
Chapter 16
Translational Risk Models

Donna Pauler Ankerst, Vanadin Seifert-Klauss, and Marion Kiechle

With rapid progression of computing and other technological advances, the practice
of modern medicine has moved from primarily anecdotal to largely quantitative.
With due credit to the Internet and the new cyber-society, individuals have taken a
more active role in the decision-making process concerning their health, from de-
ciding whether or not to get screened for a disease to which treatment is best for
their specific clinical profile. Treating physicians are more connected with latest
medical breakthroughs through vast dissemination via the Internet. Statistical pre-
diction models assembled on large well-designed cohorts, multiply validated and
easily accessible through online calculators play a role in translating basic science
results to implementation in the community for public health benefit. This chapter
describes the risk model building process that forms the basis of modern medical
decision-making, from statistical estimation to validation and implementation on
the Internet. The early diagnosis of cancer is used as the context to illustrate princi-
ples, though the concepts immediately transcend to other disciplines as concluding
examples in forestry and finance will show.
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The Facts

• Logistic regression for predicting disease from multiple risk factors, or more gen-
erally a dichotomous outcome from covariates, will be covered.

• Latest developments in external validation, including its distinct components of
discrimination, calibration and net benefit, will be reviewed.

• How risk prediction tools get converted to online risk calculators will be dis-
cussed.

1 Introduction

Risks provide the currency by which doctors, patients and individual members of
the general population communicate and make informed decisions regarding health.
Examples of daily media encounters with risk include claims that diets rich in fruits
and vegetables reduce the risk of heart disease, smoking increases the risk of lung
cancer, or one glass of red wine per day reduces blood pressure, just to name a few.
Increasingly it has been recognized that risks agglomerate from a multitude of fac-
tors rather than being the product of any single factor acting in isolation, for exam-
ple, that both diet and exercise work more effectively in combination to reduce the
risk of cardiovascular disease. Experience has also revealed that there is uncertainty
underpinning estimates of risk, in other words, that one study may undo a previous
study report on risk. Most people obtain information concerning health risk either
passively through the media, or more actively, through the Internet. These sources
in turn obtain their information from peer-reviewed published scientific studies and
hence often serve as the translators of basic science to public use. The scientific
studies have typically involved observation of a cohort or group of voluntary partic-
ipants under the relevant controlled or uncontrolled environments of a clinical trial
or observational study, respectively, followed by subsequent observation of outcome
and an observed statistically significant association between risk factors, interven-
tions and outcomes. Statisticians, epidemiologists and other quantitative scientists
scrutinize the findings from such cohorts, determining which biases may have been
at play that could ultimately limit validity of the findings or generalizability to pop-
ulations beyond that on which the studies have been performed. For example, a risk
model constructed primarily from people of one ethnicity may not apply to people of
other ethnicities. They build risk models when applicable, and validate them in other
cohorts, a process sometimes taking years beyond the already many years invested
in conducting the original study collecting the data and unfortunately, sometimes re-
sulting in failure to validate, thus limiting the scientific impact of the original study
reporting a positive finding.

This chapter describes the process beginning with the end of a published study
reporting a significant association between risk factors and outcomes and ending
with implementation of a risk prediction model for public use via the Internet. The
general concept of building a risk model applies to a vast variety of applications,
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Fig. 1 The risk building
paradigm

data and statistical models, the details of which cannot be delivered in a single chap-
ter or even a single textbook. Hence, to concretely illustrate the general concepts,
a specific application of the online Prostate Cancer Prevention Trial Risk Calcu-
lator (PCPTRC) for detection of prostate cancer will be used throughout. In later
sections of the chapter, an overview of the most prominently used risk models in
prostate, breast, lung, colorectal, and ovarian cancer will be reviewed, followed by
generalizations to other diseases and other disciplines, such as ecology, business and
finance.

2 Building Risk Models

The fundamental paradigm for building risk models is shown in Fig. 1 and proceeds
as follows. First a population- or clinically-relevant risk question is identified. Sec-
ond, the appropriate data sources are located that could be used to address the risk
question. For example, existing data repositories could be mined retrospectively to
see what risk factors led to development of a disease or outcome, or a new study
could be designed to prospectively follow individuals. Once the data are collected,
the third step requires statistical analysis, entailing data cleaning, fitting of an ap-
propriate model, selection of covariates to include in the model, adjustments for po-
tential biases in the data collection and then internal testing of model performance.
Once this is complete, the model is published in order to disseminate the results, for
the media, for further validation, which is the fifth step, and hopefully ultimately for
use by the public. Technologies and risk factors change over time and new biomark-
ers of disease (biological entities that can be measured in the blood or urine) or
new risk factors are continually discovered. Therefore the last step of the process
is the continual task of keeping a risk model contemporary. To give an example of
the process a brief overview of the PCPTRC from its conception to ongoing efforts
to update as new biomarkers for prostate cancer are discovered is illustrated. De-
tails for the specific steps of Fig. 1 will be more thoroughly described in subsequent
sections of the chapter.
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Example 2.1 We illustrate the risk building paradigm through the PCPTRC.

(1) (Identify risk question) Prostate cancer has the highest incidence of all cancers
affecting U.S. men and is the second leading cause of cancer-related death be-
hind lung cancer [10]. Prostate-specific antigen (PSA) is the leading blood test
used for the early detection of prostate cancer and it is now common for men
over 55 years of age to undergo routine screening for prostate cancer. Of con-
cern to older men is given their PSA values and other clinical test results, what
is their risk of prostate cancer? If sufficiently high, then they might be advised
to undergo prostate biopsy, a more invasive diagnostic procedure.

(2) (Patient databanks and prior studies) The PCPTRC was developed based on
analysis of data from 5519 placebo arm participants who had undergone an-
nual PSA and digital rectal examination (DRE) screening as part of the 7-year
Prostate Cancer Prevention Trial (PCPT) [24]. All PCPT participants were re-
quested to undergo prostate biopsy, both during the trial when prompted by a
PSA value exceeding 4 ng/mL or abnormal digital rectal exam (DRE) result
and at the end of the trial regardless of PSA and DRE findings. The latter aspect
made the PCPT cohort unique in the world in having prostate cancer status as-
certained by biopsy even among men who did not meet the clinical criteria for
recommendation to biopsy.

(3) (Statistical modeling) For predicting prostate cancer outcome all potential risk
factors measured on participants during the trial were identified, including age,
family history of prostate cancer in a first degree relative, whether or not a prior
prostate biopsy had been performed that was negative for prostate cancer, race,
ethnicity, and PSA and DRE outcomes within one year prior to the biopsy result
used in the analysis. Participants could have multiple biopsies up until either
a positive cancer diagnosis or the end-of-study required biopsy; only the last
biopsy of each participant was used. Logistic regression was used to statistically
model the association between the multiple risk factors to the outcome, prostate
cancer or not, on biopsy. A separate logistic regression was performed for the
association of risk factors to high grade prostate cancer, defined as prostate can-
cer with Gleason grade ≥7. High grade cancer is a particularly aggressive form
of cancer that is more often associated with mortality.

(4) (Publication) The PCPTRC appeared online as soon as the algorithm for the
PCPTRC appeared by [24].

(5) (External validation) Accuracy of the PCPTRC has been validated in a range
of external populations, from healthy populations undergoing annual screening
with men referred to prostate biopsy for elevated PSA or abnormal DRE, similar
in art to the PCPT [16], to clinical populations where men underwent biopsy
based on clinical symptoms [5, 7, 8, 15].

(6) (Update) The PCPT was enhanced in 2008 to include a new urine marker for
prostate cancer, PCA3 [2] and due to the online posting of the updated calcu-
lator, soon thereafter externally validated [18]. It has recently been updated to
include the biomarkers percent free PSA and [−2]proPSA (two recently dis-
covered relatives of PSA that are also measurable in the blood) and externally
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validated [3]. Minor updates to the PCPTRC were made to tailor for men cur-
rently taking finasteride [25] and to incorporate body mass index [12].

3 Statistical Models

Risk calculators can predict a range of outcome types, such as the probability of
having prostate cancer on biopsy, of developing breast cancer in the next 5 years,
or surviving past 10 years post-treatment for a disease. Accordingly they are built
on the appropriate statistical model for the outcome of interest. For example, Cox’s
proportional hazards model is a popular model for predicting times to an event with
possible censoring (end of follow-up time preceding occurrence of the event) be-
cause it incorporates risk factors and makes minimal assumptions on the baseline
event hazard rate. Logistic regression is commonly used to predict binary events,
and will be used to illustrate the principles throughout this chapter. The principles
of model selection and testing applied to logistic regression easily extend to other
statistical models for other outcome types.

Logistic regression is a method for relating multiple risk factors X1, . . . ,Xp as-
sembled in a vector X = (X1, . . . ,Xp) to a dichotomous outcome Y which will be
assumed to take the value of 1 for a bad outcome, such as disease and 0 for the
opposing good outcome, such as no disease. Specifically it relates the log odds of
the bad outcome (Y = 1) to the risk factors X through the relationship:

log
P(Y = 1|X)

1 − P(Y = 1|X)
= α + β ′X, (1)

where in the formula, log denotes the natural logarithm (base e), α is an intercept,
and β a vector of log odds ratios, one for each risk factor assembled in X.

To understand why β defines log odds ratios, it is helpful to consider the simple
scenario of just one dichotomous risk factor, X, taking the value 1 for an unfavorable
risk factor value versus 0 for a favorable risk factor value. Based on the logistic
model, the odds of the bad outcome based on the single risk factor X is:

P(Y = 1|X)

1 − P(Y = 1|X)
= exp{α + βX},

where exp denotes the exponential function. This equation implies that for the
individual with risk factor X, the probability of the bad outcome is a multiple,
exp{α + βX}, times the probability of the good outcome. The odds of the bad out-
come for individuals with the unfavorable risk factor (X = 1) and favorable risk
factor (X = 0) are given by:

P(Y = 1|X = 1)

1 − P(Y = 1|X = 1)
= exp{α + β}, P (Y = 1|X = 0)

1 − P(Y = 1|X = 0)
= exp{α},

respectively. From these expressions one might expect β to be greater than 0 since
individuals with the unfavorable risk factor should have a higher probability, and
hence odds, of the bad outcome than individuals with the favorable outcome. The
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ratio of odds for individuals with the unfavorable (X = 1) to favorable (X = 0) risk
factor describes the magnitude by which the odds of the bad outcome accordingly
changes:

P(Y=1|X=1)
1−P(Y=1|X=1)

P (Y=1|X=0)
1−P(Y=1|X=0)

= exp{α + β}
exp{α} = exp{β}.

The simplified expression, exp{β}, is the odds ratio (OR) for individuals with the
unfavorable compared to favorable risk factor.

For the case of a single predictor X that is continuous rather than dichotomous,
the OR gives the ratio of odds of outcome Y for a unit-increase in X (to see this
compute the OR for X = x + 1 compared to X = x). An OR > 1 implies that an
increase in the risk factor increases the odds of the bad outcome, OR < 1 means it
decreases the odds and OR = 1 means it has no impact. From the relationship above,
β = log{exp{β}} is the log odds ratio (log OR), and values of β > 0, <0, and =0
have the same interpretations as for OR > 1, <1 and =1, respectively.

If X were a categorical risk factor with more than two levels, such as race with
levels African American, Caucasian, and Other, the logistic model can still be fit
by choosing one level as a reference (say Caucasian) and then returning two odds
ratios, one for the comparison of each of the remaining levels, African Americans
and Other, to the reference. In many aspects such as this logistic regression operates
similarly as for linear regression. In the general case of multiple risk factors (1),
β = (β1, β2, . . . , βp) is the vector of respective log OR’s for each of the multiple
risk factors comprising X = (X1,X2, . . . ,Xp):

log
P(Y = 1|X)

1 − P(Y = 1|X)
= α + β1X1 + β2X2 + · · · + βpXp.

The interpretation of each parameter βi is the log OR corresponding to a unit in-
crease in the respective risk variable Xi , with all other risk variables in the model
held constant.

Statistical packages return estimates of log odds ratios (β’s), their standard errors,
and p-values for tests of the null hypotheses that they equal 0 (no effect) versus
two-sided alternative hypotheses that they do not equal 0. From these approximate
95 percent confidence intervals for log ORs can be constructed as (estimated log
OR) ± 1.96 × (standard error); to obtain estimates and confidence intervals for the
OR’s, take the exponent of the estimates and 95 percent confidence interval bounds,
respectively.

Typically many risk factors or individual characteristics, including demographic,
environmental or other variables are available for potential inclusion in the model
and additionally more complicated relationships between the variables and out-
comes can be modeled using transformations and interactions. Therefore, a vari-
ety of model selection techniques are available in statistical packages, many of
which automatically sort through large numbers of models. Some of the most
commonly used model selection techniques are based on finding the model with
the lowest Akaike’s information criterion, AIC = −2 × maximized log likeli-
hood + 2 × number of parameters, or the lowest Bayesian Information criterion,
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BIC = −2 × maximized log likelihood + log(sample size) × number of param-
eters [1, 19]. The first terms of both criteria seek to find the model maximizing
goodness of fit to the developmental data set, while the second terms penalize for
over-parameterization, with the BIC tending to penalize more, and hence selecting
smaller models with fewer parameters than the AIC on average.

As a preliminary indication of how the model may validate, internal validation
can be performed by splitting the dataset into a training and test set or into a group
of equally sized subsets that alternatively serve as training and test sets. A logistic
regression model is fit from scratch on the training set and then evaluated on the test
set using any one of the metrics to be defined later for external validation. For mul-
tiple splits of the dataset, test set performances are simply averaged. Bootstrapping,
repeated random sampling with replacement of test and training sets, can also be
used.

Example 3.1 The BIC and average cross-validated area underneath the receiver
operating characteristic curve (AUC) were used to find the optimal multivariable
logistic regression model relating potential risk factors to prostate cancer outcome
on biopsy on data from the 5519 PCPT placebo arm participants used to develop
the PCPTRC [24]. The AUC is a rank-based measure of how well a risk model dis-
criminates the bad outcomes it aims to predict from the good outcomes and will
be further defined in later sections. For the PCPT, 4-fold internal cross-validation
was implemented, whereby the developmental dataset of 5519 observations was
randomly partitioned into four subsets, three of size 1380 and one of size 1379,
with randomization stratified to keep the proportion of prostate cancer cases be-
tween 20 % and 23 % in each subset. Over 50 models, some including two-way
interactions, were evaluated by a combination of forward, backward and stepwise
selection and subjective measures, such as including only statistically significant ef-
fects at the 0.05 level. BIC and cross-validated AUC values were tabulated for each
of the models. The model with the lowest BIC value contained only main effects and
no interactions among risk factors and was also one of the models with lowest AUC
values. Therefore this model was selected to form the PCPTRC. The final selected
logistic regression model contained four risk factors: PSA (OR = 2.34 for logPSA),
DRE (OR = 2.47), family history of prostate cancer (OR = 1.31) and history of a
prior negative prostate biopsy (OR = 0.64). All were statistically significant with a
p-value less than 0.001 except for family history with a p-value of 0.002 [24].

4 External Validation

Once a risk model has been constructed, it is critical to evaluate its performance
on a population independent to that on which it was developed. Internal validation,
evaluating the model on the same population as on which the model was developed,
even though it has been split into separate training and test sets, is not enough,
since unmeasurable cohort effects will still favorably bias the performance of the
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model compared to what might be achieved in a completely distinct cohort collected
elsewhere. A variety of evaluation methods for risk models have been proposed
in the literature, and these can be grouped into those that measure discrimination,
calibration, or both. Recent reviews detangle the different objectives of the many
metrics currently employed to evaluate risk prediction models [20, 21]. All of these
metrics require an external validation cohort or data set, whereby all individuals in
the cohort have all risk factors X required for evaluation of the risk prediction model
and the true outcome Y .

For missing covariates X, [9] showed by simulation that imputation results in
less biased estimates of validation metrics than other currently used practices of ei-
ther excluding the entire patient from the analysis or throwing the covariate out of a
model. The current state of the art in imputation for X is based on specification of
full conditional distributions for missing covariates and termed Multivariate Impu-
tation by Chained Equations (MICE) and implementable in the R statistical pack-
age [26]. For missing outcomes Y in logistic regression, verification bias algorithms,
which repeatedly impute the missing Y values using the assumed logistic regression
form can be used if the missing data mechanism is assumed to be missing-at-random
(MAR), meaning that the reason for missing data does not depend on the missing
outcome value [4, 23].

4.1 Discrimination

Discrimination metrics focus on how well risk prediction models perform if used
as the basis for making binary decisions as to whether individuals will have bad or
good outcomes, sometimes referred to as hard classifications. Moving from a risk
prediction, varying from 0 % to 100 %, to a positive versus negative decision on the
bad outcome requires selection of a threshold r such that a risk above r corresponds
to a positive test and below r , a negative test. The misclassification rate, or number
of wrong test results made, is calculated separately for the subpopulations with bad
and good outcomes.

How successfully the risk prediction predicts bad outcomes is termed sensitivity
and on the external validation set is estimated by the percent positive tests among
the bad outcomes:

Sensitivity(r) = Number of bad outcomes with risk > r

Number bad outcomes
,

where sensitivity is indexed by r as a reminder that it depends on the user-selected
threshold r . How successfully the risk prediction tests negative for the good out-
comes is termed specificity and is accordingly estimated by:

Specificity(r) = Number of good outcomes with risk ≤ r

Number good outcomes
.

The higher the sensitivity and specificity at any threshold r the better the risk pre-
diction tool is. The problem is that as r increases from 0 % to 100 % specificity



16 Translational Risk Models 449

increases from 0 % to 100 % while sensitivity decreases from 100 % to 0 %, so
that finding the threshold r that simultaneously optimizes sensitivity and specificity
is difficult to achieve in practice. Sensitivity is often referred to as the true positive
rate (TPR), one minus the sensitivity as the false negative rate (FNR) and one minus
the specificity as the false positive rate (FPR).

The receiver operating characteristic (ROC) curve provides a summary of sen-
sitivity and specificity for all choices of r ranging from 0 % to 100 %; it typically
displays sensitivity on the y-axis and false positive rates on the x-axis, with both
axes ranging from 0 % to 100 % [22]. The higher the ROC curve, the better its
capacity for distinguishing bad from good outcomes. An appealing feature of ROC
curves is that they are invariant with respect to measurement scales, for example,
risks and the logits of risks (1) will yield the same ROC curve. This makes ROC
curves particularly useful when comparing tests on completely different measure-
ment scales, for example for directly comparing risk predictions from a model to
the leading risk factor or covariate in the risk prediction model. Finally, as rank-
based measures, ROC curves are by definition independent of disease prevalence in
external validation set and hence can be applied to the case-control study situation
in addition to prospective studies. An interesting single summary of the ROC curve
is the area under the ROC curve (AUC), which in addition, conveniently holds the
intuitive definition as the probability that a randomly chosen individual with a bad
outcome has a higher risk prediction than a randomly chosen individual with a good
outcome. The AUC ranges from a minimum at 50 %, implying predictive power of
the risk prediction tool no better than flipping a coin to a maximum of 100 % for a
perfectly discriminating risk prediction tool.

As seen by their formulas sensitivities and specificities for each threshold r can
be calculated by just computing the appropriate sample proportions in the exter-
nal validation set. The AUC is equivalent to the non-parametric Mann-Whitney or
Wilcoxon rank sum statistic for comparing two populations and is hence easily com-
putable using standard statistical software. The Wilcoxon test can be used for testing
the null hypothesis that the AUC equals 0.5 versus the alternative that it exceeds 0.5.
External packages can be imported into the statistical package R for computing the
AUC and for performing various statistical tests for comparing AUCs of multiple
tests.

Example 4.1 In 2009 the generalizability of the PCPTRC, which had been devel-
oped on a cohort of primarily Caucasian, healthy and elderly men, for potential
applicability to other populations was investigated. The Early Detection Research
Network (EDRN) clinical cohort comprised 645 men, some younger than mem-
bers of the PCPT cohort, who had been referred to multiple urology practices across
5 states in the northeastern U.S. and had received a prostate biopsy due to some clin-
ical indication, including persistent elevated PSA or abnormal DRE [7]. PCPTRC
risks were calculated for each member of the EDRN cohort and compared to the
actual clinical outcome on biopsy using sensitivities, specificities and the AUC. The
PCPTRC demonstrated statistically significant superior discrimination for detect-
ing prostate cancer cases compared to PSA (AUC = 69.1 % compared to 65.5 %,
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respectively, p-value = 0.009), and the ROC curve for the PCPTRC consistently
fell at or above that for PSA for all false positive rates, with the greatest difference
for false positive rates less than 25 %. For example, the thresholds of the PCPT
Risk Calculator and PSA which obtained a false positive rate of 20 % were 48.4 %
and 6.9 ng/mL, respectively (Table 2 of [7]). One can view these as two alternative
tests for referral to further intensive diagnostic testing by prostate biopsy, each with
equal specificities: the PCPTRC refers a patient to prostate biopsy if his PCPT risk
exceeds approximately 50 % and the PSA test if his PSA exceeds 6.9 ng/mL. If
these two diagnostic tests had been implemented in the EDRN population to “rule
in” patients who should undergo prostate biopsy and “rule out” patients who should
not, the PCPTRC would have correctly referred 47.1 % of the prostate cancer cases
(sensitivity) and the PSA test 35.4 % of the prostate cancer cases. Although better
than PSA, the PCPTRC would still have missed 50 % of the prostate cancer cases!
Insisting that 80 % of prostate cancer cases get caught for both tests would have
meant that the thresholds for referral would have had to be lowered, to 38.0 % and
4.0 ng/mL, for the PCPTRC and PSA test, respectively (Table 3 of [7]). But this
would have approximately halved the specificity of both tests, to 40.3 % for the
PCPT Risk Calculator and 44.1 % for PSA. In other words, approximately 60 % of
the men who did not have prostate cancer would have been referred to a prostate
biopsy unnecessarily (false positive rate), an error rate unacceptable from a public
screening perspective.

4.2 Calibration

Calibration concerns itself with how close predicted risks from a model are to actual
risks observed in an external validation population. Observed risks should match
predicted risks among homogenous groups defined by the same risk profile. How-
ever, obtaining an external validation set large enough to have enough individuals
with the same risk factors in order to make comparisons quickly becomes infeasible
as the number of risk factors increases; hence approximations are made by further
grouping.

One of the most commonly used calibration tests is based on an approximation
to Pearson’s chi-square goodness-of-fit test recommended by Lemeshow and Hos-
mer [11]:

X2 =
k∑

i=1

(Oi − niπi)
2

niπi(1 − πi)
,

where the validation set has been partitioned into k equally-sized groups (typically
k = 10 with groups defined by deciles of the predicted risks in the validation set),
Oi are the observed numbers of bad outcomes in the groups, ni the observed num-
bers of participants in the groups, and πi the mean risks of the groups. Under the null
hypothesis, observed outcomes Oi are close to expected outcomes niπi , hence X2
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should be small. Asymptotically under the null hypothesis, the X2 statistic follows
a chi-square distribution with k degrees of freedom.

An alternative measure of calibration, which measures reliability, was proposed
by [6] and elaborated upon in [13]. The approach requires logistic regression of the
outcomes (Yi = 0 good outcome, Yi = 1 bad outcome) on the logit of the predicted
risks (πi ) as covariates for the i = 1, . . . ,N individuals in the validation set:

log
P(Yi = 1)

1 − P(Yi = 1)
= α + β log

πi

1 − πi

.

A perfect match of predicted to actual risks would occur when α = 0 and β = 1.
Therefore, a test of the composite null hypothesis H0 : α = 0, β = 1 provides an
overall reliability test for the predictions. More specifically, the intercept α controls
the calibration of the model, which is most clearly seen when β = 1. When β = 1,
α < 0 implies the predicted risks are too high and α > 0, too low. When β �= 1,
noting that for πi = 0.5:

log
P(Yi = 1)

1 − P(Yi = 1)
= α,

one can interpret the intercept α as a calibration measure at πi = 0.5. The slope
parameter β is referred to as the refinement parameter: β > 1 implies the predicted
risks do not vary enough, 0 < β < 1 they vary too much, and β < 0 they show
the wrong direction. Therefore, additional tests of calibration given appropriate
refinement,H0 : α = 0|β = 1, and of refinement given appropriate calibration,H0 :
β = 1|α = 0, can be performed.

Example 4.2 In [7] it was reported that the average PCPTRC risk over all 645 men
of the EDRN cohort was 45.1 %, which is fairly high in keeping with the nature
of the cohort as elicited from multiple Urology practices. As a first indication of
calibration the average PCPTRC risk among the cohort should correspond to the
actual percent of the cohort that did have prostate cancer on biopsy. The percentage
of the 645 men in the EDRN cohort diagnosed with prostate cancer was 43.4 %,
fairly close to the average PCPTRC risk, providing a crude indication of calibration.

As an exploratory and primarily descriptive analysis of calibration among spe-
cific risk groups, Table 4 of [7] assessed the degree to which the PCPTRC calibrated
to actual risks for specific subgroups, such as for Caucasians, African Americans,
men with a positive family history and men with PSA less than 4.0 ng/mL. Across
all subgroups the average PCPTRC risk never varied by more than approximately 5
or 6 percentage points from the observed risk but there were some subgroups where
PCPTRC risks were better calibrated to actual risks than others. For example, among
the 47 African American participants in the cohort, 51.1 % had prostate cancer but
the average PCPTRC risk among these men was only 45.4 %. Application of the
Lemeshow and Hosmer test of calibration yielded a p-value of 0.10, not rejecting
the null hypothesis of a good fit at the 0.05 level of statistical significance. Cox’s lo-
gistic regression of observed prostate cancer status on logits of predicted PCPTRC
risks was also performed. The composite hypothesis test of reliability was not per-
formed; however, the intercept from the logistic regression was estimated as −0.014
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with standard error 0.091 and the slope by 1.291 with standard error 0.159. Separate
95 % confidence intervals for these estimates overlapped with 0 and 1, respectively,
indicating that predicted PCPTRC risks were reliable estimates of observed risks in
the EDRN population.

4.3 Net Benefit

Discrimination and calibration metrics objectively summarize accuracy but do not
provide information as to which thresholds of a prediction model might be useful
for basing clinical decisions. Towards this end, Vickers and Elkin [27] proposed a
measure of net benefit justified through a layman’s decision analysis framework that
does not rely on user-specified costs associated with various outcomes as full-blown
decision analyses typically do. As with the other accuracy measures, net benefit is
evaluated on an external cohort to the one on which the risk model was developed
as the expectation over the true and false positive counts:

NetBenefit(Cohort, r) = True Positive Count(Cohort, r)

Sample Size(Cohort)

− False Positive Count(Cohort, r)

Sample Size(Cohort)

(
r

1 − r

)
,

where for emphasis dependencies on the chosen cohort and user-selected cutoff r

are included in the definitions. The expression for the net benefit can be rewrit-
ten to show that it is also a function of the discrimination measures sensitivity and
1-specificity, TPR(Cohort, r) and FPR(Cohort, r), respectively, evaluated on the co-
hort and weighted by the proportions of bad outcomes (% Bad Outcomes(Cohort))
and good outcomes (% Good Outcomes(Cohort)) in the cohort:

NetBenefit(Cohort, r) = TPR(Cohort, r) × % Bad Outcomes(Cohort)

− FPR(Cohort, r) × % Good Outcomes(Cohort)

×
(

r

1 − r

)
.

This expression illustrates further the dependence of the net benefit on the evaluation
cohort. The discrimination metrics TPR and FPR already tend to depend on the
cohort, net benefit further relies on how prevalent the disease is in the evaluation
cohort. In other words, for two cohorts with the same operating characteristics of
a prediction model, the cohort with a higher disease prevalence will demonstrate
higher net benefit for using the prediction tool for clinical decisions.

Vickers and Elkin suggested evaluating the net benefit over all possible thresh-
olds r of the prediction model ranging from 0 to 1. The specific numbers obtained
for the net benefit can be difficult to interpret in isolation so they also recommended
overlaid decision curves for the strategies of referring no patients to action or all
patient’s to action regardless of the threshold r selected. For these curves the last
expression [r/(1 − r)] remains the same but the TPR and FPR are calculated based



16 Translational Risk Models 453

on the test rule that assigns no patients positive (in other words, r > 1) and all pa-
tients positive (in other words, r < 0). For taking no action, the TPR and FPR are
identically 0 so the net benefit curve for taking no action is the horizontal line at
0 across all thresholds r . For taking action on all patients the TPR and FPR are 1
and the net benefit curve is % Disease(Cohort)−% NotDisease(Cohort)[r/(1− r)],
which seemingly ironically, still depends on the threshold r , but that is an artifact
from the derivation of relative values of false positive results used in the derivation
of the net benefit.

4.4 Overall Performance Measures

There are overall measures that combine discrimination and calibration that have
been proposed for evaluating risk models but these have not gained widespread use
largely for two reasons. Firstly, they have awkward properties because of the di-
chotomous nature of the outcome predicted by a continuous measure and secondly,
they do not have an intuitive clinical interpretation.

The ubiquitous R2 measure of proportion of variability explained by a linear
regression of a continuous outcome Y on a series of variables has been extended
to the case of generalized linear models, including logistic regression, where Y is
dichotomous in the form of Nagelkerke’s R2 [14]:

R2 = 1 − exp

[
−2

n

{
l(β̂) − l(0)

}] = 1 −
[

L(0)

L(β̂)

]2/n

,

where L(·) and l(·) are the likelihood and loglikelihood functions, respectively, de-
fined at the maximized values of β , the logistic regression log odds ratios, and for
a null model with no covariates (β = 0). The problem with this measure is that for
dichotomous outcomes it has a maximum less than 1, so is not as easy to judge as
for continuous outcomes, where the maximum of R2 is 1. Modifications by the max
obtainable R2 have been proposed but these are awkward to implement in prac-
tice. Therefore the criterion has not become widely used outside the case of linear
regression with Normal outcomes.

A similar metric extended for dichotomous outcomes that has not found
widespread use is the Brier score, which is simply the squared difference between
the 0–1 Y outcomes and predictions from the model:

Brier score = 1

n

n∑

i=1

(Yi − p̂i)
2.

Predictions are good if the Brier score is small but squared Euclidean distance be-
tween a dichotomous outcome Y and a continuous predictor p is not intuitive and
will give coarse results for small sample sizes n. The Brier score also obtains a
maximum less than one and similarly, attempts to correct it are awkward [21].
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4.5 Integrated Discrimination Index

Noting shortcomings in the AUC for comparing risk prediction tools, Pencina and
colleagues [17] proposed the integrated discrimination index (IDI) for comparing
risk predictions from a new model to risk predictions from an old model that is
simply the difference in discrimination slopes between the new and old predictions
as proposed by Yates [28]:

IDI =
(

1

nevents

nevents∑

i=1

pnew,i − 1

nnonevents

nnonevents∑

i=1

pnew,i

)

−
(

1

nevents

nevents∑

i=1

pold,i − 1

nnonevents

nnonevents∑

i=1

pold,i

)
,

where nevents are the number of events, or bad outcomes, and nnonevents are the
number of non-events, or good outcomes, and the summations sum over the pre-
dicted probabilities from the new and old models as subscripted on the n’s. The
logic of the IDI is clear, a good prediction model should provide higher estimated
risks among the bad outcomes in the validation set compared to the good outcomes,
how good is determined by the discrimination slopes of the models. A positive IDI
would indicate a new model has better discrimination slope than the old.

Example 4.3 Ankerst and colleagues [30] have developed an extension of the PCP-
TRC to incorporate the novel prostate cancer markers % freePSA and [−2]proPSA,
which are both obtainable by blood tests. The methodology for updating the PCP-
TRC for new markers is based on Bayes algorithm for updating the prior odds of
prostate cancer, which in this case are based on PCPTRC risks, via likelihood ratios
of the distributions of the new marker among prostate cancer cases and controls to
obtain posterior odds and hence updated posterior risks for prostate cancer; for more
details see [29]. The updated PCPTRC is now available online at the same location
as the PCPTRC. A developmental dataset of 474 participants in the San Antonio
Biomarkers of Risk (SABOR) study were used to build the updated PCPTRC and
the model was validated on an external EDRN dataset comprising 575 men. The
IDI for comparing the new updated PCPTRC incorporating the two new markers to
the standard PCPTRC evaluated on the EDRN validation set was 6.3 % (95 % CI
3.0 to 9.6 %), indicating a statistically significant positive improvement to using the
updated model. Figure 2 compares the net benefit curves of the updated PCPTRC
model (called posterior PCPTRC risks), the original PCPTRC, and the strategies of
simply referring all men or no men to prostate biopsy irrespective of any risk pre-
diction model. The benefit curves indicated benefit of using both the PCPTRC and
updated PCPTRC for situations where risk thresholds exceeding 20 % for both of
these rules would be used for referral to biopsy over the blanket rule of referring all
men in the EDRN cohort to prostate biopsy, but no clear benefit of the more compli-
cated updated PCPTRC to the standard PCPTRC in this region. Both the standard
and updated PCPTRC provided benefit over the rule referring no patients to biopsy.
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Fig. 2 Net benefit curves

5 Food for Thought

To illustrate fundamental principles this chapter has focused on risk models for can-
cer diagnosis, but similar principles apply for all aspects of cancer treatment and
follow-up care, and easily extend to prediction problems in other disciplines outside
of medicine.

For projecting risks over expanded time periods, such as the 10-year risk of heart
attacks or other cardiovascular events in elderly people, models incorporating risks
of death from other causes, referred to in the medical literature as competing risks,
need to be implemented. Prognostic models refer to models used to predict treatment
outcomes, such as how long a patient can expect to live after a given a treatment is
administered. They may rely on other methodologies than logistic regression, such
as the Cox proportional hazards models which are appropriate for handling the com-
monly occurring censored survival times. A censored survival time refers to the case
where the exact date of death of a patient is not observed; it is only known that the
patient has lived a certain number of years, such as up until the end of the clini-
cal trial. Projections from such models can be used as a basis for making treatment
decisions, by favoring treatments that have the longest survival period for specific
patient clinical characteristics. The picture is not unidimensional as benefits in sur-
vival might be offset by loss in quality of life due to side effects. More compli-
cated decision functions incorporating multiple outcomes are required for weighing
the cost-benefits of competing treatment options. Increasingly, models addressing
multiple long-term effects of preventative or curative treatments for cancer, such as
higher incidences of ovarian and endometrial cancer in women taking tamoxifen,
are being implemented in order to provide a unified picture of the pros and cons
of various actions, providing many avenues for research in risk prediction for the
future of medicine.



456 D.P. Ankerst et al.

The principles of model building and online prediction outlined in this chapter
also directly apply to other disciplines, including forestry, ecology, informatics and
finance. For forest management, [32] have developed an online tool called SILVA
that projects growth of trees over expanded time periods. Their model accounts for
man-induced thinning, mortality, and other natural- and human-induced impacts.
Using an expanded database of 40000 trees observed at 5-year intervals in Bavaria,
Boeck and colleagues [31] implemented logistic regression to update the mortal-
ity simulator module of the SILVA program. Similar collaborations with ecologists
are working towards prediction of microhabitats on trees representing biological di-
versity, a concept of interest to forest conservationalists. Informatic scientists are
using the techniques to develop online predictions of project margins for large and
complex software development portfolios. One can foresee similar applications for
online predictions of financial success indicators based on the types of advanced
time series models used in that field.

6 Summary

This chapter has detailed the step-by-step program by which risk prediction models
are built, using as one illustration construction of the PCPTRC, one of the currently
most widely used prostate cancer risk calculators. The importance of external vali-
dation across multiple cohorts pushing the envelope in terms of generalizability of
the risk tool has been emphasized, as well as the separate components of validation
which address discrimination, calibration, and net benefit. As risk prediction tools
are typically founded on once-in-a-lifetime large well-designed studies, methodolo-
gies are needed for updating them based on new data and risk factor discoveries
based on smaller more recent studies. This chapter has discussed the need for com-
paring existing to updated risk models, using the integrated discrimination index as
one possible measure. To end a summary on risk prediction tools in current use was
provided along with extensions to other outcomes in medicine and applications in
other disciplines such as forestry and finance.
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