

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 54–70, 2013.
© Springer International Publishing Switzerland 2013

Realization of a Functional Domain within a Cloud

Jonathan Eccles1 and George Loizou1,2

1 Department of Computer Science and Information Systems, Birkbeck, University of London,
London WC1E 7HX, U.K.

2 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
Jonathan.eccles@hp.com, george@dcs.bbk.ac.uk

Abstract. This paper describes a specific aspect of the work that has been done
to virtualize the IT server estate of a company with a modern business architec-
ture of about three to four hundred servers. This yields a practical server envi-
ronment with the same architecture and servers and integrated networking in an
abstracted form by using sets of HP c7000 chassis units. It has been achieved by
applying hypervisor-based virtualization technologies to clusters implemented
across constituent blades between sets of chassis units. The working system is
enhanced by enabling specific HP c7000 operational capabilities together with
separate virtualization technologies, which are consolidated in a single coherent
design model enabled as a virtualized system implemented within one to three
chassis units on a single site. Furthermore, the system is enhanced by enabling
virtual L3 Ethernet via specific HP c7000 chassis operational capabilities which
are consolidated in a single coherent design mode. The system is now enhanced
so as to operate on a multiple site basis and also to use physical as well as vir-
tual systems (e.g. servers, appliances, applications, networks, storage) in the
same functional domain.

Keywords: Cloud Architecture, Profiles, Policy Management, Virtualization,
Abstraction Classes, Service Control.

1 Introduction

There are many projects now underway which involve producing virtualized envi-
ronments to support large-scale systems. Some of these are created as the result of
physical-to-virtual (P-to-V) transformation programs where, in the first instance, vir-
tual servers may replace the equivalent physical servers. In many cases, this may not
involve any improvement in design other than the consolidation of server processes
inherent in the virtual model. However, the virtualization paradigm may yield many
improvements in systems architecture and design at many levels [6], some of which
are discussed in an upcoming paper [8].

It is often the case that the system designer requires a method in order to be able to
model and simulate part of the target system using the infrastructure intended to sup-
port it. In this case the target system constitutes a virtualized environment and the
infrastructure that complements it is also made up of virtualized components. These
virtualized components are derived from the orchestration policy which is in turn part

 Realization of a Functional Domain within a Cloud 55

of the modelling system as shown in Fig. 2. The target area for the Functional Domain
(FD) is given as the specific layer in the model that is derived via the orchestration
system whose function is to take not just the Virtual Machine (VM) object references,
but also the Virtual Appliance (VA) object references and construct the equivalent
virtual objects in the designated FD, subject to the policy of that specific FD. Addi-
tionally, the target system is fabricated as part of the overall virtualized environment
and essentially can be said to be an FD [7]. This FD is separated from the main parent
virtualized environment by a construct which we have called a Functional Domain
Nexus Interface (FDNI). (See Fig. 1, where NAS, RDP, SAN and VDI stand for Net-
work Accessed Storage, Remote Desktop Protocol, Storage Area Network and Virtual
Desktop Interface, respectively). The FDNI provides a secure point of entry to the
designated FD such that neither TCP/IP-based traffic nor files may traverse the con-
struct in either direction except by using a specific transit process. Thus the FD is a
secure area within the Virtualized Environment, or within the cloud as a whole. This
paper describes how the FDNI and the FD are hosted within a totally virtualized envi-
ronment created by using one or more HP chassis units and a set of blades with X86
hypervisors (VMware ESXi v4.1 [26]). This concept has been referred to as ‘super-
hosting’, since in essence it consists of the hosting of a virtualized distributed system
by a totally virtualized environment. Distributed systems may be implemented within
this environment and tested according to requirements. Alternatively, this method of
virtualized systems engineering can be regarded as a method by which specific areas,
within a dynamic cloud structure, can be defined to exist within certain policy con-
straints pertinent to the specific FD.

This paper introduces the FDNI and will illustrate the practical development of the
associated FD based on the use of a chassis, blades, and the chassis-based On-Board
Administrator / VC system together with sets of hypervisors to host sets of VMs in
conjunction with Virtual Ethernets. The detailed construction of the FDNI in conjunc-
tion with its role in integrated FDs is a key part of another upcoming paper [9].

One of the key additional areas of practical development that is shown hereafter is
how to enable the practical extension of the FD across more than one site within a
Wide-Area Network (WAN). The corollary of this is that the Functional Design ob-
ject gains the properties of being able to integrate with physical servers or appliances
as well virtual ones. This leads to highly flexible designs for FDs within the business
environment context of a cloud.

This paper also discusses how the classes and inter-connectivity of the constituent
VMs is based on modelling structures [2] and paradigms for the virtualized cloud that
are the focus of an upcoming paper [8]. The latter modelling structures are initially
based on those used for distributed systems and are modified in order to produce net-
works of VMs, VAs and Virtual Storage in the context of an FD. Therefore, this paper
presents a new way of formulating a solution to the problem of producing a practical
model for a (virtualized) subsystem of a distributed application. This can be used in
the assessment of the performance and the behaviour of the latter by direct access and
measurement of the relative performance and capabilities of the sub-components with
reference to the system as a whole [17].

56 J. Eccles and G. Loizou

Fig. 1. The basic overview of the FD concept within a Cloud

2 Preliminaries

2.1 Current Paradigms

The initial purpose of this work was to meet the challenge of delivering the same func-
tional solution at the application level to the business problems faced by a customer, but
at a much lower level of delivery cost (say 30%), and also at a much lower level of cost
with respect to future expansion and implementation. This requires that the solution be
at least an order of magnitude more flexible and able to add more value. In order to
achieve this, it is required that the new system be modelled [21] at every level, and also
ideally virtualized at every level in a fully networked abstracted environment.

This solution becomes important not only because of the implicit reduction
in costs but also because the mapping of the business perspective to the tech-
nological areas used in the abstracted environment allows for transparent inte-
gration of systems to improve performance, and also to extend the lifetime of
most classes of legacy systems. Therefore, the solution extends the natural
lifetime of a legacy system, as it becomes virtualized and therefore no longer
dependent on the functioning of its hosting hardware. Additionally, it
enables the evolution of proven software programs to become more powerful
by becoming part of larger-scale integrated systems, which in turn may be-
come a part of a virtualized enterprise. Over time, this virtualized environ-
ment provides a vehicle to enable service-based implementations, eventually

 Realization of a Functional Domain within a Cloud 57

Fig. 2. Derivation of the practical Virtualized Environment from the Process Model of the VMs
created from the P-to-V Process Model

enabling the deployment of SOA (Service Oriented Architecture) in a virtualized
environment.

A more immediate purpose of this work was to enable the delivery of a virtualized
FD that mimics the Production Domain but also has the capability of independent
policy-based control. This must simulate the business problems faced by the customer
and must enable system testing within an effective Proof-of-Concept (PoC) virtua-
lized environment. Within this requirement the capital cost of the interface to the
virtualized FD (PoC) must equate to zero. In order to achieve this, it is required that
the new system be modelled and virtualized at every level in a fully abstracted net-
worked environment. The natural extension to this scenario is how to enable the vir-
tualized FD to operate in a transparent manner across a WAN. This requires the pro-
duction of an effective FD that may serve as a PoC operating amongst operational
domains or network sites. Such a system must be able to include physical as well as
virtual servers in the PoC operational server set.

58 J. Eccles and G. Loizou

2.2 Current Approaches

The only current alternative approaches to creating an FD for use as, for example, a
PoC are those that are recognized as ‘standard’ within the IT industry, largely on the
grounds of security and risk. These will have the equivalent properties of an indepen-
dent virtualized domain that functions on the business network, but which forms a
fully isolated environment that is secure. They involve the use of routers, firewalls
and the construction of an independent network at high capital cost and uncertain
capability with respect to meeting the specific requirement of keeping the same IP
addressing in the isolated FD environment as is kept in the parent cloud environment,
and yet be secure with respect to IP address separation. In addition, the equivalent
standard physical network would not be as flexible nor be as cost-effective, especially
with respect to being extended in order to form integrated FD sets [1].

2.3 Current Status

The FD system is now in full implementation for PoC and also for VM / virtual sys-
tem evaluation performance testing. This PoC facility forms a critical part of the new
P-to-V system transferal methodology in the stages of final testing in the authors’
development facility area for the generation of Virtualized Environments at minimal
cost.

2.4 New Approaches

One of the key attributes of the concept of an FD, referred to in [7], involves the M:M
relationship to a business system. This gives the required degree of flexibility neces-
sary to enable multiple business systems functions (e.g. services) to relate to multiple
degrees of control structure on a peer-to-peer basis in conjunction with hierarchies
within a cloud. This leads naturally to the following formalism for the logical repre-
sentation of the properties of a generic FD; namely,

∀ Network_Node(xi) ∃ { Functional_Domain(y) | Network_Node(xi)

∈ {Functional_Domain(y)}

∧ ((1 ≤ y ≤ Max(Functional_Domain(y)))

∧ (1 ≤ xi ≤ Max(Network_Node(xi))))

∧ ((Network_Node(xi) ∈ {Business_System.Node(ai)})

∧ (1 ≤ ai ≤ Max(Business_System.Node(ai))))

∧ ((Business_System.Node(ai) ∈ {Functional_Domain(y).BusSys(z)})

∧ (1 ≤ z ≤ Max(Functional_Domain(y).BusSys(z)))) }

which is in [7].
The concept of FD, as it is herein presented, enables the requirement that a node

may belong either to different domains within an operational session, depending on
the set of abstracted processes being invoked; or alternatively, it may be a member of
more than one domain simultaneously. By abstracting the concept of the network

 Realization of a Functional Domain within a Cloud 59

Fig. 3. A generic tier-based structure to illustrate the major classes and subclasses of an appli-
cation that may exist within a conventional distributed systems environment

node within a cloud, each Network_Node object can be associated with different sub-
classes of abstracted cloud classes, e.g. those of users, user groups or workstations.

2.5 Server Process Abstraction

There is a great degree of overlap in the structure and the basic design of a cloud
when compared to a large-scale open enterprise system. There is an ever-increasing
tendency to formulate applications as distributed systems for a variety of reasons.
Amongst these is the requirement for source code to become more agile in the sense
that it can become more re-usable. When dealing with conventional physical systems
this essentially means that modules that are constructed and compiled using such code
(e.g. ActiveX, .NET [4], CORBA [19,22], JMS [10] modules) are copied between
different physical servers. In such cases their degree of separation within a single
project tends to be governed by their relative degrees of utilization within that self-
same environment. Thus this pattern tends to follow the relatively restricted pattern of
the distribution of server class shown in Fig. 3.

Hence it becomes essential to add value to the process of virtualization, and from
there to the formation of a cloud through the use of processes that are currently being
developed to consolidate the distribution of VMs in conjunction with their relative

60 J. Eccles and G. Loizou

Fig. 4. A generic tier-based structure to illustrate the general classes of operating system and
systems hosting that may be compliant with each level of application in a conventional distri-
buted system

degrees of utilization [24]. This enhancement of virtualization is presently being
modelled [8], so as to achieve a greater level of consolidation of application modules
on the basis of their function with respect to their access functions. If the access func-
tions are distributed and yet owned by separate projects, then the ownership paradigm
must not be a determinant for which application modules become associated by
threads to the required software modules. This indicates that many projects can there-
fore have temporary ‘ownership’ through the use of associated threads of one or more
virtualized processes.

If this policy is implemented, then the result tends toward a distributed software
environment that is more in line with that shown in Fig. 4. This illustrates the basis of
a distributed environment that is, whilst ideally virtualized, also shared such that mul-
tiple projects within a business may have access to the same resource sets (VMs, VAs
et al.) that exist within each level [16,13]. This concept leads to the formulation of a
generic tier-based structure to illustrate the general classes of operating system and
systems hosting that may be compliant with each level of application in a convention-
al distributed system. The essential concept to convey is that each instance of such a
structure can be configured to occupy a single FD, where it may be examined in de-
tail. The natural extension to this paradigm is that multiple areas of such shared re-
sources may be deployed within one or more FDs in the same superhost.

Each such tier contains many VMs, VDIs and VAs that may be accessed by
multiple access modules from multiple projects. The security level issues are not
addressed in this paper but are the result of different policies from different FDs

 Realization of a Functional Domain within a Cloud 61

resulting in different software module access profilers being generated in accordance
with different system requirements.

2.6 Hardware Environment

The Virtualization Environment was developed using blade technology on an HP
c7000 chassis which has 16 internal device bays. A chassis is able to host up to 16
half-height blades or up to 8 full-height blades or any combination of the two depend-
ing on the class of blade. The chassis operational system was configured using an HP
c7000 Operational Administrator (OA) module and an HP c7000 Virtual Connect
(VC) bay module. All external interface modules (power, network, Host Bus Adapter
(HBA) for Fibre-Channel (FC) storage access) were implemented in duplicate for
seamless failover. The virtualized environment selected involved the use of X86 pro-
cessor architecture to implement the VMware ESXi v4.1 hypervisor.

This was done through the use of the HP BL490c blade (2 * 4 core @2.56GHz,
96GB RAM, 2 * 1 Gbps NIC). The external HBA interface consists of 4 * 4Gbps FC
interfaces to the SAN controller for direct access to the SAN-based hard drives
through an HP XP24000 storage chassis. The network consisted of dual 3 * 10Gbps
Ethernet from the VC bay (port 3X, 4X, 5X) implemented as a shared system con-
nected to the dual Cisco 6509 L3 switches. This is complemented by a dual link to the
NAS storage drive via a NetApp VFiler which is accessed through port 6X of the VC
bay using IP at 10Gbps. This hardware setup is duplicated on both sites and is illu-
strated in Fig.10. The HP XP24000 SAN is simulated through the use of a VM in the
FD that accesses the NAS whilst running a software emulator for the HP XP24000
SAN.

2.7 Proof-of-Concept / Subsystem Abstraction

The concept of the virtualization of distributed subsystems has been utilized in order
to test complex distributed applications, some of which have been produced by P-to-V
operations and some through more conventional UML modelling (Muller, 1997).
These VMs are required to be integrated in a duplicate environment to that of main
production using equivalent software design but in a situation that was secure and
where the relative performance criteria could be assessed. This system is now in full
implementation for PoC testing and also for VM Factory testing.

3 Design of a Generic Approach

The initial approach was to undertake an analysis of the extant physical environment,
producing the required landscape and cost of the basic business solution. This was
followed by a projection based on the model of future operations with available com-
pute technology for high level processing, yielding the initial levels of %CPU utiliza-
tion based on physical server hosting. This solution concept was re-worked using
the ‘superhosting’ concepts described within this paper. A ‘superhost’ is a computing
system capable of running a very large number, in our case more than 200,

62 J. Eccles and G. Loizou

COTS-based subserver operating systems. These systems are normally extended ap-
plications that are implemented as distributed systems and have the property of being
able to be interconnected at the level of a routable protocol (e.g. DCOM, COM+,
ODBC, .NET [5]).

The latter sets of systems also have the requirement to be interconnected at a
routing (L3) level and are thus able to be implemented within flexible environments
produced by different FDs. This re-working was followed by process analysis of the
extant physical system as a whole. This is in order to evaluate the optimum processing
capability of the proposed classes of Target Host server with reference to the meas-
ured utilization of the threads of the extant physical server processes. From this, the
VM-to-target Host Server mappings are computed in order to evaluate the theoretical
P-to-V consolidation ratios of the VMs to the Target Hosts. This can create a number
of alternative mapping scenarios, depending upon the sets of VMs and target classes
selected.

The initial approach involved an automated analysis of the current customer physi-
cal environment, producing the required system and P-to-V model and cost of the
basic VM-to-target mapping solution. This was followed by a projection based on the
model of future operations and costs with available compute technology for high level
processing, yielding the initial levels of %CPU utilization based on the best projected
set of VM-to-target mappings. For each functional sub-domain within the derived
host model, this solution concept as a whole was re-worked using ‘superhosting’ by
employing blades within chassis architectures.

The next step in the Transition Mode of Operation (TMO) was to create an FD in
the HP c7000 chassis, separated by an FDNI, so as to be able to create VMs from the
current Production area and test the basic functionality of each generated VM. This
was done by creating sets of Virtual Ethernets using the VC functions on the HP
c7000 chassis. The critical point of the architecture is where the separation of the
independent FD for the superhost is achieved using the FDNI. The separation of the
Production network into two or more networks with the same IP subnet domain is
achieved by the FDNI, effectively acting as a network diode, so as to achieve a unidi-
rectional dataflow between them, where the event of passing an object through the
diode is only able to be achieved through a deliberate action using a transfer facility
within the FDNI. This degree of separation is achieved as a consequence of the FDNI
implementing the following criteria: No IP Forwarding between the two physical
NIC’s of the blade server; Virtual Ethernet Separation via nested VMs hosting nested
firewalls and via Protocol Separation through a VM hosting a dual-point of access
created to a SAN datavolume, which is addressed using both the NFS and the CIFS
protocols. This results in no capital cost overhead.

The range of this solution was extended by evaluating the internetworking of each
physical server with respect to the hosted application’s dataflow(s), and adding this
information to the model of the current TMO environment. The next step in the TMO
was to create a restricted area in the HP c7000 chassis in order to be able to create
VMs from the current Production area. This was complemented by the creation of a
TMO ‘proving area’ to test the basic functionality of each generated VM. The FD in
the proving area enables the validation and tuning of the VM in conjunction with final
confirmation on the functionality of the VM.

 Realization of a Functional Domain within a Cloud 63

This was followed by the creation of the Virtualized Ethernets and their inter-
connection using both L2 networking through sets of inter-connecting VMs. The vir-
tual networks which are defined within the model are implemented using HP Virtual
Network technology which utilizes OSI Level 2. We have extended this through the
use of both VAs and VMs. In our case a set of Linux-based VAs were created to ena-
ble OSI Layer 3 routing between different subnets as well as firewalls to separate
different virtual Ethernet environments, such as DMZ architectures, within the Virtua-
lized ‘SuperHost’ (cf. Fig. 8, 9). This is the most basic overview utilizing approved
modelling techniques. A full model is multi-layered and too complex to be included
in this short paper. We utilized the IEEE standard RFC1918 which allowed the build-
ing of controlled networks such that L3 routing was required to enable their inter-
connection.

The initial area of innovation presented here is the derivation of a full virtualized
system from a complex physical model. This level of complexity must be retained as
systems management will be integrated with the full multi-layered model. The main
area presented extends the L2 Virtualized Ethernet to L3 using specific sets of L3
routers implemented as VAs, which enables the integration of sets of disparate COTS-
based technologies, so that they may inter-operate transparently in the same HP c7000
device. This involves using sets of specific VAs to enhance the functional capabilities
of the Virtualization Management software controlling the HP Smart Chassis and
Blade Solution. The next area of innovation is to use the described extensions to ena-
ble a VDI layer virtual Ethernet to give a layer of secure access from the Cisco-based
production network in a transparent manner through an uplink (Fig. 10).

3.1 Functional Domain Nexus Interface Mk II

Nexus Mk II Zones for the PILOT Environment Design: the design essentially
becomes similar to a ‘Jump Box’ using IEEE RFC1918 networks and Microsoft Ter-
minal Services technology. A Microsoft Firewall is active on the Nexus VM. IP for-
warding is NOT permitted on this VM. Shared FC SAN is still used in the datacentre
implementation allowing the implementation of a ‘Reverse Nexus’. The virtualized
equivalents of the physical environment are consolidated into Virtualized Ethernets
(Vnets) for Vmotion and for Virtual Business networks that are within a defined vir-
tual site which hosts the virtualized datacentre. The VLAN principles for the FD pilot
area are that the VLAN configurations from the Cisco 6509 L3 switch to the HP
c7000 chassis are standard for each production chassis. The term Vnet is used to de-
scribe an HP VC internal chassis network. Internally, the HP VC module software and
VMWare ESXi hypervisor will be configured to provide intra-chassis variance. The
pilot intra-chassis variance (Fig. 5) will be as per FDNI Mk II design, where a Vnet
connected to production is present; a Vnet ‘Transit’ NOT connected to production is
present and Vnets ‘Pilot-V-Production1’ and ‘Pilot-V-Production2’ NOT connected
to ‘Production’ are present. ‘Transit’ Vnet is a 172 IP; ‘V-Datacentre1’ and ‘V-
Datacentre2’ are similar in structure to those in the Production area, but are segre-
gated by ‘Transit’ and the FDNI VM from main production.

64 J. Eccles and G. Loizou

Fig. 5. A summary illustration of the FDNI that shows the basic parameters that are involved in
the interfacing between the Production, the Transit and the FD (Pilot) environments

3.2 Functional Domain: Creation of the Basic ‘Superhost’

This section illustrates the more detailed construction of the FD by increasing the
complexity, and thereby the corresponding degree of functionality, of the superhost.
Initially, as shown in Fig. 6, the production network of the cloud is linked through a
VC port (3x, 4x, 5x) of the HP c7000 chassis to the FDNI entry port via the produc-
tion NIC (NIC-1) of the HP BL490c blade upon which the FDNI / FDNI VM has
been installed.

The FDNI is connected to the exit port via NIC-2 of the blade, which is in turn
connected to the ‘Transit’ virtual Ethernet. As the name implies, all constituent HP
BL490c blades in their respective clusters (Fig. 7) within the FD have one of their two
NIC’s connected to the ‘Transit’ virtual Ethernet. This gives a method of L2 TCP/IP
connection for all VMs/VAs that are installed in the FD. However, not all installed
VMs require direct connectivity to the ‘Transit’ virtual Ethernet. It is only important
that there is a route that can be taken by L2 to ‘Transit’ at this point. The next level of
development is to use the latter L2 connectivity to facilitate the addition of further
virtual Ethernets (e.g. Virtual_Datacentre2, Pilot_V_Production1 in Fig. 7) using HP
c7000 VC software.

This is now complemented by the addition of an extra virtual Ethernet for the host-
ing of a set of VDIs. The VDIs are communicated with via the FDNI using the RDP
(Microsoft). When activated the user has access to a remote desktop window which
operates inside the FD/PoC, and with this the user may operate safely without

 Realization of a Functional Domain within a Cloud 65

Fig. 6. View of the initial 'Superhost' structure showing the interface between the Production,
the Transit and the FD (in this case the Virtual Datacentre) environments

Fig. 7. The addition of more Virtual Ethernets to the FD. These can only be accessed from the
‘Transit’ Virtual Ethernet employing TCP/IP L2 using the 4 vNIC ports in any of the local VMs

66 J. Eccles and G. Loizou

Fig. 8. The addition of an extra VDI virtual Ethernet as well as additional production emulation
layers within the FD. These inter-communicate using TCP/IP L2. The addition of TCP/IP L3
switching capability to this set of virtual Ethernets is done by creating a VA-based on Red Hat
Linux using the FreeSCO L3 switch software.

any risk that his/her activities may compromise the functionality or the integrity of the
external cloud. The FD design is now taken to a further level by the addition of a L3
switch, which is implemented by using a VM with a Red Hat Linux guest operating
system together with a FreeSCO L3 switch command system. This now results in the
design model of Fig. 8. This has resulted in the use of VAs to enable a DMZ to be
constructed (Fig. 9). The totality of these incremental layers of development is now
available using L3, and also using uplinks to the 3x, 4x or 5x HP c7000 VC ports to
the Cisco Ethernet networks.

This leads to the extension of the design concept in that the overall FD can access
an isolated Ethernet that runs between the two sites. As such it is important to under-
stand that the Ethernet concerned must be isolated from the main network, so that
there may be no interference with respect to the traffic or the TCP/IP addressing
ranges. Thus, this requirement is met by the set of two FDs illustrated in Fig.10.

Therefore the next area of innovation is to enable a VDI layer virtual Ethernet to
give a layer of secure access from the Cisco-based production network in a transpa-
rent manner through an uplink from the chassis (Fig.10) to the Cisco L3 switch layer.
This results in the FD being extended so that it is still bounded by the FDNI_entry
and the FDNI_exit but now extends between the two sites in a seamless fashion. This
has been done using a stretched VLAN between sites in order to maintain the same
subnet and gateway address, but this technique only works where the physical con-
nectivity distance between the sites is less than of an order of 20km. If stretched
VLANs were replaced by L3 switching, then the FD network could still be isolated
but the IP addresses of the constituent FD elements will be different on each of the

 Realization of a Functional Domain within a Cloud 67

Fig. 9. The addition of a De-Militarised Zone (DMZ) made up of Linux-based VA Firewall
units on a separate DMZ virtual Ethernet, and a L3 switch to link all of the FD virtual Ethernets

Fig. 10. Extended cross-site virtualized FD (PoC)

respective sites. This does not mean that this design no longer works, but rather that
the mapping models in Fig. 2, 3 and 4 must be accurately detailed so that the IP ad-
dressing of each VM on each site is categorized and implemented through the use of
DHCP/DNS. This design enables users to use the VMs/VAs either directly through

68 J. Eccles and G. Loizou

the specific use of RDP from the Production network through the FDNI, or via con-
trolled access of the VDIs via the uplink interface from the isolated test virtual Ether-
net to the HP c7000 VC. This is extended to operate on a WAN-based cross-site basis
as shown in Fig. 10. This can now include physical devices as well as VMs/VAs
(DHCP stands for Dynamic Host Configuration Protocol.).

This design enables the testing of a set of specialized applications with an HP
Superdome and a SUN F15K using the FD/PoC environment adapted so as to isolate
the physical server components of the required applications. The physical and virtual
servers are implemented using the current IP addresses of their equivalent Production
hosts due to the capabilities of the FDNI.

4 Discussion

It is envisaged that each such subsystem may be represented within an FD with the
contents of each such subsystem making up an individual distributed application. This
technology introduces a practical means of implementing ‘Systems Engineering depth
to breadth switching’ which is broadly defined as “The ability of systems engineers
and architects to cognitively alternate, from a detailed engineering discipline rigor, to
a meaningful broad level of abstraction. These unique individuals have the ability
tobuild models that hide underlying implementation details and bridge the communi-
cation gaps between multiple disciplines.” [25]. Each such subsystem modelled with-
in an FD should be able to be represented as a single class composed of a set of con-
stituent classes. The relationship to be pursued here is not one of inheritance as in a
superclass to a set of subclasses [20,23] but rather one employing the techniques of
frame-based modelling [18,14] to produce a framework class to represent the know-
ledge of how the system is constructed.

5 Future Work

This area of integration is carried out within a single HP c7000 chassis and extended
across multiple chassis units to form a distributed centre capable of supporting in the
order of more than 1000 VMs. Further work is required in building a fully integrated
model with distributed sets of chassis units that are linked using L3 TCP/IP with
DHCP/DNS/X.500-based directory services to facilitate the dynamic movement of
VMs that are within the same FD, but are actually located on different sites. This
work also needs to be extended in applying different classes of QMS Requirement-
based Clustering [3] to the multi-cluster blade model within the ‘SuperHost’, thus
enabling different ‘SuperHost’ entities to be clustered in different manners [15] ac-
cording to the QMS Requirements specified. This leads towards using the
‘SuperHost’ system as a key component in a practical solution to cloud computing.
The principle here is that an FD could be used to enable a set of pattern-based design
tools to create a practical means of designing and modelling systems [12,23], from the
simple to the very complex indeed. Such systems, through the use of associated meta-
data, could also have the capability of interfacing to complex simulation systems
based on describing systems in terms of specific class-based connectivity, such as

 Realization of a Functional Domain within a Cloud 69

Hyperformix. Creating multiple sets of overlapping FDs for accelerated policy simu-
lation and system modelling is another area that is being currently pursued. This can
be done through the use of mathematics followed by the creation of VMs as simulated
application servers. This will create overlapping models where the resultant effect on
the net policies can be virtualized.

6 Conclusions

This paper presents the basis for advancing the concept of the metamodel by moving
from a set of modelling methods within a framework methodology [11] to an equiva-
lent model that is virtual and can participate in positive testing and evaluation before
the main product is finally constructed, thereby lowering the overall cost and risk
involved in a development project.

References

1. Caetano, A., Pombinho, J., Tribolet, J.: Representing Organizational Competencies. In:
ACM Symposium on Applied Computing (SAC 2007), pp. 1257–1262 (2007)

2. Carman, C.: Applying UML and Patterns, 2nd edn. Prentice Hall (2001)
3. Codina, J.M., Sanchez, J., Gonzalez, A.: Virtual Cluster Scheduling Through the Schedul-

ing Graph. In: IEEE International Symposium on Code Generation and Optimization
(CGO 2007), pp. 89–101 (2007)

4. Conrad, J., Dengler, P.: Introducing .NET. WROX Pub. (2000)
5. Corn, C., Mayfield, V.: COM/DCOM Primer Plus. SAMS (1998)
6. Daniels, J.: Server Virtualization Architecture and Implementation. ACM Cros-

sroads 16(1), 8–12 (2009)
7. Eccles, J., Loizou, G.: Functional Domain Concepts in the Modelling of Cloud Structures

and the Behaviour of Integrated Policy-Based Systems Through the use of Abstraction
Classes. In: 1st International Conference on Cloud Computing and Services Science
(CLOSER 2011), Noordwijerhout, The Netherlands, May 7-9, pp. 86–97 (2011)

8. Eccles, J., Loizou, G.: A Methodology to Control the Production of a Practical Virtual En-
vironment for a Cloud in an Optimal Manner from a Complex Physical Environment (in
preparation_a)

9. Eccles, J., Loizou, G.: An Extended Methodology to Integrate Multiple Functional Do-
mains within a Virtualized Environment by Enhancing the Functional Model-ling of the
Nexus Interface units (in preparation_b)

10. Farley, J.: Java Distributed Computing. O’Reilly (1998)
11. Fayed, M.E., Johnson, R.E.: Domain-Specific Application Frameworks. Wiley (2000)
12. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2004)
13. Traore, I., Aredo, D.B., Ye, H.: An Integrated Framework for Formal Development of

Open Distributed Systems. In: ACM Symposium on Applied Computing (SAC 2003), pp.
1078–1085 (2003)

14. Karp, P.D.: The Design Space of Frame Knowledge Representation Systems, SRI Interna-
tional Technical Note No 520, Artificial Intelligence Centre, Computing and Engineering
Sciences Division (1992)

70 J. Eccles and G. Loizou

15. Kim, G.-J., Han, J.-S.: The clustering algorithm of design pattern using object-oriented re-
lationship. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707,
pp. 997–1006. Springer, Heidelberg (2007)

16. Loy, I., Galan, F., Sampaio, A., Gill, V., Rodero-Merino, L.: Service Specification in
Cloud Environments Based on Extensions to Open Standards. In: ACM Communication
System Software and Middleware (COMSWARE 2009), Dublin, Ireland (2009)

17. Menasce, D.A., Almeisida, V.A.: Performance by Design. Prentice Hall (2004)
18. Minsky, M.: A Framework for Representing Knowledge. MIT-AI Laboratory Memo 306

(1974)
19. Mowbry, T.J., Malveau, R.C.: Corba Design Patterns. Wiley Computer Publishing (1997)
20. Muller, P.-A.: Instant UML. Wrox Press (1997)
21. Niculescu, V., Moldovan, G.: Building an Object Oriented Computational Algebra System

Based on Design Patterns. In: Proceedings of the Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), p. 8. IEEE
Computer Society, Washington, DC (2005)

22. Otte, R., Patrick, P., Roj, M.: Understanding Corba (Common Object Request Broker Ar-
chitecture). Prentice Hall (1996)

23. Shannon, B., Hapner, M.: Java 2 Platform Enterprise Edition – Platform and Component
Specification. Addison Wesley (2000)

24. Solomon, B., Ionescu, D.: Real-Time Adaptive Control of Autonomic Computing Envi-
ronments. IBM Centre for Advanced Studies, Toronto, pp. 1-13 (2007)

25. Trowbridge, D., Mancini, D., Quick, D.: Thoughtworks Inc.: Enterprise Solution Patterns
using Microsoft .NET, Version 2.0. Microsoft Press (2003)

26. VMware Corporation: VMware Server Administration Guide 1.0 VMware Inc. (2006),
http://www.vmware.com/support/pubs

	Realization of a Functional Domain within a Cloud
	1 Introduction
	2 Preliminaries
	2.1 Current Paradigms
	2.2 Current Approaches
	2.3 Current Status
	2.4 New Approaches
	2.5 Server Process Abstraction
	2.6 Hardware Environment
	2.7 Proof-of-Concept / Subsystem Abstraction

	3 Design of a Generic Approach
	3.1 Functional Domain Nexus Interface Mk II
	3.2 Functional Domain: Creation of the Basic ‘Superhost’

	4 Discussion
	5 Future Work
	6 Conclusions
	References

