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Uncertainty in the behavior of quantities of interest causes risk. Therefore statis-
tics is used to estimate these quantities and assess their variability. Classical sta-
tistical inference does not allow to incorporate expert knowledge or to assess
the influence of modeling assumptions on the resulting estimates. This is how-
ever possible when following a Bayesian approach which therefore has gained
increasing attention in recent years. The advantage over a classical approach is
that the uncertainty in quantities of interest can be quantified through the poste-
rior distribution. We first introduce the Bayesian approach and illustrate its use
in simple examples, including linear regression models. For more complex sta-
tistical models Markov Chain Monte Carlo methods are needed to obtain an ap-
proximate sample from the posterior distribution. Due to the increase in comput-
ing power over the last years such methods become more and more attractive
for solving complex problems which are intractable using classical statistics, for
instance spam e-mail filtering or the analysis of gene expression data. We il-
lustrate why these methods work and introduce two most commonly used al-
gorithms: the Gibbs sampler and Metropolis Hastings algorithms. Both methods
are derived and applied to statistical models useful in risk analysis. In particu-
lar a Gibbs sampler is developed for a change point detection in yearly counts
of events and for a regression model with time dependence, while a Metropolis
Hastings algorithm is derived for modeling claim frequencies in an insurance con-
text.
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The Facts

• Risk is regarded as induced by the uncertainty in the behavior of quantities
of interest. Therefore this random behavior has to be modeled using probabil-
ity models and characteristics such as expected value and variance to be esti-
mated.

• An introduction to Bayesian statistics is given, which—in contrast to classi-
cal statistics—can accommodate prior knowledge about the risk parameters un-
der consideration, in particular using Bayes’ famous theorem. Especially expert
knowledge can be incorporated.

• Bayesian inference is based on the posterior distribution of the risk parameters
which summarizes the knowledge about the risk quantity after the data is ob-
served. Common Markov Chain Monte Carlo methods for deriving the Bayesian
posterior distribution are discussed, namely the Gibbs sampler and Metropolis
Hastings algorithms.

• Concepts are illustrated by examples from insurance, health care, mining and
agriculture involving the risk quantities number of claims, complication rate of
new medical treatment, number of coal-mining disasters and crop yield, respec-
tively.

1 The Bayesian Approach

In this chapter we are interested in the study of quantities which are subject to un-
certainty. In this context we understand risk as a process which is induced by un-
certainty or randomness in the behavior of these quantities. To be more precise we
will consider among other the following risk quantities: yearly crop rates, num-
ber of complications following a new medical treatment and the annual number of
claims for a car insurance company. For the statistical risk analyst these quantities
are random variables for which a probability distribution has to be chosen which
depends on unknown population parameters and fits the observed data well. These
population parameters determine the expectation and variance of the risk quantity.
Classical—usually called frequentist—statistics uses solely the observed data to es-
timate the unknown population parameters. This is a sensible approach, however,
the randomness in the observations and the limited number of observations avail-
able can lead to errors in subsequent inference. We assume that the reader has basic
knowledge in probability and statistics; for convenience a glossary is provided in
Appendix. Three illustrative examples are presented after this first short introduc-
tion.

In the simplest possible setting, we assume that observations come from a popu-
lation whose members follow a specific probability distribution which depends on a
single parameter θ . Given that we know this particular underlying distribution, we
are interested in estimating θ based on the observed data. We denote such an esti-
mate by θ̂ . For example, if θ is the expectation of the distribution, we can estimate
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it by the average of all observations, that is

θ̂ = x̄ := 1

n

n∑

i=1

xi, (1.1)

where n is the number of observations with values x1, . . . , xn.
In practice, the estimate θ̂ will however pretty much never equal the true param-

eter θ , that is, in general θ̂ �= θ . Moreover, we might obtain an estimated value θ̂

which is unbelievable because it maybe lies outside a range where we expected the
parameter to be in. If we however still believe that our probability model for the
observed data is correct, we are in the dilemma that we have to decide between our
belief in the data model and our prior belief in the parameter.

Bayesian statistics solves this problem by combining prior expert knowl-
edge with information obtained from the observations. From now on, let θ =
(θ1, . . . , θk)

′ ∈ � be the unknown parameter of interest belonging to the parame-
ter space �, where usually � ⊂ R

k . Then we a priori assign a probability to each
parameter value θ according to the prior expert knowledge available, that is, we treat
the population parameter as random variable and not as a fixed unknown quantity.
Statistically speaking, this means that we choose an appropriate prior distribution
with density or probability function p(θ), which summarizes the knowledge about
the parameter of interest. We now observe a random sample x = (x1, . . . , xn)

′,
which are realizations of random variables X = (X1, . . . ,Xn)

′ with true probability
density f (·|θ). For example xi is the observed crop yield in plot i of the random
crop yield Xi . Considering f (x|θ) as a function of the parameter θ for given obser-
vations x yields the likelihood denoted as

�(θ |x) := f (x|θ), (1.2)

which summarizes the available information in the data about the parameter.
Note that in frequentist statistics, parameters are often estimated by so-called

maximum likelihood estimation which means finding the parameter values θ̂ that
maximize (1.2), that is, finding the value of θ which makes the observations “most
likely”. For example, the quantity in (1.1) is the maximum likelihood estimate of
the expectation μ of a normal distribution (see Illustration 1.1 below).

In Bayesian statistics, we however would like to incorporate prior knowledge
about the parameter θ , that is the prior distribution, into the estimation procedure.
Since the observations x contain information about θ , we update our knowledge
about θ by considering the conditional distribution of θ given observations x. This
distribution is called the posterior distribution and can be calculated by Bayes’ the-
orem as

p(θ |x) = f (x|θ)p(θ)

f (x)
, (1.3)

where

f (x) =
∫

�

f (x|θ)p(θ)dθ (1.4)
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Fig. 1 Ngram of “classical statistics” (gray) and “Bayesian statistics” (black) created using
Google Books Ngram Viewer available at http://books.google.com/ngrams

is the unconditional density function of the observations x, called the marginal dis-
tribution. It does not depend on θ , in other words, it is only a normalizing constant
with respect to θ that ensures that the posterior distribution is a proper density ex-
pression integrating to 1. Hence it holds that

p(θ |x) ∝ �(θ |x)p(θ), (1.5)

that is, the posterior is proportional to the product of the likelihood and the prior.
The computation of the posterior distribution however often is rather intricate so that
so-called Markov Chain Monte Carlo methods are needed as discussed in Sect. 2.

A standard reference on Bayesian inference is the book by Berger [8], more re-
cent references are Lee [5], Gelman et al. [15], Bolstad [1] and Hoff [20]. To il-
lustrate the increasing importance of Bayesian methods in statistics, Fig. 1 shows
how often the terms “classical statistics” and “Bayesian statistics” have occurred in
books since 1900.

Three illustrative examples for different types of data (continuous, binary, count)
are given below. These represent common types of risk quantities.

Illustration 1.1 (Crop Yields) Too small crop yields constitute a major risk to
farmers. A reliable estimate of the expected crop yield and its variability there-
fore is needed for careful business planning. For this purpose, an agronomist studies
the behavior of the random annual crop yields X1, . . . ,Xn of n acres of the same
size and with similar soil and growth conditions. From her experience and discus-
sions with farmers she assumes that the crop yields are normally distributed with
common mean θ and (known) variance σ 2 and independent of each other, that is
Xi ∼ N(θ,σ 2), i = 1, . . . , n. Then the likelihood (1.2) is

�(θ |x) =
n∏

i=1

1√
2πσ 2

exp

[
− 1

2σ 2
(xi − θ)2

]
∝ exp

[
− n

2σ 2
(x − θ)2

]
,

where x is the empirical mean as defined in (1.1). It is a unimodal function in θ with
mode given by x.

From previous years the agronomist has some prior knowledge about the likely
values of the expected crop yield θ and therefore specifies a prior distribution as nor-
mal with known mean μ and known variance τ 2. Having observed the crop yields

http://books.google.com/ngrams
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Fig. 2 Likelihood, prior and
posterior densities for n = 5,
observation variance σ 2 = 5,
prior mean μ = 15, prior
variance τ 2 = 3 and observed
mean x = 11

x1, . . . , xn, she therefore calculates the posterior density (1.3) using (1.5) as

p(θ |x) ∝ exp

[
− n

2σ 2
(x − θ)2

]
exp

[
− 1

2τ 2
(θ − μ)2

]
∝ exp

[
−1

2

(θ − μ1)
2

τ 2
1

]
,

(1.6)

where

τ 2
1 = 1

nσ−2 + τ−2
and μ1 = τ 2

1

(
x

n−1σ 2
+ μ

τ 2

)
. (1.7)

From (1.6) it follows that the posterior distribution is again normal but now with
mean μ1 and variance τ 2

1 . To illustrate these concepts further, let us assume the
agronomist expects an average yield of 15 per acre, that is, she sets the prior mean
μ = 15. She is however uncertain about her guess and therefore allows for a large
uncertainty by choosing the prior variance τ 2 to be 3. After harvesting n = 5 acres,
the observed average yield was x = 11 per acre. The seed manufacturer claims that
the variability under normal growing conditions is σ 2 = 5 per acre. Therefore the
posterior distribution has posterior moments τ 2

1 = 0.75 and μ1 = 2. This is illus-
trated in Fig. 2.

The expression of the posterior expectation μ1 in (1.7) can conveniently be
rewritten as

μ1 = wx + (1 − w)μ, (1.8)

where w := w(σ 2, τ 2, n) := τ 2

τ 2+σ 2/n
is a weight varying from 0 to 1. Expression

(1.8) shows that the posterior mean is the weighted average of the empirical mean
x and the prior mean μ. As the uncertainty in the prior knowledge, reflected by the
prior variance τ 2, increases, the weight (1 − w) for the prior mean decreases and
the posterior mean is more heavily pulled towards the empirical mean. Moreover,
the belief in the observed data as measured by the weight w also increases when the
number of observations n, the number of acres under consideration, is increased. In
the example it is w = 0.75. This means that there is already a quite strong belief in
the data.

Illustration 1.2 (Complication Rate in Medical Studies) In a medical study, the re-
searcher is interested in the rate of complications θ of n subjects. Clearly, the risk
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of the researcher is that this rate θ is higher than a small but admissible limit rate.
At the end of the study, for each subject it is known whether he or she developed
a complication or not. The event of complication occurrence can be modeled by a
binary random variable Xi which is either 1 if the patient i ∈ {1, . . . , n} develops
a complication or 0 otherwise. Because the researcher developed a completely new
treatment, no prior knowledge about the success probability θ of the Bernoulli dis-
tribution representing the complication probability is available. Hence, she simply
assumes equal likelihood for each parameter value θ , in other words, a prior density
p(θ) = 1 corresponding to the uniform distribution. For observations x1, . . . , xn the
posterior distribution (1.3) for θ therefore simplifies to the likelihood (1.2):

p(θ |x) ∝ �(θ |x)p(θ) = �(θ |x) =
n∏

i=1

θxi (1 − θ)1−xi .

If, however, prior information based on studies of similar treatments is available,
the researcher can specify a more informative prior distribution. For a parameter
in the range of 0 to 1, the Beta distribution with parameters α > 0 and β > 0 is a
reasonable and quite flexible choice. Its density is given by

p(θ) = 1

B(α,β)
θα−1(1 − θ)β−1, (1.9)

with normalizing constant B(α,β) = ∫ 1
0 θα−1(1 − θ)β−1dθ . Furthermore, its mean

and variance are E(θ) = α/(α + β) and Var(θ) = αβ/((α + β)2(α + β + 1)), re-
spectively, and for α = β = 1 the Beta distribution corresponds to the uniform dis-
tribution on [0,1]. For example, if the researcher expects a 20 % complication rate
with 0.1 standard error, then she solves E(θ) = 0.2 and Var(θ) = 0.12 for α and β

and obtains α = 3 and β = 12.
It can be shown that the posterior distribution is again Beta with parameters α1 =∑n
i=1 xi + α and β1 = n −∑n

i=1 xi + β . The posterior mean then can be written
similarly to (1.8) as a weighted average of the sample mean and the prior mean:

α1

α1 + β1
=
∑n

i=1 xi + α

n + α + β
= wx + (1 − w)

α

α + β
,

where w := w(α,β,n) := n
n+α+β

. As before, belief in the observed data increases
as the number of subjects n increases.

Illustration 1.3 (Claim Numbers in Car Insurance) In car insurance, a good esti-
mate of the expected number of claims is essential for adequate policy pricing. An
insurance company here faces a two-way risk. Overestimation of the expected num-
ber of claims means too high premiums and therefore a loss of clients. Expecting
too few claims however poses the risk of large losses in the portfolio. Assuming that
an insurance company has a portfolio of n homogeneous policy holders, a common
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choice for the distribution of the number of claims Xi, i = 1, . . . , n, is the Poisson
distribution with mean and variance parameter θ and probability mass function

f (xi |θ) = θxi

xi ! e
−θ for xi ∈ {0,1,2, . . .}. (1.10)

Even if the portfolio consists of rather homogeneous policy holders, there is sig-
nificant uncertainty regarding the expected number of claims θ because it also de-
pends on unobservable quantities such as risk affinity or exogenous risks like ex-
treme weather events.

The insurance company decides to choose a Gamma prior distribution with pa-
rameters α > 0 and β > 0, mean α/β , and density

p(θ) = 1


(α)
βαθα−1e−βθ , (1.11)

where 
(α) is the Gamma function 
(α) = ∫∞
0 θα−1e−θdθ .

The posterior distribution (1.3) based on observations x1, . . . , xn from a previous
year for example, is then obtained as follows:

p(θ |x) ∝
[

n∏

i=1

θxi

xi ! e
−θ

]
1


(α)
βαθα−1e−βθ ∝ θα1−1e−β1θ ,

which is again a Gamma distribution with parameters α1 =∑n
i=1 xi + α and β1 =

n + β . As before, the posterior mean can be decomposed into a weighted average
of the empirical and prior mean. Such a convenient decomposition is however not
always possible.

This mixture of Poisson and Gamma densities has another interesting interpreta-
tion: if the insurance company is interested in the claim number probabilities given
an unknown parameter θ , Bayes’ theorem can be “inverted” to compute the marginal
density as f (xi) = f (xi |θ)p(θ)/p(θ |xi) which results in a negative binomial dis-
tribution with the same mean as the Poisson distribution but with a higher variance
due to the uncertainty in the unknown parameter.

1.1 From Non-informativeness to Conjugacy

Illustrations 1.1 and 1.2 also demonstrate a general problem of Bayesian statistics,
namely the question: how do we choose an appropriate prior distribution? In certain
applications, this choice might be evident but in general this is a non-trivial question
and should be as objective as possible in order to not influence the results in an un-
wanted way. If for example in Illustration 1.1 the uncertainty in the prior knowledge
τ 2 is very large, that is, the prior knowledge is rather vague, the prior will be close
to p(θ) ∝ 1 like the first prior choice in Illustration 1.2. Such a prior is called non-
informative because it assigns equal likelihood to each possible parameter value.
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One however has to be careful if the parameter space � is unbounded. In that case
we have

∫
�

p(θ)dθ = ∞, and p(θ) is an improper prior.
Hence, such non-informative priors has to be dealt with care to ensure that the

resulting posterior is proper. In Illustration 1.1, as τ 2 → ∞ corresponding to a non-
informative prior, the posterior density is a normal density with mean x and variance
σ 2

n
, which is a proper distribution.
Another issue of non-informative priors is that they are not invariant under

reparametrization of the model. For example a uniform prior on the success prob-
ability θ ∈ (0,1) (see Illustration 1.2) does not result in a uniform prior on the so-
called odds parameter given by θ/(1 − θ). An alternative approach for defining
non-informative priors which has this invariance property was developed by Jef-
freys [21]. Jeffreys prior is given as

p(θ) ∝ ∣∣I (θ)
∣∣ 1

2 ,

where

I (θ) = E

[
−∂2 lnf (X|θ)

∂θ∂θ ′
∣∣∣θ
]

(1.12)

is the expected Fisher information matrix about θ , which is a measure for the in-
formation about the parameter contained in the sample. In general, Jeffrey’s ap-
proach leads to prior densities in the form of p(θ) ∝ 1 for location parameters θ
and p(σ) ∝ σ−1 for scale parameters σ . For example the mean μ of a normal dis-
tribution is a location parameter and the standard error σ is a scale parameter.

On the other hand, the choice of an informative prior is always preferable if there
is some kind of a priori knowledge about the parameter of interest. However, it will
not be possible to get an analytically closed form expression of the posterior in com-
plex situations, since the normalizing constant f (x) defined in (1.4) of the posterior
distribution requires a possibly high-dimensional integration. Posterior calculations
are however simple if one considers conjugate prior distributions. A class of prior
distributions P is conjugate to a class of observational models F if for every prior p

out of P and for any observational distribution f from F , the posterior distribution
p(·|x) remains in the class of the prior distribution P .

Example 1.4 (Conjugate Prior Distributions) The class of normal priors for the
mean (Illustration 1.1) is conjugate for the observational model of normal distri-
butions with known variance, while the class of Beta priors (Illustration 1.2) is con-
jugate for the observational model of Bernoulli distributions. Finally Illustration 1.3
also shows that the class of Gamma priors is conjugate for Poisson distributions.

1.2 Bayesian Inference

In Bayesian statistics all information about the parameter θ is contained in the pos-
terior distribution, while in classical statistics the information about θ is captured
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by point and interval estimates. However, for the Bayesian, these quantities can be
straightforwardly derived as well.

The main location measures are the posterior mean, as discussed in Illustra-
tions 1.1–1.3, the posterior median and the posterior mode, where the last quantity
is closest to the maximum likelihood principle from frequentist statistics, that is,
the parameter θ is most likely to be observed as judging from the available infor-
mation contained in the observations. In maximum likelihood (ML) estimation we
choose θ̂ML = argmaxθ∈� �(x|θ), while the posterior mode (PM) is augmented by
the prior and given by θ̂PM = argmaxθ∈� �(x|θ)p(θ). Note that, for example, for
normal distributions the mean, mode and median coincide, while this is in general
not the case, such as for the Gamma distribution.

The main dispersion measures are the variance, standard deviation (square root
of the variance), precision (inverse of the variance) and interquartile range (differ-
ence between 75 %- and 25 %-quantiles) of the posterior distribution. Correspond-
ing to the Fisher information defined in (1.12), one also often considers the posterior
curvature at the mode which is the matrix of second derivatives of the posterior den-
sity in log form at the mode. If θ is a vector, marginal densities can also be assessed.

In addition to these Bayesian point estimates 100(1 − α) % credible intervals
provide interval estimates for θ and are given for a scalar parameter θ by an interval
I (x), depending on the observations x, such that

∫

I (x)

p(θ |x)dθ = 1 − α.

In contrast to the confidence interval in classical statistics, the credible interval al-
lows the interpretation that the parameter θ is contained with probability 1 − α in
I (x), since θ is now modeled as a random quantity.

Example 1.5 (Inference of the Normal Distribution) In Illustration 1.1 we have seen
that the posterior distribution is given by the normal distribution with mean μ1 and
variance τ 2

1 . Therefore the posterior mean, mode and median are μ1, while the pos-
terior variance is τ 2

1 and the posterior precision is τ−2
1 , which is also the posterior

curvature at the mode.
A 100(1 − α) % credible interval [θl(x), θu(x)] for θ is given by appropriate

quantiles of the posterior distribution: θl(x) = μ1 − τ1�
−1(1 − α

2 ) and θu(x) =
μ1 + τ1�

−1(1 − α
2 ), where �−1 is the inverse of the standard normal distribu-

tion function. This is also the shortest possible credible interval. Note that the cor-
responding classical 100(1 − α) % and confidence interval for θ is given by
x̄ ± s√

n
�−1(1 − α

2 ) where s2 := 1
n−1

∑n
i=1(xi − x̄)2 is the sample variance.

Returning to the specific example of Illustration 1.1, a corresponding 95 % credi-
ble interval for the mean yield is [10.303,13.697], while a 95 % confidence interval
is [9.040,12.960] when assuming a sample variance of s2 = 5. From the Bayesian
theory the agronomist can say that the mean yield is between 10.303 and 13.697
with 95 % probability. The frequentist approach gives that the random interval
x̄ ± s√

n
�−1(1 − α

2 ) covers the mean in 95 % of times. For the specific observa-
tions this interval is given by [9.040,12.960].
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1.3 Conjugacy and Regression Models

Before closing this section we consider the problem of modeling the influence of
potential explanatory variables on a risk quantity called response. The simplest such
model is the linear regression model for the response vector Y = (Y1, . . . , Yn)

′:

Yi ∼ N
(
xi1β1 + · · · + xidβd, σ 2) independent for i = 1, . . . , n, (1.13)

where xi1, . . . , xid are known values of d explanatory variables for the ith observa-
tion and β1, . . . , βd are unknown regression coefficients. We can rewrite this model
in matrix form as follows:

Y ∼ Nn

(
Xβ, σ 2In

)
, (1.14)

where Nn(μ,) denotes the n-dimensional normal distribution with mean vector μ

and covariance matrix . Further we define

X :=
⎛

⎜⎝
x11 . . . x1d

...
...

xn1 . . . xnd

⎞

⎟⎠ and β :=
⎛

⎜⎝
β1
...

βd

⎞

⎟⎠ .

The matrix X is called the design matrix and we assume that its columns are not
linearly dependent.

Applications of such models can be found in virtually all areas of scientific re-
search. For example, in Illustration 1.1 the agronomist may also try to model the
crop yields with respect to a set of explanatory variables such as rainfall or sunshine
duration. An experienced agronomist may have some prior expert knowledge about
the effect of these variables and therefore can choose appropriate prior distributions
for the regression coefficients. Similarly, based on her experience she may also be
able to specify a prior for the variance parameter of the model parameters.

In model (1.14) it is more convenient to formulate priors in terms of β and the
precision φ := σ−2. A typical choice is the Normal-Gamma, NG(b0,B0, n0, S0),
prior, which is, for known constants n0 and S0, known vector b0 and known ma-
trix B0, defined in a hierarchical way as

β|φ ∼ Nd

(
b0,

B0

φ

)
and φ ∼ Gamma

(
n0

2
,
n0S0

2

)
. (1.15)

Equivalently we can assume β|σ 2 ∼ Nd(b0, σ
2B0) and σ 2 ∼ Inverse Gamma( n0

2 ,
n0S0

2 ). Here the Inverse Gamma distribution is derived as follows: if X ∼
Gamma(α,β) then 1/X ∼ Inverse Gamma(α,β). Under this setup the following
theorem holds:

Theorem 1.6 (Conjugacy in Regression) For the linear model given in (1.14) with
observed response y and prior distribution given by (1.15) the posterior distribution
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of (β, φ) is given by an NG(b1,B1, n1, S1) distribution with

b1 = B1
(
B−1

0 b0 + X′y
)
, B1 = (B−1

0 + X′X
)−1

,

n1 = n0 + n, S1 = 1

n1

[
n0S0 + (y − Xb1)

′y + (b0 − b1)
′B−1

0 b0
]
.

See Gamerman and Lopes [4, Sect. 2.3.2] for a proof.

2 MCMC—Markov Chain Monte Carlo

In Sect. 1.1 we studied the choice of prior distributions. In particular, we discussed
non-informative priors and conjugate families which allow for an easy derivation of
the posterior distribution (1.3). This is however not the case in general. Markov
Chain Monte Carlo (MCMC) methods are used to approximate the posterior in
more complex situations. Although being very computer intensive, the increasing
availability of computing power nowadays makes the use of MCMC methods in-
creasingly attractive. In particular, MCMC methods may be used to solve complex
problems which cannot be treated using classical statistics. Examples of such prob-
lems are spam e-mail filtering and the analysis of gene expression data, just to name
a few.

MCMC methods are based on the two well-known concepts of Markov Chains
and Monte Carlo techniques. Both concepts will be explained first, before we then
introduce the two most commonly used algorithms, namely the Gibbs sampler and
Metropolis Hastings algorithms. Recent comprehensive references on MCMC meth-
ods include Gamerman and Lopes [4] and Marin and Robert [22].

2.1 ∗∗MC—Monte Carlo

To understand MCMC methods, we begin with the second “MC” which refers to
“Monte Carlo” and which is due to the often used Monte Carlo integration tech-
niques. In general Monte Carlo methods repeatedly sample from a probability dis-
tribution to determine analytically difficult quantities. For example, let us assume
that t (·) is a function and we are interested in computing the integral

I =
∫ 1

0
t (θ)dθ, (2.1)

of which no closed form solution is known. This is, for example, often the case
for the marginal density function f defined in (1.4) which is part of the posterior
distribution defined in (1.3). For such problems we use the following numerical ap-
proximation. First let θ ∈ (0,1) be a random variable with density p. Then the ex-
pectation of the random variable t (θ) is E(t(θ)) = ∫ 1

0 t (θ)p(θ)dθ . If we can sample
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from p, an estimate of E(t(θ)) is the sample mean. In particular, let θ be uniform on
(0,1) and θ1, . . . , θn a corresponding independent and identically distributed (i.i.d.)
random sample. Then (2.1) can be estimated by

Î := 1

n

n∑

i=1

t (θi). (2.2)

By the strong law of large numbers (see Durrett [12]) Î converges to I = E(t(θ))

with probability 1, since p(θ) = 1 for all θ ∈ (0,1).
In Bayesian statistics the posterior expectation E(t(θ)|x) can be estimated by

the sample mean (2.2) when θ1, . . . , θn is a sample from the posterior distribution
p(·|x). As long as the posterior distribution and sampling algorithms are available,
there are no problems and the first “MC” referring to “Markov chain” is not needed.

As mentioned above, it is unfortunately not the case that an analytical form of the
posterior density p(·|x) is always available. The idea of MCMC methods therefore
is to construct a Markov chain with limiting distribution p(·|x). If the Markov chain
is run for a sufficiently long time, it can be assumed that the stationary state is
reached and therefore the realizations of the chain represent a sample from p(·|x).
In the following section we therefore give a brief overview of Markov chain theory.
Readers familiar with it can skip Sect. 2.2 and continue reading with Sects. 2.3
and 2.4 which discuss the two most common MCMC methods.

2.2 MC∗∗—Markov Chains

We give a short introduction to Markov chains and state major results. A more de-
tailed treatment can be found in Meyn and Tweedie [24], Nummelin [25], Resnick
[26] and Guttorp [18]. The set of random variables {θ (t) : t ∈ T } is said to be a
stochastic process taking values in the state space S for time points t in the index set
T . In our discussion we will only consider discrete time stochastic processes with T

being the set of natural numbers N = {1,2, . . .}. The state space S can generally be
a subset of the d-dimensional set of real numbers, Rd , but in the following we will
concentrate on a discrete state space S. Details on continuous state space Markov
chains can be found in Meyn and Tweedie [24].

A Markov chain is a process, such that given the present state, past and future
states are independent:

P
(
θ (n+1) = xn+1|θ (n) = xn, θ

(n−1) = xn−1, . . . , θ
(0) = x0

)

= P
(
θ (n+1) = xn+1|θ (n) = xn

)
(2.3)

for all x0, . . . ,xn+1 ∈ S. If the probabilities in (2.3) do not depend on n, we say that
the Markov chain is homogenous. In this case we define the transition probability
P(x,y) of moving from state x to state y as:

P(x,y) := P
(
θ (n+1) = y|θ (n) = x

)
.
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Fig. 3 Probabilities of
molecule movement

In general, for A ⊂ S, P(x,A) :=∑y∈A P (x,y) is called the transition kernel.

Illustration 2.1 (Molecule Movement) Consider a molecule traveling in a liquid or
a gas which moves independently left and right with successive displacements from
its current position governed by a probability function f over the integers, that is
S = Z. Such a process is called a random walk. Let θ(n) represent the position of
the molecule at time n. Therefore we have

θ(n) = θ(n−1) + wn = θ(0) + w1 + · · · + wn,

where wi ∼ f independently and for all i ≥ 1. For the initial position θ(0) we as-
sume an initial distribution π(0).

The case where the probabilities of right, left or stay move are given by p, q

and 1 − p − q , respectively, is represented by assuming f (1) = p, f (−1) = q and
f (0) = 1 − p − q . This implies that

P(x, y) = P
(
θ(n+1) = y|θ(n) = x

)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p, if y = x + 1,

q, if y = x − 1,

1 − p − q, if y = x,

0, if y �= x − 1, x, x + 1,

which is illustrated in Fig. 3.

If the state space S ⊂ R
d is not only discrete but also finite, that is S =

{x1,x2, . . . ,xr}, we can consider the transition matrix P defined by

P :=
⎛

⎜⎝
P(x1,x1) . . . P (x1,xr )

...
...

P (xr ,x1) . . . P (xr ,xr )

⎞

⎟⎠ .

Higher order transition probabilities P m for m ≥ 2 can be obtained as follows

P m(x,y) := P
(
θ (m) = y|θ (0) = x

)

=
∑

x1∈S

. . .
∑

xm−1∈S

P
(
θ (m) = y, θ (m−1) = xm−1, . . . , θ

(1) = x1|θ (0) = x
)

=
∑

x1∈S

. . .
∑

xm−1∈S

P
(
θ (m) = y|θ (m−1) = xm−1

) · · ·P (θ (1) = x1|θ (0) = x
)

=
∑

x1∈S

. . .
∑

xm−1∈S

P (x,x1)P (x1,x2) · · ·P(xm−1,y),
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Fig. 4 Example of health states (0 = healthy, 1 = sick) of a policy holder over time (p = 0.05,
q = 0.3, π(0)(0) = 0.8, π(0)(1) = 0.2)

where the second equality is due to the Markov property (2.3). In matrix notation
we have P m = P · · ·P meaning matrix multiplication m times of the matrix P .

Further, let π(0) be the initial distribution of the chain, π(0)(x) := P(θ (0) = x).
The marginal distribution after n time steps is given by

π(n)(y) := P
(
θ (n) = y

)=
∑

x∈S

P
(
θ (n) = y|θ (0) = x

)
P
(
θ (0) = x

)

=
∑

x∈S

P n(x,y)π(0)(x), (2.4)

which can also be written as π(n) = π(0)P n = π(0)P n−1P = π(n−1)P .
Before we move on to discuss some major results which are the basis of MCMC

methods, we consider an illustrative example.

Illustration 2.2 (Daily Allowance in Health Insurance) A health insurance com-
pany sells policies which pay a daily allowance to sick policy holders. In order
to price the policies, the company sets up the following simplifying model. The
health state of a person is modeled as a Markov chain {θ(n) : n ≥ 0} with states
S = {healthy, sick}, denoted as S = {0,1}, respectively. The initial distribution (the
proportions of healthy and sick policy holders when the policy is sold) is denoted
by π(0) = (π(0)(0),π(0)(1))′ and the transition matrix P by

P =
(

1 − p p

q 1 − q

)
=
(

P(0,0) P (0,1)

P (1,0) P (1,1)

)
.

That is, a healthy policy holder today is assumed to fall ill tomorrow with a proba-
bility of p versus staying healthy with a probability of 1−p. Similarly, a sick policy
holder becomes healthy with a probability of q and stays sick with a probability of
1 − q . An exemplary realization of this Markov chain is shown in Fig. 4

The probability that a person is healthy after n days (independent of whether or
not he or she was sick in the meantime) is given by

P
(
θ(n) = 0

) = P
(
θ(n) = 0|θ(n−1) = 0

)
P
(
θ(n−1) = 0

)

+ P
(
θ(n) = 0|θ(n−1) = 1

)
P
(
θ(n−1) = 1

)
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= (1 − p)P
(
θ(n−1) = 0

)+ qP
(
θ(n−1) = 1

)

= (1 − p − q)P
(
θ(n−1) = 0

)+ q

= (1 − p − q)
[
(1 − p − q)P

(
θ(n−2) = 0

)+ q
]+ q

...

= (1 − p − q)nπ(0)(0) + q

n−1∑

k=0

(1 − p − q)k.

If p = q = 0, that is, healthy (sick) persons always stay healthy (sick), then
P(θ(n) = 0) = π(0)(0) and P(θ(n) = 1) = π(0)(1). If p + q > 0, using results for
the finite geometric series gives

P
(
θ(n) = 0

)= (1 − p − q)nπ(0)(0) + q
1 − [(1 − p − q)n]

1 − (1 − p − q)

= (1 − p − q)n
[
π(0)(0) − q

p + q

]
+ q

p + q
. (2.5)

If the initial distribution is given by π(0) = (
q

p+q
,

p
p+q

)′, then the marginal proba-

bility P(θ(n) = 0) = q
p+q

is the same for all time points n.
If p + q < 2, then (1 − p − q)n converges to zero as n goes to infinity and

therefore

lim
n→∞P

(
θ(n) = 0

)= q

p + q
and lim

n→∞P
(
θ(n) = 1

)= p

p + q
,

which shows that the initial distribution is obtained as the limiting distribution of
the Markov chain. For the realizations of the Markov chain shown in Fig. 4 the
convergence is illustrated in Table 1.

To obtain the probability that an initially healthy policy holder is also healthy
after n days, denoted by P n(0,0), we assume that we always start in the healthy
state, that is π(0)(0) = 1. Using (2.4) with π(0)(0) = 1 this gives

P n(0,0) = P
(
θ(n) = 0

)= (1 − p − q)n
(

1 − q

p + q

)
+ q

p + q

= (1 − p − q)n
p

p + q
+ q

p + q
.

Similarly, we compute P n(1,0), P n(0,1) and P n(1,1) to determine the nth order
transition matrix P n as

P n = (1 − p − q)n

p + q

(
p −q

−q q

)
+ 1

p + q

(
q p

q p

)
. (2.6)
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Table 1 Empirical marginal probabilities after different time points of the Markov chain shown in
Fig. 4

Health
states

Time Limit
prob.100 200 300 400 500 600 700 800 900 1000

0 0.75 0.76 0.78 0.79 0.79 0.82 0.83 0.84 0.85 0.86 0.86

1 0.25 0.24 0.22 0.21 0.21 0.18 0.17 0.16 0.15 0.14 0.14

Finally, we denote by T0 the first time that a person becomes healthy again. Given
that he or she was healthy when taking out the policy, we have

P
(
T0 = n|θ(0) = 0

)= P0
(
θ(n) = 0, θ(j) �= 0,1 ≤ j ≤ n − 1

)

= P(0,1)P (1,1)n−2P(1,0) = p(1 − q)n−2q.

Similarly let T1 be the first time that a person falls ill. Then it holds that P(T1 =
n|θ(0) = 0) = P(0,0)n−1P(0,1) = p(1 − p)n−1.

A fundamental problem for Markov chains in the context of simulation is the
study of the asymptotic behavior of the chain as the number of steps or iterations
n goes to infinity. A key concept for this is the stationary distribution π , which
satisfies

∑

x∈S

π(x)P (x,y) = π(y) ∀y ∈ S, (2.7)

and can be written in matrix notation as π = πP . The reason for the name is clear
from the above equation. If the marginal distribution at any step n is π , then the
distribution of the next step is πP . Once the chain reaches a stage where π is the
distribution of the chain, the chain retains this distribution for all subsequent stages.

Illustration 2.3 (Illustration 2.2 Continued) Since the policies sold by the health
insurance company are valid for the full lifetime of a policy holder, the company
would like to investigate the long term expected proportions of healthy and sick
persons. Since S = {0,1}, in this case condition (2.7) is equivalent to

π(0)P (0, y) + π(1)P (1, y) = π(y), y = 0,1.

The solution is π = (
q

p+q
,

p
p+q

). Also for p + q < 2 it follows from (2.6) that

lim
n→∞P n = 1

p + q

(
q p

q p

)
=
(

π(0) π(1)

π(0) π(1)

)

and the distribution of θ(n) converges to π at an exponential rate. This shows that
for p + q < 2 the proportion of healthy and sick policy holders is asymptotically
given by the stationary distribution π .
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The case p + q = 2 still produces a stationary distribution π but this does not
provide a unique limiting distribution since from (2.5) it follows that

P
(
θ(n) = 0

)= (−1)n
(

π(0)(0) − q

2

)
+ q

2
∀n ≥ 1.

This case is somewhat different, since the states are always alternating over time
corresponding to the case that persons are healthy one day and always fall ill the
next day which is evidently rather unrealistic. The chain has a periodic nature that
will be addressed below.

Having established some basic properties of Markov chains, we are interested
in characterizing the limiting behavior. For this a classification of the states of the
Markov chain is necessary. For a more complete treatment see for example Chap. 2
of Resnick [26]. We define the first visit time to y as Ty = inf{n ≥ 1 : θ (n) = y}
and the probability of visiting y after starting in x in finite time by ρxy := P(Ty <

∞|θ (0) = x). Then a state y ∈ S is recurrent if and only if ρyy = 1, and—more
strongly—positive recurrent if and only if y is recurrent and E(Ty |θ (0) = y) < ∞.
Further, the state x is said to hit y or y is accessible from x, denoted by x → y if and
only if ρxy > 0. One can show that x → y if and only if there exist an n ≥ 0 such
that P n(x,y) > 0 (see Resnick [26, p. 78]). Let x ↔ y if and only if x → y and
y → x. This is an equivalence relationship. The Markov chain is called irreducible
if x → y for every pair x,y ∈ S.

Finally, to establish limit distributions one also needs to introduce the notation of
periodicity. The period of state x is given by

dx = largest common divisor of
{
n ≥ 1 : P n(x,x) > 0

}
.

It follows that the condition P(x,x) > 0 implies dx = 1. Such a state is called
aperiodic. Thus the states 0 and 1 in Illustration 2.3 are aperiodic if p + q < 2. On
the other hand, if p + q = 2, it holds that d0 = d1 = 2, in other words, the states 0
and 1 are periodic with period 2.

A state x is called ergodic if it is aperiodic and positive recurrent. Similarly,
a Markov chain is called ergodic if all states are aperiodic and positive recurrent.
These concepts are sufficient to characterize the limiting distribution.

Theorem 2.4 (Limiting Distribution) Let {θ (n), n ≥ 0} be an irreducible and er-
godic Markov chain with stationary distribution π , then

lim
n→∞P n(x,y) = π(y) ∀x,y ∈ S.

A proof can be found in Guttorp [18, Theorem 2.9]. This shows that the stationary
distribution is also the limiting distribution under the assumptions of Theorem 2.4.

While the empirical mean converges to the population mean as the sample size
increases for i.i.d. samples by the strong law of large numbers, a Markov chain
equivalent will now be given.
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Theorem 2.5 (Ergodic Theorem) If the chain is ergodic and Eπ(t (θ)) < ∞ for the
unique limiting distribution π then

tn := 1

n

n∑

i=1

t
(
θ (i)
) n→∞−−−→ Eπ

(
t (θ)

)
with probability 1.

A proof can be found on page 49 of Guttorp [18]. This theorem can be used
as justification for using tn as an estimate for Eπ(t (θ)), see also the discussion in
Sect. 2.1. A central limit theorem for Markov chains can also be formulated and is
found for example in Gilks, Richardson, and Spiegelhalter [17]. It can be used for
constructing asymptotic confidence intervals.

Having established the asymptotic theory of Markov chains, the final, and crucial,
step is simulation. For this, consider an ergodic Markov chain {θ (n), n ≥ 0} with
state space S ⊂ R

d , transition probabilities P(x, y) and initial distribution π(0). To
generate values from this Markov chain the following algorithm can be used.

• Sample a starting value θ (0) from the initial distribution π(0).
• For i = 1, . . . , n, sample value θ (i) from the probability mass function f (·) :=

P(θ (i−1), ·).
As n gets large the sampled values will have a distribution close to the limiting dis-
tribution π and can therefore be considered as an approximate sample from π . Note
that all samples drawn after convergence are also samples from π since it is the
stationary distribution. Here, convergence of a Markov chain means that the station-
ary distribution is approximated sufficiently accurately, which is difficult to assess.
Relevant references will be given below. The values before convergence are called
the burn-in period and will be deleted when considering the ergodic averages such
as t̄n. The sampled values are dependent, since they arise from a Markov chain,
however so-called thinning and batching methods can be applied to achieve an ap-
proximately i.i.d. sample. This general method of approximate sampling from the
stationary distribution is called the Markov Chain Monte Carlo (MCMC) approach.

We can now use this approach to draw approximate samples from a complex
posterior distribution p(·|x), which is analytically not tractable, by assuming that
p(·|x) is the stationary distribution π of a Markov chain. The next two sections will
study two famous MCMC algorithms in detail.

2.3 Gibbs Sampler

This chapter introduces and discusses the first widely used sampling scheme for con-
structing a Markov chain with prespecified limiting distribution π . It was first devel-
oped for approximately sampling from the Gibbs distribution used in image analy-
sis. Geman and Geman [16] discussed this problem for several sampling schemes.
Gelfand and Smith [14] were the first to point out to the statistical community at
large that this sampling scheme could be used for other distributions than the Gibbs
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distribution. Before stating the sampling algorithm, we consider a small illustrative
example.

Illustration 2.6 (Health States of a Couple) (Casella and George [2]) Let S =
{(0,0)′, (1,0)′, (0,1)′, (1,1)′} be a two-dimensional state space with probability
distribution π for the random vector θ = (θ1, θ2)

′ given by

P(θ1 = 0, θ2 = 0) = π00, P (θ1 = 0, θ2 = 1) = π01,

P (θ1 = 1, θ2 = 0) = π10, P (θ1 = 1, θ2 = 1) = π11.
(2.8)

In view of Illustration 2.2 this can be interpreted as the healthy and sick states of a
married couple. For example, if the first component corresponds to the health state
of the husband and the second to that of his wife, then θ1 = 1 and θ2 = 0 indicates
that the husband is sick, while his wife is healthy.

The Markov chain now consists of a bivariate vector θ (n) = (θ
(n)
1 , θ

(n)
2 )′ and the

following transition probabilities are assumed.

• For θ
(n)
1 the probability of moving from θ

(n−1)
2 = j to θ

(n)
1 = 0 and θ

(n)
1 = 1,

respectively, is given by

π1(0|j) = π0j

π0j + π1j

and π1(1|j) = π1j

π0j + π1j

. (2.9)

Note that π1(·|j) is the conditional probability function of θ1 given θ2 = j ,
j = 0,1.

• For θ
(n)
2 the probability of moving from θ

(n)
1 = i to θ

(n)
2 = 0 and θ

(n)
2 = 1, respec-

tively, is given by

π2(0|i) = πi0

πi0 + πi1
and π2(1|i) = πi1

πi0 + πi1
. (2.10)

Note that π2(·|i) is the conditional probability function of θ2 given θ1 = i,
i = 0,1.

This means that the husband’s health state depends on his wife’s yesterday’s state
and today’s health state of the wife depends on today’s health state of the husband.
For a transition from state (i, j) yesterday to state (k, l) today we have

θ
(n−1)
2 = j

πkj
π0j +π1j−−−−−→ θ

(n)
1 = k

πkl
πk0+πk1−−−−→ θ

(n)
2 = l.

Therefore the overall transition probability is given by

P
(
(i, j), (k, l)

)= P
(
θ (n) = (k, l)|θ (n−1) = (i, j)

)

= P
(
θ

(n)
2 = l|θ(n)

1 = k
)
P
(
θ

(n)
1 = k|θ(n−1)

2 = j
)

= πkl

πk0 + πk1

πkj

π0j + π1j

,

for (i, j), (k, l) ∈ S. Thus a 4 × 4 transition matrix P can be formed.
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One can further show that {θ (n) = (θ
(n)
1 , θ

(n)
2 )′, n ≥ 0} forms a Markov chain and

that π defined in (2.8) is the stationary distribution of the chain. If all elements of
π are positive, it is also a limiting distribution. In particular, chains formed by the
superposition of the conditional distributions have a stationary distribution given by
the joint distribution.

Illustration 2.6 can easily be extended to the case where θ consists of d compo-
nents with m1, . . . ,md values.

In general, Gibbs sampling is an MCMC scheme where the transition proba-
bilities are formed by the full conditional distributions. Assume as before that the
distribution of interest is π(θ), where θ = (θ1, . . . , θd)′. Each of the d components
can be a scalar, vector or matrix. Further assume that for each i ∈ {1, . . . , n} the full
conditional distribution for θ i

πFC
i (θ i ) := π(θ i |θ−i ) where θ−i = (θ1, . . . , θ i−1, θ i+1, . . . , θd)′

is known and can be sampled, for example, using Eqs. (2.9) and (2.10) in the above
example. The Gibbs sampling algorithm can now be described as follows.

1. Set the iteration counter to j = 1 and set initial values θ (0) = (θ
(0)
1 , . . . , θ

(0)
d )′.

2. Obtain a new value θ (j) = (θ
(j)

1 , . . . , θ
(j)
d )′ through successive generation of val-

ues

θ
(j)

1 ∼ π
(
θ1
∣∣θ (j−1)

2 , . . . , θ
(j−1)
d

)
,

θ
(j)

2 ∼ π
(
θ2
∣∣θ (j)

1 , θ
(j−1)

3 , . . . , θ
(j−1)
d

)
,

...

θ
(j)
d ∼ π

(
θd

∣∣θ (j)

1 , . . . , θ
(j)

d−1

)
.

3. Change counter j to j + 1 and return to step 2 until convergence is reached.

When convergence is reached the resulting value θ (j) is a draw from π . Often con-
vergence is assessed by choosing an error bound ε > 0 and assuming convergence
when the distance between θ (n+1) and θ (n) is less than ε. A further example is given
in the following.

Illustration 2.7 (Coal Mining Disasters) Carlin, Gelfand, and Smith [10] discuss the
following problem: yearly numbers Y1, . . . , YM of British coal-mining disasters as
measured over more than a century are unlikely to have stayed at a similar level due
to better technology and increased safety requirements. It is therefore reasonable to
assume the presence of a change point m ∈ {1, . . . ,M} at which the general level of
disasters significantly changed. Therefore Carlin et al. [10] assume the number of
coal-mining disasters before that (unknown) change point to be Poisson distributed
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with another intensity parameter than after. They consider the following hierarchical
model:

Yi |λ,m ∼ Poisson(λ) for i = 1, . . . ,m (independent),

Yi |φ,m ∼ Poisson(φ) for i = m + 1, . . . ,M (independent),

λ ∼ Gamma(α,β), (2.11)

φ ∼ Gamma(γ, δ),

m ∼ uniform over {1, . . . ,M},

where α,β, γ and δ are known constants and the model is termed “hierarchical”,
since the parameters of the Poisson distributions are modeled as random themselves.
That is, m is the year where there is a significant change in the number of disasters
as modeled by Y1, . . . , YM with different (random) intensities λ and φ depending
on whether Yi is measured before or after the change point m, respectively. Due to
missing prior knowledge about the change point m its distribution is modeled as
uniform.

The joint posterior density of λ,φ and m given data y = (y1, . . . , yM)′ satisfies

π(λ,φ,m|y)

∝ f (y1, . . . , yM |λ,φ,m)p(λ,φ,m)

=
[

m∏

i=1

fP (yi;λ)

][
M∏

i=m+1

fP (yi;φ)

]
fG(λ;α,β)fG(φ;γ, δ)1{1,...,M}(m)

∝
[

m∏

i=1

e−λλyi

][
M∏

i=m+1

e−φφyi

]
λα−1e−βλφγ−1e−δφ1{1,...,M}(m)

∝ λα+(
∑m

i=1 yi )−1e−(β+m)λφγ+(
∑M

i=m+1 yi )−1e−(δ+M−m)φ1{1,...,M}(m),

where 1A is the indicator function satisfying 1A(m) = 1 if m ∈ A and 1A(m) = 0
otherwise. Further fP and fG denote the Poisson and Gamma density functions,
respectively (see Glossary A.2).

Therefore the full conditionals can be calculated as

πFC
λ (λ) := p(λ|φ,m,y) = p(λ,φ,m,y)

p(φ,m,y)
= f (y|λ,φ,m)p(λ,φ,m)

p(φ,m,y)

∝ π(λ,φ,m|y) as function of λ

∝ λα+(
∑m

i=1 yi )−1e−(β+m)λ ∝ Gamma

(
α +

m∑

i=1

yi, β + m

)
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and similarly, πFC
φ (φ) ∝ Gamma(γ +∑M

i=m+1 yi, δ +M −m), and for the discrete
random parameter m for m = 1, . . . ,M as

πFC
m (m) = λα+∑m

i=1 yi−1e−(β+m)λφγ+∑M
i=m+1 yi−1e−(δ+M−m)φ

∑M
l=1 λα+∑l

i=1 yi−1e−(β+l)λφγ+∑M
i=l+1 yi−1e−(δ+M−l)φ

.

Therefore the Gibbs sampler for (λ,φ,m) draws λ(n+1) from Gamma(α +
∑m(n)

i=1 yi, β + m(n)), φ(n+1) from Gamma(γ +∑n
i=m(n)+1 yi, δ + M − m(n)) and

chooses m(n+1) = m with probability πFC
m (m). Here πFC

m (m) depends on λ(n+1)

and φ(n+1).
To get a first impression on the behavior of this Gibbs sampler, we simulated data

from the model (2.11) with M = 50, α = 5, β = 1, γ = 1 and δ = 1 (left panel of
Fig. 5) and implemented the Gibbs sampler for 100 iterations. Note that the Gamma
priors for λ and φ are quite informative, since the signal-to-noise ratio (mean divided
by standard deviation) is 1. For illustration we used the true values as starting values.
In the left panel of Fig. 5 the data is presented and the time plots of the MCMC
iterations and posterior density estimates for each parameter are shown in the right
panel of the same figure. The true values are indicated by a vertical dotted line.

The time plots (first column of right panel) indicate that the sampler is converged,
which we expect since we used the true values as starting values. The true values
of λ and φ are reasonably in the center of the sampled posterior distribution. The
sampler has no difficulty finding the true break point. In general, the assessment of
convergence is difficult especially for higher dimensions and convergence diagnos-
tics have to be considered.

We now establish a few basic facts for the Gibbs sampler. First of all the Gibbs
sampler defines a Markov chain, since the update step at iteration j involves only
values of the chain at j − 1. Also the chain is homogeneous, since transitions are
only affected by the iteration through the chain values. The transition kernel from
φ = (φ1, . . . , φd)′ to θ = (θ1, . . . , θd)′ is given by

p(θ ,φ) =
d∏

i=1

π(φi |φ1, . . . ,φi−1, θ i+1, . . . , θd). (2.12)

The limiting distribution of a Markov chain with transition kernel (2.12) is π ,
which we established for d = 2 and the discrete case in Illustration 2.6. For the
continuous case the exact conditions under which the Markov chain resulting from
the Gibbs sampler has limiting distribution π are given in Roberts and Smith [27].
For the continuous case π -irreducibility and aperiodicity are sufficient conditions
(see Nummelin [25]). However, there are Markov chains derived from the Gibbs
sampler which are not irreducible, see, for example, Gilks et al. [17]. Finally it can
also be shown that π is stationary.

Even though theoretical results assure the convergence of the Gibbs sampler, they
are difficult to validate theoretically for many complex statistical problems. In these
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cases a more practical approach is to assess the convergence by plotting n versus
θ (n). If the variability of θ (n) for n ≥ n0 is approximately constant, then a burn-in of
n0 iterations is sufficient. Further MCMC sample based convergence assessments
and comparison of several samplers with regard to burn-in iterations and required
arithmetic operations are considered in Gilks et al. [17] and Marin and Robert [22]
and the references therein.

Next, we draw attention to the use of the sample. For this, assume that we have
a sample θ (1), . . . , θ (n) from the posterior distribution π now available as generated
by the Gibbs sampler, after some burn-in period and possibly thinning or batching
to reduce autocorrelation of the sampled MCMC iterates. Suppose we are interested
in the posterior distribution of the statistics ψ = t (θ). The standard estimator

ψ̂ := Êπ(θ |x)(ψ) := 1

n

n∑

j=1

t
(
θ (j)
)

estimates the posterior mean Eπ(θ |x)(ψ) of ψ , while the posterior variance σ 2
ψ :=

Varπ(θ |x)(ψ) = Eπ(θ |x)(ψ
2) − [Eπ(θ |x)(ψ)2] is estimated by

σ̂ 2
ψ := Êπ(θ |x)

(
ψ2)− [Êπ(θ |x)(ψ)

]2 = 1

n

n∑

j=1

[
t
(
θ (j)
)− ψ̂

]2
.

Moreover, posterior credibility intervals for ψ can be estimated by using sample
quantiles as the estimates of the interval limits. For example if one is interested in
estimating a 95 % credible interval for ψ and n = 1000, then the estimated cred-
ible interval is given as the interval between the 25th and 975th largest sampled
value for ψ . This section concludes with a continuation of the example on linear
regression models.

Illustration 2.8 (Linear Regression with Ar(1) Disturbances) Sometimes the ob-
served risk quantities are not independent, but might depend on previous observa-
tions. For example if we consider monthly plant growth rates, then the growth rate
might depend on the variety but also on the previous month growth rate. Therefore
we extend the linear regression model of Sect. 1.3 to include autoregressive lag 1
(AR(1)) disturbances, that is, the response variables are no longer assumed inde-
pendent but dependent upon the previous response. We change indices from i to t

to acknowledge the time dependencies. Similar to (1.13) the model is then given by

Yt = xt1β1 + · · · + xtdβd + ut where ut = ρut−1 + εt

for a time series of responses Yt with possibly time dependent covariates xt =
(xt1, . . . , xtd)′ ∈ R

d for t = 1, . . . , T . Further we assume |ρ| < 1 and εt ∼ N(0, σ 2)

are i.i.d. As an initial condition we use u0 ∼ N(0, σ 2

1−ρ2 ). The following informative
priors can be used:

• β|σ 2 ∼ Nd(β0, σ
2A−1

0 )



8 Bayesian Risk Analysis 231

• σ 2 ∼ Inverse Gamma( n0
2 ,

δ0
2 )

• ρ ∼ N(ρ0,R
−1
0 ) truncated to (−1,1), where a truncated normal distribution is

a normal distribution whose values are bounded below, above or both. Thus the
usual normal density is multiplied with an indicator function 1(a,b) for an interval
with endpoints a < b and rescaled appropriately to ensure that it integrates to 1.

In the following we determine the full conditional distributions of the parameters,
which can be used in a corresponding Gibbs sampling scheme.

1. Regression parameter: To update the vector of regression parameters β consider
the following transformations

Y ∗ :=

⎛

⎜⎜⎜⎜⎜⎝

√
1 − ρ2Y1

Y2 − ρY1
Y3 − ρY2

...

YT − ρYT −1

⎞

⎟⎟⎟⎟⎟⎠
and X∗ :=

⎛

⎜⎜⎜⎜⎜⎝

√
1 − ρ2x′

1
x′

2 − ρx′
1

x′
3 − ρx′

2
...

x′
T − ρx′

T −1

⎞

⎟⎟⎟⎟⎟⎠
.

Therefore Y ∗ follows a standard linear model with

Y ∗ = X∗β + ε where ε ∼ NT

(
0, σ 2IT

)
.

Since the full conditional for β given Y ,X,ρ and σ 2 is the same as the full
conditional for β given Y ∗,X∗, ρ and σ 2, we can use Theorem 1.6 to show that

β|Y ,X,ρ,σ 2 ∼ Np

(
β1, σ

2B−1
1

)
,

with B1 = (A0 + X∗′X∗)−1 and β1 = B1(A0β0 + X∗′Y ∗).
2. AR(1) error variance: By again considering the precision φ := 1

σ 2 and us-
ing the equality of the following conditional distributions φ|Y ,X,β, ρ =
φ|Y ∗,X∗,β, ρ, it can be shown that

σ 2|Y ,X,β, ρ ∼ Inverse Gamma

(
n1

2
,
δ1

2

)
,

with n1 = T +n0 +d and δ1 = δ0 + (β − β̂)′X∗′X∗(β − β̂)+ (Y ∗ −X∗β̂)′(Y ∗ −
X∗β̂) + (β − β0)

′A0(β − β0), where β̂ = (X∗′X∗)−1X∗′Y ∗.
3. Correlation parameter: Finally for updating the parameter ρ we can use Bayes’

theorem to show that

ρ|Y ,X,β, σ 2 ∼ N(ρ̃, R̃) truncated to (−1,1),

where R̃ := σ−2(
∑T

t=1 u2
t−1 + R0) and ρ̃ := R̃−1(σ−2∑T

t=1 utut−1 + R0ρ0).
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2.4 Metropolis Hastings Algorithms

The final MCMC algorithms presented here are the Metropolis Hastings algorithms
(Metropolis et al. [23]; Hastings [19]). A nice introduction to the Metropolis Hast-
ings algorithms is given in Chib and Greenberg [3]. As before, we are interested in
constructing a Markov Chain with given stationary distribution π . First we consider
a small example to motivate the discussion below.

Illustration 2.9 (Metropolis Hastings Algorithms) Consider a distribution π for
x ∈ S, where S ⊂ R

d , d ≥ 1. For a possible application recall Illustration 2.6, where
we investigated the health states of a couple as modeled by the two-dimensional
state space S = {0,1}2 and the probability distribution π .

Our aim is to construct a Markov chain with stationary and limiting distribu-
tion π . For this, let Q be any four-dimensional irreducible transition matrix on
S satisfying the symmetry condition Q(x,y) = Q(y,x) ∀x,y ∈ S and define a
Markov chain {θ (n), n ≥ 0} as having transitions from x to y proposed according to
the probabilities Q(x,y). This proposed value for θ (n+1) is accepted with probabil-
ity min{1,

π(y)
π(x)

} and rejected otherwise, leaving the chain in x. This implies that for
x �= y

P(x,y) = P
(
θ (n+1) = y, transition accepted|θ (n) = x

)

= P
(
θ (n+1) = y|θ (n) = x

)
P(transition accepted)

= Q(x,y)min

{
1,

π(y)

π(x)

}

and for x = y

P(x,x) = P
(
θ (n+1) = x, accepted|θ (n) = x

)

+ P
(
θ (n+1) �= x, not accepted|θ (n) = x

)

= P
(
θ (n+1) = x|θ (n) = x

)
P(accep.)

+
∑

y �=x

P
(
θ (n+1) = y|θ (n) = x

)
P(not accep.)

= Q(x,x)min

{
1,

π(x)

π(x)

}
+
∑

y �=x

Q(x,y)

[
1 − min

{
1,

π(y)

π(x)

}]
.

Further observe that if we assume that π(y) > π(x) for x �= y, then

π(x)P (x,y) = π(x)Q(x,y)min

{
1,

π(y)

π(x)

}
= π(x)Q(x,y)

= π(y)min

{
1,

π(x)

π(y)

}
Q(y,x) = π(y)P (y,x),
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and similarly if π(y) < π(x). This result is referred to as reversibility of a Markov
chain and ensures that π constitutes the stationary distribution of the chain. If Q is
aperiodic, so will be P and the stationary distribution is also the limiting distribu-
tion.

In general, Metropolis Hastings algorithms also exploit the concept of reversibil-
ity as in Illustration 2.9. That is, in order to construct a Markov chain with stationary
distribution π we require the following reversibility condition for the transition ker-
nel P(θ ,φ):

π(θ)P (θ ,φ) = π(φ)P (φ, θ) ∀θ,φ.

Hastings [19] proposes to define the acceptance probability in such a way that when
combined with an arbitrary transition probability, it defines a reversible chain. Such
an acceptance probability is given by

α(θ ,φ) =
{

min{1,
π(φ)Q(φ,θ)
π(θ)Q(θ,φ)

}, if π(θ)Q(θ ,φ) > 0,

1, otherwise.
(2.13)

Algorithms based on (2.13) are called Metropolis Hastings (MH) algorithms.
MH algorithms define reversible chains with stationary distribution π if P(θ ,φ)>0.
Roberts and Smith [27] show that if Q is irreducible and aperiodic and α(θ ,φ) > 0
for all (θ ,φ), then the algorithm defines an irreducible and aperiodic Markov chain
with limiting distribution π . The MH algorithm can now be described as follows:

1. Set iteration counter j = 1 and arbitrary initial value θ (0).
2. Move the chain to a new value φ generated from the density Q(θ (j−1), ·).
3. Evaluate the acceptance probability of the move given by α(θ (j−1),φ) in (2.13).

If the move is accepted, then θ (j) = φ. If the move is not accepted, then θ (j) =
θ (j−1) and the chain does not move.

4. Change the counter from j to j + 1 and return to Step 2 until convergence is
reached.

Step 3 can easily be performed by generating an independent uniform quantity u. If
u ≤ α, then the move is accepted and else it is not.

Note that you do not need to know the often complicated normalizing constant
of the stationary distribution π to perform the MH algorithm. Further, when us-
ing a symmetric proposal probability as in Illustration 2.9, (2.13) simplifies to
α(θ ,φ) = min{1,

π(φ)
π(θ)

} if π(θ) > 0 and α(θ ,φ) = 1 otherwise. Other common
choices for Q lead to a random walk (new value = old value + disturbance; Illus-
tration 2.1), independence (new value chosen independently of old value) or hybrid
chains (Metropolis within Gibbs algorithm).

We close our discussion of MCMC methods with an example resuming and ex-
tending the Poisson model for claim frequencies of Illustration 1.3.

Illustration 2.10 (Claim Frequencies) Scollnik [29] considered the following model
for modeling claim frequency data for group insurance policies: let Xij be the num-
ber of claims for the ith group of policy holders in the j th policy year and Pij the
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payroll count for the ith group of company employees in the j th policy year for
i = 1, . . . , I , j = 1, . . . , J . The payroll counts give the number of employees which
are at risk to incur a claim. The dependency among the claim counts over different
years for the same policy i is modeled by introducing an unobserved random unit
rate θi which has a common distribution for all policies. In particular Scollnik [29]
assumed that Xij given θi are independent with

Xij |Pij , θi ∼ Poisson(Pij θi), α ∼ Gamma(5,5),

θi |α,β ∼ Gamma(α,β), β ∼ Gamma(25,1).

The prior specification for α and β are rather arbitrary, but they imply that each θi

has a prior mean and standard deviation approximately equal to 0.041 and 0.048,
which might not be unreasonable in this context according to Scollnik [29]. De-
note by Xi = (Xi1, . . . ,XiJ )′ the number of claims vector of policy group i over
all years and X = (X′

1, . . . ,X
′
I )

′ the total number of claims vector. Further, let
θ = (θ1, . . . , θI )

′. Then the joint distribution of (X, θ , α,β) can be written as fol-
lows:

p(X, θ , α,β) =
[

J∏

j=1

I∏

i=1

fP (Xij |Pij , θi)

][
I∏

i=1

fG(θi |α,β)

]
p(α)p(β).

To update the unobserved latent rates θi we have as full conditional

p(θi |X, θ−i , α,β) ∝
[

J∏

j=1

fP (Xij |Pij , θi)

]
fG(θi |α,β)

∝ θ
α+∑J

j=1 Xij −1
i exp

[
−
[
β +

J∑

j=1

Pij

]
θi

]
,

which is a Gamma distribution with parameters α +∑J
j=1 Xij and β +∑J

j=1 Pij

and where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θI )
′. We see that these conditionals are

actually independent of θ−i . For updating α note that

p(α|X, θ , β) ∝
I∏

i=1

fG(θi |α,β)p(α) ∝
[

βα


(α)

]I
[

I∏

i=1

θi

]α

α4 exp(−5α).

This is not a standard distribution and an MH step is needed.
Finally, to update β , we obtain for β|X, θ , α again a Gamma distribution with

parameters Iα + 25 and
∑I

i=1 θi + 1.
According to Scollnik [29] we implemented a hybrid chain for the small data set

with I = 3 and J = 5 shown in Table 2 using WinBUGS (Bayesian inference Using
Gibbs Sampling; http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml),
which can be called directly from the statistical computing environment R (see

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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Fig. 6 Estimated posterior densities of 1000 iterations for θ = (θ1, θ2, θ3)
′, α and β

Table 2 Data set of claim
numbers and payroll counts
for groups of policy holders
and policy years

Year Group 1 Group 2 Group 3

Payroll Claims Payroll Claims Payroll Claims

1 280 9 260 6 267 6

2 320 7 275 4 145 8

3 265 6 240 2 120 3

4 340 13 265 8 105 4

5 325 10 285 5 115 7

Ntzoufras [7] for more information). The estimated posterior densities of 1000 iter-
ations are shown in Fig. 6.

3 Food for Thought

There is software for Bayesian inference based on MCMC methods available in
specialized problems. To the interested reader we particularly recommend to have
a look at the above mentioned software WinBUGS and the illustrative book by
Ntzoufras [7]. The recent book by Lunn et al. [6] also covers software for Bayesian
statistical methods.

Another important issue of MCMC methods which could not be treated here
appropriately are burn-in diagnostics which were briefly mentioned in Sect. 2.2 and
provide tools for determining when we consider the values of the sampler as realiza-
tions from the posterior distribution. Further information can be found for example
in Cowles and Carlin [11] and in Brooks and Roberts [9]. Related to this is the
theoretical study of convergence questions.

Other areas of interest are, on the one hand, so-called ABC (Approximate
Bayesian computation) methods which were developed for computationally very
complex problems such as large-scale applications. Roberts et al. [28] and
Frühwirth-Schnatter and Sögner [13], on the other hand, use MCMC methods for
estimating stochastic volatility models commonly used in financial applications.



236 C. Czado and E.C. Brechmann

4 Summary

In this chapter, we gave a brief introduction to the main concepts of Bayesian statis-
tics. After discussing the fundamental Bayes’ theorem and three illustrating exam-
ples, we examined the problem of an appropriate prior choice in more detail and
introduced Bayesian inference techniques. The first section closed with the com-
monly used linear regression model.

In the second section, we introduced the important class of MCMC methods,
which are increasingly becoming popular for estimating parameters in complex sta-
tistical models. They are based on Monte Carlo techniques and properties of Markov
chains, which were discussed before turning to the two most common MCMC al-
gorithms, namely the Gibbs sampler and the Metropolis Hastings algorithms. There
were discussed and illustrated using relevant examples involving risk quantities on
different scales and with different contexts.

Appendix: Glossary

A.1 Foundations

Symbol Explanation

X random variable (r.v.)

X = x realization or observed value of r.v. X

X continuous r.v. X takes on any value in an interval (e.g., X = annual crop
yield ∈ [0,∞))

X discrete r.v. X takes on only finite or countable many values (e.g., X =
number of mining disasters ∈ {0,1,2, . . .})

i.i.d. independent and identically distributed

θ unknown parameter of a distribution (e.g., θ = probability of
occurrence of a complication after a medical treatment)

θ = (θ1, . . . , θp)′ unknown parameters of a distribution (e.g., θ = (μ,σ 2),
μ mean, σ 2 variance of a normal distribution)

Pθ (A) probability that event A occurs when parameters θ are true

F(x|θ) cumulative distribution function (cdf) of r.v. X, i.e.,
F(x|θ) = Pθ (X ≤ x)

f (x|θ) probability density function (pdf), when X continuous, i.e.,
f (x|θ) ≥ 0,

∫∞
−∞ f (x|θ)dx = 1, Pθ (X ≤ x) = ∫ x

−∞ f (x|θ)dx

f (x|θ) probability mass function (pmf), when X discrete, i.e.,
f (x|θ) = Pθ (X = x)

μ = E(X) mean or expectation of r.v. X (E(X) = ∫∞
−∞ xf (x|θ)dx for X

continuous)

σ 2 = Var(X) variance of r.v. X (Var(X) = ∫∞
−∞(x − μ)2f (x|θ)dx for X

continuous)

φ = 1
σ 2 precision of r.v. X

X ∼ F(·|θ) X has cdf F(·|θ)
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Symbol Explanation

X ∼ f (·|θ) X has pdf/pmf f (·|θ)

(X,Y ) ∼ f (·, ·|θ) r.v.s X and Y have joint pdf/pmf f (·, ·|θ)

fX(x|θ) (fY (y|θ)) marginal pdf for X (Y ): fX(x|θ) = ∫∞
−∞ f (x, y|θ)dy

(fY (y|θ) = ∫∞
−∞ f (x, y|θ)dx)

fX(x|θ) (fY (y|θ)) marginal pmf for X (Y ): fX(x|θ) =∑∞
i=1 f (x, yi |θ)

(fY (y|θ) =∑∞
i=1 f (xi , y|θ))

Pθ (A|B) conditional probability of A given B: Pθ (A|B) = Pθ (A∩B)
Pθ (B)

if
Pθ (B) > 0

xα α-quantile of continuous r.v. X: Pθ (X ≤ xα) = α

x0.5 median of continuous r.v. X

xmode mode of continuous r.v. X, that is the value which maximizes
f (x|θ) over x

X = (X1, . . . ,Xn)
′ X random vector, where X1, . . . ,Xn r.v.s

F(x|θ) (f (x|θ)) cdf (pdf/pmf) of X

E(X) = (E(X1), . . . ,E(Xn)) mean vector of random vector X

 = (ij )i,j=1,...,n covariance matrix of random vector X with
ij = Cov(Xi,Xj ) = E((Xi − μi)(Xj − μj ))

−1 precision matrix of random vector X

I (θ) = (I (θ)ij )i,j=1,...,n Fisher information matrix with I (θ)ij = E(
∂2 lnf (X|θ)

∂θi ∂θj
)

A.2 Distributions

Symbol Explanation

X ∼ N(μ,σ 2) X is normally distributed with mean μ, variance σ 2 and pdf
f (x|μ,σ 2) = 1√

2πσ 2
exp{− 1

2σ 2 (x − μ)2}, x ∈ R

X ∼ Bernoulli(θ) X is Bernoulli distributed with success probability θ ∈ (0,1) and pmf
f (x|θ) = θx(1 − θ)1−x , x = 0,1, E(X) = θ , Var(X) = θ(1 − θ)

X ∼ Beta(α,β) X is Beta distributed with parameters α > 0, β > 0 and pdf
f (x|α,β) = 1

B(α,β)
xα−1(1 − x)β−1, x ∈ (0,1), B(α,β) =

∫ 1
0 xα−1(1 − x)β−1dx, E(X) = α

α+β
, Var(X) = αβ

(α+β)2(α+β+1)

X ∼ Poisson(θ) X is Poisson distributed with parameter θ > 0 and pmf f (x|θ) =
θx

x! e
−x , x ∈ {0,1,2, . . .}, E(X) = Var(X) = θ

X ∼ Gamma(α,β) X is Gamma distributed with parameters α > 0, β > 0 and pdf
f (x|α,β) = 1


(α)
βαxα−1e−βx , x > 0, 
(α) = ∫∞

0 xα−1e−xdx,
E(X) = α

β
, Var(X) = α

β2

X ∼ N(0,1) X is standard normal with pdf ϕ(x) = 1√
2π

exp{− 1
2 x2}, and cdf

�(x) = ∫ x

−∞ ϕ(u)du, E(X) = 0, Var(X) = 1

X ∼ Nn(μ,) X is multivariate normally distributed with mean vector μ, covariance
matrix  and pdf f (x|μ,) = 1

(2π)n/2 ||−1/2 exp{− 1
2 (x − μ)′ ×

−1(x − μ)}, x ∈ R
n, E(X) = μ, Var(X) = 
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A.3 Classical Statistics

Symbol Explanation

θ (θ) unknown fixed parameter to be estimated

(x1, . . . , xn)
′ i.i.d. sample (realizations) from r.v. X

θ̂ (θ̂ ) estimate of θ (θ) based on data x = (x1, . . . , xn)

�(θ |x) likelihood for θ based on data x from X ∼ f (·|θ) given as �(θ |x) =
f (x|θ)

θ̂ML maximum likelihood estimator of θ : maximizes the likelihood �(x|θ)

over θ

I−1(θ) inverse Fisher information matrix, corresponds to asymptotic
covariance matrix of the maximum likelihood estimator θ̂ML

x̄ := 1
n

∑n
i=1 xi sample or empirical mean for the i.i.d. sample (x1, . . . , xn)

s2 := 1
n−1 ×∑n

i=1(xi − x̄)2
sample variance for the i.i.d. sample (x1, . . . , xn)

Yi ∼ N(xi1β1 + · · · +
xidβd , σ 2) independent
for i = 1, . . . , d

linear regression model for response Yi , covariates xi1, . . . , xid and
unknown regression coefficients β = (β1, . . . , βd)

β̂LS least square estimator of β, given by minimizing Q(β) =∑n
i=1(yi − xi1β1 − · · · − xidβd)2 for observed responses y1, . . . , yn

[l(x), u(x)] 100(1 − α) % confidence interval for θ if
Pθ (l(x) ≤ θ ≤ u(x)) ≥ 1 − α, that is, the random interval [l(x), u(x)]
covers the true parameter θ in 100(1 − α) % of times

A.4 Bayesian Statistics

Symbol Explanation

θ (θ) unknown random parameter

p(θ) prior pdf/pmf for θ

p(θ |x) posterior pdf/pmf of θ given the observed sample x from X ∼ f (·|θ)

Bayes’ theorem: p(θ |x) = �(θ |x)p(θ)∫∞
−∞ �(θ |x)p(θ)dθ

θmode(x) posterior mode = mode of posterior distribution

θmean(x) posterior mean = mean of posterior distribution

I (x) 100(1 − α) % credible interval for θ if
∫
I (x)

p(θ |x)dθ = 1 − α

θα(x) (θ̂α(x)) (empirical) α-quantile of posterior distribution

[θ̂α/2(x), θ̂1−α/2(x)] 100(1 − α) % credible interval based on empirical quantiles

f (y|x) predictive density of future observation y given the observations x:
f (y|x) = ∫ f (y|θ)p(θ |x)dθ if Y is independent of X given θ
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A.5 MCMC Methods

Symbol Explanation

{θ (t) : t ∈ T } stochastic process with random vectors θ (t) taking values in the state
space S for each t out of the index set T

{θ (n) : n = 1,2, . . .} Markov chain (MC) if (2.3) holds

θ (n) homogeneous if (2.3) does not depend on n

P (x,y) := P (θ (n+1) =
y|θ (n) = x)

transition probability of homogeneous MC θ (n) with discrete state
space S

P = (P (xi ,xj ))i,j=1,...,r transition matrix for a homogeneous MC θ (n) with finite state space
S = {x1, . . . ,xr }: P (xi ,xj ) = P (θ (n+1) = xj |θ (n) = xi )

P m(x,y) := P (θ (n+m) =
y|θ (n) = x)

mth order transition probability for m > n

π(0)(x) = P (θ (0) = x) initial distribution of MC θ (n)

π(n)(x) = P (θ (n) = x) nth step marginal distribution of MC θ (n)

π stationary if (2.7) holds

Ty first visit of MC θ (n) to y

ρxy probability of visiting y after starting in x

y ∈ S (positive) recurrent ρyy = 1 (ρyy = 1 and E(Ty |θ (0) = y) < ∞)

θ (n) irreducible ρxy > 0, ρyx > 0 ∀x,y ∈ S

θ (n) aperiodic if largest common divisor of {n ≥ 1 : P n(x,x) > 0} = 1 ∀x ∈ S

θ (n) ergodic if θ (n) aperiodic and irreducible

Full conditionals of
random parameter
θ = (θ1, . . . , θd )′

conditional distributions of θi , i = 1, . . . , d, given all other
components different from i

Autocorrelation of lag k correlation Cor(θ (n), θ (n+k)) in homogeneous MC θ (n)
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