
Chapter 6
Quantifying Extreme Risks

Vicky Fasen, Claudia Klüppelberg, and Annette Menzel

Understanding and managing risks caused by extreme events is one of the most de-
manding problems of our society. We consider this topic from a statistical point of
view and present some of the probabilistic and statistical theory, which was devel-
oped to model and quantify extreme events. By the very nature of an extreme event
there will never be enough data to predict a future risk in the classical statistical
sense. However, a rather clever probabilistic theory provides us with model classes
relevant for the assessment of extreme events. Moreover, specific statistical methods
allow for the prediction of rare events, even outside the range of previous obser-
vations. We will present the basic theory and relevant examples from climatology
(climate change), insurance (return periods of large claims) and finance (portfolio
losses and Value-at-Risk estimation).
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The Facts

• Modern risk measures like Value-at-Risk and Expected Shortfall are defined by
high quantiles, such that the probability of a large loss is small.
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• Poisson’s classic theorem on rare events (also called the law of small numbers) is
the basis for extreme value statistics, because it says that the Poisson distribution
is the limit of binomial distributions with very small success probabilities.

• The distribution of maxima of large samples can only be a Generalized Extreme
Value (GEV) distribution. This is one of the most fundamental results of extreme
value theory. On this basis methods to estimate far out tails and high quantiles
were developed.

• Another method to estimate far out tails and high quantiles is the Peaks-Over-
Threshold (POT) method using the fact that exceedances over high thresholds for
large samples follow a Generalized Pareto distribution (GPD).

• We quantify extreme events for three data examples:

– yearly temperature maxima from 1879–2008;
– claim sizes of a Danish fire insurance;
– daily returns of the Standard and Poors 500 Index.

1 Introduction

Extreme risks accompany our lives. Although every single person hopes that she
does not suffer any losses, some lose a fortune in a financial crises, some others lose
their property in a hurricane, or they have to leave their homes because of a nuclear
accident, another person may even lose her life in a car accident or because of a ter-
rorist attack. Whereas our ancestors took dangers and risks as God-given, nowadays
we trace the occurrence of most types of risk back to the actions of men. This im-
plies that risk is precisely calculable (an assumption that is mostly wrong), and that
somebody has to be responsible. This applies to technical risk, where safety mea-
sures are implemented in order to prevent disasters, which still happen occasionally.
We even try to adapt to risk of natural catastrophes, when we develop strategies like,
for instance, building dikes or simply sign an insurance contract.

In a society guided by such believes it is natural to require formulas from Math-
ematics and Statistics for risk assessment. It is within this framework that extreme
value theory and extreme value statistics find their natural place. However, the mod-
eling and the assessment of extreme events is not so simple and cannot be gained
with standard methods.

We illustrate the problem with a classical example.

Illustration 1.1 (Determine the Height of a Dike) In the Netherlands, where sub-
stantial parts of the country are below sealevel, dikes of appropriate height are of
vital importance as protection against floods. The dikes have to be built higher than
a wave height, which happens at most every 10,000 years. How high has the dike
at least to be? Or formulated otherwise, how does one estimate the height of the
highest wave in 10,000 years, if one has only measurements of some hundred years
available? The problem is to estimate the probability of an event which is more ex-
treme than any recorded to date. This requires a special method, which is provided
by statistical methods based on extreme value theory.



6 Quantifying Extreme Risks 153

Extreme value theory is a fundamental mathematical theory, which can be trans-
ferred to statistical methods. It was developed during the last 50 years and is not
undebated. Extreme value theory allows (under appropriate conditions) to predict
rare events, which are not included in the previous observations because of their
rareness. Based on extreme data (later they will be yearly temperature maxima,
large insurance claims and large changes in a financial time series) it is possible to
extrapolate the data for the prediction of events, which cause higher temperatures,
insurance claims or financial losses than have ever been observed before. Naturally
it is easy to criticize this extrapolation out of the sample data and it is clear that ex-
trapolation is unreliable by nature. However, extreme value theory provides a solid
mathematical basis, and no other reliable alternative has been suggested. We cite the
following assessment of Professor Richard Smith (http://www.unc.edu/~rls/), who
has substantially contributed to the development of extreme value statistics: “There
is always going to be an element of doubt, as one is extrapolating into areas one
doesn’t know about. But what extreme value theory is doing is making the best use
of whatever you have about extreme phenomena”.

We emphasize that the statistical treatment of rare events as the far-out tail behav-
ior can only succeed with specific methods, which implement probabilistic results
of extreme value theory into the estimation procedure and, hence, compensate for
the insufficient amount of data. This will be the topic of Sects. 3 and 4. Parts of this
chapter have corresponding parts in Fasen and Klüppelberg [29].

2 Extreme Risks

2.1 Climate Risk

Fire, water, air—these three basic elements cause climate or weather-related natu-
ral disasters. They comprise meteorological hazards (such as storm, hail, lightning),
hydrological (flooding, mass movement), and climatological ones (such as extreme
temperatures, heat waves, drought, forest fire). Apart from devastating earthquakes
in Chile, Haiti (2010) and Japan, New Zealand (2011), making 2011 the costli-
est year ever, the natural catastrophe losses in the last few years were dominated
by weather-related catastrophes, such as devastating floods in Pakistan (2010) and
Thailand (2011), the Winter Storm Xynthia in western Europe (2010), Hurricane
Sandy in the US (2012), wildfires in Russia (2010) and the summer drought in the
US (2012) (see also Sect. 2.3 Insurance Risks). According to Munich Re data, there
is an increasing trend of these natural disasters in respect to intensities, frequen-
cies, damages and losses. The Intergovernmental Panel on Climate Change (IPCC)
concluded in its last report in 2007 (see [6]) that in past records the dominant sig-
nal was significantly increased in the values of exposure at risk. However climate
change has likely altered and will virtually certainly alter also the occurrence of ex-
treme events dramatically: frequency and magnitude of extreme events are strongly
linked to anthropogenic induced climate change.

http://www.unc.edu/~rls/
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Fig. 1 Illustration of the
consequences of an increase
of temperature in mean and
variance

The latest IPCC report confirmed a 100-year linear trend (1906–2005) of 0.74 °C,
more precisely, eleven of the last twelve years (1995–2006) ranked among the 12
warmest years in the instrumental record of global surface temperature since 1850.
Most of the observed warming since the mid-20th century is very likely due to the
observed increase in anthropogenic greenhouse gas concentrations. Linked to this
climate change are marked observed changes in extreme events, much more in-
tense and longer droughts since the 1970s, particularly in the tropics and subtropics,
higher frequency of heavy precipitation events, or widespread changes in extreme
temperatures. For the latter one, a human contribution to the observed trends is
likely. Also future trends have been assessed by simulation of different scenarios
with strong impacts on extreme events, e.g., increase in intense tropical cyclone
activity or incidence of extreme high sea level are likely at the end of the 21th cen-
tury. Due to the importance of extreme events the IPCC published a Special Report
Managing the Risks of Extreme Events and Disasters to Advance Climate Change
Adaptation (SREX) in 2012.

Many important research questions are linked to this increase in weather related
extreme events. First of all, is climate becoming more extreme under climate change
conditions? This question has traditionally been answered by fitting Gaussian dis-
tributions to temperatures. Figure 1 displays how an increase in mean and variance
of temperature causes more hot and more record hot weather. However, Gaussian
distributions do not provide a good fit for the distribution tails of high temperature
measurements.

Second, if there are changes in extremes, which vulnerability of humans is to
be expected? Not all extreme events end in disasters. The most recent World Risk
Report of 2012, published by the BündnisEntwicklungshilfe in cooperation with
the United Nations University (UNU-EHS) (http://www.weltrisikobericht.de), sum-
marizes the risk by natural hazards to nations with different vulnerability, starting
with

(1) the likelihood of extremes to occur (exposition),
(2) the vulnerability of societies with respect to infrastructure, housing, food,

poverty, economy,
(3) the coping capacity based on governance, catastrophe precautions, medical sit-

uation, social networks, insurances, and
(4) the adaptation capacity linked to education, environmental protection, projects

and investments.

http://www.weltrisikobericht.de
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Similarly, it is a question of tremendous importance how the occurrence of physical
extreme events translates to extreme biological impacts or hazards which threaten
the fitness and survival of ecosystems more than any change in mean conditions
(cf. Hegerl, Hanlon, and Beierkuhnlein [5], Menzel, Seifert, and Estrella [8]). Not
all rare climatological events translate into extreme impacts: the responses in na-
ture may be non-linear, the species may be resilient, resistant, recover fast, or are
well adapted by management. Due to this variation in response, always more and
more data on impacts of extreme events are needed. The goal is to bridge the gap
between extreme events and extreme impacts, especially for climatological hazards,
such as temperature extremes, heat waves, cold spells, frost events, drought or fire.
They impact primarily agricultural and forest ecosystems, however, as combined,
longer lasting events their proper statistical modeling and assessment is a scientific
challenge.

2.2 Financial Risks

The Basel Committee for Banking Supervision (http://www.bis.org/bcbs/) recom-
mends for insurance companies and financial institutions the building of capital
reserves to hedge against unpredictable risks. This is in Germany explicitly re-
quired by the regulatory authorities, the BAFIN (Bundesanstalt für Finanzdien-
stleistungsaufsicht, http://www.bafin.de/) in the framework of “Basel II” for banks
(http://www.bis.org/publ/) and in the framework of “Solvency II” for insurance
companies (http://ec.europa.eu/internal_market/insurance/). The risk management
department of every company is responsible for the respective calculations of the
required capital reserves and their administration, which requires a mathematical-
statistical training.

The focus of Basel II, which was initially published in June 2004, was to manage
and measure credit risks, operational risks and market risks. In this chapter we will
only pay attention to market risk, the risk that a value of a portfolio will change
due to movements in the market risk factors as, e.g., interest rates, foreign exchange
rates, equity prices and commodity prices.

In the Basel framework the capital requirement for market risk is based on the
so-called Value-at-Risk, which is the p-quantile of the portfolio risk, and is defined
as follows.

Let X be the financial risk in terms of the daily losses, defined as the negative
profit/loss of the market portfolio. To be precise, if Zt for t = 1,2, . . . denote the
daily market prices of the portfolio, then the losses Xt represent the daily negative
log-returns defined as Xt = −(logZt − logZt−1) ≈ −(Zt − Zt−1)/Zt−1, approxi-
mating the negative relative price changes for each day.

The distribution function of the daily portfolio loss X is given by F(x) =
P(X ≤ x) for x ∈ R. We define the quantile function of F or Value-at-Risk as

VaRp(X) = F−1(p) = inf
{
x : F(x) ≥ p

}
, p ∈ (0,1). (2.1)

http://www.bis.org/bcbs/
http://www.bafin.de/
http://www.bis.org/publ/
http://ec.europa.eu/internal_market/insurance/
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(Note that for strictly increasing F this is simply the analytic inverse.) Hence,
VaRp(X) is the smallest number such that the probability of a loss larger than
VaRp(X) does not exceed 1 − p. Then for a large value of p (usually p = 0.95
or larger) VaRp(X) is a prominent risk measure.

Depending on the specific risk, choices are p = 95 % (0.95) or p = 99 % (0.99)
or even p = 99.9 % (0.999). In the case of market risks p = 99 %.

By the perception and experiences gained through the financial crises, which
started in 2007, the Basel Committee on Banking Supervision decided a reforma-
tion of Basel II to strengthen the regulation, supervision and risk management of the
banking sector in September 2010. This revision had to be implemented until 31 De-
cember 2011 [16] and introduced—as a response to the crises—a stressed Value-at-
Risk requirement taking into account a historic one-year observation period relating
to significant losses, which must be estimated in addition to the classical Value-at-
Risk based on the recent one-year observation period. Basel III [15] now aims at
raising the resilience of the banking sector by strengthening the risk coverage of the
capital reserves. It suggests reforms of capital requirements for counterparty credit
risk using stressed inputs, addresses the systemic risk arising from the intercon-
nectedness of banks and other financial institutions, and supplements the risk-based
capital requirement to constrain too high leverage (details to the changes in market
risk can be found in http://www.bis.org/publ/bcbs193.htm). The implementation of
Basel III will start in 2013.

Typical methods to estimate the Value-at-Risk in practice are historical simula-
tions, the variance-covariance method and Monte Carlo simulation.

The “historical simulation method” simply estimates VaRp(X) by the corre-
sponding empirical quantile based on the required one year of data. For instance,
VaR0.99(X) is estimated as the largest 1 % of daily losses. Alternatively, a weighted
estimation scheme is used, which gives higher weights to those data near to the
current date and lower to the more distant data. Criticism of this method is obvi-
ous: reliable estimation of high quantiles like VaR0.99(X) requires a large amount
of high losses, but 1 % of the required one year of data provides no reliable esti-
mator. Consequently, the estimated VaR0.99(X) depends very much on the present
market situation and estimates can differ substantially almost from day to day. We
shall analyse the Standard and Poors 500 Index data during 1990–2004, abbreviated
as S&P500. Moreover, VaR0.99(X) is supposed to predict future high losses, which
may be substantially higher than losses of the previous year and requires extrapola-
tion outside the observations.

For the “variance-covariance method” the risk factors are assumed to be mul-
tivariate normal distributed. Then the distribution function of the portfolio X is a
one-dimensional normal distribution with mean μ ∈ R and variance σ > 0 deter-
mined by the portfolio weights, the means and variances of the components and the
pairwise correlations of the components. The loss distribution F of X is given by

F(x) = 1√
2πσ

∫ x

−∞
e− (y−μ)2

σ2 dy for x ∈R. (2.2)

Then VaR0.99(X) = μ+σz0.99, where z0.99 is the 0.99-quantile of the standard nor-
mal distribution. It is particularly easy to estimate and to update, when the estimates

http://www.bis.org/publ/bcbs193.htm
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Fig. 2 The S&P500 (top)
and the corresponding losses
(bottom) during 1990–2004

for μ and σ change in time. In Fig. 2 we see the S&P500 (left) and its losses (right)
during 1990–2004.

From this example we see that the normal model is completely inadequate: The
histogram (empirical density) of the daily losses of the S&P500 and the normal
density with mean and standard deviation estimated from the data are depicted in
Fig. 3. The histogram clearly shows that the daily losses of the S&P500 have more
mass in the tails than the normal distribution; i.e. for ±0.03 and larger/smaller the
histogram exhibits more large/small values than is likely for the normal distribution.
This mismatch leads to an underestimation of the required capital reserve. The fact
that the empirical distribution and the normal distribution differ around 0 is for
risk management based on high quantiles irrelevant. Moreover, financial loss data
are usually negatively skewed and leptokurtic, again properties which can not be
captured by a Gaussian distribution.

The third VaR estimation method is the “Monte Carlo simulation”. Here a more
sophisticated parametric distributional model is fitted to the daily losses, its parame-
ters are estimated, and then large numbers of random samples of arbitrary length are
simulated, its VaR estimated for each sample, and then the average VaR is taken as
an estimate. This method can be made more efficient by variance reduction methods
(Glasserman [33], Korn [38]), and estimates VaR for a given model with arbitrary
precision. However, the estimate depends on the chosen model (as it does for the
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Fig. 3 Histogram of the
daily losses of the S&P500 in
comparison to the density of
the normal distribution. The
mean μ and the variance σ 2

have been estimated by their
empirical versions

normal model in the variance-covariance method), so model risk can be consider-
able; cf. Chap. 10, Bannör and Scherer [14].

Remark 2.1 (i) In the Basel II market risk framework the calculation of the capital
reserves requires as risk measure the Value-at-Risk for a holding period of 10 days
at a confidence level 0.99 %. A standard method in practice to calculate the Value-
at-Risk for a holding period of 10 days is to calculate the Value-at-Risk for a holding
period of one day and scale it by

√
10. This scaling factor is based on the scaling

property of the normal distribution and can be completely wrong.
(ii) In the amendments to the Basel II accord, which have been incorporated into

Basel III ([15]), the VaR0.99 has been extended to incorporate so-called stressed peri-
ods like the financial crises during 2007/2008. Let X denote the loss of a market risk
portfolio (over the next 10 days) and VaR0.99,avg(X) the average of the estimated
VaR values of the preceding 60 business days. Then the new capital requirement has
to be calculated according to

max
{
VaR0.99(X),mcVaR0.99,avg(X)

}

+ max
{
SVaR0.99(X),msSVaR0.99,avg(X)

}
(2.3)

where mc and ms are multiplication factors, which are not smaller than 3 (and are
related to the ex-post performance of the bank’s model). The quantity SVaR is the
Value-at-Risk of the loss portfolio estimated from historical data of a 12-month
period of significant financial stress; e.g the financial crises 2007/2008.

(iii) Finally, we argue that the Value-at-Risk is not an appropriate risk measure.
It is appropriate for the dike height of Illustration 1.1, for financial risk however,
the situation is different. If a flood with waves higher than the dike happens, the
dike usually breaks and nothing can be done for salvation. The land behind the
dike disappears under water. For financial risks, however, it is extremely relevant to
know also the amount of resulting losses. This quantity is taken into account, when
using the Average Value-at-Risk as an alternative risk measure, which describes the
expected losses given a loss larger than the Value-at-Risk happens. It is given as

AVarp(X) = 1

1 − p

∫ 1

p

VaRγ dγ

(cf. Chap. 5, Biagini, Meyer-Brandis, and Svindland [19] for a detailed introduction
into risk measures). If X has continuous distribution function F , then AVarp(X) =
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E(X | X > VaRp(X)), which represents exactly the expected losses, given an ex-
treme loss occurs. A second drawback of the Value-at-Risk is that it is in general not
subadditive, i.e. VaRp(X +Y) ≤ VaRp(X)+ VaRp(Y ) may not hold for risks X,Y .
Subadditivity reflects the diversification effect. It is better to have a portfolio of risks
than several individual risks. However, if for example X and Y are independent with
distribution F(x) = 1 − 1

1+x
for x ≥ 0, then VaRp(X + Y) > VaRp(X) + VaRp(Y )

and there is no chance for risk diversification. In contrast, the Average Value-at-Risk
is a subadditive risk measure. Although there were serious attempts to communicate
to regulators that the Average Value-at-Risk may be a more appropriate risk measure
(cf. Danielsson et al. [24]), this academic initiative was not successful. The lobby
work of the banks has prevented this: the capital reserves calculated on the basis of
Expected Shortfall would be substantially larger than the Value-at-Risk.

2.3 Insurance Risks

Insurance companies take over the risks of their customers. Typical insurance risks
are health problems, death, accidents, burglary, floods and fire. With the acquisi-
tion of an insurance contract customers transfer their risk to an insurance company,
which is then financially liable to insurance claims. Also the insurance company
does not know the risk for a claim to happen to a customer, but by selling a large
number of policies, it subsumes customers with similar risk in a portfolio and takes
advantage of the fact that in a large portfolio with similar and independent risks
the total claim amount is constant in mean. In probability theory this fact is proved
and is called the Law of Large Numbers. For the insurance company this makes the
risk of a portfolio of similar and independent risks calculable. Random fluctuations
in the portfolio are hedged by reserves. In this context insurance companies have
to evaluate the frequency as well as the severity of risks. To do this they have to
suggest appropriate risk models and estimate the model parameters, they have to
analyze the model statistically and test it under extreme conditions. But they also
have to calculate the premiums and reserves. As capital reserves of insurance com-
panies are substantial, it is also subject to capital regulations like Basel II. Taking
the total insurance business into account, new regulations are being implemented
under Solvency II, following the very same ideas as the Basel framework. We do
not want to explain these ideas in detail, but instead want to present the very tradi-
tional concept of the return period, which is used universally to describe extreme
events and serves as a risk measure, in particular, for abnormally large insurance
claims.

Large claims are rare events with very high costs for an insurance company.
They include natural catastrophes like earth quakes, fire, storms or floods, which
are typical events where large claims occur (cf. Fig. 4), but also so-called man-
made claims from large industrial structures. In 2010 the earth quake in Chile and
the sinking of the drilling rig “Deepwater Horizon” were large claims, in 2011 the
event in Fukushima, which combined natural catastrophe with man-made disaster,
and the hurricane Sandy was a major catastrophe in 2012. It is common practice
that an insurance company insures itself against large claims by a contract with a



160 V. Fasen et al.

Fig. 4 Claim sizes of a
Danish fire insurance during
1980–1990 in million Danish
Krone (DKK)

reinsurance company. To-date the hurricane Katrina in 2005 is the most expensive
insurance claim in history with about 76.25 billion US-Dollar, followed by the earth
quake and the tsunami in Japan by 35.7 billion US-Dollar, hurricane Sandy in 2012
with about 35 billion US-Dollar, hurricane Andrew in 1992 with about 26.1 bil-
lion US-Dollar and the terror attack to the World Trade Center in 2001 with about
24.3 billion US-Dollar (the data are going back to http://de.statista.com/).

It is a common feature of large claims that they happen rarely, and hence lit-
tle data are available to allow for reliable statistical prediction. But obviously, an
insurance company and, even more so, a reinsurance company has to prepare for
extreme events. Certain quantities can help to assess the frequency and severity of
large claims. In the following we denote by X1,X2, . . . the accumulated claims
per year of an insurance or reinsurance company (Xk is the total claim amount in
year k) and we assume that these yearly claim amounts are independently and iden-
tically distributed (shortly i.i.d.) with distribution function F . We further assume
that F(0) = 0 (a claim can only be positive) and that F(x) < 1 for all x ∈R (claims
can be arbitrarily large, which has been proved over and over by reality). We denote
by F(x) = 1 − F(x) for x ≥ 0 the so-called tail of F . We want to determine now
the distribution of the first year in the future, where the yearly total claim exceeds a
fixed yearly reserve u for the first time. This year is determined by

Z(u) = min{k ∈N : Xk > u}.
Setting

q := P(X > u) = F(u), (2.4)

the random variable Z(u) is geometrically distributed with parameter q , i.e. the
probability that Z(u) takes the value k is given by

P
(
Z(u) = k

) = (1 − q)k−1q for k ∈ N

(in k − 1 years we experience no excess, but then in year k there is an excess).
The return period is now the mean waiting time until a yearly total claim amount

http://de.statista.com/
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exceeds the threshold u (denoted by E(Z(u))), where E is the mathematical symbol
for expectation or mean. The expectation is then

E
(
Z(u)

) =
∞∑

k=1

kP
(
Z(u) = k

) = q

∞∑

k=1

k(1 − q)k−1

= 1

q
= 1

P(X > u)
= 1

F(u)
. (2.5)

This provides now a trick to estimate the expectation. The standard way to esti-
mate the expectation is by the arithmetic mean (the sum of all observation values
divided by the number of all observations). Note however that, in order to do this,
one would need many years, where exceedances have happened. Since the events
we are interested in are rare, this classical statistical method can not be applied sim-
ply by lack of data. However, estimation via the right hand side of (2.5) is also not
straightforward: the problem has been shifted now to the estimation of the tail F(u).
Also for this tail estimation only few data are available. However, we can now com-
pensate the lack of data by using clever methods from extreme value theory. We will
explain this in detail in Sects. 3 and 4.

But also the inverse problem is of great interest. The insurance company wants
to calculate premiums and reserves such that a yearly total claim amount larger than
u should happen with a probability 0.1 at most every 50 years, which means that
P(Z(u) ≤ 50) ≤ 0.1. Since

P
(
Z(u) ≤ 50

) = q

50∑

i=1

(1 − q)i−1 = 1 − (1 − q)50,

we have 1 − (1 − q)50 = 0.1. This implies that q = 0.002105. Hence the return
period in this example is 1/q = 475 years. For the calculation of premiums and
reserves we need now also the threshold u, and this requires the estimation of the
quantile of the distribution function F . With the definition of the p-quantile in (2.1)
we conclude with (2.4) that u = x1−q holds. We come back to this in Sect. 4.

3 Basic Extreme Value Theory

In the following we present the most important concepts for realistic modeling and
quantification of rare events. The precise mathematical background as well as many
application examples can be found in Beirlant et al. [1], Coles [3], Embrechts, Klüp-
pelberg, and Mikosch [4], McNeil, Frey, and Embrechts [7], Reiss and Thomas
[9], Stephenson [43] gives an excellent overview on extreme events in climatology.

Figure 3 presents a rather typical figure in many statistical applications areas. The
normal distribution is often wrongly applied to extreme risk problems. This can only
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be explained by the fact that everybody with a basic statistical education has learnt
about the normal distribution. Moreover, the sum of normally distributed random
variables is again normally distributed, and the mean and the standard deviation of
this sum are easy to calculate.

There is no doubt that the normal distribution is a very important distribution in
probability theory and statistics: it is the limit distribution for sums. For a sequence
of i.i.d. random variables X1,X2, . . . (under the weak condition of a finite variance),
we have

1√
n

n∑

k=1

(
Xk −E(Xk)

) d−→ N
(
0, σ 2) as n → ∞,

where the random variable on the right hand side is normally distributed with distri-

bution function as in (2.2). The symbol
d−→ stands for convergence in distribution;

i.e. the distribution functions of the random variables on the left hand side con-
verge to the normal distribution function with mean 0 and variance σ 2. This is the
so-called Central Limit Theorem. Because of this very basic result the normal distri-
bution is an excellent model for random variables, which can be approximated by a
sum of many small random effects. The great German mathematician Carl Friedrich
Gauß (1777–1855) has derived it in his book [32].

It has long been known that the normal distribution is unrealistic for risk con-
siderations. But which model is a good model for extreme events? The answer to
this question has been given by the great French mathematician Siméon [40] (1781–
1840), which we formulate nowadays as follows.

Theorem 3.1 (Poisson Theorem, [40]) A statistical experiment with possible out-
come En is repeated independently n times. The probability that the event En hap-
pens in one of the n trials is P(En) = pn. If limn→∞ npn = τ holds for some
0 < τ < ∞, then

lim
n→∞P (in exactly m of the n trials we have outcome En)

= lim
n→∞

(
n

m

)
pm

n (1 − pn)
n−m = e−τ τm

m! for m = 0,1,2, . . . , (3.1)

where
(
n
m

) = n!
m!(n−m)! with 0! = 1 and m! = 1 · 2 · · ·m.

In honor of Poisson, the distribution on the right hand side of (3.1) is called
Poisson distribution with parameter τ , abbreviated by Poi(τ ). The distribution on
the left hand side of (3.1) (before the limit is taken) is the binomial distribution
Bin(n,pn), which for large n and small pn approximates the Poisson distribution
(cf. Fig. 5). Note that limn→∞ npn = τ > 0 implies obviously that limn→∞ pn = 0.
Hence the events En happen with vanishing probability, when the number of trials n

is getting large. For this reason the Poisson distribution is also called the distribution
of rare events. We want to present some ideas concerning the applicability of the
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Fig. 5 Counting density of
Bin(5,1/5)-, Bin(10,1/10)-,
Bin(15,1/15)-distribution
and the Poi(1)-distribution.
Note that for all parameters of
the binomial distributions
presented np = 1 holds

Poisson distribution, which leads to the two essential statistical concepts of extreme
value theory. The first statistical method is called the blocks method, and the second
one the Peaks-Over-Thresholds (POT) method. Which method to use depends on
the question posed and on the data at hand. We will come back to both statistical
methods in Sect. 4.

In the following we present the necessary mathematical results to understand the
concepts. Let X1, . . . ,Xn be a sample of random variables; think for instance of
yearly total claim amounts of an insurance company or losses of a financial asset.
We assume that X1, . . . ,Xn are i.i.d. having the same distribution function as the
random variable X; we denote it again by F(x) = P(X ≤ x) for x ∈R.

We show first how to use the Poisson Theorem 3.1 for the description of the
behavior of the maximum of a sample and investigate in a first step the so-called
partial maxima

Mn = max(X1, . . . ,Xn) for n ∈N.

As in real life we assume that risks larger than any we have observed before can
continue to occur. This is formulated mathematically by investigating P(Mn ≤ un),
where the sequence un increases with n (and hence with Mn). Then the follow-
ing fundamental result holds (which one can prove by means of the Poisson Theo-
rem 3.1):

lim
n→∞nP(X1 > un) = τ ⇐⇒ lim

n→∞P(Mn ≤ un) = e−τ . (3.2)

We want to motivate the implication from the left side to the right side:
Consider a rare event E, for example the event that the loss of a financial asset at

a day is larger than a threshold u for large u. The daily losses of an asset constitute
again a sample X1, . . . ,Xn. Then

p = P(E) = P(X > u).

Invoking the same argument as Poisson, we find that the probability that the event
E within the sample occurs m times is given by

(
n

m

)
pm(1 − p)n−m for m = 0, . . . , n;
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i.e. it is Bin(n,p)-distributed. Now we let u depend on n in the sense that un in-
creases with the sample size n. Then p becomes pn, which converges to 0, and E

becomes En = {X > un}. When un is chosen such that

lim
n→∞npn = lim

n→∞nP(X > un) = τ ∈ (0,∞),

then the Poisson Theorem 3.1 implies

lim
n→∞

(
n

m

)
pm

n (1 − pn)
n−m = e−τ τm

m! for m = 0,1,2, . . . .

In particular,

lim
n→∞P(Mn ≤ un) = lim

n→∞P(En never occurs in the n trials)

= lim
n→∞

(
n

0

)
p0

n(1 − pn)
n = e−τ .

Consequently, we have shown how by the Poisson Theorem 3.1 the right hand side
follows from the left hand side of (3.2). We shall resist to prove the reverse here.

The following result by [31] dating back to 1928 complements the above result;
it describes precisely the possible limit distributions of partial maxima and provides
the relevant tools for the estimation of tails and quantiles. For extreme value theory
the Theorem of Fisher and Tippett is of equal fundamental importance as the Central
Limit Theorem. The English statistician Ronald A. Fisher (1890–1962) has been one
of the creators of modern statistics, working in many diverse areas.

Theorem 3.2 (Fisher-Tippett Theorem, [31]) Let X1,X2, . . . be i.i.d. random vari-
ables, and an > 0 and bn ∈R appropriate constants. Moreover we assume that

lim
n→∞P

(
max(X1, . . . ,Xn) ≤ anx + bn

) = G(x) for x ∈ R (3.3)

holds for a distribution function G. Then G belongs to the class {Gγ,σ,μ : γ,μ ∈R,

σ > 0}, where

Gγ,σ,μ(x) =
⎧
⎨

⎩
e−(1+γ

x−μ
σ

)
− 1

γ
, if γ ∈ R\{0},

e−e− x−μ
σ

, if γ = 0,

⎫
⎬

⎭
for

{
1 + γ

x−μ
σ

> 0, if γ �= 0,

x ∈ R, if γ = 0.

The class of distributions {Gγ,σ,μ : γ,μ ∈ R, σ > 0} is called generalized ex-
treme value distribution (GEV). We recall that the support of a distribution func-
tion is the set of all x ∈ R, where 0 < F(x) < 1. Since Gγ,σ,μ(x) = Gγ,1,0(

x−μ
σ

),
μ is called location parameter and σ is called scale parameter. The parameter γ is
known as shape parameter and defines the type of distribution: if γ > 0 the distri-
bution Gγ,σ,μ is a Fréchet distribution with support on [μ − σ/γ,∞); if γ = 0 the
distribution G0,σ,μ is a Gumbel distribution with support on R; if γ < 0 the distri-
bution is a Weibull distribution with support on (−∞,μ−σ/γ ]. The Fisher-Tippett
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Theorem 3.2 thus states that the limit distribution of maxima are necessarily gener-
alized extreme value distributions (and the normal distribution does obviously not
belong to this class).

We want to explain the modelling and statistical consequences of the Fisher-
Tippett theorem leading to the so-called blocks method. Recall the classical central
limit theorem, which ensures that the distributions of sums and means of random
variables converge to a normal distribution (for i.i.d. and even weakly dependent
variables under the assumption of a finite variance). This motivates the modelling of
random variables, which can be regarded as sums or means of random quantities by
a normal distribution. Similarly, random variables which represent extreme quanti-
ties can be modelled by an extreme value distribution; Sect. 4.1 discusses the typical
example of yearly maxima. Underlying this example the measurements consist of
daily temperature values, and the maximum over every year is considered. So an ex-
treme value distribution is an appropriate model for these yearly maxima. Moreover,
the assumption of independence between the different maxima is also realistic as the
time between two of such maxima is several months. We will discuss in Sect. 4.1, if
the assumption of those maxima being identically distributed is realistic.

Under the conditions of the Fisher-Tippett Theorem 3.2 much more holds. We
denote the class {Hγ,σ : γ ∈ R, σ > 0} of distribution functions Generalized Pareto
Distribution functions (GPD), which are defined as

Hγ,σ (x) =
{

1 − (1 + γ x
σ
)
− 1

γ , if γ ∈ R\{0}
1 − e− x

σ , if γ = 0

}

for

{
x ≥ 0, if γ ≥ 0,

0 ≤ x < −σ/γ, if γ < 0.

Again γ denotes the shape parameter and σ the scale parameter. Indeed the param-
eter γ here is the same as in the Fisher and Tippett Theorem 3.2. Then the following
theorem holds, which was proved independently by Pickands [39] and by Balkema
and de Haan [13].

Theorem 3.3 (Pickands-Balkema-de Haan Theorem) Assume that the conditions
of the Fisher-Tippett Theorem 3.2 hold and that F is the distribution function of X.
Then there exists a function σ : (0,∞) → (0,∞) and some γ ∈ R such that

lim
u→∞P

(
X > u + σ(u)x | X > u

) = lim
u→∞

F(u + σ(u)x)

F (u)
= Hγ,1(x)

for x in the support of Hγ,1.

It is now important for the Peaks-Over-Threshold (POT) method that for a large
threshold u the following approximation holds by Theorem 3.3, where we set y =
σ(u)x and use that Hγ,1(y/σ (u)) = Hγ,σ(u)(y):

P(X > u + y | X > u) = F(u + y)

F (u)
≈ Hγ,σ(u)(y) for y ≥ 0. (3.4)
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Fig. 6 Data X1, . . . ,X13
with corresponding excesses
Y1, . . . , YNu

Note first that an observation larger than u + y is only possible, if the observation is
larger than u; this means one needs a so-called exceedance of u. Such an observation
has then necessarily a so-called excess over the threshold u, which is larger than y;
cf. Fig. 6. If we investigate the special case that X has distribution Hγ,σ , we already
have after some calculations that

P(X > u + y | X > u) = Hγ,σ (u + y)

Hγ,σ (u)
= Hγ,σ+γ u(u) (3.5)

and σ(u) = σ + γ u.
Let now X1,X2, . . . (as illustrated in Fig. 6) be i.i.d. with distribution Hγ,σ , then

(3.5) means that Y1, Y2, . . ., the exceedances of u, namely, (X − u | X > u), are
Hγ,σ+γ u distributed. In the case γ = 0, where H0,σ is the exponential distribution
with parameter σ−1, Y1, Y2, . . . are again exponentially distributed with parameter
σ−1. This phenomena is well known as loss-of-memory property. In the general
context of Theorem 3.3 with X1,X2, . . . i.i.d. with distribution function F , (3.4)
says that Y1, Y2, . . . are asymptotically generalized Pareto distributed.

In contrast to the Fisher-Tippett Theorem 3.2, which models extreme observa-
tions directly, the Pickands-Balkema-de Haan Theorem 3.3 models all large val-
ues of a sample, more precisely, all those which exceed a high threshold. This is,
where the acronym “Peaks-Over-Thresholds” (POT) originates. Compared to the
modelling of yearly extremes (the so-called blocks method) the POT method has a
positive and a negative property: on the one hand, taking all exceedances of a sample
usually gives more observations, on the other hand, such exceedances can occur in
clusters, so that the independence property can be violated. We will apply the POT
method in Sect. 4.3.

4 Fundamental Results from Extreme Value Statistics

The books of Beirlant et al. [1], Coles [3], McNeil, Frey, and Embrechts [7], Reiss
and Thomas [9] mentioned at the beginning of Sect. 3 provide also their own
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software package for analyzing extremal events. An extensive overview on quite
a number of R-packages and other extreme statistics software is given in [11];
cf. http://www.ral.ucar.edu/~ericg/softextreme.php and http://www.isse.ucar.edu/
extremevalues/extreme.html. In particular, we want to mention the Extremes Toolkit
(extRemes) developed in R by Eric Gilleland, which provides a user friendly graph-
ical interface.

4.1 Fitting the GEV to a Sample of Extreme Data (the Blocks
Method)

The GEV family can be applied as any other parametric family of distributions,
whenever the model is justified by the data. Consequently, the GEV has been used
for a sample of i.i.d. random variables, which result from some experiment and
justify such a model.

Assume we have given yearly maxima Y1, . . . , Yn, which can be assumed to be
i.i.d. GEV distributed with distribution function Gγ,σ,μ and density gγ,σ,μ with re-
alizations y1, . . . , yn. This means that data are block maxima and every year is a
block. Then the maximum likelihood estimator of the parameters is given as

(γ̂ , σ̂ , μ̂) = argmin
γ,σ,μ

n∏

t=1

gγ,σ,μ(yt ). (4.1)

We will use and slightly extend this concept to assess a possible trend in the location
or scale parameter of the data over time.

The next example is classic in this respect: we will fit a GEV to a sample of
yearly temperature maxima.

Illustration 4.1 (Climate Risk) Hot days are one of the prominent climatologi-
cal phenomenon changing. According to IPCC 2007 (cf. [6]), it is very likely that
warmer and more frequent hot days over most land areas have occurred in the late
20th century, a human contribution to this trend is likely, and it is—following their
likelihood classification—virtually certain that this trend will continue for the 21th
century. Daily maximum temperatures for example influence the well-being of hu-
mans putting additional stress to the thermal regulation and thus the cardiovascular
system. Temperature maxima are very closely linked to average summer tempera-
tures, each degree of warming increasing the maximum temperatures by 1.2 °C in
Basel (Switzerland); see Beniston and Diaz [17]. Other projected impacts of more
hot days comprise decreasing agricultural and forest yields in warmer environments,
reduced energy demand for heating, increased demand for cooling, or declining air
quality in cities.

We study long-term changes in daily maximum temperatures recorded at the old-
est mountain climate station in the world, the observatory Hohenpeißenberg (977 m
above sealevel, south-west of Munich), where regular meteorological observations

http://www.ral.ucar.edu/~ericg/softextreme.php
http://www.isse.ucar.edu/extremevalues/extreme.html
http://www.isse.ucar.edu/extremevalues/extreme.html
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Fig. 7 Two decades of monthly temperature maxima: 1879–1888 and 1999–2008. The red line
shows the estimated seasonality and trend

started beginning of 1781. We restrict our analysis to the period of 1879–2008, be-
cause in 1879 observations started being measured with new instruments under the
guidance of the Munich Meteorological Central Station and thus the time series
is homogenous. Due to its location on top of a mountain, summer temperatures are
2 °C to 3 °C lower than in the surrounding lowlands, whereas winter inversion layers
lead to higher temperatures than in the valleys. The absolute maximum so far was
recorded on July 29th in 1947 with 33.8 °C. Figure 7 displays the first (1879–1888)
and last decade (1999–2008) of monthly temperature maxima.

It is one of the most demanding problems in environmental statistics to deal with
trend and seasonality in data. When we are interested in the development of extreme
events, we have to specify the event we want to study. In environmental statistics a
usual measure of extremes is the return period as defined in (2.5). We could inves-
tigate the return periods of extremes in each month, January to December. Then we
could answer, for instance, whether extreme temperatures in winter or summer have
changed. Alternatively we could investigate the difference to a long-term mean or
some other quantities, which describe extreme events.

In the present paper we will concentrate on a possible long-term trend in high
temperatures at the station Hohenpeißenberg. Consequently, our analysis will be
based on yearly maxima (see Fig. 8), which we assume to be GEV distributed (in
Fig. 9 we shall see that this assumption is justified). Recall, however, that based
on the IPCC 2007 report a 130 year temperature time series cannot be regarded as
stationary. Thus, we want to incorporate some time-dependence into our model, i.e.
a linear warming trend, although we know that there was not a uniform increase in
mean temperature, but two periods with particular warming during approximately
1900–1945 and 1975–today.

We will investigate two possibilities to introduce non-stationarity into the model.
Recall that classical time series theory (e.g. Brockwell and Davis [2]) suggests for
a time series Y1, Y2, . . . either an arithmetic model of the form Yt = �t + Xt or a
multiplicative model Yt = �tXt for t = 1,2, . . . , where �1,�2, . . . models a non-
stationary deterministic effect like drift and seasonality, and X1,X2, . . . is a station-
ary process. If X1,X2, . . . are identically GEV distributed, then we see immediately
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Fig. 8 Maximum yearly
temperature over 130 years of
data. The highest temperature
has been measured in 1947

that �1,�2, . . . affect either the location parameter μ (for the arithmetic model) or
the scaling parameter σ (for the multiplicative model) of the GEV distribution of
Y1, Y2, . . . . But the shape parameter γ remains the same under these deterministic
location and scale changes. For simplicity, we introduce a linear trend into the lo-
cation and scale parameter of the yearly maximal temperatures; i.e. we assume that
the yearly maximal temperature Y1, . . . , Y130 are an independent sequence with

Yt ∼ Gγ,σ(t),μ(t) for t = 1, . . . ,130,

where μ(t) = μ + at and σ(t) = σ + bt . Consequently, we will estimate by maxi-
mum likelihood estimation and compare the following models:

(1) Model 1: μ(t) = μ and σ(t) = σ ,
(2) Model 2: μ(t) = μ + at and σ(t) = σ ,
(3) Model 3: μ(t) = μ and σ(t) = σ + bt ,
(4) Model 4: μ(t) = μ + at and σ(t) = σ + bt .

The estimation results are presented in Table 1.
For a comparison of the four different models, we notice that the negative log-

likelihoods indicate already that Models 2 and 4 are better than Models 1 and 3, re-
spectively. Although Model 1 is a special case of Model 3, the likelihood of Model 1
is nearly the same as the likelihood of Model 3. We guess already that the trend in
the scale parameter may not be statistically significant, which is indeed true; the
fluctuations do not significantly change over time. We have applied likelihood ratio
tests to all nested pairs of models. Our model pairs are nested, when some of our
parameters (a or b) may be zero or not. For details we refer to Coles [3], Sect. 2.6.6.

The tests compare (as we have already done informally) the likelihoods of two
models. Rejection is now determined by asymptotic theory. More precisely, assume
two (nested) models, say (I) and (II), with parameter θ(1) ∈ R

d−k for k < d , in
model (I) and θ(2) = (θ

(2)
1 , θ

(2)
2 ) ∈ R

d (where θ
(2)
1 ∈ R

k, θ
(2)
2 ∈ R

d−k) in model (II)
with maximum likelihood estimators θ̂ (1) and θ̂ (2). Then, under some regularity con-
ditions for the maximum likelihood functions L1(θ̂

(1)) and L2(θ̂
(2)), it can be shown

that the quantity −2(logL1(θ̂
(1)) − logL2(θ̂

(2))) is asymptotically χ2
k -distributed.

We present the results of 3 of our tests:
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Table 1 Maximum likelihood estimators for μ, a, σ , b, and γ with standard errors in brackets
below. The negative log-likelihood corresponding to the estimated models is given in the right-
hand column

Parameters μ a σ b γ − logL

Model 1 27.49671
(0.17721)

– 1.84122
(0.12203)

– −0.20125
(0.05070)

268.9776

Model 2 26.65174
(0.32672)

0.01320
(0.00426)

1.76802
(0.11814)

– −0.19624
(0.05253)

264.3865

Model 3 27.21659
(0.18851)

– 1.70919
(0.23720)

0.00199
(0.00377)

−0.18065
(0.06075)

268.9581

Model 4 26.65110
(0.32730)

0.01321
(0.00426)

1.77117
(0.22692)

−0.00005
(0.00301)

−0.19605
(0.05332)

264.3863

• Model 1 against Model 2: H0 : a = 0 versus H1 : a �= 0

−2
(
logL1

(
μ̂(1), σ̂ (1), γ̂ (1)

) − logL2
(
μ̂(2), â(2), σ̂ (2), γ̂ (2)

))

= 9.1823 > 3.8415 = χ2
1 (0.95),

i.e. we reject H0 (p-value = 0.002444).
• Model 1 against Model 4: H0 : a = b = 0 versus H1 : a �= 0 or b �= 0

−2
(
logL1

(
μ̂(1), σ̂ (1), γ̂ (1)

) − logL4
(
μ̂(4), â(4), σ̂ (4), b̂(4), γ̂ (4)

))

= 9.1826 > 5.9915 = χ2
2 (0.95),

i.e. we reject H0 (p-value = 0.0104).
• Model 2 against Model 4: H0 : b = 0 versus H1 : b �= 0

−2
(
logL2

(
μ̂(2), â(2), σ̂ (2), γ̂ (2)

) − logL4
(
μ̂(4), â(4), σ̂ (4), b̂(4), γ̂ (4)

))

= 3 × 10−4 < 3.8415 = χ2
1 (0.95),

i.e. we do not reject H0 (p-value = 0.986983).

The p-value is an indicator of significance: the p-value of 0.002444 as calculated in
the first test ensures that we can reject H0 for all significance levels larger than this
value. So the smaller the p-value, the more justified is a rejection of H0. The com-
parison shows that a trend in the location parameter of the GEV model is significant
but not the trend in the scale parameter. Model 4 gives no improvement to Model 2.
Hence, again with support by statistical theory we conclude that the best model is
Model 2, and there is no significant difference between Models 2 and 4, justifying
the choice for Model 2.

In order to assess the model fit graphically, we will use a Gumbel probability plot
(based on the GEV G0,1,0) (PP-plot) and a Gumbel quantile-quantile plot (QQ-plot)
for our transformed data set. Therefore, we show that any Gγ,σ(t),μ(t) distributed
random variable Yt with γ < 0 (the relevant regime for the temperature example is
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Fig. 9 The linear location Model 2 transformed to standard Gumbel: PP-plot and QQ-plot

a Weibull GEV distribution) can be transformed to a Gumbel random variable as
follows. Afterwards we can use standard software for the plots.

We define

Zt = 1

γ
ln

(
1 + γ

(Yt − μ(t))

σ (t)

)
,

and prove below that indeed Zt is standard Gumbel distributed. Note first that the
Gumbel distribution has support on the whole of R, whereas the Weibull distribution
Gγ,σ(t),μ(t) has support (−∞,μ(t) − σ(t)/γ ]; i.e. Gγ,σ(t),μ(t)(x) = 1 for all x >

μ(t) − σ(t)/γ . Then 1 + γ (Yt − μ(t))/σ (t) > 0 and, hence, Zt has full support R.
Now we calculate

P(Zt ≤ x) = P

(
1

γ
ln

(
1 + γ

(Yt − μ(t))

σ (t)

)
≤ x

)

= P

(
Yt ≤ σ(t)

γ

(
eγ x − 1

) + μ(t)

)
= e−e−x

for x ∈R.

This means that, provided Y1, Y2, . . . are independent Weibull distributed random
variables, then Z1,Z2, . . . are independent Gumbel distributed random variables.
Consequently, once we have estimated μ(t), σ(t) and γ , we transform our data Yt

to

Ẑt := 1

γ̂
ln

(
1 + γ̂

(Yt − μ̂(t))

σ̂ (t)

)
,

which should be close to a Gumbel distribution, provided the data are indeed
Weibull GEV distributed with the estimated parameters. Figure 9 assesses the distri-
bution fit by a PP-plot and a QQ-plot for the estimated parameters of Model 2 with
linear location parameter. In the first plot, the PP-plot, the empirical distribution
of Ẑ1, . . . , Ẑ130 is plotted against the Gumbel distribution. In the second plot, the
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Fig. 10 Estimated right endpoint of the GEV distribution of Model 1 (blue line) and the linear
trend Model 2 (red line). For Model 1 we estimate the constant right endpoint of 36.645 °C. For
Model 2 the right endpoint starts at 35.674 °C and ends at 37.377 °C

QQ-plot, the quantiles of the Gumbel distribution are plotted against the empirical
quantiles of Ẑ1, . . . , Ẑ130. Both look very convincing, since they follow a 45◦ line
confirming again Model 2.

For Model 2 we estimated the asymptotic 95 % confidence interval for γ . Let
z1−α/2 be the 1 − α/2-quantile of the normal distribution and ŝγ be the estimated
standard deviation of γ̂ . Then by classical likelihood theory (see Smith [10]), at
least for γ < 1/2,

(γ̂ − z1−α/2 ŝγ , γ̂ + z1−α/2 ŝγ )

denotes the asymptotic (1 − α) × 100 % confidence interval for γ . In Model 2 this
results in the 95 % confidence interval (−0.29972,−0.06158) for γ . As mentioned
after the Fisher-Tippet Theorem 3.2 a negative γ indicates a Weibull distribution
with finite right endpoint, meaning that there should be a limit of extreme maximum
temperatures, which is not exceeded. Similarly, we obtain for a the 95 % confidence
interval

(̂a − z1−α/2 ŝa, â + z1−α/2 ŝa) = (0.0048504,0.0215496),

which reflects that a is positive; we have a statistically significant increase in the
location parameter and a trend in the extremal temperatures.

The right endpoint of the Weibull distribution is given by μ(t) − σ(t)/γ (repre-
senting the maximum yearly temperature), which we can also estimate after having
estimated the parameters. Figure 10 visualizes the constant endpoints of Model 1,
where we have assumed fixed parameters over the whole time period, and the in-
crease of the endpoint for the linear trend Model 2 caused by the linearity in the
location parameter.

From this analysis presented in Fig. 11 we see that the return levels of high tem-
peratures have increased considerably over the last 130 years. This increase is due
to an increase of the location parameter of the extreme temperatures, the levels of
the return periods have increased. The estimated parameters suggest an increase of
at = 0.01320t = 0.01320 × 130 = 1.716 °C over 130 years, corresponding to an
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Fig. 11 The red lines show
the estimated 100-year return
level (which is the 99 %
quantile), where the straight
line is based on Model 1 and
the dashed line on Model 2.
Similarly the blue lines show
the estimated 50-year return
level based on Model 1 and
Model 2, respectively

increase of 1.32 °C over a century. In contrast, simple least square linear regres-
sions reveal increases in daily mean temperature of 1.472 °C and in daily maximum
temperature of 1.515 °C over 130 years at the climate station Hohenpeißenberg,
corresponding to an increase of 1.13 °C for the mean and of 1.17 °C for the daily
maximum temperature over a century. Compared to these naive estimators the more
realistic assessment by EVT methods yields a considerably higher prediction for the
daily maximum temperatures in the future.

Prediction could now be based on this analysis. If we believe that the linear
trend remains the same over the next 10 years, then we would estimate the value
of 37.377 + 0.132 = 37.5090 for the maximal yearly temperature in 2018. Note
however, that such a fixed number is very unlikely. A confidence interval would be
needed to give some idea about the statistical variability. By our estimation method
we have been able to calculate confidence intervals for every single parameter esti-
mate. However, for a confidence interval of the prediction we would need the whole
distribution, which involves all three parameters, and their estimates are dependent.
So besides standard errors (based on the estimated variance of the maximum likeli-
hood estimators) also the asymptotic correlations between parameter estimates en-
ter. Such theory, however, goes beyond this introductory paper, and gives rather food
for thought.

Apart from this statistical discussion, there is also some doubt on the assumption
that future maximum temperatures increase with the same linear drift as the past
ones. This also depends on political measures being taken against the threatening
climate change.

4.2 The Blocks Method from Scratch

In the previous section we have simply started with maximum yearly temperatures
over 130 years, and fitted an extreme value distribution to these data. This model
choice was first based on the Fisher-Tippet Theorem 3.2, and later justified by a
PP-plot and a QQ-plot depicted in Fig. 9.

As the name blocks method suggests the idea behind it is to divide the data
X1,X2, . . . ,Xnm into m blocks of roughly the same length n and consider the block
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Fig. 12 The largest claims of
a Danish fire insurance per
month. The black line is the
10-year return level, and the
dashed red lines indicate the
95 %-confidence interval

maxima, i.e. we define Mn,j = max(X(j−1)n+1, . . . ,Xjn) for j = 1, . . . ,m. Recall
that on the one hand we want to choose the blocks so small that we get as many
block maxima as possible, on the other hand we have to choose them large enough
so that we can assume that block maxima follow an extreme value distribution and
also that they are independent.

Illustration 4.2 (10-Year Return Period for Danish Fire Data) For the daily losses
of the fire insurance portfolio over m months X1,X2, . . . ,Xnm (i.e., Xk is the loss at
the kth day), we determine the maximum losses within a month, respectively. These
monthly block sizes are roughly equal, more precisely, n is between 28 and 31 days,
and Mn,j is the maximum loss during the j th month. As a first ansatz, according to
the Fisher-Tippett Theorem 3.2, we exploit the fact that the distribution of Mn,j can
be approximated by a GEV distribution, so that

P(Mn,j ≤ u) ≈ Gγ,σ,μ(u),

where γ,σ,μ are parameters, which have to be estimated, and the constants an and
bn are integrated in σ and μ. We denote by γ̂ , σ̂ , μ̂ the respective estimators. Then
we approximate

P(Mn,j ≤ u) ≈ Gγ̂ ,̂σ ,μ̂(u).

The level of the 10-year return period of the largest monthly claim, which happens
in mean only once in 10 years can be estimated by means of (2.5). Since also q =
1/(10 × 12) holds, we obtain

û = x̂1−q = G−1
γ̂ ,̂σ ,μ̂

(
1 − (10 × 12)−1). (4.2)

For the Danish fire data as depicted in Fig. 4 we estimate 195.7 million Danish
Krone as level for extreme monthly claims, which happen in mean every 10 years
(see Fig. 12).
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4.3 The POT Method

It has been argued that applying the blocks method to data has the drawback of
disregarding data, which may contribute information to the statistics of extreme
values. Moreover, the blocks method can easily be applied to yearly, monthly or to
other blocks-structured data, but what to do, if this is not the case. The Peaks-Over-
Threshold (POT) method presents a valuable alternative.

The following section is dedicated to the POT method for a sample X1, . . . ,Xn,
where we assume for the distribution function F that F(x) = P(X ≤ x) < 1 for
x > 0. We define further for a high threshold u

Fu(y) := P(X − u > y | X > u) = F(u + y)

F (u)
for y ≥ 0.

Consequently, we obtain

F(u + y) = F(u)Fu(y) for y ≥ 0. (4.3)

How can we use these identities now to estimate tails and quantiles?
If now Nu denotes the number of all k ∈ {1, . . . , n} satisfying Xk > u given by

Nu = #
{
k ∈ {1, . . . , n} : Xk > u

}
,

then we denote by Y1, . . . , YNu the excesses of X1, . . . ,Xn, i.e. the heights of the
exceedances of u (cf. Fig. 6). We obtain an estimator for the tail (for values larger
than u) by estimating both tails on the right hand side of (4.3). We estimate F(u) by
the relative frequency

̂F(u) = Nu

n
(4.4)

and approximate Fu(y) by the Generalized Pareto Distribution (GPD) of (3.4),
where the scale parameter σ(u) has to be considered. It is integrated as parame-
ter σ(u) into the limit distribution such that

Fu(y) ≈
(

1 + γ
y

σ(u)

)−1/γ

for y ≥ 0, (4.5)

where γ and σ(u) have to be estimated by some estimators denoted by γ̂ and σ̂ (u).
From (4.3)–(4.5) we obtain a tail estimator of the form

̂F(u + y) = Nu

n

(
1 + γ̂

y

σ̂ (u)

)−1/γ̂

for y ≥ 0. (4.6)

Then for given p ∈ (0,1) we obtain an estimator x̂p for the p-quantile xp taken
from (2.1) by solving the equation

1 − p = Nu

n

(
1 + γ̂

x̂p − u

σ̂ (u)

)−1/γ̂

.
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Fig. 13 Estimated tail of the daily losses of the S&P500. The black curve shows the tail estimated
by the POT method with threshold u = 0.0212, γ̂ = 0.193, σ̂ = 0.00575 and the red line shows the
distribution tail estimated under the assumption of a normal distribution for the daily losses. The
vertical black line indicates the logarithmic VaRPOT

0.99 (X) = 0.028 estimated by the POT method

and the vertical red line shows the logarithmic VaRnorm
0.99 (X) = 0.024 estimated from a normal

distribution

This gives

x̂p = u + σ̂ (u)

γ̂

((
n

Nu

(1 − p)

)−γ̂

− 1

)
. (4.7)

Illustration 4.3 (Tail and Quantile Estimation) We apply the POT method to the
S&P500 loss data using the tail estimate from (4.6) and, for comparison, we also
fitted a normal distribution to the data by estimating mean and variance by their
empirical versions. Figure 13 depicts both tail estimates in logarithmic scale for a
threshold u = 0.0212 and y > 1. Moreover, VaRPOT

0.99(X) was estimated for the daily
losses using the POT estimator (4.7) as well as the normal estimator VaRnorm

0.99 (X) =
μ̂ + σ̂ z0.99, where z0.99 is the 0.99-quantile of the normal distribution. Plotted are
again the logarithmic quantities; i.e. log VaRPOT

0.99(X) = 0.028 and log VaRnorm
0.99 (X) =

0.024, which correspond to VaRPOT
0.99(X) = 2.795 and VaRnorm

0.99 (X) = 2.784; the dif-
ference of 0.011 does not look too substantial, but recall that our data are relative
losses (i.e. percentage points). Moreover, the standardized S&P500 portfolio value
compares only to a standardized bank portfolio, so has to be multiplied by millions
to obtain a realistic value.

We clearly see that the normal distribution tail is completely inadequate to esti-
mate the tail of the daily losses of the S&P500. The data are far above its normal
tail estimate. Usage of the normal distribution underestimates the risk considerably
and yields a completely inadequate risk capital.

In Illustration 4.3 we have estimated the tail and the VaR0.99(X) for the S&P500
losses and depicted in Fig. 13. The estimation was based on the assumption that the
losses (or at least the excesses) are i.i.d. However, modelling of financial data goes
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Fig. 14 The empirical standard deviations of the daily losses of the S&P500 during 1991–2004
with estimators based on the previous 250 days, respectively

far beyond marginal distributions. It has been a relevant research area for decades,
and we conclude with some facts and references.

Remark 4.4 (i) Dependence between portfolio components are in the normal model
given by correlations, which only model linear dependence. Market risk portfo-
lios, however, consist of such different assets as shares, options, and more complex
derivatives, which are known to be non-linearly dependent. It is of high importance
to have a comprehensive understanding of the influence of the portfolio components
to the portfolio loss. Dependence modeling and different dependence measures are
discussed in Chap. 9, [37].

(ii) Already from the daily losses depicted in the right plot of Fig. 2 it is clear
that the data vary considerably in their structure. We see immediately that a pe-
riod of low volatility is followed by a period of high volatility (the standard devi-
ation is called volatility in banking jargon). It is certainly not obvious that all ob-
servations can be modelled with the same distribution. Recall that (2.3) requires
daily estimates based on past year’s observations. Figure 14 shows the running
empirical estimates of the volatility σ of the daily losses of the S&P500 based
on observations of the past one year, respectively. This simple window estimate
shows clearly the time-varying volatility, which is typical for most financial time
series.

(iii) Until now we have not touched the important questions of time dependence
within the time series of daily returns. Financial data show an interesting depen-
dence structure; although most daily returns are uncorrelated, the data do not orig-
inate from independent observations. As seen in Fig. 15 the sample autocorrelation
function of the daily losses of the S&P500 is almost 0 for all lags, whereas the
sample autocorrelation function of the squared returns is substantial, contradicting
the independence assumption. The most prominent financial time series model is
the GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model.
Volatility is modelled as a stochastic process and can capture a dependence struc-
ture as seen in Fig. 15. An excellent overview on discrete-time and continuous-time
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Fig. 15 Sample autocorrelation function of the daily losses (left) and the squared daily losses
(right) of the S&P500

stochastic volatility models in one and multivariate dimensions is the book edited
by [12].

5 Food for Thought

Extreme value theory has gone a long way since its beginnings with Fisher and Tip-
pett in 1928. New applications, unheard-of in the 1920-ies have emerged. Climate
change, large insurance claims and extreme financial risk are just three of them.
Extreme value theory has found its way also into the areas of technical safety and
reliability theory, as well as the statistical assessment of environmental quantities
like temperatures, floods, droughts, earthquakes and storms.

Concerning the statistical methods we have presented, we want to emphasize the
following. In our statistical analyses we have assumed that data are independent
and have the same distribution (perhaps enriched by a linear trend, which can easily
be implemented). This assumption is often unrealistic. As reported in Remark 4.4
financial time series exhibit in general a very complex dependence structure; for
the S&P500 see Figs. 14 and 15. Many data, also insurance claims, are affected by
seasonal effects or exhibit some clusters of claim events. Such effects can influence
estimation and prediction procedures considerably. Moreover, the one-dimensional
case treated above is rather unrealistic. Portfolios of market risks are composed of
many components (often several hundreds), and it may be interesting to understand
the dependence in the combination of extreme risks. Moreover, risks are often influ-
enced by some latent variables, whose influence would have to be assessed as well.
Such problems are hot research topics at the moment and require still a considerable
amount of theoretical and practical work.

Extreme value theory has been extended to multivariate data, which is rather
demanding, since there exists no finite parameterizations as in the one-dimensional
case as seen in the Fisher-Tippett Theorem 3.2. The dependence between different
components of a vector is modeled by an integral with respect to some measure and
Poisson random measures provide a very powerful tool to deal with such problems;
cf. Resnick [41].
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Moreover, extreme value theory for time series with marginals ranging from
Gaussian to heavy-tailed ones is still a lively research area. The usual picture is
that for light-tailed time series models one can more or less ignore the dependence
structure, whereas for heavy-tailed models the dependence creeps into the extreme
tails (events) by leading to clusters of extremes; cf. Fasen [28], Fasen, Klüppelberg,
and Schlather [30].

More recently, also spatial and space-time extreme value models have come into
focus in particular for environmental data like heavy rainfall or storms requiring
special statistical methods; cf. Davis, Klüppelberg, and Steinkohl [25, 26] for details
and further references.

For those interested in the state of the art of extreme value theory research, we
recommend to consider the journal “Extremes” (http://www.springer.com/statistics/
journal/10687), which is solely devoted to theory and applications of extreme val-
ues.

6 Summary

We hope that we have convinced our readers that extreme value theory and extreme
value statistics offer an important theory and statistical estimation procedures to
assess extreme risks in different applications areas.

We have presented the basic theory and also three estimation procedures to find
the distribution and other quantities describing extreme events. The first one was to
fit a GEV to extreme data, where we also took care of non-stationarity of the data
either in the location parameter (linear trend) or in the scaling parameter (higher
fluctuations). The second one was to use the block-maxima method for a sam-
ple where only the blocks maxima were distributed according to a GEV distribu-
tion. And finally, we introduced the POT method, which models high threshold ex-
ceedances.

As a result we obtained for our three examples:

• The climate change data exhibit a higher trend in the yearly maxima over the last
century than the mean trend at the corresponding station. The Weibull distribution
is the appropriate extreme value distribution, which shows that high temperature
is bounded, although the maxima increase.

• Danish insurance claims, which are from a fire insurance portfolio, are very
heavy-tailed data, and the model suggests that with a (non-negligible) positive
probability the insurance company may experience a claim, which is easily twice
as high as they have ever seen before.

• The daily losses of the S&P500 have a 99 % Value-at-Risk of 0.028 % when
estimated by the POT method, while based on the normal distribution, it is
only 0.024 %. While these numbers look small, in banking business one has
to multiply them by millions of Euros, so that the difference becomes substan-
tial. Since capital reserves have to be calculated built on such numbers, the banks
are much happier about the smaller numbers coming from the Gaussian distribu-
tion.

http://www.springer.com/statistics/journal/10687
http://www.springer.com/statistics/journal/10687
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