
Chapter 9
Dealing with Dependent Risks

Claudia Klüppelberg and Robert Stelzer

In most real life situations we are confronted not only with one single source of
risk or one single risk, but with several sources of risk or combinations of risks. An
important question is whether individual risks influence each other or not. This may
involve the time of their occurrence and/or their severity. In other words, we need to
understand how to model and describe the dependence structure of risks. Clearly, if
risks influence each other in such a way that they tend to occur together and increase
the severity of the overall risk, then the situation may be much more dangerous than
otherwise.

We illustrate this with a concrete example. Consider a building which could be
hit by an earthquake and a flood. If the building is situated on the Japanese coast,
an earthquake may damage the building and cause a tsunami, which in turn floods
the building. Hence, it is quite likely that by these two combined sources of risk a
particularly disastrous event occurs. In other words, there is a strong positive depen-
dence between these two risks (high damage from an earthquake will often come
along with high damage from a flood). This does not mean that they always occur
together, since an earthquake does not necessarily cause a tsunami, and there may
be a flood caused only by heavy rain.
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The Facts

• Dependence between risks and/or sources of risks is crucial for risk assessment,
quantification and management.

• Adequate mathematical measures for the dependence between risks (or more gen-
erally between random variables) are needed.

• Correlation measures linear dependence, but characterises the full dependence
structure only in special parametric models (the multivariate normal distribution
is the typical example).

• Correlation is also useful in spherical and elliptical distributions.
• Rank correlations are appropriate dependence measures in certain situations.
• Copulae provide a way to characterise the dependence structure completely, but

are rather complex objects.
• For risk assessment it is mainly the dependence structure of extreme events that

matters. Thus, measures for dependence in extreme observations provide useful
dependence measures for combined risks.

1 Introduction

In most situations (both in our professional and our daily life) risks are present.
Often there exist various sources of risk which, in the end, determine the overall
risk of a more-or-less complex system. This is a common situation in the financial
world (i.e., for any bank and insurance company), in any engineering system, when
working as a physician or when dealing with environmental consequences. It is then
necessary to assess and deal with combinations of risks in an appropriate way.

There is a huge difference between two risks possibly occurring together and
risks happening at different times. In one situation you need to be prepared to deal
with both risks at the same time, whereas in the other situation it suffices to cope
with one risk at a time. For example, if you consider the people needed on stand-
by for the emergency services, you will need many more people in the first case.
However, in almost all situations life is not even that easy; risks do not have to
occur at the same time; instead they may or tend to occur at the same time. Then
we need to understand and quantify this tendency. This is exactly what this paper
is about, to understand how to model the statistical dependence between different
risks.

There are two classical approaches. The first assesses the single risk factors by
some monetary risk measure, and simply adds the different values of the single
risk measures together. The second combines the monetary risks with a multivariate
normal model, and assesses the dependence via the pairwise correlations.

Both approaches capture only part of the truth, and in this chapter we discuss their
appropriateness, other approaches and the pros and cons of different approaches to
model and measure risks of complex systems.

We are concerned with risk under dependence and thus we briefly have to make
precise what we mean by this. In the end we want to use risk measures (see
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Chap. 5, [15] for a detailed introduction) to quantify risks, as well as to assess
the effects of risk management strategies. Essentially, we want to understand the
effects the dependence structure has on these risk measures. In models it is of
utmost importance to have an appropriate dependence structure capturing all ef-
fects relevant for the risk measures. So we want to discuss both how to model de-
pendence and the effects of different ways of modelling on the final risk assess-
ment.

Therefore let us briefly introduce two risk measures and note that we identify risk
with a random variable; i.e., the outcome of a risky event.

Definition 1.1 (Examples of “Risk Measures”) For a random variable X with dis-
tribution function F(x) = P(X ≤ x) for x ∈ R we define the following risk mea-
sures:

(a) Variance: var(X) = E((X − E[X])2) = E(X2) − (E(X))2 is the mean squared
deviation from the mean or expected value of X.

(b) Value-at-Risk: Define the quantile function of F as

F−1(α) = inf
{
x : F(x) ≥ α

}
, α ∈ (0,1). (1.1)

Note that for strictly increasing F this is simply the analytic inverse.
Then for a large value of α (usually α = 0.95 or larger) VaRα = F−1(α) is
called the Value-at-Risk (for the level α).

The first risk measure, i.e. the variance, gives the average squared difference be-
tween a random variable (the realisation of a risk) and its mean outcome. It measures
how widely spread various outcomes are. Clearly, it is a very simplistic risk mea-
sure, since e.g. it does not differentiate between values higher and values lower than
the mean, as it looks only at the squared distance. Normally, only one direction re-
ally matters when considering a particular risk. For instance, if we consider the level
of a river in a German city and the flood risk, then it is irrelevant when the level is
far smaller than the mean (of course, the “downside” direction may well matter for
other risks, e.g. that water becomes scarce).

The Value-at-Risk or VaR is a very popular risk measure, in particular in the fi-
nancial world. Above it has been assumed that the high realizations of X are “risky”,
but this is only a convention and can be changed to low realizations being risky. In-
tuitively, the value at risk gives the level which is not exceeded in 100 · α % of
all cases (e.g. if the VaR at the level 0.95 is 500, then the relevant variable, “the
risk”, is above 500 in 5 % of all cases and in 95 % of all cases it is below 500).
Moreover, the VaR has been incorporated into the Basel II regulations (the interna-
tional rules governing how much capital banks must set aside to cover future losses
from their business) and Solvency II (similar international rules for insurance com-
panies), and the national legislation which enforces these international standards.
VaR is the standard risk measure in use there (cf. Chap. 6, [20] for estimation meth-
ods).
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We will see later, in particular in Illustration 2.3, that changing the dependence
structure usually has major effects on the VaR. But note that VaR has been rightly
criticized for various reasons:

(a) VaR takes only the event of large losses into account, but not the size of losses.
In this sense the so called Tail-VaR is preferable, which measures the average
of all losses exceeding VaR. So if a bank sets aside capital equal to its VaR
it certainly goes bankrupt (or needs to be “rescued”), as soon as a loss occurs
which is higher than VaR. In contrast to this, if it used the Tail-VaR to determine
its risk capital, it has set aside enough capital to withstand such an event on
average. So there should be a realistic chance that the capital is sufficient to
cover the loss.

(b) VaR is not always a coherent risk measure. For a risk measure to be coherent
(cf. Chap. 5, [15]) it is necessary that the risk measure of the sum of two risks
is always below the sum of the two risk measures. Since e.g. banks estimate the
VaR for each unit and add all resulting VaRs up to estimate the risk of the whole
bank, the use of VaR may underestimate the true bank’s VaR considerably.

As a very readable paper on dependence measures and their properties and pitfalls,
which goes far beyond the present chapter, we recommend [2].

This paper is structured as follows. In Sect. 2 we introduce the mathematical def-
initions of (in)dependence of random variables and illustrate the effects of different
dependence structures. In Sect. 3 we recall the multivariate normal distribution and
discuss which kind of dependence it is able to model. We continue this in Sect. 4
where we consider the correlation as a popular dependence measure, discussing in
detail its properties, problems, limitations and popular misconceptions. As the next
natural step we present spherical and elliptical distributions in Sect. 5. Thereafter,
we turn our focus onto alternative dependence measures starting with rank corre-
lations in Sect. 6. Then in Sect. 7 we consider a concept—copulae—at length. In
principle it is able to encode completely all possible dependence structures. As typ-
ically extreme events are the really dangerous risks, we indicate in Sect. 8 how to
quantify and model the dependence of extreme events. Finally, we give you as our
readers some Food for Thought in Sect. 9 and provide a brief summary in Sect. 10.

2 Independence and Dependence

The first simple question to answer is, when exactly do we have dependence between
risks? The best answer seems to be a negative one, viz. risks are dependent whenever
they are not independent.

Clearly, this means that we have to give a mathematical definition of indepen-
dence. We do this for two random variables X and Y (which represent the risks we
are interested in). Think for instance of our example of an earthquake and a flood at
the beginning. Intuitively, independence should mean that whatever happens in one
random variable, say X (the earthquake), should in no way affect what happens in Y



9 Dealing with Dependent Risks 245

(the flood). If we know the value of X, this should not change our knowledge of what
might happen and with what probability to Y . In proper mathematical terms one says
that two random variables are independent if their joint distribution is the product of
the two marginal distributions; i.e., P(X ≤ x,Y ≤ y) = P(X ≤ x)P (Y ≤ y) for all
x, y ∈ R (note: P(A) means the probability that some event A occurs). This implies
that the probability distribution of Y conditional on X does not depend on X, but is
simply equal to the distribution of Y ; i.e., P(Y ≤ y | X ≤ x) := P(X ≤ x,Y ≤ y)/

(P (X ≤ x)) = P(Y ≤ y) for all x, y ∈ R. Obviously this is in line with the intuition
given above.

Note that the necessity of a negative definition of dependence tells us that there
are (too) many ways in which risks can be dependent. Hence, any mathematical
object completely describing the dependence of arbitrary random variables has to
be a very complex object. Turned the other way around any simple quantification of
dependence—such as one real number obtained from the joint distribution of two
random variables—will necessarily reflect only a very special aspect of dependence,
or describe the dependence completely only in very special situations/set-ups. This
should be kept in mind throughout the rest of this chapter and whenever trying to
quantify dependence in applications.

In truly realistic situations we are interested in the (in)dependence of more than
two random variables. We give the general definition and discuss and illustrate it
afterwards.

Definition 2.1 (Independence) Let X1,X2, . . . ,Xn for n ∈N be random variables.
Then X1,X2, . . . ,Xn are called independent if

P(X1 ≤ x1, . . . ,Xd ≤ xd) = P(X1 ≤ x1) · · ·P(Xd ≤ xd) (2.1)

holds for all x1, . . . , xd ∈ R.

Let us consider two special cases that are particularly relevant in applications.

(a) Assume the random variables X1,X2, . . . ,Xn are discrete; i.e., they can only
assume countably many values (e.g. all random variables take only values 0
or 1, or all possible outcomes are natural numbers). Then X1,X2, . . . ,Xn are
independent if and only if

P(X1 = x1, . . . ,Xd = xd) = P(X1 = x1) · · ·P(Xd = xd)

for all possible values of x1, . . . , xd .
(b) Assume that the random variables X1,X2, . . . ,Xn have densities (non-negative

functions fi such that P(Xi ≤ x) = ∫ x

−∞ fi(t)dt for all i ∈ {1, . . . , n} and
x ∈R). Provided they have also a joint density; i.e., a non-negative function f

such that P(X1 ≤ x1, . . . ,Xd ≤ xd) = ∫ x1
−∞

∫ x2
−∞ · · · ∫ xd

−∞ f (t1, t2, . . . , td)dt1dt2
· · ·dtd , then they are independent if and only if

f (x1, x2, . . . , xd) = f1(x1)f2(x2) · · ·fd(xd)

for all x1, . . . , xd ∈R.
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2.1 Misconceptions of the Independence Concept

Unfortunately, there are several popular misunderstandings regarding independence,
which we shall discuss now.

Misconception 1: “Pairwise Independence Entails Independence” One may
be tempted to believe that instead of checking the definition of independence, which
involves all random variables, one could check whether all possible pairs of two
variables are independent. Unfortunately, such pairwise independence does not im-
ply independence in the sense of Definition 2.1 above. This is illustrated by the
following example. Simple random variables (indicator variables) are defined via
events A,B,C by 1A, 1B and 1C , where 1A is equal to one if the event A occurs
and equal to zero else; analogously for B and C. Then our Definition 2.1 is consis-
tent with the usual definition of independent events, which says that events A,B,C

are independent, if P(A ∩ B ∩ C) = P(A)P (B)P (C), P(A ∩ B) = P(A)P (B),
P(A ∩ C) = P(A)P (C) and P(B ∩ C) = P(B)P (C) all hold. The following ex-
amples shows that independence of all pairs of indicator variables (or events) does
not imply independence of all three indicator variables (or events).

Illustration 2.2 Think of two thunderstorms which we assume to be independent.
We care only whether a thunderstorm comes accompanied by hail or not. The
probability for a single thunderstorm to come with hail shall be 1/2. Let A be
the event that it hails during the first thunderstorm and B the event that it hails
during the second thunderstorm. Finally, let C be the event that it either hails or
does not hail in both the first and the second thunderstorm. One easily calculates
P(A) = P(B) = P(C) = 1/2. However, P(A∩B ∩C) = P(A∩B) = 1/4 �= 1/8 =
P(A)P (B)P (C), because if it hails both in the first and the second thunderstorm,
the event C given by no hail in both thunderstorms can no longer occur. So clearly
A,B,C are not independent. However, A,B are independent by construction and
P(A ∩ C) = P(A ∩ B) = P(B ∩ C) = 1/4; and thus we have pairwise indepen-
dence.

Misconception 2: “Total Risk is Smallest/Largest for Independent Events”
One cannot conclude in general that the situation of independent risks is partic-
ularly (un)favourable from the point of view of the total risk. The reason is that
dependence can act both in a risk-reducing and risk-enhancing way, since typically
risk measures are non-linear. We will present some real life examples and discuss
the variance and the Value-at-Risk as risk measures.

Illustration 2.3 Assume that we are confronted with two different risks modelled
by two random variables X,Y . Both random variables are either 0 or 1 (in some
monetary unit like 1 million Euros), corresponding to no loss or loss of one monetary
unit, each with probability 1/2. For example, in an insurance company X,Y may
describe whether or not damages have been reported for two different insurance
contracts and the claim had to be paid (then the corresponding variable is 1, else it
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is zero). The insurer regards X + Y as the random variable describing the total risk
of both contracts.

When using the variance as risk measure, we simply have to apply the formula

var(X + Y) = var(X) + var(Y ) + 2 cov(X,Y ).

Consequently, the risk (in terms of the variance) is equal to the sum of the risks, if
X and Y are uncorrelated (see Sect. 4 for the use of the correlation as a dependence
measure). The risk of the sum is larger than the sum of risks, if X and Y are posi-
tively correlated, and likewise the risk of the sum is smaller than the sum of the risks
if they are negatively correlated. For the VaR (as well as other more advanced risk
measures) the situation is not quite as simple.

Situation 1: X and Y are independent (e.g. X models a life insurance contract and
Y a personal liability insurance for the same person). Then the loss X + Y is 0
with probability 1/4, 1 with probability 1/2, or 2 with probability 1/4. When us-
ing the Value-at-Risk at the 90 % or 70 % level as risk measures, one obtains
VaR0.9(X + Y) = 2 and VaR0.7(X + Y) = 1.

Situation 2: X,Y are “completely positive dependent” (e.g. X,Y are insurances
against hurricanes for two neighbouring houses of same value; i.e., X = Y ). Then
the loss X + Y is 0 with probability 1/2, or 2 with probability 1/2. It can never be
1 and one obtains VaR0.9(X + Y) = VaR0.7(X + Y) = 2.

Situation 3: X,Y are “completely negative dependent” (e.g. X is an insurance cover
for a farmer against too little rain measured by the annual amount of rain being
below a level c, and Y is an insurance cover for a holiday resort at the same place
against bad weather which pays 1 if the amount of rain is above the same level c;
i.e., X = 1 − Y ). Then the loss X + Y is 1 with probability 1. It can never be 0 or
2 and one obtains VaR0.9(X + Y) = VaR0.7(X + Y) = 1.

Comparing the values of the VaR for the two different levels in the three examples
shows that the risk in the independent situation is neither an upper nor a lower bound
on the risk in dependent situations. Note that in the last situation there is actually
no risk at all in the sense of an uncertain outcome, because X + Y is always equal
to 1.

Note here also that typical risk measures are non-linear. This is in contrast to the
expected value, which for X + Y is in all situations equal to 1. Hence, our exam-
ples illustrate also that the expected value does not at all care about the dependence
structure.

3 Normal Distribution

The normal (or Gaussian) distribution is the most widely used probability distribu-
tion in applications. Its popularity is due to the facts that it is rather easy to handle,
that many properties are known completely explicitly, and often there are arguments
that it is a natural distribution to use. By a classical result called the central limit the-
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orem, one can argue that whenever a variable of interest is generated by the averaged
results of many different small random effects, this random variable should be ap-
proximately normally distributed. However, this argument has to be used with care
and one should always check in detail whether data at hand may reasonably come
from a normal distribution.

Definition 3.1 A random variable X is said to be normally distributed with mean
μ ∈R and variance σ 2 > 0, if it has a probability density given by

fX(x) = 1√
2πσ 2

e
− (x−μ)2

2σ2 , x ∈ R. (3.1)

If μ = 0 and σ 2 = 1, we speak of a standard normal random variable.

Dependence issues make sense only for at least two random variables, hence we
now turn our focus to multivariate normal distributions. We summarize all risks in a
(column) vector X = (X1, . . . ,Xd)	. We also need the notion of a positive definite
d × d matrix �; that is, a matrix which is symmetric (i.e., the transposed �	 = �)
and satisfies x	�x > 0 for all x ∈ R

d not equal to the zero vector. We are now ready
to define the multivariate normal distribution; cf. the book [11] for many interesting
details.

Definition 3.2 A d-dimensional random vector X is called normally distributed
with mean μ ∈ R

d and covariance matrix � (a positive definite d × d matrix), if it
has probability density

fX(x) = 1
√

(2π)d det(�)
exp

(
−1

2
(x − μ)	�−1(x − μ)

)
, x ∈ R

d . (3.2)

If μ = 0 and � = Id (Id being the d × d-identity matrix), we speak of a d-
dimensional standard normal vector.

Note that one can also define normal distributions with only a positive semi-
definite covariance matrix � (i.e., a symmetric matrix satisfying x	�x ≥ 0 for all
x ∈R

d ). One way to do this is by demanding that X = μ + AY where Y is standard
normally distributed (with lower dimension) and A is chosen such that AA	 = �.

The parameter μ is the mean vector of X and changing it shifts the distribution
(i.e., it changes the location of the distribution in a non-random way). Hence, it
has nothing to do with the dependence structure between the vector components
X1, . . . ,Xd , which therefore must be totally described by �.

Each diagonal element �ii of the matrix � gives the variance of the correspond-
ing ith coordinate Xi , whereas the off-diagonal element �ij with i �= j gives the
covariance of Xi and Xj , a dependence measure we shall investigate in detail be-
low.

In Fig. 1 we depict the densities of several bivariate normal distributions. For
the standard normal density the surface is very homogeneous (it is left invariant
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Fig. 1 Bivariate normal densities: standard normal (independent components; upper left), normal
with variance 1 and covariance ρ = 0.9 (highly positively correlated; upper right), normal with
variance 1 and covariance ρ = −0.9 (highly negatively correlated; lower)

by rotations), whereas in the two other cases the mass of the distribution (i.e., the
area with a high value for the density) is concentrated around the diagonal (i.e.,
the line where x1 = x2), or the negative diagonal (i.e., the line where x1 = −x2),
respectively. Intuitively it seems that in the standard normal distribution the two
components X1 and X2 are rather independent, whereas in the other two cases they
appear to be rather dependent. This intuition is indeed true.

However, there is more to be learned from these plots. A natural question is, what
do the lines look like where the density has a fixed specified value; i.e., what are the
sets of possible values (x1, x2) satisfying fX(x1, x2) = c for some c > 0? From the
plot of the density, we guess that for the standard normal density, these contour
lines should be circles around the origin. Note that the standard normal density
has its maximum at 0 with value fX(0,0) = 1/(2π). We calculate the following for
c ∈ (0,1/(2π)] from (3.1) (by ln we denote the natural logarithm; i.e., the analytical
inverse of the exponential function):

fX(x1, x2) = c

⇔ −1

2

(
x2

1 + x2
2

) = ln(2πc)

⇔ x2
1 + x2

2 = −2 ln(2πc).
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Fig. 2 Contour plots of bivariate normal densities: standard normal (independent components;
left), normal with variance 1 and covariance ρ = 0.9 (highly positively correlated; middle), normal
with variance 1 and covariance ρ = −0.9 (highly negatively correlated; right). The levels of the
contours are 0.15,0.1,0.04,0.01,0.001

From elementary geometry we recall that this last equation describes the circle
around zero with radius

√−2 ln(2πc) (note that 2πc < 1, and hence ln(2πc) < 0).
In the general case (with arbitrary mean and covariance matrix) we may still

assume that μ = 0, since the mean changes only the location, not the dependence
structure. For arbitrary � the sets with equal values for the normal density can also
be calculated and we obtain (again only for possible values of c) from Definition 3.2
and the formula for the explicit inversion of a 2 × 2 matrix:

fX(x1, x2) = c

⇔ �22x
2
1 − 2�12x1x2 + �11x

2
2 = −2 det(�) ln

(
2π

√
det(�)c

)
.

Since this is again a quadratic equation, elementary geometry tells us that these
sets are ellipses centred at the origin. As we shall also discuss in detail later on,
the distributions where the contour lines of the density (the lines characterised by
the density assuming the same value) are circles or, more generally, ellipses play a
special role regarding the description of dependence.

4 Correlation as a Linear Dependence Measure

We now discuss the use of covariance or correlation as a measure of dependence. We
start with a pair X,Y of random variables representing two different risks. Through-
out this section we assume that all random variables have a finite variance; i.e.,
E(X2) < ∞ (equivalently,

∫
R

x2fX(x)dx < ∞ if X has a density fX).
Recall that the variance of a random variable X is given by var(X) = E((X −

E(X))2) and can be seen as a measure of the variability of the random variable or,
in other words, how much the realisations of X tend to fluctuate around the mean
value E(X). Note that when X has a density fX then its mean or expectation is
E(X) = ∫

R
xfX(x)dx. The covariance of X and Y is given by cov(X,Y ) = E((X −



9 Dealing with Dependent Risks 251

E(X))(Y − E(Y))) = E(XY) − E(X)E(Y ). From the first expression it is obvious
that the covariance is a positive number if X and Y are “usually” both below or
above their mean and negative if “usually” one is above its mean and one below.

The covariance carries information on the dependence, but is also affected by the
variability (the typical spread around the mean) of the involved random variables.
To get rid of the latter effect and to get a number measuring only dependence as-
pects one normalises the covariance by dividing the covariance by the product of
the involved standard deviations (square roots of the variances).

Definition 4.1 (Correlation Coefficient) For two random variables with finite sec-
ond moment the dependence measure

ρ(X,Y ) = cov(X,Y )√
var(X)var(Y )

(4.1)

is called (Pearson’s) correlation coefficient.

The correlation coefficient is usually estimated by its empirical version: given in-
dependent bivariate data (X1, Y1), (X2, Y2), . . . , (Xn,Yn) of joint observations from
two random variables X and Y , respectively, the empirical correlation or correlation
estimator is given by

ρ̂(X,Y ) =
∑n

i=1(Xi − X)(Yi − Y )
√∑n

i=1(Xi − X)2
∑n

i=1(Yi − Y )2
, (4.2)

where

X = 1

n

n∑

i=1

Xi and Y = 1

n

n∑

i=1

Yi.

X is the empirical mean of the Xi and Y the empirical mean of the Yi .
Classical results (the Cauchy-Schwarz inequality) ensure that the correlation of

any two random variables has to be between −1 and 1 (as has also its empirical
estimator), and for independent random variables cov(X,Y ) = 0 and, thus, the cor-
relation ρ(X,Y ) = 0 as well.

The correlation is a measure of linear dependence. In particular, perfect linear
dependence is equivalent to ρ(X,Y ) = ±1.

Theorem 4.2 Two random variables X,Y are perfectly linearly dependent; i.e.,
Y = aX + b with some a �= 0 and b ∈R, if and only if ρ(X,Y ) = ±1.

Proof Assume first Y = aX + b. Then

cov(X,Y ) = E
((

X − E(X)
)(

aX + b − (
aE(X) + b

))) = aE
((

X − E(X)
)2)

= a var(X),
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var(Y ) = var(aX + b) = a2 var(X)

and, hence, ρ(X,Y ) = a/
√

a2 = ±1, depending on the sign of a.

To ease notation for the converse implication we set X̃ = X − E(X) and Ỹ =
Y − E(Y) in the following. Assume now that

ρ(X,Y ) = E(X̃Ỹ )
√

E(X̃2)E(Ỹ 2)
= ±1.

Then E(X̃2),E(Ỹ 2) > 0 and we have that

E
(
Ỹ 2)(E

(
X̃2)E

(
Ỹ 2) − (

E(X̃Ỹ )
)2) = 0.

However, calculations show that

E
(
Ỹ 2)(E

(
X̃2)E

(
Ỹ 2) − (

E(X̃Ỹ )
)2) = E

((
E

(
Ỹ 2)X̃ − E(X̃Ỹ )Ỹ

)2)
. (4.3)

Since the expectation of a non-negative random variable is zero if and only if the
random variable is zero (strictly speaking this has to hold only almost surely, but we
ignore such technicalities), (4.3) implies that

Y − E(Y) = E(Ỹ 2)

E(X̃Ỹ )

(
X − E(X)

)

and thus Y is of the form aX + b as claimed. �

Proposition 4.3 (First Properties of Correlation) Let X and Y be two random vari-
ables.

(a) Symmetry:

ρ(X,Y ) = ρ(Y,X).

(b) Effect of linear transformations:
For all α,γ �= 0 and β, δ ∈R,

ρ(αX + β,γ Y + δ) = sign(αγ )ρ(X,Y ),

where sign(x) is equal to +1 for x > 0 and −1 for x < 0. Hence, the correla-
tion is invariant under strictly increasing linear transformations (the case when
α,γ > 0).

The concepts of covariance and correlation extend to multivariate random vectors
as follows.

Definition 4.4 Let X = (X1, . . . ,Xd)	 be a d-dimensional and Y = (Y1, . . . , Ym)	
an m-dimensional random vector. Then we can take covariances and correlations
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between every pair of components of X and Y and summarize them in d × m-
matrices, called the covariance matrix and the correlation matrix:

cov(X,Y) = (
cov(Xi, Yj )

)
1≤i≤d,1≤j≤m

,

corr(X,Y) = (
ρ(Xi,Yj )

)
1≤i≤d,1≤j≤m

.

The covariance matrix of a random vector cov(X,X) with itself is called the covari-
ance matrix of X and we write var(X) := cov(X,X).

Proposition 4.5 (Further Properties of Correlations and Covariances) Let X =
(X1, . . . ,Xd)	 be a d-dimensional and Y = (Y1, . . . , Ym)	 an m-dimensional ran-
dom vector.

(a) Symmetry:
var(X) and corr(X,X) are symmetric positive semi-definite matrices (cf. before
Definition 3.2).

(b) Linear transformations:

cov(AX + a,BY + b) = A cov(X,Y)B	

for every n × d matrix A, k × m matrix B and every a ∈ R
n and b ∈ R

k .
(c) Linear combinations:

For every a ∈R
d the variance of the linear combination a	X is given by

var
(
a	X

) = a	 cov(X)a.

(d) Additivity:

cov(X,Y + Z) = cov(X,Y) + cov(X,Z)

for every m-dimensional random vector Z = (Z1, . . . ,Zd)	.

Illustration 4.6 Suppose we model the water flow R (in litres per second) of a river
at a certain point and assume that the river is formed by two independent rivers
just a bit upstream. Let the water flow in the first river be R1 and that in the sec-
ond river R2. Then cov(R1,R2) = ρ(R1,R2) = 0 by the assumed independence.
Clearly, it should hold that R = R1 +R2 (assuming some kind of equilibrium state).
Thus cov(R,R1) = cov(R1,R1) + cov(R1,R2) = var(R1) and hence

ρ(R,R1) = var(R1)√
var(R1)var(R)

= var(R1)√
var(R1)(var(R1) + var(R2))

=
√

var(R1)

(var(R1) + var(R2))

and, likewise, if we replace R1 by R2. For example, if both original rivers; i.e., R1
and R2, have the same variance we get ρ(R,R1) = 1/

√
2.
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Fig. 3 Time series plot of the losses in building (left) and the losses in content of the Danish
fire insurance data from 1980 to 1990. The time is in days starting January 3rd, 1980, leaving out
weekends and holidays

Illustration 4.7 (Danish Fire) Throughout this paper we will illustrate the various
dependence measures using a data set of Danish fire insurance claims from 1980 to
1990 available from http://www.ma.hw.ac.uk/~mcneil/data.html.

The original data set includes data on the losses of the fire insurance arising from
the damage to the building, from the burnt content of the building, and from losses
to profits (of companies in the burnt buildings). Since the last variable is zero in
most cases, we consider only the losses of building and content. To avoid strange
artefacts due to the fact that the data set considers only events where the total loss
(sum of the loss in the three categories) exceeded one million Danish Kroner, we
consider only events where both the losses in building and of content individually
exceed this threshold.

In Fig. 3 we provide a time series plot of the data.
To assess the dependence we provide scatter plots of the loss data as well as the

logarithms of the losses in Fig. 4. At the original scale it is hard to see what is going
on in the majority of the observations, since they form a cloud at the origin and only
the extreme events can be seen, for which it is hard to see any clear dependence
structure. On the logarithmic scale one sees that there is no clear trend/dependence
in the data, but that the two loss variables tend to behave similar and thus should be
positively dependent. This can also be seen from the correlations which are 0.51 for
the original data and 0.38 after taking logarithms.

Correlation is a very popular dependence measure. The reasons are that it can be
easily estimated from data by its empirical version, and that it is the natural depen-
dence measure for the multivariate normal distribution. In this model it describes
the dependence of the random components completely, and also in the more general
class of elliptical distributions.

http://www.ma.hw.ac.uk/~mcneil/data.html
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Fig. 4 Scatter plot of the Danish fire insurance data: losses of buildings and losses of content,
original scale (left) and logarithmic scale (right)

4.1 Disadvantages of Correlation

Correlation has certain disadvantages that one should be aware of when using it.

(a) It is defined only when the variances of the random variables exist. In particular,
for extreme risks this is not always guaranteed. A relevant example in the con-
text of risk is the t-distribution with ν degrees of freedom with density f (x) =
c(1 + x2/ν)−(d+ν)/2, x ∈ R. For two t-distributed random variables with ν ≤ 2
the correlation is not defined. Also for two Pareto-distributed random variables
with densities f1(x) = α1/x

α1+1, x > 1, and f2(x) = α2/x
α2+1, x > 1, and

shape parameters α1 ≤ 2 or α2 ≤ 2, the correlation is not defined.
(b) Two independent random variables with finite variances are uncorrelated. How-

ever, the converse is not true. There exists an abundance of cases where random
variables are uncorrelated, but not independent.

On a simple level, if X is a standard normal random variable, and Y = X2,
then X and Y are obviously not independent, since X2 is a function of X. How-
ever, cov(X,Y ) = cov(X,X2) = E(X3) − E(X)E(X2) = 0, since all odd mo-
ments of a normal random variable are equal to 0.

Examples on a more advanced level include variance mixtures of normal ran-
dom variables (cf. Example 5.3) and, in a dynamic context, stochastic volatility
models in finance and stochastic intermittency models in turbulent and other
environmental data.

Only in special parametric models (the multivariate normal distribution is the
typical example), does uncorrelatedness imply independence.

(c) Covariances and correlations depend on the distribution in a highly non-trivial
way. For instance, if one knows only the correlation of X,Y , then nothing can
be said about the correlation of T (X),T (Y ) for a non-linear increasing trans-
formation T .
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(d) The correlation depends on the whole distribution. However, in the context of
risk one does not really care about the dependence for the “usual outcomes” but
about the dependence of the extreme outcomes. The correlation thus typically
provides at most very limited information about the dependence of risks.

4.2 Misconceptions of Correlation

Unfortunately, there are several popular misunderstandings regarding correlation
which we shall explain now.

Misconception 1: “Marginals and Correlation Matrix Determine the Distribu-
tion” It is often wrongly thought that, if one knows the distributions of the random
variables X1 and X2 and their correlation ρ(X1,X2), then one knows already the
bivariate distribution of the random vector X = (X1,X2)

	. This is false not just in
general, but even in a normally distributed world. In particular, as we shall see in a
moment, if X1 and X2 are known to be each standard normally distributed, and have
correlation ρ, one cannot conclude that (X1,X2)

	 is bivariate normally distributed
with mean zero and covariance matrix � = ( 1 ρ

ρ 1

)
.

Illustration 4.8 Let X1 be a standard normally distributed random variable and de-
fine X2 by

X2 =
{

X1 if |X1| ≤ 1,

−X1 if |X1| > 1.

Then X2 is also standard normally distributed, because X1 is and the standard nor-
mal distribution is symmetric around zero. Since both X1 and X2 have a finite vari-
ance, ρ := ρ(X1,X2) exists and is some number in (−1,1), which is hard to com-
pute explicitly. Note that it is clear that the correlation is different from ±1 because
of Theorem 4.2. We now prove by contradiction that the random vector (X1,X2)

T

is not bivariate normally distributed. Thus, assume (X1,X2)
T is bivariate normally

distributed, then X1 + X2 is also normally distributed with mean 0 and variance
2 + 2ρ > 0. However, from the construction of X2 we see that

X1 + X2 =
{

2X1 if |X1| ≤ 1,

0 if |X1| > 1.

Thus the probability that X1 + X2 is strictly bigger than two in absolute value is
zero. Since this probability is strictly positive for every normally distributed random
variable, we have the desired contradiction. Hence, our assumption that (X1,X2)

T

was bivariate normally distributed must be wrong.

Misconception 2: “In All Multivariate Models It Is Possible to Have All Values
Between −1 and 1 as Correlation” Likewise, the belief is widespread that in
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every multivariate model one may have all values between −1 and 1 for the corre-
lation. Unfortunately, not all combinations of valid pairwise correlations lead to a
valid (i.e., positive semi-definite) overall correlation matrix.

However, this is not the only pitfall. Very often the model structure implies addi-
tional constraints on the correlation, such as having to be non-negative. The follow-
ing is an example.

Illustration 4.9 Assume that an insurance company has sold insurance policies
against damages by storm (S) and heavy rain (R). There are three types of insurance
claims, those which regard damages by storm only, those which regard damages by
heavy rain only, and those with both types of damages (caused e.g. by a thunder-
storm with heavy rain and storm). We now want to model the number of claims for
storm S(t) which arrived up to time t (since the initial time 0), and the number of
claims for rain R(t) which arrived up to time t .

The classical insurance claim number model is a Poisson process (see e.g.
Resnick [29]) for the arrivals of insurance claims. A Poisson process with rate (or
frequency) λ > 0 is a counting process, where the number of claims at any time
t > 0 is Poisson distributed with a mean linear in t with some rate λ > 0. We have
E(X(t)) = λt and var(X(t)) = λt for all times t > 0 for a Poisson process X. An
alternative stochastic description of a Poisson process is as follows: it starts at zero
at the initial time zero. After an exponentially distributed (with mean 1/λ) wait-
ing time, during which it remains 0, it jumps to one. Afterwards it remains again
constant for an exponentially distributed (with mean 1/λ) waiting time and then it
jumps to two and so on. The rate λ gives the mean number of jumps (all of height
one) in a unit time interval.

We use three independent Poisson processes, {NR(t)}t≥0 giving the arrival of
claims regarding only heavy rain, {NS(t)}t≥0 giving the arrival of claims regard-
ing only storm and {NB(t)}t≥0 giving the arrival of claims regarding both. The
corresponding rates will be denoted λR , λS and λB . Clearly, we have R(t) =
NR(t) + NB(t) and S(t) = NS(t) + NB(t) for t ≥ 0 and we want to understand
the dependence of R(t) and S(t). The process R(t) is (as a sum of Poisson pro-
cesses) again a Poisson process with rate (or frequency) λS + λB and S(t) is one
with rate λR + λB . Hence, for all t ≥ 0, we have

ρ
(
R(t), S(t)

) = cov(R(t), S(t))√
var(R(t))var(S(t))

= var(NB(t))√
var(R(t))var(S(t))

= λB

√
(λB + λR)(λB + λS)

.

In this model the correlation can only be between 0 and 1.
Assume further that we have already done univariate modelling of both R,S and

obtained Poisson processes with rates μR and μS and then consider the joint model.
We must then have that λB + λR = μR and λB + λS = μS to be consistent with the
univariate models. Hence, λB ≤ min{μR,μS} is immediate, interpreting the rates as
the frequencies of the arrival of claims. Going back to our correlation we get for all
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t ≥ 0 that

ρ
(
R(t), S(t)

) = λB

√
μRμS

≤ min

{√
μR

μS
,

√
μS

μR

}
.

If μR �= μS , the possible correlations are thus below an upper bound strictly smaller
than one. This result has been obtained in the framework of Operational Risk in
Böcker and Klüppelberg [16, Eq. (11)].

For more details on the problematic issues of correlation we refer to [1, 2].

5 Spherical and Elliptical Distributions

We have already seen that the contours of equal density are circles in the standard
normal bivariate distribution and ellipses in the non-standard normal case. Like-
wise, one can show that in general dimensions the contours of equal density of the
normal distribution are ellipsoids, and are spheres in the standard normal case (ac-
tually whenever all components are independent; i.e., all off-diagonal entries of the
covariance matrix are zero, and have the same variance).

The spherical distributions extend the standard normal distribution Nd(0, Id)

(i.e., the distribution of d independent standard normal components). The density
of a spherical distribution satisfies

f (x) = ψ
(
x	x

)
, x = (x1, . . . , xd) ∈ R

d

where ψ :R → R
+ is an appropriate function.

Examples are the multivariate t-distribution with ν degrees of freedom with
density f (x) = c(1 + x	x/ν)−(d+ν)/2 and the logistic distribution with density
f (x) = c exp(−x	x)/(1 + exp(−x	x))2. Here c are the norming constants, which
guarantee the densities to integrate to 1. It should be noted that random variables
with a non-normal joint distribution that is spherical are uncorrelated random vari-
ables, which however are not independent (see e.g. [24]).

There are various ways to think about a spherical distribution.

(i) From the densities above we see that the contours of equal density are circles
in the bivariate models; i.e., “spheres” in arbitrary dimensions.

(ii) Equivalently, we can think of a spherical random vector X as having the same
distribution under every orthogonal transformation; i.e., if we multiply it by a
d × d matrix M with the property that M	M = MM	 = Id , then MX has the
same distribution as X.

(iii) Finally, a spherical random vector X has the same distribution as RU, where U
is uniformly distributed on the unit sphere Sd−1 = {s ∈R

d : s	s = 1}, and R is
a positive random variable, independent of U.
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Elliptical distributions generalize multivariate normal distributions Nd(μ,�)

with mean vector μ and covariance matrix �, and also have contours of equal den-
sity which are ellipsoids. Moreover, just as ellipsoids are linear transformations of
spheres, elliptical distributions are obtained as linear transformations of spherical
distributions.

For a general treatment of elliptical distributions we refer to Fang, Kotz, and
Ng [4].

Definition 5.1 A random vector X ∈ R
d has an elliptical distribution if there exist

μ ∈ R
d , a positive semi-definite d × d matrix � = (σij )1≤i,j≤d , a positive random

variable G and a random vector U(d) ∼ unif{s ∈ R
d : s	s = 1} (i.e., U(q) is uni-

formly distributed on the unit sphere in R
d ) independent of G such that X satisfies

(
d= means that the distributions of the random variables on both sides are equal)

X d= μ + GAU(d) with A ∈ R
d×d and AA	 = �. (5.1)

We write X ∼ Ed(μ,�,G).
The random variable G is called the generating variable. Furthermore, if the first

moment exists, then E(X) = μ, and if the second moment exists, then G can be
chosen such that var(X) = �.

Note that we write X ∼ Ed(μ,�) if we consider only quantities which do not
depend on the concrete generating random variable G, and we denote E(X) = μ,
var(X) = �, provided they exist.

Furthermore, note that in the following we always call � = AA	 the covariance
matrix (its elements the covariances) of an elliptical distribution even if the second
moments do not exist.

In elliptical models covariances and correlations are natural dependence mea-
sures. This is a consequence of the following properties:

Proposition 5.2 (Properties of Elliptical Distributions) Let X ∼ Ed(μ,�) be ellip-
tically distributed.

(a) Consider the map T (X) = BX + b for a q × d-matrix B and a vector b ∈ R
q .

Then BX + b ∼ Eq(Bμ + b,B�B	).
(b) From this follows immediately that all marginal distributions of X are elliptical;

in particular, the components of X are one-dimensional elliptical, which means
they are symmetric around their means (or the median, if the mean does not
exist).

Moreover, for an arbitrary component Xi there are a > 0, b ∈ R such that

Xi
d= aX1 +b, where instead of X1 we could have chosen any other component.

Hence, in distribution any component can be realised as a linear transformation
of one fixed component.
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Let X = (X1,X2)
	 ∼ Ed(μ,�) with X1 ∈ R

p , X2 ∈ R
q with p + q = d . Let

μ = (μ1,μ2)
	 with μ1 ∈R

p , μ2 ∈ R
q , and � = ( �11 �12

�21 �22

)
. Then

X1 ∼ Ep(μ1,�11) and X2 ∼ Eq(μ2,�22).

Hence, subvectors of elliptically distributed random vectors are again ellipti-
cally distributed, and the parameters are known explicitly.

(c) Assume that � is positive definite. The conditional distribution of X1 given X2
is also elliptical:

X1 | X2 ∼ Ep(μ1|2,�11|2),

where μ1|2 = μ1 + �12�
−1
22 (X2 − μ2) and �11|2 = �11 − �12�

−1
22 �21.

(d) Every elliptical distribution is uniquely determined by the mean, the covariance
matrix �, and the distribution of the generating random variable G.

A very important class of elliptical distributions is given by the normal variance
mixture models.

Example 5.3 (Normal Variance Mixture Model) (a) Let X d= μ + √
WAZ with

μ ∈ R
d , A ∈ R

d×m a matrix of rank d < m, Z ∈ R
m a standard normal vector and

W > 0 a random variable, independent of Z. Then X is said to follow a normal
variance mixture model, and one can show that the contours of equal density are
ellipsoids, hence it is an elliptical distribution.

(b) In the situation of part (a), if W has an inverse gamma distribution with pa-
rameters ( ν

2 , ν
2 ), then for ν an integer, ν/W ∼ χ2

ν , i.e. ν/W is χ2 (chi-square) dis-

tributed with ν degrees of freedom. This implies that 1
d
(X−μ)	�−1(X−μ) ∼ νχ2

d

dχ2
ν

,

which is F(d, ν)-distributed (recall that � = AA	).
Moreover, we have X − μ = AZ√

W
∼ tttν(0,�); i.e., X − μ is a d-dimensional

t-distributed vector with ν degrees of freedom. Further, if ν > 2, then X − μ has
covariance matrix ν

ν−2�. If ν ≤ 2 the covariance matrix does not exist.
Hence, the t-distribution—occurring frequently in statistics—is an example of a

normal variance mixture. It is often used in risk management as an alternative to the
normal distribution, because it puts more mass on large events (cf. Fig. 5) and, in its
multivariate version, it allows for modelling joint large events (cf. Example 8.5(c)).

Some contour plots for the densities of t-distributions can be found in Fig. 5.
As can be seen they are quite similar to the corresponding plots for the normal
distribution in Fig. 2, but especially for small ν the density decays much more slowly
than a normal density.

6 Rank Correlations

Correlations depend on the underlying distribution, and may even not exist (when
there is no finite second moment). Non-parametric and robust alternatives have been



9 Dealing with Dependent Risks 261

Fig. 5 Contour plots of bivariate tν -densities: upper row: uncorrelated components; i.e., � is the
identity matrix; different degrees of freedom: ν = 1 (left), ν = 10 (middle), ν = 500 (right). Lower
row (ν = 1): strongly correlated components, with ρ = 0.9 (left), and ρ = −0.9 (right). The levels
for the individual contour lines are the same as in Fig. 2

proposed, which are based only on the ranks of the observations. Here ranking refers
to a data transformation where numerical or ordinal values are replaced by their
ranks. For instance, if numerical data 1.7, 9.3, 7.2 and 5.3 are observed, then the
ranks of these data would be 1, 4, 3, 2. The actual sizes of the data are completely
ignored. Obviously, ranking is not unique, when data of equal value are observed.
There is a simple way how to deal with these so-called ties, and we explain this by
an example. Assume that we observe 1.7, 7.2, 9.3, 7.2 and 5.3; then we would take
the mean rank for the two equal observations, and obtain ranks 1, 3.5, 5, 3.5, 2. One
deals similarly with 3 or more equal values.

Often this situation is excluded from the beginning by requiring that the underly-
ing distribution has a density. Then (with probability 1) equal values do not happen
in a sample.

Definition 6.1 (Spearman’s Rank Correlation Coefficient) Let X,Y be random
variables with continuous distribution functions F1,F2 and joint distribution func-
tion F . Let ρ be Pearson’s correlation coefficient from Definition 4.1. Then Spear-
man’s rank correlation is given by

ρS(X,Y ) = ρ
(
F1(X),F2(Y )

)
.
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We have to explain why this is a rank correlation coefficient. Recall that for a
distribution function F we denote by F−1 its generalized inverse function as defined
in (1.1) and recall that F−1 is the analytic inverse of F , if F is strictly increasing.

First of all note that F1(X) is a random variable with values in [0,1]. Moreover,
since F1 is continuous, P(F1(X) ≤ x) = P(X ≤ F−1

1 (x)) = F1(F
−1
1 (x)) = x for

x ∈ [0,1]. This implies that F1(X) is a standard uniform random variable (i.e., it is
uniformly distributed on the interval [0,1]). Consequently, ρS measures the correla-
tion between two uniform random variables, and the original sizes of X and Y have
become irrelevant.

One can say that rank correlations measure the degree of monotone dependence.
Let (X1, Y1), (X2, Y2), . . . , (Xn,Yn) be independent bivariate observations from

two random variables X and Y , such that all the values of (Xi) and (Yi) are different
(there are no ties).

We estimate Spearman’s rank correlation coefficient by its empirical version,
which is based on replacing F1(X) and F2(Y ) by their empirical versions. To this
end the data (X1, Y1), . . . , (Xn,Yn) are converted into ranks, which we denote by
(rank(Xi), rank(Yi)) and the empirical correlation coefficient as given in (4.2) is
calculated for these ranks.

The formula simplifies by virtue of the fact that 1
n

∑n
i=1 rank(Xi) = 1

n

∑n
i=1 i =

n+1
2 , and

n∑

i=1

(
rank(Xi) − n + 1

2

)2

=
n∑

i=1

(
rank(Yi) − n + 1

2

)2

=
n∑

i=1

(
i − n + 1

2

)2

= 1

12
n
(
n2 − 1

)
.

Then the empirical Spearman’s rank correlation coefficient is given by

ρ̂S(X,Y ) = 1

2
n
(
n2 − 1

) n∑

i=1

(
rank(Xi) − n + 1

2

)(
rank(Yi) − n + 1

2

)
.

Definition 6.2 (Kendall’s Rank Correlation) Let (X1, Y1) and (X2, Y2) be inde-
pendent random vectors with bivariate distribution function F . Then Kendall’s tau
is given by

τ(X,Y ) = P
(
(X1 − X2)(Y1 − Y2) > 0

) − P
(
(X1 − X2)(Y1 − Y2) < 0

)
.

The dependence Kendall’s tau captures is better understood in its empirical ver-
sion. Let (X1, Y1), (X2, Y2), . . . , (Xn,Yn) be a sample of bivariate observations
from two random variables X and Y , such that all the values of (Xi), and respec-
tively (Yi), are different. Any pair of observations (Xi, Yi) and (Xj ,Yj ) are said to
be concordant, if the ranks for both elements agree: that is, if both Xi > Xj and
Yi > Yj or if both Xi < Xj and Yi < Yj . They are said to be discordant, if Xi > Xj

and Yi < Yj or if Xi < Xj and Yi > Yj .
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Fig. 6 Scatter plot of the
Danish fire insurance data
losses in building and losses
in content after conversion to
ranks

Definition 6.3 (Empirical Kendall’s Rank Correlation Coefficient) The empirical
version of Kendall’s rank correlation is defined as:

τ̂ = (number of concordant pairs) − (number of discordant pairs)
1
2n(n − 1)

= 2

n(n − 1)

∑

1≤i≤j≤n

sign
(
(Xi − Xj)(Yi − Yj )

)
.

Note that the sign is equal to 1 whenever the two pairs are concordant, and it is
−1, whenever the two pairs are discordant.

Rank correlation coefficients share some of the properties of Pearson’s correla-
tion coefficient: they are symmetric, lie between −1 and 1, and if X and Y are in-
dependent, they are equal to 0. Moreover, since they are based on ranks, rank corre-
lations are invariant with respect to increasing transformations; i.e., if T (x) ≤ T (y)

for all x < y, then ρS(T (X),T (Y )) = ρS(X,Y ), and the same holds for Kendall’s
tau.

Both Kendall’s τ and Spearman’s ρ can be calculated from the copula of a bivari-
ate random vector with continuous marginal distributions (for a proof see Sect. 5.2.3
of McNeil, Frey, and Embrechts [8]); see next section for definitions and discussions
of copulae. This means that both rank correlation coefficients are defined by the de-
pendence structure only and not the marginal distributions.

Intuitively, both dependence measures check whether the ranks are similar, but
there are important differences in what they actually measure, which are rather tech-
nical and thus beyond the scope of this introductory chapter (see [21, 27]).

Illustration 6.4 (Danish Fire Continued) In Fig. 6 the ranks of the losses in building
are plotted against the ranks of the losses of content. The fact that there are very few
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points at the lower right and upper left corner hints again at positive dependence.
Indeed, we obtain for the empirical versions of Spearman’s ρ the estimate ρ̂S = 0.32
and of Kendall’s τ the estimate τ̂ = 0.21.

7 Copulae

The idea of modelling dependence in terms of ranks culminates in the concept of
a copula. A copula describes the dependence structure completely and thus is in
general a very complex object.

We start by recalling that for a random variable X with continuous distribution
function F (recall that then we have, with probability 1, no ties in the observations)
the transformed random variable U := F(X) has a standard uniform distribution
(i.e., is uniformly distributed on the interval [0,1]).

This concept is now extended to a multivariate distribution as follows. Let
X = (X1, . . . ,Xd)	 be a random vector with distribution function F , and let Fj

denote the marginal distribution function of Xj for j = 1, . . . , d . If all Fj are con-
tinuous functions, then we can do the same transformation as above, component-
wise, which yields a random vector (F1(X1), . . . ,Fd(Xd))	 taking values only in
the unit cube [0,1]d . Note that all components of this vector are standard uniform
random variables. This motivates the following definition.

Definition 7.1 (Copula) A copula is the joint distribution function of marginally
uniformly distributed random variables. More precisely, if U1, . . . ,Ud are U(0,1),
then the function C : [0,1]d → [0,1] defined by

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud)

is a copula.

Applying this concept to the componentwise transformed random variables
above, the vector (F1(X1), . . . ,Fd(Xd))	 has distribution function given by

CF (u1, . . . , ud) = P
(
F1(X1) ≤ u1, . . . ,Fd(Xd) ≤ ud

)

for (u1, . . . , ud)	 ∈ [0,1]d . CF is the copula of the vector (X1, . . . ,Xd)	.
In the way we have defined/constructed a copula above, it covers only the contin-

uous case. The case of non-continuous random variables can be covered as well, but
this becomes much more technical. A thorough introduction to copulae can be found
in the book by Nelsen [9], for instance, or in [3, 8], which are of special interest in
connection with risk modelling.

Before we discuss the use of copulae in risk analysis further, we present some
examples. We formulate them for d = 2, and for most of the models it should be
obvious, how they generalize to arbitrary dimension d .
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Example 7.2 (Bivariate Copula Families) Let u1, u2 ∈ [0,1]2.
(a) Independence copula:

Cind(u1, u2) = u1u2.

As the name already suggests, this is the copula of two independent random vari-
ables. Recall that two random variables are independent if and only if their joint
distribution function is the product of the marginals. This is inherited by the copula.

(b) Copula of perfect dependence:

Cdep(u1, u2) = min(u1, u2).

This copula models the situation, when the observations are perfectly dependent.
For the two uniform random variables corresponding to the copula this means that
they are identical. In general two random variables X,Y have the copula of perfect
dependence if and only if there exists a random variable Z and two increasing func-
tions f and g such that X = f (Z) and Y = g(Z). Note that intuitively this means
that as soon as you know the value of one variable you also know the value of the
other random variable for sure.

(c) Normal copula: for θ ∈ (−1,1),

CNo(u1, u2; θ)

= �2
(
�−1(u1),�

−1(u2)
)

= 1

2π
√

1 − θ2

∫ �−1(u1)

−∞

∫ �−1(u2)

−∞
exp

(−(x2
1 − 2θx1x2 + x2

2)

2(1 − θ2)

)
dx1dx2,

where �2 and � denote the distribution functions of the bivariate and the univariate
standard normal distribution, respectively, and �−1 is the inverse function of the
cumulative standard normal distribution function �.

Again the name already tells us the idea behind this copula. It is the copula of
two standard normally distributed random variables with correlation θ which are
also jointly normally distributed. A sample from this copula can easily be obtained
by drawing from a bivariate standard normal distribution with correlation θ and then
applying the function �−1 to every coordinate.

Note that θ = 0 gives the independence copula, whereas θ = 1 gives the copula
of perfect dependence. For θ = −1 one obtains perfect negative dependence (i.e.,
the copula max(u1 +u2 − 1,0) which, in contrast to the other examples, is a copula
only for dimension d = 2).

As mentioned before and explained in more detail and by examples in Chap. 6,
[20], extreme value models are important for risk management. When considering
copula models in the context of bivariate extreme value models, so-called extreme
value copulae occur. These copulae have to be of a very special form; i.e., their de-
pendence structure can be represented in terms of a so-called Pickands dependence
function A, a convex function satisfying max(s,1 − s) ≤ A(s) ≤ 1 for all s ∈ [0,1];
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see e.g., Beirlant, Goegebeur, Segers, and Teugels [14, Chap. 8.2.5]. In terms of
such a Pickands dependence function an extreme value copula C has the form

C(u1, u2) = exp

{
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)}
. (7.1)

Note that the right hand side is equal to u1u2 for the Pickands dependence function
A ≡ 1; this is the independent case. A quantity often considered and estimated is
the value in (7.1) for u1 = u2; i.e. A( 1

2 ). For symmetric copulae it is the minimum
of A, hence gives a measure of maximal dependence in the model. We come back
to this in Sect. 8.

Example 7.3 (Extreme Value Copulae and Their Pickands Dependence Function)
Throughout u1, u2 ∈ [0,1]2 and s ∈ [0,1].

(a) Gumbel copula:
Using the Pickands dependence function the Gumbel copula with parameter θ ∈

[1,∞) is given by

AGu(s) = (
sθ + (1 − s)θ

)1/θ
.

Elementary calculations show that the Gumbel copula is thus

CGu(u1, u2) = exp
{−((− ln(u1)

)θ + (− ln(u2)
)θ )1/θ}

. (7.2)

For θ = 1 the Gumbel copula is actually the independence copula, whereas for
θ → ∞ the Gumbel copula converges to the copula of perfect dependence. Thus
the Gumbel copula allows modelling a continuum of possible dependencies from
independence to perfect positive dependence, giving a nice parametric model for
different dependence scenarios.

(b) t-EV copula:
Using the Pickands dependence function the t-EV copula with parameter θ =

(θ1, θ2) ∈ (0,∞) × (−1,1) is given by

At−EV (s; θ) = stθ1+1

(
( s

1−s
)1/θ1 − θ2

√
1 − θ2

2

√
θ1 + 1

)

+ (1 − s)tθ1+1

(
( 1−s

s
)1/θ1 − θ2

√
1 − θ2

2

√
θ1 + 1

)

,

with tν for ν ∈ (0,∞) representing the distribution function of the tν -distribution
(i.e., the t-distribution with ν degrees of freedom). The t-EV copula (with “EV”
standing for “extreme value”) arises as the limiting dependence structure of compo-
nentwise maxima of independent and identically distributed bivariate tθ1 -distributed
random variables with the correlation of the underlying bivariate normal distribution
being θ2. For more details see e.g. [19].
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Statistically, parametric copulae are rather easy to fit, since it is not necessary
to specify marginal models. One can simply take the empirical distribution func-
tions, plug them into a parametric copula model and estimate the copula parameters,
for instance by likelihood methods. Various copula models are presented in Haug,
Klüppelberg, and Peng [5], where also R codes for fitting such copula models are
provided. The problem is obviously the choice of the parametric model.

Abstractly speaking a copula encodes the dependence structure of a d-dimension-
al random vector by transforming it to a d-dimensional random vector with standard
uniform margins. In principle, one could just as well transform it to any other d-
dimensional random vector with prescribed marginals to encode the dependence
structure. So the question arises whether the use of a copula is the best way to trans-
form data. Alternative transformations are indeed used in relation to some special
applications. For instance, in reliability theory marginals have been transformed to
normal random variables, which is admittedly not as easy as the transformation to
uniform, since the normal distribution function is given as an integral, which cannot
be calculated explicitly. See [10, 22, 26] for details.

Experts from extreme value theory often normalize marginals to standard ex-
treme value distributions, when interested in the maximum of a sample. Typically
the standard Fréchet distribution is used (see e.g. Proposition 5.10 of [29] for
more details). Here the transformation is given by −1/ ln(F (X)), which has dis-
tribution function P(−1/ ln(F (X)) ≤ z) = exp{−1/z}1[0,∞)(z). When interested
in the minimum of a sample, often the transformation is to the standard expo-
nential distribution given by F(x) = (1 − e−x)1[0,∞)(x) (i.e., the transformation
is − ln(1 − F(X))); cf. e.g. [23] for multivariate exponential distributions.

A Taylor expansion to the standard Fréchet distribution function gives P(−1/

ln(F (X)) > z) ∼ 1/z (equivalently, zP (−1/ ln(F (X)) > z) → 1) as z → ∞, so
that large values of z happen with substantial probability (in particular compared to
the normal distribution where P(N(0,1) > z) ∼ zφ(z) = (

√
2πz)−1 exp{−(z2/2)}

as z → ∞ (φ denotes the standard normal density). Taking z = 10, one obtains
for the Fréchet distribution the probability 0.09516258 and for the standard normal
distribution 7.619853 × 10−24. For the uniform distribution, no value larger than 1
can happen (with probability 1). As you can see in Fig. 7, it may be advantageous
to transform data to Fréchet marginals when interested in the dependence structure
of extreme events, as then the extremes really stick out.

Illustration 7.4 Because of the simple transformation in the marginals the use of
copulae to model dependence has had a striking success in particular in the financial
industry. The copula mostly applied has been the normal copula which means that
in the end all dependence is as in a multivariate Gaussian situation and is completely
described by the correlation matrix of the underlying multivariate Gaussian random
variable.

For example, this model was used as a model for the probability of joint de-
faults—the probability that any two members (say A and B) of a pool of credits will
both default within the next year or some other pre-specified period (i.e., the credit
taker fails to pay the interest or the credit notional amount back). Denoting by TA
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Fig. 7 Simulation of 500 independent and identically distributed standard normally distributed
random variables (left) and their transformations to standard uniform (middle) and standard Fréchet
random variables

the time when A defaults and likewise by TB that B defaults, this model describes
the probability that both credits will default as

P(TA < 1, TB < 1) = �2
(
�−1(FA(1)

)
,�−1(FB(1)

);ρ)
,

where FA and FB are the marginal distribution functions of the default times and ρ

the correlation of the used normal copula.
This model, suggested in [25], was heavily blamed (and obviously before the

subprime crisis heavily used) in a now famous article from 2009 (still to be found
on the Internet at http://www.wired.com/techbiz/it/magazine/17-03/wp_quant) en-
titled “The Formula That Killed Wall Street”. The reason is that in a bivariate (and
likewise in a higher dimensional) normal model with correlation different from 1
the probability that both variables X and Y are very big at the same time is ex-
tremely small: asymptotically for z → ∞ the events that X > z and Y > z become
independent. Now it turned out during the subprime crisis that the dependence be-
tween different credits is much higher. In the US subprime credit market it became
obvious that many more of those involved in the markets than the credit models
predicted to be likely could not fulfil their obligations (to pay the interest, repay the
principal etc.). The problem was that these credits had been pooled by the issuing
banks and—sliced up into packets—sold to investors all over the world; the prices
agreed upon in these sales were based usually on the above model (as were the
triple-A ratings of some of these products by rating agencies). Additionally, many
derivatives based upon them—credit default swaps or credit default options were
originally designed as insurance against defaults—were traded and very often they
were bought or sold not to insure oneself, but for purely speculative reasons. So
when many credits started to default, financial institutions all over the world had to
accept that their assets were worth much less than they had thought, which implied
tremendous losses in particular for the financial industry. An interesting paper on
how to model these risks more realistically is [18].

Consequently, the financial crisis of the last years is a clear warning that one
should not use models without basic knowledge of what they can model and what

http://www.wired.com/techbiz/it/magazine/17-03/wp_quant
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they cannot. Model risk is abundant and needs a critical mind concerning the ap-
plication of various models and the interpretation of their resulting outcome, when
applied with care. In the above normal copula model dependence is modelled by
the correlation of the underlying normal distribution. It has long been known that a
normal copula is by no means a model that captures dependent risks: in a normal
copula model very high risks are always independent (see Example 8.5).

As we have seen in Sect. 5 the elliptical distributions are natural extensions of
multivariate normal distributions and are also characterised mainly by their mean
and covariance structure, only that additionally a positive generating random vari-
able comes into play. Likewise, we can extend the normal copula to an elliptical
copula by using the copula corresponding to a general elliptical distribution.

Definition 7.5 (Elliptical Copula) We define an elliptical copula as the copula of
X ∼ Ed(μ,�,G) and write ECd(R,G) for short, where R is the correlation matrix
of the elliptical distribution and G the generating random variable.

The notation ECd(R,G) for an elliptical copula makes sense, since it is charac-
terized by the generating variable G (unique up to a multiplicative constant) and the
copula correlation matrix R. This follows as a simple consequence of the definition
and the fact that copulae are invariant under strictly increasing transformations.

Example 7.6 (a) Let Z be a d-dimensional mean 0 normal vector with arbitrary
covariance matrix �, and denote by � the one-dimensional standard normal distri-
bution function, then the distribution of (�(Z1), . . . ,�(Zd)) is a Gaussian copula.

(b) Let X ∼ √
ν Z√

W
with W being a χ2-distributed random variable with ν de-

grees of freedom and Z a d-dimensional mean 0 normal vector with arbitrary co-
variance matrix �. So X follows a d-dimensional t-distribution with ν degrees of

freedom and we write X d= tttν(0,�); i.e., X is distributed as in Example 5.3(b). De-
noting by tν the one-dimensional t-distribution with ν degrees of freedom, then the
distribution of (tν(X1), . . . , tν(Xd)) is the corresponding copula, which we call a
tttν -copula.

In Fig. 8 we show the differences between the normal distribution, the t4-
distribution, and in Fig. 9 their copulae. Comparing the figures in the left column
we see that, for the same normal margins, the dependence structure given by the t4
copula yields more data in the left lower and right upper corners. The right column
shows first that t-margins are heavier tailed than normal margins. Furthermore, for
the t4-distribution we see more data in the left lower and right upper corners than for
the normal copula. Moreover, for the t4-copula the data spread out more in direction
of the right lower and left upper corners than for the normal copula.

Illustration 7.7 (Danish Fire Continued) In Fig. 6 the ranks of the losses in building
are plotted against the ranks of the losses of content. Up to a normalization this is
a plot of the copula (the data transformed to uniform margins as in Fig. 9). As we
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Fig. 8 Upper row: simulation of 10,000 bivariate normally distributed random variables (left)
and bivariate t4-distributed random variables (right). Lower row: simulation of 10,000 bivariate
random variables with normal marginal distributions and a t4-copula (left), and with t4 marginal
distributions and a normal copula (right). In all cases the correlation parameter was ρ = 0.9

already said, the fact that there are very few points at the lower right and upper left
corner hints again at positive dependence.

Illustration 7.8 (Engineering Risk Analysis) Engineers often deal with complex
systems with a large number of components. Suppose such a system consists of
d components. As the consequence of a risky event Y (e.g. an accident, an earth-
quake, a tsunami, a hurricane or a cyber attack) each component can be damaged.
Typically the degree of damage will be different for every component.

A realisation y of Y would give the strength of such events above. The damage
done to component n is measured by a random variable Xn for n = 1, . . . , d which
gives the costs of repairing or when necessary replacing the component. Assume that
all damage variables Xn have continuous distribution functions Fn with densities
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Fig. 9 The copulae corresponding to Fig. 8; i.e., normal copula (left) and t4-copula (right)

fXn for n = 1, . . . , d , and that together with Y they have a joint density fX1,...,Xd ,Y .
Depending on the realised damage attributable to the risk event Y , summarized in
the vector (x1, . . . , xd), the monetary amount K(x1, . . . , xd) is needed to repair the
system; some components would have to be repaired, some to be replaced. Note
that K could simply be the sum of the xn, but we allow for more general functions,
since cost reductions or increases occur when you have to repair/replace several
components.

In engineering, risk is often calculated as expected costs due to possible damages.
We calculate the expected costs for repairing the system as

E(K) =
∫ ∞

0
· · ·

∫ ∞
0

K(x1, . . . , xd )fX1,...,Xd
(x1, . . . , xd )dx1 · · ·dxd

=
∫ ∞

0

(∫ ∞
0

· · ·
∫ ∞

0
K(x1, . . . , xd )fX1,...,Xd |Y (x1, . . . , xd | y)dx1 · · ·dxd

)
fY (y)dy,

where fY is the density of the risky event variable Y and fX1,...,Xd |Y the joint den-
sity of the damages to the individual components given the risky event Y . From
this calculation we see immediately that we need a model for the random vector
taking the dependence structure between the damages to the different components
(X1, . . . ,Xd) | Y into account.

The dependence structure of (X1, . . . ,Xd) | Y can be described via a copula. An
unrealistic but simple scenario is the independence copula (i.e. we assume that the
damages to the individual components are independent given Y ). If additionally K

is simply the sum of the individual damages, we obtain:

E(K) =
∫ ∞

0

(
d∑

n=1

∫ ∞

0
xnfXn|Y (xn | y)dxn

)

fY (y)dy,

where fXn|Y is the conditional density of the damage in component n given the risky
event Y .
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Clearly these assumptions will be too simple in most real-life applications, be-
cause the damages to the individual components are most likely dependent given Y

or the costs of repairing the system are not the sum of the costs of repairing/replacing
the individual components.

Remark 7.9 (a) Whereas bivariate copula models are well-known in great detail,
higher dimensional models are usually hard to analyse and to fit to real data, not least
due to numerical problems when optimizing the likelihood function. Exceptions are
the normal and t -copula models. A fairly new approach opens up the way to copulae
of arbitrary dimension; cf. [12] and the book [7].

(c) In general the usage of copulae seems rather demanding at first and most
statistical software does not include functions to handle copulae in their basic distri-
butions. However, for many statistical programmes there are very well implemented
and documented extensions available which make the use of copulae rather easy in
applications. For example, for the programme R there are the packages copula
and fCopulae available at http://cran.r-project.org/web/packages/. They include
e.g. functions to handle Archimedean, elliptical and extreme value copulae.

(b) For a parsimonious model with respect to parameters, dimension reduction is
an important first step. There exist many well-known methods (e.g. principal compo-
nent analysis) in classical multivariate statistics. Therefore, the use of copulae often
needs to be combined with such methods. Dimension-reduction methods based on
elliptical copula models have been suggested in Klüppelberg and Kuhn [6].

8 Extremal Dependence Measures

As explained in Chap. 6, [20] extremal risks can be modelled and estimated in a
stochastic framework. In contrast to Chap. 6, [20], in the present chapter we are
concerned about joint extreme risks, which can be particularly dangerous. Hence it
is of the utmost importance to model and assess the joint occurrences of extreme
events correctly. In other words it is not important to get the dependence of the
“typical” observations right, but one must get the dependence of the extreme events
right. One of the first questions for a statistical model is, then, if it is likely to model
joint extreme events.

In this section we briefly present models and methods to allow for a realistic as-
sessment of the dependence of extremal events. An interesting collection of theoret-
ical results and case studies for further reading is Reiss and Thomas [28]. Another
very accessible book on extreme value statistics is Coles [17]; more advanced is
Beirlant et al. [14].

One way to consider the question whether extremal events are dependent or not
is by asking, what is the probability that a random variable Y assumes a large value
given that we already know that another random variable X takes a large value. Con-
sequently, one natural way to model extremal dependence is to consider the asymp-
totic behaviour of the probability that Y > z given that X > z, as z → ∞. If X and Y

http://cran.r-project.org/web/packages/
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are independent, we have that P(Y > z | X > z) = P(Y > z) → 0 as z → ∞. Thus
we call any pair X,Y of random variables with P(Y > z | X > z) → 0 as z → ∞
tail independent. Intuitively this means that extreme events typically occur only in
one variable, provided they occur. In contrast to this, we speak of tail dependence
whenever the limit is non-zero, which implies that with a positive probability ex-
treme events occur in both random variables at the same time. It turns out that this
intuitive approach makes sense only when X,Y have the same distribution (or at
least distributions with comparable tails). To account for this, one normalises the
tails first using the same trick as we know already from the copulae. To be precise
one defines tail dependence coefficients (for the upper tail) as follows. Again we
invoke the quantile function from (1.1).

Definition 8.1 (Tail Dependence Coefficients) Let X,Y be two random variables
with continuous distribution functions FX and FY . The upper tail dependence coef-
ficient of (X,Y ) is defined by

λU = lim
α↑1

P
(
FY (Y ) > α | FX(X) > α

) = lim
α↑1

P
(
Y > F−1

Y (α) | X > F−1
X (α)

)
,

provided the limit exists (α ↑ 1 stands for taking the limit for α going to 1 from
below). If λU ∈ (0,1], then X and Y are called upper tail dependent. If λU = 0,
they are called upper tail independent.

Remark 8.2 (i) The assumption of continuous distributions is not really necessary,

if one restricts the definition to λU := limα↑1 P(Y > F−1
Y (α) | X > F−1

X (α)).

(ii) Noting that P(FY (Y ) > 1 − t | FX(X) > 1 − t) = P(FY (Y )>1−t,FX(X)>1−t)
P (FX(X)>1−t)

and P(FX(X) > 1 − t) = t , we obtain the equivalent definition

λU = lim
t→0

t−1P
(
FX(X) > 1 − t,FY (Y ) > 1 − t

)
.

(iii) The link to the Value-at-Risk as defined in Definition 1.1(b) is obvious:

λU = lim
α↑1

P
(
Y > VaRα(Y ) | X > VaRα(X)

)
.

One can show that the tail dependence is a copula property; i.e., the marginal
distributions have no effect on the value of λU .

Theorem 8.3 If X,Y have copula C, then

λU = lim
α↑1

1 − 2α + C(α,α)

1 − α
. (8.1)
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Remark 8.4 Theorem 8.3 provides a useful link of λU to the Pickands dependence
function:

1 − 2α + C(α,α)

1 − α
= 1 − 2α + exp(2 ln(α)A( 1

2 ))

1 − α

= 2

(
1 − A

(
1

2

)− lnα + o(lnα)

1 − α

)

by a Taylor expansion of the exponential function around 0. Using l’Hospital’s rule
we calculate

lim
α↑1

− lnα + o(lnα)

1 − α
= lim

α↑1

1
α
(1 + o(1))

α
= 1

giving

λU = 2

(
1 − A

(
1

2

))
. (8.2)

For each copula model we can determine if it allows for tail dependence or not.

Example 8.5 (a) Since by Proposition 5.2(c) the conditional distribution of a bi-
variate Gaussian random vector is normal (Ep is in this case, of course, the normal
distribution), the Gaussian copula (or Gaussian distribution) with correlation ρ < 1
has

λU = 2 lim
x→∞

(
1 − �

(√
1 − ρ√
1 + ρ

x

))
= 0.

Hence, when using a Gaussian copula one always has tail independence unless one
considers the degenerate situation where ρ = 1. Therefore, one must never use the
Gaussian copula when one wants to model phenomena where extreme events occur
jointly in different variables. The financial industry has learnt this the hard way (see
Illustration 7.4).

(b) For a Gumbel copula (8.2) gives λU = 2 − 21/θ . Hence, whenever θ > 1 we
have a positive tail dependence and the tail dependence coefficient can assume any
value in (0,1).

(c) For the bivariate tν -copula with ν degrees of freedom and correlation ρ ∈
[−1,1] one calculates using again (8.2)

λU = 2

(
1 − tν+1

(√
ν + 1

√
1 − ρ√

1 + ρ

))

with tν+1 being the distribution function of a t-distributed random variable with
ν + 1 degrees of freedom. This implies that for every ρ > −1 the upper tail depen-
dence coefficient λU > 0; i.e., that even for negative correlation it is far more likely
than in the Gaussian copula to have both variables large at the same time.
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Illustration 8.6 (Danish Fire Continued) Estimation of the tail dependence coeffi-
cient is rather tricky, since it is an asymptotic property (an asymptotic conditional
probability). Therefore, it may depend rather strongly on the choice of the threshold
approximating this asymptotic. We refer to Haug et al. [5] for a detailed analysis
of these issues. For the Danish fire data, [5] reports a value of λ̂U = 0.416 for the
tail dependence coefficient between the losses in building and content. Therefore,
there is a non-negligible tail dependence and thus an insurance company needs to
be prepared to meet large losses in its fire insurance for buildings and its insurance
for the contents at the same time. Of course, intuitively this is not surprising.

To sum up our simple data example using the fire insurance data, we see that all
dependence measures in this context report a positive dependence. But they focus
on different aspects and thus the most adequate one should be used in any particular
application. In particular, you should be aware that when using correlations, a simple
order-preserving transformation such as taking logarithms may have a big impact,
whereas it will have no effect, if the dependence measure depends only on the ranks
(or the copula).

9 Food for Thought

We list some questions which should be seriously considered for every real risk
problem at hand.

• Is my risk problem multivariate? What are the risk factors involved?
• Which techniques do I use to model dependence? Does risk occur from the data

around the mean or rather from extreme events? Is it important to get the bulk of
the data right or the extremes? Should I use all data or only extreme values for a
statistical analysis?

• What model should I use? What does the model I use assume about the depen-
dence structure?

• How will I deal with the model risk?
• How sensitive are the outcomes of my research to assumptions about depen-

dence? Should I apply several models and check robustness of the outcomes by a
sensitivity analysis?

Important Final Call: We could give only a brief introduction into dependence
modelling and some related problems. Likewise, we could give an overview only
over some techniques and a very limited number of examples without going into
details. Much more can be found in the literature and in the end every application
calls for a tailor-made model. Therefore, it may well be necessary to extend and
adapt the existing techniques in line with what is needed for a concrete application.
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10 Summary

In this paper we showed that the dependence structure matters critically when fac-
ing different risks. The overall risk may change completely when the dependence
changes. We discussed various approaches to model the dependence structure. The
most popular measure of dependence is correlation which, however, covers only
linear effects and has other drawbacks and limitations. As alternative dependence
measures we considered rank correlations and copulae. The latter are theoretically
able to encode the complete dependence structure, but for a statistical risk analysis
one chooses certain parametric families which may introduce severe limitations and
also model risk; cf. Chap. 10, [13]. Furthermore, we explained that elliptical dis-
tributions are natural generalisations of the multivariate normal distribution where
mainly the correlation structure matters. Finally, we introduced tail dependence and
explained that it is of utmost importance in connection with risk modelling, be-
cause it captures the dependence of the extremes, which is what typically matters in
risk assessment, risk evaluation and consequential risk handling, and which may be
rather different from the dependence of the bulk of the observations.
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