
Chapter 12
Engineering Risk Assessment

Daniel Straub

Engineers must make decisions or advise decisions makers in problems involving
uncertainty and risk. Engineering risk assessments support engineers and scientists
in this task, by providing a structured approach to understanding and modeling the
risks. Such risk assessments are based on a quantitative engineering modeling ap-
proach, which differs from the actuarial approach to risk modeling. Because of lim-
ited data, engineers must utilize all available information from multiple sources,
including physical and logical models, observed data and expert knowledge. This
information is uncertain and often contradicting. The methods presented in this
chapter help engineers to consistently combine this information to come up with
best estimates of risk and optimal decision support. They also help the engineer
in understanding the limitations and sensitivity of risk estimates and facilitate the
communication and comparison of risks. Finally, they enable the definition of clear
criteria for assessing the acceptability and optimality of engineering solutions to
reducing risk.
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The Facts

• Risk assessment is a formalized way of identifying feasible and optimal actions
in situations involving uncertainty and risk.

• Risk assessment includes the identification of risks, the analysis of risks and the
assessment of optimality and acceptability of risks.
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• In engineering, risk is often associated with systems for which no or limited
data is available. An actuarial approach to risk analysis (based purely on fail-
ure/damage statistics) is thus not feasible and alternative methods are needed.

• Engineering risk analysis combines physical, chemical and other models with
probabilistic models of uncertainty, which are derived from both data and expert
knowledge.

• Because data is limited, inclusion of in-service observations is an important part
of engineering risk analysis (e.g. using Bayesian methods).

1 Introduction

The single most important responsibility of the engineer is to make decisions or
to provide advice on decision making related to technology and the environment.
Examples of decisions that engineers are concerned with include:

– the selection of the height of a concrete slab in a building;
– the choice of a traffic regime at a road intersection;
– the choice of soil remediation measures at the site of an industrial facility;
– the selection of the structural system and material for a skyscraper;
– the choice of an inspection and monitoring regime for an aircraft;
– the decision on the location of a new railway line;
– the choice of a site and a concept for a nuclear waste deposit.

The above examples range from seemingly minor decisions to decisions that have
a major impact on a society. In all these decision problems, the engineer aims at
identifying the decision alternative that is the optimal one in accordance with a set
of objectives, such as cost minimization and minimization of environmental impact.
Ideally, the engineer can define an objective function and all the variables entering
the objective function are known with certainty. In this case, the identification of the
optimal decision becomes a trivial matter. An example of such a decision problem
is the design of a column that should lead to the minimum cost under the condition
that it complies with the relevant codes.

In most real situations, however, the engineer must consider different, often con-
tradictory, objectives, and she must make the decisions under conditions of uncer-
tainty. For example, in the case of the column design, the minimization of the cost
might not be the only objective, but additionally a minimization of the environmen-
tal impact might be desirable. Furthermore, the column might be subject to blast
loads that are not specified by the code and which are highly uncertain. In gen-
eral, the larger the impact of the decision, the more it will be required to address
conflicting objectives and uncertainty. In order to make rational choices under such
circumstances and to be able to justify and communicate these choices, the engi-
neer needs to be able to formalize the problem, in a similar way as she formalizes
a structural design using the rules of mechanics. This is the aim of engineering risk
analysis and assessment.
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Risk assessment can be seen as a special case of general decision analysis that
involves uncertain, adverse consequences. Even though it is possible to merely com-
pute the risks without considering any decisions, it is important to realize that an
effective risk assessment can only be carried out in the context of the decisions to
be taken (by the engineer, her client and society). The formulation of the scope of a
risk analysis strongly depends on the potential decisions to be made by the decision
maker. As an example, an earthquake risk analysis for a building will be different if
the client is an insurance company merely interested in setting a premium, in which
case it might be sufficient to determine the expected value of the annual loss in eco-
nomic terms with limited accuracy, or if the client is an owner interested in a safe
home, in which case it might be desired that the analysis determines the expected
loss of life and property damage for different alternative seismic retrofitting options.

2 Definition of Risk

Risk arises whenever there is uncertainty on potentially adverse system outcomes,
such as the failure of a structural system, the contamination of ecological systems,
traffic accidents, monetary losses. The risk associated with an event increases with
increasing probability of the event and/or increasing consequences. This is intu-
itively understood.

Here, the following mathematical definition of risk is used:

Risk = Expected adverse consequences.

The term “expected” refers to the mathematical concept of the expected value.
For the case of a single adverse event E, e.g. the event of a car crash, the risk R(E) is
computed as the product of the probability of the event Pr(E) with the consequences
of the event c(E):

R(E) = Pr(E) · c(E). (1)

In most risk assessments, more than one possible adverse event (scenario) needs to
be considered. The total expected risk is then computed by integration or summation
over all possible scenarios and risk contributions. As an example, consider the risk
due to flooding in an area A. The flood hazard is commonly described by the annual
maximum discharge Q in the relevant river. Let fQ(q) be the probability density
function (PDF) of Q, and let c(q, x) be the economic consequences of a flood with
discharge q at location x. The total economic risk in the area is then calculated by
integrating over all possible values of Q (the scenarios) and by integrating over the
total area A:

R =
∫

x∈A

∫ ∞

0
c(q, x)fQ(q)dqdx. (2)

As obvious from these definitions, risk is expressed in the same dimension as the
consequences, e.g., monetary values, number of fatalities, amount of toxic material.
In many instances, it will be necessary or preferable to convert these consequences
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into an abstract utility value, to allow for a more consistent expression of the deci-
sion maker’s preferences under uncertainty (see Chap. 3, [47] for an introduction to
utility theory).

In engineering applications, probability (as in Eqs. (1) and (2)) is generally a
subjective value, following the Bayesian interpretation of probability. In some in-
stances, the terms likelihood or belief are used instead of probability, but to avoid
confusion we will always use the term probability here. The reason for the sub-
jective interpretation is that in real engineering applications the conditions for the
frequentist (sometimes falsely termed “objective”) interpretation of probability are
not met. However, since decisions must be made, the engineer has no alternative
to using her best estimate of the probabilities of events, which of course should
be based on all available data and information. For this reason, Bayesian methods,
which enable the combination of information from different sources, have a central
role in engineering risk analysis.

3 Risk Assessment Procedure

A risk assessment is a formalized approach to determining and assessing the risk.
When combined with the planning of actions, it is denoted risk-based decision mak-
ing (or risk management). A procedure for risk analysis and management is illus-
trated in Fig. 1, adapted from Stewart and Melchers [4], and briefly outlined in the
following.

Any risk assessment should commence with a definition of the context in which
the analysis takes places. The risk analyst should state who the decision makers and
the involved stakeholders are (client, society, governmental organizations, individu-
als) and it should be identified what their objectives and preferences are. Constraints
and potentially influencing factors, including legal, financial, political, cultural and
organizational aspects, should be determined. On this basis, the goals and the con-
straints of the risk analysis should be clearly stated. In particular, the criteria against
which the risk is to be assessed must be defined at this stage (see Sect. 6 for exam-
ples) and agreed upon with the client.

In a next step, the investigated system must be clearly defined, as it is commonly
done in a proper engineering analysis. The system is defined in terms of its physical
extension (e.g. the area included in an environmental risk assessment), in terms of
the potential hazards (which types of hazard are not included?) and in terms of its
societal dimensions (e.g. the types of consequences that are to be considered). This
definition should be established in collaboration with, and must be approved by, the
client.

In a third step, a hazard scenario analysis is performed, aimed at identify-
ing all relevant scenarios contributing to the risk. This includes an initial assess-
ment of the risks associated with the scenarios. This crucial part of the analysis,
which provides the basis for all the later analysis, is presented in more details in
Sect. 4.
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Fig. 1 Risk-based decision
making/risk management
procedure (adapted from
Stewart and Melchers [4])

The hazard scenario analysis is followed by the quantitative risk analysis, which
consists of estimating the probability of the identified adverse events as well as their
consequences, by means of a variety of probabilistic modeling and analysis tools,
which will be outlined in Sect. 5. These computations must generally be based on
a number of assumptions. For this reason, it is essential that the computed risks
are subject to a sensitivity analysis, in order to understand the influence of the as-
sumptions on the final results. This may be followed by further analysis of crucial
assumptions and a re-evaluation of the risks.

Finally, the risks are assessed, i.e. they are compared against the previously
defined risk acceptance criteria (outlined in Sect. 6). At this stage, the results of
the analysis are presented to the decision makers and, in some instances, to the
stakeholders. On the basis of the risk assessment, strategies for treating the non-
acceptable risks must be identified. Four different strategies are distinguished in
Fig. 1:

• Avoidance: The system, or parts of the system, is no longer operated, thus reduc-
ing the associated risk to zero. In many instances, this is not an option.

• Reduction: The risks are reduced by introducing appropriate mitigation mea-
sures, which reduce the probability of events or their consequences. Examples
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include modifications of the system itself, controlling the system through moni-
toring/inspection and early warning/evacuation procures.

• Transfer: Financial risks can be transferred through insurance or related financial
instruments.

• Acceptance: In some instances, risks that do not comply with risk acceptance
criteria must be accepted. Such acceptance should always be a temporary solution
until other measures are adopted.

Following the implementation of the measures, it is required to monitor the effi-
ciency of the measures and to review the risks after their implementation. If neces-
sary, adjustments to the risk treatment strategy must be made.

Most elements of the risk assessment are changing with time, and ideally the
risk analysis is set up in a dynamic manner, i.e. it is revised at regular intervals.
Thereby, it is of importance that all the assumptions and computations made in the
assessment are well documented, and that all information, including data, is well
organized. This will highly facilitate an update of the risk assessment at future times,
since a major portion of the budget for risk assessments is typically allocated to the
collection and organization of data and information.

A set of application examples of engineering risk analyses can be found in Stew-
art and Melchers [4].

4 Hazard Scenario Analysis

A central part of any risk analysis is the hazard scenario analysis. In this phase of
the analysis, all potential hazards and scenarios leading to damages must be iden-
tified, and suitable strategies to reach this goal must be implemented. These can
vary strongly depending on the type of system and risks considered, on whether
or not similar risk assessments were previously performed and on whether or not
standardized procedures for the risk assessment of the considered system exist. An
example of such a standardized procedure is the Probabilistic Safety Assessment
methodology (PSA) developed for nuclear power plants (e.g. Beckjord et al. [11];
Apostolakis [7]).

4.1 Risk Screening

A key element of the hazard scenario analysis is a procedure for collecting the
knowledge of relevant experts, which is typically achieved by organizing a meet-
ing that includes engineers with relevant system-specific knowhow, personnel with
field experience and risk analysts. Such meetings, which are sometimes termed
risk screening meetings, can be understood as an organized brain-storming. In a
first round, the participants are asked to envision everything that could possibly go
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wrong, however unlikely the scenario. It is important that the organizers of the meet-
ing (the moderators) ensure that no scenarios are discarded at this point. In particular
experienced practitioners tend to make arguments such as “this has never happened
before”, and the moderators must make sure that no participant is discouraged by
such comments. At this point in the process, even the highly unlikely scenarios can
be of relevance. Clearly, such a meeting must be well structured and the modera-
tors must be well prepared with background knowledge and all potentially relevant
information (e.g. plans, maps, photographs, etc.).

4.2 Qualitative and Semi-quantitative Assessment of Risks

In conjunction with the risk screening, a first semi-quantitative estimation of the
probability and the consequences of scenarios is made. To this end, it is common to
define so-called risk matrixes, as illustrated in Fig. 2. The colors indicate the risk
category. Since risk is the product of probability and consequence (Eq. (1)), the
diagonals correspond to equi-risk lines if consequences and probability are plotted
in log-log-scale, as is commonly done.

Here, the probability (or frequency) of events is grouped into classes (e.g., >0.1,
0.1–10−2, 10−2–10−3, 10−3–10−4, <10−4), as is the consequences of events. Of-
ten, separate risk matrixes are defined for different consequence categories (fatal-
ities, financial consequences, ecological consequences). It is noted that many in-
dustrial companies and government agencies have such risk matrixes, but these are
confidential in most cases, due to legal concerns.

To each scenario, as identified in the risk screening, is assigned a probability
and a consequence class (or several consequence classes, one for each category).
A useful strategy to facilitate this assignment is to illustrate each consequence class
by some example scenarios. This is particularly relevant when the assignments are
made by experts with limited experience in estimating probabilities.

At the end of the hazard scenario analysis, it must be determined, which of the
scenarios are to be further studied in the detailed analysis. This is achieved by con-
sidering all identified scenarios and excluding those that are considered to be of
acceptable risk (e.g. those that fall into the green area in the matrix of Fig. 2). In this
process it is important that all the assumptions made are well documented. Further-
more, when deciding which risks to accept, the limited accuracy of the initial hazard
scenario analysis must be accounted for; i.e., only those risks that cannot become
relevant even with a more detailed analysis can be excluded.

In this context, often the so-called ALARP principle is invoked, which stands
for “As low as reasonably possible”. It is common practice to divide the risk ma-
trix into three regions: a region of acceptable risk, a region of inacceptable risk
and in-between is the ALARP region, as shown in Fig. 2. All risks that are in
the ALARP region should be reduced to a level “as low as reasonably possible”.
This signifies that for all risk scenarios falling into this region, the risks should
be optimized, typically through a cost-benefit analysis. This is further discussed in
Sect. 6.
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Fig. 2 Risk matrix

4.3 Logic Tree Analysis

As part of the initial assessment, as well as in detailed quantitative risk assess-
ments, logic trees are often used for system representation. These are typically bi-
nary system representations; the most well-known are fault trees and event trees.
Fault trees establish the relation between component failures and system failure
events (the latter are called top-events). Event trees establish the consequences of
system failures (top events) by laying out all possible event sequences following the
system failure. These tools, their applications and their limitations are described in
Chap. 13, [50].

5 Quantitative Risk Assessment

Quantitative risk assessment should be based on probabilistic methods. However,
in risk analysis of anthropogenic systems, typically not enough data is available to
determine a useful failure statistics. The reasons are

(a) that the number of such systems is often limited and failure rates are low;
(b) that the systems are subject to unique design, loading and operation conditions;
(c) that the systems are subject to common factors, introducing strong dependence

among observations.

As an example, the rate of fatal accidents of European and US commercial air-
lines is in the order of 10−7–10−8 per hour of flight (NTSB [33]), and accidents can
reasonably well be modeled by a Poisson process. However, the failure rate varies
depending on aircraft age, operator, and various other factors. Assume that our aim
is to determine the probability of failure for a specific aircraft of Lufthansa during
the next flight hour and compare it with the acceptable value of 10−8. Within the
Lufthansa fleet, in the past 10 years, no fatal accident of an aircraft in service oc-
curred, and in the past 20 years, one fatal accident occurred. Even if all the other
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specific factors of this aircraft were neglected, any statistical estimate of the failure
rate is highly uncertain. More importantly, the estimate of the failure rate will not
provide us with useful information on how to reduce probability of failure, since
the influence of the various factors that can be modified (inspection/maintenance
procedures, flight operation procedures, aircraft design) is not and cannot be quan-
tified using statistical methods alone. It is therefore necessary to combine statistical
data with engineering models of the process. This is a central part of quantitative
methods in engineering risk analysis.

The following sections outline a number of techniques available in engineering
risk analysis for combining engineering models with stochastic models and data, all
of which aim at providing the most accurate prediction of the probability of adverse
events with the given information.

5.1 Statistics

Despite the fact that there is typically not sufficient data available, statistics remains
an essential tool in engineering risk analysis. In particular, probabilistic models of
input parameters must be determined; as an example, the statistics of rainfall precip-
itation are a required input to a flood risk analysis. In this and many other examples,
an estimate of the extreme behavior is essential, i.e. extreme value statistics are of
importance (see Chap. 6, [23]). Special focus must be put on an accurate assessment
of the uncertainties involved, since the data basis is often insufficient; an excellent
example of such uncertainty is given by Coles et al. [15].

When data is limited and statistical uncertainty is relevant, Bayesian statistics en-
ables to consistently account for this uncertainty and to include it in the assessment.
An introduction to Bayesian statistics is given in Chap. 8, [17]. In addition, it is of-
ten useful to combine the data with expert opinion, which is facilitated by Bayesian
statistics, whereby the prior distributions are selected following the experts. How-
ever, care is needed in order not to use the information contained in the data twice,
which can happen when the experts’ opinions are based on the same data that are
used to determine the posterior statistics.

5.2 Probabilistic Analysis of Engineering Models

In engineering, physical, chemical or logical models of the relevant processes are
typically available. These are used to make predictions of the performance of given
systems. Any model can be considered as a function g that establishes a relationship
between inputs X and outputs Y:

Y = g(X). (3)

In many instances (and those are the situations of interest to us), all or some of the
input variables X = [X1;X2; . . .] are random. As a result, the outcome variables
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Y = [Y1;Y2; . . .] become random as well, even if the model (the function) is known
with certainty. We are thus dealing with functions of random variables.

In addition, the function g itself can also be random, i.e. for a given X, the vector
of outcome variables Y = [Y1;Y2; . . .] is random. This situation commonly occurs
in the analysis of problems involving stochastic processes, e.g. in the analysis of
dynamic systems with random excitation (e.g. cars, aircraft, structures under wind
or earthquake excitation). Introductions to the analysis of such systems can be found
in Lutes and Sarkani [31]. Here, we will restrict ourselves to problems in which g is
a deterministic function. This does not imply that we assume the model to be perfect:
model uncertainty can be included through additional random variables in X.

Ideally, we compute the full probability distribution of Y exactly. However, this
is only possible in few cases, as discussed below. In some instances, it is sufficient
to compute moments of the distribution of Y instead of the full distribution, which
significantly simplifies the problem. For most problems, however, it will be neces-
sary to use approximation methods. These include Monte Carlo Simulation (MCS)
and the class of Structural Reliability Methods (SRM), which also include advanced
sampling techniques such as adaptive importance sampling and subset simulation.
These SRM are presented in Sect. 5.3.

It should be noted that applied physical models are often numerical, e.g. Finite
Element (FE) models. This implies that no analytical solution for Y = g(X) exists,
and that obtaining values of Y can be costly (in terms of computation time). This
has implications on the applicable methods for evaluating the characteristics of Y.

Illustration 5.1 (Fatigue Model) For illustrational purposes, we consider the
Palmgren-Miner model for material fatigue, which occurs in dynamically loaded
structures such as aircraft, trains, cars, bridges and buildings. One of the tragic
failures caused by material fatigue was the accident of the ICE train at Eschede,
Germany in 1998, causing 101 fatalities. Fatigue damage can be measured in terms
of a normalized damage D, which in the simplest form of the model is computed as

D = n
1

C
Sm. (4)

Here, C and m are material parameters, S are the stress ranges due to constant cyclic
loading and n are the number of stress cycles. Failure occurs when the damage
exceeds 1, i.e. when D ≥ 1.

We consider the case where C and S are random variables, i.e. we have X =
[C;S] and Y = [D]. We will use this model to illustrate the different concepts and
solution strategies below.

The simplest class of models is the one of linear models, which can be generically
written as

Y = g(X) = a0 + aX, (5)

where X is a vector of length nX , Y and a0 are vectors of length nY , and a is a
nY × nX matrix of coefficients. As is well known, for linear models, the mean and
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covariance of Y can be computed exactly (Papoulis and Pillai [34]). In the special
case that the random variables X are multinormal (Gaussian) distributed, the ran-
dom variables Y also have a multinormal distribution. This explains the popularity
of linear Gaussian models: for these models, the full distribution of Y is readily
obtained, since it is fully described by its mean and covariance.

It is noted that many non-linear models can be transformed into linear models,
as illustrated in the following.

Illustration 5.2 (Fatigue Model) The non-linear model for material fatigue of
Eq. (4) can be transformed into a linear model of C and S by taking the logarithm:

lnD = lnn − lnC + m lnS. (6)

It follows that the mean of the logarithm of the fatigue damage is

E[lnD] = lnn − E[lnC] + mE[lnS] (7)

and its variance is

Var[lnD] = Var[lnC] + m2 Var[lnS]. (8)

If C and S are lognormal distributed, then lnD is normal distributed and the proba-
bility of failure, Pr(D ≥ 1) = Pr(lnD ≥ 0) can be computed analytically.

In the case of non-linear engineering models, a common strategy in probabilis-
tic analysis is to approximate the models by a linear or quadratic model, so-called
first- and second-order approximations (e.g. Papoulis and Pillai [34], Straub [5]).
Rarely, higher order approximations are also chosen. However, in risk analysis, it
is commonly the extreme events that are of interest. In this case, the approximation
of the function g(X) around the expected value MX is generally not suitable. An
alternative is to approximate g(X) in the tail of the distribution, corresponding to
the region of interest. Such an approach is pursued by structural reliability methods
introduced in Sect. 5.3 below.

In theory, it is also possible to compute the exact distribution of Y = g(X). As is
well known, when Y is a scalar one-to-one function of a single random variable X,
then the distribution of Y = g(X) is readily obtained as

fY (y) = fX

[
g−1(y)

]∣∣∣∣dg−1(y)

dy

∣∣∣∣, (9)

where g−1 is the inverse function of g. Solutions for general functions of one or
more random variables are described in Papoulis and Pillai [34]. However, for most
realistic models of engineering systems with several random variables, these solu-
tions are not practical and approximate methods, such as the Monte Carlo simula-
tion, are necessary.

5.2.1 Monte Carlo Approximation

With the availability of computers, a simple, intuitive and often effective approach
to analyzing functions of random variables is Monte Carlo Simulation (MCS). It
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Fig. 3 Illustration of the Monte Carlo simulation approach to evaluating functions of random
variables (from Straub [5])

proceeds by artificially generating samples xi , i = 1, . . . , ns from the distribution of
the input variables X and then evaluating the functions yi = g(xi ) for each sample
value xi separately. In this way, a set of samples yi , i = 1, . . . , ns of the function
values Y are generated, which provide an empirical estimate of the distribution of Y.
The principle of the MCS method is illustrated in Fig. 3 for the case of a scalar input
variable X and a scalar output variable Y .

The MCS method is particularly useful when the function Y = g(X) must be
evaluated numerically and when it is difficult or impossible to obtain the inverse
function g−1(Y). In MCS, evaluation of the inverse function is not required.

A main advantage of MCS is its simplicity. For a given function g(X), it consists
of only three steps, which are readily performed with a few lines of computer code
(in addition to the code required for evaluating g(X)). These are:

1. Generation of (pseudo-)random samples xi , i = 1, . . . , ns , of the input vari-
ables X.

2. ns evaluations of the function to yi = g(xi ).
3. Analysis of the generated samples yi of Y.

A more detailed introduction can be found e.g. in Rubinstein and Kroese [40] or
Straub [6]. Here we only note that MCS is inefficient when computing the probabil-
ity of rare events. When applying MCS with ns samples to calculate the probability
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pF of an event F , the coefficient of variation of the MCS estimation error is approx-
imately (

√
nspF )−1. As an example, to compute a probability pF = 10−6, we need

ns = 25 × 106 samples to achieve an accuracy of 20 %.
A variant of MCS, which is often more efficient, is importance sampling (IS), as

described e.g. in Engelund and Rackwitz [21]. Instead of sampling randomly from
the distribution of X, IS allows to concentrate samples of X in the region of interest.
In risk analysis, this region typically corresponds to the values of X for which failure
of the system occurs. The identification of this region is a non-trivial matter, which,
however, is facilitated by structural reliability methods outlined in the next section.

5.3 Structural Reliability Methods

In risk analysis, we are mostly concerned with failure events that have small prob-
abilities and for which the MCS approach is not efficient. For this reason, a class
of methods called Structural Reliability Methods (SRM) have been developed since
the 1970s (e.g. Rackwitz and Fiessler [39]; Der Kiureghian and Liu [18]). The fol-
lowing provides a brief outline of SRM, detailed introductions can be found e.g. in
Ditlevsen and Madsen [20], Melchers [32] or Straub [6].

In SRM, the event of interest is described in terms of a so-called limit state
function g(X), where X = [X1;X2; . . . ;Xn] is the vector of random variables of
the problem (the uncertain model input). By definition, the (failure) event F corre-
sponds to

F = {
g(X) ≤ 0

}
. (10)

In this formulation, {g(X) ≤ 0} = �F corresponds to a domain in the outcome space
of X, whose surface is described by {g(X) = 0}. The probability of the event F is
thus identical to the probability of X taking a value within this domain. It can be
computed by integrating the joint probability density function of X, denoted by
f (x), over �F :

Pr(F ) =
∫

g(x)≤0
f (x)dx1dx2 · · ·dxn. (11)

The problem is illustrated in Fig. 4. For the case of two random variables, as in
Fig. 4, numerical integration is straightforward, e.g. using quadrature rules. How-
ever, most methods for numerical integration have computation times that increase
exponentially with the number of dimensions (one exception being MCS). There-
fore, they are not suitable to solve the integral in Eq. (11) when the number of
random variables is larger than 3 to 5.

All structural reliability methods aim at solving Eq. (11). All of these methods
are approximations, and each method has its own advantages and disadvantages.
Here, only the first-order reliability method (FORM) is briefly introduced, followed
by a short outline of other methods.
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Fig. 4 Illustration of the general reliability problem, for the case of two random variables; left:
contour plot of the joint PDF, right: 3D plot of the same joint PDF

Illustration 5.3 (Fatigue Failure) With the fatigue model introduced in Eq. (4), fa-
tigue failure is modeled as the event of the damage D reaching or exceeding 1, i.e.
F = {1−D ≤ 0}. It follows that the fatigue failure can be described by the following
limit state function:

g(C,ΔS) = 1 − n
1

C
Sm. (12)

5.3.1 First-Order Reliability Method (FORM)

The method starts by transforming the problem from the original space of the ran-
dom variables X to the space of standard normal random variables U. If the joint
distribution of X is of the Gaussian copula class, the Nataf transformation can be
applied (Der Kiureghian and Liu [18]), if the joint distribution of X is of any arbi-
trary form, the Rosenblatt transformation can be used (Rackwitz and Fiessler [39]).
The reader is referred to Ditlevsen and Madsen [20], Melchers [32] or Straub [6] for
details. In the following, we let T denote this transformation, i.e.:

U = T(X), (13)

X = T−1(U). (14)

The first basic idea of FORM is to transform the limit state function g to the space
of standard normal random variables. Let G denote the new limit state function in
standard normal space:

G(U) = g
(
T−1(U)

)
. (15)

The transformation T is probability conserving, therefore we have that Pr(F ) =
Pr(g(X) ≤ 0) = Pr(G(U) ≤ 0). In analogy to Eq. (11), the probability of the failure
event F is now computed by

Pr(F ) =
∫

G(u)≤0
φ(u)du1du2 · · ·dun, (16)
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Fig. 5 Design point and linear approximation of the limit state surface. Left side: original random
variable space; right side: standard normal space

where φ is the standard multivariate normal PDF.
The second basic idea of FORM is to approximate the limit state function G(U)

by a first-order Taylor expansion at the expansion point u∗, denoted by G′(U). To
limit the approximation error, the expansion point is selected as the point in the
failure domain with the highest probability content, the so-called Most Likely Fail-
ure Point (MLFP). Because the standard multivariate normal PDF φ is rotation-
symmetric around the origin, the MLFP is equal to the point on the failure surface
G(U) = 0 that is the closest to the origin (provided that Pr(F ) < 0.5). The identi-
fication of the expansion point therefore corresponds to a constrained minimization
problem:

u∗ = arg min‖u‖ subject to G(u) = 0, (17)

where ‖u‖ = √
uTu is the Euclidian norm of the vector u, which corresponds to the

distance of u from the origin. The notation arg min stands for “the argument that
gives the minimum value of”.

Figure 5 illustrates the transformation of the limit state surface and the approxi-
mation by a hyperplane at the MLFP for the case of two random variables (in which
case the hyperplane reduces to a line).

With this approximation, the limit state surface is approximated by its tangent at
the design point, see Fig. 5. In FORM, the integration over the domain {G(u) ≤ 0} is
thus replaced by the integration over a half space defined by the tangent {G′(u) = 0}.

Every marginal distribution of the standard multivariate normal distribution is a
standard normal distribution. Therefore, the marginal probability distribution of U
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in the direction perpendicular to the linearized limit state surface is also a standard
normal distribution, as illustrated in Fig. 5. It should be clear from the illustration
that the probability of failure is fully defined by the distance βFORM = ‖u∗‖ between
the origin and the MLFP as

Pr(F ) ≈ Pr
(
G′(U) ≤ 0

) = �(−βFORM). (18)

Here, � is the standard normal cumulative distribution function (CDF). βFORM is
known as the FORM reliability index.

The FORM solution is independent of the problem dimension, i.e. the n-
dimensional integration always reduces to an evaluation of the standard normal
CDF. The difficulty in FORM is the identification of the MLFP, u∗ i.e. the solu-
tion of the optimization problem of Eq. (17). Optimized algorithms exist for this
purpose. Furthermore, specialized response surface methods have been developed
to limit the number of calls of the function g(X), e.g. Bucher and Bourgund [14] or
Sudret [49].

FORM is surprisingly accurate for a wide range of problems, but the accuracy is
obviously dependent on how strongly non-linear the limit state function is. For this
reason, it is recommended to check improve the accuracy of FORM by perform-
ing an additional importance sampling, in which the sampling density is centered
around the MLFP, e.g. Rackwitz [37]. Many other strategies exist, e.g. a second-
order approximation (Breitung [13]) or a novel efficient simulation technique based
on Markov Chain Monte Carlo (Au and Beck [8]), and the interested reader is re-
ferred to the literature provided in the bibliography.

Illustration 5.4 (Fatigue Failure) The fatigue failure is described by the limit state
function in Eq. (12), g(C,S) = 1 − nC−1Sm. We assume the following model for
the parameters (all random variables are independent).

Because C and S are statistically independent, they can be transformed sepa-
rately from X to U-space, by requiring that FXi(xi) = �[T(xi)]. It follows that the
inverse transformation T−1 from standard normal space is:

C = exp(UCσlnC + μlnC),

S = USσS + μS.

Consequently, the limit state function in standard normal space is obtained by in-
serting the above expressions in Eq. (12):

G(U) = 1 − n

exp(UCσlnC + μlnC)
(USσS + μS)m. (19)

The original and the transformed limit state functions are those shown earlier in
Fig. 5, where X1 = S and X2 = C.

With the parameters of Table 1, the MLFP is found according to Eq. (17) as

u∗ = [2.59;−2.55].
(This can be verified graphically in Fig. 5.) The corresponding FORM reliability
index is βFORM = ‖u∗‖ = 3.63 and the FORM estimate of the probability of failure



12 Engineering Risk Assessment 349

Table 1 Parameters of the fatigue model

Variable Distribution CDFa Parametersb

C lognormal �
[
(ln c − μlnC)/σlnC

]
μlnC = 30.5, σlnC = 0.45

S normal �
[
(s − μS)/σS

]
μS = 50, σS = 12.5

m deterministic – m = 3

n deterministic – n = 107

a� is the standard normal CDF
bAll dimensions are corresponding to mm and N

is found as:

Pr(F ) ≈ �(−βFORM) = 1.4 × 10−4.

For comparison, the exact solution found by direct numerical integration is Pr(F ) =
1.3 × 10−4. (By observing the shape of the linear approximation in Fig. 5, it should
be clear that FORM slightly overestimates the reliability.)

5.4 System Reliability

In the above sections it was assumed that the event of interest is described by a
parametric function of a number of random variables X. In many instances, however,
the event of interest corresponds to a system failure event that can be described
by a logical function of component failure events. As a simple example, consider
the failure of an aircraft with four engines. The aircraft is still operational with
one engine, and the system failure FS can thus be expressed as the intersection of
the component failures Fi : FS = ⋂4

i=1 Fi . (Such a system is known as a parallel
system.)

The probability of component failure can often be determined from data, either
from experimental tests or—preferably—from in-service failure data. The probabil-
ity of the system failure is then determined based on the component failure proba-
bility and the logical model of the system.

If the components as well as the system are expressed by binary states (fail-
ure/survival), then the relation between component states and system state can be
modeled by reliability block diagrams, an example of which is given in Fig. 6. The
system fails whenever there is no path between the beginning and the end of the
block diagram. It is noted that other logic trees, in particular fault trees (Chap. 13,
[50]), can be converted into such reliability block diagrams.

The analysis of binary systems is commonly done by identifying the so-called
minimal cut sets. A cut set is a set of components that leads to system failure (it
“cuts” the diagram in two) and a minimum cut set is one in which no subset is a cut
set (i.e. all components must fail to cause failure of the system). For the example of
Fig. 6, there are two minimal cut sets: {1,3,4} and {2,3,4}.
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Fig. 6 Example of a
reliability block diagram for a
system with four components

The dual to cut sets are link sets: a link set is a set of components that ensure the
system to work, and a minimum link set is one where no subset is a link set (i.e.
all components are necessary for the system to function). The minimum link sets
of the system in Fig. 6 are: {1,2}, {3} and {4}. It is pointed out that the identifica-
tion of minimal link sets or cut sets is non-trivial, and can become computationally
infeasible for large and complex systems.

There are two basic types of systems: the parallel system and the series system.
In the parallel system, all components are set in parallel, i.e. the system fails only
if all components fail: FS = ⋂n

i=1 Fi . In the series system, all components are set
in series, i.e. the system fails as soon as one components fails: FS = ⋃n

i=1 Fi . For
a general system, failure can be described by considering each minimal cut set as a
parallel system (all components must fail for failure to occur), and the system as a
series system of its minimal cut sets (the system fails as soon as one cut set fails). It
follows that system failure is:

FS =
nk⋃

k=1

⋂
i∈Ck

Fi, (20)

wherein nk is the number of minimal cut sets and Ck is the index set describing
the kth minimal cut set. For the example of Fig. 6, it is: FS = (F1 ∩ F3 ∩ F4) ∪
(F2 ∩ F3 ∩ F4). By applying the distributive law, this can be reformulated to FS =
(F1 ∪ F2) ∩ F3 ∩ F4. (Alternatively, this formulation can be obtained directly from
the minimal link set formulation.)

For known cut sets, the system failure probability Pr(FS) can be computed as
a function of the individual component failure probabilities Pr(Fi), i = 1, . . . , n

when component failure events are statistically independent. (As an example, if all
components of the system shown in Fig. 6 are independent and have identical failure
probability Pr(Fi) = 0.1, then the probability of system failure is Pr(FS) = 0.0019.)
This assumption of independence does not hold for most applications, and it is then
necessary to know the probabilities of intersections, such as Pr(Fi ∩ Fj ). In this
case, exact computation is only possible for small systems or when the dependence
structure can be expressed in a simple form (e.g. when dependences are caused by
common influencing factors). However, approximate solutions based on simulation
(e.g. MCS) exist, or bounds can be computed (e.g. Song and Der Kiureghian [42]).

The computation of system reliability is a broad discipline, in particular when
including also non-binary (i.e. multi-state) systems. The interested reader is referred
to the monographs on system reliability by Barlow and Proschan [10] and Høyland
and Rausand [26].
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5.5 Bayesian Updating

Bayesian analysis is an important tool in engineering risk analysis, since it facili-
tates the consistent combination of information from various sources, which is cru-
cial when the amount of data is limited. As an example, there is large uncertainty
associated with tunnel construction because of random geology, but prior to and
during the construction information is gathered from the site, e.g. by observing de-
formations or measuring groundwater flow. These allow the experienced engineer to
adjust the project to minimize risks. Bayesian updating can formalize this process of
assessing the risk conditional on such observations (e.g. Straub [44], Papaioannou
and Straub [3]).

Bayesian updating of the probability of an event F with an observation event Z

is based on the rule of Bayes:

Pr(F | Z) = 1

Pr(Z)
Pr(Z | F)Pr(F ). (21)

Here, Pr(F ) is the a-priori probability of F (i.e. before the observation Z); Pr(F | Z)

is the conditional a-posteriori probability of F (i.e. conditional on the observa-
tion Z); the conditional probability Pr(Z | F) is the so-called likelihood, which
describes the information content of Z with respect to F ; Pr(Z) is the a-priori prob-
ability of making the observation Z, which is obtained by normalization. Bayesian
updating can be performed repetitively. Consider the case where we make two ob-
servations Z1 and Z2 sequentially. Firstly, the probability of F is updated with the
observation Z1 following Eq. (21). Secondly, the updated probability Pr(F | Z1) be-
comes the new prior probability, and the conditional Pr(F | Z1 ∩ Z2) is calculated
from Eq. (21) where Pr(F ) is replaced with Pr(F | Z1).

Bayes’ rule is at the heart of Bayesian statistics, as introduced in Chap. 8, [17].
The reader is referred to that chapter for details on the practical implementation
of Eq. (21) in that context. There are two practical differences between the applica-
tion in Bayesian statistics and in engineering risk assessment: (a) Unlike in Bayesian
statistics, where the prior probability distribution is often weakly informative, in risk
assessment the prior probability Pr(F ) is generally informative, as it is based on the
available models of the process. (b) In engineering risk assessment, the event F is
often described by complex probabilistic models (often based on engineering mod-
els, as outlined earlier). Therefore, different computational approaches are required
than in Bayesian statistics (e.g. the use of MCMC is often inefficient). The methods
are often based on structural reliability methods, but other methods like Bayesian
networks are also becoming popular. The reader is referred to Straub [43, 44] for
examples of such methods.

Illustration 5.5 (Updating of Fatigue Reliability and Risk) A common strategy to
reduce the risk due to fatigue failures is to perform regular inspections of the fatigue-
sensitive structural details. Trains, aircrafts, turbines, bridges and many other struc-
tures undergo regular inspection, which are costly due to the inspection cost and the
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Fig. 7 Bayesian updating of the probability of fatigue failure with inspection results: inspections
are performed in intervals of 106 stress cycles, all inspections result in no-identification of defects;
taken from Straub [43]

downtime of the system. (As an example, basic checks of commercial aircrafts are
performed approximately every 500–800 flight hours.) For these reasons, there is a
strong interest in optimizing these inspections, which requires quantifying the effect
of inspections on the probability of failure (e.g. Straub and Faber [46]).

Fatigue inspections check whether or not cracks are present in the material. When
defects are found, they are repaired. When no defects are found, the probability of
failure is decreased, purely due to the reduction of the uncertainty. The quality of the
inspection is described by so-called Probability of Detection (PoD) functions, which
describe the probability of detecting a defect as a function of the defect size. To
update the probability of failure, the likelihood function is constructed by combining
this PoD function with physical models describing crack growth. The latter are a
function of multiple random variables. In this way, Bayes’ rule can be used to update
the probability of failure after every inspection that results in not finding a defect.
An exemplarily result is shown in Fig. 7.

5.6 Bayesian Networks

Bayesian networks (BNs), also known as Bayesian belief networks, are probabilis-
tic models that facilitate efficient representation of the dependence structure among
random variables by graphical means. BNs have been developed since the 1980s,
mostly in the field of artificial intelligence, for representing probabilistic informa-
tion and reasoning (Russell and Norwig [41]). They have found applications in many
fields such as statistical modeling, language processing, image recognition and ma-
chine learning, and have increasingly been applied in engineering risk analysis. Re-
cent applications in this field are reported, e.g., in Fris-Hansen [24], Faber et al. [22],
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Fig. 8 A simple Bayesian
network

Grêt-Regamey and Straub [25], Straub [43], Bensi et al. [12]. A general introduction
to BN can be found in the textbook by Jensen and Nielsen [28].

In a nutshell, BNs model a joint probability distribution of a set of random vari-
ables X = [X1, . . . ,Xn]. Each random variable is represented by a node in the BN,
and the links between them represent the dependence structure among the variables.
If all X are discrete, they are fully described by their joint probability mass func-
tion (PMF), p(x). The size of the joint outcome space of X for which p(x) must be
defined increases exponentially with the number of variables, but the BN enables
an efficient modeling by factoring the joint probability distribution into conditional
(local) distributions for each variable given its parents. Parents of a variable Xi are
all random variables that have links pointing to Xi . A simple BN with five variables
is illustrated in Fig. 8, where X1 is a parent of X3 and X4, and X2 is a parent of X4
and X5.

The joint PMF for this network is given as

p(x) = p(x1, x2, . . . , x5) = p(x1)p(x2)p(x3 | x1)p(x4 | x1, x2)p(x5 | x2) (22)

which can be written in the compact and general form

p(x) =
n∏

i=1

p
[
xi | pa(Xi)

]
(23)

where pa(Xi) denotes the set of parents of Xi .
The decomposition of the joint PMF into the conditional PMFs of each variable

given its parents, p[xi | pa(Xi)], is motivated by the d-separation rules (Pearl [36]),
which describe the independence assumptions encoded in the graphical structure
of the BN. However, the BN definition of the joint PMF according to Eq. (23) is
quite intuitive even to the lay engineer with little understanding of the theory. To
understand the efficiency of the BN representation, consider the case where each
variable in the BN of Fig. 8 has 10 outcome states. To directly represent the joint
PMF p(x), it is necessary to specify 105 probability values (the size of the outcome
space of X). However, with the decomposition according to Eq. (22), it is sufficient
to specify 10 + 10 + 102 + 103 + 102 = 1220 probability values (e.g. for specifying
p(x5 | x2) for all combinations of X2 and X5, 102 values are required). Therefore,
even for this simple example, the required information for specifying the problem is
reduced by two orders of magnitude.

To efficiently compute marginal and conditional probabilities of variables in the
network (the inference process), the conditional independence properties can also
be exploited. Global computations involving p(x) can be replaced by local com-
putations. For the case that all random variables are discrete and/or linear combi-
nations of Gaussian random variables, exact inference algorithms exist, but finding
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Fig. 9 BN model for seismic
risk analysis of an
infrastructure system (Straub
et al. [48])

optimal computation strategies in a specific BN is a NP-hard task. Alternatively,
sampling methods can be used to evaluate BNs. The latter can also be applied to
BNs with continuous random variables. An accessible introduction to all these in-
ference algorithms is provided by Jensen and Nielsen [28]. It is noted that a variety
of software exists for constructing and evaluating BNs, many of which are avail-
able for free (e.g. the Genie software, developed at the University of Pittsburgh:
http://genie.sis.pitt.edu/).

The BN has several features that make it highly useful in engineering risk analy-
sis:

(a) Its graphical form provides a concise representation of statistical dependence
that can be understood also by non-experts.

(b) The decomposition of the problem into local conditional distributions corre-
sponds to the way complex risk analyses are performed. Combining different
probabilistic models within one single BN model is often straightforward.

(c) As its name suggests, the BN is efficient for Bayesian updating when new in-
formation becomes available.

BNs are a powerful modeling framework when it is possible to exploit condi-
tional independence among random variables. This is the case for most applications
of engineering risk analysis, where the relation among random variables is often
characterized by causal relations (A causes B). One example of such a dependence
structure is given in Fig. 9. The dependence between the seismic intensities Si at
multiple sites i due to common earthquake source characteristics can be modeled
efficiently with the BN. It also captures the assumption that the performance Ei of

http://genie.sis.pitt.edu/
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Fig. 10 The causal network
for the corrosion inspection
problem

infrastructure elements (bridges, pipelines, etc.) depend only on the seismic inten-
sity at their site. However, in the example given in Fig. 9 it is also observed that,
when including spatial correlation between the seismic intensity at different loca-
tions, a large number of links are needed (indicated in grey). This is one example
of a dependence that is not efficiently represented by a BN. In most instances, suit-
able modeling strategies can avoid such types of dependences (e.g. Straub and Der
Kiureghian [45]).

BN can directly be extended to decision graphs, to assess the effect of mitigation
actions on the risk, and to optimize decisions following the classical decision theory
(Chap. 3, [47]).

Illustration 5.6 (Corrosion Inspection) To determine the risk due to corrosion of
the reinforcement in a reinforced concrete structure, a so-called “half-cell poten-
tial measurement” is performed to identify corrosion activity, together with a visual
inspection of the concrete surface. Let us denote the condition of the element by
C, with {C = 0} being the event of no corrosion and {C = 1} the event of corro-
sion. V is the visual inspection, with {V = 0} the event of no visible corrosion and
{V = 1} the event of visible corrosion. M is the outcome of a half-cell potential
measurement with {M = 0} being the event of no-indication and {M = 1} the event
of indication.

It is reasonable to assume that for given condition of the element, the outcome
of the measurement is independent of the visual inspection. Therefore, the causal
network for this problem is shown in Fig. 10.

The conditional probability mass functions required for the specification of the
network can be summarized in so-called conditional probability tables:

Event Probability

{C = 0} 0.8
{C = 1} 0.2

Event Probability conditional on
{C = 0} {C = 1}

{V = 0} 1 0.5
{V = 1} 0 0.5

Event Probability conditional on
{C = 0} {C = 1}

{M = 0} 0.8 0.15
{M = 1} 0.2 0.85

These probability models can be obtained from deterioration models and past ex-
perience with the inspections. With these specifications, it is possible to compute
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the probability of corrosion conditional on different measurement/observation out-
comes. It is:

Event Probability conditional on
{V = 0}, {M = 0} {V = 0}, {M = 1} {V = 1}, {M = 0} {V = 1}, {M = 1}

{C = 0} 0.977 0.653 0 0
{C = 1} 0.023 0.347 1 1

For this simple example, the computations are trivial and can easily be performed
by hand. As an example, it is:

Pr(C =1 | V =0 ∩ M =1) = Pr(C = 1 ∩ V = 0 ∩ M = 1)

Pr(V = 0 ∩ M = 1)

= Pr(C = 1)Pr(V = 0 | C = 1)Pr(M = 1 | C = 1)∑1
i=0 Pr(C = i)Pr(V = 0 | C = i)Pr(M = 1 | C = i)

= 0.2 × 0.5 × 0.85

0.8 × 1.0 × 0.2 + 0.2 × 0.5 × 0.85
= 0.347.

Note that this corresponds to the application of Bayes’ rule.

5.7 Sensitivity Analysis

One of the most important parts of any risk analysis is the investigation of the sensi-
tivity of the computed risks to changes in the model parameters and assumptions. In
engineering risk analysis, it is often necessary to make relatively crude assumptions
on certain model parameters, due to the lack of detailed information or models. It is
therefore essential that the sensitivity of the computed risks to these assumptions is
quantified.

A sensitivity analysis essentially consists in re-running the risk computations for
different input parameters. If the number of parameters is large and/or the risk model
is computationally demanding, these re-runs must be limited to a few cases, which
have to be selected using engineering judgment. Also, sensitivity measures from
probabilistic calculations (e.g. using FORM or MCS) can be used (e.g. Cooke and
van Noortwijk [16]), but it must be considered that these measures are local, i.e. for
non-linear models they reflect only the effect of small changes in the assumptions.

It is also noted that many risk analyses are notional, which means that they do
not compute the real risks, but compute the risk conditional on certain idealized
assumptions. In particular, the effect of human error is often excluded from quanti-
tative risk computations, due to the difficulty in modeling such errors. In this case,
the computed value cannot be compared against absolute risk criteria, but the model
it is still useful to assess the sensitivity of the risk to influencing factors and model
assumptions. By means of sensitivity analyses, it is possible to pre-evaluate different
mitigation strategies.
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Fig. 11 Acceptable risks for
chemical plants in the
Netherlands, together with an
exemplary F –N curve for a
facility (with acceptable risk)

6 Risk Acceptance and Optimization

Once risks are computed, they must be compared against acceptance criteria. Of-
ten, multiple risk acceptance criteria (RAC) must be considered. On the one hand,
criteria may be defined separately for different consequence classes (fatalities and
health effects, economical, environmental). Also, it is often distinguished between
individual risk (i.e. the risk accrued by one specific individual), and societal risk (the
average risk in a society). The former applies e.g. to the workers in a facility or to
inhabitants nearby, the latter to a member of the general public who is exposed only
infrequently. On the other hand, RAC may be defined separately by the different
stakeholders involved. The operator of the facility and the regulatory bodies may
each have their own RAC, whereby the latter are mostly concerned with life and
health risks, and increasingly with environmental risks.

RAC can be expressed in different formats, depending on the type of risk consid-
ered. It is common to express the acceptable individual safety risk in terms of the
probability of an individual dying due to an accident during a reference time period.
The acceptable societal safety risk is often expressed in terms of so-called F –N

diagrams, where F stands for exceedance frequency and N stands for the number
of fatalities. Figure 11 shows the acceptable societal risk for chemical and process
plants in the Netherlands (Jongejan [29]), together with a fictitious curve for a fa-
cility. To understand this diagram, consider the point (N = 101, F = 6 × 10−6):
this point signifies that events with N = 10 or more are estimated to occur with an
annual frequency of 6 × 10−6. The risk of an activity is acceptable when the entire
curve is to the left of the acceptability criterion.

Risk acceptance criteria can be derived by means of different fundamental prin-
ciples. It is often distinguished between:
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(a) Expressed preferences: with this approach, RAC are obtained directly by asking
the relevant stakeholders. The difficulty with this approach is that risk levels
are often abstract values that are difficult to understand by most individuals and
organizations.

(b) Revealed preferences: RAC are derived from the risk that is implicitly accepted
by current activities. As an example, when assessing a new system, it can be
stated that any risk that is lower or equal to the risk of the present system is
acceptable. This is the most commonly applied approach in engineering.

(c) Optimization: RAC can be derived by identifying optimal risk levels, as dis-
cussed in Sect. 6.1 below. This allows regulators to require that risks are reduced
to a level that can be achieved with reasonable efforts (the ALARP principle
outlined in Sect. 4.2).

Existing RAC are often obtained by a combination of the above principles. For
example, it is common to derive acceptance criteria from current practice, but then
adjust the criteria using optimization principles, e.g. using more stringent criteria
for risks where mitigation costs are low. (This approach was followed in deriving
the target reliability values provided in Annex B of Eurocode 0 (DIN [19]).) Fur-
thermore, RAC from the public (such as the one shown in Fig. 11) often represent a
public consensus, and are derived based on processes involving scientists and engi-
neers, but also representatives of governmental bodies and politicians.

For further examples and details on risk acceptance criteria, the reader is referred
to Paté-Cornell [35], Aven and Vinnem [9] and Jongejan [29].

6.1 Optimization

When making decisions involving risk, one should aim at making optimal deci-
sions. On the one hand, it is desirable to reduce risks as much as possible; on the
other hand, one should use as little resources (money, material, time) as possible
for risk reduction. This leads to a classical optimization problem, aiming at finding
the optimal trade-off between risk and resources spent for risk reduction, which is
illustrated in Fig. 12. The optimal decision is the one minimizing the expected cost,
the optimal risk is the one associated with the decision leading to the minimal total
expected cost.

Optimization principles can be used to derive absolute RAC (e.g. Rackwitz [38]),
or they can be invoked by requiring that risks are reduced to an optimal level, fol-
lowing the ALARP principle. Such an approach is pursued by the UK Health and
Safety Executive, which is the regulatory body in the UK (HSE [27]).

The optimization approach requires that all consequences and costs are expressed
in the same unit, which is typically a monetary unit. If safety risks are involved, this
requires quantifying the value of a statistical life (e.g. Lentz [30]). While this is
not without controversy, such an approach is necessary if it is to be ensured that
resources are distributed optimally among different activities within a society (for
further discussion see Sect. 2.4 in Chap. 3, [47]).
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Fig. 12 Trade-off between
risk and mitigation cost

7 Food for Thought

• How can we combine an engineering model, which is based on physical princi-
ples, with observed data?

• An open question in many risk analyses is how to quantify the effect of human
and organizational factors.

• Discuss the context and the system definition of a risk assessment for a nuclear
waste depository.

• Why do we differentiate between individual risks and societal risks?
• Engineers must often make decisions involving potentially large consequences

and fatalities on the basis of limited information. How can the engineer sleep
well at night?

• What is the principle of FORM?
• Why is a linear or quadratic approximation of the performance function around

the mean value not suitable to compute the risk of fatigue failure of an aircraft?
• If you need to advise on which of two alternative designs for a train axle should

be selected, how would you proceed?
• Often, the most difficult part of an engineering risk assessment is to explain the

methods and the results to lay people and even other engineers, due to their diffi-
culties in understanding probability. How can one approach this?

8 Summary

This chapter outlines a framework for engineering risk assessment, with a particular
emphasis on quantitative methods. A general procedure is introduced, including sys-
tem definition, hazard identification, risk analysis, sensitivity analysis, risk assess-
ment and mitigation. Thereafter, it is focused on the quantitative modeling of risk
in engineering, which differs from the actuarial approach by combining probabilis-
tic engineering models (typically physical and/or chemical models) with empirical
data and sometimes expert knowledge. This is illustrated by brief examples. A brief
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outline of risk acceptance and optimality in the context of engineering applications
concludes the chapter.
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