
Chapter 4
The New Role of Mathematical Risk Modeling
and Its Importance for Society

Klaus Mainzer

This book on risk and security is an example for the new role of mathematical mod-
eling in science. In Newtonian times, mathematical models were mainly applied to
physics and astronomy (e.g., planetary systems) as definitive mappings of reality.
They aimed at explanations of past events and predictions of future events. Models
and theories were empirically corroborated or falsified by observations, measure-
ments and lab experiments. Mathematical predictions were reduced to uniquely de-
termined solutions of equations and the strong belief in one model as mapping of
reality. In probabilistic models, extreme events were underestimated as improbable
risks according to normal distribution. The adjective “normal” indicates the prob-
lematic assumption that the Gaussian curve indicates a kind of “natural” distribution
of risks ignoring the fat tails of extreme events. The remaining risks are trivialized.
The last financial crisis as well as the nuclear disaster in Japan are examples of
extreme events which need new approaches of modeling.

Mathematical models are interdisciplinary tools used in natural and engineering
sciences as well as in financial, economic and social sciences. Is there a universal
methodology for turbulence and the emergence of risks in nature and financial mar-
kets? Risks which cannot be reduced to single causes, but emerge from complex
interactions in the whole system, are called systemic risk. They play a dominant role
in a globalized world. What is the difference between microscopic interactions of
molecules and microeconomic behavior of people? Obviously, we cannot do exper-
iments with people and markets in labs. Here, the new role of computer simulations
and data mining comes in.

These models are mainly stochastic and probabilistic and can no longer be con-
sidered as definitive mappings of reality. The reason is that, for example, a financial
crisis cannot be predicted like a planetary position. With this methodic misunder-
standing, the political public blamed financial mathematics for failing anticipations.
Actually, probabilistic models should serve as stress tests. Model ambiguity does not
allow to distinguish a single model as definitive mapping of reality. We have to con-
sider a whole class of possible stochastic models with different weights. In this way,
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we can overcome the old philosophical skepticism against mathematical predictions
from David Hume to Nassim Taleb. They are right in their skepticism against clas-
sical axiomatization of human rationality. But they forget the extreme usefulness
of robust stochastic tools if they are used with sensibility for the permanent model
ambiguity. It is the task of philosophy of science to evaluate risk modeling and to
consider their interdisciplinary possibilities and limits.

Keywords Risk modeling · Systemic risk · Model scepticism · Risk measuring ·
Rational behavior

The Facts

• Mathematical modeling is crucial for understanding the dynamics of natural and
societal systems.

• The emergence of systemic risks can be explained in nonlinear models of systems
science.

• Philosophy of science delivers criteria of good models and their application in
risk modeling.

• In risky situations, model skepticism is a challenge of research.
• Risk modeling has its historical origin in financial and insurance mathematics.
• Securitized credit models, their increasing networks of risks, and the crisis of risk

modeling lead to a new paradigm of risk measuring and rational behavior.
• We can no longer trust in a single risk model, but we must consider a class of

more or less appropriate models, supplemented by experimental behavioral case
studies.

1 Introduction

Mathematical models are mathematical descriptions of systems in different sci-
ences. They refer in particular to natural systems in astronomy (e.g., planetary sys-
tems), physics (e.g., atomic systems), chemistry (e.g., molecular bonds), and biol-
ogy (e.g., cellular networks), but also to social systems in economics (e.g., financial
markets), sociology (e.g., social networks) and political science (e.g., administrative
organizations). When engineers analyze a technical system to be controlled or opti-
mized, they also use a mathematical model. In mathematical analysis, engineers can
build a model of the system as a hypothesis of how the system should work, or try to
estimate how an unforeseeable event could affect the system. Examples are extreme
events and risks emerging in complex systems. Similarly, in control of a system,
engineers can try out different control approaches in simulations. Simulations are
often represented by computer programs and tested on computers (Bungartz et al.
[1]). In the natural sciences, the validity of models is tested by derived explanations
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or predictions which are confirmed or falsified by observations, measurements and
experiments. A hypothetical model is a more or less appropriate mapping of reality.

A mathematical model usually describes a system by a set of variables and a set
of equations that establish relationships between the variables (cf. Gershenfeld [5],
Weidlich [13], Yang [14]). A dynamical system is characterized by its elements and
the time-depending development of their states. The states can refer to moving plan-
ets, molecules in a gas, gene expressions of proteins in cells, excitation of neurons
in a neural net, nutrition of populations in an ecological system, or products in a
market system. The dynamics of a system, i.e. the change of system states depend-
ing on time, can mathematically be described by, e.g., time-depending differential
equations. In physics, a conservative system, e.g. an ideal pendulum, is determined
by the reversibility of time direction and conservation of energy. Dissipative sys-
tems, e.g., a real pendulum with friction, are irreversible. In a more intuitive way,
a conservative system is “closed” with respect to external influences and only de-
termined by its intrinsic dynamics. A dissipative system can be considered to be
“open” to external influences, e.g., air or other material friction forces of the pendu-
lum. Models of conservative and dissipative systems can also be applied in ecology
and economics.

Case Study (Conservative and Dissipative Systems in Ecology) At the beginning
of the 20th century, fishermen in the Adriatic Sea observed a periodic change of
numbers in fish populations. These oscillations are caused by the interaction be-
tween predator and prey fish. If the predators eat too many prey fish, the number of
prey fish and then the number of predators decreases. The result is that the number
of prey fish increases, which then leads to an increase in the number of predators.
Thus, a cyclic change of both populations occurs. In 1925, the Italian mathemati-
cians Lotka [36] and Volterra suggested a dynamical model to describe the prey and
predator system. Each state of the model is determined by the numbers of prey fish
and the number of predator fish. So the state space of the model is represented by
a two-dimensional Euclidean plane with a coordinate for prey fish and a coordi-
nate for predator fish. The observations, over time, of the two populations describe
a dotted line in the plane. Births and deaths change the coordinates by integers,
a few at a time. To apply continuous dynamics, the dotted lines must be idealized
into continuous curves. Obviously, the Lotka-Volterra model is closed to other ex-
ternal influences of, e.g., temperature or pollution of the sea. If these external forces
of “ecological friction” were added to the model, its dynamics would change the
cyclic behaviour.

Case Study (Conservative and Dissipative Systems in Economy) In 1967, the
economist Goodwin proposed a conservative dynamical model to make the 19th-
century idea of class struggle in a society mathematically precise (cf. Goodwin
[26], Mainzer [7]). He considered an economy consisting of workers and capital-
ists. Workers spend all their income on consumption, while capitalists save all their
income. Goodwin used a somewhat modified predator-prey model of Lotka and
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Volterra. This conservative model supports the idea that a capitalist economy is per-
manently oscillating. Obviously it is superficial, because it does not refer directly to
the functional income shares of capitalists and workers or to their population size.
But it is mainly its conservative character that makes Goodwin’s model seem eco-
nomically unrealistic. Thus, the model has been made more realistic by the assump-
tion of “economic friction”. In reality, an economic system cannot be considered as
isolated from other dynamical systems. An economic model of coupled oscillatory
systems is provided by international trade. In other cases, economic systems are
influenced by political interventions. We will come back to these examples later on.

Mathematical models can be classified in several ways (Mainzer [8, 9]). In classi-
cal physics, dynamics of a system is considered a continuous process. But, continu-
ity is only a mathematical idealization. Actually, a scientist has single observations
or measurements at discrete-time points which are chosen equidistant or defined by
other measurement devices. In discrete processes, there are finite differences be-
tween the measured states and no infinitely small differences (differentials) which
are assumed in a continuous process. Thus, discrete processes are mathematically
described by difference equations.

Random events (e.g., Brownian motion in a fluid, mutation in evolution, innova-
tions in economy) are represented by additional fluctuation terms. Classical stochas-
tic processes, e.g. the billions of unknown molecular states in a fluid, are defined
by time-depending differential equations with distribution functions of probabilistic
states. In quantum systems of elementary particles, the dynamics of quantum states
is defined by Schrödinger’s equation with observables (e.g., position and momen-
tum of a particle) depending on Heisenberg’s principle of uncertainty which only
allows probabilistic forecasts of future states.

2 Emerging Risks in Complex Dynamical Systems

2.1 Linear and Nonlinear Models

Historically, during the centuries of classical physics, the universe was consid-
ered a deterministic and conservative system. We say that a system is determin-
istic when future events are causally set by past events. A finite-difference equation
like xt+1 = f (xt ) is deterministic as long as f (xt ) has only one value for each
possible value of xt . Given the past value xt , the function f determines the future
value xt+1. The astronomer and mathematician P.S. Laplace (1814) assumed the
total computability and predictability of nature if all natural laws and initial states
of celestial bodies are well known. The Laplacean spirit expressed the belief of
philosophers in determinism and computability of the world during the 18th and
19th century.

Laplace was right about linear and conservative dynamical systems. In general,
a linear relation means that the rate of change in a system is proportional to its cause:
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Small changes cause small effects while large changes cause large effects. Changes
of a dynamical system can be modeled in one dimension by time series with chang-
ing values of a time-depending quantity along the time axis. Mathematically, linear
equations are completely solvable. This is the deeper reason for Laplace’s philo-
sophical assumption to be right for linear and conservative systems.

In systems theory (Mainzer [8, 9, 39]), the complete information about a dynam-
ical system at a certain time is determined by its state at that time. The state of a
complex system is determined by more than two quantities. Then, a higher dimen-
sional state space is needed to study the dynamics of a system. From a methodolog-
ical point of view, time series and phase spaces are important instruments to study
systems dynamics. The state space of a system contains the complete information
of its past, present and future behavior.

Case Study (State Space in Ecology) Let us consider the state space of a Lotka-
Volterra system of predator and prey fishes. The vector field on the two-dimensional
state space can roughly be described in terms of four regions (Fig. 1a). In region
A, both populations are relatively low. When both populations are low, predator fish
decreases for lack of prey fish while prey fish increase because of less predation.
The interpretation of this habitual tendency as a bound velocity vector is drawn
as an arrow. In region B, there are many prey fish, but relatively few predators. But
when there are many prey fish and few predator fish, both populations increase. This
is interpreted by the vector in region B. In region C, both populations are relatively
large. The predator fish are well fed and multiply, while the prey fish population
declines. This tendency is shown by the vector in region C. In region D, there are
few prey fish but many predator fish. Both populations decline. This tendency is
shown by the vector in region D. The phase portrait of this system can be visualized
by a closed trajectory, because the flow tends to circulate.

In Fig. 1b, the phase portrait is a nest of closed trajectories, around a central
equilibrium point. As dynamical systems theory tells what to expect in the long run,
the phase portrait enables the ecologist to know what happens to the two popula-
tions in the long run. Each initial population of predator and prey fish will recur
periodically.

If some kind of ecological friction were added to the model, the center would
become a point attractor. This would be a model for an ecological system in static
equilibrium (Fig. 1c). A different but perhaps more realistic modification of the
model results in a phase portrait like Fig. 1d, with only one periodic trajectory.

At the end of the 19th century, H. Poincaré (1892) discovered that celestial me-
chanics is not a completely computable clockwork, even if it is considered a de-
terministic and conservative system. The mutual gravitational interactions of more
than two celestial bodies (‘Many-bodies-problem’) can be illustrated by causal feed-
back loops analytically represented by nonlinear and non-integrable equations with
instabilities and irregularities. In a strict dynamical sense, the degree of complex-
ity depends on the degree of nonlinearity of a dynamical system. According to the
Laplacean view, similar causes effectively determine similar effects. Thus, in the
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Fig. 1 Phase portraits of an
ecological system with a prey
and predator population
(Lotka-Volterra): (a) a closed
trajectory, (b) a nest of closed
trajectories, (c) a point
attractor, (d) a periodic
trajectory [7, p. 114]

state space, trajectories that start close to each other also remain close to each other
during time evolution. Dynamical systems with deterministic chaos exhibit an ex-
ponential dependence on initial conditions for bounded orbits: the separation of tra-
jectories with close initial states increases exponentially.

Important Consequence for Risk Analysis (Butterfly Effect of Chaotic Dynamics)
Consider two trajectories starting from nearly the same initial data. In chaotic dy-
namics only a tiny difference in the initial conditions can result in the two trajecto-
ries diverging exponentially quickly in the state space after a short period of time
(Fig. 2). In this case, it is difficult to calculate long-term forecasts, because the initial
data can only be determined with a finite degree of precision. Tiny deviations in dig-
its behind the decimal point of measurement data may lead to completely different
forecasts. This is the reason why attempts to forecast weather fail in an unstable and
chaotic situation. In principle, the wing of a butterfly may cause a global change of
development. This “butterfly effect” can be measured by the so-called Lyapunov ex-
ponent. A trajectory x(t) starts with an initial state x(0). If it develops exponentially
fast, then it is approximately given by |x(t)| ∼ |x(0)|e�t . The exponent � is smaller
than zero if the trajectory is attracted by attractors, such as stable points or orbits. It
is larger than zero if it is divergent and sensitive to very small perturbations of the
initial state.

Thus, tiny deviations of initial data lead to exponentially increasing computa-
tional efforts for future data limiting long-term predictions, although the dynamics
is in principle uniquely determined. According to the famous KAM-Theorem of A.N.
Kolmogorov (1954), V.I. Arnold (1963), and J.K. Moser (1967), trajectories in the
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Fig. 2 Exponential
dependence on initial
conditions measured by
Lyapunov exponent �

[7, p. 83]

phase space of classical mechanics are neither completely regular, nor completely
irregular, but depend sensitively on the chosen initial conditions.

Models of dynamical systems can be classified on the basis of the effects of the
dynamics on a region of the state space (Weidlich [13]). A conservative system
is defined by the fact that, during time evolution, the volume of a region remains
constant, although its shape may be transformed. In a dissipative system, dynamics
causes a volume contraction.

An attractor is a region of a state space into which all trajectories departing from
an adjacent region, the so-called basin of attraction, tend to converge. There are
different kinds of attractors (Lorenz [35]). The simplest class of attractors contains
the fixed points. In this case, all trajectories of adjacent regions converge to a point.
An example is a dissipative harmonic oscillator with friction: the oscillating sys-
tem is gradually slowed down by frictional forces and finally come to a rest in an
equilibrium point.

Conservative harmonic oscillators without friction belong to the second class
of attractors with limit cycles, which can be classified as being periodic or quasi-
periodic. A periodic orbit is a closed trajectory into which all trajectories departing
from an adjacent region converge. For a simple dynamical system with only two
degrees of freedom and continuous time, the only possible attractors are fixed points
or periodic limit cycles. An example is a Van der Pol oscillator modeling a simple
vacuum-tube oscillator circuit.

In continuous systems with a state space of dimension n > 2, more complex
attractors are possible. Dynamical systems with quasi-periodic limit cycles show
a time evolution which can be decomposed into different periodic parts without a
unique periodic regime. The corresponding time series consist of periodic parts of
oscillation without a common structure. Nevertheless, closely starting trajectories
remain close to each other during time evolution. The third class contains dynami-
cal systems with chaotic attractors which are non-periodic, with an exponential de-
pendence on initial conditions for bounded orbits. A famous example is the chaotic
attractor of a Lorenz system simulating the chaotic development of weather caused
by local events, which cannot be forecast in the long run (butterfly effect).
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2.2 Linear and Nonlinear Time Series Analysis

In the previous chapter we have analyzed dynamical systems and their types of be-
havior with fixed points, limit cycles, and chaos. Modeling means that these math-
ematical systems are applied to physical, biological or social systems of interest.
The Lotka-Volterra equations, for example, constitute a mathematical system mod-
eling the interaction of prey and predators in zoology. Modeling in this way is a
top down procedure from mathematical equations to applications by appropriate
interpretations of variables. In a bottom up approach, we start with a sequence of
measurements and ask what the data themselves can tell us about the laws of dy-
namics. Sequences of data are called times series. Time series analysis is used to
find types of appropriate equations fitting the data, or to compare the predictions of
mathematical models to measurements made in the field of research.

In an ideal case, time-series analysis delivers a computer program providing a
mathematical model fitting the measured data. But these data-generated models have
a severe shortcoming, because they work without any understanding of the physical
system. In practice, model building is combined with times-series analysis. Model
building is based on knowledge of a physical system, while time-series analysis can
be used to detect features of a system, inspiring model building.

Dynamical systems are governed by difference equations of the form xt+1 =
f (xt ) or differential equations of the form dx/dt = g(x, y) and dy/dt = h(x, y)

with time-depending variables x(t) and y(t). In a top-down approach of modeling,
the functions f , g, and h are given and the dynamical behavior with, e.g., fixed
points, limit cycles, and chaos attractor is derived by mathematical analysis. In a
bottom-up approach, we can only measure a limited set of quantities with limited
precision. In our example of prey and predator dynamics, we might be able to mea-
sure the population of the predator only, although predator and prey are correlated
and important for the dynamics of the whole prey and predator system.

For a mathematical model of observed data, we need an equation relating the
measurements to the corresponding dynamical variables. The measurements ap-
proximate the dynamical variables with a difference which is called the measure-
ment error. The measurement error depends on several factors like systematic bias,
measurement noise, and dynamical noise. Systematic bias means a deficiency in
the measurement process. Measurement noise results from random fluctuations in
measurements. Dynamical noise is affected by outside influence, because dynami-
cal systems are not isolated. A prey and predator system, for example, does not only
depend on the two variables of prey and predator, but also on the environment with
climate, nutrition, temperature et al.

Case Study (Linear Model of Dynamics) The dynamics of a finite-difference equa-
tion xt+1 = A + ρxt has a steady state at xt = A/(1 − ρ) = M which is stable if
|ρ| < 1. The solution to the finite-difference equation is exponential decay to the
steady state. After the transient passes, there is steady-state behavior xt = M . A di-
rect measurement of the dynamical variable xt is assumed. But, with respect to
measurement noise, the measurement data at time t is Dt = xt + Wt , where Wt is a
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Fig. 3 Data dynamics of a
linear model [6, p. 286]

Fig. 4 Data dynamics of a
nonlinear model [6, p. 302]

random number independently at each t in a Gaussian probability distribution with
a mean of zero and standard deviation σ . Figure 3 shows data Dt generated by this
model with A = 4, ρ = 0.95, and M = 80. P is Gaussian white measurement noise
with a standard deviation of σ = 2.

The model describes a system maintained at a steady level (e.g., a population
level or amount of prices at a market) without outside perturbations. For the inter-
pretation of measured data, the model leads to following questions:

– What is the value of the steady state in the data?
– What is the level of measurement noise in the data?
– Is there evidence that there really is a steady state?
– Is there evidence that there is only measurement noise and no outside perturba-

tions to the state xt ?

Case Study (Nonlinear Model of Dynamics) The previous model has linear dy-
namics and the stable fixed point is approached asymptotically in the absence of
dynamical noise. Nonlinear models can have non fixed asymptotic behavior. For ex-
ample, the quadratic map xt+1 = μxt (1 − xt ) can show a variety of behavior from
stable fixed points to stable periodic cycles and chaos. The equation indicates no
dynamical noise. Further on, there is no measurement noise, Dt = xt (Fig. 4). Thus,
the model is completely deterministic. In this case all future data can be calculated
for given initial conditions. In the case of chaos, there are practical limitations with
respect to the sensitive dependence of the chaotic dynamics on initial data.

For a nonlinear model, the following questions may arise:

– What evidence is there that the data are generated by a deterministic process?



104 K. Mainzer

– What evidence is there for a nonlinear process?
– How large is the sensitive dependence on initial data in the case of chaos?

The mean of the data in Fig. 4 is Mest = 0.471. The fluctuations about the mean
Vt = Dt − Mest can be used to calculate the correlation coefficient between Vt+1
and Vt . This is ρest = 0.054, close to zero. In fact, the autocorrelation function for
the data of the nonlinear model is very similar to that for the data of the linear
model. This suggests that the data from the nonlinear model are white noise, ap-
parently contradicting the fact that the data are from a deterministic model. This
paradox is solved by the fact that the correlation coefficient and the autocorrelation
function measure linear correlations in the data. A scatter plot of Vt+1 and Vt shows
a very strong relationship, but actually the relationship is nonlinear and hence not
accurately represented by the correlation coefficient and autocorrelation function.

Obviously, statistics of correlation coefficient and autocorrelation function can-
not distinguish between the data in linear and nonlinear models. Nonlinear time
series analysis helps to reconstruct nonlinear dynamics of a system from measured
data. The idea of using a scatter plot to display the relationship between successive
measurements is fundamental to the analysis of data from nonlinear systems. They
are also called return plot, Poincaré map, or return map. In many cases, data are
collected from a continuous-time dynamical system defined by differential equa-
tions rather than finite-difference equations. In these cases, it is appropriate to use
the phase-plane or embedding reconstruction procedure to find the laws of dynamics
from measured data.

Case Study (Harmonic Oscillator and Nonlinear Time Series Analysis) As an ex-
ample, we consider a second-order differential equation describing a harmonic os-
cillator which is often used to model natural or economic systems with oscillating
behavior (cf. Kaplan [6] p. 306): d2x/dt2 = −bx. In order to illustrate the flow
of dynamics in a harmonic oscillator, this equation is rewritten with two first-order
differential equations dx/dt = y and dy/dt = −bx for the variables x and y as co-
ordinates of the phase plane of the system. In a bottom-up approach, we start with
measuring a time-series D(t) = x(t). In a next step, we must reconstruct the state
plane and the flow on it from the measured data. At any instant, the position on the
state plane is given by the coordinates (x, y) representing the state of the dynam-
ical system at that instant. We can also measure y(t) from D(t) by noticing that
y = dx/dt = dD/dt . If we plot dD/dt versus D, the trajectory in the state plane
describes the flow based on the measured data.

But the harmonic oscillator is only a special case because dx/dt provides y.
In general, dynamics on the state plane are given by a pair of coupled differential
equations dx/dt = f (x, y) and dy/dt = g(x, y). Again, the question arises how
to calculate the values of y if only x(t) is measured. Measuring x(t) and calculat-
ing dx/dt provide a direct measurement of x and a calculated value of f (x, y).
Some information about y is contained in the value of f (x, y), and sometimes this
information helps to an idea of the whole dynamics of the system.
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Example (Chaotic Behavior and Weather Forecasting) Two-dimensional dynam-
ics in a state plane cannot represent chaotic behavior. A continuous-time system
generating chaos must consist of, at least, three equations. As an example, the
Lorenz system of (simplified) weather forecasting is modeled by the three equa-
tions dx/dt = 10(y − x), dy/dt = 28x − y − xy, and dz/dt = 28xy − 8z/3. If
the values of x(t), y(t), and z(t) can be measured simultaneously, it is easy to re-
construct the dynamics in a three-dimensional phase space. But if only one of the
variables, e.g., D(t) = x(t), can be measured, one must use heuristic procedures to
reconstruct a model from measured data faithful to the geometry of the original.

2.3 Deterministic and Stochastic Models

Measurements are often contaminated by unwanted noise which must be separated
from the signals of specific interest. Further on, in order to forecast the behavior of a
system, the development of its future states must be reconstructed in a correspond-
ing state space from a finite sequence of measurements. Thus, time-series analysis
is an immense challenge in different fields of research from, e.g., climatic data in
meteorology, ECG-signals in cardiology, and EEG-data in brain research to eco-
nomic data of economics and finance. Beyond the patterns of dynamical attractors,
randomness of data must be classified by statistical distribution functions.

Typical phenomena of our world, such as weather, climate, the economy and
daily life, are much too complex for a simple deterministic description to exist. Even
if there is no doubt about the deterministic evolution of, e.g., the atmosphere, the cur-
rent state whose knowledge would be needed for a deterministic prediction contains
too many variables in order to be measurable with sufficient accuracy. Hence, our
knowledge does not usually suffice for a deterministic model. Instead, very often a
stochastic approach is more situated. Ignoring the unobservable details of a com-
plex system, we accept a lack of knowledge. Depending on the unobserved details,
the observable part may evolve in different ways. However, if we assume a given
probability distribution for the unobserved details, then the different evolutions of
the observables also appear with specific probabilities. Thus, the lack of knowledge
about the system prevents us from deterministic predictions, but allows us to as-
sign probabilities to the different possible future states. It is the task of a time series
analysis to extract the necessary information from past data.

Complex models contain nonlinear feedback, and the solutions to these are usu-
ally obtained by numerical methods (Bungartz et al. [1]). Statistical complex models
are data driven and try to fit a given set of data using various distribution functions.
There are also hybrids, coupling dynamic and statistical aspects, including determin-
istic and stochastic elements. Simulations are often based on computer programs,
connecting input and output in nonlinear ways. In this case, models are calibrated
by training the programs, in order to minimize the error between output and given
test data.
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Example (Power Laws and Risks) In the simplest case of statistical distribution
functions, a Gaussian distribution has exponential tails situated symmetrically to
the far left and right of the peak value. Extreme events (e.g., disasters, tsunamis,
pandemics, worst case of nuclear power plants) occur in the tails of the probability
distributions (Embrechts et al. [2]). Contrary to the Gaussian distribution, proba-
bilistic functions p(x) of heavy tails with extreme fluctuations are mathematically
characterized by power laws, e.g., p(x) ∼ x−α with α > 0. Power laws possess scale
invariance corresponding to the (at least statistical) self-similarity of their time se-
ries of data. Mathematically, this property can be expressed as p(bx) = b−αp(x)

meaning that the change of variable x to bx results in a scaling factor independent
of x while the shape of distribution p is conserved. So, power laws represent scale-
free complex systems. The Gutenberg-Richter size distribution of earthquakes is a
typical example of natural sciences. Historically, Pareto’s distribution law of wealth
was the first power law in the social sciences with a fraction of people presumably
several times wealthier than the mass of a nation (Mainzer [8]).

3 Criteria of Risk Modeling in Philosophy of Science

3.1 What is a Good Model?

Mathematical modeling problems are often classified into black-box or white-box
models, according to how much a priori information is available of the system.
A black-box model is a system of which there is no a priori information available.
A white-box model is a system where all necessary information is available. Practi-
cally all systems are somewhere between the black-box and white-box models, so
this concept only works as an intuitive guide for approach.

Usually it is preferable to use as much a priori information as possible to make
a model more accurate (cf. Gershenfeld [5]). Therefore the white-box models are
usually considered easier, because if one has used the information correctly, then
the model will behave correctly. Often the a priori information comes in forms of
knowing the type of functions relating different variables. For example, if we make
a model of how a climate model works in an ecological environment, we know that
usually the amount of data is a varying function. Thus we are still left with several
unknown parameters: how rapidly does pollution increase, and what is the initial
state of the system? This example is therefore not a completely white-box model.
These parameters have to be estimated through some means before one can use the
model.

In black-box models one tries to estimate both the functional form of relations
between variables and the numerical parameters in those functions. Using a priori
information we could end up, for example, with a set of functions that probably
could describe the system adequately. If there is no a priori information we would
try to use functions as general as possible to cover all different models. The problem
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with using a large set of functions to describe a system is that estimating the param-
eters becomes increasingly difficult when the amount of parameters (and different
types of functions) increases.

Another basic issue is the complexity of a model. If we were, for example, mod-
eling the route of a railway plane, we could embed each mechanical part of the train
into our model and would thus acquire an almost white-box model of the system.
However, the computational cost of adding such a huge amount of detail would
effectively inhibit the usage of such a model. Additionally, the uncertainty would
increase due to a complex system, because each separate part induces some amount
of variance into the model. It is therefore usually appropriate to make some ap-
proximations to reduce the model to a sensible size. Engineers often can accept
some approximations in order to get a more robust and simple model. For exam-
ple Newton’s classical mechanics is an approximated model of the real world. Still,
Newton’s model is quite sufficient for most ordinary-life situations, that is, as long
as particle speeds are well below the speed of light, and we study macro-particles
only with respect to Einstein’s theory of relativity and to quantum physics.

An important part of the modeling process is the evaluation of an acquired model.
How do we know whether a mathematical model describes the system well? This
is not an easy question to answer. Usually the engineer has a set of measurements
from the system which are used in creating the model. Then, if the model was built
well, the model will adequately show the relations between system variables for
the measurements at hand. The question then becomes: how do we know that the
measurement data is a representative set of possible values? Does the model describe
well the properties of the system between the measurement data (interpolation)?
Does the model describe well events outside the measurement data (extrapolation)?

Extrapolations are a challenge with increasing complexity of models. How well
does this model describe events outside the measured data? Is it an adequate map-
ping of reality? Let us consider Newtonian classical mechanics-model, again. New-
ton made his measurements without advanced equipment, so he could not measure
properties of particles travelling at speeds close to the speed of light. Likewise, he
did not measure the movements of molecules and other small particles, but macro
particles only. It is then not surprising that his model does not extrapolate well into
these domains, even though his model is quite sufficient for ordinary life physics.

3.2 Model Skepticism—From David Hume to Nassim Taleb

Since Newton’s century, there have been deep doubts in causality and the reliability
of model-based predictions. An important progress of this criticism was the British
philosopher David Hume (1711–1776) who was—like Adam Smith—one of the
most important figures of Scottish Enlightenment. From a methodological point of
view, Hume’s critical analysis of human reason was a milestone in the history of
philosophy. Kant mentioned that it was Hume waking him up from his “dogmatic
slumbers”. The problem concerns the question of how we are able to make inductive
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inferences. Inductive inference is reasoning from the observed behavior of objects to
their behavior when unobserved. As Hume said, it is a question of how things behave
when they go beyond the present test by our senses, and the records of our memory.
He noticed that we tend to believe that things behave in a regular manner, i.e., that
patterns in the behavior of objects will persist into the future, and throughout the
unobserved present.

Hume’s argument is that we cannot rationally justify the claim that nature will
continue to be uniform, as justification only allows two arguments, and both of these
are inadequate. According to Hume, the two sorts are: (1) demonstrative reasoning,
and (2) probable reasoning. With regard to (1), Hume argues that the regularity of
nature cannot be demonstrated, as, without logical contradiction, we can assume
that nature might stop being regular. Considering (2), Hume argues that we cannot
hold that nature will continue to be uniform because it has been in the past, as this
is using the very sort of reasoning (induction) that is under question: it would be
circular reasoning. Thus no form of justification will rationally warrant our inductive
inferences.

Hume’s solution to this skeptical problem is to argue that, rather than reason, it is
natural instinct that explains our ability to make inductive inferences. He asserts that
“All inferences from experience, therefore, are effects of custom, not of reasoning”.
(Hume [31]).

On the same line, the Lebanese philosophical essayist and practitioner of finance
Nassim Taleb has argued in front of the recent financial crisis (Taleb [12]). His argu-
ment centers on the idea that predictive models are based on axiomatic “Platonism”
(cf. Popper [47]), gravitating towards mathematical purity and failing to take some
key ideas into account, such as: complete information is impossible, small unknown
variations in the data could have a huge impact, and flawed models are based on
empirical data without considering events that have not taken place but could have
taken place. These rare and risky events are symbolized as “black swans” against
the general belief that all swans are white. From a methodological point of view,
Taleb follows Sir Karl Popper’s philosophy of falsification (Popper [11]).

Logical Excursion (Falsification and Black Swans) In more details, Popper argues
in the following way. A general hypothesis like “All swans are white” has the logical
form “For all objects x is assumed: if x is a swan, then x is white”. This general
statement is especially true for a special object xo, i.e. “If xo is a swan, then xo is
white”. Let the condition of this conclusion be true for a special object xo, i.e. “xo

is a swan” is true. Then, our hypothesis predicts for the special swan xo that it is
white. This prediction follows by a logical direct conclusion (modus ponens): let
A and B be propositions which can be either true or false. The direct conclusion
(modus ponens) claims if A is true and conclusion A → B (“if A, then B”) is true,
then B is true. If we observe that the prediction is true, i.e. the observed swan xo is
actually white, then the general hypothesis is only corroborated by the example xo,
but not verified for all possible cases. In general, it is not possible to verify a general
statement of empirical sciences for all possible objects, locations, and points of time.
Only in mathematics, we can verify a general proposition on all natural numbers by
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a proof of complete induction. Therefore, according to Popper, a general hypothesis
in empirical sciences can logically only be falsified, but not verified: Again, let the
condition A (“xo is a swan”) be true. By observation, the swan is not white, but
black, i.e. B is false. Then, the conclusion A → B must be false by logical reasons.
In this case, the general hypothesis “All swans are white” is said to be falsified by
the example xo of a black swan.

The occurrence of black swans may be rare, but we must take black swan events
into account. Therefore, according to Taleb, the foundations of quantitative eco-
nomics are faulty and highly self-referential. He states that statistics is fundamen-
tally incomplete as a field, as it cannot predict the risk of rare events, a problem that
is acute in proportion to the rarity of these events. Taleb sees his main challenge as
mapping his ideas of “robustification” and “anti-fragility”, that is, how to live and
act in a world we do not understand, and build robustness to black swan events. He
advocates what he calls a “black swan robust” society, meaning a society that can
withstand difficult-to-predict events. Like Hume he argues that, rather than math-
ematical modeling, it is natural instinct that explains our ability to make inductive
inferences. He favors “stochastic tinkering” as a method of scientific discovery, by
which he means experimentation and fact-collecting instead of top-down directed
modeling.

3.3 Human Instinct, Probabilistic Thinking, and the Brain

Most of Taleb’s critique could only be detected by sophisticated mathematical anal-
ysis. Thus, the question arises how Hume’s and Taleb’s confidence in human instinct
can be sufficient in front of a world with increasing complexity. Traditionally, phi-
losophy of science defended the belief in human rationality and the possibility of
logical reasoning. Therefore, in the 20th century, logical empirism argued for scien-
tific rules of inductive reasoning.

Logical Excursion (Inductive Logic) Since Isaac Newton, induction was pro-
claimed a fundamental method to derive a general natural law or hypothesis from
observational data and measurements. Although there is no logical justification to
derive a general proposition for all cases of a domain from some confirmed ex-
amples, logicians and philosophers of science suggested formal rules to handle the
problem of induction. Rudolf Carnap (1891–1970) suggested a probabilistic calcu-
lus of hypotheses. The probability of a hypothesis h is defined as degree of belief
in h with respect to given data of experience e. The task of inductive logic is the
definition of a function of confirmation c(h, e) = r , which correlates an inductive
resp. a priori-probability r to the proposition h. Carnap’s c-function was defined on
elementary propositions, complex propositions of logically connected elementary
propositions, and general propositions for infinite many cases (e.g., all space-time
points). But his axioms were too weak for practical applications. Thus, he did not
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longer rely in one unique inductive method, but suggested a class of different con-
firmation functions. Anyway, in modern philosophy of science, probabilistic argu-
ments and the meaning of probability play a crucial role. To evaluate the probability
of a hypothesis, the concept of Bayesianism assumes some prior probability, which
is then updated with respect to new data (Hacking [28]).

Carnap also initiated a logical theory of rational decisions under risk. The degree
of belief of a person at time T is defined by a belief function Cr which is interpreted
as betting quotient. Obviously, this approach makes no sense in the natural sciences,
because natural laws do not depend on betting. In social sciences, decisions under
risks depend on personal degrees of belief which Carnap assumed to be measurable.
But, in modern brain research and cognitive science, gut feeling is no longer only a
source of irrationality. New insights in human intuition and unconscious experience
lead to behavioral skills which are even useful in management. The philosopher
of science Michael Polyani (1891–1976) introduced the term “tacit knowledge”, in
order to describe these unconscious abilities. Polyani argued that we sometimes can-
not only more than we can express by language, but that all kind of knowledge is
based on tacit knowledge (Polyani [46]). Daily activities like car driving or the rou-
tines of our jobs are rooted in unconscious abilities which were trained and learnt
in earlier time. These schemes of behavior let us react under stress and risk. With-
out trust in these abilities, we would not be able to act under risk. Modern brain
research and cognitive science are extremely interested to understand these mecha-
nisms. Therefore, experimental and behavior-oriented economics as well as neuroe-
conomics provide important tools to complement mathematical risk modeling (Fehr
[23]).

4 Classical Risk Modeling in Financial and Insurance
Mathematics

In economics as well as in financial theory uncertainty and information incomplete-
ness prevent exact predictions. A widely accepted belief in financial theory is that
time series of asset prices are unpredictable. Chaos theory has shown that unpre-
dictable time series can arise from deterministic nonlinear systems. The results ob-
tained in the study of physical, chemical, and biological systems raise the question
whether the time evolution of asset prices in financial markets might be due to un-
derlying nonlinear deterministic dynamics of a finite number of variables. If we
analyze financial markets with the tools of nonlinear dynamics, we may be inter-
ested in the reconstruction of an attractor. In time series analysis, it is rather difficult
to reconstruct an underlying attractor and its dimension. For chaotic systems, it is a
challenge to distinguish between a chaotic time evolution and a random process, es-
pecially if the underlying deterministic dynamics are unknown. From an empirical
point of view, the discrimination between randomness and chaos is often impossi-
ble. Time evolution of an asset price depends on all the information affecting the
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investigated asset. It seems unlikely that all this information can easily be described
by a limited number of nonlinear deterministic equations.

4.1 Beginning of Insurance Mathematics: Poisson Distribution
of Risks

Mathematical modeling in finance and insurance can be traced back for centuries.
Insurance of risks against the chances of life is an old topic of mankind (cf. Mainzer
[8]). Commercial insurance dates back to Renaissance, when great cities of trading
introduced bets on safe routes of ships. In the 17th century, the great British insur-
ance company Lloyd arose from this system of bookmakers. The philosopher and
mathematician Gottfried Wilhelm Leibniz (1646–1716) already suggested a health
insurance in which people should pay with respect to their income. In Germany, the
ingenious idea of Leibniz was realized not earlier than in the 19th century by Bis-
marck. In the time of Leibniz, life insurances were first applications of probability
calculations.

Historical Excursion (Huygens and Insurances in the 17th Century) The Dutch
physicist Christiaan Huygens (1629–1695) applied the law of large numbers to cal-
culations of insurance rates. In his approach, an insurance is considered as a game
between the insurer and clients. The insurer diminishes his risk by adapting the pre-
mium payed by a client. Let c1, . . . , cn be the costs of the insurer and p1, . . . , pn

the probabilities that the damages happen. The expected damage of the insurer is
assumed to be p1c1 + · · · + pncn. The average gain is equal to the premium Q paid
by the clients. His risk is zero for a premium Q = p1c1 + · · · + pncn. The risk of
clients is also zero, their loss Q and the expected gain p1c1 + · · · + pncn. In this
case, Q is called a fair premium to be paid by clients. It is assumed that the proba-
bilities p1, . . . , pn can be estimated according to the law of large numbers. But this
assumption was the flaw of Huygens’ approach. The law of large numbers cannot
be applied in cases of rare damages with extreme costs.

In 1898 the Russian economist and statistician Ladislaus Josephovich Bortkiewicz
(1868–1931) published a book about the Poisson distribution, titled The Law of
Small Numbers. In this book he first noted that events with low frequency in a large
population follow a Poisson distribution even when the probabilities of the events
varied. Modern insurance mathematics started with the thesis of the Swedish math-
ematician Filip Lundberg (1876–1965). He introduced the collective risk model for
insurance claim data. Lundberg showed that the homogeneous Poisson process, af-
ter a suitable time transformation, is the key model for insurance liability data. Risk
theory deals with the modeling of claims that arrive in an insurance business and
which gives advice on how much premium has to be charged in order to avoid ruin
of the insurance company. Lundberg started with a simple model describing the
basic dynamics of a homogeneous insurance portfolio.
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Fig. 5 A realization of
Lundberg’s risk process
[2, p. 9]

Lundberg’s Model of a Homogeneous Insurance Portfolio This means a portfolio
of contracts for similar risks (e.g., car or household insurance) under three assump-
tions:

• Claims happen at time Ti satisfying 0 ≤ T1 ≤ T2 ≤ T3 ≤ · · · which are called
claim arrivals.

• The ith claim arriving at time Ti causes the claim size. The latencies between the
claim arrivals Ti are iid (exponential) distributed.

• The claim size process (Xi ) and the claim arrival process (Ti ) are mutually inde-
pendent.

According to Lundberg’s model, the risk process U(t) of an insurance company is
determined by the initial capital u, the loaded premium rate c and the total claim
amount S(t) of claims Xi with U(t) = u + ct − S(t) and S(t) = ∑N(t)

i=1 Xi(t ≥ 0).
N(t) is the number of the claims that occur until time t . Lundberg assumed that
N(t) is a homogeneous Poisson process, independent of (Xi ). Figure 5 illustrate a
realization of the risk process U(t).

Lundberg’s model is fine for small claims. But the question arises how the global
behaviour of U(t) is influenced by individual extreme events with large claims.
Under Lundberg’s condition of small claims, Harald Cramér estimated bounds for
the ruin probability of an insurance company which are exponential in the initial
capital u. Actually, claims are mostly modeled by heavy-tailed distributions like,
e.g., Pareto which are much heavier than exponential.

4.2 Beginning of Financial Mathematics: Gaussian Distribution
of Risks

With the up-coming stock markets during the period of industrialization, people be-
came more and more interested in their risky dynamics. Asserts price dynamics are
assumed to be stochastic processes. An early key-concept to understand stochastic



4 The New Role of Mathematical Risk Modeling and Its Importance for Society 113

processes was the random walk. The first theoretical description of a random walk
in the natural sciences was performed in 1905 by Einstein’s analysis of molecular
interactions. But the first mathematization of a random walk was not realized in
physics, but in social sciences by the French mathematician Louis Jean Bachelier
(1870–1946). In 1900 he published his doctoral thesis with the title “Théorie de la
Spéculation” [17]. During that time, most market analysis looked at stock and bond
prices in a causal way: something happens as cause and prices react as effect. In
complex markets with thousands of actions and reactions, a causal analysis is even
difficult to work out afterwards, but impossible to forecast beforehand. One can
never know everything. Instead, Bachelier tried to estimate the odds that prices will
move. He was inspired by an analogy between the diffusion of heat through a sub-
stance and how a bond price wanders up and down. In his view, both are processes
that cannot be forecast precisely. At the level of particles in matter or of individu-
als in markets, the details are too complicated. One can never analyze exactly how
every relevant factor interrelate to spread energy or to energize spreads. But in both
fields, the broad pattern of probability describing the whole system can be seen.

Bachelier introduced a stochastic model by looking at the bond market as a fair
game. In tossing a coin, each time one tosses the coin the odds of heads or tails
remain 1:2, regardless of what happened on the prior toss. In that sense, tossing
coins is said to have no memory. Even during long runs of heads or tails, at each toss
the run is as likely to end as to continue. In the thick of the trading, price changes
can certainly look that way. Bachelier assumed that the market had already taken
account of all relevant information, and that prices were in equilibrium with supply
matched to demand, and seller paired with buyer. Unless some new information
came along to change that balance, one would have no reason to expect any change
in price. The next move would as likely be up as down.

Actually, prices follow a random walk. Imagine a blind drunk staggering across
an open field. How far will he have gotten after some time? He could go one step
left, two steps right, three backwards, and so on in an aimless path. On average,
just as in tossing coins, he gets nowhere. On the average, his random walk will be
forever stuck at his starting point. In the same way, the prices on markets can go up
or down, by big increments or small. With no new information to push a price in
one direction or another, a price on average will fluctuate around its starting point.
In that case, the best forecast is the price today. Each variation in price is unrelated
to the last. In a stochastic model, the price-changes form a sequence of independent
and identically distributed random variables. In that case, a chart of changes in price
from moment to moment illustrates a more or less uniform distribution over time.
The size of most price changes varies within a narrow range. There are also bigger
fluctuations. But they barely stand up from the bulk of changes, as some outliers of
grass rise above the average height of an unmown lawn, in that most of the blades
of grass fall within a narrow range of heights, while a minority rise above this range
(Mainzer [8], Mandelbrot and Hudson [10]).

In order to illustrate this smooth distribution, Bachelier plotted all of a bond’s
price-changes over a month or year onto a graph. In the case of independent and
identically distributed price-changes, they spread out in the well-known bell-curve
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shape of a normal (“Gaussian”) distribution: the many small changes clustered in
the center of the bell, and the few big changes at the edges. Bachelier assumed
that price changes behave like the random walk of molecules in a Brownian mo-
tion. Long before Bachelier and Einstein, the Scottish botanist Robert Brown had
studied the way that tiny pollen grains jiggled about in a sample of water. Ein-
stein explained it by molecular interactions and developed equations very similar to
Bachelier’s equation of bond-price probability, although Einstein never knew that.
In 1923 (Journal of Mathematical Physics 2, 131–174), Norbert Wiener proved the
existence of Brownian motion and considered advanced related mathematical the-
ories. Therefore, Brownian motion is also called a Wiener process. It is a remark-
able interdisciplinary coincidence that the movement of security prices, the motion
of molecules, and the diffusion of heat are described by mathematically analogous
models.

Bachelier’s Hypotheses of Price Changes In short, Bachelier’s model depends
on the three hypotheses of (1) statistic independence (i.e., each change in price
appears independently from the last), (2) statistic stationarity of price changes, and
(3) normal distribution (i.e., price changes follow the proportions of the Gaussian
bell curve).

4.3 Models of Efficient Markets and Computable Risks

But it took a long time that economists recognized the practical virtues of describ-
ing markets by the laws of chance and Brownian motion (Mainzer [8], Mandelbrot
and Hudson [10]). In 1956, Bachelier’s idea of a fair game was used by Paul A.
Samuelson and his school to formulate the Efficient Markets Hypothesis. They ar-
gued that in an ideal market, security prices fully reflect all relevant information.
A financial market is a fair game in which buyer balances seller. By reading price
charts, analyzing public information, and acting on inside information, the market
quickly discounts the new information that results. Prices rise or fall to reach a new
equilibrium of buyer and seller. The next price change is, once again, as likely to be
up as down. So, one can expect to win half the time and loose half the time. If one
has special insights into a stock, one could profit from being the first in the market
to act on it. But one cannot be sure to be right or first, because there are many clever
people in a market as intelligent as oneself.

Since Samuelson Bachelier’s theory was not only elaborated into a mature theory
of how prices vary and how markets work. It was more important for the financial
world that the theory has been translated into practical tools of finance. In the 1950s,
Markowitz [43] was inspired by Bachelier to introduce Modern Portfolio Theory
(MPT) as a method for selecting investments. In the early 1960s, Sharpe [51] de-
vised a method of valuing an asset, called Capital Asset Pricing Method (CAPM).
A third tool is the Black-Scholes formula for valuing options contracts and assessing
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risk. Its inventors were Black and Scholes [18] in the early 1970s. These three inno-
vations, CAPM, MPT, and Black-Scholes, are still the fundamental tools of classical
financial theory until today, resting on Bachelier’s hypotheses of financial markets.

Black-Scholes Conditions of Financial Markets The Black-Scholes formula tries
to implement risk-free portfolios. Black and Scholes assumed several conditions of
financial markets: (1) The change of price Y(t) at each step t can be described
by the stochastic differential equation of a geometric Brownian motion. This as-
sumption implies that the changes in the (logarithm of) price are Gaussian dis-
tributed. (2) Security trading is continuous. (3) Selling of securities is possible at
any time. (4) There are no transaction costs. (5) The market interest rate r is con-
stant. (6) There are no dividends between t = 0 and t = T (maturity).

(7) There are no arbitrage opportunities. Arbitrage is a key concept for the un-
derstanding of markets. It means the purchase and sale of the same or equivalent
security in order to profit from price discrepancies. A stock may be traded in two
different stock exchanges in two different countries with different currencies. By
buying several shares of the stock in New York and selling them in Frankfurt, the
arbitrager makes a profit apart from the transaction costs. Traders looking for arbi-
trage opportunities contribute to a market’s ability to evolve the most rational price
for a good. The reason is obvious: if someone has discovered an arbitrage opportu-
nity and succeeded in making a profit, he will repeat the same action. After carrying
out this action repeatedly and systemically for several opportunities, the prices will
be adapted and no longer provide arbitrage opportunities. In short: New arbitrage
opportunities continually appear in markets. But as soon as they are discovered,
the market moves in a direction to eliminate them gradually (Mandelbrot and Hud-
son [10]).

Now, in the absence of arbitrage opportunities, the change in the value of a
portfolio must equal the (expected) gain obtained by investing the same amount of
money in a riskless security providing a return per unit of time. The assumed dynam-
ics of prices allows to derive the Black-Scholes partial differential equation which
is valid for both call and put European options. Under some boundary conditions
and substitutions the Black-Scholes partial differential equation becomes formally
equivalent to the heat-transfer equation of physics which is analytically solvable.

Assumptions of Classical Economic Models These financial tools are deeply
rooted in assumptions of classical economic models, but refuted by observables of
real human behavior (Mandelbrot and Hudson [10]):

1. Assumption: People are rational in the sense of Adam Smith’s homo oeconomi-
cus. Consequently, when presented with all the relevant information about a stock
or bond, investors will make the obvious rational choice leading to the greatest
possible wealth and happiness. Their preferences can be expressed in mathe-
matical formulas of utility functions which can be maximized. By that, rational
investors make a rational model of an efficient market. Actually, people do not
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only think in terms of mathematical utility functions, and are not always ratio-
nal and self-interested. They are driven by emotions distorting their decisions.
Sometimes, they miscalculate probabilities and feel differently about loss than
gain.

2. Assumption: All investors are alike. Consequently, people have the same invest-
ment goals and react and behave in the same manner. In short: they are like the
molecules in an idealized gas of physics. An equation that describes one such
molecule or investor can be replaced to describe all of them. Actually, people
are not alike. If one drops the assumption of homogeneity, one gets a more com-
plex model of the market. For example, there are at least two different types of
investors: a fundamentalist believes that each stock has its own value and will
eventually sell for that value. On the other side, a chartist ignores the fundamen-
tals and only watchs the price trends in order to jump on or off band waggons.
Their interactions can lead to price bubbles and spontaneously arising crashes.
The market switches from a well-balance linear system in which one factor adds
predictably to the next, to a chaotic nonlinear system in which factors interact
with the emergence of synergetic and unanticipated effects.

3. Assumption: Price change is practically continuous. Consequently, stock quotes
or exchange rates do not jump up or down, but move smoothly from one value
to the next. In this way, continuity has been assumed in classical physics, ac-
cording to the motto of Leibniz “natura non facit saltum” (nature does not make
leaps) which was repeated by Alfred Marshall in his text book “Principles of Eco-
nomics” (1890) for economic systems. From a methodological point of view, the
belief in a continuous behavior of nature and economy opens the possibility to
apply continuous functions and differential equations, in order to solve physical
or economic problems analytically. But actually, prices in economy and quantum
states in quantum physics do jump, and discontinuity, far from being an anomily,
characterizes the reality. Contrary to Einstein’s famous objection against quan-
tum physics: god plays with dice—in nature and society.

4. Assumption: Price changes follow a Brownian motion. The Brownian motion
is also a famous model of physics applied to financial markets by Bachelier. In
more details, it implies three assumptions: first, each change in price is believed
to appear independently from the last (statistical independence). Second, the pro-
cess generating price changes stays the same over time (statistical stationarity).
Third, price changes follow the proportions of the Gaussian bell curve (normal
distribution). Financial data clearly contradict to a smooth normal distribution of
changing prices. The analysis of the real distribution patterns is a challenge of
stochastic mathematics and systems theory and opens new avenues to the com-
plexity of modern society.

4.4 Securitized Credit Model and Increasing Networks of Risks

Nevertheless, the demand for profit and security has initiated a wave of financial
innovation, based on these classical assumptions. They are focused on the origina-
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tion, packaging, trading and distribution of securitised credit instruments. Simple
forms of securitised credit have existed for almost as long as modern banking. But
from the mid-1990s the system entered explosive growth in both scale and com-
plexity. We observe a huge growth in the value of the total stock of credit securities,
an explosion in the complexity of the securities sold, with the growth of structured
credit products, and with the related explosion of the volume of credit derivatives,
enabling investors and traders to hedge underlying credit exposures, or to create
synthetic credit exposures.

This financial innovation sought to satisfy the demand for yield uplift. It was
predicated on the belief that by slicing, structuring and hedging, it was possible
to create value, offering investors combinations of risk, return, and liquidity which
were more attractive than those available from the direct purchase of the underlying
credit exposures. It resulted not only in massive growth in the importance of secu-
ritised credit, but also in a profound change in the nature of the securitised credit
model. As securitisation grew in importance from the 1980s on, its development
was praised as a means to reduce banking system risks and to cut the total costs of
credit intermediation, with credit risk passed through to end investors, reducing the
need for unnecessary and expensive bank capital. Credit losses would be less likely
to produce banking system failure (Turner [54]).

But there is no “free lunch” or financial “perpetuum mobile”. When the crisis
broke, it became apparent that this diversification of risk holding had not actually
been achieved. Instead most of the holdings of the securitised credit, and the vast
majority of the losses which arose, were not in the books of end investors intending
to hold the assets to maturity, but on the books of highly leveraged banks and bank-
like institutions. This reflected an evolution of the securitised credit model away
from the initial descriptions. To an increasing extent, credit securitised and taken off
one bank’s balance sheet, was not simply sold through to an end investor, but bought
by the propriety trading desk of another bank, sold by the first bank but with part
of the risk retained via the use of credit derivatives, resecuritised into increasingly
complex instruments (e.g. CDOs and CDO squareds) or used as collateral to raise
short-term liquidity (International Monetary Fund [32]).

The financial innovations of structured credit resulted in the creation of products,
e.g. the lower credit tranches of CDOs or even more so of CDO-squareds, which had
very high and imperfectly understood embedded leverage, creating positions in the
trading books of banks which were hugely vulnerable to shifts in confidence and
liquidity. This process created a complex chain of multiple relationships between
multiple institutions, each performing a different small slice of the credit intermedi-
ation and maturity transformation process, and each with a leveraged balance sheet
requiring a small slice of capital to support that function (Sinn [52]). A complex net-
work of dependences has emerged in a hidden and intransparent world of financial
shadows. The new model left most of the risk still somewhere on the balance sheets
of banks and bank-like institutions but in a much more complex and less transparent
way.

The evolution of the securitised credit model was accompanied by a growth in
the relative size of financial services within economy, with activities internal to the
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banking system growing far more rapidly than end services to the real economy. The
growing size of the financial sector was accompanied by an increase in total system
leverage. But this process also drived the boom and created vulnerabilities of the
whole financial network that have increased the severity of the crisis. According to
the Turner Report [54], from about 2003 onwards, there were significant increases in
the measured on-balance sheet leverage of many commercial and investment banks,
driven in some cases by dramatic increases in gross assets and derivative positions.
This was despite the fact that measures of leverage (e.g. Value at Risk (VaR) relative
to equity) showed no such rise. This divergence reflected the fact that VaR measures
of the risk involved in taking propriety trading positions, in general suggested that
risk relative to the gross market value of positions had declined. It is clear in retro-
spect that the VaR measures of risk were faulty (Stutz [53]).

4.5 The Risk of Value at Risk (VaR)

The increasing complexity of the securitised credit market was obvious to some
participants, regulators and academic observers (Greenspan [27]). But the predomi-
nant assumption was that increased complexity had been matched by the evolution
of mathematically sophisticated and effective techniques for measuring and man-
aging the resulting risks (Colander et al. [19]). Central to many of the techniques
was the concept of Value-at-Risk (VaR), enabling inferences about forward-looking
risk to be drawn from the observation of past patterns of price movement. The risk-
forecasting models of value-at-risk (VaR) are based on the assumption that forecast-
ing credit risk is an activity not unlike that of forecasting weather. It is assumed that
one’s own action, based on past volatility, does not affect future volatility itself just
like forecasting weather does not influence future weather.

This technique, developed in the early 1990s, was not only accepted as standard
across the industry, but adopted by regulators as the basis for calculating trading risk
and required capital. Therefore, VaR was incorporated within the European Capital
Adequacy Directive (Danielsson et al. [21]). In financial mathematics and financial
risk management, Value at Risk (VaR) is a widely used risk measure of the risk of
loss on a specific portfolio of financial assets. For a given portfolio, probability and
time horizon, VaR is defined as a threshold value such that the probability that the
mark-to-market loss on the portfolio over the given time horizon exceeds this value
in the given probability level. VaR has five main uses in finance: risk management,
risk measurement, financial control, financial reporting and computing regulatory
capital (Kleeberg and Schlenger [33]). VaR is sometimes used in non-financial ap-
plications as well. Important related ideas are economic capital, backtesting, stress
testing and expected shortfall.

Mathematical Definition of VaR Mathematically (Föllmer and Schied [3, 24];
compare also Chap. 5 of Biagini et al.), the uncertainty in the future of a portfolio
is usually described by a function X : � → R, where � is a fixed set of scenarios.



4 The New Role of Mathematical Risk Modeling and Its Importance for Society 119

For example, X can be the value of a portfolio. The goal is to determine a number
ρ(X) that quantifies the risk and can serve as a capital requirement or the minimal
amount of capital which, if added to the position and invested in a risk-free manner,
makes the position acceptable. Given some confidence level α ∈ (0,1), the Value at
Risk (VaR) of the portfolio value X at the confidence level α is given by the smallest
number m ∈ R such that the probability of a loss is not larger than the confidence
level α:

VaRα(X) = inf
{
m ∈ R|P(X + m < 0) ≤ α

}
.

Obviously, value at risk (VaR) only pays attention that the boundary of the confi-
dence level is not exceeded. But, it does not consider the degree of loss. Further on,
it assumes that the probability distribution of losses is well-known because of histor-
ical data. Only in this case value at risk (VaR) can forecast credit risk like weather,
which means that future volatility can be derived from past volatility.

There are, however, fundamental questions about the validity of VaR as a mea-
sure of risk. The use of VaR measures based on relatively short periods of historical
observation (e.g. 12 months) introduced dangerous procyclicality into the assess-
ment of trading book risk (Turner [51]). Short-term observation periods and the as-
sumption of normal distribution can lead to large underestimation of probability of
extreme loss events. Interconnected market events in complex networks can produce
self-reinforcing cycles which models do not capture. Systemic risk may be highest
when measured risk is lowest, since low measured risk encourages behavior which
creates increased systemic risks.

This kind of mathematics, used to measure and manage risk by VaR, was not
very well understood with all its conditions and restrictions by top management and
boards to assess and exercise judgement over the risks being taken. Mathematical
sophistication ended up not containing risk, but providing false assurance that other
indicators of increasing risk (e.g. rapid credit extension and balance sheet growth)
could be safely ignored.

The global financial system, combining with macroeconomic imbalances, cre-
ated an unsustainable credit boom and asset price inflation. Those consequences of
the financial crisis transmitted financial system problems into real economy effects.
The shock to the banking system has been so great that its impaired ability to ex-
tend credit to the real economy has played a major role in enforcing the economic
downturn, which in turn undermines banking system strength in a self-reinforcing
feedback loop.

From a historical point of view, it is remarkable that the academic professionals
were well aware of the methodological weakness of VaR measures. In an “Academic
Response to Basel II” [21], the methodology of value-at-risk (VaR) was criticized
to be insufficient: (1) VaR risk models treat risk as a fixed exogenous process, but its
endogeneity may matter enormously in times of crisis. (2) VaR is a misleading risk
measure when the returns are not normally distributed, as in the case with credit,
market, and operational risk. It does not measure the distribution of risk in the tail,
but only provides an estimate of a particular region in the distribution. Thus, VaR
models generate imprecise and widely fluctuating forecasts.
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5 New Paradigm of Risk Modeling and Rational Behavior

The development of an expanded financial sector and the rapid growth and increased
complexity of the securitised model of credit intermediation was accompanied by
the development of increasingly sophisticated mathematical techniques for the mea-
surement and management of position taking risks. The techniques entailed numer-
ous variants to cope with, for instance, different categories of option. Their applica-
tion required significant computing power to capture relationships between different
market prices, the complex nature of structured credit instruments, and the effects
of diversification across correlated markets. But the underlying methodological as-
sumption was the old idea that analysis of past price movement patterns could de-
liver statistically robust inferences relating to the probability of price movements in
future.

5.1 Crisis of Risk Modeling

The financial crisis has revealed, however, severe problems with these techniques.
They suggest the need for significant changes in the way that VaR-based method-
ologies have been applied. But, the most fundamental question concerns our ability
in principle to infer future risk from past observed patterns. Can financial models
still be considered true mappings of an external world in order to derive predictions
of future events like in the natural sciences? (Lux and Westerhoff [37].)

Models in the tradition of Bachelier assume that the distribution of possible
events, from which the observed price movements are assumed to be a random sam-
ple, is normal with the shape of a Gaussian bell curve. But there is no clearly robust
justification for this assumption. Actually, the financial market movements are in-
herently characterized by fat-tail distributions. This implies that any use of VaR
models needs to be analyzed by the application of stress test techniques which con-
sider the impact of extreme movements beyond those which the model suggests are
at all probable.

One explanation of fat-tail distributions may lie in the complex networks of finan-
cial dependences. VaR models implicitly assume that the actions of the individual
firm, reacting to market price movements, are both sufficiently small in scale as not
themselves to affect the market equilibriums, and independent of the actions of other
firms. But this is a deeply misleading assumption if it is possible that developments
in markets will induce similar and simultaneous behavior by numerous players. If
this is the case, which it certainly was in the financial crisis, VaR measures of risk
may not only fail adequately to warn of rising risk, but may convey the message that
risk is low and falling at the precise time when systemic risk is high and rising.

For example, according to VaR measures, risk was low in spring 2007. Actually,
the system was overwhelmed with huge systemic risk. This suggests that stress tests
are needed to consider the impact of second order effects, for example, the impact
on one bank of another bank’s likely reaction to the common systemic stress.
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5.2 A New Paradigm of Risk Modeling

The most fundamental insight is, however, philosophical: it is important to realize
that the assumption that past distribution patterns carry robust inferences for the
probability of future patterns is methodologically insecure. It involves applying to
the world of social and economic relationships a technique drawn from the world
of physics, in which a random sample of a definitively existing universe of possi-
ble events is used to determine the probability characteristics which govern future
random samples. But it is doubtful when applied to economic and social decisions
with inherent uncertainty. Economists sometimes refer to it as “Knightian” uncer-
tainty which is a reference to the classical distinction between risk and uncertainty in
Frank Knights’ Ph.D. “Risk, Uncertainty, and Profit” [34] from 1921. But it would
also suggest that no system of regulation could ever guard against all risks and un-
certainties.

Analysis of the causes of the crisis suggests that there is a limit to the extent
to which risks can be identified and offset at the level of the individual firm. We
explained how the origins of the crisis lay in systemic developments: the crucial shift
required in regulatory philosophy is towards one which focuses on macro-analysis,
systemic risks and judgements about business model sustainability, and away from
the assumption that all risks can be identified and managed at a firm specific level.
As a result most of the changes we propose relate to the redesign of global regulation
combined with a major shift in methodology (Colander et al. [19]).

But improvements in the effectiveness of internal risk management and firm gov-
ernance are also essential. While some of the problems could not be identified at
firm specific level, and while some well run banks were affected by systemic devel-
opments over which they had no influence, there were also many cases where inter-
nal risk management was ineffective and where boards failed adequately to identify
and constrain excessive risk taking. Achieving high standards of risk management
and governance in all banks is therefore essential. Detailed proposals are necessary
to support an FSA (Financial Service Authority) in all countries.

The origins of the past crisis entailed the development of a complex, highly lever-
aged and therefore risky variant of the securitised model of credit intermediation.
Large losses on structured credit and credit derivatives, arising in the trading books
of banks and investment banks, directly impaired the capital position of individual
banks, and because of uncertainty over the scale of the losses, created a crisis of
confidence which produced severe liquidity strains across the entire system. As a
result, a wide range of banking institutions suffered from an impaired ability to ex-
tend credit to the real economy, and have been recapitalized with large injections of
taxpayer money.

The mathematical rigor and numerical precision of risk management and asset
pricing tools has a tendency to conceal the weakness of models and their assump-
tions to those who have not developed them and do not know the potential weakness
of the assumptions. Models are only approximations to the real world dynamics and
partially built upon idealized assumptions. A typical example is the belief in normal
distribution of asset price changes completely neglecting the importance of extreme
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events. Considerable progress has been made by moving to more sensitive models
with fat-tailed Lévy processes (Mandelbrot [41]). Of course, such models better cap-
ture the intrinsic volatility of markets. But they might again contribute to enhancing
the control illusion of the naïve user.

Therefore, market participants and regulators have to become more sensitive to-
wards the potential weakness of risk management models. Since there is not only
one true model, robustness should be a key concern. Model uncertainty should be
taken into account by applying more than a single model. For example, one could
rely on probabilistic procedures that cover a whole class of specific models. The
theory of robust control provides a toolbox of techniques that could be applied for
this purpose.

5.3 Convex Models of Risk

In the field of financial economics there are a number of ways that risk can be de-
fined (Marrison [40]). To clarify the concept mathematicians have axiomatically de-
scribed a number of properties that a risk measure might or might not have (Föllmer
and Schied [24], York [55]).

Mathematical Definition of Coherent Risk Measure A coherent risk measure
(Artzner et al. [16]) is a risk measure ρ that satisfies properties of monotonicity, sub-
additivity, homogeneity, and translational invariance. Consider a random outcome
X viewed as an element of a linear space L of measurable functions, defined on an
appropriate probability space. A functional ρ : L → R is said to be a coherent risk
measure for L if it satisfies the following properties:

Monotonicity: If X1,X2 ∈ L and X1 ≤ X2, then ρ(X1) ≤ ρ(X2).

That is, if portfolio X2 always has better values than portfolio X1 under all scenarios
then the risk of X2 should be less than the risk of X1.

Sub-additivity: If X1,X2 ∈ L, then ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

Indeed, the risk of two portfolios together cannot get any worse than adding the two
risks separately. This is the diversification principle.

Positive homogeneity: If α ≥ 0 and X ∈ L, then ρ(αX) = αρ(X).

Loosely speaking, if you double your portfolio then you double your risk.

Translation invariance: If m ∈ R and X ∈ L, then ρ(X + m) = ρ(X) − m.

The value m is just adding cash to the portfolio X, which acts like an insurance.
The risk of X + m is less than the risk of X, and the difference is exactly the added
cash m. Therefore, translational invariance is also called cash invariance. In partic-
ular, if m = ρ(X) then ρ(X + ρ(X)) = 0.



4 The New Role of Mathematical Risk Modeling and Its Importance for Society 123

The notion of coherence has been subsequently relaxed. Indeed, the notions of
sub-additivity and positive homogeneity can be replaced by the notion of convexity:

Convexity: If X1, X2 ∈ L and 0 ≤ λ ≤ 1, then ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) +
(1 − λ)ρ(X2).

Consider the collection of possible future outcomes that can be generated with the
resources available to an investor. One investment strategy leads to X1, while a
second strategy leads to X2. If one diversifies, spending only the fraction λ of the
resources on the first possibility and using the remaining part for the second alter-
native, one obtains λX1 + (1 − λ)X2. Thus, the axiom of convexity gives a precise
meaning to the idea that diversification should not increase the risk.

It is well known that value at risk (VaR) is positively homogeneous, but it is not
in general a coherent risk measure as it does not respect the sub-additivity property.
Hence, it is not convex. An immediate consequence is that value at risk might dis-
courage diversification. Value at risk is, however, coherent, under the assumption of
normally distributed losses when the portfolio value is a linear function of the asset
prices. However, in this case the value at risk becomes equivalent to a mean-variance
approach where the risk of a portfolio is measured by the variance of the portfolio’s
return. Average value at risk at level λ ∈ (0, 1],

AVaRλ = 1

λ

∫ λ

0
VaRα(X)dα

also called conditional value at risk, expected shortfall, or tail value at risk, is a
coherent risk measure (Detlefsen and Scandolo [22], Riedel [48]).

We previously underlined that model uncertainty should be taken into account,
since we do not know the distinguished true model of financial reality. Therefore,
we should consider a whole class of possible probabilistic models with different
penalty. In the dual representation theory of convex risk measures one aims at de-
riving their representation in a systematic manner. The class M contains possible
probabilistic models Q which are taken more or less seriously according to the size
of a penalty function π(Q). In this way, we take the message of praxis seriously that
we should not rely on one single model, but flexibly vary the models with respect to
different contextual applications under special attention to the worst case.

Mathematical Definition of Convex Risk Measure A dual representation of a
convex risk measure computes the worst case expectation taken over all models Q

and penalized by π(Q). The class M of possible probabilistic models is a set of
probability measures such that the expectation EQ(X) is well defined for all models
Q and portfolios X. According to Föllmer and Schied [21], the dual representation
of a convex risk measure ρ has the form

ρ(X) = sup
Q∈M

(
EQ(−X) − π(Q)

)
.

These models are no longer considered definitive mappings of reality. But they
serve as stress tests. One does not rely on a fixed model, but chooses the sure side
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for every position and focuses on the corresponding worst case model. Thus, the
model ambiguity is explicitly considered during the procedure.

5.4 Model Ambiguity and Rational Behavior

Model ambiguity is linked to the economic theory of rational behavior under un-
certainty (Cont [20], Maccheroni [38]). Classical economic models are mainly built
upon the two assumptions of rational expectations with well-known probabilities of
utilities and a representative agent (“homo oeconomicus”). They imply a complete
understanding of the economic laws governing the world. These models leave no
place for imperfect knowledge discovered in empirical psychological studies of real
humans (Frydman and Goldberg [4, 25]). Their behavior in financial markets is even
strongly influenced by emotional and hormonal reactions. Thus, economic model-
ing has to take bounded rationality seriously. But, model ambiguity does not mean
the collapse of mathematical modeling. Mathematically, a fixed probability measure
of expected utilities should be replaced by a convex risk measure which simultane-
ously considers a whole class of possible stochastic models with different penalties.
Financial praxis warned us not to rely on a fixed model, but to vary possible models
in a flexible way and to pay attention to the worst case. This is also the mathematical
meaning of a convex risk measure.

The differences between the overall system and its parts, macro- and microeco-
nomics, remain incomprehensible from the viewpoint of classical rationality which
assumes a representative agent. Since interaction depends on differences in infor-
mation, motives, knowledge and capabilities, this implies heterogeneity of agents
(Hayek [29, 30]). Only a sufficiently rich structure of connections between firms,
households and a dispersed banking sector will allow insights in systemic risks
and synergetic effects in the financial sector. The reductionism of the representa-
tive agent or “homo oeconomicus” has prevented economists from modeling these
phenomena.

For natural scientists, the distinction between micro-level phenomena and those
originating on a macro originated from the interaction of microscopic units is well-
known. In those models, the current crisis would be seen as an emergent phe-
nomenon of the macroeconomic activity (Aoki and Yoshikawa [15], Mainzer [40]).
The reductionist paradigm blocks any understanding of the interplay between micro
and macro level.

Models with interacting heterogeneous agents would also open the door to inter-
disciplinary research from different sciences. Complex networks of different agents
or statistical physics of interacting agents can model dynamic economic systems
(Mantegna and Stanley [38], McCauley [45]). Self-organized criticality is another
area that seems to explain boom-and-bust cycles of the economic non-equilibrium
dynamics (Scheinkman [49]).
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6 Food for Thought

In macroeconomics, data mining is often driven by the pre-analytic belief in the
validity of certain models which should justify political or ideological opinions.
The political belief in deregulation of the 1990 years is a typical example. Rather
than misusing statistics as a means to illustrate these beliefs, the goal should be
to put theoretical models to scientific tests like in the natural sciences. We should
follow the line of a more data-driven methodology.

A chain of specification tests and estimated statistical models for simultaneous
systems would provide a benchmark for the tests of models based on economic
behavior. Significant and robust relations within a simultaneous system would pro-
vide empirical regularities that one would attempt to explain, while the quality of fit
of the statistical benchmark would offer a confidence for more ambitious models.
Models that do not reproduce (even) approximately the quality of the fit of statis-
tical models would have to be rejected. This methodological criterion also has an
aspect of ethical responsibility of researchers: economic policy models should be
theoretically and empirically sound. Economists should avoid giving policy recom-
mendations on the base of models with a weak empirical grounding and should, to
the extent possible, make clear to the public how strong the support of the data is
for their models and the conclusions drawn from them.

A neglected area of methodology is the degree of connectivity and its interplay
with the stability of the complex system. It will be necessary for supervision to an-
alyze the network aspects of the financial system, collect appropriate data, define
measures of connectivity and perform macro stress testing at the system level. In
this way, new measures of financial fragility would be obtained. This would also
require a new area of accompanying academic research that looks at agent-based
models of the financial system, performs scenario analyses and develops aggregate
risk measures. Network theory and the theory of self-organized criticality of highly
connected systems would be appropriate starting points (Scheinkman and Woodford
[50], Mainzer [7]).

Such scientific analysis must be supported by more practical consequences. The
hedge fund market is still widely unregulated. The interplay between connectivity,
leverage and system risks needs to be investigated at the whole level. It is highly
likely that extreme leverage levels of interconnected institutions impose dangerous
social risks on the public.

On the macroeconomic level, it would be desirable to develop early warning
schemes that indicate the formation of bubbles. Combinations of indicators with
time series techniques could be helpful in detecting deviations of financial or other
prices from their long-run averages. Indication of structural change would be a sign
of changes of the behavior of market participants of a bubble-type nature (McCauley
[45]).

Obviously, there is no single causal model as definitive mapping of reality. In this
sense, David Hume and his followers were right in their skepticism against classical
axiomatization of rationality in the world. But that does not mean a complete deny
of mathematical tools and models. We have to consider whole classes of possible
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stochastic models with different weights. They must be combined with a data-driven
methodology and insights in the factual human behavior and its diversity. Therefore,
psychological and sociological case studies of human behavior under risk conditions
(e.g., stakeholders at stock markets) are necessary. In experimental economics, deci-
sion behavior is already simulated under laboratorial conditions. Even philosophical
ethics can no longer only argue with arm-chaired considerations and a priori princi-
ples, but must relate to empirical observations of factual decision behavior. That is
done in the new approaches of experimental ethics. We argue for this kind of inter-
disciplinary methodology which opens new avenues for mathematical modeling in
science. In this case, robust stochastic tools are useful, because they are used under
restricted conditions and with sensibility for the permanent model ambiguity.

7 Summary

In a globalized world, risks are mainly systemic and cannot be reduced to single
causes. They emerge from complex interactions in natural, technical, economic, and
social systems. Examples are complex information and communication networks,
power (“smart”) grids as well as cellular interactions in organisms or transactions
in financial markets. Therefore, systems theory with linear and nonlinear dynamics,
stochastic and statistic modeling, and computer models are important methodologies
in RISE. We must consider their explanatory power as well as their limitations.
Then, they can supplement themselves mutually.

But, formal models are not sufficient. Risk-awareness even of experts is often
subjective and depends on individual experience, societal and cultural contexts. Re-
member the extremely different reactions of the public to the Fukushima disaster in
Japan and Germany. Therefore, formal risk-models must be complemented by so-
ciological and cultural studies. Psychic behavior in decision situations must also be
taken into account. Therefore, experimental economics and ethics relate to observa-
tions of factual behavior of people, e.g., at stock markets. Behavioral studies under
experimental lab conditions are even useful for social philosophy and ethics.

The past crises might be characterized as example of final stages of well-known
boom-and-bust patterns that have been repeated so many times in the course of eco-
nomic history. But, there are several new aspects leading to a shift of methodological
paradigm: the preceding boom had its origin in the development of new financial
products with increasing complexity which seemed to promise diminishing risks.
The financial market detaches itself from the real market. Profit seems to be possi-
ble by clever financial innovations loosing their connection to real economy. But,
like in nature, there is no “free lunch” or “perpetuum mobile” of profit in finance.
Further on, the past crises were due to the increasing complexity of interconnected
financial networks. These aspects have been largely ignored by traditional economic
models.

Therefore, we cannot trust in a single risk model, but must consider a class of
more or less appropriate models, supplemented by experimental behavioral case
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studies. The lack of methodological understanding of models and the lack of ethical
responsibility to warn the public against the limitations of models were the main
reasons of the past economic crises. It is the task of philosophy of science to evalu-
ate scientific modeling and the ethical responsibility of scientists. During booming
periods we should better prepare the next crisis in a countercyclical manner.
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