
Chapter 5
Prediction of Forced Response on Ancillary Subsystem Components
Attached to Reduced Linear Systems

Sergio E. Obando and Peter Avitabile

Abstract Multi-component structural systems are commonly used in the modeling of dynamic systems. In order to simplify
such complex mathematical models, peripheral/ancillary components are often times grouped as larger substructures of
the total assembly. The dynamic response of the structural system will have the embedded characteristics of the appended
ancillary components but the fidelity of the model will be highly dependent on the quality and resolution of the model. In
particular, sufficient substructure information is needed for an accurate prediction of the response of the appendage and/or its
coupling structure. This implies that proper characterization of the structure may require measurements at the subcomponent
level or in the absence of sufficient data, a large and detailed finite element model.

In this work, analytical models of a multi-component beam system were created to investigate the prediction of the
dynamic response of ancillary subcomponents. The ancillary structure will be assumed to be dynamically active but
inaccessible/immeasurable. The models will be created first at full space as a reference and then reduction techniques will
be used to determine the necessary information in order to accurately predict the force or displacement imparted to the
appendages. The dynamic characteristics of the ancillary component will be extracted using the subcomponent information
available from the system.

Keywords Forced linear response • Reduced order modeling

Nomenclature

Symbols

fXng Full set displacement vector
fXag Reduced set displacement vector
fXdg Deleted set displacement vector
[Ma] Reduced mass matrix
[Mn] Expanded mass matrix
[Ka] Reduced stiffness matrix
[Kn] Expanded stiffness matrix
[Ua] Reduced set shape matrix
[Un] Full set shape matrix
[Ua]g Generalized inverse
[T] Transformation matrix
[TU] SEREP transformation matrix
fpg Modal displacement vector
[M] Physical mass matrix
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[C] Physical damping matrix
[K] Physical stiffness matrix
fFg Physical force vector
fRxg Physical acceleration vector
fPxg Physical velocity vector
fxg Physical displacement vector
’ Parameter for Newmark integration
“ Parameter for Newmark integration
�t Time step
[U12] Mode contribution matrix

Acronyms

ADOF Reduced degrees of freedom
DOF Degrees of freedom
ERMT Equivalent reduced model technique
FEM Finite element model
MAC Modal assurance criterion
NDOF Full space degrees of freedom
SEREP System equivalent reduction expansion process
TRAC Time response assurance criterion

5.1 Introduction

During the analysis of complex structural models, these may be decomposed into simpler systems/components (or
assemblies) that in turn can be further broken down to the subcomponent (or subsystem) level depending on the desired
degree of resolution of the model. These subcomponents can be considered simple appendages or ancillary subcomponents of
the assemblies. While the contribution to the dynamic characteristics of the system from the subsystem ancillary components
can seem small, the accuracy of the prediction of the system level response may be compromised if a sufficiently detailed
model is not used. In particular, the fidelity of the model can be drastically affected if these subcomponents are dynamically
active and if the interaction with the coupling structure is nonlinear in nature. Therefore, there is significant motivation in
developing a methodology for determining necessary model information for the accurate calculation of subsystem component
response.

Recent developments in the computation of reduced order model response have allowed for the accurate calculation of
system’s time response while retaining all the highly refined and complex characteristics of full finite element models. Work
by Thibault [1] and Marinone [2] showed that system level response can be accurately and efficiently calculated for highly
reduced system models. Moreover, Pingle and Avitabile [3, 4, 5] demonstrated that the expansion of such systems can be
used for the prediction of full field results such as stress and strain. The advantages of using reduced order models can be
seen from a substantial reduction in computation time even when such systems involve nonlinear effects. Using these new
efficient methodologies, this work aims to extend the application of reduced linear system modeling to the case in which
the goal is not only the prediction of the dynamics of the full system but also the characterization of subsystem ancillary
components.

In this paper, the common case of multi-component structural systems is addressed in the context of retaining embedded
structural information of ancillary subcomponents for the calculation of reduced order model time response. A full space
finite element model consisting of two systems, one of which contains a dynamically active ancillary subcomponent, will
be reduced to a smaller set of degrees freedom and used for the prediction of the forced time response of the system. The
reduced order model (with embedded ancillary subcomponent information) will then be used to expand back to the full
space finite element model and to extract the predicted forced response of the ancillary subcomponent. This study will
show advantages and drawbacks of common reduction/expansion methodologies (such as SEREP and Guyan reduction) in
the characterization of the subsystem component from available reduced system information. Moreover, the selection of
degrees of freedom during the reduction process will explore whether it is necessary to include the connecting degrees of
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freedom of the ancillary component and the larger coupling structure or if these can be omitted as long as the preserved
modes of the reduced system span the space of all modes of interest of the system. This is of particular importance in real
life experimentation, as often times, measurements cannot be made exactly at the connecting degrees of freedom ofmulti-
component structures or highly detailed finite element models are necessary to approximate the behavior of the system at
those locations.

5.2 Theory

The fundamentals of the study of the forced response of reduced linear systems spans a variety of theoretical topics briefly
presented here. The summary starts with a description of linear multiple degree of freedom systems and continues with an
overview of structural dynamic modification, analytical model reduction and expansion, model updating and forced time
response computations. Further information can be found in the respective references.

5.2.1 Equations of Motion for Multiple Degree of Freedom System

The general equation of motion for a multiple degree of freedom system written in matrix form is

ŒM1� fRxg C ŒC1� fPxg C ŒK1� fxg D fF .t/g (5.1)

Assuming proportional damping, the eigensolution is obtained from

ŒŒK1� � œ ŒM1�� fxg D f0g (5.2)

The eigensolution yields the eigenvalues (natural frequencies) and eigenvectors (mode shapes) of the system. The
eigenvectors are arranged in column fashion to form the modal matrix [U1]. Often times, only a subset of modes is included
in the modal matrix to save on computation time. Exclusion of modes results in truncation error which can be serious if key
modes are excluded. Truncation error will be discussed in further detail in the structural dynamic modification section.

The physical system can be transformed to modal space using the modal matrix as

ŒU1�
T ŒM1� ŒU1� fRp1g C ŒU1�

T ŒK1� ŒU1� fp1g D ŒU1�
T fF .t/g (5.3)

Scaling to unit modal mass yields

ŒI1� fRp1g C �
�1

2
� fp1g D �

Un
1

�T fF .t/g (5.4)

where [I1] is the identity matrix and [�1
2] is the diagonal natural frequency matrix. More detailed information on the equation

development is contained in Twenty Years of Structural Dynamic Modification – A Review [6].

5.2.2 Structural Dynamic Modification

Structural Dynamic Modification (SDM) is a technique that uses the original mode shapes and natural frequencies of a
system to estimate the dynamic characteristics due to changes in the mass and/or stiffness of the system. First, the change of
mass and stiffness are transformed to modal space as shown

�
�M12

� D ŒU1�
T Œ�M12� ŒU1� (5.5)

�
�K12

� D ŒU1�
T Œ�K12� ŒU1� (5.6)

The modal space mass and stiffness changes are added to the original modal space equations to obtain
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Fig. 5.1 Structural dynamic modification, mode contribution identified using U12 [7]
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The eigensolution of the modified modal space model is computed and the resulting eigenvalues are the new frequencies
of the system. The resulting eigenvector matrix is the [U12] matrix, which is used to transform the original modes to the new
modes as indicated by

ŒU2� D ŒU1� ŒU12� (5.8)

The new mode shapes are [U2]. The new mode shapes are formed from linear combinations of the original mode shapes.
The [U12] matrix shows how much each of the [U1] modes contributes to forming the new modes. Figure 5.1 shows the
formation of the new mode shapes as seen on Eq. (5.8). See [6] for additional information on SDM.

5.2.3 General Reduction/Expansion Methodology and Model Updating

Model reduction is a tool used to reduce the number of degrees of freedom (DOF) in order to diminish the required
computation time of an analytical model, while attempting to preserve the full DOF dynamic characteristics. The relationship
between the full space and reduced space model can be written as

fxng D
�

xa

xd

�
D ŒT� fxag (5.9)

where subscript ‘N’ signifies the full set of DOF (NDOF), ‘a’ signifies the reduced set of DOF (ADOF) and ‘d’ is the deleted
DOF (those DOF not used during the reduced computation process). The transformation matrix [T] relates the full set of
NDOF to the reduced set of ADOF. The transformation matrix is used to reduce the mass and stiffness matrices as

ŒMa� D ŒT�T ŒMn� ŒT� and ŒKa� D ŒT�T ŒKn� ŒT� (5.10)

The eigensolution of these ‘a’ set mass and stiffness matrices are the modes of the reduced model. These modes can be
expanded back to full space using the transformation matrix

ŒUn� D ŒT� ŒUa� (5.11)

If an optimal ‘a’ set is not selected when using methods such as Guyan Condensation [8] or Improved Reduced System
Technique [9], the reduced model may not perfectly preserve the dynamics of the full space model. If System Equivalent
Reduction Expansion Process (SEREP) [10] is used, the dynamics of selected modes will be perfectly preserved regardless
of the ‘a’ set selected.
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5.2.3.1 Expansion of System Modes from Uncoupled Component Modes

Expansion is generally used for providing full N-space mode shape information extracted from limited a-space information.
The expansion to full space in this paper is based on recent work by Nonis [11] showing that full N-space mode shape
information for an assembled system model can be obtained using the expansion matrices from the uncoupled, unconnected,
original component modes of each component. Figure 5.2 shows the entire expansion process schematically to further
describe the overall procedure. Reference [11] further details the expansion process and considerations for modes included.

5.2.3.2 System Equivalent Reduction Expansion Process (SEREP)

The SEREP modal transformation relies on the partitioning of the modal equations representing the system DOFs relative
to the modal DOFs [10]. The SEREP technique utilizes the mode shapes from a full finite element solution to map to the
limited set of master DOF. SEREP is not performed to achieve efficiency in the solution but rather is intended to perform an
accurate mapping matrix for the transformation. The SEREP transformation matrix is formed using a subset of modes at full
space and reduced space as

ŒTU� D ŒUn� ŒUa�
g (5.12)

where [Ua]g is the generalized inverse and [TU] is the SEREP transformation matrix. When the SEREP transformation matrix
is used for model reduction/expansion as outlined in the previous section, the reduced model perfectly preserves the full space
dynamics of the modes in [Un] [10].

5.2.3.3 KM_AMI Reduction

A more recent technique has been developed that utilizes Guyan Reduction along with direct updating of the reduced system
matrices with the full space modal vectors as targets for the updating process [12]. This reduction technique also overcomes
some of the rank problems associated with SEREP and provides a reduced set of ADOF that retain all the eigenvalues and
eigenvectors of the full system matrices. The Guyan reduced mass and stiffness matrices are updated using

ŒMI� D ŒMS� C ŒV�T �
Œ I� � �

MS
� �

ŒV� (5.13)

and

Œ KI� D ŒKS� C ŒV �T � �
�2

REF

� C �
KS

� �
ŒV� � ŒŒKS � Œ UREF� Œ V�� � ŒŒKS� Œ UREF� ŒV��T (5.14)

with

ŒV� D �
MS

��1
ŒUREF�T ŒMS� (5.15)

5.2.4 System Forced Response Analysis

The computation of the time response developed in this paper is based on the Equivalent Reduced Model Technique (ERMT),
a technique developed by Avitabile and Thibault [1, 7]. This technique uses an exact reduced model representation for the
calculation of the system response. Newmark integration technique [13] is used to perform the direct integration of the
equations of motion for the ERMT solution process. From the known initial conditions for displacement and velocity, the
initial acceleration vector is computed using the equation of motion and the applied forces as

R!
x 0 D ŒM��1

�!
F 0 � ŒC�

P!
x 0 � ŒK�

!
x 0

�
(5.16)
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Fig. 5.2 Overall expansion process schematic using the transformation matrices from unconnected system components [11]

where
R�!x 0 D Initial Acceleration Vector
P�!x 0 D Initial Velocity Vector
x0 D Initial Displacement Vector�!
F 0 D Initial Force Vector
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Choosing an appropriate �t, ’, and “, the displacement vector is

�!x iC1 D
�

1

’.�t/2
ŒM� C “

’ .�t/
ŒC� C ŒK�

	-1 ��!
F iC1 C ŒM�

� �
1

’.�t/2

�
�!x i C

�
1

’ .�t/

�
P�!x i C

�
1

2’
� 1

�
R�!x i

�

C ŒC�

��
“

’ .�t/

�
�!x i C

�
“

’
� 1

�
P�!x i C

�
“

’
� 2

�
�t

2

R�!x i

��

(5.17)

The values chosen for ’ and “ were ¼ and ½, respectively. This assumes constant acceleration and the integration process
is unconditionally stable, where a reasonable solution will always be reached regardless of the time step used. However, the
time step should be chosen such that the highest frequency involved in the system response can be characterized properly to
avoid numerical damping in the solution.

Following the displacement vector calculation, the acceleration and velocity vectors are computed for the next time step
using

P�!x iC1 D P�!x i C .1 � “/ �t R�!x i C “�t R�!x iC1 (5.18)

R�!x iC1 D 1

’.�t/2


�!x iC1 � �!x i

�
� 1

’�t
P�!x i �

�
1

2’
� 1

�
R�!x i (5.19)

This process is repeated at each time step for the duration of the time response solution desired.

5.2.5 Time Response Correlation Tools

In order to quantitatively compare two different time solutions, two correlation tools were employed: The Modal Assurance
Criterion (MAC) and the Time Response Assurance Criterion (TRAC).

5.2.5.1 Modal Assurance Criterion (MAC)

The Modal Assurance Criterion (MAC) [14] is widely used as a vector correlation tool. In this work, the MAC was used to
correlate all DOF at a single instance in time. The MAC is written as

MACij D
h
fX1igT ˚

X2j
�i2

h
fX1igT fX1ig

i h˚
X2j

�T ˚
X2j

�i (5.20)

where X1 and X2 are displacement vectors. MAC values close to 1.0 indicate strong similarity between vectors, where values
close to 0.0 indicate minimal or no similarity.

5.2.5.2 Time Response Assurance Criterion (TRAC)

The Time Response Assurance Criterion (TRAC) [15] quantifies the similarity between a single DOF across all instances in
time. The TRAC is written as

TRACji D
h˚

X1j
�T fX2ig

i2

h˚
X1j

�T ˚
X1j

�i h
fX2igT fX2ig

i (5.21)

where X1 and X2 are displacement vectors. TRAC values close to 1.0 indicate strong similarity between vectors, where
values close to 0.0 indicate minimal or no similarity.
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Fig. 5.3 Physical interpretation of MAC and TRAC

In this work, the MAC is calculated between the shapes of the full space reference solution and estimated solution obtained
from the reduced order model at each time step. Similarly the TRAC is used to compare the time response from the reduced
order model to the time response from the full space finite element solution at each degree of freedom. A diagram detailing
the two comparison techniques is shown in Fig. 5.3.

5.3 Model Description

Analytical models of a multi-component beam system were created to investigate the prediction of the dynamic response
of the system including subcomponents and ancillary attachments. The models consisted of three beams, as illustrated in
Fig. 5.4, attached asymmetrically by linear springs and such that all components are dynamically active.

Planar element beam models of the three beams were generated using MAT_SAP [16], which is a finite element modeling
(FEM) program developed for MATLAB [17] and forced response calculations were performed in MATLAB using Newmark
integration scripts base on code originally written by Thibault [1]. The beam models were set to have dimensions and
characteristics asdescribed in Figs. 5.5 and 5.6.

The 3 beam system was subjected to a double sided force pulse at the left end of the support beam (see Fig. 5.4) and this
input force was set as to only excite the modes in the frequency band of approximately 1,000 Hz of the system as shown in
Fig. 5.7.

With all 100 elements of the system (i.e. 206 DOF) the full N-space reference solution to the system was calculated
and served as a point of comparison for all subsequent reduced order model calculations. The frequencies of the individual
components and of the full assembled system with or without the ancillary subcomponent are shown in Table 5.1.
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System 2

System 1

Fig. 5.4 Schematic of 3 beam
analytical model and input force
location (not to scale)

L Wo

Ho Ho
t

Property of Beam Beam A Beam B

Wo - Beam width (in) 2 3

Ho - Beam height (in) 1 4

t - Wall thickness  (in) 3/8 1/8

L - Length (in) 50 140

E – Young’s Modulus 10e6 psi

ρ – Weight density 0.1 lb/in3

# of elements 20 70

Fig. 5.5 Dimensions of top (red)
and support/base (blue) beams of
the analytical beam system

L

H H

W

Ancillary Beam Dimensions and 
Physical Properties

L – Length 15 in

H – Height 0.25 in

W – Width 0.5 in

E – Young’s Modulus 10e6 psi

ρ – Weight density 0.1 lb/in3

# of Elements 10

K_1 & K_2 = 1e6  lb/in
K_3 = 1e3  lb/in

K_1

K_2 

K_3 

Fig. 5.6 Dimensions and
characteristics of ancillary
subcomponent (grey) of 3 beam
system

5.4 Cases Studied

The forced response of the full space reference model with 206 DOF was first calculated. Structural Dynamic Modification
was used to calculate the U12 matrix and determine the necessary modes of the system to preserve the first five modes of
the 3 beam system. Subsequently, reduction techniques were used to reduce the active DOF of the system to an ‘a’ set not
including DOF on the ancillary beam. The forced response of the reduced ADOF linear system was calculated. The dynamic
characteristics of the ancillary subcomponent were then extracted using the system information available from the reduction
process. This is equivalent to assuming the subcomponent of the system (ancillary beam) is inaccessible/immeasurable and
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Fig. 5.7 Time (left) and frequency (right) domain plots of input analytical force pulse

Table 5.1 Frequencies of the
first 15 modes of the 3 beam
system and its components Mode

Frequency (Hz)

Beam A Beam B
Sub-

Component
System 
w/o A.C.

System

1 0.0015 18.9 0.010 16.8 16.8

2 0.0024 45.9 0.014 37.6 37.5

3 87.6 80.9 224.5 68.2 68.1

4 241.4 161.4 619.0 86.9 84.6

5 473.2 299.7 1214.3 129.1 102.1

6 782.3 489.4 2010.4 210.5 129.1

7 1168.8 728.2 3011.1 282.8 210.0

8 1633.1 1015.5 4223.0 343.1 282.0

9 2175.4 1351.0 5653.7 477.1 343.0

10 2796.3 1734.7 7302.3 645.5 396.2

11 3496.7 2166.4 9071.4 716.4 477.3

12 4277.7 2646.2 12046.9 959.5 645.3

13 5140.7 3174.1 14493.9 1118.7 716.3

14 6087.4 3750.0 17502.7 1311.7 889.0

15 7120.0 4373.9 21038.3 1617.3 960.6

Yellow cells highlight similar frequencies after addition of ancillary subcomponent (AC) to the system

therefore predicting its response from the information of the other two components (the red and blue beam). The test cases
presented here are intended to show the results when a proper set of modes are selected such that no information is lost in
the reduction process and an inappropriate reduced model where the modes do not span the space of the system.

The cases presented here are summarized as:

Case 1—Reference Model
206 DOF Total; System 1/Beam B 142 DOF; System 2—Beam A 42 DOF and Ancillary 22 DOF

Case 2—Guyan Reduced Order Model
12 DOF Total; Beam B—ADOF 65, 117, 169, 199, and 205; Beam A—ADOF 23, 31, 33, 41, 43, 55 and 63
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NDOF Subcomponents
Assemble
Unreduced
Systems

System/Assembly
2

System/Assembly
1

Assemble Full System
and Calculate
Forced Response 

Fig. 5.8 Sequence for the development of assembled reference model

Case 3—SEREP Reduced Order Model
12 DOF Total; Beam B—ADOF 65, 117, 169, 199, and 205; Beam A—ADOF 23, 31, 33, 41, 43, 55 and 63

Case 4—KM_AMI Model Improvement from Guyan Reduced Order Model
12 DOF Total; Beam B—ADOF 65, 117, 169, 199, and 205; Beam A—ADOF 23, 31, 33, 41, 43, 55 and 63

Case 5—Considerations for Additional Modes in the Model Reduction
Case 6—Considerations for DOF Selection in the Model Reduction

5.4.1 Case 1: Reference Model

The NDOF unreduced subcomponents were tied together to form two systems, the support (System 1) and the top assembly
(System 2). The frequencies and mode shapes of both untied and tied subcomponents were calculated for reference. The
assembled 3 beam system consisting of the tied System 1 and System 2 was then tied together at full N-space and the linear
forced response calculated using the analytical input force of Fig. 5.7. The forced response of this NDOF (206 DOF) served
as the reference solution for the reduced cases. Figure 5.8 shows the sequence of the assembly of the system subcomponents
used to create the assembled system reference solution.

The frequencies of the system and subcomponents are shown in Table 5.1 and the mode shapes of the 3 beam system
can be seen in Fig. 5.9. The ancillary (grey) subcomponent can be observed to be dynamically active on the first 15 modes
of the system and therefore sufficient component information needs to be preserved in the reduction process in order to not
only accurately predict the force response of the ancillary subcomponent (during expansion) but also to properly capture the
dynamics of the coupling red beam.

5.4.1.1 Component Mode Contribution—U12

Calculation of the U12 matrix for the system response is of utmost importance to understand and mitigate the effects of
truncation error in the reduction process. The modes from Systems 1 and System 2 required to preserve the first five modes
of the assembled full 3 beam system were chosen using the resulting U12 shown in Fig. 5.10. As seen on the U12 contribution
matrix, a total of 12 modes of the system components are required to preserve five modes of the assembled 3 beam system.
System 1 (the blue support beam) contributes five modes to the reduced model while System 2 (the top red beam and its
attached ancillary subcomponent) provides seven modes. The larger contribution from system 2 is already an indication of
the strong influence of the dynamic ancillary subcomponent and emphasizes that a larger amount of information from this
component (system 2) is needed to fully characterize the system level response of the 3 beam structure.
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16.78 Hz 37.50 Hz 68.11 Hz 84.61 Hz 102.08 Hz

129.11 Hz 209.96 Hz 282.02 Hz 342.95 Hz 396.25 Hz

477.32 Hz 645.25 Hz 716.29 Hz 889.02 Hz 960.58 Hz

Fig. 5.9 Mode shapes of full 206 N-space 3 beam system used as reference solution

5.4.2 Overview of Reduced Models

Full N-space subcomponents were assembled into two systems (System 1 and System 2) as in the reference case. The two
systems were reduced separately and then tied together. For System 2, containing the ancillary subcomponent, the reduction
was made as to omit any active DOF in the ancillary beam. The idea is that the reduction process, if carried out successfully,
should embed the necessary component information onto the reduced assembled system. Figure 5.11 shows the assembly
sequence performed to reduce the system components and the extraction of the subcomponent response from the calculated
reduced model forced response.

Three reduction methods were used to highlight particular advantages of each procedure. Guyan reduction, as explained
in the theory section, does not fully preserve the dynamics of the system if an optimal ADOF set is not selected. On the
other hand, SEREP will accurately preserve the selected modes of the system but issues may arise regarding full rank of
the reduced mass and stiffness matrices of the system. Lastly, a model improvement technique, KM_AMI, is used to update
the mass and stiffness matrices of the Guyan reduced model by seeding target frequencies and mode shapes and therefore
preserving the exact model information while preserving the full rank advantages of a Guyan reduced model. These issues
will be covered in the three cases described below.

5.4.3 Case 2: Guyan Reduced Model

As with the other reduced models covered in this study, the selected DOF for the reduction did not include DOFs of
the ancillary subcomponent. As indicated by the U12 matrix in Figs. 5.10 and 5.12, there are 12 modes of the system’s
components necessary to accurately span the space of the first five modes of the assembled 3 beam system. Figure 5.13 shows
the layout of connection DOF of the 3 beam system. Figure 5.14 shows the reduced order model frequencies compared to
the reference N-space solution.
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Sys2 - M 3 0 0 0.1 1 0 0 0 0 0.1 0 0 0 0 0 0
Sys2 - M 4 ### ### 0 ### ### 0 0 0 0 0 ### 0 0 0 0
Sys2 - M 5 ### 0 0 0 0 0.2 ### ### 0.1 ### ### 0.3 0 0 0
Sys2 - M 6 ### ### ### ### ### ### 0 0 0 1 0.1 0.1 0 0 0
Sys2 - M 7 ### ### ### 0 0 ### ### ### 0.7 ### ### 0.1 0.2 0.1 0.3
Sys2 - M 8 ### ### ### ### ### ### 0 0 0 0 0.1 0.8 0.1 ### 0.2
Sys2 - M 9 ### ### ### ### ### ### ### ### ### ### ### ### 0 1 0.1
Sys2 - M 10 ### ### ### ### ### ### ### 0 ### 0 ### ### ### ### ###
Sys2 - M 11 ### ### ### ### ### ### ### ### ### ### ### ### ### ### 0
Sys2 - M 12 ### ### ### ### ### ### ### ### ### 0 ### ### ### ### ###
Sys2 - M 13 ### ### ### ### ### ### ### ### ### ### ### ### ### 0 0
Sys2 - M 14 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###
Sys2 - M 15 ### ### ### ### ### ### ### ### ### ### ### ### ### 0 0
Sys2 - M 16 ### ### ### ### ### ### ### ### ### 0 ### ### ### ### ###
Sys2 - M 17 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###
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Sys1 - M 1 0.9 0.3 0 0.1 0 0.1 0.1 0.1 0.2 0 0 0.1 0 0 0.1
Sys1 - M 2 0 0.8 0.4 0.1 0 0 0 0 0.3 0 0 0 0.1 0 0.1
Sys1 - M 3 0 0.1 0.8 0.1 0 0.4 0.1 0 0.3 0 0.1 0.1 0.1 0 0.1
Sys1 - M 4 0 0 0.1 0 0 0.7 0.5 0.2 0 0 0.1 0.2 0 0 0
Sys1 - M 5 0 0 0 0 0 0.1 0.2 0.9 0.1 0.1 0.2 0.3 0 0 0
Sys1 - M 6 ### 0 0 0 ### 0 0 0 0 0 1 0.2 0 0 0
Sys1 - M 7 ### 0 0 0 0 0 0 0 0.1 0 0 0.1 1 0 0.2
Sys1 - M 8 ### 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.9
Sys1 - M 9 ### ### 0 0 ### 0 0 0 0 0 0 0 0 0 0.1
Sys1 - M 10 ### ### ### ### ### 0 0 0 0 0 0 0 ### 0 0
Sys1 - M 11 ### ### ### ### ### 0 0 0 0 0 0 0 0 0 0
Sys1 - M 12 ### ### ### ### ### 0 0 0 0 0 0 0 0 0 0
Sys1 - M 13 ### ### ### ### ### 0 0 0 0 ### 0 0 0 0 0
Sys1 - M 14 ### ### ### ### ### 0 0 ### 0 0 0 0 0 0 0
Sys1 - M 15 ### ### ### ### ### 0 0 0 ### 0 0 0 0 ### 0

Range

Color Min Value
Max 
Value

Red 0.90 1.00
Yellow 0.70 0.90

Magenta 0.50 0.70
Cyan 0.30 0.50
Green 0.20 0.30
Blue 0.10 0.20
Black 0.01 0.10

System
2

System
1

Fig. 5.10 U12 mode contribution matrix from system components to full 3 beam system

NDOF Subcomponents
Assemble 
Unreduced 
Systems

Connect System 1 & 2 
and perform Reduction 
to ADOF 

Calculate Forced 
Response and 
Expand back to 
NDOF

System/Assembly
2

System/Assembly
1

Extract 
Subcomponent
characteristics

Fig. 5.11 Sequence for the development of reduced system response models
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Range

Color Min Value
Max 
Value

Red 0.90 1.00

Yellow 0.70 0.90

Magenta 0.50 0.70

Cyan 0.30 0.50

Green 0.20 0.30

Blue 0.10 0.20

Black 0.01 0.10

System
2

System
1

Comp. 
Modes

Full 3 Beam System
Modes

1 2 3 4 5
Sys2 - M 1 0.5 0.5 0.2 0.1 0
Sys2 - M 2 0.1 0.2 0.4 0.1 0
Sys2 - M 3 0 0 0.1 1 0
Sys2 - M 4 ### ### 0 ### ###
Sys2 - M 5 ### 0 0 0 0
Sys2 - M 6 ### ### ### ### ###
Sys2 - M 7 ### ### ### 0 0

Sys1 - M 1 0.9 0.3 0 0.1 0
Sys1 - M 2 0 0.8 0.4 0.1 0
Sys1 - M 3 0 0.1 0.8 0.1 0
Sys1 - M 4 0 0 0.1 0 0
Sys1 - M 5 0 0 0 0 0

Fig. 5.12 Selected portion of U12 mode contribution matrix from system components to first five modes of full 3 beam system

Ancillary:

10 Elements – 22 DOF

Top Beam:

20 Elements - 42 DOF

Base Beam:

70 Elements – 142 DOF
65

DOF #

1 22

23 64

206

37 49

169

31 55

199

Connection 
DOF #

Fig. 5.13 Summary of
numbering of 3 beam system
NDOF (206) and connecting
DOF

Reference
System Freq. (Hz)

Guyan Reduced 
System Freq. (Hz)

% 
Difference

Mode 1 16.8 16.8 0%

Mode 2 37.5 37.7 0%

Mode 3 68.1 69.9 3%

Mode 4 84.6 86.4 2%

Mode 5 102.1 129.9 27%

Mode 6 129.1 220.6 71%

Mode 7 210.0 347.9 66%

Mode 8 282.0 663.8 135%

Mode 9 343.0 731.0 113%

Mode 10 396.2 1578.4 298%

Mode 11 477.3 3073.4 544%

Mode 12 645.3 3283.3 409%

System 2: 7 ADOF – 23, 31, 33, 41, 43, 55, and 63

System 1: 5 ADOF – 65, 117, 169, 199 and 206

Fig. 5.14 Comparison of Guyan reduced order model (12 DOF) frequencies with respect to (206 DOF) reference solution
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Fig. 5.15 Comparison of time response at node 1 of the ancillary subcomponent from the expansion of a 12 DOF Guyan reduced model versus
the 206 DOF full space reference solution. Zoomed in region shows the response for the first 0.05 s

Note that there are no DOF from 1 to 22 since these are the ancillary subcomponent DOFs and moreover, DOF 37 and
49 connecting the top red beam to the ancillary beam were omitted as well. As discussed in the theory section, even with
sufficient modes selected in the reduction process (according to the U12 contribution matrix) and a well placed selection of
ADOF, Guyan reduced did not preserve the five modes of interest as seen in the table of Fig. 5.14. The error can be observed
to increase quickly for modes higher than 3 and the predicted system response is not expected to yield accurate results.
The forced response of the Guyan reduced order model was calculated and using the transformation matrix [T], the results
were expanded back to full N-space (206 DOF). The ancillary subcomponent response was found from the expanded forced
response of the system. Figure 5.15 shows a comparison of the displacement at the first node of the ancillary subcomponent
with respect to the full space reference solution. The average MAC and TRAC were found to be 0.6 and 0.53 respectively.
Figure 5.16 shows the MAC and TRAC for the expanded Guyan reduced model.

From Fig. 5.16 and from the calculation of time response correlation tools, the response of the expanded Guyan
reduced model showed low correlation to the reference solution. Clearly mode truncation does not allowed for the accurate
characterization of the reduced system, let alone the characterization of the ancillary subcomponent from embedded system
information. While addition of extra DOF may diminish the effects of mode truncation, there is always an intrinsic risk of
error in the Guyan reduction process and ADOF selection.

5.4.4 Case 3: SEREP Reduced Model

The goal of preserving the first five modes of the full 3 beam system requires the selection of five modes of System 1 and
seven modes of System 2. The same ADOF selection from Case 2 was used during the SEREP reduction process. Figure 5.17
shows the resulting frequencies of the reduced system.
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Fig. 5.16 MAC and TRAC bar plots showing the correlation of the expanded Guyan reduced model to the reference model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-8

-6

-4

-2

0

2

4

6
x 10

-4

Time (sec)

D
is

pl
ac

em
en

t a
t N

od
e 

1

Time Domain Response of Ancillary Beam at Node 1

SEREP Red. Model

Reference Model

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

SEREP Red. Model

Reference Model

Fig. 5.17 Comparison of time response at node 1 of the ancillary subcomponent from the expansion of a 12 DOF SEREP reduced model versus
the 206 DOF full space reference solution. Zoomed in region shows the response for the first 0.1 s

From Fig. 5.18 and upon comparison to Fig. 5.14 showed that the SEREP reduced order model preserved the five modes
of interest and resulted on a smaller error for some of the remaining seven modes. Calculation of the time response was then
performed for the ADOF reduced model. The resulting time response was then expanded to all 206 DOF using the [TU]
SEREP transformation matrix. The response of the ancillary subcomponent was extracted from the expanded response of the
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Reference System
Freq. (Hz)

SEREP Reduced 
System Freq. (Hz)

% 
Difference

Mode 1 16.8 16.8 0%

Mode 2 37.5 37.5 0%

Mode 3 68.1 68.2 0%

Mode 4 84.6 84.6 0%

Mode 5 102.1 102.1 0%

Mode 6 129.1 130.2 1%

Mode 7 210.0 211.5 1%

Mode 8 282.0 283.2 0%

Mode 9 343.0 351.2 2%

Mode 10 396.2 396.6 0%

Mode 11 477.3 2611.8 447%

Mode 12 645.3 3023.1 369%

System 2: 7 ADOF – 23, 31, 33, 41, 43, 55, and 63

System 1: 5 ADOF – 65, 117, 169, 199 and 206

Fig. 5.18 Comparison of SEREP reduced order model (12 DOF) frequencies with respect to (206 DOF) reference solution

Fig. 5.19 MAC and TRAC bar plots showing the correlation of the expanded SEREP reduced model to the reference model

system. Figure 5.17 shows a comparison of time response at the first node of the ancillary beam (from the expanded SEREP
reduced model) with respect to the reference solution; while only one node is shown for brevity, all of the nodes on the
ancillary component had similar agreement. The average MAC and TRAC were found to be 0.97 and 0.95 respectively.
Figure 5.19 shows the MAC and TRAC bar graphs correlating the expanded SEREP reduced model to the reference
solution.

The SEREP reduction and expansion process resulted in high correlation using the same amount of DOF as the Guyan
reduced model. Furthermore, the omission of the connecting DOF for the ancillary subcomponent did not yield additional
error as will be shown in Case 6. Moreover, issues can only arise if the selected DOF do not yield full rank reduced mass
and stiffness matrices but this issue was not encountered in the analytical models studied. Nevertheless, Case 4 discusses
the KM_AMI Model Improvement which can alleviate any issues arising from the rank deficiency in the reduction process
while preserving the accuracy of the SEREP reduction methodology.
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Fig. 5.20 MAC and TRAC bar plots showing the correlation of the expanded Guyan improved model to the reference model

5.4.5 Case 4: KM_AMI Model Improvement from Guyan Reduced Model

The Guyan reduced model of Case 2 was shown to be drastically affected by the selection of ADOF as well as the number
of modes in the reduction. The need to use Guyan reduction may arise from limitations of currently available finite element
software or from the need to have a fully ranked reduced mass and stiffness matrices. For such situations, this case explores
using the exact frequencies and mode shapes of the system to update the reduced order model using the KM_AMI approach.
The target frequencies and mode shapes (e.g. the first five modes of the fully assembled 3 beam system) are directly seeded
to the Guyan reduced model of Case 2. The MAC and TRAC of the expanded KM-AMI updated Guyan model resulted in an
average of 0.97 and 0.95 respectively just as the SEREP reduction model of Case 3. Figure 5.20 shows the MAC and TRAC
bar plots for the improved Guyan reduced model using KM-AMI updating.

The improved reduced model using the KM_AMI approach showed significant gain in accuracy compared to the original
Guyan reduced model. Not only where the five frequencies and mode shapes of the assembled model preserved exactly (as
these were directly seeded to the reduced model) but also an accurate ancillary subcomponent response was extracted from
the expanded reduced order model.

The cases discussed thus far have shown that the Guyan reduced model (Case 2) does not accurately preserve the
embedded characteristics of the ancillary subcomponent during the reduction process while the SEREP and KM_AMI ( Cases
3 and 4 respectively) model reductions produce remarkable accuracy in the prediction of the response of both components and
the embedded ancillary subcomponent. Now, Cases 5 and 6 will discuss some considerations regarding the accuracy of the
reduced model when either additional modes (modes beyond the ones specified by the U12 contribution matrix requirements)
or DOF are used in the reduced order models.

5.4.6 Case 5: Considerations for Additional Modes in the Model Reduction

Addition of modes beyond the 12 modes indicated in the U12 matrix in the SEREP reduced model showed large improvement
from the resulting expanded model response. Additional 5 modes were included, 2 from System 1 and 3 from System 2 for
a total of 17 modes. The ADOF selected once again did not include the connecting DOF (37 and 49) of the ancillary
subcomponent. The ADOF set selected was DOF 65, 100, 117, 169, 183, 199, and 205 from System 1/Beam B and ADOF
23, 27, 31, 33, 39, 41, 43, 51, 55 and 63 from Beam A of System 2. The expanded SEREP reduced model response resulted
in an average MAC and TRAC of 0.998 and 0.997 respectively. Figure 5.21 shows the MAC and TRAC bar plots for this
newly reduced 17 DOF model (Note the change in the y-axis of the MAC).
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Fig. 5.21 MAC and TRAC bar plots showing correlation of the expanded 17 DOF SEREP reduced model to reference model. MAC y-axis is
showing values from 0.95 to 1.0

When the reduction process is successful (as it was with the SEREP and KM_AMI models), the modes selected span the
space of the system response. Modes beyond the 12 indicated by the U12 smooth the approximation of the system response
and further addition of modes results in better results until the reduced ‘a’ space model approaches the full ‘N’ space solution
and hence spans the whole space of the full assembled system response.

Up to this point, the selection of ADOF was almost arbitrary other than purposely avoiding the inclusion of the
connection DOF in the reduction process. As explained in the theory section, Guyan reduced models are highly affected
by DOF selection while this has no effect on the SEREP and KM_AMI methodologies. This independence from
DOF selection is in fact a central point on why the connection DOFs can be omitted and how the subcomponent
information is preserved during the SEREP reduction. Case 6 investigates the addition of the connection DOF in the model
reduction.

5.4.7 Case 6: Considerations for DOF Selection in the Model Reduction

A reduced model using 12 DOF (as in Case 2, 3 and 4) was created using the connection DOF 37 and 49 from the ancillary
subcomponent. The ADOF set selected was DOF 65, 117, 169, 199, and 205 from System 1/Beam B and ADOF 23, 31, 33,
37, 49, 55 and 63 from Beam A of System 2. Figure 5.22 shows a comparison of the SEREP reduction models carried out
with and without use of the connection DOF of the ancillary subcomponent.

The 12 DOF reduced model utilizing the connecting DOF to the ancillary beam did not yield a higher average MAC or
TRAC and no significant gain was observed from the selection of these DOF. This phenomenon is not surprising because
SEREP reduction, as it has already been mentioned, is not dependent on the location of the selected DOF as long as the
reduced set of modes span the space of the system. To further illustrates that omitted DOF are sufficiently recovered from the
available system information, Fig. 5.23 shows a comparison of the time response at the connecting DOF of both the ancillary
beam and the top red beam of System 2.

The connecting DOF of the subcomponents of System 2 are expected, and in fact, show the same time response. Therefore,
the number of modes, as shown in Case 5, has a more significant contribution to the accuracy of the predicted response than
the selection of ADOF in the reduced model.
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Fig. 5.22 Comparison of time response at node 1 of ancillary subcomponent from two expanded SEREP reduced models (Model in green uses
the connecting DOF of the ancillary beam while the model in black uses the previously selected ADOF set)

5.4.8 Observations

The expanded SEREP reduced model of Case 3 and the KM_AMI model of Case 4 were shown to accurately preserve
embedded structural component information. While there are slight differences in the time traces of the system response,
these are not necessarily an artifact of the reduction process but more a result of the effect of higher order modes at the
beginning of the response as well as the approximation of the damping in the system (damping was assumed to be 1 % for
all modes of the system). Increasing the duration of the time pulse could reduce the number of higher modes excited and in
turn yield a better representation without the need for more modes in the reduction process.

From Cases 5 and 6, selection of DOF was shown to be not as significant as the number of modes in the reduced model.
Increasing the number of modes in the ‘a’ space resulted in a set of modes that better spans the space of the fully assembled
reference model. Furthermore, when the ‘a’ space modes span the space of the system the selection of the connection DOF
of the ancillary subcomponent brought no additional gain in accuracy in the predicted response of the system.

5.5 Conclusion

An efficient reduced order modeling technique for system forced response calculation (ERMT) was used to calculate the
time response of multi-component structure. The reduced model was made of components with embedded subcomponent
information. The transformation matrices from the reduction process were used to expand the time response from a selected
ADOF set back to the full NDOF space. The selected ADOFs omitted the connecting DOF of the ancillary subcomponent
and the expansion process was shown to correctly predict the response of the embedded component as long as the modes of
the reduced system spanned the space of all the modes of interest.
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Fig. 5.23 Comparison of connecting DOF time response for both ancillary subcomponent and top red beam of System 2

Guyan and SEREP reduction were used to obtain the reduced order models but mode truncation in the Guyan reduced
system resulted in poor correlation of the response of the system. SEREP reduced models and the expanded models were
shown to accurately preserve the dynamics of the system as well as the dynamics of the embedded ancillary subcomponent;
the reduced model did not contain any DOF associated with the ancillary connection to the subcomponent. No additional
gain was found from the addition of the connecting DOF of the subcomponents as long as the modes selected were sufficient
in accordance to the U12 contribution matrix.

KM_AMI updating of the Guyan reduced mass and stiffness matrices with target frequencies and mode shapes showed to
mitigate the inherent errors in Guyan reduction process and ADOF selection. Addition of modes to the SEREP and KM-AMI
models was shown to give significant gains in the correlation of the system to the full space reference solution.
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