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Abstract. This paper describes a specific aspect of the work that has been done 
to virtualize the IT server estate of a company with a modern business architec-
ture of about three to four hundred servers. This yields a practical server envi-
ronment with the same architecture and servers and integrated networking in an 
abstracted form by using sets of HP c7000 chassis units. It has been achieved by 
applying hypervisor-based virtualization technologies to clusters implemented 
across constituent blades between sets of chassis units. The working system is 
enhanced by enabling specific HP c7000 operational capabilities together with 
separate virtualization technologies, which are consolidated in a single coherent 
design model enabled as a virtualized system implemented within one to three 
chassis units on a single site. Furthermore, the system is enhanced by enabling 
virtual L3 Ethernet via specific HP c7000 chassis operational capabilities which 
are consolidated in a single coherent design mode. The system is now enhanced 
so as to operate on a multiple site basis and also to use physical as well as vir-
tual systems (e.g. servers, appliances, applications, networks, storage) in the 
same functional domain. 

Keywords: Cloud Architecture, Profiles, Policy Management, Virtualization, 
Abstraction Classes, Service Control. 

1 Introduction 

There are many projects now underway which involve producing virtualized envi-
ronments to support large-scale systems. Some of these are created as the result of 
physical-to-virtual (P-to-V) transformation programs where, in the first instance, vir-
tual servers may replace the equivalent physical servers. In many cases, this may not 
involve any improvement in design other than the consolidation of server processes 
inherent in the virtual model. However, the virtualization paradigm may yield many 
improvements in systems architecture and design at many levels [6], some of which 
are discussed in an upcoming paper [8].  

It is often the case that the system designer requires a method in order to be able to 
model and simulate part of the target system using the infrastructure intended to sup-
port it. In this case the target system constitutes a virtualized environment and the 
infrastructure that complements it is also made up of virtualized components. These 
virtualized components are derived from the orchestration policy which is in turn part 
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of the modelling system as shown in Fig. 2. The target area for the Functional Domain 
(FD) is given as the specific layer in the model that is derived via the orchestration 
system whose function is to take not just the Virtual Machine (VM) object references, 
but also the Virtual Appliance (VA) object references and construct the equivalent 
virtual objects in the designated FD, subject to the policy of that specific FD. Addi-
tionally, the target system is fabricated as part of the overall virtualized environment 
and essentially can be said to be an FD [7]. This FD is separated from the main parent 
virtualized environment by a construct which we have called a Functional Domain 
Nexus Interface (FDNI). (See Fig. 1, where NAS, RDP, SAN and VDI stand for Net-
work Accessed Storage, Remote Desktop Protocol, Storage Area Network and Virtual 
Desktop Interface, respectively). The FDNI provides a secure point of entry to the 
designated FD such that neither TCP/IP-based traffic nor files may traverse the con-
struct in either direction except by using a specific transit process. Thus the FD is a 
secure area within the Virtualized Environment, or within the cloud as a whole. This 
paper describes how the FDNI and the FD are hosted within a totally virtualized envi-
ronment created by using one or more HP chassis units and a set of blades with X86 
hypervisors (VMware ESXi v4.1 [26]). This concept has been referred to as ‘super-
hosting’, since in essence it consists of the hosting of a virtualized distributed system 
by a totally virtualized environment. Distributed systems may be implemented within 
this environment and tested according to requirements. Alternatively, this method of 
virtualized systems engineering can be regarded as a method by which specific areas, 
within a dynamic cloud structure, can be defined to exist within certain policy con-
straints pertinent to the specific FD. 

This paper introduces the FDNI and will illustrate the practical development of the 
associated FD based on the use of a chassis, blades, and the chassis-based On-Board 
Administrator / VC system together with sets of hypervisors to host sets of VMs in 
conjunction with Virtual Ethernets. The detailed construction of the FDNI in conjunc-
tion with its role in integrated FDs is a key part of another upcoming paper [9]. 

One of the key additional areas of practical development that is shown hereafter is 
how to enable the practical extension of the FD across more than one site within a 
Wide-Area Network (WAN). The corollary of this is that the Functional Design ob-
ject gains the properties of being able to integrate with physical servers or appliances 
as well virtual ones. This leads to highly flexible designs for FDs within the business 
environment context of a cloud. 

This paper also discusses how the classes and inter-connectivity of the constituent 
VMs is based on modelling structures [2] and paradigms for the virtualized cloud that 
are the focus of an upcoming paper [8]. The latter modelling structures are initially 
based on those used for distributed systems and are modified in order to produce net-
works of VMs, VAs and Virtual Storage in the context of an FD. Therefore, this paper 
presents a new way of formulating a solution to the problem of producing a practical 
model for a (virtualized) subsystem of a distributed application. This can be used in 
the assessment of the performance and the behaviour of the latter by direct access and 
measurement of the relative performance and capabilities of the sub-components with 
reference to the system as a whole [17]. 
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Fig. 1. The basic overview of the FD concept within a Cloud 

2 Preliminaries  

2.1 Current Paradigms 

The initial purpose of this work was to meet the challenge of delivering the same func-
tional solution at the application level to the business problems faced by a customer, but 
at a much lower level of delivery cost (say 30%), and also at a much lower level of cost 
with respect to future expansion and implementation. This requires that the solution be 
at least an order of magnitude more flexible and able to add more value. In order to 
achieve this, it is required that the new system be modelled [21] at every level, and also 
ideally virtualized at every level in a fully networked abstracted environment. 

This solution becomes important not only because of the implicit reduction 
in costs but also because the mapping of the business perspective to the tech-
nological areas used in the abstracted environment allows for transparent inte-
gration of systems to improve performance, and also to extend the lifetime of 
most classes of legacy systems. Therefore, the solution extends the natural 
lifetime of a legacy system, as it becomes virtualized and therefore no longer 
dependent on the functioning of its hosting hardware. Additionally, it  
enables the evolution of proven software programs to become more powerful 
by becoming part of larger-scale integrated systems, which in turn may be-
come a part of a virtualized enterprise. Over time, this virtualized environ-
ment provides a vehicle to enable service-based implementations, eventually  
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Fig. 2. Derivation of the practical Virtualized Environment from the Process Model of the VMs 
created from the P-to-V Process Model 

enabling the deployment of SOA (Service Oriented Architecture) in a virtualized 
environment. 

A more immediate purpose of this work was to enable the delivery of a virtualized 
FD that mimics the Production Domain but also has the capability of independent 
policy-based control. This must simulate the business problems faced by the customer 
and must enable system testing within an effective Proof-of-Concept (PoC) virtua-
lized environment. Within this requirement the capital cost of the interface to the 
virtualized FD (PoC) must equate to zero. In order to achieve this, it is required that 
the new system be modelled and virtualized at every level in a fully abstracted net-
worked environment. The natural extension to this scenario is how to enable the vir-
tualized FD to operate in a transparent manner across a WAN. This requires the pro-
duction of an effective FD that may serve as a PoC operating amongst operational 
domains or network sites. Such a system must be able to include physical as well as 
virtual servers in the PoC operational server set. 
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2.2 Current Approaches 

The only current alternative approaches to creating an FD for use as, for example, a 
PoC are those that are recognized as ‘standard’ within the IT industry, largely on the 
grounds of security and risk. These will have the equivalent properties of an indepen-
dent virtualized domain that functions on the business network, but which forms a 
fully isolated environment that is secure. They involve the use of routers, firewalls 
and the construction of an independent network at high capital cost and uncertain 
capability with respect to meeting the specific requirement of keeping the same IP 
addressing in the isolated FD environment as is kept in the parent cloud environment, 
and yet be secure with respect to IP address separation. In addition, the equivalent 
standard physical network would not be as flexible nor be as cost-effective, especially 
with respect to being extended in order to form integrated FD sets [1].  

2.3 Current Status 

The FD system is now in full implementation for PoC and also for VM / virtual sys-
tem evaluation performance testing. This PoC facility forms a critical part of the new 
P-to-V system transferal methodology in the stages of final testing in the authors’ 
development facility area for the generation of Virtualized Environments at minimal 
cost. 

2.4 New Approaches 

One of the key attributes of the concept of an FD, referred to in [7], involves the M:M 
relationship to a business system. This gives the required degree of flexibility neces-
sary to enable multiple business systems functions (e.g. services) to relate to multiple 
degrees of control structure on a peer-to-peer basis in conjunction with hierarchies 
within a cloud. This leads naturally to the following formalism for the logical repre-
sentation of the properties of a generic FD; namely,  

∀ Network_Node(xi) ∃ { Functional_Domain(y) | Network_Node(xi)  

∈ {Functional_Domain(y)} 

∧ ((1 ≤ y ≤ Max(Functional_Domain(y))) 

∧ (1 ≤  xi ≤  Max(Network_Node(xi))))  

∧ ((Network_Node(xi) ∈ {Business_System.Node(ai)})  

∧ (1 ≤ ai ≤  Max(Business_System.Node(ai))))  

∧ ((Business_System.Node(ai)  ∈ {Functional_Domain(y).BusSys(z)})  

∧ (1 ≤  z  ≤ Max(Functional_Domain(y).BusSys(z)))) } 

which is in [7].  
The concept of FD, as it is herein presented, enables the requirement that a node 

may belong either to different domains within an operational session, depending on 
the set of abstracted processes being invoked; or alternatively, it may be a member of 
more than one domain simultaneously. By abstracting the concept of the network 
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Fig. 3. A generic tier-based structure to illustrate the major classes and subclasses of an appli-
cation that may exist within a conventional distributed systems environment 

node within a cloud, each Network_Node object can be associated with different sub-
classes of abstracted cloud classes, e.g. those of users, user groups or workstations.   

2.5 Server Process Abstraction 

There is a great degree of overlap in the structure and the basic design of a cloud 
when compared to a large-scale open enterprise system. There is an ever-increasing 
tendency to formulate applications as distributed systems for a variety of reasons. 
Amongst these is the requirement for source code to become more agile in the sense 
that it can become more re-usable. When dealing with conventional physical systems 
this essentially means that modules that are constructed and compiled using such code 
(e.g. ActiveX, .NET [4], CORBA [19,22], JMS [10] modules) are copied between 
different physical servers. In such cases their degree of separation within a single 
project tends to be governed by their relative degrees of utilization within that self-
same environment. Thus this pattern tends to follow the relatively restricted pattern of 
the distribution of server class shown in Fig. 3. 

Hence it becomes essential to add value to the process of virtualization, and from 
there to the formation of a cloud through the use of processes that are currently being 
developed to consolidate the distribution of VMs in conjunction with their relative 
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Fig. 4. A generic tier-based structure to illustrate the general classes of operating system and 
systems hosting that may be compliant with each level of application in a conventional distri-
buted system 

degrees of utilization [24]. This enhancement of virtualization is presently being 
modelled [8], so as to achieve a greater level of consolidation of application modules 
on the basis of their function with respect to their access functions. If the access func-
tions are distributed and yet owned by separate projects, then the ownership paradigm 
must not be a determinant for which application modules become associated by 
threads to the required software modules. This indicates that many projects can there-
fore have temporary ‘ownership’ through the use of associated threads of one or more 
virtualized processes.  

If this policy is implemented, then the result tends toward a distributed software 
environment that is more in line with that shown in Fig. 4. This illustrates the basis of 
a distributed environment that is, whilst ideally virtualized, also shared such that mul-
tiple projects within a business may have access to the same resource sets (VMs, VAs 
et al.) that exist within each level [16,13]. This concept leads to the formulation of a 
generic tier-based structure to illustrate the general classes of operating system and 
systems hosting that may be compliant with each level of application in a convention-
al distributed system. The essential concept to convey is that each instance of such a 
structure can be configured to occupy a single FD, where it may be examined in de-
tail. The natural extension to this paradigm is that multiple areas of such shared re-
sources may be deployed within one or more FDs in the same superhost. 

Each such tier contains many VMs, VDIs and VAs that may be accessed by  
multiple access modules from multiple projects. The security level issues are not  
addressed in this paper but are the result of different policies from different FDs  
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resulting in different software module access profilers being generated in accordance 
with different system requirements.  

2.6 Hardware Environment  

The Virtualization Environment was developed using blade technology on an HP 
c7000 chassis which has 16 internal device bays. A chassis is able to host up to 16 
half-height blades or up to 8 full-height blades or any combination of the two depend-
ing on the class of blade. The chassis operational system was configured using an HP 
c7000 Operational Administrator (OA) module and an HP c7000 Virtual Connect 
(VC) bay module. All external interface modules (power, network, Host Bus Adapter 
(HBA) for Fibre-Channel (FC) storage access) were implemented in duplicate for 
seamless failover. The virtualized environment selected involved the use of X86 pro-
cessor architecture to implement the VMware ESXi v4.1 hypervisor.  

This was done through the use of the HP BL490c blade (2 * 4 core @2.56GHz, 
96GB RAM, 2 * 1 Gbps NIC). The external HBA interface consists of 4 * 4Gbps FC 
interfaces to the SAN controller for direct access to the SAN-based hard drives 
through an HP XP24000 storage chassis. The network consisted of dual 3 * 10Gbps 
Ethernet from the VC bay (port 3X, 4X, 5X) implemented as a shared system con-
nected to the dual Cisco 6509 L3 switches. This is complemented by a dual link to the 
NAS storage drive via a NetApp VFiler which is accessed through port 6X of the VC 
bay using IP at 10Gbps. This hardware setup is duplicated on both sites and is illu-
strated in Fig.10. The HP XP24000 SAN is simulated through the use of a VM in the 
FD that accesses the NAS whilst running a software emulator for the HP XP24000 
SAN. 

2.7 Proof-of-Concept / Subsystem Abstraction  

The concept of the virtualization of distributed subsystems has been utilized in order 
to test complex distributed applications, some of which have been produced by P-to-V 
operations and some through more conventional UML modelling (Muller, 1997). 
These VMs are required to be integrated in a duplicate environment to that of main 
production using equivalent software design but in a situation that was secure and 
where the relative performance criteria could be assessed. This system is now in full 
implementation for PoC testing and also for VM Factory testing.  

3 Design of a Generic Approach 

The initial approach was to undertake an analysis of the extant physical environment, 
producing the required landscape and cost of the basic business solution. This was 
followed by a projection based on the model of future operations with available com-
pute technology for high level processing, yielding the initial levels of %CPU utiliza-
tion based on physical server hosting. This solution concept was re-worked using  
the ‘superhosting’ concepts described within this paper. A ‘superhost’ is a computing 
system capable of running a very large number, in our case more than 200,  



62 J. Eccles and G. Loizou 

COTS-based subserver operating systems. These systems are normally extended ap-
plications that are implemented as distributed systems and have the property of being 
able to be interconnected at the level of a routable protocol (e.g. DCOM, COM+, 
ODBC, .NET [5]). 

The latter sets of systems also have the requirement to be interconnected at a 
routing (L3) level and are thus able to be implemented within flexible environments 
produced by different FDs. This re-working was followed by process analysis of the 
extant physical system as a whole. This is in order to evaluate the optimum processing 
capability of the proposed classes of Target Host server with reference to the meas-
ured utilization of the threads of the extant physical server processes. From this, the 
VM-to-target Host Server mappings are computed in order to evaluate the theoretical 
P-to-V consolidation ratios of the VMs to the Target Hosts. This can create a number 
of alternative mapping scenarios, depending upon the sets of VMs and target classes 
selected. 

The initial approach involved an automated analysis of the current customer physi-
cal environment, producing the required system and P-to-V model and cost of the 
basic VM-to-target mapping solution. This was followed by a projection based on the 
model of future operations and costs with available compute technology for high level 
processing, yielding the initial levels of %CPU utilization based on the best projected 
set of VM-to-target mappings. For each functional sub-domain within the derived 
host model, this solution concept as a whole was re-worked using ‘superhosting’ by 
employing blades within chassis architectures. 

The next step in the Transition Mode of Operation (TMO) was to create an FD in 
the HP c7000 chassis, separated by an FDNI, so as to be able to create VMs from the 
current Production area and test the basic functionality of each generated VM. This 
was done by creating sets of Virtual Ethernets using the VC functions on the HP 
c7000 chassis. The critical point of the architecture is where the separation of the 
independent FD for the superhost is achieved using the FDNI. The separation of the 
Production network into two or more networks with the same IP subnet domain is 
achieved by the FDNI, effectively acting as a network diode, so as to achieve a unidi-
rectional dataflow between them, where the event of passing an object through the 
diode is only able to be achieved through a deliberate action using a transfer facility 
within the FDNI. This degree of separation is achieved as a consequence of the FDNI 
implementing the following criteria: No IP Forwarding between the two physical 
NIC’s of the blade server; Virtual Ethernet Separation via nested VMs hosting nested 
firewalls and via Protocol Separation through a VM hosting a dual-point of access 
created to a SAN datavolume, which is addressed using both the NFS and the CIFS 
protocols. This results in no capital cost overhead. 

The range of this solution was extended by evaluating the internetworking of each 
physical server with respect to the hosted application’s dataflow(s), and adding this 
information to the model of the current TMO environment. The next step in the TMO 
was to create a restricted area in the HP c7000 chassis in order to be able to create 
VMs from the current Production area. This was complemented by the creation of a 
TMO ‘proving area’ to test the basic functionality of each generated VM. The FD in 
the proving area enables the validation and tuning of the VM in conjunction with final 
confirmation on the functionality of the VM.  
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This was followed by the creation of the Virtualized Ethernets and their inter-
connection using both L2 networking through sets of inter-connecting VMs. The vir-
tual networks which are defined within the model are implemented using HP Virtual 
Network technology which utilizes OSI Level 2. We have extended this through the 
use of both VAs and VMs. In our case a set of Linux-based VAs were created to ena-
ble OSI Layer 3 routing between different subnets as well as firewalls to separate 
different virtual Ethernet environments, such as DMZ architectures, within the Virtua-
lized ‘SuperHost’ (cf. Fig. 8, 9). This is the most basic overview utilizing approved 
modelling techniques. A full model is multi-layered and too complex to be included 
in this short paper. We utilized the IEEE standard RFC1918 which allowed the build-
ing of controlled networks such that L3 routing was required to enable their inter-
connection. 

The initial area of innovation presented here is the derivation of a full virtualized 
system from a complex physical model. This level of complexity must be retained as 
systems management will be integrated with the full multi-layered model. The main 
area presented extends the L2 Virtualized Ethernet to L3 using specific sets of L3 
routers implemented as VAs, which enables the integration of sets of disparate COTS-
based technologies, so that they may inter-operate transparently in the same HP c7000 
device. This involves using sets of specific VAs to enhance the functional capabilities 
of the Virtualization Management software controlling the HP Smart Chassis and 
Blade Solution. The next area of innovation is to use the described extensions to ena-
ble a VDI layer virtual Ethernet to give a layer of secure access from the Cisco-based 
production network in a transparent manner through an uplink (Fig. 10). 

3.1 Functional Domain Nexus Interface Mk II 

Nexus Mk II Zones for the PILOT Environment Design: the design essentially  
becomes similar to a ‘Jump Box’ using IEEE RFC1918 networks and Microsoft Ter-
minal Services technology. A Microsoft Firewall is active on the Nexus VM. IP for-
warding is NOT permitted on this VM. Shared FC SAN is still used in the datacentre 
implementation allowing the implementation of a ‘Reverse Nexus’. The virtualized 
equivalents of the physical environment are consolidated into Virtualized Ethernets 
(Vnets) for Vmotion and for Virtual Business networks that are within a defined vir-
tual site which hosts the virtualized datacentre. The VLAN principles for the FD pilot 
area are that the VLAN configurations from the Cisco 6509 L3 switch to the HP 
c7000 chassis are standard for each production chassis. The term Vnet is used to de-
scribe an HP VC internal chassis network. Internally, the HP VC module software and 
VMWare ESXi hypervisor will be configured to provide intra-chassis variance. The 
pilot intra-chassis variance (Fig. 5) will be as per FDNI Mk II design, where a Vnet 
connected to production is present; a Vnet ‘Transit’ NOT connected to production is 
present and Vnets ‘Pilot-V-Production1’ and ‘Pilot-V-Production2’ NOT connected 
to ‘Production’ are present. ‘Transit’ Vnet is a 172 IP; ‘V-Datacentre1’ and ‘V-
Datacentre2’ are similar in structure to those in the Production area, but are segre-
gated by ‘Transit’ and the FDNI VM from main production. 
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Fig. 5. A summary illustration of the FDNI that shows the basic parameters that are involved in 
the interfacing between the Production, the Transit and the FD (Pilot) environments 

3.2 Functional Domain: Creation of the Basic ‘Superhost’  

This section illustrates the more detailed construction of the FD by increasing the 
complexity, and thereby the corresponding degree of functionality, of the superhost.  
Initially, as shown in Fig. 6, the production network of the cloud is linked through a 
VC port (3x, 4x, 5x) of the HP c7000 chassis to the FDNI entry port via the produc-
tion NIC (NIC-1) of the HP BL490c blade upon which the FDNI / FDNI VM has 
been installed.  

The FDNI is connected to the exit port via NIC-2 of the blade, which is in turn 
connected to the ‘Transit’ virtual Ethernet. As the name implies, all constituent HP 
BL490c blades in their respective clusters (Fig. 7) within the FD have one of their two 
NIC’s connected to the ‘Transit’ virtual Ethernet. This gives a method of L2 TCP/IP 
connection for all VMs/VAs that are installed in the FD. However, not all installed 
VMs require direct connectivity to the ‘Transit’ virtual Ethernet. It is only important 
that there is a route that can be taken by L2 to ‘Transit’ at this point. The next level of 
development is to use the latter L2 connectivity to facilitate the addition of further 
virtual Ethernets (e.g. Virtual_Datacentre2, Pilot_V_Production1 in Fig. 7) using HP 
c7000 VC software. 

This is now complemented by the addition of an extra virtual Ethernet for the host-
ing of a set of VDIs. The VDIs are communicated with via the FDNI using the RDP 
(Microsoft). When activated the user has access to a remote desktop window which 
operates inside the FD/PoC, and with this the user may operate safely without 
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Fig. 6. View of the initial 'Superhost' structure showing the interface between the Production, 
the Transit and the FD (in this case the Virtual Datacentre) environments 

 

Fig. 7. The addition of more Virtual Ethernets to the FD. These can only be accessed from the 
‘Transit’ Virtual Ethernet employing TCP/IP L2 using the 4 vNIC ports in any of the local VMs 
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Fig. 8. The addition of an extra VDI virtual Ethernet as well as additional production emulation 
layers within the FD. These inter-communicate using TCP/IP L2. The addition of TCP/IP L3 
switching capability to this set of virtual Ethernets is done by creating a VA-based on Red Hat 
Linux using the FreeSCO L3 switch software. 

any risk that his/her activities may compromise the functionality or the integrity of the 
external cloud. The FD design is now taken to a further level by the addition of a L3 
switch, which is implemented by using a VM with a Red Hat Linux guest operating 
system together with a FreeSCO L3 switch command system. This now results in the 
design model of Fig. 8. This has resulted in the use of VAs to enable a DMZ to be 
constructed (Fig. 9). The totality of these incremental layers of development is now 
available using L3, and also using uplinks to the 3x, 4x or 5x HP c7000 VC ports to 
the Cisco Ethernet networks. 

This leads to the extension of the design concept in that the overall FD can access 
an isolated Ethernet that runs between the two sites. As such it is important to under-
stand that the Ethernet concerned must be isolated from the main network, so that 
there may be no interference with respect to the traffic or the TCP/IP addressing 
ranges. Thus, this requirement is met by the set of two FDs illustrated in Fig.10. 

Therefore the next area of innovation is to enable a VDI layer virtual Ethernet to 
give a layer of secure access from the Cisco-based production network in a transpa-
rent manner through an uplink from the chassis (Fig.10) to the Cisco L3 switch layer. 
This results in the FD being extended so that it is still bounded by the FDNI_entry 
and the FDNI_exit but now extends between the two sites in a seamless fashion. This 
has been done using a stretched VLAN between sites in order to maintain the same 
subnet and gateway address, but this technique only works where the physical con-
nectivity distance between the sites is less than of an order of 20km. If stretched 
VLANs were replaced by L3 switching, then the FD network could still be isolated 
but the IP addresses of the constituent FD elements will be different on each of the 
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Fig. 9. The addition of a De-Militarised Zone (DMZ) made up of Linux-based VA Firewall 
units on a separate DMZ virtual Ethernet, and a L3 switch to link all of the FD virtual Ethernets 

 

Fig. 10. Extended cross-site virtualized FD (PoC) 

respective sites. This does not mean that this design no longer works, but rather that 
the mapping models in Fig. 2, 3 and 4 must be accurately detailed so that the IP ad-
dressing of each VM on each site is categorized and implemented through the use of 
DHCP/DNS. This design enables users to use the VMs/VAs either directly through 
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the specific use of RDP from the Production network through the FDNI, or via con-
trolled access of the VDIs via the uplink interface from the isolated test virtual Ether-
net to the HP c7000 VC. This is extended to operate on a WAN-based cross-site basis 
as shown in Fig. 10. This can now include physical devices as well as VMs/VAs 
(DHCP stands for Dynamic Host Configuration Protocol.). 

This design enables the testing of a set of specialized applications with an HP 
Superdome and a SUN F15K using the FD/PoC environment adapted so as to isolate 
the physical server components of the required applications. The physical and virtual 
servers are implemented using the current IP addresses of their equivalent Production 
hosts due to the capabilities of the FDNI. 

4 Discussion 

It is envisaged that each such subsystem may be represented within an FD with the 
contents of each such subsystem making up an individual distributed application. This 
technology introduces a practical means of implementing ‘Systems Engineering depth 
to breadth switching’ which is broadly defined as “The ability of systems engineers 
and architects to cognitively alternate, from a detailed engineering discipline rigor, to 
a meaningful broad level of abstraction. These unique individuals have the ability 
tobuild models that hide underlying implementation details and bridge the communi-
cation gaps between multiple disciplines.” [25]. Each such subsystem modelled with-
in an FD should be able to be represented as a single class composed of a set of con-
stituent classes. The relationship to be pursued here is not one of inheritance as in a 
superclass to a set of subclasses [20,23] but rather one employing the techniques of 
frame-based modelling [18,14] to produce a framework class to represent the know-
ledge of how the system is constructed. 

5 Future Work 

This area of integration is carried out within a single HP c7000 chassis and extended 
across multiple chassis units to form a distributed centre capable of supporting in the 
order of more than 1000 VMs. Further work is required in building a fully integrated 
model with distributed sets of chassis units that are linked using L3 TCP/IP with 
DHCP/DNS/X.500-based directory services to facilitate the dynamic movement of 
VMs that are within the same FD, but are actually located on different sites. This 
work also needs to be extended in applying different classes of QMS Requirement-
based Clustering [3] to the multi-cluster blade model within the ‘SuperHost’, thus 
enabling different ‘SuperHost’ entities to be clustered in different manners [15] ac-
cording to the QMS Requirements specified. This leads towards using the  
‘SuperHost’ system as a key component in a practical solution to cloud computing. 
The principle here is that an FD could be used to enable a set of pattern-based design 
tools to create a practical means of designing and modelling systems [12,23], from the 
simple to the very complex indeed. Such systems, through the use of associated meta-
data, could also have the capability of interfacing to complex simulation systems 
based on describing systems in terms of specific class-based connectivity, such as 
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Hyperformix. Creating multiple sets of overlapping FDs for accelerated policy simu-
lation and system modelling is another area that is being currently pursued. This can 
be done through the use of mathematics followed by the creation of VMs as simulated 
application servers. This will create overlapping models where the resultant effect on 
the net policies can be virtualized.  

6 Conclusions 

This paper presents the basis for advancing the concept of the metamodel by moving 
from a set of modelling methods within a framework methodology [11] to an equiva-
lent model that is virtual and can participate in positive testing and evaluation before 
the main product is finally constructed, thereby lowering the overall cost and risk 
involved in a development project.  
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