj / as indicated
in Table 1. We treat it as a one-element-stack, and as it only needs to be recomputed
when �lj ;ij .xj / changes for one of the “slow” dimensions with index j � 2, we
save quite a lot of floating point operations.

Finally, we cannot afford to store the two stencil arrays for the EVAL1D-function
on the GPU, so we use the technique from Fig. 9 to encode the path of the 1-D
evaluation into an integer path1d. Algorithm 3 shows how EVAL1D can still be
computed efficiently, totally avoiding conditional branches. To evaluate a 1-D grid
along the path highlighted in the left part of Fig. 9, we need to call EVAL1D with the
parameters l D 3 and path1d D 2. Obviously, the direct application of the stencils is
faster; however, we now have practically no related storage consumption any more.

5.5.2 Coalesced Memory Access

Since memory access is a performance critical factor in a GPU implementation,
we choose a particular layout of the work items. Each warp of 32 work items
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Fig. 10 Left: a warp is mapped to an array of 8� 4 work items, each of which is in charge of one
sparse grid evaluation, while groups of four (rows) act as coworkers. Right: in qualitatively depicted
linear storage, levels 1–4 of a 1-D grid are shown to reside in lines of 15 floats. Regardless of the
1-D evaluation path (note path1d values on the very right), at most 2 memory transactions are thus
necessary to access a 1-D grid’s affected coefficients via coalesced load. The access strategy is
indicated by matching patterns for work items and coefficients

is structured as 8 groups of 4 coworkers as seen in the left part of Fig. 10. The
coworkers of each group simultaneously access the first 4 coefficients of each 1-D
grid of level l � 4, taking advantage of coalesced memory access and reducing the
overall number of memory transactions. This is done explicitly, as we do not want to
heavily rely on the small L1 cache of the Fermi architecture, which is shared among
1,536 concurrent threads. The group size of 4 is derived from the size of memory
transactions, which is 128 bytes on Fermi. The first 4 levels of a 1-D grid comprise
15 coefficients (summing up to 60 bytes), and so chances are high that the first 4
affected coefficients of a 1-D evaluation can be loaded in one memory transaction.

The maximum runtime reduction due to this optimization was 44%, and it was
observed for the case of a regular 7-D sparse grid of level 9. In average and over
a whole range of levels and dimensionalities we were still measuring a runtime
improvement of around 10%, even though this included plenty of small grids. And
they do not benefit greatly from this optimization, as they do not contain many
subgrids of higher level. pseudoRec

6 Results

To demonstrate the advantages of the implementation of our novel data structures,
algorithms and optimizations, we present performance comparisons with other
highly optimized, state-of-the-art implementations of sparse grid evaluation. The
complexity of all algorithms depends on the level n and the dimensionality d ,
which is why we provide all results in the form of speedups measured over this
two-dimensional parameter space. First, our implementation competes with highly
optimized algorithms operating on hash maps. These results are followed by an
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Fig. 11 Left: the speedup of our evaluation over the parallelized, recursive SGCC implementa-
tion. Right: the speedup of our evaluation over the parallelized and vectorized brute force evaluation
scheme implemented in SGCC

extensive comparison of our implementation with the subspace-based one. Finally,
the suitability of GPUs for our purpose of fast sparse grid evaluation is shown.

All speedup measurements have been obtained on a dual socket hexacore Intel
Xeon X5690 Westmere-EP system clocked at 3.46 GHz (Intel Hyper Threading and
Turbo disabled) and equipped with 96 GB DDR3 memory (1333 MHz, no ECC).
The operating system is Scientific Linux 6 (kernel 2.6.32–71.29.1.el6.x86_64),
and the compiler used is GNU’s gCC version 4.4.4. Note that for vectorization
we used Intel’s SSE, SSE2 and SSSE3 instruction sets instead of relying on the
compiler’s auto-vectorization capabilities, which are known to be quite limited. We
parallelize our algorithms with OpenMP and account for the parallel environments’
comparatively long setup times, by ensuring that benchmarked times never drop
below about 2 s. This is consistently done for all variations in grid dimensionality
and level, which leads to cardinalities from a few thousands to hundreds of
thousands of evaluation points. The interpretation of the presented speedup results
does not require these numbers, so we do not include them here to avoid unnecessary
complexity and confusion. For each run, a new set of random evaluation points xj 2
Œ0I 1�d was created, which was then used to time and compare all implementations
under identical conditions. Lastly, for each test case a series of ten runs has been
executed to account for system-specific performance oscillations.

6.1 Comparison with a Hash-Map-Based Data Structure

The SGCC toolbox provides programmers with a broad range of tools and interfaces
to use spatially adaptive sparse grids to tackle various high-dimensional tasks
(e.g., interpolation, quadrature, classification) [18]. Most algorithms in the toolbox
have been optimized and parallelized to achieve best performance on modern
multi-core systems. In Fig. 11 we compare our pseudorecursive evaluation kernel
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with two different kernels provided by SGCC, which are both parallelized via
OpenMP. The first one (left image) is the default evaluation kernel, relying on an
optimized recursive grid traversal to visit only the affected basis functions. The
second one (right image) achieves its performance by avoiding conditional branches
and complex traversals. In a brute force fashion all basis functions are evaluated
(also those not affected), which allows for a perfect static load balancing scheme
and makes vectorization straightforward. The approach has been employed very
successfully for classification tasks [11], especially when grids do not grow too big.
Note that it is targeted at fully, spatially adaptive sparse grids.

It can be seen at first glance, that our implementation outperforms both imple-
mentations from SGCC in our setting of truncated and regular sparse grids. For
smaller grids, the ratio between affected and not affected basis functions is rather
large, a fact from which the brute force variant benefits. However, the larger the
grids grow, the more important become algorithmic optimizations, and so we see
speedups of up to 95 over the brute force variant, but “only” 63 over the recursive
variant.

It needs to be mentioned that the primary floating point type in the SGCC toolbox
is the 64 bit double, for which we have not implemented a vectorized version
yet. Using SSE-vectorization we thus might expect an additional speedup for our
implementation of about 1.2 or even more.

6.2 Comparison with the Subspace-Based Data Structure

The subspace-based implementation is the only other implementation known to us
that is specifically optimized for regular sparse grids. It is also the implementation
that so far performs best for evaluation of these grids. We have therefore chosen
the three types of basis functions presented in Sect. 3 (linear no-boundary, linear
with trapezoidal boundary, polynomial no-boundary), to analyze the performance
gain of our algorithms over the subspace-based ones in detail. We start however
by investigating the cache behavior of both approaches. Because of the context of
related results for the linear hat function basis, we also include the comparison of
our recursive and pseudorecursive algorithms in this part.

We only had access to a sequential implementation of the subspace-based
approach that works with single precision floats. Therefore, the speedups presented
in this subsection have all been measured for non-parallel and non-vectorized
implementations of the pseudorecursive and the subspace-based approach.

6.2.1 Memory Access

The heterogeneous structure of our pseudorecursive algorithm makes it difficult to
decide whether they are bound by memory latency or computation, or whether the
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Table 2 Statistics for L1 and L2 data cache misses (DCL1 and DCL2) for the pseudorecursive
and the subspace-based variant

Regular grid without boundaries Regular grid with boundaries

Pseudorecursive Subspace-based Pseudorecursive Subspace-based

dim DCL1 DCL2 DCL1 DCL2 DCL1 DCL2 DCL1 DCL2

2 0.003 0.001 0.09 0.009 0.033 0.012 0.019 0.012
3 0.052 0.003 0.226 0.012 1.727 0.053 2.753 0.043
4 1.164 0.072 2.286 0.029 10.45 3.43 22.44 10.65
5 3.4 0.254 7.57 1.5 47.2 24.3 116.7 76.4
6 7.6 2.7 17.1 9.5 207.9 95 569.7 423.6
7 14.3 5.8 34.4 27.3 881 356 2,666 2,109
8 25.6 10.3 65.2 55.7 3,670 1,283 12,072 9,440

Each number in the table denotes the cache misses in millions, measured for 10;000 sequential
evaluations of a level 8 sparse grid of the respective dimensionality

conditional statements in the main loop induce branch mispredictions and pipeline
stalls that might hinder performance. In this analysis, we want to demonstrate
that our recursive data layout generally improves memory access as compared
to the subspace-based data layout. Therefore, we employ PAPI1 to examine the
cache behavior of the respective evaluation algorithms more closely. PAPI gives
programmatic access to modern CPUs’ performance monitoring units (PMU), and
we use the interface to read out the PMU counters for L1 and L2 data cache misses.
As an exception, these measurements are not obtained on our Westmere-EP test
platform, but on an Intel Ivy Bridge i5-3320M CPU, which supports an extended
set of performance counters. We perform our tests for the hat function basis with
and without boundary extension. The results are listed in Table 2 and they clearly
show two tendencies:

1. The pseudorecursive algorithm and data structure generally lead to a consider-
ably lower absolute number of L1 data cache misses.

2. For the subspace-based variant it is much more likely that an L1 cache miss leads
to an L2 cache miss.

Both algorithmic variants have been tested under exactly the same conditions, and
for each of the grid types both variants need to load exactly the same number of
affected coefficients.

Keeping in mind that even with the array-based data structures evaluating a
sparse grid function introduces scattered data access to the coefficient array, these
results are very satisfying. We manage to considerably decrease the load on the
deeper layers of the memory hierarchy, thus weakening the dependency on the
component that is slowest in the pipeline and has the highest power consumption.

1http://icl.cs.utk.edu/papi.

http://icl.cs.utk.edu/papi
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Fig. 12 Left: the speedup of our pseudorecursive evaluation scheme over the subspace-based
one for the hat function basis. Right: the speedup of the pseudorecursive scheme over the actual
recursive scheme, also for the hat function basis. Mind the different color scales

6.2.2 The Hat Function Basis

Evaluating these basis functions does generally not require much computational
effort. As detailed before, our implementation optimizes the tensor product cal-
culation and causes a lot less cache misses as compared to the subspace-based
implementation which is compute bound due to the repeated computation of the
tensor product (7).

Figure 12 shows that we achieve good speedups over the subspace-based
implementation. They monotonically increase for higher level or dimensionality.
For the largest test case .d D 31; n D 10/ our implementation is about 18 times
faster. Note that this behavior continues: tests with d D 100 and n D 6 even lead to
speedups around 70.

For the comparison of our recursive and pseudorecursive algorithms we have
chosen the same setting (linear hat functions without boundaries). Both algorithms
operate on our recursive data layout, but the speedup plot in the right part of Fig. 12
shows the indicated asymptotic influence of the higher runtime complexity of the
recursive variant. While for d D 3 it is almost at level with the pseudorecursive
variant, we can see that it is two to six times slower for d D 30.

6.2.3 The Piecewise Polynomial Function Basis

We picked this basis for the benchmark to have a test case which is computationally
more expensive, but structurally identical to that of the hat function basis. For the
subspace-based variant this poses a challenge, as the increasing polynomial degree
p causes the cost of directly calculating the full tensor product to grow from O.d/
to O.d C p/ for each of the affected basis functions. At the same time, for our
pseudorecursive solution the runtime complexity of the algorithm does not change
at all.
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Fig. 13 Left: the speedup of our implementation over the subspace-based one for the polynomial
basis functions. Right: the speedup of our implementation over the subspace-based one for the
extended hat function basis with boundary basis functions. Mind the different parameter ranges
and color scales

Note the speedups in Fig. 13 (left), which are already greater for moderate
dimensionality d as compared to the previous case of the computationally cheaper
hat function basis (cf. left part of Fig. 12). Since the locations of the affected basis
functions and thus the traversal of the grid do not change when switching from one
basis to the other, the difference must stem from a reduced number of arithmetic
floating point operations. Besides, the increasing asymptotic dependency on the
level n becomes obvious, as it takes a direct influence on the polynomial degree p.

6.2.4 The Extended Linear Basis with Boundary Functions

The special characteristic we want to put to test with this scenario is not related to the
complexity of the basis functions. Instead, we will show that our data structures and
algorithms are well suited to handle a well-known problem of sparse grids: With the
introduction of boundary grid points the total number of grid points explodes already
for small d , such that the boundaries become predominant for computations.

As pointed out in the discussion of the recursive data layout in Sect. 5.1, the
extension to boundaries even leads to an improved clustering of affected coefficients
during the evaluation. Moreover, we can easily extend the stencils used in the
EVAL1D-function of our pseudorecursive variant to also cover the two affected
points on the boundary of the 1-D subgrids. The subspace-based layout on the
other hand does not benefit from the extension. Affected coefficients associated with
boundary grid points are scattered evenly all over the coefficient array, each being
contained in its own subspace.

And indeed, even for the smallest grids we immediately observe speedups of at
least 4 in Fig. 13 (right). The number of arithmetic operations is as low as for the
original hat function basis, thus the reason lies in the data locality shown by our
extended data structure.
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6.3 Performance Comparison for CPU and GPU

In this last analysis, the single precision performance of our OpenCL implemen-
tation for the GPU is measured against the single precision performance of our
parallelized and vectorized pseudorecursive CPU implementation. On the one side
we use an Nvidia GTX 580 with 1.5 GB main memory, on the other side it is
again the dual socket Westmere-EP platform, using 12 OpenMP threads and SSE
vectorization. We choose the hat function basis without boundary extension as the
test scenario.

The CPU implementation uses an optimized function for multiple evaluations,
which only allocates the stacks once during initialization. A general limitation of the
GPU implementation is given by the hardware constraints mentioned in Sect. 5.5,
which make it less flexible. This can be seen in the speedup graph in Fig. 14, where
the speedup of the GPU version decreases for increasing d . It has to be mentioned
that while working perfectly for lower dimensionality, the implementation is not
stable for d � 10, as OpenCL seems to show incorrect behavior when swapping
registers and shared memory contents into the GPUs main memory. Still, the GPU
achieves a speedup of 2 and more for grids of reasonable size, which is beneficial,
be it only for the financial aspect.

7 Conclusions

The need for fast algorithms on sparse grids arises in various settings. Here, and
motivated by our setting, we focused exemplarily on evaluation, achieving the best
possible performance for regular and truncated sparse grids, both with and without
boundary grid points. It has been shown before, that specialized data structures for
these kinds of grids are indispensable when trying to exploit the full potential of
modern compute platforms. We therefore proposed a compact, array-based data
layout, that preserves some of the intrinsic recursive properties of sparse grids.
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We have shown how these properties are beneficial for data access, as they enhance
the use of caches during sparse grid evaluation. Motivated by the particular data
layout, we have formulated a set of recursive and pseudorecursive algorithms. With
the latter kind we have managed to overcome shortcomings of the recursive variant,
lowering the runtime (complexity) and offering a suitable, non-recursive solution
for Nvidia GPUs. In a broad range of tests, covering different implementations of
sparse grid basis functions as well as grids with explicit boundary representation,
we have demonstrated the flexibility of our approach and have achieved impressive
speedups over the fastest other implementations of sparse grid evaluation we know
about.

Our next endeavor is, most of all, the integration of our approach into the actual
application that motivated our work. On the technical side, we will refine the
vectorized version of our algorithm for Intel’s Haswell generation of processors.
With the corresponding AVX2 instruction set, a more consistent API for mixed
floating point and integer arithmetic will be provided with access to vector registers
of the same width for both data types.
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Stochastic Collocation for Elliptic PDEs
with Random Data: The Lognormal Case

Oliver G. Ernst and Björn Sprungk

Abstract We investigate the stochastic collocation method for parametric, elliptic
partial differential equations (PDEs) with lognormally distributed random parame-
ters in mixed formulation. Such problems arise, e.g., in uncertainty quantification
studies for flow in porous media with random conductivity. We show the analytic
dependence of the solution of the PDE w.r.t. the parameters and use this to show
convergence of the sparse grid stochastic collocation method. This work fills some
remaining theoretical gaps for the application of stochastic collocation in case of
elliptic PDEs where the diffusion coefficient is not strictly bounded away from
zero w.r.t. the parameters. We illustrate our results for a simple groundwater flow
problem.

1 Introduction

The elliptic boundary value problem

�r � .a.x; !/rp.x; !// D f .x; !/ in D; P-a.s.; (1a)

p.x; !/ D g.x/ on @D; P-a.s.; (1b)

with random coefficient a and random source f , resp. its weak form, is of particular
interest for studies on uncertainty quantification (UQ) methods. It is a rather simple
mathematical model to study and, at the same time, of practical relevance, e.g.,
in groundwater flow modelling. There, the conductivity coefficient a is typically
uncertain and therefore modeled as a random field, in particular, a lognormal random
field [11].
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Recent methods for solving random PDEs such as stochastic collocation or
Galerkin methods use a truncated Karhunen-Loève expansion of the random fields a
and f in order to separate the deterministic and random parts of the problem (1) as
well as reduce the randomness to a finite or countable number of random variables.
This truncation leads to high-dimensional parametric problems, and approximation
methods which are suited for higher dimensions, such as sparse grid collocation,
have been successfully applied to this problem [2, 3, 18, 19]. In these works one
often finds the assumption that the coefficient a is uniformly bounded away from
zero, i.e., there exists a constant c > 0 such that a.x; !/ � c P-a.s. for all x 2 D.
While this assumption simplifies the analysis, it fails to cover the important case
where a has a (multivariate) lognormal distribution. For instance, in [2, 18, 19] the
authors ensure uniform positivity by taking a to be the sum of a lognormal field
and a positive constant amin. In [6] the analysis of full tensor-product collocation
given in [2] is extended to the case of non-uniformly bounded coefficients a,
but for deterministic sources f and homogeneous Dirichlet boundary conditions.
Moreover, many works consider only the primal form (1) of the diffusion equation,
but for many applications the numerical simulation of system (1) in mixed form

a�1.x; !/ u.x; !/� rp.x; !/ D 0 in D; (2a)

r� u.x; !/ D �f .x; !/ in D; (2b)

p.x; !/ D g.x/ on @D; (2c)

P-almost surely, is more appropriate. This is the case, for instance, if the flux u is of
particular interest, see [12] for numerical examples. In [4] a first study of stochastic
Galerkin methods for mixed problems was given, but again the assumptions on a
made there do not apply to lognormal or non-uniformly bounded random fields.

In this work, we fill the remaining gaps and present a convergence analysis of
sparse grid collocation for (2) without assuming the existence of a deterministic
amin > 0 such that a.x; !/ � amin. Therefore, we introduce in Sect. 2 the parametric
variational problem under consideration and prove in Sect. 3 a regularity result for
its solution. In Sect. 4 we then conduct the proof of convergence of sparse grid
stochastic collocation in unbounded parameter domains for approximating smooth
functions. Section 5 illustrates the theoretical results for a simple elliptic boundary
value problem in mixed form and Sect. 6 closes with concluding remarks.

2 The Parametric Variational Problem

In this section we briefly recall how the elliptic boundary value problem (BVP) (1)
with random diffusion coefficient a.x; !/ is transformed into a BVP containing
a high-dimensional parameter. We shall restrict our considerations to the mixed
formulation (2).
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2.1 Finite-Dimensional Noise via Karhunen-Loève Expansion

Given a probability space .˝;A;P/ we denote by L2.˝;A;PIR/ the space of
second-order real-valued random variables. We make the finite-dimensional noise
assumption whereby the randomness in the coefficient a.x; !/ and right hand side
f .x; !/ can be completely described by a finite set ofM Gaussian random variables
�1; : : : ; �M 2 L2.˝;A;PIR/.
Assumption 1. There exist measurable functions Qa W R

M ! L1.D/ and Qf W
R
M ! L2.D/ and M independent Gaussian random variables �1; : : : ; �M 2

L2.˝;A;PIR/, such that

a.x; !/ D Qa.x; �1.!/; : : : ; �M .!// and f .x; !/ D Qf .x; �1.!/; : : : ; �M .!//

hold P-almost surely almost everywhere in D.

We shall identify awith Qa and f with Qf in the following. Such finite-dimensional
noise arises, e.g., when a random field is approximated by its truncated Karhunen-
Loève expansion (KLE) [13].

Example 1 (KLE for lognormal random field). For a lognormal random field a, it
is convenient to truncate the KLE of its logarithm log a, yielding

a.x; !/ � aM .x; !/ WD exp

 

 0.x/C
MX

mD1

p
�m m.x/�m.!/

!

; (3)

where  0.x/ WD E Œlog a.x; �/� and f.�m;  m/gm�0 denotes the sequence of eigen-
pairs of the covariance operator C associated with log a,

.C /.x/ D
Z

D

c.x; y/ .y/ dy; where c.x; y/ D Cov .log a.x; �/; loga.y; �// ;
(4)

and where the f�mgm�0 are i.i.d. standard normally distributed random variables. For
a discussion on approximating a directly by a (generalized) truncated polynomial
chaos expansion see [10]. For an analysis of the effect of truncating the KLE see [6].
We neglect any truncation error in the following and identify aM with a resp. Qa.

2.2 The Parametric Elliptic Problem in Mixed Variational
Form

We set � WD .�1; : : : ; �M / and denote by �.�/ D QM
mD1

exp.��2m=2/p
2�

the joint prob-

ability density function (pdf) of the i.i.d standard normally distributed �1; : : : ; �M .
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We rewrite the random mixed elliptic problem (2) as the parametric mixed elliptic
problem

a�1.x; �/ u.x; �/� rp.x; �/ D 0 in D; (5a)

r� u.x; �/ D �f .x; �/ in D; (5b)

p.x; �/ D g.x/ on @D; (5c)

where the equations are taken to hold �d�-almost everywhere.
To state the weak mixed form of (5), we assume g 2 H1=2.@D/ and introduce

the space

H.divID/ D ˚
v 2 L2.D/ W r� v 2 L2.D/� (6)

with norm kvk2H.divID/ D kvk2
L2.D/

C k r� vk2
L2.D/

as well as the bilinear and linear
forms

A�.u; v/ D
Z

D

a�1.x; �/u.x/ � v.x/ dx; (7)

B.v; q/ D �
Z

D

q.x/ r� v.x/ dx; (8)

h�.q/ D �
Z

D

f .x; �/ q.x/ dx; (9)

`.v/ D �
Z

@D

g.x/ v.x/ � n.x/ dx; (10)

for u; v 2 H.divID/ and q 2 L2.D/, where in the last line n denotes the unit
outward normal vector along the boundary @D and the integral is understood as a
linear functional on H1=2.@D/, see [9, Appendix B.3]. The weak form of (5) then
reads

A�.u.�; �/; v/C B.v; p.�; �// D `.v/ 8v 2 H.divID/; (11a)

B.u.�; �/; q/ D h�.q/ 8q 2 L2.D/; (11b)

�d�-almost everywhere. Hence, setting S WD L2.RM ;B.RM/; �d�/, where B
denotes the �-algebra of Borel sets, and V WD L2.D/ � H.divID/, we are thus
seeking a solution .p;u/ 2 S ˝V which satisfies (11) �d�-a.e. That such a solution
exists and is unique will be shown in Sect. 3.

Remark 1. Note that, due to Assumption 1 and the continuous (hence measurable)
dependence of the solution .p;u/ of a variational problem such as (11) on the
coefficient a and the source term f , we can deduce by means of the Doob-Dynkin
lemma [17, Lemma 1.13, p. 7] that the solution of (11) may be identified with the
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weak solution of (2) by way of

.p.!/;u.!// D .p.�/;u.�// ; � D �.!/;

P-almost surely as functions in L2.D/ and H.divID/, respectively.

3 Analytic Dependence on the Parameter

Subsequently, we denote by .�; �/ the inner product in L2.D/, where for vector-
valued functions we set .u; v/ WD R

D
u.x/ � v.x/ dx.

In this section we prove existence and analytic dependence of the solution
.p.�/;u.�// of the mixed problem (11) on the parameter �. In particular, we will
prove analyticity of .p.�/;u.�// in a subdomain of CM . To this end, we consider
problem (11) with the parameter vector � extended to complex values � D � C i� 2
C
M , �;� 2 R

M along with suitable extensions of the functions a.x; �/ and f .x; �/.
To ensure well-posedness of (11) for this complex extension

A�.u; v/ D
Z

D

a�1.x; �/ru.x/ � rv.x/ dx;

of A� , and h�.q/ D � RD f .x; �/ q.x/ dx, we restrict the complex parameter � to
the domain

˙ WD ˚
� 2 C

M W amin.�/ > 0 and amax.�/ < C1�
;

where

amax.�/ WD ess supx2D Re a.x; �/; amin.�/ WD ess infx2D Re a.x; �/:

For a general Banach space W , we denote by Lq�.RM IW / the Bochner space
Lq.RM ;B.RM/; �d�IW / of W -valued functions of � and make the following
assumptions for proving the existence of a solution to (11) for real-valued parame-
ters � 2 R

M :

Assumption 2. The data a, f and g defining problem (11) satisfy

(1) g 2 H1=2.@D/,
(2) a 2 Lq�.RM IL1.D// for all q 2 Œ1;1/,
(3) amin.�/ > 0 for all � 2 R

M and 1=amin 2 Lq�.RM IRC/ for all q 2 Œ1;1/,

(4) f 2 Lq�

� .R
M IL2.D// for some q� > 2.

Note that, under Assumption 2, we have RM � ˙ . We can now state

Lemma 1 (cf. [4, Lemma 2.3]). Let Assumption 2 be satisfied. Then there exists a
unique solution .p;u/ 2 S ˝ V of (11).
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Lemma 1 will be proven together with the following existence and continuity
result for the solution to (11) for complex parameters � 2 C

M . In order to state this
result, we introduce the spaces

C�.˙ IW / WD fv W ˙ ! W continuous, strongly measurable and

kvkC� D max
�2˙ �.Re �/kv.�/kW < 1g;

where � W RM ! RC is an arbitrary nonnegative weight function and W a Banach
space.

Assumption 3. For � W RM ! RC there holds

(5) f 2 C�.˙ IL2.D// and a 2 C�.˙ IL1.D//,
(6) amax 2 C�.˙ IR/ and 1=amin 2 C�.˙ IR/.

Lemma 2. Let Assumptions 2 and 3 be satisfied. Then for each � 2 ˙ there exists
a unique .p.�/;u.�// which solves (11) with .p;u/ 2 C�4.˙ IV/.
Proof (of Lemmas 1 and 2). We first observe that, for u; v 2 H.divID/ and q 2
L2.D/, we obtain

jA�.u; v/j D ˇ
ˇ
�
a�1.�/u; v

�ˇ
ˇ � 1

amin.�/
kukH.divID/ kvkH.divID/;

jB.v; q/j D j.q; r� v/j � kqkL2.D/ kvkH.divID/;

j`.v/j � kvkH.divID/ kgkH1=2.@D/;

jh�.q/j D j.f .�/; q/j � kf .�/kL2.D/ kqkL2.D/:

Moreover,A� is coercive on

V D fv 2 H.divID/ W B.v; q/ D �.q; r� v/ D 0 8q 2 L2.D/g
D fv 2 H.divID/ W k r� vkL2.D/ D 0g;

since for v 2 V there holds

ReA�.v; v/ D Re
�
a�1.�/v; v

� � ess infx2D Re
�
a�1.x; �/

� kvk2
L2.D/

� kvk2H.divID/

amax.�/
:

According to [5, p. 136], for any q 2 L2.D/ there exists vq 2 V such that

k r� vq � qkL2.D/ D 0 and kvqkH.divID/ � CDkqkL2.D/;

with a constant CD depending only on the domain D. Thus, the inf-sup-condition
follows since, for any q 2 L2.D/,
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sup
v2H.divID/

B.v; q/
kvkH.divID/

� .q; r� vq/
kvqkH.divID/

D
kqk2

L2.D/

kvqkH.divID/
� kqkL2.D/

CD
:

Therefore, by applying [5, Theorem II.1.1], resp. its generalization to variational
problems in complex Hilbert spaces (hereby applying the complex version of the
Lax-Milgram-lemma), we obtain for each � 2 ˙ a unique solution .p.�/;u.�// to
the associated deterministic variational problem. Moreover, there holds

ku.�/kH.divID/ � kgkH1=2.@D/ amax.�/C 2CD
amax.�/

amin.�/
kf .�/kL2.D/;

kp.�/kL2.D/ � 2CD kgkH1=2.@D/

amax.�/

amin.�/
C 2CD

amax.�/

a2min.�/
kf .�/kL2.D/:

Further, we observe that p W R
M ! L2.D/ and u W R

M ! H.divID/ are
measurable, since they are continuous functions of a, f and g.

By applying the Hölder inequality for the exponents r D q�=2 and q > 0

(such that 1=r C 1=q D 1) and by taking into account the above estimate and
the assumptions, we easily obtain that p 2 S ˝ L2.D/ and u 2 S ˝ H.divID/,
which yields .p;u/ 2 S ˝ V . Uniqueness follows immediately. The continuity of
.p.�/;u.�// w.r.t. � 2 ˙ follows from our assumptions on the continuity of a; f
w.r.t. �. Finally, p 2 C�4.˙ IL2.D// and u 2 C�4.˙ IH.divID// follow again
directly from the estimates above and the assumptions. This completes the proof.

ut
In an analogous way to [8, Lemma 2.2] we can show the analyticity of the

parameter-to-solution map � 7! .p.�/;u.�//.

Lemma 3. Let Assumptions 2 and 3 be satisfied and let the functions a�1 W
˙ ! L1.D/ and f W ˙ ! L2.D/ be analytic. Then also the mapping
� 7! .p.�/;u.�// is analytic in ˙ .

Proof. We prove the statement by showing the existence of each partial complex
derivative @m.p.�/;u.�//, m D 1; : : : ;M . A deep theorem by Hartogs [14] then
yields analyticity as a function of all M complex variables. Therefore, we fix m 2
f1; : : : ;M g, denote by em the m-th coordinate in R

M and set for z 2 Cnf0g

.qz; vz/.�/ WD .p;u/.� C zem/� .p;u/.�/
z

:

Note, that ˙ is an open set due to the continuity of amax and amin. Therefore, for
each � 2 ˙ , there exists 	� such that, for jzj � 	� , the solution .p;u/.� C zem/ and
thus also the quotient above are well defined.

To simplify the presentation, we rewrite the variational problem (11) as a
coupled linear system in the corresponding dual spaces, denoting again by A� W
H.divID/ ! H.divID/� the linear mapping ŒA�u�.v/ WD .a�1.�/u; v/, by
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B W L2.D/ ! H.divID/� the linear map ŒBp�.v/ WD .p;r � v/ and by B> W
H.divID/ ! L2.D/� the map ŒB>u�.q/ WD .q;r � u/. Moreover, by ` and h� we
denote the linear functionals corresponding to the right hand side of (11). Thus, the
variational problem (11) reads

�
A�u CBp

B>u

�

D
�
`

h�

�

: (12)

Hence, by denoting �z D � C zem we have

�
A�vz C Bqz

B>vz

�

�
 
A��A�z

z u.�z/

0

!

D
 

0
h�z�h�

z

!

;

i.e., the pair .qz; vz/ solves the linear system (12) for the right hand side

Lz WD 1

z

��.A�z
�A�/u.�z/

h�z
� h�

�

:

We now show that

Lz ! L0 WD
��@mA�u.�/

@mh�

�

as z ! 0;

where Œ@mA�u�.v/ WD .@ma
�1.�/u; v/ and @mh�.q/ WD .@mf .�/; q/. Note first that

there holds

lim
h!0

�
�
�
�
h�Czem � h�

z
� @mh�

�
�
�
�
L2.D/�

D 0;

which can be easily seen by applying the Cauchy-Schwarz inequality and the
assumption about the analyticity of f . Moreover, we have

�
�
�
�
A�z

� A�

z
u.�z/� @mA�u.�/

�
�
�
�
H.divID/�

�
�
�
�
�
A�z

� A�

z

�
�
�
� ku.�z/� u.�/kH.divID/

C
�
�
�
�
A�z

� A�

z
� @mA�

�
�
�
� ku.�/kH.divID/:

There holds

lim
z!0 ku.� C zem/ � u.�/k D 0;

since u.�/ depends continuously on � as shown before. Furthermore, there holds
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ˇ
ˇ
ˇ
R

D

a�1.�z/�a�1.�/

z u � v dx
ˇ
ˇ
ˇ

kukH.divID/ kvkH.divID/
�
�
�
�
�
a�1.�z/ � a�1.�/

z

�
�
�
�
L1.D/

! k@ma�1.�/kL1.D/

as z ! 0 due to the analyticity of a�1. Thus, we have

k.A�z
� A�/=zk � k.a�1.�z/ � a�1.�//=zkL1.D/ ! k@ma�1.�/kL1.D/

as z ! 0. By linearity we obtain with the same argument

�
�
�
�
A�z

� A�

z
� @mA�

�
�
�
� �

�
�
�
�
a�1.�z/ � a�1.�/

z
� @ma

�1.�/
�
�
�
�
L1.D/

! 0

as z ! 0, which finally yields Lz ! L0 as z ! 0. Again, by the continuous
dependence of the solution of (12) on the right hand side, we conclude

.qz; vz/ ! .@mp.�/; @mu.�// as z ! 0;

where .@mp.�/; @mu.�// solves (12) for the right hand side L0. We have thus
established that .p.�/;u.�// possesses the partial derivative .@mp.�/; @mu.�// in
the m-th (complex) direction, which completes the proof. ut
Example 2 (lognormal diffusion coefficient). We consider a coefficient

a.x; �/ D exp

 

�0.x/C
MX

mD1
�m.x/
m

!

with (real-valued) �m 2 L1.D/ for m D 0; : : : ;M . Let � be the M -dimensional
standard normal probability density function. Setting bm WD k�mkL1.D/ for m D
0; : : : ;M , then for all � 2 ˙ with

˙ D
n
� 2 C

M W
MX

mD1
bm jIm 
mj < �

2

o
(13)

there holds

amin.�/ � exp
	

� b0 �
MX

mD1
bmj�mj



cos

	 MX

mD1
bmj�mj



> 0;

amax.�/ � exp
	
b0 C

MX

mD1
bmj�mj



;
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where � D � C i�. Furthermore, a then satisfies the assumptions of Lemma 3 for
˙ as given in (13) and the weighting function �.�/ D �1.�1/ � � ��M.�M /, where
�m.�m/ D exp

� � bmj�mj�, m D 1; : : : ;M .

Remark 2. Note that if, in Example 2, the expansion functions f�mgMmD1 in addition
have disjoint supports, then a satisfies the assumptions of Lemma 3 for the larger
domain

˙ D f� 2 C
M W bm j Im 
mj < �=2g;

since then

Re a.x; �/ D exp
	
�0.x/C

MX

mD1
�m.x/�m



cos

	 MX

mD1
�m.x/�m




� exp
	

� b0 �
	

max
m
bmj�mj




cos

	
max
m
bmj�mj



:

4 Sparse Grid Collocation

Stochastic collocation in the context of UQ or parametric problems can be described
roughly as a method for approximating a function u W R

M ! W with values
in, say, a separable Banach space W from the span of n linearly independent
functions fuj W R

M ! W gnjD1 given only the values of u at certain distinct
points in the parameter domain R

M . Suitable finite-dimensional function spaces
are determined by the smoothness of u as a function of the parameter. Since the
solution of (11) depends smoothly on �, as was shown in the previous section,
we consider approximations by global interpolating polynomials as done in, e.g.,
[2, 3, 6, 18, 19, 23].

Therefore, let �k D f�k;1; : : : ; �k;nk g, k D 1; 2; : : :, be a given sequence of node
sets in R and

.Ikv/ .�/ WD
nkX

jD1
v
�
�k;j

�
`k;j .�/

be the associated Lagrange interpolation operator with the Lagrange basis
polynomials `k;j . We further define the difference operators k D Ik � Ik�1
for k � 1, where I0 WD 0. Then the (Smolyak) sparse grid stochastic collocation
operator is defined as

Aq;M WD
X

jij�qCM
i1 ˝ � � � ˝iM D

X

qC1�jij�qCM
cq;M .i/ Ii1 ˝ � � � ˝ IiM ; (14)



Stochastic Collocation for Elliptic PDEs with Random Data: The Lognormal Case 39

where jij WD i1 C : : :C iM and

cq;M .i/ D .�1/qCM�jij
 

M � 1

q CM � jij

!

;

cf. [22]. The sparse grid associated with Aq;M consists of the points

Hq;M WD
[

qC1�jij�qCM
�i1 � � � � � �iM � R

M : (15)

One may choose Xk to be the roots of the nk-th Hermite polynomial (w.r.t. to the
weight �m.�/ D e��2=2=

p
2�), since these nodal points yield maximally convergent

interpolations (cf. [21]) and this choice also simplifies the computation of moments
of Aq;M u w.r.t. the weight � D Q

m �m.
For bounded parameter domains and constant density �m 	 const, popular

sequences of nodal sets are Gauss-Legendre and Clenshaw-Curtis nodes. For sparse
grid collocation based on these sequences a convergence analysis is given in [19],
where it is indicated that a similar analysis applies to Gauss-Hermite nodes. We
carry out this analysis in the following.

Assumption 4. There exist constants c > 0 and "m > 0, m D 1; : : : ;M , such that

�m.�m/ D exp.��2m=2/p
2�

� c exp.�"m�2m/�2m.�m/; m D 1; : : : ;M; (16)

and the weighting function has the product structure �.�/ D QM
mD1 �m.�m/.

Note that Assumption 4 implies that C�.RM IW / is continuously embedded in
L2�.R

M IW /, since for v 2 C�.RM IW / there holds

Z

RM

kv.�/k2W �.�/ d� � kvk2
C� .RM IW /

Z

RM

�.�/

�2.�/
d�

� ckvk2
C� .RM IW /

MY

mD1

Z

RMm

exp.�"m�2m/ d� < 1:

The same is true of the restrictions of functions inC�.˙ IW /, since RM � ˙ � C
M

due to Assumption 2.

Theorem 1 (cf. [19, Theorem 3.18]). Let W be a separable Banach space, let u W
R
M ! W admit an analytic extension to the domain

˙� D f� 2 C
M W j Im 
mj � �m; m D 1; : : : ;M g; � D .�1; : : : ; �M /;
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and, in addition, u 2 C�.˙� IW /, i.e.,

max
�2˙�

�.Re �/ ku.�/kW < C1;

where �.�/ D Q
m �m.�m/ and �.�/ D Q

m �m.�m/ satisfy Assumption 4. Then the
error of the sparse grid collocation approximation Aq;M u based on Gauss-Hermite
nodes �k where

j�kj D nk D
(
1; k D 1;

2k�1 C 1; k > 1;

can be bounded by

ku�Aq;M ukL2� � CMC1
r �Cr
Cr�1

8
<

:

exp
	
�q log 2

2

	
R ep

2
�1



; if 0 � q � 2M

log 2 ;

exp
	
�R Mp

2

p
2q=M C q

2
log 2



; otherwise,

(17)

where Cr D C.2Cp
8�=r= log 2/ and

r WD min
mD1;:::;M �m; R WD M

p
�1 � � � �M :

In particular, for 0 � q � 2M
log 2 there holds

ku � Aq;M ukL2� � QC.r;R;M/ N��1; �1 D log 2

2.2:1C logM/

�
eRp
2

� 1

�

;

(18)

where N D jHq;M j and QC.r;R;M/ D C.r/
1�C.r/M
1�C.r/

p
2eR=

p
2�1.

Conversely, for q > 2M
log 2 there holds

ku � Aq;M ukL2� � CMC1
r � Cr
Cr � 1

N 2

M2
e
� R

p

2
MN�2

; �2 D log 2

2M.2:1C logM/
:

(19)

Proof. The proof follows closely the procedure for showing convergence of Aq;M

w.r.t. Clenshaw-Curtis nodes given in [19]. Since only certain steps need to be
modified we only mention these here and refer to [19] for further details.
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Step 1: Show ku � Aq;M ukL2� � PM
kD1 R.q; k/.

According to the proof of [19, Lemma 3.4], there holds

I � Aq;M D
MX

kD2

"

QR.q; k/
MO

mDkC1
I

#

C �
I � Aq;1

�
MO

mD2
I;

where

QR.q; k/ D
X

i2Nk�1

jij�qCk�1

k�1O

mD1
im ˝

	
I � IOik




and Oik D 1C q �Pk�1
mD1.im � 1/. Further, the term QR.q; k/ can bounded using the

results given in the Appendix:

k QR.q; k/ukL2� �
X

i2N
k�1

jij�qCk�1

�
�
�
�
�

k�1O

mD1

im ˝ �
I � I

Oik

�
u

�
�
�
�
�
L2�

�
X

i2N
k�1

jij�qCk�1

C k
	p

2Oik



e

�

1
2

�
Pk�1
mD1 �m

p

2imC�k

p
2

OikC1

�
k�1Y

mD1

	p
2im C 1




D Ck
X

i2N
k

jijDqCk

exp
�

�1
2
h.i; k/

�

;

where h.i; k/ D Pk
mD1 �m

p
2im�.log 2/im. Moreover, we obtain by applying results

from [2, Sect. 4]

k �I � Aq;1

�
ukL2� D k.I � InqC1

/ukL2� � C
	p

2qC1



exp

�

� �1p
2

p
2qC1

�

D
X

i2N1ji jDqC1

C
	p

2i



exp

�

� �1p
2

p
2i
�

:

Therefore, setting

R.q; k/ WD Ck
X

i2NkjijDqCk

exp

�

�1
2
h.i; k/

�

;

we arrive at the bound
�
�
�
I � Aq;M

�
u
�
�
L2�

� PM
kD1 R.q; k/.
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Step 2: Estimate R.q; k/.
Computing the minimum of h.�; k/ on the set fx 2 R

k W x1 C � � � C xk D q C kg
yields the optimal point i� D .i�1 ; : : : ; i�k / with

i�m D 1C q=k C 2

k

kX

nD1
log2.�n=�m/; m D 1; : : : ; k:

Moreover, expanding h.�; k/ at i� up to second order yields for any i 2 N
k with

jij D q C k

h.i; k/ D h.i�; k/C rh.i�; k/ � .i � i�/T
„ ƒ‚ …

D0
C1

2
.i � i�/ � r2h.�; k/ � .i � i�/T

D k2.qCk/=.2k/
kY

mD1
k
p
�m � .log 2/.qCk/C 1

2

kX

mD1
�m
.log 2/2

4
2�m=2.im � i�m/2

� k2.qCk/=.2k/
kY

mD1
k
p
�m � .log 2/.q C k/C r

.log 2/2

8

kX

mD1
.im � i�m/2;

where �m 2 Œmin.im; i�m/;max.im; i�m/� for m D 1; : : : ;M .
Without loss of generality we may assume that �1 � �2 � : : : � �M . Thus, we

have for any k D 1; : : : ;M

kY

mD1
k
p
�m �

MY

mD1
M
p
�m DW M

p
�

and there holds furthermore

R.q; k/ � Ck exp

�
q

2
log 2 � k

M
p

�

2
2.qCk/=.2k/

� X

i2NkjijDqCk

kY

mD1
er log2 2=8.im�i�m/2

� Ck exp

�
q

2
log 2 � k

M
p

�

2
2.qCk/=.2k/

� kY

mD1

qC1X

iD1
er log2 2=8.i�i�m/2

� Ck exp

�
q

2
log 2 � k

M
p

�

2
2.qCk/=.2k/

�  

2C
s

8�

r log2 2

!k

D Ck
r exp

�
q

2
log 2 � k

M
p

�

2
2.qCk/=.2k/

�

;
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where we have used fi 2 N
k W jij D q C kg � fi 2 N

k W jij � q C kg in the second
and [19, Lemma A.1] in the next-to-last last line.

Step 3: Combine Previous Steps
The remaining steps are analogous to the proof of [19, Theorem 3.7] and [19, The-
orem 3.10], respectively, using the bound for N D jHq;M j from [19, Lemma 3.17]

logN

2:1C logM
� 1 � q � log2.N=M � 1/:

ut
Remark 3. Note that Theorem 1 states algebraic convergence of Aq;M u w.r.t. the
number of collocation nodes N in the regime q � 2M= log 2 and subexponential
convergence in the regime q > 2M= log 2. Typically, in applications with M � 3 a
level q > 2M= log 2 is seldom feasible.

Remark 4. Note, that our proof takes into account different widths �m of the strips
of analyticity for different dimensions �m in contrast to the corresponding proofs of
[19, Lemmas 3.4 and 3.16]. Moreover, we would like to mention that the proofs in
[19], in particular the estimates of the term k QR.q; k/ukL2� given there, require also

that u possesses an analytic continuation to a product subdomain
QM
mD1 ˙0 of CM ,

˙0 � C. This condition is, however, never explicitly assumed or shown to hold in
[19]. Rather, the authors only state one-dimensional regularity results, i.e., results on
the domain of analytic continuation of u w.r.t. each 
m, m D 1; : : : ;M , separately,
with the remaining coordinates �n 2 R, n ¤ m, kept fixed and real. However,
this type of one-dimensional regularity is not sufficient for concluding analyticity
of u in a product domain in C

M . As we have seen in the proof of Lemma 3, the
results on the one-dimensional complex domain of analytic continuation of u w.r.t.

m,m D 1; : : : ;M , need to hold for all fixed, complex coordinates 
n 2 ˙0, n ¤ m.

Combining the result above with our investigations of the previous section, we
conclude

Corollary 1 (Convergence in Case of Lognormal Diffusion). Let a problem (11)
with a diffusion coefficient of the form

a.x; �/ D exp

 

�0.x/C
MX

mD1
�m.x/�m

!

be given and let the assumption of Lemma 3 be satisfied. Then there holds for 0 �
q � 2M

log 2 and N D jHq;M j

ku � Aq;M ukL2� � QC.r;R;M/ N
� log 2
2.2:1ClogM/

	
eR
p

2
�1
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where QC.r;R;M/ is according to Theorem 1 and where

R � � � "

2M
�k�1kL1.D/ � � � k�MkL1.D/

�1=M

for any " > 0.

Proof. Given the statement of Theorem 1 and the observations made in Example 2,
we simply maximize M

p
�1 � � � �M under the constraint

MX

mD1
�mk�mkL1.D/ D � � "

2

for an arbitrary " > 0. This yields the optimal point

��m D � � "

2M k�mkL1.D/

; m D 1; : : : ;M;

and, furthermore, M
p
��1 � � � ��M D .� � "/=�2M.k�1kL1.D/ � � � k�M kL1.D//

1=M
�
.
ut

5 Numerical Example

We illustrate the theoretical results of the previous sections for a simple elliptic
boundary value problem in mixed form as arises, e.g., in groundwater flow modeled
by Darcy’s law. In addition, we examine how the convergence of stochastic collo-
cation is affected by properties of the lognormal diffusion coefficient a. Although
the results given in the previous section are valid for a general random field with
a representation of the form given in (3), we wish to relate common properties of
Gaussian random fields such as their mean, variance etc. to the convergence of the
stochastic collocation method.

The Gaussian random field log a is uniquely determined by its mean and
covariance functions. The mean �0 of log a does not affect the convergence of
the stochastic collocation approximation as Corollary 1 shows, but the covariance
plays a more important role, since it determines the representation (3). Generally
speaking, covariance functions are characterized by a variance parameter, correla-
tion length and its degree of smoothness. The latter may also be expressed in terms
of a parameter, as is the case for the Matérn family of covariance functions (see,
e.g., [7]). However, since the smoothness of the covariance function controls the
asymptotic decay of the eigenvalues of the associated covariance operator and the
correlation length determines the length of a preasymptotic plateau preceding the
asymptotic decay, both will affect the length M of a truncated Karhunen-Loève
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expansion with sufficiently small truncation error. Hence, by relating the smooth-
ness and the correlation length to M , we will illustrate the effect of increasing M
and increasing � on the convergence of the stochastic collocation approximations in
the following.

A Simple Groundwater Flow Model

The PDE under consideration is of the form (1) with source term f 	 0, boundary

data g.x1; x2/ D 3
�
x21 C .1 � x2/

2
�1=2

, and lognormal coefficient a on the unit
square D D Œ0; 1�2 in R

2. In particular, we assume for the Gaussian random field
log a a mean �0.x/ 	 1 and a stationary and isotropic two-point covariance function
given by

Cov .log a.x/; log a.y// D �2 exp
��kx � yk2� :

Thus, the approximation logaM .x; �/ is the truncated KLE of this Gaussian random
field, i.e.,

aM .x; �/ D exp

 

1C
MX

mD1
�m.x/ �m

!

; (20)

where �m.x/ D �2
p
�m m.x/ and f.�m;  m/gmD1;:::;M are the first M eigenpairs

(in order of decreasing eigenvalues) of

� .x/ D
Z

Œ0;1�2
exp

��kx � yk2� .y/ dy:

Figure 1 displays the exponential decay of the eigenvalues �m and the norms
k�mkL1.D/ of the corresponding lognormal diffusion coefficient.

Remark 5. Note that, in geophysical applications such as hydrogeology, one usually
encounters “rougher” random fields with a covariance function, e.g., of Matérn
type, see [7]. However, the above model for log a is sufficient for our purpose of
illustrating how the convergence of stochastic collocation depends on M and � as
explained above.

Note that, as the variance parameter � of the random field log a increases, so does
the L1-norm of the expansion functions �m, and therefore the rate of convergence
for the stochastic collocation should decrease according to Corollary 1. We will
demonstrate this in the following.

For the spatial discretization we use Raviart-Thomas finite elements of lowest
order [5] for the flux and piecewise constants for the head variable. Thus, p.�; �/
is approximated as a piecewise constant and u.�; �/ as a piecewise linear function.
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Fig. 1 Left: decay of the eigenvalues of the covariance operators associated with log a. Right:
decay of the L1.D/-norm of the �m in (20)

Moreover, the domain D is decomposed into 4;206 triangles resulting in 10;595
spatial degrees of freedom. Hence, the space V D L2.D/ �H.divID/ is replaced
by the cartesian product Vh � V of the finite dimensional approximation spaces
and the continuous solution pair .p;u/ by the semidiscrete pair .ph;uh/. Note that
this does not influence the analysis of the previous sections, we merely apply the
statements of Lemma 3 and Theorem 1 to the finite-dimensional subspaces. The
full—i.e., collocation and finite element approximation—error can be obtained by
appealing to standard finite element approximation theory, (cf. e.g., [1, 20]).

Solution and Convergence

In Fig. 2 we show for illustration the computational domain D, the triangular mesh
and the mean head (left) and streamlines of the mean flux (right) of the solution
obtained by sparse grid collocation with level q D 5 for a truncated KLE containing
M D 9 terms.

We observe (at least algebraic) convergence of the stochastic collocation approx-
imation for head and flux in the left plot in Fig. 3. Here and in the following
we estimate the L2.RM IW /-error of the stochastic collocation approximations by
a sparse quadrature method applied to the error kph.�/ � Aq;Mph.�/kL2.D/ and
kuh.�/ � Aq;Muh.�/kH.divID/, respectively. We have chosen the sparse Smolyak
quadrature operator corresponding to a stochastic collocation approximation of a
high level q�, i.e.,

E

h
kph � Aq;Mphk2L2.D/

i
�

X

�j2Hq�;M

wj kph.�j /� Aq;Mph.�j /k2L2.D/;
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Fig. 2 Left: the mean of the pressure head approximation A5;9ph; right: streamlines of the mean
of the flux approximation A5;9uh
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Fig. 3 Left: relative errors for head and flux for M D 9 and q D 0; : : : ; 4. Right: estimated
Hermite coefficients of ph and uh for the first 25 Hermite polynomials w.r.t. �1

where fwj W �j 2 Hq�;M g are the weights of the sparse quadrature operator
associated with Aq�;M . For the results shown in Fig. 3 we used q� D 5. Note that
we have also applied a Monte Carlo integration for the error estimation above for
comparison which showed no substantial difference to the quadrature procedure
above. The error estimation for Aq;Muh was obtained in the same way. We observe
that the relative error for the flux does not immediately decay at the asymptotic rate.
This is due to a preasymptotic phase of slower decay of the Hermite coefficients of
uh. We display the Hermite coefficients for the first 25 Hermite polynomials in �1
for ph and uh on the right hand side of Fig. 3. The preasymptotic slow decay of the
coefficients in case of the flux is clearly visible. However, both errors apparently
decay at a much greater rate than the estimate in Corollary 1 would suggest.
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Fig. 4 Estimated relative L2.RM IW / errors of the sparse grid stochastic collocation approxima-
tions for pressure head ph and flux uh for M D 5 but different values of � . The level q of Aq;5

varies from 0 to 5

Influence of the Input Variance �

We fix M D 5 and vary the variance parameter � 2 f1=2; 1; 2g. For all three values
of � we choose a quadrature level of q� D 6 for the error estimation. The results
are shown in Fig. 4. We observe the expected behaviour that for increased � the
convergence rate is reduced.

Influence of the Parameter Dimension M

We set � D 1 and let M 2 f3; 6; 9g. As quadrature levels for the error estimation
we choose q� D 8 for M D 3, q� D 7 for M D 6, and q� D 6 for M D 9. The
results are shown in Fig. 5. Again, the results are according to the conjecture that for
increased dimensionM the convergence rate decreases.

Remark 6. In view of the decelerating effect of large variance � and roughness of
a random field a (requiring large M for small truncation error) on the convergence
rate of stochastic collocation, certain advanced Monte Carlo methods (such as quasi-
or multilevel Monte Carlo) might be preferable for certain applications in subsurface
physics where such rough random fields of high variance are common. We refer to
the results in [7] for a comparison of the Monte Carlo and stochastic collocation
method in case of a real-world subsurface flow problem. However, while efficient for
estimating moments, probabilities or other statistical properties (so-called quantities
of interest), Monte Carlo methods do not yield an approximate solution function of
the PDE problem with random data as does stochastic collocation, which may serve
as a cheap, sufficiently accurate surrogate model in many situations.
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Fig. 5 Estimated relative L2.RM IW / errors of the sparse grid stochastic collocation approxima-
tions for pressure head ph and flux uh for � D 1 but different values of M . The level q of Aq;M

varies from 0 to 7 for M D 3, from 0 to 6 for M D 6 and from 0 to 5 for M D 9

6 Conclusions

In this paper we have filled some remaining theoretical gaps for the application
of sparse grid stochastic collocation to diffusion equations with a random, log-
normally distributed diffusion coefficient. In particular, we have shown the smooth
dependence of the solution of the associated parametric variational problems on the
parameter under natural assumptions. This extends previous work [4] on random
mixed elliptic problems to a broader and practically relevant class of diffusion
coefficients. In addition, we have given a complete convergence proof for sparse
grid stochastic collocation using basic random variables with unbounded supports,
which was previously only hinted at in the literature as a remark [19]. Both results
combine to form the theoretical foundation for applying stochastic collocation to
interesting real world problems [7, 12] which we have illustrated for a simple
groundwater flow model. The qualitative behavior of the approximation bounds
indicate the limitations of stochastic collocation when applied to problems with
diffusion coefficients displaying roughness or short correlation length.
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Bespalov.

Appendix

We will here prove some auxiliary results used in the previous sections. In par-
ticular, we want to generalize some results from [2, Sect. 4] to multi-dimensional
interpolation. The first concerns the uniform boundedness of the operator
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Ik1 ˝ � � � ˝ IkM W C�.RM IW / ! L2�.R
M IW /;

where � and � are according to (16). It can be shown by an obvious generalization
of [2, Lemma 4.2] that

kIk1 ˝ � � � ˝ IkM vkL2�.RM IW / � C.�; �/ kvkC� .RM IW /;

where the constant C.�; �/ is independent of k D .k1; : : : ; kM /. In the following,
let Pn denote the space of all univariate polynomials up to degree n. We state

Lemma 4 (cf. [2, Lemma 4.3]). For every function v 2 C�.RM IW / there holds

kv �kvkL2�.RM IW / � CM inf
w2Pnk�1˝W

kv � wkC� .RM IW /

where k D k1 ˝ � � � ˝kM and Pnk�1 D Pnk1�1
˝ � � � ˝ PnkM�1

.
In particular, there holds

�
�
�
�
�
v �

M�1O

mD1
km ˝ .I � IkM /v

�
�
�
�
�
L2�.R

M IW /
� CM inf

w2Pnk�1˝W
kv � wkC� .RM IW /:

Proof. We consider a separable function v.�/ D v1.�1/ � � �vM .�M / 2 C�.RM IW /.
Note that the set of separable functions is dense in C�.RM IW /. Further, let w 2
Pnk�1 ˝W be arbitrary. There holds Ik�1w D w and

kv �kvk2
L2�.R

M IW / D
MY

mD1
kvm �kmvmk2

L2�m .RIW /

�
MY

mD1
2
	
kvm�Ikmvmk2

L2�m .RIW / C kvm � Ikm � 1vmk2
L2�m .RIW /




�
MY

mD1
4
	
kvm � wmk2

L2�m .RIW / C kIkm.vm � wm/k2L2�m .RIW /

C kvm � wmk2
L2�m .RIW / C kIkm�1.vm � wm/k2L2�m .RIW /




� 4M
MY

mD1
C 2kvm � wmk2C�m .RIW /

D CMkv � wk2
C� .RM IW /:

The statement follows by density. ut
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Lemma 5 ([16]). Let v.
/ be an analytic function in the strip ˙� D f
 2 C W
j Im 
j < � C 	g, 	 > 0. A necessary and sufficient condition that the Fourier-
Hermite series

v.
/ D
1X

nD0
vnhn.
/; vn D

Z

R

v.�/hn.�/ d�;

where hn.�/ D e��2=2Hn.�/ and Hn.�/ D .�1/np
�1=22nnŠ

e�
2
@n.e��2/, converge, is that

for every ˇ 2 Œ0; � C 	/ there exists C.ˇ/ such that

jv.� C i�/j � C.ˇ/e�j�j
p
ˇ2��2 ; y 2 R; j�j � ˇ:

In this case the Fourier coefficients satisfy

vn � Ce��
p
2nC1:

Following the proofs in [15, 16], it is clear that if a multivariate function v W
R
M ! W admits an analytic extension to the domain˙� D f� 2 C

M W j Im 
mj <
�m C 	;m D 1; : : : ;M g, 	 > 0, and satisfies

jv.�1 C i�1; : : : ; �M C i�M/j
� C.ˇ1; : : : ; ˇM /e

�PM
mD1 j�mj

p
ˇ2m��2m ; �m 2 R; j�mj � ˇm; 8m;

for all ˇm 2 Œ0; �m�, m D 1; : : : ;M , then we have

v.�/ D
X

n

vn

MY

mD1
hnm.
m/; vn D

Z

RM

v.�/

MY

mD1
hnm.�m/ d�;

for all � 2 ˙� , and, in particular,

vn � C exp

 

�
MX

mD1
�m
p
2nm C 1

!

:

Thus, we can generalize [2, Lemma 4.6] by an obvious modification to

Lemma 6 ( cf. [2, Lemma 4.6]). Let v W RM ! W admit an analytic extension to

˙� D fz 2 C
M W j Im 
mj < �m C 	;m D 1; : : : ;M g;

	 > 0, and satisfy

max
�2˙�

�.Re �/kv.�/kW � C1:
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Then there holds

min
w2Pn

max
�2RM

ˇ
ˇ
ˇkv.�/ � w.�/kW e�k�k2=8

ˇ
ˇ
ˇ � C�.n/ exp

 

� 1p
2

MX

mD1
�m

p
nm

!

;

where �.n/ D C.�/.n1 � � �nM/1=2.
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22. G.W. Wasilkowski, H. Woźniakowski, Explicit cost bounds of algorithms for multivariate
tensor product problems. J. Complex. 11, 1–56 (1995)

23. D. Xiu, J.S. Hesthaven, High-order collocation methods differential equations with random
inputs. SIAM J. Sci. Comput. 37(3), 1118–1139 (2005)



On the Convergence of the Combination
Technique

Michael Griebel and Helmut Harbrecht

Abstract Sparse tensor product spaces provide an efficient tool to discretize
higher dimensional operator equations. The direct Galerkin method in such ansatz
spaces may employ hierarchical bases, interpolets, wavelets or multilevel frames.
Besides, an alternative approach is provided by the so-called combination technique.
It properly combines the Galerkin solutions of the underlying problem on certain full
(but small) tensor product spaces. So far, however, the combination technique has
been analyzed only for special model problems. In the present paper, we provide
now the analysis of the combination technique for quite general operator equations
in sparse tensor product spaces. We prove that the combination technique produces
the same order of convergence as the Galerkin approximation with respect to the
sparse tensor product space. Furthermore, the order of the cost complexity is the
same as for the Galerkin approach in the sparse tensor product space. Our theoretical
findings are validated by numerical experiments.

1 Introduction

The discretization in sparse tensor product spaces yields efficient numerical methods
to solve higher dimensional operator equations. Nevertheless, a Galerkin discretiza-
tion in these sparse tensor product spaces requires hierarchical bases, interpolets,
wavelets, multilevel frames, or other types of multilevel systems [9, 12, 17] which
make a direct Galerkin discretization in sparse tensor product spaces quite involved
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and cumbersome in practical applications. To avoid these issues of the Galerkin
discretization, the combination technique has been introduced in [14]. There, only
the Galerkin discretizations and solutions in appropriately chosen, full, but small,
tensor product spaces need to be computed and combined.

In [8, 18, 19], it has been shown that, in the special case of operator equations
which involve a tensor product operator, the approximation produced by the
combination technique indeed coincides exactly with the Galerkin solution in the
sparse tensor product space. However, for non-tensor product operators, this is no
longer the case. Nevertheless, it is observed in practice that the approximation error
is of the same order. But theoretical convergence results are only available for
specific applications, see for example [3, 14, 21–23, 25]. Moreover, a general proof
of convergence is so far still missing for the combination technique.

In the present paper, we prove optimal convergence rates of the combination
technique for elliptic operators acting on arbitrary Gelfand triples. The convergence
analysis is based on two compact lemmas (Lemmas 1 and 2) which have basically
been proven in [22, 25]. In contrast to these papers, besides considering abstract
Gelfand triples, we deal here with the combination technique for the so-called
generalized sparse tensor product spaces which have been introduced in [10].
Lemma 1 involves a special stability condition for the Galerkin projection (cf. (18))
which, however, holds for certain regularity assumptions on the operator under
consideration (see Remark 1).

To keep the notation and the proofs simple, we restrict ourselves to the case
of operator equations which are defined on a twofold product domain ˝1 � ˝2.
However, we allow the domains ˝1 � R

n1 and ˝2 � R
n2 to be of different spatial

dimensions. Our proofs can be generalized without further difficulties to arbitrary
L-fold product domains ˝1 � ˝2 � � � � � ˝L by employing the techniques from
[11, 25].

The remainder of this paper is organized as follows. We first present the
operator equations under consideration in Sect. 2. Then, in Sect. 3, we specify the
requirements of the multiscale hierarchies on each individual subdomain. In Sect. 4,
we define the generalized sparse tensor product spaces and recall their basic
properties. The combination technique is introduced in Sect. 5 and its convergence is
proven in Sect. 6. Section 7 is dedicated to numerical experiments. They are in good
agreement with the presented theory. Finally, in Sect. 8, we give some concluding
remarks.

Throughout this paper, the notion “essential” in the context of complexity
estimates means “up to logarithmic terms”. Moreover, to avoid the repeated use
of generic but unspecified constants, we signify by C . D that C is bounded
by a multiple of D independently of parameters which C and D may depend on.
Obviously, C & D is defined as D . C , and C 
 D as C . D and C & D.
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2 Operator Equations

We consider two sufficiently smooth, bounded domains ˝1 2 R
n1 and ˝2 2 R

n2 ,
where n1; n2 2 N. Moreover, on the product domain˝1 �˝2, let the Hilbert space
H be given such that

H � L2.˝1 �˝2/ � H0

forms a Gelfand triple. Thus, the inner product

.u; v/L2.˝1�˝2/ WD
Z

˝1

Z

˝2

u.x; y/v.x; y/ dx dy

in L2.˝1 �˝2/ can continuously be extended to H � H0. For sake of simplicity of
presentation, we write .u; v/L2.˝1�˝2/ also in the case u 2 H and v 2 H0.

Now, let A W H ! H0 denote a differential or pseudo-differential operator. It is
assumed that it maps the Hilbert space H continuously and bijectively onto its dual
H0, i.e.,

kAukH0 
 kukH for all u 2 H:

The Hilbert space H is thus the energy space of the operator under consideration.
For the sake of simplicity, we further assume that A is H-elliptic. Consequently, the
resulting bilinear form

a.u; v/ WD .Au; v/L2.˝1�˝2/ W H � H ! R

is continuous

a.u; v/ . kukHkvkH for all u; v 2 H

and elliptic

a.u; u/ & kuk2H for all u 2 H:

In the following, for given f 2 H0, we want to efficiently solve the operator
equation Au D f or, equivalently, the variational formulation:

find u 2 H such that a.u; v/ D .f; v/L2.˝1�˝2/ for all v 2 H: (1)

Of course, since we like to focus on conformal Galerkin discretizations, we should
tacitly assume that, for all j1; j2 � 0, the tensor product V .1/

j1
˝ V

.2/
j2

of the ansatz

spaces V .1/
j1

and V .2/
j2

is contained in the energy space H. Moreover, for the solution
u 2 H of (1), we will need a stronger regularity to hold for obtaining decent
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convergence rates. Therefore, for s1; s2 � 0, we introduce the following Sobolev
spaces of dominant mixed derivatives with respect to the underlying space H

Hs1;s2
mix WD

�

f 2 H W
�
�
�
�
@˛Cˇ

@˛
x@

ˇ
y

f

�
�
�
�
H
< 1 for all j˛j � s1 and jˇj � s2

�

:

We shall illustrate our setting by the following specific examples.

Example 1. A first simple example is the operatorA W L2.˝1�˝2/ ! L2.˝1�˝2/

which underlies the bilinear form

a.u; v/ D
Z

˝1

Z

˝2

˛.x; y/u.x; y/v.x; y/ dx dy;

where the coefficient function ˛ satisfies

0 < ˛ � ˛.x; y/ � ˛ for all .x; y/ 2 ˝1 �˝2: (2)

Here, it holds H D L2.˝1 � ˝2/. Moreover, our spaces Hs1;s2
mix of assumed

stronger regularity coincide with the standard Sobolev spaces of dominant mixed
derivatives, i.e.,

Hs1;s2
mix D H

s1;s2
mix .˝1 �˝2/ WD Hs1.˝1/˝Hs2.˝2/:

Example 2. Stationary heat conduction in the product domain ˝1 � ˝2 yields the
bilinear form

a.u; v/ D
Z

˝1

Z

˝2

˛.x; y/frxu.x; y/rxv.x; y/C ryu.x; y/ryv.x; y/g dx dy:

If the coefficient ˛ satisfies (2), then the associated operator A is known to be
continuous and elliptic with respect to the space H D H1

0 .˝1 � ˝2/. Moreover,
our spaces Hs1;s2

mix of assumed stronger regularity now coincide with Hs1;s2
mix D

H1
0 .˝1 �˝2/\H

s1C1;s2
mix .˝1 �˝2/\H

s1;s2C1
mix .˝1 �˝2/.

Example 3. Another example appears in two-scale homogenization. Unfolding [4]
gives raise to the product of the macroscopic physical domain ˝1 and the periodic
microscopic domain ˝2 of the cell problem, see [20]. Then, for the first order
corrector, one arrives at the bilinear form

a.u; v/ D
Z

˝1

Z

˝2

˛.x; y/ryu.x; y/ryv.x; y/ dx dy:

The underlying operator A is continuous and elliptic as a operator in the related
energy space H D L2.˝1/ ˝ H1

0 .˝2/ provided that the coefficient ˛ satisfies
again (2). Furthermore, our spaces Hs1;s2

mix of assumed stronger regularity coincide
with Hs1;s2

mix D �
L2.˝1/˝H1

0 .˝2/
� \Hs1;s2C1

mix .˝1 �˝2/.
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3 Approximation on the Individual Subdomains

On each domain˝i , we consider a nested sequence

V
.i/
0 � V

.i/
1 � � � � � V

.i/
j � � � � � L2.˝i/ (3)

of finite dimensional spaces

V
.i/
j D spanf'.i/j;k W k 2 .i/

j g

(the set .i/
j denotes a suitable index set) of piecewise polynomial ansatz functions,

such that dimV .i/
j 
 2jni and

L2.˝i/ D
[

j2N0
V
.i/
j :

We will use the spaces V .i/
j for the approximation of functions. To this end, we

assume that the approximation property

inf
vj2V .i/j

ku � vjkHq.˝i / . h
s�q
j kukHs.˝i /; u 2 Hs.˝i/; (4)

holds for q < �i , q � s � ri uniformly in j . Here we set hj WD 2�j , i.e., hj
corresponds to the width of the mesh associated with the subspace V .i/

j on ˝i . The
parameter �i > 0 refers to the regularity of the functions which are contained in
V
.i/
j , i.e.,

�i WD supfs 2 R W V .i/
j � Hs.˝i/g:

The integer ri > 0 refers to the polynomial exactness, that is the maximal order of
polynomials which are locally contained in the space V .i/

j .

Now, let Q.i/
j W L2.˝i / ! V

.i/
j denote the L2.˝i /-orthogonal projection onto

the finite element space V .i/
j . Due to the orthogonality, we have

�
Q
.i/
j

�? D Q
.i/
j .

Moreover, our regularity assumptions on the ansatz spaces V .i/
j imply the continuity

of the related projections relative to the Sobolev space Hq.˝i / for all jqj < �i , i.e.,
it holds

�
�Q

.i/
j u
�
�
Hq.˝i /

. kukHq.˝i /; jqj < �i ; (5)

uniformly in j � 0 provided that u 2 Hq.˝i /.
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By setting Q.i/
�1 WD 0, we can define for all j � 0 the complementary spaces

W
.i/
j WD �

Q
.i/
j �Q.i/

j�1
�
L2.˝i/ � V

.i/
j :

They satisfy

V
.i/
j D V

.i/
j�1 ˚W

.i/
j ; V

.i/
j�1 \W .i/

j D f0g;

which recursively yields

V
.i/
J D

JM

jD0
W

.i/
j : (6)

A given function f 2 Hq.˝i/, where jqj < �i , admits the unique multiscale
decomposition

f D
1X

jD0
fj with fj WD �

Q
.i/
j �Q.i/

j�1
�
f 2 W .i/

j :

One now has the well-known norm equivalence

kf k2Hq.˝i /


1X

jD0
22jq

�
�
�
Q
.i/
j �Q

.i/
j�1
�
f
�
�2
L2.˝i /

; jqj < �i ;

see [5]. Finally, for any f 2 Hs.˝i/ and jqj < �i , the approximation property (4)
induces the estimate

�
�
�
Q
.i/
j �Q

.i/
j�1
�
f
�
�
Hq.˝i /

. 2�j.s�q/kf kHs.˝i /; q < s � ri :

4 Generalized Sparse Tensor Product Spaces

The canonical approximation method in the Hilbert space H is the approximation
in full tensor product spaces1

V
.1/

J=� ˝ V
.2/
J� D

M

j1��J
j2=��J

W
.1/
j1

˝W
.2/
j2
:

1Here and in the following, the summation limits are in general no natural numbers and must of
course be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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Here, � > 0 is a given parameter which can be tuned to optimize the cost
complexity. There are 2Jn1=� � 2Jn2� degrees of freedom in the space V .1/

J=� ˝ V
.2/
J� .

Moreover, for f 2 Hs1;0
mix .˝1�˝2/\H0;s2

mix .˝1�˝2/ and fJ WD .Q
.1/

J=� ˝Q
.2/
J� /f 2

V
.1/

J=� ˝ V
.2/
J� , an error estimate of the type

kf � fJ kH . 2�J minfs1=�;s2�gkf kHs1;0
mix \H0;s2

mix
(7)

holds for all 0 < s1 � p1 and 0 < s2 � p2. Note that the upper boundsp1 andp2 are
the largest values such that Hp1;0

mix � H
r1;r2
mix .˝1�˝2/ and H0;p2

mix � H
r1;r2
mix .˝1�˝2/,

respectively.
Alternatively, based on the multiscale decompositions (6) on each individual

subdomain, one can define the so-called generalized sparse tensor product space,
see [2, 10],

OV �
J WD

M

j1�Cj2=��J
W

.1/
j1

˝W
.2/
j2

D
X

j1�Cj2=�DJ
V
.1/
j1

˝ V
.2/
j2
: (8)

Thus, a function f 2 H is represented by the Boolean sum

OfJ WD
X

j1�Cj2=��J

Q
j1;j2

f 2 OV �
J (9)

where, for all j1; j2 � 0, the detail projectionsQ
j1;j2

are given by


Q
j1;j2

WD .Q
.1/
j1

�Q.1/
j1�1/˝ .Q

.2/
j2

�Q.2/
j2�1/: (10)

For further details on sparse grids we refer the reader to the survey [2] and the
references therein.

The dimension of the generalized sparse tensor product space OV �
J is essentially

equal to the dimension of the finest univariate finite element spaces which enter its
construction, i.e., it is essentially equal to the value of max

˚
dimV .1/

J=� ; dimV .2/
J�

�
.

Nevertheless, by considering smoothness in terms of mixed Sobolev spaces, its
approximation power is essentially the same as in the full tensor product space.
To be precise, we have

Theorem 1 ([10]). The generalized sparse tensor product space OV �
J possesses

dim OV �
J 


(
2J maxfn1=�;n2�g; if n1=� 6D n2�;

2Jn1=�J; if n1=� D n2�;

degrees of freedom. Moreover, for a given function f 2 Hs1;s2
mix and its

L2-orthonormal projection OfJ 2 OV �
J , defined by (9), where 0 < s1 � p1 and

0 < s2 � p2, there holds the error estimate
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�
�f � OfJ

�
�
H .

(
2�J minfs1=�;s2�gkf kHs1;s2

mix
; if s1=� 6D s2�;

2�Js1=�
p
J kf kHs1 ;s2

mix
; if s1=� D s2�:

The optimal choice of the parameter � has been discussed in [10]. It turns out
that the best cost complexity rate among all possible values of s1; s2 is obtained for
the choice � D p

n1=n2. This choice induces an equilibration of the degrees of

freedom in the extremal spaces V .1/

J=� and V .2/
J� .

We shall consider the Galerkin discretization of (1) in the generalized sparse
tensor product space OV �

J , that is we want to

find uJ 2 OV �
J such that a.uJ ; vJ / D .f; vJ /L2.˝1�˝2/ for all vJ 2 OV �

J : (11)

In view of Theorem 1, we arrive at the following error estimate due to Céa’s lemma.

Corollary 1. The Galerkin solution (11) satisfies the error estimate

ku � uJ kH . ku � OuJ kH .
(
2�J minfs1=�;s2�gkukHs1 ;s2

mix
; if s1=� 6D s2�;

2�Js1=�
p
J kukHs1;s2

mix
; if s1=� D s2�;

for all 0 < s1 � p1 and 0 < s2 � p2 provided that u 2 Hs1;s2
mix .˝1 �˝2/.

Nevertheless, for the discretization of (11), hierarchical bases, interpolets,
wavelets, multilevel frames, or other types of multilevel systems [2, 9, 12, 13, 15–
17,24,26] are required which make a direct Galerkin discretization in sparse tensor
product spaces quite involved and cumbersome in practical applications.

5 Combination Technique

The combination technique is a different approach for the discretization in sparse
tensor product spaces. It avoids the explicit need of hierarchical bases, interpolets,
wavelets or frames for the discretization of (11). In fact, one only has to compute
the Galerkin solutions with respect to certain full tensor product spaces V .1/

j1
˝ V

.2/
j2

and to appropriately combine them afterwards. The related Galerkin solutions uj1;j2
are given by

find uj1;j2 2 V .1/
j1

˝ V
.2/
j2

such that

a.uj1;j2 ; vj1;j2/ D .f; vj1;j2/L2.˝1�˝2/ for all vj1;j2 2 V .1/
j1

˝ V
.2/
j2
:

This introduces the Galerkin projection

Pj1;j2 W H ! V
.1/
j1

˝ V
.2/
j2
; Pj1;j2u WD uj1;j2
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which especially satisfies the Galerkin orthogonality

a.u � Pj1;j2u; vj1;j2/ D 0 for all vj1;j2 2 V .1/
j1

˝ V
.2/
j2
:

The Galerkin projection Pj1;j2 is well defined for all j1; j2 � 0 due to the
ellipticity of the bilinear form a.�; �/. Moreover, as in (7), we conclude the error
estimate

ku � Pj1;j2ukH . ku � .Q
.1/
j1

˝Q
.2/
j2
/ukH . 2�minfj1s1;j2s2gkukHs1;0

mix \H0;s2
mix

for all 0 < s1 � p1 and 0 < s2 � p2 provided that u 2 Hs1;0
mix \ H0;s2

mix . In particular,
for fixed j1 � 0 and j2 ! 1, we obtain the Galerkin projection Pj1;1 onto the

space Vj1;1 WD .Q
.1/
j1

˝ I /H � H. It satisfies the error estimate

ku � Pj1;1ukH . ku � .Q
.1/
j1

˝ I /ukH . 2�j1s1kukHs1 ;0
mix

(12)

for all 0 < s1 � p1. Likewise, for fixed j2 � 0 and j1 ! 1, we obtain the Galerkin
projection P1;j2 onto the space V1;j2 WD .I ˝Q

.2/
j2
/H � H. Analogously to (12),

we find

ku � P1;j2ukH . ku � .I ˝Q
.2/
j2
/ukH . 2�j2s2kukH0;s2

mix
(13)

for all 0 < s2 � p2.
With the help of the Galerkin projections, we can define

P
j1;j2

u WD .Pj1;j2 � Pj1�1;j2 � Pj1;j2�1 C Pj1�1;j2�1/u (14)

where we especially set Pj1;�1 WD 0, P�1;j2 WD 0, and P�1;�1 WD 0. Then, the
combination technique is expressed as the Boolean sum (cf. [6–8])

OuJ D
X

j1�Cj2=��J
P
j1;j2

u D u �
X

j1�Cj2=�>J
P
j1;j2

u: (15)

Straightforward calculation shows

OuJ D
dJ=�eX

j1D0
.Pj1;dJ��j1�2e � Pj1�1;dJ��j1�2e/u (16)

if j1 � j2�
2, and

OuJ D
dJ�eX

j2D0
.PdJ=��j2=�2e;j2 � PdJ=��j2=�2e;j2�1/u (17)

if j1 > j2�2. A visualization of the formula (17) is found in Fig. 1.
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���������������������� �

�

j1

j2

Js

J ¤ s
•

• ⊕⊕⊕
��� ⊕⊕⊕

��� ⊕⊕⊕
��� ⊕⊕⊕

��� ⊕⊕⊕
��� ⊕⊕⊕

��� ⊕⊕

Fig. 1 The combination technique in OV �
J combines all the indicated solutions Pj1;j2u with positive

sign (“˚”) and negative sign (“	”)

Our goal is now to show that the error ku � OuJ kH converges as good as the error
of the true sparse tensor product Galerkin solution given in Corollary 1.

6 Proof of Convergence

To prove the desired error estimate for the combination technique (16) and (17),
respectively, we shall prove first the following two helpful lemmata.

Lemma 1. For all 0 < s1 � p1 and 0 < s2 � p2, it holds

k.Pj1;j2 � Pj1�1;j2/ukH . 2�j1s1kukHs1 ;0
mix
;

k.Pj1;j2 � Pj1;j2�1/ukH . 2�j2s2kukH0;s2
mix
;

provided that u is sufficiently smooth and provided that the Galerkin projection
satisfies

kP1;j2ukHs1;0
mix

. kukHs1;0
mix
; kPj1;1ukH0;s2

mix
. kukH0;s2

mix
: (18)

Proof. We shall prove only the first estimate, the second one follows in complete
analogy. To this end, we split

k.Pj1;j2 � Pj1�1;j2/ukH � k.Pj1;j2 � P1;j2 /ukH C k.P1;j2 � Pj1�1;j2/ukH:

Due to Vj1�1;j2 ; Vj1;j2 � V1;j2 , the associated Galerkin projections satisfy the
identities Pj1;j2 D Pj1;j2P1;j2 and Pj1�1;j2 D Pj1�1;j2P1;j2 . Hence, we obtain

k.Pj1;j2 � Pj1�1;j2/ukH � k.Pj1;j2 � I /P1;j2ukH C k.I � Pj1�1;j2 /P1;j2ukH:
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By employing now the fact that the Galerkin projections Pj1�1;j2u and Pj1;j2u are

quasi-optimal, i.e., k.I � Pj1;j2/ukH . k.I � Q
.1/
j1

˝ Q
.2/
j2
/ukH and likewise for

Pj1�1;j2u, we arrive at

k.Pj1;j2 � Pj1�1;j2 /ukH
. k.Q.1/

j1
˝Q

.2/
j2

� I /P1;j2ukH C k.I �Q
.1/
j1�1 ˝Q

.2/
j2
/P1;j2ukH:

The combination of Q.1/
j1

˝Q
.2/
j2

D .Q
.1/
j1

˝ I /.I ˝Q
.2/
j2
/ and .I ˝Q

.2/
j2
/P1;j2 D

P1;j2 yields the operator identity

.Q
.1/
j1

˝Q
.2/
j2
/P1;j2 D �

Q
.1/
j1

˝ I
�
P1;j2 ;

and likewise

.Q
.1/
j1�1 ˝Q

.2/
j2
/P1;j2 D �

Q
.1/
j1�1 ˝ I

�
P1;j2 :

Hence, we conclude

k.Pj1;j2 � Pj1�1;j2/ukH
.
�
�
�
.I �Q

.1/
j1
/˝ I

�
P1;j2u

�
�
H C �

�
�
.I �Q.1/

j1�1/˝ I
�
P1;j2u

�
�
H

. 2�j1s1kP1;j2ukHs1;0
mix
:

Using the condition (18) implies finally the desired estimate. �

Remark 1. Condition (18) holds if A W H ! H0 is also continuous and bijective
as a mapping A W Hs1;0

mix ! .H0/s1;0mix for all 0 < s1 � p1 and also as a mapping
A W H0;s2

mix ! .H0/0;s2mix for all 0 < s2 � p2, respectively. Then, in view of the

continuity (5) of the projectionsQ.1/
j1

and Q.2/
j2

, the Galerkin projections

P1;j2 D �
.I ˝Q

.2/
j2
/A.I ˝Q

.2/
j2
/
��1
.I ˝Q

.2/
j2
/ W H ! V1;j2 � H;

Pj1;1 D �
.Q

.1/
j1

˝ I /A.Q
.1/
j1

˝ I /
��1
.Q

.1/
j1

˝ I / W H ! Vj1;1 � H;

are also continuous as mappings

P1;j2 W Hs1;0
mix ! V1;j2 � Hs1;0

mix ; Pj1;1 W H0;s2
mix ! Vj1;1 � H0;s2

mix ;

which implies (18).

Lemma 2. If u 2 Hs1;s2
mix , then it holds

�
�.P

j1;j2
�Q

j1;j2
/u
�
�
H . 2�j1s1�j2s2kukHs1;s2

mix
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for all 0 < s1 � p1 and 0 < s2 � p2 where Q
j1;j2

is given by (10) and P
j1;j2

is
given by (14), respectively.

Proof. Due to Pj1;j2.Q
.1/
j1

˝Q
.2/
j2
/ D Q

.1/
j1

˝Q
.2/
j2

for all j1; j2 � 0, we obtain

P
j1;j2

�
Q
j1;j2

D Pj1;j2.I �Q
.1/
j1

˝Q
.2/
j2
/ � Pj1�1;j2 .I �Q

.1/
j1�1 ˝Q

.2/
j2
/

� Pj1;j2�1.I �Q.1/
j1

˝Q
.2/
j2�1/C Pi�1;j�1.I �Q

.1/
j1�1 ˝Q

.2/
j2�1/:

(19)

We shall now make use of the identity

I �Q.1/
j1

˝Q
.2/
j2

D I ˝ I �Q.1/
j1

˝Q
.2/
j2

D I ˝ .I �Q.2/
j2
/C .I �Q.1/

j1
/˝ I � .I �Q

.1/
j1
/˝ .I �Q

.2/
j2
/:

Inserting this identity into (19) and reordering the terms yields

P
j1;j2

�
Q
j1;j2

D .Pj1;j2 � Pj1�1;j2/
�
I ˝ .I �Q

.2/
j2
/
�

� .Pj1;j2�1 � Pj1�1;j2�1/
�
I ˝ .I �Q

.2/
j2�1/

�

C .Pj1;j2 � Pj1;j2�1/
�
.I �Q.1/

j1
/˝ I

�

� .Pj1�1;j2 � Pj1�1;j2�1/
�
.I �Q

.1/
j1�1/˝ I

�

� Pj1;j2
�
.I �Q

.1/
j1
/˝ .I �Q

.2/
j2
/
�

C Pj1�1;j2
�
.I �Q.1/

j1�1/˝ .I �Q.2/
j2
/
�

C Pj1;j2�1
�
.I �Q.1/

j1
/˝ .I �Q.2/

j2�1/
�

� Pj1�1;j2�1
�
.I �Q.1/

j1�1/˝ .I �Q.2/
j2�1/

�
:

The combination of the error estimates

k.Pj1;j2 � Pj1�1;j2/ukH . 2�j1s1kukHs1 ;0
mix
;

k.Pj1;j2 � Pj1;j2�1/ukH . 2�j2s2kukH0;s2
mix
;

cf. Lemma 1, and

�
�
�
I ˝ .I �Q

.2/
j2
/
�
u
�
�
Hs1;0

mix
. 2�j2s2kukHs1 ;s2

mix
;

�
�
�
.I �Q.1/

j1
/˝ I

�
u
�
�
H0;s2

mix
. 2�j1s1kukHs1 ;s2

mix
;
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leads to

�
�.Pj1;j2 � Pj1�1;j2 /

�
I ˝ .I �Q

.2/
j2
/
�
u
�
�
H . 2�j1s1�j2s2kukHs1 ;s2

mix
;

�
�.Pj1;j2 � Pj1;j2�1/

�
.I �Q.1/

j1
/˝ I

�
u
�
�
H . 2�j1s1�j2s2kukHs1 ;s2

mix
:

(20)

Similarly, from the continuity

kPj1;j2ukH . kukH
and

�
�
�
.I �Q.1/

j1
/˝ .I �Q.2/

j2
/
�
u
�
�
H . 2�j1s1�j2s2kukHs1;s2

mix
;

we deduce

�
�Pj1;j2

�
.I �Q

.1/
j1
/˝ .I �Q

.2/
j2
/
�
u
�
�
H . 2�j1s1�j2s2kukHs1 ;s2

mix
: (21)

With (20) and (21) at hand, we can estimate each of the eight different terms which
yields the desired error estimate

�
�.P

j1;j2
�

Q
j1;j2

/u
�
�
H . 2�j1s1�j2s2kukHs1;s2

mix
:

�
Now, we arrive at our main result which proves optimal convergence rates.

Theorem 2. The solution (16) and (17), respectively, of the combination technique
satisfies the error estimate

ku � OuJ kH .
(
2�J minfs1=�;s2�gkukHs1 ;s2

mix
; if s1=� 6D s2�;

2�Js1=�
p
J kukHs1;s2

mix
; if s1=� D s2�;

for all 0 < s1 � p1 and 0 < s2 � p2 provided that u 2 Hs1;s2
mix .

Proof. In view of (15), we have

ku � OuJ k2H D
�
�
�
�
�

X

j1�Cj2=�>J
P
j1;j2

u

�
�
�
�
�

2

H
:

The Galerkin orthogonality implies the relation

�
�
�
�
�

X

j1�Cj2=�>J
P
j1;j2

u

�
�
�
�
�

2

H



X

j1�Cj2=�>J

�
�P

j1;j2
u
�
�2
H:
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Thus, we arrive at

ku � OuJ k2H .
X

j1�Cj2=�>J

�
�

Q
j1;j2

u
�
�2
H C

X

j1�Cj2=�>J

�
�.P

j1;j2
�

Q
j1;j2

/u
�
�2
H:

We bound the first sum on the right hand side in complete analogy to [10] from
above by

X

j1�Cj2=�>J

�
�

Q
j1;j2

u
�
�2
H .

X

j1�Cj2=�>J
2�2j1s1�2j2s2kuk2Hs1;s2

mix

.

8
<

:

2�2J minfs1=�;s2�gkuk2Hs1;s2
mix
; if s1=� 6D s2�;

2�2Js1=�J kuk2Hs1 ;s2
mix
; if s1=� D s2�:

Likewise, with the help of Lemma 2, the second sum on the right hand side is
bounded from above by

X

j1�Cj2=�>J

�
�.P

j1;j2
�Q

j1;j2
/u
�
�2
H .

X

j1�Cj2=�>J
2�2j1s1�2j2s2kuk2Hs1;s2

mix

.

8
<

:

2�2J minfs1=�;s2�gkuk2Hs1;s2
mix
; if s1=� 6D s2�;

2�2Js1=�J kuk2Hs1;s2
mix
; if s1=� D s2�;

which, altogether, yields the desired error estimate. �

7 Numerical Results

We now validate our theoretical findings by numerical experiments. Specifically, we
will apply the combination technique for the three examples which were mentioned
in Sect. 2. To this end, we consider the most simple case and choose ˝1 D ˝2 D
.0; 1/, i.e., n1 D n2 D 1. The ansatz spaces V .1/

j and V .2/
j consist of continuous,

piecewise linear ansatz functions on an equidistant subdivision of the interval .0; 1/
into 2j subintervals. This yields the polynomial exactnesses r1 D r2 D 2. For the
sake of notational convenience, we set � D .0; 1/ � .0; 1/.
Example 1. First, we solve the variational problem

find u 2 L2.�/ such that a.u; v/ D `.v/ for all v 2 L2.�/
where

a.u; v/ D
Z

�
˛.x; y/u.x; y/v.x; y/ d.x; y/
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and

`.v/ D
Z

�
f .x; y/v.x; y/ d.x; y/: (22)

The underlying operator A is the multiplication operator

.Au/.x; y/ D ˛.x; y/u.x; y/

which is of the order 0. Hence, we have the energy space H D L2.�/ and the related
spaces of assumed stronger regularity are Hs1;s2

mix D H
s1;s2
mix .�/. If the multiplier

˛.x; y/ is a smooth function, then A arbitrarily shifts through the Sobolev scales
which implies the condition (18) due to Remark 1.

Let the solution u be a smooth function such that u 2 Hs1;s2
mix for given s1; s2 � 0,

which holds if the right hand side f is sufficiently regular. Then, the best possible
approximation rate for the present discretization with piecewise linear ansatz
functions is obtained for s1 D r1 D 2 and s2 D r2 D 2, i.e., for Hs1;s2

mix D H2;2
mix.�/.

Thus, the regular sparse tensor product space

OV 1
J D

M

j1Cj2�J
W

.1/
j1

˝W
.2/
j2

D
X

j1Cj2DJ
V
.1/
j1

˝ V
.2/
j2
: (23)

(cf. (8)) is optimal for the discretization, see [10] for a detailed derivation. In
particular, with Theorem 2, the combination technique yields the error estimate

ku � OuJ kL2.�/ . 4�J
p
J kuk

H
2;2
mix .�/

:

For our numerical tests, we choose

˛.x; y/ D 1C.xCy/2; f .x; y/D ˛.x; y/u.x; y/; u.x; y/D sin.�x/ sin.�y/:

The resulting convergence history is plotted as the red curve in Fig. 2. As can be
seen there, the convergence rate 4�J

p
J , indicated by the dashed red line, is indeed

obtained in the numerical experiments.

Example 2. This example concerns the stationary heat conduction in the domain �.
In its weak form, it is given by the variational problem

find u 2 H1
0 .�/ such that a.u; v/ D `.v/ for all v 2 H1

0 .�/

where

a.u; v/ D
Z

�
˛.x; y/

�
@u

@x
.x; y/

@v

@x
.x; y/C @u

@y
.x; y/

@v

@y
.x; y/

�

d.x; y/
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case of the first and second
example

and `.v/ as in (22). The underlying operator A is the elliptic second order
differential operator

.Au/.x; y/ D � div.x;y/
�
˛.x; y/r.x;y/u.x; y/

�

and maps the energy space H D H1
0 .�/ bijectively onto its dual H0 D H�1.�/.

Recall that now the spaces of assumed stronger regularity are Hs1;s2
mix D H1

0 .�/ \
H
s1C1;s2
mix .�/ \Hs1;s2C1

mix .�/.
Since the domain � is convex, the second order boundary value problem under

consideration is H2-regular, which implies that A W H1
0 .�/ \H2.�/ ! L2.�/ is

also bijective. By interpolation arguments, we thus find that A W H1;0
mix ! .H0/1;0mix is

continuous and bijective since

L2.�/ � .H0/1;0mix � H�1.�/ and H1
0 .�/ \H2.�/ � H1;0

mix � H1
0 .�/:

Likewise,A W H0;1
mix ! .H0/0;1mix is continuous and bijective. Hence, the condition (18)

holds again due to Remark 1 and Lemma 1 applies.
Again, the regular sparse tensor product space (23) is optimal for the present

discretization with piecewise linear ansatz functions. Consequently, Theorem 2
implies as the best possible convergence estimate

ku � OuJ kH1.�/ . 2�J
p
J kuk

H
2;1
mix.�/\H1;2

mix.�/

provided that u 2 H
2;1
mix.�/ \ H

1;2
mix.�/. Here, we exploited that H1;1

mix D H1
0 .�/ \

H2;1
mix.�/ \ H1;2

mix.�/. Nevertheless, in general, we only have u 2 H2.�/ 6�
H2;1

mix.�/ \ H1;2
mix.�/. Thus, due to H3=2;1=2

mix .�/ \H
1=2;3=2
mix .�/ � H2.�/, one can

only expect the reduced convergence rate
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ku � OuJ kH1.�/ . 2�J=2
p
J kukH2.�/:

In our particular numerical computations, we use

˛.x; y/ D 1C .x C y/2; u.x; y/ D sin.�x/ sin.�y/;

f .x; y/ D @a

@x
.x; y/

@u

@x
.x; y/C @a

@y
.x; y/

@u

@y
.x; y/ � ˛.x; y/u.x; y/:

Therefore, due to u 2 H2;1
mix.�/ \ H1;2

mix.�/, we should observe the convergence
rate 2�J

p
J . The computational approximation errors are plotted as the blue graph

in Fig. 2. The dashed blue line corresponds to 2�J
p
J and clearly validates the

predicted convergence rate. We even observe the slightly better rate 2�J which can
be explained by the fact that the solution u is even inH2;2

mix.�/, see [1] for the details.

Example 3. We shall finally consider the variational problem

find u 2 L2.0; 1/ ˝H1
0 .0; 1/ such that a.u; v/ D `.v/ for all v 2 L2.0; 1/˝H1

0 .0; 1/

where

a.u; v/ D
Z

�
˛.x; y/

@u

@y
.x; y/

@v

@y
.x; y/ d.x; y/

and `.v/ is again given as in (22). The underlying operator A is the elliptic
differential operator

.Au/.x; y/ D � @

@y

�

˛.x; y/
@

@y
u.x; y/

�

:

Its energy space is H D L2.0; 1/˝H1
0 .0; 1/ � H0;1

mix.�/ with dual H0 D L2.0; 1/˝
H�1.0; 1/. Here, the spaces of assumed stronger regularity coincide with Hs1;s2

mix D
�
L2.0; 1/˝H1

0 .0; 1/
�\H

s1;s2C1
mix .�/.

The operator A shifts as a operator Hs1;s2C1
mix ! .H0/s1;s2C1mix for arbitrary s1; s2 �

0 provided that the coefficient ˛ is smooth enough. Thus, Theorem 2 holds and
predicts the best possible convergence estimate for our underlying discretization
with piecewise linear ansatz functions if u lies in the space H2;2

mix.�/.
According to the theory presented in [10], the optimal cost complexity with

respect to the generalized sparse tensor product spaces OV �
J is obtained for the choice

� 2
�r

n1

n2
;

r
r1

r2 � 1



D Œ1;
p
2�:

In order to be able to compare the convergence rates instead of the cost complexities
for different choices of � , we have to consider the generalized sparse tensor product
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spaces OV �

J
, where J WD �J . Then, for all the above choices of � , we essentially

expect the convergence rate

ku � OuJ k
H
0;1
mix.�/

. 2�J=�kuk
H
2;2
mix .�/


 2�J kuk
H
2;2
mix .�/

while the degrees of freedom of OV �

J
essentially scale like 2J=� 
 2J . This setting is

employed in our numerical tests, where we further set

˛.x; y/ D 1C .x C y/2; u.x; y/ D sin.�x/ sin.�y/;

f .x; y/ D @a

@y
.x; y/

@u

@y
.x; y/ � ˛.x; y/

@2u

@y2
.x; y/:

We apply the combination technique for the particular choices

• � D 1, which yields an equilibration of the unknowns in all the extremal tensor
product spaces W .1/

j1
˝W

.2/

J�j1�2 ,
• � D p

2, which yields an equilibration of the approximation in all the extremal
tensor product spaces W .1/

j1
˝W

.2/

J�j1�2 , and

• � D p
3=2, which results in an equilibrated cost-benefit rate, see [2, 10] for the

details.

The computed approximation errors are found in Fig. 3, where the red curve
corresponds to � D 1, the black curve corresponds to � D p

2, and the blue
curve corresponds to � D p

3=2. In the cases � D 1 and � D p
2, we achieve

the predicted convergence rate 2�J which is indicated by the dashed black line.
In the case � D p

2 the predicted convergence rate is only 2�J
p
J which is also

confirmed by Fig. 3.
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8 Conclusion

In the present paper, we proved the convergence of the combination technique in
a rather general set-up. Especially, we considered the combination technique in
generalized sparse tensor product spaces. We restricted ourselves here to the case of
twofold tensor product domains. Nevertheless, all our results can straightforwardly
be extended to the case of generalized L-fold sparse tensor product spaces by
applying the techniques from [11, 25]. Then, of course, the constants hidden by
the “
”-notation will depend on the given dimension L.
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Fast Discrete Fourier Transform on Generalized
Sparse Grids

Michael Griebel and Jan Hamaekers

Abstract In this paper, we present an algorithm for trigonometric interpolation
of multivariate functions on generalized sparse grids and study its application for
the approximation of functions in periodic Sobolev spaces of dominating mixed
smoothness. In particular, we derive estimates for the error and the cost. We
construct interpolants with a computational cost complexity which is substantially
lower than for the standard full grid case. The associated generalized sparse grid
interpolants have the same approximation order as the standard full grid inter-
polants, provided that certain additional regularity assumptions on the considered
functions are fulfilled. Numerical results validate our theoretical findings.

1 Introduction

In many application areas of numerical simulation, like e.g. physics, chemistry,
finance and statistics, high-dimensional approximation problems arise. Here, a
conventional numerical approach encounters the so-called curse of dimensionality
[4], i.e. the rate of convergence with respect to the number of degrees of freedom
deteriorates exponentially with the dimension n. For example a conventional
discretization on uniform grids with O.2L/ points in each direction would involve
M D O.2nL/ degrees of freedom. Moreover, only a convergence rate of the type
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kf � f FG
L kHr � c �M� s�rn kf kHs

can be achieved, where k � kHr is the usual Sobolev norm in Hr , s denotes the
isotropic smoothness of f and c is a constant which may depend on n and the
underlying domain˝ but not on the discretization parameter L.

So-called sparse grid based approaches have emerged as useful techniques
to tackle higher dimensional problems, since they open the possibility to break
the curse of dimensionality under certain conditions. They date back to [47].
For example, if f is in a Sobolev space of bounded mixed smoothness Ht

mix.˝/,
i.e. if the t-th mixed derivatives of f are bounded, and ˝ is a product domain, an
error estimate of the type

kf � f SG
L kHr � c � 2�.t�r/LLn�1kf kHt

mix

can be achieved using so-called regular sparse grids where O.2LLn�1/ degrees of
freedom are involved.1 Here, the rate of convergence with respect to the number
of degrees of freedom does no longer exponentially deteriorate with the number n
of dimensions, except for the logarithmic terms Ln�1. Moreover, in specific cases,
the use of so-called energy-norm based sparse grids [6] may even result in an error
estimate of type

kf � f ESG
L kHr � c � 2�.t�r/Lkf kHt

mix
;

where only O.2L/ degrees of freedom are involved. Hence, compared to the regular
sparse grid case even the logarithmic terms Ln�1 are eliminated.2

For the discretization with sparse grids, Galerkin type methods, finite difference
approaches and the so-called combination technique have been developed over the
last two decades [6]. Furthermore, these approaches were used in the context of
moderate higher-dimensional elliptic, parabolic and hyperbolic differential equa-
tions. In addition, sparse grid techniques were successfully applied for the solution
of integral equations [25], for quadrature [14], for regression [12] and for time series
prediction [5]. Moreover, the sparse grid method was supplemented with adaptive
refinement schemes [5, 14, 22], was used for the construction of anisotropic sparse
tensor product spaces [20, 21] and was applied in the context of weighted mixed
spaces [19, 22]. Sparse grid based collocation schemes were for example discussed
in [2, 26, 29, 30, 33, 39]. They recently found widespread use in the important field
of uncertainty quantification [38]. On a theoretical level, sparse grids are closely

1Here, in case of the best linear approximation, estimates of type kf � f SG
L kHr .

2�.t�r/LL.n�1/=2kf kHt
mix

and even of type kf �f SG
L kHr . 2�.t�r/Lkf kHt

mix
could be achieved

for certain types of basis sets [25, 34, 49]. This holds, e.g. for wavelets and the Fourier basis,
respectively.
2The constants in the cost and accuracy estimates still depend on n, though.
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related to ANOVA-like decompositions [11, 16, 27] which are well-known from
statistics. A detailed survey on sparse grids is for example given in [6].

Note that the adaption of the sparse grid techniques to Fourier based methods
is done by means of Fourier polynomials from the hyperbolic cross and hence
sparse grid methods are also known under the name hyperbolic cross approximation
[43, 48]. The properties of such approximations of functions in Sobolev spaces on
the n-dimensional torus Tn have been studied by several authors [7,9,15,31,32,34,
36, 41, 44, 45, 48]. In particular, spaces of generalized mixed Sobolev smoothness

Ht;r
mix.T

n/ WD
(

f W
v
u
u
t
X

k2Zn

nY

dD1
.1C jkd j/2t .1C jkj1/2r j Ofkj2 < 1

)

and a specific generalization of the regular sparse grid spaces based on Fourier
polynomials eik

T x with frequencies k from the generalized hyperbolic cross

� T
L WD

(

k 2 Z
n W

nY

dD1
.1C kd / � .1C jkj1/ � L.1�T /

)

were introduced in [34], further discussed in [23, 24, 27, 35] and a generalization
to Banach spaces is given in [8]. Here, T 2 Œ�1; 1/ is an additional parameter
that controls the mixture of isotropic and mixed smoothness: The case T D 0

corresponds to the conventional hyperbolic cross (or regular sparse grid). In that case
for example the Hr -error of the best linear approximate f HC

L in the conventional
hyperbolic cross discretization space of a function in a periodic Sobolev space
of dominated mixed smoothness Ht;r .Tn/ is of order O.2�tL/, where O.2LLn�1/
frequencies are involved. Furthermore, the case T D �1 corresponds to the full
grid, the case T ! 1 corresponds to a latin hypercube and the case 0 < T < 1

resembles energy-norm based sparse grids where the order of the amount of
included frequencies does not depend on the number of dimensions n, i.e. it is
O.2L/. But let us note here that it is in general not clear, if the approximation
error of an interpolant exhibits the same convergence rates as that of the best linear
approximation.

In this paper, we now mainly deal with trigonometric interpolation on generalized
sparse grids and its application for the approximation of multivariate functions in
certain periodic Sobolev spaces of bounded mixed smoothness. For functions on the
torus, regular sparse grid interpolation methods based on the fast Fourier transform
were for example introduced by Hallatschek in [26] and also discussed in [3,15,30,
31, 36, 44]. For example, for a function in a Korobov space of mixed smoothness
t > 1 it is proved in [26] that the approximation error in the maximum norm of
its regular sparse grid interpolant is of the order O.2�L.t�1/Ln�1/ and in [15] a
(suboptimal) upper bound estimate of the same order is shown for the approximation
error in the L2 norm. Here, the involved degrees of freedom are of the order
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O.2LLn�1/ and the computational cost complexity is of the order3 O.2LLn/. Based
on the results of [48] it was furthermore shown in [36, 37] that the approximation
error in the Hr -norm of the interpolant associated with a regular sparse grid is of
the order O.2�.t�r/LLn�1/, if the function is in a periodic Sobolev space Ht

mix with
t > 1

2
.

In this work, we present an extension of the algorithm of Hallatschek given
in [26] to the case of interpolation on the generalized sparse grids as introduced
in [23]. We will further study its best linear approximation error and will give
cost complexity estimates for functions in different variants of periodic Sobolev
spaces of dominating mixed smoothness. Moreover, for functions of mixed Sobolev
smoothness Ht

mix, we will show estimates for the approximation error of the
interpolant in the Hr -norm. To our knowledge this has been done so far only
for the regular sparse grid case T D 0, but not yet for the case of generalized
sparse grids with 0 < T < 1, which resemble the energy-norm based sparse
grids. Note further that the behavior of the approximation error of the interpolant
versus the computational complexity of the interpolant is of practical interest. This
holds especially with possible applications in the field of uncertainty quantification
in mind. Therefore, we give also estimates for its computational complexity.
Altogether, it turns out that under specific conditions the order rates of the error
complexity and computational complexity are independent of the dimension n of
the function. For example, let f 2 H2

mix.T
n/ and let us measure the approximation

error in the H1-norm, where T
n denotes the n-dimensional torus. Then, an error

of the order O.2�L/ and a computational complexity of the order O.2LL/ can be
achieved4 for interpolants corresponding to a generalized sparse grid with 0<T < 1

2

for any dimension n.
The remainder of this paper is organized as follows: In Sect. 2 we introduce the

fast Fourier transform on general sparse grids with hierarchical bases. In particular,
we will recall the conventional Fourier basis representation of periodic functions
in Sect. 2.1 and the so-called hierarchical Fourier basis representation in Sect. 2.2.
Furthermore, in Sect. 2.3, we will present generalized sparse grids and discuss
the construction and application of associated trigonometric interpolation operators
and computational complexities. In Sect. 3 we will introduce different variants of
periodic Sobolev spaces and will discuss their associated best linear approximation
error in Sect. 3.2, the approximation error of the trigonometric general sparse grid
interpolants in Sect. 3.3 and its overall complexities in Sect. 3.4. Then, in Sect. 3.5,
we will give some short remarks on further generalizations of sparse grids like,
e.g. periodic Sobolev spaces with finite-order weights and dimension-adaptive
approaches. In Sect. 4 we will apply our approach to some test cases. Finally we
give some concluding remarks in Sect. 5.

3We here do not have O.2LLn�1/ but we have O.2LLn/ since oneL stems from the computational
complexity of the one-dimensional FFT involved.
4Here, also the L stems from the involved FFT algorithm.
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2 Fourier Transform on General Sparse Grids
with Hierarchical Bases

To construct a trigonometric interpolation operator for generalized sparse grids,
we will follow the approach of Hallatschek [26]. To this end, we will first recall
the conventional Fourier basis and then introduce the so-called hierarchical Fourier
basis and its use in the construction of a generalized sparse grid interpolant.

2.1 Fourier Basis Representation

First, let us shortly recall the usual Fourier basis representation of periodic functions.
To this end, let T

n be the n-torus, which is the n-dimensional cube T
n � R

n,
T D Œ0; 2��, where opposite sides are identified. We then have n-dimensional
coordinates x WD .x1; : : : ; xn/, where xd 2 T. We define the basis function
associated with a multi index k D .k1; : : : ; kn/ 2 Z

n by

!k.x/ WD
 

nO

dD1
!kd

!

.x/ D
nY

dD1
!kd .xd /; !k.x/ WD eikx: (1)

The set f!kgk2Zn is a complete orthogonal system of the space L2.Tn/ and hence
every f 2 L2.Tn/ has the unique expansion

f .x/ D
X

k2Zn
Ofk!k.x/; (2)

where the Fourier coefficients are given by

Ofk WD 1

.2�/n

Z

Tn

!�k .x/f .x/ dx: (3)

Note that it is common to characterize the smoothness classes of a function f by
the decay properties of its Fourier coefficients [28]. In this way, we introduce the
periodic Sobolev space of isotropic smoothness as

Hr .Tn/ WD
(

f .x/ D Ofk!k.x/ W kf kHr WD
s
X

k2Zn
.1C jkj1/2r j Ofkj2 < 1

)

for r 2 R.
Let us now define finite-dimensional subspaces of the space L2.Tn/ D H0.Tn/

for discretization purposes. To this end, we set
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� W N0 ! Z W j 7!
(

�j=2 if j is even;

.j C 1/=2 if j is odd:
(4)

For l 2 N0 we introduce the one-dimensional nodal basis

Bl WD f�j g0�j�2l�1 with �j WD !�.j / (5)

and the corresponding spaces Vl WD spanfBlg. For a multi index l 2 N
n
0 we define

finite-dimensional spaces by a tensor product construction, i.e. Vl WD Nn
dD1 Vld .

Finally, we introduce the space5

V WD
X

l2Nn
Vl:

In the following we will shortly recall the common one-dimensional trigonomet-
ric interpolation. Let the Fourier series

P
k2Z Ofk!k be pointwise convergent to f .

Then, for interpolation points Sl WD fm2�

2l
W m D 0; : : : ; 2l � 1g of level l 2 N0,

the interpolation operator can be defined by

Il W V ! Vl W f 7! Ilf WD
X

j2Gl
Of .l/
j �j

with indices Gl WD f0; : : : ; 2l � 1g and discrete nodal Fourier coefficients

Of .l/
j WD 2�l

X

x2Sl
f .x/��j .x/: (6)

This way, the 2l interpolation conditions

f .x/ D Ilf .x/ for all x 2 Sl

are fulfilled. In particular, from (6) and (2) one can deduce the well-known aliasing
formula

Of .l/
j D

X

k2Z
Ofk2�l

X

x2Sl
!��.j /.x/!k.x/ D

X

m2Z
Of�.j /Cm2l : (7)

Next, let us consider the case of multivariate functions. To this end, let the Fourier
series

P
k2Zn Ofk!k be pointwise convergent to f . Then, according to the tensor

5Except for the completion with respect to a chosen Sobolev norm, V is just the associated Sobolev
space.
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product structure of the n-dimensional spaces, we introduce the n-dimensional
interpolation operator on full grids as

Il WD Il1 ˝ � � � ˝ Iln W V ! Vl W f 7! Ilf D
X

j2Gl

Of .l/
j �j;

with

Gl WD Gl1 � � � � � Gln � N
n
0

and multi-dimensional discrete nodal Fourier coefficients

Of .l/
j WD 2�jlj1

X

x2Sl

f .x/��j .x/; (8)

where

Sl WD Sl1 � � � � � Sln � T
n:

Similar to (7) it holds the multi-dimensional aliasing formula

Of .l/
j D

X

m2Zn
Of�.j/Cm2l ; (9)

where �.j/ WD .�.j1/; : : : ; �.jn// and m 2l WD �
m12

l1 ; : : : ; mn2
ln
�
.

2.2 One-Dimensional Hierarchical Fourier Basis
Representation

Now we discuss a hierarchical variant of the Fourier basis representation. Let us first
consider the one-dimensional case. To this end, we introduce an univariate Fourier
hierarchical basis function for j 2 N0 by

 j WD
(
�0 for j D 0,

�j � �2l�1�j for 2l�1 � j � 2l � 1, l � 1,
(10)

and we define the one-dimensional hierarchical Fourier basis including basis
functions up to level l 2 N0 by

Bh
l WD f j g0�j�2l�1:
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Let us further introduce the difference spaces

Wl WD
(

spanfBh
0g for l D 0;

spanfBh
l n Bh

l�1g for l > 0:

Note that it holds the relation Vl D spanfBlg D spanfBh
l g for all l 2 N0.

Thus, we have the direct sum decomposition Vl D Ll
vD0 Wl . Now, let l 2 N0

and u 2 Vl . Then, one can easily switch from the hierarchical representation
u D P

0�j�2l�1 u0j j to the nodal representation u D P
0�j�2l�1 uj �j by a linear

transform. For example for l D 0; 1; 2; 3, the corresponding de-hierarchization
matrices read as

�
1
�
;

�
1 �1
0 1

�

;

0

B
B
@

1 �1 0 �1
0 1 �1 0

0 0 1 0

0 0 0 1

1

C
C
A ;

0

B
B
@

1 �1 0 �1 0 0 0 �1
0 1 �1 0 0 0 �1 0
0 0 1 0 0 �1 0 0
0 0 0 1 �1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

C
C
A ;

respectively. For all l 2 N0 the de-hierarchization matrix can be easily inverted and
its determinant is equal to one. Here, the corresponding hierarchization matrices
read as

�
1
�
;

�
1 1

0 1

�

;

0

B
B
@

1 1 1 1

0 1 1 0

0 0 1 0

0 0 0 1

1

C
C
A ;

0

B
B
@

1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

C
C
A ;

for l D 0; 1; 2; 3 respectively. Simple algorithms with cost complexity O.2l / for
hierarchization and de-hierarchization are given in [26].

Let us now define an operator

MIl WD .Il � Il�1/ W V ! Wl; for l � 0;

where we set I�1 D 0. Note that the image of MIl is a subspace of Wl . Hence,
we define the corresponding hierarchical Fourier coefficients Mfj by the unique
representation

MIlf D
X

0�v<l

X

j2Jv
. Of .l/
j � Of .l�1/

j /�j C
X

j2Jl
Of .l/
j �j D

X

j2Jl
Mfj j (11)

with
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Jv WD
(

f0g for v D 0,

f2v�1; : : : ; 2v � 1g for v � 1:
(12)

Moreover, we can write the interpolation operator associated with a level l in
the form

Ilf D .Il � Il�1 C Il�1 � � � � � I0 C I0 � I�1/f

D . MIl C � � � C MI0/f
D

X

0�v�l

X

j2Jv
Mfj j D

X

0�j�2l�1
Mfj j :

In particular, let us note that the following interpolation relation holds:

MIlf .x/ D f .x/ for all x 2 Sh
l

and

MIlf .x/ D 0 for all x 2 Sl�1;

where

Sh
l WD Sl n Sl�1;

with S�1 WD ;.
For l 2 N0 it follows by the definitions (10) and (11) the equation

X

0�v<l

X

j2Jv
. Of .l/
j � Of .l�1/

j /�j C
X

j2Jl
Of .l/
j �j D �

X

0�v<l

X

j2Jv
Mf2l�1�j �j C

X

j2Jl
Mfj �j

and with it for j 2 Jl that the hierarchical Fourier coefficient Mfj is equal to the

discrete nodal Fourier coefficient Of .l/
j associated with level l . Hence in the case

l 2 N0, j 2 Jl we obtain the relation

Mfj D Of .l/
j D

X

m2Z
Of�.j /Cm2l (13)

with the help of the aliasing formula (7).
Let us remark that the one-dimensional standard Fourier basis representation is

sufficient to define multi-dimensional full grids, but the hierarchical Fourier basis
representation is indeed necessary for the definition of sparse grids.
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2.3 Generalized Sparse Grids

Now we consider the case of multivariate functions. Here, we use a tensor product
ansatz to construct n-dimensional basis functions as well as spaces. This way, we
set  j WD Nn

dD1  jd and Wl WD Nn
dD1 Wld for l 2 N

n
0 . In particular, we have the

direct sum decomposition

V D
M

l2Nn
Wl:

Moreover, we define WI WD L
l2I Wl for an index set I � N

n
0 . For the

general sparse grid construction, we restrict ourselves to index sets, which obey
the following condition [14, 26]: An index set I � N

n
0 is called admissible if it

holds the relation

fv 2 N
n
0 W v � lg � I; (14)

for all l 2 I. Here, the inequality v � w is to be understood componentwise, i.e.
v � w W, vd � wd for all 1 � d � n. Now, for an admissible index set I, we
define generalized sparse grid spaces by

VI WD
X

l2I
Vl D

M

l2I
Wl D WI : (15)

Due to property (14) of I we are able to introduce the corresponding general sparse
grid trigonometric interpolation operator by

II WD
X

l2I
MIl W V ! VI ; where MIl WD MIl1 ˝ � � � ˝ MIln W V ! Wl:

This way, the associated set of interpolation points is given by

SI WD
[

l2I
Sh

l ;

where

Sh
l WD Sh

l1
� � � � � Sh

ln
:

Let us note that this general sparse grid construction includes generalized sparse
grids as introduced in [23], i.e. we may employ for I the index set

ITL WD fl W jlj1 � T jlj1 � .1 � T /Lg; T < 1: (16)
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Hence also full grids, i.e. I�1L D fl W jlj1 � Lg and conventional sparse grids,
i.e. IL WD I0L D fl W jlj1 � Lg of level L 2 N0 are covered as special cases.
For a function f with a pointwise convergent Fourier series, the multi-dimensional
hierarchical coefficients Mfj are given by the unique representation

MIlf D
X

j2Jl

Mfj j;

where

Jl WD Jl1 � � � � � Jln :

In particular, the hierarchical Fourier series

X

l2Nn0

X

j2Jl

Mfj j (17)

converges pointwise to f on all grids Sl, l 2 N
n
0 . Furthermore, with the help of

the multi-dimensional aliasing formula (9) a relation similar to (13) can easily be
deduced, that is, for l 2 N

n
0 and j 2 Jl, it holds

Mf .l/
j D Of .l/

j D
X

m2Zn
Of�.j/Cm2l : (18)

According to definition (15) of the general sparse grid space VI , we can estimate
its number of degrees of freedom by

jVI j .
X

l2I
2jlj1 : (19)

Starting from relation (19) the following complexity estimate is shown in the case
of the general index sets ITL of (16) in [23, 24]:

Lemma 1. LetL 2 N0 and T < 1. The number of degrees of freedom of the general
sparse grid spaces VITL with respect to the discretization parameter L is

ˇ
ˇ
ˇVITL

ˇ
ˇ
ˇ .

X

l2ITL
2jlj1 .

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

2L for 0 < T < 1;

2LLn�1 for T D 0;

2
L T�1
T=n�1 for T < 0;

2Ln for T D �1:

(20)

Furthermore, analogously to the well-known case of a multi-dimensional discrete
Fourier transform, we can utilize the tensor product structure of the underlying
spaces and operators to efficiently compute the general sparse grid interpolant
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Algorithm 1 A procedure analog to [26] to apply the general sparse grid interpo-
lation operator II for a given admissible index set I and given interpolation values
fuj 2 Cgj2Jl;l2I associated to the general sparse grid interpolation points SI . The
algorithm works in-place on the given input coefficients, where we use an additional
temporary array to perform the involved one-dimensional FFTs

for d D 1 to n do
for all l 2Md do

for all j 2 Jl1 � � � � � Jld�1 � J0 � JldC1
� � � � � Jln do

One-dimensional FFT for .uj1 ;:::;jd�1;0;jdC1;:::;jn ; : : : ; uj1;:::;jd�1;2
ld

�1;jdC1;:::;jn
/

Hierarchization for .uj1 ;:::;jd�1;0;jdC1;:::;jn ; : : : ; uj1;:::;jd�1;2
ld

�1;jdC1;:::;jn
/

end for
end for

end for
// At this stage, the hierarchical Fourier coefficients are given in fujgj2Jl ;l2I .
for d D n to 1 do

for all l 2Md do
for all j 2 Jl1 � � � � � Jld�1 � J0 � JldC1

� � � � � Jln do
De-hierarchization for .uj1 ;:::;jd�1;0;jdC1;:::;jn ; : : : ; uj1;:::;jd�1;2

ld
�1;jdC1;:::;jn

/

end for
end for

end for
// Finally, the non-hierarchical sparse grid Fourier coefficients are given in fujgj2Jl ;l2I .

IIf for a f 2 V . Here, the multi-dimensional transformation is expressed in
terms of one-dimensional discrete Fourier transforms, hierarchizations and de-
hierarchizations of different size, cf. [26] and Algorithm 1. Note that the application
of a fast Fourier transform algorithm for the computation of a one-dimensional
discrete Fourier transform of length 2l results in a computational complexity
of order O.l2l /. Note furthermore that the complexity for a one-dimensional
hierarchization or de-hierarchization of length 2l is of linear order O.2l /. In
this way, one can give an upper estimate of the order O.2jlj1 jlj1/ for the overall
computational complexity in the case of a full grid Vl.

In Algorithm 1 we give a procedure to apply the general sparse grid interpolation
operator II associated to an admissible index set I, where we define for d 2
f1; : : : ; ng the set

Md .I/ WD fl 2 I W l C ed … Ig;

with the d -th unit vector ed . Now, an upper estimate for the resulting overall
computational complexity T ŒII � of Algorithm 1 can be easily deduced in the form

T ŒII � .
nX

dD1

X

l2Md .I/
2ld ld 2

jlj1�ld D
nX

dD1

X

l2Md .I/
2jlj1 ld �

nX

dD1
lmax

X

l2Md .I/
2jlj1

� nlmax

X

l2I
2jlj1 ; (21)
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where lmax WD maxl2I jlj1. Note that the inverse operator I�1I can easily computed
by performing the algorithm in a reverse way [26]. In the case of the general
sparse grid index sets ITL , relation (21) and Lemma 1 lead directly to the following
computational complexity estimate:

Lemma 2. Let L 2 N0 and T < 1. An upper estimate for the computational
complexity of the general sparse grid interpolation operator IITL with respect to
the discretization parameter L is given by

T ŒIITL � . L
X

l2ITL
2jlj1 .

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

L2L for 0 < T < 1;

L2LLn�1 for T D 0;

L2
L T�1
T=n�1 for T < 0;

L2Ln for T D �1:

Let us remark that the case T D 0 is already presented in [26], i.e. T ŒIIL � D
O.Ln2L/. Note in particular that both, the asymptotic number of degrees of
freedom of V T

L in Lemma 1 and the asymptotic computational complexity of IITL
in Lemma 2, are not exponentially dependent on the dimension n in the case
0 < T < 1 (see footnote 2).

Let us finally note that, alternatively, the interpolation operator II can be applied
using the so-called combination technique or the blending scheme [3,13,34]. For an
admissible index set I it holds

IIf D
X

l2I
rI.l/Ilf; (22)

where

rI.l/ WD
X

v2f0;1gn
.�1/jvj�I.l C v/;

with the characteristic function

�I.l/ WD
(
1 for l 2 I;
0 otherwise.

The computational complexity of the combination technique (22) can be esti-
mated by

T ŒII � .
X

l2I;rI.l/¤0
2jlj1 jlj1:
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3 Approximation Estimates

In this section, we first define different variants of (periodic) Sobolev spaces on
the torus via Fourier series, i.e. we classify functions via the decay of their Fourier
coefficients and hence by their smoothness. Then, we give approximation estimates
for these spaces. Here, we will first discuss the best linear approximation error and
then the approximation error of the interpolant. Based on the derived estimates we
further study the resulting error and cost complexities.

3.1 Periodic Sobolev Spaces

As already noted in Sect. 2.1 we characterize the smoothness classes of a function f
by the decay properties of its Fourier coefficients [28]. To this end, let w W Zn ! RC
be a continuous and positive weight. Then we define

Hw.T
n/ WD

(

f .x/ D
X

k2Zn
Ofk!k.x/ W kf kw WD

s
X

k2Zn
w.k/2j Ofkj2 < 1

)

: (23)

Here, e.g. for r; t 2 R the weights

w.k/ D �iso.k/r ; where �iso.k/ WD 1C jkj1;

and

w.k/ D �mix.k/t ; where �mix.k/ WD
nY

dD1
.1C jkd j/;

result in the conventional isotropic Sobolev spaces Hr [1] and in the standard
Sobolev spaces with dominating mixed smoothness Ht

mix [42], respectively. A fur-
ther example is the multiplicative combination of these weights, i.e.

w.k/ D �iso.k/r�mix.k/t ;

which leads to generalized Sobolev spaces of dominating mixed smoothness [23]

Ht;r
mix.T

n/ WD
(

f .x/ D
X

k2Zn
Ofk!k.x/ W

kf kHt;r
mix

WD
s
X

k2Zn
.�mix.k/t�iso.k/r /

2 j Ofkj2 < 1
)

: (24)
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In particular, these spaces include the conventional spaces as special cases, i.e.

Hr .Tn/ D H0;r
mix.T

n/ and Ht
mix.T

n/ D Ht;0
mix.T

n/;

respectively. Hence, the parameter r from Eq. (24) governs the isotropic smooth-
ness, whereas t governs the mixed smoothness. The spaces Ht;r

mix give us a quite
flexible framework for the study of problems in Sobolev spaces.

Moreover, the spaces Ht;r
mix.T

n/ can be generalized to the case of n-dimensional
smoothness parameters t; r 2 R

n with r � 0 [24]. To this end, for t; r 2 R
n with

r � 0 we set w.k/ D �
.t/
mix.k/�

.r/
iso.k/, where

�
.t/
mix.k/ WD

nY

dD1
.1C jkd j/td and �

.r/
iso.k/ WD

nX

dD1
.1C jkd j/rd

and introduce the spaces

Ht;r
mix.T

n/ WD
(

f .x/ D
X

k2Zn
Ofk!k.x/ W

kf kHt;r
mix

WD
s
X

k2Zn

	
�
.t/
mix.k/�

.r/
iso.k/


2 j Ofkj2 < 1
)

: (25)

In this way, for r � 0 the spaces Ht;r
mix are up to norm equivalency6 special cases of

the spaces Ht;r
mix, i.e.Ht;r

mix D H.t;:::;t /;.r;:::;r/
mix . We use the short form Hr WD H0;r

mix and
Ht

mix WD Ht;0
mix.

Furthermore, following [46, 50], for a set of weights � WD f�ugu
f1;:::;ng with
�u � 0 and a weight function w we introduce a weighted periodic Sobolev space by

H�
w .T

n/ WD
(

f .x/ D
X

k2Zn
Ofk!k.x/ W

kf kH�
w

WD
v
u
u
t

X

u
f1;:::;ng

1

�u

X

l2˝u

X

j2Jl

w.�.j//2j Of�.j/j2 < 1
)

; (26)

where

6For r � 0 we could also use the weight
Qn
dD1.1 C jkd j/t

�Pn
dD1.1C jkd j/r

�
instead of

Qn
dD1.1C jkd j/t .1C jkj1/r to define the space Ht;r

mix. This weight is equal to the special case

�
.t;:::;t/
mix .k/�.r;:::;r/iso .k/ and hence also the associated spaces Ht;r

mix and H.t;:::;t/;.r;:::;r/
mix would be equal.

However, many of the given proofs would get more technical and thus for reasons of simplicity we
restrict ourselves to the definition (24)



90 M. Griebel and J. Hamaekers

˝u WD fl 2 N
n
0 W ld D 0 for all d 2 f1; : : : ; ng n ug :

Let us remark that the orthogonal decomposition

f D
X

u
f1;:::;ng
fu; with fu WD

X

l2˝u

X

j2Jl

Of�.j/!�.j/ (27)

is well-known in statistics under the name ANOVA (analysis of variance) [10],
where fu in particular depends on the coordinates fxd gd2u only. Note that for
f 2 H�

w the weight �u prescribes the importance of the term fu and hence the
importance of different dimensions and of correlations between dimensions. In
particular for a weight �u ! 0 the norm kfukHw is forced to be zero. If the size
of terms kfukHw decays fast with e.g. juj, then a proper restriction onto certain
lower dimensional functions results in a substantial reduction in computational
complexity. For example a set of weights �q WD f�ugu
f1;:::;ng with �u D 0 for
all u � f1; : : : ; ng, juj > q results in a periodic Sobolev space of finite-order q,
cf. [46, 50, 51]. Thus, all terms fu with juj > q are either not present at all or
can be neglected due to the decay with juj. Then, the problem of approximating
a n-dimensional function reduces to the problem of approximating q-dimensional
functions.

Note further that the introduced periodic Sobolev spaces, i.e. Ht;r
mix.T

n/,
Ht;r

mix.T
n/ and H�

w , can be straightforward generalized to the case of many-particle
spaces [17–19, 27].

3.2 Best Linear Approximation Error

In the following, we will consider the error of the best linear approximation in
finite-dimensional general sparse grid discretization spaces. Here, we will restrict
ourselves to some specific Sobolev spaces of dominating mixed smoothness.

For l 2 N
n
0 we define an approximation operatorQl with respect to the L2-norm

by

Ql WD Ql1 ˝ : : :˝Qln W L2.Tn/ ! Vl;

where

Ql W L2.T/ ! Vl W f 7!
X

0�j�2l�1
Of�.j /�j :

For an admissible index set I, as introduced in Sect. 2.3, we define a general sparse
grid approximation operatorQI W L2.Tn/ ! VI by

QIf WD
X

l2I

X

j2Jl

Of�.j/!�.j/:
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Now let us consider two weight functions w and Qw with associated Sobolev
spaces Hw and HQw and norms kf kHw and kf kH

Qw , respectively. It should hold
Hw �HQw �L2 and thus w.k/ . Qw.k/. Then, let us consider f 2 Hw.T

n/ � L2.Tn/
with the unique representation f D Ofk!k. Now, if maxl2ZnnI;j2Jl

Qw.�.j//2
w.�.j//2 < 1, we

obtain for the best linear approximation in VI the estimate

inf
Qf 2VI

kf � Qf k2H
Qw

� kf �QIf k2H
Qw

D k
X

l2ZnnI

X

j2Jl

Of�.j/!�.j/k2H
Qw

D
X

l2ZnnI

X

j2Jl

Qw.�.j//2j Of�.j/j2

D
X

l2ZnnI

X

j2Jl

Qw.�.j//2
w.�.j//2

j Of�.j/j2w.�.j//2

�
�

max
l2ZnnI;j2Jl

Qw.�.j//2
w.�.j//2

� X

l2ZnnI

X

j2Jl

j Of�.j/j2w.�.j//2

�
�

max
l2ZnnI;j2Jl

Qw.�.j//2
w.�.j//2

�X

l2Zn

X

j2Jl

j Of�.j/j2w.�.j//2

D
�

max
l2ZnnI;j2Jl

Qw.�.j//2
w.�.j//2

�

kf k2Hw
: (28)

This general result allows us to derive error estimates for a wide range of situations.
We shortly consider two specific cases, namely the pairings .Ht 0;r 0

mix ;H
t;r
mix/ and

.Hr ;Ht
mix/.

First, for the linear approximation in general sparse grid spaces VITL with the

index ITL set given in (16) the following error estimate for functions in optimized
Sobolev spaces of dominating mixed smoothness Ht;r

mix can be derived:

Lemma 3. For L 2 N0, T < 1, t 0 C r 0 < t C r , t � t 0 � 0 and f 2 Ht;r
mix.T

n/ it
holds:

inf
Qf 2VITL

kf � Qf kHt0 ;r0

mix
� kf �QITL f kHt0 ;r0

mix

.
(
2L..r

0�r/�.t�t 0/C.T .t�t 0/�.r 0�r// n�1
n�T /kf kHt;r

mix
for T � r 0�r

t�t 0 ;
2L..r

0�r/�.t�t 0//kf kHt;r
mix

for T � r 0�r
t�t 0 :

Proof. According to (28), the estimation of

max
l2ZnnI;j2Jl

�mix.�.j//t
0

�iso.�.j//r
0

�mix.�.j//t�iso.�.j//r

leads to the desired result, see also [24, 27]. �
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Second, for t � 1 we can define an anisotropic admissible index set by

It
L WD fl 2 N

n
0 W

nX

dD1
td ld � Lg;

see also [20, 21]. Then, the following error estimate can be derived analogously to
Lemma 3:

Lemma 4. For L 2 N0, t > 0, f 2 Ht
mix, jtjmin � r > 0 and with t0 WD t

jt jmin
, where

jtjmin WD minndD1 td , it holds:

inf
Qf 2VIt0

L

kf � Qf kHr � kf �QIt0
L
f kHt

mix
. 2�.jtjmin�r/kf kHt

mix
:

Note that, for e.g. t1 D jtjmin < t2 � : : : � tn, the number of degrees of freedom
jVIt0

L
j is of order O.2L/, which then results in an overall complexity rate which is

independent of the number of dimensions n.
So far we have considered the best linear approximation of a function. However,

its coefficients are given by Fourier integrals (3), which can only be evaluated
by analytic formulae in special cases. In practice, one possibility to compute an
approximation to the best linear approximation, is the numerical calculation of the
interpolant of the function. Here, however, it is in general not clear if the associated
approximation error exhibits the same convergence rate as that of the best linear
approximation. This issue will be discussed in the next section.

3.3 Approximation Error of Interpolant

In the following we will consider the error of the approximation by trigonometric
interpolation. To this end, let us first recall the following two lemmata:

Lemma 5. For L 2 N0, f 2 Hs , s > n
2

and 0 � r < s it holds:

kf � II�1

L
f kHr . 2�.s�r/Lkf kHs : (29)

Lemma 6. For L 2 N0, f 2 Ht
mix, t > 1

2
and 0 � r < t it holds:

kf � II0Lf kHr . 2�.t�r/LLn�1kf kHt
mix
: (30)

Let us remark that analogous lemmata are given in [36, 37] based on the works of
[40,48], respectively. We give proofs based on the estimation of the aliasing error in
the appendix.
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Next, we will extend Lemma 6 to the case of general sparse grids. To this end,
we will estimate the hierarchical surplus. Let f 2 Hw obey a pointwise convergent
(hierarchical) Fourier series. Then, the relation

kf � IIf kH
Qw D k

X

l2Nn0

X

j2Jl

Mfj j �
X

l2I

X

j2Jl

Mfj jkH
Qw

D k
X

l2Nn0nI

X

j2Jl

Mfj jkH
Qw

�
X

l2Nn0nI
k
X

j2Jl

Mfj jkH
Qw

holds. By definition of the hierarchical basis we obtain

k
X

j2Jl

Mfj jk2H
Qw

D k
X

j2Jl

X

v2f0;1gn
Mfj

nO

dD1
�
�
ld
vd
.jd /

k2H
Qw

D
X

j2Jl

X

v2f0;1gn;l�v�0

j Mfjj2 Qw.�.�l
v.j///

2

D
X

j2Jl

X

v2f0;1gn;l�v�0

ˇ
ˇ
ˇ
ˇ
ˇ

X

m2Zn
Of�.j/Cm 2l

ˇ
ˇ
ˇ
ˇ
ˇ

2

Qw.�.�l
v.j///

2

D
X

j2Jl

X

v2f0;1gn;l�v�0

ˇ
ˇ
ˇ
ˇ
ˇ

X

m2Zn
Of�.j/Cm 2l

w.�.j/C m 2l/

w.�.j/C m 2l/

ˇ
ˇ
ˇ
ˇ
ˇ

2

Qw.�.�l
v.j///

2;

where �l0.j / D j ,

�l1.j / D
(

�1 if l � 0;

2l � 1 � j if l � 1;

�l
v D .�l1v1 ; : : : ; �

ln
vn
/ and ��1 D 0. With Cauchy-Schwarz it follows

ˇ
ˇ
ˇ
ˇ
ˇ

X

m2Zn
Of�.j/Cm 2l

w.�.j/C m 2l/

w.�.j/C m 2l/

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
 
X

m2Zn

ˇ
ˇ
ˇ Of�.j/Cm2l w.�.j/C m 2l/

ˇ
ˇ
ˇ
2

! 
X

m2Zn
w.�.j/C m 2l/�2

!

(31)

and hence it holds
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k
X

j2Jl

Mfj jk2H
Qw

�
X

j2Jl

X

v2f0;1gn;l�v�0

 
X

m2Zn

ˇ
ˇ
ˇ Of�.j/Cm 2l

ˇ
ˇ
ˇ
2 ˇ
ˇw.�.j/C m 2l/

ˇ
ˇ2
!

�

�
 
X

m2Zn
w.�.j/C m 2l/�2

!

Qw.�.�l
v.j///

2:

Now, let us assume that there is a function g W Nn0 ! R such that it holds

Qw.�.�l
v.j///

2
X

m2Zn

ˇ
ˇw.�.j/C m 2l/

ˇ
ˇ�2 � C2g.l/2 (32)

for all j 2 Jl and v 2 f0; 1gn; l � v � 0 with a constant C independent of j and v.
Then, with jf0; 1gnj D 2n, we have

k
X

j2Jl

Mfj jkH
Qw � 2nCg.l/

0

@
X

j2Jl

X

m2Zn
j Of�.j/Cm2l j2w.�.j/C m 2l/2

1

A

1
2

. g.l/kf kHw

and hence

kf � IIf kH
Qw .

X

l2Nn0nI
g.l/kf kHw : (33)

Let us now consider the approximation error in the Hr -norm for approximating
f 2 Ht

mix in the sparse grid space VITL by interpolation. To this end, let us first recall
the following upper bound:

Lemma 7. For L 2 N0, T < 1, r < t and t � 0 it holds:

X

l2Nn0nITL
2�t jlj1Cr jlj1 .

(
2�..t�r/C.T t�r/ n�1

n�T /LLn�1 for T � r
t
;

2�.t�r/Lkf kHt
mix

for T < r
t
:

Proof. A proof is given in Theorem 4 in [34]. �

Now, we can give the following lemma:

Lemma 8. Let L 2 N0, T < 1, r < t , t > 1
2

and f 2 Ht
mix with a pointwise

convergent Fourier series. Then it holds:

kf � IITL f kHr .
(
2�..t�r/C.T t�r/ n�1

n�T /LLn�1kf kHt
mix

for T � r
t
;

2�.t�r/Lkf kHt
mix

for T < r
t
:

(34)
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Proof. For t > 1
2
, j 2 Jl and v 2 f0; 1gn with l � v � 0 it follows the relation

X

m2Zn

nY

dD1
.1C j�.j /Cmd2

ld j/�2t .
X

m2Zn

nY

dD1

�
2ld .1C jmd j/��2t

. 2�2t jlj1
X

m2Zn

nY

dD1
.1C jmd j/�2t

. 2�2t jlj1

and hence

.1C j�.�l
v.j//j1/2r

X

m2Zn

nY

dD1
.1C j�.j /Cmd2

ld j/�2t . 2�t jlj1Cr jlj1 :

According to (32) and (33) this yields

kf � IITL f kHr .
X

l2Nn0nITL
2�t jlj1Cr jlj1 kf kHt

mix

and with Lemma 7 we obtain the desired result. �

Let us remark that for regular sparse grids, i.e. T D 0, there is a difference
in the error behavior between the best approximation and the approximation by
interpolation. That is, in the L2-norm error estimate for the interpolant resulting
from Lemma 8 with t > 1

2
, r D 0 and T D 0, there is a logarithmic factor present,

i.e.Ln�1. In contrast, for the best linear approximation error in the L2-norm, there is
no logarithmic term Ln�1 involved according to Lemma 3 with t > 0, t 0D r 0D rD 0

and T D 0.

3.4 Convergence Rates with Respect to the Cost

Now, we cast the estimates on the degrees of freedom and the associated error of
approximation by interpolation into a form which measures the error with respect
to the involved degrees of freedom. In the following, we will restrict ourselves to
special cases, where the rates are independent of the dimension:

Lemma 9. Let L 2 N0, 0 < r < t , t > 1
2
, 0 < T < r

t
, and f 2 Ht

mix with a
pointwise convergent Fourier series. Then it holds:

kf � IITL f kHr . M�.t�r/kf kHt
mix
;

with respect to the involved number of degrees of freedom M WD jVITL j.
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Proof. This is a simple consequence of the Lemmata 1 and 8. First, we use the
relation (20), that is

M D jVITL j � c1.n/ � 2L

for 0 < T < r
t
, which results in 2�L � c1.n/M

�1. We now plug this into (34), i.e.
into the relation

kf � IITL f kHr � c2.n/ � 2�L.t�r/ � kf kHt
mix

and arrive at the desired result with the order constant C.n/ D c1.n/
t�r � c2.n/. �

Analogously, we can measure the error with respect to the computational complex-
ity, which results in the following upper estimate:

Lemma 10. For 0 < r < t , t > 1
2
, 0 < T < r

t
, and f 2 Ht

mix with a pointwise
convergent Fourier series, it holds:

kf � IITL f kHr . R�.t�r/ log.R/t�rkf kHt
mix
;

with respect to the involved computational costs R WD T ŒIITL �.

Proof. This is a simple consequence of the Lemmata 2 and 8. Analogously to the
proof of Lemma 9 the relation kf � IITL f kHr . R�.t�r/Lt�rkf kHt

mix
, can been

shown, which yields the desired result. �

Note that in [18] a result analogous to Lemma 9 is shown in the case of measuring
the best linear approximation error with respect to the involved degrees of freedom.

Finally, let us discuss shortly two cases of regular sparse grids with involved
logarithmic terms. First, again a simple consequence of the Lemmata 2 and 8 is that
for L 2 N0, t > 1

2
and f 2 Ht

mix with a pointwise convergent Fourier series it holds
the relation

kf � II0Lf kL2 . M�tL.tC1/.n�1/kf kHt
mix

. M�t log.M/.tC1/.n�1/kf kHt
mix
:

(35)
Second, for the case 1

2
< t � 1 the relation

kf �II0Lf kH1 . M�.t�1/L.t�1/.n�1/kf kHt
mix

. M�.t�1/ log.M/.t�1/.n�1/kf kHt
mix

(36)
can be derived.

3.5 Further Generalizations of Sparse Grids

In the following we will give some brief remarks on periodic Sobolev spaces with
finite-order weights and dimension-adaptive approaches.
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3.5.1 Finite-Order Spaces

First, we consider so-called periodic Sobolev spaces with finite-order weights.
These spaces are a special case of the weighted periodic Sobolev space H�

w , which
we introduced in Sect. 3.1 by Definition (26). Let us recall from Sect. 3.1 that a
set of weights �q D f�ugu
f1;:::;ng is denoted to be of finite order q 2 N0, if it
holds �u D 0 for all �u 2 � with juj > q. Note that there are

�
n
q

�
. nq possible

subsets u � 1; : : : ; n of order q. Therefore, the problem of the approximation of a
n-dimensional function f 2 H�q

w .T
n/ is reduced to the problem of the approx-

imation of O.nq/ functions of dimension q. Hence, in that case the curse of
dimensionality can be broken and in particular for w.k/ D �iso.k/r�mix.k/t the
previous lemmata can be straightforwardly adapted, compare also [27].

3.5.2 Dimension-Adaptive Approach

So far we considered admissible index sets ILT and their associated generalized
sparse grid spaces VILT , which are chosen such that the corresponding a-priori
estimated approximation error for all functions in a specific function class of
dominating mixed smoothness is as small as possible for a given amount of degrees
of freedom [6]. The goal of a so-called dimension-adaptive approach is to find an
admissible index set such that the corresponding approximation error for a single
given function is as small as possible for a prescribed amount of degrees of freedom.
To this end, a scheme similar to that given in [14] for dimension-adaptive quadrature
could be applied.

Such a scheme starts with an a-priori chosen small admissible index set, e.g.
I.0/ D f0g. The idea is to extend the index set successively such that the index
sets remain admissible and that an error reduction as large as possible is achieved.
To this end, a so called error indicator is computed for each index l 2 N

n
0 and

its associated subspace Wl. In the case of approximation by interpolation we use
the hierarchical surplus to derive an error indicator [29], e.g. �l D jPj2Jl

Mfj�jj
with appropriate norm. For further details of the dimension-adaptive sparse grid
approximation algorithm we refer to [5, 14, 29].

Let us note furthermore that in [16] a relation between the dimension-adaptive
sparse grid algorithm and the concept of ANOVA-like decompositions was estab-
lished. There, it was also shown that general sparse grids correspond to just a
hierarchical approximation of the single terms in the ANOVA decomposition (27)
see also [11, 22, 38].

Note finally that various locally adaptive sparse grid approaches exist [6, 12, 29]
which are based on hierarchical multilevel sparse grid techniques. But, together with
fast discrete Fourier transforms, they are not easy to apply at all.
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4 Numerical Experiments and Results

We implemented the generalized sparse grid trigonometric interpolation operator II
for general admissible index sets I � N

n
0 according to Algorithm 1 in a software

library called HCFFT. This library also includes the functionality for the application
of dimension-adaptive approaches. In addition to the fast discrete Fourier transform,
which we deal with in this paper, it includes actually the following variants: fast
discrete sine transform, fast discrete cosine transform and fast discrete Chebyshev
transform.

In the following, we present the results of some numerical calculations performed
by the HCFFT library. We restrict ourselves to the case of the FFT based application
of the interpolation operator ITL . Here, we in particular study the dependence of the
convergence rates on the number of dimensions for the regular sparse grid case
T D 0 and the energy-norm like sparse grid case T > 0. To this end, we consider
the approximation by interpolation of functions in the periodic Sobolev spaces of
dominating mixed smoothness Ht

mix.T
n/. As test cases we use the functions

Gp W Tn ! R W x 7!
nO

dD1
gp.xd /

with

gp W T ! R W x 7! Np � .2C sgn.x � �/ � sin.x/p/

for p D 1; 2; 3; 4. Here, sgn denotes the sign function, i.e.

sgn.x/ WD

8
ˆ̂
<

ˆ̂
:

�1 x < 0;

0 x D 0;

1 x > 0

andNp denotes a normalization constant such that kgpkL2 D 1. Note that for 	 > 0

we have gp 2 H 1
2Cp�	.T/ and thus Gp 2 H

1
2Cp�	
mix .Tn/. In particular, the L2- and

H1-error can be computed by analytic formulae and the relative L2-error is equal
to the absolute L2-error, i.e. kGp � IITLGpkL2=kGpkL2 D kGp � IITLGpkL2 . Let
us note these test functions are of simple product form, but the decay behavior of
its Fourier coefficients reflects that of the considered Sobolev spaces of dominating
mixed smoothness. The numerical results for more complicated functions of non-
product structure from these Sobolev spaces were basically the same.

For validation we first performed numerical calculations in the one dimensional
case for Gp with p D 1; 2; 3; 4. We show the measured error versus the number
of degrees of freedom in Fig. 1. To estimate the respective convergence rates, we
computed a linear least square fit to the results of the three largest levels. This
way, we obtained rates of values about 1:50, 2:50, 3:51 and 4:40, respectively,
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Fig. 1 Convergence behavior for approximating the functions Gp 2 H
1C2p
2 �	

mix by trigonometric
interpolation on regular spare grids, i.e. kGp � II0LGpkL2 versus jVI0L j. Left: case of n D 1.
Right: case of n D 3
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Fig. 2 Convergence behavior for approximating the function G2 2 H
5
2 �	

mix by trigonometric
interpolation on regular spare grids. Left: case of relative/absolute L2-error, i.e. kG2 � II0LG2kL2 .

Right: case of relative H1-error, i.e. kG2 � II0LG2kH1 =kG2kH1

which coincide with the theoretically expected rates in the one-dimensional case,
cf. Lemmata 1 and 8. Then, we performed calculations for the three dimensional
case. The values p D 1; 2; 3; 4 result in numerically measured convergence rates
of about 1:25, 1:87, 2:83 and 3:90, respectively. Moreover, for the approximation
of the test functions G2 for up to six dimensions by trigonometric interpolation on
regular sparse grids, we observe that the rates indeed decrease with the number of
dimensions, see Fig. 2. For example in case of the L2-error the rates deteriorate
from a value of 2:50 for n D 1 to a value of 1:56 for n D 6. All calculated rates
are given in Table 1. Note that this decrease in the rates with respect to the number
of dimensions is to be expected from theory, since the cost and error estimates in
Lemmata 1 and 8 involve dimension-dependent logarithmic terms for the regular
sparse grid case, i.e. for T D 0. We additionally give in Table 1 the computed rates
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Table 1 Numerically measured convergence rates with respect to the number of degrees of
freedom according to the relative L2-norm error and the relative H1-norm for the approximation
of the function G2 2 H5=2�	

mix by trigonometric interpolation on regular spare grids, i.e. T D 0

n D 1 n D 2 n D 3 n D 4 n D 5 n D 6

L2-norm 2:50 2:17 1:87 1:73 1:60 1:56

L2-norm / L.
5
2

C1/.n�1/
2:50 2:55 2:49 2:55 2:60 2:76

H1-norm 1:50 1:38 1:30 1:23 1:19 1:15

H1-norm / L.
5
2

�1/.n�1/
1:50 1:57 1:51 1:48 1:55 1:44

In addition, we present the rates according to the relative error divided by the respective logarithmic
term versus the number of degrees of freedom, see also estimates (35) and (36)
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Fig. 3 Convergence behavior for approximating the function G2 2 H5=2�	
mix by the general sparse

grid interpolation operator IITL with respect to the relative H1-error. Left: case of T D 1
8
. Right:

case of T D 1
4

associated to the relative errors divided by the respective logarithmic term versus
the number of degrees of freedom. Here, the derived values fit quite well to the rates
which could be expected from theory, that is, 2:5 and 1:5 for the error measured in
the L2-norm and the H1-norm, respectively.

Note that according to Lemma 9, we can get rid of the logarithmic terms in
some special cases. For example, if we measure the error of the approximation of
G2 by the general sparse grid interpolant IITLG2 in the H1-norm, then Lemma 9

leads with r D 1, t D 5
2

� 	 to a convergence rate of 3
2

� 	 for 0 < T < 2
3C2	 .

Hence, we performed numerical calculations for the generalized sparse grids with
T D 1

8
and T D 1

4
. The obtained errors are plotted in Fig. 3. The results show

that the rates are substantially improved compared to the regular sparse grid case.
We give all measured rates in Table 2. Note that we still observe a slight decrease
of the rates with the number of dimensions. This is surely a consequence of the
fact that we are still in the pre-asymptotic regime for the higher-dimensional cases.
Note furthermore that the constant involved in the complexity estimate in Lemma 9
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Table 2 Numerically measured convergence rates with respect to the number of degrees of

freedom for the approximation of the function G2 2 H5=2�	
mix by trigonometric interpolation on

generalized spare grids with 0 < T < 2
3

Error T n D 1 n D 2 n D 3 n D 4 n D 5 n D 6

H1 1
8

1:50 1:44 1:39 1:29 1:28 1:27

H1 1
4

1:50 1:41 1:36 1:39 1:37 1:49

Table 3 Numerically measured convergence rates with respect to the number of degrees of

freedom of the approximation of the function G1 2 H3=2�	
mix by trigonometric interpolation on

regular and generalized spare grids

Error T n D 3 n D 4

H1 0:0 0:45 0:42

H1 1
8

0:47 0:44

H1 1
4

0:49 0:47
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Fig. 4 Convergence behavior for the approximation of the functionG1 2 H3=2�	
mix by trigonometric

interpolation on generalized spare grids, i.e. kG1 � IITL G1kL2 versus jVITL j, where the error is

measured in the relative H1-error, i.e. kG1 � IITL G1kH1 =kG1kH1

probably depends exponentially on the number n of dimensions. This explains the
offset of the convergence with rising n in Fig. 3.

In [34] it is noted that the involved order constant in the convergence rate estimate
for the case 0 < T < 1 is typically increasing with n and T and it is in particular
larger than in the case of regular sparse grids with T D 0. In contrast, under certain
assumptions, the convergence rate is superior in the case 0 < T < 1 to that of the
regular sparse grid with T D 0. Hence, in the pre-asymptotic regime, the effects of
constants and order rates counterbalance each other a bit in practice. For example,
let us consider the H1-error of the interpolant IITLG1 for T D 0; 1

8
; 1
4

and n D 3; 4.
The associated computed rates are given in Table 3. Here, a break-even point can be
seen from our numerical results depicted in Fig. 4, i.e. for n D 4 the computed H1-
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error is slightly smaller in the case T D 1
4

than in the cases T D 0 and T D 1
8

for
a number of involved degrees of freedom greater than about jVITL j � 106. A similar

effect is also present, albeit barely visible, for n D 3 and jVITL j � 105. Nevertheless,
in any case, the various rates are nearly the same anyway and these differences are
quite small.

5 Concluding Remarks

In this article, we discussed several variants of periodic Sobolev spaces of domi-
nating mixed smoothness and we constructed the general sparse grid discretization
spaces VITL . We gave estimates for their number of degrees of freedom and the best

linear approximation error for multivariate functions in Ht;r
mix.T

n/ and Ht
mix.T

n/. In
addition, we presented an algorithm for the general sparse grid interpolation based
on the fast discrete Fourier transform and showed its computational cost and the
resulting error estimates for the general sparse grid interpolant IITL of functions in
Ht

mix.T
n/. Specifically, we identified smoothness assumptions that make it possible

to choose IITL in such a way that the number of degrees of freedom is O.2L/
compared to O.2LLn�1/ and O.2nL/ for the regular sparse grid and full grid
spaces, respectively, while keeping the optimal order of approximation. For this
case, we also showed that the asymptotic computational cost complexities rates are
independent of the number of dimensions. The constants involved in the O-notation
may still depend exponentially on n however.

Let us finally note that we mainly discussed the sparse grid interpolation operator
IITL in the present paper. However, our implemented software library HCFFT allows
us to deal with discretization spaces associated with arbitrary admissible index sets
and in particular also features dimension-adaptive methods. Furthermore, discrete
cosine, discrete sine and discrete Chebyshev based interpolation can be applied. We
presently work on its extension to polynomial families which are commonly used in
the area of uncertainty quantification [38]. We will discuss these approaches and its
applications in a forthcoming paper.
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Appendix

In the following, we will give proofs for Lemmata 5 and 6 based on the estimation
of the aliasing error.

Let f 2 Hw obey a pointwise convergent Fourier series. Then, it holds the
relation
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kf � IIf kH
Qw D kf � IIf CQIf �QIf kH

Qw

� kf �QIf kH
Qw C kIIf �QIf kH

Qw :
(37)

For the first term of the right hand side, an upper bound can be obtained according
to (28). For the second term, it holds with (22) the relation7

kIIf �QIf kH
Qw D k

X

l2I
rI.l/Ilf �QIf kH

Qw D k
X

l2I
rI.l/.Il �Ql/f kH

Qw

.
X

l2I;rI.l/¤0
k.Il �Ql/f kH

Qw :

With the help of the aliasing formula (9) and the Cauchy-Schwarz inequality, we
obtain for l 2 N

n
0 the relation

kIlf �Qlf k2H
Qw

D k
X

j2Jl

. Of .l/
j � Of�.j//�jk2H

Qw

D
X

j2Jl

j Of .l/
j � Of�.j/j2 Qw.�.j//2

D
X

j2Jl

j
X

m2Znnf0g
Of�.j/Cm 2l j2 Qw.�.j//2

D
X

j2Jl

j
X

m2Znnf0g
Of�.j/Cm 2l w.�.j/C m 2l/j2 Qw.�.j//2

w.�.j/C m 2l/2

�
X

j2Jl

0

@
X

m2Znnf0g
j Of�.j/Cm 2l j2jw.�.j/C m 2l/j2

1

A�

�
0

@
X

m2Znnf0g
jw.�.j/C m 2l/j�2

1

A Qw.�.j//2 (38)

Let us assume that there is a function F W Nn0 ! R such that it holds

Qw.�.j//2
X

m2Znnf0g
jw.�.j/C m 2l/j�2 � cF.l/2 (39)

for all j 2 Jl with a constant c independent of j. Then, (38) yields

7Note that analogously to (22) for II , it holds QIf DP
l2I rI.l/Qlf .
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k.Il �Ql/f k2H
Qw

� cF.l/2
X

j2Jl

0

@
X

m2Znnf0g
j Of�.j/Cm 2l j2jw.�.j/C m 2l/j2

1

A

. F.l/2kf k2Hw
;

and altogether we obtain

kIIf �QIf kH
Qw .

X

l2I;rI.l/¤0
F.l/kf kHw

.
�

max
l2I;rI.l/¤0

F.l/
�
0

@
X

l2I;rI.l/¤0
1

1

A kf kHw :

(40)

Let us now consider the approximation error in the Hr -norm for interpolating
f 2 Hs , s > n

2
in the full grid space VI�1

L
and 0 � r < s. According to (39), we

may estimate

X

m2Znnf0g
.1C j�.j/C m 2l/j1/�2s . 2�2sjljmin

X

m2Znnf0g
.1C jmj1/�2s

. 2�2sjljmin
X

m2N
..mn � .m � 1/n/jmj�2s

. 2�2sjljmin
X

m2N
m�2sCn�1

. 2�2sjljmin

for all j 2 Jl. With (37), Lemma 3 and (40) we finally obtain

kII�1

L
f � f kHr . 2�.s�r/Lkf kHs ; (41)

which proves Lemma 5.
Now, we consider the approximation error in the Hr -norm for interpolating f 2

Ht
mix, t > 1

2
in the sparse grid space VIL and 0 � r < t . Here, according to (39),

we may estimate

X

m2Znnf0g

nY

dD1
.1C j�.jd /Cmd2

ld j/�2t . 2�2t jlj1
X

m2Znnf0g

nY

dD1
.1C jmd j/�2t

. 2�2t jlj1 :

With (37), Lemma 3, the identity
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IIL D
n�1X

dD0
.�1/d

 
n � 1

d

!
X

jlj1DL�d
Il

and (40), we finally obtain

kIILf � f kHr . 2�.t�r/Lkf kHt
mix

0

@
X

l2IL;rIL .l/¤0
1

1

A

. 2�.t�r/LLn�1kf kHt
mix
; (42)

which proves Lemma 6. This is in particular a special case of Lemma 8. Let us
finally remark that the estimates (41) and (42) are also shown in [36, 37] based on
the works of [40] and [48], respectively.
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46. I. Sloan, X. Wang, H. Woźniakowski, Finite-order weights imply tractability of multivariate

integration. J. Complex. 20(1), 46–74 (2004)
47. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of

functions. Soviet Math. Dokl. 4, 240–243 (1963) [Russian original in Dokl. Akad. Nauk SSSR
148, 1042–1045 (1963)]

48. V. Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1993)
49. T. von Petersdorff, C. Schwab, Numerical solution of parabolic equations in high dimensions.

Math. Model. Numer. Anal. 38, 93–127 (2004)
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Dimension-Adaptive Sparse Grid Quadrature
for Integrals with Boundary Singularities

Michael Griebel and Jens Oettershagen

Abstract Classical Gaussian quadrature rules achieve exponential convergence
for univariate functions that are infinitely smooth and where all derivatives are
uniformly bounded. The aim of this paper is to construct generalized Gaussian
quadrature rules based on non-polynomial basis functions, which yield exponential
convergence even for integrands with (integrable) boundary singularities whose
exact type is not a-priori known. Moreover, we use sparse tensor-products of these
new formulae to compute d -dimensional integrands with boundary singularities
by means of a dimension-adaptive approach. As application, we consider, besides
standard model problems, the approximation of multivariate normal probabilities
using the Genz-algorithm.

1 Introduction

The approximation of an integral of a function f W ˝.d/ ! R;˝.d/ � R
d

using point-evaluations is an important task in numerical analysis. It is part of
numerous methods and algorithms in almost every scientific area where computers
are employed. Such a quadrature rule takes the general form

Z

˝.d/

f .x/ !.x/ dx �
nX

iD1
wi f .xi /; (1)

where ! W ˝.d/ ! R
C is a positive weight-function, the xi 2 ˝.d/ are the

quadrature nodes and the wi 2 R are the quadrature weights. The quality of such

M. Griebel • J. Oettershagen (�)
Institute for Numerical Simulation, Bonn, Germany
e-mail: griebel@ins.uni-bonn.de; oettershagen@ins.uni-bonn.de

J. Garcke and D. Pflüger (eds.), Sparse Grids and Applications - Munich 2012,
Lecture Notes in Computational Science and Engineering 97,
DOI 10.1007/978-3-319-04537-5__5,
© Springer International Publishing Switzerland 2014

109

mailto:griebel@ins.uni-bonn.de
mailto:oettershagen@ins.uni-bonn.de


110 M. Griebel and J. Oettershagen

an approximation depends on the regularity of f and the specific choice of the
nodes and weights of the quadrature formula. Most quadrature rules are constructed
in such a way that they are exact on a certain finite-dimensional subspace of
L1.˝

.d/; !/, e.g., on the polynomials up to a certain degree.
In this paper we will consider integration over the open unit cube˝.d/ D .0; 1/d

with respect to the uniform Lebesgue measure! 	 1. We treat integrands that might
possess integrable boundary singularities, whose exact type is not a priori known.1

A common approach to deal with boundary singularities in the univariate setting
are variable transformations � W R � Ő ! .0; 1/, such that

Z 1

0

f .x/ dx D
Z

Ő
f ı �.y/ � � 0.y/ dy:

If � is properly chosen, the transformed integrand Of .y/ D f ı �.y/ � � 0.y/
is no longer singular, but decays to zero as y approaches the boundary of Ő .
Popular examples are the tanh [44] and double exponential [32, 45] transforms,
where a truncated trapezoidal rule is applied to Of on Ő D R. Other examples are
the so-called periodization transforms [27, 37, 39, 40], which use a mapping to
Ő D .0; 1/ that makes the resulting integrand periodic. Eventhough these

approaches work very well in the univariate setting, their multivariate versions
suffer from an exponential blowup of the norm of the transformed integrand Of , as
it was pointed out in [27] for the case of periodizing transformations in the context
of lattice rules. Thus it takes exponentially long (in d ), until the good asymptotic
convergence rate kicks in, which makes these approaches very costly for practical
problems in higher dimensions.

For this reason we are not going to apply a trapezoidal rule to the transformed
integrand Of , but rather use a suitable Gaussian rule tailored to the weight function
� 0.y/ on Ő and then map back the associated Gaussian quadrature nodes to the unit
interval .0; 1/. This approach results in a so-called generalized Gaussian quadrature
rule on .0; 1/ that is exact not on a space of polynomials as are conventional
Gaussian rules, but on a 2n-dimensional subspace of univariate singular functions
from L1.0; 1/. Its basis functions are given by powers of certain monotonous
singular functions. We will prove exponential convergence for integrands with
arbitrary algebraic boundary singularities. Moreover, we explicitly compute error
constants for quadrature on .0; 1/ in the Hardy space of functions that are analytic
in the unit disc. In contrast to Gauss-Legendre quadrature, which only achieves an
algebraic rate of convergence, our approach shows an exponential decay of the error.
For the higher dimensional case we then employ these univariate quadrature rules
within a sparse tensor product construction which also exhibits a certain degree of
exactness on tensor products of the univariate singular functions. We give numerical

1Otherwise one could reformulate the problem to integration with respect to a weight function !
that resembles the singularity.
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evidence that, for singular problems in the unit cube, our approach significantly
outperforms the conventional sparse grid quadrature methods which are based
on the Gauss-Legendre or Clenshaw-Curtis rules, respectively. Furthermore, we
use our new method in combination with dimension-adaptive sparse grids for
various standard model problems and for the computation of multivariate normal
probabilities by the Genz-algorithm [12].

The remainder of this article is organized as follows: In Sect. 2 we will
shortly revise the classical (univariate) Gaussian quadrature and its generalization
to Tschebyscheff-systems. Then we introduce certain classes of Tschebyscheff-
systems, whose associated Gaussian quadrature formulae can be described in terms
of classical Gaussian formulae on an unbounded domain Ő and a mapping back
to .0; 1/. This allows for an easy construction of the new generalized Gaussian
quadrature. We give a few examples for this approach and prove error bounds for
a special case which is related to the classical Gauss-Laguerre formula. In Sect. 3
we will introduce sparse tensor products of the new univariate quadrature to deal
with multivariate problems. Here, we specifically employ the dimension-adaptive
approach from [17]. In Sect. 4 we give the results of our numerical experiments.
First, we demonstrate the quality of our generalized Gaussian quadrature formula
in the univariate case for singular problems and quadrature in the Hardy space.
Then we apply it within the dimension-adaptive sparse grid algorithm to several
model problems and to the computation of multivariate normal probabilities using
the algorithm of Genz. We close with some remarks in Sect. 5.

2 A Generalized Gaussian Quadrature Approach

In this section we will introduce a class of generalized Gaussian quadrature rules
that are exact on a certain 2n-dimensional subspace of singular functions on .0; 1/.
First, we shortly recall the basic properties of classical Gaussian quadrature in
the univariate case. Then we generalize it to Tschebyscheff-systems on .0; 1/ and
introduce a framework for which the generalized Gaussian quadrature formula can
be described by a classical Gaussian formula with respect to a certain weight
function on .0;1/ together with a map to .0; 1/. We give examples and an error
estimate for a class of integrands with algebraic singularities at the boundary.

2.1 Classical Gaussian Quadrature

Given an interval ˝ � R and a positive weight function ! W ˝ ! R
C the classical

n-point Gaussian rule is the standard approach to approximate

Z

˝

f .x/!.x/ dx �
nX

iD1
wi f .xi /
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for smooth functions f 2 C2n.˝/. Classical Gaussian quadrature rules are defined
by the property that polynomials up to degree 2n � 1 are integrated exactly (with
respect to the weight function !) with only n quadrature points, i.e.

Z

˝

p.x/!.x/ dx D
nX

iD1
wi p.xi / (2)

for all p 2 spanfxk; k D 0; : : : ; 2n � 1g. It is well known that there can not exist a
quadrature rule that yields a higher degree of polynomial exactness, thus Gaussian
quadrature is optimal in this sense.

Note that (2) is a nonlinear system of 2n equations which defines the nodes
xi and weights wi of the Gaussian quadrature rule. In general, the direct solution
of a nonlinear system is a difficult task. But here one can resort to orthogonal
polynomials and then use their recurrence relation to compute the nodes and weights
of Gaussian quadrature formulae. To this end, we consider the set of polynomials
which are orthogonal with respect to the weighted L2 inner product

hp; qi˝;! D
Z

˝

p.x/q.x/ !.x/ dx:

It is known that for any domain˝ and weight function ! there exists a polynomial
pn of degree n that fulfills

Z

˝

xkpn.x/!.x/ dx D 0 for all k D 0; 1; : : : ; n � 1:

We call pn the n-th degree orthogonal polynomial (with respect to ˝ and !).
Note that the set of all p0; p1; : : : is a complete orthogonal system of L2.˝;!/.
Moreover, pn has exactly n distinct simple roots x1; : : : ; xn 2 ˝ , which turn out to
be the quadrature nodes of the Gaussian formula. This is important because, for any
given weight-function ! on a domain˝ � R, there exists a sequence of orthogonal
polynomials and thus there exists a uniquely determined corresponding Gaussian
quadrature rule. If one knows the coefficients of pn.x/ WD anx

n C an�1xn�1
C : : :C a0 and its zeros x1; : : : ; xn it is easy to compute the corresponding weights
by the formula

wi D an

an�1
hpn�1; pn�1i˝;!
p0n.xi /pn�1.xi /

� 0: (3)

In order to obtain the coefficients and roots of such orthogonal polynomials one
usually employs their recurrence formula to assemble a so-called companion matrix,
whose eigenvalues are the roots of pn. For details see [7, 11].

Now we consider error bounds for classical Gaussian quadrature. First we define
the n-th error functional as

Rn.f / WD
Z

˝

f .x/ !.x/ dx �
nX

iD1
wi f .xi /: (4)
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Because of the Weierstrass approximation theorem and the positivity of the
quadrature weights wi , Gaussian quadrature rules converge for any continuous
function, i.e.

f 2 C0.˝/ ) lim
n!1Rn.f / D 0: (5)

For integrands which possess at least 2n continuous derivatives there is the well-
known error-bound

jRn.f /j � f .2n/.�/

a2n.2n/Š
for some � 2 ˝: (6)

Thus, if for all n 2 N it holds jf .2n/.x/j � Mn.f /8x 2 ˝ where Mn.f /

a2n
is bounded

by a polynomial, the quantity jRn.f /j converges even exponentially to zero.
On the other hand, if the derivatives of f are unbounded on ˝ the bound (6) is

useless. For example, for ˝ D .�1; 1/ and !.x/ D 1 one obtains the well-known
Gauss-Legendre rule, for which the bound (6) takes the form [7]

jRn.f /j � f .2n/.�/ � .nŠ/4

.2nC 1/..2n/Š/3
; � 2 .�1; 1/:

Now consider f .x/ D .1 � x/�˛; ˛ > 0, which is unbounded on ˝ as are all
of its derivatives. In [9, 28] it was shown that the rate of convergence substantially
deteriorates with ˛, i.e.

jRn.f /j D O.n�1C˛/

and we only obtain an algebraic convergence rate of .1 � ˛/ for ˛ < 1, while
for ˛ � 1 the integral does not exist anyway. This simple example shows that
classical Gaussian rules lose their nice convergence properties when it comes to
singular integrands. To deal with such integration problems efficiently, the Gaussian
approach must be properly generalized.

2.2 Generalized Gaussian Quadrature

The aim of this section is to find quadrature rules that achieve a maximum degree
of exactness for systems of functions that are not polynomials, but inherently
possess integrable singularities. To this end, we will use the notion of so-called
Tschebyscheff systems (T-systems) [25].

For nC1 functions'0; : : : ; 'n and nC1 pairwise distinct points t0; : : : ; tn 2 Œa; b�
we define the generalized Vandermonde determinant as
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D.'0; : : : ; 'nI t0; : : : ; tn/ WD det

0

B
B
B
@

'0.t0/ '0.t1/ : : : '0.tn/

'1.t0/ '1.t1/ : : : '1.tn/
:::

:::
: : :

:::

'n.t0/ 'n.t1/ : : : 'n.tn/

1

C
C
C
A

(7)

Definition 1. A set of continuous functions '0; '1; : : : ; 'n is called T-system over a
compact interval Œa; b� iff

D.'0; '1; : : : ; 'nI t0; t1; : : : ; tn/ > 0

for all pairwise distinct t0 < t1 < : : : < tn 2 Œa; b�.
This generalizes the concept of polynomials in the sense that it allows unique
interpolation by cardinal functions and thus every linear combination

Pn
iD0 ci'i .x/

has at most n zeros.
Examples for sets of functions that form a T-system on their respective domains

are of course polynomials f1; x; x2; x3; : : : ; xng, fractional polynomials like
f1;px; x; xp

x; x2; x2
p
x; : : : ; xn=2g or certain radial basis functions like, e.g.,

fexp.� .c0�x/2
�2

/; : : : ; exp.� .cn�x/2
�2

/g for pairwise distinct ci 2 R.
We are now in the position to define the concept of generalized Gaussian

quadrature.

Definition 2 (Generalized Gaussian Quadrature Rule). Let˚ D f'0; : : : ; '2n�1g
be a set of integrable functions on a compact interval Œa; b�, i.e.

R b
a 'i !.x/ dx < 1.

A generalized Gaussian quadrature rule on Œa; b� is a n-point rule that is exact on
˚ , i.e.

nX

iD1
wi 'j .xi / D

Z b

a

'j .x/ dx; for all j D 0; : : : ; 2n � 1: (8)

We have the following result from [25].

Theorem 1. Let ˚ D f'0; : : : ; '2n�1g be a T-system of integrable functions on the
bounded interval Œa; b� ¨ R. Then there exists a generalized Gaussian quadrature
rule with n nodes x1; : : : ; xn 2 .a; b/ and non-negative weights w1; : : : ;wn.

This result was generalized in [29] to the case of (semi-)open intervals.

Theorem 2. If˚ constitutes a T-system on any closed interval Œ Oa; Ob� � .a; b/ � R,
then we call ˚ a T-system on .a; b/ and there exist n nodes x1; : : : ; xn 2 .a; b/ and
non-negative weights w1; : : : ;wn, such that (8) holds.

Moreover, it is also known [19] that generalized Gaussian quadrature formulae are
unique. The determination of a specific generalized Gaussian quadrature formula
involves the problem of finding n nodes .x1; : : : ; xn/ and weights .w1; : : : ;wn/ such
that (8) holds. This is a system of 2n equations in both w 2 R

n and x 2 .a; b/n,
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which is highly non-linear in x1; : : : ; xn. Once more, its solution is in general
a difficult task which is addressed in [29]. To avoid this issue, we will restrict
ourselves in the following to a certain class of T-systems which involves powers
of singular functions. This will allow us to resort to orthogonal polynomials again.

2.3 A Certain Class of Singular Tschebyscheff-Systems

In the following we will restrict ourselves to ˝ D .a; b/ D .0; 1/ for the sake of
simplicity. But all results easily translate to arbitrary finite intervals .a; b/ by affine
linear dilation and translation.

We propose the following T-system on ˝ D .0; 1/, which (as we will see)
possesses a structure that reduces the solution of (8) to a certain classical Gaussian
quadrature rule on Ő D .0;1/.

To this end, let  be a C1.0; 1/ function that fulfills the following conditions:

1.  .0/ D 0 and limx!1  .x/ D 1.
2.
R 1
0
 .x/j dx < 1, for all j 2 N0.

3.  is strictly monotonous increasing, i.e.  0 > 0.

Remark 1. From the conditions (1)–(3) the following results can be derived:

•  W Œ0; 1/ $ Œ0;1/ is a C1-bijection.
• limy!1  �1.y/ D 1.
•
R1
0  0. �1.y//�1 dy D 1.

•  is the inverse of a cumulative distribution function whose underlying distribu-
tion has finite moments on Œ0;1/.

Since polynomials form a T-system over any subset of R, the following lemma
proves, that

'j .x/ WD  .x/j ; j D 0; 1; 2; : : : (9)

is a complete T-system over .0; 1/, if  fulfills the conditions (1)–(3)

Lemma 1. If O'0; : : : ; O'n is a T-system on some domain Ő � R and  W ˝ $ Ő is
a bijection between ˝ � R and Ő , then the set

'j WD O'j ı  W ˝ ! R; j D 0; 1; : : : ; n

is a T-system on ˝ .

Proof. Suppose that there exist pairwise distinct points t0; : : : ; tn 2 ˝ , such that
D.'0; : : : ; 'nI t0; : : : ; tn/ � 0 holds. Because of the bijectivity of  there are
points Otj WD  .tj / 2 Ő , such that D. O'0; : : : ; O'nI Ot0; : : : ; Otn/ � 0, which is a
contradiction to the assumption that O'0; : : : ; O'n is a T-system on Ő . ut
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Next we will describe the relationship between the generalized Gaussian quadrature
with respect to the system ˚ D f .�/j g1jD0 on ˝ D .0; 1/ and classical Gaussian

quadrature on the unbounded domain Ő D .0;1/. To this end, we set

!.y/ WD d

dy
 �1.y/ D 1

 0 . �1.y//
;

which is non-negative on Ő . We know that there exists a sequence of polynomials
p0; p1; p2; : : : on Ő which are orthogonal with respect to !, i.e. hpi ; pj i Ő ;! D ıi;j .

Remark 2. The orthogonality of the pi translates to the set of functions
qj W .0; 1/ ! R

qj .x/ WD pj ı  .x/; j D 0; 1; 2; : : : ;

i.e.
Z 1

0

qi .x/qj .x/ dx D
Z 1

0

pi .y/pj .y/ !.y/dy D ıi;j :

Analogously, the n distinct zeros yj 2 Ő of pn carry over to the zeros xj 2 .0; 1/

of qn as

xj WD  �1.yj /; (10)

since qn.xj / D pn.yj / D 0.

We finally arrive at the following result:

Theorem 3. With ˝ D .0; 1/ and Ő D .0;1/ let  W ˝ ! Ő fulfill the
conditions (1)–(3), and let yj 2 Ő , wj 2 R

C (j D 1; : : : ; n) be the nodes and
weights of the classical Gaussian quadrature rule on Ő with respect to the weight
function !.y/ D d

dy 
�1.y/. Then the quadrature rule

Qn.f / WD
nX

jD1
wj f .xj /; where xj D  �1.yj / 2 .0; 1/; (11)

is exact on the span of ˚ D f'0; : : : ; '2n�1g defined in (9), i.e.

Qn.'j / D
Z 1

0

'j .x/ dx; for j D 0; : : : ; 2n � 1:

Proof. Because of 'k.xj / D ykj and

nX

jD1
wj y

k
j D

Z 1

0

yk!.y/ dy D
Z 1

0

'k.x/ dx
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it holds for k D 0; : : : ; 2n � 1 that

Qn.'k/ D
nX

jD1
wj 'k.xj / D

Z 1

0

'k.x/ dx: ut

By now we have shown that the generalized n-point Gaussian quadrature with
respect to the set of singular functions '0; '1; : : : ; '2n�1 from (9) can simply be
computed by mapping the nodes of a certain classical Gaussian quadrature in .0;1/

back to .0; 1/. Moreover, because of (5) the quadrature rule (11) converges for any
continuous function on .0; 1/. This kind of quadrature rule is especially suited for
integrands on .0; 1/ with a boundary singularity located at x D 1. It is possible to
extend this approach to integrands with singularities at both endpoints of the domain
.�1; 1/.
Remark 3. If we change the first and second condition to

10. limx!˙1  .x/ D ˙1.
20.

R 1
�1  .x/

j dx < 1, for all j 2 N0.

we obtain a T-system of functions which have singularities at both x D �1 and
x D C1. Moreover, it follows that

•  W .�1; 1/ $ .�1;1/ is a C1 bijection.
• limx!˙1 �1.x/ D ˙1.
•
R1
�1  

0. �1.y//�1 dy D 2.
•  is the inverse of a cumulative distribution function whose underlying distribu-

tion has finite moments on .�1;1/.

All previous statements also hold true for this case, with obvious modifications in
their proofs.

2.4 Examples

We now give three examples for the choice of the function  , where the first
one relates to the classical Gauss-Laguerre quadrature on .0;1/ with respect
to the weight-function !.y/ D e�y and the second one to a non-classical rule
with respect to !.y/ D cosh.y/ � cosh.sinh.y//�2 on .0;1/ as well. The third
example refers to Remark 3 and is related to the classical Gauss-Hermite quadrature
on the double-infinite interval .�1;1/ with respect to the weight function
!.y/ D exp.�y2/.
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2.4.1 Powers of Logarithms

Our first example involves the classical Gauss-Laguerre quadrature rule, which is
well-known and its nodes and weights are available from numerous libraries.

We choose  W .0; 1/ ! .0;1/ as

 log.x/ WD � log .1 � x/:
With (9), this results in the T-system defined by

'k.x/ WD .� log .1� x//k ; k D 0; 1; 2; : : : : (12)

The inverse is given as  �1.y/ D 1 � exp.�y/ and its derivative is

!.y/ WD d

dy
 �1.y/ D exp.�y/: (13)

Because of
R 1
0 .� log .1 � x//k D kŠ all 'k are integrable. Thus the conditions

(1)–(3) are fulfilled and Theorem 3 relates to the well-known Laguerre polynomials
which define the Gauss-Laguerre quadrature rules on .0;1/ with respect to the
weight-function !.y/ D e�y . Let wi and yi denote the n quadrature weights and
nodes of the Gauss-Laguerre formula on .0;1/. Then, by mapping the Gaussian
nodes yi back to .0; 1/, we obtain the quadrature rule

Z 1

0

f .x/ dx �
nX

iD1
wi f .xi / ; with xi D 1 � exp.�yi / (14)

which is exact for '0; '1; : : : ; '2n�1 defined in (12) on the interval .0; 1/. Moreover,
one can prove that the generalized Gaussian quadrature (11) on .0; 1/ with 'i
given by (12) achieves basically exponential convergence for certain integrands with
algebraic singularities.

Theorem 4. Let f .x/ D .1 � x/�˛ with ˛ < 1. Then, the generalized Gaussian
formula with respect to the T-system (12) converges faster than any polynomial, i.e.

ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

f .x/ dx �
nX

iD1
wi f .xi /

ˇ
ˇ
ˇ
ˇ
ˇ

� c˛;kn
�k;

where c˛;k is a constant depending on both ˛ and k, but not on n.

Proof. By Theorem 1 from [30] the quadrature error of the Gauss-Laguerre formula
for a k-times continuous differentiable function g is bounded by

ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

g.y/ e�y dy �
nX

iD1
wi g.yi /

ˇ
ˇ
ˇ
ˇ
ˇ

� cn�k �
Z 1

0

jy k
2 g.k/.y/je�y dy: (15)
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Mapping this result to the unit interval yields
ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

f .x/ dx �
nX

iD1
wi f .xi /

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

f .1 � e�y/ e�y dy �
nX

iD1
wi f .1 � e�yi /

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

e˛y e�y dy �
nX

iD1
wi e

˛yi

ˇ
ˇ
ˇ
ˇ
ˇ

(15)� cn�k � ˛k
Z 1

0

jy k
2 e˛y je�y dy

D cn�k � ˛k

.1 � ˛/ k2C1
�

�
k

2
C 1

�

which holds for any k D 1; 2; : : : . ut
Recall that for this class of integrands the Gauss-Legendre quadrature only achieves
an algebraic rate of convergence of n�1C˛ .

2.4.2 Powers of Inverse Hyperbolic Functions

Next, we consider a choice for  that consists of certain hyperbolic functions. It is
given by

 hyp.x/ WD arc sinh

�
2

�
arc tanh.x/

�

; x 2 .0; 1/; (16)

which is inspired by the so-called double exponential (DE) quadrature [32, 45]
that has gained substantial interest within the last years. It leads to the problem
of constructing a Gaussian quadrature rule for the weight function

!.y/ D cosh.y/

cosh.�
2

sinh.y//2

on the infinite interval .0;1/. For this purpose we use the algorithm proposed in
[11] and map the resulting Gaussian nodes y1; : : : ; yn back to .0; 1/. This results in
the quadrature formula

Z 1

0

f .x/ dx �
nX

iD1
wi f .xi /; with xi D tanh

	�

2
sinh.yi /



(17)

which is exact on the T-system

'k.x/ D arc sinh

�
2

�
arc tanh.x/

�k

; k D 0; 1; : : : 2n � 1:



120 M. Griebel and J. Oettershagen

Note that the predecessor of the DE-rule was the Tanh-quadrature which was
introduced in [44]. In our setting it relates to

 .x/ D arc tanh.x/

which also fulfills the conditions (1)–(3) and leads to orthogonal polynomials with
respect to

!.y/ D cosh.y/�2:

Remark 4. Both the double exponential and the tanh approach rely on the quick
decay of f ı  �1.y/ � D �1.y/ as y ! ˙1, which allows for an exponential
rate of convergence for the trapezoidal rule. This approach does not work well in
a multivariate setting, because the factor

Qd
jD1 D �1.yj / exponentially blows up

the norm of the transformed integrand [27]. Our approach is different in the sense
that we do not apply a trapezoidal rule directly to f ı  �1.y/ �D �1.y/ but use a
Gaussian rule tailored to D �1, which is applied to f ı  �1 only.

2.4.3 Powers of the Inverse Error Function

Our third example illustrates Remark 3 and relates to Gauss-Hermite quadrature on
the whole R. We choose  W .�1; 1/ ! .�1;1/ as

 erf.x/ WD erf�1.x/;

where erf.x/ denotes the error-function.2 This leads to the T-system of functions

'k.x/ WD �
erf�1.x/

�k
; k D 0; 1; 2; : : : (18)

which have singularities at both x D �1 and x D 1. Since  .x/k is integrable on
.�1; 1/ for all k D 0; 1; : : :, the conditions (10)–(30) are fulfilled and Theorem 3
relates to the well-known Hermite polynomials which define the Gauss-Hermite
quadrature rules on .�1;1/ with respect to !.y/ D 2p

�
e�y2 . Then, if wi and yi

denote the weights and nodes of the n-point Gauss-Hermite quadrature on R, the
resulting quadrature rule on .�1; 1/ with respect to the T-system (18) is given by

Z 1

�1
f .x/ dx �

nX

iD1
wi f .xi /; with xi D erf.yi /:

Note that it is possible to derive an analogous error bound as in Theorem 4 by an
estimate for Gauss-Hermite quadrature which is given in [30].

2The error-function erf W R! .�1; 1/ is defined as erf.x/D 2
p

�

R x
0 e

�t2 dt .
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3 Dimension-Adaptive Sparse Grids

In this section we recall the sparse grid method for the integration of multivariate
functions. Sparse grid quadrature formulae are constructed using certain combina-
tions of tensor products of one-dimensional quadrature rules, see, e.g., [6,15,16,20,
21,36,43,46]. This way, sparse grid methods can exploit the mixed smoothness of f ,
if present, and may overcome the curse of dimension to a certain extent. Moreover,
they can be employed in a dimension-adaptive fashion.

3.1 Classical Construction

For a continuous univariate function g W .0; 1/ ! R let

Qnkg WD
nkX

iD1
wi;k g.xi;k/

denote a sequence of univariate quadrature rules with nkC1 > nk , Q0f D 0 and
Qnkg ! R 1

0
g.x/ dx for k ! 1. Using the difference quadrature formulae

k D Qnk �Qnk�1

one has

1X

kD1
kg D

Z 1

0

g.x/ dx:

Then, for a d -variate function f W .0; 1/d ! R, its integral can be represented by
the infinite telescoping series

Z

.0;1/d
g.x/ dx D

X

k2Nd
kf (19)

which collects the products of each possible combination of the univariate difference
formula. Here, k 2 N

d denotes a multi-index with kj > 0 and

kf WD �
k1 ˝ : : :˝kd

�
f:

For a given level l 2 N and the choice nk D 2k�1 the classical sparse grid method,3

see, e.g., [16, 36, 43], is then defined by

3Often denoted as Smolyak’s method, see [43].
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SGlf WD
X

jkj1�lCd�1
kf (20)

where jkj1 WD Pd
jD1 kj . Here, from the set of all possible indices k 2 N

d , only
those are considered whose j � j1-norm is smaller than a certain value. Note that the
product integration rule is recovered if the norm j � j1 WD maxfkj W j D 1; : : : ; d g
is used for the selection of indices instead of the j � j1-norm in (20).

3.2 Generalized Sparse Grids

The sparse grid construction can be tailored to certain classes of integrands if
some information on the importance of the dimensions or the importance of the
interactions between the dimensions is a priori known. This is achieved by choosing
appropriate finite index sets I � N

d in the representation (19) such that a given
accuracy is attained with as few as possible function evaluations.

To ensure the validity of the hierarchical expansion the index set I has to satisfy
the admissibility condition

k 2 I and l � k ) l 2 I:

In this way, the generalized sparse grid method

SGIf WD
X

k2I
kf (21)

is defined, see, e.g., [16]. Note that the product rule, the classical sparse grid
construction (20), sparse grids with delayed basis sequences [38] or nonisotropic
sparse grids based on the weighted norms jkj1;a WD Pd

jD1 aj kj with weight factor

a 2 R
dC for the different coordinate directions [16, 21] are just special cases of this

general approach.

3.3 Dimension-Adaptive Sparse Grids

In practice, usually no a priori information on the dimension structure of the inte-
grand is available. In this case algorithms are required which can construct appro-
priate index sets I automatically during the actual computation. Such algorithms
were presented in [17, 23] where the index sets are found in a dimension-adaptive
way by the use of suitable error indicators. The adaptive methods start with the
smallest index set I D f.1; : : : ; 1/g. Then, step-by-step the index k from the
set of all admissible indices is added which has the largest value jkf j and is
therefore expected to provide the largest error reduction, see [15, 17, 21, 33] for
details. Altogether, the algorithm allows for an adaptive detection of the important
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Algorithm 1 Dimension-adaptive construction of the index set I
Initialize:

1. set of active indices: I D .1; : : : ; 1/.
2. s D .1;:::;1/f .

repeat

1. Determine the set of admissible indices A D fI C ei W i D 1; : : : ; dg.
2. For all k 2 A compute kf .
3. Determine (some) Ok D arg maxk2Akf .
4. Add the index Ok to I.
5. Update the sum s D s C

Okf .

until j
Okf j < ";

Output: SGIf D s.

dimensions and heuristically constructs optimal index sets I in the sense of [5, 22]
which is closely related to best N -term approximation [8].

For the sake of completeness, we give a simplified version4 of the dimension-
adaptive algorithm from [17, 21] in Algorithm 1. In our numerical experiments of
Sect. 4 we will use this approach with the three generalized Gaussian quadrature
rules from Sect. 2.4.

Note finally that, besides the dimension-wise adaption, also a purely local
adaptivity based on the trapezoidal rule or higher order composite Newton-Cotes
formulae is possible [2, 4], which leads to algebraic convergence. However, since
our aim in this paper is to explicitly deal with boundary singularities by means of a
special generalized Gaussian approach that allows for exponential convergence, we
will stick to the dimension-adaptive approach here.

3.4 Degree of Exactness

Now we have a look at the degree of exactness of the sparse grid method. As before,
let ˚ D f'j g1jD0 be a complete Tschebyscheff-system on .0; 1/ and let the
univariate quadrature rule, on which a particular sparse grid algorithm is based,
have a certain degree of exactness deg.nk/ with respect to ˚ , i.e.

Qnk'j D
Z 1

0

'j .x/ dx; for all j D 0; : : : ; deg.nk/:

4The original algorithm from [17] which we employed in our computations in Sect. 4 uses a more
sophisticated error criterion than the one described in Algorithm 1.
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If one defines Pk D spanf'0; : : : ; 'deg.nk/g, the sparse grid algorithm SGI is exact
on the space

fPk1 ˝ : : :˝ Pkd W k 2 Ig:
This is similar to a result from [36]. There it was shown that a regular Clenshaw-
Curtis sparse grid (i.e. I` D fk 2 N

dC W jkj1 � d C ` � 1g) is exact on

fPk1 ˝ : : :˝ Pkd W jkj1 D d C ` � 1g;
where the 'i are polynomials of degree i and deg.nk/ D nk . In our case, we have
deg.nk/ D 2n � 1 since we are in a (generalized) Gaussian setting.

4 Numerical Results

In this section we give results for several numerical experiments. First, we study
the behaviour of our generalized Gaussian quadrature formulae in the univariate
case for both, smooth and singular integrands, as well as the worst-case error in
the Hardy space. Then, we deal with the higher-dimensional case where we employ
the dimension-adaptive sparse grid approach that is based on our new univariate
approach and compare it with dimension-adaptive sparse grids based on classical
univariate rules like Gauss-Legendre or Clenshaw-Curtis quadrature. For the sake
of completeness, we also compare with plain Monte Carlo and the Quasi-Monte
Carlo method that is based on the Sobol sequence. Note that in all experiments the
term  log refers to the generalized Gaussian quadrature-formula with (12), while
 hyp refers to the construction with (16).  erf refers to the construction from (18)
with the additional linear transformation to the unit-interval .0; 1/.

Note that, because of
R 1
0
f .x/ dx D R 1

0
f .1�x/ dx; it is advantageous to trans-

form integrands f .x/ with a singularity located at x D C1 to f .1 � x/, which has
the same singularity at x D 0. Since double floating point arithmetic is more precise
in a neighbourhood of 0 than in a neighbourhood of ˙1 it is possible to resolve the
singularity up to a higher precision, after this transformation is employed. Of course
the quadrature nodes have to undergo the same transformation, i.e. xi 7! 1 � xi .

4.1 Univariate Results

As our first univariate test case we consider functions with algebraic singularity of
the order 0 < ˛ < 1 at x D 1, i.e. we consider the problem

Z 1

0

1

.1 � x/˛
dx; (22)
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Fig. 1 Convergence behaviour for the singular integrand f .x/ D .1 � x/�1=2 (a) and smooth
integrand f .x/ D exp.x/ (b)

for various values of 0 < ˛ < 1. As can be seen in Fig. 1, the generalized Gaussian
approaches achieve exponential convergence not only for the smooth example with
f .x/ D exp.x/ but also for the singular integrand (22) with ˛ D 1=2. Furthermore
it can be observed that the rate of convergence for the trapezoidal, the Clenshaw-
Curtis and the classical Gauss-Legendre quadrature are only algebraic. We clearly
see that the Gauss-Legendre rule loses its exponential convergence when it comes
to the treatment of singular functions. This is however not the case for our new
generalized Gaussian approach which exhibits exponential convergence for both,
the smooth and the singular test function.

Next, we consider how the type of singularity of the integrand (22) affects the
convergence. In Fig. 2 one can see the performance of the univariate generalized
Gaussian approach based on  log D � log.1 � x/ for several values of ˛ 2 .0; 1/.
The convergence is always exponential, even though it takes longer to reach the
asymptotic exponential regime for big values of ˛. Note that the integrands are
not in L2.0; 1/ anymore for ˛ � 1=2. For the actual computation of the results
displayed in Fig. 2 we used long double5 floating point arithmetic for the evaluation
of the integrand. We stress that the quadrature nodes and weights were only stored
in standard double6 precision.

Another example concerns the quadrature error in a Hardy space. It consists of
functions that are analytic in the unit-circle D D fz 2 C W jzj < 1g and is given by

H2 D ff W D 7! C W kf k2
H2 < 1g; where kf k2

H2 D
Z

D

jf .z/j2 j dzj:

564 bit significant precision and 14 bit exponent precision.
653 bit significant precision and 10 bit exponent precision.
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Fig. 2 Convergence
behaviour of the generalized
Gaussian quadrature w.r.t.
 log.x/ for the integrand
f .x/ D .1� x/˛ with
algebraic singularities for
different value of ˛

Since H2 is a reproducing kernel Hilbert space with kernel K.x; y/ D 1
1�xy , see

e.g. [47], the quadrature error in this space can be estimated by standard functional
analysis as

ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

0

f .x/ dx �
nX

iD1
wi f .xi /

ˇ
ˇ
ˇ
ˇ
ˇ

� Rn.x;w/ � kf kH2;

where Rn.x;w/ is the so-called worst-case error which depends on the nodes x and
weights w. It is explicitly given by

Rn.x;w/2 D
Z 1

0

Z 1

0

K.s; t/ ds dt � 2

nX

iD1
wi

Z 1

0

K.t; xi / dt

C
nX

iD1

nX

jD1
wiwjK.xi ; xj /

D�2

6
C 2

nX

iD1
wi

log.1 � xi /
xi

C
nX

iD1

nX

jD1
wiwj

1

1 � xixj
:

In Fig. 3 one can see that all three new methods, i.e. the generalized Gaussian
quadrature with respect to  log,  hyp and  erf, significantly outperform polynomial-
based methods like Gauss-Legendre as well as Clenshaw-Curtis and the trapezoidal
rule in the Hardy space.
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Fig. 3 Comparison of
several methods for the
worst-case error in the Hardy
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4.2 Multivariate Results for Standard Test Cases

Now we consider simple higher-dimensional model problems with a certain
multiplicative and additive structure. To this end, let

f .x/ D
X

u�f1;:::;dg
�u
Y

i2u

1
3
p
1 � xi

; (23)

where the so-called product-weights �u [42, 46] are defined by

�u WD
Y

i2u
�i :

Here, the sequence �1 � �2 � : : : � �d > 0 moderates the contribution of the
different coordinate directions to the value of the integral.

For the special case �i D 2�i , the resulting convergence behaviour can be seen in
Fig. 4 for conventional integration methods like MC and QMC and the dimension-
adaptive sparse grid approach based on both, the classical Clenshaw-Curtis and
Gauss-Legendre formulae and our new quadrature formula with  log chosen as (12)
and  hyp chosen as (16), respectively. We clearly see again that the conventional
methods only possess an algebraic rate of convergence, whereas our new approach
with  log and hyp indeed shows exponential convergence. We furthermore see that,
for this particular model problem, we obtain somewhat better results for  log than
for  hyp. For higher dimensions this exponential behaviour gets less prominent.
This stems from a delay in the onset of the asymptotic regime due to the dimension-
dependent constants involved here [34]. But the superiority over the conventional
methods still can be seen clearly.

As another example we will now deal with multivariate functions that can be
represented as a superposition of q-dimensional functions. They are just a special
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Fig. 4 Convergence behaviour for the test function with product-weights (23) with �i D 2�i for
dimensions d D 2; 4; 8; 16

case of the above framework where all �u D 0 for sets u with cardinality bigger
than q, i.e. juj > q. This type of weights is often referred to as finite-order weights,
see e.g. [41]. Here, we consider the test-function

fd;q.x/ WD
X

u
Djuj�q

1
qP

j2u.1� xj /
: (24)

The results are displayed in Fig. 5. We basically observe a similar convergence
behaviour as in the previous example. Now, however,  hyp is slightly superior to
 log. Moreover, the offset of the asymptotic convergence behaviour with respect to
the dimension is more specific. The number of function evaluations, needed until the
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Fig. 5 Convergence behaviour of the finite-order test function (24) with q D 2 and d D 2; 4; 8; 16

convergence rate for the dimension-adaptive sparse grid methods kicks in, depends
quadratically on d . This is due to the fact that for q D 2 the sum in (24) consists of�
d
2

�
parts.

4.3 Computing Multivariate Normal Probabilities
by the Genz-Algorithm

As a final example we consider the evaluation of multivariate normal probabilities
which is an important part of many numerical methods in statistics [14], financial
engineering [15], physics [31] and econometrics [1,24]. It is defined by the integral
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F.b/ WD 1
p

det.˙/.2�/d

Z b1

�1
: : :

Z bd

�1
exp

�

�1
2

xt˙�1x
�

dx (25)

where ˙ 2 R
d�d is a covariance matrix which depends on the specific problem

under consideration.
For (25) it is common to use a sequence of variable transformations to obtain

an integration problem that is defined on the open unit cube. This approach was
independently developed by Genz [12], Geweke and Hajivassiliou [3, 18] and
Keane [26]. In statistics, this method is often referred to as Genz-algorithm, while
in econometrics it is called GHK-simulator. Regular sparse grids based on the
Gauss-Legendre quadrature were utilized in [24] for the first time in this setting.
In the following we will demonstrate that the sparse grid approach can benefit from
our new univariate quadrature formulae. We remark that this approach can also be
applied to the computation of other probabilities, e.g. the t-distribution [14].

The Genz-algorithm [12] consists of several transformations and finally leads to
the integral

F.b/ D Ob1
Z

.0;1/d�1

dY

iD2
Obi .w1; : : : ;wi�1/ dw (26)

where the Obi are recursively given by

Obi.w1; : : : ;wi�1/ D ˚

0

@C�1i;i �
0

@bi �
i�1X

jD1
Ci;j � ˚�1.wj � Obj .w1; : : : ;wj�1/

1

A

1

A :

Here, the matrix C 2 R
d�d denotes a Cholesky factor7 of the covariance-matrix, i.e.

CCT D ˙ , and ˚ W R ! .0; 1/ is the cumulative Gaussian distribution function.
The main advantage of the Genz-algorithm in a dimension-adaptive sparse grid

setting stems from the fact that it enforces a priority ordering onto the variables
w1; : : : ;wd�1, where w1 contributes the most and wd�1 contributes the fewest to the
value of F.b/. Furthermore, the dimensionality of the original integration problem
is reduced by one. A disadvantage is of course the increased cost for the evaluation
of the transformed integrand in formula (26). Moreover, while the original integrand
was analytic in the whole complex plane, the new integrand is only analytic within
the open disc fz 2 C W jz� 1

2
j < 1

2
g. This is due to the inverse cumulative distribution

function ˚�1 that introduces a singularity at the origin and in some dimensions a
fast growth of the integrand for arguments close to one. This is the reason why we
now also included the  erf method in our experiments for the Genz-integrand.

7Cholesky factorization is here only unique modulo row and column permutation.
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Fig. 6 Convergence behaviour for the Genz-integrand with �0 D 0:1 and bi D 1
2

In our numerical experiments we will consider a special covariance structure for
which the integral in (25) has a closed form solution [10,12]. Namely we assume that
the covariance matrix ˙ has constant variance˙i;iD1 and covariance˙i;jDvi � vj
for i ¤ j , where vi 2 .�1; 1/; i D 1; : : : ; d . We remark that the normalization
of the variance to one is not a restriction because it is always possible to shift the
variance via a diagonal transformation to the boundaries of integration b1; : : : ; bd .

In our first example we choose constant correlation ˙i;j D �0 D 0:1 and all
bi D 1

2
. In Fig. 6 it can be observed that the dimension-adaptive sparse grid approach

is superior to (Q)MC for small values of d . Especially if it is based on the new
generalized Gaussian formulae (11) with  log,  hyp and  erf, it performs very well
and even achieves exponential convergence for small d . For higher dimensions the
convergence should still be exponential, but it takes quite long until this asymptotic
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Fig. 7 Convergence behaviour of the Genz-integrand with �0 D 0:25 and bi D �1C i
10

rate sets in. Thus exponential convergence is not visible in the case d D 16. This
situation is common for sparse grids, as pointed out in [34, 35].

In our second example we use different values for the boundaries, namely
bi D �1 C i

10
and a bigger, but still constant correlation ˙i;j D �0 D 0:25.

The convergence behaviour is similar to the first example, as can be seen from
Fig. 7. This demonstrates that our new approach indeed allows to deal with varying
boundary values as it is needed in most practical applications.

In the third example we look at a truly high-dimensional example with d up
to 256. Here we set ˙i;j D 2�.iCj / and bi D �1 C i

10
. This enforces an

exponential decay of the correlation coefficients which weakens the interaction
between the coordinates of the underlying integrand. Albeit involving a somewhat
strong restriction, such situations appear often in practical problems with high
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Fig. 8 Convergence behaviour of the Genz-integrand with˙i;j D 2�.iCj / and bi D �1=2C i
10

nominal but low intrinsic dimensions, where measured data are involved, like for
example in the panel probit models in econometrics [24], in density estimation in
statistics [13] or in the pricing of various instruments in financial engineering [15].

It can be observed in Fig. 8 that the dimension-adaptive sparse grid algorithm
has now no trouble with nominally high dimensions and is able to correctly detect
the important intrinsic coordinate directions. Moreover our new approach with  log,
 hyp and  erf clearly outperforms all other methods in the case d D 256, even
though exponential convergence, as in Fig. 6, is not apparent yet. Still, to achieve
a relative accuracy of 10�7 it needs less than 105 function evaluations whereas
QMC and the Clenshaw-Curtis or Gauss-Legendre based sparse grids would need
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about 108 function evaluations and plain Monte Carlo would even involve about
1013 function values.

5 Conclusion

In the present paper we constructed a new univariate generalized Gaussian quadra-
ture rule for bounded domains, which is related to classical Gaussian quadrature
on unbounded domains with respect to a certain weight function. Special cases
involve the Gauss-Laguerre and Gauss-Hermite rules and thus allow for an easy
construction of the new generalized Gaussian quadrature by building onto existing
implementations. Another example, which is related to the double exponential
quadrature approach, was also presented.

Moreover, we used sparse tensor-products of this new univariate approach
to cover multivariate problems. As application we considered a variant of the
Genz-algorithm in which the multivariate integrals are evaluated by a dimension-
adaptive sparse grid approach that was based on the new generalized Gaussian
quadrature formulae. We demonstrated that our new method is able to significantly
outperform dimension-adaptive sparse grid methods based on Gauss-Legendre
or Clenshaw-Curtis quadrature as well as Monte Carlo and Quasi-Monte Carlo
methods in moderate dimensions up to 16 and for special cases also in a truly high-
dimensional setting with dimensions of d D 256.
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An Adaptive Wavelet Stochastic Collocation
Method for Irregular Solutions of Partial
Differential Equations with Random Input Data

Max Gunzburger, Clayton G. Webster, and Guannan Zhang

Abstract A novel multi-dimensional multi-resolution adaptive wavelet stochastic
collocation method (AWSCM) for solving partial differential equations with random
input data is proposed. The uncertainty in the input data is assumed to depend
on a finite number of random variables. In case the dimension of this stochastic
domain becomes moderately large, we show that utilizing a hierarchical sparse-
grid AWSCM (sg-AWSCM) not only combats the curse of dimensionality but, in
contrast to the standard sg-SCMs built from global Lagrange-type interpolating
polynomials, maintains fast convergence without requiring sufficiently regular
stochastic solutions. Instead, our non-intrusive approach extends the sparse-grid
adaptive linear stochastic collocation method (sg-ALSCM) by employing a com-
pactly supported wavelet approximation, with the desirable multi-scale stability of
the hierarchical coefficients guaranteed as a result of the wavelet basis having the
Riesz property. This property provides an additional lower bound estimate for the
wavelet coefficients that are used to guide the adaptive grid refinement, resulting in
the sg-AWSCM requiring a significantly reduced number of deterministic simula-
tions for both smooth and irregular stochastic solutions. Second-generation wavelets
constructed from a lifting scheme allows us to preserve the framework of the multi-
resolution analysis, compact support, as well as the necessary interpolatory and
Riesz property of the hierarchical basis. Several numerical examples are given
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to demonstrate the improved convergence of our numerical scheme and show the
increased efficiency when compared to the sg-ALSCM method.

1 Introduction

Many applications in engineering and science are affected by uncertainty in input
data, including model coefficients, forcing terms, boundary condition data, media
properties, source and interaction terms, as well as geometry. For example, highly
heterogeneous materials may have properties that vary over small length scales
so that these properties have to be often determined, e.g., by interpolating or
extrapolating measurements obtained at a few locations. These types of uncertainties
are known as epistemic because they are related to incomplete knowledge. In other
situations, referred to as aleatoric, uncertainty is due to intrinsic variability in the
system, e.g., fluctuations in turbulent flow fields. In practice, it is necessary to
quantify both types of uncertainties, a process which is naturally referred to as
uncertainty quantification (UQ).

The presence of random input uncertainties can be incorporated into a system
of partial differential equations (PDEs) by formulating the governing equations as
PDEs with random inputs. In practice, such PDEs may depend on a set of distinct
random parameters with the uncertainties represented by a given joint probability
distribution. In other situations, the input data varies randomly from one point of
the physical domain to another and/or from one time instant to another; in these
cases, uncertainties in the inputs are instead described in terms of random fields
that can be expressed as an expansion containing an infinite number of random
variables. For example, for correlated random fields, one has Karhunen-Loève (KL)
expansions [37, 38], Fourier-Karhunen-Loève expansions [36], or expansions in
terms of global orthogonal polynomials [26, 57, 59]. However, in a large number of
applications, it is reasonable to limit the analysis to just a finite number of random
variables, either because the problem input itself can be described in that way (e.g.,
the random parameter case) or because the input random field can be approximated
by truncating an infinite expansion [24] (e.g., the correlated random field case).

Currently, there are several numerical methods available for solving PDEs with
random input data. Monte Carlo methods (MCMs) (see, e.g., [22]) are the classical
and most popular approaches for approximating expected values and other statistical
moments of quantities of interest that depend on the solution of PDEs with random
inputs. MCMs are very flexible and trivial to implement and parallelize using
existing deterministic PDE solvers, but they feature very slow convergence because
they do not exploit any regularity the solution may possess with respect to the input
stochastic parameters. On the other hand, the convergence rates of MCMs have mild
dependence on the number of random variables so that for problems involving a
large number of random parameters, MCMs remain the methods of choice.

Several numerical approaches have been proposed that often feature much
faster convergence rates. These include quasi MCMs [31, 32], multilevel MCMs
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[4–6, 10] stochastic Galerkin methods (SGMs) [1, 2, 26, 42] and stochastic collo-
cation methods (SCMs) [3, 41, 45, 46, 58]. All approaches transform the original
stochastic problem into a deterministic one with a large number of parameters,
however, the SGMs and the SCMs are stochastic polynomial methods and differ in
the choice of the polynomial bases used and the resulting approximating spaces.
To achieve increased rates of convergence relative to MCMs, both approaches
are typically based on global polynomial approximations that take advantage of
smooth behavior of the solution in the multi-dimensional parameter space. SGMs
are based on orthogonal polynomials which lead to a coupling of the probabilistic
and space/time degrees of freedom; for this reason, SGMs are referred to as being
intrusive. On the other hand, SCMs are based on interpolatory polynomials so
that, when implemented, they result in ensemble-based non-intrusive approaches
for which the probabilistic and space/time degrees of freedom are uncoupled.

We emphasize that the better convergence behavior of SGMs and SCMs relative
to MCMs requires high regularity with respect to the random variables. However,
often in scientific and engineering problems there are irregular dependences, e.g.,
steep gradients, sharp transitions, bifurcations, or finite jump discontinuities, of a
quantity of interest (QoI) with respect to the random variables. In such cases, global
polynomial-based approximations such as SGMs and SCMs seriously deteriorate to
the point that they converge very slowly or may even fail to converge. Indeed, for
such applications, the use of SGMs and SCMs often result in no improvements over
MCMs. As a result, one turns to local approximation methods. To be effective, such
approximations have to be implemented using refinement strategies that focus on
regions of irregular behavior; otherwise, there would be an explosion in the required
computational effort as the number of random variables increases, a phenomenon
commonly referred to as the curse of dimensionality.

Not surprisingly, there have been many proposed methods that attempt to control
the curse, i.e., to put off its inevitable fatal effect to higher dimensions. Several
techniques involve domain decomposition approaches using h-type finite element
basis functions, similar to those constructed in the physical spatial domain. A
multi-element approach utilized in [23] decomposes each parameter dimension into
sub-domains and then uses tensor products to reconstruct the entire parameter space.
This method has successfully been applied to moderate dimension problems, but the
tensor-product decomposition inevitably re-introduces the curse of dimensionality.
Similarly, [34, 35] presents a tensor product-based multi-resolution approximation
based on a Galerkin projection onto a Wiener-Haar basis. This approach provides
significant improvements over global orthogonal approximation approaches. How-
ever, in terms of robustness, dimension scaling is not possible due to the resulting
dense coupled system and the lack of any rigorous criteria for triggering refinement.

It is recognized that any refinement strategy employed must be guided by
an accurate estimation of both local and global errors. In [39, 40], an adaptive
sparse-grid stochastic collocation strategy is applied that uses piecewise multi-linear
hierarchical basis functions developed in [25, 27, 30]. This approach utilizes the
hierarchical surplus as an error indicator to automatically detect the regions of
importance (e.g., discontinuities) in stochastic parameter space and to adaptively
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refine the collocation points in this region. The adaptation process is continued until
a prescribed global error tolerance is achieved. This goal, however, might be reached
by using more collocation points than necessary due to the instability of the multi-
scale basis used; see Sect. 3.3 for a complete description of the properties of such
multi-scale sparse grid approximations using hierarchical subspace splitting and see
Sect. 4 for the additional properties required to construct a stable and efficient multi-
dimensional multi-resolution approximation.

In Sect. 4, we propose an adaptive wavelet stochastic collocation method that
possesses the additional properties. The intent of our approach is to combat the curse
of dimensionality while maintaining the increased convergence rates of standard
SCM approaches by utilizing compactly supported wavelet basis functions. The
construction principles of such functions are highly developed; see, e.g., [11, 12,
17, 18, 28] and the references therein. Such bases are in ubiquitous use in signal
processing and other applications. They have also been rigorously shown to
result in optimal approximations of PDEs (see, e.g., [13–15, 19, 20, 43, 49, 50])
and of PDE constrained optimal control problems (see, e.g., [16, 28]), when
compared with traditional finite element approximations. In this paper, due to their
general applicability to arbitrary domains, we consider second-generation wavelets
constructed from a lifting scheme [53–55]. Moreover, in addition to maintaining
compact support and the interpolatory properties of nodal bases, the beauty of the
second-generation wavelets is that they also form a Riesz basis, a property that
guarantees the stability of the hierarchical basis and allows one to construct a multi-
resolution approximation that utilizes significantly fewer collocation points.

The outline of the paper is as follows. In Sect. 2, we introduce the mathematical
description of a general stochastic initial-boundary problem and the main notation
used throughout the paper. In Sect. 3, we briefly recall the stochastic collocation
method and adaptive strategies using both global as well as piecewise linear hier-
archical polynomials. In Sect. 4, we propose our novel adaptive wavelet stochastic
collocation method and the properties of the second-generation wavelets we employ.
In Sect. 5, several numerical examples are given to demonstrate the effectiveness and
efficiency of our method compared with classic approaches.

2 Problem Setting

We follow the notation in [3,45,46] and begin by lettingD denote a bounded domain
in R

d , d 2 f1; 2; 3g, and .˝;F ; P / denote a complete probability space. Here, ˝
denotes the set of outcomes, F � 2˝ the �-algebra of events, and P W F ! Œ0; 1� a
probability measure. We are interested in the following stochastic initial-boundary
value problem: find uW˝ �D � Œ0; T � ! R

m such that P -almost everywhere in ˝

L.a/.u/ D f in D � Œ0; T � (1)
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subject to the boundary and initial conditions

B.b/.u/ D g on @D � Œ0; T �
u D u0 on D � ft D 0g: (2)

Here, L denotes a differential operator (linear or non-linear) depending on the
coefficient(s) a.!; x; t/ with .!; x; t/ 2 ˝ � D � Œ0; T �; B denotes a boundary
operator depending on the coefficient(s) b.!; x; t/ with .!; x; t/ 2 ˝�@D� Œ0; T �.
Similarly, the right-hand sides f .!; x; t/, g.!; x; t/, and u0.!; x/ can be assumed
to be random fields as well. Note that, in general, a, b, f , g, and u0 belong to
different probability spaces, but for economy of notation, we simply denote the
stochastic dependences of these random data as if all belong to the same probability
space. We denote by W.D/ a Banach space and assume the underlying stochastic
input data are chosen so that the corresponding stochastic system (1)–(2) is well-
posed so that it has an unique solution u.!; x; t/ 2 L2P .˝/ ˝ L2.W.D/I 0; T /,
where the space

L2P .˝/˝ L2.W.D/I 0; T / WD
�

u W ˝ �D � Œ0; T � ! R
m

ˇ
ˇ
ˇ
ˇu is strongly measurable

and
Z T

0

Z

˝
kuk2W.D/ dP.!/dt < C1

�

(3)

consists of Banach-space valued functions that have finite second moments. Finally,
we note that in this setting the solution u can either be a scalar or vector-valued
function depending on the system of interest.

An example problem posed in this setting is given as follows.

Example 2.1 (Linear Parabolic PDE with Random Inputs). Consider the initial-
boundary value problem [60]: find a random field u W ˝ �D� Œ0; T � ! R such that
P -almost surely

@tu.!; x; t/ � r � Œa.!; x/ru.!; x; t/� D f .!; x; t/ in ˝ �D � Œ0; T �
u.!; x; t/ D 0 on ˝ � @D � Œ0; T �
u.!; x; 0/ D u0.!; x/ on ˝ �D;

(4)

where r denotes the gradient operator with respect to the spatial variable x 2 D. To
guarantee the well-posedness of the solution of (4) in L2P .˝/˝ L2.H1.D/I 0; T /,
one assumes that almost surely the coefficient a.x; !/ is positive and uniformly
bounded, i.e.,

P
�
! 2 ˝ W amin � a.!; x/ � amax 8 x 2 D� D 1 with amin; amax 2 .0;1/ (5)
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and that the right-hand side satisfies

Z T

0

Z

D

EŒf 2�dx dt WD
Z T

0

Z

D

Z

˝

f 2.!; x; t/ dP.!/dx dt < C1:

2.1 Finite Dimensional Noise

In many applications, the source of randomness can be approximated using just
a finite number of uncorrelated, or even independent, random variables. As such,
similar to [3, 45, 46], we make the following assumptions regarding the stochastic
input data, i.e., the random coefficients a and b in L and B and the right-hand sides
f , g, and u0 in (1)–(2).

(A1) The stochastic input coefficient a satisfies (5) and the other stochastic input
data are bounded from above and below with probability 1, e.g., for the right-
hand side f .!; x; t/, there exists fmin > �1 and fmax < 1 such that

P
�
! 2 ˝ W fmin � f .!; x; t/ � fmax 8x 2 D; 8t 2 Œ0; T �� D 1 (6)

and similarly for all remaining inputs.
(A2) The stochastic input data have the form

a.!; x; t/ D a.ya.!/; x; t/; f .!; x; t/ D f .yf .!/; x; t/ on ˝ �D � Œ0; T �
b.!; x; t/ D b.yb.!/; x; t/; g.!; x; t/ D g.yg.!/; x; t/ on ˝ � @D � Œ0; T �
u0.!; x/ D u0.yu0 ; x/ on ˝ �D:

(7)

where Na 2 NC and ya.!/ D .ya;1.!/; : : : ya;Na .!// is a vector of uncor-
related real-valued random variables and likewise for Nb , Nf , Ng, Nu0 2
NC and yb D .yb;1.!/; : : : yb;Nb .!//, yf D .yf;1.!/; : : : yf;Nf .!//, yg D
.yg;1.!/; : : : yg;Ng .!// and yu0 D .yu0;1.!/; : : : yu0;Nu0

.!//, respectively.
(A3) The random functions a.ya.!/; x; t/; b.yb.!/; x; t/;f .yf .!/; x; t/; g.yg.!/;

x; t/ and u0.yu0.!/; x; t/ are assumed to be �-measurable with respect to ya,
yb , yf , yg and yu0 , respectively.

In many applications, the stochastic input data may have a simple piecewise
random representation whereas, in other applications, the coefficients a and b in
(1) and the right-hand sides f , g, and u0 in (2) may have spatial variation that
can be modeled as a correlated random field, making them amenable to description
by a Karhunen-Loève (KL) expansion [37, 38]. In practice, one has to truncate
such expansions according to the degree of correlation and the desired accuracy
of the simulation. Examples of both types of random input data, each satisfying
assumptionsA1–A3, are given next. Without lost of generality, we only consider the
coefficient a.!; x; t/ in the examples.
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Example 2.2 (Piecewise Constant Random Field). We assume the spatial domain
D is the union of non-overlapping subdomains Dj , j D 1; : : : ; J , and the time
interval .0; T / is the union of disjoint subintervals .Tk�1; Tk/, k D 1; : : : ; K . Then,
we consider the coefficient a.!; x; t/ is piecewise constant and random on each
space-time subdomainDj � .Tk�1; Tk/, i.e.,

a.!; x; t/ D �0 C
NaX

nD1
ya;n.!/�n1Dj�.Tk�1 ;Tk/.x; t/ for n D j C .k � 1/J;

where �n, n D 0; : : : ; N , denote constants, 1Dj�.Tk�1;Tk/ denotes the indicator
function of the set Dj � .Tk�1; Tk/ � D � Œ0; T �, and the random variables ya;n.!/
are bounded and independent. Note that assumption A1 requires restrictions on the
constants �n and the bounds on the random variables ya;n.!/; in practice, such
restrictions would be deduced from the physics of the problem.

Example 2.3 (Karhunen-Loève Expansion). Any second-order correlated random
field a.!; x; t/ with continuous covariance function CovŒa�. Qx1; Qx2/, where Qx1 D
.x1; t1/ and Qx2 D .x2; t2/ are space-time coordinates, can be represented as an
infinite sum of random variables by means of, e.g., a KL expansion. For Qx D .x; t/,
we define the operator F W L2.D/ �L2.0; T / ! L2.D/ � L2.0; T / by

Fv. Qx/ WD
Z T

0

Z

D

CovŒa�. Qx1; Qx/v. Qx1/ d Qx1 8 v 2 L2.D/ � L2.0; T /: (8)

Because of the symmetry and non-negativity properties of covariance functions, the
operator F has real, non-negative eigenvalues f�ng1nD1 that may be arranged in non-
increasing order and corresponding real orthonormal eigenfunctions fan. Qx/g1nD1.
For simplicity of the exposition, we assume that the eigenvalues are positive.
Furthermore, if we define mutually uncorrelated real random variables by

yn.!/ WD 1p
�n

Z T

0

Z

D

.a.!; Qx/� eŒa�. Qx// an. Qx/ d Qx; n D 1; 2; : : :

with zero mean and variance VarŒyn� D p
�n, then a.!; x; t/ can be represented

by the truncatedN -term KL expansion, i.e.

a.!; x; t/ D EŒa�.x; t/ C
NaX

nD1

p
�nan.x; t/ya;n.!/:

Finally, note that if the process is Gaussian, then the random variables fya;ng1nD1 are
standard independent identically distributed random variables.

We remark that assumption A2 and the Doob-Dynkin lemma guarantee that
a.ya.!/; x; t/ is a Borel-measurable function of the random vector ya and likewise
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for b, f , g, u0, with respect to ya, yb , yf , yg and yu0 . As discussed in [60],
the random fields a, b, f , g, u0 are independent because of their physical
properties, so that ya, yb, yf , yg, yu0 are independent random vectors. Thus, we
relabel the elements of the five random vectors and define y D .y1; : : : ; yN / D
.ya; yb; yf ; yg; yu0/ where N D Na C Nb C Nf C Ng C Nu0 . By definition, the
random variables fyngNnD1 are mappings from the sample space ˝ to the real space
R
N , so we denote by �n D yn.˝/ � R the image of the random variable yn, and

set � D QN
nD1 �n, whereN 2 NC. If the distribution measure of y.!/ is absolutely

continuous with respect to Lebesgue measure, there exists a joint probability density
function (PDF) for fyngNnD1 denoted by

�.y/ W � ! RC with �.y/ 2 L1.� /:

Thus, based on the assumption A2, the probability space .˝;F ; P / is mapped to
.�;B.� /; �.y/dy/, where B.� / is the Borel �-algebra on � and �.y/dy is the
finite measure.

Finally, we are in position to restate the random input data in terms of y as
follows:

a.!; x; t/ D a.y.!/; x; t/; f .!; x; t/ D f .y.!/; x; t/ for .y.!/; x; t/ 2 � �D � Œ0; T �
b.!; x; t/ D b.y.!/; x; t/; g.!; x; t/ D g.y.!/; x; t/ for .y.!/; x; t/ 2 � � @D � Œ0; T �
u0.!; x/ D u0.y.!/; x/ for .y.!/; x/ 2 � �D:

(9)

As a result, the problem (1)–(2) can be restated as follows: find a function u.y; x; t/ W
� �D � Œ0; T � ! R

m such that �-almost every y 2 � , we have that

L.a.y; x; t//.u/ D f .y; x; t/ in D � Œ0; T � (10)

subject to the boundary and initial conditions

B.b.y; x; t//.u/ D g.y; x; t/ on @D � Œ0; T �
u D u0.y; x/ on D � ft D 0g: (11)

By assuming the solution u of (1) and (2) is �-measurable with respect to a; b; f; g
and u0, then, by the Doob-Dynkin lemma [47], u.!; �; �/ can also be characterized
by the same random vector y, i.e.,

u.!; x; t/ D u.y1.!/; : : : ; yN .!/; x; t/ 2 L2�.� /˝ L2.W.D/I 0; T /; (12)

where L2�.� / is the space of square integrable functions of � with respect to the
measure �.y/dy. As indicated in (12), the solution u.y; x; t/ belongs to the function
space L2�.� /˝ L2.W.D/I 0; T / that is defined by
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L2�.� /˝ L2.W.D/I 0; T / WD
�

u W � �D � Œ0; T � ! R
m

ˇ
ˇ
ˇ
ˇu is strongly measurable

and
Z

�

Z T

0
kuk2W.D/�.y/dtdy < 1

�

:

(13)

We once again note that, in general, each appearance of y in (10)–(11) can be a
different vector of random variables each belonging to a different probability space
and that in the end, the solution u depends on all the different y’s which collectively
belong to the product space of the individual probability spaces. However, again to
economize notation, we do not explicitly differentiate between the different vectors
of random variables.

Thus far we have turned the possibly infinite-dimensional stochastic initial-
boundary value problem given by (1)–(2) into a finite-dimensional parametric
problem (10)–(11). Without loss of generality, we will assume the support of
the random variables yn is �n D Œ0; 1� for n D 1; : : : ; N and therefore the
bounded stochastic (or parameter) space is the N -dimensional unit hypercube
� D Œ0; 1�N . At this point, we can apply any stochastic approximation technique,
e.g., spectral-Galerkin, locally adaptive, etc. However, the focus of our work
involves non-intrusive approximations (such as Monte Carlo sampling or stochastic
collocation methods) in probability space for which, for any realization of the
random parameters y.!k/, solutions can be constructed using standard deterministic
approximation techniques in space-time, e.g., finite difference methods, finite
element methods, finite volume methods, etc. for spatial discretization and backward
Euler or Crank-Nicolson schemes for temporal discretization [44, 60].

3 Adaptive Stochastic Collocation Methods

To provide context and background for the new method we present in Sect. 4, in
this section we discuss, in general terms, adaptive stochastic collocation methods
(SCMs). These approximations are computed via Lagrange interpolation of the
random parameter dependence of solutions of (10)–(11), described in Sect. 3.1,
constructed from either globally or locally supported basis functions, described in
Sects. 3.2 and 3.3 respectively. In Sect. 3.3, we discuss in somewhat more detail
the special case of hierarchical piecewise polynomial basis functions, leading to
the hierarchical, locally adaptive, piecewise linear approximations. The latter is
the closest precursor to our new method and, naturally, we use it for comparison
purposes.

We note that the use of polynomials having the property that the interpolation
matrix is diagonal, i.e. the “delta property” (see Remark 3.1), leads to approx-
imations that some authors refer to as stochastic collocation methods (SCMs).
Others use that terminology to refer to any method for which the parameter and
spatial/temporal degrees of freedom uncouple; with this view, which is the one



146 M. Gunzburger et al.

we adopt, all methods discussed below and in this section and in Sect. 4 would be
referred to as being SCMs.

3.1 Lagrange Interpolation in the Probabilistic Domain

The goal is to construct a numerical approximation of the solution of (10)–(11) in
a finite-dimensional subspace P.� / ˝ L2.Wh.D/I 0; T /. Here, Wh.D/ � W.D/

is a standard finite element space of dimension dim.Wh/ D Mh, used for spatial
discretization and P.� / � L2�.� / is a finite-dimensional space of dimension
dim.P.� // D M , used for approximation in parameter space. Of course, a
temporal discretization, usually via a finite difference method, is implied as well.
Interpolatory approximations in parameter space start with the selection of a set
of distinct points fykgMkD1 2 � , in parameter space and a set of basis functions1

f k.y/gMkD1 2 P.� /. Then, we seek an approximation uMh;M 2 P.� / ˝
L2.W.D/I 0; T / of the solution u of the problem (10)–(11) of the form

uMh;M .y; x; t/ D
MX

kD1
ck.x; t/ k.y/: (14)

The Lagrange interpolant is defined by first obtaining M realizations uMh
.yk; x; t/

of the finite element approximation2 of the solution u.yk; x; t/ of the problem
(10)–(11), i.e., one solves for the finite element approximation for each of the
interpolation points in the set fykgMkD1. Then, the coefficient functions fck.x; t/gMkD1
are determined by imposing the interpolation conditions

MX

`D1
c`.x; t/ `.yk/ D uMh

.yk; x; t/ for k D 1; : : : ;M : (15)

Thus, the coefficient functions fc`.x; t/gM`D1 are each a linear combination of the
data functions fuMh

.yk; x; t/gMkD1; the specific linear combinations are determined
in the usual manner from the entries of the inverse of the M � M interpolation
matrix K having entriesKk` D  `.yk/, k; ` D 1; : : : ;M . The sparsity of K heavily
depends on the choice of basis; that choice could result in matrices that range from
fully dense to diagonal.

1In general, the number of points and number of basis functions do not have to be the same, e.g.,
for Hermite interpolation. However, because here we only consider Lagrange interpolation, we let
M denote both the number of points and the dimension of the basis.
2Extensions to other methods, e.g., finite difference, finite volume, spectral or h-p, etc. are
straightforward.



An Adaptive Wavelet Stochastic Collocation Method for SPDEs 147

A main attraction of interpolatory approximations of parameter dependences
is that it effects a complete decoupling of the spatial/temporal and probabilistic
degrees of freedom. Clearly, once the interpolation points fykgMkD1 are chosen,
one can solve M deterministic problems [i.e., the spatial/temporal discretization
of (10)–(11)], one for each parameter point yk, with total disregard to what basis
f k.y/gMkD1 one choose to use. Then, the coefficients fck.x; t/gMkD1 defining the
approximation (14) of the solution of (10)–(11) are found from the interpolation
matrix K as discussed above; its only in this last step that the choice of basis
enters into the picture. Note that this decoupling property makes the implementation
of Lagrange interpolatory approximations of parameter dependences as trivial as
it is for Monte Carlo sampling. However, if that dependence is smooth, because
of the higher accuracy of, e.g., polynomial approximations in the space P.� /,
interpolatory approximations require substantially fewer sampling points to achieve
a desired tolerance.

Remark 3.1 (The “Delta Property”). Given a set of interpolation points, to com-
plete the setup of a Lagrange interpolation problem, one has to then choose a
basis. The simplest and most popular choice are the Lagrange polynomials, i.e.,
polynomials that have the “delta property”  `.yk/ D ık`, where ık` denotes the
Kroeneker delta. In this case, the interpolating conditions (15) reduce to ck.x; t/ D
uh.yk; x; t/ for k D 1; : : : ;M , i.e., the interpolation matrix K is simply theM �M
identity matrix. In this sense, the use of Lagrange polynomial bases can be viewed
as resulting in pure sampling methods, much the same as Monte Carlo methods,
but instead of randomly sampling in the parameter space � , the sample points are
deterministically structured as, e.g., tensor product or sparse grid points.

3.2 Adaptive Global Sparse-Grid Lagrange Interpolation

When the solution is analytic with respect to the noise parameterization, the most
widely used approaches for constructing approximations of the form (14), involves
building global Lagrange interpolants [3,45,46]. This is accomplished by replacing
the polynomial space P.� / by Pp.� /, defined as the span of product polynomials,
i.e.,

Pp.� / D span

� NY

nD1
ypnn with p D .p1; : : : ; pN / 2 J .p/

�

;

where the index set J .p/ determines the type of polynomial space used. Thus,
the dimension M of Pp.� / is the cardinality of the index set J .p/. Two obvious
choices are tensor product spaces of one-dimensional polynomials of degree p for
which J .p/ D fp 2 N

N W max1�n�N pn � pg and total degree p spaces for which
J .p/ D fp 2 N

N W PN
nD1 pn � pg.
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Both these choices are problematical even for problems having moderately large
parameter dimension N . The first choice results in M D .p C 1/N interpolation
points, a number which grows explosively with increasing N ; this is perhaps the
most egregious instance of the curse of dimensionality. For the second, we have
M D .N C p/Š=.N ŠpŠ/ interpolation points, i.e., much slower growth than for the
tensor product case, so that the inevitable fatal effects of the curse are postponed to
higher dimensions. However, this choice requires a judicious choice of the location
of the interpolation points because arbitrary choices can result in large Lebesgue
constants which can lead to serious deterioration in accuracy. Unfortunately, good
choices of total degree interpolation points in N -dimensional cubes are not known,
even for moderate values of N .

A third choice for the interpolation abscissas are sparse-grid points, constructed
from the roots of either the nested Chebyshev (Clenshaw-Curtis) or the Gaussian
polynomials [3,45,46]. Typically, in these approaches the index set is defined using
the Smolyak method [9, 52] where

J .p/ D
(

p 2 N
N W

NX

nD1
f .pn/ � f .p/

)

with f .p/ D

8
ˆ̂
<

ˆ̂
:

0; p D 0

1; p D 1

dlog2.p/e; p � 2

:

Other polynomial spaces have been described and considered in, e.g., [7, 56].
For any choice of interpolation points, a reduction in the number of interpola-

tion points can be effected by using dimension-adaptive global polynomials. For
example, for the tensor product, total degree and Smolyak cases, one can use the
index sets J .p/ D fp 2 N

N W max1�n�N ˛npn � ˛minpg, J .p/ D fp 2 N
N W

PN
nD1 ˛npn � ˛minpg, and J .p/ D

n
p 2 N

N W PN
nD1 ˛nf .pn/ � ˛minf .p/

o
,

respectively, where the weights ˛n > 0, n D 1; : : : ; N , can be computed either
a priori or a posteriori; see [46].

3.3 Adaptive Hierarchical Sparse-Grid Lagrange Interpolation

None of the approaches discussed above, as well as those commonly refereed to as
polynomial chaos methods, that use global orthogonal polynomials in the parameter
space, are effective in approximating solutions u.y; x; t/ of (10)–(11) that have
irregular dependence with respect to the random parameters. What is required for the
effective approximation of solutions having irregular dependence with respect to the
random parameters is an approximating space that allows for, through a judicious
choice of basis, a multi-level, multi-scale decomposition. Such an approach can
be constructed using piecewise polynomial approximations in the parameter space
with multi-level, multi-scale hierarchical bases. A step in this direction was the
development of an adaptive piecewise linear hierarchical sparse-grid approximation
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[9,27] and their utilization for solving problems with random inputs [39,40]. In this
section we discuss hierarchical sparse-grid Lagrange interpolation approaches and
also specialize to the approach [9, 27, 39, 40]. In Sect. 4, we extend this technique
by developing a multi-dimensional multi-resolution interpolating wavelet-based
approximation.

Instead of using global polynomial interpolating spaces that attempt to achieve
greater accuracy by increasing the degree p of the polynomial space, piecewise
polynomial interpolation spaces attempt to achieve greater accuracy with a fixed
polynomial degree by refining the grid that is the underpinning of the definition of
the space. Problems having solutions with irregular behavior cannot take advantage
of increases in the degree of the polynomials used; however, through local grid
refinement in regions where the solution exhibits irregular behavior, piecewise
polynomial spaces have the potential to be effective for such problems. However,
realizing that potential for problems with even moderate parameter dimension N is
not a straightforward matter.

Piecewise polynomial spaces for Lagrange interpolation are most often imple-
mented in a standard “finite element” manner using locally supported nodal basis
functions. One advantage of this approach is that the basis functions have the “delta
property” (see Remark 3.1). However, such choices do not result in a multi-scale
basis so that defining reliable error indicators for adaptive refinement is a difficult
matter and, in fact, obtaining approximations that are efficient with respect to the
number of degrees of freedom used to achieve a desired accuracy is not possible.
We also focus the discussion on sparse-grid hierarchical polynomial interpolation
because multi-dimensional approximations based on tensor product grids are not
viable for high-dimensional parameter spaces, even for polynomial degree p D 1,
because of the large number of degrees of freedom involved.

That is, for each parameter dimension n D 1; : : : ; N , we define Vn WD L2�.�n/.
Then, the desired approximation is based on a sequence of subspaces fVing1inD0 of
Vn of increasing dimension Min ,which is dense in Vn, i.e., [1inD0Vin D Vn. The
sequence of spaces is also required to be nested, i.e.,

V0 � V1 � V2 � � � � � Vin � VinC1 � � � � � Vn: (16)

A set of subspaces satisfying these requirements are defined as the span of a nodal
piecewise polynomial basis of order p, i.e.,

Vin D spanf�injn.yn/ j 0 � jn � 2ing; (17)

where in denotes the scaling level of all the basis functions �injn with compact

support, i.e., supp.�injn/ D O.2�in/, and �injn.yn/ is a polynomial of degree p. For

example, suppose Min distinct points are selected in the interval � n such that the
maximum distance between any two neighboring points is of order O.2�in /. Then,
the simplest choice for the set f�injng

Min

jnD1 are the linear “hat” functions corresponding
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to the selected points in � n; in this case, we indeed have that the support of each
�
in
jn
.yn/ is of orderO.2�in/.
Similarly, for an N -dimensional problem, we define VN WD L2�.� /. Then,

a sequence of subspaces fVNl g1lD0 of VN can be constructed using a sparse-grid
framework, i.e.,

VNl D
[

jij�l

NO

nD1
Vin D

[

jij�l
span

� NY

nD1
�
in
jn
.yn/

ˇ
ˇ
ˇ
ˇ 0 � jn � 2in

�

; (18)

where i D .i1; : : : ; iN / 2 N
NC is a multi-index and jij 	 i1 C � � � C iN � l defines

the resolution of the sparse-grid approximation in VNL . Note that full tensor-product
resolution is defined by simply replacing the index set by max

nD1;:::;N in � l .

Instead of using locally supported nodal bases, we construct a hierarchical
approximation at level L using a truncation VNL of the infinite expansion VN . We
begin with a basis for VN0 and then, due to the nested property of fVNl g1lD0, we
express the finer subspaces of VNl as a direct sum VNl D VNl�1 ˚ WN

l , where
WN

l D VNl
ı˚l�1

mD0VNm . Therefore, we have that

VNL D VN0 ˚ WN
1 ˚ � � � ˚ WN

L : (19)

Then, the hierarchical sparse-grid approximation of uMh;M .y; x; t/ 2 VNL ˝
L2.W.D/I 0; T / in (14) is defined by

uMh;M .y; x; t/ 	 INL .u/.y; x; t/ D
LX

lD0

X

jijDl

X

j2Bi

ci
j.x; t/ 

i
j .y/; (20)

where INL W VN ! VNL denotes the approximation operator, i
j D QN

nD1 �
in
jn

denotes
a multi-dimensional hierarchical polynomial, and Bi a multi-index set defined by

Bi 	
(

j 2 N
NC
ˇ
ˇ
ˇ
ˇ

0 � jn � 2in ; jn odd ; 1 � n � N; if in > 0

jn D 0; 1; 1 � n � N; if in D 0

)

: (21)

The approximation space Pp.� / D VNL and the particular basis chosen are
required to possess the following properties.

(P1/ Nested hierarchical subspaces: VN0 � VN1 � � � � � V N1 .

(P2/ Small compact support: supp
	QN

nD1 �
in
jn



D O

	
2�

PN
nD1 in



.

(P3/ Interpolatory basis: f�ij g in (17) is an interpolating basis for Vi , e.g., the
“hat” functions, so that the approximation operator INL in (20) is a multi-
dimensional interpolation operator.
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Isotropic sparse grid H2
2

Adaptive sparse grid ̂H2
2

Fig. 1 Nine tensor-product sub-grids (left) for level L D 0; 1; 2 of which only the six sub-grids
with i1 C i2 � 2 are chosen to appear in the level L D 2 isotropic sparse grid H2

2 (right-top)
containing 17 points. With adaptivity, each point that corresponds to a large surplus, e.g., the points
in red, blue, or green, lead to 2 children points added in each direction resulting in the adaptive

sparse grid OH2
2 (right-bottom) containing 12 points

(P4/ Decay of the coefficients for smooth functions in L2�.� /: there exits a
constant C , independent of the level L, such that for every u.y; �; �/ 2 L2�.� /
the following holds:

LX

lD0

X

jijDl

X

j2Bi

ˇ
ˇci

j

ˇ
ˇ2 22l � CLkuk2

L2�.� /
: (22)

Denote by Hi D fyi
j j j 2 Big the set of points corresponding to the basis

functions  i
j.y/ with j 2 Bi; then, the set of points corresponding to the subspace

WN
l is given by [jijDlHi and the set of points used by INL .u/ is defined by

HN
L D

[

jij�L
Hi (23)

which is the sparse grid corresponding to VNL . Note that due to property P1, the
sparse grid HN

L is also nested, i.e., HN
L�1 � HN

L . In Fig. 1, we plot the structure
of a level L D 2 sparse grid in N D 2 dimensions, without considering boundary
points. The left nine sub-grids Hi correspond to the nine multi-index sets Bi, where
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i 2 f.0; 0/; .0; 1/; .0; 2/; .1; 0/; .1; 1/; .1; 2/; .2; 0/; .2; 1/; .2; 2/g:

The level L D 2 sparse grid H2
2 shown on the right (top) includes only six of the

nine sub-grids in black according to the criterion jij � 2. Moreover, due to the
nested property of the hierarchical basis, H2

2 has only 17 points, as opposed to the
49 points of the full tensor-product grid.

Next, we explain how to compute the coefficients ci
j.x; t/. In general, this

requires the solution of a linear system whose right-hand-side depends only on the
value of the finite element approximation of the solution u at each collocation point.
Moreover, the structure of the coefficient matrix depends on the type of hierarchical
polynomials used in (20). However, for some choices of the basis, these coefficients
can be computed explicitly.

Example 3.2 (Linear Hierarchical Piecewise Polynomials). We can take the hierar-
chical one-dimensional functions to be the standard piecewise linear finite element
basis, i.e., the basis function �ij in (17) are obtained by the dilation and translation
of the function

�.y/ D
�
1 � jyj if y 2 Œ�1; 1�
0 otherwise.

(24)

This basis possesses properties P1–P4. Examples of higher-degree bases are given
in [9]. Then, INL .u/ in (20) can be rewritten as

INL .u/.y; x; t/ D INL�1.u/.y; x; t/CINL .u/.y; x; t/; (25)

where INL�1.u/ is the sparse-grid approximation in VNL�1 and INL .u/ is the
hierarchical difference interpolant corresponding to WN

L . Due to property P1, the
set of grid points used by INL .u/ can be denoted by HN

L D HN
L nHN

L�1. Then,
due to the interpolatory property P3 and the choice of the basis function (24), by
substituting yi

j 2 HN
L in (25), we obtain that

ci
j.x; t/ D INL .u/.yi

j; x; t/ � INL�1.u/.yi
j; x; t/

D u.yi
j; x; t/ � INL�1.u/.yi

j; x; t/
(26)

as the hierarchical surplus. This is simply the difference between the solution u at
a point yi

j on the current level of interpolation and the interpolated value of the
previous level [30] at that point. Therefore, using the recursive formula (25), we can
compute all the coefficients ci

j in (20) by calculating the coefficients of INL .u/ for
l D 1; : : : ; L.

According to the analysis in [30], for smooth functions described by property
P4, the hierarchical surpluses tend to zero as the interpolation level goes to infinity.
On the other hand, for irregular functions having, e.g., steep slopes or jump
discontinuities, the magnitude of the surplus is an indicator of the interpolation
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error and, as such, can be used to control the error adaptively. That is, for the sparse
grid HN

L , abscissas involved in each direction can be considered as a tree-like data
structure as shown in Fig. 1.

For example, on the left, we show that the red point in H0;0 has two children
points at level L D 1 in each of the horizontal and vertical directions; the four
children are indicated by the arrows emanating from the red point. Each of its
four children also have four children of their own at level L D 2, and so on for
subsequent levels. Suppose the magnitude of the coefficients (the surplus) associated
with the blue and green children are larger than a prescribed tolerance, but those for
the two black children of the red point are smaller than the tolerance. In this case,
refinement is effected only from the blue and green children; no refinement is done
of the black children. This is indicated by having, at level L D 2, four arrows
emanate from the blue and green points, but none from the black points. We arrive
at the adaptive space grid OH2;2 that has 12 total collocation points, shown on the
right (bottom) of Fig. 1. The analagous (non-adaptive) isotropic sparse grid, which
has 17 collocation points, is also shown on the right (top).

In general, a grid point in aN -dimensional space has 2N children which are also
the neighbor points of the parent node. However, note that the children of a parent
point correspond to hierarchical basis functions on the next interpolation level, so
that we can build the interpolant INL .u/ in (20) from levelL�1 toL by adding those
points on level L whose parent has a surplus greater than our prescribed tolerance.
In this way, we can refine the sparse grid locally and end up with an adaptive sparse
grid which is a sub-grid of the corresponding isotropic sparse grid.

A sparse grid adaptive linear stochastic collocation method (sg-ALSCM) that
utilizes a locally supported linear hierarchical basis, given by (24), to approximate
random functions in the multi-dimensional hypercube � � R

N were considered in
[21, 29, 39, 40]. As mentioned in Example 3.2, the expansion coefficients ci

j.x; t/ in
(20) are simply the hierarchical surpluses and adaptive refinement is guided by the
magnitude jci

jj of those coefficients. However, this approach has a major drawback:
one cannot estimate the error from below with constants independent of the number
of hierarchical levels involved. Thus, the linear hierarchical basis does not form a
stable multi-scale splitting of the approximation space [48] and the absolute value of
a hierarchical coefficient is just a local error indicator and not a true error estimator.
As a result, one obtains sufficiently refined sparse approximations for which the
error is behaving as predicted, but in doing so, one may have used many more
grid points than needed to achieve a prescribed error tolerance for the adaptive
procedure. This scheme has no guarantee of efficiency so that some previous claims
of optimality with respect to complexity for this approach are heuristic, not provable
and, in general, not valid.

Our approach is generally similar, but uses multi-resolution wavelet approxi-
mations that possess all the properties (P1–P4) of the linear basis functions, but
also possess an additional property that guarantee stability and efficiency. We will
introduce this essential criteria in Sect. 4 and more importantly, also explain the
advantages of our novel adaptive wavelet stochastic collocation method (AWSCM).
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4 Adaptive Wavelet Stochastic Collocation Method

As discussed several times in the paper, UQ for complex stochastic systems that
require the approximation and/or resolution of statistical QoIs involving, e.g., steep
gradients, sharp transitions, bifurcations, or finite jump discontinuities, in possibly
high-dimensional probabilistic domains, require sophisticated multi-dimensional
multi-resolution adaptive algorithms. To be effective, however, refinement strategies
must be guided by accurate estimates of errors (both local and global) while not
expending unnecessary computational effort approximating the QoI with respect
to any random dimension. In the sg-ALSCM described in Sect. 3.3, given the
hierarchical sparse-grid approximation (20) that satisfies properties P1–P4, stable
and efficient approximations of such irregular problems cannot be guaranteed. Here,
by efficiency we mean achieving a prescribed error tolerance with a reduced number
of grid points. This can result in an explosion in computational effort for high-
dimensional problems. Towards alleviating this effect, we require the following
additional property of the basis functions  i

j (20), namely

(P5/ Riesz property: the basis f i
jg in (20) is a Riesz basis so that there exists a

constant CR > 0, independent of the level L, such that for all IL.u/ given by
(20) the following holds:

C�1R
LX

lD0

X

jijDl

X

j2Bi

ˇ
ˇci

j

ˇ
ˇ2 � �

�ILN .u/
�
�2
VN � CR

LX

lD0

X

jijDl

X

j2Bi

ˇ
ˇci

j

ˇ
ˇ2 ; (27)

where the set of multi-indices Bi is defined as in (21) and ILN .u/ 	
ILN .u/.y; �; �/.

Unfortunately, finite element bases such as the linear hierarchical polynomials used
in the sg-ALSCM of [39, 40] are not Riesz bases, so norms of such approximations
can only be bounded from above (but not from below) by sequence norms of the
corresponding coefficients. In other words, they are not L2�-stable, as implied by
property P5. The same can be said for the high-order hierarchical polynomial basis
in [9], the Lagrangian interpolation polynomials used in [45, 46], as well as the
orthogonal polynomials in [33, 34].

On the other hand, standard Riesz bases, e.g., Fourier and orthogonal polynomi-
als, consist of functions that are globally supported. In the numerical PDE setting,
this has the disadvantage of leading to dense stiffness matrices and, in the UQ
setting, to intrusive methods. However, certain classes of hierarchical wavelet and
pre-wavelet bases are not only Riesz bases, but consist of compactly supported basis
functions. Thus, we have the best of both worlds: the compact support property
of standard finite element bases and the Riesz basis property of spectral bases.
Moreover, an interpolating wavelet basis can be utilized for the approximation
given by (20), satisfies all the properties P1–P5, and forms a stable multi-resolution
analysis of the stochastic space L2� as defined in [18]. Hence, for the interpolating
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wavelet basis, we obtain the two-sided estimates given by P5. Therefore, the
magnitude of the wavelet coefficients jci

jj in (20) can serve as true local error
estimators and the lower bounds provided by the Riesz basis property gives us a
rigorous indicator of the efficiency of adaptive schemes. This means a prescribed
error tolerance is reached at a significantly reduced number of points in a sparse
grid adaptation process. This results in a superior convergence rate when compared
to methods using other hierarchical multi-scale basis functions. We choose one
particular class of second-generation wavelets, namely lifted interpolating wavelets
on the bounded interval, to achieve this goal. We next provide details about such
wavelets.

4.1 Second-Generation Wavelets and the Lifting Scheme

Second-generation wavelets are a generalization of biorthogonal wavelets that are
more easily applied to functions defined on bounded domains. Second-generation
wavelets form a Riesz basis for some function space, with the wavelets being local
in both “spatial” domain (in our context, the parameter domain) and the frequency
domain and often having many vanishing polynomial moments, but they do not
possess the translation and dilation invariance of their biorthogonal cousins. The
lifting scheme [53,54] is a tool for constructing second-generation wavelets that are
no longer dilates and translates of one single scaling function. In contrast to first-
generation wavelets, which use the Fourier transform to build the wavelet basis, a
construction using lifting is performed exclusively in the “spatial” domain so that
wavelets can be custom designed for complex domains and irregularly sampled data.

The basic idea behind lifting is to start with simple multi-resolution analysis and
gradually build a multi-resolution analysis with specific, a priori defined properties.
The lifting scheme can be viewed as a process of taking an existing first-generation
wavelet and modifying it by adding linear combinations of the scaling function at the
coarse level. To explain the procedure in detail, we follow the notation in Sect. 3.3.
The approximation space Vi D spanf�ij j 0 � j � 2i g in (17) has a decomposition
Vi D Vi�1 ˚Wi , where Vi�1 and Wi are defined by

Vi�1 D spanf�i�1j j0 � j � 2i�1g and Wi D spanf�ij j0 � j � 2i ; j odd g:
(28)

Here, Wi is viewed as the hierarchical subspace on level i , and �ij 2 Wi are the
first-generation interpolating wavelets. Then, the corresponding second-generation
wavelet O�ij is constructed by “lifting” �ij as

O�ij 	 �ij C
2i�1X

OjD0
˛i�1Oj ;j �

i�1
Oj ; (29)
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Fig. 2 Left-boundary wavelet (left), central wavelet (middle), right-boundary wavelet (right)

where the weights ˛i�1Oj ;i in the linear combination are chosen in such a way that

the new wavelet O�ij has more vanishing moments than �ij and thus provides a
stabilization effect. If we apply this approach to the piecewise linear hierarchical
basis, i.e., to the “hat” functions, in such a way that the lifting wavelet basis has two
vanishing moments, we end up with

O�ij D �ij � 1

4
�i�1j�1

2

� 1

4
�i�1jC1

2

for 1 < j < 2i � 1; j odd

O�ij D �ij � 3

4
�i�1j�1

2

� 1

8
�i�1jC1

2

for j D 1

O�ij D �ij � 1

8
�i�1j�1

2

� 3

4
�i�1jC1

2

for j D 2i � 1;

(30)

where the three equations define the central “mother” wavelet, the left-boundary
wavelet, and the right-boundary wavelet, respectively. We illustrate the three lifting
wavelets in Fig. 2. For additional details, see [55].

Due to the fact that our second-generation wavelets are lifted from the first-
generation wavelets, propertiesP1–P4 are guaranteed. In addition, from the analysis
provided in [53, 54], we know that they also constitute a Riesz basis so that
property P5 is satisfied. Therefore, introduction of the lifted wavelet basis into the
hierarchical sparse-grid approximation framework results in a novel non-intrusive
sparse grid adaptive wavelet stochastic collocation method (sg-AWSCM). This
method allows us to encapsulate the advantages of the increased convergence rates
of standard SCM and polynomial chaos approaches resulting from higher-order
polynomial expansion (p-refinement) [46] with the robustness of efficient local
decompositions (h-refinement) [17] for the approximation of irregular solutions
and QoIs coming from PDEs with random inputs in high-dimensional stochastic
domains.

Note that due to the interpolatory property of the wavelet basis, when computing
the wavelet coefficients in (14), we only face an interpolation problem. That is, from
the construction procedure of the lifted wavelets described above, we observe that
neighboring wavelet basis function at the same level have overlapping support such
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that the resulting interpolation matrix for our sg-AWSCM is has greater bandwidth
compared to that for sg-ALSCM. For the one-dimensional problem, the paper
[55] proposed fast algorithms for computing wavelet coefficients. We are currently
working on extending their algorithms to the multi-dimensional case, but in this
paper, we just use mature numerical libraries, e.g., LINPACK, to solve the linear
system for the interpolation coefficients.

5 Numerical Examples

This section illustrates the convergence properties of the sparse grid adaptive
wavelet collocation method for solving three problems. In all examples, we use
the linear hierarchical second generation lifted wavelets described in Sect. 4.1.
The first example is used to compare our sg-AWSCM with the sg-ALSCM for
approximating irregular (deterministic) functions in N D 2 parameter dimensions.
In the second example, we apply our new approach to solve: (a) the Burgers
equation with random boundary condition data and (b) the time-dependent Riemann
problem for the Burgers equation with random initial conditions. Finally, in the
third example, we investigate the ability of the sg-AWSCM to detect the important
random dimensions in a elliptic problem having a moderately high number of
random parameter inputs. As opposed to the previous dimension-adaptive approach
of [45], our new sg-AWSCM does not require a priori nor a posterori estimates
to guide adaptation. Instead, as described in Sect. 4, our multi-dimension multi-
resolution adaptive approach uses only the sparse grid wavelet coefficient to guide
refinement while maintaining increased convergence. We will also use this problem
to compare the convergence of our sg-AWSCM with other ensemble-based methods
such as the isotropic sparse grid method and the sg-ALSCM and to compare all these
approaches to the best N -term sparse grid approximation.

5.1 Approximation of Irregular Deterministic Functions

Consider the two bivariate functions f1.y1; y2/ on Œ�1; 1�2 and f2.y1; y2/ on Œ0; 1�2

defined by

f1.y1; y2/ D

8

<̂

:̂

exp.�2.y21 C y22// if y21 C y22 � 0:25

2 exp.�1
2
/� exp.�2.y21 C y22 // if y21 C y22 < 0:25

(31)

f2.y1; y2/ D 1

j0:15� y21 � y22 j C 0:1
on Œ0; 1� � Œ0; 1�: (32)
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Fig. 3 Results for f1.y1; y2/ in [31]: (a) the target function; (b) the points used by the sg-
AWSCM for a tolerance " D 10�3; (c) error decay vs. number of points; (d) error decay vs.
the tolerance "

It is easy to see that f1.y1; y2/ and f2.y1; y2/ represent two types of irregular
behavior. The function f1.y1; y2/ has a jump in its first-order derivatives @f1=@y1
and @f1=@2 across the circle y21 C y22 D 0:5 whereas f2.y1; y2/ has a steep gradient
across the curve y21 C y22 D 0:15. To construct interpolants for both f1.y1; y2/
and f2.y1; y2/ using the sg-ALSCM and the sg-AWSCM, we first build a level
L D 3 isotropic sparse grid as the initial grid, then add nodes adaptively guided by
linear hierarchical surpluses or wavelet coefficients, respectively. The interpolation
results for f1.y1; y2/ are shown in Fig. 3. Figure 3a displays the function f1; only
the first quadrant is shown due to the symmetries of the function. Figure 3b reveals
the resulting adaptive sparse interpolation grid constructed from the lifted wavelets
for a tolerance " D 10�3. In Fig. 3c, we show the advantage of our approximation by
plotting the convergence rates for the adaptive sg-ALSCM and sg-AWSCM approx-
imations as well as for the best N -term approximations obtained by extracting the
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Table 1 For N D 2 dimensions, we compare the number of grid points required by the sg-
ALSCM, sg-AWSCM, the isotropic sparse grids (ISG) and the best N -term approximations to
compute the interpolated approximation of f1.y1; y2/ to an accuracy smaller than the prescribed
error tolerance ˛, i.e., so that kINL .f1/.y1; y2/� f1.y1; y2/k � ˛

Best N-term Best N-term ISG ISG
Error ˛ sg-ALSCM sg-AWSCM (linear) (wavelet) (linear) (wavelet)

5.0E-02 366 330 181 183 321 321
1.0E-02 366 330 240 233 849 849
5.0E-03 366 330 265 261 1,689 1,689
1.0E-03 774 623 479 482 7,169 7,169
5.0E-04 920 737 640 635 32,769 32,769
1.0E-04 1,927 1,548 1,261 1,254 147,497 147,497

N -terms with the N biggest coefficients from the non-adaptive sg-ALSCM and sg-
AWSCM approximations, respectively. We observe that the convergence behavior
of the sg-AWSCM more closely matches that of the best N -term approximation,
compared to the sg-ALSCM, which results in a reduction in the number of function
evaluations to achieve the desired accuracy " D 10�3. In Fig. 3d, we also plot
the convergence behavior of both methods versus the tolerance ". We see that for
the same prescribed tolerance for the hierarchical surpluses, the sg-AWSCM can
achieve higher accuracy than the sg-ALSCM. Similar conclusions can be made by
examining Table 1, where we show the number of sparse grid points required by the
various interpolants to achieve a desired accuracy. In all cases the sg-AWSCM out-
performs the sg-ALSCM and more closely matches the bestN -term approximation.

The same observations and conclusions can be reached for the function
f2.y1; y2/ by examining Fig. 4 and Table 2. Additionally, in Fig. 5, we show the
condition number of the linear system used to construct the interpolation wavelet
coefficients f1.y1; y2/; we see that the interpolation matrix is well-conditioned.
Therefore, as expected, due to the additional property P5 and the well-conditioning
of the interpolation matrix for the wavelet coefficients, when approximating
functions with discontinuous derivatives, the sg-AWSCM substantially reduces
the complexity of determining an accurate interpolant compared to the sg-ALSCM.

5.2 Burgers Equation with Random Inputs

We next apply our novel sg-AWSCM to construct approximations of solutions
of two Burgers equation problems. First, we consider the steady viscous Burgers
equation with random boundary condition data:

8

<̂

:̂

1

2

@u2

@x
� �

@2u

@x2
D 0 in Œ�1; 1�

u.�1/ D y.!/; u.1/ D 0;

(33)
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Fig. 4 Results for f2.y1; y2/ in Example 1: (a) the target function; (b) the points used by the sg-
AWSCM for a tolerance " D 10�2; (c) error decay vs. number of points; (d) error decay vs. the
tolerance "

Table 2 For N D 2 dimensions, we compare the number of function evaluations required by the
sg-ALSCM, sg-AWSCM, the isotropic sparse grid (ISG), and the best N -term approximation to
compute the interpolated approximation of f2.y1; y2/ to an accuracy smaller than the prescribed
error tolerance ˛, i.e., so that kINL .f2/.y1; y2/� f2.y1; y2/k � ˛

Best N-term Best N-term ISG ISG
Error ˛ sg-ALSCM sg-AWSCM (linear) (wavelet) (linear) (wavelet)

0.5E-01 120 124 74 81 145 145
1.0E-01 188 176 144 131 321 321
5.0E-02 243 238 237 222 1,689 1,689
1.0E-02 445 414 359 343 7,169 7,169
5.0E-03 638 491 431 419 32,769 32,769
1.0E-03 1,392 1,062 902 888 69,633 69,633
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where the left boundary condition data is a uniformly distributed random variable
y.!/ 
 U Œ0:95; 1:05�, i.e., the parameter space � D Œ0:95; 1:05� and the PDF
�.y/ D 10; the viscosity is set to � D 0:1.

The deterministic solver used for this problem is as a finite difference dis-
cretization of the conservative form of the equation followed by an application
of Newton’s method to solve the resulting nonlinear system. Figure 6 shows the
computed realizations of the solution u.y; �/ for several values of the left boundary
value y.!/. Observe that perturbing y.!/ from 1 to 1.005 effects a startlingly large
perturbation to the solution u.y; �/. Thus, we conclude that the solution u.y; �/ is
very sensitive to y.!/ near y.!/ D 1. In particular, this holds for the point x0 at
which the solution u changes sign. Thus, if we choose the quantity of interest to be
the point x0, we again have an instance of irregular behavior. Therefore, we focus
on quantifying the uncertainty of x0 propagated from y.!/ following the uniform
distribution U Œ0:95; 1:05�. To build the multi-scale interpolant using the AWSCM,
we start with a 4-level uniform grid on Œ0:95; 1:05� and then add points adaptively,
guided by the size of the wavelet coefficients. The tolerance " is set to 10�3. The
relation between x0 and y.!/ and the corresponding adaptive grid are shown in
Fig. 7. We can see that x0.y/ has a steep slope around y.!/ D 1 (which accounts for
its high sensitivity near that value) and that the corresponding adaptive grid is refined
around the point y.!/ D 1. The convergence rate of EŒx0� is shown in Fig. 8 and
compared to that of the best N -term approximation obtained by extractingN terms
withN largest coefficients from an approximation on an non-adaptive, uniform grid.

Next, we solve a time-dependent Riemann problem for a Burgers equation with
random initial shock location [51]:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@u

@t
C @

@x

�
1

2
u2
�

D 0; .x; t/ 2 Œ�1; 1� � .0;C1/

u0.x; !/ D
(
1 if x < y.!/

0 if x � y.!/:

(34)
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Fig. 7 The relation between x0 and y.!/ (left), adaptive grid with tolerance " D 10�3 (right) in
example (33)

The initial shock location depends on an uniform random variable y.!/ 

U Œ�0:1; 0:1�, i.e., we have the parameter space � D Œ�0:1; 0:1� and the PDF
�.y/ D 5. A formula for the expectation EŒu� and variance VarŒu� of the exact
solution u can be found in [51].

The deterministic solver used for this problem is a weighted essentially non-
oscillatory (WENO) scheme. Here we consider the solution at time t D 0:2. We
compute the approximate deterministic solution on a uniform spatial grid with 1,025
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Fig. 9 Expectation (left) and variance (middle) of the probabilistic shock profile in example (34)

points in spatial domain Œ�1; 1�. In Fig. 9, we plot the expectation and variance
of the approximate shock profile at t D 0:2, computed with the AWSCM; also
plotted are the corresponding exact statistics. To test the adaptive wavelet procedure,
we choose our quantities of interest to be the expectations of u.y.!/; x/ at three
locations, namely EŒu�.x D 0:036; t D 0:2/, EŒu�.x D 0:127; t D 0:2/, and
EŒu�.x D 0:590; t D 0:2/. We then build the grids using AWSCM with the tolerance
" D 0:01. At each location, we start with a two-level uniform grid on Œ�0:1; 0:1� in
the parameter space and then add points guided by the magnitudes of the wavelet
coefficients. In Fig. 10, we plot the adaptive grids for the three cases. We can see that
the singular point of u.y.!/; x; t D 0:2/ with respect to y.!/ depends on the value
of x. At the time instant t D 0:2: if x 2 Œ0; 0:2� such as x D 0:036 or x D 0:127,
then u.y.!/; x; t D 0:2/ has a singular point but its location is determined by the
value of x; on the other hand, there is no singular point in u.y.!/; x; t D 0:2/ for
x 2 Œ�1; 0/[ .0:1; 1�, including for x D 0:590, so that grid refinement in parameter
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Fig. 10 Adaptive grids with " D 0:01 for quantities of interest being EŒu�.x/ at three spatial
points: x D 0:036 (left), x D 0:127 (middle), x D 0:590 (right) in example (34)

spaces is not needed; the AWSCM method recognizes this so that the two-level
initial grid is not changed by the adaptation procedure.

5.3 Elliptic PDE with Random Inputs

Similar to [45, 46], we consider an elliptic PDE in two spatial dimensions with
random inputs. As shown in the previous examples, the AWSCM and the sg-
AWSCM can accurately capture the irregular, even non-smooth regions in a low-
dimensional stochastic parameter space. If the solution depends on a moderately
large number of random variables with sufficient regularity (analytic in this case),
the major challenge of the numerical approximation is anisotropic (dimension-
adaptive) refinement. To this end, we note that global polynomial approaches, such
as the a priori and a posteriori methods developed in [46] or the quasi-optimal
techniques presented in [8], will obviously outperform our local multi-resolution
approach. However, we use this example to demonstrate the ability of the sg-
AWSCM method to also detect important dimensions when the random variables
do not “weigh equally” in the stochastic solution. The specific problem we solve is
given by

� �r � �a.!; x/ru.!; x/
� D cos.x1/ sin.x2/ in ˝ �D

u.!; x/ D 0 on˝ � @D; (35)

where D D Œ0; 1�2, x1 and x2 denote the components of the spatial position vector
x, and r denotes the gradient operator with respect to x. The forcing term f .!; x/

is deterministic. The random diffusion coefficient a.!; x/ has a one-dimensional
spatial dependence and is given by

log.a.!; x/ � 0:5/ D 1C y1.!/

�p
�C

2

�1=2

C
NX

nD2

n'n.x1/yn.!/; (36)
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where, for n � 2,


n WD .
p
�C/1=2 exp

 

�
�b n

2
c�C �2
8

!

(37)

and

'n.x/ WD

8
ˆ̂
<̂

ˆ̂
:̂

sin

�b n
2
c�x1
Cp

�

for n even

cos

�b n
2
c�x1
Cp

�

for n odd.

(38)

In this example, the random variables fyn.!/g1nD1 are independent, have zero
mean and unit variance, i.e., EŒyn� D 0 and EŒynym� D ınm for n;m 2 NC, and
are uniformly distributed in the interval Œ�p

3;
p
3�. For x1 2 Œ0; 1�, let CL be the

physical correlation length of the stationary covariance function

CovŒlog.a � 0:5/�.x1; x01/ D exp

�

� .x1 � x01/2
C 2
L

�

: (39)

Then, the parameter Cp in (38) is Cp D max.1; 2CL/ and the parameter C in (36)
and (37) is C D CL=Cp . Also, 
n and 'n, for n D 1; : : : ; N are the eigenvalues
and eigenfunctions [given by (37) and (38) respectively] of the covariance operator
defined by substituting (39) into (8). The eigenvalues 
n in (36) decay with
increasing n with large values of the correlation length CL corresponding to fast
decay. Thus, the parameter dimensions have decreasing influence on the solution as
their index increases and, for large CL, the influence decreases quickly. Therefore,
an approximation requires less accurate resolution of the dimensions having small
influence, compared with that for more influential dimensions so that, to achieve
maximum efficiency (e.g., the fewest sample points in parameter space) for a given
overall accuracy, one should use anisotropic, or dimension-adaptive set of sparse
grid points.

For the numerical results, we set CL D 1
2

and retain seven terms of the
expansion (36) and treat the truncated version as the exact diffusion field. In this
case, the eigenvalues are 
1 D 0:665, 
2 D 
3 D 0:692, 
4 D 
5 D 0:274,

6 D 
7 D 0:059. In order to investigate convergence rates, we compare the
expected value EŒu� approximated by our sg-AWSCM method with a tolerance
" D 10�5 to the “exact” solution determined from simulations based on 106 Monte
Carlo (MC) samples of the seven-dimensional parameter. Specifically, in Fig. 11,
for several values of the level L, we plot kEŒINL .u/� � eMC Œu�k, i.e., the L2.D/
norm of the “error” between the expected values obtained using the sg-AWSCM
method and the densely sampled MC method. Also provided in that figure are the
corresponding errors for the isotropic sparse grid, for the sg-ALSCM, and for the
best N -term approximation defined by taking the N terms in the isotropic sparse
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Table 3 For N D 7 dimensions, we compare the number of function evaluations required by the
isotropic sparse grid (ISG), the sg-ALSCM, the sg-AWSCM, and the best N -term approximation
to compute the expected value of the solution to within a prescribed global error tolerance ˛, i.e.,
so that kEŒINL .u/�� eMC Œu�k � ˛

Best N-term Best N-term ISG ISG
Error ˛ sg-ALSCM sg-AWSCM (linear) (wavelet) (linear) (wavelet)

1.0E-05 30 25 34 35 73 73
5.0E-06 74 60 85 81 344 344
1.0E-06 476 248 772 763 2,435 2,435
5.0E-07 1,038 840 1,271 1,280 7,767 7,767
1.0E-07 7,333 3,824 2,812 2,732 85,861 85,861

grid solution with the largest coefficients. The errors are plotted against the number
of points in parameter space each method requires to achieve the desired accuracy.
As expected, due to the fast decay of the eigenvalues, the convergence, with respect
to the number of points used, of both the sg-AWSCM and the sg-ALSCM is
much faster than the approximation based on an isotropic sparse grid because
fewer points are placed along the non-important dimensions associated with small
eigenvalues. Furthermore, our new sg-AWSCM also reduces the overall complexity
when compared to the sg-ALSCM approximation, and nearly matches that for the
bestN -term approximation. Further proof of this can be seen in Table 3 that shows a
reduction in the computational complexity for computing the expected value using
the sg-AWSCM, when compared to the isotropic sparse grid and sg-ALSCM, by
approximately a factor of 20 and 3 respectively, to achieve a desired accuracy of
10�7. In fact, for this higher-dimensional problem, the savings incurred by the sg-
AWSCM compared to the sg-ALSCM and the isotropic sparse-grid approximation
are much more significant than for the previous low-dimensional examples. One can
expect the relative savings, compared with the isotropic sparse-grid approximation,
to increase as one further increases the parameter dimension.
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6 Conclusions

This work proposed a novel sparse-grid adaptive wavelet stochastic collocation
method for both smooth and irregular solutions of partial differential equations with
random input data. This method can be viewed as a major improvement to previous
works; isotropic and anisotropic global Lagrange-type stochastic collocation based
on tensor product approximations [3] or sparse grid approaches [45, 45, 58], as well
as the hierarchical sparse-grid locally adaptive linear stochastic collocation method
[39, 40].

The new technique consists of any standard deterministic approximation in the
physical space (e.g. Galerkin finite element) and an adaptive collocation in the
probability domain at sparse-grid points in the random parameter space, along with
a hierarchical multi-dimensional multi-resolution linear wavelet basis. This com-
pactly supported Riesz basis guarantees the stability of the multi-scale coefficients
and leads to more efficient hierarchical sparse grid approximations. That is, we are
able to guide adaptive refinement by the magnitude of the wavelet coefficient which
results in a minimal number of grid points to achieve a prescribed tolerance. This
alleviates the curse of dimensionality by reducing the computational complexity
for problems having high stochastic dimension. Moreover, as a consequence of the
interpolation property, guaranteed by the proposed lifting scheme, our approach
remains completely non-intrusive and naturally allows for the solution of uncoupled
deterministic problems that are trivially parallelizable, as for the Monte Carlo
method.

The numerical examples included in this work provide computational verification
of the advantage of our novel algorithm. The numerical results compare our new
approach with several classical and heavily utilized techniques for solving stochastic
problems whose solutions are both highly regular and even non-smooth with
respect to the random variables. The results show that, in particular, for moderately
large-dimensional problems, the sparse grid adaptive wavelet stochastic collocation
approach seems to be very efficient and superior to all methods it is compared to.

Future directions of this research will include a complete convergence analysis
of our new approach that will incorporate an examination of the complexity of our
algorithm with respect to the number of collocation points on the sparse grid, as the
dimension of the problem increases. However, as the computational results suggest,
we also want to use the theoretical results to fully explain the increased stability and
efficiency of these techniques when compared to previous approaches. Finally, we
want to avoid solving an interpolation matrix equation for the wavelet coefficients
and intend to develop fast algorithms for calculating the wavelet coefficients in
sparse tensor product spaces.
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Robust Solutions to PDEs with Multiple Grids

Brendan Harding and Markus Hegland

Abstract In this paper we will discuss some approaches to fault-tolerance for
solving partial differential equations. In particular we will discuss how one can
combine the solution from multiple grids using ideas related to the sparse grid
combination technique and multivariate extrapolation. By utilising the redundancy
between the solutions on different grids we will demonstrate how this approach can
be adapted for fault-tolerance. Much of this will be achieved by assuming error
expansions and examining the extrapolation of these when various solutions from
different grids are combined.

Introduction

Modern supercomputers are becoming increasingly complex having hundreds of
thousands of components all working together to complete cumbersome tasks.
As we head towards exascale computing the number of components in the fastest
machines will significantly increase. The purpose of these components vary, from
power supplies, interconnects, CPU’s, hard drives, cooling and so on. Given the
limited lifetime of each component, the probability that any one of these will fail
within a given period of time also increases. The failure of one component will likely
affect numerous neighbouring components. Of course, the origin of all these failures
is a hardware component, but numerous studies of faults indicate that software errors
can be just as, if not more, significant [8]. How we handle these failures whilst
applications are running is a challenge that must be addressed if we are to achieve
exascale computing.
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Current approaches to fault-tolerance tend to be checkpoint-restart in nature.
These methods are infeasible at exascale because they are too memory and com-
munication intensive leading to inefficient use of resources and high energy costs.
Algorithm based fault-tolerance (ABFT) has been studied for a variety of problems
and often provides a low cost solution to robustness, see for example [5, 9, 13].
Existing approaches are largely based upon the use of checksums within linear
algebra calculations.

The sparse grid combination technique was introduced by Griebel et al. [11].
By solving a given problem on many regular anisotropic grids and taking a linear
combination of the results one may approximate the so called sparse grid solution [6,
15]. In Sect. 1 we will introduce some notation and then discuss so called truncated
combinations. We will then go on to describe what one might do if a fault affects
one of the solutions making it unavailable for combination. One of the key points is
that the solution on different grids can be computed independently and hence a fault
need not affect the entire computation. Furthermore, there is a lot of redundancy
shared between the solution of different grids which can be utilised in the event of a
fault. We will demonstrate the additional errors in the solution one trades off when
using our approaches with both theoretical bounds and some numerical results.

Bungartz et al. [7] describe multivariate extrapolation and combination tech-
niques for elliptic boundary value problems. Following this, in Sect. 2 we will
describe how one may compute an extrapolation when one has an assortment of
grids. In particular this will lead to different ways to form extrapolations when a
fault affects one of the solutions. We will demonstrate the effectiveness of these
extrapolations for a variety of problems.

Finally, in Sect. 3 we will demonstrate how combination solutions and extrap-
olation solutions may be combined effectively making the most out of the given
solutions. Furthermore, given the fault-tolerant approaches for the combination and
extrapolation solutions it is straightforward to combine the two in a fault-tolerant
manner. We will again demonstrate the errors with some numerical results.

1 The Combination Technique

In this section we will describe the sparse grid combination technique and introduce
some notation used throughout the paper.

Let i D .i1; : : : ; id / 2 N
d be a multi-index and ˝i D f0; hi ; 2hi ; 3hi ; : : : ; 1g be

a discretisation of the unit interval where hi WD 2�i . We define a grid on the unit
d -cube by

˝i WD ˝i1 �˝i2 � � � � �˝id

Given a grid˝i we define an associated space of d -linear functions
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Vi WD spanf�i;j W jt D 0; : : : 2it ; t D 1; : : : ; d g

where �i;j are the usual d -linear nodal basis functions (hat functions). The
hierarchical difference spaces Wi are given by

Vi D Wi ˚
dX

tD1
Vi�et

where et is the unit vector along the t-th axis. We can use this to write Vn WD
Vfn;n;:::;ng as the direct sum of difference spaces

Vn D
nM

i1D0
� � �

nM

idD0
Wi D

M

kik
1

�n
Wi ;

and of course the classical sparse grid space is given by

V s
n WD

M

kik1�n
Wi :

The sparse grid combination technique [10, 11] allows one to approximate the
sparse grid solution [6] by taking linear combinations of the solution on multiple
regular anisotropic grids. Suppose fi 2 Vi denotes the solution to a given problem
on the grid˝i , then the classical combination solution is given by

f c
n .x/ WD

d�1X

qD0
.�1/q

 
d � 1

q

!
X

ji j1Dn�q
fi .x/ : (1)

The combination technique can be generalised into something adaptive and
flexible, see for example [12]. Given a lattice of multi-indices I which is a downset,
we denote a combination technique onto this space with the formula

f c
I .x/ D

X

i2I
cifi .x/ 2 V s

I WD
M

i2I
Wi ; (2)

where the ci are the combination coefficients.
For d D 2 and d D 3 we will often use the notation fi;j and fi;j;k respectively

to denote fi . Similarly forWi and Vi .
There are some classical results for the error of combination technique solutions.

We assume the pointwise error splitting (see [11])

f � fi;j D C1.hi /h
p
i C C2.hj /h

p
j CD.hi ; hj /h

p
i h

p
j (3)
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where C1 depends on hi , x and y, C2 depends on hj , x and y, and D depends
on hi , hj , x and y. Furthermore jC1j, jC2j and jDj are all bounded above by the
same positive constant �. We are primarily concerned with solutions with sufficient
smoothness to permit first and second order schemes to obtain a solution satisfying
the above splitting for p D 1 and p D 2 respectively.

With this assumption it is shown by Griebel et al. [11] that for d D p D 2 one
has

jf � f c
n j � �h2n.1C 5

4
n/ :

Similarly in three-dimensions if one assumes the pointwise error splitting

	i;j;k WD f � fi;j;k D C1.hi /h
p
i C C2.hj /h

p
j C C3.hk/h

p

k

CD1.hi ; hj /h
p
i h

p
j CD2.hi ; hk/h

p
i h

p

k

CD3.hj ; hk/h
p
j h

p

k C E.hi ; hj ; hk/h
p
i h

p
j h

p

k

(4)

where jC1j, jC2j, jC3j, jD1j, jD2j, jD3j and jEj are bounded above by the same
positive constant �, then one may show for p D 2 (again see [11])

jf � f c
n j � �h2n.1C 65

32
nC 25

32
n2/ :

These results can be easily extended to general p where h2n is replaced with hpn and
the constants are different.

1.1 Truncated Approximations

In the classical combination technique one can have solutions on extremely
disproportionate (strongly anisotropic) grids contributing to the solution. It has
been observed that for some problems it is better to leave some of these out of
the combination, see for example [4]. This gives rise to the so called truncated
combinations since the second sum of (1) is effectively truncated to exclude such
solutions. In two dimensions one may express truncated combinations as

Qf t
i;j WD

tX

˛D0
fiC˛;jCt�˛ �

t�1X

˛D0
fiC˛;jCt�1�˛ (5)

and similarly for three-dimensions one has

Qf t
i;j;k WD Pt

˛CˇD0 fiC˛;jCˇ;kCt�˛�ˇ
�2Pt�1

˛CˇD0 fiC˛;jCˇ;kCt�1�˛�ˇ
CPt�2

˛CˇD0 fiC˛;jCˇ;kCt�2�˛�ˇ
(6)
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Fig. 1 Here we illustrate three examples of combinations. On the left we have the combination
Qf 2
1;3, in the middle we have the combination Qf 3

3;2 and on the right we have the combination Qf 5
0;0 D

f c
5 . The shaded squares indicate the hierarchical spaces Wi;j which contribute to the combined

solution

where by
Pt

˛CˇD0 we mean
Pt

˛D0
Pt�˛

ˇD0. Some examples of these in two
dimensions are depicted in Fig. 1.

In this paper we will consider truncated combinations of the form Qf t
n�t;n�t and

Qf t
n�t;n�t;n�t with 2 � t � n for problems with two and three spatial dimensions

respectively. Note that for t D n the truncated combination is equivalent to the
classical combination of (1). Specifically, we will discuss in detail the cases of t D 2

and t D 3. Our approach for dealing with faults in these examples will be indicative
of the approach for larger t . The first examples are the truncated combinations in
two spatial dimensions with t D 2 as given by

Qf 2
n�2;n�2 D fn;n�2 C fn�1;n�1 C fn�2;n � fn�1;n�2 � fn�2;n�1 (7)

and t D 3 as given by

Qf 3
n�3;n�3Dfn;n�3Cfn�1;n�2Cfn�2;n�1 C fn�3;n � fn�1;n�3 � fn�2;n�2 � fn�3;n�1 :

(8)

There are a few things to note about these combinations, first of all we note that the
approximation spaces for the combinations of (7) and (8) are given by

M

kik
1

�n ; kik1�2n�2
Wi and

M

kik
1

�n ; kik1�2n�3
Wi (9)

for t D 2 and t D 3 respectively. Alternatively, these may be expressed as

Vn;n D .Wn;n ˚Wn�1;n ˚Wn;n�1/˚
	L

kik
1

�n ;kik1�2n�2 Wi



;

Vn;n D
	L

kik
1

�n ; kik1>2n�3 Wi



˚
	L

kik
1

�n ; kik1�2n�3 Wi
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where we see the approximation spaces of (9) have a few difference spaces less than
the full grid space Vn;n. Second, the total number of unknowns of computing the five
component solutions for the approximation of (7) assuming periodic boundaries is

2 � .2n � 2n�2/C .2n�1/2 C 2 � .2n�1 � 2n�2/ D 3 � 22n�2 C 2 � 22n�3 D 22n :

The RHS is equal to the number of unknowns in the full grid space Vn;n.
Therefore one does not save any computational resources compared to the classical
combination technique. If computing the component solutions as in (8) one saves
more but still not as much as the classical combination technique. As a result,
the approaches discussed in this paper will not extend beyond three-dimensional
problems as one runs into the curse of dimensionality. In three-dimensions we will
consider the examples with t D 2 given by

Qf 2
n�2;n�2;n�2 D fn;n�2;n�2 C fn�1;n�1;n�2 C fn�2;n�1;n�1

Cfn�1;n�2;n�1 C fn�2;n;n�2 C fn�2;n�2;n
�2.fn�1;n�2;n�2 C fn�2;n�2;n�1 C fn�2;n�1;n�2/
Cfn�2;n�2;n�2 ;

(10)

and with t D 3 given by

Qf 3
n�3;n�3;n�3D fn;n�3;n�3Cfn�1;n�2;n�3Cfn�2;n�1;n�3 C fn�3;n;n�3 C fn�1;n�3;n�2

Cfn�2;n�2;n�2 C fn�3;n�1;n�2 C fn�2;n�3;n�1 C fn�3;n�2;n�1
Cfn�3;n�3;n � 2.fn�1;n�3;n�3 C fn�2;n�2;n�3 C fn�3;n�1;n�3
Cfn�2;n�3;n�2 C fn�3;n�2;n�2 C fn�3;n�3;n�1/
Cfn�3;n�3;n�2 C fn�3;n�2;n�3 C fn�2;n�3;n�3 :

(11)

Again we note the number of unknowns in the ten component solutions of (10)
is close to that of the full grid space Vn;n;n and hence one saves very little in
computational resources compared to the classical combination technique.

The advantage of these combinations is that for increasing n the solution error
decreases faster than for the usual sparse grid combination technique. This is evident
looking at the approximation spaces where one can see that only a few of the fine
difference spaces have been excluded compared to the full grid solution space Vn.
The following proposition which is similar to those in [11] gives a bound on the
error.

Proposition 1. Suppose that fi;j satisfies the pointwise error splitting

	i;j WD f � fi;j D C1.hi /h
p
i C C2.hj /h

p
j CD.hi ; hj /h

p
i h

p
j

where jC1j, jC2j and jDj are bounded above by some positive constant �. The error
of Qf t

n�t;n�t for some fixed t > 0 is bounded by
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jf � Qf t
n�t;n�t j � 2�hpn C O..hpn /2/ :

Proof. We have

f � Qf t
n�t;n�t D Pt

iD0.f � fn�tCi;n�i /�Pt�1
iD0.f � fn�tCi;n�1�i /

D Pt
iD0.C1.hn�t 2�i /h

p
n�t 2�ip C C2.hn�t 2�tCi /hpn�t 2.�tCi /p

CD.hn�t 2�i ; hn�t 2�tCi /hpn�thpn�t 2�tp/
�Pt�1

iD0.C1.hn�t 2�i /h
p
n�t 2�ip C C2.hn�t 2�tC1Ci /hpn�t 2.�tC1Ci /p

CD.hn�t 2�i ; hn�t 2�tC1Ci /hpn�thpn�t 2.�tC1/p/
D C1.hn�t 2�t /hpn�t 2�tp C C2.hn�t 2�t /hpn�t 2�tp

CO.2�.tC1/p.hpn�t /2/
D C1.hn/h

p
n C C2.hn/h

p
n C O..hpn /2/

and therefore

jf � Qf t
n�t;n�t j � jC1.hn/jhpn C jC2.hn/jhpn C jO..hpn/2/j

� 2�h
p
n C O..hpn /2/ :

This implies that the rate of convergence is the same as that for the solution fn;n.
One can extend this result to the three-dimensional case with the error splitting of (4)
to find jf � Qf t

n�t;n�t;n�t j � 3�h
p
n C O..hpn /2/.

Another advantage of these combinations is that for each n the structure of the
combination is essentially the same making the analysis simpler as we begin to study
the effect of faults on the combination technique.

We also remark that such combinations may work well for problems where the
classical sparse grid approximation is poor. For example, since for increasing n
there is an increasing minimum “fineness” of the solution along each axis one may
still resolve problems with discontinuities or non-linear interactions. This minimum
“fineness” also means we can try extrapolation techniques onto the largest grid
common to those in the approximation, this will be discussed in Sect. 2.

Effectively we are approximating something very close to the full grid solution
rather than the classical sparse grid solution, however by using multiple grids in a
way similar to the combination technique we will be able to add some robustness to
our computations as we will now discuss.

1.2 Combining in the Event of Faults

Suppose we have an application running on HPC architecture using MPI for com-
munications. Generally, if a processor experiences a failure whilst the application
is running an exception will be raised by MPI and the entire application will be
aborted. This problem is often handled by periodically saving the state of the entire
application (checkpointing), if a fault occurs the application is simply restarted from
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the last successful checkpoint. This is infeasible for exascale machines because
checkpointing is too memory and communication intensive making it too costly
in terms of computational resources, time and energy costs.

Given a problem decomposed into one of the combinations described above,
we note that the computation of each solution is independent. Therefore, if a fault
affects the computation of any one of these solutions, one could avoid the global
abort and the computation of the remaining solutions can continue as usual. The
solution which has failed can be rescheduled with the computation starting from the
beginning. Since recomputation can lead to load balancing issues one may consider
doing without that solution and utilising only those which remain. This approach
raises the following question: how does one combine the grids if one of them is
missing? This question motivates the discussion throughout the remainder of this
section.

We will first consider in detail the truncated combination of (7). Given the five
solutions in this combination we will go through the alternative approximations one
may take when a failure affects any one of these solutions. For a failure affecting
the solutions fn�2;n or fn�2;n�1 one can instead compute the combination fn;n�2 C
fn�1;n�1 � fn�1;n�2. Effectively this gives an approximation in the space

Vn;n�1 D Wn;n�1 ˚
0

@
M

i�n ; j�n�1 ; iCj�2n�2
Wi;j

1

A :

Compared to the normal case as in (9) we see that some information from the
difference spacesWi;n for i � n�2 has been lost. For large n one would expect that
these have a very small contribution to the solution and therefore the loss of these
should only have a small impact on the error.

Similarly for faults on fn;n�2 or fn�1;n�2 one can instead apply the combination
fn�2;n C fn�1;n�1 � fn�2;n�1. Similar to before we are left with an approximation
in the space

Vn�1;n D Wn�1;n ˚
0

@
M

i�n�1 ; j�n ; iCj�2n�2
Wi;j

1

A :

The last case to consider is a fault on fn�1;n�1. The simplest thing to do in this
case is to simply take fn�2;n or fn;n�2 to be the solution. A fault affecting this
solution is a worse case scenario as we will see in Proposition 2 which bounds
the error of these alternate combinations. Figure 2 illustrates some of combinations
described when faults affect the occur during the calculation of Qf 2

3;3.

Proposition 2. Suppose that fi;j satisfies the pointwise error splitting as in Propo-
sition 1. Let gn be any one of the combinations above when a fault affects one of the
component solutions from the combination in (7), that is,
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Fig. 2 Here we illustrate how a fault effects the combination Qf 2
3;3. On the left we have the

combination when no faults occur. In the middle we have a possible combination if a fault occurs
during the calculation of f3;5 and/or f3;4. On the right we have a possible combination if a fault
occurs during the calculation of f4;4. The blue shaded squares indicate the difference spaces Wi;j

which contribute to the combined solution whilst the red shaded squares indicate the difference
spaces we lose in the modified combinations

gn D
8
<

:

fn;n�2 C fn�1;n�1 � fn�1;n�2 for a fault on fn�2;n or fn�2;n�1
fn�2;n C fn�1;n�1 � fn�2;n�1 for a fault on fn;n�2 or fn�1;n�2
fn;n�2 or fn�2;n for a fault on fn�1;n�1 :

The (pointwise) error of gn is bounded by

jf � gnj � �hpn.1C 22p/C O..hpn /2/ :

Proof. Consider the case for a fault on fn�2;n or fn�2;n�1, one has

f � .fn;n�2 C fn�1;n�1 � fn�1;n�2/
D .f � fn;n�2/C .f � fn�1;n�1/ � .f � fn�1;n�2/
D C1.hn/h

p
n C C2.hn�2/hpn�2 CD.hn; hn�2/hpnhpn�2

CC1.hn�1/hpn�1 C C2.hn�1/hpn�1 CD.hn�1; hn�1/hpn�1h
p
n�1

�.C1.hn�1/hpn�1 C C2.hn�2/hpn�2 CD.hn�1; hn�2/hpn�1h
p
n�2/

D C1.hn/h
p
n C C2.hn�1/hpn�1

CD.hn; hn�2/hpnhpn�2 CD.hn�1; hn�1/hpn�1h
p
n�1 �D.hn�1; hn�2/hpn�1hpn�2

and therefore

jf � .fn;n�2 C fn�1;n�1 � fn�1;n�2/j
� jC1.hn/jhpn C jC2.hn�1/j2phpn

CjD.hn; hn�2/CD.hn�1; hn�1/ � 2pD.hn�1; hn�2/j22ph2pn
� �h

p
n.1C 2p/C �.2C 2p/22ph

2p
n /

D �h
p
n .1C 2p/C O..hpn /2/
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The cases for faults on fn;n�2 or fn�1;n�2 are similar. The only remaining case is a
fault on fn�1;n�1. If we simply took fn;n�2 as the solution then we clearly have

jf � fn;n�2j � �hpn.1C 22p/C �22ph2pn :

Hence we see that the maximum is given by �hpn.1C 22p/C O..hpn /2/.

If these bounds are tight then combined with the result of Proposition 1 one may
expect that in the limit of large n one has jf � gnj / 1C22p

2
jf � Qf 2

n�2;n�2j.
Remark 1. We stop here to note it is possible to do a little better for some of these
cases. For example, given the case of a fault affecting the solution fn�2;n�1 we note
that one can still make some use of the solution fn�2;n. We must first define the
interpolation (or projection) operator Ii . Given any f 2 V then

Ii W f 2 V 7! Iif 2 Vi ;
that is, Iif interpolates (projects) f to a function defined by its values on the grid
˝i . Now given an interpolation In�2;n�1fn�2;n of the solution fn�2;n onto the space
Vn�2;n�1, one may then add fn�2;n � In�2;n�1fn�2;n to the combination fn;n�2 C
fn�1;n�1 � fn�1;n�2. One sees that fn�2;n � In�2;n�1fn�2;n extracts the hierarchical
components Wi;n with 0 � i � n � 2 from the solution fn�2;n. As a result we are
effectively recovering contributions from theses hierarchical spaces. Similarly may
be done for a fault on fn�1;n�2 via symmetry. The other case is a fault affecting
fn�1;n�1 where one may take fn;n�2 as the solution and then add to it fn�2;n �
In�2;n�2fn�2;n. Given an appropriate consistency property between the interpolation
operator and approximation scheme, for example kf �Ii;j fk;lk1 � Ckf �fi;j k1
for some positive constant C and all k � i and l � j , then one may prove error
bounds similar to those of Proposition 2.

One may also enumerate the cases for the other combinations presented. For (8)
one has the following:

• If fn�3;n and/or fn�3;n�1 are lost due to faults one may take the combination
fn;n�3 Cfn�1;n�2 Cfn�2;n�1 �fn�1;n�3 �fn�2;n�2 [compare with (7)]. Here we
lose contributions from the difference spacesWi;n for i � n � 3.

• Similarly, if fn;n�3 and/or fn�1;n�3 are lost due to faults then one may take the
combination fn�3;n C fn�2;n�1 C fn�1;n�2 � fn�3;n�1 � fn�2;n�2. Here we lose
contributions from the difference spaces Wn;i for i � n � 3.

• If a fault affects fn�1;n�2 or fn�2;n�1 then one may take the combinations
fn�3;n C fn�2;n�1 � fn�3;n�1 or fn;n�3 C fn�1;n�2 � fn�1;n�3 respectively. For
a fault on fn�1;n�2 we see that the new combination does not have contributions
from the difference spacesWn�1;i for i � n� 2 and Wn;j for j � n� 3. Similar
applies for a fault on fn�2;n�1.

• Finally, if a fault affects fn�2;n�2 then one may take combinations from the
previous case, i.e. fn;n�3 C fn�1;n�2 � fn�1;n�3 or fn�3;n C fn�2;n�1 � fn�3;n�1.
Again we have a bound on the errors for these combinations.
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Proposition 3. Suppose that fi;j satisfies the same pointwise error splitting as in
Proposition 1. Let gn be any one of the combinations above when a fault affects one
of the component solutions from the combination in (8), that is, depending on which
component the fault occurred, gn is one of the functions

gn D

8
ˆ̂
<

ˆ̂
:

fn;n�3 C fn�1;n�2 C fn�2;n�1 � fn�1;n�3 � fn�2;n�2
fn�3;n C fn�2;n�1 C fn�1;n�2 � fn�3;n�1 � fn�2;n�2
fn�3;n C fn�2;n�1 � fn�3;n�1 or fn;n�3 C fn�1;n�2 � fn�1;n�3
fn;n�3 C fn�1;n�2 � fn�1;n�3 or fn�3;n C fn�2;n�1 � fn�3;n�1 :

The (pointwise) error of any of the four gn is bounded by

jf � gnj � �hpn.1C 22p/C O..hpn /2/ :

Proof. The proof is similar to that of the previous proposition. It is straightforward
to show that

jf � .fn;n�3 C fn�1;n�2 C fn�2;n�1 � fn�1;n�3 � fn�2;n�2/j
� jC1.hn/jhpn C jC2.hn�1/j2phpn

CjD.hn; hn�3/CD.hn�1; hn�2/CD.hn�2; hn�1/j23ph2pn
CjD.hn�1; hn�3/CD.hn�2; hn�2/j24ph2pn

� �h
p
n .1C 2p/C �.3C 2pC1/23ph2pn /

D �h
p
n.1C 2p/C O..hpn /2/

and

jf � .fn;n�3 C fn�1;n�2 � fn�1;n�3/j
� jC1.hn/jhpn C jC2.hn�1/j22phpn

CjD.hn; hn�3/CD.hn�1; hn�2/j23ph2pn C jD.hn�1; hn�3/j24ph2pn
� �h

p
n .1C 22p/C �.2C 2p/23ph

2p
n /

D �h
p
n .1C 22p/C O..hpn /2/ :

Since similar results apply to the remaining cases due to symmetry of the combina-
tions one can see that the maximal error is �hpn .1C 22p/C O..hpn /2/.

Again, if the bounds are tight then in the limit of large n one may expect to
observe jf � gnj / 1C22p

2
jf � Qf 2

n�2;n�2j. One can see that if a fault occurs when
using the grids of (8) then at least three of the remaining six grids can be utilised in
a combination. This is somewhat nicer than the case of (7) where in one scenario
only one of the remaining four grids can be utilised. Despite this the error bound is
the same.

Remark 2. Similar to the previous set of combinations, one may add hierarchical
components from remaining unused grids to some of the cases presented above.
For example, in the case of a fault on fn�1;n�3 one may take the combination
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fn�2;n�1 C fn�3;n � fn�3;n�1 and add to it fn;n�3�In�1;n�3fn;n�3. In doing this one
is including contributions from the difference spacesWn;i for i � n�3. Similar can
be done for many of the remaining cases. Again one may prove error bounds similar
to those above given a consistency property between the interpolation operator Ii;j
and the discrete solutions fi;j .

In order to demonstrate how similar approaches can be applied in higher
dimensions we will also enumerate the cases for the three-dimensional combination
of (10).

• If fn�2;n�2;n is lost one may take the combination

gn D fn;n�2;n�2 C fn�1;n�1;n�2 C fn�2;n�1;n�1 C fn�1;n�2;n�1 C fn�2;n;n�2
�2.fn�1;n�2;n�2 C fn�2;n�1;n�2/ � fn�2;n�2;n�1 C fn�2;n�2;n�2:

(12)

The information from the difference spaces Wi;j;n for i; j � n � 2 is lost.
Similarly for fn;n�2;n�2 and fn�2;n;n�2 (one simply permutes the indices).

• If fn�2;n�1;n�1 is lost one may take the combination

gn D fn;n�2;n�2 C fn�1;n�1;n�2 C fn�2;n�2;n C fn�1;n�2;n�1 C fn�2;n;n�2
�2fn�1;n�2;n�2 � fn�2;n�1;n�2 � fn�2;n�2;n�1:

(13)

Here we lose contributions from the difference spaces Wi;n�1;n�1 for i � n � 2.
Similarly for fn�1;n�2;n�1 and fn�1;n�1;n�2 (again, simply permute the indices).

• If fn�2;n�2;n�1 is lost then there are many combinations that can be chosen. One
such combinations which utilises the most solutions is

gn D fn�2;n�2;n C fn�2;n;n�2 C fn;n�2;n�2 C fn�1;n�1;n�2
�fn�1;n�2;n�2 � fn�2;n�1;n�2 � fn�2;n�2;n�2: (14)

For this combination one loses contributions from the difference spaces
Wi;n�1;n�1 for i � n � 2 and Wn�1;i;n�1 for i � n � 2. Similar applies for
faults affecting fn�1;n�2;n�2 or fn�2;n�1;n�2 (again one simply permutes the
indices).

• If fn�2;n�2;n�2 is lost then again there are many options. One such is to take

gn D fn�2;n�2;n C fn�2;n;n�2 C fn;n�2;n�2 C fn�2;n�1;n�1 C fn�1;n�1;n�2
�fn�1;n�2;n�2 � 2fn�2;n�1;n�2 � fn�2;n�2;n�1:

(15)

One loses contributions from the difference spaces Wi;n�1;n�1 for i � n � 2 in
this case. Two similar combinations can be obtained simply by permuting the
indices.

We have a bound on the error for any of these combinations.
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Proposition 4. Suppose that fi;j;k satisfies the pointwise error splitting of (4). Let
gn be any one of the combinations above when a fault affects one of the solutions
from the combination in (10), that is, gn is equal to one of (12), (13), (14) or (15)
up to a permutation of indices. The (pointwise) error of gn is bounded by

jf � gnj � �hpn .2C 2p/C O..hpn /2/ :

Proof. The proof is very similar to those in the two-dimensional case. The maximal
error is given for the case of a fault affecting one of fn;n�2;n�2, fn�2;n;n�2 or
fn�2;n�2;n and is given by

f � . fn;n�2;n�2 C fn�1;n�1;n�2 C fn�2;n�1;n�1 C fn�1;n�2;n�1 C fn�2;n;n�2
�2.fn�1;n�2;n�2 C fn�2;n�1;n�2/� fn�2;n�2;n�1 C fn�2;n�2;n�2/

D C1.hn/h
p
n C C2.hn/h

p
n C C3.hn�1/hpn�1 C O..hpn /2/

leading to the bound �.2C 2p/h
p
n .

Given this result, if the bounds are tight then in the limit of large n one may expect
to observe jf �gnj / 2C2p

3
jf � Qf 2

n�2;n�2;n�2j. We can see that this bound appears to
be much better compared to the two-dimensional case. This is due to the extra grids
which give rise to many more ways one may combine solutions. In fact, one should
note that for many of the cases of faults, the bound on error using the combinations
presented is 3�hpn CO..hpn /2/, i.e. it is the same as a combination without faults for
the leading error terms. Given the flexibility from having extra grids we also note it
is often possible to obtain good solutions even when two solutions are affected by
faults.

Such results can be easily extended to the combination of (11) but we will not
enumerate these cases here.

Remark 3. PDE’s which have a derivative with respect to time can be more difficult
to handle. Many modern solvers use automatic time stepping schemes that choose
a stable time step providing results within some desired error tolerance. As a
result we will not analyse the truncation errors dependant on time stepping, we
will simply assume that the time stepping scheme is of higher order then the
spatial discretisations. Under this assumption the error from spatial truncation errors
dominates and we may apply the combinations presented above.

1.3 Results for Combinations When Faults Occur

We will demonstrate the trade off in errors for not having to recompute for a variety
of problems. In particular we will consider the scalar advection equation

@f

@t
C a � rf D 0
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Fig. 3 We demonstrate the
errors obtained after altering
the combination when a fault
occurs for the 2D advection
problem. Given a level n, the
five and seven grid
combinations are Qf 2

n�2;n�2

and Qf 3
n�3;n�3 respectively.

The full grid we compare
with is fn;n and the fault
combinations are those
discussed in Sect. 1.2. Errors
are computed on the space
Vn;n in each case

in two spatial dimensions with a D .1; 1/, exact solution f .x; y; t/ D sin.2�.x �
t//sin.2�.y� t// in the unit square Œ0; 1�2 and periodic boundary conditions. Given
f .x; y; 0/ we solve up to t D 0:5. High order Runge–Kutta methods are used for
time stepping and we experiment with first order spatial discretisations. We run the
solution to completion on each grid combining only once at the end.

We solve the same problem in three spatial dimensions with a D .1; 1; 1/, exact
solution f .x; y; z; t/ D sin.2�.x� t// sin.2�.y� t// sin.2�.z� t// in the unit cube
Œ0; 1�3 and periodic boundary conditions. Again we start with the initial condition
at t D 0 and solve up to t D 0:5 using high order Runge–Kutta time stepping and
second order spatial discretisations.

We will also give results for the two-dimensional Laplace problem f D 0

with the exact solution f .x; y/ D sin.�y/ sinh.�.1�x//
sinh� in the unit square Œ0; 1�2 and

Dirichlet boundary conditions as in [11].
Each of these problems has been implemented using PETSc [1–3] to compute

each of the individual solutions and then with the combinations being done in
Python.

In Figs. 3 and 4 we demonstrate the average l1 error obtained for some different
problems using many of the different combinations of solutions as discussed. In
the first figure we have some results for the two-dimensional advection problem
using the combination of (7). We compare the combination solution with the full
grid solution (fn;n) and also plot the error for each case of a fault affecting one of
the five solutions (some of these are the same due to symmetries of the problem).
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Fig. 4 We demonstrate the
errors obtained after altering
the combination when a fault
occurs for a 3D advection
problem and a 2D Laplace
problem. Given a level n the
combination for the 3D
problem is Qf 2

n�2;n�2;n�2 and
the fault combinations are
those discussed in Sect. 1.2.
The error in the 3D problem
is computed on the space of
the truncated approximation.
The details for the 2D
problem are the same as those
of the seven grid advection
problem in Fig. 3

We see that the error from the combination appears to converge towards that from
the full grid solution (i.e. fn;n). Further, the combination after a fault has occurred
converges at the same rate and appears to be bounded by a constant multiple of the
error from the normal combination where that constant depends on which solution
the fault occurred. This is consistent with the results of Proposition 2.

The second plot is the error for the same PDE but using the solutions as in (8)
as the base solutions. The observations are similar. The third plot is for the three-
dimensional advection equation with second order discretisations. Here we have not
included the full grid error as it is too expensive to compute but one observes similar
bounds on the error when the combination is altered after a fault occurs. The last plot
is the two-dimensional Laplace problem using the seven solutions as in (8) which
are solved using a second order spatial discretisations. The errors in this plot after a
fault has occurred appear to be quite a bit larger but are still bounded by a constant
multiple of the errors when no faults occur.

2 Richardson Extrapolation and Related Ideas

Classical Richardson extrapolation involves taking two solutions fn;n and fnC1;nC1
and combining them with the formula
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2p

2p � 1In;nfnC1;nC1 C 1

1 � 2p fn;n

in order to obtain a higher order solution. It is important to note that this result
requires a slightly different error estimate than the error splitting of (3). In particular
we require the pointwise multivariate asymptotic expansion

�i;j D f � fi;j D ep;0h
p
i C e0;ph

p
j C ep;ph

p
i h

p
j C e2p;0h

2p
i C e0;2ph

2p
j C � � � (16)

where each em;n term depends only upon x and y. A similar error splitting applies
for three spatial dimensions. One can see the first terms are similar to those in the
previous error splitting except that the constants are independent of hi and hj . We
also assume that the interpolation operator I preserves the pth order terms of the
asymptotic expansion.

In particular we are concerned with solutions smooth enough to permit first and
second order schemes satisfying this expansion for p D 1 and p D 2 respectively.
It is well known that with suitable assumptions on regularity then the solution of a
variety of elliptic problems has such an expansion for p D 2. However, Richardson
extrapolation is computationally expensive as one must calculate the solution on
a grid four times the size in two-dimensions and eight times the size in three-
dimensions.

2.1 Multivariate Richardson Extrapolation

Multivariate extrapolation has been studied by Rüde [14] and Bungartz et al. [7].
For example, given the error splitting in (16) with p D 2 we can extrapolate by
taking the combination

4

3
In;nfnC1;n C 4

3
In;nfn;nC1 � 5

3
fn;n :

It has been shown that multivariate Richardson extrapolation is much cheaper
than classical Richardson extrapolation for increasing dimension and increasing
extrapolation order [7].

In this simple two-dimensional example it is still expensive requiring two extra
grids which are twice the size. We note however that one may make additional use of
the information in these grids. Given the combination g � fn;nC1CfnC1;n�fn;n one
could add the high frequency components from g to the extrapolation above. That
way one has a high order extrapolation of the solution for the coarser hierarchical
spaces as well as a low order approximation of contributions from some finer
hierarchical spaces. Assuming the contributions from these are sufficiently small
for increasing n then one should still see high order convergence with respect to n.
By doing this one can make the most out of the given solutions. This is discussed
further in Sect. 3.
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We are concerned with having solutions from combinations like those of (7). This
raises the question: what is the best way to combine these grids to obtain a similar
extrapolation? Two possible choices for p D 2 are:

4

3
In�2;n�1fn�1;n�1 C 4

3
In�2;n�1fn�2;n � 5

3
fn�2;n�1

or

4

3
In�1;n�2fn;n�2 C 4

3
In�1;n�2fn�1;n�1 � 5

3
fn�1;n�2 :

These extrapolate onto the grids ˝n�2;n�1 and ˝n�1;n�2 respectively. Another
option is to extrapolate onto the largest grid which is contained within all five grids.
It is easily shown that the combination

�4
9
In�2;n�2fn�2;n C 17

9
In�2;n�2fn�1;n�1 � 4

9
In�2;n�2fn;n�2

is a multivariate extrapolation onto the grid˝n�2;n�2. There are also other possibil-
ities where one may use all of the five grids but this is convenient computationally
given it uses only 3.

In general one may obtain coefficients for such extrapolations by using the error
expansion in (16) to form the equation

a1.f C .fn�2;n � f //C a2.f C .fn�1;n�1 � f //C a3.f C .fn;n�2 � f //

Ca4.f C .fn�2;n�1 � f //C a5.f C .fn�1;n�2 � f //

D f C 0ep;0 C 0e0;p C O..hpn /2/
(17)

which leads to the system of equations

a1 C a2 C a3 C a4 C a5 D 1

a1h
p
n�2 C a2h

p
n�1 C a3h

p
n C a4h

p
n�2 C a5h

p
n�1 D 0

a1h
p
n C a2h

p
n�1 C a3h

p
n�2 C a4h

p
n�1 C a5h

p
n�2 D 0 :

The problem here is that the system is under determined. One can manage this
by assuming some symmetry in combination coefficients, for example a1 D a3
and a4 D a5. Alternatively one may attempt to extrapolate further terms in
the error expansion, for example the e2p;0 and e0;2p terms. If the problem at
hand is formulated as the minimum of a functional then one could substitute the
combination formula and apply the above equations as linear constraints. Another
option is just to pick a few solutions one would like to work with and see if
there’s a suitable solution. The problem of the under determined system of equations
becomes worse for the example of (8) and worse still for the three-dimensional
examples of (10) and (11) since there are even more solutions and hence coefficients.
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It is important to note that one must be careful since whilst one may obtain
coefficients that extrapolate away the ep;0 and e0;p terms, it may significantly
increase the constants on the higher order terms such that the result is poor unless n
is sufficiently large. It is also known that extrapolation is unstable. Despite this we
will demonstrate how extrapolation may still be applied when faults occur.

2.2 Fault-Tolerant Multivariate Extrapolation

The idea is that when a fault occurs affecting one of the solutions then we may
solve the set of linear equations similar to those derived from (17) using only the
solutions which remain. For the example of the solutions computed as in (7) it is
straightforward. For a fault affecting fn�1;n�2 or fn�2;n�1 one may still use the
extrapolation � 4

9
In�2;n�2fn�2;nC 17

9
In�2;n�2fn�1;n�1� 4

9
In�2;n�2fn;n�2 for p D 2.

In general one has

1

.2p � 1/2 In�2;n�2
��2pfn�2;n C .22p C 1/fn�1;n�1 � 2pfn;n�2

�
: (18)

If a fault affects the solution fn;n�2 then we note that one may take the extrapolation

2p

2p � 1
In�2;n�1fn�2;n � 2p C 1

2p � 1
fn�2;n�1 C 2p

2p � 1In�2;n�1fn�1;n�1 (19)

onto the space Vn�2;n�1. By symmetry a similar extrapolation can be obtained when
a fault affects fn�2;n. This leaves us with the last case of a fault on fn�1;n�1. We have

a1fn�2;n C a2fn;n�2 C a3fn�2;n�1 C a4fn�1;n�2
D f C 0ep;0 C 0e0;p C O..hpn /2/

which we solve along with the assumption that a5 D a4 and a3 D a1. This results
in the multivariate extrapolation formula

2pC22p
2pC1�2 .In�2;n�2fn�2;n C In�2;n�2fn;n�2/
� 22pC1
2pC1�2 .In�2;n�2fn�2;n�1 C In�2;n�2fn�1;n�2/ :

Similar extrapolation formulas may be applied where faults occur for the
solutions as in (8). In fact one can simply shift the extrapolation formula of (18)
and/or (19) in order to avoid the solution that was affected by a fault.

In three-dimensions there are many different ways one may add the solutions to
obtain an extrapolation. The simplest approach is to take the simple multivariate
extrapolation formula
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Fig. 5 We demonstrate the
errors obtained after altering
the extrapolation when a fault
occurs for a 2D advection
problem. Given a level n, for
the five and seven grid plots
we form an extrapolation
onto the spaces Vn�2;n�2 and
Vn�3;n�3 respectively. The
solutions used in the
extrapolation are those
computed for the
combinations Qf 2

n�2;n�2 and
Qf 3
n�3;n�3 respectively. The

full grid solution we compare
with is fn;n. The fault
extrapolations are those
described in Sect. 2.2. The
error in the extrapolation is
computed on the spaces
Vn�2;n�2 and Vn�3;n�3 for
the first and second plots
respectively whilst for the full
grid the error is computed on
the space Vn;n

2p

2p � 1
.Ii;j;kfiC1;j;k C Ii;j;kfi;jC1;k C Ii;j;kfi;j;kC1/ � 2pC1 C 1

2p � 1 fi;j;k

and shift it to a combination which avoids the solution which was affected by a fault.

Remark 4. We remarked previously that it is difficult to consider truncation errors
dependant on the time stepping given the common use of automatic time stepping
schemes. For extrapolation we again assume that the time stepping is of an order
larger than the spatial discretisations. Optimally one would like at least order 2p
such that the extrapolation of the p order spatial errors results in an order 2p
method.

2.3 Results for Extrapolation

In Figs. 5 and 6 we demonstrate the results for extrapolation using the same
examples as in Sect. 1.3. For example, in the first plot of Fig. 3 we have the two-
dimensional scalar advection equation where we compare the full grid solution fn;n
with the extrapolation of the solutions computed for the combination Qf 2

n�2;n�2 onto
the space Vn�2;n�2. We observe that the extrapolation is much better than the full
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Fig. 6 We demonstrate the
errors obtained after altering
the extrapolation when a fault
occurs for a 3D advection
problem and a 2D laplace
problem. The details for the
2D laplace problem are the
same as those for the seven
grid advection problem in
Fig. 5. For the third problem,
given a level n, we compute
the extrapolation onto the
space Vn�2;n�2;n�2 using the
solutions as computed for the
combination Qf 2

n�2;n�2;n�2.
The error is computed on the
space Vn�2;n�2;n�2

grid solution for large enough levels despite the difference in grid sizes. This is due
to the extrapolation converging at a faster rate despite being on a smaller grid. This
remains true when we alter the extrapolation after faults occur and we appear to
have some bounds on the errors again for different cases of faults. Such bounds may
be derived through a thorough analysis of the extrapolation of higher order terms in
the asymptotic expansion.

3 Combining the Two Approaches

As suggested previously one may combine the two approaches. This is particularly
straightforward for the case p D 1. We will describe this in detail for the case where
one has the five solutions as in (7).

3.1 For a Standard Case (No Faults)

Consider one has the five component solutions fn�2;n, fn�1;n�1, fn;n�2, fn�2;n�1 and
fn�1;n�2 and that they satisfy the asymptotic error expansion of (16). Remember that
Qf 2
n�2;n�2 denotes the combination
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Fig. 7 This is a visual representation of the combined approach as in (20) for n D 5. On the left
are the grid points which are extrapolated to a 2p order solution whilst those in the diagram on the
right are obtained by adding some p order corrections

Qf 2
n�2;n�2 D fn�2;n C fn�1;n�1 C fn;n�2 � fn�2;n�1 � fn�1;n�2 :

Let f e
n�2;n�2 denote an extrapolation of these solutions onto the space Vn�2;n�2, for

example with p D 1 one can use

f e
n�2;n�2 D �2In�2;n�2fn�2;n C 5In�2;n�2fn�1;n�1 � 2In�2;n�2fn;n�2 :

Now we can use both of these results by combining according to

IIf e
n�2;n�2 C . Qf 2

n�2;n�2 � In�2;n�2 Qf 2
n�2;n�2/ (20)

where IIf e
n�2;n�2 is the bilinear interpolation of f e

n�2;n�2 onto the sparse grid on

which Qf 2
n�2;n�2 lives, that is Qf 2

n�2;n�2 2 V s
I with I D f.i; j / 2 N

2 W i C j � 2n �
2 and i; j � ng. The result is a solution consisting of a second order approximation
from the space Vn�2;n�2 and a first order approximation from the space

0

@
M

j�n�2
Wn;j

1

A˚
0

@
M

j�n�1
Wn�1;j

1

A˚
 
M

i�n�2
Wi;n

!

˚
 
M

i�n�2
Wi;n�1

!

: (21)

The points on the sparse grid that contribute to each of these function spaces for
n D 5 are depicted in (Fig. 7). For p > 1 similar approaches may be taken but one
needs to use a higher order interpolation (rather than the usual bilinear) to be able to
effectively utilise the order 2p extrapolation. Future work will involve investigation
into these cases.

3.2 Fault-Tolerant Approach

Since we have already enumerated fault-tolerant approaches for the combination
and extrapolation techniques, combining the two approaches will be straightfor-
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Fig. 8 We demonstrate the errors obtained when combining the two methods for the 2D scalar
advection problem

ward. For example, given a fault affecting one of the five solutions of (7), let
gen�2;n�2 denote an extrapolation of successfully computed solutions onto the space
Vn�2;n�2 and gcI 2 V s

I denote some combination of the successfully computed
solutions, then one simply takes

IIgen�2;n�2 C .gcI � In�2;n�2gcI/ :

Note that in two of the cases when faults occurred with these five solutions
we extrapolated onto a larger space, e.g. Vn�2;n�1 and Vn�1;n�2, however in
our numerical results we extrapolate onto Vn�2;n�2 for consistency and ease of
computation.

In Fig. 8 we demonstrate this combined approach with the full grid solution
and the extrapolation solution for the two-dimensional scalar advection equation.
We also plot the results of the combined approach when we alter it after a fault has
occurred. The first plot uses the five solutions of (7) whilst the second plot uses the



Robust Solutions to PDEs with Multiple Grids 193

seven solutions from (8). The combined approach has an error slightly better than
taking only the extrapolation. After a fault has occurred the results are still very
good having error only a little larger then the normal combined approach.

Similar can be done for the combination of solutions given in (8), (10) and (11).
The results in these cases tend to be a bit better given the extra grids available.

We conclude that the numerical results look promising for these approaches to
fault-tolerance. We intend to further investigate these methods for more complex
examples and higher order approximations.
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Efficient Regular Sparse Grid Hierarchization
by a Dynamic Memory Layout

Riko Jacob

Abstract We consider a new hierarchization algorithm for sparse grids of high
dimension and low level. The algorithm is inspired by the theory of memory efficient
algorithms. It is based on a cache-friendly layout of a compact data storage, and the
idea of rearranging the data for the different phases of the algorithm. The core steps
of the algorithm can be phrased as multiplying the input vector with two sparse
matrices. A generalized counting makes it possible to create (or apply) the matrices
in constant time per row.

The algorithm is implemented as a proof of concept and first experiments show
that it performs well in comparison with the previous implementation SG++, in
particular for the case of high dimensions and low level.

1 Introduction

In many applications high dimensional models arise naturally, for example as a
function that maps the high dimensional space Œ0; 1�d to the real numbers. Such a
function can be represented using a regular grid. If we use a regular grid that has N
points in every direction, this approach leads to Nd sample points, which can be
more than what is computationally feasible.

One approach to reduce the number of sample points are sparse grids introduced
by Zenger [11] in 1991. To see the potential for improvement, consider an axis
parallel line through a grid point. We call the sampled points that lie on such a line
a pole. In the regular grid, all poles consist of N points. Take two poles a and b in
direction ed that are shifted in direction e1 by 1=N . For a smooth function f we
would expect that the restricted functions f ja and f jb are very similar, at least for
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small 1=N . Still, the full grid samples both functions on N points. In contrast, the
sparse grid uses a different number of grid points on the two poles, say more on a
than on b, and uses the samples for f ja to increase the accuracy of the representation
of f jb .

The sparse grid interpolation is based on hierarchical basis functions, as detailed
for our concrete setting in Sect. 2. Each such basis functions has an axis parallel
hyperrectangle as support and the volume of this support is 2�`, where the integer `
is the level of the basis function. Importantly, the support is not necessarily square,
i.e., the side length can change drastically with the dimension. By using only basis
functions of level up to n � `, we get some poles (actually one for each direction)
that are sampled with N D 2nC1 � 1 points, whereas all other poles are sampled
with fewer points. In contrast to the corresponding full grid with its Nd points, the

sparse grid has only O
	
N
�
nCd�1
d�1

�
 D O

�

N
	
e.nCd/
d�1


d�1�
sample points. The

rate of convergence, i.e., how the approximation accuracy depends on increasingN ,
remains comparable to that of the full grid [3, 4, 11].

If we consider some examples, we see that the sparse grid with N D 7 points
on the most densely sampled poles has for d D 100 only 20,401 grid points. For
comparison, the corresponding full grid has 7100 � 1084 grid points, more than what
is currently assumed to be the number of atoms in the universe. ForN D 7 and d D
10;000 there are 200 million sparse grid points and for N D 15 and d D 100 there
are 72 million. In this situation, a different asymptotic estimate is helpful, namely

O
	
N
�
nCd�1
d�1

�
 D O
	
N
�
nCd�1

n

�
 D O
	
N
	
e.nCd/

n


n

. Concretely, we see that

for N D 7 the number of grid points grows with �.d2/, for N D 15 with �.d3/,
and so on. Hence high dimensions might be numerically feasible for smallN . In this
work, we focus as an example on one particular task, namely the hierarchization of
a sparse grid (see Sect. 2). For this particular task, there is one value per grid point
as input and output, and this number of values is referred to as degrees of freedom
(DoF). Further, hierarchization is a task of relatively small computational intensity,
i.e., in every round of the algorithm every variable gives rise to at most four floating
point operations. Hence our algorithmic ideas are related to good memory usage.
On one hand this amounts to minimizing the size of the data structures (ideally
only one variable per DoF), and on the other hand we want make sure that the data
access patterns are cache-friendly. This leads us to so called memory efficient or
I/O-efficient algorithms. While the above points are our main focus, clearly a useful
implementation must reflect other aspects of modern hardware. One noteworthy
aspect is parallelism, for example in the context of several cores of the same CPU.

Many efficient algorithms known for sparse grids are based on the unidirectional
principle [3]. It allows us to operate only on the one-dimensional sparse grids, i.e.,
the poles. More precisely, we iterate over the dimensions and for each dimension
consider each of the poles in this dimension on its own.

The question we consider in this work is how to implement the unidirectional
principle I/O-efficiently, with the example of hierarchization. Let us pictorially
describe the situation by thinking of the sparse grid as a work piece that needs to be
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drilled from many different directions. There are two standard ways of doing this:
Either you mount the working piece to the bench and move a mobile drill around
it, or you mount the drill on the bench and turn the working piece. We propose to
switch to the analogue of the latter method: Instead of adapting the one-dimensional
hierarchization procedure to the current dimension, we move the data. For the one-
dimensional hierarchization algorithm to be I/O-efficient, it would be good if each
pole we work on is stored contiguously in memory. Provided that each pole fits
into the cache, we immediately get an I/O-efficient algorithm: It loads the pole
once and efficiently because the pole is split into few cache lines. Then it performs
all operations on this pole in the cache, and writes the finished pole back to main
memory to free the cache.

Because it is impossible to have a data layout of the sparse grid that stores all
poles of all dimensions contiguously, we rearrange the layout of the sparse grid
according to the dimension in which we currently work. More precisely, we define
a rotation of the sparse grid that is a cyclic shift of the dimensions, i.e., maps
.x1; : : : ; xd / 7! .x2; x3; : : : ; xd ; x1/. Using this, it is sufficient to be able to perform
the one dimensional hierarchization algorithm efficiently in one of the dimensions.
We chose for this working step to operate in dimension d .

This approach has four main advantages:

• We can choose a memory layout that makes the access pattern of the working
step cache-friendly

• Both phases (working and rotation) are exactly the same for all d rounds. They
can be phrased as sparse matrix multiplication. Computing these matrices once
is sufficient.

• There is no need to store position information (like level and index) together
with a variable. This role of the variable is always implied by the position of
the variable in the array representing the sparse grid. This leads to a fairly small
memory-footprint, in particular in comparison to hash-based implementations.

• The algorithm can be easily and efficiently (both computation and memory
access-wise) parallelized for multiple cores.

1.1 Algorithmic Background

The theory of I/O-efficient algorithms go back to the definition of the I/O-model [1].
It is based on the idea that the CPU can only work on a memory of size M
(the cache). Input, output and auxiliary storage are in external memory, which is
unbounded in size and organized in blocks of size B (a cache-line). The running
time of an algorithm is estimated by the number of I/O-operations that read a block
from external memory or write a block to external memory.

The differences between the I/O-model and the somewhat similar RAM or von-
Neumann model can be illustrated by considering the task of permuting. Given
a permutation �W f1; : : : ; N g ! f1; : : : ; N g, a program for permuting takes an
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input vector .x1; : : : ; xN / and creates the output vector .y1; : : : ; yN / according to
y�.i/ D xi . The naive algorithm loops over the input and writes the value to the
specified position of the output. On the RAM, this takes �.N/ operations which
is trivially optimal. The naive algorithm can be adapted to the I/O-model where it
causes�.N/ I/O-operations. In contrast to the RAM this is not always optimal. The
alternative algorithm is to use a B=M -way merge sort to rearrange the input array
into the output array, which takes O.N

B
logM=B

N
B
/ I/Os. If the logarithmic term is

smaller thanB , this is better than the naive algorithm. When the I/O-model is used to
describe a situation where the external memory is a disk and the internal memory is
main-memory, the naive algorithm can easily be orders of magnitude slower. This is
complemented by a lower bound stating that taking the better of the two mentioned
algorithms is optimal [1]. The lower bound holds even if the algorithm can be
adapted to the permutation, but this permutation is random. In contrast, there are
also some permutations that can be performed easily, for example if the permutation
is a cyclic shift or moves the elements not too far, e.g., j�.i/� i j < M � 2B . Many
RAM algorithms have a completely unstructured memory access, similarly to the
naive algorithm for permuting. Sometimes this can be avoided by rearranging the
data [7]. One example of this technique is the I/O-efficient algorithm for multiplying
a dense vector with a sparse matrix [2]. The first phase of the algorithm is to create
all elementary products by multiplying each entry aij of the matrix with xj . To
perform this I/O-efficiently the matrix should be stored in a column major layout
such that matrix entries of the same column are stored together and the columns are
in the same order as the input vector. In a second phase of the algorithm the output
is computed as row sums of the elementary products. For this to be I/O-efficient,
they are first rearranged into a row-major layout such that all entries belonging to
the same row are stored together. Here, the I/O-efficient way to rearrange might be
to use the sorting algorithm.

Note that even though we phrase our result here as a multiplication with a sparse
matrix and a permutation matrix, the structure of these two particular matrices
usually makes the naive algorithm I/O-efficient. Still, we use the idea of working
in phases and rearranging the date between the phases.

1.2 Related Work

Many different aspects of sparse grids have been investigated in the last years. The
presentation here follows [3, 4, 10, 11].

Most of the proposed algorithms for sparse grids have been implemented, and
some of the code is publicly available.

One easily available implementation is SG++ [10] (http://www5.in.tum.de/
SGpp/). Its focus is adaptive sparse grids and it provides a lot of generality in terms
of the used basis functions. Because of its availability and ease of installation, we
use this for comparison in this paper.

http://www5.in.tum.de/SGpp/
http://www5.in.tum.de/SGpp/
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The idea of using a layout of the complete sparse grid as a compact data structure
has been proposed [8], but the layout itself differs from what we consider here. The
corresponding implementation fastsg is described [9], where a recursive formula
for the size of the sparse grid is proposed, similar to the one presented here. The
code is publicly available but does not provide a hierarchization procedure for the
0-boundary case considered here.

Some of the ideas presented here (rotation, compact layout) are also the basis
for a different implementation with focus on parallelism and vectorization [5].
Optimizing for this kind of parallelism favors a different layout. That code has been
extended with a focus on evaluation [6].

2 Sparse Grids

Sparse grids have been designed to approximate functions in high dimensional
spaces with relatively few degrees of freedom. By now, there is a body of literature
discussing the mathematics of sparse grids. In contrast, this work investigates only
the computer science aspects arising in the context, actually only for one particular
task called hierarchization. Nonetheless, there is the need for a brief discussion of
the underlying mathematical concepts, at least to explain how we phrase them in
our algorithms.

In the following .0; 1/ � R denotes the open interval from 0 to 1, whereas
Œ0; 1� denotes the closed interval. A sparse grid space as we use it here is a finite
dimensional linear space. Its dimension is phrased as degrees of freedom (DoF) and
it is given by the size of the basis we define for the space. The elements of the basis
are specific continuous functions Rd ! R with support limited to .0; 1/d , the so
called hierarchical basis functions as defined in the following. An element of the
sparse grid space is a linear combination of these basis elements, and hence also a
continuous function R

d ! R with support .0; 1/d .

2.1 One-Dimensional Tree Structure

In one dimension (d D 1) the hierarchical structure can be described by an
annotated complete binary tree, as exemplified in Fig. 1. Each node v is annotated
with an interval Iv D .av; bv/ � .0; 1/ leading to the centerpoint cv D avCbv

2
. The

root is annotated with the open interval (0,1) and the centerpoint 1=2. Each node v
of the tree has two children l and r that are annotated with the intervals Il D .av; cv/

and Ir D .cv; bv/. Note that the centerpoints are unique and can be used to identify
the node and the interval. Note further that two intervals of nodes u and v in the
tree are either disjoint or one is contained in the other. In the latter case, if Iu � Iv ,
then v is an ancestor of u, i.e., the path from u to the root passes through v. For any
node v, the endpoints av and bv of its interval are either 0, 1, or a centerpoint of an
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Fig. 1 The one-dimensional sparse grid of level 2: the tree Tl , the associated intervals above and
the centerpoints below. The BFS-number is given inside the circle of the nodes

ancestor of v. These ancestors are called the hierarchical predecessors of v. There
can be at most two hierarchical predecessors, namely one for av and another for bv .
We define the level of the root node to be 0, and the level of a node v, denoted
by l.v/, to be its distance to the root, i.e., the number of times one has to follow
a parent link to reach the root node. At level ` of the tree there are 2` nodes, all
associated intervals have length bv � av D 2�` and they partition the interval .0; 1/
(ignoring that centerpoints of nodes with level < ` are not element of any interval).
We call the tree up to and including level ` the `-tree, denoted by T`. Performing an
in-order traversal of T` and collecting the centerpoints yields an equidistant grid in
the interval Œ0; 1� with spacing 2�.`C1/ and 2`C1 � 1 points.

For every node v of an `-tree we define a basis element of the one-dimensional
sparse grid space. In this work, the one dimensional basis function fv of a node v
is piece-wise linear hat function with support .av; bv/ and the maximum of 1 at the
centerpoint cv . Observe that the nodes u with fu.cv/ > 0 are precisely the ancestors
of v.

A function f in the one-dimensional sparse grid space of level ` is given by
coefficients �v , one for each node of the `-tree, i.e.

f D
X

v2T`
�vfv :

Such a function f is continuous and piece-wise linear on Œ0; 1� with kinks at the
centerpoints of the nodes of T` and support .0; 1/, and it is an element of the one-
dimensional sparse grid space. Note that the value f .cv/ at a centerpoint cv is in
general different from the coefficient �v .

Definition 1 (The Task of 1-D Hierarchization).

Input Values yv , one for each node v 2 T`.
Output Coefficients �v such that the represented function f D P

�vfv has the
property f .cv/ D yv for each node v of the `-tree.

The coefficients �v are also called hierarchical surpluses.
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Algorithm 1: 1-D hierarchization
Input : values at the grid points, stored in yŒ �
Output : hierarchical surpluses, stored in �Œ �
for i = maxlevel downto 0 do

foreach node v of Tl with l.v/D i do
Let lv be the left hierarchical predecessor of v
Let rv be the right hierarchical predecessor of v
�Œv�D yŒv�� 0:5 � .yŒlv �C yŒrv�/

One dimensional hierarchization can be achieved by the pseudocode given in
Algorithm 1. To see why, we argue that yv D ylCyr

2
C �v holds. Consider any

node v 2 T`. Observe that for all u 2 T`; u ¤ v the basis functions fu falls in one
of the following two cases. The first case is fu.av/ D fu.cv/ D fu.bv/ D 0, either
because the support of fu and fv does not overlap, or because u is a descendant of v,
i.e., in u is in the subtree below v. The second case is that fu is linear in the complete
interval Œav; bv�, which means u is an ancestor of v. Hence, the contribution of all
other functions together will result in the linear interpolation between yl at av and
yr at bv , leading to the equation �v D yv � ylCyr

2
.

2.2 Higher Dimensional Case

In higher dimensions (d > 1), the sparse grid space is constructed using a tensor
product approach, and the term sparse becomes meaningful.

We generalize the index set T` to its d -fold Cartesian product T d` D T`�� � ��T`.
For a vector of d tree nodes v D .v1; : : : ; vd / 2 T d` the level of v is defined as the

sum of the levels `.v/ D Pd
iD1 l.vi /:We define its d -dimensional basis function by

fv.x1; : : : ; xd / D Qd
iD1 fvi .xi /: The support of fv is Iv1 � � � � � Ivd and its unique

centerpoint cv D .cv1 ; : : : ; cvd / 2 .0; 1/d is called a grid point. Note that the d -
dimensional volume of the support of fv is 2�`.v/. The sparse grid of dimension d
and level ` is based on the set of sparse grid vectors I d` D fv 2 T d` j `.v/ � `g, and
the sparse grid space is the span of the corresponding basis functions F d

` D ffv j
v 2 I d` g. The set of sparse grid points is Cd

` D fcv j v 2 I d` g.
Note that in most of the established literature, the level of the one dimensional

functions is counted starting from 1 for what we call the root node. This leads to
the situation that the simplest d -dimensional basis function with support .0; 1/d

has level d , whereas in our notation it has level 0. In other words, what we call
level represents directly the number of refinement steps and hence the volume of
the support, independently of the dimension of the underlying space.

With these definitions, the one dimensional hierarchization task formulated in
Definition 1 naturally generalizes to higher dimensions.
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Algorithm 2: High dimensional hierarchization

for i = d downto 1 do
foreach pole p of the sparse grid in dimension i do

perform one-dimensional hierarchization on p

Definition 2 (The Task of Hierarchization).

Input: Values yv, one for each sparse grid vector v 2 I d`
Output: Coefficients �v such that the represented function f D P

v2Id` �vfv has

the property f .cv/ D yv for each v 2 I d` .

Its algorithmic solution will be the focus of this work. The well established
algorithm follows the unidirectional principle [3], making use of the one dimen-
sional algorithm. A pole of the sparse grid in direction i containing the sparse grid
vector v D .v1; : : : ; vd / is the subset of sparse grid vectors that differ from v only
in dimension i . All such poles have the structure of a one dimensional sparse grid
(by projection to dimension i ), even if some consist of only a single element. Fur-
ther, the poles in direction i partition the sparse grid. The hierarchization algorithm
considers the dimensions one after the other, i.e., it works in the directions i D
1; : : : ; d . In each iteration it runs Algorithm 1 on all poles of direction i (one-
dimensional hierarchization). The pseudocode of this well established solution
is given as Algorithm 2 and we do not modify it at this level of abstraction. Beyond
this pseudocode, several important aspect need to be addressed:

• Which computation happens when.
• How and where the variables are stored.
• How the data is moved.

3 Memory Efficient Algorithm

This section describes the ideas that lead to a memory efficient algorithm for the
hierarchization of a sparse grid of high dimension and low level.

3.1 Data Layout

At the heart of the algorithm is a specific layout of the data. From this layout the
algorithm itself follows naturally.
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3.1.1 Layout in One Dimension

Given the tree structure detailed in Sect. 2.1, a breadth-first-search (BFS) traversal
of the nodes is well defined: It starts at the root, and then traverses the nodes of
the tree with increasing level and from left to right. More precisely, we assign the
BFS-number 0 to the root, BFS-number 1 to its left child, 2 to its right child, the
BFS-numbers 3, 4, 5, 6 to the four nodes of level 2, and so on. These BFS-numbers
are shown in Fig. 1. The BFS-number is a unique identifier of a node in the one
dimensional tree T`. This BFS-layout for a complete binary tree is well understood
(its perhaps most prominent use is in the heap-sort algorithm). For a node with
BFS-number i , its two children have the BFS-number 2.i C 1/ � 1 and 2.i C 1/,
and its parent has BFS-number b.i � 1/=2c. This simplicity of computing related
BFS-numbers is one of the big advantages of the BFS-layout. Note that starting the
counting at 1 would make this even simpler, but indexing the array in C-style starting
from 0 is not only closer to the code, but it is also more natural when working with
subarrays. Observe that the BFS-number encodes the level and the index within the
level in one number. The BFS-numbers of nodes with level ` start with 2`C1 � 1.
We define the level of a BFS-number to be the level of the corresponding node
in the `-tree. Further, a tree of maximum level ` uses precisely the BFS-numbers
in f0; : : : ; 2`C1 � 2g. We use the BFS-number as a position in the layout. A one
dimensional sparse grid (i.e. a pole) can in this way be represented as an array (with
one entry per degree of freedom).

3.1.2 Higher Dimensional Layout

Following the tensor product structure of the sparse grid, it is natural to identify
a sparse grid point (defined by a vector of tree-nodes v D .v1; : : : ; vd /) with a
vector b 2 N

d
0 of BFS-numbers. Each such vector of a sparse grid of level n has

Pd
iD1 `.bi / � n. We sort the vectors of BFS-numbers lexicographically, with the

significance of the positions decreasing (as is usual). This directly leads to a layout
of a higher dimensional sparse grid, as exemplified in Fig. 2 in two dimensions and
level 2. Because the first position is most significant, all elements with a 0 at the
first position are grouped together at the beginning, then come the elements with a 1
at the first position and so on. Within these groups the sorting bundles together the
elements with the same entry at the second position. And within these groups, the
elements with the same entry at the third position are grouped together, and so on.

At the end of this conceptual recursion we see groups of vectors that differ only in
the entry at the last position and are sorted by this entry. Hence, we see that the poles
(defined in Sect. 2.2) in dimension d form subarrays in the complete lexicographical
layout.
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Fig. 2 The two-dimensional sparse grid of level 2: on the right the grid points at their positions
in Œ0; 1�2, labeled with their position in the layout. On the left the lexicographical layout of the
grid points as triples layout-position:.x1; x2/. Note the matrix structure of both figures: rows have
the same x1 coordinate, columns the same x2 coordinate. The restriction on the level-sum yields a
symmetric shape

3.2 Numerical Work: Hierarchize All Poles

The high dimensional hierarchization Algorithm 2 works pole-local in the inner
loop. In other words, when considering dimension i , there is no interaction between
variables of different poles in dimension i . Let us focus, for the moment, on the
first iteration of the outer loop of Algorithm 2, where all poles of dimension d are
hierarchized. This task fits particularly well to our layout of the sparse grid. Each
such pole is located in a subarray, starts at a certain offset and has length 2` � 1 for
a pole of level `. Note that some of these poles have level 0, i.e. consist of a single
element and hence require no numerical work at all.

Consider Algorithm 1 when it operates on a pole stored in BFS-layout. More
precisely, consider the j -th input pole as stored in a vector yj and the output in a
vector hj , both withN D 2`�1 entries. We express Algorithm 1 as hj D H` �yj for
a sparse matrix H`. Consider a node v of the `-tree. The variables of the input and
output associated with this node are stored in the same position in the two vectors,
say at position i . Hence, on the diagonal, all entries are 1. The variables associated
with the hierarchical predecessors are stored before i . Hence, the matrix H` has at
most two non-zero entries below the diagonal, and each of them has value �1=2.
Note that Hk is the upper left corner of H` for k < `.

We can also express the whole first iteration of Algorithm 2 as a matrix
multiplication. To this end consider all input values stored in the vector y0 and the
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result in the vector h0, both according to our layout. Let us describe the matrix Wd

for which we have h0 D Wdy0. The matrixWd is a block diagonal matrix composed
of many matrices Hlj , where lj is the level corresponding to the size of pole j .
Hence, on the diagonal of Wd all entries are 1, above the diagonal all entries are 0,
there are at most two entries of value �1/2 in every row and they are at distance at
most 2` below the diagonal for a sparse grid of level `.

By the above discussion it is clear that also the other hierarchization steps for
dimension i ¤ d are linear, but the structure of the corresponding matrices would
be different and harder to describe. Hence, in the following, we use a rotation to
reuse Wd .

3.3 Rotation

We achieve the outermost loop of Algorithm 2 by performing rotations. In this way
the one dimensional algorithm formulated as Wd in Sect. 3.2 can operate on all
dimensions in turn.

Consider the shift S.n1; : : : ; nd /D .n2; n3; : : : ; nd ; n1/ working on d -
dimensional BFS-vectors. When following the movement of the corresponding
centerpoints when applying S to each grid point, geometrically we see a rotation
operating on Œ0; 1�d . Because we are working with a non-adaptive sparse grid, this
grid-point exists in our sparse grid as well. Observe that Sd is the identity, and
that Si maps the .d � i/-th position of the vector to the last position. In terms
of our algorithm, using this rotation means that we should take a variable of our
vector, understand it as a grid-point/BFS-vector, rotate it with S , and move it to the
position in the vector associated with the rotated grid-point. We expresses this data
movement by a permutation matrix R.

With this definition of R, we can express one execution of the outer loop of
Algorithm 2 as applying the matrix RWd , and the complete algorithm as applying
.RWd /

d . In other words, to transform a vector y of function values at the grid-points
to a vector of hierarchical surpluses h (both in our layout), we can use the equation

h D .RWd /
dy

to express Algorithm 2.

3.4 Considerations of an Implementation

With this description of the algorithm as the alternating application of two sparse
matrices, it is quite natural to work with two vectors as in the pseudocode given in
Algorithm 3.
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Algorithm 3: Hierarchization as sparse matrix multiplication
Input : values at the grid points, stored in vector yŒ �
Output : hierarchical surpluses, stored in vector yŒ �
Let x be a vector of same size as y
for i = 1 to d do

x D Wd � y
y D R � x

This code obviously relies on the definition of the matrices Wd and R in a
crucial way, and these matrices are based on the correspondence between positions
in the layout, BFS-vectors, and the tree structure in the BFS-numbers. We call
the translation of a BFS-vector to the position in the layout pos, and the reverse
operation depos. They can be implemented quite efficiently in O.` C d/, but by
the nature of having a BFS-vector with d entries as input or output, they cannot take
constant time. This can be avoided by considering the BFS-vector as a data structure
that changes its state according to well defined operations, in particular changing
the BFS-vector such that the corresponding position in the layout is incremented.
More precisely, we have an abstract data type BFS-vector that stores as it state a
b D .b1; : : : ; bd / and supports the following operations:

int pos(): Return p.b/, the position in the layout of b.
init(): set b D .0; : : : ; 0/.
increment(): Change b such that pos is incremented, i.e., for the current

state b and the new state b0 it holds p.b0/ D p.b/C 1.
int shift_pos(): Return p.S.b//, i.e. the position of the shifted current

BFS-vector.
int last_entry(): Return bd .
depos(x): Change the current vector such that p.b/ D x. All of the above oper-

ations but depos can be implemented inO.1/ time using a sparse representation
of the BFS-vector, as detailed in Sect. 4.

With this presentation of the hierarchization algorithm, there are several design
choices to be taken. Either we can implement a carefully tuned routine that has the
effect of applyingWd andR, or we can explicitly represent the two sparse matrices.
Which alternative is superior depends on the circumstances and the used hardware:
If several hierarchization tasks are performed, the dimension is high, and the access
to the sparse matrices is fast enough, the time for precomputation of R and Wd

can be amortized by sufficiently many multiplications with the matrices. If instead
bandwidth to the memory is much more precious than computation on the CPU,
then an on the fly computation is preferable.

Another important concern is the possibility to turn the above algorithm into a
parallel one. The multiplication steps are trivial to parallelize including the load
balancing. Also the creation of the matrices can easily be parallelized. Only the
initialization of the individual parallel threads needs some care and uses depos.
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4 Navigating the High Dimensional Layout

This section is concerned with computing the position of a BFS-vector v D
.v1; : : : ; vd / in the layout described in Sect. 3.1.2. It relies on knowing the size of a
sparse grid of dimension d 0 and level `0 for all d 0 � d and n0 � n.

4.1 The Concept of Remaining Level

In this section we work exclusively with BFS-vectors with dimension d and
level ` � n to represent the points of the sparse grid. Remember that we use l.bi / to
denote the level of the i -th digit, and that a BFS-vectors b D .b1; : : : ; bd / belongs
to the sparse grid if and only if

Pd
iD1 l.bi / � n.

Assuming that the first k entries of b are fixed to b1; : : : ; bk , we want to know
which values are still possible for bkC1; : : : ; bd . This is restricted by the limit on
the sum of the levels of the complete vector. Let the remaining level be defined
as r D n � Pk

iD1 l.bi /. If r < 0, then the initial entries do not lead to a grid
point, regardless of the remaining entries. Otherwise, the level sum of the remaining
entries has to be bounded by r for the complete BFS-vector to belong to the sparse
grid.

4.2 The Number of Grid Points v.d; `/

One important quantity is v.d; `/, the number of grid points (size) of a d -
dimensional sparse grid of level `, or equivalently, the number of d -dimensional
BFS-vectors with level sum bounded by `. In the following, we use a recursive
formula for v.

For the base case, it is convenient to understand a zero-dimensional sparse grid
to consist of precisely one point, regardless of the level. Hence,

v.0; `/ D 1 for all ` 2 N0 : (1)

The recursive case is given by

v.d; `/ D
X̀

iD0
2i � v.d � 1; `� i/ : (2)

Here the quantity 2i represents the number of grid points in a BFS-tree with level
precisely i .

The validity of (2) follows, for example, from the layout proposed in Sect. 3.1.2:
The first group has a 0 in the first position, the remaining level is `, and the group is
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Algorithm 4: pos(), the position of a BFS-vector in the layout
Input : the BFS-vector in bŒ �
Output : the position in p
p D 0

l D maxlevel
for i = 1..d do

for x = 0..b[i]-1 do
p D pC v.d � i; l � level.x//

l D l � level.bŒi �/;

a sparse grid with level ` in d � 1 dimensions. The next two groups have in the first
digit a value of level 1, which means that the remaining level is r D ` � 1 and each
of them is a grid with dimension d � 1 and level r . This argument continues with
increasing level of the first digit, finally reaching the digits of level `. These are 2`

many groups, each with a remaining level 0. This means that the remaining digits
must all be 0, which is consistent with our definition that a level 0 grid consists of a
single grid point.

The formulas (1) and (2) form a recursion because the right hand side depends
only on cases with smaller or equal level and one dimension less. For efficiency we
usually compute the (relatively small) table for v.d 0; n0/ using dynamic program-
ming.

4.3 Operations on a Full Vector

4.3.1 pos: The Position in the Layout

With the help of v.d; `/ we can compute for a BFS-vector b D .b1; : : : ; bd / the
position in the layout p.b/. This position can be computed by Algorithm 4,
where level.x/ denotes the level of the 1-D-tree node with BFS-number x, and
maxlevel denotes the overall level ` of the sparse grid, and the BFS-vector is
stored in the array bŒ � (indexed with 1; : : : ; d ).

We can think of the addition to p as jumping in the layout. To account for the
first entry b1 2 f0; : : : ; 2`C1 � 2g, we jump to the group of BFS-vectors with first
entry b1, namely to the position of the BFS-vector .b1; 0; : : : ; 0/. From this we can
continue in the same manner for the remaining vector .b2; : : : ; bd /, interpreting this
vector as an element of the sparse grid with d � 1 dimensions and the remaining
level. Note that for the last entry the increments are by 1 D v.0; `/.

4.3.2 depos: The BFS-Vector from a Position

Now we consider the operation depos, the inverse to pos, as formulated in
Algorithm 5. Given a position p, we want to find the BFS-vector b D .b1; : : : ; bd /
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Algorithm 5: depos(), the BFS-vector from the position in the layout
Input : the position in p
Output : the BFS-vector in bŒ �
freelevel=maxlevel
b D .0; ::; 0/

for i = 1..d do
w D v.dim� i;freelevel/
while p � w do

p D p � w
bŒi � D bŒi �C 1
w D v.dim� i;freelevel � level.bŒi �//

freelevel D freelevel � level.bŒi �/

that is mapped to p in the layout. The structure of depos is very similar to pos.
Instead of jumping to the starting position of a group, we want to find the group
in which p is located. In other words, the algorithm consists of d linear searches
for the group of dimension i (inside the group of dimension i � 1) in which p is
located.

4.3.3 increment: The Next BFS-Vector in the Layout

The functions pos and depos as explained in the last two sections are not
efficient enough to be used in the innermost loop of a hierarchization algorithm, a
problem we circumvent by an increment operation. We store the BFS-vector b D
.b1; : : : ; bd / in the array bŒ �, and the corresponding position p in the layout in
the variable p. The increment operation has the purpose of incrementing p and
changing b in a way that preserves this correspondence. This and the direct access
to bd are sufficient to createWd (or to compute y D Wd �x without a representation
of the matrix) serially. For a parallel version of this algorithm we assign each thread
the task to create the range pi W piC1 � 1 of rows of Wd . Then the thread starts
by setting p D pi and establishing the invariant by initializing the vector using
depos.pi /. From then on, depos is no longer needed.

Assume for the moment that there is an additional array of the remaining levels
rŒk� D ` � Pk

iD1 l.bi / as defined in Sect. 4.1. If rŒd � > 0, the current vector does
not exhaust the maximum level, and the last entry bŒd � can be incremented without
violating the constraint on the level sum. Even if rŒd � D 0, it is possible that bŒd �
is not the highest BFS-number of level rŒd � 1�, and hence the increment changes
only bŒd � D bŒd �C 1.

If bŒd � is the highest BFS-number of level rŒd � 1�, we know that the increment
has to change some of the entries further to the left, and the incremented vector
has bŒd � D 0. The change further left is an increment operation on the d � 1

dimensional BFS-vector stored in bŒ1�; : : : ; bŒd � 1� with level-sum `, and we can
continue in the same way. If this process would continue to the left of bŒ1�, this
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means that the first entry bŒ1� is the highest allowed BFS-number (and all other
digits are 0). Then an increment is impossible because we reached the last point of
the sparse grid.

After updating the digits bŒ � as described (from right to left), we also update all
rŒ � values that might have been changed (from left to right). Note that it is actually
not necessary to work with a complete vector of rŒ �-values. Instead, we can have a
single variable r (freelevel in the code) that maintains rŒd �, i.e., by how much
the current vector does not exhaust the level `.

4.3.4 shift_pos: The Position of the Shifted BFS-Vector

For the computation of R we can use increment, if we manage to update the
position of the shifted BFS-vector efficiently. More precisely, if our current array bŒ �
represents the BFS-vector b D .b1; : : : ; bd /, we want to compute pos.S.b//. We
use some additional arrays that need to be updated during increment.

An increment operation leaves a prefix b1; : : : ; bk of b unchanged, which means
that the prefix b2; : : : ; bk of length k�1 of S.b/ remains unchanged. The algorithm
of pos (Sect. 4.3.1) considers the entries of the BFS-vector from left to right. Hence,
an unchanged prefix of the BFS-vector means that the initial operations of pos are
unchanged. This can be used by recording the state of the algorithm for pos.S.b//
at each entry into the body of the loops. More precisely, this gives two arrays, one
for the position p and one for the remaining level l , both two-dimensional, indexed
by i and x. It is sufficient for these arrays to be current in each dimension i up to
the position bŒi �.

Every increment operation increments one entry, say from bk to b0k D bkC1, and
all entries to the left are zero, i.e., b0kC1 D � � � D b0d D 0. Hence, we can “jumpstart”
the execution of pos.S.b// starting from what we find as state in Œk � 1; bk�, the
offset implementing the shift. From there we can complete (including recording) the
execution of pos on the entries .bkC1; : : : ; bd ; b1/. Observe that the control-flow of
this remaining execution is always the following: There is the last iteration of the
inner loop with i D k � 1 and x D bk (creating a new entry in our arrays). For
i D k; : : : ; d � 1 we only update our tables at Œi; 0� recording the unchanged state
of position p and remaining level r . The inner loop is not executed. Only for i D d

the inner loop iterates up to b1, which always results in adding b1 to p. Hence, the
running time of this continuation of pos is proportional to the number of entries
consider by increment, namely d � k C 1.

4.3.5 Performance Limitations of the Full Representation

It is well known that counting with a binary representation of the number changes
amortized constant many bits per increment operation. In analogy, we might hope
for a good performance of the operations increment and shift_pos in the
amortized sense. This is actually not the case. In the following example the
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amortized cost per increment operation is lower bounded by ˝.d/. Consider
the case of level 2 and a very high dimension d . Then, almost all BFS-vectors have
precisely two ones, and there are

�
d
2

�
such vectors. For such a vector the cost of an

increment is given by the distance of the last 1 to the right. Now all vectors that have
at least d=2 trailing zeros require d=2 work, and there are roughly

�
d=2
2

�
of them,

i.e., roughly a fourth of all vectors. In this case enumerating all BFS-vectors with an
increment operation takes time cubic in d , which means that the amortized time
per increment is ˝.d/.

4.4 Sparse Implementation

As detailed in the previous section, the increment operation on the full BFS-vector
becomes problematic if there are many trailing zeros. This immediately suggests
to use a sparse representation of the vector. This means storing a list of pairs
(dimension, BFS-number), one for each entry that differs from zero, sorted by
dimension.

Observe that the number of pairs is not only at most the dimension d , but also at
most the level n of the sparse grid.

With this sparse representation, the increment takes only O.1/ operations, as we
will argue in the following. The algorithm has to distinguish between several cases
as listed below. Observe that for each case the sparse representation allows to test if
it is applicable, and if so, to update the representation in constantly many operations,
including the remaining level of the current BFS-vector.

• If the remaining level of the current vector is > 0, the last entry bd can be
incremented. This might extends the list by the pair .d; 1/.
Hence, in all other cases we can assume that the current vector has remaining
level zero.

• If the last non-zero entry can be incremented without changing the level, we do
so.

• If the list consists of the single entry .1; 2nC1 � 2/ the increment operation is
impossible (last BFS-vector).

• If the rightmost non-zero entry is bi (in dimension i > 1 and it cannot be
incremented), and bi�1 D 0, we set bi D 0 and bi�1 D 1.

• Otherwise the rightmost two non-zero entries are bi�1 and bi . In this case we set
bi D 0 and increment bi�1. This is always possible because changing bi to 0
decreases the level by at least one, whereas incrementing bi�1 increases the level
by at most one.

It is easy to adjust the computation of depos, pos and its incremental version
needed for shift_pos to the sparse representation. Overall this means that all
operations, but depos, of the abstract data type formulated in Sect. 3.4 can be
implemented in worst case constant time.
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5 Implementation and Experiments

The described algorithms are implemented as a proof of concept and we compare
running times for the hierarchization tasks with the implementation in SG++. The
new approach presented in this paper is abbreviated as rSG (rotating Sparse Grid).
SG++ is designed to deal with adaptive refinements and cannot take advantage of
the simpler structure of a complete sparse grid. Further, as it is currently bundled,
it is not parallelized. Another candidate for comparison would be fastsg, but
its hierarchization procedure is only for sparse grids with boundary points, so it
solves a different problem and a comparison would be meaningless. As a proof of
concept, the point of the experiments is to show the potential of the new algorithmic
ideas. Hence, our focus in these experiments is to show how far we can go beyond
the current standard solution. Accordingly, the focus of the results are the sizes
of the problems that can be tackled at all and the orders of magnitude of runtime
and memory consumption. This is meant to give an indication of the strengths and
weaknesses of our new approach.

The current implementation does not (yet) use the constant time algorithm for
shift_pos. With the current setup of creating the matrices Wd and R once and
then applying them several times, the possible savings in runtime are not significant
enough.

5.1 Experimental Setup

The implementation is a C++ design that is parallelized with openMP, with a focus
on being able to compare the performance of different algorithmic approaches. To
this end, templates are used in many situations, whereas inheritance and in particular
virtual classes and other constructs that are resolved at runtime are avoided. The
experiments are run on a linux workstation with an Intel XEON E3-1240 V2 chip,
having four cores clocked at 3.4 GHz. The total main memory of the machine
is 32 Gb. The code is compiled with gcc 4.4.7 and the compiler flags -O3
-march=native -fopenmp -D_GLIBCXX_PARALLEL.

The time measurements generally consider the whole execution time of the
algorithm for both SG++ and rSG, including the initialization of data structures
and setting the input vector with values. This means that in particular the phase
where the two matrices Wd and R are computed (preparation phase) includes the
time for using the memory for the first time (cold cache).

The time is measured inside the programm using the system call
gettimeofday().

The memory requirement is determined by the system utility time with the %M
format, stating “Maximum resident set size of the process during its lifetime.”

In this section, we describe the problem instances not only by their dimension
and level but also by their number of grid points (DoF).
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5.2 Experiments

5.2.1 Parallel Scaling

To evaluate the effectiveness of the ideas to parallelize the hierarchization algorithm
we perform a strong scaling experiment, i.e., we solve the same problem with an
increasing number of processors.

As a prototypical example we take the hierarchization of a sparse grid in 20
dimensions and level 6. This sparse grid has roughly 13 million grid points, uses
377 MB to store the grid and the execution uses in total 1.9 GB memory from the
system.

Given that our machine has four cores with hyperthreading, we experiment with
up to eight threads. The running times for the different numbers of threads are
summarized in Fig. 3.

The preparation of the matrices scales perfectly up to four threads on the four
cores, whereas more threads give no further improvement of the running time.

As a third plot in Fig. 3, we have the average hierarchization, i.e., the average
time for one application of the two sparse matrices. We see that this phase scales
poorly, and preparing the matrices takes roughly twice as long as applying them
using four processors. Hence, with our current implementation of computing the
matrices we have an algorithm that scales almost perfectly, but it is in total not
fast enough to justify changing to an on the fly computation of the matrices, i.e.,
not creating a representation of the matrices. With different hardware or a more
efficient implementation of the algorithms presented in this paper, this situation
might change.

5.2.2 Running Times

In the plots given in Figs. 4 and 5 we compare the running times for the sparse grids
of level 3 and level 6 for different dimensions. The range of dimensions is in both
cases chosen in a way that the running times of both implementations are between
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1 ms and 3 min. In this range the implementationrSG (following the ideas presented
in this paper) achieves speedups over SG++ as shown in the range of 100–220 for
level 3 and respectively 30–53 for level 6.

5.2.3 Memory Footprint

The amount of memory used by a program is not only an important resource in
itself, it also has, due to caches, a significant influence on the running time.

In Fig. 6, we plot the memory usage of the two implementations rSG and SG++.
We see significant differences in the memory usage per DoF of the sparse grid,
in particular for high dimensions and high levels. For large instances the rSG
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implementation reaches a space usage of 16 words of 64-bit (i.e. doubles or long
integers) per DoF. In contrast, the space usage of SG++ per DoF increases with the
dimensionality of the problem.

5.2.4 Solvable Problem Sizes

Figures 7, 8, and 9 show the pareto front of problem sizes that can be computed
with different resource limitations, namely limited computation time for the serial
program and memory consumption. Remember that this comparison is somewhat
unfair against SG++ because SG++ does not exploit that the grid is non-adaptive.
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Fig. 9 Maximal sparse grid hierarchization doable with 16 GB memory: for every sampled
dimension, as given on the x-axis, we have the maximum level (left y-axis) that the two implements
can hierarchize within the resource constraint. In blue the ratio of the DoF of the corresponding
(maximal) sparse grids

The first experiment sets a limit on the computation time for the hierarchization
task. Figure 9 limits the used space somewhat arbitrarily to 16 GB.

In almost all considered cases, the new approach can hierarchize a sparse grid
with at least one more level, sometimes three more levels, than SG++. In particular
for high dimensions, the corresponding increase in degrees of freedom is a factor of
up to 10000.

Observe that this comparison is not very fine grained: Increasing the level of
the sparse grid by one increases the degrees of freedom by a factor of 10 to 5000.
Hence, in many cases in the above comparisons, the resource constraint is by far not
exhausted.

5.2.5 Relation Between Preprocessing and Hierarchization

We investigate the relation between the preprocessing time to create the matrices
Wd and R, and the time to apply them once.
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In Fig. 10 we see in the serial case that for small grids the preparation time is
comparatively expensive. One explanation for this behavior is that the application
step becomes memory bound for large grids: As long as the grid is small and
everything fits into the cache, we see that the preparation takes a lot more computing
than the application step. As soon as the grid needs to be fetched from main memory
because it does not fit into the cache anymore, the application step gets slower,
if there are no other effects, by a factor of roughly 3. The preparation phase is
spending more time on computations on BFS-vectors, and hence the additional time
for the slower memory access accounts for a smaller fraction of the total running
time. Perhaps the additional memory latency is even completely hidden because the
computation continues while the memory system stores the results.

We repeat this experiment with all four cores in Fig. 11. The findings of this
experiment give further evidence that the application step is memory bound. It is
consistent with the findings of Sect. 5.2.1 and Fig. 3. There we saw that the prepro-
cessing step scales well with additional processors, whereas the hierarchization step
improved over the serial case by at most a factor of 1.2, which suggests that the
latter one is memory bound. This fits to what we can observe in Fig. 11, where we
see that the ratio for big sparse grids improves to 1.7–2.
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When comparing Figs. 10 and 11 directly, one notices that in the parallel
case there are fewer samples for small sparse grids. This is due to the fact the
computation gets faster, and that these grid are now reported with a 0 running time
for hierarchization, and we cannot compute the ratio we are interested in.

Going back to the case of level 6 and dimension 20 considered in Fig. 3
(Sect. 5.2.1) we see that it is indeed prototypical. When locating this measurements
in Fig. 10 by looking for the level 6 measurements with 1.28e7 DoF, we see that it
actually achieves one of the smallest ratios.

One question that can be addressed by the considerations in this section is by
how much the implementation of the data type for the BFS-vector needs to improve
before an on the fly creation of the matrices is superior. Note that good processor
scaling could provide this improvement and that the implementation does not yet
use the constant time algorithm for shift_pos.

6 Conclusion

In this article, we have been exploring the basics of a new algorithmic idea to
work with sparse grids of low level and high dimensions. The main concepts of a
compact layout, rearranging the data and generalized counting present themselves as
promising ideas. There are many directions in which the topic should be developed
further. One direction is to consider vectorized parallel implementation, as done
in [5]. Another direction is the evaluation algorithm on the data layout proposed
here, as done in [6]. More directly, there is the question if a carefully tuned on-the-
fly computation of the two sparse matrices can be beneficial in a parallel setting.
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Abstract Sparse grids have been successfully used for the mining of vast datasets
with a moderate number of dimensions. Compared to established machine learning
techniques like artificial neural networks or support vector machines, sparse grids
provide an analytic approximant that is easier to analyze and to interpret. More
important, they are based on a high-dimensional discretization of the feature space,
are thus less data-dependent than conventional approaches, scale only linearly in the
number of data points and are well-suited to deal with huge amounts of data. But
with an increasing size of the datasets used for learning, computing times clearly can
become prohibitively large for normal use, despite the linear scaling. Thus, efficient
parallelization strategies have to be found to exploit the power of modern hardware.

We investigate the parallelization opportunities for solving high-dimensional
machine learning problems with adaptive sparse grids using the alternating direction
method of multipliers (ADMM). ADMM allows us to split the initially large
problem into smaller ones. They can then be solved in parallel while their reduced
problem sizes can even be small enough for an explicitly assembly of the system
matrices. We show the first results of the new approach using a set of problems and
discuss the challenges that arise when applying ADMM to a hierarchical basis.
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1 Introduction

In recent years, sparse grids have been successfully employed for a whole range
of data mining tasks such as classification, regression, time-series forecasting, and
density estimation. The applications under consideration reflect the importance of
data-driven problems and stem from a variety of disciplines and fields of research
from astrophysics to finance, and from automotive engineering to optical digit
recognition. For examples, see, e.g., [12, 13, 21].

Traditionally, two different approaches have been studied: one computes the
approximation directly in a hierarchical sparse grid function space, while another
one solves a problem on several full grids independently and then combines these
solutions (combination technique). Each of these methods has its advantages and
drawbacks.

The solution in a sparse grid function space, on the one hand, allows the usage
of spatially (locally) and dimensionally adaptive refinement and can result in better
performance especially on clustered data. But it results in highly nested and multi-
recursive algorithms (UpDown scheme) which are difficult to parallelize, and the
main effort so far focused on shared memory systems and vectorizations.

The combination technique, on the other hand, is restricted to dimensionally
adaptive refinement and cannot refine single grid points in a locally adaptive manner.
It also can exhibit divergent behavior in its direct version. From the algorithmic point
of view, however, the combination technique offers multiple layers of parallelism:
it is embarrassingly parallel with respect to the single solutions to be computed,
while the (typically sparse) systems of linear equations for the individual grids can
be efficiently parallelized using canonical techniques.

The alternating direction method of multipliers (ADMM) allows a new perspec-
tive on the approximation problem in the direct and spatially adaptive formulation,
while additionally offering distributed parallelization of the optimization process.
ADMM has been known under different names for years in the optimization com-
munity, and good convergence results have been reported for different applications
[3, 5, 22, 23]. But to the best of our knowledge, the method has not been studied for
hierarchical bases and sparse grids so far.

This paper intends to fill this gap. It gives an introduction to the method and
insights into the interplay of alternating directions for sparse grid approximation
problems used for data mining. Our experiments show interesting insights and the
results can be used to build further upon.

ADMM was introduced in the 1970s by Glowinski and Marocco [14] and
Gabay and Mercier [10] and was applied for approximations using conventional
finite elements. It was rigorously studied in the optimization community thereafter
([4,6,8], and [9] to name a few). For a detailed review of the method we refer to the
survey by Boyd et al. [3].

With respect to the parallelization of sparse grid methods, the parallelization of
the combination technique for data mining applications was described by Garcke
and Griebel [11] as well as by Garcke et al. [13]. Studies of parallelization for
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spatially adaptive sparse grid algorithms using shared memory parallelization,
vectorization, and hardware-accelerators were conducted and published by
Heinecke and Pflüger [18, 19].

This paper is organized as follows: Sect. 2 formally defines the class of data
mining problems we consider in this paper. It introduces the alternating direction
method of multipliers and describes the transformation of the original optimization
problem into the constrained optimization problem that is required for ADMM.
The study of ADMM for data mining with hierarchical sparse grids is presented
in Sect. 3. The results suggest that ADMM for sparse grids is competitive with the
state-of-the-art implementation on shared memory systems, although its application
on massively parallel systems requires further improvement of the algorithms.
Section 4 summarizes and concludes this paper.

2 Theoretical Background

The alternating direction method of multipliers (ADMM) is a further development
of the dual ascent algorithm by Arrow et al. [1]. It solves constrained optimization
problems of the form

min
x;z

h.x/C g.z/

subject to Ax C Bz D c; (1)

with variables x 2 R
n, z 2 R

m, linear constraints given by vector c 2 R
p and

matrices A 2 R
p�n, B 2 R

p�m, and convex cost functions h W R
n ! R,

g W Rm ! R.
The problem is then solved iteratively using the augmented Lagrangian function

L�.x; z;u/ D h.x/C g.z/C uT .Ax CBz � c/C �

2
kAx C Bz � ck22; (2)

with the Lagrangian multiplier u 2 R
p and a positive penalization coefficient

� 2 R
C.

In each iteration of the ADMM algorithm, the x and z variables are calculated as
minimizers of the augmented Lagrangian followed by the update of the Lagrangian
multiplier variable u:

xkC1 WD arg min
x

L.x; zk;uk/ ; (3)

zkC1 WD arg min
z

L.xkC1; z;uk/ (4)

ukC1 WD uk C �.AxkC1 C BzkC1 � c/ : (5)
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Obviously, the method can be considered as the splitting of one large vector of
variables into two vectors x and z updated in a Gauss-Seidel pass. This splitting
allows one to exploit the properties of the functions h and g (e.g., differentiability)
independent from each other.

The usage of the penalization term �=2k � k22 in the augmented Lagrangian
function improves the convergence of the dual ascent algorithm [6]. It can be easily
seen that for feasible solutions .x; z/ the penalization term becomes 0. Assuming
that the saddle point of the Lagrangian function exists, one can furthermore prove
that the saddle point of the Lagrangian function without the penalization term is a
saddle point of L� and vice versa [10].

The proof of convergence of the ADMM for closed, proper convex functions
h W Rn ! R[fC1g and g W Rm ! R[fC1g and � � 0 was shown in early days
[10]. Recently, He and Yuan were able to give a convergence rate using a variational
inequality (VI) reformulation of problem (1) [17]. The authors proved that after T
iterations of the ADMM algorithm the average Qwt D 1=T

PT
kD1 Qwk , with Qwk D

.xk; zk;uk/T , would approximate the solution of VI with accuracy O.1=T /.
The data mining problem we consider in this work—regression—is formulated

as follows: given a set of (training) data S drawn from a distribution S,

S D f.vi ; yi / 2 R
d � RgniD1; (6)

with target values yi that presumably were generated by some unknown function
f 2 V from the inputs vi (which, again, can be affected by some noise). The
goal is to recover this function f from the data: find a function Of 2 V so that
(besides approximating already known values Of .vi / � yi ; i D 1; : : : ; m) it is
able to generalize and predict new data Of .v/ � y for all new pairs .v; y/ drawn
from the distribution S. Compared to classical function approximation problems
in computational science, lower prediction accuracies are sufficient for many data
mining applications due to the high degree of noise contained in the available
knowledge S .

While V can theoretically be infinite-dimensional, we use sparse grid discretiza-
tion to find the best approximation of f in a finite dimensional subspace Vn � V .
The function f is then approximated by a linear combination of basis functions
f�j gnjD1 that span Vn:

Ofn.v/ D
NX

jD1
xj �j .v/:

Figure 1 illustrates the so-called modified linear basis functions [21] in one
dimension and up to level 3. The first level contains a single constant basis function
�1, the second level two functions �2 (linear on the interval Œ0; 0:5� and 0 otherwise)
and �3 (linear on the interval Œ0:5; 1� and 0 otherwise). Finally, the third level
has four functions: linear functions �4 and �7 and the classical hat functions �5
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Fig. 1 The weighted modified one-dimensional basis functions �i which are extrapolating towards
the boundary; coefficients x5 and x6 are larger than others for illustration

Fig. 2 Illustration of matrix and vector decomposition for ADMM

and �6. This idea carries on for the next levels: the two basis functions closest to the
boundary are linear, extrapolating towards the boundary, while all the inner ones are
the classical hat functions. In Fig. 1, the scaling coefficients of the basis functions
are depicted as x1; : : : ; x7.

Approximating function Ofn is hence reduced to solving the regularized least-
squares problem for coefficients fxj gnjD1 [21],

min
x2Rn

1

2
kBx � yk22 C �kxk22; (7)

with B D

0

B
@

�1.v1/ �2.v1/ : : : �N .v1/
:::

:::
: : :

:::

�1.vn/ �2.vn/ : : : �N .vn/

1

C
A, coefficient vector x D

0

B
@

x1
:::

xN

1

C
A, and

regularization parameter �. Note that this choice of regularization is only reasonable
for hierarchical basis functions.

Following [3], we split the coefficient vector x into P subvectors x D
.xT1 ; : : : ; x

T
P /

T and break down the matrix-vector product Bx into the sum of
smaller matrix-vector products Bixi as Fig. 2 illustrates. Thus we can rewrite the
problem (7) in the form

min
.xT1 ;:::;x

T
P /
T 2Rn

1

2
k

PX

iD1
Bixi � yk22 C

PX

iD1
�kxik22 (8)
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so that by splitting the problem into a sum of two functions we obtain an
optimization problem in the form required for ADMM:

min g.

PX

iD1
zi /C

PX

iD1
hi .xi /

subject to Bixi D zi 8i D 1; : : : ; P ; (9)

with convex functions g.z/ D 1
2
kz � yk2 and hi .x/ D �kxk2. We now solve it using

the ADMM algorithm in three steps:

xkC1i WD arg min
xi

�

hi .xi /C �

2
kBixi � zki C 1

�
uki k22

�

; (10)

zkC1 WD arg min
zD.zT1 ;:::;zTP /T

(

g.

PX

iD1
zi /C �

2

PX

iD1
kBixkC1i � zi C 1

�
uki k22

)

; (11)

ukC1i WD uki C �
	
BixkC1i � zkC1i



: (12)

It can be proven (see, e.g., [3]) that solving the minimization step (11) is
equivalent to solving

NzkC1 D arg min
z

g.P Nz/C �

2
P kz � 1

P

PX

iD1
BixkC1i � 1

P�

PX

iD1
ukC1i k22 (13)

and

zkC1i D BixkC1i C 1

�
ukC1i C NzkC1 � 1

P

PX

iD1
BixkC1i � 1

P�

PX

iD1
ukC1i : (14)

Finally, by substituting (13) and (14) into (10)–(12), one can see that the different
Laplacian multiplier vectors ui become equal and we finally obtain the equations

xkC1i WD arg min
xi

(

�kxik22 C �

2
kBixi � Bixki � Nzk C 1

P

PX

iD1
Bixki C 1

�
ukk22

)

;

(15)

NzkC1 WD arg min
z

(
1

2
kP � z � yk22 C P � �

2
kz � 1

P

PX

iD1
BixkC1i � 1

�
ukk22

)

; (16)

ukC1 WD uk C �

 
1

P

PX

iD1
BixkC1i � NzkC1

!

: (17)
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Algorithm 1 ADMM algorithm for sparse grids

{Initialize variables:}
xi  0;
z 1

P
y;

u 0;
precompute Bi ;
repeat

update xi by solving (18) simultaneously in all processes;
Allreduce.Bixi ; Bx; SUM/; {sum up the vectors Bixi from all processes}
update z 1

PC�

�
yC �

P
BxC u

�
;

update u uC �

P
Bx� �z;

until kBx�yk22 � convergence threshold; {training error is one possible convergence criterion}
Gatherv.xi ; x/; {collect partial results}
return x;

Fig. 3 Illustration of the ADMM algorithm

The update steps (16) and (17) are performed with simple linear algebra opera-
tions, while the update step (15) requires the solution of a system of linear equations:

�
�

2
I C �BT

i Bi

�

xi D �BT
i

 

Bixki C Nzk � 1

P

PX

iD1
BixkC1i � 1

�
uk
!

: (18)

At this point we would like to give a couple of remarks about the implementation
of the ADMM regression. Since the last step requires the repeated solution of a
linear system with the same system matrix and different right-hand side vectors, it
is efficient to precompute the Cholesky factorization of the matrix .�=2IC�BT

i Bi /

at the initialization step of the algorithm. If ADMM runs on a distributed system and
subproblems are solved on different machines, the processes need to communicate
the sum

PP
iD1 Bix

kC1
i amongst each other after the update step (15). This can be

done by an MPI operation Allreduce. No other communication between pro-
cesses is required, as steps (16) and (17) are not computationally costly and can be
performed independently by each process. After ADMM converges, the sub-vectors
xi need to be gathered only once. The overall method is summarized in Algorithm 1.

The sequence diagram in Fig. 3 further illustrates the structure of the ADMM
algorithm. After the update of their vector xi , processes synchronize their internal
values of the vector Bx using collective communication. No other synchronization
is required.



228 V. Khakhutskyy and D. Pflüger

3 Results

In the following, we show numerical results for the application of ADMM for
regression problems with the direct sparse grid method. We are employing regular
sparse grids with the modified linear basis functions shown before. This choice of
basis functions allows us to approximate even those points that lie close to the
boundaries without having to spend extra degrees of freedom on the boundary.
Unless mentioned otherwise, we measure performance for regular sparse grids with
level 6 for our experiments. We focus primarily on the optimization algorithm
and do not discuss the optimal regularization parameter or convergence criteria to
prevent overfitting on the dataset.

As testing data we picked the Friedman #2 data set [7], a classical benchmark
problem. It is an artificial four-dimensional data set that simulates the impedance in
an alternating current circuit. In most experiments, we used 20,016 data points for
training,1 generated by the function

y D x21 C
p
x2x3 � .x2x4/�2 C "; (19)

where the random variables xi are uniformly distributed in the ranges

0 < x1 < 100; 20 <
x2

2�
< 280; 0 < x3 < 1; 1 < x4 < 11;

and " is additional uniformly distributed noise with mean 0 and variance 125.
Solving the Friedman problem with ADMM, we observe the peculiarity of

the algorithm: The memory footprint of the individual system matrices drops
quadratically with the growing number of processors (e.g., if the number of CPUs
doubles, the size of the system matrix is reduced by the factor of 4). And, hence,
the time of one ADMM iteration also decreases nearly quadratically.2 At the same
time, the number of ADMM iterations until convergence will raise, since more
subproblems need to agree on the common solution. This rise, however, is difficult
to estimate theoretically.

It is apparent that for large problems the total time is approximated by the
duration of one ADMM iteration times the number of ADMM iterations. Hence,
as long as individual iterations are dominated by back-substitution and the number
of iterations grows less than quadratically, adding more processors leads to speedup.

Moreover, we would like to stress that decreasing memory footprint of
subproblems would allows the solution of some high-dimensional problems in the

1The implementation of sparse grids algorithms used in this paper requires the dataset size to be a
multiple of 48 in order to improve data padding. Therefore we are using 20,016 data points instead
of 20,000.
2The complexity of individual ADMM operations is dominated by back-substitution in the
x-update step (15), which is linear in the size of the system matrix.
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Fig. 4 Wall-clock time, number of iterations and memory footprint of the individual system
matrices for ADMM with different number of processors trained with 20,016 data entries and a
sparse grid of level 6. The more processes, the less time is spent per ADMM iteration, but the more
iterations until convergence are required

first place as those problems would not fit into memory of any single computational
node.

Figure 4 illustrates this behavior: While the serial version of the ADMM
algorithm naturally requires only one ADMM-iteration, it also has the highest
memory requirement to store the system matrix. Using ADMM with two processors,
and thus subtasks, allows the algorithm to converge in 57 steps, whereas the required
memory per processor is reduced by the factor of 4. These trends proceed as the
number of processors grows: The realization with four processors requires 163
iterations to converge to the same error on the training data, and even though each
single individual ADMM iteration takes less time for four subtasks, the overall
runtime is higher for the same test-error convergence criterion.

While the algorithm requires further improvement, the comparison with the
implementation of sparse grid regression in the software package SGCC [20]
already shows the advantage of the ADMM implementation. Figure 5 provides the
wall-clock time for the same learning task of both implementations. Note that we
ensured that SGCC and ADMM iterate until the same value of the regularized loss
functional is reached. SGCC uses a matrix-free conjugate gradient method. On the
left, we show the results on an AMD Opteron

TM
6128HE system equipped with eight

processors with 2 GHz and on the right the results on an Intel i7-2600 running four
processors with 3.4 GHz. We turned on the intrinsics supported by SGCC: SSE3 on
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Fig. 5 Comparison of the ADMM method with a state-of-the-art implementation trained with
20,016 data points and sparse grid level 7. On both systems, ADMM shows its computational
advantage

the AMD system and AVX on the Intel system.3 On both systems, we are faster
using ADMM than with the matrix-free conjugate gradient method.

Even though the number of processors on the Intel system is half that of the
AMD system, the AVX implementation of the algorithms used in SGCC allows
to process twice as many arithmetic operations in one clock cycle as the SSE3
implementation used on the older AMD systems. This and the difference between
the CPU frequencies on these two machines are responsible for the fact that SGCC
is faster on the Intel system.

The implementation of ADMM on the Intel system uses the GotoBLAS2
library [16], which does not support AVX. Therefore, we observe an increase of
the computational time for 4-core Intel system compared to the 8-core Opteron.
This increase, however, is less than by a factor of 2 due to the difference in the
CPU frequency and the different number of ADMM iterations that is required for
convergence on different numbers of processors as described above.

The ADMM implementation needs significantly less time to solve the same min-
imization problem as the current SGCC implementation since the small submatrices
Bi can be efficiently stored in memory and thus directly used for computation. These
results are promising, though they do not illustrate the scaling properties of different
implementations. If the number of ADMM iterations that is required is very high,
this computational advantage will disappear. In the remainder of this section we
therefore focus on the methods to improve the convergence.

3For further details on the parallelization of sparse grid regression using intrinsics we refer to [18].
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Fig. 6 Gauss-Seidel implementation of the x-update step with asynchronous communication

One drawback of the ADMM algorithm used with hierarchical basis functions in
contrast to conventional bases is the problem that initially every process will tend to
approximate the solution for scaled target values z0 WD 1=P � y. As all values of x
and u are set to 0 at the beginning, step (15) is reduced to finding a regularized least
squares approximation of z0. This leads to wrong initial values of xi and to slower
convergence towards the correct ones. This explains the increase in the number of
iterations until convergence for a higher number of subtasks.

ADMM thus better suits to a set of independent approximants, whose contri-
butions to the overall result are of the similar size, than to the decomposition of
hierarchical basis functions into subsets. For the hierarchical basis, we would rather
require that the functions with larger support, those on the first levels, approximate
the target values coarsely, and that then those on the higher levels take care of the
residual.

The desired operation can be achieved if the x-update step (15) is carried out
in Gauss-Seidel manner (xkC1i is updated using new values xkC10 ; : : : ; xkC1i�1 and old
values xkiC1; : : : ; xkP ) instead of in Jacobi manner (xkC1i is updated using new values
xk0 ; : : : ; x

k
i�1; xkiC1; : : : ; xkP ).

If we order the basis functions such that level sums are ascending and then
partition them into subproblems, processor 1 will obtain the basis functions with the
largest support and impact onto the whole approximation. At the beginning of its
iteration processor 2 receives the new value of B1x1 and estimates B2x2 correcting
for residual and so forth.

This Gauss-Seidel pass can be implemented using asynchronous communication
of the vector

PP
iD1 Bixi between processors in a ring. In the iteration (k+1)

processor j receives the sum
Pj�1

iD1 Bix
kC1
i C PP

iDj Bixki , estimates the new

coefficient vector xkC1j and sends the updated sum
Pj

iD1 Bix
kC1
i C PP

iDjC1 Bixki
to the next processor .j C 1 mod P/. Figure 6 illustrates the time line of the
asynchronous algorithm for three processes (compare to Fig. 3 with synchronous
communication).

Figure 7 shows how the usage of Gauss-Seidel pass improves convergence. We
further observed that if we rescale the variables z and u (e.g., using the factor
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20,016 data points for sparse grid level 6 using eight processors. The algorithmic realization with
the Gauss-Seidel pass shows generally better convergence than the classical Jacobi pass. For the
Gauss-Seidel realization, the scaling factor of 1 leads to better convergence

1 instead of P in Eqs. (15)–(17)) the convergence of the Gauss-Seidel algorithm
further improves.4 With original scaling factors the first subproblem approximates
only at the order of 1=P y which contradicts the intuition of residual correction
described above and leads to larger number of ADMM iterations.

Furthermore, we observed that the convergence of the Gauss-Seidel implemen-
tation is invariant to the choice of the penalization parameter �. Choosing the right
value for the classical ADMM algorithm and the parallel Jacobi implementation
is rather tricky and was often discussed in the literature [3, 15, 17]. However, the
theoretical treatment of the impact of the penalization parameter was conducted
mainly for the original version of ADMM algorithm without parallelization. The
behavior of the parallel version differs [2] and in our experience the heuristics for
dynamic penalty adjustment do not lead to desired results.

While the parallel Jacobi implementation suffers from the poor choice of �,
the parallel Gauss-Seidel implementation shows a very stable behavior. Figure 8
contrasts the number of iterations for the different values of � for both algorithms.
While the number of iterations for Jacobi implementation grows rapidly once the
value of the penalization parameter leaves the interval Œ0:1; 0:2�, the number of
iterations for Gauss-Seidel implementation remains the same.

Unfortunately, even with non-blocking communication techniques the
Gauss-Seidel algorithmic implementation can lead to dramatic computation/
communication imbalance. Since the x-update step dominates iterations and z- and

4The similar rescaling of equations for a Jacobi pass leads to divergence of the algorithm.
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u-updates can be negligibly small, in the worst case the time for communication and
interruption could take up to P � 1 times that for the computation. This imbalance
would cancel any convergence improvements.

We therefore combine the both methods to accelerate the convergence with a
few expensive Gauss-Seidel steps at the beginning followed by faster Jacobi steps.
Figures 9 and 10 illustrate the advantages of this approach. They compare the
number of ADMM iterations and the total time required to solve same problems
using only Jacobi iterations with the cases where they are preceded by 1, 5, or
10 Gauss-Seidel iteration steps. Although, the number of iterations continues to
decrease the more Gauss-Seidel iterations we allow, the run with only one Gauss-
Seidel step takes the least time.

Finally, another way to improve convergence for hierarchical basis functions is to
enforce that subproblems share the functions with larger support on the first levels.
This reflects the property of the hierarchical basis that the basis functions on the first
levels are more important than those on higher levels. We illustrate this principle
using the example of an one-dimensional grid with level three (compare, again,
Fig. 1).

Suppose that the calculations are to be split between two processors, then process
1 would calculate the coefficients for the functions on the top two levels, �1; �2, and
�3, as well as for two on level 3, e.g., �4 and �5. Process 2, would then calculate the
scaling coefficients for the same functions on the top two levels as well as for the
other two on level 3, namely �6 and �7. Hence, the coefficient vector of the process
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1 would be x1 D .x1; x2; x3; x4; x5/
T , while the coefficient vector of the process 2

would be x2 D .x1; x2; x3; x6; x7/
T . Correspondingly, the matrix B1 would contain

columns 1, 2, 3, 4, and 5 of the original matrixB , while the matrixB2 would contain
columns 1, 2, 3, 6, and 7:
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1

A :

If we denote the shared columns of a matrix Bi by Bshared
i (these would be the

columns 1, 2, and 3 in the example above) and the shared components of a vector xi
by xshared

i (the coefficients x1, x2, and x3 in the example above), then the evaluation
of the sparse grid function calculated as

PP
iD1 Bixi and used in steps (15)–(17) can

be approximated by

Bx �
PX

iD1
Bixi � d � 1

d

PX

iD1
Bshared
i xshared

i : (20)

Figure 11 shows the number of ADMM iterations until convergence is reached
for problem splittings with different number of shared functions. The results show
that especially sharing the function on the first level allows a significant convergence
speedup, while the additional computational cost remains negligible.
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At last, we compare the original implementation of the ADMM method for sparse
grids with the extensions described in this paper. Figure 12 shows the time required
to train a sparse grid with level 6 on 20;016 data points in parallel using 8 or 16
processors.

The pure Gauss-Seidel implementation takes the longest due to the long waiting
times. Because of an additional ALLREDUCE call, the shared point implementation
also requires more time than the original Jacobi, despite the reduced number of
iterations. The combination of one Gauss-Seidel initialization step followed by
simultaneous Jacobi steps shows the best results.

4 Conclusions

We introduced ADMM as a new approach to sparse grid regression with promising
potential for parallelization. However, and in contrast to nodal bases as they are
considered for ADMM elsewhere, working with a hierarchical basis raised a few
new issues. The local updates have stronger and more direct global influence, and
these numerical dependencies result in a strong increase in ADMM iterations with
increasing processor count.

To remedy this, we have introduced a Gauss-Seidel style pass for the x-update
only in the first iteration. Introducing sequential dependencies significantly
improved the convergence rate. Apart from the first iteration, we do not introduce
communication overhead and employ Jacobi-style passes. In the future we endeavor
to relax the inter-process dependency in the first iteration using pre-initialization of
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individual solutions and introducing one-sided and asynchronous communication
patterns.

In addition, we have shown that a similar effect can be achieved if all processes
share the basis functions on the first levels and then use an approximation of Bx
during synchronization. They are the basis functions with large supports and have
thus rather global influence. Despite the algorithmic changes and improvements and
new parallel dependencies, the computational time of a single iteration is almost
unaffected.

In our implementation we assembled the system matrices .�=2 � I C �BT
i Bi /

in (18) explicitly. This is not a drawback as these matrices are significantly smaller
than the original system matrix from problem (7). Hence, they can fit into memory
even for huge problems (data points and/or grid size) and can be efficiently solved
for many relevant problems. This is another advantage of our approach.

Furthermore, preliminary results show that ADMM with sparse grids is com-
petitive with other state-of-the-art sparse grids methods in our data mining setting
on shared memory systems with moderate number of processors. These results,
however, are to be investigated more in detail and in a broader scope as part
of further research. In the future, we also want to address the major problem of
ADMM—the increasing number of iterations with growing processor numbers—in
more detail. This will be a necessary step towards massively parallel data mining
with ADMM in the hierarchical basis.
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An Opticom Method for Computing Eigenpairs

Christoph Kowitz and Markus Hegland

Abstract Solving the linearized and five-dimensional gyrokinetic equations can
already be used to retrieve the microinstabilities driving the microturbulence of
a hot magnetized plasma. The microinstabilities can be computed by calculating
the eigenvalues of the linear gyrokinetic operator, which have a positive real part.
The growth rate and frequency of the instability is given by the computed eigen-
value and its structure by the respective eigenvector. Due to the moderately high
dimensionality, the sparse grid combination technique is used to tackle the curse
of dimensionality for solving the gyrokinetic eigenvalue problem with the already
highly optimized plasmaturbulence code GENE. Whereas the classical combination
technique can retrieve approximation of the searched eigenvalues, the combination
of the eigenvectors requires the application and reformulation of the optimized
combination technique (OptiCom). The reformulation and an algorithm for solving
the reformulated system to compute the eigenpairs is proposed in this paper. A first
analytical test problem is solved and the applicability of the method is shown.

1 Introduction

In the field of fusion energy research, the hot magnetized plasmas can be simulated
by using a variety of approaches including single particle descriptions, magnetohy-
drodynamics (MHD) or kinetic models. Each of the models has a certain application
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area. The five-dimensional gyrokinetic equations can be utilized to simulate the
microscopic turbulence effects, leading to anomalous transport in current magnetic
confinement devices such as tokamaks and stellarators. Ab initio simulations of
microturbulence can be done using gyrokinetics and the transport of heat and
particles can be directly observed in a simulation. One gyrokinetic code being
widely used in the fusion community, is the massively parallel plasma turbulence
code GENE [9], which is developed in the group of Prof. Frank Jenko at the Max-
Planck-Institute for Plasmaphysics (IPP) in Garching, Germany. Despite its high
performance and its good scaling properties [10], GENE is influenced by the curse
of dimensionality due to the underlying five-dimensional model. Even setups with
moderate resolutions lead to a high number of degrees of freedom, since it is a five-
dimensional problem.

As one remedy to this problem, sparse grids [3] have been identified. Due to the
fact, that GENE cannot be easily refactored to use a hierarchical basis required by
sparse grids, the sparse grid combination technique [11] is applied to create sparse
grid solutions of gyrokinetic problems. Whereas a previous study [17] evaluated
the application of the classical combination technique with its integer valued
combination coefficients for the linear gyrokinetic initial value problem, this paper
focusses on the application of the optimized combination technique (OptiCom) to
the gyrokinetic eigenvalue problem. The classical combination could be used to
combine the eigenvalues, but it cannot be applied to the corresponding eigenvectors.
Thus a new approach which uses the OptiCom for eigenvalue problems will be
proposed, which shall be used in the context of linear gyrokinetics. An analytic test
problem and the performance of the algorithm will be presented.

1.1 The Linear Gyrokinetic Eigenvalue Problem

The gyrokinetic equation is a five-dimensional description of a magnetized plasma,
which is derived from the six-dimensional Vlasov-Equation

@fs

@t
C v

@fs

@x
C
�
qs

ms

.E.fs/C v � B.fs//
�
@fs

@v
D C.fs/ ; (1)

describing the behaviour of the six-dimensional distribution function fs.x; vI t/ of
different charged particle species s in an electric field E and a magnetic field B.
The normalized distribution function is giving the probability to find a particle of
species s (ion or electron) with mass ms and charge qs at a certain position in phase
space. With E and B being influenced and generated by the distribution function in
the plasma due to Maxwells equations

rE D 4�� r � E D �1
c
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and the moments of the distribution function

�.x/ D qs

Z

fs.x; v/dv j.x/ D qs

Z

vfs.x; v/dv (3)

the equation is nonlinear. Note that the term 1
c
@E
@t

, which is describing electro-
magnetic waves in Maxwells equations, is not regarded in GENE. The Vlasov-
equation (1) is not only governing the interaction of the particles due to long
range field interactions on the lefthandside, but also describing their collision by
the collision operator C on the righthandside of the equation.

The Vlasov equation (1) fully resolves the gyration of the charged particles
around the magnetic field lines, which determines its characteristic time-scale. In the
gyrokinetic equation, the fast gyration of the charged particles around the magnetic
field lines is not resolved anymore and only the magnetic moment�, i.e. the gyration
velocity, is part of the model. That not only reduces the dimensionality to five, but
it also removes the fastest motion from the model. The characteristic time-scale
of gyrokinetics is now the movement of the center of gyration (guiding center)
parallel and perpendicular to the magnetic field. This time-scale is significantly
longer than the characteristic time-scale in the original Vlasov equation (1) and thus
decreases the computational effort tremendously. Further approximations [2], which
are not explained in this paper, yield the gyrokinetic equation. For the transformed
distribution function g it reads in a general form as

@g

@t
D L.g/C N .g/ (4)

with L being a linear integro-differential operator and N being a nonlinear operator
on g governing the E � B drift of the charged particles, driving the turbulent
behaviour.

In linear gyrokinetics only the linear operator L is regarded, since it already
describes the instabilities leading to microturbulence. The linear gyrokinetic equa-
tion

@g

@t
D L.g/ (5)

is a set of ODE’s, since the operator L can also be expressed as a matrix L, when
g is discretized on a grid. Since its solution is determined by the eigenvectors
and eigenvalues of L and the initial condition is a superposition of all of them,
the time development of g is completely characterized by the spectrum of L.
Only eigenmodes having eigenvalues with a positive real part are thus growing
modes. In general, the spectrum of L contains only few eigenvalues with positive
real part (as seen in Fig. 1), which means only a few modes actually destabilize
a plasma. An analysis of these unstable modes allows then an estimation of
the turbulent transport by quasilinear transport models [1]. Furthermore it allows
feasible parameter scans for suitable nonlinear simulation regimes due to their
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Fig. 1 The spectrum of the
linear gyrokinetic operator of
a small test problem. Nearly
all eigenvalues have negative
real parts, which results in a
damping of the corresponding
eigenmodes. Only
eigenmodes having an
eigenvalue with a positive
real part are growing and thus
unstable modes (rightmost
dot)

much smaller demands in computational resources than nonlinear simulations [10].
In GENE two possibilities exist to do linear computations: a time-integration to
compute the single most unstable mode and a computationally more demanding
eigenvalue computation of all unstable modes for problems of about a few hundred
thousands unknowns [18, 20]. The latter one will be the focus of this paper, since
the currently used preconditioned Jacobi-Davidson method only scales up to 64
processors [15]. A further improvement of the performance could allow to do a
detailed linear analysis on even larger linear gyrokinetic problems.

1.2 The Combination Technique

The sparse grid combination technique can be used to compute a sparse grid
approximation fc of a problem at a position x 2 R

d by a proper summation of
approximations of it on coarser, possibly anisotropic grids using piecewise linear
ansatz functions. All these regular cartesian grids span over the same domain, but
do have different resolutions, which is denoted by level vector l 2 N

d . It is giving
the level of resolution in each dimension i of the grid by 2li C 1 being the number
of grid-points in the i th of d dimensions and with li > 0. The general form of the
combination technique is thus given by

fc.x/ D
X

l2Sk

clfl (6)

with Sk � ˚
l 2 N

d
�

being the set of coarse grid resolutions used for the combination
and the ki being the maximum level of resolution in the i th dimension. The c is
the vector containing the combination coefficients cl for each of the different grid
resolutions l, governing if a solution fl is added or subtracted.
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1.2.1 Classical and Dimension Adaptive Combination Scheme

The classical combination technique relies on combinatorics to retrieve a suitable
index set S with the appropriate combination coefficients [11]

fc.x/ D
d�1X

qD0
.�1/q

�
d � 1

q

� X

P
i liDnC.d�1/�q

fl.x/ : (7)

Whereas this approach can be used to find sparse grid approximations for problems
on domains requiring an isotropic grid layout, other approaches for defining a suit-
able index set exist [6,13] which can adapt the sparse grid approximation by refining
or coarsening the resolution dimensionally. These approaches are optimizing the
grid structure and index set towards a better approximation, but they do not adapt
the combination coefficients c to better suit the underlying problem to be solved.

1.2.2 OptiCom

In the previous section, the classical combination scheme with its integer valued
combination coefficients has been introduced. But problems exist, where these
coefficients do not lead to sufficiently accurate results or no results at all. They
then need to be adapted to the problem to improve or enable an approximation by
the combination technique. This method of optimizing the combination coefficients
(OptiCom) [14] is based on the minimization of the functional

J.c/ D
�
�
�
�
�
Pkff �

mX

iD1
ciPli ff

�
�
�
�
�

2

(8)

with Pn;n 2 N
d being projection operators projecting the solution f into a

solution space, which is characterized by the underlying cartesian grid with 2ni C 1

points in the i th of d dimensions. It is basically the minimization of the difference
between the solution on a full grid Pk and the combined solution

Pm
iD1 ciPli ff by

changing the combination coefficients. If the projection operators are orthogonal,
the optimization can be done by solving

2

6
4

kPl1ffk2 : : : .Pl1ff; Plmff/
:::

: : :
:::

.Plmff; Pl1ff/ : : : kPlmffk2

3

7
5

2

6
4

c1
:::

cn

3

7
5 D

2

6
4

kPl1ffk2
:::

kPlmffk2

3

7
5 (9)

to retrieve the optimal combination coefficients by computing the norms k � k and
scalar products .�; �/ in the embedding spaces [6]. These norms and scalar product
have to be chosen according to the projection operators P .
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1.2.3 Applicability of OptiCom for the Gyrokinetic Eigenvalue Problem

Applying the sparse grid combination technique for eigenvalue problems cannot
be done straightforwardly. If the underlying eigenvalue problem is symmetric, the
combination of eigenvectors according to (7) can be used to compute the respective
eigenvalues by using the Rayleigh quotient and the typical error cancellation and
extrapolation behavior occurs [4]. Since the linear gyrokinetic operator is neither
symmetric nor hermitian, this approach is not applicable for GENE. Nevertheless
applying the classical combination technique directly for the eigenvalues can lead
to an approximation [16]. The approximation of the eigenvectors on the other hand
requires an additional scaling before. Some problems allow a computation of an
appropriate scaling before combination [8], but in general it is unknown. Thus the
OptiCom can be used in order to calculate the scaling implicitly since the scaling
is done in the optimization process. There is an approach to compute eigenpairs,
which relies on the access of the matrix-vector product, i.e. the application of the
operator on a test-vector [7]. Besides that, it is also based on the discretization of the
operator by a Galerkin approach. Unfortunately, the method is not applicable to the
gyrokinetic eigenvalue problem using GENE. Whereas there is access to its matrix-
vector product, the linear gyrokinetic operator in GENE is not a result of a Galerkin
formulation. Thus we need to change the approach to suit our non-symmetric and
non-hermitian eigenvalue problem.

2 Method

In this section the method to compute eigenvalues and eigenvectors from previously
computed approximations on coarser grids is presented. It reformulates the basic
idea of the OptiCom and connects it with a nonlinear optimization of the combina-
tion coefficients.

2.1 Reformulation of the OptiCom

Since the method to compute eigenvalues described in Sect. 1.2.3 cannot be applied
to the gyrokinetic eigenvalue problem, an alternative is proposed here. Instead of
formulating the underlying minimization principle in the form of (8), it can be
tailored towards an eigenvalue problem with the general description

Lg0 D �0g0 (10)

which can be reformulated as a minimization of the function

J.g; �/ D kLg � �gk2 D k.LI � �I/gk2 (11)
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with zero being its minimum, which is reached for � D �0 and g D g0. The vector
g0 is a righthand eigenvector on the full grid with its respective eigenvalue �0, both
being the eigenpair of the linear operator L of a regular full grid, i.e. the operator
L discretized on the full grid of resolution n. The eigenpair is unknown and thus
the functional in (11) can give an estimate how close the current estimates of g and
� are to the correct solutions g0 and �0 respectively. Following the concept of the
OptiCom, the eigenvector g shall be approximated by a weighted sum of eigenvector
approximations on the set of combination grids S

g �
X

l2S
clgl D gc with Ll Ogl D �l Ogl and gl D Pn Ogl (12)

with gl being the eigenvector of a smaller resolution operator matrix Ll, linearly
prolongated onto the full grid of resolution n by some prolongation operator Pn.
They can thus be easily added and a combination approximation gc on the full grid
of resolution n can be created. The prolongation and storage of gl is time consuming
but allows the direct evaluation of the eigenpair on the full grid problem later on
and is thus justified. This combination gc might be able to uniquely represent the
eigenvector gn, but usually it will just be an approximation of it and thus the c will
not be unique.

Putting all interpolated partial solutions of set S into a rectangular matrix G D
Œgl1 : : : gln �, gc can be represented as the matrix-vector product

gc D Gc (13)

so that the functional (11) then reads as

JEV.c; �/ D kLgc � �gck2 D
�
�
�
�
�
.LI � �I/

X

l2S
clgl

�
�
�
�
�

2

D k.LI � �I/Gck2 (14)

which has to be minimized as well.
In contrast to (8), the function JEV is does not only depend on the combination

coefficients c but additionally also on the respective approximation of the eigenvalue
�. The advantage of formulating the OptiCom minimization principle like this is
that it does not involve any projection operators and does not rely on any method or
basis in which the partial solutions gl are formulated in. Also this formulation shows
that at the end, the combination coefficients for combining the eigenpair of the full
resolution eigenvalue problem (10) is found. Previous approaches using OptiCom
for eigenvalue computations did not take the full resolution operator into account,
because they did not need to.

Now having the function JEV.c; �/ for minimization, a straightforward method
would be the application of the least squares method by setting up the normal
equations
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Œ.LI � �I/G�� Œ.LI � �I/G� c D K.�/c D 0 (15)

with K.�/ now being a function of �. The matrix K.�/ will be singular as soon
as with � D �0 the correct eigenvalue has been found. Any solution c0 to the
singular system K.�0/c D 0 will then give the combination coefficients to compute
the eigenvector g0 on the fullgrid by

g0 D Gc0: (16)

Since it can not be guaranteed, that g0 can be exactly represented in the basis of
combination grid solutions G by Gc, the minimum of the functional JEV might not
evaluate to 0, even if with � D �0 the correct eigenvalue has been found.

2.2 The Method of Osborne

Solving the linear eigenvalue problem in (10) has now changed into solving a
nonlinear eigenvalue problem in (15), since there the �0 has to be found, which
leads to a singular system. For retrieving this value, a method [12] is used which was
originally proposed for general eigenvalue problems [19]. In there, an eigenvalue
problem

A.�/g.�/ D 0; with A.�/ D B1 � �B2 (17)

is formulated, where A is not restricted to be linear in �. In the description of the
method here, we restrict B2 to be the identity. Again the matrix A.�/ is singular if
with � D �0 the eigenvalue has been found. The solution g is then the corresponding
eigenvector, which can have an arbitrary scaling. In order to find the eigenpair (�0
and g0), the system (17) is embedded into a slightly larger set of equations of the
form

�
A.�/ x

s� 0

��
g
ˇ

�

D
�
0

1

�

(18)

with x and s being arbitrary nonzero vectors and s giving a scaling of a retrieved
eigenvector. Since the system will not be singular for any �, a g and ˇ can always
be computed. In the case of � D �0 the matrix A is singular and thus there is only
a solution of the system with ˇ D 0 since there cannot be a unique solution for a
ˇ ¤ 0. Due to the scaling condition s, there is only one solution for g in this case,
which is then the eigenvector g0 belonging to �0. The value of ˇ is thus decreasing
as � is approaching the eigenvalue. Thus the computation of an eigenpair has now
been reformulated into finding roots of the nonlinear function ˇ.�/.
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In order to find the roots, Newtons method is employed and an iteration formula
�i is formulated by [12]

�iC1 D �i � s�g
s�A�1 dA

d�g
; (19)

requiring an initial guess in the proximity of the eigenvalue. There are also update
formulas for the respective vectors s and x since their appropriate choice speeds
up the convergence of Newton’s method. The numerical intensive part is then the
inversion of A for the update of the current approximation of the eigenvalue.

2.3 Combining Both Approaches

In order to use the method of Sect. 2.2 for the function K.�/ in (15) in Sect. 2.1,
small adjustments have to be made. First of all the function K.�/ is now a complex
function. Since only the derivative dK

d� is required, the update of (19) using the
Newton step described in [12] can be computed by

�iC1 D �i � ˇ
dˇ
d�

D �i � s�c
s�K.�i /�1 dK

d� c
(20)

to iterate towards the root of ˇ.�/. An example for that approach can be seen in
Sect. 3. Note that we now find c, which are the combination coefficients to compute
an approximation the eigenvector of L by g0 D Gc.

The applicability of this Newton iteration heavily depends on the partial solutions
G since they influence the structure of K. As long as it is possible to represent
the eigenvector g0 accurately with the partial solutions G, the function ˇ.�0/ is
zero. That will usually not be the case, since the partial approximations gl may not
contain parts of the frequencies of the full grid eigenvector. As soon as the gc can just
represent an approximation of the full grid eigenvector, the function ˇ.�/ does not
have roots at the eigenvalues of L anymore and a Newton iteration will not converge.
Since the deviations are assumed to be small, the minimum of jˇj will still indicate
an approximation eigenvalue of L, since its real and complex part will be closest to
zero in this case. The corresponding set of combination coefficients will thus give
also the best approximation of the respective eigenvector.

To allow the computation of the minimum another approach than the straight-
forward Newton iteration can be taken. One could also use the Newton algorithm
to find the minima of a function, but for that a second derivative of ˇ would be
required, which is difficult for the special form of K of our OptiCom-eigenvalue
problem. The easiest approach to find the minimum is a gradient descent method
which we will present here. For the gradient descent, the required gradient of ˇ can
be computed by rearranging the second term in (20) to get
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dˇ

d�
D ˇ

s�K.�i /�1 dK
d� c

s�c
: (21)

This has the same computational effort as the Newton step. Having that gradient,
one can use the gradient descent method to find the minimum. Unfortunately the
method has a really slow convergence, so that other optimization methods requiring
the first derivative might be used by applications using this algorithm.

2.4 Computational Effort

The computational effort of the proposed scheme lies in several subproblems, which
are: the computation of the approximation of the eigenvector and the eigenvalue
on the combination grids, the projection of these up onto the full grid to get the
matrix G, computing the matrix-matrix products LG and G�G, solving the inversion
of K�1 and the minimization of ˇ.�/ using Newtons or the gradient descent
method.

Solving the eigenvalue problems (12) is not done by the proposed algorithm itself
but completely by the application, which will in our case be GENE. It is assumed,
that it will be a lot faster than solving the eigenvalue problem on the full grid, due
to a tremendously reduced grid size. The prolongation of the results Ogl up onto
the grid of the operator L to get gl is time consuming and might require a large
amount of time compared to the previous step, since it is filling a full resolution grid.
The computation of the matrix-matrix products in the next step is then definitely
requiring some computational effort. The size of the operator L 2 C

n�n with n being
the number of grid points of the full grid is indeed rather large. But for evaluating
the product LG, it just has to be applied m times, with m being the number of
grids used for the combination. Solving the eigenvalue problem on the full grid will
require a lot more applications of the operator L onto some vector, since the matrix
is assumed to be too large for being explicitly accessible in memory and thus an
iterative eigenvalue solver is used. In GENE for example, the underlying solver for
solving the eigenvalue problem on the large full grid, requires a lot of iterations [18]
so that a single evaluation the linear gyrokinetic operatorL on each of them vectors
will be much less demanding. The evaluation of G�G will not require much effort,
since these matrices are explicitly stored in memory. The results of the matrix-matrix
products are themselves of the same size as the matrix K 2 C

m�m and do thus not
consume a lot of memory.

With K being a rather small matrix, executing its inversion does not require a
lot of effort. Due to that, the execution time of a single iteration, including the
computation of K, the inversion of the system and following that the computation of
the gradient of ˇ in (21) is done very quickly.

Since a single iteration is not time consuming, the choice of the optimization
method is not critical. The Newton method has a much higher rate of convergence
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than the gradient descent method. But due to the small size of the system and the
fast computation of a single iteration, the latter still convergences fast compared
to the time required to compute the initial combination grid approximations of the
eigenpair and the connected projection onto the full resolution grids.

One issue which might also come up in future applications of the method, is
that the computed approximations of the eigenvector on the different combination
grids do not belong to the same eigenvalue [8]. Thus the retrieved eigenvector
approximations might have to be checked for their similarity, which can be a
demanding task. Especially the envisioned larger sets of combination grids will then
lead to a large overhead. In the gyrokinetic eigenvalue problem, the eigenvalues of
interest can sometimes be mutually close, so that step will be required.

3 First Results: Analytic Example

We applied the proposed algorithm to an analytic problem on finding an eigen-
function of a simple ODE. The chosen analytic problem is finding the periodic
eigenfunction uf for

Luu D �u with Lu D d

dt
(22)

in the unit interval˝ D Œ0; 1�, which is

uf.t/ D e�0t with �0 D 2�ki; (23)

with k 2 N
C. To perform an analytic study of the problem using the proposed

algorithm, we emulated the combination technique by applying a semidiscretization.
For that, the domain is split in two parts. Each half of the domain can be represented
by either the correct eigenfunction uf (23) or by a linear approximation

uc.t/ D
(
.1 � 4t/ t � 1

2

.4t � 3/ t > 1
2
:

(24)

Similar to the combination technique, solutions of different approximation qualities
have to be created. For that we set up three different approximations:

u1.t/ D
(

uf.t/ t � 1
2

uc.t/ t > 1
2

u2.t/ D
(

uc.t/ t � 1
2

uf.t/ t > 1
2

u3.t/ D
(

uc.t/ t � 1
2

uc.t/ t > 1
2
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Fig. 2 The approximations of the eigenfunction ui with the real parts (solid) and the imaginary
parts (dashed)

which can be seen in Fig. 2. None of them gives the eigenfunction u but the sum

uf.t/ D
3X

iD1
ciui .t/ with

c1 D 1

c2 D 1

c3 D �1
(25)

actually gives the correct solution. This is similar to the combination technique
where the approximation of different, even anisotropic, resolutions gl are combined.
In this one-dimensional problem the anisotropy is emulated by using different
resolutions, i.e. approximation qualities, in the two halves of the domain instead
of different dimensions. The function uf represents the solution on an infinitely
fine grid, thus the analytical solution, whereas uc is only an approximation on a
very coarse grid of two grid points (a linear approximation). This approach is thus
basically a one-dimensional combination scheme with only two scales [5].

Having done this approach, the method proposed in Sect. 2.3 can be applied. The
matrix Ku.�/ is then constructed as described in (15)

Ku.�/ D Œ.Lu � �/Gu�
�Œ.Lu � �/Gu� (26)

with Gu being the row vector Œu1 u2 u3� and Lu being the operator applying the first
derivative onto a function ui . That leads to a matrix Ku 2 C

3�3 with the entries

Kui;j D .Luui � �ui /.Luuj � �uj /: (27)

Since we are using analytic functions here, we use an integral expression as scalar
product so that

Kui;j D
Z 1

0

.Luui � �ui /.Luuj � �uj /dt: (28)
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Fig. 3 The absolute value of
ˇ.�/ in the region around the
eigenvalue �0 D 2� i on the
complex plane. The Newton
iteration steps do converge
directly to the root at 2� i
(dotted line). A second local
minimum can be observed at
�2� i, which might be
problematic for the gradient
descent method

Note that the derivative dKu
d� is computed by

dKu

d�
D d

d�

�
Œ.Lu � �/Gu�

�Œ.Lu � �/Gu�
�

(29)

D � Œ.Lu � �/Gu�
�Gu (30)

so that we get

�
dKu

d�

�

i;j

D �
Z 1

0

.Luui � �ui /ujdt: (31)

Now the Newton iteration according to (19) can be computed.
The iteration is converging in a few steps towards the correct combination

coefficients mentioned in (25). Since the sum u1 C u2 � u3 can exactly represent
the eigenfunction uf in the domain, the Newton iteration converges because the root
of ˇ.�/ is existing. But besides the Newton iteration the slower converging gradient
descent method is also leading to the solution. The root of ˇ is also a minimum of
jˇj and thus the gradient descent will also converge. Its step-size is determined by
the absolute value of ˇ. Nevertheless, the gradient-descent bears the risk of only
finding a local minimum of ˇ which is actually not the eigenvalue. It can be seen in
Fig. 3. Thus a sufficiently good initial guess for the eigenvalue is required to retrieve
the combination coefficients leading to an approximation of an eigenvector using
the gradient descent method.

The classical combination technique would not be able to solve the eigenvalue
problem, since it is a purely extrapolating technique. Whereas it would give the
same combination coefficients, it would not be able to handle any perturbations.
The proposed method on the other hand uses the partial solutions as basis functions
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and scales them to solve the underlying eigenvalue problem. The method could
thus be applied to other eigenvalue problems as the gyrokinetic eigenvalue problem
in GENE.

4 Summary

An algorithm has been proposed, allowing to use an optimized sparse grid com-
bination technique for eigenvalue problems, where the coarse approximations of
the solution are only accessible as is and no information regarding the basis
functions is available. The algorithm is based on a reformulation of the minimization
principle underlying the optimized combination technique. This formulation leads
to a nonlinear eigenvalue problem, which is solved employing an embedding of
the problem into a slightly larger matrix. This allows to use a Newton iteration
or a gradient descent method to iterate towards the desired eigenvalue. Having
found the eigenvalue, the eigenvector is computed. Depending on the quality of the
initial approximations, the computed eigenvalue might not exactly be the solution
to the full resolution eigenvalue problem. But the embedding of the optimization
problem also gives an estimate of the accuracy of the retrieved eigenpair, so that an
optimization of the chosen index set for combination can be triggered. The effort to
compute an eigenpair using the proposed algorithm has been studied and it appears
to be able to reduce the computational effort to find eigenpairs in high dimensional
settings. It has been tested on a one-dimensional analytical problem and exhibited
the expected behaviour in finding the correct solution. Pitfalls of using the gradient
descent method have been identified, which can be circumvented by using a rather
close initial guess for the iteration towards the eigenvalue.

The method thus seems to be a viable tool for identifying microinstabilities using
the gyrokinetic code GENE, since eigenpair approximations of lower resolution,
which can be computed rather cheaply, can be combined to give a high resolution
approximation of the eigenpair. This would not be possible using the classical
combination technique or the method based on the Rayleigh quotient [7] and thus
it is one step towards using the combination technique for computing eigenpairs in
GENE. Compared to the currently applied Jacobi-Davidson method, an improved
runtime is expected.

In future work the algorithm will be applied to GENE to give exact measurements
of the performance, since the time for the computation of the partial solutions,
the interpolation onto the full resolution grid and the evaluation of the matrix-
matrix products cannot be calculated exactly here. Using this method might lead to
improved scaling properties, since all of this steps can be done in parallel. Together
with a proper initial choice of the coarse combination grids, the it could be a
computationally more efficient alternative to the currently used iterative eigenvalue
solver.
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Classification with Probability Density
Estimation on Sparse Grids
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Abstract We present a novel method to tackle the multi-class classification
problem with sparse grids and show how the computational procedure can be split
into an Offline phase (pre-processing) and a very rapid Online phase. For each
class of the training data the underlying probability density function is estimated
on a sparse grid. The class of a new data point is determined by the values of the
density functions at this point. Our classification method can deal with more than
two classes in a natural way and it provides a stochastically motivated confidence
value which indicates how to rate the respond to a new point. Furthermore, the
underlying density estimation method allows us to pre-compute the system matrix
and store it in an appropriate format. This so-called Offline/Online splitting of
the computational procedure allows an Online phase where only a few matrix-
vector products are necessary to learn a new, previously unseen training data set. In
particular, we do not have to solve a system of linear equations anymore. We show
that speed ups by a factor of several hundred are possible. A typical application for
such an Offline/Online splitting is cross validation. We present the algorithm and
the computational procedure for our classification method, report on the employed
density estimation method on sparse grids and show by means of artificial and real-
world data sets that we obtain competitive results compared to the classical sparse
grid classification method based on regression.
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1 Introduction

We consider the classification problem arising in the context of data mining. We
want to reconstruct an unknown function f W R

d ! f1; : : : ; ng which assigns
class labels 1; : : : ; n to points in the d -dimensional space R

d . Given is only a set of
training data

S D ˚
.xi ; yi / 2 R

d � f1; : : : ; ng�M
iD1 ;

where xi is a point in the d -dimensional space R
d and yi the class label corre-

sponding to xi . Usually the set S also contains noise, thus, in general, interpolating
the training points in S does not generalize well enough to new data points.
Classification methods try to find an approximation of the unknown function f by
using only the training data set S . There are many classification methods available,
see, e.g., [3, 12].

Here we are interested in sparse-grid-based classification techniques. What we
call the classical sparse grid classification method employs regression where the
regression function is discretized on a sparse grid. This approach has been shown
to be competitive with the best existing methods for moderately high-dimensional
problems, see, e.g., [9–11, 14, 21, 23]. The key advantage of such a grid-based
method is that it scales only linearly with the number of training data points [11]
because the ansatz functions are not associated to the data points but stem from a
grid. Since common (full) grids suffer from the curse of dimensionality, i.e., the
number of grid points grows exponentially with the number of dimensions, sparse
grids are employed.

In contrast to the classical approach with sparse grid regression, our proposed
classification method is based on probability density functions which are discretized
on sparse grids. We assume that each class of the training data has been generated
separately, i.e., the data points in each class have a different underlying density
function. We approximate these density functions by splitting the training data set
into its classes and by estimating the individual density functions on sparse grids.
The density estimation is based on the non-parametric approach introduced in [13]
which has already been successfully used in the context of clustering [19]. To assign
a class label to a new data point, we evaluate the estimated density functions at
the new point and respond with the class label associated to the density function
which yields the highest value. Note that this approach is highly related to Bayesian
classification methods [16, 17]. Just like the classical sparse grid classification, our
method scales only linearly with the number of training data points.

With the proposed method we can cope with more than two classes in a natural
way and we can also derive a natural confidence value of the respond by comparing
the values of all density functions: If we assign a label to a data point for which one
density function yields a much higher value than the others, it is very likely that the
data point is correctly classified. In contrast, if several density functions yield about
the same value, the data point most probably lies in a region where different classes
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overlap and thus the class label cannot be assigned with high certainty. However, the
information that a response should be considered more like an educated guess than a
founded statement is already valuable for certain applications. For example, for the
detection of non-coding RNAs, classifiers are trained in [24] to have a pre-screening
first before a biochemical test is performed to verify the result. Due to the large
number of non-ncRNAs and due to the difficulty, time, and cost of a biochemical
test, a classifier should minimize the false positives (i.e., non-ncRNA classified as
ncRNA) and rather miss a few true positives (i.e., correctly classified points). We
refer to [24] for an extensive discussion of this biochemical classification problem.

Both the classical and our proposed classification method requires us to solve
a system of linear equations to construct a classifier for a given training data
set. However, the system matrix of our method is independent from the training
data points. Thus, we can employ a so-called Offline/Online splitting of the
computational procedure: In the Offline phase, we pre-compute the system matrix
and store it in an appropriate format. Usually, this is a computationally very
expensive and time consuming task. In the Online phase, when we are given a
new training data set, we load the system matrix and solve the corresponding
system of linear equations. Since we already have the system matrix this is cheap.
Furthermore, if the system matrix has been decomposed (e.g. LU decomposition or
diagonalization) during the Offline phase we do not even have to solve the system
in the Online phase again but only need a few matrix-vector products to construct a
classifier. Thus, the computational procedure in the Online phase of our method is
in O.N 2/ rather than in O.N 3/ as for the classical sparse grid classification based
on regression.

Such an Offline/Online scheme pays off if we compensate the costly Offline
phase by repeating the Online phase many times or if our (real-time) application
requires a classifier immediately after new training data has been provided. Such
scenarios can be found in e.g. online learning or data stream mining [2,7,8]. Another
very common example is parameter selection. If we employ cross validation to find
a good parameter configuration for the current data set at hand, we have to train
many classifiers with different parameters on different training data sets. Hence, we
have to repeat the Online phase very often and can so afford an expensive Offline
computation.

In the following Sects. 2 and 3, we state some properties of sparse grids and the
classification approach based on sparse grid regression. In Sect. 4 we discuss how to
estimate probability density functions using sparse grid discretization. In Sect. 5 we
continue with an in-depth discussion of our proposed classification method based
on density estimation. The Offline/Online splitting is introduced in Sect. 6 and the
results for various artificial as well as real-world data sets are presented in Sect. 7.
In terms of accuracy, we do not only obtain competitive results with our proposed
method, but can also improve on the results of the classical approach. As far as
the runtime of our method is concerned, with the Offline/Online splitting we gain a
factor of up to several hundred in the Online phase compared to the prediction step
of the method without the Offline/Online splitting.



258 B. Peherstorfer et al.

Fig. 1 On the left a full grid, in the middle a regular sparse grid, and on the right an adaptively
refined sparse grid

2 Sparse Grids

In contrast to many other methods in data mining which employ ansatz functions
associated to the training data points, we pursue a grid-based approach. This means,
we have ansatz functions associated to grid points rather than to data points. Sparse
grids are necessary because a straightforward discretization with 2` grid points
in each direction would suffer the curse of dimensionality: The number of grid
points is in O.2`d / and depends exponentially on the dimension d . Here, the
dimension d is the dimension of the usually high-dimensional space where our
data points fx1; : : : ; xM g of the training data set S come from. Thus, a full grid
typically becomes computationally infeasible already for four or five dimensions.
For sufficiently smooth functions, sparse grids enable us to reduce the number
of grid points by orders of magnitude to only O.2``d�1/ while keeping a similar
accuracy as in the full grid case. Figure 1 shows a full and a sparse grid. Following
[4] we denote with V .1/

` the sparse grid space of level ` and dimension d . It is also
possible to adaptively refine sparse grids, see Fig. 1 (right). Many error indicators
exist which help to select appropriate grid points for refinement. More details about
adaptivity in the context of classification can be found in [21, 22]. For more details
on sparse grids in general, their applications and further reading, we refer to [4].

3 Classification with Sparse Grid Regression

In this section, we briefly describe the classical sparse grid classification method
which employs sparse grid regression. For more details, see [11, 21, 22] and the
references therein.

Let S D ˚
.xi ; yi / 2 R

d � f1; : : : ; ng�M
iD1 be the training data set. We are then

looking for a function f 2 V such that

f D arg min
u2V

 
1

M

MX

iD1
.yi � u.xi //

2 C �kLuk2
L2

!

: (1)

The first term of (1) ensures closeness of f to the training data and the second
one imposes a certain smoothness on f in order to generalize to new, previously
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unseen data. The regularization parameter � controls the trade-off between fidelity
and smoothness. The regularization operator L is typically r, but simpler and
computationally more efficient choices are possible [21, 22].

In the following, we always set the space V to a sparse grid space V .1/

` of level `
and dimension d . Thus we can write the function f as linear combination

f .x/ D
NX

iD1
˛i�i .x/; (2)

with hierarchical coefficients ˛1; : : : ; ˛N and hierarchical basis functions
�1; : : : ; �N . The optimization problem (1) can be solved by plugging (2) into
(1) and setting the derivatives with respect to the hierarchical coefficients to zero
[11]. This leads to a system of linear equations

�
1

M
BBT C �C

�

˛ D 1

M
By; (3)

where Bij D �i .xj /, Cij D .L�i ;L�j /L2 and y D .y1; : : : ; yM /. After f has been
computed, the class label of a new data point x 2 R

d is determined by evaluating
the function f at x. In the case of a binary classification problem, i.e., if we have
only two labels ˙1, we can define the label y of a point x as

y D
(

�1; if f .x/ < 0;

1; if f .x/ � 0:

The method can also be extended to more than two classes by constructing multiple
classifiers, see, e.g., [21]. Evaluating f at point x means evaluating the sum (2).
Clearly, the sum (2) is independent from the number of training data points M and
scales only linearly with the number of grid points N .

From a computational point of view the system of linear equations (3) can be
solved with the conjugate gradient method such that only a procedure for the matrix-
vector product with the matrices BBT and C is required. Whereas the matrix-vector
product with BBT is straightforward, the computational procedure for the product
with C might become very complicated depending on the regularization operator L.
In [21] it is argued that the regularization term kLf k2

L2
can be replaced with

P
i ˛

2
i

in the minimization problem (1) which corresponds to the identity matrix I instead
of the general matrix C . We also stick to this choice in the following.

It is important to note that the system matrix 1
M
BBT C �C of (3) has dimension

N � N and thus is independent from the number of data points M . However,
since usually the matrix BBT is not explicitly formed but only a procedure for
the matrix-vector product with B and BT is provided, the product with BBT still
depends on the number of data points M because B has dimension N � M and
thus a matrix-vector product with a vector of size M has to be performed in each
iteration of the CG method. For the regularization term

P
i ˛

2
i , the product with



260 B. Peherstorfer et al.

the weighted regularization matrix �C D �I is in O.N /, see [21, 22]. Overall, a
matrix-vector product with the system matrix 1

M
BBT C �C is in O.NM C N/

and thus clearly depends on the number of data points M . This is a drawback of
the classification method based on sparse grid regression when it comes to large
data sets. In contrast, the minimization problem corresponding to our classification
method based on sparse grid density estimation relies on a system matrix which
is independent from the data points. Therefore, the matrix-vector product with the
system matrix is completely decoupled from the number of data pointsM .

4 Density Estimation with Sparse Grids

Before we introduce our classification method based on sparse grid density estima-
tion we first discuss how to actually perform density estimation on sparse grids. We
follow the density estimation method introduced in [13] but instead of full grids we
employ sparse grids and we replace the regularization term with a computationally
more efficient one.

We want to estimate the density function corresponding to the data points in the
training data set S D fx1; : : : ; xM g � R

d . Note that S does not contain any labels
anymore but only data points. Let f	 be an initial guess of the density function of
the data in S . We then want to find an estimated density function f such that

f D arg min
u2V

Z

˝

.u.x/ � f	.x//2 dx C �kLuk2
L2
: (4)

Again we have a regularization or penalty term kLuk2
L2

to impose a smoothness
constraint and a regularization parameter � to control the trade-off between error
and smoothness. We set the initial guess f	 to

f	 D 1

M

MX

iD1
ıxi (5)

where ıxi is the Dirac delta function centered on xi . We refer to [13] for a motivation
and justification of (5). For us this is a simple and sufficient choice. However, other
choices for f	 might become necessary in certain cases, see [13] and the examples
therein. In [13] we then find the necessary transformations to obtain the variational
equation

Z

˝

u.x/s.x/dx C �

Z

˝

Lu.x/ � Ls.x/dx D 1

M

MX

iD1
s.xi /; 8s 2 V; (6)

with the test functions s 2 V . Note that for the following classification method
the statistical properties (unit integrand, moments, etc.) of the estimated density
functions are not important.
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Instead of employing the finite element method with full grids, as proposed in
[13], we employ sparse grids to discretize f . Let V .1/

` be the sparse grid space
of level ` and ˚ D f�1; : : : ; �N g the set of the corresponding (hierarchical) basis
functions. We set the test space to the sparse grid space V .1/

` and follow the usual
Galerkin approach and obtain the system of linear equations

.P C �C/˛ D b; (7)

where Pij D .�i ; �j /L2 , Cij D .L�i ;L�j /L2 and bi D 1
M

PM
jD1 �i .xj /. In order

to preserve moments a special regularization operator L is developed in [13]. Since
for our purposes we do not require our estimated density functions to have such
statistical properties, we can employ the simple but very effective regularization
term

P
i ˛

2
i as introduced in [21] and described in Sect. 3. Then, again, the matrix

C becomes the identity matrix I .
Just as in the case of the classical classification method based on sparse grid

regression, the system of linear equations (7) can be solved with the conjugate
gradient method. Thus, we only have to provide the matrix-vector product with
the matrix P because the matrix C has become the identity matrix I . Efficient
and parallel algorithms exist to compute the product in O.2dN / for the hierarchical
basis˚ of a sparse grid space [21]. Just as for the regression problem (3), the system
matrix P C �I of the density estimation problem is of dimension N �N where N
is the number of sparse grid points and thus is independent from the number of data
pointsM . However, whereas for the regression problem the product with the matrix
BBT still depends on the number of data points M , the product with the system
matrix of the density estimation problem is truly independent from M . Moreover,
the system matrix corresponding to the density estimation is not only independent
from the number of data points but even from the data points themselves. Whereas
an entryBij for the regression problem is the hierarchical basis function �i evaluated
at the data point xj , an entry Pij for the density estimation problem is the L2 dot
product of the two hierarchical basis functions �i and �j which does not depend on
the data points in S . As far as the density estimation problem is concerned, the data
points influence only the right hand side but not the system matrix of the system of
linear equations (7). We show in Sect. 6 that this gives us the opportunity to split the
computational procedure in an (expensive) Offline and a (cheap) Online phase.

5 Classification with Sparse Grid Density Estimation

In this section, we introduce the multi-class classification problem with density
estimation. We employ the density estimation method discussed in the previous
section.

Let S D ˚
.xi ; yi / 2 R

d � f1; : : : ; ng�M
iD1 be the training data set. Note that we

now have labels again. We have M pairs of a data point xi 2 R
d and a class label



262 B. Peherstorfer et al.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
x
2

x
2

x
2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x1 x1 x1

Fig. 2 The data points of the two-moons data set and the contours of the corresponding two
density functions
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Fig. 3 The plot demonstrates the confidence value provided by our density-based classification
method. The left plot corresponds to class 1 and the right one to class 2

yi 2 f1; : : : ; ng, see, e.g., Fig. 2 for an example of the two-dimensional two-moons
data set with two classes. We now split the training data set S into n partitions
S1; : : : ; Sn with

Sk D f.xi ; yi / 2 S jyi D kg ;

such that the set Sk contains all Mk pairs .xi ; yi / with class label yi D k. We then
estimate the probability density functions f 1; : : : ; f n for each set S1; : : : ; Sn with
the sparse grid method described in Sect. 4.

Figure 2 shows a contour map of the two estimated density functions corre-
sponding to the two classes of the two-moons data set. Clearly, density function
f 1 evaluates to greater values in the region where most data points with label 1
lie than in the rest of the domain. Just as density function f 2 yields greater values
in the region of class 2. Furthermore, the contour lines of the two density functions
approximate the shape of the boundary of the data point cluster with label 1 and label
2, respectively. Figure 3 demonstrates the confidence value we have discussed in
Sect. 1. It shows the contour map of f i .x/=.f 1.x/Cf 2.x// for i D 1; 2. Consider
for example point .0:4; 0:5/. It lies between the two classes, thus it is very difficult
to assign the correct class. This fact is well reflected by the two density functions.
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Both functions evaluate to about the same value at .0:4; 0:5/, which confirms that
we can only make an educated guess but not a profound statement about the class
label of .0:4; 0:5/.

We can now summarize our proposed classification method based on sparse grid
density estimation:

1. Split the training data set

S D ˚
.xi ; yi / 2 R

d � f1; : : : ; ng�M
iD1

into its separate classes S1; : : : ; Sn.
2. Estimate the density functionsf 1; : : : ; f n W Rd ! R for the data sets S1; : : : ; Sn

on a sparse grid with the minimization problem (4).
3. For a new point x 2 R

d , evaluate the estimated density functions and assign class
label k to x if function f k yields the greatest value, i.e.,

y D arg max
k2f1;:::;ng

f k.x/:

Let us again point out the close relationship to Bayesian classification meth-
ods [16, 17].

6 An Offline/Online Splitting for Classification

In the following, we describe our Offline/Online splitting of the computational
procedure of the classification method based on sparse grid density estimation. We
propose two matrix decompositions of the system matrix and discuss their properties
in the context of the classification problem.

One advantage of our classification method is that the system matrix is truly
decoupled from the number of the training data points M , cf. Sect. 4. However,
the system matrix of the density estimation problem is even independent from the
data points themselves. This allows us to introduce an Offline/Online splitting of
the computational procedure. The Offline/Online splitting is only reasonable in
settings where we want to have a very fast evaluation (Online phase) in favor of a
quite costly pre-processing step (Offline phase). We can think of applications in the
multi-query and real-time context. Another example is cross validation. There we
want to construct a classifier for different regularization parameters � with different
training data sets and test them on a testing data set. Thus, we have to construct
many classifiers where only the parameter � as well as the training and testing data
set change. Such an Offline/Online splitting of the computational procedure is very
common in model order reduction where parameter-independent matrices, vectors
and values are pre-computed and reused over and over again, cf. [18]. We follow this
idea and want to pre-compute the system matrix P C �I of the density estimation
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problem (7). We would like to emphasize once more that this is not possible with
the classical sparse grid classification method based on regression because there the
system matrix depends on the data points.

Let V .1/

` be the sparse grid space of level ` and dimension d spanned by some
(hierarchical) basis ˚ . To explicitly form the matrix P C �I corresponding to
V
.1/

` we can employ the already available matrix-vector product procedures by
multiplying with the unit vectors. Especially for higher dimensional data sets,
this becomes rather expensive because one matrix-vector product with P is in
O.2dN / which is only linear in the number of grid points N but with the factor
2d depending exponentially on the dimension d . Therefore, in our case, where we
want to assemble the system matrix, it is better to follow the naive approach where
we explicitly compute theL2 dot products of all combinations of the basis functions.
Even though this scales quadratically with the number of grid points N , we do not
have the factor 2d anymore. A key question is how to store the matrix during the
Offline phase. We discuss here an LU decomposition and an eigendecomposition of
the system matrix.

Since we want to solve a system of linear equations an LU decomposition is an
obvious choice. Thus, in the Offline phase we compute

LU D P C �I;

store the matrices L and U and can then solve the corresponding system of linear
equations in the Online phase with backward and forward substitution which is
in O.N 2/ only. A severe drawback of the LU decomposition is that we have to
fix the regularization parameter � already in the Offline phase. This is indeed a
disadvantage as cross validation with respect to the regularization parameter � is
in our context one key application of such an Offline/Online splitting. However, it
has also been shown that the classification method is not very sensitive to different
parameters � for huge data sets and thus the LU decomposition might be used in
cases where also the costs of the Offline phase is crucial.

If we store the eigendecomposition of the matrix P we are able to vary the
parameter � and the Online phase is still in O.N2/. Let P D USU T be the
eigendecomposition of P where U is an orthonormal matrix and S a diagonal
matrix. Such an eigendecomposition exists because P is a Gram matrix and the
basis functions in ˚ are linearly independent. We store U and S in the Offline
phase and can then construct a classifier, i.e., compute .P C �I/�1b, in the Online
phase as follows

.P C �I/�1b D .USU T C �UU T /�1b D U .S C �I/�1 U T b:

Because U is orthonormal we have U�1 D UT . The matrix S C �I is an
N � N diagonal matrix which can be easily inverted in O.N/. Therefore, in
order to solve the system (7) we only have to invert the diagonal matrix S C
�I and perform three matrix-vector products with N � N matrices. Hence, the



Classification with Probability Density Estimation on Sparse Grids 265

Online phase is still in O.N2/ and we can modify the parameter � in the Online
phase. Note that even though we invert the diagonal matrix S C �I we have
not experienced any numerical instabilities for the numerical examples in Sect. 7.
Computing the eigendecomposition in the Offline phases takes usually distinctly
longer than computing the LU decomposition. Nevertheless, we will always employ
the eigendecomposition in the following because it gives us greater flexibility with
respect to the regularization parameter �.

7 Examples with Artificial and Real-World Data Sets

In this section, we report on the performance of the proposed classification method
based on sparse grid density estimation. Note that the reported accuracies do not
depend on whether we use the Offline/Online splitting or not, of course. We compare
with the classification approach based on sparse grid regression. We always employ
sparse grids with linear hierarchical basis functions (“hat functions”) and without
basis functions at the boundary because we simply transform the data set in the
Œ0:1; 0:9�d cube if necessary [20]. The selection of the regularization parameter
� was performed with k-fold cross validation. For more information about our
parameter selection procedure and an in-depth discussion, we refer to [6]. To tackle
the multi-class classification problem with the classical approach, we compute a
sparse grid regression function for each class separately, as discussed in [21].

Let us first consider the results with density functions estimated on regular sparse
grids, see Table 1. We compare the training and test accuracies of the classical
approach [11, 21] and our proposed method for eight data sets. For all eight data
sets we obtain competitive results. For four data sets we either obtained 100 % test
accuracy or a better test accuracy than with the classical approach. For all other data
sets (three spheres, svmguide1, olive oils, and shuttle) the classical approach is only
slightly better, i.e., by around 1 %. However, the accuracies for all eight data sets
clearly suggest that they can be learned by our proposed method. Hence, our method
can cope with both artificial data sets (two-moons, three spheres, svmguide1) as
well as real-world ones (old faithful, Iris flower, olive oils, shuttle and oil flow).
Note that in rare cases our method can achieve slightly better results for the test data
set than for the training set due to the optimization problem originating from density
estimation which does not target explicitly the classification error.

Let us now come to the results for adaptively refined sparse grids, see Table 2.
Note that adaptive sparse grid pose a challenge to the Offline/Online splitting, see
the outlook in Sect. 8. We employ the standard sparse grid refinement criterion based
on the absolute value of the hierarchical coefficients, see, e.g., [4, 21]. We only
consider the data sets for which we did not obtain 100 % test accuracy in Table 1
and skipped the shuttle and oil flow data set because we will discuss them in the
context of the Offline/Online splitting below. Except for the Iris flower data set,
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Table 1 Percent of correctly classified data points for the classical and proposed classification
method on regular sparse grids

Regression-based Density-based

d n k Grid points Level Training Test Training Test

Two-moons [6] 2 2 10 17 3 100:00 100:00 100:00 100:00

Old faithful [3] 2 2 10 17 3 100:00 100:00 100:00 100:00

Three spheres [6] 3 3 10 351 5 100:00 99:85 99:92 99:71

Iris flower [5] 4 3 10 769 5 99:33 95:33 97:33 96:00

Svmguide1 [15] 4 2 – 769 5 97:05 96:75 95:21 95:85

Olive oils [1] 9 3 5 9439 5 100:00 99:77 99:77 99:08

Shuttle [11] 9 2 5 9439 5 99:59 99:57 97:54 97:66

Oil flow [3] 12 2 5 3249 4 86:11 65:64 86:11 84:57

We used k-fold cross validation to determine the test accuracy except for the svmguide1 data
set where an extra test set is available. The table also includes references where to find more
information about the data set, the dimension d and the number of classes n

Table 2 Results for the proposed method on adaptive sparse grids

d n k Grid points Training Test

Three spheres [6] 3 3 10 602 100:00 100:00

Iris flower [5] 4 3 10 209 96:37 93:33

Svmguide1 [15] 4 2 – 683 95:61 95:88

Olive oils [1] 9 3 5 732 100:00 100:00

Again the results have been obtained with k-fold cross validation

where overfitting occurs, we need distinctly fewer grid points if we employ adaptive
refinement, i.e., if we adapt the grid to the data set.

In Fig. 4 we show a dimension-wise plot of the Iris flower data set, i.e., the four-
dimensional data points are projected onto two dimensions each, as well as contour
plots of the three density functions corresponding to the three classes of the data set.
If we compare the dimension-wise plot of the data set with the dimension-wise plots
of the density functions, we see that the density functions evaluate to higher values
near the center of the corresponding class. This visualizes that it is reasonable to use
the density value as a measure of confidence in the membership to its class.

Overall, we obtain either better or almost as good results as with the classical
approach for all data sets. And, just as with the classical approach, we can drastically
improve the results using adaptively refined sparse grids.

Finally, we want to report on the runtime of the proposed method with and
without the Offline/Online splitting. We only consider the olive oils, shuttle and oil
flow data set because only for those the classification took longer than one second.
In Table 3 we show the runtime in seconds for the regression-based and density-
based classification methods. In case of the density-based method we report the
runtimes with and without the Offline/Online splitting. Without the Offline/Online
splitting we did not assemble the system matrix but used the matrix-vector product
procedures in combination with the CG method to solve the system of linear
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Fig. 4 Projection of the Iris flower data set to two dimensions each and the density functions
corresponding to the three classes of the Iris flower data set. All three density functions evaluate to
high values near the center of their corresponding class

equations. We stopped either after 50 CG iterations or when the norm of the residual
was below 10�10.

Let us first consider the runtimes of the regression-based method and the
density-based method without the Offline/Online splitting. The olives oil data set
is eight-dimensional and consists of 348 data points only. We do not see a distinct
difference between the runtimes of the density-based and regression-based methods.
The shuttle data set is also eight-dimensional but has 43,500 data points. For this
large data set, we can clearly see the effect of the dependence of the matrix-vector
product on the number of data points for the regression-based method. Our density-
based method without the Offline/Online splitting is about five times faster than the
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Table 3 Runtimes in seconds of the regression-based approach and the density-based
classification method without (standard) and with (pre-computed) Offline/Online splitting are
reported

Density-based Density-based
Regression-based standard Offline/Online

d M Solve (s) Total (s) Solve (s) Total (s) Solve (s) Total (s)

Olive oil 8 348 55 55 60 61 <1 <1
Shuttle 8 43,500 1,006 1,018 215 242 10 36
Oil flow 12 1,318 25 25 567 567 <1 1

We split the (Online) runtime in the time spent to solve the system of linear equations and the
total time including all reading, writing and pre-processing of the data. The table also includes the
dimension d and the number of (training) data points M of the data sets

regression-based method. However, for the oil flow data set we have the opposite
situation. It is a 12-dimensional data set and contains only a few points. Recall
that, due to the UpDown algorithm, the matrix-vector product with the system
matrix corresponding to the density-based method depends exponentially on the
dimension, i.e., it is in O.2dN /, whereas the product with the matrix 1

M
BBT C �I

can be performed in O.NM/. This is confirmed by the runtime results in Table 3.
The regression-based method is faster than the density-based method due to the
dependence on the dimension.

With the Offline/Online splitting we obtain by far the lowest runtimes for the
classification of the data sets. For the shuttle data set, the speed up is limited by
the construction of the right hand side, which depends on the data points and thus
cannot be pre-computed. We gain speed ups of up to 100 compared to the regression-
based method and of up to 500 compared to the density-based method without the
Offline/Online splitting. The measurements were performed on an Intel Core i7 870
with a single thread only.

8 Conclusions

We presented a novel classification method based on probability density estimation
with sparse grids. For each class of the training data set, we estimate a density
function on a sparse grid. The computational complexity of the corresponding
minimization problem scales only linearly with the number of training data points.
Additionally, in contrast to the classification method based on sparse grid regression,
the system matrix of the underlying system of linear equations is independent
from the training data points. First, this makes the matrix-vector product with
the system matrix truly independent from the number of data points which is
especially advantageous for large data sets. Second, this allows an Offline/Online
splitting of the computational procedure where we pre-compute the system matrix
(Offline phase) and reuse it for different data sets (Online phase). This reduces the
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complexity of learning a data set from O.N 3/ to onlyO.N 2/. Furthermore, we have
shown that if we store the eigendecomposition corresponding to the system matrix
we can even change the regularization parameter � in the Online phase.

The performance of the method has been demonstrated on numerous data sets
of various dimensions and different numbers of classes. We obtained competitive
results compared to the classical approach. Seven out of eight data sets were learned
with an accuracy in test data well above 95 %. Furthermore, in 50 % of all cases the
accuracies were either 100 % or better than the accuracies obtained with the classical
method. And they were even improved by employing locally refined sparse grids.
Finally, we have shown that for certain data sets we can reduce the time to solve
the underlying system of linear equations by a factor of up to several hundred if we
employ the Offline/Online splitting.

Future work includes the Offline/Online splitting for adaptively refine sparse
grids. One option is to pre-compute the matrices corresponding to several refined
sparse grids and to use a standard error indicator (e.g. the absolute value of the
hierarchical coefficients) to select from them the most appropriate one.
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Adjoint Error Estimation for Stochastic
Collocation Methods

Bettina Schieche and Jens Lang

Abstract This paper deals with partial differential equations with random input
data. An efficient way of solving such problems is adaptive stochastic collocation
on sparse grids. For higher efficiency and a better understanding of the method,
we derive adjoint error estimates for nonlinear stochastic solution functionals. The
resulting adjoint problem also involves random parameters and can be treated by
stochastic collocation as well. Only a few adjoint evaluations are required in order
to estimate the deterministic error, while the stochastic error requires much more
effort to be detected. To overcome these substantial additional costs, we suggest to
replace the adjoint problem by a reduced model and demonstrate the applicability of
the approach for nonlinear solution functionals and up to nine random dimensions.

1 Introduction

People in natural and engineering sciences have realized that simulations become
more reliable when including uncertainties, such as natural fluctuations or deviations
in manufacturing processes. The systematic analysis of output uncertainties with
respect to input uncertainties is known as uncertainty quantification (UQ) [33].
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One important branch of research deals with partial differential equations (PDEs)
with correlated random parameters. Solution approaches are basically Monte Carlo
methods, spectral methods of Galerkin type, and stochastic collocation on sparse
grids. The first is for sure the best known sampling strategy and convinces with
simplicity and generality. Low convergence rates can be overcome by the recently
suggested multilevel Monte Carlo variance reduction technique [5, 15]. Spectral
methods go back to [50] and are founded on stochastic, orthogonal basis polynomi-
als, on whose span the PDE is projected, resulting in deterministic, coupled systems
[20, 25, 34, 52] of certain structure [16, 17, 45, 46].

Stochastic collocation [51] came up as an alternative approach to spectral
methods. The given random parameter space is here discretized into a number of
collocation points that equal realizations of the random input. The corresponding
deterministic solutions are then interpolated and integrated in order to extract
statistical quantities of the solution. It is obvious that the number of collocation
points is an important issue, especially for time-consuming underlying problems.
So, a common approach is to choose the collocation points on structured, but sparse
grids.

Stochastic collocation can be seen as an application of sparse grids. The name
was proposed by Zenger [55], but the idea goes back to [48]. There are many works
that study sparse grids as a tool for high-dimensional interpolation and integration
in terms of convergence and polynomial exactness (see [6, 42] and the references
therein). Adaptive versions can be found for example in [12, 24, 30]. A detailed
overview is provided by [13]. In the context of stochastic collocation, important
works addressing questions such as a priori error estimates are among others [4,
40, 41]. Last but not least, sparse grids have been discovered to be also useful to
discretize deterministic equations [26–28].

We focus on stochastic collocation on dimension-adaptive sparse grids [24]
with global Lagrange interpolation, because the approach combines the decoupling
nature of Monte Carlo with fairly good convergence properties. The aim of this
paper is to study the applicability of adjoint error estimation in the stochastic
collocation setting. Conventional adaptivity criteria are usually based on relative
changes of the solution or some solution functional, often stored as hierarchical
surpluses when using hierarchical stochastic basis functions. Although the resulting
error indicators provide reasonable results [21,38,54], it is by far not clear how much
they over- or underestimate the true error in a particular application. Moreover,
it is important to study the contribution of deterministic discretization errors and
interpolation errors more closely in order to balance both error sources and avoid
unnecessary computational costs.

So far, adjoint equations have been used to predict errors at randomly chosen
points [14] or at the collocation points [2], leading to a random representation of
the deterministic discretization error, which can be used to adapt spatial meshes.
Our new contributions are a general derivation of stochastic, adjoint error estimates
and extensive numerical studies for quite challenging problems, including sev-
eral nonlinear solution functionals and rather high-dimensional random parameter
spaces. Moreover, in contrast to [2], we address the question of deterministic and
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stochastic parts of the error, compare the results to traditional error indicators,
and give a suggestion of how to overcome additional computational costs. Our
numerical examples impressively show that adjoint error estimation is a power-
ful tool to gain understanding in the error behaviour of stochastic collocation
methods.

The present paper is structured as follows: Sect. 2 formulates the PDE with
random parameters including some mathematical preliminaries. Then, in Sect. 3
all ingredients for stochastic collocation are provided and Sect. 4 is dedicated to
the general description of adjoint error estimates for different types of solution
functionals. Numerical results are presented in Sect. 5, followed by a summary and
conclusion in Sect. 6.

2 Problem Formulation

Throughout this work we consider a general PDE equipped with parameters such
as material properties, forces, initial conditions, and boundary conditions. The
particular application is not important to describe the general setting. In order to
introduce uncertainties in the parameters, let .˝;˙;P/ be a complete probability
space, with˝ being the set of outcomes of a random experiment, the sigma algebra
˙ of events in˝ , and a probability measure P W ˙ ! R. By doing so, the uncertain
parameters are modelled as random variables or random fields with dimension
! 2 ˝ in addition to space and time. Without loss of generality, we describe the
problem by the form

A.u; x; t; !/ D f .x; t; !/ in D � .0; Tend� �˝
B.u; x; t; !/ D g.x; t; !/ on @D � .0; Tend� �˝

u.x; 0; !/ D u0.x; !/ in D �˝ ,

9
>>=

>>;

(1)

with differential operator A, boundary operator B, and initial solution u0. We seek
for a random solution field u.x; t; !/, that solves problem (1) almost surely. The
spatial variable is denoted by x 2 D � R

d and the time t acts in the interval Œ0; Tend�.
As a side note we want to mention that there are quite a few works available that
deal with the analysis of problem (1) [3, 40]. Typically, deterministic results can be
extended to the stochastic case, provided that the parameters satisfy some additional
assumptions. Suitable solution spaces are Bochner spaces that containLp-integrable
random variables taking values in deterministic solution spaces X :

L
p
P.˝IX/ D fv W ˝ ! X measurable W EŒkvkpX � WD

Z

˝

kvkpX dP.!/ < 1g: (2)

Note that EŒ�� refers to the expected value operator. Furthermore, we will use the
notation VarŒ�� and CovŒ�; �� for the variance and covariance, respectively.
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We restrict our studies to correlated random fields, sometimes also known as
colored noise in contrast to white noise problems. For numerical treatment, we
follow the “Finite Noise Assumption”, assuming that all random parameters can be
expressed by finitely many random variables. This parametrization step is justified
by the Karhunen-Loève expansion [25], for which we assume a general random
parameter, here denoted by ˛.x; !/, with continuous covariance function Cov.x; Qx/,
for simplicity time-independent. The covariance function defines a linear operator
of integral type, whose spectrum is given by the integral equation

Z

D

Cov.x; Qx/fn.Qx/ dQx D �nfn.x/; (3)

with countable many normalized, orthogonal eigenfunctions fn. The corresponding
eigenvalues �n are positive, with 0 being the only limit point. The Karhunen-Loève
expansion of the random field ˛ is then given by

˛.x; !/ D EŒ˛�C
1X

nD1
fn.x/

p
�n�n; (4)

with uncorrelated random variables �n, that can either be calculated from more
accurate information about marginal distributions of ˛, or be part of the modelling.
Usually, common types of distributions such as uniform, normal, or log-normal
distributions are chosen. A further assumption that we are going to use in this work,
is the stochastic independence of all arising random variables. Equation (4) allows
for truncation after a finite number of terms. It can be shown that the truncation error
in L2.D �˝/ is directly linked to the eigenvalues that correspond to the truncated
terms. Hence, they can be used as a criterion to maintain a given amount of variance
in the sequence. How many terms will be kept in practice depends on the decay
of the eigenvalues �n, which in turn depends on the smoothness of the covariance
kernel [10].

For convenience, let now M be the total number of random variables and
collect them in the random vector ��� D .�1.!/; : : : ; �M .!//. Given that, the Doob-
Dynkin-Lemma justifies that the unknown solution is a nonlinear functional of ��� ,
namely u.x; t; !/ D u.x; t; ���/. A more intuitive way to look onto the resulting
problem is provided by a change of the measure. To this end, we assume that
the M random variables are strongly measurable with probability density functions
�n.yn/. Due to the stochastic independence, the density function of ��� separates like
�.y/ D QM

nD1 �n.yn/, with y D .y1; : : : ; yM /. Let � D ���.˝/ be the image space
of ˝ . Then, we can change to the weighed Lebesgue measure �.y/ dy and finally
arrive at the following counterpart of problem (1):

A.u; x; t; y/ D f .x; t; y/ in D � .0; Tend� � �
B.u; x; t; y/ D g.x; t; y/ on @D � .0; Tend� � �

u.x; 0; y/ D u0.x; y/ in D � � .

9
>>=

>>;

(5)
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Note that the hypercube � can be seen as a deterministic parameter space in R
M .

Having set up the general problem under consideration, the next section is devoted
to the stochastic collocation approach to solve problem (5) numerically.

3 Stochastic Collocation on Sparse Grids

The idea of sparse grids in multiple dimensions is to start with a sequence of nodes
for one dimension, given by Y i WD fyij gmijD1; i D 1; 2; : : : . Moreover, we claim
Y i � Y iC1, resulting in a nested sequence of nodes. Using Lagrange interpolation,
defined on these nodes, yields the approximation

U i.u/ D
miX

jD1
u.yij /L

i
j .y/; (6)

for a function u.y/ in one dimension and nodal Lagrange polynomials Lij .y/.
Let now i.u/ WD U i.u/ � U i�1.u/ be the difference between two consecutive
interpolation rules, with U0 D 0. Smolyak’s formula for an interpolation rule in M
dimensions is then given by

A.k;M/.u/ WD
X

jij�kCM

�
i1 ˝ � � � ˝iM

�
.u/ (7)

and approximates a function u.y/ in the M variables y D .y1; : : : ; yM /. The multi-
index i WD .i1; : : : ; iM / relates each dimension to an interpolation rule, and the
sparsity property results from the restriction jij WD i1 C � � � C iM � k C M with a
natural number k, called the level of the algorithm.

A rigorous numbering of all points in the resulting sparse grid yields the set
fy.j /gPjD1 with total number of points P . Let the corresponding nodal, multivariate
Lagrange polynomials be denoted by Lj .y/. Then we can write Eq. (7) in the short
form

A.k;M/.u/ D
PX

jD1
ujLj .y/; uj D u.y.j //: (8)

First note that sparse grids are again nested, which allows to reuse old points
when adding new ones. This is especially interesting for adaptivity. Second, the
collocation points should not be chosen equidistantly when applying Lagrange
interpolation. And finally, the collocation points should also provide suitable
quadrature nodes in order to calculate functionals of the solution. Examples of such
functionals are the qth moments of the solution, which are given by
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EŒA.k;M/.u/q� D
PX

j1D1
� � �

PX

jqD1
uj1 � � � ujqEŒLj1 � � �Ljq �; (9)

and result in pre-computable expected values over products of multivariate Lagrange
basis polynomials. However, it is convenient to approximate these expected values
by means of the current set of collocation points, yielding

EŒLj1 � � �Ljq � �
PX

jD1
Lj1.y.j // � � �Ljq .y.j // EŒLj �

„ƒ‚…
DWwj

: (10)

Due to the fact that we have Lj .y.i// D ıj i , such a quadrature rule results in the
following approximation of expression (9):

EŒA.k;M/.u/q� �
PX

jD1
wj uqj : (11)

To sum up, the collocation points in multiple dimensions are based on tensor
products of one-dimensional quadrature nodes of increasing accuracy. These nodes
should be nested, well-suited for Lagrange interpolation, and equal to quadrature
nodes with respect to the considered probability measure. Basically, there are
two classes of nodes that satisfy these conditions. The first are the Clenshaw-
Curtis nodes, which equal the extrema of Chebyshev polynomials. The second
are nested versions of Gauss quadrature rules, known as Gauss-Patterson nodes.
The first has provided reasonable results in previous works [6, 19, 21]. However,
convergence problems with sparse grids have been observed, especially in higher
dimensions [37].

The question of nested extensions of Gauss quadrature was first addressed in
[32]. Similar to the Gauss rule itself, the idea is to choose all degrees of freedom
such that the highest possible polynomial exactness is obtained. If this procedure
allows for a recursive extension, a nested sequence of nodes arises [43]. In the case
of unweighted integrals, such extensions are known as Gauss-Patterson-Legendre
rules and are linked to the uniform distribution. However, for arbitrary Gauss rules
the derivation of extended formulas is not straightforward, especially for unbounded
weighting functions, such as the density of the normal distribution [44]. One idea is
to allow a lower degree of exactness, ending up with suboptimal extensions [8]. A
sequence for the normal distribution can be found in [22, 29].

These rules together with sparse grids have, for example, been proposed in
[23]. Recent research underlines that this choice of collocation points improves the
accuracy of the integrals compared to Clenshaw-Curtis nodes [37]. Due to our own
positive experiences with these nodes, we have decided to use Gauss-Patterson rules
in this work. Figure 1 shows the sparse grids forM D 2 and levels k D 0; : : : ; 4 for
the Gauss-Patterson-Legendre quadrature.
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Fig. 1 Sparse grids with nested Gauss-Patterson-Legendre nodes in two dimensions for Smolyak
levels k D 0; : : : ; 4

The appropriate Smolyak level is not known beforehand and has to be increased
adaptively. One adaptivity concept is the dimension-adaptive, i.e. anisotropic, ver-
sion of Smolyak’s formula, which is well-suited for global Lagrange interpolation.
We use this algorithm to generate sparse grids with more nodes in the dominating
parameter ranges. This generalized adaptive Smolyak algorithm was introduced in
[24], and we would like to sketch the idea briefly.

Compared to Eq. (7), the mentioned algorithm does not sum over all indices
jij � q, but successively adds indices to the sum, whose nodes exhibit large error
indicators. Note that an index i can only be part of the sum if the so-called father-
indices i � ej , j D 1; : : : ;M , are also used, where ej denotes the j th unit vector.
Otherwise the telescopic character of the sum is violated.

For each new index, a local error indicator is needed. The one with the largest
contribution is then further refined. A global error indicator is given by the sum
of all error indicators that refer to indices that were not yet refined, also called
active indices in the spirit of [24]. In practice, we do not always interpolate the
whole solution, but rather a functional like a space-time integral over the solution
for example. The resulting interpolation then gives a random variable, for which
we may be interested in the first or second moment. Hence, when adding a new
index to the generalized Smolyak sum, a natural error indicator is given by this
new contribution to the stochastic quantity of interest for the respective index. More
precise, local error indicators refer to normalized changes in a stochastic solution
functional throughout this paper.

The aim of this work is to analyze the global error behaviour and the quality of
the error indicators very thoroughly. To this end, we make use of adjoint calculus,
which is an important tool to construct error estimates for deterministic PDEs. There
are some new issues that have to be addressed in the stochastic context, which will
be covered by the next section.

4 Stochastic Adjoint Error Estimation

For deterministic problems, adjoint equations are already used to construct efficient
a posteriori error estimates [7, 18, 35]. The approach is also known as dual-based
or goal-oriented error estimation, because it controls the error in some quantity of
interest. In this context the expression “primal” refers to the original problem.
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Adjoint error estimates in the context of UQ are not that well understood. A
perturbation-based approach can be found in [1], which is restricted to small input
fluctuations. For spectral methods of Galerkin type, adjoint error estimates naturally
arise from using a variational formulation for both deterministic and stochastic
dimensions [39]. However, it is by far not clear how to approximate the adjoint
solution such that the resulting error estimate captures both the deterministic and
stochastic error contribution.

At this point we have to ask for the intentions, which may be of very different
kind. A recent work [14] uses the adjoint framework to build up a representation
of the error with the same number of terms as used for the original solution. The
resulting surrogate for the error is then compared to the true errors point-wise in
the random parameter space. Similarly, the adjoint problem can be solved in all
collocation points [2] to provide error estimates.

However, the same collocation points for the adjoint problem hide information
about the interpolation error, which vanishes in these points by construction. Our
goal is to understand how the stochastic adjoint problem can be used to capture
both deterministic and stochastic errors. This is not a trivial task and we will mainly
study these effects numerically in Sect. 5. In this section we want to derive adjoint
problems, discuss stochastic functionals, and present our ideas to gain a more
efficient evaluation of the adjoint problem.

4.1 From Deterministic to Stochastic Adjoint Error Estimation

Let us first consider a deterministic solution functional J .u/ of integral type, i.e.

J .u/ D
Z

N .u/; (12)

with a possibly nonlinear functional N . More precise, the integral is meant to cover
the deterministic domain, which may be the spatial domain D, or, in the time-
dependent case, D � .0; Tend�. A typical expression for the error between the true
value and the approximate value, denoted by J .uh/, is given by

J .u/� J .uh/ D
Z

�Res.uh/C HOT; (13)

with residualRes.uh/, adjoint solution �, and higher order terms (HOT ) due to lin-
earization in the case of nonlinearities [18]. Note that the index h refers to the whole
deterministic discretization. For the extension to stochastic problems, we start with
the parametrized PDE (5) derived in Sect. 2. For simplicity, we neglect the determin-
istic variables x and t as well as the boundary and initial conditions and consider

A.u; y/ D f .y/; y 2 �: (14)
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We assume to have an approximate solution uh� . By means of linearization about
uh� , we arrive at

A.u; y/ D A.uh� ; y/C A0.uh� ; y/.u � uh�/C HOT: (15)

In the following equations we will skip the HOT , because they are neglected in
practice anyway. Recall that each value y refers to a realization of an underlying
random vector ��� . Hence, we can derive the adjoint system

A�.uh� ; y/�.y/ D �.y/; y 2 �; (16)

which apparently depends on the same parametrized random parameters as the
primal problem, with solution �.y/, that can again be interpreted as a random field
�.���/. The same holds for the not yet specified right hand side �.y/ or �.���/. In
the following we will use the notation ��� when stressing the underlying random
variables, and y when we are talking of realizations of ���.

For fixed y 2 � , the derivation of the adjoint operatorA�.uh� ; y/ of the linearized
operator A0.uh� ; y/ is based on the usual duality condition given by

Z

A�.uh� ; y/�.y/ v.y/
ŠD
Z

�.y/A0.uh� ; y/v.y/ (17)

for test functions v. Goal-oriented error estimation in this context now requires a
stochastic quantity of interest. Many different kinds of such functionals are possible.
The ones we would like to treat here are the following:

Q1.u/ D EŒJ .u/q�; Q3.u/ D J .EŒuq�/;

Q2.u/ D EŒJ .u/�q; Q4.u/ D J .EŒu�q/:

These stochastic solution functionals involve a deterministic solution functional J ,
now treated either as a random variable or evaluated in random fields, depending
on the type of composition of J and EŒ��. The number q allows higher moments to
be part of the quantity of interest, but is not restricted to natural numbers. Note that
these functionals can be arbitrarily combined, so that they also cover functionals
that involve variances of the solution.

Likewise to the deterministic setting, we are interested in the difference Qi .u/�
Qi .uh�/, i D 1; : : : ; 4. In order to find expressions for these errors, we use a first
order Taylor expansion about uh� in all cases. For the first solution functional, this
yields

Q1.u/� Q1.uh�/ � EŒ
Z

qJ .uh�/q�1N 0.uh�/
„ ƒ‚ …

DW�1.y/
.u � uh�/�: (18)
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We set the right hand side of the adjoint system (16) equal to �1.y/ and call the
corresponding unknown �1.y/. Then the error allows for the following expression

Q1.u/� Q1.uh�/ � EŒ
Z

�1.y/.u � uh�/� (19)

D EŒ
Z

A�.uh� ; y/�1.y/.u � uh�/� (20)

(17)D EŒ
Z

�1.y/A0.uh� ; y/.u � uh�/� (21)

(15)� EŒ
Z

�1.y/.A.u; y/ � A.uh� ; y//� (22)

(14)D EŒ
Z

�1.y/.f .y/� A.uh� ; y/
„ ƒ‚ …

DWRes.uh� /
/�: (23)

We observe that the error has the same structure as the deterministic error (13),
apart from the fact that the expected value arises, which is nothing else than an
integral over the stochastic domain. For the other types of solution functionals a
first order Taylor expansion about uh� gives

Q2.u/� Q2.uh�/ � EŒ
Z

q EŒJ .uh�/�q�1EŒN 0.uh�/�
„ ƒ‚ …

DW�2.y/
.u � uh�/�; (24)

Q3.u/� Q3.uh�/ � EŒ
Z

N 0.EŒuqh� �/quq�1h�
„ ƒ‚ …

DW�3.y/

.u � uh�/�; and (25)

Q4.u/� Q4.uh�/ � EŒ
Z

N 0.EŒuh� �q/qEŒuh� �
q�1

„ ƒ‚ …
DW�4.y/

.u � uh�/�: (26)

In order to see that the two latter approximations hold, note that the Taylor expansion
yields EŒu � uh� � as part of the integrand. Drawing the expectation in front of the
whole integral, reveals the given structure. We set the right hand side of the adjoint
system (16) equal to �i .y/ and get the corresponding adjoint solutions �i .y/, i D
1; : : : ; 4, yielding the error estimates

Qi .u/� Qi .uh�/ � EŒ
Z

�i .y/Res.uh�/�; i D 1; : : : ; 4: (27)

Note that it is also possible to consider boundary integrals or even function evalua-
tions as underlying deterministic solution functional J . For the latter, the resulting
adjoint is also known as generalized Green’s function [18]. We refer to [35] for
details on how to include boundary and initial conditions into adjoint error estimates.
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From now on, we will skip the index i , but assume a solution functional Q that
allows for the general error expression

Q.u/� Q.uh�/ � EŒ
Z

�.���/Res.uh�/
„ ƒ‚ …

DW	.���/

�: (28)

4.2 Discussion About Deterministic and Stochastic Errors

In practice we have to approximate the adjoint random field �. The brute-force
approach that reuses the discretization of the primal solution usually does not
provide acceptable results, because the interpolation error vanishes in all primal
collocation points and, especially in the finite element context, the deterministic
error vanishes as well due to the orthogonality of residual and adjoint function. This
means that the adjoint has to be obtained in an enriched solution space [7].

From another point of view, different kinds of approximations of � capture
different information of the overall error. Let us consider the current P primal
collocation points with quadrature weights fwj gPjD1. We suggest to estimate the
deterministic error according to

Q.u�/ � Q.uh�/ �
PX

jD1
	jwj ; 	j D 	.y.j //; (29)

because it hides all information about the interpolation error. This error expression
means solving the adjoint problem for each primal collocation point. Depending on
the required accuracy of the error, we claim that one can even get along with less
adjoint computations to obtain quite accurate approximations of the deterministic
error. If we now want to detect the interpolation error as well, it is obvious that an
improved quadrature rule based on a refined sparse grid has to come into play. Let
this number of adjoint collocation points be denoted by QP with weights f Qwj g QPjD1.
So we propose to estimate the overall error by means of

Q.u/� Q.uh�/ �
QPX

jD1
	j Qwj ; (30)

with QP somehow large enough. Although formally not difficult, the choice of this
fine quadrature rule is not a trivial task. To our best knowledge, no suggestions in
literature can be found addressing this issue. In this paper we answer this question
numerically for selected problems. Anyway, we are sure that the number of adjoint
collocation points has to exceed the number of primal collocation points to detect
the overall error. This is computationally demanding, which leads to the topic of the
following subsection.



282 B. Schieche and J. Lang

4.3 Application of Reduced Order Models

Reduced order models (ROMs) [9, 47, 49] play an important role in parametric
studies or optimization. The approach is based on the observation that solutions of
PDEs or corresponding quantities of interest often lie on low-dimensional manifolds
of the solution space.

We do not want to go into details of ROMs, but sketch the typical procedure. In
a first step, selected simulations are run to create a set of snapshots of the solution
for either different points in time, different input parameter values, or both. Let us
assume that the spatial discretization of the underlying PDE consists of N degrees
of freedom. Hence, what we end up with is a set of vectors of lengthN . One way to
find the most influencing modes of the solution is to perform a Proper Orthogonal
Decomposition (POD) of the snapshot set. This technique basically consists in
solving an eigenvalue problem. The resulting eigenvectors that correspond to the
largest eigenvalues then serve as a reduced basis.

We assume now to have suitable reduced basis functions  1; : : : ;  R , with R 
N . Just like for the truncated Karhunen-Loève expansion, one can, for example,
choose R such that 95% of the variance in the snapshots is maintained. We now
want to approximate a solution u in terms of the reduced basis, i.e.

u.x; t; y/ � uR.x; t; y/ WD
RX

rD1
ar .t; y/ r.x/; (31)

with unknown coefficient functions ar , which depend on time t and the random
parameters y. Plugging expression (31) into the governing equations (5), followed
by an L2.D/-projection on the reduced basis, yields the conditions

Z

D

Res.uR.x; t; y// i .x/ dx D 0; i D 1; : : : ; R; (32)

where Res denotes the residual of problem (5). For linear problems, these condi-
tions for the coefficient functions ar.t; y/ can be simplified, so that all terms reduce
to size R. The resulting systems of ordinary differential equations are supposed to
be considerably smaller than the systems that would arise from the original finite
element basis.

The reduced problem still involves the random parameter ��� and can be solved by
stochastic collocation, where each collocation point requires a cheap equation to be
solved.

To which extent we can benefit from ROMs is still an open issue, because
their performance strongly depends on the kind of application, the pre-computed
snapshots, and the dimensionR of the reduced problem. Nevertheless, the approach
can be important for problems that would hit their computational limits otherwise.
We did not find much literature on reduced models in the context of stochastic
collocation. However, the setting is similar to parametric studies, for which one
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may consult [11, 31, 36] for instance. Our aim is to replace full adjoint problems by
ROMs to accelerate the error estimation.

5 Numerical Results

We present results for an elliptic problem in one spatial, but nine random dimen-
sions, and a parabolic problem in two spatial and three random dimensions. So
the first problem is more challenging from a stochastic point of view and the second
from a deterministic point of view. We have considered several solution functionals
for our numerical studies, of which we show here a representative selection. All
results are obtained with MATLAB with linear finite elements in space, a build-in
ODE solver, and the adaptive stochastic collocation procedure, outlined in Sect. 3.
Since we only deal with uniformly distributed random variables, our results are
obtained with Gauss-Patterson-Legendre quadrature nodes. Also recall from Sect. 3
that we use contributions of a new index set to a quantity of interest as natural
local error indicators and the sum of contributions belonging to not yet refined
collocation points serves as a natural global error indicator in comparison to adjoint
error estimates.

5.1 Elliptic Problem: Stationary Diffusion Equation

The problem under consideration is the stationary, elliptic problem in one spatial
dimension given by

�@x.˛.x; !/@xu/ D 10; for x 2 .�0:5; 0:5/; ! 2 ˝
u.x; !/ D 0; for x D ˙0:5; ! 2 ˝ ,

)

(33)

with correlated random diffusion coefficient ˛, parametrized by a truncated
Karhunen-Loève expansion (see Eq. (4)) with constant mean EŒ˛� D 0:1. More
precise, we use an exponential covariance function given by

Cov.x; Qx/ D �2 exp

�

�jx � Qxj
c

�

; (34)

with standard deviation � D 0:02 and correlation length c D 0:5, which results
in M D 9 random variables for a truncation error of less than 5%. The random
variables are assumed to be uniformly distributed. Note that the specific choice
of the covariance function allows to solve the corresponding eigenvalue integral
problem (3) analytically [25].
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Fig. 2 Elliptic problem with random diffusion coefficient: we show the error indicators at each
iteration for both quantities of interest, compared to the true difference to the reference solution,
denoted as exact error. Both plots reveal monotonic convergence and over-estimation of the true
error. (a) Convergence Q1. (b) Convergence Q2

For a goal-oriented error analysis, we want to consider the quantities of interest

Q1.u/ D
Z 0:5

�0:5
EŒu� dx and Q2.u/ D

Z 0:5

�0:5
EŒu2� dx: (35)

We aim to study the global interpolation error by means of adjoint calculus in
each iteration of adaptive stochastic collocation. In order to exclude deterministic
discretization errors from our studies, we use a rather fine spatial mesh size of
2�13 for all results shown here. The reference solution uses 2,007 collocation points
and is the result of adaptive stochastic collocation with a tolerance of 2e � 6. We
also checked the results for reference solutions based on more collocation points
as well as different types of collocation points. So, we could make sure that our
results are not biased by the choice of the reference solution. Figure 2 compares at
each iteration the natural error indicators explained in Sect. 3 and the true errors.
We notice that the error indicators drive the solution in the correct direction and
interestingly exhibit a similar rate of convergence as the true error. However, they
are around one magnitude larger than the actual error. So, we will now focus on
adjoint error estimates for Q1 and Q2.

Estimating the error by means of adjoint problems means approximating the
right-hand side of Eq. (28). Since we want to focus on the interpolation error, we use
the same deterministic finite element mesh for both the primal and adjoint problem.

The first row of Fig. 3 shows the performance of the resulting adjoint error
estimates based on Gauss-Patterson-Legendre nodes for both quantities of interest.
We use sets of different sizes, namely 2,007, 1,103, 335, and 199 adjoint collocation
points, and plot the effectivity index, i.e. the estimates divided by the true error.
For the linear functional Q1 we observe that the curves start very close to the
optimal value 1, but suffer from effectivity problems with increasing number of
primal collocation points. The more adjoint collocation points we use, the better the
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Fig. 3 Elliptic problem with random diffusion coefficient: we show the effectivity of adjoint error
estimates with respect to the primal number of collocation points. The sparse grids for the estimates
are based on several different numbers of Gauss-Patterson-Legendre and Clenshaw-Curtis nodes.
(a) Estimates Q1 (Gauss-Patterson). (b) Estimates Q2 (Gauss-Patterson). (c) Estimates Q1

(Clenshaw-Curtis). (d) Estimates Q2 (Clenshaw-Curtis)

estimates are, and for the maximal used number of 2,007 points no quality break-
off is observed at all. For the nonlinear functional Q2 the curves behave similarly,
except that the estimates first improve due to decreasing HOT terms, before they
also lack effectivity.

One could argue that the huge number of adjoint collocation points may only
be caused by the fact that we use the same kind of quadrature rule for the primal
and adjoint problem. That is why we want to approximate the error estimates now
by means of a different type of nodes, namely Clenshaw-Curtis nodes, where we
pre-constructed sparse grids of similar sizes (2,009, 1,121, 333, and 197). The
second row of Fig. 3 shows the corresponding plots for both solution functionals.
It is interesting to see that the set of 1,121 points gives the best performance,
but is not as stable as the 2,007 Gauss-Patterson-Legendre points. Although the
curves start with suitable error estimates, the estimates begin to stagger and become
meaningless after some iterations. So, we can conclude that using a different
rule does not improve the estimates. In this case the Clenshaw-Curtis nodes behave
rather unpredictably and should not be used to obtain adjoint error estimates.
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Fig. 4 Elliptic problem with random diffusion coefficient: we compare the effectivity of the full
adjoint error estimator (2,007 adjoint collocation points) with adjoint error estimates based on
reduced order models of the adjoint problem for increasing snapshot sets (see legend of the plots).
(a) ROM estimates Q1. (b) ROM estimates Q2

We see that a suitable number of adjoint collocation points exceeds the number
of primal collocation points by far. As mentioned in Sect. 4.3, we suggest to use a
ROM for the adjoint problem. First we generate rather small snapshot sets consisting
of only a few full solutions of the adjoint problem. By means of a standard POD-
Galerkin method, we then generate a reduced basis and a reduced model for the
adjoint problem, by which we replace the original problem to evaluate the huge
number of adjoint collocation points. Figure 4 shows for both quantities of interest
the results obtained with increasing size of the underlying snapshot set. Note that
the maximal number of used snapshots is 59, which is still small compared to the
2,007 adjoint collocation points. What we see is that all estimates predict more than
90% of the true error in nearly all cases. The estimates are thus indeed suitable
alternatives to the full adjoint error estimates, because they are significantly cheaper
without losing much accuracy. Note that the computational costs to evaluate the
reduced model at the adjoint collocation points is negligible.

We conclude that adjoint calculus is able to predict the interpolation error with
respect to some solution functional very accurately, provided that sufficiently many
adjoint collocation points are used to approximate the error estimate. Hence, the
estimates are very costly, which can be overcome to some extent by means of cheap
ROMs.

5.2 Parabolic Problem: Heat Equation

The second numerical example we want to treat is similar to a parabolic problem
suggested in [53], except of a slightly more challenging random input. The aim of
this problem is to demonstrate adjoint error estimation also for a time-dependent
problem in two spatial dimensions, which is technically more demanding than the
elliptic problem in one dimension.
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Fig. 5 Parabolic problem:
computational domain D

The problem describes the heat conduction in an electronic chip with random
heat conductivity ˛. The computational domain is depicted in Fig. 5, which we have
discretized into triangles with 8465 degrees of freedom. At the cavity, a heat flux
into the domain is assumed, while the remaining boundary is thermally isolated.
The initial temperature is fixed by 0. The governing equation is the unsteady heat
equation subject to the just described boundary conditions:

@tT � r � .˛.x; !/rT / D 0 in D � .0; Tend� �˝
˛.x; !/ rT � n D 0 in @D1 � .0; Tend� �˝
˛.x; !/ rT � n D 1 in @D2 � .0; Tend� �˝

T.x; 0; !/ D 0 in D �˝ .

9
>>>>>=

>>>>>;

(36)

The unknown temperature distribution is denoted by T and n refers to the outer
normal vector. The temperature keeps growing over time due to the incoming flux
together with adiabatic boundary conditions at the remaining walls. We set the final
point in time to Tend D 1.

The conductivity parameter ˛ is modelled as a spatially correlated random field
with expected value EŒ˛� D 1, correlation length c D 4, and standard deviation
� D 0:2. We use a covariance function, suitable for two-dimensional random fields,

C˛.x; Qx/ D �2
kx � Qxk2

c
K1

�kx � Qxk2
c

�

; (37)

where K1 refers to the modified Bessel function of second kind and first order.
The corresponding eigenfunctions for the Karhunen-Loéve expansion have to be
calculated numerically (see [25] for a Galerkin approach). In order to maintain 95%
of the variance, we truncate the expansion of ˛ after three terms and assume the
resultingM D 3 random variables to be uniformly distributed.

In order to get a first impression of the solution, we present in Fig. 6 the expected
value and standard deviation of the temperature at the final point in time Tend D 1.
We observe that the solution exhibits most variance near the cavity. This gives rise
to a quantity of interest that only acts in this region. Therefore, we consider the
nonlinear stochastic solution functional

Q.T / D
s

VarŒ
Z 1

0

T jxD.0;0/ dt �: (38)
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Fig. 6 Parabolic problem: on the left we show the (a) expected value of the temperature
distribution at time Tend D 1, on the right the corresponding (b) standard deviation. Both plots
reveal larger variations near the cavity of the domain
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Fig. 7 Parabolic problem: the error indicators given by relative changes of the quantity of interest
Q are compared to the exact errors. They appear to overestimate the exact error. Moreover, adjoint
error estimates based on either the full or the reduced problem are applied at each iteration. They
do not differ from each other and capture the exact error very well

The aim of this example is to use stochastic collocation with a tolerance of 1:0e � 3
for the relative error of Q. We not only want to detect the interpolation error, but
also deterministic error contributions. Therefore, we compute a reference solution
with a triangulation of 530;049 degrees of freedom, a higher accuracy in time, and
a stochastic tolerance of 1:0e � 5. Likewise, we can obtain semi-discrete reference
solutions with respect to the deterministic and stochastic dimensions.

First, we apply the tolerance to the usual error indicators. Ignoring the curves for
the error estimates for the moment, Fig. 7 shows the resulting error indicators at each
iteration with respect to Q, compared to the numerically exact error. We see that the
indicators are satisfactory in the sense that the error is not underestimated. Instead,
the error is slightly overestimated, so that 47 collocation points are demanded
instead of the sufficient 31 collocation points. This behaviour is acceptable, but
leads to the question whether an adjoint error estimator is able to detect the true
error more accurately.

In order to answer this question, we take a closer look at the critical iteration,
namely when reaching 31 collocation points. Here we evaluate the error estimate
on different sparse grids and show the resulting effectivity for both the overall and
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Fig. 8 Parabolic problem: we present the performance of adjoint error estimates for the deter-
ministic and overall error contribution within the solution functional Q (recall Eqs. (29) and (30)).
The plot refers to 31 primal collocation points, because these are needed to reach the tolerance of
1:0e � 3. Both curves increase up to an effectivity of about 0:95

deterministic error in Fig. 8. For the latter we compare the estimate to the semi-
discrete reference solution. Moreover, all involved adjoint solutions are obtained on
a refined spatial mesh. By doing so, each collocation point requires more compu-
tational costs for the adjoint than for the primal problem. However, the plot reveals
that only a few adjoint collocation points are sufficient to detect the deterministic
error contribution. On the contrary, the overall error really needs an extended set of
adjoint collocation points to be captured accurately. Note that a suitable number of
adjoint collocation points is not that large as shown for the elliptic case. This may be
due to fact that the stochastic space is rather low-dimensional in the current setting
and we do not focus on the pure interpolation error.

These results are very promising and give rise to reduced models, especially
because of the fact that so few adjoint problems capture the deterministic error. We
use the most simple sparse grid of 2MC1 D 7 full adjoint solutions (comparek D 1

in Fig. 1) to build a reduced model of the adjoint problem. A POD of snapshots for
these collocation points at several points in time is used to find the most important
modes of the stochastic adjoint solution as a random field. Due to the fact that Q
concentrates on one spatial point, the adjoint functions mainly give weight to this
point. This is nicely reflected in the POD modes, depicted in Fig. 9. As expected,
we observe a peak in the mentioned spatial point in the first modes, followed by the
smaller scales of the adjoint solution.

We now use the resulting POD basis to build a reduced model of the adjoint
problem, i.e. we have an approximation for the adjoint random field �.x; t; ���/ at
hand that can be evaluated in an arbitrary number of adjoint collocation points at
very low computational costs. The largest set of adjoint collocation points used
in Fig. 8 consists of 63 points and is apparently sufficient to obtain accurate error
estimates. Hence, the reduced model enables us to obtain cheap error estimates
for the overall error of the solution functional Q at each iteration of the actual
primal adaptive collocation procedure. Coming back to Fig. 7, we see this statement
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Fig. 9 Parabolic problem: we show the dominating nine POD modes of the stochastic adjoint
solution. As expected most of the energy concentrates on the underlying spatial reference point
.0; 0/

verified. The plot impressively shows that the effectivity of both the full and
reduced adjoint error estimates tends to 1 with increasing number of iterations
and lets the algorithm correctly terminate with the optimal number of 31 primal
collocation points. Actually, there is no difference observable between the full and
reduced estimates. We can conclude that the reduced model is very effective for
the considered problem. A little drawback may be the expensive calculations of
the first full adjoint problems. However, we are rewarded by a reduction of primal
collocation points and an accurate statement about the final error.

6 Conclusions

We have extended adjoint error estimates to stochastic collocation methods for
PDEs with random parameters. It turns out that solution functionals involving
deterministic and stochastic integrals all lead to the same structure of error estimates
by means of linearization of nonlinear terms. The resulting typical structure of
an integral over the residual weighted by an adjoint solution is also known from
deterministic adjoint error estimation.

The unknown adjoint function has to be approximated, where we use stochastic
collocation as well. It is important to note that the choice of the adjoint collocation
points strongly influences the kind of error we are able to capture. In this work we
have shown numerically that the deterministic error only requires a small amount of
adjoint collocation points, while the interpolation error may need up to magnitudes
more adjoint than primal collocation points to be detected accurately. In order to
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overcome the substantial amount of additional costs, we suggest to replace the
adjoint problem by a reduced model based on few expensive simulations. The
resulting surrogate model is then very cheap and can be evaluated in arbitrary many
adjoint collocation points.

Our results considerably contribute to the understanding of errors and estimates
for stochastic collocation methods. A topic for future research could be a deeper
analytical analysis of the arising estimates. Furthermore, the effective combination
of reduced models for both primal and adjoint problems remains to be investigated.
And finally, it would be interesting to apply the methodology also to more complex
equations, such as they arise in fluid mechanics.
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POD-Galerkin Modeling and Sparse-Grid
Collocation for a Natural Convection Problem
with Stochastic Boundary Conditions

Sebastian Ullmann and Jens Lang

Abstract The computationally most expensive part of the stochastic collocation
method are usually the numerical solutions of a deterministic equation at the
collocation points. We propose a way to reduce the total computation time by
replacing the deterministic model with its Galerkin projection on the space spanned
by a small number of basis functions. The proper orthogonal decomposition (POD)
is used to compute the basis functions from the solutions of the deterministic model
at a few collocation points. We consider the computation of the statistics of the
Nusselt number for a two-dimensional stationary natural convection problem with
a stochastic temperature boundary condition. It turns out that for the estimation of
the mean and the probability density, the number of finite element simulations can
be significantly reduced by the help of the POD-Galerkin reduced-order model.

1 Introduction and Problem Formulation

We study the convective flow in the unit square D D .0; 1/ � .0; 1/ with stochastic
temperature Dirichlet conditions [8]. The governing equations are the dimensionless
incompressible Navier-Stokes equations with the Boussinesq approximation for the
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D with the locations of the
temperature boundaries � q

D
and � q

N

temperature forcing term. We only consider cases for which the solution tends to
a unique stationary solution independently of the initial data, so that the stationary
version of the equations is applicable. We fix all parameters and incorporate them
explicitly in the equations, which are consequently given as

u � ru C rp � r � .ru C .ru/T /C 5000gq D 0 in D; (1)

u � rq � r � rq D 0 in D; (2)

r � u D 0 in D: (3)

The unknown field variables are the velocity u D .u; v/T , the pressure p and the
temperature q. The direction of gravity is given by g D .0;�1/T . A general vector
in the physical space will be denoted by x D .x; y/.

The boundary � of the domain D is split into the parts � q
D and � q

N , as sketched
in Fig. 1. The following boundary conditions are imposed:

u D 0 on � ; (4)

q D qD on � q
D ; (5)

rq � n D 0 on � q
N : (6)

Here, n denotes the boundary unit normal vector pointing outward of the domain.
The temperature Dirichlet boundary data are given by

qD.x; ˛.y; �// D
(
0:5 if x D 0;

�0:5C ˛.y; �/ if x D 1;
(7)

where ˛.y; �/ is a centered stochastic process and � is a member of the space of
random events ˝ . The process ˛.y; �/ is spatially correlated with the exponential
covariance function
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K.y1; y2/ D e�jy1�y2j:

The Nusselt number Nu at the left boundary is chosen as the output of the
simulation:

Nu D �
Z 1

0

@q

@x

ˇ
ˇ
ˇ
xD0 dy: (8)

The goal of this paper is to demonstrate how a reduced-order formulation of
this Boussinesq problem can be used to compute accurate statistics of the Nusselt
number at a low computational cost. While the problem serves as a prototype
for related scenarios, we limit our focus to sparse-grid collocation [27] for the
discretization of the stochastic dimensions and POD-Galerkin modeling [23] for
the reduced-order treatment of the deterministic sub-problems. We note that the
stochastic collocation method has been combined with reduced-order models based
on the reduced basis method [21] in the context of elliptic boundary value problems
with uncertain coefficients [3, 4, 19] and uncertain boundary conditions [1]. The
reduced basis method has also been applied to steady incompressible Navier-Stokes
problems with uncertainty in the viscosity and in the boundary conditions [7] and to
the unsteady Boussinesq equations in a deterministic setting [17].

2 Numerical Solution

To be able to compute the statistics of the Nusselt number for the given stochastic
Boussinesq problem we have to perform a number of modeling steps. In each of
these steps we introduce a parameter with which we can control the accuracy of
the modeling. At first, we transform the infinite-dimensional stochastic process to
a low-dimensional one using a Karhunen-Loève expansion. The number of terms
in the expansion will be denoted by K . Then, we discretize the resulting stochastic
dimensions of the problem using collocation on a sparse grid with a sparse grid
refinement level of L. The collocation method requires a set of P deterministic
problems to be solved independently, where P is depending on the dimension K
and the level L. We employ the finite element method for the discretization of the
physical dimensions of the deterministic problems and denote the finite element grid
refinement level as M .

2.1 Karhunen-Loève Expansion

A truncated Karhunen-Loève expansion of the stochastic process that determines
the temperature boundary condition is given by
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˛.y; �/ � ˛.y;���?.�// D
KX

iD1

p
�i�

?
i .�/fi .y/; (9)

where ���?.�/ D .�?1 .�/; : : : ; �
?
K.�//

T is a random vector. For the case of exponential
covariance it is possible to derive the eigenvalues �1; : : : ; �K and the eigenfunctions
f1; : : : ; fK analytically [10]. It holds that EŒ�?i .�/� D 0 and EŒ�?i .�/�

?
j .�/� D ıij

for all i; j D 1; : : : ; K . An explicit representation of the elements of the random
vector is given by

�?i .�/ D 1p
�i

Z 1

0

˛.y; �/fi .y/ dy; i D 1; : : : ; K:

Since we do not possess full knowledge about the stochastic process, we replace
���?.�/ by the modeled random vector ��� D .�1; : : : ; �K/

T . As modeling assumptions,
we impose that �1; : : : ; �K are mutually independent and that �i 
 U Œ�p

3;
p
3� for

i D 1; : : : ; K , so that each random variable has unit variance and is contained in a
closed domain. To compute a realization of the stochastic boundary condition, we
use

qD.x; ���/ D
(
0:5 if x D 0;

�0:5CPK
iD1

p
�i�i fi .y/ if x D 1;

(10)

where a realization of the random vector can be computed with a suitable pseudo-
random number generator. Figure 2 illustrates the spatial components of the
decomposition and presents typical realizations of the modeled process.

2.2 Stochastic Collocation

We have described how the stochastic boundary condition can be modeled as a
function of K independent, uniformly distributed random variables. For a given
realization of ��� we can compute an approximate Nu by the following steps:

1. Define the temperature boundary condition qD via (10).
2. Solve the deterministic problem (1)–(6) numerically.
3. Evaluate the boundary integral (8).

If the Nusselt number is to be computed for a large number of realizations,
or if integrations over the stochastic space are to be performed, it is beneficial to
replace the steps 1–3 by a simpler model, as provided by the sparse grid collocation
method [2, 9]. The cost of the method is determined by the numerical solutions of
a decoupled set of deterministic problems at predefined collocation points in the
stochastic domain.
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Fig. 2 Scaled Karhunen-Loève functions
p
�ifi .y/ for i D 1; : : : ; 4 (left) and six random

realizations of the boundary condition qD using K D 4 (right)

L = 2 L = 3 L = 4 L = 5 L = 6

Fig. 3 Sparse grids of dimension K D 2 based on a nested sequence of Chebyshev points for
different Smolyak levels L

For the stochastic collocation we use Smolyak’s algorithm [24] with an underly-
ing nested sequence of Chebyshev points in the interval Œ�p

3;
p
3�. The resulting

sparse grids forK D 2 and L D 2; : : : ; 6 are presented in Fig. 3.
The collocation points for a fixed stochastic dimension K and Smolyak level

L are given as ���1; : : : ; ���P . The respective multivariate Lagrange polynomials are
denoted as L1.���/; : : : ;LP .���/. It holds that Li .���j / D ıij for all i; j D 1; : : : ; P .
The sparse grid approximation of the temperature field depending on the random
vector is given by

q.x; ���/ �
PX

pD1
Lp.���/q.x; ���p/; (11)

It follows from (8) and (11) that the Nusselt number computed from the sparse grid
approximation of the temperature field is given by
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M = 0 M = 1 M = 2 M = 3 M = 4

Fig. 4 Uniform mesh refinement

Nu.���/ �
PX

pD1
Lp.���/Nu.���p/: (12)

To set up the sparse grid interpolation, we have to perform the steps 1–3 for
each collocation point and store the respective Nusselt numbers. For any other
realization of ��� , the Nusselt number can then be evaluated quickly by using the
sparse interpolation (12). Furthermore, integrals over the stochastic domain can be
evaluated using exact integrations of the Lagrange polynomials.

2.3 Finite Element Discretization

As the stochastic collocation in our case relies on finite element simulations, a
sufficiently fine mesh is crucial for the accuracy of the stochastic simulation. For
the numerical simulation we use a simple triangular mesh with uniform refinement,
whereM denotes the refinement level. The mesh refinement is sketched in Fig. 4.

Following the usual finite element modeling steps [12], we first derive a weak
form of the Boussinesq problem: Find p 2 L2, u 2 H1

0, q � qD 2 H1
0 , for which

.u � ru;   u/C .ru C .ru/T ;r   u/

�.p;r �   u/C .5000gq;   u/ D 0 8   u 2 H1
0; (13)

.u � rq;  q/C .rq;r q/ D 0 8 q 2 H1
0 ; (14)

.r � u;  p/ D 0 8 p 2 L2: (15)

We approximate the velocity and temperature fields in each mesh triangle
with piecewise quadratic polynomials and the pressure field with piecewise linear
polynomials. This choice of elements, also known as Taylor-Hood finite elements
[25], fulfills an inf-sup stability condition [13] and could be called a standard
approach for incompressible flow calculations. We introduce the finite element
spaces L2h � L2 and H1

0h � H1
0, which are spanned by the pressure and velocity

finite element basis functions, respectively, as well as H1
h � H1 and H1

0h � H1
0 ,

which are spanned by the temperature basis functions.
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Fig. 5 Temperature fields resulting from a deterministic simulation with K D 0 (upper left) and
from simulations with K D 4 using random realizations of the temperature boundary condition
(other plots). All plots use the same color scaling. A mesh refinement level of M D 4 was used
for the computations

We define a continuous extension qhD 2 H1
h of the Dirichlet data into the

computational domain D. We require that qhD is equal to the Dirichlet condition
qD of the problem for all mesh nodes on the Dirichlet boundary and equal to zero
at all other mesh nodes. Based on the Karhunen-Loève expansion we can define
suitable functions f h

0 ; : : : ; f
h
K 2 H1

h so that

qhD.x; ���/ D f h
0 .x/C

KX

iD1

p
�i�i f

h
i .x/: (16)

By using the finite element spaces as test spaces in (13)–(15) and replacing the
unknowns by their finite element representations, we obtain the following discrete
weak form: Find ph 2 L2h, uh 2 H1

0h, qh � qhD 2 H1
0h, for which

.uh � ruh;   u/C .ruh C .ruh/T ;r   u/

�.ph;r �   u/C .5000gqh;   u/ D 0 8   u 2 H1
0h; (17)

.uh � rqh;  q/C .rqh;r q/ D 0 8 q 2 H1
0h; (18)

.r � uh;  p/ D 0 8 p 2 L2h: (19)

After testing against the finite element basis functions in turn and evaluating the
inner products, we obtain a system of non-linear algebraic equations. We employ
the trust-region dogleg method [20] of the Matlab R� R2012a Optimization Toolbox
to solve the system. A few pseudo-time-steps with the backward Euler method are
sufficient to obtain good initial values for the solver. The cost of the finite element
solution is determined by the LU-decomposition of the Jacobi matrix.

The temperature solution of the deterministic finite element simulation withK D
0 and a few solutions with random boundary conditions and K D 4 are shown in
Fig. 5. Notice the absence of thin boundary layers, which justifies the choice of a
uniform grid.
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3 Reduced-Order Modeling

A considerable amount of computational work may be needed for the setup of the
sparse grid interpolation if the discretizations of the stochastic and the physical
space are sufficiently fine. As a possible remedy we propose the use of reduced-
order models that are obtained by a Galerkin projection of the deterministic
equations on the space spanned by a set of reduced basis functions. To compute
the reduced basis functions we use a proper orthogonal decomposition (POD) of
a set of representative solution snapshots. The POD is very closely related to the
Karhunen-Loève decomposition. Just like the sparse grid collocation method, the
considered reduced-order models provide a computationally inexpensive mapping
from a realization of the random vector to the respective Nusselt number. While the
sparse grid collocation is based purely on polynomial interpolations, however, POD-
Galerkin models include features of the governing equations. The computational
work as well as the accuracy of the reduced-order models depend on the parameter
R, which is equal to the number of POD basis functions that are used to build the
model.

In the following we first introduce the POD in a general context. Then we
describe the POD approximation of the velocity field as a special case, which inher-
its the discrete divergence-freeness and the fulfillment of the Dirichlet conditions
from the finite element simulation. The POD approximation of the temperature field
involves the approximation of the stochastic process at the temperature Dirichlet
boundary. Having the reduced-order approximations of the velocity and temperature
available, we are able to formulate the reduced-order model and describe how it can
be used to reduce the computational cost of the sparse-grid collocation method.

3.1 Proper Orthogonal Decomposition

We briefly summarize a few computational aspects of proper orthogonal decompo-
sition that are necessary for the development of the reduced-order model. For details
we refer to the literature [15].

Let a set of snapshots u1; : : : ; uN 2 L2 be given. The extension to snapshots
which are vector-valued functions is straightforward and will not be detailed,
here. We would like to find a set of basis functions �1; : : : ; �R 2 L2 which
are mutually orthonormal, .�i ; �j / D ıij for i; j D 1; : : : ; R, and which minimize
the differences between the snapshots and their orthogonal projection on the space
spanned by the basis functions. In particular, the basis functions are supposed to
solve the constrained minimization problem

min
�1;:::;�R

NX

nD1

�
�
�un �

RX

rD1
.un; �r /�r

�
�
�
2

subject to .�i ; �j / D ıij for i; j D 1; : : : ; R:
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To solve the minimization problem we use the “method of snapshots” [23]. The
Gramian matrix G 2 R

N�N of the snapshots consists of the mutual inner products
.ui ; uj /. We compute its eigenvalue decomposition

GV D V�;

where V 2 R
N�N is an orthogonal matrix that contains the eigenvectors of G as

columns and� 2 R
N�N is a diagonal matrix with the eigenvalues�1; : : : ; �N sorted

decreasingly on the diagonal. The POD basis functions are then given as

�j D
NX

iD1

vij
p
�j

ui ; j D 1; : : : ; R; (20)

where vij are the entries of V . Alternatively, the POD can be computed by singular
value decomposition [18].

3.2 Reduced-Order Approximation of the Velocity Field

Suppose that for a set of collocation points ���1; : : : ; ���N we have obtained respective
finite element velocity snapshots uh1; : : : ;u

h
N 2 H1

0 h. We perform a POD of the
snapshots, which provides us with POD basis functions ���u

1; : : : ;���
u
R 2 H1

0h. A POD
representation uR 2 H1

0R of the velocity field is given as

uR.x; ���/ D
RX

rD1
ar .���/���

u
r .x/; (21)

where H1
0R � H1

0h is the space spanned by the first R velocity POD basis functions.
By applying (20) to the present case of vector-valued functions and assuming

that the snapshots fulfill the discretized weak form (17)–(19), one can see that
the POD basis functions fulfill homogeneous Dirichlet conditions. By (21) this
property carries over to the POD representation of the velocity field. In a similar
way, it can be shown that the POD basis functions are discretely divergence-free by
construction,

.r � ���u
r ;  

p/ D 0 8  p 2 L2h; r D 1; : : : ; R: (22)

and that this property is inherited by the POD representation of the velocity,

.r � uR; p/ D 0 8  p 2 L2h: (23)
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3.3 Reduced-Order Approximation of the Temperature Field

The reduced-order approximation of the temperature field is performed in a way
that a priori incorporates the Dirichlet conditions, similar to the approach taken in
the finite element discretization. The procedure is a variant of the control function
method [11] for multiple parameters [14]. Let the finite element temperature
snapshots for a set of collocation points ���1; : : : ; ���N be given as qh1 ; : : : ; q

h
N . We

define modified temperature snapshots q01; : : : ; q0N 2 H1
0h as

q0i .x/ D qhi .x/� qhD.x; ���i /; i D 1; : : : ; N;

where qhD.x; ���/ is a continuous extension of the Dirichlet data into the domain,
see (16). A POD of rank R of the modified snapshots provides us with POD
basis functions �q1 ; : : : ; �

q
R 2 H1

0h. The POD basis functions fulfill homogeneous
Dirichlet conditions because, by (20), they are linear combinations of the modified
snapshots. We introduce the POD representation of the temperature as

qR.x; ���/ D qhD.x; ���/C
RX

rD1
br .���/�

q
r .x/: (24)

It holds that qR � qhD 2 H1
0R, where H1

0R � H1
0h is the space spanned by the first

R temperature POD basis functions. After substituting the definition (16) of qhD in
(24) and declaring

�
q
RC1.x/ D f h

0 .x/; bRC1.���/ D 1;

�
q

RC1Ck.x/ D
p
�kf

h
k .x/; bRC1Ck.���/ D �k; k D 1; : : : ; K;

we obtain

qR.x; ���/ D
R0

X

rD1
br .���/�

q
r .x/ (25)

with R0 D RC 1CK . It turned out that it was beneficial for the computation of the
Nusselt number to replace f h

0 .x/; : : : ; f
h
K.x/ with functions which are linear in x

throughout the domain. This approach, which uses different continuous extensions
of the boundary data as compared to the finite element model, will be used for all
reduced-order computations.

Figure 6 shows the functions �qRC1; : : : ; �
q
RC5, which are required to implement

the Dirichlet conditions for K D 4, as well as the first five basis functions of the
temperature POD approximation using snapshots with M D 4 at the collocation
points ofK D 4 and L D 6.
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Fig. 6 Dirichlet functions �qRC1; : : : ; �
q

RC5 (top row) and POD basis functions �q1 ; : : : ; �
q
5 (bottom

row) of the temperature snapshots at the collocation points of K D 4 and L D 6. The color scales
are the same within the top row and within the bottom row

3.4 POD-Galerkin Reduced-Order Model

The discretized weak form (17)–(19) is the starting point for the derivation of
the reduced-order model. At first, we substitute uh by uR and qh by qR. Due to
(23), the discrete continuity equation is automatically fulfilled for uR and, thus,
can be neglected. We choose the POD spaces H1

0R and H1
0R as test spaces for

the remaining equations. Due to (22), the pressure term becomes zero for all
discrete pressures ph 2 L2h. This leaves us with the following reduced-order weak
formulation: Find uR 2 H1

0R and qR � qhD 2 H1
0R, for which

.uR � ruR;���u/C .ruR C .ruR/T ;r���u/

C .5000gqR;���u/ D 0 8���u 2 H1
0R; (26)

.uR � rqR; �q/C .rqR;r�q/ D 0 8�q 2 H1
0R; (27)

After testing against the POD basis functions in turn, the reduced-order model can
be written as

RX

iD1

RX

jD1
.���u

i � r���u
j ;���

u
r /aiaj C

RX

iD1
.r���u

i C .r���u
i /
T ;r���u

r /ai

C
R0

X

iD1
.5000g�qi ;���

u
r /bi D 0; r D 1; : : : ; R; (28)

RX

iD1

R0

X

jD1
.���u

i � r�qj ; �qr /ai bj C
R0

X

iD1
.r�qi ;r�qr /bi D 0; r D 1; : : : ; R: (29)
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The inner products can be evaluated via the finite element representations of the
POD basis functions, which leads to a set of algebraic equations with quadratic
non-linearities. The unknowns are the POD coefficients a1; : : : ; aR and b1; : : : ; bR,
while bRC1 D 1 is fixed and bRC1Ck D �k for k D 1; : : : ; K is the input data. The
reduced-order model is solved by the same non-linear solver as the finite element
model. The cost of performing one iterative step is determined by the evaluation of
the quadratic terms and by the LU-decomposition of the Jacobi-matrix.

To obtain a reduced-order equation for the Nusselt number we substitute (25) in
(8) to see that

Nu.qR/ D
R0

X

rD1
brNu.�qr /;

where Nu.�qr / can be evaluated and stored once for each r D 1; : : : ; R, so that the
Nusselt number can be directly computed from any solution of the reduced-order
model, without forming the approximation of the temperature field.

In the following we will evaluate the reduced-order model for input vectors ���
whose length can be incompatible with the dimensions R0 of the reduced-order
model. This case occurs, for example, when we evaluate one model for different
stochastic dimensions. We remove the last entries of ��� when it is too large and we
fill it with zeros when it is too small. For instance, suppose we have a model with
a stochastic dimension of K D 2, so that R0 D R C 3. If we want to evaluate this
model at a collocation point of the stochastic dimensionK? D 4, we are faced with
a random vector .�1; �2; �3; �4/. In this case, we evaluate the model at .�1; �2/.

3.5 Application to Stochastic Collocation

For a stochastic collocation with dimension K? and Smolyak level L?, we propose
to replace the finite element simulations with reduced-order simulations. This results
in the following POD-aided stochastic collocation method:

1. Choose K and L for the computation of the POD snapshots.
2. Create temperature boundary conditions for the collocation points of K and
L, perform the respective finite element simulations and store the numerical
solutions.

3. Create a reduced-order model from the numerical solutions. The model takes a
realization of ��� as input and provides the respective Nu as output.

4. Evaluate the reduced-order model at the collocation points of K? and L?, and
store the resulting values of Nu.

5. Create a sparse grid interpolation ofK? andL? using the data generated with the
reduced-order model.

This procedure provides us with a sparse grid interpolation of dimension K? and
levelL? at the cost of the finite element simulations necessary for dimensionK and
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level L plus the computational overhead from building and solving the reduced-
order model. If we can obtain an accurate reduced-order model with snapshots of
dimension K < K? or level L < L? and with R much smaller than the number of
finite element mesh nodes, then we can expect savings of computation time.

4 Results

To compare the POD-aided stochastic collocation method with the standard stochas-
tic collocation, we consider three aspects. Firstly, we estimate the approximation
properties of the respective sparse-grid interpolation of Nu throughout the parameter
domain. Secondly, we assess the accuracy of the probability density function that is
computed via a Monte-Carlo simulation using random evaluations of the sparse-grid
interpolation. And, finally, we investigate the computation of the mean and variance
of the Nusselt number using an exact integration of the underlying Lagrange
polynomials.

To enable a quantitative comparison of the methods, in Table 1 we show the
numbers of collocation points for the different stochastic dimensions and Smolyak
levels. In Table 2 we present total and average computation times of the finite
element model (FEM), the reduced-order model (ROM) and of the sparse-grid
interpolation (SG) as well as the times needed to create the models. The computation
time of the sparse-grid was tested in one instance for the approximation of the
probability density function via Monte Carlo sampling with 1,000,000 evaluations
of the sparse-grid interpolation at random points (see Sect. 4.2). In another instance,
the computation of the mean via an exact integration of the multivariate Lagrange
polynomial was considered (see Sect. 4.3). All computations were performed with
Matlab R�. The timings were measured on a single computational thread on an
Intel R� Xeon R� E5-2670 CPU. The Monte Carlo sampling as well as the independent
finite element and reduced-order simulations are well suited for parallel processing,
though.

4.1 Approximation of the Nusselt Number

The goal of this section is a sparse grid representation of the Nusselt number that is
valid throughout the domain of ���. We compare the results from a standard stochastic
collocation with the results from a POD-aided stochastic collocation.

Suppose we have computed the numerical solutions with a finite element mesh
refinement level of M at the collocation points of the stochastic dimension K
and the Smolyak level L. At first, we create a sparse grid interpolation from
the available numerical solutions (see Sect. 2.2) using the standard stochastic
collocation. Then we use the available numerical solutions to build a POD-Galerkin
reduced-order model with R basis functions. We evaluate the reduced-order model
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Table 1 Number of collocations points P depending on the stochastic dimensionK and the sparse
grid refinement level L

LD 0 L D 1 L D 2 LD 3 L D 4 L D 5 LD 6 L D 7 L D 8

K D 0 1 1 1 1 1 1 1 1 1

K D 1 1 3 5 9 17 33 65 129 257

K D 2 1 5 13 29 65 145 321 705 1; 537

K D 3 1 7 25 69 177 441 1; 073 2; 561 6; 017

K D 4 1 9 41 137 401 1; 105 2; 929 7; 537 18; 945

K D 5 1 11 61 241 801 2; 433 6; 993 19; 313 51; 713

K D 6 1 13 85 389 1; 457 4; 865 15; 121 44; 689 127; 105

Table 2 Total and average computation times and relevant parameters

K L P M R Total (s) Average (s)

FEM setup 4 0.46
FEM simulation 4 6 2,929 4 13,245.52 4.5222
FEM simulation 4 3 137 4 602.46 4.3975
ROM setup 4 3 137 4 30 1.67
ROM simulation 4 6 2,929 4 30 63.57 0.0217
SG Nusselt density 4 6 2,929 3,053.72 0.0031
SG Nusselt mean 4 6 2,929 0.27

at the collocation points that are necessary to build a sparse grid interpolation of
stochastic dimensionK? D 4 and sparse grid refinement level L? D 6.

We want to compare the standard collocation and the POD-aided collocation, for
varying discretization parameters. We vary the finite element mesh refinement level
M from 1 to 4, the stochastic dimension K from 0 to 4, the Smolyak level L from
0 to 6 and, for the reduced order model, we compare the numbers of POD basis
functions R D 5; 10; 15; 20; 25; 30. To estimate the errors of the Nusselt number,
we use a reference solution which is obtained by finite element computations with
M D 5 at the collocation points of K D 6 and L D 8. For each of these
collocation points we can compute the difference between the reference Nusselt
number and interpolated Nusselt number. The maximum absolute difference is our
error estimate. A comparison of the estimated errors of the standard and the POD-
aided stochastic collocation is given in Fig. 7. In the following, we comment on each
of the plots.

The first plot of Fig. 7 shows the dependence of the error on the stochastic
dimension K . Note that K D 0 is equivalent to a fully deterministic simulation.
As we would expect, the error in the Nusselt number decreases when the number of
Karhunen-Loève terms is increased. Furthermore, it turns out that both methods lead
to results of similar accuracy, which shows that the POD-Galerkin modeling does
not introduce any significant error. The results suggest, however, that the number
of finite element simulations can not be reduced by using a POD of snapshots of a
lower stochastic dimension and that one should use K D K?.



POD-Galerkin Modeling and Sparse-Grid Collocation 309

0 1 2 3 4
10

−2

10
−1

10
0

10
1

K

er
ro

r 
of

 N
us

se
lt 

nu
m

be
r

L=6, M=4, R=30

FEM
POD

0 1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

L
er

ro
r 

of
 N

us
se

lt 
nu

m
be

r

K=4, M=4, R=30

FEM
POD

1 2 3 4
10

−2

10
−1

10
0

10
1

M

er
ro

r 
of

 N
us

se
lt 

nu
m

be
r

K=4, L=6, R=30

FEM
POD

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

R

er
ro

r 
of

 N
us

se
lt 

nu
m

be
r

K=4, L=6, M=4

FEM
POD

Fig. 7 Estimates of the maximum absolute error of the Nusselt number throughout the stochastic
domain for the sparse grid interpolation (FEM) and the POD-aided sparse grid interpolation (POD),
both relying on finite element solutions of mesh level M at the collocation points of stochastic
dimensionK and Smolyak levelL. In the POD case, a reduced-order model withR basis functions
was evaluated at the collocation points of dimension K? D 4 and level L? D 6 and a respective
sparse grid interpolation was formed

In the second plot of Fig. 7 the error is presented for varying Smolyak level L.
The case L D 0 is equivalent to a fully deterministic simulation. We can see that the
error of the POD-aided collocation method drops much faster than the error of the
standard method when the level is increased. Therefore, by using finite element
snapshots at the collocation points of a low level, e.g. L D 2, it is possible via the
reduced-order model to create a sparse-grid interpolation that is about as accurate
as a standard collocation with L D 5 or L D 6.
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Fig. 8 Probability density function of the Nusselt number obtained from a Monte Carlo simu-
lation. The line represents the results obtained directly from the finite element simulations with
K D 4 and L D 6 while the dots present the results obtained from a reduced-order model with
R D 30 that was created from finite element solutions at the collocation points of K D 4 and
L D 2 and evaluated at K? D 4 and L? D 6

In Fig. 7, the third plot demonstrates the accuracy with respect to the mesh
refinement levelM . With this plot we want to ensure that the resolution of the finite
element mesh is adequate. When comparing computation times, an over-resolving
finite element mesh would give an advantage to the reduced-order model. One can
see that by decreasing the mesh resolution from M D 4 to M D 3 the error of the
Nusselt increases significantly, so that M D 4 is indeed an appropriate choice.

The last plot of Fig. 7 shows the dependence of the POD-aided stochastic colloca-
tion on the number of basis functions. The results of the standard method, which do
not depend onR, are shown for comparison. We see that a reduced-order model with
25–30 basis functions is sufficient to build a sparse grid whose error is very close to
the error of the sparse grid obtained directly from the finite element snapshots.

We can conclude that the refinement parametersK D 4, L D 6 and M D 4 are
a choice that balances the errors introduced by the Karhunen-Loève expansion, the
sparse-grid interpolation and the finite element simulation, respectively. The error
introduced by a reduced-order model with 30 basis functions is small enough as to
be dominated by the other error components.

4.2 Probability Density

We want to assess the applicability of the POD-aided collocation method to the
computation of the probability density function of the Nusselt number via the Monte
Carlo method. Figure 8 shows the probability density functions approximated with
a Monte Carlo simulation using 1,000,000 samples and a bin width of 0:1. For the
POD-aided collocation we used finite element solutions of K D 4 and L D 2
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Fig. 9 Probability density functions of the Nusselt number obtained from a Monte Carlo
simulation using a POD-aided stochastic interpolation of varying K? and L? built from snapshots
at the collocation points of K D 4 and L D 2

to create a reduced-order model with 30 POD basis functions. We evaluated the
reduced-order model at K? D 4 and L? D 6 to create a respective sparse grid
interpolation. For the standard collocation we created an interpolation directly from
the finite element solutions of K D 4 and L D 6. All finite element computations
were performed on a mesh withM D 4. We observe that the POD-aided collocation
produces a probability density function that is visually indistinguishable from the
one obtained with the standard method.

The computation time that is required to evaluate the stochastic interpolation at
a given point in the stochastic domain is dependent on the number of collocation
points. To see whether a smaller number of collocation points is sufficient for an
accurate computation of the probability density function, we compare the results of
the POD-aided stochastic collocation method for different stochastic dimensionsK?

and Smolyak levels L? in Fig. 9. We used snapshots of M D 4, K D 4 and L D 2

to build a reduced-order model with R D 30 and created sparse grid interpolations
of varying L? and K?. For the case of varying stochastic dimension, we see that at
leastK? D 2 is needed to capture the correct slope at Nu > 0:5 and at leastK? D 3

is needed to capture the peak. For the case of varying Smolyak level we see that at
least L? D 5 is needed to approximate the peak correctly.

4.3 Mean and Variance

Often one is not interested in the detailed probability density function of a
stochastic quantity, but rather in simple statistics like the mean and variance.
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Fig. 10 Absolute errors of the mean (left) and variance (right) of the Nusselt number depending
on the Smolyak level L. The errors were obtained with respect to reference solutions withK D 4,
L D 6 and M D 7

To compute the moments of the Nusselt number we use exact integration of the
multivariate Lagrangian polynomials. The computation of the integrals is based on
one-dimensional Clenshaw-Curtis quadrature weights [5], which can be efficiently
computed with a routine based on an inverse FFT [26]. To obtain the second
moments we compute the square of the Nusselt number at the collocation points
and subsequently use the same quadrature weights as in the case of the mean Nusselt
number.

The resulting plots of the mean and variance of the Nusselt number depending
on the Smolyak level L are presented in Fig. 10 for the standard collocation and
the POD-aided collocation. The other parameters were set to K D 4, M D 6 and
R D 50. Snapshots of levelL were used to build a reduced-order model, which was
subsequently evaluated atK? D 4 andL? D 6 to build the sparse-grid interpolation.
To estimate the errors we used reference values of the mean and variance obtained
with K D 4, L D 6 and M D 7. Note that with this choice at L D 6 the error
estimator does not capture the effects of K and L anymore. The second plot of
Fig. 10 contains two values which are significantly lower than the finite element
error. They were most probably a result of errors that canceled by chance, and are
therefore not representative. For the computation of the mean Nusselt number we
observe that the sparse grid refinement level can be reduced by 1 or 2 when POD-
Galerkin modeling is employed.
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5 Concluding Remarks

In our study we have assessed the applicability of POD-Galerkin reduced-order
modeling to the context of stochastic collocation on sparse grids. For the test case
of the computation of the Nusselt number in a natural convective flow setting, we
have studied the behavior of the different error contributions in a systematic way
with the help of a reference solution. By employing a reduced-order model we were
able to significantly decrease the number of finite element simulations necessary to
create an accurate sparse grid interpolation. For example (see Fig. 7), by building a
reduced-order model from the finite element solutions at the 137 collocation points
of Smolyak level L D 3 and evaluating the model at the 2,929 collocation points
of Smolyak level L? D 6, we were able to obtain a sparse grid interpolation with
a similar accuracy as an interpolation created directly from 2,929 finite element
solutions of level L D 6.

To further assess the efficiency of the method we comment on the computation
times (see Table 2): It took about 3 h 41 min to perform the 2,929 finite element
computations of level L D 6 and about 10 min to perform the 137 finite element
computations of levelL D 3. In comparison, 2,929 evaluations of the reduced-order
model took only 64 s. The additional computational overhead of the reduced-order
model, i.e. the creation of the basis functions from the snapshots and the assembly of
the system matrices, was less than 2 s. Therefore, by using reduced-order modeling
the total computation time could be decreased by almost a factor of 20. The resulting
sparse grids had the same number of collocation points, independently of whether
they were created using finite element solutions or reduced-order solutions, and so
their evaluation times were identical.

We have limited our scope to the context of a sparse grid collocation method
based on the standard Smolyak formula with underlying Clenshaw-Curtis nodes.
Possible enhancements on the side of the employed sparse grids include the
incorporation of adaptivity [16] and error estimation [22]. To create the reduced-
order model, we have used a proper orthogonal decomposition of snapshots at
the collocation points of a lower Smolyak level. In principle, one could place the
snapshots freely in the parameter domain, which opens the possibility of further
enhancements on the side of the reduced-order model. In particular, the reduced
basis method [21] provides automatic positioning of the snapshots in the parameter
domain with the help of an error estimator. Further, alternative choices of the
continuous extension of the Dirichlet data could be explored [6].
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Opticom and the Iterative Combination
Technique for Convex Minimisation

Matthias Wong and Markus Hegland

Abstract Since “A combination technique for the solution of sparse grid problems”
Griebel et al. (1992), the sparse grid combination technique has been successfully
employed to approximate sparse grid solutions of multi-dimensional problems. In
this paper we study the technique for a minimisation problem coming from statistics.
Our methods can be applied to other convex minimisation problems. We improve the
combination technique by adapting the “Opticom” method developed in Hegland et
al. (Linear Algebra Appl 420:249–275, 2007). We also suggest how the Opticom
method can be extended to other numerical problems. Furthermore, we develop a
new technique of using the combination technique iteratively. We prove this method
yields the true sparse grid solution rather than an approximation. We also present
numerical results which illustrate our theory.

1 Introduction

The full grid discretisation, though accurate, suffers fully from the curse of
dimensionality. At the sixth GAMM Seminar in 1990, Zenger presented the sparse
grid discretisation for the solution of partial differential equations [21]. The curse
can be partially overcome through sparse grids. Since the seminal paper by Zenger,
sparse grids have been used successfully in other areas such as interpolation, integral
equations, data mining and other areas. The helpful Sparse Grid Tutorial is a good
entry to understanding sparse grids [9].

The sparse grid combination technique is a way of approximating the sparse grid
solution through a combination of low-resolution approximations [11]. This avoids
using the hierarchal basis intrinsic to a direct sparse grid approach. Moreover, the
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combination technique adds an extra level of parallelism. The technique has been
widely applied [4, 7, 15, 18].

There are studies to improve the accuracy of the combination technique [4, 15].
Most notably the “Opticom” method was developed for orthogonal projection
problems [13] and was successfully applied to regression and eigenvalue problems
[6, 8].

Interestingly, there are few studies which compare the combined solution, the
Opticom solution and the true sparse grid solution together. Most studies compare
either pair of these or with the full grid solution. However, a quick reflection reveals
a rich set of possibilities. For example, even if the combined solution is not close to
the full grid solution, it does not mean it is not close to the true sparse grid solution.
This is obvious, but the same applies to comparing with the Opticom solution. Even
if the combined solution is not close to the true sparse grid solution, it does not
tell us whether there are better approximations or whether it is already optimal. This
reflection warrants study and is one motivation of the paper. We hope these questions
may lead to a deeper understanding of the combination technique.

In the next section we define the numerical problem of interest. We also explain
the statistical problem which will be the subject of our numerical experiments. In
the same section we introduce the concept of Bregman projection as a conceptual
tool. In the third section, we give a brief overview of the combination technique
and present our numerical results. We use those results later for comparison. In the
fourth section we introduce the method of Opticom for minimisation. For these we
present numerical results. We also sketch how the Opticom method can be extended
to more general numerical problems. In the fifth section we explain a new way
of using the combination technique iteratively. Combined with Opticom, we can
recover the true sparse grid solution. Numerical results support the theory and raise
new questions at the same time. Finally, we give a summary of the methods and
present our conclusions.

2 The Minimisation Problem

In this section we define our numerical problem of interest. We also introduce the
application problem on which we will test the techniques.

2.1 Theoretical Formulation

We are interested in a standard minimisation problem over a space of functions.
Let T D Œ0; 1�d and H is a Hilbert space of functions u W T ! R. Furthermore,
let j W H ! R to be a differentiable and strictly convex functional with a unique
minimum. We are interested in the minimisation problem
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umin D arg min
u2H j.u/:

We require j to have zero derivative at the unique minimum. In particular

hrj.umin/; vi D 0 (1)

for all v 2 H , where r denotes the Gâteaux derivative. In practice, we cannot solve
our minimisation problem over the infinite dimensional space H and must restrict
ourselves to discretised subspaces Vh � H . Let uh denote the minimiser of j on Vh.
To find calculate this uh 2 Vh, we require

hrj.uh/; vi D 0 (2)

whenever v 2 Vh. This is the only property we need for our subsequent analysis.
Our application problem comes from [10]. The functional j is given by

j.u/ D 1

2
kuk2H C log

Z

T

eu d�� 1

n

nX

kD1
u.tk/ (3)

where t1; : : : ; tn 2 T D Œ0; 1�d are n i.i.d. data samples. If we write

f .t ju/ D eu.t/

R
T
eu.t/ d�.t/

;

then f .t jumin/ is an estimator for the underlying probability density function (pdf).
Equation (2) is satisfied if H is a reproducing kernel Hilbert space continuously

embedded into C.T /. The continuous embedding implies

kuk1 � CHkukH
for some finite positive constant CH . The H -norm is implicitly parameterised by
two statistical parameters ˛ and ˇ. The parameter ˛ is the usual regularisation
parameter used in regression [6, 17]. It has been absorbed into the H -norm for
notational convenience. The constant ˇ is the structural parameter determining the
kernel of H . Readers may refer to [10] for other statistical aspects of the problem,
including a more detailed description of ˛ and ˇ.

2.2 Implementation

For implementation, we choose a discretised space Vh � H with basis functions
�1; : : : ; �m. At the moment we are not concerned with the specific choice of basis
functions. The flexibility in choosing any basis will become important later on.
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The infinite dimensional problem onH is reduced to anm-dimensional problem.
If we define J W Rm ! R by

J.c/ D J.c1; : : : ; cm/ D j

� mX

iD1
ci�i

�

;

our minimisation problem can be recast into

cmin D arg min
c2Rm J.c/:

At this point one can choose a suitable minimisation technique. In our case, the
finite dimensional problem was studied in another submitted paper [20]. We use
Newton’s method to solve Eq. (2). Explicitly, we would like to find the roots of

rJ.c/ D 0:

Using Newton’s method, we start with guess c0. At the k-th step we have ck and
therefore rJ.ck/ and r2J.ck/: With these we can solve the linear system

r2J.ck/ıck D rJ.ck/

for the update step ıck. Next, we find a step size �k and update using the formula

ckC1 D ck C �kıck:

The step size should be chosen appropriately for convergence [10]. One way to
choose �k is through the Armijo criterion [14].

2.3 Minimisation as Bregman Projection

Every differentiable strictly convex functional induces a Bregman divergence.
Roughly speaking, the Bregman divergence induced by j is a distance function
“with respect to” j . The Bregman divergence of j can be used as a notion of
distance between two functions and therefore give us an error measure. They enjoy
desirable properties which we will explain. Readers may find a fuller treatment of
Bregman divergences in [1].

Assume j W H ! R is differentiable and strictly convex. The Bregman
divergence of j , denoted dj W H �H ! R

C is defined by

dj .u; v/ D j.u/� j.v/ � hrj.v/; u � vi:

The function dj .u; v/ is non-negative, but it may not be symmetric nor satisfy the
triangle inequality. A Bregman divergence is therefore not a true metric.
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In the following subsection we show how Bregman divergences leads to an inter-
pretation of our convex minimisation problem as a Bregman projection problem.
The concept is interesting in itself but is also useful for understanding Opticom.

2.3.1 Bregman Divergence for Convex Minimisation

Minimising j turns out to be equivalent to minimising the Bregman divergence of
u to the true solution umin. In fact, we have a stronger statement.

Proposition 1. Let uh denote the minimiser of the functional j on a subspace Vh �
H and let v 2 Vh, the Bregman divergence of v from uh is

dj .v; uh/ D j.v/ � j.uh/:

Proof. Using Eq. (2), we have hrj.uh/; vi D 0 for all v 2 Vh. Since v; uh are
both in Vh, their difference is in Vh. The linear term from the definition of Bregman
divergence drops out and we have the formula.

In other words, the minimiser of j on Vh is a Bregman projection of the true
minimum umin onto the space Vh. Orthogonal projection is an instance of the
Bregman projection with j.u/ D kuk2.

The other two benefits for using Bregman divergences are specific to our
statistical functional j . We omit the proofs. The first one is a type of norm
equivalence.

Proposition 2. If u; v 2 H are functions, then

1

2
ku � vk2H � dj .u; v/ � 1C C2

H

2
ku � vk2H :

Recall CH is the embedding constant such that kuk1 � CHkukH for all u 2 H .
Finally, the Bregman divergence of j can be interpreted statistically using the

Kullback–Leibler (KL) divergence important in statistically learning.

Proposition 3. If u; v 2 H and if KL.u; v/ denotes their KL-divergence, then

dj .u; v/ D 1

2
ku � vk2H CKL.v; u/

2.4 Numerical Examples

For our numerical experiments, we sampled 50,000 data points from two known
probability distributions. A large sample size was used to reduce influence from
statistical error. This allows us to focus on the numerical errors themselves.
The first sample is a strongly correlated, two dimensional, multivariate normal
distribution. We picked correlated datasets because they tend to cause problems
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for the combination technique. Using this sample of 50,000 data points, we
performed two numerical experiments with different statistical parameters. We
chose different regularisation parameters to show how the smoothness of umin

affects the combination technique. To demonstrate the effect of dimensionality, we
again conduct a third experiment using a strongly correlated, multivariate normal
distribution—but in three dimensions. At the moment, the quadrature of

R

T
eu d�

limits us to three dimensions. This is not the limitation of the combination technique
(or our modifications thereof) but of our statistical method. The problematic
quadrature is still a subject of research.

In the following we wish to measure two different accuracies. The first compares
the solution accuracy between different refinement levels. The second compares the
solution accuracy across our different methods.

For refinement accuracy we calculate the error through the Bregman divergence
dj .u; umin/. We do not have j.umin/, but for artificial examples we can calculate high
resolution solutions until they converge. We use this value to approximate the true
solution.

Next, we are interested in comparing the combination technique, Opticom and
the iterative method in their ability to approximate the full grid solution uh of
the same refinement level h. For this, we use the same error measure as [20] and
calculate the percentage error in j using the formula

eh.u/ D j.u/� j.uh/
j.uh/

:

In the following we present our numerical results for three datasets. All the plots
of numerical results are gathered near the end in Figs. 1, 2, and 3 of Sect. 5.2.

Example 1 (2D Dataset A). The 2D dataset A is a two dimensional, strongly
correlated dataset sampled from a multivariate normal distribution. We set ˛ D 2:0

and ˇ D 5:0 to impose a heavier regularisation and therefore a more stringent
smoothness for umin. As an approximation for the true minimum value, we use
j.umin/ D �2:3320. The results are presented in Table 1.

As predicted by the theory in [10], the error decreases as refinement increases.
The decrease is exponential before slowing down for convergence, Sect. 5.2, Fig. 1.

Example 2 (2D Dataset B). 2D dataset B is the same as before but with smaller
parameters ˛ D 0:2 and ˇ D 1:0. The true solution umin is therefore less smooth.
We use the approximation j.umin/ D �3:2560. The results are presented in Table 2.

The rate of convergence is not significantly affected by decreasing regularisation.

Example 3 (3D Dataset). The third dataset is the correlated data set in three
dimensions. Computational resources restricted us to a lower refinement level.
Running the combination technique to very high levels give us an estimate
j.umin/ D �4:2630. The results are in Table 3.

This dataset present the most difficulties to the combination technique.
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Table 1 Full grids: 2D
dataset, strong regularisation

Level Functional j.u/ Error dj .u; umin/

1 �1.3827 0.949
2 �1.6757 0.656
3 �2.0897 0.242
4 �2.2485 0.084
5 �2.3045 0.028
6 �2.3242 0.008
7 �2.3301 0.002

Table 2 Full grids: 2D
dataset, weak regularisation

Level Functional j.u/ Error dj .u; umin/

1 �1.6913 1.569
2 �2.0854 1.165
3 �2.6517 0.608
4 �3.0485 0.212
5 �3.1904 0.070
6 �3.2322 0.028
7 �3.2467 0.013

Table 3 Full grids: 3D
dataset

Level Functional j.u/ Error dj .u; umin/

1 �2.4702 1.793
2 �3.1282 1.135
3 �3.9000 0.363
4 �4.1674 0.096
5 �4.2391 0.024

3 The Classical Combination Technique

We call the combination technique developed in [11] the classical combination
technique. This distinguishes it from the techniques later on.

Let .l1; : : : ld / denote the resolution levels of a coarse grid so, for example, .2; 4/
would denote a 22 � 24 grid with .22 C 1/ � .24 C 1/ nodes.

In the combination technique, the user specifies a desired level and the technique
defines the set of coarse grids and their coefficients. For the level 3 case, the
combination technique specifies levels .3; 1/; .2; 2/; .1; 3/; .2; 1/ and .1; 2/ for
solutions u1; : : : ; u5, and piece them together to form a solution

uc D u1 C u2 C u3 � u4 � u5 D
5X

iD1
ciui ;

where the coefficients ci are respectively 1; 1; 1;�1;�1, see Fig. 1.
The combination scheme illustrated by Fig. 1 approximates the more expensive

full grid solution .3; 3/ indicated by an F . This is the classical combination
technique. The classical coefficients are selected using the inclusion/exclusion
principle and is independent of the numerical problem [12].
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Table 4 Classical
combination: 2D dataset,
strong regularisation

Level Functional j.u/ Error d.u; umin/ % error eh.u/

1 �1.3827 0.949 –
2 �1.5838 0.748 5.485
3 �1.8549 0.477 11.238
4 �1.9628 0.369 12.708
5 �2.1410 0.191 7.096
6 �2.1849 0.147 5.992
7 �2.2740 0.058 2.410

Table 5 Classical
combination: 2D dataset,
weak regularisation

Level Functional j.u/ Error d.u; umin/ % error eh.u/

1 �1.6913 1.569 –
2 �2.0588 1.201 1.748
3 �2.4047 0.855 9.315
4 �2.6498 0.610 13.080
5 �2.7800 0.480 12.864
6 �2.9779 0.282 7.869
7 �3.0818 0.178 5.081

The combined solution uc does not live in any of the coarse grid spaces but is
a member of the sparse grid space with the corresponding mesh level. However,
the technique only approximates the sparse grid solution. As a result, we cannot
use error bounds developed for the sparse grid discretisation. Error bounds for the
classical combination technique have been found for model problems [2, 16, 19].
These analysis assume specific error forms which is not often available. In general,
there are no theoretical bounds on the approximation error. Indeed, the technique
has been known to fail [5].

3.1 Numerical Examples

Example 4 (2D Dataset A).

As the refinement level increases, the functional values in Table 4 drops. The
errors eh.u/ suggest the combination technique is often much inferior to the full grid
solution. However, this may be because the sparse grid solution itself is inferior. As a
result, a comparison between the combined solution and the full grid solution alone
is insufficient to reveal the accuracy of the combined solution. We will see later that,
in fact, the combined solution actually approximates the sparse grid solution very
well with this dataset.

Example 5 (2D Dataset B).

The results of Table 5 is similar to 2D dataset A. The errors in eh.u/ drops
similarly. The similarity is superficial, as we will see later that the true sparse grid
solution is much better, Fig. 2. We found that in general, a weaker regularisation
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Table 6 Classical
combination: 3D dataset

Level Functional j.u/ Error d.u; umin/ % error eh.u/

1 �2.4702 1.793 –
2 �2.7253 1.538 12.879
3 �2.9048 1.358 25.519
4 �3.4801 0.783 16.490
5 �3.6490 0.614 12.879

(that is, when the solution is less smooth) causes more problem for the combination
technique.

Example 6 (3D Dataset).

Table 6 shows the classical technique failing completely. The discrepancy from
the full grid solution is significant. For some levels it was actually better not to
combine but to pick the best of the coarse grid solutions.

4 The Opticom Method

The method of Opticom was developed in [13] to improve the classical combination
technique for orthogonal projection problems. In this section we explain how
Opticom can be adapted to more general minimisation problem.

4.1 The Idea of Opticom

Consider the orthogonal projection of u 2 H onto the Hilbert subspace Vh � H

with respect to the space norm k � kH . Algorithmically, we seek Phu 2 Vh such that
for all v 2 Vh

.u; v/H D .Phu; v/H :

Suppose V1; : : : ; Vm are subspaces of Vs and Vs is itself a subspace ofH . Here we
are thinking of V1; : : : ; Vm as the coarse grid subspaces of the combination technique
and Vs stands for the sparse grid function space. Let u 2 H , ui D Piu be the
orthogonal projections of u onto the spaces Vi and us D Psu be the orthogonal
projection of u onto Vs . Instead of computing the sparse solution us directly, we
calculate ui ’s and approximate us through a linear combination of ui ’s. We wish to
minimise the approximation error. Precisely, we seek ci ’s such that

F.c1; : : : ; cm/ D
�
�
�
�us �

mX

iD1
ciui

�
�
�
�

2

H

(4)

is minimised.
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The minimiser of F can be obtained by setting the derivative to zero. We obtain
the equation

0

B
B
B
B
@

.u1; u1/ .u1; u2/ : : : .u1; um�1/ .u1; um/
:::

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

:::

.um; u1/ .um; u2/ : : : .um; um�1/ .um; um/

1
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D
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B
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@

.u1; us/
:::
:::
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1

C
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:

We do not have us but we know .ui ; us/ D .ui ; ui / in the right hand side. This allows
us to calculate optimal coefficients ci ’s. This method proposed by [13].

The Opticom method can be applied for numerical methods which are orthogonal
projections in nature. One example is Galerkin projection for elliptic PDEs. Another
example is for regression. Indeed, the Opticom method was applied to improve the
combination technique for regression [6].

The Opticom method cannot be applied for other problems. While we can always
write down Eq. (4) and differentiate, we cannot solve the linear system because we
do not have .ui ; us/. The idea of Opticom, however, can be adapted to minimisation
problems in a straightforward way.

4.2 Opticom for Minimisation Problems

Consider the coarse grid subspaces V1; : : : ; Vm � H designated by the combination
technique. Let ui D arg minv2Vi j.v/. Naturally, we can choose ci ’s such that the
combined solution minimises the functional j . In other words, we seek coefficients
such that

J.c/ D J.c1; : : : ; cm/ D j

� mX

iD1
ciui

�

is minimised. The minimising ci ’s can be found by solving rJ.c/ D 0. We are in
fact minimising j on the space spanned by the coarse grid solutions ui :

Vc D spanfu1; : : : ; umg � Vs:

The subscript c stands for the space of all combined solutions.
By Proposition 1, the Opticom solution minimises the Bregman divergence

dj

� mX

iD1
ciui ; us

�

:

In other words, Opticom is a Bregman projection onto the space Vc .
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Table 7 Opticom: 2D dataset, strong regularisation

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Opticom Classical Opticom Classical Opticom

1 �1.3827 0.949 0.949 – –
2 �1.5844 0.748 0.748 5.485 5.446
3 �1.8555 0.477 0.477 11.238 11.211
4 �1.9639 0.369 0.368 12.708 12.656
5 �2.1420 0.191 0.190 7.096 7.050
6 �2.1855 0.147 0.147 5.992 5.967
7 �2.2741 0.058 0.058 2.410 2.403

This is another way of viewing the Opticom technique for convex minimisation
problems—instead of orthogonal projections using the space norm, we use Bregman
projections with the Bregman divergence of j . Since k � k2H is a convex functional,
our way of looking at Opticom generalises the idea from [13].

This is exactly the same as the original minimisation problem we were solving.
The only difference is that we are using the coarse grid solutions rather than hat
functions as the basis set. The implementation of the Opticom algorithm is therefore
similar to the original problem. Much of the original code can be reused. If one is
using an object oriented approach, the class structure of the Opticom is algorithm is
almost identical. Moreover, the new problem has size equal to the number of coarse
grid subspaces. The system is therefore very small.

In summary, the Opticom solution is a Bregman projection on to the space Vc .
This attains the best possible combination of coarse grid solutions to minimise j .
Methods of improving the combination technique by truncating some coarse grids
is equivalent to setting some of the coefficients to zero and adjusting the coefficients
of the other grids using the inclusion/exclusion principle. Opticom is by definition
superior in accuracy.

Opticom still may not be the true sparse grid solution because Vc ¤ Vs , nor
do we have an error bound. In fact, our numerical examples reflect a diversity of
phenomenon.

4.3 Numerical Examples

Example 7 (2D Dataset A).

Example 8 (2D Dataset B).

The results in Tables 7 and 8 are not significantly better than the ones in the
classical technique. We expect this for the strongly regularised experiment. This
is because, as remarked, the classical solution is already close to the true sparse
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Table 8 Opticom: 2D dataset, weak regularisation

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Opticom Classical Opticom Classical Opticom

1 �1.6913 1.569 1.569 – –
2 �2.0610 1.201 1.199 1.748 1.642
3 �2.4066 0.855 0.853 9.315 9.241
4 �2.6774 0.610 0.583 13.080 12.174
5 �2.7836 0.480 0.476 12.864 12.751
6 �2.9842 0.282 0.276 7.869 7.672
7 �3.0874 0.178 0.173 5.081 4.908

Table 9 Opticom: 3D dataset

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Opticom Classical Opticom Classical Opticom

1 �2.4702 1.793 1.793 – –
2 �2.8991 1.538 1.364 12.879 7.322
3 �3.2974 1.358 0.966 25.519 5.453
4 �3.6411 0.783 0.622 16.490 12.627
5 �3.8898 0.614 0.373 12.879 8.238

grid solution. Opticom, however, did not offer any significant improvement for the
weakly regularised set. This stands in contrasts with the next set of results.

Example 9 (3D Dataset).

For the three dimensional problem we see in Table 9 that Opticom improved on
the classical technique. Both the errors measured are significantly less.

4.4 Opticom for General Problems

Before proceeding further, let us consider how insights from this section generalise
the Opticom method to other problems beyond [13].

A numerical solution uh on the discretised space Vh � H can be understood
as an approximation of the true solution in u 2 H . In general, we may write the
numerical solution uh on the space Vh as

uh D Phu

where Ph W H ! Vh is some operator. The operator may or may not be known
explicitly. In minimising theH -norm error,Ph is the orthogonal projection operator.
In convex minimisation problems,Ph is the Bregman projection operator. The Finite
Element Method for elliptic PDE exploits the Galerkin projection.
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We do not know u itself for Phu. The operator Ph is merely an abstract way of
thinking about the numerical method as mapping u to its discretised approximations.

Definition 1 (Opticom). Let u 2 H denote the true solution. Let Ps W H ! Vs be
an operator where Vs is a sparse grid space. Denote us D Psu. Let Pi W H ! Vi
be operators where V1; : : : ; Vm are coarse grid spaces. The combination space is
defined as

Vc D spanfu1; : : : ; umg:

If Pc W H ! Vc is defined, then the Opticom solution is given by uc D Pcu.

This defines Opticom for a large class of problems. They include any numerical
scheme which is defined for a generic basis set (as opposed to being able to use
only specific ones like hat functions). In this case the operator Ph seeks coefficients
for some basis functions. There is no reason why we cannot use the coarse grid
solutions u1; : : : ; um as a basis set and solve the problem again. This replaces the
classical coefficients and gives the Opticom solution just proposed.

In general, what is the relationship between uc and us? What are the conditions
for an appropriate error bound? What is the relationship between uc and the classical
solution? What are the conditions for an appropriate error bound?

This definition of Opticom raises theoretical questions about the combination
technique. We now have three solutions to consider: the classical solution, the
Opticom solution and the sparse grid solution. The Opticom solution serves as a
“bridge” between the classical technique and the sparse grid solution. It allows us
to ask questions concerning the combination technique in a new way. We hope to
pursue these questions further in the future. A concrete place to start may be to
focus on the case where Ph is the Bregman projection onto spaces Vh. In this case
the Opticom solution is necessarily defined.

5 An Iterative Combination Technique

The coarse grid solutions do not span the whole sparse grid space Vs . Therefore the
Opticom solution which minimises j on Vc may not be the true sparse grid solution
which minimises j on Vs . The first motivation for our new technique is the desire
to keep the parallelism and simplicity of the combination technique but improve the
accuracy by finding a better solution in the space Vs .

The second motivation comes from a completely different perspective. In the
future of petascale computing and beyond, fault-tolerance and robustness of our
numerical methods become a concern [3]. This is particularly the case for “silent”
errors. These are the unreported errors committed by the computation devices. In
these cases, iterative algorithms are advantageous because they are intrinsically
robust. Iterations can automatically correct errors which have crept in.
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These are two possible motivations for the new computation technique we will
describe. It is a slight modification of the combination technique which allows us to
parallelise while giving us an iterative method.

5.1 The Method of Combistep

As the name suggests, Combistep applies the combination technique to approximate
each sparse grid Newton step. Consider the Newton’s method on the sparse grid
space Vs . The algorithm can be summarised as follows.

1. Start with guess u0 2 Vs
2. At the k-th step, find Newton step uk and step size �k

3. Update using

ukC1 D uk C �kuk

4. Repeat until convergence

Instead of running a full Newton’s method on each coarse grid until convergence
and then combining the solutions, we run only one Newton step on each coarse grid
before we combine them for a sparse grid step. Algorithmically,

1. Start with guess u0 2 Vs
2. At the k-th step, for each coarse grid space Vi , find Newton step uki
3. Combine the Newton steps for a sparse grid Newton update

ukC1 D uk Cuk D uk C
mX

iD1
cki uki

4. Repeat until convergence

We call this method “Combistep”. The combination is made for each step rather
than for the solution. An iterative scheme is thereby retained.

Note that Combistep retains the parallelism of the classical combination tech-
nique. Just like the classical combination technique, each component grid can be
computed in parallel. Also like the combination technique, there is a need to address
load balancing so we do not waste time waiting for the final component grid at each
synchronisation step.

Does the method converge to the true sparse grid solution or to somewhere else?
In fact, how can we even ensure j goes down with each iteration? This can be
solved by exploiting the Opticom idea. We choose coefficients for the coarse grid
steps which minimises j . It turns out the Opticom choice of the coefficients is what
we need.
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Theorem 1. Assume exact arithmetic. If we choose step coefficients to minimise
functional j , then the Combistep iteration will terminate only at the sparse grid
minimum.

Proof. Let Vs denote a sparse grid function space, V1; : : : ; Vm � Vs be coarse grid
spaces such that Vs D Pm

iD1 Vi . Furthermore let uk 2 Vs and us be the minimiser of
j in Vs . We claim that if uk ¤ us , then there are coarse grid spaces with non-zero
updates. Furthermore, there must be at least one choice of step coefficients which
will decrease j .

Recall the minimiser of j on Vh is characterised by rj.uh/ D 0. If there are no
updates in any of the coarse grids V1; : : : ; Vm then rj.uk/ is the zero map on each
of the coarse grid spaces. In particular, for each i and for all v 2 Vi

hrj.uk/; vi D 0:

Since Vs D Pm
iD1 Vi , we can write, for any v 2 Vs v D Pm

iD1 vi for some choice of
vi ’s. Since rj.uk/ is a linear we have

hrj.uk/; vi D
mX

iD1
hrj.uk/; vi i:

All the summation terms evaluate to zero by assumption. This is to say rj.uk/ is
the zero map on Vs , contrary to the assumption uk is not the minimum.

Therefore at the k-th step, at least one of the coarse grid spaces Vi will have a
non-zero update uki and step size �ki such that j.uk C �ki uki / < j.uk/. There is
therefore a choice of coefficients cki ’s such that the update ukC1 D ukCPm

iD1 cki uki
will give j.ukC1/ < j.uk/. This will continue as long as uk ¤ us.

5.2 Numerical Examples

In theory the results of Combistep should give the true sparse grid solution. This
will allow us to see all the previous results in a new light. When does the classical
technique approximate the true sparse grid solution? When does it not? When does
Opticom offer an improvement?

Example 10 (2D Dataset A).

The results of Table 10 are close to the original classical solutions. Even though
the classical technique had a large discrepancy from the full grid solution for some
levels, the results of Table 10 show it was not the problem of the combination
technique but the limitations of the sparse grid discretisation.
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Table 10 Combistep: 2D dataset, strong regularisation

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Combistep Classical Combistep Classical Combistep

1 �1.3827 0.949 0.949 – –
2 �1.5852 0.748 0.747 5.485 5.400
3 �1.8744 0.477 0.458 11.238 10.305
4 �1.9717 0.369 0.360 12.708 12.310
5 �2.1545 0.191 0.178 7.096 6.510
6 �2.1880 0.147 0.144 5.992 5.858
7 �2.2753 0.058 0.057 2.410 2.352

Table 11 Combistep: 2D dataset, weak regularisation

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Combistep Classical Combistep Classical Combistep

1 �1.6913 1.569 1.569 – –
2 �2.0780 1.201 1.182 1.748 0.830
3 �2.6153 0.855 0.645 9.315 1.374
4 �2.8536 0.610 0.406 13.080 6.394
5 �2.9886 0.480 0.271 12.864 6.325
6 �3.0222 0.282 0.238 7.869 6.499
7 �3.1312 0.178 0.129 5.081 3.560

Table 12 Combistep: 3D dataset

Functional j.u/ Error d.u; umin/ % error eh.u/

Level Combistep Classical Combistep Classical Combistep

1 �2.4702 1.793 1.793 – –
2 �2.9194 1.538 1.344 12.879 6.676
3 �3.5980 1.358 0.665 25.519 7.744
4 �3.8417 0.783 0.421 16.490 7.815
5 �4.0606 0.614 0.202 12.879 4.210

Example 11 (2D Dataset B).

Table 11 shows a different scenario. The sparse grid solution is significantly
better than for both Opticom and the classical solution. This is confirmed vividly
for the 3D set.

Example 12 (3D Dataset).

The results in Table 12 show the results for the 3D dataset. The errors in
the Bregman divergence drop as for the two dimensional datasets. Moreover, the
discrepancy from the full grid solution drops by two to three times. The numerical
results of all the datasets are summarised in Figs. 2, 3, and 4.

In conclusion, the numerical results of this paper illustrate the theory. Denote the
classical combined solution uclassical. Recall Vc denotes the span of the coarse grid
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solutions and Vs denotes the sparse grid space. In general we have

uclassical 2 Vc ¨ Vs:

Opticom minimises j over Vc while Combistep provides the true sparse grid
solution. As a result we expect the methods, ordered by increasing accuracy,
to be (1) the classical combination technique, (2) Opticom and (3) the iterative
combination technique. This is confirmed by all the numerical results we presented.

We do not, however, have specific error bounds and expect a range of phe-
nomenons. The classical technique are at times close to the sparse grid solution and
sometimes not. We found that the combination technique tends to work better when
the true solution is smoother. The Opticom solution may or may not greatly improve
the classical coefficients. This too, is evident throughout the numerical experiments.
The results of the 2D dataset with weak regularisation is particularly interesting.
We see the classical technique does not approximate well the sparse grid solution
though it does approximate the Opticom solution. This is perhaps surprising. We
see it is a different question to ask whether the classical combination technique is
optimal and whether it is a good approximation for the sparse grid solution.

6 Conclusion: Applications and Further Research

In this paper we presented two new combination technique methods for convex
minimisation. The first one is a generalised Opticom method and the second
is Combistep, an iterative combination technique. Numerical results confirm our
theory. The solution from the Combistep is better than the Opticom solution which



Opticom and the Iterative Combination Technique for Convex Minimisation 335

is in turn better than the classical solution. Moreover, all of them are inferior to the
full grid solution.

The Opticom method developed here generalises the work of [13] through
Bregman projections. The Opticom method seeks the optimal combination of the
coarse grid solutions by using the coarse grid solutions as a new set of basis
functions. The implementation is simple programming-wise because the class
structures can be maintained.

The Combistep method is a robust, iterative use of the combination technique.
The method is based on using the combination technique to approximate each
iterative step rather than the final solution. When combined with Opticom, the
method converges to the true sparse grid solution. The method can also be used
to refine a classical combined solution. In our paper we focused on the theoretical
aspects and not yet on a numerically efficient implementation. For now, our
experience is that the method scales like the combination technique.

Most importantly, this paper raise research questions concerning the combination
technique. We compared all the relevant solutions—the combined solution, the
Opticom solution and the true sparse grid solution. The numerical results have been
revealing. Furthermore, we proposed a framework for understanding Opticom in a
general setting. This allows us to pose theoretical questions about the combination
technique in a new way. We hope research into this area could lead to a deeper
understanding of the combination technique. A less ambitious undertaking would
be to concentrate on the combination technique for convex minimisation problems.
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