

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 135–150, 2013.
© Springer International Publishing Switzerland 2013

On-Demand Business Rule Management Framework
for SaaS Application

Xiuwei Zhang1,2,3, Keqing He1, Jian Wang1, Chong Wang1, and Zheng Li1

1 State Key Lab of Software Engineering, Wuhan University, Wuhan, China
2 School of Computer, Wuhan University, Wuhan, China

3 94005 Troops of PLA, Jiuquan, China
xiuweizhang@163.com,

{hekeqing,jianwang,cwang,zhengli_hope}@whu.edu.cn

Abstract. SaaS (Software as a Service) is becoming a new direction of software
industry in the new cloud computing era. SaaS applications and services must
be able to react in a fast and flexible way to ever changing business situations,
policies and products. In order to satisfy policy changes and other personalized
requirements from different customers (or tenants), business rule management
of SaaS needs to support multi-tenancy and online customization. This paper
proposed a business rule engine based framework for managing and decoupling
of business logic rule from SaaS application. It takes on-demand business rule
management as an independent and online maintainable part of SaaS applica-
tion, which could allow tenants to safely upgrade, delete or create rules during
runtime. Finally, a practical case study in Attendance Management System
(AMS) evaluates the effectiveness of the framework.

Keywords: Business Rule Engine, SaaS, Decision Table, Personalized Custo-
mization.

1 Introduction

With the emergence of Cloud Computing and maturity of Service Oriented Architec-
ture (SOA), SaaS delivery model has gained popularity due to advantages such as
lower start-up cost and reduced time to market. SaaS is the best way to adopt ad-
vanced technology and the most effective business model in the Cloud Computing
era. Typically in SaaS application, configurability, multi-tenancy and scalability are
the three key attributes to evaluate the maturity of SaaS application. SaaS vendor
owns and takes the responsibility of maintaining a single application for multiple
tenants who may have similar but also varying requirements [1]. The most ideal case
for SaaS vendors is that every tenant feel comfortable using a completely standardize
offering. However this ideal case usually does not happen in enterprise software ap-
plication area. Normally, such one instance is used by different tenants with different
personalized requirements in terms of data, process rules, and business rules (BR) [2].
In order to satisfy their maintainability of flexible business policy, we must decouple
the close relationship between business data and business logic.

136 X. Zhang et al.

Business Rule Group (BRG)1 believes that rules are a first-class citizen of the re-
quirements world. No matter in large enterprises or small and medium enterprises
(SME), business rules change very fast and need to be adjusted timely. Software sys-
tem is directly related to the business process within which it is a manifestation of
some business requirements for operational control and support of decision making
[3]. Nevertheless, many business rules have been bundled in program code or in data-
base structures, so it is very hard to upgrade and expand [4]. For SaaS application,
this problem becomes increasingly prominent because different tenant has different
rule variation. Many tenants are running on one instance with the availability of 24*7.
There may even be a situation where one tenant business rule changes may affect
other tenants and even cause the entire system to change. In order to dealing with this
kind of situation, the business rules of SaaS application need to be customized in a
flexible way, which enables any tenants to build, execute, manage, and evolve its own
rule-oriented applications. Rule engines allow the separation of business rules from
the applications that use them and enable the maintenance of business logic without
having to resort to code changes and software modification. Rule engine can be
viewed as a sophisticated interpreter of if-then statements. It can reach a conclusion
from a set of facts feed into it and trigger an appropriate action. So we can use busi-
ness rule engine to separate the business logic out of the SaaS application to support
online customization and multi-tenancy with the isolated rule file. Each tenant can
individually configure and upgrade his own business rules. Therefore rule indepen-
dency and isolation is an essential part in the development of SaaS application. In this
paper, a business rule engine-based framework was proposed to help the management
of business rule for SaaS application, which is convenient for tenants to change busi-
ness rules on-the-fly and minimize the downtime of the application during the busi-
ness rule upgrading or modification. Tenants with non-IT profession can on-line up-
date business rule in a simple spreadsheet and deploy them with a few clicks. It makes
SaaS application more robust and maintainable.

In this paper, we only focus on the business rule’s online customization and multi-
tenancy support. The next section identifies the related work and section 3 provides a
clear and concise description of the background. Section 4 demonstrates our frame-
work and provides explanation for our framework. Section 5 presents the implantation
representing our case study and is used to exemplify the potential of our approach.
Section 6 draws conclusions from our work and identifies the possibilities for future
work.

2 Related Work

Business rule management of software system is not a new issue. Many researchers
have done a lot in traditional applications. Initially, rule based software tools originate
from work carried out in the artificial intelligence (AI) research community. Compa-
nies were faced with the need to combine domain expertise with the flexibility to

1 http://www.businessrulesgroup.org/home-brg.shtml

 On-Demand Business Rule Management Framework for SaaS Application 137

write lots of “if x, then y” statements over a wide range of variables without resorting
to spaghetti code [5]. Orriens [6] and Vasilecas [8] have two main views in dynamic
business rule driven software system design. One of them is to design predefined
executable processes and execute them by using rules in software system, where
processes and execution rules are derived from business rules using transformations.
Another one is discussed in work [7], where business rules and facts describing cur-
rent business system state are loaded into inference engine of the software system and
transformed into software system executable data analysis process according to the
results of logical derivations. Computer scientists and programmers began developing
rule languages and the corresponding engines that could handle the conditions and
actions needed to satisfy the wide range of rules. The most successful approach for
doing this has proven to be the Rete algorithm [9]. Many rule-engine tools and appli-
cation development support environments was applied such as Blaze Advisor Builder,
BRS RuleTrack, Business Rule Studio, Haley Technologies, ILOG Rules, Platinum
Aion, etc [10].

In SaaS application, there is still lots of differences in business rule customization
with traditional applications. These differences include:

─ The business rule customization or configuration for SaaS applications should
support multi-tenant architecture and each tenant should have their own rule cus-
tomization.

─ Not to affect other tenants, SaaS providers could not suspend the system when
some tenants want to modify or upgrade the business rules.

─ The rule customization will be executed by administrator of tenant, not by devel-
opers of SaaS provider.

─ The business rule should be support Web-based online modification.
─ The customization of the business rules should be simplified and friendly.

The above differences between SaaS applications and traditional software have
raised many researches in this new area. Guo [11] proposed a multi-tenant supported
framework to support better isolations among tenants in many aspects such as securi-
ty, performance, availability, administration, etc. Zhang [12] proposed a SaaS-
oriented service customization approach, which allows service vendors to publish
customization policies along with services. If tenant’s customization requirement is in
agreement with policy after being verified, vendors will update service accordingly.
This approach will inevitably burden service providers because of tenants’ reasonable
customization requirement increments. Gong [13] developed ECA process orchestra-
tion architecture to create flexible processes. This architecture based on both know-
ledge rules (separating knowledge from processes) and event-condition-actions
(ECA) mechanisms to provide the highest level of flexibility. Configurability of SaaS
issue was addressed in literature [14] who researched the configurability like user
interface, workflow, data and access control from the different aspects of SaaS.
From the customization and configuration perspective, Sun [15] explored the configu-
ration and customization issues and challenges to SaaS vendors, clarifies the differ-
ence between configuration and customization. A competency model and framework
has been developed to help SaaS vendors to plan and evaluate their capabilities and

138 X. Zhang et al.

strategies for service configuration and customization. In literature [16], a flexible
business process customization framework for SaaS was proposed to solve problems
caused by orchestrating SaaS business process through BPEL specifications. Kapu-
ruge [1] discussed the challenges arising from single-instance to multi-tenancy, and
presented an approach of Serendip4SaaS to define business processes in SaaS applica-
tions.

To the best of our knowledge, no related work has combined the rule engine and
decision table with the SaaS application for multi-tenancy support and online custo-
mization. Our work was focused on the perspective of business rule customization
and configuration. In our framework, each tenant can update their personalized busi-
ness rule in SaaS application by online selecting and modifying corresponding rules.
Rule engine was utilized as the essential part to improve the flexibility and multi-
tenancy for SaaS application, which makes business rule as an independent and main-
tainable part of application.

3 Background

3.1 Business Rule Engine

In business, a lot of actions are triggered by rules: “Order more ice-cream when the
stock is below 100 units and temperature is above 25° C”, “Approve credit card appli-
cation when the credit background check is OK, past relationship with the customer is
profitable, and identity is confirmed”, and so on. Traditional computer programming
languages make it difficult to translate this “natural language” into a software pro-
gram. Business rule engine enables anybody with basic IT skills and an understanding
of the business to translate statements as running computer code [17]. Business rule
engine is a software system that executes one or more business rules in a runtime
production environment. It will test data objects quickly in the workspace, pick out
rules which meet requirement from loading rule sets, and generate an instance of rule
execution.

Fig. 1 shows the basic architecture of business rule engine. Pattern matcher decides
which and when rules will be implemented. The implementation sequence of rules
picked from pattern matcher is arranged in agenda so that execution engine can ex-
ecute the rules or other actions in order. The underlying idea of a rule engine is to
externalize the business or application logic. Business rules are expressions that de-
scribe and control the processes, operations and behaviors of how an enterprise, and
the applications that support it, performs. Rules assert influence over business or sys-
tem behavior by recommending actions to be undertaken. A rule provides its invoker
a directive on how to proceed. Further, business rule policies provide a generalized
mechanism for specifying frequently changing practices, freeing system components
from the burden of maintaining and evaluating evolving business and system envi-
ronments [18].

 On-Demand Business Rule Management Framework for SaaS Application 139

Agenda

Pattern
Matcher
(RETE)

Facts

Working

Memory

Knowledge

Base

Action

Facts Rules

Rule Engine

Fig. 1. The architecture of rule engine

3.2 Decision Table

Decision table is a tabular representation used to describe and analyze decision situa-
tions, where the states of a number of conditions determine the execution of a set of
actions. Many variations of the decision table concept exist which look similar at first
sight [8]. Decision tables are best suited for representing business rules that have mul-
tiple conditions. Adding one condition is done by simply adding one row or column.
Similar to if/then rule set, the decision table is driven by the interaction of conditions
and actions. The main difference is that in a decision table, the action is decided by
more than one condition, and more than one action can be associated with each set of
conditions. If the conditions are met, then the corresponding action or actions are
performed [19]. A column in the entry portion of the table is known as a rule. Values
in the condition entry columns are known as inputs and values inside the action entry
portions are known as outputs. Outputs are calculated depending on the inputs and
specification of the program. Fig. 2 depicts the basic principle of the decision table. It
uses available information on frequency of outcome of the various cases and whether
core minimization or run time minimization is the more important. A further devel-
opment in programming languages will be to hand this information along with the
decision table to a compiler which will then be responsible for this. Thus decision
tables not only offer a clearer way of stating the logic of a program but also provide
the notational means of extending the scope of automatic programming [23].

4 Rule Engine Based Framework for SaaS Application

The SaaS application is one packaged business application with Web-based user inter-
face for multiple tenants operating on the SaaS platform. With the increase in com-
plexity of SaaS application, business rules have become harder to express hence
require additional simple and friendly way to represent. Based on the features of busi-
ness rule engine, we design and implement a framework for development of SaaS
application with an online business rule customization. The direct customization of

140 X. Zhang et al.

Decision rules

for the case
(Decision Logic)

Some case

requiring a

decision

(Inputs)

Making Decision

Outcome

for the case

Potential

outputs

Fig. 2. The basic principle of decision table

Visual Rule Definer
(like Guvnor)

Rule Converter
（DSL File）

SaaS Application

SaaS Operation Platform

PaaS Business Logic Layer

IaaS

Tenant A Tenant B Tenant C Platform AdminRule
 EditorA EditorB

Rule File Set

Rule Engine

Rule Metadata

Rule Repository

Deploys
Spcifies

Fig. 3. The business rule engine-based framework

business rules by tenants is one of our objectives since it relieves, in many cases, the
SaaS providers from doing such heavy customization tasks each time when a new
tenant subscribe to the application [21]. The architecture of the proposed framework
is shown in Fig. 3. The essence of this framework is to separate business rules from
application, and make the business rules management as an independent and main-
tainable part, to support multi-tenancy. The objective of this framework is to reach a
flexible and competitive scenario in which it would be easier and faster to react when
demand or business changes.

4.1 Basic Units of the Framework

The biggest challenge of business rules management is tracking them down, and or-
ganizing a more effective management approach. In each case there is need for busi-
ness rules management. Business rules management comprises the definition, storage,
and application of the many rules used in business operations to provide organizations
with greater automation, more responsiveness to change and less expensive
distribution and maintenance of their business guidelines [5]. Rules management of-
fers a solution to meet the requirements of changing business rules. The proposed
framework includes the following major interrelated parts: BR definer, BR Converter,
BR engine, BR repository, SaaS application and SaaS deployment system.

 On-Demand Business Rule Management Framework for SaaS Application 141

─ The Rule editors can configure various business rules in terms of workflow, activ-
ity type, and business policy by using the Rule Definer tool, Tenant’s business rule
configured information is stored separately in tenant-specific metadata repository.
Rule engine-based framework generates polymorphic service for individual tenant
using tenant-specific metadata at runtime. Through the polymorphic service, tenant
users feel as if they are using their own business application while service instance
is shared by every tenant.

─ BR definer acts as a Web-based tool or sub-system that helps visually manage and
create new business rules, where the business policy can be changed online by te-
nant manager, business analysts, and software developers.

─ BR Converter is an essential auxiliary tool of rule engine and responsible for con-
vert the visualized rule from definer to BR engine understandable language. It also
can translate the decision table to a specific executable language.

─ BR engine is a central component which is responsible for computation and evalu-
ation of the business rules according to the user's invocation and request. It can au-
tomatically assert the business rules for specific tenant according to the rule load
metadata from repository.

─ BR repository is a repository that stores the rule-related information and supports
the flexibility of rule expression. A rule repository is a central place where manag-
ers, analysts, and software developers can define, share, and maintain the business
rules of a company. This component contains two major parts: rule set and rule
metadata. The former is used to store the information of business rules including
decision table, “When...Then” based rule file, and DSL (Domain Specific Lan-
guage) file and so on. The stored business rules in the repository are determined
based on the target system’s specifications. While the latter mainly includes the te-
nant customization and configuration information for specific tenants. Metadata is
stored in the repository as management information to support multi-tenancy.

─ SaaS application includes basic functionalities and business logic layer. We have
separated the business policy out of code and take it as an independent part for up-
grading and modification.

─ SaaS deployment system includes SaaS operation platform (Platform as a service)
and IaaS (Infrastructure as a Service). In SaaS operation platform, administrator
will be responsible for management and deployment of SaaS application. IaaS as a
basic part for SaaS deployment including hardware and storage part and so on. We
will not explain more details about the SaaS deployment system because this paper
focus on the relationship between Business Rule Management (BRM) and SaaS
application.

4.2 Capability of the Framework

SaaS application based on this framework will be supported with the following capa-
bilities, which also are the basic features of SaaS application.

─ Support of Business Rules Management. Enterprises run their businesses
with repeatable business processes driven by general business rules for specific

142 X. Zhang et al.

situations and customers. These capabilities allow enterprises to execute business
functionality using independent rule services made up of executable, declarative
rules, rather than being forced to integrate the logic as code into a system.

─ Support of Online Maintenance. Current enterprise applications require a new
application maintenance paradigm that can deliver faster, easier application mod-
ification. Business rule changes are first identified by the users of the system. The
fastest and safest way to empower these users is to give them the tools they need to
make the application changes themselves. This can be achieved by giving them
access to easy-to-use rule maintenance that allows them to maintain the policies,
procedures and rules for which they are responsible.

─ Support of Multi-tenancy Customization. As the number of tenants with sub-
scribed SaaS application grows, specific personalized business rules are needed for
most tenants. In this framework, we bind each Tenant ID with the corresponding
rule files and store the metadata in repository. In order to support multi-tenancy,
the most important part is the safety of specific rules with specific tenants. In this
framework, the metadata of rules are used to resolve this problem.

4.3 Lifecycle of Business Rules in SaaS

In business world, some rule policies are changed periodic and others are altered dis-
orderly depending on market competition and development. A good rules manage-
ment system allows the business logic of a system to be specified external to the
system itself. Rules can be changed directly by rule maintainers and editors. Many
rules management system provide the whole lifecycle management from designing
rules, deleting rules to editing and deployment of rules. The business rule lifecycle of
SaaS including rules creation, edition, activation, deletion, etc, is illustrated in Fig. 4

─ Rules Creation. The creation of business rules is done by rule editors. A new rule
is available for editing and deleting. Only approved new rules can be deployed.

─ Rules Edition. Rule edition is the modification of the condition part or the action
part of a rule. To keep track of rule changes, only new or deployed rules can be
edited. Deactivated rules must be reactivated before they can be modified.

─ Rules Deactivation and Reactivation. A rule can be manually or automatically
deactivated. For example, a rule is automatically deactivated on 1 January 2011, if
its time is constrained to function between 01 January 2008 and 31 December
2010. An editor may manually deactivate a rule especially when the regulatory or
policy changes. Rule editor may also reactivate a manually deactivated rule as they
needed.

─ Rules Deletion. Rules that are no longer in use in the system can be removed from
the system by deletion. New rules and annotated unused rules can also be deleted.
Rules Deployment. Rules are deployed into the repository will be reacted
immediately by making a snapshot of isolation for the deployed rules in SaaS
application. The deployment process of business rules includes at least the
following steps [22]: (1) extract the rules in scope for the execution; (2) package
the rule elements into a ruleset –a deployable artifact; (3) deploy the ruleset to the

 On-Demand Business Rule Management Framework for SaaS Application 143

target environment; (4) notify the engine of a new ruleset; (5) let management
stack inside the rule execution environment loading the ruleset; (6) trigger the en-
gine API to parse the ruleset; and (7) send business transactions to fire the rules.

Fig. 4. Lifecycle of business rules in SaaS application (based on [5])

5 Case Study

5.1 Motivation

In order to evaluate the proposed framework, we will illustrate a business rule online
customization process via an example. We take Attendance Management System
(AMS) as the domain we do experiment. AMS is an easy way to keep track of atten-
dance for enterprises, school activities, church groups, and community organizations.
It has become as the necessity application for workforce performance monitoring and
evaluation. The objective of this case is to develop a multi-tenancy supported AMS
application with online customization. In order to show variation of business rule for
specific tenant, we demonstrate a roadmap of rule policy from elicitation, presentation
to implementation by the process of absence approval for sickness in AMS. The
Process of Absence Approval enables employees to enter absence requests in the
system. The request passes through an approval procedure in which the request is
checked by employee’s superiors to see if the employee’s absence can be approved
according to company rules. In most enterprises, the approval process for employee

144 X. Zhang et al.

Absence Approval

Application

Team Leader
Approval

HR Director
Approval

Deputy-CEO
Approval

CEO
Approval

Start absence approval
application

To the end

To: higher level
approval

To: higher level

approval

To: highest level

approval

Decision making by rule policy

Level-1 Level-2 Level-3 Level-4

Fig. 5. Absence approval process of tenant C

who applies for the absence of sickness, personal reason or salary holiday has differ-
ent rules. Here we take a simplified absence of sickness approval process in AMS as a
case to show the variation of rules for different tenants. The approval process of ab-
sence policy for sickness depends on the absence days and other conditions such as
total absence days in month, total absence days in year, duration time and so on.

A simplified approval process depending only on condition of absence days is de-
picted on Fig.5. The whole approval process divides into four situations, if the ab-
sence days not exceed the Level-1’s limit. Only Level-1 approval is needed. If the
absence days over Level-1 and locate in the Level-2’s scope, the approval process
will need both Level-1 and Level-2. Normally Level-2’s approval will executed after
Level-1 approval passed except for emergency situation. Level-3 and Level-4’s ap-
proval have the similar approval procedure. The following italic description outline
the different approval process and rule policies of three tenants A, B, C respectively.

─ Tenant A: Absence days for sickness less than or equal one day will be approved
by team leader (Level-1). From one day to five days absence will be needed both
team leader and Human Resource Department approval (Level-2). And more than
five days will be permitted by Manager (Level-3).

─ Tenant B: Absence days for sickness less than or equal two days will be approved
by team leader (Level-1). And more than two days will approve by Human Re-
source Department (Level-2).

─ Tenant C: Absence for sick leave less than or equal one day will be approved by
team leader (Level-1). From one day to five days absence will be needed both team
leader and Human Resource Department approval (Level-2). From five days to ten
days absence will be approved by team leader, Human Resource Department and
deputy-CEO approval (Level-3). And more than ten days need to be permitted by
team leader, HR director, deputy CEO and CEO (Level-4).

 On-Demand Business Rule Management Framework for SaaS Application 145

5.2 Representation of Business Rule

Different enterprises have their own rule policies for absence approval as mentioned
above. Here we take Tenant C’s rules as a case to demonstrate how to fill these rules
into a decision table. The concrete steps are described as follows.

─ Step1, Definition of the Terms

Here we draw up a list of all condition statements and actions that are mentioned
above. It is clear that this example only uses absence days as the condition to deter-
mine which level of approval will be executed. The following table lists all related
occurrences of these terms in the above context.

Table 1. Rule condition statement and action statement

Condition Statement Action Statement

Absence Days Permission level

Absence Days <=1 Team leader (L-1)

1<Absence Days<=5 HR Director(L-2)
5<Absence Days<=10 Deputy CEO(L-3)

Absence Days >10 CEO(L-4)

─ Step 2, Verification of the Decision Rules

Based on the text of the regulations and conditions, the condition states and the ac-
tions, now we can proceed by defining the rules, analyzing each line in the regulation
and translating it into a rule. Absence approval rule of Tenant C is also taken as an
example.

• Absence days for sickness less than or equal one day will be approved by team
leader.

Rule 1: Absence Days <=1

Action: Level-1 Approved (team leader)

• From one day to five days absence will need both team leader and Human Re-
source Director approval.

Rule 2: 1< Absence Days <=5

Action: Level-1(team leader) and Level-2 (Human Resource Director) approval.

• From three days to ten days absence will be approved by team leader, Human Re-
source Department and deputy-CEO approval.

Rule 3: 5< Absence Days <=10

146 X. Zhang et al.

Action: Level-1, Level-2 and Level-3(deputy-CEO) approval.

• And more than 10 days will be permitted by team leader, HR Director, deputy-
CEO and CEO.

Rule 4: Absence Days >=10

Action: Level-1, Level-2, Level-3 and Level-4(CEO) approval.

─ Step 3, Filling of the Decision Table

After specifying the decision rules, it needs to fill them into the appropriate combina-
tions in the decision table as shown in Table 2. The key point to keep in mind is that
in a decision table, each row is a rule, and each column in that row is either a condi-
tion or action for that rule. “※” indicates actions in the combination will be activated,
and “○” means no action will be activated by rules.

Table 2. Decision table for absence approval rule

Absence Days (ADs) <=1 1<Ads<=5 5<Ads<=10 >10

Team Leader Approval ※ ※ ※ ※

HR Director Approval ○ ※ ※ ※

Deputy-CEO Approval ○ ○ ※ ※

CEO Approval ○ ○ ○ ※

─ Step4, Optimization of the Rule Condition

Once a complete validation of the decision table is finished, the table could be re-
duced to its minimal format. The order of the conditions might influence the number
of columns in the contracted table. For this case, the above condition is already the
optimal one.

5.3 Implementation

In this case, we take Eclipse IDE as the development environment and java-supported
rule engine Drools 52 as business rule engine. Drools introduce the business logic
integration platform that provides a unified and integrated platform for Rule,
Workflow, and Event Processing. Drools 5 is now split into four main subprojects
[17]: (1) Guvnor (BRMS), a centralized repository for Drools; (2) Expert (rule en-
gine); (3) flow (process/workflow), providing workflow or process capabilities to the
Drools platform; (4) fusion (event processing/temporal reasoning), providing event
processing capabilities. Drools expert is used as a rule engine and Guvnor as a visual
business rule definer which allow browsing and editing the rule set. Generally,

2 http://www.jboss.org/drools/

 On-Demand Business Rule Management Framework for SaaS Application 147

decision table is a useful way to represent conditional logic in a compact format. This
format is also readily readable and editable by non technical users and will be suitable
for most employees to understand. Spreadsheets may not be perfect, but popular and
well-understood. So we can use them to hold the data that we supply to the business
rules. Then use spreadsheets to hold the actual rules in a decision table format. Drools
decision tables can utilize a spreadsheet (such as Excel, CSV) as the means to capture
decision logic in a user friendly way. Because of the convenience of decision table
and supportability of Drools, the decision table is adopted as business rule representa-
tion style in our application.

Fig.6 is the snapshot of the executable Drools decision table for absence approval
process of Tenant C. We can update business rule in a simple spreadsheet and deploy
them with a few clicks. In this decision table, the first three rows are the head infor-
mation includes RuleSet, Import and Notes. RuleSet lets Drools know where the
header table begins. Import lets Drools know which package these rules live in and
other imported additional JavaBeans. Notes is the comment information and ignored
as it means nothing to Drools. The following part is the main body of decision table.
The left part of the decision table is the “CONDITION” cells, which makes up the
“WHEN” part of the rule. The right part of the decision table is “ACTION” cells
which give the “THEN” part of the rules. In Drools, the “WHEN” part of the rules
define the preconditions. The “THEN” part defines conclusions, decision, actions, or
just a new fact deduced from the knowledge base. The < preconditions > is also re-
ferred to as the left-hand side (LHS) of the rule, whereas the < conclusions > is
referred to as the right-hand side (RHS). So, we can also express rules as follows:

 LHS (< rule name >) = < preconditions >

 RHS (< rule name >) = < conclusions >

The first row of decision table could be rendered like the following Drool rules lan-
guage:

rule "absence approval"
when
em(absence_days>0&&absence_days<1);
then
Tenant.sentToApproval (Level 1);
update (em);
end

In order to support the online customization of business rule, it is necessary to use
visual rule definer. Guvnor Editor is a user-friendly web editor which is powerful
enough to modify rules. Tenants can fill in the rule name and rule description, set the
priority of this rule and choose templates to define business rule in line with their
requirements. The modification of decision table will need to download the decision
table and modify it, then upload it with Guvnor. Otherwise, in order to keep the isola-
tion of business rules for different tenant, we build the tenant-based security policy on
the login page with different password for different tenant to prevent the violation of
the rules modification. The visual rule definer of Gnuvor is shown in Fig.7.

148 X. Zhang et al.

Fig. 6. Snapshot of Drools based on decision table

Fig. 7. Snapshot of decision table creation in Gnuvor

5.4 Prototype Application

The SaaS application of AMS prototype is developed following the proposed frame-
work which has successfully integrated business rule engine into SaaS application.
AMS is a SOA-based multi-tenant application. It allows tenant to manage their em-
ployee attendance and presence in a work setting to maximize the motivations and
minimize the loss. And AMS is one of SaaS applications in Cloud Service Supermar-
ket. Fig.8 shows a snapshot of the AMS prototype system, which is successfully dep-
loyed on the SaaS platform of Cloud Service Supermarket [20].

6 Conclusions

In this paper, we have overviewed BR engine based framework and separated three
main components used for such a SaaS application development. Depending on the
proposed framework, it may be possible to ensure different level of agility by an in-
stant deployment of changes in the business policy and immediate reaction to the
changes on the market or competition by changing existing business rules. These
advances allow SaaS application to be more transparent, flexible and cost reduction.

 On-Demand Business Rule Management Framework for SaaS Application 149

Fig. 8. Snapshots of SaaS application of AMS

Although BR engine based application has more complex development process in an
initial phase, but such a system is more efficient in further maintenance and modifica-
tions for numbers of tenants with frequently changing regulations and business policy.

Although the proposed approach is convenient and effective to modify the rule file
and manage the requirement changes by Rule Engine, it also brings lots of extra per-
formance consumptions. The consumptions mainly include the following parts: the
time of compiling rule files, the time of rule matching and the time of rule conflict
resolution and the time for management of rule metadata.

The work presented here, is still in its earlier stage. On the one hand,business rule
isolation for multi-tenant is not completely resolved by Guvnor. So there are more work
still needs to be done on visual definer for specific SaaS application. On the other hand,
performance evaluation work still need to be done in the future to make sure that the
multi-tenant request response time is in a reasonable and tolerable ranage.

Acknowledgements. This Research Project Was Supported by the National Natural
Science Foundation of China under Grant No. 60970017, No. 61202031, No. 61273216,
and No.61100018, National Science & Technology Pillar Program of China under Grant
No.2012BAH07B01, the Fundamental Research Funds for the Central Universities
under Grant No.201121102020004, the Central Grant Funded Cloud Computing Dem-
onstration Project of China Undertaken by Kingdee Software (China) Co., Ltd.

References

1. Kapuruge, M., Colman, A., Han, J.: Achieving multi-tenanted business processes in SaaS
applications. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS,
vol. 6997, pp. 143–157. Springer, Heidelberg (2011)

2. Kwok, T., Nguyen, T.N., Lam, L.: Software as a Service with multi-tenancy support for an
electronic contract management application. In: 2008 IEEE International Conference on
Services Computing, pp. 179–186 (2008)

3. Wan-Kadir, W.M.N., Pericles, L.: Relating evolving business rules to software design.
Journal of Systems Architecture (50), 367–382 (2003)

150 X. Zhang et al.

4. Liu, C., Dong, X.P., Yang, Z.Q.: Research of modern enterprise intelligent system based
on rule engine and workflow. In: 2010 Intelligent Computing and Intelligent Systems
(ICIS), pp. 594–597 (2010)

5. Gichahi, H.K.: Rule-based process support for enterprise information portal (2003),
http://www.sts.tu-harburg.de/pw-and-m-theses/2003/gich03.pdf

6. Orriëns, B., Yang, J., Papazoglou, M.P.: A framework for business rule driven service
compostion. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS, vol. 2819, pp. 14–27.
Springer, Heidelberg (2003)

7. Vasilecas, O.: The framework for the implementation of business rules in ERP. Informaci-
jos Mokslai (49), 146–157 (2009)

8. Vanthienen, J.: Ruling the business: about business rules and decision tables (2009),
http://www.econ.kuleuven.be/tew/academic/infosys/members/vth
ienen/download/papers/br_dt.pdf

9. Forgy, C.: Rete: A Fast Algorithm for the many pattern/many object pattern match prob-
lem. Artificial Intelligence (19), 17–37 (1982)

10. Karami, N., Iijima, J.: A logical approach for implementing dynamic business rules. Con-
temporary Management Research 6(1), 29–52 (2010)

11. Guo, C.J., Sun, W., Huang, Y., et al.: A framework for native multi-tenancy application
development and Management. In: The 9th IEEE International Conference on E-
Commerce Technology and The 4th IEEE International Conference on Enterprise Compu-
ting, E-Commerce and E-Services, pp. 551–558 (2007)

12. Zhang K., Zhang X., Sun W., et al. A policy-driven approach for software-as-services cus-
tomization. The 9th IEEE International Conference on E-Commerce Technology and The
4th IEEE International Conference on Enterprise Computing, E-Commerce and E-
Services, pp.123-130 (2007)

13. Gong, Y.W., Janssen, M., Overbeek, S., et al.: Enabling flexible processes by ECA orches-
tration architecture. In: ICEGOV 2009 Proceedings of the 3rd International Conference on
Theory and Practice of Electronic Governance, pp. 19–26 (2009)

14. Nitu.: Configurability in SaaS (software as a service) applications. In: Proceedings of the
2nd India Software Engineering Conference ISEC 2009, pp. 19–26 (2009)

15. Sun, W., Zhang, X., Guo, C.J., et al.: Software as a Service: Configuration and Customiza-
tion Perspectives. In: IEEE Congress on Services, SERVICES 2008, pp. 18–25 (2008)

16. Shi, Y.L., Luan, S., Li, Q.Z., et al.: A flexible business process customization framework
for SaaS. In: WASE International Conference on Information Engineering, ICIE 2009, pp.
350–353 (2009)

17. Browne, P.: JBoss Drools business rules. Packet publishing. Birmingham-Mumbai (2009)
18. Jeng, J.J., Flaxer, D., Kapoor, S.: RuleBAM: A rule-based framework for business activity Man-

agement. In: 2004 IEEE International Conference on Services Computing, pp. 262–270 (2004)
19. Vasilecas, O., Smaizys, A.: Business rule based data analysis for decision support and au-

tomation. In: International Conference on Computer Systems and Technologies, Comp-
SysTech 2006, pp. 191–196 (2006)

20. Zhang, X.W., He, K.Q., et al.: SaaS service super-market building model and service rec-
ommendation approach. Journal on Communication 32(9A), 158–165 (2011) (in Chinese)

21. Ghaddar, A., Tamzalit, D., Assaf, A., Bitar, A.: Variability as a service: outsourcing variabili-
ty management in multi-tenant SaaS spplications. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 175–189. Springer, Heidelberg (2012)

22. Boyer, J., Mili, H.: Agile business rule development. Springer, Heidelberg (2011)
23. King, P.J.H.: Decision tables, pp. 135–142 (1967),

http://comjnl.oxfordjournals.org/content/10/2/135.full.pdf+html

	On-Demand Business Rule Management Framework for SaaS Application
	1 Introduction
	2 Related Work
	3 Background
	3.1 Business Rule Engine
	3.2 Decision Table

	4 Rule Engine Based Framework for SaaS Application
	4.1 Basic Units of the Framework
	4.2 Capability of the Framework
	4.3 Lifecycle of Business Rules in SaaS

	5 Case Study
	5.1 Motivation
	5.2 Representation of Business Rule
	5.3 Implementation
	5.4 Prototype Application

	6 Conclusions
	References

