
Improving Cost-Efficiency through Failure-Aware
Server Management and Scheduling in Cloud�

Laiping Zhao1 and Kouichi Sakurai2

1 School of Computer Software, Tianjin University, China
2 Department of Informatics, Kyushu University, Japan

zhaolaiping@gmail.com, sakurai@csce.kyushu-u.ac.jp

Abstract. We examine the problem of managing a server farm in a cost-efficient
way that reduces the cost caused by server failures, according to an Infrastructure-
as-a-Service model in cloud. Specifically, failures in cloud systems are so frequent
that severely affect the normal operation of job requests and incurring high penalty
cost. It is possible to increase the net revenue through reducing the energy cost and
penalty by leveraging failure predictiors. First, we incorporate the malfunction
and recovery states into the server management process, and improve the cost-
efficiency of each server using failure predictor-based proactive recovery. Second,
we present a revenue-driven cloud scheduling algorithm, which further increases
net revenue in collaboration with server management algorithm. The formal and
experimental analysis manifests our expected net revenue improvement.

Keywords: Net Revenue, Server Management, Scheduling, Failure Prediction.

1 Introduction

With the infrastructure-as-a-service (IaaS) model in cloud computing, a business is en-
abled to run jobs on virtual machine (VM) instances rented from the infrastructure ser-
vice providers in a pay-as-you-go manner. As shown in Figure 1, multiple applications
are consolidated to share the same physical server through virtualization technologies.
VM instances are offered from a diversified catalog with various configurations. Jobs
are encapsulated into VMs, and customers can start new VMs or stop unused ones to
meet the increasing or decreasing workload, respectively, and pay for what they use
thereafter. In this process, customers do not have full control over the physical infras-
tructure. Instead, the provider sets a resource management policy determining the phys-
ical servers for starting VMs. VM instances are commonly provided under a Service
Level Agreement (SLA), which gurantees the service quality, and a penalty is punished
on the provider if SLA is violated. For example, Amazon EC2 claims that the customer
is eligible to receive a service credit equal to 10% of their bill, if the annual uptime
percentage is less than 99.95% during a service year. During the job execution, a VM
may migrate from one server to another according to the policy.

� This work is based on ”On Revenue Driven Server Management in Cloud”, by L. Zhao and K.
Sakurai, which appeared in Proc. of 2nd International Conference on Cloud Computing and
Service Science, Portugal, April 2012.

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 23–38, 2013.
c© Springer International Publishing Switzerland 2013

24 L. Zhao and K. Sakurai

Fig. 1. The cloud IaaS model

SLA violation, that is failing to meet the availability level, is generally caused by in-
adequate resources or server failures. Managing SLA violations caused by inadequate
resources has been studied in [1]. However, few of them consider reducing the SLA vi-
olation cost caused by server failures. As the system scale continues to increase, prob-
lems caused by failures are becoming more severe than before ([2], or [3, chap.7]). For
example, according to the failure data from Los Alamos National Laboratory (LANL),
more than 1,000 failures occur annually at their system No.7, which consists of 2014
nodes in total [2], and Google reports 5 average worker deaths per MapReduce job in
March 2006 [4].

The frequent failures as well as the resulting SLA violation costs lead to a practi-
cal question: how to improve the cost efficiency of service providing? In this paper, we
aim to explore a new cost-efficient way to manage the cloud servers by leveraging the
existed failure prediction methods. The basic idea is that, a failure-prone server should
reject a new arrived job, or move a running job to another healthy server, then proac-
tively accept manual repairs or rejuvenate itself to a healthy state. Our contributions
mainly fall into three parts:

– We analyze the cost for job execution and SLA violation, and propose a novel server
management model by combining the failure prediction together with proactive
recovery into server state transitions.

– We design an adaptive net revenue-based decision making policy that dynamically
decides whether accepting a new job request or not, and whether moving the run-
ning job to another healthy server or not while achieving high cost efficiency.

– We further increase the cost-efficiency through a collaboration of server manage-
ment algorithm and scheduling algorithm, i.e., MaxReliability. The experimental
results manifest the revenue improvement.

2 Related Work

Feasibility of our approach depends on the ability to anticipate the occurrence of fail-
ures. Fortunately, a large number of published works have considered thecharacteristics

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 25

of failures and their impact on performance across a wide variety of computer sys-
tems. These works include either the fitting of failure data to specific distributions or
have demonstrated that the failures tend to occur in bursts [5],[6]. Availability data
from BONIC is modeled with probability distributions [7], and their availabilities are
restricted by not only site failures but also the usage patterns of users. Fu and Xu [8]
propose a failure prediction framework to explore correlations among failures and fore-
cast the time-between-failure of future instances. Their experimental results on LANL
traces show that the system achieves more than 76% accuracy. In addition to processor
failures, failure prediction is also studied on hard disk drives [9]. As a survey, Salfner
et al. [10] present a comprehensive study on the online failure prediction approaches,
which can be split into four major branches of the type of input data used, namely, data
from failure tracking, symptom monitoring, detected error reporting, and undetected er-
ror auditing. In each branch, various methodologies are applied, for instance, bayesian
network, machine learning, time series analysis, fuzzy logic, markov chain, and pattern
recognition.

Economic cost for constructing a data center has been studied in [11], [12], [3],
which provide us with a deep understanding of cloud system cost. The revenue maxi-
mization problems discussed in the literature[13][14][15], are quite close to our work.
Mazzucco et al. [15] measure the energy consumed by active servers, and maximize
the revenue by optimizing the number of servers to run. Macı́as et al. [14] present an
economically enhanced resource manager for resource provisioning based on economic
models, which supports the revenue maximization across multiple service level agree-
ments. Maximizing of the quality of users’ experiences while minimizing the cost for
the provider is studied in [16]. And Fitó et al. [13] model the economic cost and SLA for
moving a web application to cloud computing. The proposed Cloud Hosting Provider
(CHP) could make use of the outsourcing technique for providing scalability and high
availability capabilities, and maximize the providers’ revenue. In contrast to their pro-
posals, our goal is to improve the cost efficiency of servers by leveraging the failure
prediction methods.

3 Policy for Server Management

3.1 Cloud Server Management

A physical server is described with five states as follows:
IDLE: There are no VMs executing on the server.
RUNNING: The server is executing some VM(s).
TERMINATED: The server successfully finishes jobs, then recycles the memory and

clears the disk.
MALFUNCTION: A failure occurs, and the server breaks down.
RECOVERY: Troubleshooting, which could be a simple reboot or repair by a skilled

staff.
Figure 2 illustrates the above states and their state transitions for a physical server.

We incorporate both the MALFUNCTION and RECOVERY into the states due to the
common failures. Although failures may occur at anytime, the probability of failure

26 L. Zhao and K. Sakurai

Fig. 2. The state transitions of (a) Reactive recovery and (b) Proactive-Reactive recovery

occurrence in the TERMINATED or IDLE state is far less than in the RUNNING state.
Therefore, a single in-degree to the MALFUNCTION state is exploited.

Initially, when a new physical server joins a server farm, or an existing server has
finished all deployed VMs and refreshed his status, the server enters the IDLE state and
becomes ready for serving a next job.

Reactive Recovery. When a job arrives, the server starts a required VM and accepts
the job without hesitation, then comes into the RUNNING state. In case of a successful
execution, the job is completed, and the server enters the TERMINATED state. After
clearing the memory and disk, the server returns to the IDLE state. If a failure occurs,
the server comes into the MALFUNCTION state. Certain recovery methods, e.g., re-
pair, rebooting, would be activated to fix the malfunction, then the server returns to the
IDLE state. Note that the recovery could be launched by a skilled staff or automatically
activated by a tool like watchdog.

Proactive-Reactive Recovery. Proactive recovery is a useful tool for improving the
system efficiency and reducing the economic cost. However, the effects of proactive
recovery heavily depend on the failure prediction accuracy, which is still in the rough
primary stage currently. Therefore, we employ a hybrid approach based on both proac-
tive recovery and reactive recovery here. An architectural blueprint for managing server
system dependability in a proactive fashion is introduced in Polze, Troger, and Salfner
(2011).

When a job arrives, the server can: 1. accept the job and change to RUNNING (step 2
in Figure 2(b)); 2. reject the job and stay in IDLE (step 8); 3. reject the job and activate
a proactive recovery operation if a failure is predicted (step 6). To assure a positive net
revenue, we devise a utility function to handle such decision making problems.

In the first case, if the server comes into the RUNNING state, there are three further
possible transitions coming out from the RUNNING state: 1a. if a failure is anticipated
during RUNNING, move all running VMs and proactively launch the recovery (step
6); 1b. if a failure occurs without warning, the server reactively comes into the MAL-
FUNCTION state (step 4); 1c. if there are no failures, complete the job successfully
(step 3). A similar utility based function is also employed here for the proactive recov-
ery operation. In the second and third cases, the server needs to decide whether to stay
in IDLE state, or activate a proactive recovery after a job rejection. This is reasonable

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 27

Table 1. List of notations

Notations Definition

Prci Price of the VM instance i ($/hour).
Prcegy Price of energy consumption. ($/kw.h)
USIOi

Fixed cost of a VM i.
Pi Energy consumption per time unit for VM i.
Ucoei Task execution cost per time unit. Ucoei = USIOi

+ PrcegyPi

Tvm Job execution time, or contract life.
Coei Total task execution cost of VM i. Coei = UcoeiTvm

Pen Penalty for SLA violations.
TM Time spent on MALFUNCTION state.
TR Time spent on RECOVERY state.
PSLA The percentage of total bill that the provider has to refund.
Pfail Probability of failures.
Cmig VM migration cost.
T rmn
vm VM’s remaining lifetime.

Pmig
fail Probability of failures for a migrated VM.

because a negative net revenue may be expected from a long-running job, whereas a
positive net revenue is expected from a short-running job. If the rejected job is a normal
or small size one, then the server activates a proactive recovery, otherwise stays in the
IDLE state.

3.2 Net Revenue

Our net revenue model is similar to those used in the literature [14] [13] except that
we do not consider the situation of outsourcing a application to a third-party and hence
there is no outsourcing cost [13]. Notations are listed in Table 1.

Price (Prc): is the amount of money that a customer has to pay if a cloud provider
finishes his job successfully. It usually takes the time piece as the unit. For instance,
Amazon EC2 standard small instance charges 0.085$ per hour. Cost of execution (Coe):
is the amount of money that a cloud provider has to spend on maintaining a healthy VM
as well as a physical server for providing service. As the service providing is the ma-
jor source of profit, any cost for maintaining such service providing will be considered
as the part of the total costs, which typically includes fixed costs (e.g., site infrastruc-
ture capital costs, IT capital costs) and variable costs (e.g., energy costs, operating ex-
penses). Penalty (Pen): is the amount of money that a provider has to pay if the SLA is
violated. Denote by Tvm the working time (i.e., contract life or job execution time), the
net revenue obtained from deploying VM i is computed as below,

Rvui = Prci · Tvm − Coei − Peni (1)

The prices of different VM instances have been clearly announced by the providers,
and can be publicly accessed. For the cost of execution, we haveCoei = Ucoei ·Tvm =
(USIOi + Prcegy · Pi) · Tvm, where USIOi comprises site infrastructure capital costs
(Sic), IT capital costs (Icc) and operating expenses (Ope). Prcegy denotes the hourly
energy cost (Enc), and Pi denotes the consumed energy [3][11][12]. For the penalty,

28 L. Zhao and K. Sakurai

Run Idle Termi. Malfunc. Reco.
Running 0/0 0/0 P ′

02/P02 P ′
03/P03 0/P04

Idle 1/P10 0/P11 0/0 0/0 0/P14

Terminated 0/0 1/1 0/0 0/0 0/0
Malfunction 0/0 0/0 0/0 0/0 1/1
Recovery 0/0 1/1 0/0 0/0 0/0

Fig. 3. The state transition probability for
Reactive/Proactive-reactive recovery

Reactive recovery Revenue
Path 1 IDLE - RUNNING - TERMINATE - IDLE AR

Path 2 IDLE - RUNNING - MALFUNCTION - RECOVERY - IDLE −BR

Proactive-Reactive recovery
Path 1 IDLE - RUNNING - TERMINATE - IDLE APR

Path 2 IDLE - RUNNING - MALFUNCTION - RECOVERY - IDLE −BPR

Path 3 IDLE - RUNNING - RECOVERY - IDLE CPR

Path 4 IDLE - IDLE 0

Path 5 IDLE - RECOVERY - IDLE −DPR

Fig. 4. The server running paths and their cor-
responding net revenues

we have Peni = Prci · Tvm · PSLA, where PSLA denotes the fraction of total bill that
the provider has to refund.

3.3 Expected Net Revenue

Next we compute the expected net revenue from providing service or possible losses
from server failures. Figure 3 shows the probabilities of state transitions for both the re-
active recovery and proactive-reactive (Figure 2). Figure 4 shows all the state transition
paths and the corresponding revenues for both of them.

In reactive recovery, the cloud server could obtain positive net revenue from job
execution in path 1 (denoted as AR = (Prc−Ucoe) · Tvm). While in path 2, the cloud
server not only obtains nothing due to the failure, but also has to pay the penalty and
losses the execution cost. Let TM and TR be the time spent on MALFUNCTION and
RECOVERY state respectively, then BR = USIO(Tvm + TM + TR) + Prcegy · P ·
Tvm + Prc · Tvm · PSLA.

In the proactive-reactive recovery, the cloud server shows a similar situation in path
1 and path 2, that is APR = AR and BPR = BR, but with different probabilities. In
path 3, a proactive recovery is activated during the running process. The running VMs
are interrupted and moved to other healthy servers, where they subsequently proceed
until finish. During this process, the cloud provider eventually gets the revenue from
these jobs. The revenue generated in terms of the old server is computed based on the
finished fraction of the total workload, denoted by Pfnd, therefore, we have CPR =
Pfnd(Prc − Ucoe)Tvm − USIOTR. In path 4 and 5, a job rejection operation only
implies a local server’s decision, and the rejected job is eventually accepted by another
healthy server from the perspective of cloud provider. Thus, there are no losses caused
from the job rejection. And the recovery cost spent on the proactive recovery operation
in path 5 is: DPR = USIOTR.

According to Figure 3 and Figure 4, the expected net revenue generated by reactive
recovery is:

RvuR = ARP
′
02 −BRP

′
03 (2)

The expected net revenue generated by proactive-reactive recovery is:

RvuPR = APRP10P02 −BPRP10P03 + CPRP10P04 −DPRP14 (3)

Theorem 1. RvuPR > RvuR.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 29

Proof.

RvuPR −RvuR = PrcTvm×
[PSLA(P

′
03 − P10P03) + (P10P02 − P

′
02) + PfndP10P04]+

USIO[Tvm(P
′
03 − P10P03 − PfndP10P04 + P

′
02 − P10P02)+

TM (P
′
03 − P10P03) + TR(P

′
03 − P10(P03 + P04)− P14)]+

PrcegyPTvm[P
′
02 − P10P02 + P

′
03 − P10P03 − PfndP10P04]

(4)

With the two prerequisites, P10P02 = P ′
02 and P10 · (P03+P04)+P11+P14 = P ′

03,
we have,

– PSLA(P
′
03 − P10P03) + (P10P02 − P ′

02) + PfndP10P04 > 0

–
Tvm(P

′
03 − P10P03 − PfndP10P04 + P

′
02 − P10P02) + TM (P

′
03 − P10P03) + TR

(P
′
03 − P10(P03 + P04)− P14) > 0

– P
′
02 − P10P02 + P

′
03 − P10P03 − PfndP10P04 > 0

Hence, the theorem is established.

3.4 Decision Making

The server state transitions contain three decision making points. The first one is to
decide whether to accept or reject a new arriving job, and followed by a further decision
is on whether or not to activate proactive recovery if the job is rejected. The third one is
to decide whether to activate a proactive recovery or continue the job execution when
the job is under the RUNNING state. In our proposal, these decisions are made on
behalf of physical servers based on the expected net revenue.

Accept or Reject a Job. A job arriving at a cloud server could be a new or rejected or
failed or migrated job. After its lifetime (i.e., Tvm) is determined by user’s specification
or estimates, we can predict the probability of failures (i.e., Pfail) in this interval using
associated stressors [17]. The possible net revenue obtained from accepting a job by
server i can be computed as,

Rvui = Ai
PR · (1− Pfail) (5)

Accounting of malfunction losses during the middle of job execution consists of
direct economic loss and indirect economic loss. A cloud provider would directly get
a penalty from the SLA agreement, and he also has to afford the cost for recovery
operation. The possible losses can be computed as,

Losi = Bi
PR · Pfail (6)

If Rvui > Losi, the VM i will be deployed for execution, and if not, the VM i will
be rejected. In other words, the VM i is accepted when the following condition is held,

Pfail <
Ai

PR

Ai
PR +Bi

PR

(7)

30 L. Zhao and K. Sakurai

In case of a migrated VM, additional cost is spent on VM migration. Let Cmig
be the cost for moving the VM from an old physical server to a new one, and T rmn

vm

be the remaining lifetime. We have,Rvumig
i = (Ai,rmn

PR − Cmig) · (1 − Pmig
fail) =

((Prci−Ucoei)·T rmn
vm −Cmig)·(1−Pmig

fail) andLosmig
i = (Bi,rmn

PR +Cmig)·Pmig
fail =

(Peni + USIO(T
rmn
vm + TM + TR) + Prcegy · P · T rmn

vm + Cmig)Pmig
fail

Let Rvumig
i > Losmig

i , then the condition 7 is changed into,

Pmig
fail <

Ai,rmn
PR − Cmig

Ai,rmn
PR +Bi,rmn

PR

(8)

Proactive Recovery or Not. Once a job is rejected, a cloud server further has two op-
tions of launching the proactive recovery or doing nothing. Denote by Tvm the average

lifetime of all history VMs successfully completed on a server, and PTvm

fail the predicted

probability of failures within next Tvm time. Then if PTvm

fail < Pfail (The right side
of Inequality 7), the cloud server does nothing but waits for the next job. Otherwise,
the server activates the proactive recovery. This is because failure probability increases

over time. A next normal size job still can be accepted if PTvm

fail < Pfail is held. Note
that it is possible that the server stays in a starvation state for a long time, if no short-
running VM is dispatched to the server. In such case, activate the proactive recovery if
the leisure time exceeds a pre-defined threshold.

Activate VM Migaration or Not. For a long-running VM, it is difficult to have an
accurate prediction on the failure probability during that long time. Moreover, certain
types of failures always come with some pathognomonic harbingers. It is a difficult
to predict such failures without particular harbingers. Therefore, we also activate the
failure prediction during the running process. And proactive recovery is launched when
inequality 7 (inequality 8 if it is a migrated job) is violated for all the local VMs.

The VM migrates from a server i to a server j only because j can yield a greater
net revenue. The expected revenue obtained from no migration is the same as Rvui

(Equation 5), except that the failure probability (P rmn
fail) is for the remaining lifetime

(i.e., T rmn
vm): Rvurmn

i = Ai,rmn
PR · (1−P rmn

fail) = (Prci −Ucoei) ·T rmn
vm · (1−P rmn

fail).

The expect net revenue obtained from a migration has been described as Rvuj
mig . Let

Rvumig
j > Rvurmn

i , we have,

Pmig
fail <

Ai,rmn
PR · P rmn

fail − Cmig

Ai,rmn
PR − Cmig

(9)

Therefore, a new server j whose failure probability (i.e., PMig
fail) follows both In-

equality 8 and 9 will be selected to execute the migrated VM. In case of more than one
server meets this condition, the VM migrates to the one with maximum reliability to
proceed. If no appropriate processors are found, maintain the VM at the original server
until finish or failure.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 31

Algorithm 1. Algorithm for server management.

1 [Parameters]
2 double fp {the predicted failure probability}
3 double Pfail {the probability that ensures the job acceptance}
4 double PMig

fail {the probability that ensures condition 9}
5 double P rmn

fail {the failure probability in the remaining time}
6 integer T {the average job execution time}
7 STATE state = IDLE {server state, initialized with IDLE}
8 upon receive(job)
9 if state = IDLE then job submit(job);

10 upon receive(job, PMig
fail) /* received a migrated job */

11 fp = fail predict(T rmn
job); Pfail = fail expect(Tjob) /* ensure condition 8 */

12 if fp < PMig
fail and fp < Pfail and state = IDLE then return true;

13 else return false;

14 procedure job submit(job)
15 Tjob = time estimate(); fp = fail predict(Tjob); Pfail = fail expect(Tjob);
16 if fp < Pfail then /* ensure positive revenue */
17 job execute(job); state = RUNNING;

18 else if Tjob ≤ T then /* proactive recovery */
19 proactive recovery(job); state = RECOVERY ;
20 else /* wait next job */
21 state = IDLE ;

22 procedure job execute(job)
23 if failed = true then /* reactive recovery */
24 state = MALFUNCTION; return;

25 P rmn
fail = fail predict(Trmn);

26 if P rmn
fail ≥ Pfail then /* negative revenue */

27 compute PMig
fail using 9; reschedule(job, PMig

fail);

28 wait until find another processor
29 migrate(job); proactive recovery(job); state = RECOVERY;

30 procedure fail expect(Tjob)
31 return Pfail using 7;

3.5 Algorithm Description

Algorithm 1 presents the detail description for server management. The migrated job
and other job requests are handled by receive(job, P) and receive(job) respectively. If
it is a migrated job, the server will reply with an affirmative answer if its predicted
failure probability follows both inequality 8 and 9, otherwise with a negative answer
(line 10-13).

We use the function job submit() to decide whether to accept or reject the job. If the
job is rejected and its execution time is less than the average level of job execution time,
activate a recovery operation directly (line 18-19). Otherwise, do nothing but wait for
the next job request (line 21). Function job execute() activates the proactive recovery
after all VMs migrated to other servers because of a sudden higher failure probability
(P rmn

fail ≥ Pfail).

4 Revenue-Driven Scheduling

Since proactive recovery contributes to avoid the possible penalties caused by server
failures, the server management algorithm is able to increase the revenue for cloud

32 L. Zhao and K. Sakurai

Scheduler (Alg. 2)

Server node 1

VMM (Alg. 1)

VM1

Server node 1

VMM (Alg. 1)

VM1VMVM1 VM2 VM3

Server node n

VMM (Alg. 1)

VM1

Server node n

VMM (Alg. 1)

VM1VMVM1 VM2 VM3

)Job Migration

Fig. 5. The scheduling framework

provider. In fact, the revenue could be further increased through collaborative use of
server management and cloud scheduling algorithm. Figure 5 shows the framework.
Algorithm 1 is implemented at the Virtual Machine Monitor (VMM), which takes in
charge of failure estimation, VM migration and proactive recovery. Below, we discuss
how to schedule the VMs for increasing cloud provider’s revenue.

4.1 MaxReliability

As physical servers perform high heterogeneity in failure probability, the probability
of state transition from RUNNING to MALFUNCTION would be different for different
servers (i.e., P03 in Figure 3).

Theorem 2. Suppose server i is more reliable than server j. For performing the same
VM, the expected net revenue yielded by i is greater than j: Rvui

PR > Rvuj
PR.

Proof. Because server i is more reliable than j, it means the probability of state tran-
sition from IDLE to RUNNING, then to TERMINATED for server i is greater than j.
Thus, according to Figure 3, we have P i

10 > P j
10, P i

10P
i
02 > P j

10P
j
02, P i

14 < P j
14, and

P i
03+P i

04 < P j
03+P j

04. Note that, for the predicted failure probability: f i
p = P i

03+P i
04

and f j
p = P j

03 + P j
04.

Suppose the failure detection accurancy is: α = No.ofdetectedfailures/
No.offailures, then P i

03 = (1− α)fp and P i
04 = αfp. As P i

02 + P i
03 + P i

04 = 1, and
regrading Equation 3, we have,

Rvui
PR = APRP

i
10P

i
02 −BPRP

i
10P

i
03 + CPRP

i
10P

i
04 −DPRP

i
14

= P i
10[APR(1− f i

p)− f i
p(BPR(1− α)− CPRα)]−DPRP

i
14

= P i
10[APR − f i

p(APR +BPR(1 − α)− CPRα)]−DPRP
i
14

Because f i
p < f j

p , APR + BPR(1 − α) − CPRα > 0, then APR − f i
p(APR +

BPR(1−α)−CPRα) > APR−f j
p(APR+BPR(1−α)−CPRα). Likewise, because

P i
14 < P j

14, then DPRP
i
14 < DPRP

j
14. Hence, we have Rvui

PR > Rvuj
PR.

Theorem 2 suggests that scheduling VMs on reliable servers could increase cloud
provider’s revenue. Therefore, a natural way of cloud scheduling is always dispatching

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 33

an incoming VM to the most reliable server. We call the rule as MaxReliability. Al-
gorithm 2 shows the details: Upon receiving a job by the scheduler, either a new job
or a migrated job, iterate over all servers and predict the probability of failure. Then
dispatch the job to the server with maximum reliability (Line 1-5). Whenever a VM
is completed, because capacity is freed on the host server (e.g., sk), VMs located on
less reliable servers could migrate to sk for increasing revenue. Iterating over all busy
servers (Line 7), we find the job j with least reliability, and j’s capacity requirement
is able to be satisfied by sk available capacity. Then, move j to sk (Line 13). The
process is repeated until sk is full. Note that the migration comes with overhead (i.e.,
Cmig), hence a VM is migrated only when the difference on failure probability, i.e.,
f s,jmin
p − f sk,jmin

p , is greater than a threshold ε (Line 13-14).

Algorithm 2. Algorithm for cloud scheduler: MaxReliability.

input : S {the servers set}
output : schedule for jobs

1 upon receive(job) /* Either a new or a migrated job */
2 for s ∈ S do
3 fs

p = fail predict(Tjob);

4 smax = max{(1− fs
p)};

5 send(job,smax); /* Send the job to the server with max
reliability */

6 upon free(sk) /* Part capacity of sk is freed due to completion
of jobs */

7 flag = 1.0 ;
8 for s ∈ S && s.state == RUNNING, except sk do
9 for job j running on s do

10 f
s,rmnj
p = fail predict(T rmn

j);
11 if flag > f

s,rmnj
p && j.capacity < sk.availablecapacity then

12 flag = f
s,rmnj
p ; jmin = j; /* Find the most fragile job

jmin */

13 if fs,jmin
p − fsk,jmin

p > ε then
14 move jmin to sk; /* Move the job with least reliability to sk

*/

4.2 Combined with Energy-Saving

Let us revisit the equation for computing revenue: Rvui = Prci ·Tvm−Coei−Peni.
To increase the revenue, there are several possible ways regarding the equation. For ex-
ample, cloud provider could increase Rvui through providing flexible pricing functions
(i.e., Prci), reducing execution cost Coei or reducing Peni. Flexible pricing function
has been discussed in the literature [18], [19], [20], and also employed in practice (e.g.,
the spot instance at Amazon). In fact, pricing functions is based on long-term service
providing. For a single VM, after it is submitted, the price is fixed no matter which
pricing functions is applied. Therefore, we do not address the pricing function here, but

34 L. Zhao and K. Sakurai

tend to increase the Rvu by reducing Coei and Peni.
According to equation Coei = (USIOi + Prcegy · Pi) · Tvm, reducing energy cost

(i.e., Pi) is the most likely way to reduce Coei, because USIO belongs to fixed-asset
investment. Thus, we explore to increase cloud provider’s revenue through reducing en-
ergy cost and penalty simultaneously. Fortunately, reducing energy cost does not con-
flict with reducing penalty. Scheduling VMs to reliable servers could avoid penalty,
and consolidating several VMs on a server could reducing the energy cost. A natural
combination of them would be, consolidating VMs on the least number of reliabile
servers. That is, a high reliable server could contribute to reduce the penalty, while con-
solidation is able to reduce energy cost. For example, Mastroianni et al. [21] present a
decentralized solution for VM consolidation. That is, if the CPU utilization of a server
is below certain threshold, VMs on other servers could be migrated to it. While if the
CPU utilization of a server is above certain threshold, VMs on it can be migrated to
other underloaded servers. The improved version with considering penalty cost could
be: if the CPU utilization of a server is below certain threshold, VMs on the least re-
liable and overloaded server could be migrated to it. While if the CPU utilization of a
server is above certain threshold, VMs on it can be migrated to the first available server
with maximum reliabily.

5 Experiments

5.1 Simulation Environment

Server Farm. We simulate a server farm with 20 physical servers, which can provide
seven different types of VM instances, corresponding to the seven types of instances
from Rackspace Cloud Servers [22]. The processing speed of each server is supposed
to be the same, and is initialized with eight cores, with each is of 2.4GHz.

Job. We simulate a large number of jobs ranging from 1000 to 6000, for maximizing
the utilization of all servers. Through this way, the cost for maintaining a server could
be fairly shared among all the VMs deployed on it, and leading to a positive net revenue.
This is also reasonable in practice because cloud providers commonly design policies to
optimize the minimum number of active servers for reducing the energy cost, thereby
resulting in a high utilization at each active server (Mastroianni, Meo, and Papuzzo,
2011; Mazzucco et al., 2010b).

Allowing two instructions in one cycle, the workload of each job is evenly generated
from the range: [1, 6]× 204, 800× 2i million instructions, where 0 ≤ i ≤ 6 and i ∈ Z ,
represents the type of VM instance this job requires.

Scheduling. Jobs are placed on cloud servers using a First-Come-First-Served (FCFS)
algorithm. Scheduling priority is supported, and follows the sequence: migrated job
> failed job > rejected job > unsubmitted job. The rejected or failed jobs will not be
scheduled on the same server at the second time, because it is probably rejected or failed
again.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 35

Failures. Failures are considered from two dimensions. The first dimension concerns
the time when failures occur. In our experiments, failures are injected to servers fol-
lowing a Poisson distribution process with λ = [1, 4]/θ × 10−6, where θ ∈ [0.1, 2].
According to the Poisson distribution, the lengths of the inter-arrival times between
failures follow the exponential distribution, which is inconsistent with the observations
that the time between failures is well modeled by a Weibull or lognormal distribution
[2]. The deviations arise because an attempt to repair a computer is not always suc-
cessful and failures recur a relatively short time later [23]. Implementing a real failure
predictor is out of the range of this paper, and we alternatively consider different failure
prediction accuracy in evaluations.

The second dimension concerns the repair times. If an unexpected failure occurs, the
server turns into a MALFUNCTION state immediately, and followed by recovery oper-
ations. As discussed in [2], the time spent on recovery follows a Lognormal distribution
process, which is defined with a mean value equaling to 90 minutes, and σ = 1.

Price and Server Cost. The prices for all seven types of VM instances are set exactly
the same as the ones from Rackspace Cloud Servers [22], that is Prc = 0.015$× 2i,
where 0 ≤ i ≤ 6 and i ∈ Z .

The capital cost is roughly set at 8000$ per physical server, which is estimated based
on the market price of System x 71451RU server by IBM [24]. The price of electricity
is set at 0.06$ per kilowatt hour. We suppose that the power consumption of an active
server without any running VMs is 140 Watts. Additional power ranging from 10 Watts
to 70 Watts is consumed by VMs corresponding to seven types of VM instances [16].
Suppose a server’s lifetime is five years, and as the IT capital cost takes up 33% to
the total management cost, we roughly spend 4300$ on a physical server per year with
additional energy cost.

As modeling of migration costs is highly non-trivial due to second order effects mi-
grations might have on the migrated service and other running services, we simplify
migration costs as an additional 20% of the unexecuted workload without profit (i.e.,
10% for the original server, and another 10% for the target server). A preliminary at-
tempt on modeling migration cost is given in Breitgand, Kutiel, and Raz (2010).

Penalty. If a SLA is breached due to the provider’s failing to complete jobs, the cus-
tomer gets compensation by a rather high ratio of fine, which ranges from 10% to 500%
of the user bill in the experiments (i.e., PSLA ∈ [0.1, 5]). This is because SLA viola-
tions cause not only direct losses on revenue but also indirect losses, which might be
much more significant (e.g., in terms of provider reputation).

5.2 Results

We choose the evaluation approach by comparing our proposed proactive-reactive model
with the original reactive model. Experiments are conducted across a range of op-
erating conditions: number of jobs, failure frequency (θ), PSLA, and the accuracy of
failure prediction. Accuracy implies the ability of the failure prediction methods, and
is presented by both the false-negative (fn) and false positive (fp) ratio. Denote by

36 L. Zhao and K. Sakurai

0

20000

40000

60000

80000

100000

120000
To

ta
l N

et
 R

ev
en

ue
 ($

)

Total number of jobs

Reactive
Proactive_Reactive
PR+MaxReliability

(a)

11000

12000

13000

14000

15000

16000

17000

18000

19000

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

To
ta

l N
et

 R
ev

en
ue

 ($
)

Theta (Possion distribution)

Reactive
Proactive+Reactive
PR+MaxReliability

(b)

1000
3000
5000
7000
9000

11000
13000
15000
17000
19000

0.
1

0.
3

0.
5

0.
7

0.
9

1.
25

1.
75

2.
25

2.
75

3.
25

3.
75

4.
25

4.
75

To
ta

l N
et

 R
ev

en
ue

 ($
)

PSLA

Reactive
Proactive_Reactive
PR+MaxReliability

(c)

16800

17000

17200

17400

17600

17800

18000

18200

18400

0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

To
ta

l N
et

 R
ev

en
ue

 ($
)

False Negative Ratio

Reactive
Proactive_Reactive
PR+MaxReliability

(d)

To
ta

l N
et

 R
ev

en
ue

 ($
)

False Positive Ratio

Reactive
Practive+Reactive
PR+MaxReliability

(e)

Fig. 6. The total net revenue: (a) under different No. of jobs; (b) under different qs (failure fre-
quency); (c) under different SLA penalty percentages; (d) under different levels of false-negative
ratio; (e) under different levels of false-positive ratio

No(FN) the number of false-negative errors, No(TP) the number of true-positive
predictions, and No(FP) the number of false-positive errors, then we have fn =

No(FN)
No(FN)+No(TP) and fp = No(FP)

No(FP)+No(TP) . Unless otherwise stated, the parameters
are set with jobnumber = 1000, θ = 1, PSLA = 0.1, fn = 0.25 and fp = 0.2. Each
experiment is repeated five times and the results represent the corresponding average
values.

Figure 6 shows the total net revenue obtained by the reactive recovery, proactive-
reactive recovery (PR) and PR+MaxReliability (PRM) from executing jobs under dif-
ferent operating conditions. Note that random selection is employed in both reactive re-
covery and proactive-reactive recovery (PR) for dispatching VMs to servers, while PRM
uses MaxReliability for scheduling. Generally, net revenue yielded by the proactive-
reactive model is greater than the reactive model, which is consistent with our analysis
in Theorem 1. However, compared with random selection, MaxReliability does not yield
much improvement on revenue. This is because, we have submitted so many VMs that
nearly all servers are fully occupied. Thus the difference on revenue between them is
not apparent. In particular, Figure 6(a) shows the net revenue as a function of the num-
ber of jobs. The difference on net revenue is increasing over the number of jobs, which
is reasonable because more jobs come with more revenue.

Figure 6(b) shows the net revenue as a function of failure frequency. By the definition
of λ, we know failure frequency decreases as θ increases. As shown in the figure, the
PR and PRM model could yield more net revenue than the reactive model when the
failure frequency is high. In particular, the proactive-reactive model yields 26.8% net
revenue improvement over the reactive model when setting θ = 0.1. And an average

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 37

improvement of 11.5% is achieved when θ ≤ 0.5. This suggests that the proactive-
reactive model makes more sense in unreliable systems. Furthermore, the proactive-
reactive model also outperforms the reactive model in rather reliable systems where
θ > 0.5.

Figure 6(c) shows that the PR and PRM model yields a greater net revenue than
the reactive model under different PSLA values. Net revenue yielded by the proactive-
reactive model does not decline much because most penalty costs are avoided by possi-
ble proactive recovery and VM migrations. Whereas the reactive model has to pay the
penalty when failure occurs, and penalty cost increases as PSLA increases.

Figure 6(d) shows the net revenue under different levels of false-negative ratio rang-
ing from 0.05 to 0.7. With the increase of false-negative error, there is a slight decrease
on the net revenue by the PR and PRM model, whereas the reactive model fluctuates
around a certain level because the reactive model does not employ failure prediction
and the fluctuation is due to the random values used in the experiments. Our proactive-
reactive model averagely yields 3.2% improvement on the net revenue over the reactive
model, and performs similarly with reactive model when fn ≥ 0.7.

Figure 6(e) shows the impact on net revenue from the false-positive ratio under a
fixed fn = 0.25. Net revenue obtained from PR and PRM model decreases gradually
over the false positive ratio. Moreover, the differences on revenue between proactive-
reactive and reactive model decreases as the false-positive ratio increases. This is be-
cause a high false-positive ratio results in a large number of meaningless migrations,
which come with migration costs. Figure 6(d) and Figure 6(e) suggest that our algorithm
still performs well with even modest prediction accuracy (i.e., fn ≥ 0.5 or fp ≥ 0.5).

6 Conclusions

In this paper, we address the problem of cost-efficient fault management, and present
revenue driven server management and scheduling algorithm for cloud systems. Using
the algorithms, cloud providers could obtain a significant improvement on net revenue
when serving the same jobs. In particular, our proposal could yield at most 26.8%,
on average 11.5% net revenue improvement when the failure frequency is high. In the
future, we will study more scheduling algorithms working together with the proposed
server management model. Our goal is to maximize the net revenue for cloud providers
without affecting the performance.

References

1. Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for Managing
SLA Violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Man-
agement, pp. 119–128 (2007)

2. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance computing
systems. In: DSN 2006, pp. 249–258 (2006)

3. Hoelzle, U., Barroso, L.A.: The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, 1st edn. Morgan and Claypool Publishers (2009)

4. Dean, J.: Experiences with mapreduce, an abstraction for large-scale computation. In: PACT
2006, pp. 1–6. ACM (2006)

38 L. Zhao and K. Sakurai

5. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:
SoCC 2010, pp. 193–204 (2010)

6. Nightingale, E.B., Douceur, J.R., Orgovan, V.: Cycles, cells and platters: an empirical anal-
ysisof hardware failures on a million consumer pcs. In: EuroSys 2011, pp. 343–356. ACM
(2011)

7. Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.P.: Discovering statistical models of avail-
ability in large distributed systems: An empirical study of seti@home. IEEE Transactions on
Parallel and Distributed Systems 22, 1896–1903 (2011)

8. Fu, S., Xu, C.Z.: Exploring event correlation for failure prediction in coalitions of clusters.
In: SC 2007, pp. 41:1–41:12. ACM (2007)

9. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive population. In:
FAST 2007, pp. 17–28 (2007)

10. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Com-
put. Surv. 42, 10:1–10:42 (2010)

11. Koomey, J., Brill, K., Turner, P., et al.: A simple model for determining true total cost of
ownership for data centers. Uptime institute white paper (2007)

12. Patel, C.D., Shah, A.J.: A simple model for determining true total cost of ownership for data
centers. Hewlett-Packard Development Company report HPL-2005-107 (2005)

13. Fitó, J.O., Presa, I.G., Guitart, J.: Sla-driven elastic cloud hosting provider. In: PDP 2010,
pp. 111–118 (2010)

14. Macı́as, M., Rana, O., Smith, G., Guitart, J., Torres, J.: Maximizing revenue in grid markets
using an economically enhanced resource manager. Concurrency and Computation Practice
and Experience 22, 1990–2011 (2010)

15. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via energy
aware allocation policies. In: IEEE CLOUD 2010, pp. 131–138 (2010)

16. Mazzucco, M., Dyachuk, D., Dikaiakos, M.: Profit-aware server allocation for green internet
services. In: MASCOTS 2010, pp. 277–284 (2010)

17. Abraham, A., Grosan, C.: Genetic programming approach for fault modeling of electronic
hardware. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1563–1569
(2005)

18. Marbukh, V., Mills, K.: Demand pricing & resource allocation in market-based compute
grids: A model and initial results. In: ICN 2008, pp. 752–757 (2008)

19. Zheng, Q., Veeravalli, B.: Utilization-based pricing for power management and profit opti-
mization in data centers. JPDC 72, 27–34 (2012)

20. Macı́as, M., Guitart, J.: A genetic model for pricing in cloud computing markets. In: SAC
2011, pp. 113–118. ACM, New York (2011)

21. Mastroianni, C., Meo, M., Papuzzo, G.: Self-economy in cloud data centers: statistical as-
signment and migration of vms. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 407–418. Springer, Heidelberg (2011)

22. Rackspace (2012), http://www.rackspace.com (Online; accessed January 31, 2012)
23. Lewis, P.A.: A branching poisson process model for the analysis of computer failure patterns.

Journal of the Royal Statistical Society, Series B 26, 398–456 (1964)
24. IBM: Ibm system x 71451ru entry-level server (2012), http://www.amazon.com/

System-71451RU-Entry-level-Server-E7520/dp/B003U772W4

http://www.rackspace.com
http://www.amazon.com/System-71451RU-Entry-level-Server-E7520/dp/B003U772W4
http://www.amazon.com/System-71451RU-Entry-level-Server-E7520/dp/B003U772W4

	Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling in Cloud
	1 Introduction
	2 Related Work
	3 Policy for Server Management
	3.1 Cloud Server Management
	3.2 Net Revenue
	3.3 Expected Net Revenue
	3.4 Decision Making
	3.5 Algorithm Description

	4 Revenue-Driven Scheduling
	4.1 MaxReliability
	4.2 Combined with Energy-Saving

	5 Experiments
	5.1 Simulation Environment
	5.2 Results

	6 Conclusions
	References

