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Introduction

Risk is a multi-faceted and complex phenomenon; one that defies pure disciplinary
treatment and whose analysis and evaluation requires interdisciplinary competen-
cies. Recent events like the 2008 financial crisis, large scale black-outs in energy
supply systems, the Deepwater Horizon oil spill in the Gulf of Mexico and the
earthquake/tsunami event triggering the Fukushima nuclear accident highlight the
fact that risks are increasingly caused by the complex and interconnected nature of
today’s societies and technologies. One of the major conclusions drawn from these
and many other events is the strong need for improving the interdisciplinary analy-
sis, evaluation, management and communication of risk.

Risk and security issues have always been important in modern societies; but they
re-emerge and change shape, involving new issues due to rapid and unprecedented
technological and climatic changes or political developments. These developments
cause major challenges to identification, understanding and management of risk.
While traditional tasks (e.g. reliability, availability of technical systems) need to be
reframed, and approaches and methods need to be further advanced, they still allow
for primarily disciplinary treatment. In contrast, modern risks tend to be systemic in
nature and clearly demand an interdisciplinary and trans-sectional approach.

Present-day research and training with its sectorial approach cannot meet the
challenges posed by multiple and interlinked events and systemic risk. In the clas-
sical areas of risk and reliability analysis, such as transportation systems, pharma-
ceuticals and structures, undesired triggering events and event sequences, their fre-
quencies and consequences are evaluated within clear sectorial limitations in space
and time. However, todays challenges pose new demands on risk analysis and risk
evaluation:

– technical, economic and social systems become more integrated, e.g. by digital
ICT, and extend to large scale-networked systems;

– risks are interconnected and coupled to varying degrees;
– risk events once triggered, cascade, cross borders and are becoming systemic;
– consequences of events extend to long-lasting, trans-boundary problems as well

as loss of products and services systems.

v
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New and interlinked risk and security problems in a modern information
society—with its highly computerized trading centres, banks, the Internet and the
large-scope interactions between humans and the environment—add an unknown
complexity to the classical areas of technical risk analysis. Their management re-
quires special socio-technical knowledge and methods and should also include be-
havioural components as convincingly demonstrated throughout the 2008 financial
crisis or the Fukushima event. The miscalculation, misunderstanding or miscommu-
nication of risk by politicians, scientists, and executives poses an additional chal-
lenge. Today’s interconnectedness of economic, social and political changes results
in complex and simultaneous reactions in various areas, and affects scientific devel-
opment and technological assessment. Furthermore, climate risks, environmental
risks and biotechnical food as well as medical risks have increased immensely over
the last decades. Global warming, endangered balance in soil-water systems and the
decay of biodiversity are long-term risks that are highly interdependent and will in-
fluence each other and our society in unfamiliar and complex ways in the future. The
scope of their influence is hard to predict by today’s disciplinary risk management
approaches and methodologies.

One book can hardly address all challenges in risk outlined above. Neverthe-
less, we hope that this book inspires multi-disciplinary learning, stimulates systemic
thinking, sharpens multi-methodological competencies, and brings risk and security
issues closer to readers with various backgrounds. The goal of this book is to in-
tegrate risk and security issues into core domains of natural sciences, engineering,
life sciences, management, and medicine. It should encourage readers to work with
methods and subjects of various disciplines and on specific cross-sectorial risk is-
sues. With this book we want to promote a common language and thus contribute to
risk communication across disciplines and between theory and practice. It can serve
as a training guide when dealing with complex risk decisions, which typically have
direct and indirect effects in economic, technical and social areas.

Understanding and assessing systemic risk quantitatively is currently the main
challenge of risk research, and it is therefore one goal of this book to foster systemic
risk understanding in an interdisciplinary way. With the foundation of the Munich
Center for Technology in Society (MCTS), the Technische Universität München
(TUM) commits itself to explore how society impacts research and vice-versa,
which ethical factors should be taken into consideration when developing new tech-
nologies, and how science and the general public can communicate with each other.
Projects like “sociotechnical systems, robotics and demographic change”, “water
management”, “mistakes, ignorance, contingency, and error in science and technol-
ogy”, or “from prognosis to predictive medicine” have always a risk component, and
such projects have influenced the writing of this book. Leading experts from TUM
present novel exciting fields, surveys of recent developments, or focus on some of
the most challenging applications in future risk research. Despite the wide range of
topics, each chapter is written in an expository style, with two bibliographies at the
end. A selected bibliography gives fundamental publications to the topic at hand.
Additional references aim at those readers eager to dive deeper into the topic. In this
way, each article makes an invaluable comprehensive reference text. The intended
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readers of this book are researchers from all fields, PhD students and postdoctoral
researchers, who look for an introduction to risk from different angles, and want to
get an overview of old and new applications in different fields and, not least, are
looking for inspiration from other areas of research.

At TUM, the book will be used at the MCTS to establish a unique research train-
ing program that will create a new generation of researchers, who will understand
risk and security in an integrated and interdisciplinary way. Young researchers of
the MCTS will receive multi-methodological training that draws from state-of-the-
art methodologies of all disciplines involved. These methodologies contain a variety
of risk-relevant concepts and will have a toolbox of quantitative methods at their dis-
posal. Our training develops communication skills and enables graduates to work in
an interdisciplinary team in the context of risk and security-related issues.

The book is organized in three sections.
Part I Risk in History, Society and Science: four chapters provide the context in

which risk is to be seen. The first chapter gives a historical introduction into the
change of the perspective on risk during the centuries. Risk and business ethics is
the topic of Chaps. 2, and 3 explains the often difficult decision making process
from different perspectives. Chapter 4 by the Director of the MCTS, Prof. Klaus
Mainzer, makes the transition to the methodological section.

Part II Quantitative Risk Methodology: six chapters provide insight into quan-
titative methods for risk assessment. The first Chap. 5 introduces into the modern
theory of risk measures, the second Chap. 6 reviews extreme value theory and statis-
tics as a basis for extreme risk assessment. Statistical prediction by linear models
and Bayesian modelling is presented in Chaps. 7 and 8. Some of the sometimes
disastrous consequences of dependence for risk modelling can be seen in Chap. 9.
Finally, Chap. 10 deals with model risk, one of the big issues of quantitative risk
assessment. All chapters contain a fair bit of theory, but all theoretical concepts are
illustrated with applications from various fields.

Part III Risk Treatment in Various Applications: in contrast to Part II, the focus of
these chapters is the application. Methodology is presented, because of its relevance
to the application at hand. Such applications range from management problems,
classical engineering risk problems via information systems to medical cancer risk
research.

We editors and authors take pleasure in thanking our home institutions for pro-
viding excellent working conditions. As most of us are members of the scientific
TUM community, this is a possibility to pay tribute to its scientific environment.
The TUM Institute for Advanced Study, founded with the support of the German
Excellence Initiative, provided since 2007 an interdisciplinary atmosphere, where
the idea of this interdisciplinary introduction to risk was born. The editors and sev-
eral authors acknowledge financial support from the Institute, and they also profited
immensely from the various interdisciplinary meetings at the TUM-IAS.

We also take pleasure in thanking a number of people, who supported the book
at various stages. We are particularly grateful to Prof. Wolfgang Kröger, Managing
Director of the ETH Risk Centre for various discussions on risk related research
issues. Also other members of the ETH Risk Centre were most supportive. Further-
more, Prof. Orthwin Renn, Chair of the Environmental Sociology and Technology



viii Introduction

Assessment, University of Stuttgart, deserves our gratitude for constant support. On
the technical side Dr. Thomas Klein helped to set up the design of the chapters and
started the communication process with the authors. Dr. Anita Behme took over as
Managing Editor and handled the refereeing procedure efficiently, which was a ma-
jor task with so many authors from different fields and varying background. Her
careful inspection of the book chapters and her patient communication with authors
and referees have contributed immensely to the quality of the book. She also han-
dled the book production with the Springer staff. The negotiations with Springer
concerning the contract and the following printing process went smoothly, and we
thank the staff involved. Finally, we would like to thank Prof. Charles Goldie, Emer-
itus from Sussex University, who carefully read several book chapters and helped
them to remain within certain bounds of proper English. Of course, the responsibil-
ity for all final contents lies by the authors.

Claudia Klüppelberg
Daniel Straub

Isabell M. Welpe

Munich, Germany
October 30, 2013
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Part I
Risk in History, Society and Science



Chapter 1
Risk in Historical Perspective: Concepts,
Contexts, and Conjunctions

Karin Zachmann

Although the etymological roots of the term risk can be traced back as far as the late
Middle Ages, the modern concept of risk appeared only gradually, with the tran-
sition from traditional to modern society. The modern understanding of risk pre-
supposes subjects or institutions, accountable for their actions, that make decisions
under conditions of apparent uncertainty. Some apparent uncertainties, however, can
be measured or quantified probabilistically and are, therefore, more precisely called
“risks”. Situations of “risk” in human society can thus be “managed”. Relying on
probability calculation, which emerged during the 17th and the 18th centuries but
became truly prevalent only in the 20th century, risk became a theoretical focus
designed to bolster a scientific, mathematically-based approach toward uncertainty.
Insurance companies led in demanding and developing a concretely applicable con-
cept of risk, since calculating the probability of premature death or material hazards
related to either humans or material things, such as ships, buildings, and their con-
tents, was essential for their core business and success. However, by the middle of
the 20th century—an Age of Extremes, as it has been aptly characterized—nuclear
weapons and their use in Japan and subsequent further development early in the
Cold War dramatically increased awareness of potential hazards derived from these
and other achievements in science, engineering and warfare. Therefore, the Age of
Extremes stimulated more and new research on risk. With new tools, such as oper-
ations research, digital computers, systems analysis, and systems management, all
of which had been introduced in the military and aerospace sectors in the course
of World War II, the intellectual resources necessary to estimate the extent and the
probability of failures and accidents in nuclear warfare and beyond increased dra-
matically. Out of the Cold War effort to create the “Peaceful Atom”, nuclear-power
reactor safety studies became landmarks in risk analysis, and this type of study later
achieved relevance in many more areas. This chapter seeks to explore the evolution
of risk research and risk management in its social and political contexts in order
to understand the underlying concepts of risk and safety as social constructs. The

K. Zachmann (B)
History of Technology, Munich Center for Technology in Society, Technische Universität
München, c/o Deutsches Museum, 80306 Munich, Germany
e-mail: Karin.Zachmann@mzwtg.mwn.de

C. Klüppelberg et al. (eds.), Risk – A Multidisciplinary Introduction,
DOI 10.1007/978-3-319-04486-6_1,
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4 K. Zachmann

historical survey focuses mainly on the last two centuries. It starts with the advent
of the modern era when with spreading bourgeois virtues it became common to plan
for the future but not to bet on it. This involved an increasing need to calculate future
uncertainties in order to manage them as risks. The study stops at the end of the Cold
War, when the collapse of the socialist bloc settled the risky confrontation between
the two opposing societal camps. By no means did the termination of the Cold War
end the story about risk. On the contrary, as late modern societies accumulate more
and more knowledge they simultaneously increase the amount of ignorance that is
the cause of newly emerging risk. How these risks are tackled is the topic of the
other chapters in this book. This historical survey does not aim at completeness but
rather at understanding the major transformations in the evolution of risk. Thus, not
all areas in the history of risk are covered here; for instance, the important field of
financial risk is treated by other Chap. 4.

Keywords Food safety regulation · Probabilistic health risk research · Quality and
reliability engineering · Reactor safety studies · Steam boiler safety

The Facts

• While mathematicians in the era of the scientific revolution and the enlighten-
ment began to approach uncertainty as probability, the early-modern passion for
gambling shaped notions on risk as genuine uncertainty and, therefore, precluded
the early application of the nascent tools of probability.

• Both the quality of uncertainties and attitudes toward them changed in conjunc-
tion with the great political, technological and social transformation of societies
in the Western world since the beginning of the 19th century.

• Human-made dangers and threatening uncertainties resulted from the introduc-
tion of new technologies, from urbanization and from the industrialization of
food; these induced Western societies to commence framing and managing un-
certainties as risks.

• The burgeoning insurance industry, which, since the 19th century, sold its cus-
tomers a new degree of control over uncertainty, evolved as an important promoter
of research as to the causes and prevention of risk, and became an important con-
tributor to the quantitative understanding of risk.

• The adoption of state compulsory accident insurance especially gave rise to the
emergence of industrial medicine, which also furthered probabilistic approaches
in medical research and industrial hygiene.

• The development of quantitative approaches to system safety and reliability in
the Bell Telephone System in the 1920s, as well as the German beginnings of
“Großzahlforschung” (see Sect. 3.5), constituted an important building block for
the emergence of quality and reliability engineering and Probabilistic Risk As-
sessment in various fields of complex engineering systems.

• Safety engineering in the aerospace and defense sector gave rise to pioneering
quantitative as well as qualitative methods of risk assessment.
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• The so-called Rasmussen Reactor Safety Study, issued October 1975, was a con-
tested and yet celebrated breakthrough of Probabilistic Risk Assessment, and its
method spread to other branches as well as countries beyond the US.

• Risk research and risk management have become an increasingly professional-
ized endeavor since the 1970s, when late modern societies began to pay more
attention to the swelling uncertainties that accompanied the experience of in-
creasing ignorance as an unavoidable side effect of the production of more and
more knowledge and unbounded Promethean technological and industrial devel-
opment.

1 Introduction

Risk gained the popularity of a keyword in the latter part of the last century (cf.
Williams [99]). Politicians, civil organizations of various kinds, researchers, experts,
doctors, generals, publishers, and many more people and institutions felt the need
to tackle problems of risk in a more systematic fashion (Renn [34, 35]). In 1980 the
international risk research community established its own professional society—the
Society of Risk Analysis (SRA)—which has published Risk Analysis: An Inter-
national Journal since 1981 (Thompson, Deisler, and Schwing [38]). When Ger-
man sociologist Ulrich Beck produced his analysis of late modern society under the
thrilling title Risk Society shortly after the Chernobyl reactor catastrophe focused
people’s attention on the enormous dangers of nuclear power plants, the book imme-
diately became a big success (Beck [2]). According to Luhmann, this phenomenon
of sustained focus on risk reveals a remarkable characteristic of late modern so-
ciety; as he argues, risk became the main approach to addressing the problems of
uncertainty (Luhmann [24]).1 Uncertainty, however, is a fundamental anthropolog-
ical experience. People in all societies have had to deal with uncertainty in one way
or another. Thus, if we want to understand the significance of risk in our present
society, we need to explore the following questions: when did the attitude toward
future uncertainties change so that the understanding of uncertainties became nar-
rowed down to risk? How did the modern concept of risk determine people’s ways
to deal with uncertainties? How widely accepted has modern risk analysis become,
in what ways has such analysis proved to be particularly problematic, and in what
manner has risk analysis become professionalized?

2 Pre-modern Ways of Coping with Uncertainty and the
Emergence of Proto-Modern Notions on Risk

Members of pre-modern societies experienced uncertainties in manifold ways as
their success of everyday action was highly vulnerable to a great variety of unex-

1On the classical differentiation between uncertainty and risk see Knight [22]. As a well informed
and yet popular story of risk see Bernstein [43].
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pected or inalterable events, such as premature death, famines, natural disasters,
wars, epidemics such as pestilence and the plague, violent politics, and so on and
so forth. Most of all, religious belief systems and magical as well as divinatory
practices provided methods for coping with these uncertainties. Confidence in the
wisdom of gods helped humans to accept uncertainties as one’s fate, and collectively
practised magical rituals did so as well (cf. Luhmann, 16–17 [24] and Douglas and
Wildavsky [12]).

Fateful resignation, though the main method, was just one way to cope with un-
certainty. Already in the 12th and 13th centuries a new attitude toward uncertainty
emerged in the Italian cities and city states. Merchants and seafarers started to take
uncertainties as a chance to improve their welfare. Speculating on a fortunate course
of events, they ventured out beyond known places and thus risked long sea journeys.
Here uncertainty was no longer seen only as danger and passively endured as fate,
but taken as a challenge that could pay off if their calculations worked out. Calcu-
lations, however, meant nothing but informed guesses at that time when available
information remained exceedingly less than sparse. It is important to note that in this
very context the term “risk” came to be used (cf. Bonß, 49–50 [4] and Luhmann,
17–18 [24]). While risk expressed a new, active, and positively connoted stance on
uncertainty, it also gave rise to a new need. In order to get the calculations right,
risk takers wished to learn new methods of forecasting the future course of events
beyond traditional practices of divination, the belief in the wisdom of gods, and
resignation to an unknowable fate.

The emerging new attitude toward uncertainty spread throughout Europe, and
this boosted the desire to gain control over an unknown future. This development
signifies a remarkable shift from “traditional” to “modern” perspectives, as the risk
seekers hoped to determine their own future. Thus they increasingly gained con-
fidence that nature could be conquered and the world improved by human action
(Bonß, 52 [4]).

In the mid-16th century risk-taking even advanced to become a new business as
the new legal category of aleatory contracts revealed. According to Daston these
contracts subsumed “all agreements involving an element of chance, any trade of
here-and-present certain goods for uncertain future goods: annuities, gambling, ex-
pectation of an estate, purchase of a future harvest or the next catch of a fisher-
man’s net. . . ” (Daston, 238 [10]). In the late 17th and early 18th centuries, England’s
bustling capital London provided the most fertile breeding ground for the business
of risk-taking, as is evident from the quickly expanding insurance market. Maritime
insurance multiplied on the initiative of individual brokers who gathered in places
like Lloyd’s Coffee House. In addition, new branches emerged such as fire and life
insurance, not to mention the many adventurous schemes that promised protection
against any and every contingency of life. It was, however, not yet prudent foresight
but a reckless spirit of gambling that fueled this early boom of insurance (Daston,
165 [11]).

As for the calculation of risk, however, contractors relied on rules of thumb and
all forms of experience rather than statistical approaches. The fact that past experi-
ence took manifold forms and obscured any regularity prevented early entrepreneurs
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of risk from attempting calculations based on systematic empirical data (Daston,
240 [10]). The practitioners’ non-statistical stance notwithstanding, aleatory con-
tracts paved the way toward mathematical probability because they put new prob-
lems and questions before mathematicians. The latter, however, remained caught in
the mindset of the jurists who posed the problem when they sought to determine
the fair price of an annuity or a life insurance premium. Thus, the mathematicians
began to tackle the new field in terms of mathematical expectations, i.e. the product
of a probability of an event and its outcome value or “payoff” (Daston, 240 [10]).
Their approach to quantifying uncertainty as probability, however, worked against
the application of mathematics in this early modern business of risk as the aleatory
contracts defined risk as “genuine uncertainties”. Quantification could have diluted
the genuine uncertainty and thus would have worked against the playful rationality
of aleatory contracts (Daston, 247–248 [10]). Therefore, deploying the mathemati-
cians’ new achievements of probability as a way to control uncertainty required a
new attitude toward risk. The latter had to be redefined from something to be de-
sired into something to be avoided. A favorable context for this redefinition evolved
as soon as bourgeois values of familial responsibility, control, and predictability
began to determine the norms of society (Daston, 182 [11]).

3 Industrialization, Urbanization and Competitive Markets:
New Qualities of Uncertainty and the Beginnings of Risk
Management

Within the great political, technological and social transformation of Western soci-
eties that was pioneered by the British Industrial Revolution and the French Bour-
geois Revolution, the meaning of uncertainty changed substantially. In contrast to
the gambler as well as the venturesome man of action in the Ancien Régime who
had appreciated uncertainty as a chance to make a fortune and as a way to escape
the fate of the natural as well as the religious order, the capitalist entrepreneur as
well as the male breadwinner who was entitled to vote did not want to bet on the
future but to plan for it. Thus, they strove to enlist knowledge in order either to
reduce or to circumvent uncertainty. Gaining control on the unknown worked as a
strong motive. That was, for example, the case for the French revolutionaries and the
German bourgeois reformers who wanted to determine the state of society. It was
also true for the agriculturalists, engineers, entrepreneurs, architects, members of
the academic elite, and many others in Britain, France, Germany, and elsewhere as
they all together aimed at extending human control over nature. And indeed, people
who had been living in the Western world since the mid-19th century experienced a
higher degree of predictability during the course of their lives when more children
than ever before survived past infancy, when dwellings withstood fires for genera-
tions, when famines no longer constituted the rule but became exceptional events in
the experiences of Western men and women, to name just a few most fundamental
improvements in human existence.
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More stability and predictability, however, did not free the urban middle class
or capitalist entrepreneurs and farmers from fear. At the same time as people ac-
cumulated more knowledge and competencies to put an end to uncertainties, they
increasingly felt ignorant about many things that were coming into their lives. Rail-
road accidents, steam boiler explosions, collapsing bridges, adulterated food, and
several waves of cholera epidemics in rapidly expanding cities, among other perils,
marked a new class of human-made dangers and threatening uncertainties.

How did men and women in mid-19th century Europe and North America cope
with such new dangers? They developed a whole range of strategies and institutions
to gain control of uncertainties and to decrease the probability as well as the extent
of these misfortunes. This was the context out of which the modern politics of risk
management gradually emerged, notwithstanding the fact that the term risk was only
seldomly used and if so in a much narrower sense.2 Thus, by exploring this emerg-
ing new field of politics we can learn a great deal about how the current concept of
risk evolved and changed over time. We will see how, following the efforts of indus-
trializing societies to develop approaches and institutions for regulating dangerous
activities, uncertainties became framed and managed as risks and thus necessarily
also gave rise to new notions of security.

3.1 Controlling Technical Risk: From Steam Boiler Associations to
Safety Standard Authorities

The steam engine is often seen as a paradigmatic invention of the so-called British
Industrial Revolution. Its widespread use in powering factories and river and rail
transportation also decisively triggered the transformational process of introducing
new perils into society because it was prone to explode, leading to deaths, serious
injuries, and destruction of valuable property. Steam boiler explosions constituted
a completely new form of threat because they exposed people for the first time to
the destructive potential of modern technology. Therefore, steam boiler explosions
mobilized a concerned public, led to pioneering scientific and engineering investi-
gations of such “failures”, and required governments to institutionalize construction
and operation standards and regular safety inspections. Hence, the state felt obliged
to diminish the risk of explosions and thus to establish a new concept of technolog-
ical safety.

In France, as well as in Prussia and some other German territorial states, the state
set up steam boiler legislation and introduced rules and institutions for inspection
(for France cf. Fressoz [15] and for the German states cf. Wiesenack, 5–18 [40]).
In Great Britain the owners of steam boilers established boiler insurance and intro-
duced private inspections. In the United States, public outrage about increasingly

2During the 19th century the term risk remained confined to the economic sphere and was used
with the meaning of venture or hazard of loss (cf. Schulz and Basler, 452 [88]).
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numerous and deadly explosions of steamboats led the US government to commis-
sion the Franklin Institute to investigate the causes of steam boiler explosions and
to recommend means by which they could be prevented. The institute’s investiga-
tion resulted in the first form of federal regulation of technology in the US, but
the regulations and Federal power were so weak that boiler failures remained a
common occurrence well into the 20th century, when the American Society of Me-
chanical Engineers promulgated its Steam Boiler Code in 1916 based on what be-
came known as a consensus standards-making process (Burke [5], Sinclair [89, 90]).
In the German states, at first the state conducted inspection, but this system was
gradually replaced by privately founded steam boiler associations wherein boiler
owners and manufacturers set up a self-organized inspection process. The associ-
ations claimed autonomy based on technological expertise that the states did not
possess. But the real problem at stake here was this: who would more successfully
ensure the workers’ and citizens’ safety with regard to technology, the authoritar-
ian state or private entrepreneurs and engineers in a liberal market? In the years
from 1866 and 1911, in all German states, 36 steam boiler associations came into
being (Wiesenack, 19–21 [40]). The federal law of 1872 assigned the privately or-
ganized associations the task of inspections, and in subsequent years, until the out-
break of World War I, the German states extended the associations’ responsibility of
regularly conducted revisions onto newly emerging fields of potentially dangerous
technological installations and artifacts such as steam vessels, elevators, motor vehi-
cles, vessels for pressurized or liquidized gases, mineral water apparatus, acetylene-
generating and -storing units, and electrical installations (Wiesenack, 38–74 [40]).
The steam boiler associations took up these new fields of activity with hesitation
because the new tasks had to be carried out on behalf of the state for nonmembers
of the associations in technical areas beyond the specific expertise of steam boiler
engineers (Wiesenack, 42–46 [40]). Such resistance notwithstanding, especially in
the interwar period, the new areas and technologies—in particular, the inspection of
motor vehicles—gained increasing importance; thus the steam boiler associations
changed into safety standards authorities. About one year before the Nazi regime
triggered World War II and thus began to deploy the destructive forces of technol-
ogy in new and unknown dimensions that put millions of people at risk and to death,
the federal minister of economic affairs reorganized the technical safety inspection
system when he transferred the powers of regulation from the states to the Reich
and officially transformed the steam boiler associations into state-regulated but self-
governed safety standards authorities (Wiesenack, 77–92 [40]).

Thus, if we focus only on the German case, we can see that in the nearly 70 years
from the unification of Germany in 1871 to the advent of World War II (WWII) the
danger from accidents of technological artifacts and installations that were prone
to explode, to cause fire, or to go out of control gave rise to the establishment of
a still-important field of risk management. To be sure, the participants in this de-
velopment hardly used the term risk prior to the second half of the last century.
Nevertheless, they developed regulations, strategies, and routines for coping with a
new class of human-made dangers: technical risks. One way to accomplish this task
was to broaden the field of technical knowledge. Therefore, the associations col-
laborated with technical universities (or they even established their own research
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laboratories, as the Bavarian steam boiler association did in 1904 under the di-
rection of the eminent inventor, engineer, and industrialist Carl von Linde—The
Steam Research Laboratory, cf. Wiesenack, 22–23 [40]). Furthermore, the associa-
tions not only conducted inspections, but also worked as consultants. They partici-
pated in developing norms of technological safety and pushed for safety improve-
ments (Wiesenack, 73–74 [40]). Whereas the steam boiler inspectors’ notion of risk
was confined to the likelihood of failure of technological equipment, this notion
became broader after World War II, when the safety standards authorities in Ger-
many and elsewhere extended their domains, as they included dangers that resulted
not from failure but from “normal operation” of technology. This new awareness
of dangers emerged with the spread of large technological systems (Perrow [30]).
Safety standards authorities, however, were politically unsuccessful in establishing
legally binding safety norms for the design and use of technology. These legal con-
straints worked as a strong impetus toward the development of risk analysis because
the assessment of risks was to supersede legally inadequate regulations via safety
norms (Lukes [25]). But until today it is an open question in engineering, whether
probabilistic calculations are superior to safety margins or not (Doorn and Hans-
son [54]).

3.2 Managing Health Risk: City Sanitation and the Coalition of
Experts and Stake Holders Against the Cholera Threat

The introduction of new technologies was not the only source of new perils to indus-
trial society. Industrialization itself led to rapidly growing cities, which in turn ex-
posed people to more danger, as the likelihood of epidemics spreading from crowded
quarters with poor living conditions, lack of adequate public sanitation (i.e., human
waste management), insufficient water supply, and high pollution in even remote
and wealthier waterways and neighborhoods grew (as a pioneering study see Sim-
son [37] and more literature in Labisch and Vögele [72]). In the time span from
1831 to 1892, the northwest of Europe was struck by four waves of cholera epi-
demics with a death toll of 50 percent of all men and women who fell ill. (Because
of increasing “globalization” of commerce and emigration, the United States expe-
rienced an equal number of cholera epidemics over the same seven decades. For
the US see the eminent book of Rosenberg [85] and for Hamburg see Evans [57].)
In fighting this danger, European city authorities, in collaboration with technical
and medical experts (i.e. engineers and doctors), developed increasingly success-
ful strategies of risk management. In local politics, engaged hygienists—a new,
interdisciplinary oriented group of experts—took up the issue of city pollution as
a health problem and established coalitions of local politicians, businessmen, en-
gineers, doctors, and other experts. These coalitions mobilized knowledge, experi-
ence, and competencies from various fields in order to advise municipal authorities
on appropriate solutions for their city’s sanitation and improved public health. In
Germany, the Frankfurt doctor and local politician Georg Varrentrapp (1809–1886)
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decisively shaped the coalition of experts when he established the German Associ-
ation for Public Health in 1873 (Hardy [64]). Among the first 230 members, there
were 20 mayors of big cities (Berlin, Frankfurt, Munich, Danzig, . . . ) besides other
municipal authorities, 112 physicians, and a wide range of architects, engineers, en-
trepreneurs, chemists, pharmacists, journalists, as well as famous hygienists from
abroad. Meetings of the association provided a forum to negotiate core problems of
city hygiene and public health among the interdisciplinary group of experts. Partici-
pants gave lectures that were extensively discussed by all members. The aim was to
find common ground between the medical, technical, and financial arguments. Via
majority vote the association settled its negotiations and thus established a base of
knowledge for enabling municipal authorities to take decisions on appropriate san-
itation systems. With such mobilization of experts from different fields, as well as
engaged and concerned citizens, local authorities and stakeholders of various kinds
accumulated and disseminated knowledge and evaluated alternative strategies for re-
ducing the risk of an epidemic’s outbreak. Thus, the protagonists of the 19th-century
hygiene movement invented a pattern of risk management that enabled the hygienist
activists to push decision-making in favor of sanitation systems, although the ques-
tion as to the causes of infectious diseases was not yet settled (Hardy, 108 [64]).

3.3 Regulating Food Risk: The Introduction of Science-Based
Food Control

In the mid-19th century complaints about food adulteration and consumer fraud be-
gan to make headlines in the press of industrial countries. The range of new food
products on the markets stemming either from imports or from innovations of in-
dustrially processed food challenged the experience-based knowledge not just of
consumers but also of food merchants to make judgments on food quality (Zach-
mann and Østby [41]). A remarkable percentage of these product innovations and
product changes were initially perceived as adulteration, and this caused heightened
uncertainty at the food market. Because inadequate food supply can easily result
in political unrest—many German cities experienced bread riots on the eve of the
1848 Revolution—national legislators strove to establish an infrastructure for food
control through enforcing nation-wide food laws that were to supersede local regu-
lations.

Great Britain pioneered the development. In 1860 Parliament enacted a landmark
food law aimed at preventing adulteration of all food and drink. (For more details
see Clow and Clow [49], Wohl [100], Smith and Phillips [91].) The German em-
pire followed in 1879, and between 1890 and 1906 national food laws were enacted
in Belgium, Austria, Switzerland, France and the United States. These laws, how-
ever, provided just the framework of food controls, and had to be supplemented with
food standards as benchmarks for proving food quality. But who was to define food
standards? Practitioners of the food business claimed to have the last word on how
to secure food quality and food safety, and they for the most part showed limited
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interest in collaborating with experts such as chemists, hygienists, or doctors. The
chemists developed more and more interest in food chemistry as the chemical anal-
ysis of food promised to become a rewarding field for exploiting professional exper-
tise. Thus, chemists pushed chemical analysis and employed the nutrients paradigm
for determining food standards and subsequently food quality (Spiekermann [93],
Dessaux [51], Hierholzer [65]). National legislators again faced the task of recon-
ciling the interest of the food industry in liberal markets with consumers’ demand
for safe food and the states’ interest in public health and political stability. Thus, na-
tional food legislation at the turn of the 20th century gave rise to nationally slightly
different systems of food control in order to manage food risk (Spiekermann [93]).
At the same time, however, hygienists and chemical experts pushed for an inter-
national approach toward food regulation (Dessaux [51]). In September 1907, La
Croix Blanche de Genéve was created as an international association, based in Paris,
specifically in order to fight food fraud and adulteration. The association organized
two congresses, the first in Geneva in 1908 and the second in Paris a year later. Then
it petered out. In spite of its short life and the fact that it took the Codex Alimenta-
rus, its successor, almost half a century to get established, the association had a great
impact on food safety regulation. It strengthened the authority of chemical expertise
in the food market, as the association’s organizers had managed to reach agreement
on a broad catalog of food definitions. These definitions provided the fundamen-
tals of food evaluation based on chemical analysis. Thus, at the turn of the 20th
century, food risk management was established as food regulation, and subsequent
food regulation based on food standards became established in a tense collaboration
of chemical experts and food industry representatives. The institutions established
in the late 19th and early 20th century have continued to be the primary institutions
dealing with food safety, even as the globalization of food supply has raised many
questions about food safety.

3.4 Capitalizing Risk and Enhancing Social Security: The
Emergence of Insurance as Catalyst of Modern Strategies
Toward Risk and Security

Whereas the aforementioned strategies of risk management aimed at preventing in-
dividual and societal harm from technologically produced hazardous products and
environments ranging from steam engines to crowded cities and food adulteration,
the advancing insurance system of the nineteenth century promised to compensate
persons harmed, the survivors of deceased victims, and the owners of damaged prop-
erty. Modern insurers, who had severed their business practices from gambling, now
capitalized on risk, as they sold their customers no longer chance but a new degree of
control over uncertainty through empirically established probabilities. Hence, risk
became a new commodity.

Insurance companies that, in the modern sense, offered contracts with mathe-
matically calculated premiums and a legal claim on the indemnification payment
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were founded at first in London. The Amicable Society (est. 1706) pioneered the
advance, as the world’s first life insurance company, but operated at first more as
a friendly society than as a business. The Amicable, however, induced a rejected
applicant who was a mathematician to establish the Equitable Society in 1762. As
the world’s oldest mutual insurer the Equitable owed its success, as we learn from
Daston (175 [11]), to “its exploitation of the regularity of the mortality statistics and
the mathematics of probability to fix premiums [. . . ], but also. . . [to] its creation of
an image of life insurance diametrically opposed to that of gambling”.

From the early 19th century a whole range of new insurance branches emerged
that signaled where witnesses of industrialization and urbanization perceived new,
potential threats to their bodies, businesses, and property and thus felt compelled
to make provision for such contingencies. In Germany, for instance, private en-
trepreneurs insured against the risk of transport damages on the Rhine river traf-
fic (1818), the risk of harm by railroad accidents (1853), injury by broken glass
(1864), damage from broken taps (1886), and losses caused by mechanical break-
down (1900). Furthermore, in 1829 the first reinsurance business was established,
and in 1875 personal liability insurance was set up (Koch [71]). While in all these
cases private entrepreneurs developed a need for more safety as a chance to earn
money, nation states also detected the potential advantages of the insurance trade.
In contrast to the fund-seeking politics of early modern states that sold annuities
for getting the sovereign money, nation states sought to utilize modern insurance in
order to provide for political stability via social security systems. The founder of the
German empire, Bismarck, pioneered the institutionalization of state compulsory in-
surance, i.e. social security, as well as health and accident insurance (Ritter [84]). As
soon as the states enacted compulsory forms of insurance, provisions for mitigating
risks became a pillar of the welfare state (Ewald [13]).

The enhancement of risk policies, together with the enormous extension of the
insurance system throughout the long 19th century, necessitated the accumulation
of knowledge and experience on how to assess and to manage risks. For insurers
this was of critical importance, as the success of their business stemmed in large
measure from such knowledge. The first insurance branch to develop and apply the-
oretical knowledge was life insurance. Insurers could build upon the well-developed
classical probability theory and upon mortality statistics. Therefore, it came at little
surprise that in Great Britain in 1848 the Institute of Actuaries was founded (Pabst,
26 [29]). In Germany, however, insurers had been much more reluctant to develop
an interest in scientific knowledge. Only at the turn of the 20th century did some
German universities, such as Göttingen, Leipzig, Frankfurt am Main, and Cologne,
and Technische Hochschulen, such as Dresden and Aachen, set up study courses
related to the insurance business. Göttingen was the first to establish a “seminar on
insurance science” in 1895 (Pabst, 26–29 [29]). Insurance science, however, was not
a coherent field of knowledge but a conglomerate of many special fields. The theo-
retically most advanced and exacting field was actuarial mathematics, which is first
and foremost probability theory. Actuaries, however, were employed only in the life
insurance area until well after 1950, as Reinhard Pabst has shown in his dissertation
(Pabst, 116–118 [29]).
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Except for life insurers, practitioners in the insurance business proved to be quite
averse to theoretical approaches to risk calculation. One main reason was the lack
of appropriate statistical data. Another reason was economic success based on more
traditional methods. Empirical knowledge and experience remained very important
for estimating risks and insurance premiums. For example, even as late as the mid-
20th century, maritime insurers would gauge, as their predecessors in 16th century
Venice had done, “the integrity of the ship-owner, the skill of the ship’s officers,
[and] the quality of the crew” (Pfeffer, 69 [31], Gigerenzer, 257 [19]).

Pabst’s study on machine insurance reveals that insurers did not put much em-
phasis on more elaborate risk assessment for improving premium calculations but
preferred to make provisions for damage prevention by increasing the availability of
new technological knowledge. Allianz, the largest supplier in this field, published
a journal called “The Mechanical Breakdown” to teach strategies of how to avoid
breakdowns. Furthermore, the insurer organized company inspections, better tur-
bine control procedures, and manager training classes, and set up its own materials-
testing institute and museum. With such measures, insurers of technological risks
developed a new domain of employment for engineers (Pabst, 52–79 [29]).

The increasing availability of technological knowledge notwithstanding, experts
in the property insurance business began to articulate a need for more theoretical
knowledge by the end of the 1920s. Founded in 1935, the German Association of
Actuaries put the development of mathematics for the property insurance business
on the agendas of its congresses in subsequent years. Thus, expectations grew that
probability theory would begin to be applied beyond life insurance for the analysis
of uncertainties and the identification of risk in property and indemnity insurance
(Pabst, 80–97 [29]). A first mathematical model for non-life insurance, however,
had been presented by the Swedish actuary Filip Lundberg in 1909. It was largely
ignored until the Swedish professor Harald Cramér from Stockholm University built
his insurance risk theory based on Lundberg’s approach. Even Cramér’s risk theory
was slow to be used; only well after World War II did the insurance industry widely
adopt it, albeit the first publication dated from 1930 (Pabst, 52–53 [29]). This de-
lay reveals that practitioners paid little attention to the ambitions of actuaries, and
with the outbreak of World War II all priorities changed anyhow. General diffusion
of actuarially based risk theory in non-life insurance was delayed until the interna-
tional community of actuaries established the Actuarial Studies in Non-Life Insur-
ance (A.S.T.I.N.) organization in 1957. Establishment of this organization proved
to be an important step for the diffusion of probability theory in non-life insurance,
even if the transition from actuarial theory to practice took longer and diffused at
different rates in the various branches of property and indemnity insurance (Pabst,
126–130, 165–193 [29]).

The extension of the insurance business increased risk awareness, and at the same
time promoted research as to the causes and the prevention of risks. This was true
not just for the aforementioned property risks due to technological breakdowns, but
also for health risks caused by industrial accidents. When national governments in
many countries, following Bismarck’s pioneering example, began to insure workers
against industrial accidents, research in industrial medicine received a tremendous
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boost. Physicians who worked for the state in compulsory health and accident insur-
ance developed industrial medicine. The subject area of the newly emerging field
was the detection and prevention of health risks and risks of accidents in indus-
trial work places (Lengwiler, 146–148 [23]). The physician’s task to provide insur-
ers with medical certificates as to the causes of damage to insured workers’ health
boosted research on medical causalities. Up to the interwar era of the 20th cen-
tury, medical causality was discussed most in bacteriology. Here Robert Koch’s and
Louis Pasteur’s explorations of tuberculosis and anthrax as bacteriologically caused
diseases gave rise to a mono-causal, deterministic concept of disease that replaced
manifold etiologies (Schlich, 8 [87]). But with the more frequent appearance of par-
ticular diseases in specific industrial environments, such as silicosis or various kinds
of cancer, mono-factorial chains of causes did not work. Therefore, in the interwar
era, industrial medicine gradually began to abandon strictly deterministic concepts
of causality in favor of probabilistic health risk research.

As Martin Lengwiler has shown in his study on the development of accident
insurance in Switzerland from 1870 to 1970, probabilistic concepts gained ground
particularly in the emerging field of toxicology (Lengwiler, 149–158 [23]). An im-
portant figure in this field was the director of the forensic institute at the University
of Zurich, Heinrich Zangger (1874–1957). Poison gas attacks in World War I, as
well as high incidence of poisoning from wartime-promoted chemical substitutes,
inspired him to deal with military as well as industrial poisoning. With improved
measurement methods based on new instruments, he began to use a statistical ap-
proach to evaluating the effects of poisons on human bodies. Thus he paved the
way toward probabilistic diagnoses. Zangger defined industrial medicine as a “sci-
ence of danger” aimed at control and prevention by describing potential dangers of
industrial and technological environments. Zangger’s concept of a science of dan-
ger stands for an early approach toward an independent and theoretically ambitious
discipline of medical risk research (Lengwiler, 152 [23]). Toxicology as pioneering
medical risk research was to determine the risk of poisoning emanating from human
exposure to dangerous materials (Hounshell and Smith [67]). During the 1930s tox-
icologists introduced threshold value definitions under the heading of “maximum
acceptable/allowable concentration” (MAC) of hazardous materials in workplaces
(e.g., exposure of workers to a range of organic chemicals used in the manufacture
of synthetic dyes). In 1933, industrial physicians within the Soviet public health
system had been the first to succeed in getting MAC-values enacted into law. US
industrial medicine changed to MAC values in 1937. Other countries followed after
WWII. The West German Association for Industrial Safety set up a MAC commit-
tee in 1954 (Bächi, 421 [42]). Just one year later the senate of the German Research
Council established a commission on materials with adverse health effects in work-
places as an advisory body for government authorities (Bächi, 422 [42]). The enact-
ment of MAC-values as litigable criteria in accordance with insurance law signified
a shift toward risk assessment based on probabilistic concepts with a statistical un-
derstanding of causality in industrial medicine (Lengwiler, 155 [23]). The statisti-
cal understanding and probabilistic assessment of health risk in industrial medicine
proved to be a useful and enduring point of departure for the development in social



16 K. Zachmann

and preventative medicine that began in the interwar era but gained momentum only
in the post World War II era (Lengwiler, 155–158 [23]).

3.5 Controlling Quality via Statistics: Quantitative Approaches to
System Safety and Reliability in the Bell Telephone System

Whereas the insurance trade pioneered the quantitative understanding of risk, prob-
lems of electrical engineering gave rise to quantitative approaches to system safety
and reliability that were to constitute an important building block for the emergence
of Probability Risk Assessment (PRA) in various fields of complex engineering
systems, and thus they contributed decisively to the evolving intellectual core of
scientific risk research. Both, the increasing scale of mass production and the grow-
ing size, complexity, and interdependencies of large technical systems challenged
the hitherto common ways of assuring the safety and reliability of those systems.
Because the reliability of a technical system depended on the manufactured quality
of each part, it soon became clear that quality control for the millions of compo-
nents in these rapidly expanding systems would become a bottleneck for warranting
the safety and reliability of those systems. American Telephone and Telegraphy
(AT&T, owner of what was simply called “the Bell system” until 1984) was the
first company to tackle this new challenge. In the second decade of the 20th century
the company concluded that future growth depended on the geographical extension
of telephone service (Miranti, 51 [78]). To meet this challenge the company had
to improve transmission quality. One way for quality improvements led through
innovations in the quality inspection regime. George A. Campbell, a MIT and Har-
vard trained electrical engineer who also studied advanced mathematics under Felix
Klein in Göttingen and electricity and magnetism under Ludwig Boltzmann in Vi-
enna, pioneered the introduction of probability-based techniques in the Bell system
for positioning loading coils on transcontinental telephone lines. Around 1924 he
strongly encouraged his colleagues to also use probability theory in confronting
uncertainties related to management problems (Miranti, 55–56 [78]). A pioneer in
industrially applied probability theory, Campbell called for developing a common
knowledge base—industrial mathematics (Campbell [47]). As early as 1925 Bell
Telephone Laboratories did indeed follow this advice: they established a Mathe-
matical Research Department, headed by applied mathematician Thornton C. Fry,
who in 1928 published his widely received text, Probability and its Engineering
Uses [16].

Bell Labs’ research statistician, W.A. Shewhart, recognized the usability of statis-
tics as a scientific approach toward improving the quality control regime of the
company’s equipment manufacturing operations. He suggested analyzing product-
defect distributions with the help of the properties of the bell-shaped normal (i.e.,
Gaussian) curve. According to Miranti, Shewhart “defined manufacturing control in
terms of acceptable levels of variance, measured in standard deviations, from the
mean number of deviations in a product lot” (Miranti, 60–61 [78]). This proved to
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be the decisive point of departure for the subsequent development and introduction
of Statistical Quality Control (SQC) in the Bell system—and eventually beyond it
(Shewhart [36]). With the advent of the Great Depression, when AT&T’s labor force
shrank and manufacturing inspection teams dwindled, the company recruited more
graduates with strong mathematical backgrounds. This boosted the full exploitation
of SQC in the Bell system’s factories and elsewhere in the company’s operations
(on the history of SQC see also Juran [70]).

Not only in the US but also in Germany SQC came into being in the inter-war-
period. Here, Karl Daeves, the head of the research laboratories of the Rhenish
Steelworks, developed the method of SQC to control variations in steel produc-
tion. Daeves called his method “Großzahlforschung” (large number research) and
praised it as a way to replace the “doubtfully intuitive information that is based on
subjective experience, by statistical values of objectified experience” (Daeves [8]).
Via an analysis of frequency distributions with the help of probability graph papers
that Karl Daeves developed together with the food chemist August Beckel in the
early 1930s, these industrial researchers laid much of the groundwork for the use
of probability theory in industry (Daeves and Beckel [9]). In Germany and the US
alike the method of Großzahlforschung received the most attention in the electrical
industry. Industrial researchers of the German electric light bulb producer Osram
and the giant of the electrical industry Siemens collaborated with well-known pro-
fessors from the Technische Hochschule Berlin in a lecture series on SQC during the
winter term of 1928–1929 and again at the beginning of 1936. The Nazis hampered
these fruitful beginnings when they forced leading practitioners and promoters of
industrial mathematics, and mathematical statistics especially, to flee from the anti-
Semitic regime (Tobies, 190 [39]). In contrast to Germany, the US state encouraged
industrial mathematics when the National Defense Research Committee established
the Applied Mathematics Panel (AMP) at Columbia University in 1942. As an ap-
pointed member of AMP, the Romanian-Austrian mathematician Abraham Wald
(1902–1950) developed the statistical technique of sequential analysis in 1943. An
important development in SQC theory and method, sequential analysis allowed re-
duction in the number of random samples necessary to maintain quality control in
armaments production, thereby increasing manufacturing productivity and saving
the US state a lot of money (Morgenstern, 183–192 [26]).

The multiple efforts to develop SQC paved the way for the new profession of
quality engineering. During World War II, Bell engineers transferred knowledge of
SQC to war industries, and the US Department of Education and the War Produc-
tion Board set up training courses. By 1946 the number of newly trained quality
engineers had reached a critical mass, which resulted in professionalization; that
is, the American Society for Quality Control was founded in 1946 and more than
2000 professionals attended the organization’s first technical conference in 1947
(Miranti, 67 [78]). In postwar Europe quality control was pushed via the Marshall
Plan and subsequent recovery programs. The largely US-funded European Produc-
tivity Agency initiated the establishment of the European Organization for Quality
Control in 1956, which was allied with the American Society for Quality Control. In
the same year the German journal “Qualitätskontrolle” appeared for the first time. It
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changed its title into “Qualität und Zuverlässigkeit” (quality and reliability) in 1970
(Masing, 411–415 [74]).

Growing imperatives for reliability in weapons systems during the Cold War
arms race led to further extensions of probabilistic quality control and gave rise
to Reliability Engineering and quantitative reliability analysis. For example, in the
early 1950s the US Department of Defense commissioned a study on how to in-
crease the reliability of one of the most ubiquitous but also most failure-prone com-
ponents of military electronics—the vacuum tube (Stott et al. [94]). Issued in 1957,
this so-called AGREE (Advisory Group on Reliability of Electronic Equipment)
Report furthered the development of quantitative reliability analysis and constituted
an important building block for the emergence of Probabilistic Risk Assessment
(PRA). It will come as no surprise that electrical engineers, who were well-grounded
in probability theory, contributed significantly to this development.

4 Hot and Cold War, Large Technological Systems and Safety
Concerns: Tackling Uncertainties via New Knowledge and
Methods of Assessing Risks

The World War II experience changed people’s attitudes toward risk and uncertainty
in quite contradictory ways. Having survived the Second World War and the deadly
Nazi regime, some people emerged with confidence that contingencies could be
controlled and the world changed for the better. Economists claimed to apply the
right instruments to stabilize the equilibrium of markets. Keynesianism promised
full employment. Bretton Woods re-established the stability of the gold standard of
the 19th century. The International Monetary Fund and the World Bank promised
economic advancement for the developing world. The United Nations was set up
to secure peace and progress around the world. Engineers lined up not just to do
away with the enormous destruction and rubble of the war but also to improve
the safety of technology. With the development of more and more large and com-
plex technological systems, the tasks of improving systems’ reliability—and thus
of increasing safety—triggered new approaches to risk management. Governments
strove toward political stability based on improved welfare systems and the transi-
tion toward mass consumption. This also included the responsibility that was felt
on the part of the governing parties and administrations to protect populations from
environmental, health and technological risks. Since the 1950s national legislation
enacted new regulations, e.g., Food Additive Amendments to improve food safety,
regulations for radiation safety, and new laws to increase highway and motor vehicle
safety.

Thus, we find an ambivalent situation in the first two decades after the war. There
was, on the one hand, great confidence that uncertainties could be controlled and
risks assessed. This confidence was based on the assumption that everybody would
behave rationally, an assumption that proved to be fertile ground for the spread of
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new concepts and methods to deal with future uncertainty. One of those methods
was game theory, developed by the eminent mathematician John von Neumann and
economist Oskar Morgenstern prior to and during World War II (von Neumann and
Morgenstern [27]). Game theory became a highly used analytical tool during the
Cold War, and major developments proceeded as its use spread, the Nash equilib-
rium being perhaps the most important. By the end of the Cold War, game the-
ory had come to dominate scholarship in economics and had spread to many areas
where analysis of present and future decisions in contexts of uncertainty must be
made.3 On the other hand, increased confidence went together with an increased
awareness of and greater attention to potential dangers and perils. And there was
good reason for increased concern, as the war had brought into being technologies
with hitherto unknown potential dangers. One case in point was nuclear technol-
ogy.

4.1 Nuclear Technology as New Challenge to Deal with Problems
of Safety and Risk

When US President Dwight D. Eisenhower announced the decision of his admin-
istration to promote peaceful uses of atomic science and technology on an interna-
tional scale in his famous Atoms for Peace speech in front of the United Nations’
General Assembly on December 8, 1953, nuclear-fuelled power plants ranked high
on the agenda of desirable peaceful applications of the atom (see Eisenhower’s
“Atoms for Peace” Speech [80]). Consequently, the Atoms for Peace initiative
prompted national governments of many countries as well as international insti-
tutions under the aegis of the United Nations and the Organisation for European
Economic Co-Operation to establish programs for the use of atomic energy in many
domains.4 However, the paradoxically overheated Cold War expectations about the
seemingly unlimited potential of nuclear technologies could not erase the fear—
fuelled by the atomic bombs dropped on Hiroshima and Nagasaki—that the power
of the atom would have lethal effects when chain reactions ran out of control and
when humans were exposed to ionizing radiation from fissionable materials. Imag-
ining nuclear accidents and estimating potential damage became a major issue as the
question arose as to who would assume liability for private nuclear power plants in
case of an accident. With no historical knowledge of reactor safety and with seem-
ingly unlimited liability should a reactor blow up or “melt down”, the US insurance
industry was unwilling to underwrite insurance risks for private nuclear energy. This

3Even a short history of game theory is beyond the scope of this chapter, but the interested reader
should consult the following work: Poundstone [79]. On game theory in the Cold War think tank
RAND see Hounshell, 253–255 [66].
4On programs to put the peaceful atom in service of food and agriculture see e.g. Zachmann [101].
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refusal threatened to delay the development of Eisenhower’s “peaceful atom”. Thus,
in 1957 the US Congress passed the Price-Anderson Act by which “the federal gov-
ernment provided insurance to cover losses above the $60 million private insurers
were willing to cover (under considerable federal pressure), up to a total of $560
million” (Carlisle, 931 [6]). The government intended the law to be in force for only
ten years, as it assumed that major safety improvements would occur and sufficient
nuclear power plant operating data would be accumulated so that the state could
withdraw and leave the field to private insurers. That, however, did not happen. In-
stead, the act was reinstated several times. Still in 2005 the Bush administration and
Congress renewed the Price-Anderson Act as part of the Energy Policy Act of 2005
and extended it for the hitherto longest period of 20 years till 2025 (Price-Anderson
Amendment Act [81]).

But how did engineers think about risk? Here two approaches had been prevalent,
a deterministic and a probabilistic approach. The difference resulted from different
engineering cultures. Chemical engineers from Du Pont who designed and built the
first three plutonium production reactors at Hanford, Washington, took the determin-
istic approach. They explored potential component failure step by step and sought
to determine what precautions needed to be taken to prevent such failure. In this
approach, any effort to pre-calculate the mathematical probability of a component
failure was completely absent. But as soon as the electrical engineers entered the
nuclear power field in bigger numbers—US Admiral Hyman Rickover’s Naval Re-
actor Program had opened the door—the probabilistic approach toward reactor risk
gained ground. It was based in the electrical engineers’ culture, as they saw the re-
actor as a product that “they fully thought out and put on paper before construction
began” (Carlisle, 928 [6]). In this process, they calculated the probability of fail-
ure of crucial components. Increasingly available digital computer power increased
the feasibility of such calculations. Thus, PRA in engineering emerged out of the
professional culture of electrical engineers.5 The two ways of thinking about risk
set different priorities. Whereas deterministic engineering put physical problems
and their remedies center stage but did not pursue any quantification, probabilism
evaluated the reliability of entire complex systems as it calculated or estimated the
likelihood of failure of crucial system’s components.

The electrical engineers who introduced probabilistic methods into reactor de-
sign were able to build on an early tradition of probabilistic approaches that had
already found fertile ground in the Bell system in the first half of the 20th century.
Teachers such as Ernst Frankel also guided the electrical engineers. He taught at the
Massachusetts Institute of Technology and wrote a textbook for a course on systems
reliability that applied probabilistic thinking to complex systems (Carlisle, 926 [6]).
He did what engineers and mathematicians at Bell system and elsewhere had envis-
aged since the 1920s when they explored the possibilities of applying probability
theory to practical engineering problems (see e.g. Fry [16]).

5See the paragraph on SQC above.
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4.2 Safety Engineering in the Aerospace and Defense Sector:
Pioneering New Methods of Risk Assessment

Besides reactor design it was the aerospace and defense sector that fostered the ap-
plication of probabilistic methods in safety engineering (Rip, 4 [83]). Beginning in
the early 1960s fault trees became a commonly used technique that was applied for
the first time in safety evaluations of the Launch Control System of the US Min-
uteman ICBM (Ericson [55]). Fault Tree Analysis is grounded in reliability theory,
Boolean algebra and probability theory. The framework of FTA for analyzing very
complex systems and complex relationships between hardware, software, and hu-
mans is comprised of a basic set of rules and symbols. FTA’s initial development
is ascribed to Bell Labs’ researcher Hugh A. Watson who graduated with a PhD
in nuclear physics from MIT in 1949 and worked at Bell Labs afterwards. In 1961
Watson conceived of FTA in connection with a US Air Force contract to perform the
above-mentioned study of the Minuteman Launch Control System (Ericson, 1 [55]
and Haasl, 1 [63]). Boeing Aircraft Company engineer David Haasl recognized the
value of Watson’s new method and organized the application of FTA to the entire
Minuteman Missile System. Other departments of Boeing got interested as well, and
Boeing began to use FTA in the design of commercial aircraft. In assigning proba-
bilities to the events or component failures involved, the aerospace engineers aimed
at calculating the overall probability of system failure in advance of use. In 1965
Boeing collaborated with the University of Washington in holding the first Sys-
tem Safety Conference. The rapid spread of FTA, however, stemmed mostly from
the fact that it emerged in the very heated Cold War context of nuclear weapons
systems development. Relying upon a policy called Mutually Assured Destruction
(MAD) from the ever-growing number of atomic and thermonuclear weapons, the
US believed the new Cold War imperative was to control systems safety of its in-
creasingly potent weapons delivery systems. Already in 1950 the Air Force had
established a Directorate of Flight Safety Research that was to be followed by a
safety center of the Navy in 1955 and the Army in 1957 (Ericson [56]). In the late
1950s system safety began to be perceived as a new engineering discipline. That the
military was its midwife became obvious with the publication of a document enti-
tled “System Safety Engineering for the Development of United States Air Force
Ballistic Missiles” in 1962 (Dhillon, 265 [52]). FTA’s primary contribution to this
development was its probability-based quantitative technique for analyzing system
safety and reliability of space and defense systems. Improved FTA methods were
developed, thanks to advances in both statistics and digital computer applications
(Ericson [55]). The Department of Defense soon built FTA into specifications for
all its weapons systems development contracts.

In the midst of the first wave of FTA-hype, however, the National Aeronau-
tics and Space Administration (NASA) refrained from quantitative approaches to
risk and safety analysis. John Garrick, a pioneer in nuclear risk assessment and a
leading figure of the US risk analysis community, has retold the events as follows:
“The time is remembered as about 1960, and the event was a bad experience with a
probability calculation on the likelihood of successfully getting a man to the moon
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and back. The calculation was very pessimistic and embarrassing to NASA officials
and soured them on the utility of probability calculations. From that point forward,
NASA chose not to do probability, that is, quantitative risk and safety analysis, on
their space systems. Rather, they adopted a qualitative approach utilizing Failure
Mode and Effects Analysis (FMEA) as the principal building block for their risk
analysis program” (Garrick, 1 [60]. For information on Garrick see Profile [82]).
Only after the Challenger accident on January 28, 1986, did NASA re-visit its
earlier decision and integrate quantitative risk assessment into its systems safety
management processes (Garrick, 3–7 [60] and [18]). Meanwhile, however, NASA’s
preference for the qualitative FMEA concept pushed its development and made the
qualitative approach toward systems safety attractive to other circles. The automo-
bile industry took it up in the late 1970s when the Ford Motor Company adapted
the method after the Ford Pinto debacle in which the company’s hitherto unremark-
able small car had to be recalled because of safety concerns related to the location
and integrity of its gas tank (Tietjen and Müller [95]). From the automobile indus-
try FMEA spread to other branches, became more diversified methodologically, and
eventually developed as a risk-mitigating tool that became a standard element of
prevention strategies.6 The food industry developed its own version of FMEA even
before the automobile makers when, during the Apollo moon program, NASA estab-
lished new safety requirements for the astronauts’ diet. The food company Pillsbury
was the prime contractor for the space food program and adapted military experi-
ences of critical control point (CCP) identification and FMEA into what became
known as “Hazard Analysis and Critical Control Point System” (HACCP) for food
safety in the early 1970s (Sperber and Stier [92]).

By no means did NASA’s initial rejection of probabilistic risk assessment in fa-
vor of more qualitative approaches to safety result in any serious setback for Proba-
bilistic Risk Analysis. By the late 1960s and early 1970s PRA was moving swiftly
toward broad acceptance, thanks especially to developments in the nuclear sector. In
turn, the perceived success of PRA boosted the professionalization of risk research
and risk communication.

4.3 The Rasmussen Reactor Safety Study as Contested and Yet
Celebrated Breakthrough of Probabilistic Risk Assessment

A decisive event in this process was the Rasmussen report, a reactor safety study that
made extensive use of fault tree analysis and probabilistic techniques for estimating
and quantifying risks (Rasmussen [33]). In 1972 the US Atomic Energy Commis-
sion (AEC) set up a new panel, headed by MIT engineering professor Norman R.
Rasmussen, to evaluate the safety of nuclear reactors. The new head of the embat-
tled AEC, James Schlesinger, aimed at presenting the AEC as a referee between the

6On FMEA and FTA as methods to increase dependability in engineering systems today see Vogel-
Heuser and Straub in this book.
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nuclear industry and an increasingly concerned public; therefore he strove to miti-
gate heightened safety concerns (Walker, 41–41 [96]). The latter had been voiced,
e.g., by the recently founded Union of Concerned Scientists, which criticized how
the AEC had dealt with unsettled questions about deficiencies in emergency core
cooling systems in the AEC’s licensing procedures (Walker, 33 [96]). More safety
concerns arose as a result of the growing environmental movement, especially con-
cerning thermal pollution, the effects of low-level radiation from routine operation
of nuclear power plants, and the risks posed by high-level radioactive waste storage
and disposal. Thus, the Rasmussen panel’s task to assess accident risks in US com-
mercial nuclear power was bound up with high expectations on the part of the AEC.
The study was to demarcate the field the AEC felt responsible for—reactor safety—
in advance of the pending renewal of the Price-Anderson Act (Carlisle, 931 [6]).
When in October 1975 the US Nuclear Regulatory Commission (the AEC’s succes-
sor regulatory agency) presented the final Rasmussen report to the public, the report
immediately won a lot of attention. This was largely due to its scale and political sig-
nificance, but also to its extensive use of probabilistic techniques. It must be stressed,
though, that the Rasmussen report was by no means the first study to apply proba-
bilistic approaches in the assessment of technical risks. As already noted, physicists,
electrical engineers, and aerospace engineers had done so earlier to varying degrees
and in various contexts (Carlisle, 933 [6]). Nevertheless, the Rasmussen report made
a pioneering contribution because it introduced a general public of non-specialists
to the application of probabilistic techniques in reactor safety studies based on fault
trees and other forms of probabilistic risk analyses. Furthermore, the Reactor Safety
Study made use of Monte Carlo simulations that had come into being in the con-
text of the development of thermonuclear and enhanced fission weaponry as a kind
of lingua Franca among physicists, nuclear theorists, chemists, electrical engineers,
mathematicians, statisticians and others for dealing with problems of mutual inter-
est: nuclear atomic structure, molecular structure, equilibrium calculations, reaction
rates, resonance energy calculations, shielding calculations, and the fitting of decay
curves (Lee, Grosh, Tillman, and Lie, 198 [73]).7 Monte Carlo simulation has be-
come standard fare across a wide number of science, engineering, and social science
disciplines and also in industries and the finance and insurance business.

Despite its achievements the Rasmussen report also received serious criticism.
The Union of Concerned Scientists pointed to the fact that fault tree analyses had
been developed in order to compare risks and to make decisions within the design
process. Fault trees, it argued, were not suited for determining exact numerical prob-
ability data of accidents (Ford, 23 [14] and Öko-Institut, 18 [28]). Serious criticism
was also uttered over the report’s way of presenting risk. In order to guide the risk
perceptions of the public, the Rasmussen report developed numerical measures to
compare accident risks of reactors to more socially familiar risks, such as traffic
accidents, dam breaks, and catastrophic fires. In doing so the Rasmussen panel in-
troduced the criterion of acceptable risk, as it assumed that risks of nuclear reactors

7For an excellent historical interpretation of Monte Carlo simulations (see Galison, 689–780 [17]).
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which lay within the range of risks of other technical systems—to which people had
grown accustomed already—would be as easily accepted (Carlisle, 934–935 [6]).
Not just the public but also internal staff from the Nuclear Regulatory Commission
voiced serious doubts about the results of the Rasmussen report. In January 1979
the NRC went so far to issue a statement withdrawing its full endorsement of the
report’s executive summary (Walker, 49 [96]).

When on 28 March 1979 a serious accident at the Three Mile Island II nuclear
power plant near Harrisburg, Pennsylvania, occurred that the Nuclear Regulatory
Commission had not thought to be possible, the USA encountered a severe setback
for the public acceptance of nuclear energy. The nuclear establishment responded
to the TMI accident with a series of measures, such as, e.g., the setting-up of a
database and reporting system for accidents and the introduction of PRA as part
of the documentation in pending plant applications for licenses. Thus, PRA gained
more ground, despite the initially harsh criticism of the Rasmussen report and even
though the occurrence at TMI had proved that heavy reliance on fault tree analysis
was inadequate for the assessment of nuclear accident risks. The NRC, e.g., subse-
quently required PRA as part of the licensing procedure for nuclear power plants
(Walker, 51 [96]).

The Rasmussen report worked as catalyst of Probabilistic Risk Assessment not
just in the USA but also abroad. The Federal Minister of Research and Technol-
ogy in Germany, e.g., issued the first German reactor safety study in 1976, only a
year after the publication of the Rasmussen report. In the midst of the first wave of
anti-nuclear power protests, the minister felt obliged no longer to rely on American
nuclear safety research but to entrust the newly founded Gesellschaft für Reaktor-
sicherheit GRS (Society for Reactor Safety) with conducting the first German risk
study on nuclear power plants that would pay attention to German characteristics,
such as specific German design and safety features and especially their location in
far more densely populated areas compared to US plant sites (Der Bundesminister,
1–2 [45]).8 The first German risk study, however, closely followed the methodology
of the Rasmussen report. In their Festschrift for the 30th-anniversary of the GRS,
the authors praised the risk study as the first probabilistic safety analysis that in-
augurated the new instrument of probabilistic safety assessment in Germany (GSR,
9 [61]). Only a few years earlier, however, probabilistic approaches had still met
with resistance in many parts of Germany. In 1966, the head of the laboratory of
nuclear power control and plant safety at the Technical University Munich, Profes-
sor Adolf Birkhofer, who was to become the managing director of GRS in 1977 and
would keep that position till 2002, belittled probabilistic safety research as passing
fashion (Radkau, 361 [32]). The mentor of Birkhofer’s Habilitation, Ludwig Merz,
who was an expert on measurement and control engineering and responsible for

8According to Radkau, the first German research program on reactor safety was instituted by the
Minister of Research and Technology only in 1971. It was triggered by the project of BASF to es-
tablish a nuclear power plant in Ludwigshafen and thus near big cities. This project was abandoned
in 1972 (Radkau, 381–382 [32]).
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the instrumentation of the first German-designed research reactor (FR-2 in Karl-
sruhe), repeatedly insisted on deterministic approaches as more appropriate or at
least equally important in reactor safety research (Merz [76, 77]). As head of GRS
and thus responsible for the first German nuclear power plant risk study, however,
Birkhofer changed his mind and subscribed to Probabilistic Risk Assessment.

The timing for publication of the German risk study coincided with the accident
at the Three Mile Island nuclear power plant. The GRS managed this situation by
adding an analysis of the nuclear accident in Harrisburg, PA, as an appendix to the
main study. Here the authors concluded that the events in TMI did not undermine but
rather confirmed the results of the risk study (Der Bundesminister, 265–257 [45]).
At the same time, however, the authors already envisioned a “phase B” of the risk
study that would reveal internal safety-relevant weak points, whereas phase A had
analyzed accident-caused damage outside of nuclear power plants and especially the
dimension and frequency of health damage to the population (Der Bundesminister,
245–247 [45] and 6–7 [46]). Phase B was published in 1989, the same year the last
two German nuclear power plants were connected to the nation’s electric grid. The
risk studies had not mitigated the public’s safety concerns about nuclear power, and
after the turn of the millennium the German government decided to abandon nuclear
energy altogether.

By the mid-1980s in the US and elsewhere PRA had become, as Carlisle framed
it, “part of the safety orthodoxy” and an object of Gierynian “boundary work”, lead-
ing to the formation of professional risk research organizations (Carlisle, 938 [6]
and Gieryn [62]). This was true not just for the nuclear sector. As we have men-
tioned above, after 1986 NASA returned to PRA. Also the chemical and petroleum
industry developed an increased interest in PRA after major accidents at Flixbor-
ough in England, Seveso in Italy, and Bhopal in India. The Bhopal accident, espe-
cially, triggered greater activities in risk and safety research and its applications in
the chemical industry (Garrick, 197 [18]). Thus, since the mid-1970s and especially
during the 1980s PRA emerged as a new business. Private firms performed PRA on
nuclear power plants, chemical plants, transportation systems, space systems, and
defense systems (Profile, 936 [82]. The practitioners of quantitative risk assessment
developed new ways of thinking about risk and safety. PRA became the intellectual
core for the emerging community of risk research that began to organize itself in the
late 1970s.

4.4 Swelling Uncertainties in the “Epoch of Landslide” and the
Mobilization of Professionalized Research to Deal with New
Risks

That reactor safety studies and PRA made headlines in the media and fired pub-
lic controversies in the 1970s signalled changing attitudes toward uncertainties and
risks. The post-World War II optimism that uncertainties can be controlled and trans-
formed into calculable risks that would allow humans to make wise decisions was
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superseded by new concerns because of newly emerging uncertainties. Increasing
environmental concerns spread as indicated by the growing amount of readers of
Rachel Carson’s book Silent Spring [48] and the publication of the Meadows et al.
report, Limits to Growth [75]. Growing fears of a deteriorating state of the earth
stemming from industrial activities and economic growth, however, were not the
only cause of concern. Wars and political unrest, uprisings and scandals in all parts
of the world, reaching from the war in Vietnam via the increasingly violent conflicts
in the Arab peninsula and the crushed Prague Spring up to the Watergate scandal
revealed a fragile political state and the weakness of the United Nations in fulfill-
ing its task of securing peace and progress across the community of peoples. Other
forces were also unleashed. Economies crumbled when oil prices skyrocketed and
the Bretton Woods Agreements broke down. In the wake of these economic storms,
structural changes gathered speed, putting an end to full employment and undermin-
ing faith in Keynesianism. This was a period that Eric Hobsbawm called the years of
landslide. These years historians only recently began to define as an epochal thresh-
old, leading to an era “after the boom” (Hobsbawm, 502–720 [20] and Doering-
Manteuffel and Raphael [53]). In this context, late-modern societies developed a
heightened awareness of uncertainties and a changing attitude toward risks, notwith-
standing the fact that fundamental anthropometric data, such as longevity and body
height, and world population counts, indicated fundamentally improved living con-
ditions in many parts of the world (on improved living conditions see Fogel [58]).

Sociologists identified the risks in late modern societies as having a new char-
acter. According to Ulrich Beck new risks result from such sources as nuclear
power plants, genetic engineering, and volatile capital markets (Beck, 11 [3] and
Bonß [44]). These new risks are no longer completely known nor are they fully
verifiable. To a certain extent, these and other new risks remain hypothetical. Man-
aging these risks may produce unintended side effects. In temporal, material, and
social respects, the risks of the late-modern world reveal a new dimension: potential
damages can no longer be compensated with money. The nuclear reactor catastro-
phes of Chernobyl (1986) and Fukushima (2011) may be cited as proof. Thus, new
risks are no longer considered as chances that can be taken based on confidence in
a basic certainty but rather as threats that should be avoided based on a fundamen-
tal awareness of uncertainty. To be sure, Beck’s diagnosis of the characteristics of
late-modern risks is widely known, but other authors take different, less normative,
and more analytical positions (Luhmann, 13–14 [24]). The success of Beck’s book,
however, supports his diagnosis as a relevant description of swelling uncertainty.

Swelling uncertainties triggered a tremendous boost in risk regulation and risk
research. From the end of 1960s and the early 1970s, first in the US and shortly
thereafter elsewhere, there were dramatic increases in the number of agencies im-
plementing risk-related legislation that dealt with health, safety, and environmental
concerns (Covello and Mumpower, 116–117 [50]; Jasanoff, 2–3 [21]; Thompson,
Deisler, and Schwing, 1334–1336 [38]). Legislative mandates to protect the envi-
ronment and public health and to ensure safety furthered new federal research cen-
ters and research programs in the US and elsewhere. As more researchers than ever
before in a broader array of fields began to analyze risks, they developed a need for
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greater communication and interaction. Historical reports on the developing field
of risk analysis underscore the importance of the 1975 multidisciplinary confer-
ence at Asilomar, CA, on the risks resulting from research on recombinant DNA
molecules as one of the first meetings with risk as the main subject. The Asilomar
Conference resulted in an interdisciplinary Recombinant DNA Advisory Committee
that was to review all proposals for conducting rDNA research in order to prevent
possible harm to human health and the environment through the unchecked spread
of undesired genes (Jasanoff, 47 [69]). In 1979 another early, interdisciplinary, and
explicitly risk-related meeting was organized by two General Motors Laboratory re-
searchers as part of the General Motors symposia series under the title: “How Safe
is Safe Enough?” (on the conference see Thompson, Deisler, and Schwing, 1335–
1336 [38]). The conference gathered together experts from many disciplines—as di-
verse as anthropology and nuclear physics—and it was opened by Chauncey Starr,
whose 1969 article, “Social Benefits versus Technological Risk: What is Our So-
ciety Willing to Pay for Safety”, was considered by many as a landmark in risk
research.9 Thus, by the late-1970s, risk had become a subject of research that—
as Sheila Jasanoff highlighted—connected disciplines as different as “mathematics,
biostatistics, toxicology, and engineering on the one hand and law, psychology, so-
ciology and economics on the other hand” (Jasanoff, 123 [68]). In their preference
for either quantitative, model- and measurement-oriented approaches, or qualitative
investigations as to the ethical, legal, political, and cultural aspects of risk, the re-
searchers remained confined to the two cultures of science.10 Jasanoff, however,
did not stress the differences but the complementarity of the two cultures of risk
analyses (Jasanoff, 124 [68]).

Common problems encountered across many disciplines requiring probabilistic
calculation led a range of researchers to contemplate developing risk analysis as an
academic discipline that would hasten the professionalization of risk research. In
1980 they founded the Society for Risk Analysis (SRA) and began publishing its
journal, Risk Analysis, in 1981, which provided a forum for both debate about pro-
fessionalization and new research on risk analysis. Robert B. Cumming is reputed
to have been the “spiritus rector” for establishing the new society and its journal
(Thompson, Deisler, and Schwing, 1336 [38]). As member of the Environmental
Mutagens Society and a genetic toxicologist in the Biology Division of Oak Ridge
National Laboratory in Tennessee, Cumming had been one of the participants at
the Asimolar Conference and other meetings on risk research, and thus he knew
the emerging community of risk analysts quite well. In the first issue of Risk Anal-
ysis, Cumming included an editorial posing the question: “Is Risk Assessment a
Science?” (Cumming [7]). Cumming answered “no”. Instead, he warned explicitly

9The article was published in Science 165, 1232–1238. Thompson, Deisler, and Schwing,
1334 [32] praised it as providing “the basis for approaching risk issues systematically and quanti-
tatively and (introducing) the concept of tradeoffs between risks and benefits for a wide range of
risks”.
10For an extensive and knowledge-able overview on the disciplinary perspectives on risk see Al-
thaus, 567–588 [1].
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against “dangers of professionalism” because these aspirations would serve only
special interest groups but not the community of risk researchers as a whole. He
envisaged the main purpose of the new society and its journal as “providing better
communication among the diverse elements involved in risk management”, i.e. the
whole range of contributing scientific disciplines as well as political and social insti-
tutions (Cumming, 2 [7]). The author of the second article in the same issue, Alvin
Weinberg, the distinguished nuclear and bio-physicist with research and policy ex-
periences going back to the Manhattan Project, spoke on “the art of risk assess-
ment” in order to distinguish it from science (Weinberg [98]). He pointed to strong
trans-scientific elements in risk assessment, and thus referred to an idea of thinking
on science and ignorance that he had developed a decade before. In 1972 he had
introduced the term trans-scientific for “questions which can be asked of science
and yet which cannot be answered by science” (Weinberg [97]). As examples of
trans-scientific questions he named among others the biological effect of low-level
radiation exposure or the probability of extremely improbable events such as catas-
trophic reactor accidents. Risk analysis was fundamentally important in addressing
trans-scientific questions, but its practitioners could by no means claim absolute
authority in offering answers.

Notwithstanding the hesitant stance of its founders, SRA both fostered and
tracked many activities toward developing risk analysis into a coherent academic
discipline with well-defined educational programs from the undergraduate up to
the postgraduate level (Thompson, Deisler, and Schwing, 1380–1381 [38]). But the
desired coherence was hard to achieve. This becomes clear with regard to the un-
successful strivings to find a common definition of risk on which all members of the
risk community could agree. In the mid-1980s, SRA tried to tackle this problem by
setting up an Ad Hoc Definitions Committee that, about a decade later, finally set-
tled the question by providing a list of definitions on the society’s website without
officially endorsing any one of them (Thompson, Deisler, and Schwing, 1380 [38]).
Another indicator of the great diversity of the risk research community is the emer-
gence of other, more specialized societies that are focusing on risk, such as, e.g., the
Society of Environmental Toxicology and Chemistry (1979), the International So-
ciety of Regulatory Toxicology and Pharmacology (1984), the Association of En-
vironmental Health Sciences (early 1980s), the International Society of Exposure
Analysis (1989), the International Association for Probabilistic Safety Assessment
and Management (1991), and the Risk Assessment & Policy Association (1994) (cf.
Thompson, Deisler, and Schwing, 1347 [38]). Thus, risk research blossomed much
more as an interdisciplinary rather than a disciplinary endeavor.

5 Food for Thought

The great societal transformation of the 19th century involved changing attitudes to-
ward risk. As soon as the urban middle class of professionals and tradesmen became
entitled to vote and acquired more social responsibilities, both in the public and the
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private realms, they subscribed to an ethos of control and predictability and began
seeking ways to avoid risks. The burgeoning economic life of the industrial revo-
lution, however, required the entrepreneurial men of the middle class to take risks
because setting up businesses involved calculating on an uncertain future. How were
these contradictory attitudes toward risk reconciled in Western societies of the 19th
century?

This chapter has been concerned only with developments in the Western world
and has shed light on events and processes that signified shifts in concepts of risks in
Great Britain, Germany, and the United States mainly. From anthropological stud-
ies, however, we have learned that culture matters in determining approaches toward
risk. How do non-Western cultures experience risk, and how do these differences
affect economic, financial, technological, political, and military endeavors in an in-
creasingly globalized world?

Life insurers were the first within the broader insurance business to develop and
apply theoretical knowledge to underwriting insurance policies. Practitioners in the
non-life insurance trades, however, preferred empirical knowledge and experience
for estimating risks and rating insurance premiums well into the second half of
the 20th century, even though the Swedish actuary Filip Lundberg had published a
theory of risk in 1909. Why did it take so long for probability theory to be applied
in non-life insurance?

Societies developed multiple ways to deal with risks, such as developing new
knowledge on dangers, imposing legally binding safety norms, developing quality
and reliability engineering, requiring risk analysis of safety-critical ventures, de-
manding compulsory insurance for activities in danger zones, and many other mea-
sures. How did societies decide on the most appropriate means of risk management,
and to what extent did professional cultures and intellectual fashions influence such
decisions?

Probabilistic Risk Assessment got a boost via the Rasmussen Report, the reactor
safety study that was presented to the US public in 1975. Paradoxically, the study
gained acceptance only after the severe accident at the Three Mile Island nuclear
power plant in 1979, although the study’s calculated probability of such an acci-
dent occurring was far too low to seem plausible to policy makers and regulatory
authorities. Why and how did Probabilistic Risk Assessment become an object of
“boundary work” that was soon applied to many areas beyond the nuclear power
sector and helped to propel forward the formation of the risk research community?

6 Summary

In this chapter we have investigated the changing concepts of and attitudes toward
risk. As a point of departure, we used Luhmann’s reflection on risk as future uncer-
tainty that is caused by human-made decisions, a notion based on the economist
Frank Knight’s more well known concept of risk as calculable uncertainty. The
questions we sought to answer were framed as follows: when did the attitude to-
ward future uncertainties change so that our understanding of uncertainties became
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narrowed down to risk? How did the modern concept of risk determine people’s
ways of dealing with uncertainties? How widely accepted has modern risk analysis
become, in what ways has such analysis proved to be particularly problematic, and
in what manner has risk analysis become professionalized?

Proto-modern notions on risk emerged in the context of the early modern rage
for gambling and other forms of aleatory contracts that treated future uncertainties
as a chance to make a fortune and therefore worth a wager. These aleatory contracts
inspired mathematicians to develop calculations on the probable outcome of future
events; thus, they began to quantify uncertainty as probability. The mathematicians’
achievement, however, was incompatible with the gamblers’ proto-modern under-
standing of risk as genuine uncertainty that precluded quantification. Therefore, the
understanding of risk had to be changed before probability calculations could find
acceptance as a way to manage uncertainties. The great political, technological and
social transformation of Western societies ushered in this development as the at-
titudes toward risks now changed from something to be sought into something to
be avoided—or at least managed. When bourgeois values of familial responsibil-
ity, control, and predictability began to determine the norms of society, its citizens
strove to gain control over uncertainties. In this context, however, they developed
a heightened awareness of a new class of human-wrought dangers and threatening
uncertainties. In this chapter we have explored how steam boiler explosions, food
adulteration, and cholera epidemics were not endured in fateful resignation but gave
rise to modern modes of risk management. The agents of this development estab-
lished regulations based on newly produced technical knowledge, formed coalitions
of experts among a broad range of fields, and introduced standards of safety for
technologies as well as for food. These strategies of risk management aimed at pre-
venting individual and societal harm from human-made hazardous products and en-
vironments. At the same time, the advancing insurance system of the 19th century
promised to compensate victims for their harmed bodies and damaged properties.
Thus, insurers capitalized on risk as they sold their customers a new degree of con-
trol over uncertainty. As the success of the insurers’ business largely depended on
knowledge of how to assess and to manage risks, insurers were important promoters
of research as to the causes and prevention of risks. Except for life insurers, how-
ever, practitioners in most of the other fields of the insurance trade proved to be
quite reluctant to employ theoretical approaches to risk calculation.

Only after World War II did the need for a more systematic and mathematically
rigorous risk analysis encourage the statistical understanding and probabilistic as-
sessment of risks in fields beyond life insurance. Whereas the insurance trade led
in developing a quantitative understanding of risk, problems of electrical engineer-
ing gave rise to quantitative approaches toward system safety and reliability that
were to constitute an important building block for the emergence of Probability
Risk Assessment (PRA) in the engineering fields. These developments occurred
at the intersection of increasingly complex, large-scale technological systems and
the establishment of formal organizations in which advanced mathematically-based
science and engineering knowledge was produced and applied to those systems. We
traced the quantitative approaches of system safety and reliability back to statistical
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quality control in the Bell Telephone System, where it was developed beginning in
the 1920s.

Formal methods of PRA emerged out of the need to determine the safety of nu-
clear reactors. Reactor safety became a hot-button issue when the success of Eisen-
hower’s Atoms for Peace Cold War initiative hinged upon the acceptance and sub-
sequent spread of nuclear power. In addition to reactor design and operation, the
aerospace and defense sectors also fostered the application of probabilistic meth-
ods in safety engineering. Here Fault Tree Analysis was developed and introduced
for safety evaluations of the Launch Control System of the US Minuteman ICBM;
avoiding an accidentally initiated thermonuclear World War III thus served as what
economist Nathan Rosenberg has termed a “focusing device” for innovation in risk
research and analysis (Rosenberg [86]). As a probability-based quantitative tech-
nique for analyzing system safety and the reliability of space and defense systems,
the Department of Defense built FTA into specifications for weapons systems de-
velopment contracts. In order not to jeopardize its Apollo moon program, however,
the civilian National Aeronautics and Space Administration decided to refrain from
quantitative risk and safety analysis, adopting instead a qualitative approach using
Failure Mode and Effects Analysis as the principal building block for the agency’s
risk analysis program. This qualitative approach toward systems safety also became
attractive to other circles, such as the automobile industry and the food industry.
However, despite NASA’s initial rejection, PRA gained further ground and boosted
the application and further development of risk research and risk communication.

As we have seen, the 1974 Rasmussen report, a reactor safety study that made
extensive use of fault tree analysis and probabilistic techniques for estimating and
quantifying risks, proved to be decisive for the spread and acceptance of PRA. This
was the case not just in the USA but also abroad, e.g., in the Federal Republic of Ger-
many. By the mid-1980s PRA had become an object of “boundary work”, furthering
professional risk research communities and spreading across the nuclear sector to
a whole range of problems and applications. With more sophisticated approaches
toward assessing risk, however, the awareness of new risks also increased. Since the
1980s ever more disciplines are contributing to this truly interdisciplinary endeavor,
and thus are expanding and deepening the approaches to analyzing, communicating,
and managing risks.
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Chapter 2
Risk Management and Business Ethics:
Integrating the Human Factor

Christoph Luetge, Eberhard Schnebel, and Nadine Westphal

Risk is defined differently in different disciplines, its meaning sharing the uncer-
tainty that is its essence. This chapter explores “risk” as an active verb, that is, what
it means to take risk or to risk, and what it means to manage the risk taking of
individuals within the modern corporation. Rather than the usual focus on the well-
worn material of the processes and uses of risk measurement and assessment, we
explore its ethical aspects, specifically, the conscious decision to take on risk, and
its management through incentives that shape organizations’ and individuals’ focus
on risk.

There are ethical issues in risky business activities and risky aspects of business
ethics. As business ethics is also a dimension of theories of leadership and human re-
sources management, this article focuses on the ethical aspects of risk management,
as outlined by business ethics. After a short introduction, there is a general overview
of the different ethically relevant dimensions of risk in business (Sect. 2). Section 3
focuses specifically on management risks and risk assessment. Section 4 outlines
the role of normative loopholes in risk management to frame our ethical perspec-
tive: order ethics. In Sect. 5 we discuss its relation to risk, specifically the way it
deals with the human factor in organizations. Section 6 concludes by sketching a
theoretical framework for what corporations can do to effectively manage ethical
risks and fulfill their social responsibilities at the same time.
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Fig. 1 Perpetuation of actions and decisions as risk and risk management

The Facts

• Risk can be defined as an active verb requiring both consciousness and courage,
which are grounded in responsibility.

• The classical approach of risk management can be explained through the forma-
tion of expectations based on observation and measurement.

• Risk plays an important role in human resources management and the corporate
role of cultural expectations in approaches to risk.

• There are different personal risk attitudes in motivating behavior and shaping
corporate culture.

• Order ethics in a modern, competitive economy sets incentives that encourage
cooperative or constructive competition, and thus close the normative loopholes
opened by competition.

• The “prisoner’s dilemma” models the ethical dimension of taking risk.
• Ethical risk must be added to other specific business risks such as country risk,

settlement risk, market risk, credit risk or operational risk.

1 Introduction: Risk, Rational Choice, and Risk in Business

Wherever people face failure, they may recognize the threat of danger and expe-
rience fear. Regardless of the chances of success, when they decide to take action
to avert danger they become conscious managers of their circumstances. The deci-
sion to act decisively and avoid being at the mercy of danger is when people start
calculating or expecting concrete hazard: they assume risk.

In this sense, risk is a process of rational choice, reliant on consciousness and
courage. Risk exists wherever people shape their future by rational arguments or
classified observations, wherever they act consciously and calculate ongoing ac-
tions. It is the attempt to arrange the future and gain power by dealing with an
unknown or at least unexpected progression of events (Fig. 1). Despite the fact that
we cannot know the scope of our activity at all times, risk empowers future actions.
Starting with the courage of the actor, risk rationalizes unknown future events. It is
the enlightened counterpart to the rational decision, based on the Kantian “courage
to use your own understanding”!1 Risk is the rational equivalent to rational choice,

1Kant 1784.
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Fig. 2 Categories of risk awareness and risk taking

but deals with uncertainty, making the human capable of future action in the classi-
cal meaning. Risk management focuses on the conceivable scope of action, and in
the end it helps to establish normative structures as standards of risk selection.

2 Rational Expectations as the Center of Risk

At its origin, the theory of rational choice refers to the fact of conscious awareness
of different choices and to the possibility of taking different actions. It refers to an-
ticipated and unanticipated influences affecting an individual’s life, intentions, or
targets. The asymmetric difference between known risk and unknown risk, favoring
the known and conceptualized in risk aversion, focuses on risk consciousness as well
as on risk management. The rise of rational risk awareness is part of the transition to
modern society: “perhaps, this was simply a loss of plausibility of the old rhetoric
of Fortuna as an allegorical figure of religious content and of prudentia as a noble
virtue in the emerging commercial society”.2 There are two rational concepts to
classify risk and risk management with two opposite directions of analysis (Fig. 2):
risk management as avoidance of harm and danger, and risk management as estab-
lishment of new opportunities. We characterize four elements of risk as: rational
awareness of (unspecified) danger; rational observation of complexity and possible
escalations; estimation and calculation of developments, dynamics, and volatilities
for management; and finally risk related to courageous and powerful action.

2.1 Risk and Danger: Results of Rational Observations

Nature is the framework of human planning and social life, but nature is danger-
ous: earthquakes, storms, and tsunamis affect life on earth in particularly huge and
universal ways. But life itself also contains natural dangers, like epidemic diseases.
These natural dangers create a mode of rational observations among rational beings.

2Luhmann [23].
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People draw conclusions from these observations and adjust their behavior. They do
not live in areas of explosive volcanoes, or in flood plains, etc. The observation of
natural dangers entails appreciating their complexity. There are irregularities in nat-
ural phenomenon and catastrophes and these irregularities follow the natural law
of complexity and contingency. It is the management of these circumstances that
bares the rationality in risk: human beings settle in places where natural dangers are
calculable, infrequent incidents.

2.2 Risk as Estimation and Calculation of Developments,
Dynamics, and Volatilities

Rational observation leads to assessment of the development of business and its dy-
namics. Certain estimations characterize risk as a measurement to adjust the prob-
ability of success for single decisions: the appreciation of business cycles and the
position of a single business within a cycle, and the development of cash flows as
part of the dynamic development of that business in the global or local economy.
These same assessments are often used in portfolio management. A third appli-
cation estimates the interrelationship between two ecological systems, if they are
coupled strictly. For example, the extension of industrial fishing is a direct risk for
the global ecological system if the dynamics and volume of global fishing is contin-
uously increasing.

2.3 Risk as Dealing with Complexity and Contingency:
The Awareness of Irritation and Escalation

Continued rational observation of complexity and contingency in order to defeat
danger is not limited to natural or unknown situations. In complex natural or social
systems it leads to a realization of the phenomenon of contingency and escalation: in
particular, unexpected results accumulate unpredictably at single points and lead to
escalating systems in a complex set of interrelationships. The possibility of failure
rises as the number of combinations of things that can go wrong increases. The
complexity of large systems like communications networks means that even tiny
glitches can cascade into catastrophic events. In fact, catastrophic events are almost
guaranteed to occur in many complex systems, much like big earthquakes are bound
to happen.

Without the benefit of perfect foresight, businesses can uncover the fatal flaws
and forestall the nascent disasters lurking within their organizations by: (1) assess-
ing risk for informed decisions, such as purchasing an insurance policy; (2) spotting
vulnerabilities and addressing them before catastrophic events occur; and (3) de-
signing for resilience. “These ideas have been around for years, but researchers have
recently had to reinvent them in the context of extremely complex, interconnected
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cascade-prone systems”.3 These techniques are helpful even in other complex sys-
tems like pandemic viruses in modern societies or local epidemics where a huge
number of complex weaknesses converge and escalate unpredictably.

2.4 Risk as Courageous and Powerful Action

The last level of rational observation of risk manages actions and improves results.
There are three types of actions in risky situations. One tries to achieve better-than-
average results, another is forced by undefined or unexpected developments, and the
third is undertaken without knowing the returns.

2.4.1 Risk Management for Achieving Outstanding and Unique Results

First, taking and managing risks is a way of achieving outstanding or unique results.
In this sense, an engineer’s trip into space or a musician’s performance of very
difficult pieces are that kind of risk. In both cases, the actors will prepare themselves
very well, and will exclude all known disruptive factors or source irritations. They
plan how to act with courage, knowing where the main risks are and how dangerous
the action is.

Also in this category are other business or scientific innovations in fields where
no common experiences exist, such as in clinical studies to develop new active phar-
maceutical ingredients, where participants have to take new steps to achieve unique
results. Risk management has to calculate everything it knows and to consider even
the negative outcomes if the actors fail.

2.4.2 Awareness of Undefined and Unexpected Results or Developments

Risk and risk management are a way of dealing with situations where the circum-
stances are changing and unpredictable. Managers in these cases know about possi-
ble natural, social, or human variations and are prepared to be responsive to changes.
For example, in aviation, risk is managed not only by avoidance but also by estab-
lishing alternatives in case of changing circumstances. Pilots can change routes, use
different airfields, and alternate the altitude or speed. It is not a hierarchic security
that affects risk in aviation but a dynamic handling of possible solutions.

3Bonabeau [5].
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2.4.3 Risky Actions

Risk and risk management are essential whenever people put themselves in jeop-
ardy. Risk in these circumstances is the rational and feasible handling of uncertainty
or of known risk, for example, fire fighters who put themselves in risky situations.
Our focus is less on the danger of forest fire itself but on how fire fighters act pro-
fessionally to expose themselves to danger and to return safely.4 In the same profes-
sional style, other people act in dangerous jobs, like frogmen or parachutists.

3 Dimensions of Risk and Risk Management in Modern Business

In business and in business organizations, risk is a term covering the uncertainty of
business opportunities. This leads to the need to succeed by developing competi-
tive or organizational advantages. It also leads to acquiring or supporting resources
and therefore generating stable payments and sound cash flows. In this way, risks
in business and of business opportunities are always measured as financial changes.
Accordingly, risk in business can be separated into two parts. There is external risk,
tangible as the financial risk of managing current payments, future payments, and
financial credits, all essential for acquiring resources. There is also internal risk,
dealing with organizational structures, human cooperation, and individual action.
Both kinds of risks require guidance from economic rules as well as from ethical
insights when facing future challenges and social circumstances. For both, there
is a tremendous need to distinguish clearly between risk awareness and risk esti-
mations in order to get a precise understanding of risk management and its ethical
aspects (Fig. 3). Risk awareness is the acceptance of what actions we are going to
undertake and why they can fail. This helps us to recognize how we can change our
actions. Risk estimations are the rational assessments of how risks may develop.
They illuminate the urgency of additional efforts or special diligence. It is the ra-
tional calculation and planning for unexpected occurrences that separates risk from
bare uncertainty as the core characteristic of risk management.

3.1 Risk and Uncertainty: The Knightian Distinction

The distinction between uncertainty and risk as captured uncertainty was first pro-
posed by Frank Knight in his work “Risk, Uncertainty, and Profit”.5 Knight men-
tioned that the probability or threat of damage, injury, liability, loss, or other neg-
ative occurrence, caused by external or internal vulnerabilities, may be neutralized

4A very detailed study on this issue and on intrinsic social and organizational problems is intro-
duced by Weick [39] with “The Mann Gulch Disaster”.
5Knight [17].
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Fig. 3 Classification of different types of risk in business

through premeditated action. His approach combines the measurable likelihood of
a hazardous event and the severity of injury that can be caused by the event. Uncer-
tainty, however, persists immeasurably, impossible to calculate. In his words:

. . . Uncertainty must be taken in a sense radically distinct from the familiar notion of risk,
from which it has never been properly separated. The term “risk”, as loosely used in ev-
eryday speech and in economic discussion, really covers two things which, functionally at
least, in their causal relations to the phenomena of economic organization, are categorically
different. . . The essential fact is that “risk” means in some cases a quantity susceptible of
measurement, while at other times it is something distinctly not of this character; and there
are far-reaching and crucial differences in the bearings of the phenomenon depending on
which of the two is really present and operating. . . . It will appear that a measurable uncer-
tainty, or risk proper, as we shall use the term, is so far different from an immeasurable one
that it is not in effect an uncertainty at all.6

3.2 Risk Awareness Leads to Risk Estimation

This distinction between uncertainty and risk rests on the contingency of achieved
results relative to the goals of the action and the circumstances.7 Measurement of
uncertainty is a set of probabilities assigned to a set of possibilities. Risk, again, is a
state of uncertainty where some of the possibilities involve a loss or other undesir-
able outcome. The measurement of risk is a set of possibilities, each with quantified
probabilities and quantified losses. One may have uncertainty without risk but not

6Knight [17].
7Hubbard [13].
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risk without uncertainty. We can be uncertain about the winner of a contest, but un-
less we have some personal stake in it, we have no risk. If we bet money on the
outcome of the contest, then we have a risk. In both cases, there is more than one
outcome. But the measure of risk requires both probabilities for outcomes and for
losses (quantified for the outcomes).

The results of the impact of the likelihood (probability) of a hazardous event or
phenomenon and the impact of the severity (consequence) constitute what we mea-
sure as risk according to what we perceive as risky. For example, for the carcinogen
effect, risk is estimated as the incremental probability of an individual developing
cancer over a lifetime (70 years) as a result of exposure to a potential carcinogen.
For the non-carcinogen effect, it is evaluated by comparing an exposure level over
a period to a reference dose derived from experiments on animals. The two impacts
engender insights in how to cope: whether we need standardized models of behavior,
or whether we only need the awareness and sensibility of scarce effects.

3.3 Risk Assessment: Event Statistics and Bayesian Methods

The many formal methods used to “assess” or to “measure” risk are a critical factor
in human decision-making. Some of these quantitative definitions of risk are well
grounded in sound statistical theory. However, these measurements of risk rely on
failure occurrence data that may be sparse. This makes risk assessment difficult in
hazardous industries such as nuclear energy, where the frequency of failures is rare
and the harmful consequences are astronomical. The dangerous consequences often
necessitate actions to reduce the probability of failure to infinitesimally small values
that are both hard to measure and hard to confirm empirically. Often, the probability
of a negative event is estimated by using the frequency of equivalent past similar
events or by event-tree or fault-tree methods.8 But probabilities for rare failures
may be difficult to estimate if an event tree is not well defined.

In game theory and other models of complex systemic interrelations, more sub-
jective judgments are used for the assessment of risk, related to good judgment
or common sense, like the Bayesian probability.9 Bayesian probability focuses on
evidential probabilities as an extension of logic that enables reasoning with propo-
sitions whose truth is uncertain. Bayesian probability is an abstract concept to re-
present a state of individual knowledge in contrast to interpreting probability as a
frequency or “propensity” of some phenomenon.10 Bayesian probability is a math-
ematical treatment of a non-trivial problem of inference11 offering two views to

8Hanley and Hiromitsu [11].
9Stigler [36]: 131.
10Jaynes [15].
11Stigler [36].
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interpret the probability concept: the objectivist view as an extension of logic jus-
tified by requirements of rationality and consistency, and the subjectivist view of
probability as “personal belief”.

3.4 Business Ethics in Risk Management

For risk management issues, a more action-oriented approach is desirable, reflecting
ongoing adjustments, interactions, and the ongoing need to reach decisions. There-
fore, risk management distinguishes between risks as “future issues” that can be
avoided or mitigated and “present problems” that must be immediately addressed.12

For management, risk is a probability issue. While possibility, as a binary condi-
tion, describes something as either possible or not, probability reflects the smooth
transition between absolute certainty and impossibility. The term risk only describes
“the probable frequency and probable magnitude of future loss”.13 But establishing
probabilities is quite different from foretelling the future; therefore action-oriented
risk assessment is relevant mainly for individual or subjective judgments.

Additional definitions refer to risk as the effect of the probability of a hazard
resulting in an adverse event, combined with the severity of the event.14 The term
“hazard” is used to mean an event that could cause harm, while the term “risk”
is used to mean simply the probability of something happening. One of the first
major uses of this concept was at the planning of the Delta Works in 1953, a flood
protection program in the Netherlands. With the aid of mathematical calculations,
the probability of the occurrence of a storm surge was combined with the average
cost of damages.15 This kind of risk analysis is implemented in fields like nuclear
power, aerospace, the chemical industry, health, and, increasingly in the last ten
years, in the financial industry.16 Ethical coordination allows assessment of whether
the harm is too much or not (e.g. nuclear power) and whether its probability is
acceptable or not (e.g. transportation systems).

4 Shaping Risk: Order Ethics and the Human Factor

Motivation is a significant factor in realizing economic goals, as well as a beneficent
resource within an appropriate structure for optimal operation. At best, companies’

12E.g. “Risk is the unwanted subset of a set of uncertain outcomes” (Cornelius Keating, acr.).
13This definition was accepted by The Open Group, see: The Open Group [26].
14“Risk is a combination of the likelihood of an occurrence of a hazardous event or exposure(s)
and the severity of injury or ill health that can be caused by the event or exposure(s)” (Occupational
Health & Safety Advisory Service [25]).
15Wolman [40].
16Cf. the other articles in this volume.
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aims should be precisely outlined by management and communicated clearly to the
staff. Ideally, the companies’ goals or ends correspond to the staff members’ goals
or ends. The question is how to organize the communication of these ideas, since
there are different human characters, risk strategies, and levels of risk tolerance.
Some actors try to avoid risks at any time, while others take risks at any opportu-
nity. Moreover, risk avoidance is not helpful for new actions, as we have seen in
Sects. 2 and 3. Thus, the risk tolerance of the decision makers is discussed as a hu-
man factor.17 The main issue is to find fitting settings where the required risk level
of the position or task matches people’s risk tolerance in order to achieve success.
This empowers people to take advantage of existing various levels, attributes and
types of behavior and conduct.

4.1 Fundamentals of Order Ethics

This section focuses on what order ethics can contribute to risk management. We
will take a closer look at social dilemmas and their relation to issues in risk man-
agement.

Most types of ethics are still based on the circumstances of pre-modern societies:
the words of the successful 15th century Florentine merchant Giovanni Rucellai:
“by being rich, I make others (who I might not even know) poor”18 illustrate the
zero-sum games played in pre-modern societies. In these situations, it is not rational
to focus on win-win-situations, but instead to oblige people to be moderate, to share,
and to sacrifice.

Order ethics, by contrast, is based on the concept of modern societies, charac-
terized by sustained growth over long periods of time, where economic or financial
crises interrupt or deflate economic development for several years but don’t seri-
ously affect long-term growth. This development has mainly been made possible by
the modern competitive market economy, which enables individuals to follow their
own interests and to make independent acquisitions of resources within a carefully
built institutional system. In this system of ideal competition, positive sum games
are played which create situations where the position of every individual can be im-
proved at the same time. Competition is seen here as a fundamental social condition.

Ideal competitive situations, however, also bring about critical situations: in
dilemma situations, possible mutual gains are often left unattained. These dilemmas
lie at the core of ethical questions in modern societies, and to avoid or curtail them
by designing adequate institutional structures is the challenge of business ethics.19

The most important dilemma situation is the prisoner’s dilemma, which models a
fundamental structure of economic action in a globalized world full of interdepen-
dence.

17Tversky and Kahneman [37].
18Rucellai [32] (written about 1450).
19Cf. Homann et al. [12], Luetge [19, 20].



2 Risk Management and Business Ethics: Integrating the Human Factor 47

The prisoner’s dilemma is a fundamental problem in game theory that demon-
strates why actors might not cooperate even if it is in their best interests to do so:
two suspects of a major crime get caught by the police and are interrogated sepa-
rately. Although their involvement in that crime cannot be proven, there are some
evident misdemeanors that justify detaining them. Each prisoner now has the option
of being exempted from punishment by testifying against his accessory (defect) or
by remaining silent (cooperate). However, the total exemption (i.e. no sentence at
all) works only if just one of them defects while the other remains silent, and applies
only to the defector. If both choose to cooperate, they will both be prosecuted for
the minor offence and receive a light sentence. If both defect, however, each will
receive a higher sentence, which leaves both worse off. In this case, each prisoner’s
rational choice is to defect and hope that the other does not. Consequently, both
actors defect and receive the higher sentence for the major crime, even though they
both would have been better off if they had both kept silent.

In this model, the incentives of the social situation force actors to ignore the
common fruits of a possible cooperation. The prisoners cannot be expected to co-
operate, because the conditions of the situation (the “rules of the game”) lead to the
other player’s defection. In other words: in the prisoner’s dilemma, all actors are
faced with the possibility of being exploited by others if they behave cooperatively.
Therefore they preemptively stop cooperating. This leads to a situation where ratio-
nal, self-interested actors end up with a result that leaves all worse off and no one
better off: morality gets displaced. The situation can be remedied by making condi-
tions equal for all participating social actors: the rules of the game must be changed
in order to rule out exploitation.

Members of a cartel are often involved in a prisoner’s dilemma, because defect-
ing, that is, selling below an agreed minimum price level, means taking business and
profits away from the other cartel members. Inside the cartel this leads to lost prof-
its and therefore is the classical prisoner’s dilemma. From a societal or consumer’s
point of view, defection in a cartel leads to lower consumer prices and therefore to
an increase in social welfare.

In a vein similar to the German model of “Ordnungspolitik”,20 the focus of the
concept of order ethics is a regulatory framework. This concept emphasizes the im-
portance of rules, too, and of a scope for moral actions that erodes under competitive
conditions without institutional rules. Note that the prisoner’s dilemma is not always
in need of being dissolved. In some situations it is desirable to establish the dilemma
in a productive manner, especially to keep actors (firms) in a competitive situation.

Thus, order ethics uses economics as a key theoretical resource and focuses on
institutions for implementing moral norms. Individual actors should not be forced
to act against their own interest in competitive situations. People cannot, as a gen-
eral rule, systematically be expected to accept being exploited by others. Especially
in the field of risk management, the fear of being exploited may lead to instability,
which is not favorable to the entire organizational process. Well-intended moral ap-
peals without sanctions are systematically ineffective and inevitably lead to failure.

20Eucken [7].
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Order ethics aims at changing the order framework of a society rather than appeal-
ing to moral behavior. Further, the principle of morality must not be applied in
opposition to but in compliance with economic reality. For that reason, an adequate
institutional regulatory framework should provide stable conditions and offer incen-
tives for individual actors based on individual motivations—and for mutual benefit.
Institutions should be arranged in such a way that they can contribute to overcoming
the previously described dilemma situations.

Being aware of which important role human actors play in complex settings
within modern, work-sharing societies, order ethics identifies risk as an object of
human resources management and offers mental models to take care of this issue.
Embedding into human resources management risk attributes such as “avoids new
actions” (risk aversion) or “prefers new actions” (risk courage) may help to improve
business organizations, projects, and products, shaping risk aims toward reducing
operational risk by taking care of the human factor. An adequate conceptual frame-
work enhances the possible output by expanding the involved actors’ capacities to
act. As nobody can be expected to accept being intentionally exploited, the rules
must be set in an appropriate way, targeting the actors’ self-interest: it is better to
tell businesspeople how much money they can make by offering us their goods,
instead of appealing to their good will.

We can sum up the main four points of the concept of order ethics:

1. Moral actors are exploitable. This is the basic problem of business ethics: people
find that they are exploitable as social actors when acting morally, and so do
corporations and organizations. Corporations acting in an ethically desirable way
may find themselves at a competitive disadvantage compared to others who act
less morally.

2. Adam Smith, the founder of economic ethics, was the first to systematically bring
together the difference between actions and conditions of actions in order to link
competition and morality: morality (incorporated in the idea of the solidarity for
all, for example) can be found on the level of the conditions, the rules. Only by
making the individuals’ moves amoral in principle can competition be made pro-
ductive. With the aid of rules, of adequate conditions for actions, competition is
directed at realizing advantages for all people involved. In this way, others can-
not exploit moral behavior, since the rules are the same for everybody. Therefore
Smith’s approach is based on the distinction between action and conditions of
action, between individual actions and the rules of the game. Individual actions
are subject to rules.21 This distinction between the two different levels is often
overlooked in ethics.

3. Competition within appropriate rules generates solidarity. Competition should
not be restrained or abolished but should be channeled by suitable rules.

4. Within an adequate framework of rules, solidarity as a basic ethical ideal calls
primarily for intense competition by self-interested actors, not for sacrificing or
sharing.

21Cf. Smith [35].
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Fig. 4 Normative structures for risk management as substitution of missing trust

Human beings act differently when conditions change, either in a positive or a
negative way, especially when they find themselves in dilemma situations. This fac-
tor should also be taken into consideration once staff is entrusted with decisions
where risk behavior matters. The following section offers a mental model for pro-
gressively shaping individual risk appetite.

4.2 Risk, Trust, and Normative Loopholes: Ethical Analysis to
Improve Risk Management

In regular business settings, wherever business participants fail to cooperate and
wherever they are in need of constraints and conditions to avoid defecting, norma-
tive loopholes occur. In regular settings, managers learn by making decisions that
lead to practical patterns for actions. Their disposition for risk gets modified too:
making new decisions leads to new risks and varied experiences that eventually lead
to gradually building up more reliable trust—which in turn leads to new and “risky”
decisions and actions. But while actions and decisions can either succeed or fail,
trust is always brittle. Normative structures can help actors and corporations regain
trust.22 These categories help in identifying areas where normative structures im-
prove the stability of social systems or even where trust is missing (Fig. 4).

Wherever ethical norms are affected to re-establish trust or to avoid defection,
it is a matter of order ethics. Order ethics, as mentioned in the introduction, iden-
tifies dilemmas where the rational risk orientation of interconnected actors avoids
cooperation. It may be rational for business companies to obviate investments in
underdeveloped countries where clear legal systems are missing. The economic so-
lution would be to establish transnational institutions or guarantees to minimize the

22This model of action refers to Baier [1, 2], Hume [14] and Luhmann [22].
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business risks for the companies and to facilitate future investments. The solution of
order ethics would be to specify the aspects by which ethical norms may empower
managers to take even more risk in special situations without the perspective of in-
creasing profits.23 It looks for social solutions and new institutional arrangements
that fill these gaps or loopholes. In this context, trust is an “institutional” solution for
avoiding losses resulting from lack of cooperation—both outside and inside an orga-
nization. The human factor emphasizes opportunities inside the company, outlined
as part of human resource management.

4.3 Risk Appetite as an Object of Human Resources Management

The active management of risk is not restricted to classic economics, but also in-
volves aspects of human capital. It considers the individual motivation to cooperate
as an opportunity to manage risk, but this has to be spelled out in detail to be applica-
ble to managerial tools. The avoidance of defecting business partners or hazardous
behavior is genuine risk management. In institutional economics, this is related to
the distinction between coordination and motivation as the two basic aspects of man-
aging an organization.24 Coordination is the skillful distribution of resources and
workforce based on work-sharing principles, while motivation concerns the reasons
people have for doing what they should in relation to their principles and prefer-
ences.

This describes risk aversion as missing a preference for new actions and risk
courage (a key attribute for dealing, negotiation, and proceeding) as a willingness
to focus on ongoing factors of motivation. Both concepts structure our understand-
ing of risk as organizational knowledge: what kind of risk attribute, corresponding
behavior, and conduct is adequate for which project, which new steps, and which
level of hierarchy? Typically, the desire to commit to more or less risk is called
“risk appetite”.25 Risk appetite as a organization’s or individual’s attitude towards
risk taking is the effort to search for corresponding elements of risk, like profits, sus-
tainability, or a social set of values by organizing businesses, projects, and products.
Risk aversion and risk courage are corresponding attributes in a complex world for
shaping risk. It is the power to shape operational risk that grows by the knowledge
of the role human actors play in complex settings.

To tackle this social problem, we recommend identifying risk appetite as an im-
portant factor in business. Within an inappropriate framework of rules and institu-
tions, risk appetite may lead to failures and losses, which have economic as well
as ethical aspects. Consequently, we will first discuss ethical aspects of risks that
directly involve human beings. Second, we will relate actions of involved social ac-
tors to ethical issues such as trust. We will employ the concept of order ethics: order

23About the function of normative values in decisions see Schnebel [33].
24Cf. Picot et al. [27].
25Cf. the Institute of Risk Management, Risk Appetite and Tolerance, Crowe Horwath.
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ethics offers, first, “mental models” to take care of these ethical aspects, and sec-
ond (as a philosophical approach) it stresses the semantic and conceptual aspects of
ethics in organizations: a tangible conceptual framework increases the capacity to
act, which in turn may have a positive impact on the economic output.

4.4 The Human Factor in Terms of Risk

In modern corporations, social dilemmas26 are increasingly responsible for reduced
productivity due to ignored potential in human resources. This type of risk takes
the form of dilemma situations and might be handled better by effective human re-
sources management. Motivation or coordination problems are organizational prob-
lems. An efficient process should enhance a well-balanced mix of coordination and
motivation in a “human factor-oriented decision making”. Being aware that corpo-
rations are affected not only by economic, but also by political and ethical decisions,
risks occur in a social context.

Three autonomous European companies (A, B, and C) merge. The headquarters
will be based in company A, and all central administrative processes will be orga-
nized from there. The headquarters now have to live up to diverse expectations. The
new operations must be cost-saving and effective, while at the same time the so-
lution must represent all three companies equally. Moreover, there is the important
question of authority. Who has the power of control over the system and who is in
charge of risk responsibility? Unfortunately, deficiencies concerning the distribution
of power and their consequences are often not discovered until the stage of actual
usage. At first, the applicant as well as the users will have to live with this dilemma.
Mainly, failed projects carry with them the risk of significant delays as well as ex-
tra expenses charged after the project has started. This often results from inefficient
decisions and inadequate action, such as withholding relevant information or mis-
handling access authorization, consciously or not.27

Therefore, it may be worth considering the human or ethical factor involved in
organizing businesses, projects, and products. The ethical potential of risks should
be exposed and more transparency brought into the team-building process. Once
every social actor is optimally integrated and effectively deployed by considering
risk attributes, team processes might develop more effectively.

Michael Power28 stated that categories for decisions on actions in relation to
individual know-how are possible risk dimensions. They show how managers make
a decision on the risky matter itself and do not avoid risk by communicating. Further,
he detects that secondary risk, like reputation risk, cannot be managed on the level of

26Many of the most challenging problems in modern societies, from interpersonal to intergroup
issues, are at their core social dilemmas (cf. Liebrand et al. [18] and Beckenkamp [4]).
27Cf. Westphal [38].
28Power [29].
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communication only. Risks have to be decided on and consistently be adapted to the
specific operation. Accounting systems demand an enormous amount of time and
energy, while certificates and reports are often too vague and complex to really be
useful. Categories that are the basis for risk management decisions are the only items
that are important in this regard. According to Power, these are all issues difficult to
evaluate in a quantifiable and reliable way: the management culture, its strategy, or
its trust in the staff. And even if they are somehow quantified, they are very difficult
to manage or administrate. For this reason, the know-how of the participating social
actors should be integrated and not ignored.29

The model of order ethics does not evaluate the management culture, strategy,
or trust in the staff, but can contribute to finding out more about intrinsic incentive
structures that go hand in hand with the factors of motivation and may give informa-
tion about individual risk appetite. Thanks to a smart organization by effective rules,
which respect social integration, this factor may be raised and has the potential to
become an important economic factor. As soon as we are dealing with situations of
risk, the factor of responsibility is significant. Responsibility can only be assigned
to people or collective entities, not to categories. As we learned above, games help
to reconstruct interaction situations for investigation. The following section elabo-
rates how order ethics integrates the analysis of social-economic phenomena within
dilemma structures for improvement.

4.5 Avoiding Wasted Potential Through Professional Risk
Management of Human Resources

Coordination and motivation as the basis of good organization are linked to individ-
uals, so it is worth considering the principles and preferences of social actors in a
process of planning or integrating these aspects in risk decisions, e.g., in the field of
mergers and acquisitions. With regard to what effects different levels of managers’
risk appetite may have on successful business, it is rational to manage operational
risk by integrating the human factor wherever employees are less integrated.30 The
human resources department could deliver valuable input on risk shaping by iden-
tifying idle potential based on a concept of order ethics. Idle potential, in this case,
denotes the lack of ideal integration of a willing workforce. By using intrinsic in-
centive structures properly, motivation can be raised, which in turn may lead to a
better economic output. Further, trust also plays an important role in this context.
An employee who trusts her employer and co-workers may act in a different way in
a risk situation than an employee in precarious working conditions.31

29Cf. Power [29, 30].
30Cf. Rücker [34].
31Cf. Matthes [24], 56.
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Nowadays, corporate decisions are not only concerned with economic, but also
with political and ethical responsibility. Consequently, mental models suggest the
integration of ethics into risk analysis. This could be organized in five steps:

1. The concept of order ethics may help to implement ethical standards and man-
agerial frameworks in risk management.

2. The primary focus is on rules, not on motives. The imposition of sanctions should
support compliance with rules.

3. Self-interest of social actors is assumed to be beneficial within an appropriate
regulatory framework.

4. Incentive structures should reward ethical behavior, not punish it.
5. Rules should be beneficial for all involved parties, at least in the longer run.

This way of thinking and acting brings new positive aspects to all stakeholders.
For example, team processes have the potential to develop more effectively once
every social actor is integrated by considering risk attributes. Moreover, there are
serious risks associated with paying for damages, such as fines for corruption or
for ecological damage. The advantages of integrating ethical values into risk man-
agement may help to organize processes in a more transparent way. In addition,
decision makers may be motivated to improve ethical standards and values such as
solidarity and fairness in daily work life, as this implies improvement of efficiency
at the same time. That is to say, synergies can be used, as each actor brings and/or
extracts expert knowledge and empirical values. Next, we focus on examples of how
order ethics can help to improve risk management as well as risk taking and decision
making.

5 Risk in Resource Optimization

“Risk comes from not knowing what you are doing” (Warren Buffett). Buffett’s
statement emphasizes the action-related aspect of risk: take your present decisions
and strive to be capable for making new decisions to continue your business. This
requires management differentiation between those factors that have to be sensitive
to external settings, and other factors that are created and help create the settings of
our organization.

5.1 The Current Angle of Risk in Business

In modern business, risk also covers the probability that an actual return on an
investment will be lower than the expected return. Therefore, risk is the observa-
tion and classification of uncertainties to define areas of decision and of functional
structures. Risk covers the fact that the consumption of resources is higher than the
production of new resources or services taking into account the effects of losses.
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Following the Basel Committee,32 we will therefore divide risk in business into the
following five general categories:33

1. Country risk covers the uncertainties of political systems and the internal dynam-
ics of societies.

2. Settlement risk covers the external uncertainties of running financial processes as
well as of operating sequences.

3. Market risk covers the uncertainties of factors inside markets in relation to price
mechanisms and valuation.

4. Credit risk covers the uncertainties of external economic influences on resources
needed from the economic environment. This relates to external circumstances
other than those of the respective actor, e.g., the repayment of a credit.

5. Operational risk extends to parameters and structures of internal organizational
processes in relation to individual misbehavior and individual failure, covering
therefore the efficiency of adequate integration of an organization’s members.

The first two risk categories are observations of things with direct influence on
our own activities, but which actually detract from our actions. These are alterations
that happen and that we have to cope with. The third and fourth categories of risk
are observations of circumstances we accept in order to gain various advantages in
terms of additional resources: credit risk covers the uncertainty of expected results
due to previous inputs, whereas market risk covers the change of social evaluation.
Both risks are accepted if the profits (not only the monetary ones) are appropriate.
The fifth risk category, operational risk, belongs to appropriate action of all involved
individuals and to the question of an adequate fit of human behavior and organiza-
tional structures. The following sections outline the details of these risk categories.

5.2 Country Risk and Settlement Risk

Country risk refers to a country’s political system and its economic reliability. It
acknowledges that economic and political changes in a foreign country will affect
loan repayments. As a result, a buyer or seller of a financial instrument, of other
economic obligations, or of foreign currency will not be able to meet associated
delivery obligations at maturity. In a way, this risk is related to exchange rate risk,
the appreciation or depreciation of a currency resulting in a loss or a “naked posi-
tion” with regard to the exchange rate. In the end, the state as an actor is referred
to in political risk, covering concerns that political changes in a debtor’s country
will jeopardize debt-service payments. The state is also concerned with sovereign
risk: the risk that a local or foreign debtor-government will refuse to honor its debt
obligations.

32www.bis.org, publications and papers.
33Beyond this categorization is a huge number of different other categorizations offered, e.g., for
project management, IT, running nuclear power plants, health and cancer.

http://www.bis.org
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Settlement risk is a term for all issues that could prevent the fulfillment of a
business contract. This could be, for example, the failure of a major bank, resulting
in a chain-reaction that reduces other banks’ ability to honor commitments. It also
includes underwriting risk, i.e. the risk that a new issue of securities will not be
sold or that its market price will drop. Settlement risk also covers payment system
risk, where payment systems of a major bank will malfunction and will hinder its
payments.

5.3 Credit Risk and Market Risk

Market factors challenge the expected availability of resources outside the organi-
zation or the financial system and also the liquidity of resources inside respective
markets (e.g., financial markets). Generally, they are separated into default risks and
capital risk. Default risk denotes a situation where a business partner or borrower
might not be able to repay principal and interest from delivered resources. Capital
risk refers to losses that accrue from unrecovered loans or from contracts with busi-
ness partners. They can affect the organization’s capital base and may necessitate
new capital. Economic risk, in addition, designates changes in the state of the econ-
omy that will impair the debtors’ ability to pay or the potential borrower’s ability to
borrow.

Interest rate risk indicates possible declines in net interest income that will re-
sult from changes in the relationship between interest income and interest expense.
Liquidity risk denotes a deficiency of resources, cash, or cash-equivalents to meet
the needs of principals, depositors, and borrowers. This risk is related to reinvest-
ment risk, the lack of opportunities for reinvesting interest-earning assets (loans) at
current market rates. Finally there is a refinancing risk, the lack of opportunities to
refinance maturing liabilities (deposits) at economic cost and terms.

5.4 Operational Risk

Operational and reputational risk indicate possible and real failure that will prevent
an organization from maintaining its critical operations, or meeting the expectations
of customers and business partners, especially in core values of business behavior.
Compliance risk specifically identifies the failure of fulfilling the intrinsic meaning
of a rule or of all organizational guidelines due to misunderstandings and misbehav-
ior of individuals.

Focusing more on the individual aspects than on processes of human resource
management, we face motivation risk and loyalty risk as a lack of employee inte-
gration into the organization or into the personal requirements of the processes. Pro-
fessional alignment of organizational gains and ideas among the employees solves
these problems. This leads to qualification risk as the lack of employee skills with
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which to fulfill their job description and to meet all required spontaneous actions,
and finally to the risk of poor skill adjustment. The latter constitutes the lack of in-
tegration of people into complex project requirements, which impairs expected or
required human cooperation.

6 Ethical Risk Management and Responsibilities
of Corporations

According to Milton Friedman’s famous dictum, “the social responsibility of busi-
ness is to increase its profits”,34 corporations would have—at most—a responsibil-
ity for the order framework of the market. However, we observe corporations doing
much more: providing social welfare, or engaging in environmental protection or in
cultural and scientific affairs. Therefore, Friedman’s picture must be expanded.

6.1 Three Corporate Responsibilities in Order Ethics

Order ethics suggests that the responsibilities of corporations can be differentiated
into the following three dimensions:

1. Corporations are responsible for their actions and the immediate consequences
that result. This can be defined as their action responsibility. Corporations must
comply with laws, and they are responsible for their products, marketing meth-
ods, employment policy, corporate culture, and philanthropic activities.

In an extended sense, action responsibility also encompasses activities that
go beyond the traditional, rather passive meaning, such as investing in edu-
cational programs, directly fighting corruption and discrimination, or founding
trusts. These are important activities in the globalized world. However, they typ-
ically have rather local or regional character, and they are mostly uncoordinated,
because corporations hesitate to cooperate in this field with others who are nor-
mally their competitors. Thus, larger structural problems like hunger, poverty,
terrorism, and environmental destruction are not dealt with systematically.

2. In a second step, corporations are responsible for the social and political order
framework. In the national setting, this framework is easily identified. But in the
global setting, it does not (yet) exist and there is not much reason to suggest that
it will come into existence in the near future. Thus, there is room for corporate
order responsibility, which can have much greater impact than action responsi-
bility. The main task is to help in establishing basic human rights, a trustworthy
judicial system, property rights, and so on. This in turn improves the conditions
for future, long-term company benefits.

34Friedman [9].
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3. This leads directly to the third and most important element: certain mental mod-
els can block necessary reforms and create vehement opposition. Many people
even regard it as their moral duty to oppose globalization, “neoliberalism”, and
the market. These people, however, are usually not convinced by “economic”
benefits, narrowly understood, such as improving factors like GNP, but only by
engaging in a discourse about the social and economic structures and factors
that shape the world. From the perspective of order ethics, it can be shown that
many traditional moral ideals are better served by intensifying, not by slowing
down, competition within an adequate institutional framework. This is because
strong and fitting traditional morals will support organizational success while
weak morals will naturally take a back seat. If traditional morals become widely
accepted in intensive competition they are more convincing than if they are en-
forced in an authoritarian way. What is called for is the discourse responsibility
of corporations. Corporations must engage in (public) discourse about the so-
cial and political order of the global society. People who cannot reconcile this
social and political order with their own normative self-image, with their moral
or ethical views, will stand in the way of much mutually fruitful and productive
cooperation—and endanger the long-run well-being of corporations. In this way,
engaging in discourse responsibility is a way of long-term risk management.

6.2 Dangers of Corporate Social Responsibilities

In some cases, people are indeed reinforced in their opinions by bad arguments in
favor of the market: for example, if the market is justified by calling it an expression
of human freedom—the classic Milton Friedman [8] view—this creates immediate
opposition by many people who daily experience otherwise. Many people in Ger-
many, for example, see a growing danger in globalization and in the activities of cor-
porations. Unemployed people—and those afraid of losing their jobs—experience
pressure mainly from competition, not freedom. It is therefore vital to stress that
freedom and pressure always go hand in hand in the market economy: pressure on
suppliers creates freedom of choice for consumers.

As an example, the German system of the “Social Market Economy” is quite
often justified or equally criticized by others saying that the role of the “social” is to
correct the “anti-social” consequences of the market. In this picture, the market in
itself is regarded as morally dubious, to say the least. A better view, and one that the
discourse responsibility of corporations should find worthwhile, would be that the
word “social” can only mean to create a better, more competitive market that fulfills
more of the expectations and goals of its participants. This market can be called
an ethically more desirable market. This argument would proceed by showing that
people can take more risks as market competitors if they know that the social system
will support them. If the concept of a social market economy is to make sense at all
in the globalized world, then this strategy of argumentation should be followed.
However, two major criticisms are regularly raised against the political activities of
corporations:
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1. Corporations are “only” maximizing their profits and are therefore only follow-
ing their own interests. In the political sphere, this is supposed to amount only
to lobbying. Certainly, no corporation can control the global social order on its
own. Corporations have to justify their actions in public, and that is not the only
means of controlling companies. This leads to the second criticism.

2. It is often alleged that corporations lack democratic legitimacy, as CEOs and
managers are not elected democratically. This argument presupposes that democ-
racy can be reduced to elections and to the vote of the majority in a Lock-
ean sense. However, following authors like K. Popper,35 the main function of
democracy is not majority vote, but control. In a democracy, control is exercised
through many mechanisms, not only by voting. Other methods include competi-
tion through markets and public discourse, but also through control of politics by
corporations that must reckon with the possibility of being punished in the cap-
ital markets. Likewise, these control mechanisms exist in a global setting, with
the addition of NGOs, who are of course no more “democratically” elected (in
the traditional sense) than corporations. Democratic legitimacy of corporations
depends on these control mechanisms being in place. By making their activi-
ties more transparent, corporations can enhance their acceptance and thus their
democratic legitimacy. This is in their own interest and not simply the moral
duty of the “good corporate citizen”. It is another method of long-term ethical
risk management.

6.3 Conclusion/Food for Thought

Ethical risks play a large role in business, particularly for corporations. The eth-
ical concept of order ethics, which draws some of its main theoretical resources
from economics, puts these ethical risks within an adequate theoretical framework,
pointing especially to the role of implementation. First, to effectively manage ethi-
cal risks within a corporation, the human factor should be taken seriously and dealt
with according to the lines sketched here. Second, corporations should engage in
risk management in a much wider sense: by actively taking on their political role,
corporations fulfill their discourse responsibility, which calls for caring about the
ethically relevant arguments used in public discourse. We have given an example
of how a bad argument can be detrimental to an adequate understanding of busi-
ness and ethics in the globalized world, and also to companies themselves, which
increases risks. Certainly, corporations cannot fulfill their discourse responsibility
entirely on their own. Here, business ethics can help in developing, shaping, and
promoting ethical ideas about business ethics and risk management.

35Popper famously wrote that the main advantage of democracy is to be able to get rid of its
governments “without bloodshed—for example, by way of general elections” (Popper [28], vol. 1,
124, our italics). Note the wording “for example”.
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7 Food for Thought

• Why should risk management limit itself to classical economic risks? What is the
economic rationale for actively dealing with ethical risks?

• What is the role of self-interest for ethics? Should ethics require us to be moder-
ate, to share and to sacrifice?

• What corporate cultures could be instrumental in rationally dealing with ethical
risks?

8 Summary

Risk is the consciousness of danger necessitated by uncertainty and the decision to
act to lessen its impacts. Corporate culture may be designed with incentives struc-
tured to manage risk appetite. Corporate responsibility should use order ethics to
close the normative loopholes inherent in competitive markets.
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Chapter 3
Decision-Making Under Risk: A Normative
and Behavioral Perspective

Daniel Straub and Isabell Welpe

This chapter introduces the theories of decision-making under uncertainty and risk
of socio-technical systems. Following the historic development of the main concep-
tions of rationality, we start with expected utility theories and explain the rational
choice (or normative) perspective. We explain how decisions under risk can be opti-
mized consistently within the framework of the theory, and under which conditions
such analyses are particularly applicable and when they are reduced to an economic
cost-benefit analysis. It is then discussed why the classic theories are sometimes
misused and why the normative perspective is not suitable to describe or predict
actual human behavior, perception or evaluation of decisions and their outcomes
under uncertainty and risk. We then outline alternative theories of decision-making,
including descriptive approaches from behavioral economics (e.g. cognitive biases)
as well as ecological rationality and heuristic decision making. As is discussed in
this article, the normative approach is suited for optimizing decisions in a consistent
manner for relatively well defined (often technical) problems, whereas the alterna-
tive theories are more suitable to predict actual human and social evaluations and
behavior and can provide improved decision making in complex situations where
socio-technical system parameters as well as the decision maker’s preferences are
not well defined.
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The Facts

• In theories of judgment and decision making one has to distinguish between how
people should make decisions (idealistic, normative approaches) and how people
actually make decisions (realistic, descriptive approaches).

• Normative decision theory assumes that under certain circumstances decision
makers (should) follow a certain set of rules that ensures consistency among deci-
sions as well as optimal decision outcomes. Descriptive decision theory accounts
for the fact that people do not follow these rules and for such situations in which
optimal set of rules cannot be given.

• Normative decision theory is applicable to well defined and contained (often tech-
nical) problems, and can be used to optimize risk levels. A number of tools, in-
cluding decision trees and graphs, exist. It can also be used to optimize the amount
of information that should be collected to reduce uncertainty before making the
decision.

• The utility function describes decision maker’s preferences. It is an empirical
function that can differ between individuals and is influenced by subjective per-
ceptions. No mathematical form of the utility function is justified by some “uni-
versal law”.

• Different from what the classical normative theory would propose, the subjec-
tive, observer-dependent perception of “objective” values and probabilities has a
strong impact on human perceptions, evaluations and decisions. The normative
theory therefore generally fails to accurately recognize, describe or predict actual
decision making under risk and uncertainty.

• When optimization is not possible, people often make good decisions through the
use of heuristics and “gut feelings”.

• Most risks are embedded into socio-technical systems, thus is it advisable to be
familiar with and use both normative and descriptive risk decision theories.

• There is no “fixed formula” for ideal decision making under risk and uncertainty.

1 Introduction

Decision making under conditions of uncertainty and risk is an every-day task.
When deciding whether or not to take the umbrella upon leaving the house, when
deciding on whether or not to wear a helmet for bicycling or when deciding whether
to take the train or the airplane, you are making a decision that involves outcomes
that are uncertain (Will it rain? Will you be hit by a car? Will the train or the plane
be safer?) and that are associated with risks (of catching a cold; of sustaining in-
juries). In our every-day life, we often use intuition (also called heuristics or gut
feeling—see Sect. 3) to make such decisions, which often works well. As profes-
sionals dealing with risk and uncertainty we often have to make complex and far-
reaching decisions or advise the ones that make those decisions, e.g. a committee
of experts in health risk that must make a recommendation on acceptable levels of
air pollution, a team of engineers that must determine the optimal flood protection
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strategy for a city or a team of corporate manager that must weigh the economic
risks against the technical risks in the introduction of new products and technolo-
gies. Even as individuals we frequently must decide between decision alternatives
involving uncertainty on which we have little experience and intuition, for example
as a patient between different treatment options, as we save for retirement, between
different investment strategies or in private life when deciding for or against a life
partner. Decision theory has been developed to describe and model the process of
making such decisions and ideally supports us in identifying the best options.

Decision theory started out by assuming that the outcomes of decisions can
be assessed following a set of consistent decision rules (often—and somewhat
misleadingly—referred to as “rational decision making”). Based on these rules, it
is then possible to mathematically identify optimal decisions under conditions of
uncertainty. Today, this theory is called the normative decision theory, because it is
useful in describing how decisions should ideally be made under some idealistic,
objective and observer-independent assumptions (compare Sect. 3.2), which will be
discussed in this article. When studying the behavior of decision makers, it is ob-
served that people’s assumptions and resulting actions are not consistent with the
assumptions and rules of the normative decision theory. Instead, decisions made by
people are influenced by a number of cognitive, motivational, affective and a number
of other factors that are not addressed by the classical normative theory. Decisions
associated with risk and uncertainty are often concerned with socio-technical sys-
tems of some sort, in which human, social and technical dimensions continuously
interact. In order to understand, model and reduce risk in these anthropogenic sys-
tems, it is necessary to understand how people involved in the process actually per-
ceive, evaluate and decide about risk, which is the aim of descriptive decision theory
that concerns itself with the empirical reality of how people think and decide.

Examples for the application of the normative theory in risk management include
the optimization of decisions on the optimal level of flood protection for a city based
on probabilistic models of future flood events and infrastructure performance, or
decisions on optimal levels of insurance and reinsurance coverage. Examples for
the application of the descriptive theory arise when dealing with processes whose
outcomes substantially depend on the perceptions, evaluations, decisions and inter-
ventions of humans. For example, consumers decide if genetically modified food is
safe for them to buy and eat, or if nuclear energy is an acceptable form of energy
technology.

As described in the above paragraphs, in this chapter we distinguish between the
normative and the descriptive decision theory. Normative decision analysis uses a
mathematical modeling approach based on the expected utility theory (sometimes
also called normative, prescriptive, rational or economical decision analysis) and
provides a framework for analyzing the optimality of decisions when knowledge
of the probability and consequences involved in the decision is available or can
be approximated. Descriptive or behavioral decision analysis supports risk-related
decisions in complex, socio-technical systems that involve uncertainties with regard
to probability and outcomes that make exact quantification difficult. Using either
normative or descriptive decision theory in isolation gives an incomplete assessment
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of the realities of the risk situation. Risk management in socio-technical systems and
situations should always consider both normative and descriptive aspects of decision
analysis. Risk managers and decision makers need thus be familiar with different
risk theories and perceptions.

Section 2 of this chapter presents an introduction to the normative theory while
Sect. 3 introduces the descriptive theory. Finally, Sect. 4 concludes with a compari-
son of the main theories with regard to their assumptions, approach, decision criteria
and applicability.

2 Normative Decision Making: Optimal Decision Making Based
on the Expected Utility Criterion

2.1 Mathematical, Technical and Economical Perspective:
The Rational Approach

In many professional situations it is desirable to select the right decision follow-
ing a set of logical and reproducible rules and criteria.1 This holds true in particu-
lar when making decisions in groups, where different verbal arguments have to be
“translated” into numbers and outcomes, when probabilities and outcome can be
sufficiently quantified, and when decisions affect others, as is the case in risk man-
agement of anthropogenic systems (e.g. technical systems, environmental systems
or companies). When authorities prescribe an acceptable level of air pollution, so-
ciety expects that the decision on the value of this level is made on a rational and
consistent basis (i.e. that the decisions are perceived as legitimate), taking into ac-
count all costs and benefits; on the one hand the potential health and environmental
effects and on the other hand the economic costs and benefits of setting stringent
criteria. A main difficulty in making such decisions is that many of the influencing
factors and future outcomes are not and cannot be known with certainty. Neither the
health impact of the pollutants nor the cost of reducing them or the value derived
thereof for people can be precisely quantified.

To identify optimal decisions in situations when outcomes are uncertain is the
goal of classical decision analysis, which has its foundation as a scientific discipline
in the publication of the book by Von Neumann and Morgenstern [49] on utility.
It is worthwhile noting that although their work is entitled “Theory of games and
economical behaviour”, it is written by mathematicians and not by empirical scien-
tists. Classical decision analysis is based on the premise that outcomes are uncertain

1We note that at least two reasons for this preference can be distinguished: (1) Rules and numbers
allow for an “objective” and “true” assessment of risks, probabilities and outcomes. (2) In social
interactions, the legitimacy and acceptability of decisions is increased by justifying them through
the use of (sometimes just seemingly) objective and true assessment of risks, probabilities and
outcomes.
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but that it is possible to quantify their probabilities of occurrence. It furthermore as-
sumes that the preferences of the decision makers follow certain rules that are con-
sidered rational, as described by utility theory introduced in Sect. 2.3. According to
these rules, decisions should not be influenced by any factors that are considered
irrelevant for the outcome, in particular not by the context in which gains or losses
occur. Despite of (or even because of) these idealized assumptions, classical deci-
sion theory provides a useful framework for analyzing decisions involving risk in
and quantifying outcomes and probabilities and in describing how decisions should
be made in an ideal world. This theory makes it possible to set up consistent (i.e.
reproducible and comparable) criteria for making decisions, which is often relevant
when decisions need to be justified in social contexts and affect a larger group, as is
commonly the case in a socioeconomically or technical context.

In short, the classical decision theory provides a rationale for identifying the
decisions and actions that should be taken under conditions of uncertainty and risk.
For this reason it is often termed the normative or prescriptive approach. Because
it also forms the basis for classical economic theory, it is also often referred to
as economic decision theory. Hereafter, we will generally use the term normative
decision theory.

2.2 System Model, Decisions and Utility

Normative decision analysis requires a model of the relevant system and time frame,
the identification of possible decision alternatives and the probabilities and out-
comes as well as a measure for evaluating the optimality of the decision alternatives.
For engineering problems, the relevant system is typically represented by physical,
chemical and/or logical models with input and output variables, some of which are
uncertain. In deference to the literature on decision analysis, we will represent the
system by a vector of random variables �. Often, � is referred to as “state of
nature”. As an example, consider the problem of determining the optimal flood pro-
tection for a city. Here, � might represent the future maximum water height and
discharge of the river, as well as the future land use in the areas at risk.

The decision alternatives can be separated into decisions on actions and decisions
on gathering further information. The former, which we will denote by a, actively
change the state of the system as represented by �. As an example, the decision on
building a dam upstream will change the probability of a flooding of the city or the
decision on allowing no building close to the river will alter the damage in the case
of a flood. On the other hand, decisions on gathering further information, denoted
by e, will not change the state of the system. Upon obtaining the information, our
estimate of the system state may change, however. If, for example, one decides to
perform an extended hydrological study, one will reduce the uncertainty on the es-
timate of the intensity of future flood events and obtain a more accurate estimate of
maximum floods. In the following we will focus on decisions on actions a; deci-
sions on collecting information e are considered in pre-posterior decision analysis
as introduced in Sect. 2.5.
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Finally, we must identify the attributes of the system upon which to assess the
optimality of a decision alternative. In the decision on flood protection, these at-
tributes include safety, monetary cost of measures and damages as well as societal
and environmental consequences. For optimization purposes, we translate these at-
tributes into a unique metric that allows comparing the alternatives in a quantitative
manner. This metric is termed utility u and the associated utility theory, outlined in
Sect. 2.3, forms the basis of normative decision analysis

2.3 Utility Theory

The quality of an outcome of a set of decisions on an anthropogenic system is judged
on the basis of a number of attributes. As an example, in a decision analysis on the
management of contaminated sediments, the following attributes were identified,
Kiker et al. [25]:

– monetary cost;
– size of the affected area;
– impact on human health (safety);
– impact on ecological health.

In finding an optimal decision, all attributes must be taken into account. Typi-
cally, a situation arises where one decision alternative is more optimal with respect
to one attribute while another decision alternative is more optimal with respect to
another attribute. Cost and safety are common attributes in risk-related problems,
and in general a trade-off between the two must be made. If safety was the only at-
tribute, then a system should be designed as safe as possible (consider the pyramids
as an example of such a safe structural system). However, it is the art of engineering
to design structures that are not only safe but also economical (as well as functional
and aesthetical).

The motivation for utility theory is the need for a formalism that allows assess-
ing the optimality of decision alternatives such that the preferences of the decision
maker are consistently reflected. Such a formalism enables us to extrapolate from
past behavior to new decision situations, both with respect to the trade-off between
different attributes and the trade-off among different values of the same attribute. To
this end, we define a single metric for measuring the optimality of a decision. This
metric is called utility. Then, all attributes are transformed into utility by a suitable
transformation that consistently reflects the preferences of the decision maker. It is
assumed that this transformation, i.e. the weighing assigned to different attributes,
is constant with time. To introduce the concept, we study the transformation of the
attribute money into utility in the following.

First, we note that the utility function, which transforms attributes into utility,
is a property of the decision maker. Different decision makers will have different
utility functions. In Fig. 1, an exemplarily utility function for an individual is shown.
This utility function is continuously increasing, which appears logical, since almost
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Fig. 1 Utility function for an
individual decision maker,
transforming monetary values
into utility

everybody would prefer more over less money. However, this is not a necessary
condition for the theory; in principle, the utility function can have any arbitrary
shape.

Second, we note that the utility is not linear with money over the entire domain.
The increase in utility associated with a small increase in wealth, i.e. du(w)/dw, is
called marginal utility. Most decision makers have a marginal utility that decreases
with increasing wealth w. (In economics, this is sometimes referred to as the law of
diminishing marginal utility.) In simple words: obtaining two million Euros is not
simply two times more preferable than obtaining one million Euros.

To understand how the exact form of the utility function is derived, we con-
sider the basic principle of utility theory developed by Von Neumann and Morgen-
stern [49]. This principle is that:2

Utility is assigned to the attributes in such a way that a decision (on which action to take)
is preferred over another if, and only if, the expected utility of the former is larger than the
expected utility of the latter.

That is, the utility function is derived to ensure that among different set of deci-
sion alternatives, the preferable one will always result in the higher expected utility,
E[U ]. Expectation is a mathematical operation, which for the case that the utility
depends only on the single random variable θ , is defined as

E[U ] =
∫ ∞

−∞
u(θ)f (θ)dθ or E[U ] =

∑
all θ

u(θ)p(θ) (1)

where u(θ) is the utility as a function of the system state θ and f (θ) is the probabil-
ity density function (PDF) of � if it is continuous and p(θ) is the probability mass
function (PMF) of � if it is discrete.

A common way of determining the utility function u(θ) for monetary values is
to consider a series of decisions on whether or not to accept a bet. In each bet, there

2For this to hold, a number of consistency requirements must be fulfilled, i.e. the preferences of
the decision maker must fulfill a set of axioms, which, however, are in agreement with what is
commonly considered to be consistent behaviour. As an example, one of the axioms states that the
ordering of the preferences among different outcome events Ei is transitive. Formally, if � means
“preferred to” then transitivity demands that if Ej �Ek and Ek �El then it must also be Ej �El .
For a more formal introduction and the full set of necessary axioms, consult e.g. (Luce and Raiffa
[5], Sect. 2.5).
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is a probability of p to win a monetary prize of x1 and a probability of (1 − p) to
loose x0. For this bet, the expected utility of the two decision alternatives are as
follows:

Decision not to bet, a0: E[U | a0] = u(0),
Decision to bet, a1: E[U | a1] = (1 − p)u(−x0)+ p · u(x1).

E[U | a0] stands for: the expected value of U for given decision a0. If, for particular
values of x0, x1 and p, the decision maker prefers the decision a0 over the deci-
sion a1, it must hold that u(0) > (p − 1)u(−x0)+ p · u(x1). If she prefers a1 over
a0 the opposite must hold, and if she is indifferent it is u(0) = (p − 1)u(−x0) +
p · u(x1). By varying the values of x0, x1 and p, it is now possible to determine
the value of the utility function for different monetary values, so that it is consistent
with the actual decisions made by the decision maker. You may try to establish your
own utility function by playing such an imaginary game.

(We note that a linear transformation of the utility function does not alter the
ordering of preferences, i.e. with u1(X)= c+ b ·u(X) and b and c being constants,
if E[u(X) | a0]> E[u(X) | a1] it must also hold that E[u1(X) | a0]> E[u1(X) | a1].
For this reason, any linear transformation of the utility function is allowed, which
implies that two points of the utility function can be freely selected.)

2.3.1 Probability

Decision making based on the expected utility theory requires one to assess the
probability of all relevant system outcomes. In practice, these probabilities must
often be estimated by the decision maker on the basis of limited or no data. The
probabilities represent the knowledge of the decision maker at the time of making
the decision, and are therefore subjective values. The problem of assessing these
probabilities in real situation is further addressed in Sect. 3.1 and in Chap. 12, [42].

2.3.2 Risk

In the context of utility theory and normative decision analysis, we will use the
following definition of risk:

Risk is the expected change in utility associated with uncertain, undesirable outcomes.

Following utility theory, decisions are not made based on risk, but on the basis
of the expected utility (of which risk is a part). The optimal decision is the one that
leads to the highest expected utility. It follows that the risk that should optimally be
taken is the risk associated with this decision.

2.3.3 Risk-Aversion

Utility functions are often concave, like the one of Fig. 1, corresponding to dimin-
ishing marginal utility. When considering losses, this can be explained by the fact
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Fig. 2 The utility function
for a small engineering
consultancy versus the utility
function for a large insurance
company

that substantial losses can have consequences that go beyond the direct losses, and
which therefore cannot be compensated by gains elsewhere. As an example, for a
company the loss of 10,000€ is likely to be twice as bad as the loss of 5,000€, but
the loss of 2 Million € can be disproportionally worse than the loss of 1 Million €
if such a loss threatens the liquidity of the company.

Typically, the utility function is linear (or almost linear) within a range that is
small compared to the working capital of the decision maker. This “size effect” is
illustrated in Fig. 2, showing the difference in the utility function of a small ver-
sus a large company. In the considered range, the utility function is linear for the
large company (these sums are “peanuts” for the insurance company), whereas it is
concave for the small company where the loss of one million is a critical event.

A consequence of the concave shape of the utility function is that decision
makers tend to avoid risks. Consider an event A, causing a loss of 105€, and
an event B , with associated loss 106€. Assume that the probabilities of these
events are pA = 0.1 and pB = 0.01. The expected monetary loss of both events is
p · Loss = −104€. Assume that the decision maker is the engineering consultancy
whose utility function is shown in Fig. 2. The utility associated with the losses are
u(−105€) = −0.09 and u(−106€) = −2.3, respectively. The expected utility as-
sociated with events A and B (the risks) are E[UA] = 0.1 · (−0.09)= −0.009 and
E[UB ] = 0.01 · (−2.3) = −0.023. Therefore, although the expected monetary loss
is the same, the risks associated with event B are higher. This effect is commonly
referred to as risk aversion.

Illustration 1 (Why Risk Aversion Motivates Insurance) This illustration is taken
from Straub [6]. Consider the engineering consultancy whose preference is repre-
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sented by the utility function in Fig. 2:

u(x)= ln

(
0.9

106
x + 1

)
, [x in €].

This company is managing a project that involves considerable risk because of a
penalty in case of a delay. It is estimated that the probability of the event “project
delayed” is p = 5 %, and the penalty associated with that event is 800,000€. The
company is now offered an insurance that, in the event of a delay, covers the penalty
minus a deductible of 80,000€. The premium is 50,000€.

For the engineering consultancy, the expected utility of action a0, not to buy
insurance, is

E[U | a0] = p · u(−800,000€)= 0.05 · ln

[
0.9

106
(−800,000€)+ 1

]
= −0.064.

The expected utility of action a1, to buy insurance, is

E[U | a1] = p · u(−130,000€)+ (1 − p) · u(−50,000€)

= 0.05 · ln

[
0.9

106
(−130,000€)+ 1

]
+ 0.95 ·

[
0.9

106
(−50,000€)+ 1

]

= −0.050.

Since it is E[U | a1]> E[U | a0], the optimal decision for the consultancy is to buy
the insurance.

On the other hand, for the insurance company (whose utility function is u1(x)=
x/106) the optimal action is to sell the insurance, since E[U1 | a0] = 0 and E[U1 |
a1] = p · u1(−670,000€)+ (1 − p) · u1(50,000€)= 0.008.

It is important to realize that insurance only makes sense if the insured party has
a different utility function than the insurer. If the engineering company had a linear
utility function, it should not buy the insurance, since the expected utility associated
with that decision would be lower. (It corresponds to computing expected monetary
values.) This linearity holds approximately when losses are small. (You can verify
this yourself by repeating the above calculations for the case where all costs are
reduced by a factor of 10, i.e. when the penalty cost is 80,000€, the premium is
5,000€, and the deductible is 8,000€. You will find that in this case, insurance is
not an optimal strategy for the consultancy.)

The above example illustrates the effect of risk-averse behaviour. A decision
maker is said to be risk-averse whenever his utility function is concave; mathe-
matically this corresponds the utility function having a negative second derivative:
d2u(w)/dw2 < 0. This decision maker tries to avert risks, even though this reduces
his expected monetary gains, because it maximizes his expected utility.

Measures for risk aversion have been proposed by economists. The most well
known measure is the coefficient of absolute risk aversion (ARA), introduced by
Arrow and Pratt [32], defined as

ARA(w)= −u
′′(w)
u′(w)

(2)
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Fig. 3 Utility functions with
different absolute risk
aversion (ARA). All utility
functions have been scaled to
give u(−1)= −1 and
u(1)= 1

where u′(w)= du(w)/dw is the first derivative and u′′(w)= d2u(w)/dw2 the sec-
ond derivative of the utility function with respect to wealth w. Figure 3 shows sev-
eral utility functions with varying ARA. These are of the form

u(w)= 1 − exp(−cw). (3)

This utility function results in an ARA(w) = c that is constant for all values of w
(you can verify this claim by inserting the utility function in Eq. (2)). For a negative
ARA, the decision maker is said to be risk seeking. This corresponds to a convex
utility function, as exemplified in Fig. 3 by the utility function with ARA = −1.

Alternative measures of risk aversion exist, e.g. the Arrow-Pratt coefficient of
relative risk aversion (RRA):

RRA(w)= −wu
′′(w)
u′(w)

. (4)

There is a vast body of literature available investigating these and other measures
of risk aversion (e.g. Menezes and Hanson [30]; Binswanger [11]), most of which
is rather technical. It is, however, important to realize that the utility function is an
empirical function and there is no mathematical form of the utility function that
is justified by some “universal law”. In fact, Rabin [33] shows that already rela-
tively weak assumptions on the form of the utility function, namely the assumption
of diminishing marginal utility for all levels of wealth w, can lead to absurd pre-
dictions when extrapolating from decisions involving small sums to decisions with
large consequences. The reason behind this is that people do not generally behave
consistently according to the expected utility theory, as discussed later in Sect. 3.
This observation does not invalidate the use of expected utility theory, but it points
to the fact that extrapolation of the utility function assuming some underlying math-
ematical form (like the one of Eq. (3)) should not be performed. If this is taken into
consideration, then utility theory (and the measures of risk aversion) provides rules
for optimizing decisions under uncertainty and risk.
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2.3.4 Expected Utility Theory vs. Economic Cost-Benefit Analysis

Many decisions involve events with consequences that are small compared to the
“working capital” of the decision maker. This is particularly true if the decision
maker is society or a representative of society, e.g. a governmental body such as
the federal transportation administration. In this case, the utility function will be
linear with respect to monetary values. As we have seen earlier, the ordering of the
expected utility of different decision alternatives is not altered by a linear transfor-
mation of the utility function; we can thus set the utility function equal to mone-
tary values when all consequences are in the linear range of the utility function. In
this case, the decision problem can be reduced to an economic cost-benefit analysis
(Chap. 11, [36]).

Because monetary values are commonly used in society and economics for ex-
changing and comparing the value of different goods and units, decisions are often
assessed based on expected monetary values. However, it is important to be aware
that such an approach is only valid under the conditions stated above (i.e., a linear
utility function in the relevant range of consequences). For example, if the engineer-
ing consultancy in the example above would make its decision based on expected
monetary values, it would decide not to buy the insurance, which would not be op-
timal according to the company’s preferences expressed by the non-linear utility
function.

2.4 Multi-attribute Decision Making

So far we have seen utility functions of a single attribute (wealth), yet in most real-
life problems involving risks, consequences are associated with several attributes
(e.g. economical cost and safety). When multiple attributes are relevant, it becomes
necessary to define joint utility functions of the different attributes. Multi-attribute
utility theory (MAUT) as presented in Keeney and Raiffa [3] is concerned with
decision problems involving multiple attributes.

As an example, consider a decision problem with two attributes X1 and X2.
A possible joint utility function is constructed from the marginal utility functions
u1(X1) and u2(X2) by

u(X1,X2)= c1u1(X1)+ c2u2(X2)+ c12u1(X1)u2(X2). (5)

In this case, the two attributes X1 and X2 are said to be utility independent. Often,
it is c12 = 0 and the joint utility function reduces to

u(X1,X2)= c1u1(X1)+ c2u2(X2). (6)

In this case, the two attributes X1 and X2 are said to be additive utility independent.
Once the joint utility function u is established, decision analysis proceeds as in

the case of the single attribute: the optimal decision is identified as the one that leads
to the highest value of the expected utility.



3 Decision-Making Under Risk: A Normative and Behavioral Perspective 75

We do not go further into the details of MAUT, but we note that whenever mul-
tiple attributes are present (and they are so in most decision problems), a joint
utility function is necessary to make consistent decisions. It is important to be
aware of this, because it is sometimes argued that it is unethical to assess at-
tributes such as the health of humans or ecological values by the same metric as
monetary values (in particular if that metric happens to be the monetary value it-
self). These arguments are generally misleading, however. In the end, a decision
is made, which always implies a trade-off between individual attributes. If two de-
signs for a new roadway are possible, one with lower costs and one with lower
environmental impacts, then the final decision made will imply a preference that
weights these two attributes, if only implicitly. In fact, it is possible to deduce an
implicit trade-off from past decisions. Viscusi and Aldy [48] present an overview
on research aimed at estimating the “value of a statistical life” based on soci-
etal decisions and choices, and Lentz [28] demonstrates how such deduced trade-
offs can be used to assess the acceptability of engineering decisions. The prob-
lem with not making these trade-offs explicit is the possibility for making de-
cisions that reflect an inconstant assessment of society’s preferences and which
lead to an inefficient use of resources. An example of such inconsistent decision
making is given by Tengs [44], who compares 185 potential life-saving measures
that are or could be implemented in the United States. She finds that with cur-
rent policies, around 600,000 life years are saved by these measures at a cost of
21 Billion US$ (the numbers are valid for the 1990s). By optimizing the imple-
mented measures using cost-effectiveness criteria, she concludes that with the same
amount around 1,200,000 life years could be saved. It follows that the inefficient
use of resources here leads to a loss of around 600,000 life years (corresponding to
around 15,000 pre-mature deaths each year that could be avoided at no additional
cost).3

The above argument does not discard the benefits of communicating the values
of individual attributes for different decision alternatives. In particular for important
and complex decisions it is strongly advocated that decision makers and stakehold-
ers should be given the information on the effect of their decisions on all the relevant
attributes.

3We note that, in principle, such a cost-effectiveness analysis does not require us to assign our
preferences, i.e. it is not necessary to make the trade-off between money and safety explicit. The-
oretically it would be sufficient to list the measures according to their effectiveness, as done by
Tengs [44], and then starting from the top of the list select all measures that are affordable. In
practice, however, such an approach is not possible, because these measures are implemented by
different governmental agencies and other actors, who do not make a joint planning. By assigning
an explicit trade-off between safety and cost (i.e. by putting a monetary value to human life), how-
ever, it can be ensured that money is spent optimally even without performing a joint optimization.
Each decision can be tested individually against the criteria set by decision analysis, based on the
joint utility function of life-savings and money (see also Lentz [28]).
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2.5 Modeling and Optimizing Decisions with Decision Trees
and Influence Diagrams

Utility theory prescribes that the optimal set of decisions is the one maximizing the
expected utility. Therefore, normative decision analysis essentially corresponds to
computing the expected utility for a given set of decisions a, E[u(a,�) | a], and
then solving the optimization problem:

aopt = arg max
a

E
[
u(a,�) | a

]
. (7)

The operator arg maxa reads: the value of the argument that maximizes the expres-
sion on the right hand side. The expectation E[ ] is with respect to the random vari-
ables describing the uncertain system state � = [�1; . . . ;�n]. It is defined as

E
[
u(a,�) | a

]=
∫
�1

· · ·
∫
�n

u(a, θ)f�(θ)dθ1 · · ·dθn. (8)

This is a generalization of Eq. (1) to the case of multiple random variables. Equa-
tion (8) applies to the case where all uncertain quantities � = [�1; . . . ;�n] are
described by random variables with joint probability density function f�(θ). If all
or some of the random variables are discrete, the corresponding integration opera-
tions in Eq. (8) must be replaced with summation operations.

To represent and model the decisions a and their effect on (expected) utility, deci-
sion trees and influence diagrams have emerged as useful tools. The presentation in
this section is limited to decision problems with given information, i.e. for problems
in which all uncertain quantities are described by known probability distributions
and it is not possible to gather further information. The possibility to collect further
information will be introduced in Sect. 2.6.

2.5.1 Decision Trees

In a decision tree, all decisions a as well as random vectors � describing the states
of the system are modeled sequentially from left to right. Each decision alternative
is shown as a branch in the tree, as is each possible outcome of the random vari-
ables. A generic decision tree is shown in Fig. 4, with only one random variable �
withm outcome states θ1, . . . , θm. The tree is characterized by the different decision
alternatives a, the system outcomes � described by a probability distribution con-
ditional on a, and the utility u as a function of a and �. The decision alternatives as
well as the system outcomes can be defined either in a discrete space, a continuous
space or a combination thereof.

The analysis proceeds from left to right: for each decision alternative ai , the
expected value of the utility is computed following Eq. (8) and the optimal decision
is found according to Eq. (7).

Illustration 2 (Pile Selection) This example, which involves only discrete random
variables and decision alternatives, is due to Benjamin and Cornell [10]. A construc-
tion engineer has to select the length of steel piles at a site where the depth to the
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Table 1 Utility function

State of nature Actions

a1: Drive 15 m piles a2: Drive 20 m piles

θ1: Depth to bedrock is 15 m No loss 5 m of the pile must be
cut off, 100 unit loss

θ2: Depth to bedrock is 20 m Piles must be spliced and welded
and construction is delayed,
400 unit loss

No loss

Fig. 4 Generic decision tree
for the analysis with given
information

bed-rock is uncertain. The engineer has the choice between 15 m and 20 m piles
and the possible states of nature are a 15 m or 20 m depth to the bedrock. The con-
sequences (utility) associated with each combination of decision and system state is
summarized in Table 1.

The probabilities of the different outcomes are p(θ1) = 0.7 and p(θ2) = 0.3.
The full decision tree for this problem is shown in Fig. 5. The expected utilities for
decisions a1 and a2 are obtained as E[U | a1] = 0.7 · 0 + 0.3 · (−400)= −120 and
E[U | a2] = 0.7 · (−100)+0.3 ·0 = −70. Obviously, the optimal decision is to order
the larger piles.

The decision tree grows exponentially with the number of decisions and ran-
dom variables considered, due to the necessary ordering of decisions and random
variables (each decision must be made conditional on the decisions and random
variables to its left, and each random variable is described by a probability distribu-
tion conditional on the decisions and random variables to its left). The decision tree
is thus not convenient for representing decision problems involving more than just
a few parameters. A more efficient and flexible alternative are influence diagrams,
introduced in the following section.
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Fig. 5 Decision tree for the
pile selection problem with
given information

Fig. 6 Influence diagram for
a basic decision problem
corresponding to the decision
tree in Fig. 4

2.5.2 Influence Diagrams

As an alternative to decision trees, decision problems can be represented by influ-
ence diagrams. These are more concise representations of the problem, and they are
particularly useful in problems where several decisions have to be considered. They
were first proposed by Howard and Matheson [21].

Influence diagrams are acyclic directed graphs, whose nodes represent random
variables (round nodes), decisions (squared nodes) and utility functions (diamond-
shaped nodes). Directed arrows among the nodes represent the dependence structure
of the problem. Figure 6 shows a generic influence diagram with one decision a and
one random variable �. Here it is assumed that � depends on the decision a and
the utility is a function of both a and �.

To understand the semantics of the influence diagrams, it is useful to interpret
them as extensions of Bayesian networks (BN) (Jensen and Nielsen [2]). The rules
for dependence among the variables follow directly from the BN, with only a few
additions: in influence diagrams, links have the additional meaning of representing
the flow of information. When making a decision a, the state of the variables that
have links going to the node a are known, as are all the ancestors of those variables.
Consider the example of Fig. 7, which is different from the one in Fig. 6 only in the
direction of the link between a and �. This graph implies a completely different
decision problem: because the state of � is known at the time of making the deci-
sion, this represents a decision problem under certainty. A second important rule in
influence diagrams is that for the case of several utility nodes, it is assumed that the
utility functions are additive independent, Eq. (6).

We do not go further into the details of the influence diagrams here, but note
that they can often be constructed from intuition. However, care is needed in en-
suring that the relations among the nodes are consistent with causality and with



3 Decision-Making Under Risk: A Normative and Behavioral Perspective 79

Fig. 7 Alternative influence
diagram for a basic decision
problem. Here, the uncertain
state of the system � is
known at the time of making
the decision a: this is a
decision problem under
certainty

the assumptions regarding independence among variables. Examples for the con-
struction of such models are given e.g. in Jensen and Nielsen [2], Straub [6]. Free
software that allows the construction and computation of influence diagrams (and
Bayesian networks) is available, e.g. the Genie/Smile code that can be downloaded
from http://genie.sis.pitt.edu/.

2.6 Preposterior Decision Analysis (How to Optimize Decisions on
Collecting Information?)

Previously, we have assumed that all information is available at the time of making
the decision and that it is not possible to obtain additional information on the uncer-
tain state of nature �. However, in most cases when decisions must be made under
conditions of uncertainty, it is possible to gather additional information to reduce the
uncertainty prior to making the decisions a. As an example, in the decision on flood
protection, it might be possible to perform additional detailed studies to reduce the
uncertainty in estimating damages for given levels of flood. The question that must
be answered is: is it efficient to collect additional information before deciding a? Or
in other words: is the value of the information higher than the cost of obtaining it?

Preposterior decision analysis aims at optimizing decisions on gathering addi-
tional information e, together with decisions on actions a (the letter e is derived
from the word experiment). Typical applications of preposterior decision analysis
are:

– Optimization of monitoring systems and inspection schedules
– Decision on the appropriate level of detailing in an engineering model
– Development of quality control procedures
– Design of experiments

It is important to realize that collecting and analyzing information does not alter
the system. (Exceptions are destructive tests, which sometimes worsen the state of
the system.) For this reason, decisions on gathering information e do not directly
lead to a change in the risk, unlike decisions on actions a. The benefit of e is the
reduction in uncertainty on the system state �, which in turn facilitates the selection
of optimal actions a. Preposterior decision analysis allows quantifying this benefit,
the so-called value of information. (The word preposterior derives from the fact
that we calculate in advance (pre-) the effect of information on the model, i.e. the
updating of the prior model with the information to the posterior model.)

http://genie.sis.pitt.edu/
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The quality of the information obtained by performing e is described by a like-
lihood function L(θ | z)∝ Pr(Z = z | θ), which is well known from classical statis-
tics. The change in the probability distribution of the system state � with informa-
tion z is obtained via Bayes’ rule as

f�|Z(θ | z)∝ L(θ | z)f�(θ). (9)

Once the information z is obtained (posterior case), the optimal decisions aopt are
found according to the procedure described in the previous section, whereby f�(θ)
is replaced with f�|Z(θ | z). Prior to obtaining the information, however, it is nec-
essary to consider all possible outcomes Z to assess the benefit of collecting the
information in the first place.

In preposterior analysis, we jointly optimize the decisions e and a. If additional
information is obtained through e, then the decision on a will be based on that in-
formation. Therefore, it is not reasonable to determine the optimal action a a-priori.
In contrast, it is possible to optimize so-called decision rules d , which determine
which actions a to take based on the type of experiment performed e and the out-
comes of the experiment Z, i.e., a = d(e, z). For example, a decision rule in the case
of a medical test would be to subscribe a treatment if the test results in a positive
indication and do nothing if the test result is negative. The optimization problem in
preposterior analysis can thus be written as

[eopt , dopt ] = arg max
e,d

E
[
u
(
e,Z, d(e,Z),�

) | e, d
]

(10)

where the utility is now a function of the selected experiments e, the outcome of the
experiments Z, the state of the system � and the final actions a, u(e, z,a, θ), and the
expectation is with respect to the system state � and the experiment outcomes Z.

Details on how to compute the above expectations, as well as on modeling the
information, can be found in the literature, in particular in the classical reference of
Raiffa and Schlaifer [35] and in Straub [43]. Here, we restrict ourselves to presenting
the computations by means of an illustrative example in the following.

Illustration (Pile Selection) We reconsider the pile selection problem introduced
earlier. The engineer is now considering whether or not she should use a simple
sonic test to obtain a better estimate of the depth to the bedrock. A sound wave
created at the surface is reflected at the bedrock and the time between the hammer
blow and reception at the surface is utilized to estimate the depth. The test has three
possible outcomes, namely estimates of 15 m depth, 17.5 m depth and 20 m depth.
The corresponding test likelihoods L(θi | zi)= Pr(Z = zi |�= θi) are summarized
in Table 2.

The sonic test e1 comes at a cost, corresponding to the deployment of the test
equipment and the analysis of the test results. This cost is 20 utility units, i.e.
ue(e1, z) = −20. (The utility associated with different combinations of bedrock
depth and pile lengths are given in Table 1.)

To determine whether the sonic test should be carried out or not, the engineer
carries out a preposterior decision analysis. She summarizes the problem in the form
of a influence diagram, Fig. 8.
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Table 2 Test likelihoods
L(θj | zi)= Pr(Z = zi |
�= θj )

Test result State of nature

θ1: Depth is 15 m θ2: Depth is 20 m

z1: 15 m indication 0.6 0.1

z2: 17.5 m indication 0.3 0.2

z3: 20 m indication 0.1 0.7

Fig. 8 Influence diagram for
the pile selection preposterior
analysis

The influence diagram can be implemented in software, since all the relevant
information is provided earlier in the text. For this small example, calculations can
also be performed manually, as illustrated in Straub [6]. The decision not to inspect
leads to an expected utility of −70, as was calculated earlier. The decision to inspect
leads to an expected utility of −60, and is therefore optimal. The reason for this
higher utility is that the test might indicate a lower depth and the smaller pile can be
chosen in this case. Even though this indication is not completely reliable (there is a
probability Pr(�= θ2 | Z = z1)= 0.07 that the depth is 20 m despite an indication
of 15 m), it is sufficiently accurate to provide a higher expected utility.

The value of information of the test can be computed by comparing the expected
utility with and without the test and subtracting the cost of the test itself. For the
considered sonic test, the value of information is −60 − (−70)− (−20)= 30.

3 Descriptive Decision Making: Decision Making Based on
Empirical Observation

3.1 Challenges and Limitations of Normative Decision Theory

“When the map and the territory don’t agree,
always believe the territory”
Gause and Weinberg [17]—describing Swedish Army Training

Normative decision theory is widely used in economics, mathematics and engineer-
ing, and in many other decision-related sciences. Its strength lies in the quantifica-
tion of probabilities and outcomes, and thus of translating verbal arguments into a
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common (mathematical) language making different risks directly comparable. Yet,
this strength of the theory is also the source of its weaknesses. Normative decision
theory struggles when quantification cannot be easily accurately achieved, which is
particularly the case when dealing with many of the more complex challenges and
problems involving risk. In particular those, that involve human and social systems
and their the interaction with technical systems. Moreover, empirical research has
repeatedly demonstrated that by using normative decision theory one cannot accu-
rately predict how people will decide in a given situation.

The following anecdote reported by Gigerenzer [20, p. 62] illustrates how these
two points of criticism often limit the practical usefulness of normative decision
theory in guiding our decision-making. He describes how

A decision theorist from Columbia University struggled with the decision on whether to
accept an alternative offer from another university or whether he should stay at his current
university. His colleague allegedly gave him the following advice: “Just maximize your
expected utility—you always write about doing this”. To which the decision theorist replied.
“Come on, this is serious”.

It sheds a light on the dispute between the different branches of decision theory that
the decision theorist in question, Howard Raiffa, never actually said this, but on the
contrary did decide to move to Harvard using a formal decision analysis to guide his
decision, as he recalls in [34].

Broadly, the limitations of normative decision theory can be divided into the
following two categories:

People Decide Based on Their Subjective and Observer-Dependent Percep-
tions and Observations A main assumption of normative decision theory is
that peoples’ evaluations and decisions are guided by “objective” and “observer-
independent” criteria. However, empirical research has repeatedly shown us that the
same objective characteristics of a situation can be assessed completely differently
by different people (cf. Welpe et al. [50]). Someone might, for example, think that
the probability of 80 % of failing with their entrepreneurial start-up is too high a risk
for them to take, whereas someone else in the same situation might find a 10 % prob-
ability of success to be “a good chance” and “well worth the risk”. In other words,
normative decision theory does not take into account that economic and social eval-
uations and decision are subjectively perceived and thus observer-dependent. Thus,
different utility functions can lead to different “best or optimized decisions” by dif-
ferent individuals in the same situation or with the same information. Whenever
people are part of the decision-making, there is no universal objective reality that
can be quantified and calculated. What does this mean for the empirical study of
risk and uncertainty?

Probabilities and Outcomes Often Cannot be Quantified in Risk Decisions
Economists have in the past studied risk by looking at rather simple economic risk
games (“gambles”), such as the centipede game. This enhances our understanding
of decision-making in situations where probabilities and outcomes are well-known
in advance. It does, however, help us little in understanding the real-life decisions
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of entrepreneurs or politicians, as they are typically not faced with decision situ-
ations in which all different outcomes along with their probabilities are known in
advance. In many situations, decision-makers (regardless of which decision the-
ory is used) are unable to rigorously determine probabilities and outcome values
of all risk-related events in advance (Sect. 2.3.1). Risk managers, entrepreneurs,
decision-makers typically encounter situations that are not entirely mathematically
resolvable, unlike when betting on a number in the Roulette game, where the prob-
abilities of winning and losing as well as the potential pay offs are known in ad-
vance to all players (i.e. decision-makers). This is rarely the case in complex socio-
technical risk problems. This might call into question the usefulness of economic
risk experiments that use gambles to understand risk decision making (Stanton and
Welpe [41]).

Whenever accurate predictions are necessary (e.g. when important issues are at
stake) but impossible, it is advisable better to realize and accept these limitations
instead of falsely relying on alleged and delusive certainty. For some problems, the
issues can be addressed by making a decision analysis and forecast based on the
best available estimates followed by sensitivity analyses. For all problems that are
not sufficiently well understood and the interrelations of the parameters are not well
known, in particular with social and economic systems that are inherently complex,
self-emergent and variable, it is often impossible to accurately predict the future of
such systems. It is advisable to employ several alternative approaches for risk as-
sessment and risk decisions in order to harvest the strengths of multiple approaches
and compensate for their respective limitations.

3.2 Examining the Underlying Assumptions of Normative
Decision Theory

The assumptions of normative decision theory closely resemble and are based on
the well-known (some people think: infamous) “Homo Oeconomicus”. Homo Oe-
conomicus is an artificial model of human perception and decision-making, who
is self-oriented, has preferences that are stable over time and is able to process in-
formation fully and rationally. Following Kirchgässner [26], “Homo Oeconomicus”
lives in an unrealistic world in which all information including probabilities and
outcome values of all choice options are known and freely available without any
transaction costs, which also include the time and energy necessary to search, eval-
uate, contract, and control information and information providers (e.g. Kirchgässner
[26]). The model of “Homo Oeconomicus” makes a number of additional assump-
tions among which are optimality, universality and omniscience (Kurz-Milcke and
Gigerenzer [27]). Here, optimality means that individuals strive for the best possible
solution instead of a solution which is good-enough. Omniscience implies that in-
dividuals have complete information about positive and negative consequences of a
decision. Kurz-Milcke and Gigerenzer [27] further argue: (1) that universality is an
expression of the idea that a common currency or calculus exists which underlies all
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decisions, (2) that normative decision theory assumes that humans are always both
willing and cognitively capable of identifying the optimal decision, which would be
one that maximizes according to a certain criterion (e.g. money, happiness), (3) that
individuals (as well as organizations) are fully aware of all existing decision possi-
bilities and their associated costs, benefits and probabilities in the present and future.
Of course, these assumptions are a “mathematical idealization” of reality, and are
not adequate to completely describe the current evaluations, decisions and behaviors
of people, let alone predict their future utilities and actions. The question to ask is
whether a completely accurate description is necessary, use- or helpful for any given
risk management problem.

Previous research has repeatedly shown that the formal conceptualization of ra-
tional decision-makers and the empirically observed human behavior differ sub-
stantially (e.g. Tversky and Kahneman [47]; Kahneman and Tversky [23]). Since
1970, Akerlof [8] has argued that information is typically unevenly shared between
any two transaction partners, resulting in ubiquitous “information asymmetry” as
the rule not the exception. Having full information during a decision process is in
reality impossible. Furthermore, transaction costs exist in virtually all transactions
(Coase [13]). Even if such a world ever existed in which all information is known
and freely available, Simon [38] was one of the first scholars to point out that the
limited cognitive ability of individuals limits the identification of any best option
from several alternatives. People are simply unable to process and evaluate every
alternative in an acceptable time frame.

Ford et al. [16] review 45 studies that investigate the outcomes of decision-
making and shows that humans often use heuristics instead of weighing pros and
cons as normative decision theory would predict. They conclude with the statement
that “the results conclusively demonstrate that non-compensatory4 strategies were
the dominant mode used by decision makers. Compensatory strategies (i.e. trad-
ing off good and bad aspects of two competing alternatives—parentheses added by
Straub and Welpe) were typically used only when the number of alternatives and
dimensions were small or after a number of alternatives have been eliminated from
consideration”.

3.3 Behavioral Decision-Making Theories

The following section introduces two theories in decision making that address
the limitations of the classical theory for descriptive decision analysis, namely,
(a) prospect theory that emphasizes the limitations, cognitive and affective biases
of human decision making and (b) the approach of ecological rationality that em-
phasizes the human ability to make correct decisions under limited time and infor-
mation through the use of heuristics and “gut feeling”. The goal of this section is

4Heuristics are an example of a non-compensatory strategy.
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to illustrate that human decision-making is inevitably influenced by a great number
of biases, emotional and cognitive influencing factors which are difficult to foresee
and quantify and which sometimes benefit and sometimes deteriorate the outcomes
of human decisions.

3.3.1 Prospect Theory

Prospect theory was introduced by Kahneman and Tversky [23]. They were awarded
the Nobel Prize in Economic Sciences in 2002 “for having integrated insights from
psychological research into economic science, especially concerning human judg-
ment and decision-making under uncertainty” (Royal Swedish Academy of Sci-
ences [46, p. 1]). Their work integrates normative decision theory with insights
from behavioral sciences and cognitive psychology. Furthermore, they introduced
experiments as an innovative methodology for economics in their research. These
developments have laid the foundation for a new field of research called behavioral
economics, which has been the starting point of a paradigmatic shift in the study
of human decision-making under risk. In contrast to expected utility theory, which
is considered to be a prescriptive and normative theory, prospect theory is a de-
scriptive theory of human behavior in decision making under risk constituting an
extension of the normative expected utility theory.

One of the main contributions of prospect theory is in its explicit consideration
and inclusion of the observer-dependent perceptions of utility and in the subjective
weighting of outcome probabilities. An important aspect economists have previ-
ously overlooked (some continue to overlook it) is that human preferences with
regard to seemingly “objective facts” are highly context-dependent and can conse-
quently show a great deal of inter-individual differences. To illustrate this further:
a glass of water can be worth a few pennies if you are sitting at home and are not
thirsty and it can be worth a million dollars if you are alone in the desert, close to
dying of thirst. This seemingly trivial example illustrates a central point. Standard
economic theory uses normative decision theory, which has not found a way yet to
incorporate how individuals perceive, evaluate, weigh and judge objective proba-
bilities, risks, outcomes, costs and benefits depending on the context and their sub-
jective mental states. Even though these observations and deliberations are hardly
surprising to social scientists, especially psychologists, and probably also to the av-
erage lay person, they had a great impact on economists and economic theory, for
reasons outlines in Sects. 3.1 and 3.2.

Kahneman, Tversky and colleagues empirically investigate the value function of
individuals, in which the loss curve has a steeper decline than the gain curve based
on the person’s respective reference point or status quo. A main finding of prospect
theory (e.g. [23]) shows that people react more sensitively to any losses (i.e. changes
below their individual status quo on the value function) than to gains (i.e. changes
above the individual status quo), even when the resulting value of the outcome is
the same (so that normative decision theory predicts the same utility).
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Furthermore, this line of research has consistently shown that the subjective per-
ceptions of objectively equal risk alternatives can vary because of different wording
and phrasing of the decision alternatives. The most basic example of this kind would
be to describe a glass, which only contains half of its content as 50 % empty ver-
sus 50 % filled. Scholars (e.g. Tversky and Kahneman [7]; Levin and Chapman
[29]) have repeatedly demonstrated in numerous experiments that individuals’ pref-
erences change simply due to a different wording, the so called “framing” alone.

Illustration (The Framing Effect in an Example by Messick and Bazerman [31,
p. 13])

Situation 1: A large car manufacturer has recently been hit with a number of eco-
nomic difficulties. It appears that it needs to close three plants and lay off 6,000
employees. The vice president of production, who has been exploring alternative
ways to avoid the crisis, has developed two plans:

Plan A: Will save one of three plants and 2,000 jobs
Plan B: Has a one-third probability of saving all three plants and all 6,000 jobs,
but has a two-thirds probability of saving no plants and no jobs

Situation 2: Same situation as in situation 1, but two different plans

Plan C: Will result in the loss of two plants and 4,000 jobs
Plan D: Has a two-thirds probability of resulting in the loss of all three plants and
all 6,000 jobs, but has a one-third probability of losing no plants and no jobs

Empirical studies show that most executives choose plan A in situation 1, but
plan D in situation 2, despite of Plan A and C being equivalent and Plan B and D
being equivalent. This example shows: when the glass is described as half-full it
is more attractive than when it is described as half-empty. Messick and Bazerman
[31] explain this result by the fact that the reference point of the decision-makers is
a different one: in the first case, the reference point is the good situation where all
plants are OK; in the second case, the reference point is the bad situation, namely
the one where all plants must be shut-down. The typical pattern of responses is
consistent with the general tendency to be risk averse with gains and risk seeking
with losses. If the problem is framed in terms of saving jobs and plants (plans A
and B) executives tend to avoid the risk and take the sure plan. If the problem is
framed in terms of losing jobs and plants (plans C and D) executives tend to seek
the risk and not to take the sure plan.

Kahneman, Knetsch, and Thaler [24] argue that loss aversion described in
prospect theory influences decision processes in that humans are generally more
negative about potential losses (risks) than they are positive about possible gains
(opportunities). Related to prospect theory, Kahneman et al. [24] have identified a
number of additional cognitive biases and so-called irrational “anomalies” with re-
gard to human decision-making. For instance, the status quo bias or the endowment
bias (Samuelson and Zeckhauser [37], Kahneman et al. [24]).
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The endowment bias effect is closely associated with loss aversion (Thaler [45])
and is salient when a loss of any asset weighs much higher in the decision-making
than a win of an asset with the same size and value would. The decisive aspect
with the endowment effect stems from the ownership of an object. Research on
the endowment effect shows that assets are valued more highly when they are in
the possession of the decision-maker than when they are not. Again, this finding
confirms that subjective perceptions of seemingly objective characteristics are more
important when describing and predicting human decision-making. In a similar way,
the status quo bias describes the tendency of individuals to prefer the status quo
over taking chances and risks in decision making (Samuelson and Zeckhauser [37],
Fernandez and Rodrik [14]).

According to status quo bias theory, consumer choices depend on which option
is framed as the default (i.e. status quo) option. Kahneman et al. [24] have sug-
gested that the status quo bias is the result of a combination of loss aversion and
the endowment effect. For politicians, management executives and anyone manag-
ing risk-related challenges, the status quo bias means that thinking about what will
constitute the “default” in the organization or decision processes will greatly influ-
ence which decisions will be taken. An example for a risk-related default would be
an organizational rule such as “safety first—when in doubt do what is best for the
safety of our products and not what is best from an economic perceptive”.

3.4 Ecological Rationality and Heuristic Decision Making

The previous sections have dealt with the abilities and inabilities of humans to opti-
mize decisions and make full use of all information available. More often than not,
individuals have to make decisions under limited time and information, which rules
out the application of any analytic decision making procedure to determine an “op-
timal” decision. How do people decide in situations like this? To illustrate this, we
first consider an example.

Gigerenzer [20] gives an example that mirrors the different theories and ap-
proaches of decision making humans can use: the problem of catching a ball fly-
ing in the air in baseball. One could approach this problem by calculating all the
probabilities and utilities or one could use a simple heuristic to catch the ball. It is
impossible for humans to know all necessary parameters of the flight of the ball to
correctly calculate the “parabolic trajectories”, i.e. the “ball’s initial distance, ve-
locity, wind strength and projection angle” necessary to catch the ball. All of these
parameters would need to be assessed and calculated in the short time while the ball
is in the air. As the calculation of these parameters is impossible, Gigerenzer [20]
suggests, the use of so-called “heuristics”, in this case the gaze heuristics to accom-
plish the task of catching the ball. The gaze heuristic works in the following way:
a player fixates the ball and starts running and adjusts his or her speed of running in
an extent that allows him or her to keep the angle of his or her gaze constant. The
player will probably be unable to know or “calculate” where exactly the ball will
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touch the ground, but more importantly, keeping the angle between his or her eyes
and the ball constant the player will be at the spot where the ball lands. The gaze
heuristic is a well-known example of a fast and frugal heuristic. It is called fast, be-
cause the heuristic can address problems within matters of seconds, and it is called
frugal because it requires little information to work accurately.

Descriptive (and behavioral) decision theory generally agrees that the human in-
formation processing capacity is limited, for example through cognitive and affec-
tive biases, which make human decision making in general—including heuristic
decision making—sub-optimal. In contract, the heuristics approach as pointed out
by Gigerenzer and colleagues takes an evolutionary perspective—and argues that
such “fast and frugal heuristics” have emerged as a result of human evolution in
order to facilitate good decision-making under limited information and time.

Gigerenzer [18, 19] and colleagues are also critical of behavioral economics for a
number of points. First, with regard to biases (see Sect. 3.3) they argue that these are
“first-best solutions” and “environmental adjustments” of human decision making
resulting from long evolutionary processes. In contrast to behavioral economists, he
does not categorize heuristic decision making or so called “irrationalities” in deci-
sion making in any negative way as “errors” or “second best solutions”. They argue
that calculating probabilities is much more difficult to accomplish for humans than
understanding frequencies (Gigerenzer [18]). Their basic argument is that bounded
rationality as introduced by Herbert Simon and what he calls effective “ecological
rationality” (i.e. heuristic decision making) do not contradict each other and in fact
often co-exist together closely (Gigerenzer and Goldstein [1], Gigerenzer [20]). The
original thinking behind this idea is that heuristic decision making, i.e. decision-
making that is not based on an exact number or their calculations, is more efficient
than decision making based on classic utility maximization. In other words, heuris-
tics are particularly efficient in situations with limited information and time for de-
cision making were mathematical optimization is impossible, which is regularly the
case for decisions in managerial or political (and also personal) decisions. Heuris-
tics, nevertheless, need to constantly be adapted to fit the contexts in which they are
applied in as no heuristic is effective or useful in all decision situations.

In the following, we present examples for heuristics, namely the representative-
ness heuristic, the availability heuristic and the affective heuristic.

The representativeness heuristics refers to judgments of probabilities of a future
event or the representativeness of a sample. In other words, it describes individuals’
subjective assessment of probabilities based on the comparison of previous experi-
ences with events or individuals that represent a current event or sample. Particularly
important is the subjectively perceived similarity, which can lead to misjudgments
because the more individuals perceive events to be similar the more they are likely
to ignore important information and previous probabilities about a current situation
or sample.

Another important heuristic is the availability heuristic, which refers to the eval-
uation of the probability of events based on one’s own previous experiences and
memories, which can be easily recalled. The more easily they are recalled, the higher
individuals evaluate the likelihood of similar current events (Kahneman and Tversky
[22]).
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A number of recent approaches focus on the role of affect in risk perception
(Loewenstein et al. [4]). The “risk-as-feeling” hypothesis (Slovic et al. [40], Slovic
and Peters [39]) implies that affects are important determinants for risk perception
and evaluation. Loewenstein et al. [4] argue that individuals perceive risk depend-
ing on their emotions. Researchers have repeatedly shown that emotions have the
potential to influence human decisions through human information processing of
the perceived risk. For example, Finucane et al. [15] and colleagues showed that
people use affective cues in decision situations under risk. A potential implication
of the risk-as-feeling hypothesis would be that positive affect could lead to a biased
estimation of risk perception and evaluation.

4 Discussion

All models are wrong, but some are useful.5

This chapter has outlined a number of different decision theories, all of which have
their merits and their limitations. The choice of the theoretical approach must thus
be problem dependent, as emphasized throughout the text. Table 3 summarizes the
three main decision theories presented in this chapter.

The classical decision theory is relatively far refined and current research in this
area focuses mostly on computational aspects of the optimization problem in vari-
ous fields of application. There are, however, some alternative novel developments,
which address the difficulty in realistically assessing probabilities in real decision
situations. One example is the info-gap theory, which is developed to provide ro-
bust decisions on a non-probabilistic basis (Ben-Haim [9]). The descriptive and the
heuristic theories, due to their empirical nature and shorter history, seem wide open
for development and adaptation. In addition, there is ample potential for research
on the application of both lines of decision theory to practical problems involving
risk. Real decisions (be it in business, technology, politics or other fields) are sel-
dom based on rigorous applications of decision theory, be it normative, descriptive
or heuristic. One reason for this lack is the gap between researchers living in an
“idealized world” and the practitioners dealing with the “dirty reality”.

Concerning the different lines of decision theory, researchers should aim to link
the formalism of classical utility analysis with the empirical appropriateness of
descriptive and behavioral models. In order to understand and improve decision
making on systemic and complex risks, an integrative perspective of normative, de-
scriptive and heuristic decision making may offer many benefits. Another promising
area for future research would be to study the normative and behavioral perspectives
looking at group decisions as opposed to individual decisions. Furthermore, scholars
may want to examine which institutions (rules, regulations, etc.) can be successfully
implemented in order to enhance the effectiveness and efficiency of individual and
group decisions (e.g. debiasing strategies).

5Quoted from the statisticians Box and Draper [12].
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Table 3 Overview on the three decision theories presented in this chapter

Decision-
theory

Approach Decision criterion Suitable
for/applicable to

Tools

Classical
(normative)
decision
theory,
expected
utility
theory

Normative (how
decisions should
be made),
mathematical,
axiomatic theory

Expected utility
(reflecting attributes
such as money, safety,
happiness);
objective/observer-
independent;
consistent rules;
sometimes reduced to
cost-benefit analysis

Optimizing
decision-making
when problems are
well-defined, i.e.
when probability and
consequences can be
reasonably quantified.
Sufficient time for
calculations is
available.
Important to reduce
risks related to
technological and
environmental hazards

Expected
utility
maximization.
Decision trees
and influence
diagram,
Mathematical
optimization,
Advanced
probabilistic
models

Descriptive
(descriptive,
behavioral)
approaches
of human
decision
making

Descriptive (how
decisions are
made)
Empirical, i.e.
fitted to observed
human behavior
(behavioral
economics, e.g.
prospect theory)

The aim of descriptive
decision theory is to
describe what people
will actually do, not
necessarily what they
should do. According
to prospect theory,
individuals compare
decision criteria
(objective and
subjective) against a
reference point

Describing (and
predicting) actual
human behavior
Understanding how
people actually make
decisions (important
to reduce risks
associated with
human and
organizational
behavior)

Empirical
analyses (e.g.
experiments or
questionnaire
studies) to
describe actual
decision
behavior

Heuristic
decision
making

Descriptive (how
decisions are
made)
Empirical
Normative
elements (decision
heuristics in
certain situations)
Assumption:
Decision makers
have intuition on
the problem

Subjective/observer-
dependent cost-benefit
analysis
Utility (money, safety
happiness)

Optimizing decision
making under certain
conditions (little time
and limited
information) and
within complex
systems

Use of
decision
heuristics (e.g.
representative-
ness heuristic;
cause and
result;
availability
heuristic;
heuristic)

5 Food for Thought

• What is the value of economics and classical utility theory given that they make
a number of often unrealistic assumptions? Where can they and where can they
not create value added by applying them?
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• It has been said, that all models are wrong to some degree—is there a point how-
ever, where a model becomes “too wrong” or “right enough”—if so, how would
one know?

• How can economic theory account for the role of subjective perception of “ob-
jective” values and probabilities in human decision making?

• What is the value of information and how can it be assessed?
• How does one (theoretically) construct a utility function for a decision maker,

following the classical utility theory?
• From two engineering designs for a tunnel construction, which only differ in

safety and cost, one is selected. How can the implicit trade-off between safety
and risk be deduced from this solution?

• It has been argued that by not following the expected utility principle when mak-
ing decisions involving life safety, “we are in effect killing people”. Discuss this
statement.

• A popular “economics joke”: what do economists mean when they write in the
conclusion of their paper: “The evidence for our hypotheses is mixed?” It means
that economic theory supports the hypotheses but the empirical data does not.
Discuss.

6 Summary

Classical normative decision analysis, which is based on the expected utility the-
ory developed by mathematicians, provides an axiomatic framework for optimiz-
ing decisions under uncertainties. It is well suited for identifying optimal decisions
when copying with risks if probabilities and consequences of adverse events can be
reasonably well quantified. Descriptive decision analysis is a generalization of the
expected utility theory, accounting for the influence of psychological factors on the
decisions made. It is better suited than the classical theory to describe the behavior
of humans under uncertainty and risk. Finally, the chapter outlines newer attempts
to formalize heuristic decision making, which is based on relatively simple rules,
and which assume that these heuristics have developed in an evolutionary process.
These theories are particularly well suited to describe (and sometimes optimize)
decision making under uncertainty and limited time and information.
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Chapter 4
The New Role of Mathematical Risk Modeling
and Its Importance for Society

Klaus Mainzer

This book on risk and security is an example for the new role of mathematical mod-
eling in science. In Newtonian times, mathematical models were mainly applied to
physics and astronomy (e.g., planetary systems) as definitive mappings of reality.
They aimed at explanations of past events and predictions of future events. Models
and theories were empirically corroborated or falsified by observations, measure-
ments and lab experiments. Mathematical predictions were reduced to uniquely de-
termined solutions of equations and the strong belief in one model as mapping of
reality. In probabilistic models, extreme events were underestimated as improbable
risks according to normal distribution. The adjective “normal” indicates the prob-
lematic assumption that the Gaussian curve indicates a kind of “natural” distribution
of risks ignoring the fat tails of extreme events. The remaining risks are trivialized.
The last financial crisis as well as the nuclear disaster in Japan are examples of
extreme events which need new approaches of modeling.

Mathematical models are interdisciplinary tools used in natural and engineering
sciences as well as in financial, economic and social sciences. Is there a universal
methodology for turbulence and the emergence of risks in nature and financial mar-
kets? Risks which cannot be reduced to single causes, but emerge from complex
interactions in the whole system, are called systemic risk. They play a dominant role
in a globalized world. What is the difference between microscopic interactions of
molecules and microeconomic behavior of people? Obviously, we cannot do exper-
iments with people and markets in labs. Here, the new role of computer simulations
and data mining comes in.

These models are mainly stochastic and probabilistic and can no longer be con-
sidered as definitive mappings of reality. The reason is that, for example, a financial
crisis cannot be predicted like a planetary position. With this methodic misunder-
standing, the political public blamed financial mathematics for failing anticipations.
Actually, probabilistic models should serve as stress tests. Model ambiguity does not
allow to distinguish a single model as definitive mapping of reality. We have to con-
sider a whole class of possible stochastic models with different weights. In this way,
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we can overcome the old philosophical skepticism against mathematical predictions
from David Hume to Nassim Taleb. They are right in their skepticism against clas-
sical axiomatization of human rationality. But they forget the extreme usefulness
of robust stochastic tools if they are used with sensibility for the permanent model
ambiguity. It is the task of philosophy of science to evaluate risk modeling and to
consider their interdisciplinary possibilities and limits.

Keywords Risk modeling · Systemic risk · Model scepticism · Risk measuring ·
Rational behavior

The Facts

• Mathematical modeling is crucial for understanding the dynamics of natural and
societal systems.

• The emergence of systemic risks can be explained in nonlinear models of systems
science.

• Philosophy of science delivers criteria of good models and their application in
risk modeling.

• In risky situations, model skepticism is a challenge of research.
• Risk modeling has its historical origin in financial and insurance mathematics.
• Securitized credit models, their increasing networks of risks, and the crisis of risk

modeling lead to a new paradigm of risk measuring and rational behavior.
• We can no longer trust in a single risk model, but we must consider a class of

more or less appropriate models, supplemented by experimental behavioral case
studies.

1 Introduction

Mathematical models are mathematical descriptions of systems in different sci-
ences. They refer in particular to natural systems in astronomy (e.g., planetary sys-
tems), physics (e.g., atomic systems), chemistry (e.g., molecular bonds), and biol-
ogy (e.g., cellular networks), but also to social systems in economics (e.g., financial
markets), sociology (e.g., social networks) and political science (e.g., administrative
organizations). When engineers analyze a technical system to be controlled or opti-
mized, they also use a mathematical model. In mathematical analysis, engineers can
build a model of the system as a hypothesis of how the system should work, or try to
estimate how an unforeseeable event could affect the system. Examples are extreme
events and risks emerging in complex systems. Similarly, in control of a system,
engineers can try out different control approaches in simulations. Simulations are
often represented by computer programs and tested on computers (Bungartz et al.
[1]). In the natural sciences, the validity of models is tested by derived explanations
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or predictions which are confirmed or falsified by observations, measurements and
experiments. A hypothetical model is a more or less appropriate mapping of reality.

A mathematical model usually describes a system by a set of variables and a set
of equations that establish relationships between the variables (cf. Gershenfeld [5],
Weidlich [13], Yang [14]). A dynamical system is characterized by its elements and
the time-depending development of their states. The states can refer to moving plan-
ets, molecules in a gas, gene expressions of proteins in cells, excitation of neurons
in a neural net, nutrition of populations in an ecological system, or products in a
market system. The dynamics of a system, i.e. the change of system states depend-
ing on time, can mathematically be described by, e.g., time-depending differential
equations. In physics, a conservative system, e.g. an ideal pendulum, is determined
by the reversibility of time direction and conservation of energy. Dissipative sys-
tems, e.g., a real pendulum with friction, are irreversible. In a more intuitive way,
a conservative system is “closed” with respect to external influences and only de-
termined by its intrinsic dynamics. A dissipative system can be considered to be
“open” to external influences, e.g., air or other material friction forces of the pendu-
lum. Models of conservative and dissipative systems can also be applied in ecology
and economics.

Case Study (Conservative and Dissipative Systems in Ecology) At the beginning
of the 20th century, fishermen in the Adriatic Sea observed a periodic change of
numbers in fish populations. These oscillations are caused by the interaction be-
tween predator and prey fish. If the predators eat too many prey fish, the number of
prey fish and then the number of predators decreases. The result is that the number
of prey fish increases, which then leads to an increase in the number of predators.
Thus, a cyclic change of both populations occurs. In 1925, the Italian mathemati-
cians Lotka [36] and Volterra suggested a dynamical model to describe the prey and
predator system. Each state of the model is determined by the numbers of prey fish
and the number of predator fish. So the state space of the model is represented by
a two-dimensional Euclidean plane with a coordinate for prey fish and a coordi-
nate for predator fish. The observations, over time, of the two populations describe
a dotted line in the plane. Births and deaths change the coordinates by integers,
a few at a time. To apply continuous dynamics, the dotted lines must be idealized
into continuous curves. Obviously, the Lotka-Volterra model is closed to other ex-
ternal influences of, e.g., temperature or pollution of the sea. If these external forces
of “ecological friction” were added to the model, its dynamics would change the
cyclic behaviour.

Case Study (Conservative and Dissipative Systems in Economy) In 1967, the
economist Goodwin proposed a conservative dynamical model to make the 19th-
century idea of class struggle in a society mathematically precise (cf. Goodwin
[26], Mainzer [7]). He considered an economy consisting of workers and capital-
ists. Workers spend all their income on consumption, while capitalists save all their
income. Goodwin used a somewhat modified predator-prey model of Lotka and
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Volterra. This conservative model supports the idea that a capitalist economy is per-
manently oscillating. Obviously it is superficial, because it does not refer directly to
the functional income shares of capitalists and workers or to their population size.
But it is mainly its conservative character that makes Goodwin’s model seem eco-
nomically unrealistic. Thus, the model has been made more realistic by the assump-
tion of “economic friction”. In reality, an economic system cannot be considered as
isolated from other dynamical systems. An economic model of coupled oscillatory
systems is provided by international trade. In other cases, economic systems are
influenced by political interventions. We will come back to these examples later on.

Mathematical models can be classified in several ways (Mainzer [8, 9]). In classi-
cal physics, dynamics of a system is considered a continuous process. But, continu-
ity is only a mathematical idealization. Actually, a scientist has single observations
or measurements at discrete-time points which are chosen equidistant or defined by
other measurement devices. In discrete processes, there are finite differences be-
tween the measured states and no infinitely small differences (differentials) which
are assumed in a continuous process. Thus, discrete processes are mathematically
described by difference equations.

Random events (e.g., Brownian motion in a fluid, mutation in evolution, innova-
tions in economy) are represented by additional fluctuation terms. Classical stochas-
tic processes, e.g. the billions of unknown molecular states in a fluid, are defined
by time-depending differential equations with distribution functions of probabilistic
states. In quantum systems of elementary particles, the dynamics of quantum states
is defined by Schrödinger’s equation with observables (e.g., position and momen-
tum of a particle) depending on Heisenberg’s principle of uncertainty which only
allows probabilistic forecasts of future states.

2 Emerging Risks in Complex Dynamical Systems

2.1 Linear and Nonlinear Models

Historically, during the centuries of classical physics, the universe was consid-
ered a deterministic and conservative system. We say that a system is determin-
istic when future events are causally set by past events. A finite-difference equation
like xt+1 = f (xt ) is deterministic as long as f (xt ) has only one value for each
possible value of xt . Given the past value xt , the function f determines the future
value xt+1. The astronomer and mathematician P.S. Laplace (1814) assumed the
total computability and predictability of nature if all natural laws and initial states
of celestial bodies are well known. The Laplacean spirit expressed the belief of
philosophers in determinism and computability of the world during the 18th and
19th century.

Laplace was right about linear and conservative dynamical systems. In general,
a linear relation means that the rate of change in a system is proportional to its cause:
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Small changes cause small effects while large changes cause large effects. Changes
of a dynamical system can be modeled in one dimension by time series with chang-
ing values of a time-depending quantity along the time axis. Mathematically, linear
equations are completely solvable. This is the deeper reason for Laplace’s philo-
sophical assumption to be right for linear and conservative systems.

In systems theory (Mainzer [8, 9, 39]), the complete information about a dynam-
ical system at a certain time is determined by its state at that time. The state of a
complex system is determined by more than two quantities. Then, a higher dimen-
sional state space is needed to study the dynamics of a system. From a methodolog-
ical point of view, time series and phase spaces are important instruments to study
systems dynamics. The state space of a system contains the complete information
of its past, present and future behavior.

Case Study (State Space in Ecology) Let us consider the state space of a Lotka-
Volterra system of predator and prey fishes. The vector field on the two-dimensional
state space can roughly be described in terms of four regions (Fig. 1a). In region
A, both populations are relatively low. When both populations are low, predator fish
decreases for lack of prey fish while prey fish increase because of less predation.
The interpretation of this habitual tendency as a bound velocity vector is drawn
as an arrow. In region B, there are many prey fish, but relatively few predators. But
when there are many prey fish and few predator fish, both populations increase. This
is interpreted by the vector in region B. In region C, both populations are relatively
large. The predator fish are well fed and multiply, while the prey fish population
declines. This tendency is shown by the vector in region C. In region D, there are
few prey fish but many predator fish. Both populations decline. This tendency is
shown by the vector in region D. The phase portrait of this system can be visualized
by a closed trajectory, because the flow tends to circulate.

In Fig. 1b, the phase portrait is a nest of closed trajectories, around a central
equilibrium point. As dynamical systems theory tells what to expect in the long run,
the phase portrait enables the ecologist to know what happens to the two popula-
tions in the long run. Each initial population of predator and prey fish will recur
periodically.

If some kind of ecological friction were added to the model, the center would
become a point attractor. This would be a model for an ecological system in static
equilibrium (Fig. 1c). A different but perhaps more realistic modification of the
model results in a phase portrait like Fig. 1d, with only one periodic trajectory.

At the end of the 19th century, H. Poincaré (1892) discovered that celestial me-
chanics is not a completely computable clockwork, even if it is considered a de-
terministic and conservative system. The mutual gravitational interactions of more
than two celestial bodies (‘Many-bodies-problem’) can be illustrated by causal feed-
back loops analytically represented by nonlinear and non-integrable equations with
instabilities and irregularities. In a strict dynamical sense, the degree of complex-
ity depends on the degree of nonlinearity of a dynamical system. According to the
Laplacean view, similar causes effectively determine similar effects. Thus, in the
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Fig. 1 Phase portraits of an
ecological system with a prey
and predator population
(Lotka-Volterra): (a) a closed
trajectory, (b) a nest of closed
trajectories, (c) a point
attractor, (d) a periodic
trajectory [7, p. 114]

state space, trajectories that start close to each other also remain close to each other
during time evolution. Dynamical systems with deterministic chaos exhibit an ex-
ponential dependence on initial conditions for bounded orbits: the separation of tra-
jectories with close initial states increases exponentially.

Important Consequence for Risk Analysis (Butterfly Effect of Chaotic Dynamics)
Consider two trajectories starting from nearly the same initial data. In chaotic dy-
namics only a tiny difference in the initial conditions can result in the two trajecto-
ries diverging exponentially quickly in the state space after a short period of time
(Fig. 2). In this case, it is difficult to calculate long-term forecasts, because the initial
data can only be determined with a finite degree of precision. Tiny deviations in dig-
its behind the decimal point of measurement data may lead to completely different
forecasts. This is the reason why attempts to forecast weather fail in an unstable and
chaotic situation. In principle, the wing of a butterfly may cause a global change of
development. This “butterfly effect” can be measured by the so-called Lyapunov ex-
ponent. A trajectory x(t) starts with an initial state x(0). If it develops exponentially
fast, then it is approximately given by |x(t)| ∼ |x(0)|e�t . The exponent� is smaller
than zero if the trajectory is attracted by attractors, such as stable points or orbits. It
is larger than zero if it is divergent and sensitive to very small perturbations of the
initial state.

Thus, tiny deviations of initial data lead to exponentially increasing computa-
tional efforts for future data limiting long-term predictions, although the dynamics
is in principle uniquely determined. According to the famous KAM-Theorem of A.N.
Kolmogorov (1954), V.I. Arnold (1963), and J.K. Moser (1967), trajectories in the
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Fig. 2 Exponential
dependence on initial
conditions measured by
Lyapunov exponent �
[7, p. 83]

phase space of classical mechanics are neither completely regular, nor completely
irregular, but depend sensitively on the chosen initial conditions.

Models of dynamical systems can be classified on the basis of the effects of the
dynamics on a region of the state space (Weidlich [13]). A conservative system
is defined by the fact that, during time evolution, the volume of a region remains
constant, although its shape may be transformed. In a dissipative system, dynamics
causes a volume contraction.

An attractor is a region of a state space into which all trajectories departing from
an adjacent region, the so-called basin of attraction, tend to converge. There are
different kinds of attractors (Lorenz [35]). The simplest class of attractors contains
the fixed points. In this case, all trajectories of adjacent regions converge to a point.
An example is a dissipative harmonic oscillator with friction: the oscillating sys-
tem is gradually slowed down by frictional forces and finally come to a rest in an
equilibrium point.

Conservative harmonic oscillators without friction belong to the second class
of attractors with limit cycles, which can be classified as being periodic or quasi-
periodic. A periodic orbit is a closed trajectory into which all trajectories departing
from an adjacent region converge. For a simple dynamical system with only two
degrees of freedom and continuous time, the only possible attractors are fixed points
or periodic limit cycles. An example is a Van der Pol oscillator modeling a simple
vacuum-tube oscillator circuit.

In continuous systems with a state space of dimension n > 2, more complex
attractors are possible. Dynamical systems with quasi-periodic limit cycles show
a time evolution which can be decomposed into different periodic parts without a
unique periodic regime. The corresponding time series consist of periodic parts of
oscillation without a common structure. Nevertheless, closely starting trajectories
remain close to each other during time evolution. The third class contains dynami-
cal systems with chaotic attractors which are non-periodic, with an exponential de-
pendence on initial conditions for bounded orbits. A famous example is the chaotic
attractor of a Lorenz system simulating the chaotic development of weather caused
by local events, which cannot be forecast in the long run (butterfly effect).
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2.2 Linear and Nonlinear Time Series Analysis

In the previous chapter we have analyzed dynamical systems and their types of be-
havior with fixed points, limit cycles, and chaos. Modeling means that these math-
ematical systems are applied to physical, biological or social systems of interest.
The Lotka-Volterra equations, for example, constitute a mathematical system mod-
eling the interaction of prey and predators in zoology. Modeling in this way is a
top down procedure from mathematical equations to applications by appropriate
interpretations of variables. In a bottom up approach, we start with a sequence of
measurements and ask what the data themselves can tell us about the laws of dy-
namics. Sequences of data are called times series. Time series analysis is used to
find types of appropriate equations fitting the data, or to compare the predictions of
mathematical models to measurements made in the field of research.

In an ideal case, time-series analysis delivers a computer program providing a
mathematical model fitting the measured data. But these data-generated models have
a severe shortcoming, because they work without any understanding of the physical
system. In practice, model building is combined with times-series analysis. Model
building is based on knowledge of a physical system, while time-series analysis can
be used to detect features of a system, inspiring model building.

Dynamical systems are governed by difference equations of the form xt+1 =
f (xt ) or differential equations of the form dx/dt = g(x, y) and dy/dt = h(x, y)
with time-depending variables x(t) and y(t). In a top-down approach of modeling,
the functions f , g, and h are given and the dynamical behavior with, e.g., fixed
points, limit cycles, and chaos attractor is derived by mathematical analysis. In a
bottom-up approach, we can only measure a limited set of quantities with limited
precision. In our example of prey and predator dynamics, we might be able to mea-
sure the population of the predator only, although predator and prey are correlated
and important for the dynamics of the whole prey and predator system.

For a mathematical model of observed data, we need an equation relating the
measurements to the corresponding dynamical variables. The measurements ap-
proximate the dynamical variables with a difference which is called the measure-
ment error. The measurement error depends on several factors like systematic bias,
measurement noise, and dynamical noise. Systematic bias means a deficiency in
the measurement process. Measurement noise results from random fluctuations in
measurements. Dynamical noise is affected by outside influence, because dynami-
cal systems are not isolated. A prey and predator system, for example, does not only
depend on the two variables of prey and predator, but also on the environment with
climate, nutrition, temperature et al.

Case Study (Linear Model of Dynamics) The dynamics of a finite-difference equa-
tion xt+1 = A + ρxt has a steady state at xt = A/(1 − ρ) =M which is stable if
|ρ| < 1. The solution to the finite-difference equation is exponential decay to the
steady state. After the transient passes, there is steady-state behavior xt =M . A di-
rect measurement of the dynamical variable xt is assumed. But, with respect to
measurement noise, the measurement data at time t is Dt = xt +Wt , where Wt is a
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Fig. 3 Data dynamics of a
linear model [6, p. 286]

Fig. 4 Data dynamics of a
nonlinear model [6, p. 302]

random number independently at each t in a Gaussian probability distribution with
a mean of zero and standard deviation σ . Figure 3 shows data Dt generated by this
model with A= 4, ρ = 0.95, and M = 80. P is Gaussian white measurement noise
with a standard deviation of σ = 2.

The model describes a system maintained at a steady level (e.g., a population
level or amount of prices at a market) without outside perturbations. For the inter-
pretation of measured data, the model leads to following questions:

– What is the value of the steady state in the data?
– What is the level of measurement noise in the data?
– Is there evidence that there really is a steady state?
– Is there evidence that there is only measurement noise and no outside perturba-

tions to the state xt?

Case Study (Nonlinear Model of Dynamics) The previous model has linear dy-
namics and the stable fixed point is approached asymptotically in the absence of
dynamical noise. Nonlinear models can have non fixed asymptotic behavior. For ex-
ample, the quadratic map xt+1 = μxt (1 − xt ) can show a variety of behavior from
stable fixed points to stable periodic cycles and chaos. The equation indicates no
dynamical noise. Further on, there is no measurement noise, Dt = xt (Fig. 4). Thus,
the model is completely deterministic. In this case all future data can be calculated
for given initial conditions. In the case of chaos, there are practical limitations with
respect to the sensitive dependence of the chaotic dynamics on initial data.

For a nonlinear model, the following questions may arise:

– What evidence is there that the data are generated by a deterministic process?
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– What evidence is there for a nonlinear process?
– How large is the sensitive dependence on initial data in the case of chaos?

The mean of the data in Fig. 4 is Mest = 0.471. The fluctuations about the mean
Vt = Dt −Mest can be used to calculate the correlation coefficient between Vt+1
and Vt . This is ρest = 0.054, close to zero. In fact, the autocorrelation function for
the data of the nonlinear model is very similar to that for the data of the linear
model. This suggests that the data from the nonlinear model are white noise, ap-
parently contradicting the fact that the data are from a deterministic model. This
paradox is solved by the fact that the correlation coefficient and the autocorrelation
function measure linear correlations in the data. A scatter plot of Vt+1 and Vt shows
a very strong relationship, but actually the relationship is nonlinear and hence not
accurately represented by the correlation coefficient and autocorrelation function.

Obviously, statistics of correlation coefficient and autocorrelation function can-
not distinguish between the data in linear and nonlinear models. Nonlinear time
series analysis helps to reconstruct nonlinear dynamics of a system from measured
data. The idea of using a scatter plot to display the relationship between successive
measurements is fundamental to the analysis of data from nonlinear systems. They
are also called return plot, Poincaré map, or return map. In many cases, data are
collected from a continuous-time dynamical system defined by differential equa-
tions rather than finite-difference equations. In these cases, it is appropriate to use
the phase-plane or embedding reconstruction procedure to find the laws of dynamics
from measured data.

Case Study (Harmonic Oscillator and Nonlinear Time Series Analysis) As an ex-
ample, we consider a second-order differential equation describing a harmonic os-
cillator which is often used to model natural or economic systems with oscillating
behavior (cf. Kaplan [6] p. 306): d2x/dt2 = −bx. In order to illustrate the flow
of dynamics in a harmonic oscillator, this equation is rewritten with two first-order
differential equations dx/dt = y and dy/dt = −bx for the variables x and y as co-
ordinates of the phase plane of the system. In a bottom-up approach, we start with
measuring a time-series D(t) = x(t). In a next step, we must reconstruct the state
plane and the flow on it from the measured data. At any instant, the position on the
state plane is given by the coordinates (x, y) representing the state of the dynam-
ical system at that instant. We can also measure y(t) from D(t) by noticing that
y = dx/dt = dD/dt . If we plot dD/dt versus D, the trajectory in the state plane
describes the flow based on the measured data.

But the harmonic oscillator is only a special case because dx/dt provides y.
In general, dynamics on the state plane are given by a pair of coupled differential
equations dx/dt = f (x, y) and dy/dt = g(x, y). Again, the question arises how
to calculate the values of y if only x(t) is measured. Measuring x(t) and calculat-
ing dx/dt provide a direct measurement of x and a calculated value of f (x, y).
Some information about y is contained in the value of f (x, y), and sometimes this
information helps to an idea of the whole dynamics of the system.



4 The New Role of Mathematical Risk Modeling and Its Importance for Society 105

Example (Chaotic Behavior and Weather Forecasting) Two-dimensional dynam-
ics in a state plane cannot represent chaotic behavior. A continuous-time system
generating chaos must consist of, at least, three equations. As an example, the
Lorenz system of (simplified) weather forecasting is modeled by the three equa-
tions dx/dt = 10(y − x), dy/dt = 28x − y − xy, and dz/dt = 28xy − 8z/3. If
the values of x(t), y(t), and z(t) can be measured simultaneously, it is easy to re-
construct the dynamics in a three-dimensional phase space. But if only one of the
variables, e.g., D(t)= x(t), can be measured, one must use heuristic procedures to
reconstruct a model from measured data faithful to the geometry of the original.

2.3 Deterministic and Stochastic Models

Measurements are often contaminated by unwanted noise which must be separated
from the signals of specific interest. Further on, in order to forecast the behavior of a
system, the development of its future states must be reconstructed in a correspond-
ing state space from a finite sequence of measurements. Thus, time-series analysis
is an immense challenge in different fields of research from, e.g., climatic data in
meteorology, ECG-signals in cardiology, and EEG-data in brain research to eco-
nomic data of economics and finance. Beyond the patterns of dynamical attractors,
randomness of data must be classified by statistical distribution functions.

Typical phenomena of our world, such as weather, climate, the economy and
daily life, are much too complex for a simple deterministic description to exist. Even
if there is no doubt about the deterministic evolution of, e.g., the atmosphere, the cur-
rent state whose knowledge would be needed for a deterministic prediction contains
too many variables in order to be measurable with sufficient accuracy. Hence, our
knowledge does not usually suffice for a deterministic model. Instead, very often a
stochastic approach is more situated. Ignoring the unobservable details of a com-
plex system, we accept a lack of knowledge. Depending on the unobserved details,
the observable part may evolve in different ways. However, if we assume a given
probability distribution for the unobserved details, then the different evolutions of
the observables also appear with specific probabilities. Thus, the lack of knowledge
about the system prevents us from deterministic predictions, but allows us to as-
sign probabilities to the different possible future states. It is the task of a time series
analysis to extract the necessary information from past data.

Complex models contain nonlinear feedback, and the solutions to these are usu-
ally obtained by numerical methods (Bungartz et al. [1]). Statistical complex models
are data driven and try to fit a given set of data using various distribution functions.
There are also hybrids, coupling dynamic and statistical aspects, including determin-
istic and stochastic elements. Simulations are often based on computer programs,
connecting input and output in nonlinear ways. In this case, models are calibrated
by training the programs, in order to minimize the error between output and given
test data.
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Example (Power Laws and Risks) In the simplest case of statistical distribution
functions, a Gaussian distribution has exponential tails situated symmetrically to
the far left and right of the peak value. Extreme events (e.g., disasters, tsunamis,
pandemics, worst case of nuclear power plants) occur in the tails of the probability
distributions (Embrechts et al. [2]). Contrary to the Gaussian distribution, proba-
bilistic functions p(x) of heavy tails with extreme fluctuations are mathematically
characterized by power laws, e.g., p(x)∼ x−α with α > 0. Power laws possess scale
invariance corresponding to the (at least statistical) self-similarity of their time se-
ries of data. Mathematically, this property can be expressed as p(bx) = b−αp(x)
meaning that the change of variable x to bx results in a scaling factor independent
of x while the shape of distribution p is conserved. So, power laws represent scale-
free complex systems. The Gutenberg-Richter size distribution of earthquakes is a
typical example of natural sciences. Historically, Pareto’s distribution law of wealth
was the first power law in the social sciences with a fraction of people presumably
several times wealthier than the mass of a nation (Mainzer [8]).

3 Criteria of Risk Modeling in Philosophy of Science

3.1 What is a Good Model?

Mathematical modeling problems are often classified into black-box or white-box
models, according to how much a priori information is available of the system.
A black-box model is a system of which there is no a priori information available.
A white-box model is a system where all necessary information is available. Practi-
cally all systems are somewhere between the black-box and white-box models, so
this concept only works as an intuitive guide for approach.

Usually it is preferable to use as much a priori information as possible to make
a model more accurate (cf. Gershenfeld [5]). Therefore the white-box models are
usually considered easier, because if one has used the information correctly, then
the model will behave correctly. Often the a priori information comes in forms of
knowing the type of functions relating different variables. For example, if we make
a model of how a climate model works in an ecological environment, we know that
usually the amount of data is a varying function. Thus we are still left with several
unknown parameters: how rapidly does pollution increase, and what is the initial
state of the system? This example is therefore not a completely white-box model.
These parameters have to be estimated through some means before one can use the
model.

In black-box models one tries to estimate both the functional form of relations
between variables and the numerical parameters in those functions. Using a priori
information we could end up, for example, with a set of functions that probably
could describe the system adequately. If there is no a priori information we would
try to use functions as general as possible to cover all different models. The problem
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with using a large set of functions to describe a system is that estimating the param-
eters becomes increasingly difficult when the amount of parameters (and different
types of functions) increases.

Another basic issue is the complexity of a model. If we were, for example, mod-
eling the route of a railway plane, we could embed each mechanical part of the train
into our model and would thus acquire an almost white-box model of the system.
However, the computational cost of adding such a huge amount of detail would
effectively inhibit the usage of such a model. Additionally, the uncertainty would
increase due to a complex system, because each separate part induces some amount
of variance into the model. It is therefore usually appropriate to make some ap-
proximations to reduce the model to a sensible size. Engineers often can accept
some approximations in order to get a more robust and simple model. For exam-
ple Newton’s classical mechanics is an approximated model of the real world. Still,
Newton’s model is quite sufficient for most ordinary-life situations, that is, as long
as particle speeds are well below the speed of light, and we study macro-particles
only with respect to Einstein’s theory of relativity and to quantum physics.

An important part of the modeling process is the evaluation of an acquired model.
How do we know whether a mathematical model describes the system well? This
is not an easy question to answer. Usually the engineer has a set of measurements
from the system which are used in creating the model. Then, if the model was built
well, the model will adequately show the relations between system variables for
the measurements at hand. The question then becomes: how do we know that the
measurement data is a representative set of possible values? Does the model describe
well the properties of the system between the measurement data (interpolation)?
Does the model describe well events outside the measurement data (extrapolation)?

Extrapolations are a challenge with increasing complexity of models. How well
does this model describe events outside the measured data? Is it an adequate map-
ping of reality? Let us consider Newtonian classical mechanics-model, again. New-
ton made his measurements without advanced equipment, so he could not measure
properties of particles travelling at speeds close to the speed of light. Likewise, he
did not measure the movements of molecules and other small particles, but macro
particles only. It is then not surprising that his model does not extrapolate well into
these domains, even though his model is quite sufficient for ordinary life physics.

3.2 Model Skepticism—From David Hume to Nassim Taleb

Since Newton’s century, there have been deep doubts in causality and the reliability
of model-based predictions. An important progress of this criticism was the British
philosopher David Hume (1711–1776) who was—like Adam Smith—one of the
most important figures of Scottish Enlightenment. From a methodological point of
view, Hume’s critical analysis of human reason was a milestone in the history of
philosophy. Kant mentioned that it was Hume waking him up from his “dogmatic
slumbers”. The problem concerns the question of how we are able to make inductive



108 K. Mainzer

inferences. Inductive inference is reasoning from the observed behavior of objects to
their behavior when unobserved. As Hume said, it is a question of how things behave
when they go beyond the present test by our senses, and the records of our memory.
He noticed that we tend to believe that things behave in a regular manner, i.e., that
patterns in the behavior of objects will persist into the future, and throughout the
unobserved present.

Hume’s argument is that we cannot rationally justify the claim that nature will
continue to be uniform, as justification only allows two arguments, and both of these
are inadequate. According to Hume, the two sorts are: (1) demonstrative reasoning,
and (2) probable reasoning. With regard to (1), Hume argues that the regularity of
nature cannot be demonstrated, as, without logical contradiction, we can assume
that nature might stop being regular. Considering (2), Hume argues that we cannot
hold that nature will continue to be uniform because it has been in the past, as this
is using the very sort of reasoning (induction) that is under question: it would be
circular reasoning. Thus no form of justification will rationally warrant our inductive
inferences.

Hume’s solution to this skeptical problem is to argue that, rather than reason, it is
natural instinct that explains our ability to make inductive inferences. He asserts that
“All inferences from experience, therefore, are effects of custom, not of reasoning”.
(Hume [31]).

On the same line, the Lebanese philosophical essayist and practitioner of finance
Nassim Taleb has argued in front of the recent financial crisis (Taleb [12]). His argu-
ment centers on the idea that predictive models are based on axiomatic “Platonism”
(cf. Popper [47]), gravitating towards mathematical purity and failing to take some
key ideas into account, such as: complete information is impossible, small unknown
variations in the data could have a huge impact, and flawed models are based on
empirical data without considering events that have not taken place but could have
taken place. These rare and risky events are symbolized as “black swans” against
the general belief that all swans are white. From a methodological point of view,
Taleb follows Sir Karl Popper’s philosophy of falsification (Popper [11]).

Logical Excursion (Falsification and Black Swans) In more details, Popper argues
in the following way. A general hypothesis like “All swans are white” has the logical
form “For all objects x is assumed: if x is a swan, then x is white”. This general
statement is especially true for a special object xo, i.e. “If xo is a swan, then xo is
white”. Let the condition of this conclusion be true for a special object xo, i.e. “xo
is a swan” is true. Then, our hypothesis predicts for the special swan xo that it is
white. This prediction follows by a logical direct conclusion (modus ponens): let
A and B be propositions which can be either true or false. The direct conclusion
(modus ponens) claims if A is true and conclusion A→ B (“if A, then B”) is true,
then B is true. If we observe that the prediction is true, i.e. the observed swan xo is
actually white, then the general hypothesis is only corroborated by the example xo,
but not verified for all possible cases. In general, it is not possible to verify a general
statement of empirical sciences for all possible objects, locations, and points of time.
Only in mathematics, we can verify a general proposition on all natural numbers by



4 The New Role of Mathematical Risk Modeling and Its Importance for Society 109

a proof of complete induction. Therefore, according to Popper, a general hypothesis
in empirical sciences can logically only be falsified, but not verified: Again, let the
condition A (“xo is a swan”) be true. By observation, the swan is not white, but
black, i.e. B is false. Then, the conclusion A→ B must be false by logical reasons.
In this case, the general hypothesis “All swans are white” is said to be falsified by
the example xo of a black swan.

The occurrence of black swans may be rare, but we must take black swan events
into account. Therefore, according to Taleb, the foundations of quantitative eco-
nomics are faulty and highly self-referential. He states that statistics is fundamen-
tally incomplete as a field, as it cannot predict the risk of rare events, a problem that
is acute in proportion to the rarity of these events. Taleb sees his main challenge as
mapping his ideas of “robustification” and “anti-fragility”, that is, how to live and
act in a world we do not understand, and build robustness to black swan events. He
advocates what he calls a “black swan robust” society, meaning a society that can
withstand difficult-to-predict events. Like Hume he argues that, rather than math-
ematical modeling, it is natural instinct that explains our ability to make inductive
inferences. He favors “stochastic tinkering” as a method of scientific discovery, by
which he means experimentation and fact-collecting instead of top-down directed
modeling.

3.3 Human Instinct, Probabilistic Thinking, and the Brain

Most of Taleb’s critique could only be detected by sophisticated mathematical anal-
ysis. Thus, the question arises how Hume’s and Taleb’s confidence in human instinct
can be sufficient in front of a world with increasing complexity. Traditionally, phi-
losophy of science defended the belief in human rationality and the possibility of
logical reasoning. Therefore, in the 20th century, logical empirism argued for scien-
tific rules of inductive reasoning.

Logical Excursion (Inductive Logic) Since Isaac Newton, induction was pro-
claimed a fundamental method to derive a general natural law or hypothesis from
observational data and measurements. Although there is no logical justification to
derive a general proposition for all cases of a domain from some confirmed ex-
amples, logicians and philosophers of science suggested formal rules to handle the
problem of induction. Rudolf Carnap (1891–1970) suggested a probabilistic calcu-
lus of hypotheses. The probability of a hypothesis h is defined as degree of belief
in h with respect to given data of experience e. The task of inductive logic is the
definition of a function of confirmation c(h, e) = r , which correlates an inductive
resp. a priori-probability r to the proposition h. Carnap’s c-function was defined on
elementary propositions, complex propositions of logically connected elementary
propositions, and general propositions for infinite many cases (e.g., all space-time
points). But his axioms were too weak for practical applications. Thus, he did not
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longer rely in one unique inductive method, but suggested a class of different con-
firmation functions. Anyway, in modern philosophy of science, probabilistic argu-
ments and the meaning of probability play a crucial role. To evaluate the probability
of a hypothesis, the concept of Bayesianism assumes some prior probability, which
is then updated with respect to new data (Hacking [28]).

Carnap also initiated a logical theory of rational decisions under risk. The degree
of belief of a person at time T is defined by a belief function Cr which is interpreted
as betting quotient. Obviously, this approach makes no sense in the natural sciences,
because natural laws do not depend on betting. In social sciences, decisions under
risks depend on personal degrees of belief which Carnap assumed to be measurable.
But, in modern brain research and cognitive science, gut feeling is no longer only a
source of irrationality. New insights in human intuition and unconscious experience
lead to behavioral skills which are even useful in management. The philosopher
of science Michael Polyani (1891–1976) introduced the term “tacit knowledge”, in
order to describe these unconscious abilities. Polyani argued that we sometimes can-
not only more than we can express by language, but that all kind of knowledge is
based on tacit knowledge (Polyani [46]). Daily activities like car driving or the rou-
tines of our jobs are rooted in unconscious abilities which were trained and learnt
in earlier time. These schemes of behavior let us react under stress and risk. With-
out trust in these abilities, we would not be able to act under risk. Modern brain
research and cognitive science are extremely interested to understand these mecha-
nisms. Therefore, experimental and behavior-oriented economics as well as neuroe-
conomics provide important tools to complement mathematical risk modeling (Fehr
[23]).

4 Classical Risk Modeling in Financial and Insurance
Mathematics

In economics as well as in financial theory uncertainty and information incomplete-
ness prevent exact predictions. A widely accepted belief in financial theory is that
time series of asset prices are unpredictable. Chaos theory has shown that unpre-
dictable time series can arise from deterministic nonlinear systems. The results ob-
tained in the study of physical, chemical, and biological systems raise the question
whether the time evolution of asset prices in financial markets might be due to un-
derlying nonlinear deterministic dynamics of a finite number of variables. If we
analyze financial markets with the tools of nonlinear dynamics, we may be inter-
ested in the reconstruction of an attractor. In time series analysis, it is rather difficult
to reconstruct an underlying attractor and its dimension. For chaotic systems, it is a
challenge to distinguish between a chaotic time evolution and a random process, es-
pecially if the underlying deterministic dynamics are unknown. From an empirical
point of view, the discrimination between randomness and chaos is often impossi-
ble. Time evolution of an asset price depends on all the information affecting the
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investigated asset. It seems unlikely that all this information can easily be described
by a limited number of nonlinear deterministic equations.

4.1 Beginning of Insurance Mathematics: Poisson Distribution
of Risks

Mathematical modeling in finance and insurance can be traced back for centuries.
Insurance of risks against the chances of life is an old topic of mankind (cf. Mainzer
[8]). Commercial insurance dates back to Renaissance, when great cities of trading
introduced bets on safe routes of ships. In the 17th century, the great British insur-
ance company Lloyd arose from this system of bookmakers. The philosopher and
mathematician Gottfried Wilhelm Leibniz (1646–1716) already suggested a health
insurance in which people should pay with respect to their income. In Germany, the
ingenious idea of Leibniz was realized not earlier than in the 19th century by Bis-
marck. In the time of Leibniz, life insurances were first applications of probability
calculations.

Historical Excursion (Huygens and Insurances in the 17th Century) The Dutch
physicist Christiaan Huygens (1629–1695) applied the law of large numbers to cal-
culations of insurance rates. In his approach, an insurance is considered as a game
between the insurer and clients. The insurer diminishes his risk by adapting the pre-
mium payed by a client. Let c1, . . . , cn be the costs of the insurer and p1, . . . , pn
the probabilities that the damages happen. The expected damage of the insurer is
assumed to be p1c1 + · · · +pncn. The average gain is equal to the premiumQ paid
by the clients. His risk is zero for a premium Q = p1c1 + · · · + pncn. The risk of
clients is also zero, their loss Q and the expected gain p1c1 + · · · + pncn. In this
case, Q is called a fair premium to be paid by clients. It is assumed that the proba-
bilities p1, . . . , pn can be estimated according to the law of large numbers. But this
assumption was the flaw of Huygens’ approach. The law of large numbers cannot
be applied in cases of rare damages with extreme costs.

In 1898 the Russian economist and statistician Ladislaus Josephovich Bortkiewicz
(1868–1931) published a book about the Poisson distribution, titled The Law of
Small Numbers. In this book he first noted that events with low frequency in a large
population follow a Poisson distribution even when the probabilities of the events
varied. Modern insurance mathematics started with the thesis of the Swedish math-
ematician Filip Lundberg (1876–1965). He introduced the collective risk model for
insurance claim data. Lundberg showed that the homogeneous Poisson process, af-
ter a suitable time transformation, is the key model for insurance liability data. Risk
theory deals with the modeling of claims that arrive in an insurance business and
which gives advice on how much premium has to be charged in order to avoid ruin
of the insurance company. Lundberg started with a simple model describing the
basic dynamics of a homogeneous insurance portfolio.
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Fig. 5 A realization of
Lundberg’s risk process
[2, p. 9]

Lundberg’s Model of a Homogeneous Insurance Portfolio This means a portfolio
of contracts for similar risks (e.g., car or household insurance) under three assump-
tions:

• Claims happen at time Ti satisfying 0 ≤ T1 ≤ T2 ≤ T3 ≤ · · · which are called
claim arrivals.

• The ith claim arriving at time Ti causes the claim size. The latencies between the
claim arrivals Ti are iid (exponential) distributed.

• The claim size process (Xi ) and the claim arrival process (Ti ) are mutually inde-
pendent.

According to Lundberg’s model, the risk process U(t) of an insurance company is
determined by the initial capital u, the loaded premium rate c and the total claim
amount S(t) of claims Xi with U(t)= u+ ct − S(t) and S(t)=∑N(t)

i=1 Xi(t ≥ 0).
N(t) is the number of the claims that occur until time t . Lundberg assumed that
N(t) is a homogeneous Poisson process, independent of (Xi ). Figure 5 illustrate a
realization of the risk process U(t).

Lundberg’s model is fine for small claims. But the question arises how the global
behaviour of U(t) is influenced by individual extreme events with large claims.
Under Lundberg’s condition of small claims, Harald Cramér estimated bounds for
the ruin probability of an insurance company which are exponential in the initial
capital u. Actually, claims are mostly modeled by heavy-tailed distributions like,
e.g., Pareto which are much heavier than exponential.

4.2 Beginning of Financial Mathematics: Gaussian Distribution
of Risks

With the up-coming stock markets during the period of industrialization, people be-
came more and more interested in their risky dynamics. Asserts price dynamics are
assumed to be stochastic processes. An early key-concept to understand stochastic
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processes was the random walk. The first theoretical description of a random walk
in the natural sciences was performed in 1905 by Einstein’s analysis of molecular
interactions. But the first mathematization of a random walk was not realized in
physics, but in social sciences by the French mathematician Louis Jean Bachelier
(1870–1946). In 1900 he published his doctoral thesis with the title “Théorie de la
Spéculation” [17]. During that time, most market analysis looked at stock and bond
prices in a causal way: something happens as cause and prices react as effect. In
complex markets with thousands of actions and reactions, a causal analysis is even
difficult to work out afterwards, but impossible to forecast beforehand. One can
never know everything. Instead, Bachelier tried to estimate the odds that prices will
move. He was inspired by an analogy between the diffusion of heat through a sub-
stance and how a bond price wanders up and down. In his view, both are processes
that cannot be forecast precisely. At the level of particles in matter or of individu-
als in markets, the details are too complicated. One can never analyze exactly how
every relevant factor interrelate to spread energy or to energize spreads. But in both
fields, the broad pattern of probability describing the whole system can be seen.

Bachelier introduced a stochastic model by looking at the bond market as a fair
game. In tossing a coin, each time one tosses the coin the odds of heads or tails
remain 1:2, regardless of what happened on the prior toss. In that sense, tossing
coins is said to have no memory. Even during long runs of heads or tails, at each toss
the run is as likely to end as to continue. In the thick of the trading, price changes
can certainly look that way. Bachelier assumed that the market had already taken
account of all relevant information, and that prices were in equilibrium with supply
matched to demand, and seller paired with buyer. Unless some new information
came along to change that balance, one would have no reason to expect any change
in price. The next move would as likely be up as down.

Actually, prices follow a random walk. Imagine a blind drunk staggering across
an open field. How far will he have gotten after some time? He could go one step
left, two steps right, three backwards, and so on in an aimless path. On average,
just as in tossing coins, he gets nowhere. On the average, his random walk will be
forever stuck at his starting point. In the same way, the prices on markets can go up
or down, by big increments or small. With no new information to push a price in
one direction or another, a price on average will fluctuate around its starting point.
In that case, the best forecast is the price today. Each variation in price is unrelated
to the last. In a stochastic model, the price-changes form a sequence of independent
and identically distributed random variables. In that case, a chart of changes in price
from moment to moment illustrates a more or less uniform distribution over time.
The size of most price changes varies within a narrow range. There are also bigger
fluctuations. But they barely stand up from the bulk of changes, as some outliers of
grass rise above the average height of an unmown lawn, in that most of the blades
of grass fall within a narrow range of heights, while a minority rise above this range
(Mainzer [8], Mandelbrot and Hudson [10]).

In order to illustrate this smooth distribution, Bachelier plotted all of a bond’s
price-changes over a month or year onto a graph. In the case of independent and
identically distributed price-changes, they spread out in the well-known bell-curve
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shape of a normal (“Gaussian”) distribution: the many small changes clustered in
the center of the bell, and the few big changes at the edges. Bachelier assumed
that price changes behave like the random walk of molecules in a Brownian mo-
tion. Long before Bachelier and Einstein, the Scottish botanist Robert Brown had
studied the way that tiny pollen grains jiggled about in a sample of water. Ein-
stein explained it by molecular interactions and developed equations very similar to
Bachelier’s equation of bond-price probability, although Einstein never knew that.
In 1923 (Journal of Mathematical Physics 2, 131–174), Norbert Wiener proved the
existence of Brownian motion and considered advanced related mathematical the-
ories. Therefore, Brownian motion is also called a Wiener process. It is a remark-
able interdisciplinary coincidence that the movement of security prices, the motion
of molecules, and the diffusion of heat are described by mathematically analogous
models.

Bachelier’s Hypotheses of Price Changes In short, Bachelier’s model depends
on the three hypotheses of (1) statistic independence (i.e., each change in price
appears independently from the last), (2) statistic stationarity of price changes, and
(3) normal distribution (i.e., price changes follow the proportions of the Gaussian
bell curve).

4.3 Models of Efficient Markets and Computable Risks

But it took a long time that economists recognized the practical virtues of describ-
ing markets by the laws of chance and Brownian motion (Mainzer [8], Mandelbrot
and Hudson [10]). In 1956, Bachelier’s idea of a fair game was used by Paul A.
Samuelson and his school to formulate the Efficient Markets Hypothesis. They ar-
gued that in an ideal market, security prices fully reflect all relevant information.
A financial market is a fair game in which buyer balances seller. By reading price
charts, analyzing public information, and acting on inside information, the market
quickly discounts the new information that results. Prices rise or fall to reach a new
equilibrium of buyer and seller. The next price change is, once again, as likely to be
up as down. So, one can expect to win half the time and loose half the time. If one
has special insights into a stock, one could profit from being the first in the market
to act on it. But one cannot be sure to be right or first, because there are many clever
people in a market as intelligent as oneself.

Since Samuelson Bachelier’s theory was not only elaborated into a mature theory
of how prices vary and how markets work. It was more important for the financial
world that the theory has been translated into practical tools of finance. In the 1950s,
Markowitz [43] was inspired by Bachelier to introduce Modern Portfolio Theory
(MPT) as a method for selecting investments. In the early 1960s, Sharpe [51] de-
vised a method of valuing an asset, called Capital Asset Pricing Method (CAPM).
A third tool is the Black-Scholes formula for valuing options contracts and assessing
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risk. Its inventors were Black and Scholes [18] in the early 1970s. These three inno-
vations, CAPM, MPT, and Black-Scholes, are still the fundamental tools of classical
financial theory until today, resting on Bachelier’s hypotheses of financial markets.

Black-Scholes Conditions of Financial Markets The Black-Scholes formula tries
to implement risk-free portfolios. Black and Scholes assumed several conditions of
financial markets: (1) The change of price Y(t) at each step t can be described
by the stochastic differential equation of a geometric Brownian motion. This as-
sumption implies that the changes in the (logarithm of) price are Gaussian dis-
tributed. (2) Security trading is continuous. (3) Selling of securities is possible at
any time. (4) There are no transaction costs. (5) The market interest rate r is con-
stant. (6) There are no dividends between t = 0 and t = T (maturity).

(7) There are no arbitrage opportunities. Arbitrage is a key concept for the un-
derstanding of markets. It means the purchase and sale of the same or equivalent
security in order to profit from price discrepancies. A stock may be traded in two
different stock exchanges in two different countries with different currencies. By
buying several shares of the stock in New York and selling them in Frankfurt, the
arbitrager makes a profit apart from the transaction costs. Traders looking for arbi-
trage opportunities contribute to a market’s ability to evolve the most rational price
for a good. The reason is obvious: if someone has discovered an arbitrage opportu-
nity and succeeded in making a profit, he will repeat the same action. After carrying
out this action repeatedly and systemically for several opportunities, the prices will
be adapted and no longer provide arbitrage opportunities. In short: New arbitrage
opportunities continually appear in markets. But as soon as they are discovered,
the market moves in a direction to eliminate them gradually (Mandelbrot and Hud-
son [10]).

Now, in the absence of arbitrage opportunities, the change in the value of a
portfolio must equal the (expected) gain obtained by investing the same amount of
money in a riskless security providing a return per unit of time. The assumed dynam-
ics of prices allows to derive the Black-Scholes partial differential equation which
is valid for both call and put European options. Under some boundary conditions
and substitutions the Black-Scholes partial differential equation becomes formally
equivalent to the heat-transfer equation of physics which is analytically solvable.

Assumptions of Classical Economic Models These financial tools are deeply
rooted in assumptions of classical economic models, but refuted by observables of
real human behavior (Mandelbrot and Hudson [10]):

1. Assumption: People are rational in the sense of Adam Smith’s homo oeconomi-
cus. Consequently, when presented with all the relevant information about a stock
or bond, investors will make the obvious rational choice leading to the greatest
possible wealth and happiness. Their preferences can be expressed in mathe-
matical formulas of utility functions which can be maximized. By that, rational
investors make a rational model of an efficient market. Actually, people do not
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only think in terms of mathematical utility functions, and are not always ratio-
nal and self-interested. They are driven by emotions distorting their decisions.
Sometimes, they miscalculate probabilities and feel differently about loss than
gain.

2. Assumption: All investors are alike. Consequently, people have the same invest-
ment goals and react and behave in the same manner. In short: they are like the
molecules in an idealized gas of physics. An equation that describes one such
molecule or investor can be replaced to describe all of them. Actually, people
are not alike. If one drops the assumption of homogeneity, one gets a more com-
plex model of the market. For example, there are at least two different types of
investors: a fundamentalist believes that each stock has its own value and will
eventually sell for that value. On the other side, a chartist ignores the fundamen-
tals and only watchs the price trends in order to jump on or off band waggons.
Their interactions can lead to price bubbles and spontaneously arising crashes.
The market switches from a well-balance linear system in which one factor adds
predictably to the next, to a chaotic nonlinear system in which factors interact
with the emergence of synergetic and unanticipated effects.

3. Assumption: Price change is practically continuous. Consequently, stock quotes
or exchange rates do not jump up or down, but move smoothly from one value
to the next. In this way, continuity has been assumed in classical physics, ac-
cording to the motto of Leibniz “natura non facit saltum” (nature does not make
leaps) which was repeated by Alfred Marshall in his text book “Principles of Eco-
nomics” (1890) for economic systems. From a methodological point of view, the
belief in a continuous behavior of nature and economy opens the possibility to
apply continuous functions and differential equations, in order to solve physical
or economic problems analytically. But actually, prices in economy and quantum
states in quantum physics do jump, and discontinuity, far from being an anomily,
characterizes the reality. Contrary to Einstein’s famous objection against quan-
tum physics: god plays with dice—in nature and society.

4. Assumption: Price changes follow a Brownian motion. The Brownian motion
is also a famous model of physics applied to financial markets by Bachelier. In
more details, it implies three assumptions: first, each change in price is believed
to appear independently from the last (statistical independence). Second, the pro-
cess generating price changes stays the same over time (statistical stationarity).
Third, price changes follow the proportions of the Gaussian bell curve (normal
distribution). Financial data clearly contradict to a smooth normal distribution of
changing prices. The analysis of the real distribution patterns is a challenge of
stochastic mathematics and systems theory and opens new avenues to the com-
plexity of modern society.

4.4 Securitized Credit Model and Increasing Networks of Risks

Nevertheless, the demand for profit and security has initiated a wave of financial
innovation, based on these classical assumptions. They are focused on the origina-
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tion, packaging, trading and distribution of securitised credit instruments. Simple
forms of securitised credit have existed for almost as long as modern banking. But
from the mid-1990s the system entered explosive growth in both scale and com-
plexity. We observe a huge growth in the value of the total stock of credit securities,
an explosion in the complexity of the securities sold, with the growth of structured
credit products, and with the related explosion of the volume of credit derivatives,
enabling investors and traders to hedge underlying credit exposures, or to create
synthetic credit exposures.

This financial innovation sought to satisfy the demand for yield uplift. It was
predicated on the belief that by slicing, structuring and hedging, it was possible
to create value, offering investors combinations of risk, return, and liquidity which
were more attractive than those available from the direct purchase of the underlying
credit exposures. It resulted not only in massive growth in the importance of secu-
ritised credit, but also in a profound change in the nature of the securitised credit
model. As securitisation grew in importance from the 1980s on, its development
was praised as a means to reduce banking system risks and to cut the total costs of
credit intermediation, with credit risk passed through to end investors, reducing the
need for unnecessary and expensive bank capital. Credit losses would be less likely
to produce banking system failure (Turner [54]).

But there is no “free lunch” or financial “perpetuum mobile”. When the crisis
broke, it became apparent that this diversification of risk holding had not actually
been achieved. Instead most of the holdings of the securitised credit, and the vast
majority of the losses which arose, were not in the books of end investors intending
to hold the assets to maturity, but on the books of highly leveraged banks and bank-
like institutions. This reflected an evolution of the securitised credit model away
from the initial descriptions. To an increasing extent, credit securitised and taken off
one bank’s balance sheet, was not simply sold through to an end investor, but bought
by the propriety trading desk of another bank, sold by the first bank but with part
of the risk retained via the use of credit derivatives, resecuritised into increasingly
complex instruments (e.g. CDOs and CDO squareds) or used as collateral to raise
short-term liquidity (International Monetary Fund [32]).

The financial innovations of structured credit resulted in the creation of products,
e.g. the lower credit tranches of CDOs or even more so of CDO-squareds, which had
very high and imperfectly understood embedded leverage, creating positions in the
trading books of banks which were hugely vulnerable to shifts in confidence and
liquidity. This process created a complex chain of multiple relationships between
multiple institutions, each performing a different small slice of the credit intermedi-
ation and maturity transformation process, and each with a leveraged balance sheet
requiring a small slice of capital to support that function (Sinn [52]). A complex net-
work of dependences has emerged in a hidden and intransparent world of financial
shadows. The new model left most of the risk still somewhere on the balance sheets
of banks and bank-like institutions but in a much more complex and less transparent
way.

The evolution of the securitised credit model was accompanied by a growth in
the relative size of financial services within economy, with activities internal to the
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banking system growing far more rapidly than end services to the real economy. The
growing size of the financial sector was accompanied by an increase in total system
leverage. But this process also drived the boom and created vulnerabilities of the
whole financial network that have increased the severity of the crisis. According to
the Turner Report [54], from about 2003 onwards, there were significant increases in
the measured on-balance sheet leverage of many commercial and investment banks,
driven in some cases by dramatic increases in gross assets and derivative positions.
This was despite the fact that measures of leverage (e.g. Value at Risk (VaR) relative
to equity) showed no such rise. This divergence reflected the fact that VaR measures
of the risk involved in taking propriety trading positions, in general suggested that
risk relative to the gross market value of positions had declined. It is clear in retro-
spect that the VaR measures of risk were faulty (Stutz [53]).

4.5 The Risk of Value at Risk (VaR)

The increasing complexity of the securitised credit market was obvious to some
participants, regulators and academic observers (Greenspan [27]). But the predomi-
nant assumption was that increased complexity had been matched by the evolution
of mathematically sophisticated and effective techniques for measuring and man-
aging the resulting risks (Colander et al. [19]). Central to many of the techniques
was the concept of Value-at-Risk (VaR), enabling inferences about forward-looking
risk to be drawn from the observation of past patterns of price movement. The risk-
forecasting models of value-at-risk (VaR) are based on the assumption that forecast-
ing credit risk is an activity not unlike that of forecasting weather. It is assumed that
one’s own action, based on past volatility, does not affect future volatility itself just
like forecasting weather does not influence future weather.

This technique, developed in the early 1990s, was not only accepted as standard
across the industry, but adopted by regulators as the basis for calculating trading risk
and required capital. Therefore, VaR was incorporated within the European Capital
Adequacy Directive (Danielsson et al. [21]). In financial mathematics and financial
risk management, Value at Risk (VaR) is a widely used risk measure of the risk of
loss on a specific portfolio of financial assets. For a given portfolio, probability and
time horizon, VaR is defined as a threshold value such that the probability that the
mark-to-market loss on the portfolio over the given time horizon exceeds this value
in the given probability level. VaR has five main uses in finance: risk management,
risk measurement, financial control, financial reporting and computing regulatory
capital (Kleeberg and Schlenger [33]). VaR is sometimes used in non-financial ap-
plications as well. Important related ideas are economic capital, backtesting, stress
testing and expected shortfall.

Mathematical Definition of VaR Mathematically (Föllmer and Schied [3, 24];
compare also Chap. 5 of Biagini et al.), the uncertainty in the future of a portfolio
is usually described by a function X :�→ R, where � is a fixed set of scenarios.
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For example, X can be the value of a portfolio. The goal is to determine a number
ρ(X) that quantifies the risk and can serve as a capital requirement or the minimal
amount of capital which, if added to the position and invested in a risk-free manner,
makes the position acceptable. Given some confidence level α ∈ (0,1), the Value at
Risk (VaR) of the portfolio value X at the confidence level α is given by the smallest
number m ∈ R such that the probability of a loss is not larger than the confidence
level α:

VaRα(X)= inf
{
m ∈R|P(X+m< 0)≤ α}.

Obviously, value at risk (VaR) only pays attention that the boundary of the confi-
dence level is not exceeded. But, it does not consider the degree of loss. Further on,
it assumes that the probability distribution of losses is well-known because of histor-
ical data. Only in this case value at risk (VaR) can forecast credit risk like weather,
which means that future volatility can be derived from past volatility.

There are, however, fundamental questions about the validity of VaR as a mea-
sure of risk. The use of VaR measures based on relatively short periods of historical
observation (e.g. 12 months) introduced dangerous procyclicality into the assess-
ment of trading book risk (Turner [51]). Short-term observation periods and the as-
sumption of normal distribution can lead to large underestimation of probability of
extreme loss events. Interconnected market events in complex networks can produce
self-reinforcing cycles which models do not capture. Systemic risk may be highest
when measured risk is lowest, since low measured risk encourages behavior which
creates increased systemic risks.

This kind of mathematics, used to measure and manage risk by VaR, was not
very well understood with all its conditions and restrictions by top management and
boards to assess and exercise judgement over the risks being taken. Mathematical
sophistication ended up not containing risk, but providing false assurance that other
indicators of increasing risk (e.g. rapid credit extension and balance sheet growth)
could be safely ignored.

The global financial system, combining with macroeconomic imbalances, cre-
ated an unsustainable credit boom and asset price inflation. Those consequences of
the financial crisis transmitted financial system problems into real economy effects.
The shock to the banking system has been so great that its impaired ability to ex-
tend credit to the real economy has played a major role in enforcing the economic
downturn, which in turn undermines banking system strength in a self-reinforcing
feedback loop.

From a historical point of view, it is remarkable that the academic professionals
were well aware of the methodological weakness of VaR measures. In an “Academic
Response to Basel II” [21], the methodology of value-at-risk (VaR) was criticized
to be insufficient: (1) VaR risk models treat risk as a fixed exogenous process, but its
endogeneity may matter enormously in times of crisis. (2) VaR is a misleading risk
measure when the returns are not normally distributed, as in the case with credit,
market, and operational risk. It does not measure the distribution of risk in the tail,
but only provides an estimate of a particular region in the distribution. Thus, VaR
models generate imprecise and widely fluctuating forecasts.
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5 New Paradigm of Risk Modeling and Rational Behavior

The development of an expanded financial sector and the rapid growth and increased
complexity of the securitised model of credit intermediation was accompanied by
the development of increasingly sophisticated mathematical techniques for the mea-
surement and management of position taking risks. The techniques entailed numer-
ous variants to cope with, for instance, different categories of option. Their applica-
tion required significant computing power to capture relationships between different
market prices, the complex nature of structured credit instruments, and the effects
of diversification across correlated markets. But the underlying methodological as-
sumption was the old idea that analysis of past price movement patterns could de-
liver statistically robust inferences relating to the probability of price movements in
future.

5.1 Crisis of Risk Modeling

The financial crisis has revealed, however, severe problems with these techniques.
They suggest the need for significant changes in the way that VaR-based method-
ologies have been applied. But, the most fundamental question concerns our ability
in principle to infer future risk from past observed patterns. Can financial models
still be considered true mappings of an external world in order to derive predictions
of future events like in the natural sciences? (Lux and Westerhoff [37].)

Models in the tradition of Bachelier assume that the distribution of possible
events, from which the observed price movements are assumed to be a random sam-
ple, is normal with the shape of a Gaussian bell curve. But there is no clearly robust
justification for this assumption. Actually, the financial market movements are in-
herently characterized by fat-tail distributions. This implies that any use of VaR
models needs to be analyzed by the application of stress test techniques which con-
sider the impact of extreme movements beyond those which the model suggests are
at all probable.

One explanation of fat-tail distributions may lie in the complex networks of finan-
cial dependences. VaR models implicitly assume that the actions of the individual
firm, reacting to market price movements, are both sufficiently small in scale as not
themselves to affect the market equilibriums, and independent of the actions of other
firms. But this is a deeply misleading assumption if it is possible that developments
in markets will induce similar and simultaneous behavior by numerous players. If
this is the case, which it certainly was in the financial crisis, VaR measures of risk
may not only fail adequately to warn of rising risk, but may convey the message that
risk is low and falling at the precise time when systemic risk is high and rising.

For example, according to VaR measures, risk was low in spring 2007. Actually,
the system was overwhelmed with huge systemic risk. This suggests that stress tests
are needed to consider the impact of second order effects, for example, the impact
on one bank of another bank’s likely reaction to the common systemic stress.
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5.2 A New Paradigm of Risk Modeling

The most fundamental insight is, however, philosophical: it is important to realize
that the assumption that past distribution patterns carry robust inferences for the
probability of future patterns is methodologically insecure. It involves applying to
the world of social and economic relationships a technique drawn from the world
of physics, in which a random sample of a definitively existing universe of possi-
ble events is used to determine the probability characteristics which govern future
random samples. But it is doubtful when applied to economic and social decisions
with inherent uncertainty. Economists sometimes refer to it as “Knightian” uncer-
tainty which is a reference to the classical distinction between risk and uncertainty in
Frank Knights’ Ph.D. “Risk, Uncertainty, and Profit” [34] from 1921. But it would
also suggest that no system of regulation could ever guard against all risks and un-
certainties.

Analysis of the causes of the crisis suggests that there is a limit to the extent
to which risks can be identified and offset at the level of the individual firm. We
explained how the origins of the crisis lay in systemic developments: the crucial shift
required in regulatory philosophy is towards one which focuses on macro-analysis,
systemic risks and judgements about business model sustainability, and away from
the assumption that all risks can be identified and managed at a firm specific level.
As a result most of the changes we propose relate to the redesign of global regulation
combined with a major shift in methodology (Colander et al. [19]).

But improvements in the effectiveness of internal risk management and firm gov-
ernance are also essential. While some of the problems could not be identified at
firm specific level, and while some well run banks were affected by systemic devel-
opments over which they had no influence, there were also many cases where inter-
nal risk management was ineffective and where boards failed adequately to identify
and constrain excessive risk taking. Achieving high standards of risk management
and governance in all banks is therefore essential. Detailed proposals are necessary
to support an FSA (Financial Service Authority) in all countries.

The origins of the past crisis entailed the development of a complex, highly lever-
aged and therefore risky variant of the securitised model of credit intermediation.
Large losses on structured credit and credit derivatives, arising in the trading books
of banks and investment banks, directly impaired the capital position of individual
banks, and because of uncertainty over the scale of the losses, created a crisis of
confidence which produced severe liquidity strains across the entire system. As a
result, a wide range of banking institutions suffered from an impaired ability to ex-
tend credit to the real economy, and have been recapitalized with large injections of
taxpayer money.

The mathematical rigor and numerical precision of risk management and asset
pricing tools has a tendency to conceal the weakness of models and their assump-
tions to those who have not developed them and do not know the potential weakness
of the assumptions. Models are only approximations to the real world dynamics and
partially built upon idealized assumptions. A typical example is the belief in normal
distribution of asset price changes completely neglecting the importance of extreme
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events. Considerable progress has been made by moving to more sensitive models
with fat-tailed Lévy processes (Mandelbrot [41]). Of course, such models better cap-
ture the intrinsic volatility of markets. But they might again contribute to enhancing
the control illusion of the naïve user.

Therefore, market participants and regulators have to become more sensitive to-
wards the potential weakness of risk management models. Since there is not only
one true model, robustness should be a key concern. Model uncertainty should be
taken into account by applying more than a single model. For example, one could
rely on probabilistic procedures that cover a whole class of specific models. The
theory of robust control provides a toolbox of techniques that could be applied for
this purpose.

5.3 Convex Models of Risk

In the field of financial economics there are a number of ways that risk can be de-
fined (Marrison [40]). To clarify the concept mathematicians have axiomatically de-
scribed a number of properties that a risk measure might or might not have (Föllmer
and Schied [24], York [55]).

Mathematical Definition of Coherent Risk Measure A coherent risk measure
(Artzner et al. [16]) is a risk measure ρ that satisfies properties of monotonicity, sub-
additivity, homogeneity, and translational invariance. Consider a random outcome
X viewed as an element of a linear space L of measurable functions, defined on an
appropriate probability space. A functional ρ : L→ R is said to be a coherent risk
measure for L if it satisfies the following properties:

Monotonicity: If X1,X2 ∈ L and X1 ≤X2, then ρ(X1)≤ ρ(X2).

That is, if portfolioX2 always has better values than portfolioX1 under all scenarios
then the risk of X2 should be less than the risk of X1.

Sub-additivity: If X1,X2 ∈ L, then ρ(X1 +X2)≤ ρ(X1)+ ρ(X2).

Indeed, the risk of two portfolios together cannot get any worse than adding the two
risks separately. This is the diversification principle.

Positive homogeneity: If α ≥ 0 and X ∈ L, then ρ(αX)= αρ(X).
Loosely speaking, if you double your portfolio then you double your risk.

Translation invariance: If m ∈R and X ∈ L, then ρ(X+m)= ρ(X)−m.

The value m is just adding cash to the portfolio X, which acts like an insurance.
The risk of X+m is less than the risk of X, and the difference is exactly the added
cash m. Therefore, translational invariance is also called cash invariance. In partic-
ular, if m= ρ(X) then ρ(X+ ρ(X))= 0.
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The notion of coherence has been subsequently relaxed. Indeed, the notions of
sub-additivity and positive homogeneity can be replaced by the notion of convexity:

Convexity: If X1, X2 ∈ L and 0 ≤ λ ≤ 1, then ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) +
(1 − λ)ρ(X2).

Consider the collection of possible future outcomes that can be generated with the
resources available to an investor. One investment strategy leads to X1, while a
second strategy leads to X2. If one diversifies, spending only the fraction λ of the
resources on the first possibility and using the remaining part for the second alter-
native, one obtains λX1 + (1 − λ)X2. Thus, the axiom of convexity gives a precise
meaning to the idea that diversification should not increase the risk.

It is well known that value at risk (VaR) is positively homogeneous, but it is not
in general a coherent risk measure as it does not respect the sub-additivity property.
Hence, it is not convex. An immediate consequence is that value at risk might dis-
courage diversification. Value at risk is, however, coherent, under the assumption of
normally distributed losses when the portfolio value is a linear function of the asset
prices. However, in this case the value at risk becomes equivalent to a mean-variance
approach where the risk of a portfolio is measured by the variance of the portfolio’s
return. Average value at risk at level λ ∈ (0, 1],

AVaRλ = 1

λ

∫ λ

0
VaRα(X)dα

also called conditional value at risk, expected shortfall, or tail value at risk, is a
coherent risk measure (Detlefsen and Scandolo [22], Riedel [48]).

We previously underlined that model uncertainty should be taken into account,
since we do not know the distinguished true model of financial reality. Therefore,
we should consider a whole class of possible probabilistic models with different
penalty. In the dual representation theory of convex risk measures one aims at de-
riving their representation in a systematic manner. The class M contains possible
probabilistic models Q which are taken more or less seriously according to the size
of a penalty function π(Q). In this way, we take the message of praxis seriously that
we should not rely on one single model, but flexibly vary the models with respect to
different contextual applications under special attention to the worst case.

Mathematical Definition of Convex Risk Measure A dual representation of a
convex risk measure computes the worst case expectation taken over all models Q
and penalized by π(Q). The class M of possible probabilistic models is a set of
probability measures such that the expectation EQ(X) is well defined for all models
Q and portfolios X. According to Föllmer and Schied [21], the dual representation
of a convex risk measure ρ has the form

ρ(X)= sup
Q∈M

(
EQ(−X)− π(Q)

)
.

These models are no longer considered definitive mappings of reality. But they
serve as stress tests. One does not rely on a fixed model, but chooses the sure side
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for every position and focuses on the corresponding worst case model. Thus, the
model ambiguity is explicitly considered during the procedure.

5.4 Model Ambiguity and Rational Behavior

Model ambiguity is linked to the economic theory of rational behavior under un-
certainty (Cont [20], Maccheroni [38]). Classical economic models are mainly built
upon the two assumptions of rational expectations with well-known probabilities of
utilities and a representative agent (“homo oeconomicus”). They imply a complete
understanding of the economic laws governing the world. These models leave no
place for imperfect knowledge discovered in empirical psychological studies of real
humans (Frydman and Goldberg [4, 25]). Their behavior in financial markets is even
strongly influenced by emotional and hormonal reactions. Thus, economic model-
ing has to take bounded rationality seriously. But, model ambiguity does not mean
the collapse of mathematical modeling. Mathematically, a fixed probability measure
of expected utilities should be replaced by a convex risk measure which simultane-
ously considers a whole class of possible stochastic models with different penalties.
Financial praxis warned us not to rely on a fixed model, but to vary possible models
in a flexible way and to pay attention to the worst case. This is also the mathematical
meaning of a convex risk measure.

The differences between the overall system and its parts, macro- and microeco-
nomics, remain incomprehensible from the viewpoint of classical rationality which
assumes a representative agent. Since interaction depends on differences in infor-
mation, motives, knowledge and capabilities, this implies heterogeneity of agents
(Hayek [29, 30]). Only a sufficiently rich structure of connections between firms,
households and a dispersed banking sector will allow insights in systemic risks
and synergetic effects in the financial sector. The reductionism of the representa-
tive agent or “homo oeconomicus” has prevented economists from modeling these
phenomena.

For natural scientists, the distinction between micro-level phenomena and those
originating on a macro originated from the interaction of microscopic units is well-
known. In those models, the current crisis would be seen as an emergent phe-
nomenon of the macroeconomic activity (Aoki and Yoshikawa [15], Mainzer [40]).
The reductionist paradigm blocks any understanding of the interplay between micro
and macro level.

Models with interacting heterogeneous agents would also open the door to inter-
disciplinary research from different sciences. Complex networks of different agents
or statistical physics of interacting agents can model dynamic economic systems
(Mantegna and Stanley [38], McCauley [45]). Self-organized criticality is another
area that seems to explain boom-and-bust cycles of the economic non-equilibrium
dynamics (Scheinkman [49]).
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6 Food for Thought

In macroeconomics, data mining is often driven by the pre-analytic belief in the
validity of certain models which should justify political or ideological opinions.
The political belief in deregulation of the 1990 years is a typical example. Rather
than misusing statistics as a means to illustrate these beliefs, the goal should be
to put theoretical models to scientific tests like in the natural sciences. We should
follow the line of a more data-driven methodology.

A chain of specification tests and estimated statistical models for simultaneous
systems would provide a benchmark for the tests of models based on economic
behavior. Significant and robust relations within a simultaneous system would pro-
vide empirical regularities that one would attempt to explain, while the quality of fit
of the statistical benchmark would offer a confidence for more ambitious models.
Models that do not reproduce (even) approximately the quality of the fit of statis-
tical models would have to be rejected. This methodological criterion also has an
aspect of ethical responsibility of researchers: economic policy models should be
theoretically and empirically sound. Economists should avoid giving policy recom-
mendations on the base of models with a weak empirical grounding and should, to
the extent possible, make clear to the public how strong the support of the data is
for their models and the conclusions drawn from them.

A neglected area of methodology is the degree of connectivity and its interplay
with the stability of the complex system. It will be necessary for supervision to an-
alyze the network aspects of the financial system, collect appropriate data, define
measures of connectivity and perform macro stress testing at the system level. In
this way, new measures of financial fragility would be obtained. This would also
require a new area of accompanying academic research that looks at agent-based
models of the financial system, performs scenario analyses and develops aggregate
risk measures. Network theory and the theory of self-organized criticality of highly
connected systems would be appropriate starting points (Scheinkman and Woodford
[50], Mainzer [7]).

Such scientific analysis must be supported by more practical consequences. The
hedge fund market is still widely unregulated. The interplay between connectivity,
leverage and system risks needs to be investigated at the whole level. It is highly
likely that extreme leverage levels of interconnected institutions impose dangerous
social risks on the public.

On the macroeconomic level, it would be desirable to develop early warning
schemes that indicate the formation of bubbles. Combinations of indicators with
time series techniques could be helpful in detecting deviations of financial or other
prices from their long-run averages. Indication of structural change would be a sign
of changes of the behavior of market participants of a bubble-type nature (McCauley
[45]).

Obviously, there is no single causal model as definitive mapping of reality. In this
sense, David Hume and his followers were right in their skepticism against classical
axiomatization of rationality in the world. But that does not mean a complete deny
of mathematical tools and models. We have to consider whole classes of possible
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stochastic models with different weights. They must be combined with a data-driven
methodology and insights in the factual human behavior and its diversity. Therefore,
psychological and sociological case studies of human behavior under risk conditions
(e.g., stakeholders at stock markets) are necessary. In experimental economics, deci-
sion behavior is already simulated under laboratorial conditions. Even philosophical
ethics can no longer only argue with arm-chaired considerations and a priori princi-
ples, but must relate to empirical observations of factual decision behavior. That is
done in the new approaches of experimental ethics. We argue for this kind of inter-
disciplinary methodology which opens new avenues for mathematical modeling in
science. In this case, robust stochastic tools are useful, because they are used under
restricted conditions and with sensibility for the permanent model ambiguity.

7 Summary

In a globalized world, risks are mainly systemic and cannot be reduced to single
causes. They emerge from complex interactions in natural, technical, economic, and
social systems. Examples are complex information and communication networks,
power (“smart”) grids as well as cellular interactions in organisms or transactions
in financial markets. Therefore, systems theory with linear and nonlinear dynamics,
stochastic and statistic modeling, and computer models are important methodologies
in RISE. We must consider their explanatory power as well as their limitations.
Then, they can supplement themselves mutually.

But, formal models are not sufficient. Risk-awareness even of experts is often
subjective and depends on individual experience, societal and cultural contexts. Re-
member the extremely different reactions of the public to the Fukushima disaster in
Japan and Germany. Therefore, formal risk-models must be complemented by so-
ciological and cultural studies. Psychic behavior in decision situations must also be
taken into account. Therefore, experimental economics and ethics relate to observa-
tions of factual behavior of people, e.g., at stock markets. Behavioral studies under
experimental lab conditions are even useful for social philosophy and ethics.

The past crises might be characterized as example of final stages of well-known
boom-and-bust patterns that have been repeated so many times in the course of eco-
nomic history. But, there are several new aspects leading to a shift of methodological
paradigm: the preceding boom had its origin in the development of new financial
products with increasing complexity which seemed to promise diminishing risks.
The financial market detaches itself from the real market. Profit seems to be possi-
ble by clever financial innovations loosing their connection to real economy. But,
like in nature, there is no “free lunch” or “perpetuum mobile” of profit in finance.
Further on, the past crises were due to the increasing complexity of interconnected
financial networks. These aspects have been largely ignored by traditional economic
models.

Therefore, we cannot trust in a single risk model, but must consider a class of
more or less appropriate models, supplemented by experimental behavioral case
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studies. The lack of methodological understanding of models and the lack of ethical
responsibility to warn the public against the limitations of models were the main
reasons of the past economic crises. It is the task of philosophy of science to evalu-
ate scientific modeling and the ethical responsibility of scientists. During booming
periods we should better prepare the next crisis in a countercyclical manner.
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Chapter 5
The Mathematical Concept of Measuring Risk

Francesca Biagini, Thilo Meyer-Brandis, and Gregor Svindland

One of the key tasks in risk management is the quantification of risk implied by un-
certain future scenarios which then has to be interpreted with respect to certain risk
management decisions. Mathematically, the usual tool for doing so is a quantitative
risk measure. The financial industry standard risk measure Value-at-Risk exhibits
some serious deficiencies and a vital research activity has been ongoing to search
for better alternatives. In this chapter we give an introduction to the general the-
ory of monetary, convex, and coherent risk measures and present illustrating and
motivating examples.

Keywords Risk measures · Acceptance sets · Robust representation · Risk sharing
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The Facts

• Quantitative risk measures are key tools in financial risk management. The most
prominent examples are the Value-at-Risk and the Average Value-at-Risk risk
measures, see Sect. 2.

• Due to their importance in modern risk assessment, there is a vivid research ac-
tivity, both in practice as well as in academia, on the topic of classifying suitable
risk measures. This has amongst others led to the development of the theory of
convex monetary risk measures.

• We present three basic approaches to defining such risk measures, one purely
axiomatic, and two more constructive ones. The axiomatic approach classifies
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the monetary risk measures as functions with certain properties, see Sect. 3.1.
In the two other approaches convex monetary risk measures are constructed by
specifying either sets of acceptable portfolios (Sect. 3.2) or by considering the
worst case given a set of probability models (Sect. 3.3).

• The exposition is completed by illustrating examples throughout the text.

1 Introduction

Mathematically, the possibility of different, uncertain outcomes of future states of
the world can be modeled by a function X :�→ R where � denotes a fixed set of
scenarios; i.e. each possible scenario ω ∈� is represented by a real number X(ω).
For example, X could represent the uncertain (discounted) values of a portfolio of
financial assets at a future point in time. If there exists an idea about how likely
the realizations of the possible future scenarios are, then this is typically modeled
by further assuming X to be a random variable; that is one considers a probability
space (�,F ,P) where the σ -algebra F denotes the set of all events and P is a prob-
ability measure that determines the probability of each event. Probability theory,
which is a concise and axiomatic translation of our intuition about randomness into
a mathematical theory, was initiated and developed in the ground breaking work of
the Russian mathematician Kolmogorov in 1933 [16].

We note that in the above model approach there exists risk or uncertainty at
two levels. When X is assumed to be a random variable on a probability space
(�,F ,P), which is the usual approach in quantitative risk management, then un-
certainty about the future realization of X is described by the assumed probabilistic
structure implied by the probability model P. This type of ‘measurable’ uncertainty
is often referred to as risk. However, the choice of a specific probability model P
is a disputed approach since in general there is not enough knowledge to make a
reliable choice of one specific probability structure P. This controversial discussion
has been nurtured again by the recent financial crisis. There is thus a second level
of (model) uncertainty which concerns the ‘immeasurable’ risk of not knowing the
correct probability model and which is referred to as Knightian uncertainty. The
distinction between measurable risk as opposed to immeasurable uncertainty was
established first by Frank Knight in his work ‘Risk, Uncertainty, and Profit’ [15]. It
is an important challenge to extend risk management approaches by mathematical
tools that deal with Knightian uncertainty, and, as we will see, the theory of (convex)
risk measures is contributing to this research objective.

A risk measure helps the risk manager to measure and quantify the risk implied
by the uncertainty about the future realization of X. Such quantitative risk measures
are usually obtained by applying a certain functional ρ toX which yields a real num-
ber ρ(X) that indicates the risk level which then has to be interpreted in terms of
risk management decisions. The definition and theory of quantitative risk measures
has been initiated and closely influenced by the need for quantitative risk manage-
ment in the financial and insurance industry. In these areas, the outcome ρ(X) of a
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risk measure may be interpreted as required capital reserve to hedge against the risk
of future losses, as management tool for limiting the amount of risk a unit within
an institution may take (for example to constrain a single trader’s portfolio), or as
insurance premium required to compensate the insurance company for bearing the
risk of the insured claims.

Historically, the first one to systematically consider the return of an investment
portfolio in relation to its risk was Markowitz in 1952 [18]. He modeled the value
of a portfolio by a random variable X and used the standard deviation (or variance)
of the distribution as risk measure. By determining the so-called efficient frontier
the portfolio manager could then optimize the return for a given risk level. In 1973,
Black, Scholes, and Merton developed the famous Black-Scholes-Merton formula
to determine the price of a European call option which had enormous impact on the
development of financial derivatives markets [8, 19]. This price can be interpreted
as a risk measure to hedge against the risk of selling such an option, where the
risk measure is the expectation under the so called risk-neutral probability measure.
In the early 1990s, the financial industry, public sector, and academia alike started
to recognize the need for systematic risk management of the enormous increase
in so-called off-balance-sheet products like derivatives. At the investment bank JP
Morgan, for instance, the introduction of the so-called Weatherstone 4.15 report
asked for the daily assessment of the firms market risk measured in terms of Value-
at-Risk (VaR). VaR, which quickly has been established as the industry standard
and most prominent risk measure, is a certain quantile of the loss distribution of a
portfolio (see Sect. 2.1 for more details). In response to a sequence of disasters in
particular over the last two decades, like the ruin of the Barings Bank caused by the
single trader Nick Leason in 1995, the fall of the hedge fund Long-Term Capital
Management in 1998, or the most serious recent financial crisis that started in 2007,
a road to systematic regulation of the banking and insurance industry has evolved.
The currently applicable regulation guidelines, which in Germany are implemented
by the BAFIN (Bundesanstalt für Finanzdienstleistungsaufsicht), are formulated in
the so-called Basel II Accord for the banking sector and Solvency II Accord for
the insurance sector. In these guidelines one of the main regulation principles is to
require sufficient capital reserves of a firm as to hedge against the risk exposure of
future losses using the risk measure VaR.

Despite the status as the industry standard, VaR is often criticized mainly by aca-
demics for some fundamental deficiencies. In particular, in certain scenarios VaR
is punishing the pooling (or diversification) of risk and is encouraging the accu-
mulation of shortfall risk, which is the opposite of what our intuition about good
properties of risk measures would be. Also, while VaR considers the probability
that a loss occurs it is not concerned about the size of possible losses. This criti-
cism about VaR has initiated a vital research activity aiming at specifying desirable
axioms for risk measures. The outcome of this research has been the axiomatic defi-
nitions of the families of monetary, convex, and coherent risk measures; see Artzner
et al. [1], Föllmer and Schied [2], and Frittelli and Rosazza-Gianin [5]. Further, the
characterization of convex risk measures presented in Sect. 3.3 will reveal that the
concept of convex risk measures takes Knightian uncertainty into account. Despite
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the academic advances and warnings concerning VaR, more appropriate risk mea-
sures like Average Value-at-Risk (AVaR), also referred to as Expected Shortfall (ES)
(see Sect. 2.2 for more details), have not yet been incorporated into the regulation
guidelines. However, the experiences gained during the financial crisis, which re-
vealed the deficiencies in the use of VaR as proposed in the regulation guidelines
of Basel II, have initiated a further reformation of regulation mechanisms that takes
place under the notion Basel III.

The objective of this chapter is to present the general mathematical concept of
monetary risk measures. As described above, the theory of monetary risk measures
has been developed in the environment of financial and insurance markets. We will
remain in that framework and assume in the following that X models the (dis-
counted) value of a portfolio and a risk measure ρ(X) measures the risk in terms
of capital. However, the fundamental concept of (financial) risk management has
potential to also be applied to other fields where it is necessary to quantify risk ex-
posure in a concise way. We start by describing in more detail the two most promi-
nent monetary risk measures VaR and AVaR in Sect. 2. In Sect. 3 we then provide
the general axiomatic definitions of monetary, convex, and coherent risk measures
as well as presenting two alternative methods of constructing convex monetary risk
measure. The theory is illustrated by several concrete examples. In Sect. 4 we dis-
cuss the optimal risk sharing problem as an example of a typical research question
in this field before we conclude in Sect. 5 with some food for thoughts.

2 Two Prominent Examples: VaR and AVaR

2.1 Value-at-Risk

The most common quantitative risk measure in use is the so-called Value-at-Risk
(VaRα) at level α ∈ (0,1). We model the risk of a discounted portfolio at a future
point in time by a random variable X on a probability space (�,F ,P), and denote
by F(x) := P(X ≤ x), x ∈ R, the distribution function of the risk X. Note that the
risk manager is concerned about the downside risk of X (i.e. small values of X
which imply losses). The risk measure VaRα measures the minimal amount of cash
m ∈ R that has to be added to the portfolio X such that the probability of a loss of
X+m is less than α. In other words,

VaRα(X)= inf
{
m ∈ R | P(X+m< 0)≤ α}. (2.1)

Depending on the risk management situation, typical values for α are 0.05 (5 %),
0.01 (1 %), or 0.001 (0.1 %). VaRα can thus be interpreted as the required capital
reserve such that the probability of losses at a given future point in time is less
than α.

Example 2.1 As mentioned in the introduction, the risk measure stipulated by the
Basel II regulations to compute a bank’s required capital reserve is VaRα . More
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precisely, in Basel II the probability distribution of X is assumed to be normal, that
is

F(x)= 1

σ
√

2π

∫ x

−∞
e
− (y−μ)2

σ2 dy for x ∈R. (2.2)

The mean parameter μ and variance parameter σ 2 have to be estimated from his-
torical data. The computation of VaRα for a general normal distribution with mean
μ and variance σ 2 can be reduced to the computation of the inverse of the standard
normal distribution function:

VaRα(X)= −μ− σ�−1(α),

where � denotes the standard normal distribution function (i.e. F as in (2.2) with
μ = 0 and σ 2 = 1). Indeed, since the normal distribution function in (2.2) is con-
tinuous and strictly increasing it is sufficient by the definition of VaRα in (2.1) to
observe that

P
(
X+ (−μ− σ�−1(α)

)
< 0

)= P
(
X ≤ μ+ σ�−1(α)

)

= P

(
X−μ
σ

≤�−1(α)

)

=�(�−1(α)
)= α,

where the last equality comes from the fact that X−μ
σ

is standard normal distributed.
VaRα for normally distributed random variables is thus easily computed. However,
the assumption that the risk X is normally distributed is very critical since empiri-
cal data analysis indicates that the normal distribution strongly underestimates the
probability of extreme events in most situations (see also [10], Chap. 6).

Despite its popularity, the use of VaRα exhibits some serious deficiencies. In
particular, it has been fundamentally criticized because of the following two major
problems:

(i) VaRα only considers the probability of encountering losses but not the size of
the potential loss in case a loss scenario occurs. Hence, optimizing portfolios
under constraints on the risk given by VaRα may result in portfolios which
indeed have a low probability of loss, i.e. less than the specified level α, but
which may produce (extremely) high losses if a loss scenario occurs. These
effects have been observed, for instance, during the last financial crisis, and
it seems evident that in such situations a sound measuring of risk should not
only take into account the likeliness of a loss scenarios, but also depend on the
quantity that might be lost.

(ii) As we will see in Example 3.3, VaRα is a positively homogeneous, monetary
but not a convex risk measure (see definitions in Sect. 3.1). In particular, one



138 F. Biagini et al.

can construct realistic examples of two risks X and Y such that:

VaRα

(
1

2
(X+ Y)

)
>

1

2
VaRα(X)+ 1

2
VaRα(Y ).

So VaRα(X+Y) of a merged portfolio is not necessarily bounded above by the
sum of the VaRα’s of the individual portfolios. But this means that measuring
risk with VaRα may penalize diversification instead of encouraging it. Further,
decentralization of risk management might be difficult using VaRα because one
cannot be sure that by aggregating the VaRα levels of different portfolios (or
different units) one will obtain a bound for the overall risk.

2.2 Average Value-at-Risk

The fundamental criticism about VaRα has led to the search for better alternatives.
Before we present the general axiomatic approach which has been the outcome of
these efforts in the next section, we will introduce another popular risk measure
which attempts to solve problems (i) and (ii) described above. Instead of just con-
sidering the quantile corresponding to some specified level α ∈ (0,1), one averages
over all quantiles less than the given level α. One thus takes into account not only
the likeliness of a loss scenario but also the quantity that might be lost, which ad-
dresses problem (i) above. The corresponding risk measure is called the Average
Value-at-Risk (AVaRα) and is given by

AVaRα(X)= 1

α

∫ α

0
VaRλ(X)dλ, (2.3)

where we assume that the expectation is finite, i.e. E(|X|) <∞, in order to have
the right hand side of (2.3) well-defined. Obviously, like VaRα , also AVaRα only
depends on the probability distribution of X and we have AVaRα ≥ VaRα . In Fig. 1
VaRα(X) and AVaRα(X) of a normal distributed random variable X are plotted
against the respective normal density.

But contrary to VaRα , we will see in Example 3.4 that AVaRα is convex and even
coherent (see the definition in Sect. 3.1), which addresses problem (ii) above. One
can actually show that AVaRα is the best approximation of VaRα in the class of con-
vex risk measures which only depend on the distribution of the portfolio (see [4]).
Sometimes, AVaRα is also referred to as Expected Shortfall ESα . This is motivated
by the following alternative representation which is valid when X has a continuous
distribution function:

AVaRα(X)= E
[−X| −X ≥ VaRα(X)

]
. (2.4)

For general distribution functions the equality in (2.4) turns into a greater-or-equal
inequality.
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Fig. 1 VaRα(X) vs.
AVaRα(X) at level α = 5 %
of a normally distributed
r.v. X. Indeed
AVaRα(X) >VaRα(X)

Example 2.2 Consider again the example of a normally distributed X with mean
μ and variance σ 2. Then the distribution function is continuous and we can use
representation (2.4) to compute AVaRα for a given level α ∈ (0,1) as

AVaRα(X)= −μ+ σ φ(�
−1(α))

α
,

where φ is the density and � is the distribution function of a standard normal dis-
tribution. Indeed, using representation (2.4) we observe that

AVaRα(X)= −μ+ σE
[
−X−μ

σ

∣∣∣∣−X−μ
σ

≥ VaRα

(
X−μ
σ

)]
,

which reduces the problem to the computation of AVaRα for the standard normal
random variable X−μ

σ
. Again by (2.4) we get

AVaRα

(
X−μ
σ

)
= − 1

α

∫ �−1(α)

−∞
xφ(x)dx

= 1

α

[
φ(x)

]�−1(α)

−∞ = φ(�−1(α))

α
.

3 Monetary, Convex, and Coherent Risk Measures

Motivated by the examples above, we now introduce the general mathematical the-
ory and characterization of monetary risk measures. More precisely, we give three
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alternative approaches to monetary risk measures, and we will observe that they
are basically equivalent. Namely, in Sect. 3.1 we will undertake an axiomatic ap-
proach, in Sect. 3.2 we will construct monetary risk measures by means of a set of
acceptable portfolios, whereas in Sect. 3.3 the construction incorporates ideas on
how to deal with the uncertainty about the right probabilistic model—the Knightian
uncertainty—mentioned in the introduction. The axiomatic approach to (coherent)
monetary risk measures goes back to [1] and was further extended by [2, 5, 12]. For
an exhaustive treatment of the subject, and in particular for the mathematical details,
we refer to [4], for a survey to [3] and [17], Chap. 4.

3.1 What Properties Should a Risk Measure Have?

Consider a set of portfolios X which we assume to be of sufficiently nice mathe-
matical structure in order to allow for the mathematical analysis which follows; see
[4] for the details. We assume that the portfolios are discounted which allows us
to compare values in the future with cash amounts today. In the following we are
concerned with depicting basic properties that any monetary risk measure ρ should
satisfy in order to be suited to measure the risk in terms of cash amounts needed
to secure a given portfolio X ∈ X . One undoubted feature of any risk evaluation is
that more is better than less, that is if the payoff of a portfolio X is higher than the
payoff of another portfolio Y , then the measured risk ρ(X) of X should be lower
than the measured risk ρ(Y ) of Y . This property is referred to as monotonicity of
the risk measure ρ. Another property of monetary risk measures is based on the
observation that cash amounts have no intrinsic risk in the sense that facing a sure
loss m, we know that we have to have a corresponding security of −m in order to
be able to meet future payments. Therefore, it seems natural to assess the risk of
a certain amount m as −m or, more generally, if we add a certain amount m to a
given portfolio X then the risk ρ(X +m) of X +m as compared to the risk ρ(X)
of X should be increased or decreased by m—depending on whether m is a loss or
a gain—and thus corresponds to ρ(X)−m. Mathematically these basic features of
a monetary risk measure are expressed in the following way:

Definition 3.1 ρ : X → R ∪ {+∞} is called a monetary risk measure if ρ(0) <∞
and ρ satisfies the following conditions for all X,Y ∈ X :

• Monotonicity: If X ≤ Y , then ρ(X)≥ ρ(Y );
• Cash invariance: If m ∈R, then ρ(X+m)= ρ(X)−m.

Since ρ(X+ ρ(X))= 0, we may interpret ρ(X) as a capital requirement, i.e. as
the minimal amount of capital that must be added to or can be withdrawn from X

in order to obtain zero risk and thus make X acceptable from the point of view of a
supervising agency.
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Example 3.2 Let X be a square integrable random variable on a probability space
(�,F ,P). The standard deviation (or volatility) σX of X

σX :=
√
E
[(
X−E[X])2],

which first was systematically introduced by Markowitz in the risk analysis [18] of
portfolio choices and still is a widely used risk indicator, is neither cash invariant nor
monotone and thus not a monetary risk measure. The lack of monotonicity is mainly
due to the fact that the standard deviation considers risk symmetric in the sense that
the risk of gains is assessed in the same way as the risk of losses, whereas a risk
manager is usually only concerned with the risk of losses. For example, let X > 0
be a random variable with positive support. Then Y := aX > X for any constant
a > 1, and also σY = aσX > σX . Thus monotonicity is not fulfilled. Augmenting
σX to

mv(X) := E[−X] + σX,
we obtain the so-called mean-variance risk measure which is cash invariant, but still
does not satisfy monotonicity. The lack of monotonicity is the reason why the very
popular asset pricing based on optimizing a portfolio under σX or mv has drawbacks
such as producing negative prices in some cases.

It is often required that the risk measure ρ should favor diversification: Consider
two portfolios X,Y and the possibilities to either invest in X or in Y or in a fraction
λX + (1 − λ)Y , λ ∈ [0,1], of both. Favoring diversification means that the risk of
the diversified investment λX + (1 − λ)Y should not exceed the risks of both X
and Y , thereby accounting for the fact that the downside risk, in particular the risk
of default, is lower in the diversified investment λX+ (1 − λ)Y as compared to the
most risky ofX and Y . Formally this property is know as quasi-convexity of the risk
measure ρ:

• Quasi Convexity: ρ(λX+ (1 − λ)Y )≤ max(ρ(X),ρ(Y )), for 0 ≤ λ≤ 1.

If the risk measure ρ satisfies cash invariance then it can indeed be shown that
quasi-convexity is equivalent to convexity, i.e.

• Convexity: ρ(λX+ (1 − λ)Y )≤ λρ(X)+ (1 − λ)ρ(Y ), for 0 ≤ λ≤ 1.

The latter property is very desirable from an analytic point of view since it allows
for an analysis of convex monetary risk measures by means of tools from the field of
convex analysis and optimization. This field provides comprehensive toolboxes for
dealing with optimization problems that naturally occur in the financial risk context,
like e.g. portfolio optimization under constraints on the portfolio risk given by some
convex monetary risk measure.

Recall the Value-at-Risk discussed in Sect. 2.1. It follows immediately that VaRα
is a monetary risk measure in the above sense. However, as we will show in the
following example and as was already mentioned in Sect. 2.1, VaRα is not convex
(and thus not quasi convex either).
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Example 3.3 Consider two portfolios X,Y which are independent and identi-
cally distributed. Let X and Y take the value 100 with probability 0.99 and −100
with probability 0.01. Then the convex combination 1

2 (X + Y) assumes the val-
ues 100, 0, and −100 with probabilities 0.9801, 0.0198, and 0.0001 respectively.
Hence, VaR0.01(X)= VaR0.01(Y )= −100, whereas VaR0.01(

1
2 (X+ Y))= 0.

As mentioned in Sect. 2.2 the Average Value-at-Risk indeed satisfies convexity
and thus favors diversification. Moreover, it inherits a scaling invariance property
from the Value-at-Risk which is known as positive homogeneity:

• Positive Homogeneity: ρ(λX)= λρ(X), for λ≥ 0.

It might be debated whether this latter property is reasonable in every setting as
it implies a linear dependence of risk with respect to the amount invested into a
portfolio. Especially for large multipliers λ > 0 this might not be very realistic, and
one should instead have ρ(λX) > λρ(X), and thus pure convexity, to penalize a
concentration of risk. The idea here is that if the maximal loss of a portfolio is for
instance 1 Euro, then this might not be seen as very risky, whereas the risk of a
million times the very same portfolio, and thus a possible loss of a million Euros,
may be viewed as providing much more risk than simply a million times the very
low risk of the initial portfolio.

Nevertheless, many risk measures exhibit the positive homogeneity property and
the positively homogeneous convex monetary risk measures form an important sub-
class called coherent risk measures.

Example 3.4 The Average Value-at-Risk AVaRα as presented in Sect. 2.2 is a coher-
ent risk measure. Indeed, cash invariance, monotonicity, and positive homogeneity
follow immediately from the properties of VaRα . The crucial property of convexity
can easily be deduced from the following representation of AVaRα :

AVaRα(X)= lim
n→∞

∑[nα]
i=1 (−Xi,n)

[nα] ,

where [nα] is the integer part of nα, X1, . . . ,Xn is a sequence of independent ran-
dom variables which have the same distribution as X, and X1,n ≥ · · · ≥Xn,n is the
order statistics of (X1, . . . ,Xn).

3.2 Constructing Risk Measures via Acceptance Sets

As an alternative to the axiomatic approach, one could define a monetary risk mea-
sure on X by fixing a class of portfolios A ⊂ X which are acceptable in the sense
that they do not require additional capital in order to secure their risk. Now the risk
of any portfolio X ∈ X is evaluated as the minimal amount of cash m that has to be
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added to X such that X+m is acceptable, that means X+m ∈ A. The risk measure
ρA induced by A in the described way has a formal representation as follows

ρA(X)= inf{m ∈R | m+X ∈A}. (3.1)

Assuming that A satisfies certain properties such as convexity and a monotonicity
property (X ∈Aρ , Y ∈X , Y ≥X, then Y ∈Aρ ), one can prove that ρA is a convex
monetary risk measure as defined in Sect. 3.1; see [4], Proposition 4.7.

Furthermore, one can show that the converse is also true: every convex risk mea-
sure in the sense of Sect. 3.1 is induced by an acceptance set A as in (3.1), and thus
the two approaches to defining a risk measure are equivalent. To see this, consider
any monetary risk measure ρ and let

Aρ = {X ∈ X | ρ(X)≤ 0
}

(3.2)

be the set of portfolios that are acceptable under ρ, the so called acceptance set of ρ.
Then, ρ = ρAρ

.
In the following we provide some prominent examples of this approach.

Example 3.5 (Monetary Risk Measure Induced by Expected Utility) In economic
theory the preferences of some agent are often modeled by a utility function that
is a strictly concave and strictly increasing function u : R → R, which quantifies
how utile the agent considers payoffs compared to each other. The property of be-
ing increasing encodes the fact that more is better. The concavity of u is due to the
fact that a typical agent is very sensitive to losses, fairly sensitive to gains, but not
that sensitive to very large gains as compared to slightly smaller gains, simply be-
cause above a certain level she has reached an amount of wealth above which her
consumption cannot be significantly improved. Such agents are usually assumed to
assess the utility of a portfolio X ∈ X by taking the expected utility value of X, i.e.
E[u(X)]. Hence, a natural way to obtain a reasonable acceptance set is to call ac-
ceptable the set of portfolios X ∈ X such that the expected utility exceeds a certain
threshold c, that is X ∈A if and only if

E
[
u(X)

]≥ c.
The corresponding acceptance set defines a convex monetary risk measure via (3.1).

Example 3.6 (Shortfall Risk) Recall Example 3.5 If the focus is more on the losses,
instead of considering a utility function u and a lower bound c on the expected
utility as in the previous example, it is more natural to replace u by a loss function
l : R → R which is assumed to be convex and increasing and non-constant. Then
the corresponding acceptance set is given by

A := {X ∈ X | E[l(−X)]≤ c̃} (3.3)

where c̃ ∈ R is an upper bound on the shortfall risk E[l(−X)] of a portfolio X.
This acceptance set defines a convex monetary risk measure ρA as in (3.1). If
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l(x)= −u(−x), then the acceptance set A equals the acceptance set in Example 3.5,
and the associated risk measures coincide. Note, however, that the loss function l is
only required to be increasing, so it may indeed be flat on some interval (−∞, a].
In particular l may vanish on (−∞,0], which means that the corresponding accept-
ability criterion in (3.3) only depends on the possible losses of a portfolio X.

3.3 A Robust Approach to Measuring Risk

Consider any portfolio X ∈ X . A very natural way to assess its risk is looking at
the expected value EP[X] of X under some probability measure P. It can be easily
verified that EP[−X] is indeed a coherent risk measure as introduced in Sect. 3.1.
But computing the expected value means that we need full information about the
probability distribution of X, that is we need to know the right probability measure
P describing the real world. However, in many cases we don’t know which prob-
ability model is appropriate to describe the true distribution of X. In other words,
there is ambiguity on the right probability measure under which we should take the
expectation. We may attempt to overcome this problem by specifying not just one
but a class Q of probability measures that one considers as possible descriptions
of reality and then to taking the expectation under each probability measure and to
looking at the worst case. The corresponding risk measure is a coherent risk measure
and is given by the following expression:

ρ(X)= sup
Q∈Q

EQ[−X], X ∈ X . (3.4)

One can even go one step further and penalize each probability measure Q ∈ Q
according to how likely the corresponding probability model appears to be. This
is achieved by introducing a penalizing function α : Q → R which assigns to each
Q ∈Q a certain penalization α(Q). The corresponding risk measure is

ρ(X)= sup
Q∈Q

(
EQ[−X] − α(Q)), X ∈X , (3.5)

which is a convex monetary risk measure. Clearly, letting α(Q) = 0 for all Q ∈ Q
we obtain (3.4).

Conversely, one can prove by means of tools from convex analysis that basically
every convex monetary risk measure can be represented as in (3.5) where the pe-
nalizing function α is known as the dual function of the risk measure ρ. Hence, we
observe that the three approaches to defining a risk measure presented throughout
Sects. 3.1, 3.2, and 3.3 in principle are equivalent and lead to the same class of
risk measures, these are the convex monetary risk measures. Moreover, we note that
representation (3.5) reveals a robust structure with respect to model uncertainty and
thus the capability of monetary convex risk measures to deal with Knightian uncer-
tainty as discussed in the introduction. For further details, we refer to [4, 9, 14].
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Example 3.7 (Entropic Risk Measure) Consider some reference probability mea-
sure P which we believe is the best description of the likeliness of any future events.
In presence of ambiguity about the true probability measure, we decide to take into
account all probability measures Q which are consistent with P in the sense that
there are no events that are likely under Q but have zero probability under our refer-
ence probability measure P. We say that such a probability measure Q is absolutely
continuous with respect to P, written as Q � P. If Q strongly deviates from P, it
should not play the same role in our risk analysis as probability measures which are
just slight modifications of P. This is realized by penalizing each Q by a kind of
distance to P which is known as the (relative) entropy H(Q | P) of Q with respect
to P. The formal definition is

H(Q | P) := EQ

[
log

dQ

dP

]

where dQ
dP

is the density of Q with respect to P. Indeed we have that H(Q | P)≥ 0
and that H(Q | P) = 0 if and only if Q = P. Taking the worst case over all prob-
ability models penalized with the relative entropy as in (3.5) yields the following
convex monetary risk measure

eβ(X)= sup
Q�P

(
EQ[−X] − 1

β
H(Q | P)

)
, X ∈ X , (3.6)

where we allow for a parameter β > 0 determining the impact of the weighting.
Solving the variational problem appearing on the right hand side of (3.6) we obtain
that

eβ(X)= 1

β
logE

[
e−βX

]
, X ∈X . (3.7)

This is the so called entropic risk measure.

Example 3.8 (Acceptability Floor) Consider a set Q of probability measures, and
let γ :Q → R be such that supQ∈Q γ (Q) <∞. The function γ specifies an accept-
ability floor in the sense that a portfolio X is considered to be acceptable if and only
if

EQ[X] ≥ γ (Q) for all Q ∈Q.
The corresponding acceptance set A defines a convex monetary risk measure ρA as
in (3.1) which also has the following representation

ρA(X)= sup
Q∈Q

(
EQ[−X] + γ (Q)), X ∈X .

4 A Case Study: Optimal Risk Sharing

So far we have been concerned with specifying a class of risk measures—the (con-
vex) monetary risk measures—which satisfy certain conditions that make them apt



146 F. Biagini et al.

for risk management of financial portfolios. However, the choice of an appropriate
risk measure within the vast class of convex monetary risk measures, where being
appropriate depends on factors such as the business structure or stability under op-
timization, is a non-trivial problem. And even after solving that problem, this is by
far not the end of the story. There are a lot of issues arising beyond the level of
specifying an appropriate risk measure and simply applying it to quantify the risk of
some portfolios. In what follows we present a typical problem arising in risk man-
agement when more than one agents are involved. In that case it is very natural to
look for cooperation opportunities from which all agents benefit in the sense that
the individual risk of each agent is reduced by mutual protection. In other words the
agents seek an optimal risk sharing:

Consider n agents with initial portfolios Wi , i = 1, . . . , n, who assess the risk
of any portfolio offered to them by individual convex monetary risk measures
ρi : X → R, i = 1, . . . , n. The aggregate portfolio is W = W1 + · · · + Wn. An
(re-)allocation of W is any (X1, . . . ,Xn) ∈ X n such that

∑n
i=1Xi = W . Denote

by A(W) the set of all reallocations of W . We assume that the agents are allowed
to exchange risks without changing the aggregate portfolio, that is the agents may
agree on exchanging the initial allocation (W1, . . . ,Wn) for some other alloca-
tion (X1, . . . ,Xn) of W . The optimal risk sharing problem is to find a realloca-
tion of W amongst the n agents such that the total risk is minimized, that is find
(X̄1, . . . , X̄n) ∈A(W) such that

n∑
i=1

ρi(X̄i)= inf

{
n∑
i=1

ρi(Yi)

∣∣∣ (Y1, . . . , Yn) ∈A(W)

}
. (4.1)

Note that, due to cash-invariance, if (X̄1, . . . , X̄n) is a solution to (4.1), then we
have that for every (c1, . . . , cn) ∈ R

n such that
∑n
i=1 ci = 0 the allocation (X̄1 +

c1, . . . , X̄n + cn) is a solution to (4.1) too. Hence, provided that (4.1) allows for
a solution, it is always possible to find a solution which respects the individual
rationality constraints of the agents, that is a solution (X̄1, . . . , X̄n) to (4.1) such
that all agents are better off: ρi(X̄i)≤ ρi(Wi), i = 1, . . . , n.

Consider the following function

�ρi(W) := inf

{
n∑
i=1

ρi(Yi)

∣∣∣ (Y1, . . . , Yn) ∈ A(W)

}
, W ∈X . (4.2)

Problem (4.1) is equivalent to finding (X̄1, . . . , X̄n) ∈A(W) such that

ρ1(X̄1)+ · · · + ρn(X̄n)= �ρi(W). (4.3)

Provided that �iρi >−∞ it can be shown that �iρi is again a convex monetary risk
measure which is interpreted as the risk measure of the market or the representative
agent. This has a particularly nice interpretation in the case of a company, e.g. an in-
surer, with different business units/entities possibly being exposed to different kinds
of risks. Suppose that the risk of each unit is measured by a convex monetary risk
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measure, which depends on the business structure of that particular unit. Thus we
may view each unit as an agent in the above sense. Then the stand alone risk of unit
i with business Wi is ρi(Wi). In this situation there are two major questions to be
answered. First of all, given the structure of risk measurement for the units, what is a
sound monetary risk measure for the whole company as such? Secondly, keeping in
mind the typical situation that the measured risks correspond to e.g. solvency capital
requirements, what is the advantage of each unit of being member of a group in the
sense of being part of the company? One should expect that the risk profile of the
unit should profit from the fact that the company may to some extent cover potential
losses in that unit with gains from another. If this is the case, this obviously implies
a competitive advantage, at least over competitors with similar business plans, but
without comparable backup. Otherwise, if this diversification effect is not observed,
that is if the risk of the unit would simply remain its stand alone risk ρi(Wi), then
from a risk perspective there is no reason to stay within the company. In that case the
shareholders might for instance be tempted to sell off that unit. However, according
to the results above, assuming that problem (4.1) admits a solution (X̄1, . . . , X̄n), it
is very natural to consider the convex monetary risk measure (4.2) as the risk mea-
sure of the company and the optimal allocation (X̄1, . . . , X̄n) as the businesses of the
units after an optimal mutual reinsurance. Since we may assume that (X̄1, . . . , X̄n)

respects the individual rationality constraints we have that

di := ρi(Wi)−ρi(X̄i)≥ 0 and D :=
n∑
i=1

di =
n∑
i=1

(
ρi(Wi)−ρi(X̄i)

)≥ 0 (4.4)

where di is the diversification effect for unit i, and D is the diversification effect of
the company. This gives an elegant answer to the posed questions.

Apparently, the assumption that the risk sharing in (4.1) is over all possible allo-
cations of the aggregate risk W may seem far from reality. Hence, it appears that in
a next step one should allow for constraints on the set of allocations A(W). How-
ever, in many cases the optimal allocation coming from solving the unconstrained
problem (4.1) indeed exhibits structures which are very often traded, such as linear
sharing of the aggregate portfolio or reinsurance by means of stop-loss contracts;
see [6, 7, 11, 13]. Moreover, when developing new kinds of (reinsurance) contracts,
knowledge of the structure of solutions to the unconstrained problem (4.1) might be
of advantage. For a detailed discussion of the optimal risk sharing problem when
agents apply convex monetary risk measures we refer to [6, 7, 11, 13].

5 Food for Thoughts

In this section we give an overview of possible research topics in the field of mon-
etary risk measures that are directly related to our presented examples and case
studies.
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5.1 Appropriate Risk Measures

The class of monetary risk measures is quite broad. Even though monetary risk
measures, and in particular convex monetary risk measures, exhibit basic properties
that from a certain point of view any risk measure should satisfy, this class of risk
measures still includes functions that are not reasonable in application. For instance
the worst case risk measure

ρworst (X) := − inf
ω∈�X(ω)

is a coherent risk measure. But measuring risks by means of ρworst implies taking
no risk, and thus not at all taking an active part in the economy, at least if the markets
are assumed to be arbitrage-free. Hence, an important task is, given some specific
setting, e.g. a specific field of business or risk profile, to find a suitable convex mone-
tary risk measure for that setting. This involves understanding what suitable in some
given setting means, depicting additional requirements that a convex monetary risk
measure for that setting should satisfy, and studying and testing the corresponding
class of monetary risk measures. In that context, apart from describing certain risk
averseness or matching observed structures like e.g. the behavior of risks of large,
highly diversified portfolios in certain markets, also numerical issues like stability
in optimization play an important role.

5.2 Risk Sharing

The optimal risk sharing problem was outlined in Sect. 4 above. The tasks are to
prove the existence of solutions to (4.3), to explicitly characterize these solutions
given certain classes of convex monetary risk measures, and to study the problem
under additional constraints on the set of feasible allocations.

5.3 Optimization Under Convex Monetary Risk Measures

Many applications of convex monetary risk measures lead to a convex optimization
problem which is very often not easily solved analytically. Hence numerical meth-
ods have to be applied. However, since convex monetary risk measures are highly
non-linear and non-smooth structures, they very often behave poorly in optimiza-
tion. The field of convex optimization provides a lot of tools to deal with even these
kind of problems. The challenge here is to spot the right methods, and maybe to
develop new ones which are particularly suited in case of optimization under some
convex monetary risk measure, taking advantage of the properties like cash invari-
ance and monotonicity.
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6 Summary

The purpose of any risk modeling is, in a first step, to understand what is risk as-
sociated to some random outcome and what are the major sources of risk for that
outcome. Then, in a second step, the aim is to apply the gained knowledge in order
to quantify the risk, thereby opening for the possibility to compare risks of different
outcomes and to seek to some extent protection against risk. In case of a financial
portfolio two major sources of risk are depicted as being the uncertainty of the exact
outcome given multiple scenarios, and the ambiguity about the right probabilistic
model for the likeliness of the different scenarios. These sources of risk are ac-
counted for in the theory of convex monetary risk measures which quantify the risk
in terms of a cash amount that has to be added to the analyzed portfolio in order
to make it acceptable. As, with the increasing complexity of financial products and
in the aftermath of the financial crisis, risk analysis and quantification rapidly gains
importance, there is a vivid ongoing research activity in the field of (convex) mon-
etary risk measures. Apparently, the developed risk measuring machinery may also
be adopted to other than merely financial risks.
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Chapter 6
Quantifying Extreme Risks

Vicky Fasen, Claudia Klüppelberg, and Annette Menzel

Understanding and managing risks caused by extreme events is one of the most de-
manding problems of our society. We consider this topic from a statistical point of
view and present some of the probabilistic and statistical theory, which was devel-
oped to model and quantify extreme events. By the very nature of an extreme event
there will never be enough data to predict a future risk in the classical statistical
sense. However, a rather clever probabilistic theory provides us with model classes
relevant for the assessment of extreme events. Moreover, specific statistical methods
allow for the prediction of rare events, even outside the range of previous obser-
vations. We will present the basic theory and relevant examples from climatology
(climate change), insurance (return periods of large claims) and finance (portfolio
losses and Value-at-Risk estimation).
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Financial risk · Peaks over thresholds

Mathematics Subject Classification (2010) 60G70 · 62G32

The Facts

• Modern risk measures like Value-at-Risk and Expected Shortfall are defined by
high quantiles, such that the probability of a large loss is small.
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• Poisson’s classic theorem on rare events (also called the law of small numbers) is
the basis for extreme value statistics, because it says that the Poisson distribution
is the limit of binomial distributions with very small success probabilities.

• The distribution of maxima of large samples can only be a Generalized Extreme
Value (GEV) distribution. This is one of the most fundamental results of extreme
value theory. On this basis methods to estimate far out tails and high quantiles
were developed.

• Another method to estimate far out tails and high quantiles is the Peaks-Over-
Threshold (POT) method using the fact that exceedances over high thresholds for
large samples follow a Generalized Pareto distribution (GPD).

• We quantify extreme events for three data examples:

– yearly temperature maxima from 1879–2008;
– claim sizes of a Danish fire insurance;
– daily returns of the Standard and Poors 500 Index.

1 Introduction

Extreme risks accompany our lives. Although every single person hopes that she
does not suffer any losses, some lose a fortune in a financial crises, some others lose
their property in a hurricane, or they have to leave their homes because of a nuclear
accident, another person may even lose her life in a car accident or because of a ter-
rorist attack. Whereas our ancestors took dangers and risks as God-given, nowadays
we trace the occurrence of most types of risk back to the actions of men. This im-
plies that risk is precisely calculable (an assumption that is mostly wrong), and that
somebody has to be responsible. This applies to technical risk, where safety mea-
sures are implemented in order to prevent disasters, which still happen occasionally.
We even try to adapt to risk of natural catastrophes, when we develop strategies like,
for instance, building dikes or simply sign an insurance contract.

In a society guided by such believes it is natural to require formulas from Math-
ematics and Statistics for risk assessment. It is within this framework that extreme
value theory and extreme value statistics find their natural place. However, the mod-
eling and the assessment of extreme events is not so simple and cannot be gained
with standard methods.

We illustrate the problem with a classical example.

Illustration 1.1 (Determine the Height of a Dike) In the Netherlands, where sub-
stantial parts of the country are below sealevel, dikes of appropriate height are of
vital importance as protection against floods. The dikes have to be built higher than
a wave height, which happens at most every 10,000 years. How high has the dike
at least to be? Or formulated otherwise, how does one estimate the height of the
highest wave in 10,000 years, if one has only measurements of some hundred years
available? The problem is to estimate the probability of an event which is more ex-
treme than any recorded to date. This requires a special method, which is provided
by statistical methods based on extreme value theory.



6 Quantifying Extreme Risks 153

Extreme value theory is a fundamental mathematical theory, which can be trans-
ferred to statistical methods. It was developed during the last 50 years and is not
undebated. Extreme value theory allows (under appropriate conditions) to predict
rare events, which are not included in the previous observations because of their
rareness. Based on extreme data (later they will be yearly temperature maxima,
large insurance claims and large changes in a financial time series) it is possible to
extrapolate the data for the prediction of events, which cause higher temperatures,
insurance claims or financial losses than have ever been observed before. Naturally
it is easy to criticize this extrapolation out of the sample data and it is clear that ex-
trapolation is unreliable by nature. However, extreme value theory provides a solid
mathematical basis, and no other reliable alternative has been suggested. We cite the
following assessment of Professor Richard Smith (http://www.unc.edu/~rls/), who
has substantially contributed to the development of extreme value statistics: “There
is always going to be an element of doubt, as one is extrapolating into areas one
doesn’t know about. But what extreme value theory is doing is making the best use
of whatever you have about extreme phenomena”.

We emphasize that the statistical treatment of rare events as the far-out tail behav-
ior can only succeed with specific methods, which implement probabilistic results
of extreme value theory into the estimation procedure and, hence, compensate for
the insufficient amount of data. This will be the topic of Sects. 3 and 4. Parts of this
chapter have corresponding parts in Fasen and Klüppelberg [29].

2 Extreme Risks

2.1 Climate Risk

Fire, water, air—these three basic elements cause climate or weather-related natu-
ral disasters. They comprise meteorological hazards (such as storm, hail, lightning),
hydrological (flooding, mass movement), and climatological ones (such as extreme
temperatures, heat waves, drought, forest fire). Apart from devastating earthquakes
in Chile, Haiti (2010) and Japan, New Zealand (2011), making 2011 the costli-
est year ever, the natural catastrophe losses in the last few years were dominated
by weather-related catastrophes, such as devastating floods in Pakistan (2010) and
Thailand (2011), the Winter Storm Xynthia in western Europe (2010), Hurricane
Sandy in the US (2012), wildfires in Russia (2010) and the summer drought in the
US (2012) (see also Sect. 2.3 Insurance Risks). According to Munich Re data, there
is an increasing trend of these natural disasters in respect to intensities, frequen-
cies, damages and losses. The Intergovernmental Panel on Climate Change (IPCC)
concluded in its last report in 2007 (see [6]) that in past records the dominant sig-
nal was significantly increased in the values of exposure at risk. However climate
change has likely altered and will virtually certainly alter also the occurrence of ex-
treme events dramatically: frequency and magnitude of extreme events are strongly
linked to anthropogenic induced climate change.

http://www.unc.edu/~rls/
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Fig. 1 Illustration of the
consequences of an increase
of temperature in mean and
variance

The latest IPCC report confirmed a 100-year linear trend (1906–2005) of 0.74 °C,
more precisely, eleven of the last twelve years (1995–2006) ranked among the 12
warmest years in the instrumental record of global surface temperature since 1850.
Most of the observed warming since the mid-20th century is very likely due to the
observed increase in anthropogenic greenhouse gas concentrations. Linked to this
climate change are marked observed changes in extreme events, much more in-
tense and longer droughts since the 1970s, particularly in the tropics and subtropics,
higher frequency of heavy precipitation events, or widespread changes in extreme
temperatures. For the latter one, a human contribution to the observed trends is
likely. Also future trends have been assessed by simulation of different scenarios
with strong impacts on extreme events, e.g., increase in intense tropical cyclone
activity or incidence of extreme high sea level are likely at the end of the 21th cen-
tury. Due to the importance of extreme events the IPCC published a Special Report
Managing the Risks of Extreme Events and Disasters to Advance Climate Change
Adaptation (SREX) in 2012.

Many important research questions are linked to this increase in weather related
extreme events. First of all, is climate becoming more extreme under climate change
conditions? This question has traditionally been answered by fitting Gaussian dis-
tributions to temperatures. Figure 1 displays how an increase in mean and variance
of temperature causes more hot and more record hot weather. However, Gaussian
distributions do not provide a good fit for the distribution tails of high temperature
measurements.

Second, if there are changes in extremes, which vulnerability of humans is to
be expected? Not all extreme events end in disasters. The most recent World Risk
Report of 2012, published by the BündnisEntwicklungshilfe in cooperation with
the United Nations University (UNU-EHS) (http://www.weltrisikobericht.de), sum-
marizes the risk by natural hazards to nations with different vulnerability, starting
with

(1) the likelihood of extremes to occur (exposition),
(2) the vulnerability of societies with respect to infrastructure, housing, food,

poverty, economy,
(3) the coping capacity based on governance, catastrophe precautions, medical sit-

uation, social networks, insurances, and
(4) the adaptation capacity linked to education, environmental protection, projects

and investments.

http://www.weltrisikobericht.de
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Similarly, it is a question of tremendous importance how the occurrence of physical
extreme events translates to extreme biological impacts or hazards which threaten
the fitness and survival of ecosystems more than any change in mean conditions
(cf. Hegerl, Hanlon, and Beierkuhnlein [5], Menzel, Seifert, and Estrella [8]). Not
all rare climatological events translate into extreme impacts: the responses in na-
ture may be non-linear, the species may be resilient, resistant, recover fast, or are
well adapted by management. Due to this variation in response, always more and
more data on impacts of extreme events are needed. The goal is to bridge the gap
between extreme events and extreme impacts, especially for climatological hazards,
such as temperature extremes, heat waves, cold spells, frost events, drought or fire.
They impact primarily agricultural and forest ecosystems, however, as combined,
longer lasting events their proper statistical modeling and assessment is a scientific
challenge.

2.2 Financial Risks

The Basel Committee for Banking Supervision (http://www.bis.org/bcbs/) recom-
mends for insurance companies and financial institutions the building of capital
reserves to hedge against unpredictable risks. This is in Germany explicitly re-
quired by the regulatory authorities, the BAFIN (Bundesanstalt für Finanzdien-
stleistungsaufsicht, http://www.bafin.de/) in the framework of “Basel II” for banks
(http://www.bis.org/publ/) and in the framework of “Solvency II” for insurance
companies (http://ec.europa.eu/internal_market/insurance/). The risk management
department of every company is responsible for the respective calculations of the
required capital reserves and their administration, which requires a mathematical-
statistical training.

The focus of Basel II, which was initially published in June 2004, was to manage
and measure credit risks, operational risks and market risks. In this chapter we will
only pay attention to market risk, the risk that a value of a portfolio will change
due to movements in the market risk factors as, e.g., interest rates, foreign exchange
rates, equity prices and commodity prices.

In the Basel framework the capital requirement for market risk is based on the
so-called Value-at-Risk, which is the p-quantile of the portfolio risk, and is defined
as follows.

Let X be the financial risk in terms of the daily losses, defined as the negative
profit/loss of the market portfolio. To be precise, if Zt for t = 1,2, . . . denote the
daily market prices of the portfolio, then the losses Xt represent the daily negative
log-returns defined as Xt = −(logZt − logZt−1)≈ −(Zt − Zt−1)/Zt−1, approxi-
mating the negative relative price changes for each day.

The distribution function of the daily portfolio loss X is given by F(x) =
P(X ≤ x) for x ∈ R. We define the quantile function of F or Value-at-Risk as

VaRp(X)= F−1(p)= inf
{
x : F(x)≥ p}, p ∈ (0,1). (2.1)

http://www.bis.org/bcbs/
http://www.bafin.de/
http://www.bis.org/publ/
http://ec.europa.eu/internal_market/insurance/
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(Note that for strictly increasing F this is simply the analytic inverse.) Hence,
VaRp(X) is the smallest number such that the probability of a loss larger than
VaRp(X) does not exceed 1 − p. Then for a large value of p (usually p = 0.95
or larger) VaRp(X) is a prominent risk measure.

Depending on the specific risk, choices are p = 95 % (0.95) or p = 99 % (0.99)
or even p = 99.9 % (0.999). In the case of market risks p = 99 %.

By the perception and experiences gained through the financial crises, which
started in 2007, the Basel Committee on Banking Supervision decided a reforma-
tion of Basel II to strengthen the regulation, supervision and risk management of the
banking sector in September 2010. This revision had to be implemented until 31 De-
cember 2011 [16] and introduced—as a response to the crises—a stressed Value-at-
Risk requirement taking into account a historic one-year observation period relating
to significant losses, which must be estimated in addition to the classical Value-at-
Risk based on the recent one-year observation period. Basel III [15] now aims at
raising the resilience of the banking sector by strengthening the risk coverage of the
capital reserves. It suggests reforms of capital requirements for counterparty credit
risk using stressed inputs, addresses the systemic risk arising from the intercon-
nectedness of banks and other financial institutions, and supplements the risk-based
capital requirement to constrain too high leverage (details to the changes in market
risk can be found in http://www.bis.org/publ/bcbs193.htm). The implementation of
Basel III will start in 2013.

Typical methods to estimate the Value-at-Risk in practice are historical simula-
tions, the variance-covariance method and Monte Carlo simulation.

The “historical simulation method” simply estimates VaRp(X) by the corre-
sponding empirical quantile based on the required one year of data. For instance,
VaR0.99(X) is estimated as the largest 1 % of daily losses. Alternatively, a weighted
estimation scheme is used, which gives higher weights to those data near to the
current date and lower to the more distant data. Criticism of this method is obvi-
ous: reliable estimation of high quantiles like VaR0.99(X) requires a large amount
of high losses, but 1 % of the required one year of data provides no reliable esti-
mator. Consequently, the estimated VaR0.99(X) depends very much on the present
market situation and estimates can differ substantially almost from day to day. We
shall analyse the Standard and Poors 500 Index data during 1990–2004, abbreviated
as S&P500. Moreover, VaR0.99(X) is supposed to predict future high losses, which
may be substantially higher than losses of the previous year and requires extrapola-
tion outside the observations.

For the “variance-covariance method” the risk factors are assumed to be mul-
tivariate normal distributed. Then the distribution function of the portfolio X is a
one-dimensional normal distribution with mean μ ∈ R and variance σ > 0 deter-
mined by the portfolio weights, the means and variances of the components and the
pairwise correlations of the components. The loss distribution F of X is given by

F(x)= 1√
2πσ

∫ x

−∞
e− (y−μ)2

σ2 dy for x ∈R. (2.2)

Then VaR0.99(X)= μ+σz0.99, where z0.99 is the 0.99-quantile of the standard nor-
mal distribution. It is particularly easy to estimate and to update, when the estimates

http://www.bis.org/publ/bcbs193.htm
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Fig. 2 The S&P500 (top)
and the corresponding losses
(bottom) during 1990–2004

for μ and σ change in time. In Fig. 2 we see the S&P500 (left) and its losses (right)
during 1990–2004.

From this example we see that the normal model is completely inadequate: The
histogram (empirical density) of the daily losses of the S&P500 and the normal
density with mean and standard deviation estimated from the data are depicted in
Fig. 3. The histogram clearly shows that the daily losses of the S&P500 have more
mass in the tails than the normal distribution; i.e. for ±0.03 and larger/smaller the
histogram exhibits more large/small values than is likely for the normal distribution.
This mismatch leads to an underestimation of the required capital reserve. The fact
that the empirical distribution and the normal distribution differ around 0 is for
risk management based on high quantiles irrelevant. Moreover, financial loss data
are usually negatively skewed and leptokurtic, again properties which can not be
captured by a Gaussian distribution.

The third VaR estimation method is the “Monte Carlo simulation”. Here a more
sophisticated parametric distributional model is fitted to the daily losses, its parame-
ters are estimated, and then large numbers of random samples of arbitrary length are
simulated, its VaR estimated for each sample, and then the average VaR is taken as
an estimate. This method can be made more efficient by variance reduction methods
(Glasserman [33], Korn [38]), and estimates VaR for a given model with arbitrary
precision. However, the estimate depends on the chosen model (as it does for the
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Fig. 3 Histogram of the
daily losses of the S&P500 in
comparison to the density of
the normal distribution. The
mean μ and the variance σ 2

have been estimated by their
empirical versions

normal model in the variance-covariance method), so model risk can be consider-
able; cf. Chap. 10, Bannör and Scherer [14].

Remark 2.1 (i) In the Basel II market risk framework the calculation of the capital
reserves requires as risk measure the Value-at-Risk for a holding period of 10 days
at a confidence level 0.99 %. A standard method in practice to calculate the Value-
at-Risk for a holding period of 10 days is to calculate the Value-at-Risk for a holding
period of one day and scale it by

√
10. This scaling factor is based on the scaling

property of the normal distribution and can be completely wrong.
(ii) In the amendments to the Basel II accord, which have been incorporated into

Basel III ([15]), the VaR0.99 has been extended to incorporate so-called stressed peri-
ods like the financial crises during 2007/2008. LetX denote the loss of a market risk
portfolio (over the next 10 days) and VaR0.99,avg(X) the average of the estimated
VaR values of the preceding 60 business days. Then the new capital requirement has
to be calculated according to

max
{
VaR0.99(X),mcVaR0.99,avg(X)

}
+ max

{
SVaR0.99(X),msSVaR0.99,avg(X)

}
(2.3)

where mc and ms are multiplication factors, which are not smaller than 3 (and are
related to the ex-post performance of the bank’s model). The quantity SVaR is the
Value-at-Risk of the loss portfolio estimated from historical data of a 12-month
period of significant financial stress; e.g the financial crises 2007/2008.

(iii) Finally, we argue that the Value-at-Risk is not an appropriate risk measure.
It is appropriate for the dike height of Illustration 1.1, for financial risk however,
the situation is different. If a flood with waves higher than the dike happens, the
dike usually breaks and nothing can be done for salvation. The land behind the
dike disappears under water. For financial risks, however, it is extremely relevant to
know also the amount of resulting losses. This quantity is taken into account, when
using the Average Value-at-Risk as an alternative risk measure, which describes the
expected losses given a loss larger than the Value-at-Risk happens. It is given as

AVarp(X)= 1

1 − p
∫ 1

p

VaRγ dγ

(cf. Chap. 5, Biagini, Meyer-Brandis, and Svindland [19] for a detailed introduction
into risk measures). If X has continuous distribution function F , then AVarp(X)=
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E(X | X > VaRp(X)), which represents exactly the expected losses, given an ex-
treme loss occurs. A second drawback of the Value-at-Risk is that it is in general not
subadditive, i.e. VaRp(X+Y)≤ VaRp(X)+ VaRp(Y ) may not hold for risks X,Y .
Subadditivity reflects the diversification effect. It is better to have a portfolio of risks
than several individual risks. However, if for exampleX and Y are independent with
distribution F(x)= 1 − 1

1+x for x ≥ 0, then VaRp(X+ Y) >VaRp(X)+ VaRp(Y )
and there is no chance for risk diversification. In contrast, the Average Value-at-Risk
is a subadditive risk measure. Although there were serious attempts to communicate
to regulators that the Average Value-at-Risk may be a more appropriate risk measure
(cf. Danielsson et al. [24]), this academic initiative was not successful. The lobby
work of the banks has prevented this: the capital reserves calculated on the basis of
Expected Shortfall would be substantially larger than the Value-at-Risk.

2.3 Insurance Risks

Insurance companies take over the risks of their customers. Typical insurance risks
are health problems, death, accidents, burglary, floods and fire. With the acquisi-
tion of an insurance contract customers transfer their risk to an insurance company,
which is then financially liable to insurance claims. Also the insurance company
does not know the risk for a claim to happen to a customer, but by selling a large
number of policies, it subsumes customers with similar risk in a portfolio and takes
advantage of the fact that in a large portfolio with similar and independent risks
the total claim amount is constant in mean. In probability theory this fact is proved
and is called the Law of Large Numbers. For the insurance company this makes the
risk of a portfolio of similar and independent risks calculable. Random fluctuations
in the portfolio are hedged by reserves. In this context insurance companies have
to evaluate the frequency as well as the severity of risks. To do this they have to
suggest appropriate risk models and estimate the model parameters, they have to
analyze the model statistically and test it under extreme conditions. But they also
have to calculate the premiums and reserves. As capital reserves of insurance com-
panies are substantial, it is also subject to capital regulations like Basel II. Taking
the total insurance business into account, new regulations are being implemented
under Solvency II, following the very same ideas as the Basel framework. We do
not want to explain these ideas in detail, but instead want to present the very tradi-
tional concept of the return period, which is used universally to describe extreme
events and serves as a risk measure, in particular, for abnormally large insurance
claims.

Large claims are rare events with very high costs for an insurance company.
They include natural catastrophes like earth quakes, fire, storms or floods, which
are typical events where large claims occur (cf. Fig. 4), but also so-called man-
made claims from large industrial structures. In 2010 the earth quake in Chile and
the sinking of the drilling rig “Deepwater Horizon” were large claims, in 2011 the
event in Fukushima, which combined natural catastrophe with man-made disaster,
and the hurricane Sandy was a major catastrophe in 2012. It is common practice
that an insurance company insures itself against large claims by a contract with a
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Fig. 4 Claim sizes of a
Danish fire insurance during
1980–1990 in million Danish
Krone (DKK)

reinsurance company. To-date the hurricane Katrina in 2005 is the most expensive
insurance claim in history with about 76.25 billion US-Dollar, followed by the earth
quake and the tsunami in Japan by 35.7 billion US-Dollar, hurricane Sandy in 2012
with about 35 billion US-Dollar, hurricane Andrew in 1992 with about 26.1 bil-
lion US-Dollar and the terror attack to the World Trade Center in 2001 with about
24.3 billion US-Dollar (the data are going back to http://de.statista.com/).

It is a common feature of large claims that they happen rarely, and hence lit-
tle data are available to allow for reliable statistical prediction. But obviously, an
insurance company and, even more so, a reinsurance company has to prepare for
extreme events. Certain quantities can help to assess the frequency and severity of
large claims. In the following we denote by X1,X2, . . . the accumulated claims
per year of an insurance or reinsurance company (Xk is the total claim amount in
year k) and we assume that these yearly claim amounts are independently and iden-
tically distributed (shortly i.i.d.) with distribution function F . We further assume
that F(0)= 0 (a claim can only be positive) and that F(x) < 1 for all x ∈R (claims
can be arbitrarily large, which has been proved over and over by reality). We denote
by F(x) = 1 − F(x) for x ≥ 0 the so-called tail of F . We want to determine now
the distribution of the first year in the future, where the yearly total claim exceeds a
fixed yearly reserve u for the first time. This year is determined by

Z(u)= min{k ∈N :Xk > u}.
Setting

q := P(X > u)= F(u), (2.4)

the random variable Z(u) is geometrically distributed with parameter q , i.e. the
probability that Z(u) takes the value k is given by

P
(
Z(u)= k)= (1 − q)k−1q for k ∈ N

(in k − 1 years we experience no excess, but then in year k there is an excess).
The return period is now the mean waiting time until a yearly total claim amount

http://de.statista.com/
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exceeds the threshold u (denoted by E(Z(u))), where E is the mathematical symbol
for expectation or mean. The expectation is then

E
(
Z(u)

) =
∞∑
k=1

kP
(
Z(u)= k)= q

∞∑
k=1

k(1 − q)k−1

= 1

q
= 1

P(X > u)
= 1

F(u)
. (2.5)

This provides now a trick to estimate the expectation. The standard way to esti-
mate the expectation is by the arithmetic mean (the sum of all observation values
divided by the number of all observations). Note however that, in order to do this,
one would need many years, where exceedances have happened. Since the events
we are interested in are rare, this classical statistical method can not be applied sim-
ply by lack of data. However, estimation via the right hand side of (2.5) is also not
straightforward: the problem has been shifted now to the estimation of the tail F(u).
Also for this tail estimation only few data are available. However, we can now com-
pensate the lack of data by using clever methods from extreme value theory. We will
explain this in detail in Sects. 3 and 4.

But also the inverse problem is of great interest. The insurance company wants
to calculate premiums and reserves such that a yearly total claim amount larger than
u should happen with a probability 0.1 at most every 50 years, which means that
P(Z(u)≤ 50)≤ 0.1. Since

P
(
Z(u)≤ 50

)= q
50∑
i=1

(1 − q)i−1 = 1 − (1 − q)50,

we have 1 − (1 − q)50 = 0.1. This implies that q = 0.002105. Hence the return
period in this example is 1/q = 475 years. For the calculation of premiums and
reserves we need now also the threshold u, and this requires the estimation of the
quantile of the distribution function F . With the definition of the p-quantile in (2.1)
we conclude with (2.4) that u= x1−q holds. We come back to this in Sect. 4.

3 Basic Extreme Value Theory

In the following we present the most important concepts for realistic modeling and
quantification of rare events. The precise mathematical background as well as many
application examples can be found in Beirlant et al. [1], Coles [3], Embrechts, Klüp-
pelberg, and Mikosch [4], McNeil, Frey, and Embrechts [7], Reiss and Thomas
[9], Stephenson [43] gives an excellent overview on extreme events in climatology.

Figure 3 presents a rather typical figure in many statistical applications areas. The
normal distribution is often wrongly applied to extreme risk problems. This can only
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be explained by the fact that everybody with a basic statistical education has learnt
about the normal distribution. Moreover, the sum of normally distributed random
variables is again normally distributed, and the mean and the standard deviation of
this sum are easy to calculate.

There is no doubt that the normal distribution is a very important distribution in
probability theory and statistics: it is the limit distribution for sums. For a sequence
of i.i.d. random variablesX1,X2, . . . (under the weak condition of a finite variance),
we have

1√
n

n∑
k=1

(
Xk −E(Xk)

) d−→ N
(
0, σ 2) as n→ ∞,

where the random variable on the right hand side is normally distributed with distri-

bution function as in (2.2). The symbol
d−→ stands for convergence in distribution;

i.e. the distribution functions of the random variables on the left hand side con-
verge to the normal distribution function with mean 0 and variance σ 2. This is the
so-called Central Limit Theorem. Because of this very basic result the normal distri-
bution is an excellent model for random variables, which can be approximated by a
sum of many small random effects. The great German mathematician Carl Friedrich
Gauß (1777–1855) has derived it in his book [32].

It has long been known that the normal distribution is unrealistic for risk con-
siderations. But which model is a good model for extreme events? The answer to
this question has been given by the great French mathematician Siméon [40] (1781–
1840), which we formulate nowadays as follows.

Theorem 3.1 (Poisson Theorem, [40]) A statistical experiment with possible out-
come En is repeated independently n times. The probability that the event En hap-
pens in one of the n trials is P(En) = pn. If limn→∞ npn = τ holds for some
0< τ <∞, then

lim
n→∞P (in exactly m of the n trials we have outcome En)

= lim
n→∞

(
n

m

)
pmn (1 − pn)n−m = e−τ τm

m! for m= 0,1,2, . . . , (3.1)

where
(
n
m

)= n!
m!(n−m)! with 0! = 1 and m! = 1 · 2 · · ·m.

In honor of Poisson, the distribution on the right hand side of (3.1) is called
Poisson distribution with parameter τ , abbreviated by Poi(τ ). The distribution on
the left hand side of (3.1) (before the limit is taken) is the binomial distribution
Bin(n,pn), which for large n and small pn approximates the Poisson distribution
(cf. Fig. 5). Note that limn→∞ npn = τ > 0 implies obviously that limn→∞ pn = 0.
Hence the events En happen with vanishing probability, when the number of trials n
is getting large. For this reason the Poisson distribution is also called the distribution
of rare events. We want to present some ideas concerning the applicability of the
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Fig. 5 Counting density of
Bin(5,1/5)-, Bin(10,1/10)-,
Bin(15,1/15)-distribution
and the Poi(1)-distribution.
Note that for all parameters of
the binomial distributions
presented np = 1 holds

Poisson distribution, which leads to the two essential statistical concepts of extreme
value theory. The first statistical method is called the blocks method, and the second
one the Peaks-Over-Thresholds (POT) method. Which method to use depends on
the question posed and on the data at hand. We will come back to both statistical
methods in Sect. 4.

In the following we present the necessary mathematical results to understand the
concepts. Let X1, . . . ,Xn be a sample of random variables; think for instance of
yearly total claim amounts of an insurance company or losses of a financial asset.
We assume that X1, . . . ,Xn are i.i.d. having the same distribution function as the
random variable X; we denote it again by F(x)= P(X ≤ x) for x ∈R.

We show first how to use the Poisson Theorem 3.1 for the description of the
behavior of the maximum of a sample and investigate in a first step the so-called
partial maxima

Mn = max(X1, . . . ,Xn) for n ∈N.

As in real life we assume that risks larger than any we have observed before can
continue to occur. This is formulated mathematically by investigating P(Mn ≤ un),
where the sequence un increases with n (and hence with Mn). Then the follow-
ing fundamental result holds (which one can prove by means of the Poisson Theo-
rem 3.1):

lim
n→∞nP(X1 > un)= τ ⇐⇒ lim

n→∞P(Mn ≤ un)= e−τ . (3.2)

We want to motivate the implication from the left side to the right side:
Consider a rare event E, for example the event that the loss of a financial asset at

a day is larger than a threshold u for large u. The daily losses of an asset constitute
again a sample X1, . . . ,Xn. Then

p = P(E)= P(X > u).

Invoking the same argument as Poisson, we find that the probability that the event
E within the sample occurs m times is given by

(
n

m

)
pm(1 − p)n−m for m= 0, . . . , n;
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i.e. it is Bin(n,p)-distributed. Now we let u depend on n in the sense that un in-
creases with the sample size n. Then p becomes pn, which converges to 0, and E
becomes En = {X > un}. When un is chosen such that

lim
n→∞npn = lim

n→∞nP(X > un)= τ ∈ (0,∞),

then the Poisson Theorem 3.1 implies

lim
n→∞

(
n

m

)
pmn (1 − pn)n−m = e−τ τm

m! for m= 0,1,2, . . . .

In particular,

lim
n→∞P(Mn ≤ un) = lim

n→∞P(En never occurs in the n trials)

= lim
n→∞

(
n

0

)
p0
n(1 − pn)n = e−τ .

Consequently, we have shown how by the Poisson Theorem 3.1 the right hand side
follows from the left hand side of (3.2). We shall resist to prove the reverse here.

The following result by [31] dating back to 1928 complements the above result;
it describes precisely the possible limit distributions of partial maxima and provides
the relevant tools for the estimation of tails and quantiles. For extreme value theory
the Theorem of Fisher and Tippett is of equal fundamental importance as the Central
Limit Theorem. The English statistician Ronald A. Fisher (1890–1962) has been one
of the creators of modern statistics, working in many diverse areas.

Theorem 3.2 (Fisher-Tippett Theorem, [31]) Let X1,X2, . . . be i.i.d. random vari-
ables, and an > 0 and bn ∈R appropriate constants. Moreover we assume that

lim
n→∞P

(
max(X1, . . . ,Xn)≤ anx + bn

)=G(x) for x ∈ R (3.3)

holds for a distribution function G. Then G belongs to the class {Gγ,σ,μ : γ,μ ∈R,

σ > 0}, where

Gγ,σ,μ(x)=
⎧⎨
⎩

e−(1+γ x−μ
σ
)
− 1
γ
, if γ ∈ R\{0},

e−e− x−μσ
, if γ = 0,

⎫⎬
⎭ for

{
1 + γ x−μ

σ
> 0, if γ �= 0,

x ∈ R, if γ = 0.

The class of distributions {Gγ,σ,μ : γ,μ ∈ R, σ > 0} is called generalized ex-
treme value distribution (GEV). We recall that the support of a distribution func-
tion is the set of all x ∈ R, where 0 < F(x) < 1. Since Gγ,σ,μ(x) =Gγ,1,0( x−μσ ),
μ is called location parameter and σ is called scale parameter. The parameter γ is
known as shape parameter and defines the type of distribution: if γ > 0 the distri-
bution Gγ,σ,μ is a Fréchet distribution with support on [μ− σ/γ,∞); if γ = 0 the
distribution G0,σ,μ is a Gumbel distribution with support on R; if γ < 0 the distri-
bution is a Weibull distribution with support on (−∞,μ−σ/γ ]. The Fisher-Tippett
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Theorem 3.2 thus states that the limit distribution of maxima are necessarily gener-
alized extreme value distributions (and the normal distribution does obviously not
belong to this class).

We want to explain the modelling and statistical consequences of the Fisher-
Tippett theorem leading to the so-called blocks method. Recall the classical central
limit theorem, which ensures that the distributions of sums and means of random
variables converge to a normal distribution (for i.i.d. and even weakly dependent
variables under the assumption of a finite variance). This motivates the modelling of
random variables, which can be regarded as sums or means of random quantities by
a normal distribution. Similarly, random variables which represent extreme quanti-
ties can be modelled by an extreme value distribution; Sect. 4.1 discusses the typical
example of yearly maxima. Underlying this example the measurements consist of
daily temperature values, and the maximum over every year is considered. So an ex-
treme value distribution is an appropriate model for these yearly maxima. Moreover,
the assumption of independence between the different maxima is also realistic as the
time between two of such maxima is several months. We will discuss in Sect. 4.1, if
the assumption of those maxima being identically distributed is realistic.

Under the conditions of the Fisher-Tippett Theorem 3.2 much more holds. We
denote the class {Hγ,σ : γ ∈ R, σ > 0} of distribution functions Generalized Pareto
Distribution functions (GPD), which are defined as

Hγ,σ (x)=
{

1 − (1 + γ x
σ
)
− 1
γ , if γ ∈ R\{0}

1 − e− x
σ , if γ = 0

}
for

{
x ≥ 0, if γ ≥ 0,

0 ≤ x <−σ/γ, if γ < 0.

Again γ denotes the shape parameter and σ the scale parameter. Indeed the param-
eter γ here is the same as in the Fisher and Tippett Theorem 3.2. Then the following
theorem holds, which was proved independently by Pickands [39] and by Balkema
and de Haan [13].

Theorem 3.3 (Pickands-Balkema-de Haan Theorem) Assume that the conditions
of the Fisher-Tippett Theorem 3.2 hold and that F is the distribution function of X.
Then there exists a function σ : (0,∞)→ (0,∞) and some γ ∈ R such that

lim
u→∞P

(
X > u+ σ(u)x |X > u)= lim

u→∞
F(u+ σ(u)x)

F (u)
=Hγ,1(x)

for x in the support of Hγ,1.

It is now important for the Peaks-Over-Threshold (POT) method that for a large
threshold u the following approximation holds by Theorem 3.3, where we set y =
σ(u)x and use that Hγ,1(y/σ (u))=Hγ,σ(u)(y):

P(X > u+ y |X > u)= F(u+ y)
F (u)

≈Hγ,σ(u)(y) for y ≥ 0. (3.4)
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Fig. 6 Data X1, . . . ,X13
with corresponding excesses
Y1, . . . , YNu

Note first that an observation larger than u+ y is only possible, if the observation is
larger than u; this means one needs a so-called exceedance of u. Such an observation
has then necessarily a so-called excess over the threshold u, which is larger than y;
cf. Fig. 6. If we investigate the special case that X has distribution Hγ,σ , we already
have after some calculations that

P(X > u+ y |X > u)= Hγ,σ (u+ y)
Hγ,σ (u)

=Hγ,σ+γ u(u) (3.5)

and σ(u)= σ + γ u.
Let now X1,X2, . . . (as illustrated in Fig. 6) be i.i.d. with distribution Hγ,σ , then

(3.5) means that Y1, Y2, . . ., the exceedances of u, namely, (X − u | X > u), are
Hγ,σ+γ u distributed. In the case γ = 0, where H0,σ is the exponential distribution
with parameter σ−1, Y1, Y2, . . . are again exponentially distributed with parameter
σ−1. This phenomena is well known as loss-of-memory property. In the general
context of Theorem 3.3 with X1,X2, . . . i.i.d. with distribution function F , (3.4)
says that Y1, Y2, . . . are asymptotically generalized Pareto distributed.

In contrast to the Fisher-Tippett Theorem 3.2, which models extreme observa-
tions directly, the Pickands-Balkema-de Haan Theorem 3.3 models all large val-
ues of a sample, more precisely, all those which exceed a high threshold. This is,
where the acronym “Peaks-Over-Thresholds” (POT) originates. Compared to the
modelling of yearly extremes (the so-called blocks method) the POT method has a
positive and a negative property: on the one hand, taking all exceedances of a sample
usually gives more observations, on the other hand, such exceedances can occur in
clusters, so that the independence property can be violated. We will apply the POT
method in Sect. 4.3.

4 Fundamental Results from Extreme Value Statistics

The books of Beirlant et al. [1], Coles [3], McNeil, Frey, and Embrechts [7], Reiss
and Thomas [9] mentioned at the beginning of Sect. 3 provide also their own
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software package for analyzing extremal events. An extensive overview on quite
a number of R-packages and other extreme statistics software is given in [11];
cf. http://www.ral.ucar.edu/~ericg/softextreme.php and http://www.isse.ucar.edu/
extremevalues/extreme.html. In particular, we want to mention the Extremes Toolkit
(extRemes) developed in R by Eric Gilleland, which provides a user friendly graph-
ical interface.

4.1 Fitting the GEV to a Sample of Extreme Data (the Blocks
Method)

The GEV family can be applied as any other parametric family of distributions,
whenever the model is justified by the data. Consequently, the GEV has been used
for a sample of i.i.d. random variables, which result from some experiment and
justify such a model.

Assume we have given yearly maxima Y1, . . . , Yn, which can be assumed to be
i.i.d. GEV distributed with distribution function Gγ,σ,μ and density gγ,σ,μ with re-
alizations y1, . . . , yn. This means that data are block maxima and every year is a
block. Then the maximum likelihood estimator of the parameters is given as

(γ̂ , σ̂ , μ̂)= argmin
γ,σ,μ

n∏
t=1

gγ,σ,μ(yt ). (4.1)

We will use and slightly extend this concept to assess a possible trend in the location
or scale parameter of the data over time.

The next example is classic in this respect: we will fit a GEV to a sample of
yearly temperature maxima.

Illustration 4.1 (Climate Risk) Hot days are one of the prominent climatologi-
cal phenomenon changing. According to IPCC 2007 (cf. [6]), it is very likely that
warmer and more frequent hot days over most land areas have occurred in the late
20th century, a human contribution to this trend is likely, and it is—following their
likelihood classification—virtually certain that this trend will continue for the 21th
century. Daily maximum temperatures for example influence the well-being of hu-
mans putting additional stress to the thermal regulation and thus the cardiovascular
system. Temperature maxima are very closely linked to average summer tempera-
tures, each degree of warming increasing the maximum temperatures by 1.2 °C in
Basel (Switzerland); see Beniston and Diaz [17]. Other projected impacts of more
hot days comprise decreasing agricultural and forest yields in warmer environments,
reduced energy demand for heating, increased demand for cooling, or declining air
quality in cities.

We study long-term changes in daily maximum temperatures recorded at the old-
est mountain climate station in the world, the observatory Hohenpeißenberg (977 m
above sealevel, south-west of Munich), where regular meteorological observations

http://www.ral.ucar.edu/~ericg/softextreme.php
http://www.isse.ucar.edu/extremevalues/extreme.html
http://www.isse.ucar.edu/extremevalues/extreme.html
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Fig. 7 Two decades of monthly temperature maxima: 1879–1888 and 1999–2008. The red line
shows the estimated seasonality and trend

started beginning of 1781. We restrict our analysis to the period of 1879–2008, be-
cause in 1879 observations started being measured with new instruments under the
guidance of the Munich Meteorological Central Station and thus the time series
is homogenous. Due to its location on top of a mountain, summer temperatures are
2 °C to 3 °C lower than in the surrounding lowlands, whereas winter inversion layers
lead to higher temperatures than in the valleys. The absolute maximum so far was
recorded on July 29th in 1947 with 33.8 °C. Figure 7 displays the first (1879–1888)
and last decade (1999–2008) of monthly temperature maxima.

It is one of the most demanding problems in environmental statistics to deal with
trend and seasonality in data. When we are interested in the development of extreme
events, we have to specify the event we want to study. In environmental statistics a
usual measure of extremes is the return period as defined in (2.5). We could inves-
tigate the return periods of extremes in each month, January to December. Then we
could answer, for instance, whether extreme temperatures in winter or summer have
changed. Alternatively we could investigate the difference to a long-term mean or
some other quantities, which describe extreme events.

In the present paper we will concentrate on a possible long-term trend in high
temperatures at the station Hohenpeißenberg. Consequently, our analysis will be
based on yearly maxima (see Fig. 8), which we assume to be GEV distributed (in
Fig. 9 we shall see that this assumption is justified). Recall, however, that based
on the IPCC 2007 report a 130 year temperature time series cannot be regarded as
stationary. Thus, we want to incorporate some time-dependence into our model, i.e.
a linear warming trend, although we know that there was not a uniform increase in
mean temperature, but two periods with particular warming during approximately
1900–1945 and 1975–today.

We will investigate two possibilities to introduce non-stationarity into the model.
Recall that classical time series theory (e.g. Brockwell and Davis [2]) suggests for
a time series Y1, Y2, . . . either an arithmetic model of the form Yt = �t + Xt or a
multiplicative model Yt =�tXt for t = 1,2, . . . , where �1,�2, . . . models a non-
stationary deterministic effect like drift and seasonality, and X1,X2, . . . is a station-
ary process. If X1,X2, . . . are identically GEV distributed, then we see immediately
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Fig. 8 Maximum yearly
temperature over 130 years of
data. The highest temperature
has been measured in 1947

that �1,�2, . . . affect either the location parameter μ (for the arithmetic model) or
the scaling parameter σ (for the multiplicative model) of the GEV distribution of
Y1, Y2, . . . . But the shape parameter γ remains the same under these deterministic
location and scale changes. For simplicity, we introduce a linear trend into the lo-
cation and scale parameter of the yearly maximal temperatures; i.e. we assume that
the yearly maximal temperature Y1, . . . , Y130 are an independent sequence with

Yt ∼Gγ,σ(t),μ(t) for t = 1, . . . ,130,

where μ(t)= μ+ at and σ(t)= σ + bt . Consequently, we will estimate by maxi-
mum likelihood estimation and compare the following models:

(1) Model 1: μ(t)= μ and σ(t)= σ ,
(2) Model 2: μ(t)= μ+ at and σ(t)= σ ,
(3) Model 3: μ(t)= μ and σ(t)= σ + bt ,
(4) Model 4: μ(t)= μ+ at and σ(t)= σ + bt .
The estimation results are presented in Table 1.

For a comparison of the four different models, we notice that the negative log-
likelihoods indicate already that Models 2 and 4 are better than Models 1 and 3, re-
spectively. Although Model 1 is a special case of Model 3, the likelihood of Model 1
is nearly the same as the likelihood of Model 3. We guess already that the trend in
the scale parameter may not be statistically significant, which is indeed true; the
fluctuations do not significantly change over time. We have applied likelihood ratio
tests to all nested pairs of models. Our model pairs are nested, when some of our
parameters (a or b) may be zero or not. For details we refer to Coles [3], Sect. 2.6.6.

The tests compare (as we have already done informally) the likelihoods of two
models. Rejection is now determined by asymptotic theory. More precisely, assume
two (nested) models, say (I) and (II), with parameter θ(1) ∈ R

d−k for k < d , in
model (I) and θ(2) = (θ(2)1 , θ

(2)
2 ) ∈ R

d (where θ(2)1 ∈ R
k, θ

(2)
2 ∈ R

d−k) in model (II)
with maximum likelihood estimators θ̂ (1) and θ̂ (2). Then, under some regularity con-
ditions for the maximum likelihood functionsL1(θ̂

(1)) andL2(θ̂
(2)), it can be shown

that the quantity −2(logL1(θ̂
(1))− logL2(θ̂

(2))) is asymptotically χ2
k -distributed.

We present the results of 3 of our tests:
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Table 1 Maximum likelihood estimators for μ, a, σ , b, and γ with standard errors in brackets
below. The negative log-likelihood corresponding to the estimated models is given in the right-
hand column

Parameters μ a σ b γ − logL

Model 1 27.49671
(0.17721)

– 1.84122
(0.12203)

– −0.20125
(0.05070)

268.9776

Model 2 26.65174
(0.32672)

0.01320
(0.00426)

1.76802
(0.11814)

– −0.19624
(0.05253)

264.3865

Model 3 27.21659
(0.18851)

– 1.70919
(0.23720)

0.00199
(0.00377)

−0.18065
(0.06075)

268.9581

Model 4 26.65110
(0.32730)

0.01321
(0.00426)

1.77117
(0.22692)

−0.00005
(0.00301)

−0.19605
(0.05332)

264.3863

• Model 1 against Model 2: H0 : a = 0 versus H1 : a �= 0

−2
(
logL1

(
μ̂(1), σ̂ (1), γ̂ (1)

)− logL2
(
μ̂(2), â(2), σ̂ (2), γ̂ (2)

))

= 9.1823> 3.8415 = χ2
1 (0.95),

i.e. we reject H0 (p-value = 0.002444).
• Model 1 against Model 4: H0 : a = b= 0 versus H1 : a �= 0 or b �= 0

−2
(
logL1

(
μ̂(1), σ̂ (1), γ̂ (1)

)− logL4
(
μ̂(4), â(4), σ̂ (4), b̂(4), γ̂ (4)

))

= 9.1826> 5.9915 = χ2
2 (0.95),

i.e. we reject H0 (p-value = 0.0104).
• Model 2 against Model 4: H0 : b= 0 versus H1 : b �= 0

−2
(
logL2

(
μ̂(2), â(2), σ̂ (2), γ̂ (2)

)− logL4
(
μ̂(4), â(4), σ̂ (4), b̂(4), γ̂ (4)

))

= 3 × 10−4 < 3.8415 = χ2
1 (0.95),

i.e. we do not reject H0 (p-value = 0.986983).

The p-value is an indicator of significance: the p-value of 0.002444 as calculated in
the first test ensures that we can reject H0 for all significance levels larger than this
value. So the smaller the p-value, the more justified is a rejection of H0. The com-
parison shows that a trend in the location parameter of the GEV model is significant
but not the trend in the scale parameter. Model 4 gives no improvement to Model 2.
Hence, again with support by statistical theory we conclude that the best model is
Model 2, and there is no significant difference between Models 2 and 4, justifying
the choice for Model 2.

In order to assess the model fit graphically, we will use a Gumbel probability plot
(based on the GEVG0,1,0) (PP-plot) and a Gumbel quantile-quantile plot (QQ-plot)
for our transformed data set. Therefore, we show that any Gγ,σ(t),μ(t) distributed
random variable Yt with γ < 0 (the relevant regime for the temperature example is
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Fig. 9 The linear location Model 2 transformed to standard Gumbel: PP-plot and QQ-plot

a Weibull GEV distribution) can be transformed to a Gumbel random variable as
follows. Afterwards we can use standard software for the plots.

We define

Zt = 1

γ
ln

(
1 + γ (Yt −μ(t))

σ (t)

)
,

and prove below that indeed Zt is standard Gumbel distributed. Note first that the
Gumbel distribution has support on the whole of R, whereas the Weibull distribution
Gγ,σ(t),μ(t) has support (−∞,μ(t)− σ(t)/γ ]; i.e. Gγ,σ(t),μ(t)(x) = 1 for all x >
μ(t)− σ(t)/γ . Then 1 + γ (Yt −μ(t))/σ (t) > 0 and, hence, Zt has full support R.
Now we calculate

P(Zt ≤ x) = P

(
1

γ
ln

(
1 + γ (Yt −μ(t))

σ (t)

)
≤ x

)

= P

(
Yt ≤ σ(t)

γ

(
eγ x − 1

)+μ(t)
)

= e−e−x
for x ∈R.

This means that, provided Y1, Y2, . . . are independent Weibull distributed random
variables, then Z1,Z2, . . . are independent Gumbel distributed random variables.
Consequently, once we have estimated μ(t), σ(t) and γ , we transform our data Yt
to

Ẑt := 1

γ̂
ln

(
1 + γ̂ (Yt − μ̂(t))

σ̂ (t)

)
,

which should be close to a Gumbel distribution, provided the data are indeed
Weibull GEV distributed with the estimated parameters. Figure 9 assesses the distri-
bution fit by a PP-plot and a QQ-plot for the estimated parameters of Model 2 with
linear location parameter. In the first plot, the PP-plot, the empirical distribution
of Ẑ1, . . . , Ẑ130 is plotted against the Gumbel distribution. In the second plot, the



172 V. Fasen et al.

Fig. 10 Estimated right endpoint of the GEV distribution of Model 1 (blue line) and the linear
trend Model 2 (red line). For Model 1 we estimate the constant right endpoint of 36.645 °C. For
Model 2 the right endpoint starts at 35.674 °C and ends at 37.377 °C

QQ-plot, the quantiles of the Gumbel distribution are plotted against the empirical
quantiles of Ẑ1, . . . , Ẑ130. Both look very convincing, since they follow a 45◦ line
confirming again Model 2.

For Model 2 we estimated the asymptotic 95 % confidence interval for γ . Let
z1−α/2 be the 1 − α/2-quantile of the normal distribution and ŝγ be the estimated
standard deviation of γ̂ . Then by classical likelihood theory (see Smith [10]), at
least for γ < 1/2,

(γ̂ − z1−α/2 ŝγ , γ̂ + z1−α/2 ŝγ )

denotes the asymptotic (1 − α)× 100 % confidence interval for γ . In Model 2 this
results in the 95 % confidence interval (−0.29972,−0.06158) for γ . As mentioned
after the Fisher-Tippet Theorem 3.2 a negative γ indicates a Weibull distribution
with finite right endpoint, meaning that there should be a limit of extreme maximum
temperatures, which is not exceeded. Similarly, we obtain for a the 95 % confidence
interval

(̂a − z1−α/2 ŝa, â + z1−α/2 ŝa)= (0.0048504,0.0215496),

which reflects that a is positive; we have a statistically significant increase in the
location parameter and a trend in the extremal temperatures.

The right endpoint of the Weibull distribution is given by μ(t)− σ(t)/γ (repre-
senting the maximum yearly temperature), which we can also estimate after having
estimated the parameters. Figure 10 visualizes the constant endpoints of Model 1,
where we have assumed fixed parameters over the whole time period, and the in-
crease of the endpoint for the linear trend Model 2 caused by the linearity in the
location parameter.

From this analysis presented in Fig. 11 we see that the return levels of high tem-
peratures have increased considerably over the last 130 years. This increase is due
to an increase of the location parameter of the extreme temperatures, the levels of
the return periods have increased. The estimated parameters suggest an increase of
at = 0.01320t = 0.01320 × 130 = 1.716 °C over 130 years, corresponding to an
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Fig. 11 The red lines show
the estimated 100-year return
level (which is the 99 %
quantile), where the straight
line is based on Model 1 and
the dashed line on Model 2.
Similarly the blue lines show
the estimated 50-year return
level based on Model 1 and
Model 2, respectively

increase of 1.32 °C over a century. In contrast, simple least square linear regres-
sions reveal increases in daily mean temperature of 1.472 °C and in daily maximum
temperature of 1.515 °C over 130 years at the climate station Hohenpeißenberg,
corresponding to an increase of 1.13 °C for the mean and of 1.17 °C for the daily
maximum temperature over a century. Compared to these naive estimators the more
realistic assessment by EVT methods yields a considerably higher prediction for the
daily maximum temperatures in the future.

Prediction could now be based on this analysis. If we believe that the linear
trend remains the same over the next 10 years, then we would estimate the value
of 37.377 + 0.132 = 37.5090 for the maximal yearly temperature in 2018. Note
however, that such a fixed number is very unlikely. A confidence interval would be
needed to give some idea about the statistical variability. By our estimation method
we have been able to calculate confidence intervals for every single parameter esti-
mate. However, for a confidence interval of the prediction we would need the whole
distribution, which involves all three parameters, and their estimates are dependent.
So besides standard errors (based on the estimated variance of the maximum likeli-
hood estimators) also the asymptotic correlations between parameter estimates en-
ter. Such theory, however, goes beyond this introductory paper, and gives rather food
for thought.

Apart from this statistical discussion, there is also some doubt on the assumption
that future maximum temperatures increase with the same linear drift as the past
ones. This also depends on political measures being taken against the threatening
climate change.

4.2 The Blocks Method from Scratch

In the previous section we have simply started with maximum yearly temperatures
over 130 years, and fitted an extreme value distribution to these data. This model
choice was first based on the Fisher-Tippet Theorem 3.2, and later justified by a
PP-plot and a QQ-plot depicted in Fig. 9.

As the name blocks method suggests the idea behind it is to divide the data
X1,X2, . . . ,Xnm intom blocks of roughly the same length n and consider the block
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Fig. 12 The largest claims of
a Danish fire insurance per
month. The black line is the
10-year return level, and the
dashed red lines indicate the
95 %-confidence interval

maxima, i.e. we define Mn,j = max(X(j−1)n+1, . . . ,Xjn) for j = 1, . . . ,m. Recall
that on the one hand we want to choose the blocks so small that we get as many
block maxima as possible, on the other hand we have to choose them large enough
so that we can assume that block maxima follow an extreme value distribution and
also that they are independent.

Illustration 4.2 (10-Year Return Period for Danish Fire Data) For the daily losses
of the fire insurance portfolio overmmonthsX1,X2, . . . ,Xnm (i.e.,Xk is the loss at
the kth day), we determine the maximum losses within a month, respectively. These
monthly block sizes are roughly equal, more precisely, n is between 28 and 31 days,
and Mn,j is the maximum loss during the j th month. As a first ansatz, according to
the Fisher-Tippett Theorem 3.2, we exploit the fact that the distribution ofMn,j can
be approximated by a GEV distribution, so that

P(Mn,j ≤ u)≈Gγ,σ,μ(u),

where γ,σ,μ are parameters, which have to be estimated, and the constants an and
bn are integrated in σ and μ. We denote by γ̂ , σ̂ , μ̂ the respective estimators. Then
we approximate

P(Mn,j ≤ u)≈Gγ̂ ,̂σ ,μ̂(u).

The level of the 10-year return period of the largest monthly claim, which happens
in mean only once in 10 years can be estimated by means of (2.5). Since also q =
1/(10 × 12) holds, we obtain

û= x̂1−q =G−1
γ̂ ,̂σ ,μ̂

(
1 − (10 × 12)−1). (4.2)

For the Danish fire data as depicted in Fig. 4 we estimate 195.7 million Danish
Krone as level for extreme monthly claims, which happen in mean every 10 years
(see Fig. 12).
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4.3 The POT Method

It has been argued that applying the blocks method to data has the drawback of
disregarding data, which may contribute information to the statistics of extreme
values. Moreover, the blocks method can easily be applied to yearly, monthly or to
other blocks-structured data, but what to do, if this is not the case. The Peaks-Over-
Threshold (POT) method presents a valuable alternative.

The following section is dedicated to the POT method for a sample X1, . . . ,Xn,
where we assume for the distribution function F that F(x) = P(X ≤ x) < 1 for
x > 0. We define further for a high threshold u

Fu(y) := P(X− u > y |X > u)= F(u+ y)
F (u)

for y ≥ 0.

Consequently, we obtain

F(u+ y)= F(u)Fu(y) for y ≥ 0. (4.3)

How can we use these identities now to estimate tails and quantiles?
If now Nu denotes the number of all k ∈ {1, . . . , n} satisfying Xk > u given by

Nu = #
{
k ∈ {1, . . . , n} :Xk > u

}
,

then we denote by Y1, . . . , YNu the excesses of X1, . . . ,Xn, i.e. the heights of the
exceedances of u (cf. Fig. 6). We obtain an estimator for the tail (for values larger
than u) by estimating both tails on the right hand side of (4.3). We estimate F(u) by
the relative frequency

̂F(u)= Nu

n
(4.4)

and approximate Fu(y) by the Generalized Pareto Distribution (GPD) of (3.4),
where the scale parameter σ(u) has to be considered. It is integrated as parame-
ter σ(u) into the limit distribution such that

Fu(y)≈
(

1 + γ y

σ(u)

)−1/γ

for y ≥ 0, (4.5)

where γ and σ(u) have to be estimated by some estimators denoted by γ̂ and σ̂ (u).
From (4.3)–(4.5) we obtain a tail estimator of the form

̂F(u+ y)= Nu

n

(
1 + γ̂ y

σ̂ (u)

)−1/γ̂

for y ≥ 0. (4.6)

Then for given p ∈ (0,1) we obtain an estimator x̂p for the p-quantile xp taken
from (2.1) by solving the equation

1 − p = Nu

n

(
1 + γ̂ x̂p − u

σ̂ (u)

)−1/γ̂

.
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Fig. 13 Estimated tail of the daily losses of the S&P500. The black curve shows the tail estimated
by the POT method with threshold u= 0.0212, γ̂ = 0.193, σ̂ = 0.00575 and the red line shows the
distribution tail estimated under the assumption of a normal distribution for the daily losses. The
vertical black line indicates the logarithmic VaRPOT

0.99 (X) = 0.028 estimated by the POT method

and the vertical red line shows the logarithmic VaRnorm
0.99 (X) = 0.024 estimated from a normal

distribution

This gives

x̂p = u+ σ̂ (u)

γ̂

((
n

Nu
(1 − p)

)−γ̂
− 1

)
. (4.7)

Illustration 4.3 (Tail and Quantile Estimation) We apply the POT method to the
S&P500 loss data using the tail estimate from (4.6) and, for comparison, we also
fitted a normal distribution to the data by estimating mean and variance by their
empirical versions. Figure 13 depicts both tail estimates in logarithmic scale for a
threshold u= 0.0212 and y > 1. Moreover, VaRPOT

0.99(X) was estimated for the daily
losses using the POT estimator (4.7) as well as the normal estimator VaRnorm

0.99 (X)=
μ̂+ σ̂ z0.99, where z0.99 is the 0.99-quantile of the normal distribution. Plotted are
again the logarithmic quantities; i.e. log VaRPOT

0.99(X)= 0.028 and log VaRnorm
0.99 (X)=

0.024, which correspond to VaRPOT
0.99(X)= 2.795 and VaRnorm

0.99 (X)= 2.784; the dif-
ference of 0.011 does not look too substantial, but recall that our data are relative
losses (i.e. percentage points). Moreover, the standardized S&P500 portfolio value
compares only to a standardized bank portfolio, so has to be multiplied by millions
to obtain a realistic value.

We clearly see that the normal distribution tail is completely inadequate to esti-
mate the tail of the daily losses of the S&P500. The data are far above its normal
tail estimate. Usage of the normal distribution underestimates the risk considerably
and yields a completely inadequate risk capital.

In Illustration 4.3 we have estimated the tail and the VaR0.99(X) for the S&P500
losses and depicted in Fig. 13. The estimation was based on the assumption that the
losses (or at least the excesses) are i.i.d. However, modelling of financial data goes
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Fig. 14 The empirical standard deviations of the daily losses of the S&P500 during 1991–2004
with estimators based on the previous 250 days, respectively

far beyond marginal distributions. It has been a relevant research area for decades,
and we conclude with some facts and references.

Remark 4.4 (i) Dependence between portfolio components are in the normal model
given by correlations, which only model linear dependence. Market risk portfo-
lios, however, consist of such different assets as shares, options, and more complex
derivatives, which are known to be non-linearly dependent. It is of high importance
to have a comprehensive understanding of the influence of the portfolio components
to the portfolio loss. Dependence modeling and different dependence measures are
discussed in Chap. 9, [37].

(ii) Already from the daily losses depicted in the right plot of Fig. 2 it is clear
that the data vary considerably in their structure. We see immediately that a pe-
riod of low volatility is followed by a period of high volatility (the standard devi-
ation is called volatility in banking jargon). It is certainly not obvious that all ob-
servations can be modelled with the same distribution. Recall that (2.3) requires
daily estimates based on past year’s observations. Figure 14 shows the running
empirical estimates of the volatility σ of the daily losses of the S&P500 based
on observations of the past one year, respectively. This simple window estimate
shows clearly the time-varying volatility, which is typical for most financial time
series.

(iii) Until now we have not touched the important questions of time dependence
within the time series of daily returns. Financial data show an interesting depen-
dence structure; although most daily returns are uncorrelated, the data do not orig-
inate from independent observations. As seen in Fig. 15 the sample autocorrelation
function of the daily losses of the S&P500 is almost 0 for all lags, whereas the
sample autocorrelation function of the squared returns is substantial, contradicting
the independence assumption. The most prominent financial time series model is
the GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model.
Volatility is modelled as a stochastic process and can capture a dependence struc-
ture as seen in Fig. 15. An excellent overview on discrete-time and continuous-time
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Fig. 15 Sample autocorrelation function of the daily losses (left) and the squared daily losses
(right) of the S&P500

stochastic volatility models in one and multivariate dimensions is the book edited
by [12].

5 Food for Thought

Extreme value theory has gone a long way since its beginnings with Fisher and Tip-
pett in 1928. New applications, unheard-of in the 1920-ies have emerged. Climate
change, large insurance claims and extreme financial risk are just three of them.
Extreme value theory has found its way also into the areas of technical safety and
reliability theory, as well as the statistical assessment of environmental quantities
like temperatures, floods, droughts, earthquakes and storms.

Concerning the statistical methods we have presented, we want to emphasize the
following. In our statistical analyses we have assumed that data are independent
and have the same distribution (perhaps enriched by a linear trend, which can easily
be implemented). This assumption is often unrealistic. As reported in Remark 4.4
financial time series exhibit in general a very complex dependence structure; for
the S&P500 see Figs. 14 and 15. Many data, also insurance claims, are affected by
seasonal effects or exhibit some clusters of claim events. Such effects can influence
estimation and prediction procedures considerably. Moreover, the one-dimensional
case treated above is rather unrealistic. Portfolios of market risks are composed of
many components (often several hundreds), and it may be interesting to understand
the dependence in the combination of extreme risks. Moreover, risks are often influ-
enced by some latent variables, whose influence would have to be assessed as well.
Such problems are hot research topics at the moment and require still a considerable
amount of theoretical and practical work.

Extreme value theory has been extended to multivariate data, which is rather
demanding, since there exists no finite parameterizations as in the one-dimensional
case as seen in the Fisher-Tippett Theorem 3.2. The dependence between different
components of a vector is modeled by an integral with respect to some measure and
Poisson random measures provide a very powerful tool to deal with such problems;
cf. Resnick [41].
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Moreover, extreme value theory for time series with marginals ranging from
Gaussian to heavy-tailed ones is still a lively research area. The usual picture is
that for light-tailed time series models one can more or less ignore the dependence
structure, whereas for heavy-tailed models the dependence creeps into the extreme
tails (events) by leading to clusters of extremes; cf. Fasen [28], Fasen, Klüppelberg,
and Schlather [30].

More recently, also spatial and space-time extreme value models have come into
focus in particular for environmental data like heavy rainfall or storms requiring
special statistical methods; cf. Davis, Klüppelberg, and Steinkohl [25, 26] for details
and further references.

For those interested in the state of the art of extreme value theory research, we
recommend to consider the journal “Extremes” (http://www.springer.com/statistics/
journal/10687), which is solely devoted to theory and applications of extreme val-
ues.

6 Summary

We hope that we have convinced our readers that extreme value theory and extreme
value statistics offer an important theory and statistical estimation procedures to
assess extreme risks in different applications areas.

We have presented the basic theory and also three estimation procedures to find
the distribution and other quantities describing extreme events. The first one was to
fit a GEV to extreme data, where we also took care of non-stationarity of the data
either in the location parameter (linear trend) or in the scaling parameter (higher
fluctuations). The second one was to use the block-maxima method for a sam-
ple where only the blocks maxima were distributed according to a GEV distribu-
tion. And finally, we introduced the POT method, which models high threshold ex-
ceedances.

As a result we obtained for our three examples:

• The climate change data exhibit a higher trend in the yearly maxima over the last
century than the mean trend at the corresponding station. The Weibull distribution
is the appropriate extreme value distribution, which shows that high temperature
is bounded, although the maxima increase.

• Danish insurance claims, which are from a fire insurance portfolio, are very
heavy-tailed data, and the model suggests that with a (non-negligible) positive
probability the insurance company may experience a claim, which is easily twice
as high as they have ever seen before.

• The daily losses of the S&P500 have a 99 % Value-at-Risk of 0.028 % when
estimated by the POT method, while based on the normal distribution, it is
only 0.024 %. While these numbers look small, in banking business one has
to multiply them by millions of Euros, so that the difference becomes substan-
tial. Since capital reserves have to be calculated built on such numbers, the banks
are much happier about the smaller numbers coming from the Gaussian distribu-
tion.

http://www.springer.com/statistics/journal/10687
http://www.springer.com/statistics/journal/10687
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Chapter 7
Statistical Models for the Prediction of Genetic
Values

Chris-Carolin Schön and Valentin Wimmer

Agricultural and medical genetics are currently revolutionized by the technological
developments in genomic research. The genetic analysis of quantitatively inherited
traits and the prediction of the genetic predisposition of individuals based on molec-
ular data are rapidly evolving fields of research. We ask how phenotypic variation
for a quantitative trait can be linked to genetic variation at the DNA level. Ad-
vances in high-throughput genotyping technologies return data on thousands of loci
per individual. We present linear models to identify molecular markers significantly
associated with quantitative traits. We discuss the drawbacks arising from a large
number of predictor variables and a high degree of collinearity between them. We
illustrate how linear mixed models can overcome the limitations through shrink-
age and allow the prediction of genetic values inferred from genome-wide marker
data. With a small example from maize breeding, we present how the models can
be applied to predict the risk of genetically diverse individuals to be damaged by
insects and why predictions based on whole-genome marker profiles are likely to be
more accurate than those based on pedigree information. The choice of appropriate
methods for quantitative genetic analyses based on high-throughput genomic data
for medical and agricultural genetics is discussed.
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The Facts

• Agricultural and medical genetics are currently revolutionized by the technologi-
cal developments in genomic research.

• Many quantitative traits are complex, i.e. they are controlled by a large number of
genes. The genetic predisposition of individuals can be predicted based on their
DNA marker profile.

• The major challenge in predicting the phenotype from the genotype is that the
number of predictor variables p often exceeds the number of observations n.

• With n < p and model selection the estimated marker effects are biased in multi-
ple marker regression models.

• Linear mixed models provide a framework for simultaneously estimating marker
effects even if n� p.

1 Introduction

Crops and livestock species have been genetically improved by breeders for more
than 10,000 years. In the selection process, breeding populations are evaluated for
traits such as productivity, quality or resistance against diseases and environmental
stress, and only those individuals that meet specific requirements form the parents
of the next generation. Because most traits of importance follow a continuous dis-
tribution, understanding and predicting quantitative genetic variation is crucial in
agricultural genetics. The trait value or phenotypic value (P ) of an individual is
determined by the joint action of many genes and the environment. Thus, the phe-
notypic value of an individual can be expressed as the sum of its genotypic value
(G) and an environmental deviation (E)

P =G+E.

This decomposition also holds when measuring the amount of variation in a popula-
tion of individuals. Assuming independence of genotypic and environmental effects,
the total phenotypic variance (σ 2

P ) is given as the sum of the genotypic (σ 2
G) and the

environmental (σ 2
E) variance components, thus

σ 2
P = σ 2

G + σ 2
E.

An important question in quantitative genetics is the relative contribution of the
genotype and the environment to trait variation. For a given population, the heritable
portion of trait variation can be quantified with the trait heritability, which is defined
as

h2 = σ 2
G

σ 2
P

= σ 2
G

σ 2
G + σ 2

E

. (1.1)
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The genetic variance can be further subdivided into the additive genetic variance
component σ 2

A resulting from the effects of individual alleles, the dominance ge-
netic variance component σ 2

D resulting from the interaction of two alleles of the
same gene and the epistatic genetic variance component σ 2

I resulting from the in-
teraction of alleles of different genes [1]. It is the additive genetic variance that is
most important in breeding because it is the major determinant for the resemblance
between parent and offspring. Thus, for simplicity we will focus on the additive
genetic variation and assume absence of dominance and epistasis throughout this
chapter. For a more detailed description of the decomposition of the genotypic vari-
ance the reader is referred to textbooks on quantitative genetics [1, 5].

Linking phenotypic variation with genetic variation at the DNA level is crucial
for understanding the inheritance of quantitative traits. The most abundant and also
the simplest form of genetic variation at the DNA level is the exchange of a sin-
gle nucleotide at a given position in the genome which is called single nucleotide
polymorphism (SNP). Some SNPs are functional, i.e. their variation translates di-
rectly into phenotypic variation. Many SNPs are silent, i.e. they do not have a direct
effect on the phenotype but they are still useful as genetic markers. If a silent and
a functional SNP are both located on the same chromosome, the probability that a
specific allele at a silent SNP is associated with a specific allele at the functional
SNP increases with increasing proximity on the chromosome. This non-random as-
sociation of alleles between SNPs is called linkage disequilibrium (LD). In a given
population LD arises from a shared history of mutation and recombination. Given
the non-random association of alleles between SNP markers and genes affecting a
quantitative trait, variation at the SNPs will track the genetic variation at the un-
observable quantitative trait loci (QTL). The extent and pattern of LD across the
genome varies depending on the studied species and its breeding history. For many
species, SNP arrays have been developed that can determine the genotype of an indi-
vidual at tens or hundreds of thousands of nucleotide sites. With these tools at hand,
it is possible to achieve good genome coverage and visualize variation at many loci
with a high probability of the SNP marker being in high LD with one or more QTL
affecting the trait of interest. A very good introduction to genetic analysis can be
found in [2].

The choice of experimental design and statistical model employed in the genetic
analysis of complex traits depends on the genetic architecture of the trait under
study. Let our trait of interest be the risk of a plant to be susceptible to a disease or
to insect damage. We assume this risk to be controlled by a few QTL with sizeable
effects. First of all, we need to identify a population of individuals that genetically
differ with respect to our trait of interest. For every individual of our population we
analyze the SNP genotypes at many marker loci in the lab and collect phenotypic
data on the risk of disease in the field or in a resistance test in the greenhouse. The
aim of our study will be to identify significant associations between SNP markers
and QTL, localize the QTL on the genome, characterize their molecular properties
and gain insight into how the different alleles at the QTL contribute to phenotypic
trait variation. With this knowledge we can predict the disease risk of another set
of individuals as long as we know their SNP genotypes and we will select those
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individuals for which the risk of being affected by the disease is minimized. It will
no longer be necessary to test the selection candidates in the field or in the green-
house for their phenotypes. The prediction accuracy and also our selection success
will depend on the statistical power of the experiment, in which we identified the
marker-trait associations. If we were able to identify all or most of the QTL con-
tributing to trait variation our prediction accuracy will be high. If many QTL remain
undetected by the SNP markers prediction accuracy will be low. The statistical mod-
els for the identification of significant associations between SNP markers and QTL
are introduced in Sect. 2.

Our assumption was that disease risk is regulated by a few genes with sizeable ef-
fects. However, we have ample evidence from marker-based studies that this might
be rather the exception than the rule. In crop plants, many genes with small ef-
fects contribute to the genetic variation of traits like grain yield or flowering time
[9, 18]. Similar results have been shown for livestock species and in human genetic
studies [17, 20]. Thus, for these traits it may be more appropriate to predict the
genetic value of an individual using many markers randomly dispersed across the
genome instead of selected SNPs. This concept is based on the hypothesis that with
a sufficiently high density of marker data all of the genetic polymorphisms con-
tributing to trait variation are in high LD with the markers segregating in the studied
population. Statistical methods for genome-wide prediction of the genetic merit of
individuals from high-density, genome-wide marker data were suggested in a semi-
nal paper [16]. Prediction models are developed based on large training populations
for which genotypic and phenotypic data are available. However, with high-density
SNP assays the number p of predictor variables, i.e. SNP markers, often exceeds
the number n of observations (small n, large p). Furthermore, with SNP markers in
LD multicollinearity is prevalent among predictor variables leading to an inflation
of variance of their estimated effects [3]. In Sect. 3 we describe statistical models
that can cope with this situation.

The remainder of this chapter is structured as follows. In Sect. 2, we introduce
linear models. In Sect. 3 we give an overview of linear mixed models, a model class
which is suitable for problems with n� p. In Sect. 4, we present how the genetic
value of an individual can be predicted based on information from its relatives. Sec-
tion 5 compares the different models with respect to their assumptions and pitfalls.
All models are illustrated by a simulated data example. We also give an outlook how
genome-wide marker information can be used to predict the genetic predisposition
in human genetics.

2 Linear Models

In quantitative genetic analyses we use linear models to investigate the relationship
of an observed response or dependent variable Y (phenotype) and a predictor or
independent variable X (SNP marker) that is observed along with Y . Note, that we
use the term linear, because the model is linear in the model parameters and not
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necessarily in X. We can fit a simple linear regression model to find out, if a given
SNP marker is significantly associated with variation in the response variable and
how much of that variation can be explained by the predictor variable. The SNP
markers are generally biallelic and we can observe two alleles (A and a) in the
population. The rare allele is called the minor allele as opposed to the major allele.
In a diploid species each individual carries two alleles which yields three different
genotypes for a given SNP marker (AA, Aa, aa). If both alleles are identical by
state, the individual is called homozygous and heterozygous otherwise. See [2] for
more details on the genetic nomenclature. The marker genotype of an individual is
coded by the number of copies of the minor allele, i.e. 0, 1, and 2. Thus, the slope of
the regression line estimates the additive effect of one additional copy of the minor
allele.

Let us assume we observe data on X and Y for n independent individuals, i.e.
tuples (x1, y1), . . . , (xi, yi), . . . , (xn, yn). With the simple linear regression model

yi = β0 + β1xi + ei, i = 1, . . . , n, (2.1)

we estimate two unknown constants, the intercept β0 and the slope β1 of the regres-
sion line. The residual term ei represents the part of the data which is not explained
by the model, i.e. the random deviation of each (xi, yi) from the regression line.
Inference in a linear model is based on the assumption of normally distributed, un-
correlated residuals with mean 0 and variance σ 2, i.e. ei ∼ N(0, σ 2). Estimates of
the regression coefficients β0 and β1 can be obtained using the least squares es-
timation procedure. This method minimizes the sum of squares of the estimated
residuals

SQR =
n∑
i=1

ê2
i =

n∑
i=1

(yi − ŷi )2 =
n∑
i=1

[
yi − (β̂0 + β̂1xi)

]2

with respect to β̂0 and β̂1. The least squares estimates for the intercept and the slope
are

β̂0 = ȳ − β̂1x̄,

β̂1 =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
.

To decide if the regressor variable X has a statistically significant influence on the
response variable, hypothesis testing of the slope of the regression β1 is necessary.
We formulate the following hypotheses

H0 : β1 = 0 versus H1 : β1 �= 0. (2.2)

In an analysis of variance (ANOVA) the total sum of squares (SQT) of the response
variable Y is partitioned into a component explained by the model (SQE) and the
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residual sum of squares (SQR) which is not explained by the model

n∑
i=1

(yi − ȳ)2
︸ ︷︷ ︸

SQT

=
n∑
i=1

(ŷi − ȳ)2
︸ ︷︷ ︸

SQE

+
n∑
i=1

(yi − ŷi )2
︸ ︷︷ ︸

SQR

. (2.3)

Under the normal distribution assumption on the ei an F-statistic can be calcu-
lated from the ratio of the corresponding mean squares, i.e. F = MQE/MQR with
MQE = SQE/1 and MQR = SQR/(n− 2). If the F-statistic exceeds the tabulated
value at the given significance level we reject H0 and conclude that the SNP marker
is significantly associated with variation in the response variable. Consequently we
can use this marker for prediction of the genetic merit of our selection candidates.
Prediction of a new individual’s genetic merit based on the SNP marker genotype
xn+1 is given by ŷn+1 = β̂0 + β̂1xn+1. The fit of the model can be judged from the
coefficient of determination which is defined as R2 = SQE/SQT. It quantifies the
proportion of variability in the response variable Y that is explained by the statis-
tical model. In the genetic literature this type of analysis is called single marker
regression (SMR) or single marker ANOVA.

Illustration 2.1 (Resistance against the European corn borer) Let us now look at an
example that illustrates the method of SMR. We want to investigate the susceptibil-
ity risk of eight maize individuals (I1–I8) to an insect called European corn borer
(Ostrinia nubilalis) which is a major pest of maize, see Figs. 1A and 1B. We start
with a simulation study using eight maize plants that are derived from different se-
lection cycles of the breeding process. Some of them are related through common
ancestors. We will have a closer look at their relatedness in Sect. 4. Our response
variable Y ∈ R is the average tunnel length [cm] in the stalk of each individual
caused by feeding of the larvae, see Fig. 1C.

We assume that the trait tunnel length is normally distributed and that the genetic
variation for tunnel length is purely additive. Each of the eight plants is assigned
a genotype (0, 1 or 2) at each of four biallelic SNP markers. SNP1 is assumed not
to be associated with tunnel length. SNP2, SNP3 and SNP4 each have an effect on
tunnel length. SNP2 has an effect of 1 cm, SNP3 and SNP4 of −4 cm and 4 cm. The
sign indicates whether the trait increasing allele is associated with the minor or the
major allele. We obtain phenotypic values for individuals I1–I6 by adding random
environmental noise to the genotypic value from a normal distribution with mean
0 cm and variance σ 2 = 4 cm2. To avoid negative values, we add a constant to each
simulated trait value (c= 10 cm), hence ei ∼ N(10,4). Let’s assume that we have no
phenotypic data for individuals I7 and I8. The resulting data comprising pedigrees
(parent P1 × parent P2), phenotypic values, and marker genotypes for the eight
individuals are given in Table 1. Of course, this is a simplifying example because in
real life the true model will be much more complex, the number of markers will be
much larger and will most often exceed the number of observations.
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Fig. 1 (A) Larvae of the European corn borer in the stalk; (B) Maize plants damaged by stalk
breakage through feeding of corn borer larvae; (C) Tunnel in stalk caused by feeding of the larvae

Table 1 Pedigree,
phenotypic values, and
marker genotypes for eight
simulated maize individuals

aSimulated SNP effects

Cycle Individual Pedigree Tunnel
length
[cm]

SNP

1
(0)a

2
(1)

3
(−4)

4
(4)

1 I1 P1 × P2 13 2 2 0 1

1 I2 P3 × P4 17 0 0 0 1

1 I3 – 1 0 1 2 0

2 I4 I1 × I2 17 1 1 0 2

2 I5 I1 × I2 11 1 1 0 1

2 I6 I2 × I3 6 0 1 1 0

2 I7 I1 × I2 – 1 1 0 1

2 I8 I1 × I2 – 1 1 0 0

Let us now estimate the genetic effects of the four SNPs with SMR based on data
from individuals I1–I6. For each SNP (j = 1, . . . ,4) we fit the following model

yi = β0 + β1xij + ei, i = 1, . . . ,6,

where yi denotes the observed phenotype (tunnel length in cm) of the ith individual
and xij the marker genotype of the ith individual for the j th SNP. When fitting the
model for SNP4 we obtain the least squares estimates β̂0 = 4.7 cm and β̂1 = 7.4 cm.
The data and the regression line are visualized in Fig. 2.
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Table 2 Summary of a single marker regression for each SNP

β0 β1 SQE SQR R2 F -value Pr(> F)

SNP1 8.7 3.2 34.13 166.70 0.17 0.82 0.42

SNP2 12.8 −2.0 8.00 192.83 0.04 0.17 0.71

SNP3 14.3 −7.0 171.50 29.33 0.85 23.39 0.01

SNP4 4.7 7.4 153.19 47.65 0.76 12.86 0.02

Fig. 2 Regression of tunnel
length (cm) on marker
genotypes at SNP4. Solid
circles represent phenotypic
values, open circles represent
the genotypic values fitted for
the 3 marker genotypes by the
regression model

The fitted value of all individuals with a given genotype at SNP4 can be calcu-
lated by ŷi = β̂0 + β̂1xi4. The regression line indicates an increase in the average
tunnel length for the minor allele. Thus, the mean tunnel length of genotypes ho-
mozygous for the major allele is 4.7 cm, 19.5 cm for genotypes homozygous for the
minor allele and 12.1 cm for heterozygous genotypes. Note, that the coding of the
three genotypes is arbitrary and that estimates of the intercept and the slope might
change in magnitude or sign when genotypes are coded differently.

Repeating the SMR for the three remaining SNPs results in different estimates
for the intercept and the slope for each marker as can be seen in Table 2.

To decide which of the four SNPs is significantly associated with genetic varia-
tion for tunnel length we perform an ANOVA for each SNP. At a 5 % error rate the
null hypothesis H0 : β1 = 0 can only be rejected for SNP3 and SNP4, see Table 2.
Note, for simplicity we ignore the fact that we perform statistical tests on more than
one SNP and that we should control our experiment wise error rate accordingly.
From the ANOVA we conclude, that SNP3 and SNP4 are in LD with a QTL affect-
ing trait variation for tunnel length. For SNP1 and SNP2 with simulated true effects
of 0 and 1 cm we cannot reject H0. The true non-zero effect of SNP2 could not be
detected because of the small simulated genetic effect and because of the limited
size of our data set (n= 6).

To make inferences on the genetic risk of insect damage for individuals I7 and
I8 we can use the estimates obtained with SMR. We know that the genotypes of
the two individuals differ at SNP4. Remember that the minor allele increases tunnel
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length. From Table 1 we know I7 to carry one copy of the minor allele and I8 none.
Thus, I7 has a higher risk of being susceptible to the European corn borer than I8.

With SMR we tested the effect of each SNP marker individually and we iden-
tified two out of four SNPs to be significantly associated with insect damage. We
will now see how we can estimate the effects of the two SNP markers simultane-
ously by formulating a model that can account for the effects of more than one
predictor variable. A natural extension of the simple marker regression model (2.1)
is the multiple marker regression model (MMR). The data are given by (p + 1)-
tuples (y1, x11, . . . , x1j , . . . , x1p), . . . , (yn, xn1, . . . , xnj , . . . , xnp) and the model for
p SNP effects is

yi = β0 + β1xi1 + · · · + βjxij + · · · + βpxip + ei,
i = 1, . . . , n, j = 1, . . . , p, n≥ p+ 1. (2.4)

The solutions of MMR models are generally given in matrix notation and, therefore,
we express the model (2.4) as

y = Xβ + e (2.5)

with

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
...

yi
...

yn

⎤
⎥⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x11 . . . x1p
...

1 xij
...

1 xn1 · · · xnp

⎤
⎥⎥⎥⎥⎥⎥⎦
, β =

⎡
⎢⎢⎢⎢⎢⎢⎣

β0
...

βj
...

βp

⎤
⎥⎥⎥⎥⎥⎥⎦
, e =

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
...

ei
...

en

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the n-dimensional vector of phenotypic records y is described by the (p+1)-
dimensional vector of regression coefficients β . The n× (p+ 1) matrix X allocates
observations in y to regression coefficients and contains n rows (one for each in-
dividual) and p + 1 columns. As in the case of simple regression we assume the
residuals ei to be independent with equal variance (homoscedastic error terms) and
to follow a normal distribution e ∼ N(0, σ 2I) with I being the n× n identity ma-
trix. The first column in X is a vector of ones, the following columns contain the
genotype readings for p SNP markers.

Assuming X to be of full column rank (i.e. the unique inverse matrix X−1 exists),
we obtain the ordinary least squares solution for β as

β̂ = (X′X
)−1X′y. (2.6)

Illustration 2.2 (Continuation of Illustration 2.1) In the SMR model we identified
SNP3 and SNP4 to be significantly associated with the response variable tunnel
length. So let us now build the MMR model with the two SNP markers as predictors.
The multiple marker regression model is

yi = β0 + β3xi3 + β4xi4 + ei, i = 1, . . . ,6.
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Table 3 Summary of results
from multiple marker
regression for the European
corn borer data

Estimate of β Partial R2 F -value Pr(>F)

β̂0 10.55

β̂3 −4.7 0.14 4.63 0.12

β̂4 3.2 0.05 1.70 0.28

Table 3 gives least squares estimates for the intercept β0 and the partial regression
coefficients β3 and β4 obtained with the MMR model. The regression coefficients
we obtain with the MMR model deviate from those obtained with the SMR model
(2.1) due to dependencies allowed between the predictor variables.

The partial regression coefficient β̂4 = 3.2 tells us that an additional copy of the
minor allele at SNP4 increases tunnel length by 3.2 cm, if we hold the other vari-
ables in the model constant. The importance of a single predictor variable in a MMR
model can be inferred from the partial F-statistic, which indicates whether the re-
spective predictor variable significantly increases the proportion variance explained
by a model involving all other predictors. At a 5 % error rate partial F -values for
both SNP markers are not significant. The same can be shown for SNP2 and we
leave it to the interested reader to verify this statement. However, from simulation
of our data we know that the three SNPs have an effect on tunnel length. So from
which SNP markers should we build our model? The process of variable selection
in model building is not trivial and from our small example we can already see that
the choice of the correct model is not unambiguous. It would be beyond the scope of
this text to give an overview of the different methods employed in model selection.
However, the reader should be aware that a compromise needs to be found between
a model that is too simple and a model that includes too many variables. While
underfitting can lead to severely biased regression coefficients and prediction, over-
fitting leads to large variances in both, the coefficients and prediction. The latter is
especially true if dependencies exist between predictor variables. With genetic data
this is often the case because high marker densities generate high LD. For a more
detailed description of the choice of best model the interested reader is referred to
[3, 6].

Analogously as for the SMR model we partition the total sum of squares of the
response variable into a component explained by the model SQE and the residual
sum of squares SQR which is not explained by the model. From this decomposition
we obtain the coefficient of determination for our MMR model with two SNP mark-
ers to be R2 = SQE/SQT = 182.1/200.8 = 0.91. Thus, in our example 91 % of
the phenotypic variation for tunnel length can be explained by fitting the two SNP
markers. This is quite a high proportion and higher than in the individual SMRs,
see Table 2. In experimental studies, the proportion of the phenotypic variance ex-
plained by the model strongly depends on the genetic architecture and heritability
of the trait under study, the LD in the population, and the statistical power of the
experiment. Even in well powered studies, the proportion phenotypic variance ex-
plained by the model can be quite low (�50 %) if the genetic architecture of the
target trait is complex [18].



7 Statistical Models for the Prediction of Genetic Values 193

3 Linear Mixed Models

In the preceding section we assumed the coefficients in the linear model to be fixed
constants or fixed effects. If the coefficients in our model are assumed to be re-
alizations of random variables we model them as random effects possibly with a
variance-covariance structure. A linear model with fixed effects that is extended by
effects modeled as random is called a linear mixed model (LMM). The theoretical
foundation of LMMs was laid by Henderson in the context of livestock improve-
ment [4].

In matrix notation the LMM is given by

y = Xβ + Zu + e, (3.1)

where the n-dimensional vector of phenotypic records y is described by the r-
dimensional vector of fixed effects β and the p-dimensional vector of random ef-
fects u. The n× r matrix X allocates observations in y to fixed effects and the n×p
matrix Z allocates the observations to the random effects, and e is the n-dimensional
vector of residuals. For the random effects and the error terms we assume normal
distributions with the following expectation and variance-covariance structure

E

[
u
e

]
=
[

0
0

]
and Var

[
u
e

]
=
[

G 0
0 R

]
. (3.2)

The p×p matrix G and the n×n matrix R are the variance-covariance matrices of
the random effects and residuals, respectively. By using (3.2) and the multivariate
normal assumption for u and e we obtain

E(y)= Xβ and Var(y)= V = (ZGZ′ + R
)
.

In linear mixed models different concepts of inference apply to fixed and random
effects. For the fixed effects, inference is based on estimators that are best in the
sense that they have minimum sampling variance, they are linear functions of the
observations in y and they are unbiased in the sense that E(β̂) = β . Thus, we call
them best linear unbiased estimators (BLUEs). If G and R are known and the inverse
of V exists, we obtain the BLUE of β with

β̂ = (X′V−1X
)−1X′V−1y. (3.3)

Note that the difference of (3.3) and (2.6) is the inclusion of the variance-covariance
structure V. If V has the form σ 2I, Eq. (3.3) reduces to the ordinary least squares
solution in (2.6).

Now let’s look at the random variables involved. Our goal is to predict the real-
ized values of the random variables in our model. According to [4] the best linear
unbiased predictor (BLUP) of u is

û = GZ′V−1(y − Xβ̂). (3.4)
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The vector û is an estimator of the conditional mean of u given y. The effects of the
vector û are unbiased in the sense that E(û)= E(u).

If the number of observations in y is large, calculations in Eqs. (3.3) and (3.4) can
become computationally quite demanding because they involve V−1. Henderson [4]
showed that a set of equations not involving V−1 can lead to the same solutions for
β and u as (3.3) and (3.4). This set of equations

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

][
β̂

û

]
=
[

X′R−1y
Z′R−1y

]
(3.5)

is generally denoted as the mixed model equations. If G and R are diagonal matrices,
computational demands are substantially reduced compared to Eqs. (3.3) and (3.4).
Let us make some even more simplifying assumptions. We assume the residuals e
to be independent and homoscedastic with variance-covariance matrix R = σ 2I. If
our data are generated in balanced and well designed experiments as is often the
case in plant breeding this can be a realistic assumption. Let us also assume that
covariances between random factors are zero and that the effects of each random
factor are independent with a common, unknown variance σ 2

g , i.e. G = σ 2
g I for the

variance-covariance matrix of the random effects.
The mixed model equations (3.5) now reduce to

[
β̂

û

]
=
[

X′X X′Z
Z′X Z′Z + σ 2

σ 2
g

I

]−1 [
X′y
Z′y

]
. (3.6)

Now let us take a closer look at these equations. If our model comprised no fixed
and only one random factor, the solution vector for our random effects would be

û =
(

Z′Z + σ 2

σ 2
g

I
)−1

Z′y. (3.7)

The difference of this solution for random effects to the ordinary least square solu-
tion for fixed effects (2.6) lies in the addition of the term λ= σ 2/σ 2

g to the diagonal
elements of Z′Z. In the prediction of the random effects λ is called the shrinkage
parameter [3]. The predictors of the random effects are shrunken based on prior
knowledge because they are assumed to have been sampled from a normal distri-
bution with mean zero (3.2). Shrinkage induces an estimation bias for the random
effects but in turn reduces the prediction variance. This can help to enhance the
predictive ability of a linear regression model [3]. The amount of shrinkage is deter-
mined by the “noise to signal ratio” λ. High values of λ lead to strong shrinkage. By
adding the term λI to the Z′Z matrix we can obtain a unique solution for û even if
the number of random effects p exceeds the number of observations (n < p). This
would not be possible if we assumed the effects to be fixed, because the matrix Z′Z
does not have full column rank for n < p.

Remember that we assumed G and R to be known, which means that we also
know σ 2 and σ 2

g . However, in real life these variance components are often un-
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known and must be estimated from the data. If λ cannot be assumed to be known
without error the statistical properties of the estimators and predictors of the LMM
change. Another problem that arises from not knowing the variance components
entering into the model is how to perform hypothesis tests of the fixed effects. Re-
member that the BLUEs of the fixed effects are a function of V and consequently
of the trait heritability. If σ 2 and σ 2

g are not known but estimated from the data
the resulting hypothesis tests are only approximate. For the random effects we do
not perform hypothesis tests because in our model we assumed the variation due
to random factors to be different from zero. In plant and animal breeding an iter-
ative algorithm such as restricted maximum likelihood estimation (REML) [4, 5]
is often used for estimation of the variance components. It is beyond the scope
of this text to outline the procedures and the specific properties of the resulting
estimators and predictors. The interested reader is referred to textbooks such as
[5, 7].

Illustration 3.1 (Continuation of Illustration 2.1) In our example on the resistance
against European corn borer we now model the SNP effects as random and the
model is

y = Xβ + Wm + e (3.8)

where β is the vector of fixed effects including only the mean and m is the vector
of random SNP marker effects. The distribution of the SNP effects is assumed to
be m ∼ N(0, σ 2

mI) with σ 2
m being the genetic variance pertaining to a single SNP

and I being the 4 × 4 identity matrix. By choosing G = σ 2
mI we assume the same

unknown variance σ 2
m for the effects of all SNP markers. Note, that this does not

mean that the realizations of the random variables are equal but that we assume
that all effects are sampled from the same normal distribution. However, the genetic
variance contributed by individual SNPs is a function of their effects and their allele
frequency in the population under study. Thus, assuming a common variance for
all SNP markers is a simplifying assumption. The residual vector e is assumed to
follow a normal distribution with e ∼ N(0, σ 2I). The matrix X allocates the fixed
effects to observations in y. We replace the matrix Z in model (3.1) by the n× p
matrix W assigning the p SNP marker genotypes to observations in y and obtain
the model

⎡
⎢⎢⎢⎢⎢⎢⎣

13
17
1

17
11
6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
[
β0
]+

⎡
⎢⎢⎢⎢⎢⎢⎣

2 2 0 1
0 0 0 1
0 1 2 0
1 1 0 2
1 1 0 1
0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
m1
m2
m3
m4

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The small sample size of our example would not give us meaningful estimates of the
required variance components. We use prior knowledge and assume λ= σ 2/σ 2

m = 2.
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With Eq. (3.6) we obtain solutions for the mean and the random effects by

[
β̂0
m̂

]
=

⎡
⎢⎢⎢⎢⎣

6 4 6 3 5
4 8 6 0 5
6 6 10 3 5
3 0 3 7 0
5 5 5 0 9

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣

65
54
61
8

75

⎤
⎥⎥⎥⎥⎦

β̂0 = 11.2 and m̂ =

⎡
⎢⎢⎣

0.5
−1.3
−3.1

2.5

⎤
⎥⎥⎦ .

Resulting SNP effects are smaller in absolute value compared to SMR and MMR
models due to the shrinkage with λ > 0. With a value of λ= 5 resulting SNP effects
are shrunken heavily with m̂′ = (0.6,−0.7,−2.2,1.8). A value of λ= 0.5 gives us
m̂′ = (0.3,−1.8,−4.1,3.1). For λ→ 0 the effects would approach those obtained
from the MMR, for λ→ ∞ the entries of m̂ would be shrunken to zero. In practice,
we could use cross-validation to select a value for λ which maximizes the prediction
performance of the model.

In this section we have shown, how linear mixed models are used in the analysis
of genetic data. They allow us to account for covariance structures of the residuals
and the random effects. The limitation of multiple linear regression to cases with
n > p can be addressed in LMMs by assuming SNP effects as random. Within this
framework we can arrive at predictions for the marker effects inferred from high-
density genome-wide marker data with n� p. In the next sections we will look at
the application of LMMs for predicting the genetic value of individuals based on
information from relatives.

4 Prediction of Genetic Values

The prediction of genetic values based on information from relatives has a long tra-
dition in breeding. We will now learn how to predict the genetic value of individuals
by exploiting information from relatives. We formulate a linear mixed model which
is based on pedigree data and denoted by modA

y = Xβ + Za + e, (4.1)

with the vector of phenotypes y, the vector of fixed effects β , the vector of genetic
values a being sampled from a distribution a ∼ N(0,GA = σ 2

AA), and the vector of
residual effects e with e ∼ N(0,R = σ 2I). Matrices X and Z allocate the fixed and
random effects to observations y, respectively. The matrix GA defines the variance-
covariance structure for the random effects. In the following we will show how GA
can be constructed based on pedigree information.
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The genetic covariance between relatives increases with their degree of related-
ness. If we measure a quantitative trait such as body height on ten pairs of mothers
and daughters, we expect a positive genetic covariance for this trait, because we
know that body height is highly heritable. We expect tall mothers to have daughters
which are taller than average. If we measure the covariance in body height for pairs
of first cousins we expect the covariance to be smaller than for pairs of mothers and
daughters, because the genetic covariance between two relatives is proportional to
the probability that they share ancestral alleles. This probability is called the kinship
coefficient or coefficient of coancestry [1]. Let’s assume that individual I carries al-
leles Ak and Al at a given gene and individual I′ carries alleles Ar and As at the
same gene. We have four pairwise possibilities that two randomly selected alleles of
individuals I and I′ are identical by descent (here denoted with the symbol ≡). The
kinship coefficient f for I and I′ is given by

fII′ = P
(
I ≡ I′

)

= 1

4

[
P(Ak ≡Ar)+ P(Ak ≡As)+ P(Al ≡Ar)+ P(Al ≡As)

]
. (4.2)

Because the genetic covariance originates from alleles shared between two individ-
uals, it is intuitive that it must be a function of the genetic variance pertaining to
these alleles. Using quantitative genetic theory [1] it can be shown that the genetic
covariance between two relatives I and I′ is given by 2fII′σ

2
A, i.e. twice the kinship

coefficient times the additive genetic variance. Recall from the introduction that we
assume the genetic variance to be purely additive, and dominance and epistasis to be
absent. Thus, the genetic variance-covariance matrix based on pedigree information
becomes GA = σ 2

AA with the elements of A given by 2fII′ . The matrix A is called
the numerator relationship matrix, because it provides us with the coefficients of the
additive genetic covariance for all pairwise combinations of individuals.

Illustration 4.1 (Continuation of Illustration 2.1) In the European corn borer exam-
ple we do not have phenotypic values for individuals I7 and I8, but we still want
to know their genetic value. Both individuals are derived from the cross I1 × I2.
Because we have phenotypic data from relatives of I7 and I8 we can predict their
genetic values with model (4.1)

⎡
⎢⎢⎢⎢⎢⎢⎣

13
17
1
17
11
6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
μ+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aI1
aI2
aI3
aI4
aI5
aI6
aI7
aI8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e5
e6

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The matrix Z has eight columns, the last two containing only zeros because we
have no phenotypic records for the corresponding individuals. Since we know the
pedigree of the eight individuals we can construct the symmetric 8 × 8 matrix A
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Fig. 3 Pedigree for eight
maize individuals and their
parents from three breeding
cycles

that provides the coefficients of the variance-covariance matrix GA. In Fig. 3 the
pedigree structure of the eight individuals in our example data set is depicted (for
pedigrees see also Table 1).

We assume the individuals from breeding cycle 0 to be unrelated and non-inbred.
Individuals I4 and I5 are both progeny of I1 and I2, i.e. they are full siblings, while
individuals I5 and I6 are half siblings with only one common parent. Individuals I5
and I6 can inherit alleles identical by descent only through their common parent I2.
Let the allele descended from I2 be Ak in I5 and Ar in I6. Thus we obtain P(Ak ≡
Ar) = 2 · ( 1

2 · 1
2 ) and P(Ak ≡ As) = P(Al ≡ Ar) = P(Al ≡ As) = 0. Using (4.2)

we get fI5I6 = 0.125 for these half siblings. With individuals I4 and I5 that have
two parents in common we get fI4I5 = 0.25 the same value that we also get for
a parent and its offspring. The off-diagonal elements of A are given by 2fII′ , but
how can we calculate the kinship coefficient of an individual with itself? It is the
same as the kinship coefficient of monozygotic twins. We follow the rules of (4.2)
and get fII = 0.5. The coefficients for more complex pedigrees may be obtained
using the formulas presented in [5]. For the corn borer example the genetic variance-
covariance matrix becomes

GA = σ 2
AA = σ 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0.50 0.50 0 0.50 0.50
1 0 0.50 0.50 0.50 0.50 0.50

1 0 0 0.50 0 0
1 0.50 0.25 0.50 0.50

1 0.25 0.50 0.50
1 0.25 0.25

1 0.50
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note, that the matrix A is symmetric and that elements below the diagonal are not
given for the sake of readability. Coefficients of zero indicate unrelated individ-
uals, values of 0.25 half siblings and values of 0.50 full siblings or parents and
offspring. To solve the mixed model equations in (3.5), we need to choose the
shrinkage parameter λ. From prior knowledge on the trait heritability we assume
that h2 = σ 2

A/(σ
2
A + σ 2)= 0.5. Thus we infer λ= σ 2/σ 2

A = 1 and solve the mixed
model equations for a. The estimated fixed and predicted genetic values for I1–I8
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are

β̂0 = 10.2 and â′ = [1.8,3.3,−5.1,4.0,2.0,−2.0,2.6,2.6
]
.

Without having measured their phenotype we can predict genetic values of I7
and I8. We get the same value for both individuals (2.6 cm), because they are full
siblings and have the same degree of relatedness with all individuals for which we
have phenotypes (see columns 7 and 8 of matrix A for confirmation). Because most
of their close relatives show high values for tunnel length, their predicted genetic
value is also quite high. Thus, we conclude that individuals I7 and I8 both carry
a high genetic risk of being damaged by the European corn borer, but we cannot
differentiate between them.

We have seen how the linear mixed model modA can be used to obtain the vector
of predicted genetic values ĝA = Iâ. A similar approach can be taken for prediction
of genetic values from genomic data. In Sect. 3 we fitted the LMM with SNP mark-
ers as random factors. Let us call this model modRR because we perform random
regression on the SNP markers. From modRR we obtain a vector of predicted SNP
effects m̂. The predicted genetic value of an individual based on marker information
can be obtained by multiplying the genotype score of an individual at a given SNP
marker with the corresponding SNP effect and summation over all m SNP markers.
Thus the predicted genetic value of individual i is given by

ĝi =
m∑
j=1

wij m̂j , i = 1, . . . , n;

or in matrix notation as ĝRR = Wm̂ with W comprising the genotype scores for all
individuals including those without phenotypes.

Which of the two models should we use to infer the genetic value of individuals?
To answer this question let us take a closer look at the major differences between the
two models. Model modA is based on a linear mixed model where the genetic value
for each individual is the random effect. Pedigree information is used to exploit the
resemblance between relatives and to construct the variance-covariance structure
of the genetic values. Model modRR is based on a linear mixed model where the
genetic value for each individual is given by the sum of the random SNP effects.
The resemblance between relatives in modRR is modeled by the dependencies of
marker genotypes between pairs of individuals. So how do these two sources of
information differ?

Let us assume a family consisting of mother, father and four direct progeny. We
can arrange the four progeny in six different pairs. On average, the kinship between
individuals of a given pair is expected to be 0.25. However, genetic recombination
and sampling of the parental gametes will result in some pairs that share more and
some that share less than 25 % of their ancestral alleles. The elements of matrix A
give us the same expected coefficient for all six pairs because they are all full sib-
lings. However, the SNP marker data can quantify the deviation from the expected
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Table 4 True and predicted genetic values for risk of insect damage of eight maize individuals
obtained with different prediction procedures. The prediction is evaluated with the mean squared
error (MSE) between true and predicted genetic values and the coefficient of determination R2

from a regression of the predicted on the true genetic values

I1 I2 I3 I4 I5 I6 I7 I8

g̃ 6 4 −7 9 5 −3 5 1 MSE R2

modA 1.8 3.3 −5.1 4.0 2.0 −2.0 2.6 2.6 8.1 0.85

modRR 1.0 2.5 −7.5 4.3 1.8 −4.4 1.8 −0.7 9.4 0.95

value, because we can infer the realized proportion of shared alleles between two in-
dividuals from their marker profile. Thus, predictions based on marker information
should be superior to predictions based on model modA because the marker infor-
mation can model the realized genetic relatedness between two individuals whereas
the matrix A can only account for the expected relatedness. The interested reader
who wants to learn more about the statistical dependencies of the two models is
referred to [8, 15].

Illustration 4.2 (Continuation of Illustration 2.1) We will take the corn borer ex-
ample to illustrate the differences between modA and modRR. Table 4 summarizes
true and predicted genetic values for the eight maize individuals from Table 1. The
true genetic values were calculated from simulation parameters as g̃ = Wm̃ with
m̃′ = (0,1,−4,4). Predictions from models modA and modRR were obtained as
described above with ĝA = Iâ (λ= 1) and ĝRR = Wm̂ (λ= 2), respectively.

Due to the small sample size of our example our predictors cannot be expected
to be very precise. However, the data still give evidence for differences between
the two models. It is important to note, that the ranking of the eight individuals
can change when modeling the genetic relationship between individuals based on
marker data as compared to pedigree data. In addition, model modRR provides dis-
tinct values for individuals I7 and I8 thus improving our prediction on their respec-
tive risk of being damaged by insects compared to modA. On the other hand we
can see that with model modRR the predicted genetic values for individuals I5 and
I7 are identical. Due to the small number of markers simulated they had identical
marker genotypes at all SNP loci. Nowadays we assess the marker profile of each
individual with thousands of markers, so the probability of having identical marker
genotypes is extremely small for real life data. However, if the number of markers
is very large, solving the mixed model equations in (3.5) with model modRR can be
computationally demanding. In order to avoid this computational burden, an n× n
genomic relationship matrix can be constructed from high-dimensional marker data.
If this genomic relationship matrix is used in (4.1) to replace the matrix A, we ob-
tain genetic predictions equivalent to those of modRR. In the statistical literature this
approach is also known as “kernel trick”. For details the interested reader is referred
to [3] and [8, 15].



7 Statistical Models for the Prediction of Genetic Values 201

5 Choice of Models

In the preceding sections we have learnt how fixed linear regression models and
linear mixed models can be used for estimation of marker effects and prediction
of genetic values. Major differences between the models lie in the assumption of
treating marker effects as random or fixed effects. In many real life experiments the
number of assayed SNP markers exceeds by far the number of observations. For
example in maize genetics we currently use technologies that return data on more
than 50,000 SNP markers per individual but population sizes are within the range
of a few hundred to a few thousand. So which model do we choose to obtain mean-
ingful results from the given data? First of all, we need to keep in mind what we
already know about our quantitative trait of interest. For many traits such as disease
or insect resistance for example it is legitimate to assume that they are regulated by
few genes with sizeable effects. Thus, our aim will be to identify the SNP markers
located next to these genes with SMR. To account for dependencies between the
selected predictors, we formulate a MMR model and estimate the effects of all se-
lected variables simultaneously. Finally, the coefficient of determination from the
MMR model will give us an indication how much of the variation of the response
variable can be explained by the model. We need to keep in mind though that a high
coefficient of determination does not necessarily mean that our model has high pre-
dictive ability. With thousands of SNP markers tested for significance we run into
the problem of multiple testing and we are likely to identify false positive signals
due to inflated error rates. Hence more SNPs than actually required would be in-
cluded in the model. At the same time estimated SNP effects can be severely biased
due to model selection or hidden population structure. This will lead to an overesti-
mation of their importance in the regulation of our quantitative trait. Consequently
we need to assess whether the SNP markers we have selected will predict the ge-
netic merit of our selection candidates with sufficient accuracy. For the data at hand,
statistical methods such as cross-validation will give a first indication of the bias as-
sociated with SNP effects [19]. However, before entering into fine mapping, cloning
or marker-based selection with the selected SNPs it is highly advisable to confirm
the significance and the strength of the statistical association with the trait of interest
in independent validation studies.

An alternative to selecting a few “winner” SNPs is to formulate models that use
the entire set of SNP markers simultaneously. This appears to be a logical approach
for traits for which we have conclusive evidence from quantitative genetics that they
are regulated by many genes distributed over the entire genome. If many genes act
on the trait of interest, the effect of individual markers will be small and with SMR
it will be difficult to identify SNPs that contribute significantly to phenotypic trait
variation. Thus, for truly quantitative traits it is more appropriate to take a genome-
wide approach and predict the genetic value of an individual from the accumulated
effects of a large number of SNPs distributed evenly across the genome. However,
when interpreting the magnitude and distribution of the individual SNP effects cau-
tion is advised, because the large number of predictors in the model and the high
degree of multicollinearity between them lead to heavily shrunken and hence biased
individual marker effects.
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A combination of the presented methods is frequently adopted in genome-wide
association studies. Many genetic studies in plant, animal or human genetics aim
at the identification of individual SNP markers in strong LD with a QTL. Because
the limitations of SMR are well known, a linear mixed model combining some of
the properties of single marker regression and modA is chosen. Each SNP marker
is modeled as a fixed factor but the dependencies between the individuals under
study are modeled by including a random factor with a variance-covariance struc-
ture that accounts for their genetic relatedness based on marker or pedigree data.
The interpretation of results from this model with respect to multiple testing and
ascertainment bias of the estimated effects is similar to what has been discussed for
single marker regression.

6 Food for Thought

This article presented a survey of models used for the prediction of complex phe-
notypes. However, throughout this chapter we have made simplifying assumptions.
For example we ignored interactions between alleles at the same gene and between
alleles at different genes and our predictions were based on a purely additive model.
Remember that in a linear model the observations must be linear functions of the
model parameters, but we can still formulate models accommodating many types
of interactions between factors. However, with 50,000 SNP markers the number of
predictors in the model and the number of possible models becomes inconceivably
large. In the literature it has been discussed that non parametric methods such as ma-
chine learning or neural networks might improve predictive abilities if dominance
and epistasis are present [12]. However, so far only little evidence from experimental
data has been available to test the validity of this hypothesis.

In addition to neglecting genetic interactions we also assumed that we only have
one observation per individual thus ignoring heteroscedasticity of the residual ef-
fects in our models and interactions between genotypes and the environment. In
plant breeding, we measure phenotypes in many environments because we know
that genotypes react differently to changing environmental conditions. Thus, an ad-
ditional complication in model building arises from the need to accommodate repli-
cated data. It would be beyond the scope of this chapter to describe the many meth-
ods offered by the literature to deal with genotype×environment interactions, but
the reader should be aware that the analysis of replicated data is not trivial espe-
cially when data are highly unbalanced.

Theoretical and applied research on the above mentioned topics is bustling and
the methods for genetic data analysis are constantly improved. The aim of this chap-
ter was to introduce some of the concepts and methodologies related to the analysis
of genomic data for prediction of complex phenotypes in agricultural genetics. For
the sake of brevity we could only give an introduction to a small selection of topics.
Many more statistical procedures have been suggested for prediction of genetic val-
ues of individuals for which phenotypic data is not available. One important class
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of methods are Bayesian approaches. The Bayesian methods employed in predic-
tion of genetic values differ from modRR mainly with respect to assumptions on the
distributions of the variances of marker effects [11]. Some of the Bayesian methods
assume a subset of markers to be sampled from a distribution with zero variance in-
troducing a variable selection component into the model. What has become apparent
from the analysis of experimental data is that the predictive abilities of the Bayesian
variable selection methods and modRR do not differ to a great extent unless genes
with large effects are segregating in the population under study. This leads us back
to the discussion on the genetic architecture of our quantitative trait of interest.

We have seen that there are many methods to analyze and interpret genetic data.
A model that gives satisfactory answers to one question might not be appropriate
for answering another question. Different research questions often may require dif-
ferent statistical models. What is important for the researcher is to realize which
assumptions have to be met to apply a specific model and the potential drawbacks
that can be associated with a specific procedure.

Agricultural and medical genetics are currently revolutionized by the technolog-
ical developments in genomic research. High-throughput genotyping has become
reality for many species and sequencing of whole genomes at reasonable costs is
within striking distance. Thus, the genetic analysis of quantitatively inherited traits
and the prediction of the genetic predisposition of individuals based on molecular
data are rapidly evolving fields of research. The statistical methods introduced in
this chapter have been developed in agricultural genetics for the analysis of high-
dimensional genomic and phenotypic data. First reports in the literature have also
suggested their use for prediction of the genetic predisposition in humans [10, 13],
because many important traits studied in human genetics such as high blood pres-
sure, diabetes or psychiatric disorders also follow a quantitative pattern of inheri-
tance. The validity of the models for predicting disease risk in humans is yet to be
shown. Human cohorts employed in genetic analyses have very different population
structures compared to highly selected and often inbred agricultural populations. In
addition, the requirements with respect to prediction accuracies are certainly more
stringent in human than in agricultural genetics. Nevertheless, the proposed meth-
ods certainly are valuable tools in the analysis of human genetic data. They can be
adapted to the analysis of already existing data sets and provide valuable insights
into the genetic architecture of quantitative traits. How human genetics will cope
with the increasing possibilities of genetic prediction and counseling will need to
be addressed by medical ethics research. A debate about the consequences of our
steadily growing knowledge on the inheritance of quantitative traits has started in
human genetics [14].

7 Summary

We hope it has become apparent from reading this chapter that the analysis of ge-
netic data in agriculture and medicine is a highly interdisciplinary task. Techno-
logical developments in sequence, protein and metabolite analyses are moving at
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an enormous pace, challenging quantitative genetics and biostatistics to cope with
the exponentially growing amount of data. High-throughput, high-quality genomic
data in combination with efficient statistical and computational tools are currently
advancing our knowledge on the inheritance of quantitative traits at mind bog-
gling speed. These developments make research in the field of quantitative genetics
groundbreaking and supremely exciting. In addition, the concepts for data mining
to arrive at accurate predictions based on high-dimensional data presented here are
applicable to a plethora of research fields and applications.
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Chapter 8
Bayesian Risk Analysis

Claudia Czado and Eike Christian Brechmann

Uncertainty in the behavior of quantities of interest causes risk. Therefore statis-
tics is used to estimate these quantities and assess their variability. Classical sta-
tistical inference does not allow to incorporate expert knowledge or to assess
the influence of modeling assumptions on the resulting estimates. This is how-
ever possible when following a Bayesian approach which therefore has gained
increasing attention in recent years. The advantage over a classical approach is
that the uncertainty in quantities of interest can be quantified through the poste-
rior distribution. We first introduce the Bayesian approach and illustrate its use
in simple examples, including linear regression models. For more complex sta-
tistical models Markov Chain Monte Carlo methods are needed to obtain an ap-
proximate sample from the posterior distribution. Due to the increase in comput-
ing power over the last years such methods become more and more attractive
for solving complex problems which are intractable using classical statistics, for
instance spam e-mail filtering or the analysis of gene expression data. We il-
lustrate why these methods work and introduce two most commonly used al-
gorithms: the Gibbs sampler and Metropolis Hastings algorithms. Both methods
are derived and applied to statistical models useful in risk analysis. In particu-
lar a Gibbs sampler is developed for a change point detection in yearly counts
of events and for a regression model with time dependence, while a Metropolis
Hastings algorithm is derived for modeling claim frequencies in an insurance con-
text.
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The Facts

• Risk is regarded as induced by the uncertainty in the behavior of quantities
of interest. Therefore this random behavior has to be modeled using probabil-
ity models and characteristics such as expected value and variance to be esti-
mated.

• An introduction to Bayesian statistics is given, which—in contrast to classi-
cal statistics—can accommodate prior knowledge about the risk parameters un-
der consideration, in particular using Bayes’ famous theorem. Especially expert
knowledge can be incorporated.

• Bayesian inference is based on the posterior distribution of the risk parameters
which summarizes the knowledge about the risk quantity after the data is ob-
served. Common Markov Chain Monte Carlo methods for deriving the Bayesian
posterior distribution are discussed, namely the Gibbs sampler and Metropolis
Hastings algorithms.

• Concepts are illustrated by examples from insurance, health care, mining and
agriculture involving the risk quantities number of claims, complication rate of
new medical treatment, number of coal-mining disasters and crop yield, respec-
tively.

1 The Bayesian Approach

In this chapter we are interested in the study of quantities which are subject to un-
certainty. In this context we understand risk as a process which is induced by un-
certainty or randomness in the behavior of these quantities. To be more precise we
will consider among other the following risk quantities: yearly crop rates, num-
ber of complications following a new medical treatment and the annual number of
claims for a car insurance company. For the statistical risk analyst these quantities
are random variables for which a probability distribution has to be chosen which
depends on unknown population parameters and fits the observed data well. These
population parameters determine the expectation and variance of the risk quantity.
Classical—usually called frequentist—statistics uses solely the observed data to es-
timate the unknown population parameters. This is a sensible approach, however,
the randomness in the observations and the limited number of observations avail-
able can lead to errors in subsequent inference. We assume that the reader has basic
knowledge in probability and statistics; for convenience a glossary is provided in
Appendix. Three illustrative examples are presented after this first short introduc-
tion.

In the simplest possible setting, we assume that observations come from a popu-
lation whose members follow a specific probability distribution which depends on a
single parameter θ . Given that we know this particular underlying distribution, we
are interested in estimating θ based on the observed data. We denote such an esti-
mate by θ̂ . For example, if θ is the expectation of the distribution, we can estimate
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it by the average of all observations, that is

θ̂ = x̄ := 1

n

n∑
i=1

xi, (1.1)

where n is the number of observations with values x1, . . . , xn.
In practice, the estimate θ̂ will however pretty much never equal the true param-

eter θ , that is, in general θ̂ �= θ . Moreover, we might obtain an estimated value θ̂
which is unbelievable because it maybe lies outside a range where we expected the
parameter to be in. If we however still believe that our probability model for the
observed data is correct, we are in the dilemma that we have to decide between our
belief in the data model and our prior belief in the parameter.

Bayesian statistics solves this problem by combining prior expert knowl-
edge with information obtained from the observations. From now on, let θ =
(θ1, . . . , θk)

′ ∈ � be the unknown parameter of interest belonging to the parame-
ter space �, where usually � ⊂ R

k . Then we a priori assign a probability to each
parameter value θ according to the prior expert knowledge available, that is, we treat
the population parameter as random variable and not as a fixed unknown quantity.
Statistically speaking, this means that we choose an appropriate prior distribution
with density or probability function p(θ), which summarizes the knowledge about
the parameter of interest. We now observe a random sample x = (x1, . . . , xn)

′,
which are realizations of random variables X = (X1, . . . ,Xn)

′ with true probability
density f (·|θ). For example xi is the observed crop yield in plot i of the random
crop yield Xi . Considering f (x|θ) as a function of the parameter θ for given obser-
vations x yields the likelihood denoted as

�(θ |x) := f (x|θ), (1.2)

which summarizes the available information in the data about the parameter.
Note that in frequentist statistics, parameters are often estimated by so-called

maximum likelihood estimation which means finding the parameter values θ̂ that
maximize (1.2), that is, finding the value of θ which makes the observations “most
likely”. For example, the quantity in (1.1) is the maximum likelihood estimate of
the expectation μ of a normal distribution (see Illustration 1.1 below).

In Bayesian statistics, we however would like to incorporate prior knowledge
about the parameter θ , that is the prior distribution, into the estimation procedure.
Since the observations x contain information about θ , we update our knowledge
about θ by considering the conditional distribution of θ given observations x. This
distribution is called the posterior distribution and can be calculated by Bayes’ the-
orem as

p(θ |x)= f (x|θ)p(θ)
f (x)

, (1.3)

where

f (x)=
∫
�

f (x|θ)p(θ)dθ (1.4)
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Fig. 1 Ngram of “classical statistics” (gray) and “Bayesian statistics” (black) created using
Google Books Ngram Viewer available at http://books.google.com/ngrams

is the unconditional density function of the observations x, called the marginal dis-
tribution. It does not depend on θ , in other words, it is only a normalizing constant
with respect to θ that ensures that the posterior distribution is a proper density ex-
pression integrating to 1. Hence it holds that

p(θ |x)∝ �(θ |x)p(θ), (1.5)

that is, the posterior is proportional to the product of the likelihood and the prior.
The computation of the posterior distribution however often is rather intricate so that
so-called Markov Chain Monte Carlo methods are needed as discussed in Sect. 2.

A standard reference on Bayesian inference is the book by Berger [8], more re-
cent references are Lee [5], Gelman et al. [15], Bolstad [1] and Hoff [20]. To il-
lustrate the increasing importance of Bayesian methods in statistics, Fig. 1 shows
how often the terms “classical statistics” and “Bayesian statistics” have occurred in
books since 1900.

Three illustrative examples for different types of data (continuous, binary, count)
are given below. These represent common types of risk quantities.

Illustration 1.1 (Crop Yields) Too small crop yields constitute a major risk to
farmers. A reliable estimate of the expected crop yield and its variability there-
fore is needed for careful business planning. For this purpose, an agronomist studies
the behavior of the random annual crop yields X1, . . . ,Xn of n acres of the same
size and with similar soil and growth conditions. From her experience and discus-
sions with farmers she assumes that the crop yields are normally distributed with
common mean θ and (known) variance σ 2 and independent of each other, that is
Xi ∼N(θ,σ 2), i = 1, . . . , n. Then the likelihood (1.2) is

�(θ |x)=
n∏
i=1

1√
2πσ 2

exp

[
− 1

2σ 2
(xi − θ)2

]
∝ exp

[
− n

2σ 2
(x − θ)2

]
,

where x is the empirical mean as defined in (1.1). It is a unimodal function in θ with
mode given by x.

From previous years the agronomist has some prior knowledge about the likely
values of the expected crop yield θ and therefore specifies a prior distribution as nor-
mal with known mean μ and known variance τ 2. Having observed the crop yields

http://books.google.com/ngrams
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Fig. 2 Likelihood, prior and
posterior densities for n= 5,
observation variance σ 2 = 5,
prior mean μ= 15, prior
variance τ 2 = 3 and observed
mean x = 11

x1, . . . , xn, she therefore calculates the posterior density (1.3) using (1.5) as

p(θ |x)∝ exp

[
− n

2σ 2
(x − θ)2

]
exp

[
− 1

2τ 2
(θ −μ)2

]
∝ exp

[
−1

2

(θ −μ1)
2

τ 2
1

]
,

(1.6)

where

τ 2
1 = 1

nσ−2 + τ−2
and μ1 = τ 2

1

(
x

n−1σ 2
+ μ

τ 2

)
. (1.7)

From (1.6) it follows that the posterior distribution is again normal but now with
mean μ1 and variance τ 2

1 . To illustrate these concepts further, let us assume the
agronomist expects an average yield of 15 per acre, that is, she sets the prior mean
μ = 15. She is however uncertain about her guess and therefore allows for a large
uncertainty by choosing the prior variance τ 2 to be 3. After harvesting n= 5 acres,
the observed average yield was x = 11 per acre. The seed manufacturer claims that
the variability under normal growing conditions is σ 2 = 5 per acre. Therefore the
posterior distribution has posterior moments τ 2

1 = 0.75 and μ1 = 2. This is illus-
trated in Fig. 2.

The expression of the posterior expectation μ1 in (1.7) can conveniently be
rewritten as

μ1 =wx + (1 −w)μ, (1.8)

where w := w(σ 2, τ 2, n) := τ 2

τ 2+σ 2/n
is a weight varying from 0 to 1. Expression

(1.8) shows that the posterior mean is the weighted average of the empirical mean
x and the prior mean μ. As the uncertainty in the prior knowledge, reflected by the
prior variance τ 2, increases, the weight (1 − w) for the prior mean decreases and
the posterior mean is more heavily pulled towards the empirical mean. Moreover,
the belief in the observed data as measured by the weight w also increases when the
number of observations n, the number of acres under consideration, is increased. In
the example it is w = 0.75. This means that there is already a quite strong belief in
the data.

Illustration 1.2 (Complication Rate in Medical Studies) In a medical study, the re-
searcher is interested in the rate of complications θ of n subjects. Clearly, the risk
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of the researcher is that this rate θ is higher than a small but admissible limit rate.
At the end of the study, for each subject it is known whether he or she developed
a complication or not. The event of complication occurrence can be modeled by a
binary random variable Xi which is either 1 if the patient i ∈ {1, . . . , n} develops
a complication or 0 otherwise. Because the researcher developed a completely new
treatment, no prior knowledge about the success probability θ of the Bernoulli dis-
tribution representing the complication probability is available. Hence, she simply
assumes equal likelihood for each parameter value θ , in other words, a prior density
p(θ)= 1 corresponding to the uniform distribution. For observations x1, . . . , xn the
posterior distribution (1.3) for θ therefore simplifies to the likelihood (1.2):

p(θ |x)∝ �(θ |x)p(θ)= �(θ |x)=
n∏
i=1

θxi (1 − θ)1−xi .

If, however, prior information based on studies of similar treatments is available,
the researcher can specify a more informative prior distribution. For a parameter
in the range of 0 to 1, the Beta distribution with parameters α > 0 and β > 0 is a
reasonable and quite flexible choice. Its density is given by

p(θ)= 1

B(α,β)
θα−1(1 − θ)β−1, (1.9)

with normalizing constant B(α,β)= ∫ 1
0 θ

α−1(1 − θ)β−1dθ . Furthermore, its mean
and variance are E(θ) = α/(α + β) and Var(θ) = αβ/((α + β)2(α + β + 1)), re-
spectively, and for α = β = 1 the Beta distribution corresponds to the uniform dis-
tribution on [0,1]. For example, if the researcher expects a 20 % complication rate
with 0.1 standard error, then she solves E(θ)= 0.2 and Var(θ)= 0.12 for α and β
and obtains α = 3 and β = 12.

It can be shown that the posterior distribution is again Beta with parameters α1 =∑n
i=1 xi + α and β1 = n −∑n

i=1 xi + β . The posterior mean then can be written
similarly to (1.8) as a weighted average of the sample mean and the prior mean:

α1

α1 + β1
=
∑n
i=1 xi + α
n+ α + β =wx + (1 −w) α

α + β ,

where w := w(α,β,n) := n
n+α+β . As before, belief in the observed data increases

as the number of subjects n increases.

Illustration 1.3 (Claim Numbers in Car Insurance) In car insurance, a good esti-
mate of the expected number of claims is essential for adequate policy pricing. An
insurance company here faces a two-way risk. Overestimation of the expected num-
ber of claims means too high premiums and therefore a loss of clients. Expecting
too few claims however poses the risk of large losses in the portfolio. Assuming that
an insurance company has a portfolio of n homogeneous policy holders, a common
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choice for the distribution of the number of claims Xi, i = 1, . . . , n, is the Poisson
distribution with mean and variance parameter θ and probability mass function

f (xi |θ)= θxi

xi ! e
−θ for xi ∈ {0,1,2, . . .}. (1.10)

Even if the portfolio consists of rather homogeneous policy holders, there is sig-
nificant uncertainty regarding the expected number of claims θ because it also de-
pends on unobservable quantities such as risk affinity or exogenous risks like ex-
treme weather events.

The insurance company decides to choose a Gamma prior distribution with pa-
rameters α > 0 and β > 0, mean α/β , and density

p(θ)= 1

�(α)
βαθα−1e−βθ , (1.11)

where �(α) is the Gamma function �(α)= ∫∞
0 θα−1e−θdθ .

The posterior distribution (1.3) based on observations x1, . . . , xn from a previous
year for example, is then obtained as follows:

p(θ |x)∝
[
n∏
i=1

θxi

xi ! e
−θ
]

1

�(α)
βαθα−1e−βθ ∝ θα1−1e−β1θ ,

which is again a Gamma distribution with parameters α1 =∑n
i=1 xi + α and β1 =

n+ β . As before, the posterior mean can be decomposed into a weighted average
of the empirical and prior mean. Such a convenient decomposition is however not
always possible.

This mixture of Poisson and Gamma densities has another interesting interpreta-
tion: if the insurance company is interested in the claim number probabilities given
an unknown parameter θ , Bayes’ theorem can be “inverted” to compute the marginal
density as f (xi) = f (xi |θ)p(θ)/p(θ |xi) which results in a negative binomial dis-
tribution with the same mean as the Poisson distribution but with a higher variance
due to the uncertainty in the unknown parameter.

1.1 From Non-informativeness to Conjugacy

Illustrations 1.1 and 1.2 also demonstrate a general problem of Bayesian statistics,
namely the question: how do we choose an appropriate prior distribution? In certain
applications, this choice might be evident but in general this is a non-trivial question
and should be as objective as possible in order to not influence the results in an un-
wanted way. If for example in Illustration 1.1 the uncertainty in the prior knowledge
τ 2 is very large, that is, the prior knowledge is rather vague, the prior will be close
to p(θ)∝ 1 like the first prior choice in Illustration 1.2. Such a prior is called non-
informative because it assigns equal likelihood to each possible parameter value.
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One however has to be careful if the parameter space � is unbounded. In that case
we have

∫
�
p(θ)dθ = ∞, and p(θ) is an improper prior.

Hence, such non-informative priors has to be dealt with care to ensure that the
resulting posterior is proper. In Illustration 1.1, as τ 2 → ∞ corresponding to a non-
informative prior, the posterior density is a normal density with mean x and variance
σ 2

n
, which is a proper distribution.
Another issue of non-informative priors is that they are not invariant under

reparametrization of the model. For example a uniform prior on the success prob-
ability θ ∈ (0,1) (see Illustration 1.2) does not result in a uniform prior on the so-
called odds parameter given by θ/(1 − θ). An alternative approach for defining
non-informative priors which has this invariance property was developed by Jef-
freys [21]. Jeffreys prior is given as

p(θ)∝ ∣∣I (θ)∣∣ 1
2 ,

where

I (θ)=E
[
−∂

2 lnf (X|θ)
∂θ∂θ ′

∣∣∣θ
]

(1.12)

is the expected Fisher information matrix about θ , which is a measure for the in-
formation about the parameter contained in the sample. In general, Jeffrey’s ap-
proach leads to prior densities in the form of p(θ) ∝ 1 for location parameters θ
and p(σ)∝ σ−1 for scale parameters σ . For example the mean μ of a normal dis-
tribution is a location parameter and the standard error σ is a scale parameter.

On the other hand, the choice of an informative prior is always preferable if there
is some kind of a priori knowledge about the parameter of interest. However, it will
not be possible to get an analytically closed form expression of the posterior in com-
plex situations, since the normalizing constant f (x) defined in (1.4) of the posterior
distribution requires a possibly high-dimensional integration. Posterior calculations
are however simple if one considers conjugate prior distributions. A class of prior
distributions P is conjugate to a class of observational models F if for every prior p
out of P and for any observational distribution f from F , the posterior distribution
p(·|x) remains in the class of the prior distribution P .

Example 1.4 (Conjugate Prior Distributions) The class of normal priors for the
mean (Illustration 1.1) is conjugate for the observational model of normal distri-
butions with known variance, while the class of Beta priors (Illustration 1.2) is con-
jugate for the observational model of Bernoulli distributions. Finally Illustration 1.3
also shows that the class of Gamma priors is conjugate for Poisson distributions.

1.2 Bayesian Inference

In Bayesian statistics all information about the parameter θ is contained in the pos-
terior distribution, while in classical statistics the information about θ is captured
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by point and interval estimates. However, for the Bayesian, these quantities can be
straightforwardly derived as well.

The main location measures are the posterior mean, as discussed in Illustra-
tions 1.1–1.3, the posterior median and the posterior mode, where the last quantity
is closest to the maximum likelihood principle from frequentist statistics, that is,
the parameter θ is most likely to be observed as judging from the available infor-
mation contained in the observations. In maximum likelihood (ML) estimation we
choose θ̂ML = argmaxθ∈� �(x|θ), while the posterior mode (PM) is augmented by
the prior and given by θ̂PM = argmaxθ∈� �(x|θ)p(θ). Note that, for example, for
normal distributions the mean, mode and median coincide, while this is in general
not the case, such as for the Gamma distribution.

The main dispersion measures are the variance, standard deviation (square root
of the variance), precision (inverse of the variance) and interquartile range (differ-
ence between 75 %- and 25 %-quantiles) of the posterior distribution. Correspond-
ing to the Fisher information defined in (1.12), one also often considers the posterior
curvature at the mode which is the matrix of second derivatives of the posterior den-
sity in log form at the mode. If θ is a vector, marginal densities can also be assessed.

In addition to these Bayesian point estimates 100(1 − α) % credible intervals
provide interval estimates for θ and are given for a scalar parameter θ by an interval
I (x), depending on the observations x, such that

∫
I (x)

p(θ |x)dθ = 1 − α.

In contrast to the confidence interval in classical statistics, the credible interval al-
lows the interpretation that the parameter θ is contained with probability 1 − α in
I (x), since θ is now modeled as a random quantity.

Example 1.5 (Inference of the Normal Distribution) In Illustration 1.1 we have seen
that the posterior distribution is given by the normal distribution with mean μ1 and
variance τ 2

1 . Therefore the posterior mean, mode and median are μ1, while the pos-
terior variance is τ 2

1 and the posterior precision is τ−2
1 , which is also the posterior

curvature at the mode.
A 100(1 − α) % credible interval [θl(x), θu(x)] for θ is given by appropriate

quantiles of the posterior distribution: θl(x) = μ1 − τ1�
−1(1 − α

2 ) and θu(x) =
μ1 + τ1�

−1(1 − α
2 ), where �−1 is the inverse of the standard normal distribu-

tion function. This is also the shortest possible credible interval. Note that the cor-
responding classical 100(1 − α) % and confidence interval for θ is given by
x̄ ± s√

n
�−1(1 − α

2 ) where s2 := 1
n−1

∑n
i=1(xi − x̄)2 is the sample variance.

Returning to the specific example of Illustration 1.1, a corresponding 95 % credi-
ble interval for the mean yield is [10.303,13.697], while a 95 % confidence interval
is [9.040,12.960] when assuming a sample variance of s2 = 5. From the Bayesian
theory the agronomist can say that the mean yield is between 10.303 and 13.697
with 95 % probability. The frequentist approach gives that the random interval
x̄ ± s√

n
�−1(1 − α

2 ) covers the mean in 95 % of times. For the specific observa-
tions this interval is given by [9.040,12.960].
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1.3 Conjugacy and Regression Models

Before closing this section we consider the problem of modeling the influence of
potential explanatory variables on a risk quantity called response. The simplest such
model is the linear regression model for the response vector Y = (Y1, . . . , Yn)

′:

Yi ∼N
(
xi1β1 + · · · + xidβd, σ 2) independent for i = 1, . . . , n, (1.13)

where xi1, . . . , xid are known values of d explanatory variables for the ith observa-
tion and β1, . . . , βd are unknown regression coefficients. We can rewrite this model
in matrix form as follows:

Y ∼Nn
(
Xβ, σ 2In

)
, (1.14)

where Nn(μ,�) denotes the n-dimensional normal distribution with mean vector μ

and covariance matrix �. Further we define

X :=
⎛
⎜⎝
x11 . . . x1d
...

...

xn1 . . . xnd

⎞
⎟⎠ and β :=

⎛
⎜⎝
β1
...

βd

⎞
⎟⎠ .

The matrix X is called the design matrix and we assume that its columns are not
linearly dependent.

Applications of such models can be found in virtually all areas of scientific re-
search. For example, in Illustration 1.1 the agronomist may also try to model the
crop yields with respect to a set of explanatory variables such as rainfall or sunshine
duration. An experienced agronomist may have some prior expert knowledge about
the effect of these variables and therefore can choose appropriate prior distributions
for the regression coefficients. Similarly, based on her experience she may also be
able to specify a prior for the variance parameter of the model parameters.

In model (1.14) it is more convenient to formulate priors in terms of β and the
precision φ := σ−2. A typical choice is the Normal-Gamma, NG(b0,B0, n0, S0),
prior, which is, for known constants n0 and S0, known vector b0 and known ma-
trix B0, defined in a hierarchical way as

β|φ ∼Nd
(

b0,
B0

φ

)
and φ ∼ Gamma

(
n0

2
,
n0S0

2

)
. (1.15)

Equivalently we can assume β|σ 2 ∼ Nd(b0, σ
2B0) and σ 2 ∼ Inverse Gamma( n0

2 ,
n0S0

2 ). Here the Inverse Gamma distribution is derived as follows: if X ∼
Gamma(α,β) then 1/X ∼ Inverse Gamma(α,β). Under this setup the following
theorem holds:

Theorem 1.6 (Conjugacy in Regression) For the linear model given in (1.14) with
observed response y and prior distribution given by (1.15) the posterior distribution
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of (β, φ) is given by an NG(b1,B1, n1, S1) distribution with

b1 = B1
(
B−1

0 b0 +X′y
)
, B1 = (B−1

0 +X′X
)−1
,

n1 = n0 + n, S1 = 1

n1

[
n0S0 + (y −Xb1)

′y + (b0 − b1)
′B−1

0 b0
]
.

See Gamerman and Lopes [4, Sect. 2.3.2] for a proof.

2 MCMC—Markov Chain Monte Carlo

In Sect. 1.1 we studied the choice of prior distributions. In particular, we discussed
non-informative priors and conjugate families which allow for an easy derivation of
the posterior distribution (1.3). This is however not the case in general. Markov
Chain Monte Carlo (MCMC) methods are used to approximate the posterior in
more complex situations. Although being very computer intensive, the increasing
availability of computing power nowadays makes the use of MCMC methods in-
creasingly attractive. In particular, MCMC methods may be used to solve complex
problems which cannot be treated using classical statistics. Examples of such prob-
lems are spam e-mail filtering and the analysis of gene expression data, just to name
a few.

MCMC methods are based on the two well-known concepts of Markov Chains
and Monte Carlo techniques. Both concepts will be explained first, before we then
introduce the two most commonly used algorithms, namely the Gibbs sampler and
Metropolis Hastings algorithms. Recent comprehensive references on MCMC meth-
ods include Gamerman and Lopes [4] and Marin and Robert [22].

2.1 ∗∗MC—Monte Carlo

To understand MCMC methods, we begin with the second “MC” which refers to
“Monte Carlo” and which is due to the often used Monte Carlo integration tech-
niques. In general Monte Carlo methods repeatedly sample from a probability dis-
tribution to determine analytically difficult quantities. For example, let us assume
that t (·) is a function and we are interested in computing the integral

I =
∫ 1

0
t (θ)dθ, (2.1)

of which no closed form solution is known. This is, for example, often the case
for the marginal density function f defined in (1.4) which is part of the posterior
distribution defined in (1.3). For such problems we use the following numerical ap-
proximation. First let θ ∈ (0,1) be a random variable with density p. Then the ex-
pectation of the random variable t (θ) is E(t(θ))= ∫ 1

0 t (θ)p(θ)dθ . If we can sample
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from p, an estimate of E(t(θ)) is the sample mean. In particular, let θ be uniform on
(0,1) and θ1, . . . , θn a corresponding independent and identically distributed (i.i.d.)
random sample. Then (2.1) can be estimated by

Î := 1

n

n∑
i=1

t (θi). (2.2)

By the strong law of large numbers (see Durrett [12]) Î converges to I = E(t(θ))
with probability 1, since p(θ)= 1 for all θ ∈ (0,1).

In Bayesian statistics the posterior expectation E(t(θ)|x) can be estimated by
the sample mean (2.2) when θ1, . . . , θn is a sample from the posterior distribution
p(·|x). As long as the posterior distribution and sampling algorithms are available,
there are no problems and the first “MC” referring to “Markov chain” is not needed.

As mentioned above, it is unfortunately not the case that an analytical form of the
posterior density p(·|x) is always available. The idea of MCMC methods therefore
is to construct a Markov chain with limiting distribution p(·|x). If the Markov chain
is run for a sufficiently long time, it can be assumed that the stationary state is
reached and therefore the realizations of the chain represent a sample from p(·|x).
In the following section we therefore give a brief overview of Markov chain theory.
Readers familiar with it can skip Sect. 2.2 and continue reading with Sects. 2.3
and 2.4 which discuss the two most common MCMC methods.

2.2 MC∗∗—Markov Chains

We give a short introduction to Markov chains and state major results. A more de-
tailed treatment can be found in Meyn and Tweedie [24], Nummelin [25], Resnick
[26] and Guttorp [18]. The set of random variables {θ (t) : t ∈ T } is said to be a
stochastic process taking values in the state space S for time points t in the index set
T . In our discussion we will only consider discrete time stochastic processes with T
being the set of natural numbers N = {1,2, . . .}. The state space S can generally be
a subset of the d-dimensional set of real numbers, Rd , but in the following we will
concentrate on a discrete state space S. Details on continuous state space Markov
chains can be found in Meyn and Tweedie [24].

A Markov chain is a process, such that given the present state, past and future
states are independent:

P
(
θ (n+1) = xn+1|θ (n) = xn, θ

(n−1) = xn−1, . . . , θ
(0) = x0

)

= P (θ (n+1) = xn+1|θ (n) = xn
)

(2.3)

for all x0, . . . ,xn+1 ∈ S. If the probabilities in (2.3) do not depend on n, we say that
the Markov chain is homogenous. In this case we define the transition probability
P(x,y) of moving from state x to state y as:

P(x,y) := P (θ (n+1) = y|θ (n) = x
)
.
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Fig. 3 Probabilities of
molecule movement

In general, for A⊂ S, P(x,A) :=∑y∈A P (x,y) is called the transition kernel.

Illustration 2.1 (Molecule Movement) Consider a molecule traveling in a liquid or
a gas which moves independently left and right with successive displacements from
its current position governed by a probability function f over the integers, that is
S = Z. Such a process is called a random walk. Let θ(n) represent the position of
the molecule at time n. Therefore we have

θ(n) = θ(n−1) +wn = θ(0) +w1 + · · · +wn,
where wi ∼ f independently and for all i ≥ 1. For the initial position θ(0) we as-
sume an initial distribution π(0).

The case where the probabilities of right, left or stay move are given by p, q
and 1 − p− q , respectively, is represented by assuming f (1)= p, f (−1)= q and
f (0)= 1 − p− q . This implies that

P(x, y)= P (θ(n+1) = y|θ(n) = x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p, if y = x + 1,

q, if y = x − 1,

1 − p− q, if y = x,
0, if y �= x − 1, x, x + 1,

which is illustrated in Fig. 3.

If the state space S ⊂ R
d is not only discrete but also finite, that is S =

{x1,x2, . . . ,xr}, we can consider the transition matrix P defined by

P :=
⎛
⎜⎝
P(x1,x1) . . . P (x1,xr )

...
...

P (xr ,x1) . . . P (xr ,xr )

⎞
⎟⎠ .

Higher order transition probabilities Pm for m≥ 2 can be obtained as follows

Pm(x,y) := P (θ (m) = y|θ (0) = x
)

=
∑
x1∈S

. . .
∑

xm−1∈S
P
(
θ (m) = y, θ (m−1) = xm−1, . . . , θ

(1) = x1|θ (0) = x
)

=
∑
x1∈S

. . .
∑

xm−1∈S
P
(
θ (m) = y|θ (m−1) = xm−1

) · · ·P (θ (1) = x1|θ (0) = x
)

=
∑
x1∈S

. . .
∑

xm−1∈S
P (x,x1)P (x1,x2) · · ·P(xm−1,y),



220 C. Czado and E.C. Brechmann

Fig. 4 Example of health states (0 = healthy, 1 = sick) of a policy holder over time (p = 0.05,
q = 0.3, π(0)(0)= 0.8, π(0)(1)= 0.2)

where the second equality is due to the Markov property (2.3). In matrix notation
we have Pm = P · · ·P meaning matrix multiplication m times of the matrix P .

Further, let π(0) be the initial distribution of the chain, π(0)(x) := P(θ (0) = x).
The marginal distribution after n time steps is given by

π(n)(y) := P (θ (n) = y
)=

∑
x∈S

P
(
θ (n) = y|θ (0) = x

)
P
(
θ (0) = x

)

=
∑
x∈S

P n(x,y)π(0)(x), (2.4)

which can also be written as π(n) = π(0)P n = π(0)P n−1P = π(n−1)P .
Before we move on to discuss some major results which are the basis of MCMC

methods, we consider an illustrative example.

Illustration 2.2 (Daily Allowance in Health Insurance) A health insurance com-
pany sells policies which pay a daily allowance to sick policy holders. In order
to price the policies, the company sets up the following simplifying model. The
health state of a person is modeled as a Markov chain {θ(n) : n ≥ 0} with states
S = {healthy, sick}, denoted as S = {0,1}, respectively. The initial distribution (the
proportions of healthy and sick policy holders when the policy is sold) is denoted
by π(0) = (π(0)(0),π(0)(1))′ and the transition matrix P by

P =
(

1 − p p

q 1 − q
)

=
(
P(0,0) P (0,1)
P (1,0) P (1,1)

)
.

That is, a healthy policy holder today is assumed to fall ill tomorrow with a proba-
bility of p versus staying healthy with a probability of 1−p. Similarly, a sick policy
holder becomes healthy with a probability of q and stays sick with a probability of
1 − q . An exemplary realization of this Markov chain is shown in Fig. 4

The probability that a person is healthy after n days (independent of whether or
not he or she was sick in the meantime) is given by

P
(
θ(n) = 0

) = P (θ(n) = 0|θ(n−1) = 0
)
P
(
θ(n−1) = 0

)

+ P (θ(n) = 0|θ(n−1) = 1
)
P
(
θ(n−1) = 1

)
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= (1 − p)P (θ(n−1) = 0
)+ qP (θ(n−1) = 1

)

= (1 − p− q)P (θ(n−1) = 0
)+ q

= (1 − p− q)[(1 − p− q)P (θ(n−2) = 0
)+ q]+ q

...

= (1 − p− q)nπ(0)(0)+ q
n−1∑
k=0

(1 − p− q)k.

If p = q = 0, that is, healthy (sick) persons always stay healthy (sick), then
P(θ(n) = 0) = π(0)(0) and P(θ(n) = 1) = π(0)(1). If p + q > 0, using results for
the finite geometric series gives

P
(
θ(n) = 0

)= (1 − p− q)nπ(0)(0)+ q 1 − [(1 − p− q)n]
1 − (1 − p− q)

= (1 − p− q)n
[
π(0)(0)− q

p+ q
]

+ q

p+ q . (2.5)

If the initial distribution is given by π(0) = ( q
p+q ,

p
p+q )

′, then the marginal proba-

bility P(θ(n) = 0)= q
p+q is the same for all time points n.

If p + q < 2, then (1 − p − q)n converges to zero as n goes to infinity and
therefore

lim
n→∞P

(
θ(n) = 0

)= q

p+ q and lim
n→∞P

(
θ(n) = 1

)= p

p+ q ,

which shows that the initial distribution is obtained as the limiting distribution of
the Markov chain. For the realizations of the Markov chain shown in Fig. 4 the
convergence is illustrated in Table 1.

To obtain the probability that an initially healthy policy holder is also healthy
after n days, denoted by Pn(0,0), we assume that we always start in the healthy
state, that is π(0)(0)= 1. Using (2.4) with π(0)(0)= 1 this gives

Pn(0,0)= P (θ(n) = 0
)= (1 − p− q)n

(
1 − q

p+ q
)

+ q

p+ q
= (1 − p− q)n p

p+ q + q

p+ q .

Similarly, we compute Pn(1,0), Pn(0,1) and Pn(1,1) to determine the nth order
transition matrix Pn as

Pn = (1 − p− q)n
p+ q

(
p −q

−q q

)
+ 1

p+ q
(
q p

q p

)
. (2.6)
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Table 1 Empirical marginal probabilities after different time points of the Markov chain shown in
Fig. 4

Health
states

Time Limit
prob.100 200 300 400 500 600 700 800 900 1000

0 0.75 0.76 0.78 0.79 0.79 0.82 0.83 0.84 0.85 0.86 0.86

1 0.25 0.24 0.22 0.21 0.21 0.18 0.17 0.16 0.15 0.14 0.14

Finally, we denote by T0 the first time that a person becomes healthy again. Given
that he or she was healthy when taking out the policy, we have

P
(
T0 = n|θ(0) = 0

)= P0
(
θ(n) = 0, θ(j) �= 0,1 ≤ j ≤ n− 1

)

= P(0,1)P (1,1)n−2P(1,0)= p(1 − q)n−2q.

Similarly let T1 be the first time that a person falls ill. Then it holds that P(T1 =
n|θ(0) = 0)= P(0,0)n−1P(0,1)= p(1 − p)n−1.

A fundamental problem for Markov chains in the context of simulation is the
study of the asymptotic behavior of the chain as the number of steps or iterations
n goes to infinity. A key concept for this is the stationary distribution π , which
satisfies ∑

x∈S
π(x)P (x,y)= π(y) ∀y ∈ S, (2.7)

and can be written in matrix notation as π = πP . The reason for the name is clear
from the above equation. If the marginal distribution at any step n is π , then the
distribution of the next step is πP . Once the chain reaches a stage where π is the
distribution of the chain, the chain retains this distribution for all subsequent stages.

Illustration 2.3 (Illustration 2.2 Continued) Since the policies sold by the health
insurance company are valid for the full lifetime of a policy holder, the company
would like to investigate the long term expected proportions of healthy and sick
persons. Since S = {0,1}, in this case condition (2.7) is equivalent to

π(0)P (0, y)+ π(1)P (1, y)= π(y), y = 0,1.

The solution is π = ( q
p+q ,

p
p+q ). Also for p+ q < 2 it follows from (2.6) that

lim
n→∞P

n = 1

p+ q
(
q p

q p

)
=
(
π(0) π(1)
π(0) π(1)

)

and the distribution of θ(n) converges to π at an exponential rate. This shows that
for p + q < 2 the proportion of healthy and sick policy holders is asymptotically
given by the stationary distribution π .
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The case p + q = 2 still produces a stationary distribution π but this does not
provide a unique limiting distribution since from (2.5) it follows that

P
(
θ(n) = 0

)= (−1)n
(
π(0)(0)− q

2

)
+ q

2
∀n≥ 1.

This case is somewhat different, since the states are always alternating over time
corresponding to the case that persons are healthy one day and always fall ill the
next day which is evidently rather unrealistic. The chain has a periodic nature that
will be addressed below.

Having established some basic properties of Markov chains, we are interested
in characterizing the limiting behavior. For this a classification of the states of the
Markov chain is necessary. For a more complete treatment see for example Chap. 2
of Resnick [26]. We define the first visit time to y as Ty = inf{n ≥ 1 : θ (n) = y}
and the probability of visiting y after starting in x in finite time by ρxy := P(Ty <

∞|θ (0) = x). Then a state y ∈ S is recurrent if and only if ρyy = 1, and—more
strongly—positive recurrent if and only if y is recurrent and E(Ty |θ (0) = y) <∞.
Further, the state x is said to hit y or y is accessible from x, denoted by x → y if and
only if ρxy > 0. One can show that x → y if and only if there exist an n ≥ 0 such
that Pn(x,y) > 0 (see Resnick [26, p. 78]). Let x ↔ y if and only if x → y and
y → x. This is an equivalence relationship. The Markov chain is called irreducible
if x → y for every pair x,y ∈ S.

Finally, to establish limit distributions one also needs to introduce the notation of
periodicity. The period of state x is given by

dx = largest common divisor of
{
n≥ 1 : Pn(x,x) > 0

}
.

It follows that the condition P(x,x) > 0 implies dx = 1. Such a state is called
aperiodic. Thus the states 0 and 1 in Illustration 2.3 are aperiodic if p+ q < 2. On
the other hand, if p + q = 2, it holds that d0 = d1 = 2, in other words, the states 0
and 1 are periodic with period 2.

A state x is called ergodic if it is aperiodic and positive recurrent. Similarly,
a Markov chain is called ergodic if all states are aperiodic and positive recurrent.
These concepts are sufficient to characterize the limiting distribution.

Theorem 2.4 (Limiting Distribution) Let {θ (n), n ≥ 0} be an irreducible and er-
godic Markov chain with stationary distribution π , then

lim
n→∞P

n(x,y)= π(y) ∀x,y ∈ S.

A proof can be found in Guttorp [18, Theorem 2.9]. This shows that the stationary
distribution is also the limiting distribution under the assumptions of Theorem 2.4.

While the empirical mean converges to the population mean as the sample size
increases for i.i.d. samples by the strong law of large numbers, a Markov chain
equivalent will now be given.
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Theorem 2.5 (Ergodic Theorem) If the chain is ergodic and Eπ(t (θ)) <∞ for the
unique limiting distribution π then

tn := 1

n

n∑
i=1

t
(
θ (i)
) n→∞−−−→Eπ

(
t (θ)

)
with probability 1.

A proof can be found on page 49 of Guttorp [18]. This theorem can be used
as justification for using tn as an estimate for Eπ(t (θ)), see also the discussion in
Sect. 2.1. A central limit theorem for Markov chains can also be formulated and is
found for example in Gilks, Richardson, and Spiegelhalter [17]. It can be used for
constructing asymptotic confidence intervals.

Having established the asymptotic theory of Markov chains, the final, and crucial,
step is simulation. For this, consider an ergodic Markov chain {θ (n), n ≥ 0} with
state space S ⊂ R

d , transition probabilities P(x, y) and initial distribution π(0). To
generate values from this Markov chain the following algorithm can be used.

• Sample a starting value θ (0) from the initial distribution π(0).
• For i = 1, . . . , n, sample value θ (i) from the probability mass function f (·) :=
P(θ (i−1), ·).

As n gets large the sampled values will have a distribution close to the limiting dis-
tribution π and can therefore be considered as an approximate sample from π . Note
that all samples drawn after convergence are also samples from π since it is the
stationary distribution. Here, convergence of a Markov chain means that the station-
ary distribution is approximated sufficiently accurately, which is difficult to assess.
Relevant references will be given below. The values before convergence are called
the burn-in period and will be deleted when considering the ergodic averages such
as t̄n. The sampled values are dependent, since they arise from a Markov chain,
however so-called thinning and batching methods can be applied to achieve an ap-
proximately i.i.d. sample. This general method of approximate sampling from the
stationary distribution is called the Markov Chain Monte Carlo (MCMC) approach.

We can now use this approach to draw approximate samples from a complex
posterior distribution p(·|x), which is analytically not tractable, by assuming that
p(·|x) is the stationary distribution π of a Markov chain. The next two sections will
study two famous MCMC algorithms in detail.

2.3 Gibbs Sampler

This chapter introduces and discusses the first widely used sampling scheme for con-
structing a Markov chain with prespecified limiting distribution π . It was first devel-
oped for approximately sampling from the Gibbs distribution used in image analy-
sis. Geman and Geman [16] discussed this problem for several sampling schemes.
Gelfand and Smith [14] were the first to point out to the statistical community at
large that this sampling scheme could be used for other distributions than the Gibbs
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distribution. Before stating the sampling algorithm, we consider a small illustrative
example.

Illustration 2.6 (Health States of a Couple) (Casella and George [2]) Let S =
{(0,0)′, (1,0)′, (0,1)′, (1,1)′} be a two-dimensional state space with probability
distribution π for the random vector θ = (θ1, θ2)

′ given by

P(θ1 = 0, θ2 = 0)= π00, P (θ1 = 0, θ2 = 1)= π01,

P (θ1 = 1, θ2 = 0)= π10, P (θ1 = 1, θ2 = 1)= π11.
(2.8)

In view of Illustration 2.2 this can be interpreted as the healthy and sick states of a
married couple. For example, if the first component corresponds to the health state
of the husband and the second to that of his wife, then θ1 = 1 and θ2 = 0 indicates
that the husband is sick, while his wife is healthy.

The Markov chain now consists of a bivariate vector θ (n) = (θ(n)1 , θ
(n)
2 )′ and the

following transition probabilities are assumed.

• For θ(n)1 the probability of moving from θ
(n−1)
2 = j to θ(n)1 = 0 and θ(n)1 = 1,

respectively, is given by

π1(0|j)= π0j

π0j + π1j
and π1(1|j)= π1j

π0j + π1j
. (2.9)

Note that π1(·|j) is the conditional probability function of θ1 given θ2 = j ,
j = 0,1.

• For θ(n)2 the probability of moving from θ
(n)
1 = i to θ(n)2 = 0 and θ(n)2 = 1, respec-

tively, is given by

π2(0|i)= πi0

πi0 + πi1 and π2(1|i)= πi1

πi0 + πi1 . (2.10)

Note that π2(·|i) is the conditional probability function of θ2 given θ1 = i,
i = 0,1.

This means that the husband’s health state depends on his wife’s yesterday’s state
and today’s health state of the wife depends on today’s health state of the husband.
For a transition from state (i, j) yesterday to state (k, l) today we have

θ
(n−1)
2 = j

πkj
π0j+π1j−−−−−→ θ

(n)
1 = k

πkl
πk0+πk1−−−−→ θ

(n)
2 = l.

Therefore the overall transition probability is given by

P
(
(i, j), (k, l)

)= P (θ (n) = (k, l)|θ (n−1) = (i, j))
= P (θ(n)2 = l|θ(n)1 = k)P (θ(n)1 = k|θ(n−1)

2 = j)

= πkl

πk0 + πk1

πkj

π0j + π1j
,

for (i, j), (k, l) ∈ S. Thus a 4 × 4 transition matrix P can be formed.
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One can further show that {θ (n) = (θ(n)1 , θ
(n)
2 )′, n≥ 0} forms a Markov chain and

that π defined in (2.8) is the stationary distribution of the chain. If all elements of
π are positive, it is also a limiting distribution. In particular, chains formed by the
superposition of the conditional distributions have a stationary distribution given by
the joint distribution.

Illustration 2.6 can easily be extended to the case where θ consists of d compo-
nents with m1, . . . ,md values.

In general, Gibbs sampling is an MCMC scheme where the transition proba-
bilities are formed by the full conditional distributions. Assume as before that the
distribution of interest is π(θ), where θ = (θ1, . . . , θd)

′. Each of the d components
can be a scalar, vector or matrix. Further assume that for each i ∈ {1, . . . , n} the full
conditional distribution for θ i

πFCi (θ i ) := π(θ i |θ−i ) where θ−i = (θ1, . . . , θ i−1, θ i+1, . . . , θd)
′

is known and can be sampled, for example, using Eqs. (2.9) and (2.10) in the above
example. The Gibbs sampling algorithm can now be described as follows.

1. Set the iteration counter to j = 1 and set initial values θ (0) = (θ (0)1 , . . . , θ
(0)
d )

′.
2. Obtain a new value θ (j) = (θ (j)1 , . . . , θ

(j)
d )

′ through successive generation of val-
ues

θ
(j)

1 ∼ π(θ1
∣∣θ (j−1)

2 , . . . , θ
(j−1)
d

)
,

θ
(j)

2 ∼ π(θ2
∣∣θ (j)1 , θ

(j−1)
3 , . . . , θ

(j−1)
d

)
,

...

θ
(j)
d ∼ π(θd ∣∣θ (j)1 , . . . , θ

(j)

d−1

)
.

3. Change counter j to j + 1 and return to step 2 until convergence is reached.

When convergence is reached the resulting value θ (j) is a draw from π . Often con-
vergence is assessed by choosing an error bound ε > 0 and assuming convergence
when the distance between θ (n+1) and θ (n) is less than ε. A further example is given
in the following.

Illustration 2.7 (Coal Mining Disasters) Carlin, Gelfand, and Smith [10] discuss the
following problem: yearly numbers Y1, . . . , YM of British coal-mining disasters as
measured over more than a century are unlikely to have stayed at a similar level due
to better technology and increased safety requirements. It is therefore reasonable to
assume the presence of a change point m ∈ {1, . . . ,M} at which the general level of
disasters significantly changed. Therefore Carlin et al. [10] assume the number of
coal-mining disasters before that (unknown) change point to be Poisson distributed
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with another intensity parameter than after. They consider the following hierarchical
model:

Yi |λ,m∼ Poisson(λ) for i = 1, . . . ,m (independent),

Yi |φ,m∼ Poisson(φ) for i =m+ 1, . . . ,M (independent),

λ∼ Gamma(α,β), (2.11)

φ ∼ Gamma(γ, δ),

m∼ uniform over {1, . . . ,M},

where α,β, γ and δ are known constants and the model is termed “hierarchical”,
since the parameters of the Poisson distributions are modeled as random themselves.
That is, m is the year where there is a significant change in the number of disasters
as modeled by Y1, . . . , YM with different (random) intensities λ and φ depending
on whether Yi is measured before or after the change point m, respectively. Due to
missing prior knowledge about the change point m its distribution is modeled as
uniform.

The joint posterior density of λ,φ and m given data y = (y1, . . . , yM)
′ satisfies

π(λ,φ,m|y)
∝ f (y1, . . . , yM |λ,φ,m)p(λ,φ,m)

=
[
m∏
i=1

fP (yi;λ)
][

M∏
i=m+1

fP (yi;φ)
]
fG(λ;α,β)fG(φ;γ, δ)1{1,...,M}(m)

∝
[
m∏
i=1

e−λλyi
][

M∏
i=m+1

e−φφyi
]
λα−1e−βλφγ−1e−δφ1{1,...,M}(m)

∝ λα+(∑m
i=1 yi )−1e−(β+m)λφγ+(∑M

i=m+1 yi )−1e−(δ+M−m)φ1{1,...,M}(m),

where 1A is the indicator function satisfying 1A(m) = 1 if m ∈ A and 1A(m) = 0
otherwise. Further fP and fG denote the Poisson and Gamma density functions,
respectively (see Glossary A.2).

Therefore the full conditionals can be calculated as

πFCλ (λ) := p(λ|φ,m,y)= p(λ,φ,m,y)

p(φ,m,y)
= f (y|λ,φ,m)p(λ,φ,m)

p(φ,m,y)

∝ π(λ,φ,m|y) as function of λ

∝ λα+(∑m
i=1 yi )−1e−(β+m)λ ∝ Gamma

(
α +

m∑
i=1

yi, β +m
)
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and similarly, πFCφ (φ)∝ Gamma(γ +∑M
i=m+1 yi, δ+M −m), and for the discrete

random parameter m for m= 1, . . . ,M as

πFCm (m)= λα+∑m
i=1 yi−1e−(β+m)λφγ+∑M

i=m+1 yi−1e−(δ+M−m)φ
∑M
l=1 λ

α+∑l
i=1 yi−1e−(β+l)λφγ+∑M

i=l+1 yi−1e−(δ+M−l)φ
.

Therefore the Gibbs sampler for (λ,φ,m) draws λ(n+1) from Gamma(α +∑m(n)

i=1 yi, β + m(n)), φ(n+1) from Gamma(γ +∑n
i=m(n)+1 yi, δ +M − m(n)) and

chooses m(n+1) = m with probability πFCm (m). Here πFCm (m) depends on λ(n+1)

and φ(n+1).
To get a first impression on the behavior of this Gibbs sampler, we simulated data

from the model (2.11) with M = 50, α = 5, β = 1, γ = 1 and δ = 1 (left panel of
Fig. 5) and implemented the Gibbs sampler for 100 iterations. Note that the Gamma
priors for λ and φ are quite informative, since the signal-to-noise ratio (mean divided
by standard deviation) is 1. For illustration we used the true values as starting values.
In the left panel of Fig. 5 the data is presented and the time plots of the MCMC
iterations and posterior density estimates for each parameter are shown in the right
panel of the same figure. The true values are indicated by a vertical dotted line.

The time plots (first column of right panel) indicate that the sampler is converged,
which we expect since we used the true values as starting values. The true values
of λ and φ are reasonably in the center of the sampled posterior distribution. The
sampler has no difficulty finding the true break point. In general, the assessment of
convergence is difficult especially for higher dimensions and convergence diagnos-
tics have to be considered.

We now establish a few basic facts for the Gibbs sampler. First of all the Gibbs
sampler defines a Markov chain, since the update step at iteration j involves only
values of the chain at j − 1. Also the chain is homogeneous, since transitions are
only affected by the iteration through the chain values. The transition kernel from
φ = (φ1, . . . , φd)

′ to θ = (θ1, . . . , θd)
′ is given by

p(θ ,φ)=
d∏
i=1

π(φi |φ1, . . . ,φi−1, θ i+1, . . . , θd). (2.12)

The limiting distribution of a Markov chain with transition kernel (2.12) is π ,
which we established for d = 2 and the discrete case in Illustration 2.6. For the
continuous case the exact conditions under which the Markov chain resulting from
the Gibbs sampler has limiting distribution π are given in Roberts and Smith [27].
For the continuous case π -irreducibility and aperiodicity are sufficient conditions
(see Nummelin [25]). However, there are Markov chains derived from the Gibbs
sampler which are not irreducible, see, for example, Gilks et al. [17]. Finally it can
also be shown that π is stationary.

Even though theoretical results assure the convergence of the Gibbs sampler, they
are difficult to validate theoretically for many complex statistical problems. In these
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cases a more practical approach is to assess the convergence by plotting n versus
θ (n). If the variability of θ (n) for n≥ n0 is approximately constant, then a burn-in of
n0 iterations is sufficient. Further MCMC sample based convergence assessments
and comparison of several samplers with regard to burn-in iterations and required
arithmetic operations are considered in Gilks et al. [17] and Marin and Robert [22]
and the references therein.

Next, we draw attention to the use of the sample. For this, assume that we have
a sample θ (1), . . . , θ (n) from the posterior distribution π now available as generated
by the Gibbs sampler, after some burn-in period and possibly thinning or batching
to reduce autocorrelation of the sampled MCMC iterates. Suppose we are interested
in the posterior distribution of the statistics ψ = t (θ). The standard estimator

ψ̂ := Êπ(θ |x)(ψ) := 1

n

n∑
j=1

t
(
θ (j)

)

estimates the posterior mean Eπ(θ |x)(ψ) of ψ , while the posterior variance σ 2
ψ :=

Varπ(θ |x)(ψ)=Eπ(θ |x)(ψ2)− [Eπ(θ |x)(ψ)2] is estimated by

σ̂ 2
ψ := Êπ(θ |x)

(
ψ2)− [Êπ(θ |x)(ψ)

]2 = 1

n

n∑
j=1

[
t
(
θ (j)

)− ψ̂
]2
.

Moreover, posterior credibility intervals for ψ can be estimated by using sample
quantiles as the estimates of the interval limits. For example if one is interested in
estimating a 95 % credible interval for ψ and n = 1000, then the estimated cred-
ible interval is given as the interval between the 25th and 975th largest sampled
value for ψ . This section concludes with a continuation of the example on linear
regression models.

Illustration 2.8 (Linear Regression with Ar(1) Disturbances) Sometimes the ob-
served risk quantities are not independent, but might depend on previous observa-
tions. For example if we consider monthly plant growth rates, then the growth rate
might depend on the variety but also on the previous month growth rate. Therefore
we extend the linear regression model of Sect. 1.3 to include autoregressive lag 1
(AR(1)) disturbances, that is, the response variables are no longer assumed inde-
pendent but dependent upon the previous response. We change indices from i to t
to acknowledge the time dependencies. Similar to (1.13) the model is then given by

Yt = xt1β1 + · · · + xtdβd + ut where ut = ρut−1 + εt
for a time series of responses Yt with possibly time dependent covariates xt =
(xt1, . . . , xtd)

′ ∈ R
d for t = 1, . . . , T . Further we assume |ρ|< 1 and εt ∼N(0, σ 2)

are i.i.d. As an initial condition we use u0 ∼N(0, σ 2

1−ρ2 ). The following informative
priors can be used:

• β|σ 2 ∼Nd(β0, σ
2A−1

0 )
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• σ 2 ∼ Inverse Gamma( n0
2 ,

δ0
2 )

• ρ ∼ N(ρ0,R
−1
0 ) truncated to (−1,1), where a truncated normal distribution is

a normal distribution whose values are bounded below, above or both. Thus the
usual normal density is multiplied with an indicator function 1(a,b) for an interval
with endpoints a < b and rescaled appropriately to ensure that it integrates to 1.

In the following we determine the full conditional distributions of the parameters,
which can be used in a corresponding Gibbs sampling scheme.

1. Regression parameter: To update the vector of regression parameters β consider
the following transformations

Y ∗ :=

⎛
⎜⎜⎜⎜⎜⎝

√
1 − ρ2Y1
Y2 − ρY1
Y3 − ρY2

...

YT − ρYT−1

⎞
⎟⎟⎟⎟⎟⎠

and X∗ :=

⎛
⎜⎜⎜⎜⎜⎝

√
1 − ρ2x′

1
x′

2 − ρx′
1

x′
3 − ρx′

2
...

x′
T − ρx′

T−1

⎞
⎟⎟⎟⎟⎟⎠
.

Therefore Y ∗ follows a standard linear model with

Y ∗ =X∗β + ε where ε ∼NT
(
0, σ 2IT

)
.

Since the full conditional for β given Y ,X,ρ and σ 2 is the same as the full
conditional for β given Y ∗,X∗, ρ and σ 2, we can use Theorem 1.6 to show that

β|Y ,X,ρ,σ 2 ∼Np
(
β1, σ

2B−1
1

)
,

with B1 = (A0 +X∗′X∗)−1 and β1 = B1(A0β0 +X∗′Y ∗).
2. AR(1) error variance: By again considering the precision φ := 1

σ 2 and us-
ing the equality of the following conditional distributions φ|Y ,X,β, ρ =
φ|Y ∗,X∗,β, ρ, it can be shown that

σ 2|Y ,X,β, ρ ∼ Inverse Gamma

(
n1

2
,
δ1

2

)
,

with n1 = T +n0 +d and δ1 = δ0 + (β − β̂)′X∗′X∗(β − β̂)+ (Y ∗ −X∗β̂)′(Y ∗ −
X∗β̂)+ (β − β0)

′A0(β − β0), where β̂ = (X∗′X∗)−1X∗′Y ∗.
3. Correlation parameter: Finally for updating the parameter ρ we can use Bayes’

theorem to show that

ρ|Y ,X,β, σ 2 ∼N(ρ̃, R̃) truncated to (−1,1),

where R̃ := σ−2(
∑T
t=1 u

2
t−1 +R0) and ρ̃ := R̃−1(σ−2∑T

t=1 utut−1 +R0ρ0).
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2.4 Metropolis Hastings Algorithms

The final MCMC algorithms presented here are the Metropolis Hastings algorithms
(Metropolis et al. [23]; Hastings [19]). A nice introduction to the Metropolis Hast-
ings algorithms is given in Chib and Greenberg [3]. As before, we are interested in
constructing a Markov Chain with given stationary distribution π . First we consider
a small example to motivate the discussion below.

Illustration 2.9 (Metropolis Hastings Algorithms) Consider a distribution π for
x ∈ S, where S ⊂ R

d , d ≥ 1. For a possible application recall Illustration 2.6, where
we investigated the health states of a couple as modeled by the two-dimensional
state space S = {0,1}2 and the probability distribution π .

Our aim is to construct a Markov chain with stationary and limiting distribu-
tion π . For this, let Q be any four-dimensional irreducible transition matrix on
S satisfying the symmetry condition Q(x,y) = Q(y,x) ∀x,y ∈ S and define a
Markov chain {θ (n), n≥ 0} as having transitions from x to y proposed according to
the probabilitiesQ(x,y). This proposed value for θ (n+1) is accepted with probabil-
ity min{1, π(y)

π(x) } and rejected otherwise, leaving the chain in x. This implies that for
x �= y

P(x,y)= P (θ (n+1) = y, transition accepted|θ (n) = x
)

= P (θ (n+1) = y|θ (n) = x
)
P(transition accepted)

=Q(x,y)min

{
1,
π(y)

π(x)

}

and for x = y

P(x,x)= P (θ (n+1) = x, accepted|θ (n) = x
)

+ P (θ (n+1) �= x, not accepted|θ (n) = x
)

= P (θ (n+1) = x|θ (n) = x
)
P(accep.)

+
∑
y �=x

P
(
θ (n+1) = y|θ (n) = x

)
P(not accep.)

=Q(x,x)min

{
1,
π(x)

π(x)

}
+
∑
y �=x

Q(x,y)

[
1 − min

{
1,
π(y)

π(x)

}]
.

Further observe that if we assume that π(y) > π(x) for x �= y, then

π(x)P (x,y)= π(x)Q(x,y)min

{
1,
π(y)

π(x)

}
= π(x)Q(x,y)

= π(y)min

{
1,
π(x)

π(y)

}
Q(y,x)= π(y)P (y,x),
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and similarly if π(y) < π(x). This result is referred to as reversibility of a Markov
chain and ensures that π constitutes the stationary distribution of the chain. If Q is
aperiodic, so will be P and the stationary distribution is also the limiting distribu-
tion.

In general, Metropolis Hastings algorithms also exploit the concept of reversibil-
ity as in Illustration 2.9. That is, in order to construct a Markov chain with stationary
distribution π we require the following reversibility condition for the transition ker-
nel P(θ ,φ):

π(θ)P (θ ,φ)= π(φ)P (φ, θ) ∀θ,φ.

Hastings [19] proposes to define the acceptance probability in such a way that when
combined with an arbitrary transition probability, it defines a reversible chain. Such
an acceptance probability is given by

α(θ ,φ)=
{

min{1, π(φ)Q(φ,θ)
π(θ)Q(θ,φ) }, if π(θ)Q(θ ,φ) > 0,

1, otherwise.
(2.13)

Algorithms based on (2.13) are called Metropolis Hastings (MH) algorithms.
MH algorithms define reversible chains with stationary distribution π if P(θ ,φ)>0.
Roberts and Smith [27] show that if Q is irreducible and aperiodic and α(θ ,φ) > 0
for all (θ ,φ), then the algorithm defines an irreducible and aperiodic Markov chain
with limiting distribution π . The MH algorithm can now be described as follows:

1. Set iteration counter j = 1 and arbitrary initial value θ (0).
2. Move the chain to a new value φ generated from the density Q(θ (j−1), ·).
3. Evaluate the acceptance probability of the move given by α(θ (j−1),φ) in (2.13).

If the move is accepted, then θ (j) = φ. If the move is not accepted, then θ (j) =
θ (j−1) and the chain does not move.

4. Change the counter from j to j + 1 and return to Step 2 until convergence is
reached.

Step 3 can easily be performed by generating an independent uniform quantity u. If
u≤ α, then the move is accepted and else it is not.

Note that you do not need to know the often complicated normalizing constant
of the stationary distribution π to perform the MH algorithm. Further, when us-
ing a symmetric proposal probability as in Illustration 2.9, (2.13) simplifies to
α(θ ,φ) = min{1, π(φ)

π(θ) } if π(θ) > 0 and α(θ ,φ) = 1 otherwise. Other common
choices for Q lead to a random walk (new value = old value + disturbance; Illus-
tration 2.1), independence (new value chosen independently of old value) or hybrid
chains (Metropolis within Gibbs algorithm).

We close our discussion of MCMC methods with an example resuming and ex-
tending the Poisson model for claim frequencies of Illustration 1.3.

Illustration 2.10 (Claim Frequencies) Scollnik [29] considered the following model
for modeling claim frequency data for group insurance policies: let Xij be the num-
ber of claims for the ith group of policy holders in the j th policy year and Pij the
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payroll count for the ith group of company employees in the j th policy year for
i = 1, . . . , I , j = 1, . . . , J . The payroll counts give the number of employees which
are at risk to incur a claim. The dependency among the claim counts over different
years for the same policy i is modeled by introducing an unobserved random unit
rate θi which has a common distribution for all policies. In particular Scollnik [29]
assumed that Xij given θi are independent with

Xij |Pij , θi ∼ Poisson(Pij θi), α ∼ Gamma(5,5),

θi |α,β ∼ Gamma(α,β), β ∼ Gamma(25,1).

The prior specification for α and β are rather arbitrary, but they imply that each θi
has a prior mean and standard deviation approximately equal to 0.041 and 0.048,
which might not be unreasonable in this context according to Scollnik [29]. De-
note by Xi = (Xi1, . . . ,XiJ )′ the number of claims vector of policy group i over
all years and X = (X′

1, . . . ,X
′
I )

′ the total number of claims vector. Further, let
θ = (θ1, . . . , θI )

′. Then the joint distribution of (X, θ , α,β) can be written as fol-
lows:

p(X, θ , α,β)=
[
J∏
j=1

I∏
i=1

fP (Xij |Pij , θi)
][

I∏
i=1

fG(θi |α,β)
]
p(α)p(β).

To update the unobserved latent rates θi we have as full conditional

p(θi |X, θ−i , α,β)∝
[
J∏
j=1

fP (Xij |Pij , θi)
]
fG(θi |α,β)

∝ θα+∑J
j=1Xij−1

i exp

[
−
[
β +

J∑
j=1

Pij

]
θi

]
,

which is a Gamma distribution with parameters α +∑J
j=1Xij and β +∑J

j=1Pij

and where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θI )
′. We see that these conditionals are

actually independent of θ−i . For updating α note that

p(α|X, θ , β)∝
I∏
i=1

fG(θi |α,β)p(α)∝
[
βα

�(α)

]I[ I∏
i=1

θi

]α
α4 exp(−5α).

This is not a standard distribution and an MH step is needed.
Finally, to update β , we obtain for β|X, θ , α again a Gamma distribution with

parameters Iα + 25 and
∑I
i=1 θi + 1.

According to Scollnik [29] we implemented a hybrid chain for the small data set
with I = 3 and J = 5 shown in Table 2 using WinBUGS (Bayesian inference Using
Gibbs Sampling; http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml),
which can be called directly from the statistical computing environment R (see

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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Fig. 6 Estimated posterior densities of 1000 iterations for θ = (θ1, θ2, θ3)
′, α and β

Table 2 Data set of claim
numbers and payroll counts
for groups of policy holders
and policy years

Year Group 1 Group 2 Group 3

Payroll Claims Payroll Claims Payroll Claims

1 280 9 260 6 267 6

2 320 7 275 4 145 8

3 265 6 240 2 120 3

4 340 13 265 8 105 4

5 325 10 285 5 115 7

Ntzoufras [7] for more information). The estimated posterior densities of 1000 iter-
ations are shown in Fig. 6.

3 Food for Thought

There is software for Bayesian inference based on MCMC methods available in
specialized problems. To the interested reader we particularly recommend to have
a look at the above mentioned software WinBUGS and the illustrative book by
Ntzoufras [7]. The recent book by Lunn et al. [6] also covers software for Bayesian
statistical methods.

Another important issue of MCMC methods which could not be treated here
appropriately are burn-in diagnostics which were briefly mentioned in Sect. 2.2 and
provide tools for determining when we consider the values of the sampler as realiza-
tions from the posterior distribution. Further information can be found for example
in Cowles and Carlin [11] and in Brooks and Roberts [9]. Related to this is the
theoretical study of convergence questions.

Other areas of interest are, on the one hand, so-called ABC (Approximate
Bayesian computation) methods which were developed for computationally very
complex problems such as large-scale applications. Roberts et al. [28] and
Frühwirth-Schnatter and Sögner [13], on the other hand, use MCMC methods for
estimating stochastic volatility models commonly used in financial applications.
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4 Summary

In this chapter, we gave a brief introduction to the main concepts of Bayesian statis-
tics. After discussing the fundamental Bayes’ theorem and three illustrating exam-
ples, we examined the problem of an appropriate prior choice in more detail and
introduced Bayesian inference techniques. The first section closed with the com-
monly used linear regression model.

In the second section, we introduced the important class of MCMC methods,
which are increasingly becoming popular for estimating parameters in complex sta-
tistical models. They are based on Monte Carlo techniques and properties of Markov
chains, which were discussed before turning to the two most common MCMC al-
gorithms, namely the Gibbs sampler and the Metropolis Hastings algorithms. There
were discussed and illustrated using relevant examples involving risk quantities on
different scales and with different contexts.

Appendix: Glossary

A.1 Foundations

Symbol Explanation

X random variable (r.v.)

X = x realization or observed value of r.v. X

X continuous r.v. X takes on any value in an interval (e.g., X = annual crop
yield ∈ [0,∞))

X discrete r.v. X takes on only finite or countable many values (e.g., X =
number of mining disasters ∈ {0,1,2, . . .})

i.i.d. independent and identically distributed

θ unknown parameter of a distribution (e.g., θ = probability of
occurrence of a complication after a medical treatment)

θ = (θ1, . . . , θp)
′ unknown parameters of a distribution (e.g., θ = (μ,σ 2),

μ mean, σ 2 variance of a normal distribution)

Pθ (A) probability that event A occurs when parameters θ are true

F(x|θ) cumulative distribution function (cdf) of r.v. X, i.e.,
F(x|θ)= Pθ (X ≤ x)

f (x|θ) probability density function (pdf), when X continuous, i.e.,
f (x|θ)≥ 0,

∫∞
−∞ f (x|θ)dx = 1, Pθ (X ≤ x)= ∫ x−∞ f (x|θ)dx

f (x|θ) probability mass function (pmf), when X discrete, i.e.,
f (x|θ)= Pθ (X = x)

μ=E(X) mean or expectation of r.v. X (E(X)= ∫∞
−∞ xf (x|θ)dx for X

continuous)

σ 2 = Var(X) variance of r.v. X (Var(X)= ∫∞
−∞(x −μ)2f (x|θ)dx for X

continuous)

φ = 1
σ 2 precision of r.v. X

X ∼ F(·|θ) X has cdf F(·|θ)
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Symbol Explanation

X ∼ f (·|θ) X has pdf/pmf f (·|θ)
(X,Y )∼ f (·, ·|θ) r.v.s X and Y have joint pdf/pmf f (·, ·|θ)
fX(x|θ) (fY (y|θ)) marginal pdf for X (Y ): fX(x|θ)=

∫∞
−∞ f (x, y|θ)dy

(fY (y|θ)=
∫∞
−∞ f (x, y|θ)dx)

fX(x|θ) (fY (y|θ)) marginal pmf for X (Y ): fX(x|θ)=∑∞
i=1 f (x, yi |θ)

(fY (y|θ)=∑∞
i=1 f (xi , y|θ))

Pθ (A|B) conditional probability of A given B: Pθ (A|B)= Pθ (A∩B)
Pθ (B)

if
Pθ (B) > 0

xα α-quantile of continuous r.v. X: Pθ (X ≤ xα)= α
x0.5 median of continuous r.v. X

xmode mode of continuous r.v. X, that is the value which maximizes
f (x|θ) over x

X = (X1, . . . ,Xn)
′ X random vector, where X1, . . . ,Xn r.v.s

F(x|θ) (f (x|θ)) cdf (pdf/pmf) of X

E(X)= (E(X1), . . . ,E(Xn)) mean vector of random vector X

� = (�ij )i,j=1,...,n covariance matrix of random vector X with
�ij = Cov(Xi,Xj )=E((Xi −μi)(Xj −μj ))

�−1 precision matrix of random vector X

I (θ)= (I (θ)ij )i,j=1,...,n Fisher information matrix with I (θ)ij =E( ∂2 lnf (X|θ)
∂θi ∂θj

)

A.2 Distributions

Symbol Explanation

X ∼N(μ,σ 2) X is normally distributed with mean μ, variance σ 2 and pdf
f (x|μ,σ 2)= 1√

2πσ 2
exp{− 1

2σ 2 (x −μ)2}, x ∈ R

X ∼ Bernoulli(θ) X is Bernoulli distributed with success probability θ ∈ (0,1) and pmf
f (x|θ)= θx(1 − θ)1−x , x = 0,1, E(X)= θ , Var(X)= θ(1 − θ)

X ∼ Beta(α,β) X is Beta distributed with parameters α > 0, β > 0 and pdf
f (x|α,β)= 1

B(α,β)
xα−1(1 − x)β−1, x ∈ (0,1), B(α,β)=∫ 1

0 x
α−1(1 − x)β−1dx, E(X)= α

α+β , Var(X)= αβ

(α+β)2(α+β+1)

X ∼ Poisson(θ) X is Poisson distributed with parameter θ > 0 and pmf f (x|θ)=
θx

x! e
−x , x ∈ {0,1,2, . . .}, E(X)= Var(X)= θ

X ∼ Gamma(α,β) X is Gamma distributed with parameters α > 0, β > 0 and pdf
f (x|α,β)= 1

�(α)
βαxα−1e−βx , x > 0, �(α)= ∫∞

0 xα−1e−xdx,
E(X)= α

β
, Var(X)= α

β2

X ∼N(0,1) X is standard normal with pdf ϕ(x)= 1√
2π

exp{− 1
2x

2}, and cdf

�(x)= ∫ x−∞ ϕ(u)du, E(X)= 0, Var(X)= 1

X ∼Nn(μ,�) X is multivariate normally distributed with mean vector μ, covariance
matrix � and pdf f (x|μ,�)= 1

(2π)n/2
|�|−1/2 exp{− 1

2 (x − μ)′ ×
�−1(x − μ)}, x ∈ R

n, E(X)= μ, Var(X)=�
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A.3 Classical Statistics

Symbol Explanation

θ (θ) unknown fixed parameter to be estimated

(x1, . . . , xn)
′ i.i.d. sample (realizations) from r.v. X

θ̂ (θ̂ ) estimate of θ (θ) based on data x = (x1, . . . , xn)

�(θ |x) likelihood for θ based on data x from X ∼ f (·|θ) given as �(θ |x)=
f (x|θ)

θ̂ML maximum likelihood estimator of θ : maximizes the likelihood �(x|θ)
over θ

I−1(θ) inverse Fisher information matrix, corresponds to asymptotic
covariance matrix of the maximum likelihood estimator θ̂ML

x̄ := 1
n

∑n
i=1 xi sample or empirical mean for the i.i.d. sample (x1, . . . , xn)

s2 := 1
n−1 ×∑n

i=1(xi − x̄)2
sample variance for the i.i.d. sample (x1, . . . , xn)

Yi ∼N(xi1β1 + · · · +
xidβd , σ

2) independent
for i = 1, . . . , d

linear regression model for response Yi , covariates xi1, . . . , xid and
unknown regression coefficients β = (β1, . . . , βd)

β̂LS least square estimator of β, given by minimizingQ(β)=∑n
i=1(yi − xi1β1 − · · · − xidβd)2 for observed responses y1, . . . , yn

[l(x), u(x)] 100(1 − α)% confidence interval for θ if
Pθ (l(x)≤ θ ≤ u(x))≥ 1 − α, that is, the random interval [l(x), u(x)]
covers the true parameter θ in 100(1 − α)% of times

A.4 Bayesian Statistics

Symbol Explanation

θ (θ) unknown random parameter

p(θ) prior pdf/pmf for θ

p(θ |x) posterior pdf/pmf of θ given the observed sample x from X ∼ f (·|θ)
Bayes’ theorem: p(θ |x)= �(θ |x)p(θ)∫∞

−∞ �(θ |x)p(θ)dθ
θmode(x) posterior mode = mode of posterior distribution

θmean(x) posterior mean = mean of posterior distribution

I (x) 100(1 − α)% credible interval for θ if
∫
I (x) p(θ |x)dθ = 1 − α

θα(x) (θ̂α(x)) (empirical) α-quantile of posterior distribution

[θ̂α/2(x), θ̂1−α/2(x)] 100(1 − α)% credible interval based on empirical quantiles

f (y|x) predictive density of future observation y given the observations x:
f (y|x)= ∫ f (y|θ)p(θ |x)dθ if Y is independent of X given θ
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A.5 MCMC Methods

Symbol Explanation

{θ (t) : t ∈ T } stochastic process with random vectors θ (t) taking values in the state
space S for each t out of the index set T

{θ (n) : n= 1,2, . . .} Markov chain (MC) if (2.3) holds

θ (n) homogeneous if (2.3) does not depend on n

P (x,y) := P (θ (n+1) =
y|θ (n) = x)

transition probability of homogeneous MC θ (n) with discrete state
space S

P = (P (xi ,xj ))i,j=1,...,r transition matrix for a homogeneous MC θ (n) with finite state space
S = {x1, . . . ,xr }: P (xi ,xj )= P (θ (n+1) = xj |θ (n) = xi )

Pm(x,y) := P (θ (n+m) =
y|θ (n) = x)

mth order transition probability for m> n

π(0)(x)= P (θ (0) = x) initial distribution of MC θ (n)

π(n)(x)= P (θ (n) = x) nth step marginal distribution of MC θ (n)

π stationary if (2.7) holds

Ty first visit of MC θ (n) to y

ρxy probability of visiting y after starting in x

y ∈ S (positive) recurrent ρyy = 1 (ρyy = 1 and E(Ty |θ (0) = y) <∞)

θ (n) irreducible ρxy > 0, ρyx > 0 ∀x,y ∈ S
θ (n) aperiodic if largest common divisor of {n≥ 1 : Pn(x,x) > 0} = 1 ∀x ∈ S
θ (n) ergodic if θ (n) aperiodic and irreducible

Full conditionals of
random parameter
θ = (θ1, . . . , θd )

′

conditional distributions of θi , i = 1, . . . , d, given all other
components different from i

Autocorrelation of lag k correlation Cor(θ (n), θ (n+k)) in homogeneous MC θ (n)
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Chapter 9
Dealing with Dependent Risks

Claudia Klüppelberg and Robert Stelzer

In most real life situations we are confronted not only with one single source of
risk or one single risk, but with several sources of risk or combinations of risks. An
important question is whether individual risks influence each other or not. This may
involve the time of their occurrence and/or their severity. In other words, we need to
understand how to model and describe the dependence structure of risks. Clearly, if
risks influence each other in such a way that they tend to occur together and increase
the severity of the overall risk, then the situation may be much more dangerous than
otherwise.

We illustrate this with a concrete example. Consider a building which could be
hit by an earthquake and a flood. If the building is situated on the Japanese coast,
an earthquake may damage the building and cause a tsunami, which in turn floods
the building. Hence, it is quite likely that by these two combined sources of risk a
particularly disastrous event occurs. In other words, there is a strong positive depen-
dence between these two risks (high damage from an earthquake will often come
along with high damage from a flood). This does not mean that they always occur
together, since an earthquake does not necessarily cause a tsunami, and there may
be a flood caused only by heavy rain.
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The Facts

• Dependence between risks and/or sources of risks is crucial for risk assessment,
quantification and management.

• Adequate mathematical measures for the dependence between risks (or more gen-
erally between random variables) are needed.

• Correlation measures linear dependence, but characterises the full dependence
structure only in special parametric models (the multivariate normal distribution
is the typical example).

• Correlation is also useful in spherical and elliptical distributions.
• Rank correlations are appropriate dependence measures in certain situations.
• Copulae provide a way to characterise the dependence structure completely, but

are rather complex objects.
• For risk assessment it is mainly the dependence structure of extreme events that

matters. Thus, measures for dependence in extreme observations provide useful
dependence measures for combined risks.

1 Introduction

In most situations (both in our professional and our daily life) risks are present.
Often there exist various sources of risk which, in the end, determine the overall
risk of a more-or-less complex system. This is a common situation in the financial
world (i.e., for any bank and insurance company), in any engineering system, when
working as a physician or when dealing with environmental consequences. It is then
necessary to assess and deal with combinations of risks in an appropriate way.

There is a huge difference between two risks possibly occurring together and
risks happening at different times. In one situation you need to be prepared to deal
with both risks at the same time, whereas in the other situation it suffices to cope
with one risk at a time. For example, if you consider the people needed on stand-
by for the emergency services, you will need many more people in the first case.
However, in almost all situations life is not even that easy; risks do not have to
occur at the same time; instead they may or tend to occur at the same time. Then
we need to understand and quantify this tendency. This is exactly what this paper
is about, to understand how to model the statistical dependence between different
risks.

There are two classical approaches. The first assesses the single risk factors by
some monetary risk measure, and simply adds the different values of the single
risk measures together. The second combines the monetary risks with a multivariate
normal model, and assesses the dependence via the pairwise correlations.

Both approaches capture only part of the truth, and in this chapter we discuss their
appropriateness, other approaches and the pros and cons of different approaches to
model and measure risks of complex systems.

We are concerned with risk under dependence and thus we briefly have to make
precise what we mean by this. In the end we want to use risk measures (see
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Chap. 5, [15] for a detailed introduction) to quantify risks, as well as to assess
the effects of risk management strategies. Essentially, we want to understand the
effects the dependence structure has on these risk measures. In models it is of
utmost importance to have an appropriate dependence structure capturing all ef-
fects relevant for the risk measures. So we want to discuss both how to model de-
pendence and the effects of different ways of modelling on the final risk assess-
ment.

Therefore let us briefly introduce two risk measures and note that we identify risk
with a random variable; i.e., the outcome of a risky event.

Definition 1.1 (Examples of “Risk Measures”) For a random variable X with dis-
tribution function F(x) = P(X ≤ x) for x ∈ R we define the following risk mea-
sures:

(a) Variance: var(X)=E((X−E[X])2)=E(X2)− (E(X))2 is the mean squared
deviation from the mean or expected value of X.

(b) Value-at-Risk: Define the quantile function of F as

F−1(α)= inf
{
x : F(x)≥ α}, α ∈ (0,1). (1.1)

Note that for strictly increasing F this is simply the analytic inverse.
Then for a large value of α (usually α = 0.95 or larger) VaRα = F−1(α) is
called the Value-at-Risk (for the level α).

The first risk measure, i.e. the variance, gives the average squared difference be-
tween a random variable (the realisation of a risk) and its mean outcome. It measures
how widely spread various outcomes are. Clearly, it is a very simplistic risk mea-
sure, since e.g. it does not differentiate between values higher and values lower than
the mean, as it looks only at the squared distance. Normally, only one direction re-
ally matters when considering a particular risk. For instance, if we consider the level
of a river in a German city and the flood risk, then it is irrelevant when the level is
far smaller than the mean (of course, the “downside” direction may well matter for
other risks, e.g. that water becomes scarce).

The Value-at-Risk or VaR is a very popular risk measure, in particular in the fi-
nancial world. Above it has been assumed that the high realizations ofX are “risky”,
but this is only a convention and can be changed to low realizations being risky. In-
tuitively, the value at risk gives the level which is not exceeded in 100 · α % of
all cases (e.g. if the VaR at the level 0.95 is 500, then the relevant variable, “the
risk”, is above 500 in 5 % of all cases and in 95 % of all cases it is below 500).
Moreover, the VaR has been incorporated into the Basel II regulations (the interna-
tional rules governing how much capital banks must set aside to cover future losses
from their business) and Solvency II (similar international rules for insurance com-
panies), and the national legislation which enforces these international standards.
VaR is the standard risk measure in use there (cf. Chap. 6, [20] for estimation meth-
ods).
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We will see later, in particular in Illustration 2.3, that changing the dependence
structure usually has major effects on the VaR. But note that VaR has been rightly
criticized for various reasons:

(a) VaR takes only the event of large losses into account, but not the size of losses.
In this sense the so called Tail-VaR is preferable, which measures the average
of all losses exceeding VaR. So if a bank sets aside capital equal to its VaR
it certainly goes bankrupt (or needs to be “rescued”), as soon as a loss occurs
which is higher than VaR. In contrast to this, if it used the Tail-VaR to determine
its risk capital, it has set aside enough capital to withstand such an event on
average. So there should be a realistic chance that the capital is sufficient to
cover the loss.

(b) VaR is not always a coherent risk measure. For a risk measure to be coherent
(cf. Chap. 5, [15]) it is necessary that the risk measure of the sum of two risks
is always below the sum of the two risk measures. Since e.g. banks estimate the
VaR for each unit and add all resulting VaRs up to estimate the risk of the whole
bank, the use of VaR may underestimate the true bank’s VaR considerably.

As a very readable paper on dependence measures and their properties and pitfalls,
which goes far beyond the present chapter, we recommend [2].

This paper is structured as follows. In Sect. 2 we introduce the mathematical def-
initions of (in)dependence of random variables and illustrate the effects of different
dependence structures. In Sect. 3 we recall the multivariate normal distribution and
discuss which kind of dependence it is able to model. We continue this in Sect. 4
where we consider the correlation as a popular dependence measure, discussing in
detail its properties, problems, limitations and popular misconceptions. As the next
natural step we present spherical and elliptical distributions in Sect. 5. Thereafter,
we turn our focus onto alternative dependence measures starting with rank corre-
lations in Sect. 6. Then in Sect. 7 we consider a concept—copulae—at length. In
principle it is able to encode completely all possible dependence structures. As typ-
ically extreme events are the really dangerous risks, we indicate in Sect. 8 how to
quantify and model the dependence of extreme events. Finally, we give you as our
readers some Food for Thought in Sect. 9 and provide a brief summary in Sect. 10.

2 Independence and Dependence

The first simple question to answer is, when exactly do we have dependence between
risks? The best answer seems to be a negative one, viz. risks are dependent whenever
they are not independent.

Clearly, this means that we have to give a mathematical definition of indepen-
dence. We do this for two random variables X and Y (which represent the risks we
are interested in). Think for instance of our example of an earthquake and a flood at
the beginning. Intuitively, independence should mean that whatever happens in one
random variable, say X (the earthquake), should in no way affect what happens in Y
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(the flood). If we know the value ofX, this should not change our knowledge of what
might happen and with what probability to Y . In proper mathematical terms one says
that two random variables are independent if their joint distribution is the product of
the two marginal distributions; i.e., P(X ≤ x,Y ≤ y)= P(X ≤ x)P (Y ≤ y) for all
x, y ∈ R (note: P(A) means the probability that some event A occurs). This implies
that the probability distribution of Y conditional on X does not depend on X, but is
simply equal to the distribution of Y ; i.e., P(Y ≤ y |X ≤ x) := P(X ≤ x,Y ≤ y)/
(P (X ≤ x))= P(Y ≤ y) for all x, y ∈ R. Obviously this is in line with the intuition
given above.

Note that the necessity of a negative definition of dependence tells us that there
are (too) many ways in which risks can be dependent. Hence, any mathematical
object completely describing the dependence of arbitrary random variables has to
be a very complex object. Turned the other way around any simple quantification of
dependence—such as one real number obtained from the joint distribution of two
random variables—will necessarily reflect only a very special aspect of dependence,
or describe the dependence completely only in very special situations/set-ups. This
should be kept in mind throughout the rest of this chapter and whenever trying to
quantify dependence in applications.

In truly realistic situations we are interested in the (in)dependence of more than
two random variables. We give the general definition and discuss and illustrate it
afterwards.

Definition 2.1 (Independence) Let X1,X2, . . . ,Xn for n ∈N be random variables.
Then X1,X2, . . . ,Xn are called independent if

P(X1 ≤ x1, . . . ,Xd ≤ xd)= P(X1 ≤ x1) · · ·P(Xd ≤ xd) (2.1)

holds for all x1, . . . , xd ∈ R.

Let us consider two special cases that are particularly relevant in applications.

(a) Assume the random variables X1,X2, . . . ,Xn are discrete; i.e., they can only
assume countably many values (e.g. all random variables take only values 0
or 1, or all possible outcomes are natural numbers). Then X1,X2, . . . ,Xn are
independent if and only if

P(X1 = x1, . . . ,Xd = xd)= P(X1 = x1) · · ·P(Xd = xd)
for all possible values of x1, . . . , xd .

(b) Assume that the random variables X1,X2, . . . ,Xn have densities (non-negative
functions fi such that P(Xi ≤ x) = ∫ x

−∞ fi(t)dt for all i ∈ {1, . . . , n} and
x ∈R). Provided they have also a joint density; i.e., a non-negative function f
such that P(X1 ≤ x1, . . . ,Xd ≤ xd)=

∫ x1
−∞

∫ x2
−∞ · · · ∫ xd−∞ f (t1, t2, . . . , td)dt1dt2· · ·dtd , then they are independent if and only if

f (x1, x2, . . . , xd)= f1(x1)f2(x2) · · ·fd(xd)
for all x1, . . . , xd ∈R.
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2.1 Misconceptions of the Independence Concept

Unfortunately, there are several popular misunderstandings regarding independence,
which we shall discuss now.

Misconception 1: “Pairwise Independence Entails Independence” One may
be tempted to believe that instead of checking the definition of independence, which
involves all random variables, one could check whether all possible pairs of two
variables are independent. Unfortunately, such pairwise independence does not im-
ply independence in the sense of Definition 2.1 above. This is illustrated by the
following example. Simple random variables (indicator variables) are defined via
events A,B,C by 1A, 1B and 1C , where 1A is equal to one if the event A occurs
and equal to zero else; analogously for B and C. Then our Definition 2.1 is consis-
tent with the usual definition of independent events, which says that events A,B,C
are independent, if P(A ∩ B ∩ C) = P(A)P (B)P (C), P(A ∩ B) = P(A)P (B),
P(A ∩ C) = P(A)P (C) and P(B ∩ C) = P(B)P (C) all hold. The following ex-
amples shows that independence of all pairs of indicator variables (or events) does
not imply independence of all three indicator variables (or events).

Illustration 2.2 Think of two thunderstorms which we assume to be independent.
We care only whether a thunderstorm comes accompanied by hail or not. The
probability for a single thunderstorm to come with hail shall be 1/2. Let A be
the event that it hails during the first thunderstorm and B the event that it hails
during the second thunderstorm. Finally, let C be the event that it either hails or
does not hail in both the first and the second thunderstorm. One easily calculates
P(A)= P(B)= P(C)= 1/2. However, P(A∩B∩C)= P(A∩B)= 1/4 �= 1/8 =
P(A)P (B)P (C), because if it hails both in the first and the second thunderstorm,
the event C given by no hail in both thunderstorms can no longer occur. So clearly
A,B,C are not independent. However, A,B are independent by construction and
P(A ∩ C) = P(A ∩ B) = P(B ∩ C) = 1/4; and thus we have pairwise indepen-
dence.

Misconception 2: “Total Risk is Smallest/Largest for Independent Events”
One cannot conclude in general that the situation of independent risks is partic-
ularly (un)favourable from the point of view of the total risk. The reason is that
dependence can act both in a risk-reducing and risk-enhancing way, since typically
risk measures are non-linear. We will present some real life examples and discuss
the variance and the Value-at-Risk as risk measures.

Illustration 2.3 Assume that we are confronted with two different risks modelled
by two random variables X,Y . Both random variables are either 0 or 1 (in some
monetary unit like 1 million Euros), corresponding to no loss or loss of one monetary
unit, each with probability 1/2. For example, in an insurance company X,Y may
describe whether or not damages have been reported for two different insurance
contracts and the claim had to be paid (then the corresponding variable is 1, else it
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is zero). The insurer regards X+ Y as the random variable describing the total risk
of both contracts.

When using the variance as risk measure, we simply have to apply the formula

var(X+ Y)= var(X)+ var(Y )+ 2 cov(X,Y ).

Consequently, the risk (in terms of the variance) is equal to the sum of the risks, if
X and Y are uncorrelated (see Sect. 4 for the use of the correlation as a dependence
measure). The risk of the sum is larger than the sum of risks, if X and Y are posi-
tively correlated, and likewise the risk of the sum is smaller than the sum of the risks
if they are negatively correlated. For the VaR (as well as other more advanced risk
measures) the situation is not quite as simple.

Situation 1: X and Y are independent (e.g. X models a life insurance contract and
Y a personal liability insurance for the same person). Then the loss X + Y is 0
with probability 1/4, 1 with probability 1/2, or 2 with probability 1/4. When us-
ing the Value-at-Risk at the 90 % or 70 % level as risk measures, one obtains
VaR0.9(X+ Y)= 2 and VaR0.7(X+ Y)= 1.

Situation 2: X,Y are “completely positive dependent” (e.g. X,Y are insurances
against hurricanes for two neighbouring houses of same value; i.e., X = Y ). Then
the loss X+ Y is 0 with probability 1/2, or 2 with probability 1/2. It can never be
1 and one obtains VaR0.9(X+ Y)= VaR0.7(X+ Y)= 2.

Situation 3: X,Y are “completely negative dependent” (e.g.X is an insurance cover
for a farmer against too little rain measured by the annual amount of rain being
below a level c, and Y is an insurance cover for a holiday resort at the same place
against bad weather which pays 1 if the amount of rain is above the same level c;
i.e., X = 1 − Y ). Then the loss X+ Y is 1 with probability 1. It can never be 0 or
2 and one obtains VaR0.9(X+ Y)= VaR0.7(X+ Y)= 1.

Comparing the values of the VaR for the two different levels in the three examples
shows that the risk in the independent situation is neither an upper nor a lower bound
on the risk in dependent situations. Note that in the last situation there is actually
no risk at all in the sense of an uncertain outcome, because X + Y is always equal
to 1.

Note here also that typical risk measures are non-linear. This is in contrast to the
expected value, which for X + Y is in all situations equal to 1. Hence, our exam-
ples illustrate also that the expected value does not at all care about the dependence
structure.

3 Normal Distribution

The normal (or Gaussian) distribution is the most widely used probability distribu-
tion in applications. Its popularity is due to the facts that it is rather easy to handle,
that many properties are known completely explicitly, and often there are arguments
that it is a natural distribution to use. By a classical result called the central limit the-



248 C. Klüppelberg and R. Stelzer

orem, one can argue that whenever a variable of interest is generated by the averaged
results of many different small random effects, this random variable should be ap-
proximately normally distributed. However, this argument has to be used with care
and one should always check in detail whether data at hand may reasonably come
from a normal distribution.

Definition 3.1 A random variable X is said to be normally distributed with mean
μ ∈R and variance σ 2 > 0, if it has a probability density given by

fX(x)= 1√
2πσ 2

e
− (x−μ)2

2σ2 , x ∈ R. (3.1)

If μ= 0 and σ 2 = 1, we speak of a standard normal random variable.

Dependence issues make sense only for at least two random variables, hence we
now turn our focus to multivariate normal distributions. We summarize all risks in a
(column) vector X = (X1, . . . ,Xd)

�. We also need the notion of a positive definite
d × d matrix �; that is, a matrix which is symmetric (i.e., the transposed �� =�)
and satisfies x��x> 0 for all x ∈ R

d not equal to the zero vector. We are now ready
to define the multivariate normal distribution; cf. the book [11] for many interesting
details.

Definition 3.2 A d-dimensional random vector X is called normally distributed
with mean μ ∈ R

d and covariance matrix � (a positive definite d × d matrix), if it
has probability density

fX(x)= 1√
(2π)d det(�)

exp

(
−1

2
(x − μ)��−1(x − μ)

)
, x ∈ R

d . (3.2)

If μ = 0 and � = Id (Id being the d × d-identity matrix), we speak of a d-
dimensional standard normal vector.

Note that one can also define normal distributions with only a positive semi-
definite covariance matrix � (i.e., a symmetric matrix satisfying x��x ≥ 0 for all
x ∈R

d ). One way to do this is by demanding that X = μ +AY where Y is standard
normally distributed (with lower dimension) and A is chosen such that AA� =�.

The parameter μ is the mean vector of X and changing it shifts the distribution
(i.e., it changes the location of the distribution in a non-random way). Hence, it
has nothing to do with the dependence structure between the vector components
X1, . . . ,Xd , which therefore must be totally described by �.

Each diagonal element �ii of the matrix � gives the variance of the correspond-
ing ith coordinate Xi , whereas the off-diagonal element �ij with i �= j gives the
covariance of Xi and Xj , a dependence measure we shall investigate in detail be-
low.

In Fig. 1 we depict the densities of several bivariate normal distributions. For
the standard normal density the surface is very homogeneous (it is left invariant
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Fig. 1 Bivariate normal densities: standard normal (independent components; upper left), normal
with variance 1 and covariance ρ = 0.9 (highly positively correlated; upper right), normal with
variance 1 and covariance ρ = −0.9 (highly negatively correlated; lower)

by rotations), whereas in the two other cases the mass of the distribution (i.e., the
area with a high value for the density) is concentrated around the diagonal (i.e.,
the line where x1 = x2), or the negative diagonal (i.e., the line where x1 = −x2),
respectively. Intuitively it seems that in the standard normal distribution the two
components X1 and X2 are rather independent, whereas in the other two cases they
appear to be rather dependent. This intuition is indeed true.

However, there is more to be learned from these plots. A natural question is, what
do the lines look like where the density has a fixed specified value; i.e., what are the
sets of possible values (x1, x2) satisfying fX(x1, x2)= c for some c > 0? From the
plot of the density, we guess that for the standard normal density, these contour
lines should be circles around the origin. Note that the standard normal density
has its maximum at 0 with value fX(0,0)= 1/(2π). We calculate the following for
c ∈ (0,1/(2π)] from (3.1) (by ln we denote the natural logarithm; i.e., the analytical
inverse of the exponential function):

fX(x1, x2)= c

⇔ −1

2

(
x2

1 + x2
2

)= ln(2πc)

⇔ x2
1 + x2

2 = −2 ln(2πc).
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Fig. 2 Contour plots of bivariate normal densities: standard normal (independent components;
left), normal with variance 1 and covariance ρ = 0.9 (highly positively correlated; middle), normal
with variance 1 and covariance ρ = −0.9 (highly negatively correlated; right). The levels of the
contours are 0.15,0.1,0.04,0.01,0.001

From elementary geometry we recall that this last equation describes the circle
around zero with radius

√−2 ln(2πc) (note that 2πc < 1, and hence ln(2πc) < 0).
In the general case (with arbitrary mean and covariance matrix) we may still

assume that μ = 0, since the mean changes only the location, not the dependence
structure. For arbitrary � the sets with equal values for the normal density can also
be calculated and we obtain (again only for possible values of c) from Definition 3.2
and the formula for the explicit inversion of a 2 × 2 matrix:

fX(x1, x2)= c
⇔ �22x

2
1 − 2�12x1x2 +�11x

2
2 = −2 det(�) ln

(
2π
√

det(�)c
)
.

Since this is again a quadratic equation, elementary geometry tells us that these
sets are ellipses centred at the origin. As we shall also discuss in detail later on,
the distributions where the contour lines of the density (the lines characterised by
the density assuming the same value) are circles or, more generally, ellipses play a
special role regarding the description of dependence.

4 Correlation as a Linear Dependence Measure

We now discuss the use of covariance or correlation as a measure of dependence. We
start with a pairX,Y of random variables representing two different risks. Through-
out this section we assume that all random variables have a finite variance; i.e.,
E(X2) <∞ (equivalently,

∫
R
x2fX(x)dx <∞ if X has a density fX).

Recall that the variance of a random variable X is given by var(X) = E((X −
E(X))2) and can be seen as a measure of the variability of the random variable or,
in other words, how much the realisations of X tend to fluctuate around the mean
value E(X). Note that when X has a density fX then its mean or expectation is
E(X)= ∫

R
xfX(x)dx. The covariance of X and Y is given by cov(X,Y )=E((X−
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E(X))(Y −E(Y)))=E(XY)−E(X)E(Y ). From the first expression it is obvious
that the covariance is a positive number if X and Y are “usually” both below or
above their mean and negative if “usually” one is above its mean and one below.

The covariance carries information on the dependence, but is also affected by the
variability (the typical spread around the mean) of the involved random variables.
To get rid of the latter effect and to get a number measuring only dependence as-
pects one normalises the covariance by dividing the covariance by the product of
the involved standard deviations (square roots of the variances).

Definition 4.1 (Correlation Coefficient) For two random variables with finite sec-
ond moment the dependence measure

ρ(X,Y )= cov(X,Y )√
var(X)var(Y )

(4.1)

is called (Pearson’s) correlation coefficient.

The correlation coefficient is usually estimated by its empirical version: given in-
dependent bivariate data (X1, Y1), (X2, Y2), . . . , (Xn,Yn) of joint observations from
two random variables X and Y , respectively, the empirical correlation or correlation
estimator is given by

ρ̂(X,Y )=
∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n
i=1(Yi − Y )2

, (4.2)

where

X = 1

n

n∑
i=1

Xi and Y = 1

n

n∑
i=1

Yi.

X is the empirical mean of the Xi and Y the empirical mean of the Yi .
Classical results (the Cauchy-Schwarz inequality) ensure that the correlation of

any two random variables has to be between −1 and 1 (as has also its empirical
estimator), and for independent random variables cov(X,Y )= 0 and, thus, the cor-
relation ρ(X,Y )= 0 as well.

The correlation is a measure of linear dependence. In particular, perfect linear
dependence is equivalent to ρ(X,Y )= ±1.

Theorem 4.2 Two random variables X,Y are perfectly linearly dependent; i.e.,
Y = aX+ b with some a �= 0 and b ∈R, if and only if ρ(X,Y )= ±1.

Proof Assume first Y = aX+ b. Then

cov(X,Y ) = E((X−E(X))(aX+ b− (aE(X)+ b)))= aE((X−E(X))2)
= a var(X),
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var(Y ) = var(aX+ b)= a2 var(X)

and, hence, ρ(X,Y )= a/√a2 = ±1, depending on the sign of a.

To ease notation for the converse implication we set X̃ = X − E(X) and Ỹ =
Y −E(Y) in the following. Assume now that

ρ(X,Y )= E(X̃Ỹ )√
E(X̃2)E(Ỹ 2)

= ±1.

Then E(X̃2),E(Ỹ 2) > 0 and we have that

E
(
Ỹ 2)(E(X̃2)E(Ỹ 2)− (E(X̃Ỹ ))2)= 0.

However, calculations show that

E
(
Ỹ 2)(E(X̃2)E(Ỹ 2)− (E(X̃Ỹ ))2) = E((E(Ỹ 2)X̃−E(X̃Ỹ )Ỹ )2). (4.3)

Since the expectation of a non-negative random variable is zero if and only if the
random variable is zero (strictly speaking this has to hold only almost surely, but we
ignore such technicalities), (4.3) implies that

Y −E(Y)= E(Ỹ 2)

E(X̃Ỹ )

(
X−E(X))

and thus Y is of the form aX+ b as claimed. �

Proposition 4.3 (First Properties of Correlation) Let X and Y be two random vari-
ables.

(a) Symmetry:

ρ(X,Y )= ρ(Y,X).
(b) Effect of linear transformations:

For all α,γ �= 0 and β, δ ∈R,

ρ(αX+ β,γ Y + δ)= sign(αγ )ρ(X,Y ),

where sign(x) is equal to +1 for x > 0 and −1 for x < 0. Hence, the correla-
tion is invariant under strictly increasing linear transformations (the case when
α,γ > 0).

The concepts of covariance and correlation extend to multivariate random vectors
as follows.

Definition 4.4 Let X = (X1, . . . ,Xd)
� be a d-dimensional and Y = (Y1, . . . , Ym)

�
an m-dimensional random vector. Then we can take covariances and correlations
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between every pair of components of X and Y and summarize them in d × m-
matrices, called the covariance matrix and the correlation matrix:

cov(X,Y) = (
cov(Xi, Yj )

)
1≤i≤d,1≤j≤m,

corr(X,Y) = (
ρ(Xi,Yj )

)
1≤i≤d,1≤j≤m.

The covariance matrix of a random vector cov(X,X) with itself is called the covari-
ance matrix of X and we write var(X) := cov(X,X).

Proposition 4.5 (Further Properties of Correlations and Covariances) Let X =
(X1, . . . ,Xd)

� be a d-dimensional and Y = (Y1, . . . , Ym)
� an m-dimensional ran-

dom vector.

(a) Symmetry:
var(X) and corr(X,X) are symmetric positive semi-definite matrices (cf. before
Definition 3.2).

(b) Linear transformations:

cov(AX + a,BY + b)=A cov(X,Y)B�

for every n× d matrix A, k×m matrix B and every a ∈ R
n and b ∈ R

k .
(c) Linear combinations:

For every a ∈R
d the variance of the linear combination a�X is given by

var
(
a�X

)= a� cov(X)a.

(d) Additivity:

cov(X,Y + Z)= cov(X,Y)+ cov(X,Z)

for every m-dimensional random vector Z = (Z1, . . . ,Zd)
�.

Illustration 4.6 Suppose we model the water flow R (in litres per second) of a river
at a certain point and assume that the river is formed by two independent rivers
just a bit upstream. Let the water flow in the first river be R1 and that in the sec-
ond river R2. Then cov(R1,R2) = ρ(R1,R2) = 0 by the assumed independence.
Clearly, it should hold that R =R1 +R2 (assuming some kind of equilibrium state).
Thus cov(R,R1)= cov(R1,R1)+ cov(R1,R2)= var(R1) and hence

ρ(R,R1)= var(R1)√
var(R1)var(R)

= var(R1)√
var(R1)(var(R1)+ var(R2))

=
√

var(R1)

(var(R1)+ var(R2))

and, likewise, if we replace R1 by R2. For example, if both original rivers; i.e., R1
and R2, have the same variance we get ρ(R,R1)= 1/

√
2.
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Fig. 3 Time series plot of the losses in building (left) and the losses in content of the Danish
fire insurance data from 1980 to 1990. The time is in days starting January 3rd, 1980, leaving out
weekends and holidays

Illustration 4.7 (Danish Fire) Throughout this paper we will illustrate the various
dependence measures using a data set of Danish fire insurance claims from 1980 to
1990 available from http://www.ma.hw.ac.uk/~mcneil/data.html.

The original data set includes data on the losses of the fire insurance arising from
the damage to the building, from the burnt content of the building, and from losses
to profits (of companies in the burnt buildings). Since the last variable is zero in
most cases, we consider only the losses of building and content. To avoid strange
artefacts due to the fact that the data set considers only events where the total loss
(sum of the loss in the three categories) exceeded one million Danish Kroner, we
consider only events where both the losses in building and of content individually
exceed this threshold.

In Fig. 3 we provide a time series plot of the data.
To assess the dependence we provide scatter plots of the loss data as well as the

logarithms of the losses in Fig. 4. At the original scale it is hard to see what is going
on in the majority of the observations, since they form a cloud at the origin and only
the extreme events can be seen, for which it is hard to see any clear dependence
structure. On the logarithmic scale one sees that there is no clear trend/dependence
in the data, but that the two loss variables tend to behave similar and thus should be
positively dependent. This can also be seen from the correlations which are 0.51 for
the original data and 0.38 after taking logarithms.

Correlation is a very popular dependence measure. The reasons are that it can be
easily estimated from data by its empirical version, and that it is the natural depen-
dence measure for the multivariate normal distribution. In this model it describes
the dependence of the random components completely, and also in the more general
class of elliptical distributions.

http://www.ma.hw.ac.uk/~mcneil/data.html
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Fig. 4 Scatter plot of the Danish fire insurance data: losses of buildings and losses of content,
original scale (left) and logarithmic scale (right)

4.1 Disadvantages of Correlation

Correlation has certain disadvantages that one should be aware of when using it.

(a) It is defined only when the variances of the random variables exist. In particular,
for extreme risks this is not always guaranteed. A relevant example in the con-
text of risk is the t-distribution with ν degrees of freedom with density f (x)=
c(1 + x2/ν)−(d+ν)/2, x ∈ R. For two t-distributed random variables with ν ≤ 2
the correlation is not defined. Also for two Pareto-distributed random variables
with densities f1(x) = α1/x

α1+1, x > 1, and f2(x) = α2/x
α2+1, x > 1, and

shape parameters α1 ≤ 2 or α2 ≤ 2, the correlation is not defined.
(b) Two independent random variables with finite variances are uncorrelated. How-

ever, the converse is not true. There exists an abundance of cases where random
variables are uncorrelated, but not independent.

On a simple level, if X is a standard normal random variable, and Y = X2,
then X and Y are obviously not independent, since X2 is a function of X. How-
ever, cov(X,Y )= cov(X,X2)= E(X3)−E(X)E(X2)= 0, since all odd mo-
ments of a normal random variable are equal to 0.

Examples on a more advanced level include variance mixtures of normal ran-
dom variables (cf. Example 5.3) and, in a dynamic context, stochastic volatility
models in finance and stochastic intermittency models in turbulent and other
environmental data.

Only in special parametric models (the multivariate normal distribution is the
typical example), does uncorrelatedness imply independence.

(c) Covariances and correlations depend on the distribution in a highly non-trivial
way. For instance, if one knows only the correlation of X,Y , then nothing can
be said about the correlation of T (X),T (Y ) for a non-linear increasing trans-
formation T .
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(d) The correlation depends on the whole distribution. However, in the context of
risk one does not really care about the dependence for the “usual outcomes” but
about the dependence of the extreme outcomes. The correlation thus typically
provides at most very limited information about the dependence of risks.

4.2 Misconceptions of Correlation

Unfortunately, there are several popular misunderstandings regarding correlation
which we shall explain now.

Misconception 1: “Marginals and Correlation Matrix Determine the Distribu-
tion” It is often wrongly thought that, if one knows the distributions of the random
variables X1 and X2 and their correlation ρ(X1,X2), then one knows already the
bivariate distribution of the random vector X = (X1,X2)

�. This is false not just in
general, but even in a normally distributed world. In particular, as we shall see in a
moment, ifX1 andX2 are known to be each standard normally distributed, and have
correlation ρ, one cannot conclude that (X1,X2)

� is bivariate normally distributed
with mean zero and covariance matrix � = ( 1 ρ

ρ 1

)
.

Illustration 4.8 Let X1 be a standard normally distributed random variable and de-
fine X2 by

X2 =
{
X1 if |X1| ≤ 1,

−X1 if |X1|> 1.

Then X2 is also standard normally distributed, because X1 is and the standard nor-
mal distribution is symmetric around zero. Since both X1 and X2 have a finite vari-
ance, ρ := ρ(X1,X2) exists and is some number in (−1,1), which is hard to com-
pute explicitly. Note that it is clear that the correlation is different from ±1 because
of Theorem 4.2. We now prove by contradiction that the random vector (X1,X2)

T

is not bivariate normally distributed. Thus, assume (X1,X2)
T is bivariate normally

distributed, then X1 + X2 is also normally distributed with mean 0 and variance
2 + 2ρ > 0. However, from the construction of X2 we see that

X1 +X2 =
{

2X1 if |X1| ≤ 1,

0 if |X1|> 1.

Thus the probability that X1 + X2 is strictly bigger than two in absolute value is
zero. Since this probability is strictly positive for every normally distributed random
variable, we have the desired contradiction. Hence, our assumption that (X1,X2)

T

was bivariate normally distributed must be wrong.

Misconception 2: “In All Multivariate Models It Is Possible to Have All Values
Between −1 and 1 as Correlation” Likewise, the belief is widespread that in
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every multivariate model one may have all values between −1 and 1 for the corre-
lation. Unfortunately, not all combinations of valid pairwise correlations lead to a
valid (i.e., positive semi-definite) overall correlation matrix.

However, this is not the only pitfall. Very often the model structure implies addi-
tional constraints on the correlation, such as having to be non-negative. The follow-
ing is an example.

Illustration 4.9 Assume that an insurance company has sold insurance policies
against damages by storm (S) and heavy rain (R). There are three types of insurance
claims, those which regard damages by storm only, those which regard damages by
heavy rain only, and those with both types of damages (caused e.g. by a thunder-
storm with heavy rain and storm). We now want to model the number of claims for
storm S(t) which arrived up to time t (since the initial time 0), and the number of
claims for rain R(t) which arrived up to time t .

The classical insurance claim number model is a Poisson process (see e.g.
Resnick [29]) for the arrivals of insurance claims. A Poisson process with rate (or
frequency) λ > 0 is a counting process, where the number of claims at any time
t > 0 is Poisson distributed with a mean linear in t with some rate λ > 0. We have
E(X(t)) = λt and var(X(t)) = λt for all times t > 0 for a Poisson process X. An
alternative stochastic description of a Poisson process is as follows: it starts at zero
at the initial time zero. After an exponentially distributed (with mean 1/λ) wait-
ing time, during which it remains 0, it jumps to one. Afterwards it remains again
constant for an exponentially distributed (with mean 1/λ) waiting time and then it
jumps to two and so on. The rate λ gives the mean number of jumps (all of height
one) in a unit time interval.

We use three independent Poisson processes, {NR(t)}t≥0 giving the arrival of
claims regarding only heavy rain, {NS(t)}t≥0 giving the arrival of claims regard-
ing only storm and {NB(t)}t≥0 giving the arrival of claims regarding both. The
corresponding rates will be denoted λR , λS and λB . Clearly, we have R(t) =
NR(t) + NB(t) and S(t) = NS(t) + NB(t) for t ≥ 0 and we want to understand
the dependence of R(t) and S(t). The process R(t) is (as a sum of Poisson pro-
cesses) again a Poisson process with rate (or frequency) λS + λB and S(t) is one
with rate λR + λB . Hence, for all t ≥ 0, we have

ρ
(
R(t), S(t)

) = cov(R(t), S(t))√
var(R(t))var(S(t))

= var(NB(t))√
var(R(t))var(S(t))

= λB√
(λB + λR)(λB + λS) .

In this model the correlation can only be between 0 and 1.
Assume further that we have already done univariate modelling of both R,S and

obtained Poisson processes with rates μR and μS and then consider the joint model.
We must then have that λB + λR = μR and λB + λS = μS to be consistent with the
univariate models. Hence, λB ≤ min{μR,μS} is immediate, interpreting the rates as
the frequencies of the arrival of claims. Going back to our correlation we get for all
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t ≥ 0 that

ρ
(
R(t), S(t)

)= λB√
μRμS

≤ min

{√
μR

μS
,

√
μS

μR

}
.

If μR �= μS , the possible correlations are thus below an upper bound strictly smaller
than one. This result has been obtained in the framework of Operational Risk in
Böcker and Klüppelberg [16, Eq. (11)].

For more details on the problematic issues of correlation we refer to [1, 2].

5 Spherical and Elliptical Distributions

We have already seen that the contours of equal density are circles in the standard
normal bivariate distribution and ellipses in the non-standard normal case. Like-
wise, one can show that in general dimensions the contours of equal density of the
normal distribution are ellipsoids, and are spheres in the standard normal case (ac-
tually whenever all components are independent; i.e., all off-diagonal entries of the
covariance matrix are zero, and have the same variance).

The spherical distributions extend the standard normal distribution Nd(0, Id)
(i.e., the distribution of d independent standard normal components). The density
of a spherical distribution satisfies

f (x)=ψ(x�x
)
, x = (x1, . . . , xd) ∈ R

d

where ψ :R → R
+ is an appropriate function.

Examples are the multivariate t-distribution with ν degrees of freedom with
density f (x) = c(1 + x�x/ν)−(d+ν)/2 and the logistic distribution with density
f (x)= c exp(−x�x)/(1 + exp(−x�x))2. Here c are the norming constants, which
guarantee the densities to integrate to 1. It should be noted that random variables
with a non-normal joint distribution that is spherical are uncorrelated random vari-
ables, which however are not independent (see e.g. [24]).

There are various ways to think about a spherical distribution.

(i) From the densities above we see that the contours of equal density are circles
in the bivariate models; i.e., “spheres” in arbitrary dimensions.

(ii) Equivalently, we can think of a spherical random vector X as having the same
distribution under every orthogonal transformation; i.e., if we multiply it by a
d × d matrixM with the property thatM�M =MM� = Id , then MX has the
same distribution as X.

(iii) Finally, a spherical random vector X has the same distribution as RU, where U
is uniformly distributed on the unit sphere Sd−1 = {s ∈R

d : s�s = 1}, and R is
a positive random variable, independent of U.
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Elliptical distributions generalize multivariate normal distributions Nd(μ,�)
with mean vector μ and covariance matrix �, and also have contours of equal den-
sity which are ellipsoids. Moreover, just as ellipsoids are linear transformations of
spheres, elliptical distributions are obtained as linear transformations of spherical
distributions.

For a general treatment of elliptical distributions we refer to Fang, Kotz, and
Ng [4].

Definition 5.1 A random vector X ∈ R
d has an elliptical distribution if there exist

μ ∈ R
d , a positive semi-definite d × d matrix � = (σij )1≤i,j≤d , a positive random

variable G and a random vector U(d) ∼ unif{s ∈ R
d : s�s = 1} (i.e., U(q) is uni-

formly distributed on the unit sphere in R
d ) independent of G such that X satisfies

(
d= means that the distributions of the random variables on both sides are equal)

X d= μ +GAU(d) with A ∈ R
d×d and AA� =�. (5.1)

We write X ∼ Ed(μ,�,G).
The random variableG is called the generating variable. Furthermore, if the first

moment exists, then E(X) = μ, and if the second moment exists, then G can be
chosen such that var(X)=�.

Note that we write X ∼ Ed(μ,�) if we consider only quantities which do not
depend on the concrete generating random variable G, and we denote E(X) = μ,
var(X)=�, provided they exist.

Furthermore, note that in the following we always call � =AA� the covariance
matrix (its elements the covariances) of an elliptical distribution even if the second
moments do not exist.

In elliptical models covariances and correlations are natural dependence mea-
sures. This is a consequence of the following properties:

Proposition 5.2 (Properties of Elliptical Distributions) Let X ∼ Ed(μ,�) be ellip-
tically distributed.

(a) Consider the map T (X)= BX + b for a q × d-matrix B and a vector b ∈ R
q .

Then BX + b ∼ Eq(Bμ + b,B�B�).
(b) From this follows immediately that all marginal distributions of X are elliptical;

in particular, the components of X are one-dimensional elliptical, which means
they are symmetric around their means (or the median, if the mean does not
exist).

Moreover, for an arbitrary component Xi there are a > 0, b ∈ R such that

Xi
d= aX1 +b, where instead ofX1 we could have chosen any other component.

Hence, in distribution any component can be realised as a linear transformation
of one fixed component.
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Let X = (X1,X2)
� ∼ Ed(μ,�) with X1 ∈ R

p , X2 ∈ R
q with p+ q = d . Let

μ = (μ1,μ2)
� with μ1 ∈R

p , μ2 ∈ R
q , and � = (�11 �12

�21 �22

)
. Then

X1 ∼ Ep(μ1,�11) and X2 ∼ Eq(μ2,�22).

Hence, subvectors of elliptically distributed random vectors are again ellipti-
cally distributed, and the parameters are known explicitly.

(c) Assume that � is positive definite. The conditional distribution of X1 given X2
is also elliptical:

X1 | X2 ∼ Ep(μ1|2,�11|2),

where μ1|2 = μ1 +�12�
−1
22 (X2 −μ2) and �11|2 =�11 −�12�

−1
22 �21.

(d) Every elliptical distribution is uniquely determined by the mean, the covariance
matrix �, and the distribution of the generating random variable G.

A very important class of elliptical distributions is given by the normal variance
mixture models.

Example 5.3 (Normal Variance Mixture Model) (a) Let X d= μ + √
WAZ with

μ ∈ R
d , A ∈ R

d×m a matrix of rank d < m, Z ∈ R
m a standard normal vector and

W > 0 a random variable, independent of Z. Then X is said to follow a normal
variance mixture model, and one can show that the contours of equal density are
ellipsoids, hence it is an elliptical distribution.

(b) In the situation of part (a), if W has an inverse gamma distribution with pa-
rameters ( ν2 ,

ν
2 ), then for ν an integer, ν/W ∼ χ2

ν , i.e. ν/W is χ2 (chi-square) dis-

tributed with ν degrees of freedom. This implies that 1
d
(X−μ)��−1(X−μ)∼ νχ2

d

dχ2
ν

,

which is F(d, ν)-distributed (recall that � =AA�).
Moreover, we have X − μ = AZ√

W
∼ tttν(0,�); i.e., X − μ is a d-dimensional

t-distributed vector with ν degrees of freedom. Further, if ν > 2, then X − μ has
covariance matrix ν

ν−2�. If ν ≤ 2 the covariance matrix does not exist.
Hence, the t-distribution—occurring frequently in statistics—is an example of a

normal variance mixture. It is often used in risk management as an alternative to the
normal distribution, because it puts more mass on large events (cf. Fig. 5) and, in its
multivariate version, it allows for modelling joint large events (cf. Example 8.5(c)).

Some contour plots for the densities of t-distributions can be found in Fig. 5.
As can be seen they are quite similar to the corresponding plots for the normal
distribution in Fig. 2, but especially for small ν the density decays much more slowly
than a normal density.

6 Rank Correlations

Correlations depend on the underlying distribution, and may even not exist (when
there is no finite second moment). Non-parametric and robust alternatives have been
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Fig. 5 Contour plots of bivariate tν -densities: upper row: uncorrelated components; i.e., � is the
identity matrix; different degrees of freedom: ν = 1 (left), ν = 10 (middle), ν = 500 (right). Lower
row (ν = 1): strongly correlated components, with ρ = 0.9 (left), and ρ = −0.9 (right). The levels
for the individual contour lines are the same as in Fig. 2

proposed, which are based only on the ranks of the observations. Here ranking refers
to a data transformation where numerical or ordinal values are replaced by their
ranks. For instance, if numerical data 1.7, 9.3, 7.2 and 5.3 are observed, then the
ranks of these data would be 1, 4, 3, 2. The actual sizes of the data are completely
ignored. Obviously, ranking is not unique, when data of equal value are observed.
There is a simple way how to deal with these so-called ties, and we explain this by
an example. Assume that we observe 1.7, 7.2, 9.3, 7.2 and 5.3; then we would take
the mean rank for the two equal observations, and obtain ranks 1, 3.5, 5, 3.5, 2. One
deals similarly with 3 or more equal values.

Often this situation is excluded from the beginning by requiring that the underly-
ing distribution has a density. Then (with probability 1) equal values do not happen
in a sample.

Definition 6.1 (Spearman’s Rank Correlation Coefficient) Let X,Y be random
variables with continuous distribution functions F1,F2 and joint distribution func-
tion F . Let ρ be Pearson’s correlation coefficient from Definition 4.1. Then Spear-
man’s rank correlation is given by

ρS(X,Y )= ρ
(
F1(X),F2(Y )

)
.



262 C. Klüppelberg and R. Stelzer

We have to explain why this is a rank correlation coefficient. Recall that for a
distribution function F we denote by F−1 its generalized inverse function as defined
in (1.1) and recall that F−1 is the analytic inverse of F , if F is strictly increasing.

First of all note that F1(X) is a random variable with values in [0,1]. Moreover,
since F1 is continuous, P(F1(X) ≤ x) = P(X ≤ F−1

1 (x)) = F1(F
−1
1 (x)) = x for

x ∈ [0,1]. This implies that F1(X) is a standard uniform random variable (i.e., it is
uniformly distributed on the interval [0,1]). Consequently, ρS measures the correla-
tion between two uniform random variables, and the original sizes of X and Y have
become irrelevant.

One can say that rank correlations measure the degree of monotone dependence.
Let (X1, Y1), (X2, Y2), . . . , (Xn,Yn) be independent bivariate observations from

two random variablesX and Y , such that all the values of (Xi) and (Yi) are different
(there are no ties).

We estimate Spearman’s rank correlation coefficient by its empirical version,
which is based on replacing F1(X) and F2(Y ) by their empirical versions. To this
end the data (X1, Y1), . . . , (Xn,Yn) are converted into ranks, which we denote by
(rank(Xi), rank(Yi)) and the empirical correlation coefficient as given in (4.2) is
calculated for these ranks.

The formula simplifies by virtue of the fact that 1
n

∑n
i=1 rank(Xi)= 1

n

∑n
i=1 i =

n+1
2 , and

n∑
i=1

(
rank(Xi)− n+ 1

2

)2

=
n∑
i=1

(
rank(Yi)− n+ 1

2

)2

=
n∑
i=1

(
i − n+ 1

2

)2

= 1

12
n
(
n2 − 1

)
.

Then the empirical Spearman’s rank correlation coefficient is given by

ρ̂S(X,Y )= 1

2
n
(
n2 − 1

) n∑
i=1

(
rank(Xi)− n+ 1

2

)(
rank(Yi)− n+ 1

2

)
.

Definition 6.2 (Kendall’s Rank Correlation) Let (X1, Y1) and (X2, Y2) be inde-
pendent random vectors with bivariate distribution function F . Then Kendall’s tau
is given by

τ(X,Y )= P ((X1 −X2)(Y1 − Y2) > 0
)− P ((X1 −X2)(Y1 − Y2) < 0

)
.

The dependence Kendall’s tau captures is better understood in its empirical ver-
sion. Let (X1, Y1), (X2, Y2), . . . , (Xn,Yn) be a sample of bivariate observations
from two random variables X and Y , such that all the values of (Xi), and respec-
tively (Yi), are different. Any pair of observations (Xi, Yi) and (Xj ,Yj ) are said to
be concordant, if the ranks for both elements agree: that is, if both Xi > Xj and
Yi > Yj or if both Xi <Xj and Yi < Yj . They are said to be discordant, if Xi >Xj
and Yi < Yj or if Xi <Xj and Yi > Yj .
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Fig. 6 Scatter plot of the
Danish fire insurance data
losses in building and losses
in content after conversion to
ranks

Definition 6.3 (Empirical Kendall’s Rank Correlation Coefficient) The empirical
version of Kendall’s rank correlation is defined as:

τ̂ = (number of concordant pairs)− (number of discordant pairs)
1
2n(n− 1)

= 2

n(n− 1)

∑
1≤i≤j≤n

sign
(
(Xi −Xj)(Yi − Yj )

)
.

Note that the sign is equal to 1 whenever the two pairs are concordant, and it is
−1, whenever the two pairs are discordant.

Rank correlation coefficients share some of the properties of Pearson’s correla-
tion coefficient: they are symmetric, lie between −1 and 1, and if X and Y are in-
dependent, they are equal to 0. Moreover, since they are based on ranks, rank corre-
lations are invariant with respect to increasing transformations; i.e., if T (x)≤ T (y)
for all x < y, then ρS(T (X),T (Y )) = ρS(X,Y ), and the same holds for Kendall’s
tau.

Both Kendall’s τ and Spearman’s ρ can be calculated from the copula of a bivari-
ate random vector with continuous marginal distributions (for a proof see Sect. 5.2.3
of McNeil, Frey, and Embrechts [8]); see next section for definitions and discussions
of copulae. This means that both rank correlation coefficients are defined by the de-
pendence structure only and not the marginal distributions.

Intuitively, both dependence measures check whether the ranks are similar, but
there are important differences in what they actually measure, which are rather tech-
nical and thus beyond the scope of this introductory chapter (see [21, 27]).

Illustration 6.4 (Danish Fire Continued) In Fig. 6 the ranks of the losses in building
are plotted against the ranks of the losses of content. The fact that there are very few
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points at the lower right and upper left corner hints again at positive dependence.
Indeed, we obtain for the empirical versions of Spearman’s ρ the estimate ρ̂S = 0.32
and of Kendall’s τ the estimate τ̂ = 0.21.

7 Copulae

The idea of modelling dependence in terms of ranks culminates in the concept of
a copula. A copula describes the dependence structure completely and thus is in
general a very complex object.

We start by recalling that for a random variable X with continuous distribution
function F (recall that then we have, with probability 1, no ties in the observations)
the transformed random variable U := F(X) has a standard uniform distribution
(i.e., is uniformly distributed on the interval [0,1]).

This concept is now extended to a multivariate distribution as follows. Let
X = (X1, . . . ,Xd)

� be a random vector with distribution function F , and let Fj
denote the marginal distribution function of Xj for j = 1, . . . , d . If all Fj are con-
tinuous functions, then we can do the same transformation as above, component-
wise, which yields a random vector (F1(X1), . . . ,Fd(Xd))

� taking values only in
the unit cube [0,1]d . Note that all components of this vector are standard uniform
random variables. This motivates the following definition.

Definition 7.1 (Copula) A copula is the joint distribution function of marginally
uniformly distributed random variables. More precisely, if U1, . . . ,Ud are U(0,1),
then the function C : [0,1]d → [0,1] defined by

C(u1, . . . , ud)= P(U1 ≤ u1, . . . ,Ud ≤ ud)
is a copula.

Applying this concept to the componentwise transformed random variables
above, the vector (F1(X1), . . . ,Fd(Xd))

� has distribution function given by

CF (u1, . . . , ud)= P
(
F1(X1)≤ u1, . . . ,Fd(Xd)≤ ud

)

for (u1, . . . , ud)
� ∈ [0,1]d . CF is the copula of the vector (X1, . . . ,Xd)

�.
In the way we have defined/constructed a copula above, it covers only the contin-

uous case. The case of non-continuous random variables can be covered as well, but
this becomes much more technical. A thorough introduction to copulae can be found
in the book by Nelsen [9], for instance, or in [3, 8], which are of special interest in
connection with risk modelling.

Before we discuss the use of copulae in risk analysis further, we present some
examples. We formulate them for d = 2, and for most of the models it should be
obvious, how they generalize to arbitrary dimension d .



9 Dealing with Dependent Risks 265

Example 7.2 (Bivariate Copula Families) Let u1, u2 ∈ [0,1]2.
(a) Independence copula:

Cind(u1, u2)= u1u2.

As the name already suggests, this is the copula of two independent random vari-
ables. Recall that two random variables are independent if and only if their joint
distribution function is the product of the marginals. This is inherited by the copula.

(b) Copula of perfect dependence:

Cdep(u1, u2)= min(u1, u2).

This copula models the situation, when the observations are perfectly dependent.
For the two uniform random variables corresponding to the copula this means that
they are identical. In general two random variables X,Y have the copula of perfect
dependence if and only if there exists a random variable Z and two increasing func-
tions f and g such that X = f (Z) and Y = g(Z). Note that intuitively this means
that as soon as you know the value of one variable you also know the value of the
other random variable for sure.

(c) Normal copula: for θ ∈ (−1,1),

CNo(u1, u2; θ)
=�2

(
�−1(u1),�

−1(u2)
)

= 1

2π
√

1 − θ2

∫ �−1(u1)

−∞

∫ �−1(u2)

−∞
exp

(−(x2
1 − 2θx1x2 + x2

2)

2(1 − θ2)

)
dx1dx2,

where �2 and � denote the distribution functions of the bivariate and the univariate
standard normal distribution, respectively, and �−1 is the inverse function of the
cumulative standard normal distribution function �.

Again the name already tells us the idea behind this copula. It is the copula of
two standard normally distributed random variables with correlation θ which are
also jointly normally distributed. A sample from this copula can easily be obtained
by drawing from a bivariate standard normal distribution with correlation θ and then
applying the function �−1 to every coordinate.

Note that θ = 0 gives the independence copula, whereas θ = 1 gives the copula
of perfect dependence. For θ = −1 one obtains perfect negative dependence (i.e.,
the copula max(u1 +u2 − 1,0) which, in contrast to the other examples, is a copula
only for dimension d = 2).

As mentioned before and explained in more detail and by examples in Chap. 6,
[20], extreme value models are important for risk management. When considering
copula models in the context of bivariate extreme value models, so-called extreme
value copulae occur. These copulae have to be of a very special form; i.e., their de-
pendence structure can be represented in terms of a so-called Pickands dependence
function A, a convex function satisfying max(s,1 − s)≤A(s)≤ 1 for all s ∈ [0,1];
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see e.g., Beirlant, Goegebeur, Segers, and Teugels [14, Chap. 8.2.5]. In terms of
such a Pickands dependence function an extreme value copula C has the form

C(u1, u2)= exp

{
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)}
. (7.1)

Note that the right hand side is equal to u1u2 for the Pickands dependence function
A ≡ 1; this is the independent case. A quantity often considered and estimated is
the value in (7.1) for u1 = u2; i.e. A( 1

2 ). For symmetric copulae it is the minimum
of A, hence gives a measure of maximal dependence in the model. We come back
to this in Sect. 8.

Example 7.3 (Extreme Value Copulae and Their Pickands Dependence Function)
Throughout u1, u2 ∈ [0,1]2 and s ∈ [0,1].

(a) Gumbel copula:
Using the Pickands dependence function the Gumbel copula with parameter θ ∈

[1,∞) is given by

AGu(s)= (sθ + (1 − s)θ )1/θ .
Elementary calculations show that the Gumbel copula is thus

CGu(u1, u2)= exp
{−((− ln(u1)

)θ + (− ln(u2)
)θ )1/θ}

. (7.2)

For θ = 1 the Gumbel copula is actually the independence copula, whereas for
θ → ∞ the Gumbel copula converges to the copula of perfect dependence. Thus
the Gumbel copula allows modelling a continuum of possible dependencies from
independence to perfect positive dependence, giving a nice parametric model for
different dependence scenarios.

(b) t-EV copula:
Using the Pickands dependence function the t-EV copula with parameter θ =

(θ1, θ2) ∈ (0,∞)× (−1,1) is given by

At−EV (s; θ)= stθ1+1

(
( s

1−s )
1/θ1 − θ2√

1 − θ2
2

√
θ1 + 1

)

+ (1 − s)tθ1+1

(
( 1−s
s
)1/θ1 − θ2√
1 − θ2

2

√
θ1 + 1

)
,

with tν for ν ∈ (0,∞) representing the distribution function of the tν -distribution
(i.e., the t-distribution with ν degrees of freedom). The t-EV copula (with “EV”
standing for “extreme value”) arises as the limiting dependence structure of compo-
nentwise maxima of independent and identically distributed bivariate tθ1 -distributed
random variables with the correlation of the underlying bivariate normal distribution
being θ2. For more details see e.g. [19].
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Statistically, parametric copulae are rather easy to fit, since it is not necessary
to specify marginal models. One can simply take the empirical distribution func-
tions, plug them into a parametric copula model and estimate the copula parameters,
for instance by likelihood methods. Various copula models are presented in Haug,
Klüppelberg, and Peng [5], where also R codes for fitting such copula models are
provided. The problem is obviously the choice of the parametric model.

Abstractly speaking a copula encodes the dependence structure of a d-dimension-
al random vector by transforming it to a d-dimensional random vector with standard
uniform margins. In principle, one could just as well transform it to any other d-
dimensional random vector with prescribed marginals to encode the dependence
structure. So the question arises whether the use of a copula is the best way to trans-
form data. Alternative transformations are indeed used in relation to some special
applications. For instance, in reliability theory marginals have been transformed to
normal random variables, which is admittedly not as easy as the transformation to
uniform, since the normal distribution function is given as an integral, which cannot
be calculated explicitly. See [10, 22, 26] for details.

Experts from extreme value theory often normalize marginals to standard ex-
treme value distributions, when interested in the maximum of a sample. Typically
the standard Fréchet distribution is used (see e.g. Proposition 5.10 of [29] for
more details). Here the transformation is given by −1/ ln(F (X)), which has dis-
tribution function P(−1/ ln(F (X)) ≤ z) = exp{−1/z}1[0,∞)(z). When interested
in the minimum of a sample, often the transformation is to the standard expo-
nential distribution given by F(x) = (1 − e−x)1[0,∞)(x) (i.e., the transformation
is − ln(1 − F(X))); cf. e.g. [23] for multivariate exponential distributions.

A Taylor expansion to the standard Fréchet distribution function gives P(−1/
ln(F (X)) > z) ∼ 1/z (equivalently, zP (−1/ ln(F (X)) > z) → 1) as z → ∞, so
that large values of z happen with substantial probability (in particular compared to
the normal distribution where P(N(0,1) > z)∼ zφ(z) = (√2πz)−1 exp{−(z2/2)}
as z → ∞ (φ denotes the standard normal density). Taking z = 10, one obtains
for the Fréchet distribution the probability 0.09516258 and for the standard normal
distribution 7.619853 × 10−24. For the uniform distribution, no value larger than 1
can happen (with probability 1). As you can see in Fig. 7, it may be advantageous
to transform data to Fréchet marginals when interested in the dependence structure
of extreme events, as then the extremes really stick out.

Illustration 7.4 Because of the simple transformation in the marginals the use of
copulae to model dependence has had a striking success in particular in the financial
industry. The copula mostly applied has been the normal copula which means that
in the end all dependence is as in a multivariate Gaussian situation and is completely
described by the correlation matrix of the underlying multivariate Gaussian random
variable.

For example, this model was used as a model for the probability of joint de-
faults—the probability that any two members (say A and B) of a pool of credits will
both default within the next year or some other pre-specified period (i.e., the credit
taker fails to pay the interest or the credit notional amount back). Denoting by TA
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Fig. 7 Simulation of 500 independent and identically distributed standard normally distributed
random variables (left) and their transformations to standard uniform (middle) and standard Fréchet
random variables

the time when A defaults and likewise by TB that B defaults, this model describes
the probability that both credits will default as

P(TA < 1, TB < 1)=�2
(
�−1(FA(1)),�−1(FB(1));ρ),

where FA and FB are the marginal distribution functions of the default times and ρ
the correlation of the used normal copula.

This model, suggested in [25], was heavily blamed (and obviously before the
subprime crisis heavily used) in a now famous article from 2009 (still to be found
on the Internet at http://www.wired.com/techbiz/it/magazine/17-03/wp_quant) en-
titled “The Formula That Killed Wall Street”. The reason is that in a bivariate (and
likewise in a higher dimensional) normal model with correlation different from 1
the probability that both variables X and Y are very big at the same time is ex-
tremely small: asymptotically for z→ ∞ the events that X > z and Y > z become
independent. Now it turned out during the subprime crisis that the dependence be-
tween different credits is much higher. In the US subprime credit market it became
obvious that many more of those involved in the markets than the credit models
predicted to be likely could not fulfil their obligations (to pay the interest, repay the
principal etc.). The problem was that these credits had been pooled by the issuing
banks and—sliced up into packets—sold to investors all over the world; the prices
agreed upon in these sales were based usually on the above model (as were the
triple-A ratings of some of these products by rating agencies). Additionally, many
derivatives based upon them—credit default swaps or credit default options were
originally designed as insurance against defaults—were traded and very often they
were bought or sold not to insure oneself, but for purely speculative reasons. So
when many credits started to default, financial institutions all over the world had to
accept that their assets were worth much less than they had thought, which implied
tremendous losses in particular for the financial industry. An interesting paper on
how to model these risks more realistically is [18].

Consequently, the financial crisis of the last years is a clear warning that one
should not use models without basic knowledge of what they can model and what

http://www.wired.com/techbiz/it/magazine/17-03/wp_quant
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they cannot. Model risk is abundant and needs a critical mind concerning the ap-
plication of various models and the interpretation of their resulting outcome, when
applied with care. In the above normal copula model dependence is modelled by
the correlation of the underlying normal distribution. It has long been known that a
normal copula is by no means a model that captures dependent risks: in a normal
copula model very high risks are always independent (see Example 8.5).

As we have seen in Sect. 5 the elliptical distributions are natural extensions of
multivariate normal distributions and are also characterised mainly by their mean
and covariance structure, only that additionally a positive generating random vari-
able comes into play. Likewise, we can extend the normal copula to an elliptical
copula by using the copula corresponding to a general elliptical distribution.

Definition 7.5 (Elliptical Copula) We define an elliptical copula as the copula of
X ∼ Ed(μ,�,G) and write ECd(R,G) for short, where R is the correlation matrix
of the elliptical distribution and G the generating random variable.

The notation ECd(R,G) for an elliptical copula makes sense, since it is charac-
terized by the generating variableG (unique up to a multiplicative constant) and the
copula correlation matrix R. This follows as a simple consequence of the definition
and the fact that copulae are invariant under strictly increasing transformations.

Example 7.6 (a) Let Z be a d-dimensional mean 0 normal vector with arbitrary
covariance matrix �, and denote by � the one-dimensional standard normal distri-
bution function, then the distribution of (�(Z1), . . . ,�(Zd)) is a Gaussian copula.

(b) Let X ∼ √
ν Z√

W
with W being a χ2-distributed random variable with ν de-

grees of freedom and Z a d-dimensional mean 0 normal vector with arbitrary co-
variance matrix �. So X follows a d-dimensional t-distribution with ν degrees of

freedom and we write X d= tttν(0,�); i.e., X is distributed as in Example 5.3(b). De-
noting by tν the one-dimensional t-distribution with ν degrees of freedom, then the
distribution of (tν(X1), . . . , tν(Xd)) is the corresponding copula, which we call a
tttν -copula.

In Fig. 8 we show the differences between the normal distribution, the t4-
distribution, and in Fig. 9 their copulae. Comparing the figures in the left column
we see that, for the same normal margins, the dependence structure given by the t4
copula yields more data in the left lower and right upper corners. The right column
shows first that t-margins are heavier tailed than normal margins. Furthermore, for
the t4-distribution we see more data in the left lower and right upper corners than for
the normal copula. Moreover, for the t4-copula the data spread out more in direction
of the right lower and left upper corners than for the normal copula.

Illustration 7.7 (Danish Fire Continued) In Fig. 6 the ranks of the losses in building
are plotted against the ranks of the losses of content. Up to a normalization this is
a plot of the copula (the data transformed to uniform margins as in Fig. 9). As we
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Fig. 8 Upper row: simulation of 10,000 bivariate normally distributed random variables (left)
and bivariate t4-distributed random variables (right). Lower row: simulation of 10,000 bivariate
random variables with normal marginal distributions and a t4-copula (left), and with t4 marginal
distributions and a normal copula (right). In all cases the correlation parameter was ρ = 0.9

already said, the fact that there are very few points at the lower right and upper left
corner hints again at positive dependence.

Illustration 7.8 (Engineering Risk Analysis) Engineers often deal with complex
systems with a large number of components. Suppose such a system consists of
d components. As the consequence of a risky event Y (e.g. an accident, an earth-
quake, a tsunami, a hurricane or a cyber attack) each component can be damaged.
Typically the degree of damage will be different for every component.

A realisation y of Y would give the strength of such events above. The damage
done to component n is measured by a random variable Xn for n= 1, . . . , d which
gives the costs of repairing or when necessary replacing the component. Assume that
all damage variables Xn have continuous distribution functions Fn with densities
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Fig. 9 The copulae corresponding to Fig. 8; i.e., normal copula (left) and t4-copula (right)

fXn for n= 1, . . . , d , and that together with Y they have a joint density fX1,...,Xd ,Y .
Depending on the realised damage attributable to the risk event Y , summarized in
the vector (x1, . . . , xd), the monetary amount K(x1, . . . , xd) is needed to repair the
system; some components would have to be repaired, some to be replaced. Note
that K could simply be the sum of the xn, but we allow for more general functions,
since cost reductions or increases occur when you have to repair/replace several
components.

In engineering, risk is often calculated as expected costs due to possible damages.
We calculate the expected costs for repairing the system as

E(K)=
∫ ∞

0
· · ·
∫ ∞

0
K(x1, . . . , xd )fX1,...,Xd (x1, . . . , xd )dx1 · · ·dxd

=
∫ ∞

0

(∫ ∞
0

· · ·
∫ ∞

0
K(x1, . . . , xd )fX1,...,Xd |Y (x1, . . . , xd | y)dx1 · · ·dxd

)
fY (y)dy,

where fY is the density of the risky event variable Y and fX1,...,Xd |Y the joint den-
sity of the damages to the individual components given the risky event Y . From
this calculation we see immediately that we need a model for the random vector
taking the dependence structure between the damages to the different components
(X1, . . . ,Xd) | Y into account.

The dependence structure of (X1, . . . ,Xd) | Y can be described via a copula. An
unrealistic but simple scenario is the independence copula (i.e. we assume that the
damages to the individual components are independent given Y ). If additionally K
is simply the sum of the individual damages, we obtain:

E(K) =
∫ ∞

0

(
d∑
n=1

∫ ∞

0
xnfXn|Y (xn | y)dxn

)
fY (y)dy,

where fXn|Y is the conditional density of the damage in component n given the risky
event Y .
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Clearly these assumptions will be too simple in most real-life applications, be-
cause the damages to the individual components are most likely dependent given Y
or the costs of repairing the system are not the sum of the costs of repairing/replacing
the individual components.

Remark 7.9 (a) Whereas bivariate copula models are well-known in great detail,
higher dimensional models are usually hard to analyse and to fit to real data, not least
due to numerical problems when optimizing the likelihood function. Exceptions are
the normal and t-copula models. A fairly new approach opens up the way to copulae
of arbitrary dimension; cf. [12] and the book [7].

(c) In general the usage of copulae seems rather demanding at first and most
statistical software does not include functions to handle copulae in their basic distri-
butions. However, for many statistical programmes there are very well implemented
and documented extensions available which make the use of copulae rather easy in
applications. For example, for the programme R there are the packages copula
and fCopulae available at http://cran.r-project.org/web/packages/. They include
e.g. functions to handle Archimedean, elliptical and extreme value copulae.

(b) For a parsimonious model with respect to parameters, dimension reduction is
an important first step. There exist many well-known methods (e.g. principal compo-
nent analysis) in classical multivariate statistics. Therefore, the use of copulae often
needs to be combined with such methods. Dimension-reduction methods based on
elliptical copula models have been suggested in Klüppelberg and Kuhn [6].

8 Extremal Dependence Measures

As explained in Chap. 6, [20] extremal risks can be modelled and estimated in a
stochastic framework. In contrast to Chap. 6, [20], in the present chapter we are
concerned about joint extreme risks, which can be particularly dangerous. Hence it
is of the utmost importance to model and assess the joint occurrences of extreme
events correctly. In other words it is not important to get the dependence of the
“typical” observations right, but one must get the dependence of the extreme events
right. One of the first questions for a statistical model is, then, if it is likely to model
joint extreme events.

In this section we briefly present models and methods to allow for a realistic as-
sessment of the dependence of extremal events. An interesting collection of theoret-
ical results and case studies for further reading is Reiss and Thomas [28]. Another
very accessible book on extreme value statistics is Coles [17]; more advanced is
Beirlant et al. [14].

One way to consider the question whether extremal events are dependent or not
is by asking, what is the probability that a random variable Y assumes a large value
given that we already know that another random variableX takes a large value. Con-
sequently, one natural way to model extremal dependence is to consider the asymp-
totic behaviour of the probability that Y > z given thatX > z, as z→ ∞. IfX and Y

http://cran.r-project.org/web/packages/
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are independent, we have that P(Y > z |X > z)= P(Y > z)→ 0 as z→ ∞. Thus
we call any pair X,Y of random variables with P(Y > z | X > z)→ 0 as z→ ∞
tail independent. Intuitively this means that extreme events typically occur only in
one variable, provided they occur. In contrast to this, we speak of tail dependence
whenever the limit is non-zero, which implies that with a positive probability ex-
treme events occur in both random variables at the same time. It turns out that this
intuitive approach makes sense only when X,Y have the same distribution (or at
least distributions with comparable tails). To account for this, one normalises the
tails first using the same trick as we know already from the copulae. To be precise
one defines tail dependence coefficients (for the upper tail) as follows. Again we
invoke the quantile function from (1.1).

Definition 8.1 (Tail Dependence Coefficients) Let X,Y be two random variables
with continuous distribution functions FX and FY . The upper tail dependence coef-
ficient of (X,Y ) is defined by

λU = lim
α↑1
P
(
FY (Y ) > α | FX(X) > α

)= lim
α↑1
P
(
Y > F−1

Y (α) |X >F−1
X (α)

)
,

provided the limit exists (α ↑ 1 stands for taking the limit for α going to 1 from
below). If λU ∈ (0,1], then X and Y are called upper tail dependent. If λU = 0,
they are called upper tail independent.

Remark 8.2 (i) The assumption of continuous distributions is not really necessary,

if one restricts the definition to λU := limα↑1P(Y > F
−1
Y (α) |X >F−1

X (α)).

(ii) Noting that P(FY (Y ) > 1 − t | FX(X) > 1 − t) = P(FY (Y )>1−t,FX(X)>1−t)
P (FX(X)>1−t)

and P(FX(X) > 1 − t)= t , we obtain the equivalent definition

λU = lim
t→0

t−1P
(
FX(X) > 1 − t,FY (Y ) > 1 − t).

(iii) The link to the Value-at-Risk as defined in Definition 1.1(b) is obvious:

λU = lim
α↑1
P
(
Y >VaRα(Y ) |X >VaRα(X)

)
.

One can show that the tail dependence is a copula property; i.e., the marginal
distributions have no effect on the value of λU .

Theorem 8.3 If X,Y have copula C, then

λU = lim
α↑1

1 − 2α +C(α,α)
1 − α . (8.1)
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Remark 8.4 Theorem 8.3 provides a useful link of λU to the Pickands dependence
function:

1 − 2α+C(α,α)
1 − α = 1 − 2α+ exp(2 ln(α)A( 1

2 ))

1 − α
= 2

(
1 −A

(
1

2

)− lnα + o(lnα)
1 − α

)

by a Taylor expansion of the exponential function around 0. Using l’Hospital’s rule
we calculate

lim
α↑1

− lnα + o(lnα)
1 − α = lim

α↑1

1
α
(1 + o(1))
α

= 1

giving

λU = 2

(
1 −A

(
1

2

))
. (8.2)

For each copula model we can determine if it allows for tail dependence or not.

Example 8.5 (a) Since by Proposition 5.2(c) the conditional distribution of a bi-
variate Gaussian random vector is normal (Ep is in this case, of course, the normal
distribution), the Gaussian copula (or Gaussian distribution) with correlation ρ < 1
has

λU = 2 lim
x→∞

(
1 −�

(√
1 − ρ√
1 + ρ x

))
= 0.

Hence, when using a Gaussian copula one always has tail independence unless one
considers the degenerate situation where ρ = 1. Therefore, one must never use the
Gaussian copula when one wants to model phenomena where extreme events occur
jointly in different variables. The financial industry has learnt this the hard way (see
Illustration 7.4).

(b) For a Gumbel copula (8.2) gives λU = 2 − 21/θ . Hence, whenever θ > 1 we
have a positive tail dependence and the tail dependence coefficient can assume any
value in (0,1).

(c) For the bivariate tν -copula with ν degrees of freedom and correlation ρ ∈
[−1,1] one calculates using again (8.2)

λU = 2

(
1 − tν+1

(√
ν + 1

√
1 − ρ√

1 + ρ
))

with tν+1 being the distribution function of a t-distributed random variable with
ν + 1 degrees of freedom. This implies that for every ρ >−1 the upper tail depen-
dence coefficient λU > 0; i.e., that even for negative correlation it is far more likely
than in the Gaussian copula to have both variables large at the same time.
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Illustration 8.6 (Danish Fire Continued) Estimation of the tail dependence coeffi-
cient is rather tricky, since it is an asymptotic property (an asymptotic conditional
probability). Therefore, it may depend rather strongly on the choice of the threshold
approximating this asymptotic. We refer to Haug et al. [5] for a detailed analysis
of these issues. For the Danish fire data, [5] reports a value of λ̂U = 0.416 for the
tail dependence coefficient between the losses in building and content. Therefore,
there is a non-negligible tail dependence and thus an insurance company needs to
be prepared to meet large losses in its fire insurance for buildings and its insurance
for the contents at the same time. Of course, intuitively this is not surprising.

To sum up our simple data example using the fire insurance data, we see that all
dependence measures in this context report a positive dependence. But they focus
on different aspects and thus the most adequate one should be used in any particular
application. In particular, you should be aware that when using correlations, a simple
order-preserving transformation such as taking logarithms may have a big impact,
whereas it will have no effect, if the dependence measure depends only on the ranks
(or the copula).

9 Food for Thought

We list some questions which should be seriously considered for every real risk
problem at hand.

• Is my risk problem multivariate? What are the risk factors involved?
• Which techniques do I use to model dependence? Does risk occur from the data

around the mean or rather from extreme events? Is it important to get the bulk of
the data right or the extremes? Should I use all data or only extreme values for a
statistical analysis?

• What model should I use? What does the model I use assume about the depen-
dence structure?

• How will I deal with the model risk?
• How sensitive are the outcomes of my research to assumptions about depen-

dence? Should I apply several models and check robustness of the outcomes by a
sensitivity analysis?

Important Final Call: We could give only a brief introduction into dependence
modelling and some related problems. Likewise, we could give an overview only
over some techniques and a very limited number of examples without going into
details. Much more can be found in the literature and in the end every application
calls for a tailor-made model. Therefore, it may well be necessary to extend and
adapt the existing techniques in line with what is needed for a concrete application.
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10 Summary

In this paper we showed that the dependence structure matters critically when fac-
ing different risks. The overall risk may change completely when the dependence
changes. We discussed various approaches to model the dependence structure. The
most popular measure of dependence is correlation which, however, covers only
linear effects and has other drawbacks and limitations. As alternative dependence
measures we considered rank correlations and copulae. The latter are theoretically
able to encode the complete dependence structure, but for a statistical risk analysis
one chooses certain parametric families which may introduce severe limitations and
also model risk; cf. Chap. 10, [13]. Furthermore, we explained that elliptical dis-
tributions are natural generalisations of the multivariate normal distribution where
mainly the correlation structure matters. Finally, we introduced tail dependence and
explained that it is of utmost importance in connection with risk modelling, be-
cause it captures the dependence of the extremes, which is what typically matters in
risk assessment, risk evaluation and consequential risk handling, and which may be
rather different from the dependence of the bulk of the observations.
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Chapter 10
Model Risk and Uncertainty—Illustrated
with Examples from Mathematical Finance

Karl F. Bannör and Matthias Scherer

Stochastic modeling techniques have become increasingly popular during the last
decades, particularly in mathematical finance since the groundbreaking work of
Bachelier (Théorie de la spéculation, Gauthier-Villars, Paris, 1900), Samuelson
(Ind. Manag. Rev. 6(2):13–39, 1965), and Black and Scholes (J. Polit. Econ.
81(3):637–654, 1973). Essentially, all models are wrong in the sense that they sim-
plify reality. However, there are numerous models available to model particular phe-
nomena of financial markets and calculated option prices, hedging strategies, port-
folio allocations, etc. depend on the chosen model. This gives rise to the question
which model to choose from the rich pool of available models and, second, how to
determine the correct parameters after having selected some specific model class.
Thus, one is exposed to both model and parameter risk (or uncertainty). In this sur-
vey, we first provide an inside view into the principles of stochastic modeling, illus-
trated with examples from mathematical finance. Afterwards, we define model risk
and uncertainty according to Knight (Risk, uncertainty, and profit, Hart, Schaffner
& Marx, Chicago, 1921) and present some methods how to deal with model risk
and uncertainty.

Keywords Financial market models · Parameter risk · Model risk · Risk-capturing
functionals · Convex risk measure
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The Facts

• In natural sciences as physics, chemistry, and biology, laws of nature often sup-
port model building. In social sciences like economics, there may be no natural
laws offering models.
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• Stochastic modeling tries to capture the stylized facts of the distribution of out-
comes in concern.

• Often, there is considerable ambiguity which model (or, equivalently, which prob-
ability distribution) to choose.

• One distinguishes between model risk and model uncertainty, following the ter-
minology of Knight [9].

• Model risk is a situation where one can quantify the likelihood of the validity of
the different models to choose from, i.e. a probability distribution on the set of
models is known.

• Model uncertainty is a situation where one does not have any additional informa-
tion about the different models, i.e. a probability distribution on the set of models
is unknown.

1 Stochastic Modeling of Real-World Phenomena

Die Theorie liefert viel, aber dem Geheimnis des Alten bringt sie uns doch nicht näher. Je-
denfalls bin ich überzeugt davon, dass der nicht würfelt.1—Albert Einstein, Nobel Laureate
in Physics

Models from classical mechanics, as illustrated in Chap. 4 of Mainzer [38], often
describe effects that have fully been studied. Hence, a deterministic functional re-
lationship can be taken as a mathematical model for description.2 In contrast, there
exist many real-world phenomena that exhibit deterministic behavior, but the de-
scription of the deterministic behavior is much too complex, or the behavior is dif-
ficult to observe. In such cases, it has turned out to be a tractable way to move from
deterministic modeling to stochastic modeling, enriching a deterministic functional
relationship by accounting for different random states which may occur. These dif-
ferent random states are gathered in a stochastic basis, which is mathematically
described by a probability space (�,F ,P ).

Simplification Due to Stochasticity Stochasticity is often used to model deter-
ministic phenomena in a tractable way such that the model still describes the out-
comes of real-world phenomena (that might actually be deterministic in nature).
Instead of modeling the deterministic and possibly complicated procedure which
leads to the outcome, one focuses only on data concerning the outcome, analyzes
the “distribution” of the outcomes, and finally one sets up a stochastic model which
captures the distribution of the outcomes as realistic as possible.

A very easy but vivid example of a situation where specifying the deterministic
behavior may be awkward is modeling the result of throwing a (fair) dice: obvi-
ously, throwing a dice is an action which can be described completely by classical

1Translation: the theory yields a lot, but it does not bring us closer to the secret of the old one
[god]. Anyway, I am convinced that he [god] does not throw the dice.
2One prominent exception is the statistical approach to quantum physics.
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mechanics. Shaking the dice in a dice cup is a mechanic procedure, where the dice
turns when touching the walls of the dice cup, falls and rolls on the table, and eventu-
ally displays some number. But the whole procedure of shaking the dice and rolling
is extremely complicated to model in the world of classical mechanics, since many
different influences have to be taken into account (like, e.g., the shape and size of
the dice cup and the dice, the different directions and magnitudes of the shaking,
etc.). Such a deterministic model would be hard to determine, to set up, and even
more difficult to evaluate.

If one, however, is only interested in the result, i.e. the thrown number, one
might imagine a model which is much more simple and circumvents the difficul-
ties of modeling such a situation with classical mechanics. The mixing procedure
cannot be reproduced easily and as a result, every side of the dice occurs similarly
often. Mathematically spoken, the relative share r(j) of obtaining a fixed number
j ∈ {1,2,3,4,5,6} is independent of the number j and since the relative shares
have to add up to one, it follows that r(j)≈ 1/6 for all j ∈ {1,2,3,4,5,6}. Hence,
a probabilistic model describing the result of throwing a dice, which both models
reality feasibly and yields a tractable situation, is to provide a stochastic basis in the
following way: let � := {1,2,3,4,5,6} be the state space of possible dice throw
outcomes, F := P(�) all possible combinations of outcomes, and P : F → [0,1] a
probability measure defined via P({j})= 1/6 for all j ∈ {1,2,3,4,5,6}. Then the
probability space (�,F ,P ) sufficiently describes the possible outcomes of a dice
throw in an abstract, easy, and tractable manner.

Contrary to modeling the dice throw by classical mechanics, the stochastic model
has simplified and abstracted tremendously from the original situation. The whole
procedure of throwing the dice physically is completely disregarded. Instead, the
stochastic model only focuses on the result of the dice throw and models it directly,
which turns out to be much more tractable and also feasible from an empirical point
of view.

A Detailed Excursion: Stochastic Modeling in Finance In physics and engi-
neering, mathematical modeling of real-world phenomena goes back to Isaac New-
ton, Gottfried Wilhelm Leibniz, and even to the ancient Greeks. In contrast, in fi-
nance, mathematical and particularly stochastic modeling is a rather recent trend,
starting with the seminal dissertation of Bachelier [16].

When regarding the financial world instead of modeling phenomena from clas-
sical mechanics, one immediately recognizes that the whole system is much more
complex in the sense that many different forces drive the market, and their influence
is of non-negligible order. When describing the fall of a stone to the ground in a lab-
oratory, there are undoubtly also many different forces apart from earth gravitation
that actually have some influence (e.g. the aerodynamic resistance, the gravitation of
different objects in the laboratory). But their magnitude is so small compared to the
magnitude of earth gravitation that not considering them eventually does not matter
for a realistic model.

In contrast, when modeling financial markets (e.g. stock markets for the purpose
of, e.g., option pricing), there are many different market participants that influence
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asset prices by their trade decisions. Hence, a model trying to capture the whole
market microstructure with all interactions of market participants would be a mon-
struous, extremely complicated attempt with myriads of parameters. Thus, such an
approach is only tractable under severe simplifications (similar to the dice example).
But, additionally, there are several other reasons not to model the microstructure of
financial markets.

• First, different to the dice example, financial markets cannot be put under labo-
ratory conditions and therefore models cannot be tested reliably, i.e. experiments
cannot be repeated.

• Second, due to the complexity of the operations, it is impossible to observe all
market participant’s behavior and interaction simultaneously.

• Third, many market participants exhibit irrational and erratic behavior which may
be difficult to model even when modeling only a single market participant. There
have been approaches as the celebrated “Prospect Theory” of Kahneman and
Tversky [34]3 trying to provide a scope for such a kind of behavior, which still is
ongoing research.

• Finally, and maybe most crucial, the whole system is dynamic, with new market
participants entering and leaving the system. Even if one could observe the market
participants’ behavior and collect huge amounts of data, in every second, new
market participants enter the financial markets and behave differently, such that
predictions relying on historical data might not explain future market situations
successfully.4

Hence, the typical approach to model stock markets is to disregard the market mi-
crostructure (which is, e.g., forgetting about the market participants action and in-
teraction,5 analog to forgetting about the mechanics when rolling the dice) and to
model asset prices statistically.

To set up a sensible stochastic model for the price of, e.g., a stock or an index,
one typically scrutinizes stylized facts of time series of the price process and tries
to mimic these properties with stochastic models fulfilling as many of these stylized
facts as possible. Compared to an ansatz focusing more on data (an extreme ansatz
may be a non-parametric one only exploiting data), such a modeling paradigm al-
lows to capture general movements. Furthermore, a stochastic model for a stock
price should be tractable enough in the sense that it costs moderate effort to simulate
the stock price and prices of related financial instruments (e.g. futures and options,
see Hull [8] for an introduction into financial instruments) may be calculated in a
(semi-)analytic way. With these requirements for a model, one starts to collect some
stylized facts of time series of stock prices and obtains as first observations:

3Daniel Kahneman was awarded the Nobel Memorial Prize in Economic Sciences 2002 for his
work on irrational behavior in economics.
4In financial markets, one can even argue that relying too much on collected data may result in
overconfidence, since the data may not be representative any more to model future events.
5One should note that there are some approaches trying to capture the microstructure.
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• The stock price process, abbreviated by S = (St )t≥0, is always positive.
• Returns (yields) of stock prices are symmetrically scattered around 0 (or around

somewhere close to 0) and behave roughly similar and uncorrelated of each other.

Taking the second stylized fact as a starting point, a possible tool for model-
ing stock returns seems to be the normal distribution, which is widely understood,
mathematically tractable, and plays a prominent role in asymptotic statistics (cf. the
central limit theorem). Furthermore, for small periods �t , the discrete return

St+�t − St
St

may comfortably be approximated by the difference of the logarithm logSt+�t −
logSt . Hence, a first idea might be to model logarithmic differences by i.i.d. nor-
mally distributed random variables. With this motivation and the notion of Brown-
ian motion (we omit the formal definition due to technicalities, see Øksendal [10]
for details), one arrives at modeling stock prices with a geometric Brownian motion
(which goes back to Samuelson [44]), also often called the Black–Scholes model.6

Example 1.1 (Black–Scholes Model) A stock price (St )t≥0 is modeled by a Black–
Scholes model if it follows a geometric Brownian motion, i.e. its dynamics follow
the stochastic differential equation7

dSt = μSt dt + σSt dWt, S0 > 0,

where (Wt)t≥0 is a standard Brownian motion. The parameter μ ∈ R is called the
drift of the stock price and the parameter σ > 0 is called the volatility of the stock
price.

The Black–Scholes model allows for an easy and comprehensive interpretation:
the whole model is parameterized by the drift and the volatility of the process. Since
the model implies normally distributed stock returns, everyone who is familiar with
the normal distribution can apply and handle the model. The drift parameter μ con-
trols the average stock return, which grows linearly in μ. In terms of stock prices,
μ is the (exponential) growth rate of the stock price. The higher the drift μ, the
faster the stock price grows on average. On the other hand, the volatility parameter
σ describes how the returns scatter around the average returns. When regarding the
stock price instead of the returns, the volatility controls how much the stock price

6Actually, the model was not developed by Black and Scholes, but by Samuelson and was inspired
by the seminal PhD thesis Bachelier [16]. Fischer Black and Myron Scholes derived tractable
formulae for European options in this model and introduced the idea of replication in their seminal
paper Black and Scholes [3]. This work, together with the inspired work of Robert Merton, resulted
in awarding the Nobel Memorial Prize in Economic Sciences to Robert Merton and Myron Scholes
in 1997. Fischer Black died already in 1995, thus he did not receive the prize.
7Stochastic processes are often described via stochastic differential equations (SDEs). For readers
that are unfamiliar with SDEs, we recommend the introductory book of Öksendal [10].
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Fig. 1 Comparison: a time series of the DAX index level compared with a simulated path of the
DAX in the Black–Scholes model

moves non-directionally. The higher the volatility σ , the more fluctuations the stock
price exhibits.

For the pricing of options on the stock, one applies the risk-neutral version of the
Black–Scholes model, where the drift equals the interest rate of a risk-free invest-
ment.

Obviously, the dynamics imposed by the Black–Scholes model are rough sim-
plifications of real stock price dynamics. While the only source of randomness in
the Black–Scholes model is the Brownian motion and all other ingrediences (i.e.
drift and volatility) are deterministic, real stock prices are driven by an extremely
complex market microstructure. Instead of modeling the whole market microstruc-
ture with the dynamics of action and interaction, one simply assumes that it suffices
to reduce the complexity to the determination of two parameters—the drift and the
volatility. In case of risk-neutral dynamics (which is the standard assumption when
pricing options), the complexity is further reduced to the determination of one sin-
gle parameter—the Black–Scholes volatility. On the other hand, trajectories which
are simulated in the Black–Scholes model look somewhat like plots of time series of
real stock prices (cf. Fig. 1). Furthermore, the simple structure ensures the tractabil-
ity of the model, in particular, there exist closed-form pricing formulas for various
kind of options, like the classical Black–Scholes formula for European calls and
puts.

Taking a closer look on stock price time series as well as on stock price related
data (e.g. option prices), one clearly sees that the Black–Scholes model is oversim-
plifying reality and some stylized facts may not be explained by the Black–Scholes
model like the following (which are not exhaustive):

• Extremely high and low returns are more likely to occur in reality than the normal
distribution implies (“heavy tails of returns”).

• Volatility is not constant, different market periods (high and low volatility) can be
observed (“volatility clustering”).
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• Downward price movements are typically accompanied by large undirectional
movements (“leverage effect”).

• Option prices do not follow the Black–Scholes model, implied volatilities8 are
non-constant (“smile effect”).

Hence, different alternatives to (and extensions of) the Black–Scholes model
have been developed to tackle the shortcomings of using simple geometric Brow-
nian motion, introducing models based on different processes with heavier tails or
stochastic volatility and/or jumps. One model that has become popular in practice
is the Heston model, see Heston [7], it uses a Cox–Ingersoll–Ross square-root pro-
cess9 as stochastic volatility. We briefly sketch the ingredients of the Heston model.

Example 1.2 (Heston Model) A stock price (St )t≥0 is modeled by a Heston model
if its dynamics follow the coupled stochastic differential equations

dSt = μSt dt + σtSt dW(1)
t , S0 > 0,

dσ 2
t = κ(σ 2

long − σ 2
t

)
dt + ξσt dW(2)

t , σ 2
0 > 0,

dW(1)
t dW(2)

t = ρ dt,

where (W(j)
t )t≥0, j = 1,2 are correlated Brownian motions with correlation ρ ∈

[−1,1].
For further explanation, one can see that the general stock price dynamics re-

semble closely the dynamics of the Black–Scholes model, except for one fact: the
volatility σ is not assumed to be constant any more, but is now a stochastic process
itself (due to technical reasons, one models the “variance process” (σ 2

t )t≥0 instead
of the volatility process (σt )t≥0). In particular, the noise in the stock price process
is now time-dependent and has its own dynamics.

Assuming the dynamics of a Cox–Ingersoll–Ross square-root process for the
variance process, one may see the following behavior of the variance:

• The variance process (σ 2
t )t≥0 exhibits non-constant noise, which is governed by

the parameter ξ > 0. This parameter is usually called the vol-of-vol.
• In the long run, the variance fluctuates around a fixed number, the long-term vari-

ance, which is controlled by the parameter σ 2
long > 0.

• The variance process is mean-reverting to the long-term variance, i.e. if the vari-
ance is dragged away from its long-term level, it drifts back to the long-term
variance. The speed of mean reversion is controlled by the parameter κ > 0.

8In the Black–Scholes model, for a given European option, there is a one-to-one relationship be-
tween volatilities and option prices. Hence, for options with known market prices, one can re-
calculate the implied volatility from the market prices. Usually, one can exhibit that for different
options, the recalculated implied volatilities differ, which is a hint that the Black–Scholes model
cannot explain the observed option prices.
9The name stems from the Cox–Ingersoll–Ross interest rate model.
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Fig. 2 Comparison: logarithmic returns of the DAX compared with simulated logarithmic returns
from the Black–Scholes and the Heston model. One can see that the Black–Scholes model produces
returns with regular noise, while the Heston model incorporates volatility clustering, i.e. there exist
time periods of high and low fluctuations in the returns

• The correlation ρ ∈ [−1,1] describes the co-movement of the stock price and its
variance. As described above, this can be used to account for the so-called “lever-
age effect”, establishing that volatility movements and stock price movements
have negative correlation.

The Heston model is a relatively simple extension of the Black–Scholes frame-
work (replacing constant volatility by a variance process following a Cox–Ingersoll–
Ross model) to model stock prices. But, unarguably, the Heston model overcomes
some of the shortcomings of the Black–Scholes model that have been described
above (cf. Fig. 2). By making volatility stochastic and time-dependent, it captures
the non-constant behavior of volatility. Furthermore, incorporating correlation be-
tween the drivers of the stock price and variance processes allows to account for the
leverage effect, i.e. for negative correlations ρ. One has to remark that these addi-
tional stylized facts come at the price of losing mathematical tractability: prices for
some important options (e.g. European put and call options) cannot be calculated
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with simple formulae any more as in the Black–Scholes model, instead one has to
rely on numerical algorithms as, e.g., techniques from Fourier analysis to obtain
semi-analytic formulae as described in Carr and Madan [23].

2 Model Risk and Uncertainty

[T]here are known knowns; there are things we know that we know. There are known un-
knowns; that is to say there are things that, we now know we don’t know. But there are also
unknown unknowns—there are things we do not know, we don’t know.—Donald Rumsfeld,
United States Secretary of Defence 1975–1977, 2001–2006

In the previous section, we have roughly outlined the main principles of mathe-
matical modeling, in particular stochastic modeling where we will focus on below.
Hence, if we refer to modeling in the remaining part of this survey, we always mean
stochastic modeling.

When setting up a stochastic model, one often observes a complicated situation
where the outcome in concern behaves in a more or less erratic manner. In some
cases (like the dice example), a simple and accurate description may be provided
easily. But, typically, the object to model is much more complicated (like the price
process of a stock). Hence, it is not clear from the beginning that the choice of one
stochastic model P is a good choice or a different model P̃ might be more suitable,
like choosing either a Black–Scholes or a Heston model for stock prices. Typically,
the quantity of interest is modeled by a random variable X or some stochastic pro-
cess (St )t≥0. Hence, a situation where modeling may be complex can be mathemat-
ically described as a situation where a whole set of probability measures P (which
may typically be infinite) is available for modeling. Sometimes, the set of possible
probability measures (i.e. different stochastic models) P may be parameterized in a
canonical way by a parameter space �, i.e. P = {Pθ : θ ∈�}.

To provide a concise wording to different situations that may occur if different
models P are available, we first make a short excursion into the literature. The semi-
nal dissertation of Knight [9] analyzes the situation where different states x1, . . . , xN
are possible outcomes for X. Knight [9] distinguishes between two possible situa-
tions that may occur:

1. One knows the probability of each possible outcome x1, . . . , xN .
2. One does not know the probability of each possible outcome x1, . . . , xN .

The ladder situation, where hardly any information is available, is called uncer-
tainty by Knight [9]. The former one, which at least allows for a probabilistic de-
scription, is called risk. Obviously, facing risk is a special case of uncertainty (since
one could always forget about the probabilities) and a more comfortable situation
compared to facing real uncertainty. One can try to deal with a risky situation by risk
management, i.e. exploiting the information about the probabilities of the different
outcomes x1, . . . , xN and acting such that a certain risk functional is minimized.

Research from economics, but also from behavioral sciences like psychology and
cognitive science, has shown that most people exhibit aversion towards both risk and
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uncertainty (often subsumed under the term risk aversion). A mathematical concept
covering risk aversion (prefering situations of certainty over situations of risk) is de-
scribed by the foundations of utility theory by von Neumann and Morgenstern [48]
and furthermore by the introduction of the axioms of subjective expected utility by
Savage [45]. Arrow [14] and Pratt [41] analyze risk aversion from an economic per-
spective. Concerning uncertainty, it has been shown that the concept of uncertainty
aversion is available, describing that a situation of risk is generally prefered to a
situation where true uncertainty is exhibited. This idea was promoted by Ellsberg
[29], challenging the axioms of Savage, which was later reconciled in the works of
Gilboa and Schmeidler [31].

Transfering the concepts of risk and uncertainty to stochastic modeling, the situ-
ation of having a whole set of models P to choose from for modeling is generally
referred to as model uncertainty. If each model P ∈ P can be identified by a param-
eter θ from some parameter space �, one speaks about parameter uncertainty.10 If
we additionally have given a probability measure R on the set of possible models
P (resp. on the parameter space �) which quantifies the probability of each model
(resp. parameter) to be the right choice, then we are in a setting of model risk (resp.
parameter risk), which can be considered as a special case of model (resp. parame-
ter) uncertainty.

This is illustrated in Fig. 3.

Examples Model and parameter uncertainty arise in numerous situations. If one
faces a complex situation where a stochastic model is applied, one is often am-
biguous between different models to choose from. Even after having decided for a
specific parametric model, the correct determination of the model’s parameters is
not straightforward and may result in different obstacles.

When stochastically modeling financial objects, there are myriads of possibilities
to simplify, thus many different models are competing with each other. In option
pricing, model risk (resp. uncertainty) should not be underestimated, as pointed out
by Figlewski [5]. During the financial crisis of 2008, where massive misvaluation
of portfolio credit instruments played an important role, this has been discussed in
quite some detail among experts, but also in popular media as, e.g., Salmon [11].

Example 2.1 (Parameter Uncertainty in Financial Market Models) All models
treated in Sect. 1 are exposed to parameter uncertainty. We will discuss later whether
we experience true parameter uncertainty in the sense that no information about the
parameters is known or we have parameter risk, i.e. we are able to quantify whether
certain parameters are more likely than others.11

10From a purely mathematical point of view, distinguishing between model and parameter uncer-
tainty is just up to a mapping �→ P which may always be obtained for some set �. Often, the
set � can be chosen such that treating different parameters θ ∈ � allows for more convenient
interpretation in the real world than treating the corresponding model Pθ .
11Besides parameter uncertainty, the chosen parametric models can also be incorrect, i.e. model
uncertainty can occur.
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Fig. 3 Relationship between
model uncertainty and risk.
One can regard model risk as
a “special case” of model
uncertainty, since one can
always ignore the probability
measure R quantifying the
likelihood of the different
models

1. Examining the risk-neutral version of the Black–Scholes model, the dynamics of
a stock price follow the stochastic differential equation

dSt = rSt dt + σSt dWt, S0 > 0,

with (Wt)t≥0 being Brownian motion, r the risk-free interest rate, and σ the
stock’s volatility. While the initial stock price S0 and the risk-free rate r are
usually available from market information, one does not have direct informa-
tion about the volatility σ . Hence, a priori every positive number σ > 0 can be
taken. Usually, one uses market data (e.g. estimation based on time series of
stock prices, or fits the model to the prices of traded instruments) to specify the
volatility σ .

2. In the (risk-neutral) Heston model, the stock price dynamics follow the coupled
stochastic differential equations

dSt = rSt dt + σtSt dW(1)
t , S0 > 0,

dσ 2
t = κ(σ 2

t − σ 2
long

)
dt + ξσt dW(2)

t , σ 2
0 > 0,

with (W(j)
t )t≥0, j = 1,2, being Brownian motions with correlation ρ ∈ [−1,1].

Contrary to the Black–Scholes model, the number of unknown parameters is
higher. Again, the initial stock price S0 and the risk-free rate r are known by
market quotation. On the other hand, the initial volatility σ0, the mean reversion
speed κ > 0, the long-term volatility σ 2

long > 0, the vol-of-vol ξ > 0, and the
correlation ρ ∈ [−1,1] are typically not given and—different from the Black–
Scholes case—their interpretation is more complicated. Hence, we face parame-
ter risk concerning the parameters σ0, κ, σ

2
long, ξ, ρ.

Even across different models and when establishing perfect fits to market prices12

of standard instruments (e.g. European call options), one obtains that there is still
ambiguity and different models may cause different prices for non-standard options
(as pointed out in Schoutens, Simons, and Tistaert [12]).

12One possibility to estimate the model parameters is to fit the parameters to known market prices
of options.
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3 Dealing with Model Risk

If history repeats itself, and the unexpected always happens, how incapable must Man be of
learning from experience?—George Bernard Shaw, dramatist

Scrutinizing the available mathematical objects in presence of model (resp. pa-
rameter) risk, there exists more than only the set of different possible models P . Ad-
ditionally, one assumes that P is the state space of a probability space (P,FP ,R)
where the probability measure R quantifies the probabilities that the different mod-
els P ∈P are the correct models to choose. This delivers a lot of information which
has to be analyzed carefully: first, for each stochastic model P ∈ P , there are given
probabilities for the different outcomes one has to deal with. Second, among all
these models there is a second probability measure R assigning “weights” to the
different models collected in the set P .13 In this case, one has numerous mathe-
matical obstacles to tackle and to find the right way to incorporate model risk into
quantities which may be of interest to be calculated like, e.g., prices of options.

From a statistical perspective, model risk can be regarded as an ansatz in the tra-
dition of Bayesian statistics, where one main assumption is that the chosen model
(or parameter) itself is random and the probability distribution on the possible mod-
els reflects subjective beliefs about the likelihood of the model. Opposed to this
view, so-called frequentist statistics (going back to the seminal work of Fisher [30])
assumes that a true, but unknown, model (resp. parameter) exists and one cannot as-
sign probabilities to different “candidate models”. In history, there has been major
dissent between these two philosophical approaches to statistics. A detailed critique
and discussion of Bayesian and frequentist methods in statistics is beyond the scope
of this article and we refer the interested reader to the books of Samaniego [43] and
Bertsch McGrayne [18], but we give a short insight into the foundations of Bayesian
statistics later in Sect. 3.2.

One situation where parameter risk traditionally occurs is parameter estimation
from given data (e.g. time series of stock prices). In a standard procedure, disre-
garding parameter risk, one computes the derived estimators from the given data,
i.e. calculates point estimates for the parameters. But from estimation theory, one
knows that an estimator is a random object itself. Furthermore, an estimator may
be biased. Hence, procedures that solely rely on using the point estimate disregard
the parameter risk which arises through the estimator’s distribution, e.g. its bias and
variance.

Parameter estimation is a key step in every application where real data is ana-
lyzed. Hence, we present an example employing the Black–Scholes model where
the estimator’s distribution quantifies the parameter risk.

Example 3.1 (Parameter Risk from Estimation of the Black–Scholes Volatility) We
consider a Black–Scholes setting as given in Example 1.1, where the volatility σ is

13Due to technical reasons, it may occur that the probability for all single models is zero, i.e.
R({P })= 0 for all P ∈ P .
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the key parameter for option pricing. This parameter is not directly given by the
market (different from the current stock price S0 and the risk-free rate r). Hence,
the determination of the volatility is a situation where one is exposed to parameter
uncertainty. If the stock price actually follows a Black–Scholes model, it may be
a sensible idea to estimate the volatility from time series data. Taking the logarith-
mic returns x1, . . . , xN , xj = logStj+�t − logStj , j = 1, . . . ,N , one may choose
the classical estimator for the variance (it may be more convenient to estimate the
returns’ variance), corrected for the frequency of the data �t , which results in the
estimator

σ̂ 2
N = 1

�t(N − 1)

N∑
j=1

(xj − x̄)2, x̄ = 1

N

N∑
j=1

xj

for the variance corresponding to the Black–Scholes volatility, which is consistent
and asymptotically normal under very weak assumptions. Applying general theory
from statistics, one obtains that, under the assumption of independent normally dis-
tributed returns and a true variance σ 2

0 > 0 (as the Black–Scholes model does), the
distribution of the estimator is a χ2-distribution up to some scaling. Hence, the dis-
tribution determining the parameter risk arising from the estimation risk of volatility
(resp. variance) is essentially determined by the χ2-distribution, provided that the
true model is a Black–Scholes model with variance σ 2
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3.1 Measuring and Quantifying Model Risk

As defined by Knight [9], the exposure to model risk is a situation where probabili-
ties of different possible models are available. Hence, one should have mathematical
instruments at hand to measure and/or to quantify model risk. Fortunately, for the
general situation of the measurement and quantification of risk, a rich and mathe-

matically rigorous theory of risk measures14 has been developed, yielding numerous
interesting results. For the specific purpose of treating model risk, the theory of risk
measures can be transferred, specifically tailored, and applied to the model risk set-
ting under concern. The theory of (convex) risk measures was originally designed
for treating financial and actuarial risk, headed by the seminal paper Artzner, Del-
baen, Eber, and Heath [1], we follow the red line of this survey and the model risk
framework in a financial context.

14The terminology “risk measure” may be misleading from a mathematical point of view, since the
functions that are proposed to be risk measures are not measures from a measure-theoretical point
of view, but functionals.
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To ensure a concise understanding, we recapitulate the proper definition of risk
measures in a slightly more general setup. A special case of the definition can be
found in the textbook Föllmer and Schied [6].

Definition 3.2 (Risk Measure, cf. Biagini, Meyer-Brandis, and Svindland [19],
Chap. 5) Let X be a collection of random variables on a probability space
(�,F ,P ), i.e. risk-exposed quantities, let π : H → R be a linear mapping on a
subcollection of random variables H ⊂ X and let ρ :X → R be a function.
ρ is called a risk measure w.r.t. π , if ρ fulfills the following axioms:

• ρ is monotone, i.e. for X,Y ∈X and X ≥ Y , ρ(X)≥ ρ(Y ) holds;
• ρ is π -translation invariant, i.e. for X ∈ X and Y ∈ H the equality ρ(X + Y)=
ρ(X)+ π(Y ) holds.15

Furthermore, ρ may have additional properties which are often postulated:

• ρ is called convex, if for X,Y ∈ X and λ ∈ [0,1], ρ(λX+ (1 − λ)Y )≤ λρ(X)+
(1 − λ)ρ(Y ) holds;

• ρ is called coherent, if it is convex and positively homogeneous, i.e. for X ∈ X
and c > 0, ρ(cX)= cρ(X) holds;

• ρ is called P -law-invariant,16 if the value of ρ(X) only depends on the P -
distribution of X, i.e. ρ(X)= ρ(Y ) holds if X and Y have the same distribution
under P .

In practice, several “risk measures” are used. A traditional risk measure is, e.g,
the variance, which was suggested for quantifying the risk of investments in portfo-
lio theory in the seminal work of Markowitz [39].17 However, the variance is not a
risk measure in the sense of Definition 3.2, since it fails to be monotone.

The idea behind a risk measure is to compress all risk modeled by a random
variable X into a single number ρ(X). Obviously, this means that some information
(i.e. the whole distribution of X) is lost and complexity is reduced, but it is a helpful
and popular method to provide insight into risk for professional risk managers and
to communicate to external audience. The convexity property translates into risk di-
versification: combining different risky quantities should not be penalized, i.e. the
combined position cannot be riskier than the combination of the single positions.
Furthermore, at first glance, the notion of π -translation invariance is rather unintu-
itive and difficult to understand: the interpretation is that the elements from H do not
exhibit the kind of risk which is supposed to be measured (“risk-less positions”). Its
risk quantification is solely determined by the linear mapping π , which is not risky

15In many cases, as discussed below, it is sufficient to think of H as the constants and of π as the
identity function.
16If there is no ambiguity between different probability measures, the reference to the probability
measure P is omitted.
17Harry M. Markowitz received the Nobel Memorial Prize in Economic Sciences 1990 for his
groundbreaking research on portfolio theory.
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by definition (since it does not exhibit risk diversification). In the original definition
of convex risk measures, the subspace H only consists of the constant functions
(“no risk”) and the linear mapping π is simply the identity, i.e. π(c)= c.

The notion of risk measures was developed due to the shortcoming of classical
risk measures as, e.g., quantiles (Value-at-Risk, often abbreviated by VaR), which
in many cases did not exhibit desirable properties (e.g. VaR does not always support
diversification). (Convex) risk measures provide a mathematically precise and rich
framework for the measurement of risk, thus, it may also be adapted to measure
model (resp. parameter) risk. The most popular non-trivial example of a convex risk
measure is the Average-Value-at-Risk, which averages over the tails of a distribution
and overcomes the shortfall of the Value-at-Risk being not convex.

The concrete implementation of the adaptation of the general framework of risk
measures always depends on the setting what has to be measured, but, as a first idea,
when a certain number f (P ) has to be calculated which depends on the probability
measure P ∈ P , it may be a sensible idea to apply the risk measure framework to
the function f to provide a number accounting for the model (resp. parameter) risk.

Example: Option Pricing Incorporating Parameter Risk A canonical example
where model/parameter risk arises is option pricing. For this task, one uses financial
market models as described in Sect. 1 which heavily rely on parameters that are not
directly observable on the markets. Hence, those parameters have to be estimated,
either via time series analysis of financial data or via fitting to market prices of
available instruments (e.g. call and put options). As pointed out in Example 3.1, the
procedure of obtaining the parameters exposes one to parameter risk. If one wants
to state a price for some option using a certain model, e.g. the Heston model, one
should account for parameter risk in the chosen model.18 For some option X, each
parameter vector θ in a financial market model yields the risk-neutral price of the
option X w.r.t. the parameter vector θ as an expectation Eθ [X]. But, different from
the usual model output, option traders typically state two prices—a bid price (to
which she or he is willing to buy the option) and an ask price (to which she or he
sells the option). Hence, the key idea is that parameter risk is a crucial determinant
for the width and location of the bid-ask spread.

Thus, for option pricing purposes, the notion of a (model) risk-capturing func-
tional and risk-captured (ask and bid) prices are developed in Bannör and Scherer
[17] using the theory of convex risk measures.

Definition 3.3 (Model Risk-Capturing Functional, Risk-Captured Prices) Let Q be
a family of option pricing models19 and let R be a probability measure on Q. Let
D denote all options X we seek to price, which additionally satisfy some technical
conditions. Let furthermore ρ be a normalized, law invariant convex risk measure

18Actually, one should also account for model risk, but this may not be tractable any more.
19To remain consistent with the usual terminology from mathematical finance, we denote risk-
neutral measures by Q and a set of different risk-neutral measures by Q.
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on some functions on Q. Then the mapping � :D → R, defined by

�(X) := ρ(Q �→ EQ[X]), (3.1)

is called a model risk-capturing functional w.r.t. the distribution R. �(X) is called
the risk-captured (ask) price of X given the functional �. Furthermore, �̄(X) :=
−�(−X) is called the risk-captured bid price of X.

The definition of risk-captured prices is somewhat technical and involves many
different requirements (mainly to ensure the existence of the objects we deal with),
but, in principle, the concept of treating the number of interest—the option price—
as a function of the random model and applying a risk measure to it remains the
same. In this case, since the methodology is supposed to be used for option pricing
purposes, some additional quantities are required (e.g. normalization) to ensure that
the number �(X) makes sense. Furthermore, convexity is crucial since model risk
should be a risk that profits from risk diversification. Option traders always regard
their positions from a portfolio point of view, quoting bid-ask prices according to
their portfolio position (e.g. they give better prices for options fitting to their present
position).

The definition of model (resp. parameter) risk-captured prices is related to the
idea behind some other non-linear pricing ideas that were mainly used for pricing
in incomplete markets (like, e.g., Carr, Geman, and Madan [24], Cherny and Madan
[25]).

3.2 Bayesian Treatment of Model Risk

A popular mathematical tool, when confronted with model risk, is Bayesian statis-
tics. The basic idea behind Bayesian statistics is that the relationship between distri-
butions of different models and samples thereof is not static, but is a dynamic pro-
cess where the knowledge of the model distribution is constantly enhanced/updated.
In this case, the model (resp. the parameter) is regarded to be random as well. Hence,
one of the key results of Bayesian statistics we will present here is how the model
(resp. parameter) distribution is updated and learns from the collected samples.
Summarizing, Bayesian methodology is about how to obtain a proper distribution
on the models incorporating information about the data into the construction pro-
cess. A standard reference on Bayesian theory is Bernardo and Smith [2], one can
find more about Bayesian methods in Chap. 8 of Czado and Brechmann [27].

Bayes’s theorem, going back to the English minister of the Presbyterian church
Thomas Bayes, is—in its most basic form—a relationship of conditional probabil-
ities. Interchanging the conditioning set with the set which is evaluated, the con-
ditional probability can be easily derived. Formulated in a mathematically precise
manner, Bayes’s theorem states the following result:
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Theorem 3.4 (Bayes’s Theorem, General Version) Let (�,F ,P ) be a probability
space and A,B ∈ F some events with P(A),P (B) > 0. Then the following rela-
tionship between the conditional probabilities of the considered events holds:

P(B|A)= P(B)P (A|B)
P (A)

.

At first glance, Bayes’s theorem does not seem to have any interconnection with
model risk and the application of Bayes’s theorem towards model risk is not obvious.
But when a distribution on the set of possible probability measures P is at hand,
Bayes’s theorem delivers an interesting interpretation of the relationship between
the probability of outcomes and the probability of having the right model.

Therefore, let R be a probability distribution on the set of probability measures
P quantifying the model risk, a joint probability measure � living on the Cartesian
product of the state space and the possible probability measures � × P may be
defined on the “rectangle sets” via

�(A×B) :=
∫
B

P (A)R(dP) (3.2)

for A×B ∈�×P (this measure may be extended to the whole product σ -algebra).
The product measure � can be interpreted as a probability measure which both
incorporates possibilities of the outcomes and the different models. If we then apply
Bayes’s theorem to this situation, we obtain the following “model risk version” of
Bayes’s theorem.

Theorem 3.5 (Bayes’s Theorem, Model Risk Version) Let� be defined as in (3.2)
and �(A×P) > 0. Then

�(�×B|A×P)= �(�×B)�(A×P|�×B)
�(A×P) = R(B)�(A×P|�×B)∫

P P(A)R(dP)

holds.

Defining suggestively �(A|B) := �(A × P|� × B) as well as �(B|A) :=
�(�×B|A×P), one may summarize Theorem 3.5 via the handy expression

�(B|A)= R(B)�(A|B)∫
P(A)R(dP)

. (3.3)

If we have a closer look on this formula, (3.3) reveals an interesting relationship
between model-intrinsic risk (which is inherent in the different possible stochastic
models P ∈ P) and model risk (which is quantified by the probability measure R
on the possible models P). The probability that a set of stochastic models B ⊂ P is
correct, given that a certain outcome A⊂� arrives, can be calculated by a fraction
of the raw probabilityR(B), corrected by a fraction which consists of the probability
of the outcome A given the models B and the probability of A averaged over all
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possible models P . Hence, starting with a probability measure R on P quantifying
model risk, one may obtain some further information and correct for the outcome A.
In particular, if B = {P0} consists only of the probability measure P0 (with positive
probability R({P0}) > 0), (3.3) reduces to the even simpler form

�(P0|A)= R(P0)P0(A)∫
P(A)R(dP)

. (3.4)

In a model risk framework based on continuous risk, one often has that the prob-
ability for a single model P0 is zero (i.e. risk that comes from Lebesgue-a.c. proba-
bility measures), so the convenient representation (3.4) is usually not available. But
there is a way out to find a nice form for Bayes’s theorem treating model risk: if
we assume that a parameterization of the set of possible models P = (Pθ )θ∈� with
�⊂ R

n is at hand, the model risk probability measure R has a density r(θ), and the
random variable of interest X :�→ R

d has density p(x|θ) under Pθ for all θ ∈�,
we obtain the classical model risk version of Bayes’s theorem involving densities.

Theorem 3.6 (Bayes’s Theorem, Parameter Risk Version with Densities) Let r ,
(pθ )θ∈� be as above. Then the conditional density r(·|x) can be calculated via

r(θ |x)= r(θ)p(x|θ)∫
�
p(x|θ)r(θ)dθ

. (3.5)

Theorem 3.6 suggests particularly that the distribution on the parameters (repre-
sented by the density r) can be updated and adjusted, given the information from
the samples x = (x1, . . . , xd). This can be regarded as follows: one starts with a
parameter distribution r20 (which is usually called a priori distribution or prior
distribution, since it is the distribution imposed without any further information)
and observes samples x1, . . . , xd on the market. Now, the distribution r is adjusted
to the observation of the sample x = (x1, . . . , xd). Roughly speaking, the weights
on the parameters are adjusted according to the likelihood of the sample outcome
x = (x1, . . . , xd). As a result, one obtains a new distribution represented by the
density r(·|x) incorporating both the information which was given by the a pri-
ori distribution and the additional information contained in the samples x1, . . . , xd .
Consequently, the obtained distribution r(·|x) is called the a posteriori distribution
or posterior distribution on the parameters given x = (x1, . . . , xd). The whole pro-
cedure is referred to as Bayesian updating or Bayesian inference, since the new
information contained in the samples x1, . . . , xd causes the old beliefs of the param-
eter distribution (summarized in the a priori density r) to be updated, resulting in
the a posteriori density r(·|x). Bayesian updating can be done constantly when new
data is available. Often, the old posterior distribution then comes into play as the
new prior distribution, which is again updated with information from new samples
x̃ = (xd+1, . . . , xd+d̃ ). Figure 4 illustrates this updating procedure.

20In the following, we use the word distribution for abbreviation and mean the distribution induced
by the respective density.
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Fig. 4 This diagram
illustrates the process which
is done in Bayesian updating
(here as a mathematical
“black box”). The
information from the prior
density (top left) is merged
with data samples (top right),
resulting in a unified
distribution (bottom)

Merging Expert Knowledge and Data Evidence into a Unified Framework
A common application of the Bayesian updating process is when the input source is
twofold: first, one has real-world data available for estimating parameters. A clas-
sical statistic paradigm would now solely rely on the given data, estimating the pa-
rameters and—if required—calculating the (asymptotic) distribution by using the-
ory from mathematical statistics or resampling methods. But, in some cases, one
wants to incorporate some expert judgement as well, particularly in case that the
data may be difficult to judge (e.g. the data only reflects the recent past and some
events not reflected in the past may happen in the future). Another case where one
would like to incorporate expert judgements is when only very few data is available
(like, e.g., operational risk events or corporate defaults) or a large fraction of data is
outdated. For example, an option trader with long experience might impose a dis-
tribution on the parameters of a financial market model (e.g. Heston model) being
subject to parameter risk (compare Example 2.1). Using a Bayesian updating pro-
cedure, one would use this distribution being the result of expert judgement as the
a priori distribution. As a second step, one may use the Bayesian updating proce-
dure and samples from financial market data (e.g. option prices) to adjust the expert
view to real-world data.

One could also interpret Bayesian updating the other way round and start with
a prior distribution that may be a sensible idea without having a closer look (prior
distribution as “default distribution”). One can then use data or “expert estimates”
to tilt the distribution towards results that are more in line with the data/the expert
estimates.
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As a result of applying Bayes’s theorem in the version stated in Theorem 3.6, one
obtains the a posteriori distribution integrating both the expert judgement as well as
the data. Hence, loosely speaking, the a posteriori distribution may be regarded as a
“merger” between the expert opinion and information extracted from data.

Examples The methodology of Bayesian updating has widely been exploited in
practice. Due to its handyness in terms of mathematical formulae and its mathemat-
ical rigorousity, it is one of the first choices to obtain distributions on models and
particularly parameters.

Example 3.7 (Black–Litterman Portfolio Selection) A popular application of
Bayesian updating is the Black–Litterman approach to portfolio optimization, as
described in Black and Litterman [20]. In classical Markowitz portfolio optimiza-
tion, risk and return characteristics of different investments are purely estimated
from data (e.g. time series, option prices). A clear drawback of this procedure is
that the used data is backward looking and does not carry information about fu-
ture developments. Hence, one would like to introduce some procedure where data
is one input, but on the other hand some subjective market opinion may influence
the result. One way to incorporate some “market opinion” additionally is to use a
Bayesian approach. In this case, both subjective views of investment performance
and risk (a priori distribution) as well as financial market data (typically time series
of financial instrument prices) can be integrated by means of Bayesian updating.
As a result, one obtains a new distribution for risks and returns which is used for
portfolio optimization purposes, called Black–Litterman portfolio selection.

Also in option pricing, Bayesian methodology provides a framework to obtain a
distribution on the parameters such that today’s option prices can be merged with
an external view, e.g. coming from expert judgement or exploiting “more probable”
market information.

Example 3.8 (Bayesian Option Pricing) There have been several attempts to incor-
porate Bayesian ideas into option pricing, we only sketch few of them (a complete
overview would be out of scope). As described above, option pricing is a situation
where one is exposed to parameter risk (and, presumably, model risk). Hence, Bun-
nin, Guo, and Ren [22] and Gupta and Reisinger [32] both suggest to compute the
posterior distribution via Bayesian updating incorporating new data like realizations
from time series and (more forward-looking) prices of European options. Gupta and
Reisinger [32] assume that put and call option prices follow a true model that is
noised by independent error terms. A mathematical framework is suggested how
this assumption can be interpreted in terms of a parameter prior distribution. In par-
ticular, a local volatility framework is used and it is assumed that in the short run, the
market-implied Black–Scholes volatilities of the most popular options21 are concise
approximations for the local volatility.

21Usually, the options which are most traded are the options with a strike close to today’s stock
price, the so-called at-the-money options.
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An interesting question remains from choosing the prior distribution. Once hav-
ing done the Bayesian updating procedure several times, one may use the old ob-
tained posterior density as the new prior to start with as described above. Later, we
refer to the Bernstein–von Mises theorem treating the asymptotic impact of the prior
distribution.

In insurance applications, one is often more involved with using time-series data
due to more stationary conditions (e.g. fire claims or other insurance losses observe
more stationary behavior as financial markets). Many textbooks as, e.g., Böcker
[21], Klugman [35], Wüthrich and Merz [49] address Bayesian methods for risk
management in insurance and finance.

4 Dealing with Model Uncertainty

In nichts zeigt sich der Mangel an mathematischer Bildung mehr, als in einer übertrieben
genauen Rechnung.22—Carl Friedrich Gauss, mathematician

In some cases, it is a hard task to quantify the probability of certain models to
be the true model. It may be even impossible to impose a probability measure R on
the set of different models P from which one may choose. In these situations, one
experiences true model uncertainty. In such a situation, one has much fewer alterna-
tives than in case of model risk, where quantification may be done via different risk
measures, as we have described earlier. Conversely, in case of model uncertainty,
one is typically restricted to consider worst-case scenarios: if there is no additional
information and we have complete ambiguity between different stochastic models
represented by the set of probability measures P , one has little choice to boil the
“degree of model uncertainty” down to one number as we have done it in case of
model risk.

Worst-Case Approaches Mostly, one seeks to calculate a number f (P ) (e.g. the
price of some option) which depends on the chosen model P ∈ P . Not having any
further information at hand, the easiest way (and maybe the only feasible one—since
everything in the scope of the model set P is possible) to quantify model uncertainty
(as described for option pricing by Cont [4]) is to take the worst cases (resp. best
cases) between the different models, namely

u= sup
P∈P

f (P ), l = inf
P∈P

f (P ).

Hence, the whole model uncertainty may be quantified by the difference of the two
numbers

u− l = sup
P∈P

f (P )− inf
P∈P

f (P ).

22Translation: nothing shows the lack of mathematical education more than an exaggeratedly exact
calculation.



300 K.F. Bannör and M. Scherer

The difference between the extremes is an appropriate number to measure the (max-
imal) impact of model uncertainty on the quantity f . In case of model risk, i.e. the
knowledge about the likelihood of each model, worst-case approaches can also be
done. But, due to the additional knowledge, many other alternatives (as, e.g., convex
risk measures) are possible.

Often, the number of interest f (P ) is the expectation of some random variable
X w.r.t. the probability measure P (as in the case of option pricing). If this holds,
the theory of convex risk measures (a standard reference is Föllmer and Schied [6])
immediately yields that the quantity

u(X)= sup
P∈P

EP [X]

fulfills all the axioms of a coherent risk measure (without law invariance). One can
go even further and define the upper envelope of a set of probability measures by
defining

μP (A) := sup
P∈P

P(A), A ∈F .

In general, the upper envelope μP is not a probability measure any more, but a sub-
modular set function. Here, we can still define some integral, the Choquet integral
w.r.t. μP , and the quantity u(X) can be represented as a Choquet integral

u(X)=
∫
X dμP .

The Choquet integral is a generalization of the regular integral and relaxes some
properties, e.g. it is not linear any more in general, but preserves features as, e.g.,
monotonicity. The rich theory of Choquet integration, delivering many tools to work
with, can be found in the compendium of Denneberg [28].

Examples

Worst-Case Option Pricing Cont [4] describes the situation when a set of risk-
neutral probability measures Q is available, but one does not have any information
which one to pick for the valuation of some option X. As described above, it is
suggested to use a worst case ansatz and to deliver two prices

u(X)= sup
Q∈Q

EQ[X] and l(X)= inf
Q∈Q

EQ[X],

which can again be interpreted as bid-ask prices. As described above, the functional
u fulfills the axioms of a coherent risk measure. Conversely, if there is a coherent
risk measure ρ which is defined on a suitable collection of random variables, gen-
eral theory immediately yields that it can be represented as the supremum of the
expectation w.r.t. some “stress-test measures” Q, i.e.

ρ(X)= sup
P∈Q

EQ[X]
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holds for a set of “stress-test measures” Q which are absolutely continuous w.r.t.
the original measure P . Hence, in this sense, convex risk measures as treated in
Sect. 3.1 can also provide a framework to measure model uncertainty.

In some cases (as, e.g., the calibration to market prices), one might have addi-
tional information about the trustworthyness of a model, contained in some “penalty
function” α : Q → [0,∞]. In this case, Cont [4] suggests “penalized worst-case
pricing” by setting the two option prices via

u(X)= sup
Q∈Q

EQ[X] − α(Q) and l(X)= inf
Q∈Q

EQ[X] − α(Q). (4.1)

On the other hand, it can be shown that, in principle, every convex risk measure
can be represented in the style of (4.1) (cf., e.g., Föllmer and Schied [6]). The very
general framework developed by Cont [4] may be understood best by stating an
example. One prominent example incorporating a rich class of pricing models is the
uncertain volatility model by Avellaneda, Levy, and Paras [15].

Example 4.1 (Pricing with Uncertain Volatility) As described earlier, in a Black–
Scholes model (cf. Example 1.1), the assumption of volatility being constant has
caused numerous critique. Hence, stochastic volatility models (e.g. the Heston
model presented in Example 1.2) have been developed. Again, these models assume
certain characteristics of the volatility process. Another approach, leaving many de-
grees of freedom, was suggested by Avellaneda et al. [15]: volatility is introduced
to be a stochastic process, living on a compact interval; i.e. the volatility process
(σt )t≥0 has its range in an interval [σl, σu] with σu > σl > 0. The bounds σu,σl may
be obtained from expert judgements or data like, e.g., available implied volatilities
of liquid options. With these implicitly imposed models, Avellaneda et al. [15] de-
velop an approach based on control theory methods to calculate model-free upper
and lower bounds for the price of options.

Dependence Modeling Another situation where model uncertainty may arise is de-
pendence modeling: often, different stochastic quantities that are related to each
other (e.g. weight and height of persons) should be modeled jointly. Typically,
this is modeled by assuming the realizations to come from a random vector X =
(X1, . . . ,Xd). Assuming that the univariate distributions of the random variables
X1, . . . ,Xd are known, one still has to determine the interconnection between the
random variables, i.e. the dependence structure. Fortunately, Sklar’s theorem pro-
vides that the dependence structure of any multivariate distribution may be sepa-
rated from the univariate marginal distributions and any dependence structure cor-
responds to some copula, which is a multivariate distribution function with uniform
marginals (see, e.g., Nelsen [40]). However, the set of copulas provides a broad
and rich source with numerous dependence structures like, e.g., elliptical copulas or
Archimedean copulas. Hence there are still infinitely many copulas to choose from,
and sometimes there is little evidence about how the dependence structure may look
like. More on this class of functions can be found in Chap. 9 of Klüppelberg and
Stelzer [36].
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In many cases, the choice of dependence structure is crucial for modeling events
correctly, a vividly discussed example being portfolio default risk. On the eve of
the financial crisis of 2008, there existed massive misvaluation of financial prod-
ucts called CDO (collateralized debt obligations) that were structured from, e.g.,
housing mortgages. The key principle of these products was to bundle several cred-
its and redistribute the credit repayments and interest payments into different slices
(so-called “tranches”) in the following manner: in case of default, all defaults first
reduce the notional of the most junior tranche. After elimination of the most junior
tranche through defaults, the notional of the second-most junior tranche is reduced
by occuring defaults and so on. As pointed out by Heitfield [33], the valuation of
CDO tranches heavily relies on the imposed model of the dependence structure be-
tween the credit defaults. Predominantly, Gaussian copulas were used to account for
the dependence, but Gaussian copulas were not able to capture important stylized
facts like, e.g., contagion effects and tail dependence.

Typically, in case of dependence uncertainty, one wants to calculate a quantity
fP (X1, . . . ,Xd) and is uncertain about the dependence structure (represented by
a copula model P ) of the random vector (X1, . . . ,Xd). This means that the set
of possible models P is constructed such that the univariate distributions of the
random variables X1, . . . ,Xd do not vary, but the dependence structure, which can
be summarized by

P := {P probability measure on (�,F) with

fixed marginal distributions PXj ∼ Fj
}
.

The optimization problem to solve is to find upper and lower bounds (as in the
proposal of Cont [4])

u(X1, . . . ,Xd)= sup
P∈P

fP (X1, . . . ,Xd),

l(X1, . . . ,Xd)= inf
P∈P

fP (X1, . . . ,Xd)

for functions f , which may include numerous applications, e.g. the calculation
of risk measures of portfolios of financial instruments X1, . . . ,Xd . An important
result from copula theory is that the set of copulas has upper and lower natural
bounds, called the Fréchet–Hoeffding bounds. These can be interpreted (at least in
dimension d = 2) as “complete positive dependence” (comonotonicity) and “com-
plete negative dependence” (countermonotonicity). But the Fréchet–Hoeffding cop-
ula bounds are not necessarily the copulas23 which produce the upper and lower
bounds u(X1, . . . ,Xd) resp. l(X1, . . . ,Xd) for the quantity f (X1, . . . ,Xd). Hence,
the problem of determining the right dependence structure to approximate the upper
and lower bounds has to be tackled mathematically.

23For d > 2, the lower Fréchet–Hoeffding bound is not even a copula.
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Puccetti and Rüschendorf [42] present numerical and computational techniques
to calculate upper and lower bounds for special functions f , including important
examples like the Value-at-Risk (VaR) of portfolios. Using the fact that the empirical
equivalent of copulas can be regarded as rearrangements, an algorithm is developed
to calculate the bounds u(X1, . . . ,Xd) resp. l(X1, . . . ,Xd). In particular, it turns
out that the comonotonicity copula (the upper Fréchet–Hoeffding bound) usually
produces not the largest Value-at-Risk, but a copula that manages concentrating
mass to the tail in a uniform manner.

In the bivariate case, there is another approach by Tankov [47], which refines the
upper and lower bounds for a functional f (X1,X2) when some information about
the dependence (i.e. Kendall’s Tau, a standardized association measure which is
often more suitable than the correlation) is given. This is used to compute model-
free bounds for bivariate options (e.g. best-of-two options), given a certain level of
association measured by Kendall’s Tau.

5 Food for Thoughts

This chapter intends to give a brief survey about model risk and uncertainty with a
tilt towards financial topics, but, obviously, there are several questions that naturally
arise.

• In this chapter, model risk and uncertainty is discussed in the context of mathe-
matical finance. Obviously, also in natural sciences, model risk and uncertainty
plays an important role. As a detailed example for a discussion of model risk and
uncertainty in a natural sciences context, we refer to the book of Cooke [26].

• Convex risk measures are a tractable and well-studied class of risk functionals,
but convexity (resp. subadditivity) may be an assumption that is too strong for
real-life applications. Thus, there have been numerous generalizations and en-
hancements of convex risk measures incorporating weaker properties, like quasi-
convexity or comonotone convexity (resp. subadditivity), studied in Song and Yan
[46].

• When incorporating model (resp. parameter) risk by using convex risk measures,
one might think about continuity properties of the computed numbers when im-
posing different kind of distributions on the parameters. In particular, one might
want that if there is a sequence of distributions (RN)N∈N on the parameter set
� converging to some limit distribution R∞, the sequence of numbers capturing
the model risk w.r.t. the distributions (RN)N∈N should eventually converge to the
number capturing the model risk w.r.t. the distributionR∞. An application would,
e.g., be the distribution induced by some consistent estimator θ̂N converging to
the “true” parameter. It turns out that, dependent on the risk measure, different
types of convergence yield convergence for different classes of risk measures.
Some ideas which risk measures behave as desired with weak convergence can
be found in Bannör and Scherer [17], a detailed technical analysis about different
topologies on probability measures that induce convergence of the risk measures
is given in Krätschmer, Schied, and Zähle [37].
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• In case of Bayesian methodology, one key problem is the choice of prior distri-
bution. In some cases, the Bernstein–von Mises theorem states that in the asymp-
totics, the choice of prior distribution does not matter any more (e.g. van der Vaart
[13]). Hence, the more iterations one does in the Bayesian updating procedure,
one obtains more stable results (in case of drawing the sample from a stationary
situation). Conversely, there are also situations where the Bernstein–von Mises
theorem does not hold, which lead to criticism of the Bayesian methodology.

6 Summary

We presented an introduction to stochastic modeling and highlighted some prob-
lems concerned with model specification and the decision process which model to
select. We defined and distinguished model uncertainty and risk, both are situations
one typically faces when modeling complex objects as, e.g., financial markets, in a
stochastic manner. We mentioned various examples, primarily from mathematical
finance, where model and parameter risk and uncertainty play a prominent role. We
have outlined methods based on convex risk measures dealing with both model risk
and uncertainty, furthermore, we gave insight into Bayesian updating, which can be
a helpful tool to refine parameter distributions in case of parameter risk.

Acknowledgement We thank Claudia Klüppelberg and Roger M. Cooke for valuable remarks
on earlier versions of the manuscript.
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Chapter 11
Cost-Benefit Analysis

Jutta Roosen

The basic rationale of cost-benefit analysis lies in the idea that
things are worth doing if the benefits resulting from doing them
outweigh their costs.
Amartya Sen (Cost-benefit analysis, The University of Chicago
Press, Chicago, 2001, p. 98)

Every society is facing a number of risks and their regulation requires many con-
siderations. From an economic standpoint, it can be said that risks impose a cost
on society. Avoiding and regulating risks equally engenders costs. In order to help
public decision makers come to terms with these trade-offs, economists have devel-
oped the method of cost-benefit analysis. It is based on the simple idea that things
are worth doing when the benefits from doing them are greater than their costs.
As simple as this basic idea is, as tricky and controversial are the implications of
putting it into practice. Issues of controversy relate to valuing environmental bene-
fits, determining the value of human health and life, balancing the interest of current
and future generations by discounting, and dealing with the biases of subjective
risk perception when defining a rational risk policy. This chapter will introduce the
basic assumptions underlying cost-benefit analysis and the procedures involved in
conducting one.
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The Facts

• Cost-benefit analysis is rooted in the ethics of utilitarianism: things are of value
because they are valued by humans in their pursuit of happiness and well-being.

• Cost-benefit analysis allows for the systematic consideration of all effects of a
public project or policy. All costs and benefits are evaluated in monetary terms
and hence are comparable.

• Cost-benefit analysis also considers the effects of projects on the environment,
nature, and human health.

• The choice of the discount rate is of crucial importance for the outcome of a cost-
benefit analysis. Small changes in the discount rate can lead to large changes in
the outcome of the analysis. This is because the rate enters via an exponential
discounting exercise.

• While the basic idea of cost-benefit analysis is widely accepted, many issues of
implementation are hotly debated. Hence it is of crucial importance to make ex-
plicit all assumptions of the analysis and to make outcomes of different project
valuations comparable.

• Cost-benefit analysis does not ignore the implications of behavioral sciences. It
is a response to the bounded rationality of decision makers, trying to make public
policy accountable to principles of rationality.

1 Introduction

Methylmercury, an organic form of mercury, is a toxic compound that alters fetal
brain development when there is significant prenatal exposure (EFSA [18]). Expo-
sure results from fish consumption and in particular concerns children of women
who consume large amounts of fish before and during pregnancy. These children
have a significant vulnerability to the adverse neurological effects of methylmercury
(Budtz-Jorgensen et al. [13]). Levels of mercury in the environment have increased
considerably over the last century. The most important anthropogenic sources of
mercury are coal-fired power plants. When atmospheric mercury created during the
coal burning process is deposited on surface water, bacteria convert it to the organic
form, methylmercury. It then enters the food chain of aquatic life and accumulates
in fish tissues. Moreover, methylmercury bio-accumulates in the food-chain leading
to high mercury concentrations in predatory fish such as tuna, mackerel, and shark
(Shimshack et al. [38]).

Because of its valuable nutrition properties (omega-3 fatty acids, proteins, vita-
mins and minerals) fish has taken centre stage in regulatory debates on food safety
and nutrition (Caswell [14]). Policies dealing with methylmercury include power-
plant regulation by capping mercury emissions. Because of the persistence of mer-
cury in the environment, limiting emissions will not suffice for managing this risk
and consumption advisories are an important means to limit exposure to contam-
inated fish for groups at risk (pregnant women, women of childbearing age and
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young children). Risk advisories, however, may also have spill-over effects to con-
sumer groups not at risk (men and children at older ages), hence causing them to
forego benefits of fish consumption such as omega-3s that are considered of im-
portance to cardiovascular health. Balancing all these benefits, costs and risks of
regulatory choices demand a careful analysis of all effects involved. In such cases,
economists turn to cost-benefit analysis, comparing and aggregating all impacts val-
ued in monetary terms.

Before entering into the description and discussion of cost-benefit analysis, a
second example may be of interest. Pimentel et al. [31] have estimated the cost of
soil erosion and benefits of conservation technologies. Soil erosion is a major en-
vironmental and agricultural problem around the world. Unsustainable agricultural
practices lead to wind or water erosion that threatens the fertility of agricultural
soils. Beyond this productivity impact, wind erosion can lead to pollution with fine-
particulate matter, with an effect on human health because fine particles—solid or
liquid—can get deep into the lungs and cause serious health problems such as ag-
gravated asthma and increased respiratory symptoms (EPA [19]). Fine particles also
lead to impaired views and damage material and countryside. Water erosion on the
other hand can lead to soil run-off into streams and lakes and cause biological and
recreational damage there. Again, public decision makers must consider what to do
about soil erosion. Conservation practices are available, but may lead to reduced
yields and profits in agriculture. Weighing of these costs and benefits of soil conser-
vation can be done by cost-benefit analysis.

Cost-benefit analysis is a method of applied economics employed to evaluate
public projects that involve investments and costs and returns over time. It helps the
public decision maker to decide whether a project should be carried out or not or
which project should be selected when several are under consideration. Basically
the idea is to judge if public resources are used efficiently (not just effectively) and
hence, if the costs of a project can be justified by its benefits. Cost-benefit analysis
can be performed on all sorts of different projects. It can be applied to infrastruc-
ture projects such as the construction of a new road or railway. Even when judging
educational projects, cost-benefit analysis can be useful. For example the OECD
regularly publishes an evaluation of investment in higher education in its member
countries (OECD [29]). Cost-benefit analysis also allows for assessing environmen-
tal regulation, such as a ban on specific pesticides or the conservation of an en-
dangered species. One must however consider an important aspect of cost-benefit
analysis: it is appropriate only for projects that are marginal for the public deci-
sion maker. Marginal means the project is relatively small in the overall portfolio
of public projects. This is the case with the soil erosion or methylmercury example
considered above. However, there may also be non-marginal projects such as those
where the investment is of the size of a large share of the gross domestic product
(GDP) of a country or projects for limiting and mitigating climate change, the im-
pact of which may not be considered marginal. In these cases general assumptions
of cost-benefit analysis on the risk aversion of the public decision maker and the
income effect are no longer applicable. Hence particular care must be taken when
conducting welfare assessments under such circumstances.
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Cost-benefit analysis is also useful for health-related projects. For example, it
can be used to address the question whether the benefits of cancer screening over
large segments of the population outweigh the costs (cf. Chap. 17, [42]). Here eth-
ical and methodological considerations on the evaluation of non-market goods be-
come particularly thorny. Is there a monetary value to a human life, and how can
we go about the evaluation of human life? In order to avoid such questions, medical
professionals often prefer to replace cost-benefit analysis by cost-utility analysis or
cost-effectiveness analysis. However, cost-benefit analysis not only provides infor-
mation on the attractiveness of one medical treatment compared to other medical
treatments. It helps the public decision maker to know if the investment in a health
program is overall efficient, and furthermore if it is more efficient or less efficient
compared to other projects such as investments in infrastructure or education.

The basic idea of cost-benefit analysis is that one can use monetary values to
evaluate a project. That means that all costs and benefits are evaluated in terms of
money. These monetary values are not only used for market aspects of the project,
but also for non-market goods. Take the example of installing a wind farm. The flows
of money involved are those of the investment costs at the beginning of the project.
There are also running costs of maintaining the wind farm over time and there is
certainly the benefit of the electricity generated. In this example, costs and benefits
can easily be evaluated by using the market costs of the necessary investment, the
maintenance costs and the generated electricity evaluated at market price. Certainly,
a project is attractive if over the lifetime of the project the generated benefits are
greater than the accruing costs, and there are a number of decision rules that can be
used in order to verify if the project is attractive or not.

However, there are a number of difficulties that arise when doing cost-benefit
analysis. First, costs as well as benefits occur over time. To make this flow of costs
and benefits comparable over time, they have to be discounted to net present value
(NPV). While discounting seems a simple mathematical exercise, the ethical impli-
cations of discounting are quite large. Economists have hence fiercely debated the
choice of the appropriate discount rate. Second, benefits and also costs occurring
in the future are uncertain. One hence has to resort to expected utility analysis (cf.
Chap. 3, [40]). Finally, benefits and costs can also involve non-market goods. Con-
sider again the example of the wind park. There may be the benefit of reduced CO2-
emissions versus damage to wildlife such as birds. For those non-market goods, mar-
ket prices are not available and the value of the benefits and damages (costs) would
need to be estimated. Section 4 of this chapter will briefly introduce the methods
that are available for the valuation of non-market goods.

The idea of cost-benefit analysis has a long tradition and dates back to large
engineering projects as illustrated by a publication by Jules Dupuit in the mid-19th
century. It was formally introduced in the regulatory process in the United States for
works by the Army Corps of Engineers by the Flood Control Act of 1936 (Persky
[30]). In the great infrastructure projects before and during the New Deal policy
of the Roosevelt administration the Army Corps of Engineers developed rules to
assess projects, also accounting for non-economic impacts. Since then, the idea of
cost-benefit analysis has evolved and while today a standard procedure in the United
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States, it is gradually being practiced more in EU regulation. Since the treaty of
Maastricht (1992), the Community has to take into account costs and benefits of
action and lack thereof when preparing its policy on the environment. However,
only slowly is a body of good practice being established in the European regulatory
process (Renda [34]).

Before entering into the details of cost-benefit analysis, a few words are in place
regarding its role in a book on risk and security. As illustrated by the examples
above, many of the regulatory questions involve risks. However, these risks occur
at the level of single individuals. For society as a whole many of these risks are
expected damages that can be calculated as the probability multiplied by the size of
damage. The general assumption is that the regulator is not risk averse (cf. Chap. 3,
[40]) and that it suffices to consider expected costs and benefits. Stated otherwise
and in reference to Chap. 1, [47], the US Army Corps of Engineers applied a deter-
ministic concept of risk when introducing cost-benefit analysis in relation to their
projects. Only very recently are probabilistic and equity considerations taking more
room in the debates. In this sense, cost-benefit analysis can be seen as a tool to
support better risk management, based on the results of thorough risk analysis.

2 Doing a Cost-Benefit Analysis

In principle, the process of cost-benefit analysis is similar to that of any private in-
vestment appraisal. However, the public decision maker, e.g. the government of a
country, is a large decision maker and may take into account particular considera-
tions for discounting the future in a wide portfolio of projects. Furthermore, because
the public decision maker must also account for market failures such as those caused
by public goods and externalities, specific considerations apply for the evaluation of
costs and benefits.

Public goods are for example clean air, a bridge over a river, or a scenic view.
A defining characteristic for public goods is that they are not excludable, i.e. ev-
erybody can consume them, and non-rival, i.e., an additional person consuming the
good does not reduce the consumption of others. Take the example of clean air in a
city. Everybody living in the city will benefit from good air quality (non-excludable).
Clean air is also not depleted if other people consume it too, for instance tourists vis-
iting the city, so clean air is a non-rival good. For a bridge crossing a river it is the
same. Everybody can use it (non-excludable), and the utility of using it does not
decline when others use it as well (non-rival).1 Certainly in this example one could
propose a road toll, so that only those who have paid can cross the bridge. As such
the good would become excludable. However, given the non-rivalness in consump-
tion a toll would lower social welfare. This is the rational for public goods being

1Non-rivalness may be limited by congestion. This can concern the example of the bridge when it
comes to traffic jams or the example of clean, fresh air, when a small room with many people is
considered.
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provided by the public and paid for by taxes rather than by charging prices as is the
case for private goods.

Externalities are closely related to public goods. They result from market activ-
ities; however, they are not valued in the market. Similar to public goods, they are
not excludable. Externalities can be negative, such as the air pollution caused by a
coal power plant. The plant operator will consider material capital and labor costs
when taking production decisions. He will also consider the price of electricity that
determines revenue. He will, however, not consider the air pollution caused by the
plant, even if it leads to impaired views, respiratory diseases or accumulation of
mercury deposits. These are costs that accrue to society, but these will not have to
be covered by the plant operator. Hence these costs are external to the firm’s pro-
duction decision. An externality can also be positive. Take the example of a vaccine.
A vaccine is used to protect an individual from a communicable disease; however,
by taking the vaccine the disease pressure in a society can be considerably reduced
so that other people also benefit. This balancing of private and public benefits is one
explanation for the observation of decreasing vaccination rates after a disease is con-
sidered overcome, leading to new outbreaks such as the polio-outbreak reported in
Central-Asia (WHO [46]). The individual benefit of vaccination has declined (lower
probability to contract a disease), but by lower vaccination rates society may put this
accomplishment at risk (increased probability for the disease to come back). Sec-
tion 4 will explain how a value for public goods and externalities can be estimated.
First of all, we will look at the economic foundations of cost-benefit analysis.

Cost-benefit analysis seeks to identify projects that make society better off. It is
rooted in welfarism and utilitarianism, so what matters to society is the well-being
of people. For example, nature as such can matter to social welfare, but only in so
far as it matters to people and their utility.

Assume we have a social welfare function that is a functional of all the individual
utility functions of a society consisting of N people, W0 = Φ(U1(c1),U2(c2), . . . ,

UN(cN)). Here, ci denotes an index of consumption for individual i = 1,2, . . . ,N
in the society and Ui(ci) denotes the resulting level of utility for individual i (with
∂Ui
∂ci
> 0 and ∂2Ui

∂c2 ≤ 0). One can think of ci as a money-value index, an aggre-

gate of current and future consumption including private and public goods.2 The
welfare function is assumed to be differentiable, increasing ( ∂W0

∂Ui
> 0) and concave

( ∂
2W0
∂U2

i

≤ 0) in individual utility levels.3

2Consumption can be taken as a conglomerate of all different consumption goods, including public
goods and externalities. Alternatively, it could be a placeholder for a vector of all goods/bads
consumed (including public goods, environmental amenities, health etc.) that affect human well-
being. When considering only private goods lifetime consumption will be constraint by lifetime
income, closely related to wealth of an individual, i.e., U(W) in Chap. 3, [40]. However, in welfare
economics, personal well-being is most often considered to depend on consumption (not income),
because not all types of consumption require expenditures.
3The assumption of concavity implies a societal preference for equality. The closer the welfare
function is to a linear function, the easier it is to balance utility of somebody very poor against
utility of somebody very rich.
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Now suppose a project A is implemented, changing the consumption levels of
people by �ci . Hence social welfare if implementing project A becomes

WA =Φ(U1(c1 +�c1),U2(c2 +�c2), . . . ,UN(cN +�cN)
)
. (1)

At the social welfare level, we can conclude that a project increases social welfare
if WA − W0 > 0. There exists one major difficulty in this assessment: for many
projects some members of society will gain and others will lose. This means there
are people who gain with Ui(�ci) > 0 and people who lose with Ui(�ci) < 0.
Cost-benefit analysis deals with the question of how to trade off utility increases by
those who gain against utility decreases of those who lose.

Welfare analysis has been conceived to draw welfare conclusions in such sit-
uations where a public project/policy is under consideration. The social welfare
function is a powerful analytical tool in this regard; however it is not easily de-
termined. As a matter of fact, Arrow [9] has proven that a social welfare function
may not even exist (for an accessible treatment the reader may consult Mueller [27,
pp. 384–399]).4 Hence in order to judge welfare impacts, the economist and mathe-
matician Vilfredo Pareto (1848–1923) suggested a criterion to make such efficiency
judgements. The Pareto criterion states that a project/policy is considered welfare
enhancing if nobody loses and at least some members of society are made better off
(the strong Pareto criterion). A weak version of the Pareto condition is that a policy
change is desirable if everybody in society is made better off (Johansson [22]).5

The Pareto criterion makes a lot of sense. Everybody can probably agree to the
weak version of the criterion, and if there is no envy, then there will also be no oppo-
sition against the strong version of the Pareto criterion. However, the Pareto criterion
has one important weakness: most projects do not only have winners: some mem-
bers of society will lose. Consider the example of an infrastructure project such as
the construction of a new airport runway. While the region may benefit as a whole,
those living close to the airport will suffer from augmented noise and pollution. Be-
cause of this need to weigh off gainers and losers, Hicks (1939) and Kaldor (1939)
proposed a compensation criterion in two independent publications. Take the case
where a project under consideration moves the economy from a consumption level
(c1, c2, . . . , cN ) to (c1 +�c1, c2 +�c2, . . . , cN +�cN ). According to Kaldor the
project is desirable, if it is hypothetically possible to redistribute income (and hence
consumption) such that everybody becomes better off with the project than without
the project. The Hicks criterion states that a project is desirable if it is not possi-
ble that the losers bribe the gainers to forego the project (Johansson [22]). In this
sense both criteria take the stance that compensation must theoretically be possible.

4Kenneth J. Arrow received the Nobel prize jointly with John R. Hicks in 1972 “for their pioneering
contributions to general economic equilibrium theory and welfare theory”. In its award ceremony
speech the prize committee stated with regard to Arrow’s contribution “This conclusion, which is a
rather discouraging one, as regards the dream of a perfect democracy, conflicted with the previously
established welfare theory” [28].
5The weak Pareto criterion is weaker in the sense that every project that passes the weak test also
passes the strong test, but not vice-versa. Obviously, fewer projects will pass the weak test.
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The two versions of the compensation criterion take a different baseline perspec-
tive. Kaldor starts his analysis from the situation before the project, whereas Hicks
considers the wealth distribution after the project.

The compensation criterion is quite useful because it now allows ranking projects
that could not be ranked by the Pareto criterion. Note that the compensation cri-
terion speaks only of the hypothetical possibility of compensation and not about
implementation. This is because both authors (Kaldor and Hicks) as well as many
other economists consider the question of efficiency separately from the question of
distribution. They were foremost concerned with how resources should be used to
achieve a maximum level of welfare.

The compensation criterion brings us close to the idea of cost-benefit analysis.
However, one more crucial assumption is needed: cost-benefit analysis makes the
assumption that the marginal utility of money is constant. What does this mean?
It means that a loss of one Euro has the same impact on utility for all individuals.
Hence we make the assumption that ∂Ui

∂ci
= λ for all i. In practical terms, it implies

that taking away one Euro from one person and giving it to another person leads to
changes in utility for these two people that net out.

The compensation criterion demands that those who gain can compensate those
who lose to accept the project (or those who lose cannot bribe those who gain to
forego the project) and hence requires that the question of distribution can poten-
tially be solved in a way such that everybody is better off. As a result it is possible
that everybody achieves a higher level of utility. If we furthermore assume a con-
stant marginal utility of money, then we can state that the benefits of the project
(in monetary terms) must be able to cover the costs of that project. Hence a project
passes the cost-benefit test, if the benefits are greater than the costs.

Having discussed the economic foundation of cost-benefit analysis, the chapter
will now consider procedural issues. That is, how to define a project and its effects?
How to summarize benefits and costs over time and what is the appropriate discount
rate? Finally, how to deal with uncertainty?

This section follows Hanley et al. [3] in dividing a typical cost-benefit analysis
into six steps:

1. Definition of the project
2. Identification of the impacts of the project
3. Evaluation of the impacts
4. Calculation of the net present value
5. Application of the net present value test (or similar tests)
6. Conduct of a sensitivity analysis

All six steps are discussed one by one.

1. Definition of the Project There can be all types of projects considered via
cost-benefit analysis. First it is important to define the limits of the project and its
standing. “Standing” considers the issue of whose benefits and costs should count
in cost-benefit analysis (Pearce et al. [5]). As a basic rule, all nationals should be
included, whereas benefits and costs to non-nationals must be included according
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to specific considerations. Here it needs to be considered (a) if the project relates to
international policy issues such as acid rain or climate change and (b) if there are
ethical considerations for counting benefits and costs for non-nationals.

2. Identification of the Impacts of the Project A project has many implica-
tions on the use of resources and the creation of impacts. For example, if a coal
power plant is constructed, electricity is generated (benefit) but air pollution may
increase (cost). These costs of air pollution may be hard to estimate: they may in-
clude changes in human health and mortality (cf. the example of mercury exposure
in the introduction). Labor and capital are used in the construction and contribute
to the cost of the project. Alternatively, consider a new agricultural regulation that
may limit the extent of soil erosion (benefit). Reduced soil erosion will have private
benefits to land owners because the yield potential will be preserved for the future.
Avoiding erosion also has a public benefit, because river-water quality will be im-
proved. The costs of such a policy are born by farmers, who will have to invest in
soil conservation technology.

3. Evaluation of the Impacts All identified impacts have to be valued in mon-
etary terms. Suppose a project A leads to a flow of benefits and costs over time.
The project starts in year t = 0 and runs for T years. We denote benefits evalu-
ated as monetary benefits as Bt and costs as Ct for t = 0,1, . . . , T . In general, it
is recommended to evaluate all benefits and costs in real monetary terms. That is,
all money flows have to be deflated or evaluated at current prices (t = 0). The val-
uation of costs and benefits is easy if private goods are concerned. The value of
these goods can be measured by their market price. The issue of valuing nonmar-
ket goods (public goods, externalities etc.) is more complicated. Economists have
proposed different valuation methods, notably the contingent valuation method, the
hedonic pricing method and the travel-cost method. Those will be discussed later
in this chapter; for now we assume that there are ways to calculate also the benefits
and costs when market prices are not available.

For an example the reader is referred to Table 1. The project has a life-time of 20
years (t = 0, . . . ,19) as shown in column 1. Columns 2–3 show the benefits and the
costs of the project. The project is characterized by large investment costs in the first
two years (100 each) and a major maintenance cost in year 10 (50). At the end the
project (T = 19) is decommissioned with a cost of 50. Benefits accrue from year 2
onwards, with an exception of year 10, because the project has to be shut down for
maintenance. After that the project is showing age with a decreasing flow of benefits
over the second half of its lifetime.

4. Calculation of the Net Present Value At each point in time, the net value (NV)
of the project can be calculated as NV t = Bt −Ct .

As in any investment project, we have to account for the opportunity costs of
time. This is done by discounting the flow of benefits and costs with the discount
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Table 1 Example of cost-benefit analysis calculations, d = 0.05

t Bt Ct NV t Discounted
Bt

Discounted
Ct

NPV NPV at i = r

0 0 100 −100 0.00 100.00 −100.00 −100.00

1 0 100 −100 0.00 95.24 −95.24 −89.85

2 40 10 30 36.28 9.07 27.21 24.22

3 50 10 40 43.19 8.64 34.55 29.01

4 50 10 40 41.14 8.23 32.91 26.07

5 50 10 40 39.18 7.84 31.34 23.42

6 50 10 40 37.31 7.46 29.85 21.05

7 50 10 40 35.53 7.11 28.43 18.91

8 50 10 40 33.84 6.77 27.07 16.99

9 40 10 30 25.78 6.45 19.34 11.45

10 0 50 −50 0.00 30.70 −30.70 −17.15

11 40 10 30 23.39 5.85 17.54 9.24

12 40 10 30 22.27 5.57 16.71 8.30

13 40 10 30 21.21 5.30 15.91 7.46

14 40 10 30 20.20 5.05 15.15 6.70

15 30 10 20 14.43 4.81 9.62 4.02

16 30 10 20 13.74 4.58 9.16 3.61

17 20 10 10 8.73 4.36 4.36 1.62

18 20 10 10 8.31 4.16 4.16 1.46

19 0 50 −50 0.00 19.79 −19.79 −6.54

Sum 424.54 346.95 77.59 0

NPV = 77.59, BCR = 1.22, IRR = 0.11

Example taken from Conrad [15]

rate d . As can be seen in Table 1, discounted benefits are calculated as (1 + d)−tBt
and discounted costs as (1 + d)−tCt . In the example, the discount rate is set at
d = 0.05. Because money that is invested in one project cannot be used otherwise,
we have to account for this opportunity forgone. Because costs and benefits ac-
crue over time, the net present value (NPV) for the project is calculated as fol-
lows:

NPV =
T∑
t=0

(1 + d)−t (Bt −Ct). (2)

Discounting occurs here with compound interest, i.e., using an exponential function.
This leads to specific properties of discounted values and has triggered extensive dis-
cussions on the appropriate choice of the discount rate d . Section 3 of this chapter
will be devoted to this issue. Taking the example in Table 1 with d = 0.05, the NPV
results as 77.59.
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Table 2 Decision criteria in cost-benefit analysis when deciding on a single project

Decision criteria Formula Decision rule

Net present value NPV =∑T
t=0(1 + d)−t (Bt −Ct ) NPV > 0

Benefit-cost ratio BCR =
∑T
t=0(1+d)−t Bt∑T
t=0(1+d)−t Ct BCR> 1

Internal rate of return
∑T
t=0(1 + r)−t (Bt −Ct )= 0 r > d

5. Application of the Net Present Value Test (or Another Test) The net present
value test considers if the net present value of a project is positive or not. Benefits
are greater than costs and hence the project is socially desirable if

NPV =
T∑
t=0

(1 + d)−t (Bt −Ct) > 0. (3)

In the example in Table 1, the NPV = 77.59 obviously passes the net present value
test and the project should be implemented.

An alternative test would be to calculate the benefit-cost ratio (BCR) and to check
if the ratio is greater than 1:

BCR =
∑T
t=0(1 + d)−tBt∑T
t=0(1 + d)−tCt

> 1. (4)

Referring again to Table 1, the BCR results as 1.22. Here again, the decision rule
suggests implementing the project.

A third way to assess if a project is desirable is to calculate the internal rate of
return (IRR) on the project. The IRR is defined as the discount rate, r , at which the
NPV of the project would exactly be zero, that is:

NPV =
T∑
t=0

(1 + r)−t (Bt −Ct)= 0. (5)

A project is then socially efficient if r > d , which means that the rate of return on
the project is larger than the rate of time-preference of society. For the example in
Table 1, the IRR is r = 0.11, which is greater than d = 0.05. Again the rule suggests
implementing the project.

Table 2 summarizes the decision criteria when deciding on a single project.
One may wonder why there are many alternative decision rules. In principle they

give the same result, but there are particular situations when one decision rule out-
performs the others. In general, economists recommend using the net present value
test.

When selecting projects with a limited budget, the BCR is useful. Let the avail-
able budget for investment be M . A public decision maker can choose between L
mutually non-exclusive projects, each incurring an investment costs Il, l = 1, . . . ,L
at the beginning of the project. E.g. for the project in Table 1 the investment costs
would be the cost of 200 in years 1 and 2. Then sort all L projects by their BCR,
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Table 3 Ranking projects

Source: Pearce et al. [5]

Project Cost (C) Benefits (B) NPV (rank) BCR (rank)

X 100 200 100 (1) 2.0 (3)

Y 50 110 60 (3) 2.2 (2)

Z 50 120 70 (2) 2.4 (1)

so that BCR1 ≥ BCR2 ≥ · · · ≥ BCRl ≥ · · · ≥ BCRL. The projects selected should
be BCR1,BCR2, . . . ,BCRL0 such that

∑L0
i=1 Il ≤M ≤∑L0+1

i=1 Il . That is the public
decision maker should choose the projects with the largest BCR so that the available
budget is sufficient to cover the investment costs of these projects.

Table 3 illustrates by example the advantage of the BCR rule when consider-
ing budget constraints.6 There are three projects under consideration and they are
not mutually exclusive. However, the public decision maker has a limited budget
and hence can only realize projects that do not exceed a cost of 100. If projects
were ranked according to the NPV criterion, project X would be ranked 1 and
the available capital would be exhausted. According the BCR ranking, projects Y
and Z would be realized (total cost equal 100). The total NPV of these projects is
130(= 60 + 70). This is higher than the NPV of project X alone (100).

The internal rate of return is often used to calculate the return on an investment
and compare it across sectors. For example, in its report “Education at a Glance” the
OECD regularly publishes internal rates of return for individuals obtaining higher
education as part of initial education (e.g. OECD [29]). The private IRR for tertiary
education in Germany for instance is 11.5 % for men and 8.4 % for women. This
is slightly below the OECD average at 12.4 % and 11.5 %. Using the internal rate
of return exempts the analyst from making assumptions regarding the discount rate.
The problem though is that solving for r requires the solution to a higher degree
polynomial that can have multiple solutions.

6. Conduct of a Sensitivity Analysis Typically, cost-benefit analysis requires
making predictions for the future. How will benefits evolve and how will the costs?
Cost-benefit analysis requires a lot of data, many based on estimates. Uncertainty
can be found around the individual prices and also the physical and social impacts.
Electricity prices may increase or decrease over time. Machinery wear may increase
the maintenance costs of equipment. Weather and climate uncertainties may influ-
ence the agronomic yield impact of soil conservation policy.

Given all these uncertainties it is necessary to conduct a sensitivity analysis on
all parameters that enter the cost-benefit analysis. For instance in the example of
Table 1, do you come to the same conclusions, when annual benefits increase or
decrease by 10 %? Would the project still be desirable, were the maintenance cost
in year 10 to double? Sensitivity analysis helps to check the robustness of the results.
It means repeating the same analysis with different value estimates. This can be done

6A mathematical proof would maximize net benefits subject to the constraints.
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Table 4 The NPV in
dependence of discount rate d
and time t

Discount
rate d

NPV of 100 Euros after . . . years

1 5 10 50 100

0.03 97.09 86.26 74.41 22.81 5.20

0.05 95.24 78.35 61.39 8.72 0.76

0.10 90.91 62.09 38.55 0.85 0.01

by considering a limited number of scenarios. Or it can be done in a systematic way
by Monte Carlo simulation.

3 The Discount Rate

One number of crucial importance in cost-benefit analysis is the discount rate. It is
used to calculate the NPV and hence to make costs and benefits that accrue over
time comparable to each other. This single number is one of the most debated issues
in cost-benefit analysis overall.

Discounting occurs because cost-benefit analysis originates from welfare eco-
nomics and individual preferences. Those are summarized in the utility function
and it has been observed that individuals prefer now to later. The discounting
of future benefits hence should use the rate that expresses this time preference.
Discounting occurs also because when investing today, we forego the opportu-
nity to invest tomorrow. This opportunity cost of time should be considered in
the discount rate. For a general treatment of intertemporal decision making the
interested reader is referred to microeconomics textbooks such as Varian ([43],
Chap. 19).

A typical way to determine this discount rate is to use the interest rate on long-
term government bonds. Government bonds are issued by a country in order to bor-
row money. The interest rate that the government has to pay for borrowing money
also shows the opportunity cost of time for conducting public projects. Compared
to individual borrowers, the government bears lower risk premia and interest on its
bonds because it can raise taxes in order to redeem these bonds.

Because discounting with discount factor (1 + d)−t results in compound of in-
terest and hence is exponential, it is crucial to consider the effect of choosing the
discount rate d . Table 4 provides an example discounting 100 Euros at three different
rates (0.03, 0.05 and 0.10) and over different time periods (1 year up to 100 years).

It can be observed that a higher discount rate yields a lower NPV and the impact
of this discounting is larger the longer the time span. When discounted at a rate of
d = 0.03, 100 Euro in year 1 will have a present value of 97.09, but 100 Euro in
year 100 only have a present value of 5.20. The effect is even stronger for a larger
discount rate, so that the present value of 100 Euro in year 1 discounted at a rate of
d = 0.10 will have a net value of 90.91.
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Mathematically, this observation is quite obvious. On ethical grounds though, it
leads to fierce debates. As shown in the example in Table 1, the typical cost structure
of public projects implies that costs have to be born at the beginning of the project
and benefits accrue only after a significant investment has been made. Hence, bene-
fits are discounted for long time periods whereas costs are not. Certainly the public
decision maker should account for the time preference of society and hence choose
a positive discount rate. But what if projects run over very long time spans that
cover several generations? This question has become the centre point of the discus-
sion since economists have started to consider policies for mitigating and reducing
climate change (for this debate see Arrow [10]; Stern [39]; Weitzman [45]; Gollier
[20]; Gollier and Weitzman [21]). Climate change is an issue that may have impli-
cations for many generations to come and because of the implications of Table 4
the appropriate choice of the discount rate is of considerable importance and some
argue for a discount rate of zero for reasons of intergenerational justice. Basically
the question is whether we can justify that the costs of avoiding climate change born
by the current generation are not as heavily discounted as are benefits enjoyed by
future generations.

4 Estimating the Costs and Benefits of Nonmarket Goods

We have seen that cost-benefit analysis is quite similar to the appraisal of investment
projects. The flow of costs and benefits is evaluated over the lifetime of the project
and similar rules such as the NPV rule or the calculation of the IRR are applied.
However, for public projects there is one important distinction. Often public goods
and externalities are involved or even the primary motivation to start a public project.

Public goods and externalities were defined in Sect. 2 and by their very defini-
tion do not have a market value. Hence it is not possible to use market prices for
evaluating costs and benefits related to them. But the fact that there are no market
prices does not mean that there is no value. Economists have developed sophisti-
cated methods to measure such values by estimating people’s willingness to pay for
non-market goods.

Consider the case of water quality in a lake. Water quality protects aquatic life,
it enhances the scenic view for residents and tourists and it improves the quality
of leisure activities in and on the lake like swimming or fishing. We return to the
individual utility function to consider the value of such water quality. Utility in
this case depends on the consumption of private goods that are accounted for by
an individual’s level of current wealth, Wi . It also depends on the environmental
quality, e0 (note that we drop the subscript i because water quality—a public good—
is the same for everybody). Hence, utility can be described by Ui(Wi, e0). It is
increasing in both arguments. Now suppose that water quality can be improved, e.g.,
through the regulation of run-off from agricultural fields into the lake by requiring
a green corridor of 5 m along the fields bordering the lake and creeks running into
it. Environmental quality would be enhanced to e1. While the change in e refers to
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some kind of water quality indicator, we would be interested in the value of this
water quality change to an individual. Since utilities cannot be compared across
individuals, we would use a monetary evaluation of that change.

One measure of this utility change would ask for people’s willingness to pay
(WTP). This WTP is the maximum amount of money that people would be willing
to forego to obtain the change in environmental quality. It is implicitly defined by
the following equation:

Ui(Wi, e0)=Ui(Wi − WTPi , e1). (6)

On the left-hand side of the equation, a lower environmental quality e0 leads to
a lower utility compared to the right-hand side of the equation. The higher utility
caused by the enhanced environmental quality e1, however, is compensated through
a decrease in wealth by the amount WTPi . This WTPi is the amount of money that
individual i is willing to pay for the environmental improvement. Because it com-
pensates the environmental improvement, it is also named compensating variation.
This compensating variation may be relevant to determine the tax charge that people
are willing to pay for agri-environmental programs that limit the amount of agricul-
tural run-off. Note that water quality is a property of the water—hence the same for
everybody. The value of that water quality measured in WTPi , however, may differ
between individuals.

Another way to measure the utility impact of such a policy is to use willingness
to accept (WTA). It asks the question of what amount of money people are willing to
accept to forgo the environmental improvement. In mathematical terms, this means

Ui(Wi + WTAi , e0)=Ui(Wi, e1). (7)

This increase in wealth by WTAi on the left-hand side is equivalent to an increase
in the environmental quality on the right hand side. It is hence also named the
equivalent variation. On theoretical grounds, compensating and equivalent variation
should be of similar size. However, empirical studies have found that WTA estimates
are considerably larger than WTP estimates, in particular when environmental goods
are concerned. Section 6 ‘Food for Thought’ will return to this issue.

Now that we have a theoretical construct of the value of public goods and/or ex-
ternalities, the question is how to quantify that value empirically. There are different
methods available: the hedonic valuation method uses surrogate markets as does
the travel cost method, which is often used for assessing the value of an environ-
mental amenity such as lake water quality. Finally, people’s values can be assessed
using survey methods such as the contingent valuation approach. The hedonic valua-
tion and travel cost method observe people’s decisions in relation to the non-market
good that is being evaluated. Hence these methods are called revealed preference
methods, because they are based on preferences as they are revealed in people’s de-
cisions. The contingent evaluation method is based on stated preferences, that is,
people state how they would decide in hypothetical scenarios that are described in
the survey. The following paragraphs will describe the three methods in more detail.

The hedonic valuation method considers that goods consist of bundles of at-
tributes (Lancaster [24]). The description of each of these attributes will define the
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value of the good. This product characteristics approach has been treated in a market
setting by Rosen [35], hence establishing a basis for the hedonic valuation method.
For example, if we seek an estimate of the WTP for lake water quality, we can refer
to the housing market as a surrogate market. The price of a house may be deter-
mined by characteristics such as the size in square meters, the number of rooms,
the age of the house and whether it has a garden. Also neighborhood characteris-
tics may count, such as the distance to employment centers, the quality of the local
school and public transport. Finally, environmental characteristics such as the view
to a lake may also be an important determinant of the house price and it may change
with the quality of the lake.

In order to find the value of such environmental quality characteristics, a regres-
sion analysis would link the prices of houses, P , to all these characteristics:

P = f (house-,neighborhood- and environmental characteristics). (8)

The next section will provide an example for the hedonic valuation method when
valuing risk to life and health.

The travel cost method uses people’s travel choices to estimate the value of a pub-
lic good such as lake water quality. It is one of the oldest environmental valuation
techniques and it has been developed in the US in the context of valuing recreation in
national parks (Hanley et al. [3]). The travel cost method makes use of the idea that
environmental amenities are valuable for recreation activities and that recreation re-
quires expenditures in terms of time and money. Monetary expenditures are needed
for travel (car, gasoline, bus ticket) and also time is a scarce resource and hence has
an opportunity cost. To implement such a travel cost method for the example above,
visitors to the lake would be asked about the distance they had to travel and the
time spent on travel and on the lake. Improvements in water quality could lead to
an increase of visits by recreational fishermen and using the travel cost method the
corresponding value could be estimated.

The contingent valuation method is a stated preference method. Here actual
choices are not observed, but people are asked in surveys for their valuations. While
economists generally prefer revealed preference methods to stated preference meth-
ods, the latter have some advantages. A salient feature is that preferences for non-
existent attributes can be elicited. For instance, if one is interested in a WTP for
food safety as one characteristic of the food supply, the hedonic pricing method is
hard to implement. In general, all food available on the market is considered safe
and there are no explicit risk differences that experts and consumers would agree
upon. In such cases it can be useful to estimate WTP using the contingent valuation
method. When doing so, it is important to consider realistic scenarios in the valua-
tion survey for ensuring that respondents do not misinterpret or ignore attributes. It
is a characteristic of the contingent valuation method that it allows for the evaluation
of hypothetical scenarios. This advantage is at the same time a major disadvantage,
because elicited values may suffer from biases that are related to the hypothetical
nature of the survey. This hypothetical bias is only one problem of the resulting
estimates; other biases are related to the strategic behavior of the respondent and
conceptual mistakes in conducting the survey. Economists have hence developed
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extensive toolkits to avoid the pitfalls of the contingent valuation method and the
interested reader is referred to books such as the one by Carson and Mitchell [1].

The hypothetical valuation based on the characteristics approach has eventually
led to the development of (hypothetical) choice experiments. Choice experiments
(CE) have been developed in the context of transport studies and now have been
brought into many different applications in environmental valuation (Adamowicz et
al. [7]), marketing (Lusk et al. [25]) or medical treatments (Kjaer and Gyrd-Hansen
[23]). In CEs respondents are asked to make repeated choices between different
consumption bundles, which are described by different attributes. Typically, one of
these attributes is price. This procedure enables the researcher to estimate WTP for
each attribute considered in the CE.

This section introducing WTP as a concept for finding a monetary value for im-
pacts that do not have a market value makes very apparent the anthropocentric wel-
fare foundations of economics. Things are of value because people value them. The
value may be related to the use of the resource (use value), but it may exist also
other reasons (non-use values). Consider again the example of lake water quality
given above. There may be some fish species, not used in commercial or recre-
ational fishing, threatened by the deterioration of water quality. There is obviously
no use value to the fish species, nevertheless there will be a loss if the species is
lost. To take this loss into account in a cost-benefit analysis, economists consider
aspects such as existence values (Hanley et al. [3]). The option value considers the
value of preserving a resource (here a species), because it may become valuable in
the future. It is hence part of the total value of preserving existence of the species.
The existence value counts for the fact that the mere existence of a species is im-
portant to people. It may be motivated by selfish reasons or altruistic motives. For
example, moral or religious reasons lead people to value the existence of a species
or people may want to preserve the species for their children and grandchildren.
While considerably widening the scope of economic values, these values still main-
tain the anthropocentric view that things are valuable because they are valued by
humankind.

5 The Value of Risks to Life and Health

Sometimes projects involve also impacts on human health and hence human mor-
bidity and mortality. As an example, let us look at the regulation of arsenic in drink-
ing water in the United States (cf. Sunstein [41]; Raucher et al. [33] and references
therein). Under US law, the Environmental Protection Agency (EPA) set a Maxi-
mum Contaminant Level (MCL) of 10 µg/L in drinking water. Respecting this MCL
can require considerable water treatment costs. Because of economies of scale, the
costs of the regulation per household are much larger in small communities com-
pared to those in large communities. The benefit of the regulation is an estimated
reduction in bladder and lung cancer cases. Based on EPA estimates, Raucher et al.
[33] calculate that a reduction from 15 µg/L to 10 µg/L would avoid 4,450 cases of
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cancer per 1 million people exposed to the elevated level of arsenic, about half of
which (53 %) would be fatal over a 70-year time span.7

In this example, the assessment of costs is relatively straightforward. What about
the benefits? The benefits are the avoidance of a risk to human life. How can such
benefits be valued in monetary terms?8

Many people would argue that a human life has infinite value or is even invalu-
able. Hence, no monetary value can be assigned to a human life saved. However,
people take decisions every day that decide about their risk to health and life:
a worker when she decides to eat healthily or not, a car driver when he decides
to speed on the motorway or not, or a student when she decides to run a red light to
turn up on time to an exam. All these decision have a small, albeit real impact on
the probability of surviving the day. This observation has been used by economists
to value life in terms of a small change of the likelihood of death due to the cause
under consideration (cf. the deterministic approach to risk as explained in Chap. 1,
[47]). Methods as described in Chap. 16, [8] can be used to estimate the risk at the
population level and changes therein.

Public decision makers take such decisions many times. They decide to ban or
not a pesticide that has been shown to have an impact on agricultural workers’ and
consumers’ health. They modify or not a dangerous intersection in a city, so as
to reduce the number of deaths due to traffic accidents. They decide to impose a
speed limit or not. Economists have used the observed public decisions to calculate
the implicit value of reducing risk to life and health from such data. That is, they
looked at all sorts of regulations, the number of lives saved by these regulations and
their costs. For instance Cropper et al. [17] analyzed the determinants of pesticide
regulation decisions in the time span of 1975 to 1989 by the EPA. They show that the
EPA indeed balances cost and benefits. However, the costs per cancer case avoided
amount to $35 million for an applicator (farm worker) and to $60,000 for consumers
of pesticide residues in food. That means saving the life of an agricultural worker
costs as much as saving the life of more than 500 consumers. Such large differences
in valuation lead to inefficiencies, and more lives would be saved if projects were
selected on more rational grounds.

We link this value of reducing risk to life and health to the expected utility model
that was introduced in Chap. 3, [40]. The model is based on Cook and Graham [16].
Assume that the state-dependent preferences of an individual are represented by a
von-Neumann-Morgenstern utility function U(W,H), whereW denotes wealth and
H denotes the individual’s health state.9 In this case, we consider two health states:
H = 0 if the individual is dead andH = 1 if the person is alive. To simplify notation,
let U0(W) = U(W,0) and U1(W) = U(W,1) and assume that U1(W) > U0(W)

for all W . This means at any level of wealth the utility is always higher when alive

7Sunstein [41] underlines the uncertainties related to the health damage estimation and states that
the number of lives saved by the regulation may vary between 0 and 112.
8In their analysis, Raucher et al. [33] assume a Value of a Statistical Life of US-$7 million.
9Here we drop the subscript i to keep things simple.
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rather than dead.10 Let’s also assume that utility increases with wealth, i.e., the first
derivative U ′

j > 0, but at a decreasing rate, i.e., the second derivative Uj ′′ ≤ 0, for
j = 0,1.

Given the baseline mortality risk π , expected utility results as

E[U ] = πU0(W)+ (1 − π)U1(W). (9)

The individual would be willing to forgo a part of his wealthW if offered the oppor-
tunity to reduce the health risk π by an amount p. We call the maximum amount of
money that a person is willing to spend on the reduction of mortality risk WTP. As
introduced in Sect. 4, WTP is defined such that the increase in expected utility due
to the decrease in mortality risk is exactly offset by the decrease in utility because
of the decrease in wealth. Mathematically stated:

πU0(W)+ (1 − π)U1(W)

= (π − p)U0(W − WTP)+ (1 − π + p)U1(W − WTP). (10)

On the left hand side of the equation we see the expected utility before the change
in mortality risk and on the right hand side we see the expected utility after the
change. Under specific assumptions regarding risk preferences, it can be shown that
this WTP is increasing as a function of the reduction of risk. That would mean people
would be willing to pay more for projects that would reduce the mortality rate to a
greater extent.

In valuing risk to life and health, researchers have mostly resorted to the hedonic
valuation method. One market that has been used as surrogate market for the risk
to life and health is the automobile market. It is based on the idea that road safety
is valuable because it avoids deadly accidents. But how to value this benefit? What
is it worth to people to be safe on the road? There is no market for road safety
where you could find a price determined by the interplay of demand and supply. The
hedonic valuation method would look for a market good that can serve as a surrogate
market, that is, one that also values safety on the road. An obvious choice is the
market for cars. Cars come in all sorts of brands and types and one characteristic is
occupant safety in accidents. They are regularly tested by crash tests and reports can
be found in relevant automobile magazines. The hedonic valuation method makes
the assumption that the safety of people in a car during a car accident enters into the
price of a car. Atkinson and Halverson [12] have done this in a publication in 1990.
They estimate the value of reducing risk to life at $5 million per person (according
to Viscusi and Aldy [44]). Another surrogate market for safety is the labor market.
Jobs differ in their safety. A fire-fighter faces different risks compared to a white-
collar worker. Differences in pay can be used to estimate workers’ WTA risk using
wage rates of different occupations correcting for educational and other job-related
aspects. Viscusi and Aldy [44] give an overview of studies estimating the value of

10One could also argue that the utility of wealth when dead is zero. This would mean U0(W)= 0.
This assumption is often made. Relaxing the assumption means that we accommodate a bequest
motive, that is people value bequeathing wealth to their children etc. at the end of their life.
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reducing risk to life and health. Reviewing thirty studies based on US labor market
data, they find estimates between $0.5 and more than $2011 per life saved.

Returning to the example at the beginning of this section, you may still say,
don’t we all know that arsenic is a poison? Is there a reason not to get it out of the
drinking water? One important aspect when managing risks and when conducting
cost-benefit analysis is the issue of risk-risk trade-offs (Graham and Wiener [2]).
Countervailing risks have to be considered. In a quest for better protection of the
population, maximum contaminant levels of arsenic are fixed. However, the cost
imposed on community water systems may be so high that other, more valuable
opportunities for saving lives are foregone. Raucher et al. [33] discuss this point,
in particular considering the lack of economies of scale of water treatment in small
communities leading to higher cost per life saved.

6 Food for Thought

• The discount rate is crucial for projects that have intergenerational implications.
Discuss the arguments in favour and against using a positive discount rate or a
discount rate of zero when conducting cost-benefit analysis.

• In some countries the use of cost-benefit analysis is required for most policies but
it is precluded when cancerogenic agents are the focus of the policy (e.g. pesticide
bans etc.). Discuss the implications that such ruling may have.

• Consider and discuss reasons that may explain differences in WTP and WTA esti-
mates.

• WTP evaluations are based on the subjective perceptions of the goods being eval-
uated. To exemplify the issues related to subjective risk perceptions, Pollack [32]
has told the story of a town named Happyville. The citizens of Happyville have
come to fear a contaminant in their drinking water well. The construction of water
purification plant is hence proposed. The major of the city commissions a chem-
ical analysis of the water in order to learn about the extent of water pollution. It
turns out that there is no risk related to the water quality. Hence based on this
objective risk evaluation no purification plant is needed as it would cause costs
without creating a benefit. Nevertheless, the citizens of Happyville do not trust
the scientific study and still insist on the purification plant.

• Using this or other examples, discuss the role of objective and subjective risk
evaluation in willingness to pay estimates used in cost-benefit analysis. Are there
reasons for considering subjective risk evaluations? How may this conclusion
differ considering the possibility of people’s reaction to the risk, e.g., drinking
water risk compared to nuclear power risk? You may also refer to Salanie and
Treich [36] to find arguments and look at Marette et al. [26] for an application.

11To make values comparable across different studies all results have been corrected for inflation
to US-$ values for the year 2000.
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7 Summary

Managing risk in modern societies requires the regulation of impacts on human
health and the environment. However, the extent of regulatory activities in many
countries has made it necessary to consider what is ‘good’ regulation and what is
not. Cost-benefit analysis can help to answer this question. This chapter has intro-
duced the reader to the theory and practice of cost-benefit analysis. It made the un-
derlying assumptions explicit, introduced the procedures step by step and discussed
critical issues for empirical applications. Certainly, regulation is not only a question
of efficiency. Other issues are at stake such as equity considerations, risk trade-offs,
uncertainty about future impacts and irreversibilities, moral concerns regarding the
limitations of utilitarianism to just name a few.

The role that cost-benefit analysis can play for good public decision making can-
not be overrated. Arrow et al. [11] published a short note on the role that cost-
benefit analysis can play in environmental health and safety regulation. They argue
that cost-benefit analysis is useful for comparing the favorable and unfavorable ef-
fects of policies in a coherent manner. Considering the economic effects of different
policies is very important for society and hence government agencies should not be
precluded from taking such considerations into account. All assumptions made in
a cost-benefit analysis should be made explicit and underlying uncertainties should
be described. Cost-benefit analysis can hence help to identify efficient policies.

Despite the argument in favour of cost-benefit analysis, government agencies
should also have the possibility to override the conclusion of the cost-benefit analy-
sis, if there are good reasons to do so. Cost-benefit analysis can exemplify the cost
to society of not following the result of a cost-benefit analysis and society will be
able to judge, if the benefit sought is worth this cost. For instance, equity consider-
ations may preclude the implementation of certain regulations, even if this comes
at a cost on efficiency grounds. Also environmental projects may be rejected if they
put species at risk even if this has been accounted for in the cost-benefit evaluation.

Sunstein [6] argues in favor of cost-benefit analysis because public choices are
inherently complex. Humans are subject to limits of rationality in decision making
(see Chap. 3, [40]). Why should policy makers and regulators be exempt from such
irrationalities? In fact, most likely they are not. Doing cost-benefit analysis can save
the public from irrational policy making and help to save resources for uses that are
in the best interest of society.
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Chapter 12
Engineering Risk Assessment

Daniel Straub

Engineers must make decisions or advise decisions makers in problems involving
uncertainty and risk. Engineering risk assessments support engineers and scientists
in this task, by providing a structured approach to understanding and modeling the
risks. Such risk assessments are based on a quantitative engineering modeling ap-
proach, which differs from the actuarial approach to risk modeling. Because of lim-
ited data, engineers must utilize all available information from multiple sources,
including physical and logical models, observed data and expert knowledge. This
information is uncertain and often contradicting. The methods presented in this
chapter help engineers to consistently combine this information to come up with
best estimates of risk and optimal decision support. They also help the engineer
in understanding the limitations and sensitivity of risk estimates and facilitate the
communication and comparison of risks. Finally, they enable the definition of clear
criteria for assessing the acceptability and optimality of engineering solutions to
reducing risk.
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The Facts

• Risk assessment is a formalized way of identifying feasible and optimal actions
in situations involving uncertainty and risk.

• Risk assessment includes the identification of risks, the analysis of risks and the
assessment of optimality and acceptability of risks.
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• In engineering, risk is often associated with systems for which no or limited
data is available. An actuarial approach to risk analysis (based purely on fail-
ure/damage statistics) is thus not feasible and alternative methods are needed.

• Engineering risk analysis combines physical, chemical and other models with
probabilistic models of uncertainty, which are derived from both data and expert
knowledge.

• Because data is limited, inclusion of in-service observations is an important part
of engineering risk analysis (e.g. using Bayesian methods).

1 Introduction

The single most important responsibility of the engineer is to make decisions or
to provide advice on decision making related to technology and the environment.
Examples of decisions that engineers are concerned with include:

– the selection of the height of a concrete slab in a building;
– the choice of a traffic regime at a road intersection;
– the choice of soil remediation measures at the site of an industrial facility;
– the selection of the structural system and material for a skyscraper;
– the choice of an inspection and monitoring regime for an aircraft;
– the decision on the location of a new railway line;
– the choice of a site and a concept for a nuclear waste deposit.

The above examples range from seemingly minor decisions to decisions that have
a major impact on a society. In all these decision problems, the engineer aims at
identifying the decision alternative that is the optimal one in accordance with a set
of objectives, such as cost minimization and minimization of environmental impact.
Ideally, the engineer can define an objective function and all the variables entering
the objective function are known with certainty. In this case, the identification of the
optimal decision becomes a trivial matter. An example of such a decision problem
is the design of a column that should lead to the minimum cost under the condition
that it complies with the relevant codes.

In most real situations, however, the engineer must consider different, often con-
tradictory, objectives, and she must make the decisions under conditions of uncer-
tainty. For example, in the case of the column design, the minimization of the cost
might not be the only objective, but additionally a minimization of the environmen-
tal impact might be desirable. Furthermore, the column might be subject to blast
loads that are not specified by the code and which are highly uncertain. In gen-
eral, the larger the impact of the decision, the more it will be required to address
conflicting objectives and uncertainty. In order to make rational choices under such
circumstances and to be able to justify and communicate these choices, the engi-
neer needs to be able to formalize the problem, in a similar way as she formalizes
a structural design using the rules of mechanics. This is the aim of engineering risk
analysis and assessment.
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Risk assessment can be seen as a special case of general decision analysis that
involves uncertain, adverse consequences. Even though it is possible to merely com-
pute the risks without considering any decisions, it is important to realize that an
effective risk assessment can only be carried out in the context of the decisions to
be taken (by the engineer, her client and society). The formulation of the scope of a
risk analysis strongly depends on the potential decisions to be made by the decision
maker. As an example, an earthquake risk analysis for a building will be different if
the client is an insurance company merely interested in setting a premium, in which
case it might be sufficient to determine the expected value of the annual loss in eco-
nomic terms with limited accuracy, or if the client is an owner interested in a safe
home, in which case it might be desired that the analysis determines the expected
loss of life and property damage for different alternative seismic retrofitting options.

2 Definition of Risk

Risk arises whenever there is uncertainty on potentially adverse system outcomes,
such as the failure of a structural system, the contamination of ecological systems,
traffic accidents, monetary losses. The risk associated with an event increases with
increasing probability of the event and/or increasing consequences. This is intu-
itively understood.

Here, the following mathematical definition of risk is used:

Risk = Expected adverse consequences.

The term “expected” refers to the mathematical concept of the expected value.
For the case of a single adverse eventE, e.g. the event of a car crash, the riskR(E) is
computed as the product of the probability of the event Pr(E)with the consequences
of the event c(E):

R(E)= Pr(E) · c(E). (1)

In most risk assessments, more than one possible adverse event (scenario) needs to
be considered. The total expected risk is then computed by integration or summation
over all possible scenarios and risk contributions. As an example, consider the risk
due to flooding in an area A. The flood hazard is commonly described by the annual
maximum discharge Q in the relevant river. Let fQ(q) be the probability density
function (PDF) of Q, and let c(q, x) be the economic consequences of a flood with
discharge q at location x. The total economic risk in the area is then calculated by
integrating over all possible values of Q (the scenarios) and by integrating over the
total area A:

R =
∫
x∈A

∫ ∞

0
c(q, x)fQ(q)dqdx. (2)

As obvious from these definitions, risk is expressed in the same dimension as the
consequences, e.g., monetary values, number of fatalities, amount of toxic material.
In many instances, it will be necessary or preferable to convert these consequences
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into an abstract utility value, to allow for a more consistent expression of the deci-
sion maker’s preferences under uncertainty (see Chap. 3, [47] for an introduction to
utility theory).

In engineering applications, probability (as in Eqs. (1) and (2)) is generally a
subjective value, following the Bayesian interpretation of probability. In some in-
stances, the terms likelihood or belief are used instead of probability, but to avoid
confusion we will always use the term probability here. The reason for the sub-
jective interpretation is that in real engineering applications the conditions for the
frequentist (sometimes falsely termed “objective”) interpretation of probability are
not met. However, since decisions must be made, the engineer has no alternative
to using her best estimate of the probabilities of events, which of course should
be based on all available data and information. For this reason, Bayesian methods,
which enable the combination of information from different sources, have a central
role in engineering risk analysis.

3 Risk Assessment Procedure

A risk assessment is a formalized approach to determining and assessing the risk.
When combined with the planning of actions, it is denoted risk-based decision mak-
ing (or risk management). A procedure for risk analysis and management is illus-
trated in Fig. 1, adapted from Stewart and Melchers [4], and briefly outlined in the
following.

Any risk assessment should commence with a definition of the context in which
the analysis takes places. The risk analyst should state who the decision makers and
the involved stakeholders are (client, society, governmental organizations, individu-
als) and it should be identified what their objectives and preferences are. Constraints
and potentially influencing factors, including legal, financial, political, cultural and
organizational aspects, should be determined. On this basis, the goals and the con-
straints of the risk analysis should be clearly stated. In particular, the criteria against
which the risk is to be assessed must be defined at this stage (see Sect. 6 for exam-
ples) and agreed upon with the client.

In a next step, the investigated system must be clearly defined, as it is commonly
done in a proper engineering analysis. The system is defined in terms of its physical
extension (e.g. the area included in an environmental risk assessment), in terms of
the potential hazards (which types of hazard are not included?) and in terms of its
societal dimensions (e.g. the types of consequences that are to be considered). This
definition should be established in collaboration with, and must be approved by, the
client.

In a third step, a hazard scenario analysis is performed, aimed at identify-
ing all relevant scenarios contributing to the risk. This includes an initial assess-
ment of the risks associated with the scenarios. This crucial part of the analysis,
which provides the basis for all the later analysis, is presented in more details in
Sect. 4.
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Fig. 1 Risk-based decision
making/risk management
procedure (adapted from
Stewart and Melchers [4])

The hazard scenario analysis is followed by the quantitative risk analysis, which
consists of estimating the probability of the identified adverse events as well as their
consequences, by means of a variety of probabilistic modeling and analysis tools,
which will be outlined in Sect. 5. These computations must generally be based on
a number of assumptions. For this reason, it is essential that the computed risks
are subject to a sensitivity analysis, in order to understand the influence of the as-
sumptions on the final results. This may be followed by further analysis of crucial
assumptions and a re-evaluation of the risks.

Finally, the risks are assessed, i.e. they are compared against the previously
defined risk acceptance criteria (outlined in Sect. 6). At this stage, the results of
the analysis are presented to the decision makers and, in some instances, to the
stakeholders. On the basis of the risk assessment, strategies for treating the non-
acceptable risks must be identified. Four different strategies are distinguished in
Fig. 1:

• Avoidance: The system, or parts of the system, is no longer operated, thus reduc-
ing the associated risk to zero. In many instances, this is not an option.

• Reduction: The risks are reduced by introducing appropriate mitigation mea-
sures, which reduce the probability of events or their consequences. Examples
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include modifications of the system itself, controlling the system through moni-
toring/inspection and early warning/evacuation procures.

• Transfer: Financial risks can be transferred through insurance or related financial
instruments.

• Acceptance: In some instances, risks that do not comply with risk acceptance
criteria must be accepted. Such acceptance should always be a temporary solution
until other measures are adopted.

Following the implementation of the measures, it is required to monitor the effi-
ciency of the measures and to review the risks after their implementation. If neces-
sary, adjustments to the risk treatment strategy must be made.

Most elements of the risk assessment are changing with time, and ideally the
risk analysis is set up in a dynamic manner, i.e. it is revised at regular intervals.
Thereby, it is of importance that all the assumptions and computations made in the
assessment are well documented, and that all information, including data, is well
organized. This will highly facilitate an update of the risk assessment at future times,
since a major portion of the budget for risk assessments is typically allocated to the
collection and organization of data and information.

A set of application examples of engineering risk analyses can be found in Stew-
art and Melchers [4].

4 Hazard Scenario Analysis

A central part of any risk analysis is the hazard scenario analysis. In this phase of
the analysis, all potential hazards and scenarios leading to damages must be iden-
tified, and suitable strategies to reach this goal must be implemented. These can
vary strongly depending on the type of system and risks considered, on whether
or not similar risk assessments were previously performed and on whether or not
standardized procedures for the risk assessment of the considered system exist. An
example of such a standardized procedure is the Probabilistic Safety Assessment
methodology (PSA) developed for nuclear power plants (e.g. Beckjord et al. [11];
Apostolakis [7]).

4.1 Risk Screening

A key element of the hazard scenario analysis is a procedure for collecting the
knowledge of relevant experts, which is typically achieved by organizing a meet-
ing that includes engineers with relevant system-specific knowhow, personnel with
field experience and risk analysts. Such meetings, which are sometimes termed
risk screening meetings, can be understood as an organized brain-storming. In a
first round, the participants are asked to envision everything that could possibly go
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wrong, however unlikely the scenario. It is important that the organizers of the meet-
ing (the moderators) ensure that no scenarios are discarded at this point. In particular
experienced practitioners tend to make arguments such as “this has never happened
before”, and the moderators must make sure that no participant is discouraged by
such comments. At this point in the process, even the highly unlikely scenarios can
be of relevance. Clearly, such a meeting must be well structured and the modera-
tors must be well prepared with background knowledge and all potentially relevant
information (e.g. plans, maps, photographs, etc.).

4.2 Qualitative and Semi-quantitative Assessment of Risks

In conjunction with the risk screening, a first semi-quantitative estimation of the
probability and the consequences of scenarios is made. To this end, it is common to
define so-called risk matrixes, as illustrated in Fig. 2. The colors indicate the risk
category. Since risk is the product of probability and consequence (Eq. (1)), the
diagonals correspond to equi-risk lines if consequences and probability are plotted
in log-log-scale, as is commonly done.

Here, the probability (or frequency) of events is grouped into classes (e.g., >0.1,
0.1–10−2, 10−2–10−3, 10−3–10−4, <10−4), as is the consequences of events. Of-
ten, separate risk matrixes are defined for different consequence categories (fatal-
ities, financial consequences, ecological consequences). It is noted that many in-
dustrial companies and government agencies have such risk matrixes, but these are
confidential in most cases, due to legal concerns.

To each scenario, as identified in the risk screening, is assigned a probability
and a consequence class (or several consequence classes, one for each category).
A useful strategy to facilitate this assignment is to illustrate each consequence class
by some example scenarios. This is particularly relevant when the assignments are
made by experts with limited experience in estimating probabilities.

At the end of the hazard scenario analysis, it must be determined, which of the
scenarios are to be further studied in the detailed analysis. This is achieved by con-
sidering all identified scenarios and excluding those that are considered to be of
acceptable risk (e.g. those that fall into the green area in the matrix of Fig. 2). In this
process it is important that all the assumptions made are well documented. Further-
more, when deciding which risks to accept, the limited accuracy of the initial hazard
scenario analysis must be accounted for; i.e., only those risks that cannot become
relevant even with a more detailed analysis can be excluded.

In this context, often the so-called ALARP principle is invoked, which stands
for “As low as reasonably possible”. It is common practice to divide the risk ma-
trix into three regions: a region of acceptable risk, a region of inacceptable risk
and in-between is the ALARP region, as shown in Fig. 2. All risks that are in
the ALARP region should be reduced to a level “as low as reasonably possible”.
This signifies that for all risk scenarios falling into this region, the risks should
be optimized, typically through a cost-benefit analysis. This is further discussed in
Sect. 6.
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Fig. 2 Risk matrix

4.3 Logic Tree Analysis

As part of the initial assessment, as well as in detailed quantitative risk assess-
ments, logic trees are often used for system representation. These are typically bi-
nary system representations; the most well-known are fault trees and event trees.
Fault trees establish the relation between component failures and system failure
events (the latter are called top-events). Event trees establish the consequences of
system failures (top events) by laying out all possible event sequences following the
system failure. These tools, their applications and their limitations are described in
Chap. 13, [50].

5 Quantitative Risk Assessment

Quantitative risk assessment should be based on probabilistic methods. However,
in risk analysis of anthropogenic systems, typically not enough data is available to
determine a useful failure statistics. The reasons are

(a) that the number of such systems is often limited and failure rates are low;
(b) that the systems are subject to unique design, loading and operation conditions;
(c) that the systems are subject to common factors, introducing strong dependence

among observations.

As an example, the rate of fatal accidents of European and US commercial air-
lines is in the order of 10−7–10−8 per hour of flight (NTSB [33]), and accidents can
reasonably well be modeled by a Poisson process. However, the failure rate varies
depending on aircraft age, operator, and various other factors. Assume that our aim
is to determine the probability of failure for a specific aircraft of Lufthansa during
the next flight hour and compare it with the acceptable value of 10−8. Within the
Lufthansa fleet, in the past 10 years, no fatal accident of an aircraft in service oc-
curred, and in the past 20 years, one fatal accident occurred. Even if all the other
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specific factors of this aircraft were neglected, any statistical estimate of the failure
rate is highly uncertain. More importantly, the estimate of the failure rate will not
provide us with useful information on how to reduce probability of failure, since
the influence of the various factors that can be modified (inspection/maintenance
procedures, flight operation procedures, aircraft design) is not and cannot be quan-
tified using statistical methods alone. It is therefore necessary to combine statistical
data with engineering models of the process. This is a central part of quantitative
methods in engineering risk analysis.

The following sections outline a number of techniques available in engineering
risk analysis for combining engineering models with stochastic models and data, all
of which aim at providing the most accurate prediction of the probability of adverse
events with the given information.

5.1 Statistics

Despite the fact that there is typically not sufficient data available, statistics remains
an essential tool in engineering risk analysis. In particular, probabilistic models of
input parameters must be determined; as an example, the statistics of rainfall precip-
itation are a required input to a flood risk analysis. In this and many other examples,
an estimate of the extreme behavior is essential, i.e. extreme value statistics are of
importance (see Chap. 6, [23]). Special focus must be put on an accurate assessment
of the uncertainties involved, since the data basis is often insufficient; an excellent
example of such uncertainty is given by Coles et al. [15].

When data is limited and statistical uncertainty is relevant, Bayesian statistics en-
ables to consistently account for this uncertainty and to include it in the assessment.
An introduction to Bayesian statistics is given in Chap. 8, [17]. In addition, it is of-
ten useful to combine the data with expert opinion, which is facilitated by Bayesian
statistics, whereby the prior distributions are selected following the experts. How-
ever, care is needed in order not to use the information contained in the data twice,
which can happen when the experts’ opinions are based on the same data that are
used to determine the posterior statistics.

5.2 Probabilistic Analysis of Engineering Models

In engineering, physical, chemical or logical models of the relevant processes are
typically available. These are used to make predictions of the performance of given
systems. Any model can be considered as a function g that establishes a relationship
between inputs X and outputs Y:

Y = g(X). (3)

In many instances (and those are the situations of interest to us), all or some of the
input variables X = [X1;X2; . . .] are random. As a result, the outcome variables



342 D. Straub

Y = [Y1;Y2; . . .] become random as well, even if the model (the function) is known
with certainty. We are thus dealing with functions of random variables.

In addition, the function g itself can also be random, i.e. for a given X, the vector
of outcome variables Y = [Y1;Y2; . . .] is random. This situation commonly occurs
in the analysis of problems involving stochastic processes, e.g. in the analysis of
dynamic systems with random excitation (e.g. cars, aircraft, structures under wind
or earthquake excitation). Introductions to the analysis of such systems can be found
in Lutes and Sarkani [31]. Here, we will restrict ourselves to problems in which g is
a deterministic function. This does not imply that we assume the model to be perfect:
model uncertainty can be included through additional random variables in X.

Ideally, we compute the full probability distribution of Y exactly. However, this
is only possible in few cases, as discussed below. In some instances, it is sufficient
to compute moments of the distribution of Y instead of the full distribution, which
significantly simplifies the problem. For most problems, however, it will be neces-
sary to use approximation methods. These include Monte Carlo Simulation (MCS)
and the class of Structural Reliability Methods (SRM), which also include advanced
sampling techniques such as adaptive importance sampling and subset simulation.
These SRM are presented in Sect. 5.3.

It should be noted that applied physical models are often numerical, e.g. Finite
Element (FE) models. This implies that no analytical solution for Y = g(X) exists,
and that obtaining values of Y can be costly (in terms of computation time). This
has implications on the applicable methods for evaluating the characteristics of Y.

Illustration 5.1 (Fatigue Model) For illustrational purposes, we consider the
Palmgren-Miner model for material fatigue, which occurs in dynamically loaded
structures such as aircraft, trains, cars, bridges and buildings. One of the tragic
failures caused by material fatigue was the accident of the ICE train at Eschede,
Germany in 1998, causing 101 fatalities. Fatigue damage can be measured in terms
of a normalized damage D, which in the simplest form of the model is computed as

D = n 1

C
Sm. (4)

Here, C andm are material parameters, S are the stress ranges due to constant cyclic
loading and n are the number of stress cycles. Failure occurs when the damage
exceeds 1, i.e. when D ≥ 1.

We consider the case where C and S are random variables, i.e. we have X =
[C;S] and Y = [D]. We will use this model to illustrate the different concepts and
solution strategies below.

The simplest class of models is the one of linear models, which can be generically
written as

Y = g(X)= a0 + aX, (5)

where X is a vector of length nX , Y and a0 are vectors of length nY , and a is a
nY × nX matrix of coefficients. As is well known, for linear models, the mean and



12 Engineering Risk Assessment 343

covariance of Y can be computed exactly (Papoulis and Pillai [34]). In the special
case that the random variables X are multinormal (Gaussian) distributed, the ran-
dom variables Y also have a multinormal distribution. This explains the popularity
of linear Gaussian models: for these models, the full distribution of Y is readily
obtained, since it is fully described by its mean and covariance.

It is noted that many non-linear models can be transformed into linear models,
as illustrated in the following.

Illustration 5.2 (Fatigue Model) The non-linear model for material fatigue of
Eq. (4) can be transformed into a linear model of C and S by taking the logarithm:

lnD = lnn− lnC +m lnS. (6)

It follows that the mean of the logarithm of the fatigue damage is

E[lnD] = lnn− E[lnC] +mE[lnS] (7)

and its variance is

Var[lnD] = Var[lnC] +m2 Var[lnS]. (8)

If C and S are lognormal distributed, then lnD is normal distributed and the proba-
bility of failure, Pr(D ≥ 1)= Pr(lnD ≥ 0) can be computed analytically.

In the case of non-linear engineering models, a common strategy in probabilis-
tic analysis is to approximate the models by a linear or quadratic model, so-called
first- and second-order approximations (e.g. Papoulis and Pillai [34], Straub [5]).
Rarely, higher order approximations are also chosen. However, in risk analysis, it
is commonly the extreme events that are of interest. In this case, the approximation
of the function g(X) around the expected value MX is generally not suitable. An
alternative is to approximate g(X) in the tail of the distribution, corresponding to
the region of interest. Such an approach is pursued by structural reliability methods
introduced in Sect. 5.3 below.

In theory, it is also possible to compute the exact distribution of Y = g(X). As is
well known, when Y is a scalar one-to-one function of a single random variable X,
then the distribution of Y = g(X) is readily obtained as

fY (y)= fX
[
g−1(y)

]∣∣∣∣dg
−1(y)

dy

∣∣∣∣, (9)

where g−1 is the inverse function of g. Solutions for general functions of one or
more random variables are described in Papoulis and Pillai [34]. However, for most
realistic models of engineering systems with several random variables, these solu-
tions are not practical and approximate methods, such as the Monte Carlo simula-
tion, are necessary.

5.2.1 Monte Carlo Approximation

With the availability of computers, a simple, intuitive and often effective approach
to analyzing functions of random variables is Monte Carlo Simulation (MCS). It
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Fig. 3 Illustration of the Monte Carlo simulation approach to evaluating functions of random
variables (from Straub [5])

proceeds by artificially generating samples xi , i = 1, . . . , ns from the distribution of
the input variables X and then evaluating the functions yi = g(xi ) for each sample
value xi separately. In this way, a set of samples yi , i = 1, . . . , ns of the function
values Y are generated, which provide an empirical estimate of the distribution of Y.
The principle of the MCS method is illustrated in Fig. 3 for the case of a scalar input
variable X and a scalar output variable Y .

The MCS method is particularly useful when the function Y = g(X) must be
evaluated numerically and when it is difficult or impossible to obtain the inverse
function g−1(Y). In MCS, evaluation of the inverse function is not required.

A main advantage of MCS is its simplicity. For a given function g(X), it consists
of only three steps, which are readily performed with a few lines of computer code
(in addition to the code required for evaluating g(X)). These are:

1. Generation of (pseudo-)random samples xi , i = 1, . . . , ns , of the input vari-
ables X.

2. ns evaluations of the function to yi = g(xi ).
3. Analysis of the generated samples yi of Y.

A more detailed introduction can be found e.g. in Rubinstein and Kroese [40] or
Straub [6]. Here we only note that MCS is inefficient when computing the probabil-
ity of rare events. When applying MCS with ns samples to calculate the probability
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pF of an event F , the coefficient of variation of the MCS estimation error is approx-
imately (

√
nspF )

−1. As an example, to compute a probability pF = 10−6, we need
ns = 25 × 106 samples to achieve an accuracy of 20 %.

A variant of MCS, which is often more efficient, is importance sampling (IS), as
described e.g. in Engelund and Rackwitz [21]. Instead of sampling randomly from
the distribution of X, IS allows to concentrate samples of X in the region of interest.
In risk analysis, this region typically corresponds to the values of X for which failure
of the system occurs. The identification of this region is a non-trivial matter, which,
however, is facilitated by structural reliability methods outlined in the next section.

5.3 Structural Reliability Methods

In risk analysis, we are mostly concerned with failure events that have small prob-
abilities and for which the MCS approach is not efficient. For this reason, a class
of methods called Structural Reliability Methods (SRM) have been developed since
the 1970s (e.g. Rackwitz and Fiessler [39]; Der Kiureghian and Liu [18]). The fol-
lowing provides a brief outline of SRM, detailed introductions can be found e.g. in
Ditlevsen and Madsen [20], Melchers [32] or Straub [6].

In SRM, the event of interest is described in terms of a so-called limit state
function g(X), where X = [X1;X2; . . . ;Xn] is the vector of random variables of
the problem (the uncertain model input). By definition, the (failure) event F corre-
sponds to

F = {g(X)≤ 0
}
. (10)

In this formulation, {g(X)≤ 0} =�F corresponds to a domain in the outcome space
of X, whose surface is described by {g(X) = 0}. The probability of the event F is
thus identical to the probability of X taking a value within this domain. It can be
computed by integrating the joint probability density function of X, denoted by
f (x), over �F :

Pr(F )=
∫
g(x)≤0

f (x)dx1dx2 · · ·dxn. (11)

The problem is illustrated in Fig. 4. For the case of two random variables, as in
Fig. 4, numerical integration is straightforward, e.g. using quadrature rules. How-
ever, most methods for numerical integration have computation times that increase
exponentially with the number of dimensions (one exception being MCS). There-
fore, they are not suitable to solve the integral in Eq. (11) when the number of
random variables is larger than 3 to 5.

All structural reliability methods aim at solving Eq. (11). All of these methods
are approximations, and each method has its own advantages and disadvantages.
Here, only the first-order reliability method (FORM) is briefly introduced, followed
by a short outline of other methods.
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Fig. 4 Illustration of the general reliability problem, for the case of two random variables; left:
contour plot of the joint PDF, right: 3D plot of the same joint PDF

Illustration 5.3 (Fatigue Failure) With the fatigue model introduced in Eq. (4), fa-
tigue failure is modeled as the event of the damage D reaching or exceeding 1, i.e.
F = {1−D ≤ 0}. It follows that the fatigue failure can be described by the following
limit state function:

g(C,ΔS)= 1 − n 1

C
Sm. (12)

5.3.1 First-Order Reliability Method (FORM)

The method starts by transforming the problem from the original space of the ran-
dom variables X to the space of standard normal random variables U. If the joint
distribution of X is of the Gaussian copula class, the Nataf transformation can be
applied (Der Kiureghian and Liu [18]), if the joint distribution of X is of any arbi-
trary form, the Rosenblatt transformation can be used (Rackwitz and Fiessler [39]).
The reader is referred to Ditlevsen and Madsen [20], Melchers [32] or Straub [6] for
details. In the following, we let T denote this transformation, i.e.:

U = T(X), (13)

X = T−1(U). (14)

The first basic idea of FORM is to transform the limit state function g to the space
of standard normal random variables. Let G denote the new limit state function in
standard normal space:

G(U)= g(T−1(U)
)
. (15)

The transformation T is probability conserving, therefore we have that Pr(F ) =
Pr(g(X)≤ 0)= Pr(G(U)≤ 0). In analogy to Eq. (11), the probability of the failure
event F is now computed by

Pr(F )=
∫
G(u)≤0

φ(u)du1du2 · · ·dun, (16)
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Fig. 5 Design point and linear approximation of the limit state surface. Left side: original random
variable space; right side: standard normal space

where φ is the standard multivariate normal PDF.
The second basic idea of FORM is to approximate the limit state function G(U)

by a first-order Taylor expansion at the expansion point u∗, denoted by G′(U). To
limit the approximation error, the expansion point is selected as the point in the
failure domain with the highest probability content, the so-called Most Likely Fail-
ure Point (MLFP). Because the standard multivariate normal PDF φ is rotation-
symmetric around the origin, the MLFP is equal to the point on the failure surface
G(U) = 0 that is the closest to the origin (provided that Pr(F ) < 0.5). The identi-
fication of the expansion point therefore corresponds to a constrained minimization
problem:

u∗ = arg min‖u‖ subject to G(u)= 0, (17)

where ‖u‖ = √
uTu is the Euclidian norm of the vector u, which corresponds to the

distance of u from the origin. The notation arg min stands for “the argument that
gives the minimum value of”.

Figure 5 illustrates the transformation of the limit state surface and the approxi-
mation by a hyperplane at the MLFP for the case of two random variables (in which
case the hyperplane reduces to a line).

With this approximation, the limit state surface is approximated by its tangent at
the design point, see Fig. 5. In FORM, the integration over the domain {G(u)≤ 0} is
thus replaced by the integration over a half space defined by the tangent {G′(u)= 0}.

Every marginal distribution of the standard multivariate normal distribution is a
standard normal distribution. Therefore, the marginal probability distribution of U
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in the direction perpendicular to the linearized limit state surface is also a standard
normal distribution, as illustrated in Fig. 5. It should be clear from the illustration
that the probability of failure is fully defined by the distance βFORM = ‖u∗‖ between
the origin and the MLFP as

Pr(F )≈ Pr
(
G′(U)≤ 0

)=�(−βFORM). (18)

Here, � is the standard normal cumulative distribution function (CDF). βFORM is
known as the FORM reliability index.

The FORM solution is independent of the problem dimension, i.e. the n-
dimensional integration always reduces to an evaluation of the standard normal
CDF. The difficulty in FORM is the identification of the MLFP, u∗ i.e. the solu-
tion of the optimization problem of Eq. (17). Optimized algorithms exist for this
purpose. Furthermore, specialized response surface methods have been developed
to limit the number of calls of the function g(X), e.g. Bucher and Bourgund [14] or
Sudret [49].

FORM is surprisingly accurate for a wide range of problems, but the accuracy is
obviously dependent on how strongly non-linear the limit state function is. For this
reason, it is recommended to check improve the accuracy of FORM by perform-
ing an additional importance sampling, in which the sampling density is centered
around the MLFP, e.g. Rackwitz [37]. Many other strategies exist, e.g. a second-
order approximation (Breitung [13]) or a novel efficient simulation technique based
on Markov Chain Monte Carlo (Au and Beck [8]), and the interested reader is re-
ferred to the literature provided in the bibliography.

Illustration 5.4 (Fatigue Failure) The fatigue failure is described by the limit state
function in Eq. (12), g(C,S) = 1 − nC−1Sm. We assume the following model for
the parameters (all random variables are independent).

Because C and S are statistically independent, they can be transformed sepa-
rately from X to U-space, by requiring that FXi(xi)=�[T(xi)]. It follows that the
inverse transformation T−1 from standard normal space is:

C = exp(UCσlnC +μlnC),

S =USσS +μS.
Consequently, the limit state function in standard normal space is obtained by in-
serting the above expressions in Eq. (12):

G(U)= 1 − n

exp(UCσlnC +μlnC)
(USσS +μS)m. (19)

The original and the transformed limit state functions are those shown earlier in
Fig. 5, where X1 = S and X2 = C.

With the parameters of Table 1, the MLFP is found according to Eq. (17) as

u∗ = [2.59;−2.55].
(This can be verified graphically in Fig. 5.) The corresponding FORM reliability
index is βFORM = ‖u∗‖ = 3.63 and the FORM estimate of the probability of failure
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Table 1 Parameters of the fatigue model

Variable Distribution CDFa Parametersb

C lognormal �
[
(ln c−μlnC)/σlnC

]
μlnC = 30.5, σlnC = 0.45

S normal �
[
(s −μS)/σS

]
μS = 50, σS = 12.5

m deterministic – m= 3

n deterministic – n= 107

a� is the standard normal CDF
bAll dimensions are corresponding to mm and N

is found as:

Pr(F )≈�(−βFORM)= 1.4 × 10−4.

For comparison, the exact solution found by direct numerical integration is Pr(F )=
1.3 × 10−4. (By observing the shape of the linear approximation in Fig. 5, it should
be clear that FORM slightly overestimates the reliability.)

5.4 System Reliability

In the above sections it was assumed that the event of interest is described by a
parametric function of a number of random variables X. In many instances, however,
the event of interest corresponds to a system failure event that can be described
by a logical function of component failure events. As a simple example, consider
the failure of an aircraft with four engines. The aircraft is still operational with
one engine, and the system failure FS can thus be expressed as the intersection of
the component failures Fi : FS =⋂4

i=1Fi . (Such a system is known as a parallel
system.)

The probability of component failure can often be determined from data, either
from experimental tests or—preferably—from in-service failure data. The probabil-
ity of the system failure is then determined based on the component failure proba-
bility and the logical model of the system.

If the components as well as the system are expressed by binary states (fail-
ure/survival), then the relation between component states and system state can be
modeled by reliability block diagrams, an example of which is given in Fig. 6. The
system fails whenever there is no path between the beginning and the end of the
block diagram. It is noted that other logic trees, in particular fault trees (Chap. 13,
[50]), can be converted into such reliability block diagrams.

The analysis of binary systems is commonly done by identifying the so-called
minimal cut sets. A cut set is a set of components that leads to system failure (it
“cuts” the diagram in two) and a minimum cut set is one in which no subset is a cut
set (i.e. all components must fail to cause failure of the system). For the example of
Fig. 6, there are two minimal cut sets: {1,3,4} and {2,3,4}.
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Fig. 6 Example of a
reliability block diagram for a
system with four components

The dual to cut sets are link sets: a link set is a set of components that ensure the
system to work, and a minimum link set is one where no subset is a link set (i.e.
all components are necessary for the system to function). The minimum link sets
of the system in Fig. 6 are: {1,2}, {3} and {4}. It is pointed out that the identifica-
tion of minimal link sets or cut sets is non-trivial, and can become computationally
infeasible for large and complex systems.

There are two basic types of systems: the parallel system and the series system.
In the parallel system, all components are set in parallel, i.e. the system fails only
if all components fail: FS =⋂n

i=1Fi . In the series system, all components are set
in series, i.e. the system fails as soon as one components fails: FS =⋃n

i=1Fi . For
a general system, failure can be described by considering each minimal cut set as a
parallel system (all components must fail for failure to occur), and the system as a
series system of its minimal cut sets (the system fails as soon as one cut set fails). It
follows that system failure is:

FS =
nk⋃
k=1

⋂
i∈Ck

Fi, (20)

wherein nk is the number of minimal cut sets and Ck is the index set describing
the kth minimal cut set. For the example of Fig. 6, it is: FS = (F1 ∩ F3 ∩ F4) ∪
(F2 ∩ F3 ∩ F4). By applying the distributive law, this can be reformulated to FS =
(F1 ∪ F2) ∩ F3 ∩ F4. (Alternatively, this formulation can be obtained directly from
the minimal link set formulation.)

For known cut sets, the system failure probability Pr(FS) can be computed as
a function of the individual component failure probabilities Pr(Fi), i = 1, . . . , n
when component failure events are statistically independent. (As an example, if all
components of the system shown in Fig. 6 are independent and have identical failure
probability Pr(Fi)= 0.1, then the probability of system failure is Pr(FS)= 0.0019.)
This assumption of independence does not hold for most applications, and it is then
necessary to know the probabilities of intersections, such as Pr(Fi ∩ Fj ). In this
case, exact computation is only possible for small systems or when the dependence
structure can be expressed in a simple form (e.g. when dependences are caused by
common influencing factors). However, approximate solutions based on simulation
(e.g. MCS) exist, or bounds can be computed (e.g. Song and Der Kiureghian [42]).

The computation of system reliability is a broad discipline, in particular when
including also non-binary (i.e. multi-state) systems. The interested reader is referred
to the monographs on system reliability by Barlow and Proschan [10] and Høyland
and Rausand [26].
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5.5 Bayesian Updating

Bayesian analysis is an important tool in engineering risk analysis, since it facili-
tates the consistent combination of information from various sources, which is cru-
cial when the amount of data is limited. As an example, there is large uncertainty
associated with tunnel construction because of random geology, but prior to and
during the construction information is gathered from the site, e.g. by observing de-
formations or measuring groundwater flow. These allow the experienced engineer to
adjust the project to minimize risks. Bayesian updating can formalize this process of
assessing the risk conditional on such observations (e.g. Straub [44], Papaioannou
and Straub [3]).

Bayesian updating of the probability of an event F with an observation event Z
is based on the rule of Bayes:

Pr(F |Z)= 1

Pr(Z)
Pr(Z | F)Pr(F ). (21)

Here, Pr(F ) is the a-priori probability of F (i.e. before the observationZ); Pr(F |Z)
is the conditional a-posteriori probability of F (i.e. conditional on the observa-
tion Z); the conditional probability Pr(Z | F) is the so-called likelihood, which
describes the information content of Z with respect to F ; Pr(Z) is the a-priori prob-
ability of making the observation Z, which is obtained by normalization. Bayesian
updating can be performed repetitively. Consider the case where we make two ob-
servations Z1 and Z2 sequentially. Firstly, the probability of F is updated with the
observation Z1 following Eq. (21). Secondly, the updated probability Pr(F |Z1) be-
comes the new prior probability, and the conditional Pr(F | Z1 ∩ Z2) is calculated
from Eq. (21) where Pr(F ) is replaced with Pr(F | Z1).

Bayes’ rule is at the heart of Bayesian statistics, as introduced in Chap. 8, [17].
The reader is referred to that chapter for details on the practical implementation
of Eq. (21) in that context. There are two practical differences between the applica-
tion in Bayesian statistics and in engineering risk assessment: (a) Unlike in Bayesian
statistics, where the prior probability distribution is often weakly informative, in risk
assessment the prior probability Pr(F ) is generally informative, as it is based on the
available models of the process. (b) In engineering risk assessment, the event F is
often described by complex probabilistic models (often based on engineering mod-
els, as outlined earlier). Therefore, different computational approaches are required
than in Bayesian statistics (e.g. the use of MCMC is often inefficient). The methods
are often based on structural reliability methods, but other methods like Bayesian
networks are also becoming popular. The reader is referred to Straub [43, 44] for
examples of such methods.

Illustration 5.5 (Updating of Fatigue Reliability and Risk) A common strategy to
reduce the risk due to fatigue failures is to perform regular inspections of the fatigue-
sensitive structural details. Trains, aircrafts, turbines, bridges and many other struc-
tures undergo regular inspection, which are costly due to the inspection cost and the
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Fig. 7 Bayesian updating of the probability of fatigue failure with inspection results: inspections
are performed in intervals of 106 stress cycles, all inspections result in no-identification of defects;
taken from Straub [43]

downtime of the system. (As an example, basic checks of commercial aircrafts are
performed approximately every 500–800 flight hours.) For these reasons, there is a
strong interest in optimizing these inspections, which requires quantifying the effect
of inspections on the probability of failure (e.g. Straub and Faber [46]).

Fatigue inspections check whether or not cracks are present in the material. When
defects are found, they are repaired. When no defects are found, the probability of
failure is decreased, purely due to the reduction of the uncertainty. The quality of the
inspection is described by so-called Probability of Detection (PoD) functions, which
describe the probability of detecting a defect as a function of the defect size. To
update the probability of failure, the likelihood function is constructed by combining
this PoD function with physical models describing crack growth. The latter are a
function of multiple random variables. In this way, Bayes’ rule can be used to update
the probability of failure after every inspection that results in not finding a defect.
An exemplarily result is shown in Fig. 7.

5.6 Bayesian Networks

Bayesian networks (BNs), also known as Bayesian belief networks, are probabilis-
tic models that facilitate efficient representation of the dependence structure among
random variables by graphical means. BNs have been developed since the 1980s,
mostly in the field of artificial intelligence, for representing probabilistic informa-
tion and reasoning (Russell and Norwig [41]). They have found applications in many
fields such as statistical modeling, language processing, image recognition and ma-
chine learning, and have increasingly been applied in engineering risk analysis. Re-
cent applications in this field are reported, e.g., in Fris-Hansen [24], Faber et al. [22],
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Fig. 8 A simple Bayesian
network

Grêt-Regamey and Straub [25], Straub [43], Bensi et al. [12]. A general introduction
to BN can be found in the textbook by Jensen and Nielsen [28].

In a nutshell, BNs model a joint probability distribution of a set of random vari-
ables X = [X1, . . . ,Xn]. Each random variable is represented by a node in the BN,
and the links between them represent the dependence structure among the variables.
If all X are discrete, they are fully described by their joint probability mass func-
tion (PMF), p(x). The size of the joint outcome space of X for which p(x) must be
defined increases exponentially with the number of variables, but the BN enables
an efficient modeling by factoring the joint probability distribution into conditional
(local) distributions for each variable given its parents. Parents of a variable Xi are
all random variables that have links pointing to Xi . A simple BN with five variables
is illustrated in Fig. 8, where X1 is a parent of X3 and X4, and X2 is a parent of X4
and X5.

The joint PMF for this network is given as

p(x)= p(x1, x2, . . . , x5)= p(x1)p(x2)p(x3 | x1)p(x4 | x1, x2)p(x5 | x2) (22)

which can be written in the compact and general form

p(x)=
n∏
i=1

p
[
xi | pa(Xi)

]
(23)

where pa(Xi) denotes the set of parents of Xi .
The decomposition of the joint PMF into the conditional PMFs of each variable

given its parents, p[xi | pa(Xi)], is motivated by the d-separation rules (Pearl [36]),
which describe the independence assumptions encoded in the graphical structure
of the BN. However, the BN definition of the joint PMF according to Eq. (23) is
quite intuitive even to the lay engineer with little understanding of the theory. To
understand the efficiency of the BN representation, consider the case where each
variable in the BN of Fig. 8 has 10 outcome states. To directly represent the joint
PMF p(x), it is necessary to specify 105 probability values (the size of the outcome
space of X). However, with the decomposition according to Eq. (22), it is sufficient
to specify 10 + 10 + 102 + 103 + 102 = 1220 probability values (e.g. for specifying
p(x5 | x2) for all combinations of X2 and X5, 102 values are required). Therefore,
even for this simple example, the required information for specifying the problem is
reduced by two orders of magnitude.

To efficiently compute marginal and conditional probabilities of variables in the
network (the inference process), the conditional independence properties can also
be exploited. Global computations involving p(x) can be replaced by local com-
putations. For the case that all random variables are discrete and/or linear combi-
nations of Gaussian random variables, exact inference algorithms exist, but finding
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Fig. 9 BN model for seismic
risk analysis of an
infrastructure system (Straub
et al. [48])

optimal computation strategies in a specific BN is a NP-hard task. Alternatively,
sampling methods can be used to evaluate BNs. The latter can also be applied to
BNs with continuous random variables. An accessible introduction to all these in-
ference algorithms is provided by Jensen and Nielsen [28]. It is noted that a variety
of software exists for constructing and evaluating BNs, many of which are avail-
able for free (e.g. the Genie software, developed at the University of Pittsburgh:
http://genie.sis.pitt.edu/).

The BN has several features that make it highly useful in engineering risk analy-
sis:

(a) Its graphical form provides a concise representation of statistical dependence
that can be understood also by non-experts.

(b) The decomposition of the problem into local conditional distributions corre-
sponds to the way complex risk analyses are performed. Combining different
probabilistic models within one single BN model is often straightforward.

(c) As its name suggests, the BN is efficient for Bayesian updating when new in-
formation becomes available.

BNs are a powerful modeling framework when it is possible to exploit condi-
tional independence among random variables. This is the case for most applications
of engineering risk analysis, where the relation among random variables is often
characterized by causal relations (A causes B). One example of such a dependence
structure is given in Fig. 9. The dependence between the seismic intensities Si at
multiple sites i due to common earthquake source characteristics can be modeled
efficiently with the BN. It also captures the assumption that the performance Ei of

http://genie.sis.pitt.edu/
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Fig. 10 The causal network
for the corrosion inspection
problem

infrastructure elements (bridges, pipelines, etc.) depend only on the seismic inten-
sity at their site. However, in the example given in Fig. 9 it is also observed that,
when including spatial correlation between the seismic intensity at different loca-
tions, a large number of links are needed (indicated in grey). This is one example
of a dependence that is not efficiently represented by a BN. In most instances, suit-
able modeling strategies can avoid such types of dependences (e.g. Straub and Der
Kiureghian [45]).

BN can directly be extended to decision graphs, to assess the effect of mitigation
actions on the risk, and to optimize decisions following the classical decision theory
(Chap. 3, [47]).

Illustration 5.6 (Corrosion Inspection) To determine the risk due to corrosion of
the reinforcement in a reinforced concrete structure, a so-called “half-cell poten-
tial measurement” is performed to identify corrosion activity, together with a visual
inspection of the concrete surface. Let us denote the condition of the element by
C, with {C = 0} being the event of no corrosion and {C = 1} the event of corro-
sion. V is the visual inspection, with {V = 0} the event of no visible corrosion and
{V = 1} the event of visible corrosion. M is the outcome of a half-cell potential
measurement with {M = 0} being the event of no-indication and {M = 1} the event
of indication.

It is reasonable to assume that for given condition of the element, the outcome
of the measurement is independent of the visual inspection. Therefore, the causal
network for this problem is shown in Fig. 10.

The conditional probability mass functions required for the specification of the
network can be summarized in so-called conditional probability tables:

Event Probability

{C = 0} 0.8
{C = 1} 0.2

Event Probability conditional on
{C = 0} {C = 1}

{V = 0} 1 0.5
{V = 1} 0 0.5

Event Probability conditional on
{C = 0} {C = 1}

{M = 0} 0.8 0.15
{M = 1} 0.2 0.85

These probability models can be obtained from deterioration models and past ex-
perience with the inspections. With these specifications, it is possible to compute
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the probability of corrosion conditional on different measurement/observation out-
comes. It is:

Event Probability conditional on
{V = 0}, {M = 0} {V = 0}, {M = 1} {V = 1}, {M = 0} {V = 1}, {M = 1}

{C = 0} 0.977 0.653 0 0
{C = 1} 0.023 0.347 1 1

For this simple example, the computations are trivial and can easily be performed
by hand. As an example, it is:

Pr(C=1 | V =0 ∩M=1)= Pr(C = 1 ∩ V = 0 ∩M = 1)

Pr(V = 0 ∩M = 1)

= Pr(C = 1)Pr(V = 0 | C = 1)Pr(M = 1 | C = 1)∑1
i=0 Pr(C = i)Pr(V = 0 | C = i)Pr(M = 1 | C = i)

= 0.2 × 0.5 × 0.85

0.8 × 1.0 × 0.2 + 0.2 × 0.5 × 0.85
= 0.347.

Note that this corresponds to the application of Bayes’ rule.

5.7 Sensitivity Analysis

One of the most important parts of any risk analysis is the investigation of the sensi-
tivity of the computed risks to changes in the model parameters and assumptions. In
engineering risk analysis, it is often necessary to make relatively crude assumptions
on certain model parameters, due to the lack of detailed information or models. It is
therefore essential that the sensitivity of the computed risks to these assumptions is
quantified.

A sensitivity analysis essentially consists in re-running the risk computations for
different input parameters. If the number of parameters is large and/or the risk model
is computationally demanding, these re-runs must be limited to a few cases, which
have to be selected using engineering judgment. Also, sensitivity measures from
probabilistic calculations (e.g. using FORM or MCS) can be used (e.g. Cooke and
van Noortwijk [16]), but it must be considered that these measures are local, i.e. for
non-linear models they reflect only the effect of small changes in the assumptions.

It is also noted that many risk analyses are notional, which means that they do
not compute the real risks, but compute the risk conditional on certain idealized
assumptions. In particular, the effect of human error is often excluded from quanti-
tative risk computations, due to the difficulty in modeling such errors. In this case,
the computed value cannot be compared against absolute risk criteria, but the model
it is still useful to assess the sensitivity of the risk to influencing factors and model
assumptions. By means of sensitivity analyses, it is possible to pre-evaluate different
mitigation strategies.
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Fig. 11 Acceptable risks for
chemical plants in the
Netherlands, together with an
exemplary F –N curve for a
facility (with acceptable risk)

6 Risk Acceptance and Optimization

Once risks are computed, they must be compared against acceptance criteria. Of-
ten, multiple risk acceptance criteria (RAC) must be considered. On the one hand,
criteria may be defined separately for different consequence classes (fatalities and
health effects, economical, environmental). Also, it is often distinguished between
individual risk (i.e. the risk accrued by one specific individual), and societal risk (the
average risk in a society). The former applies e.g. to the workers in a facility or to
inhabitants nearby, the latter to a member of the general public who is exposed only
infrequently. On the other hand, RAC may be defined separately by the different
stakeholders involved. The operator of the facility and the regulatory bodies may
each have their own RAC, whereby the latter are mostly concerned with life and
health risks, and increasingly with environmental risks.

RAC can be expressed in different formats, depending on the type of risk consid-
ered. It is common to express the acceptable individual safety risk in terms of the
probability of an individual dying due to an accident during a reference time period.
The acceptable societal safety risk is often expressed in terms of so-called F –N
diagrams, where F stands for exceedance frequency and N stands for the number
of fatalities. Figure 11 shows the acceptable societal risk for chemical and process
plants in the Netherlands (Jongejan [29]), together with a fictitious curve for a fa-
cility. To understand this diagram, consider the point (N = 101, F = 6 × 10−6):
this point signifies that events with N = 10 or more are estimated to occur with an
annual frequency of 6 × 10−6. The risk of an activity is acceptable when the entire
curve is to the left of the acceptability criterion.

Risk acceptance criteria can be derived by means of different fundamental prin-
ciples. It is often distinguished between:
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(a) Expressed preferences: with this approach, RAC are obtained directly by asking
the relevant stakeholders. The difficulty with this approach is that risk levels
are often abstract values that are difficult to understand by most individuals and
organizations.

(b) Revealed preferences: RAC are derived from the risk that is implicitly accepted
by current activities. As an example, when assessing a new system, it can be
stated that any risk that is lower or equal to the risk of the present system is
acceptable. This is the most commonly applied approach in engineering.

(c) Optimization: RAC can be derived by identifying optimal risk levels, as dis-
cussed in Sect. 6.1 below. This allows regulators to require that risks are reduced
to a level that can be achieved with reasonable efforts (the ALARP principle
outlined in Sect. 4.2).

Existing RAC are often obtained by a combination of the above principles. For
example, it is common to derive acceptance criteria from current practice, but then
adjust the criteria using optimization principles, e.g. using more stringent criteria
for risks where mitigation costs are low. (This approach was followed in deriving
the target reliability values provided in Annex B of Eurocode 0 (DIN [19]).) Fur-
thermore, RAC from the public (such as the one shown in Fig. 11) often represent a
public consensus, and are derived based on processes involving scientists and engi-
neers, but also representatives of governmental bodies and politicians.

For further examples and details on risk acceptance criteria, the reader is referred
to Paté-Cornell [35], Aven and Vinnem [9] and Jongejan [29].

6.1 Optimization

When making decisions involving risk, one should aim at making optimal deci-
sions. On the one hand, it is desirable to reduce risks as much as possible; on the
other hand, one should use as little resources (money, material, time) as possible
for risk reduction. This leads to a classical optimization problem, aiming at finding
the optimal trade-off between risk and resources spent for risk reduction, which is
illustrated in Fig. 12. The optimal decision is the one minimizing the expected cost,
the optimal risk is the one associated with the decision leading to the minimal total
expected cost.

Optimization principles can be used to derive absolute RAC (e.g. Rackwitz [38]),
or they can be invoked by requiring that risks are reduced to an optimal level, fol-
lowing the ALARP principle. Such an approach is pursued by the UK Health and
Safety Executive, which is the regulatory body in the UK (HSE [27]).

The optimization approach requires that all consequences and costs are expressed
in the same unit, which is typically a monetary unit. If safety risks are involved, this
requires quantifying the value of a statistical life (e.g. Lentz [30]). While this is
not without controversy, such an approach is necessary if it is to be ensured that
resources are distributed optimally among different activities within a society (for
further discussion see Sect. 2.4 in Chap. 3, [47]).
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Fig. 12 Trade-off between
risk and mitigation cost

7 Food for Thought

• How can we combine an engineering model, which is based on physical princi-
ples, with observed data?

• An open question in many risk analyses is how to quantify the effect of human
and organizational factors.

• Discuss the context and the system definition of a risk assessment for a nuclear
waste depository.

• Why do we differentiate between individual risks and societal risks?
• Engineers must often make decisions involving potentially large consequences

and fatalities on the basis of limited information. How can the engineer sleep
well at night?

• What is the principle of FORM?
• Why is a linear or quadratic approximation of the performance function around

the mean value not suitable to compute the risk of fatigue failure of an aircraft?
• If you need to advise on which of two alternative designs for a train axle should

be selected, how would you proceed?
• Often, the most difficult part of an engineering risk assessment is to explain the

methods and the results to lay people and even other engineers, due to their diffi-
culties in understanding probability. How can one approach this?

8 Summary

This chapter outlines a framework for engineering risk assessment, with a particular
emphasis on quantitative methods. A general procedure is introduced, including sys-
tem definition, hazard identification, risk analysis, sensitivity analysis, risk assess-
ment and mitigation. Thereafter, it is focused on the quantitative modeling of risk
in engineering, which differs from the actuarial approach by combining probabilis-
tic engineering models (typically physical and/or chemical models) with empirical
data and sometimes expert knowledge. This is illustrated by brief examples. A brief
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outline of risk acceptance and optimality in the context of engineering applications
concludes the chapter.
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Chapter 13
Integrated Modeling of Complex Production
Automation Systems to Increase Dependability

Birgit Vogel-Heuser and Susanne Rösch

In current practice, analysis and development of the same mechatronic component
are performed separately for both functional and nonfunctional (for definition see
Sect. 3) aspects, often by different engineers and/or engineering teams, and speci-
fied in different modeling languages. This gap between the development processes
of the different aspects of components leads, on the one hand, to inefficient system
development processes and additional iterations between functional and nonfunc-
tional design. On the other hand, it makes for a neglected opportunity to increase
system dependability during runtime (Avizienis et al. in IEEE Trans. Dependable
Sec. Comput. 1(1):11–33, 2004). By building on basic engineering information,
for instance by integrating models containing selected information about a system
into its control code, dynamic reconfiguration during runtime helps to increase de-
pendability and reduce risk. Risk in this chapter is defined according to Bertsche as
the “product of severity of damage and probability of occurrence” (Bertsche et al.
in Zuverlässigkeit mechatronischer Systeme. Grundlagen und Bewertung in frühen
Entwicklungsphasen, Springer, Berlin, 2009, p. 55) and the term dependability is
used according to Avizienis et al. (IEEE Trans. Dependable Sec. Comput. 1(1):11–
33, 2004): “dependability is an integrating concept that encompasses the following
attributes:

• availability (availability in this context is considered as “the degree to which a
system or component is operational and accessible when required for use, of-
ten expressed as a probability” (IEEE Std. 610.12-1990, IEEE standard glossary
of software engineering terminology, The Institute of Electrical and Electronics
Engineers, USA, 1990)): readiness for correct service;

• reliability: continuity of correct service;
• safety: absence of catastrophic consequences on the user(s) and the environment;
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• integrity: absence of improper system alterations;
• maintainability: ability to undergo modifications and repairs” (Avizienis et al. in

IEEE Trans. Dependable Sec. Comput. 1(1):11–33, 2004, p. 13).

Another important term used in this chapter is Quality of Service (QoS). This
term has been used recently for different domains. In this chapter QoS is used for
the quality that can be assumed when using a substitute strategy to replace another
service.

This chapter contributes to the design of system availability, reliability, and
safety, focusing on complex production automation systems and highlighting the re-
sults by introducing application examples from the control of a continuous thermo-
hydraulic particle board press.

Keywords Automation systems · Model-based system and software engineering ·
Integrated modeling · Safety and functional analysis · Dynamic reconfiguration

The Facts

• Reduced time to market, and lowering of costs for product automation systems,
require concurrent engineering.

• Traditional modeling methods do not support integrated development of func-
tional and safety aspects for production automation systems.

• Additional integration of basic engineering models into the control code can be
used to increase dependability of production automation systems during runtime
by incorporating those models into the control code as a knowledge base for in-
telligent adaptive behavior.

• Integration of the different functional views of a production automation system,
i.e. mechanical, electrical/electronic and software, with their constraints and re-
strictions will support model based dynamic reconfiguration.

1 Introduction

Today, suppliers of mechatronic products face stronger competition worldwide, re-
sulting in a need for reduced time to market. This leads to decreasing duration times
for a project and decreasing start up times, which directly influence plant manu-
facturers and their automation suppliers. Due to the need for reduction of project
duration and time to market, concurrent and simultaneous engineering have become
more important (see Fig. 1). Therefore, automation suppliers require support during
the whole engineering life cycle in a more efficient way. This applies not only to the
design phase as such, but to the entire life cycle. Starting about five years ago [14],
forced by competition through globalization, the phases in life cycles of production
automation systems, i.e. concept phase, design phase up to construction, needed to
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Fig. 1 Concurrent Simultaneous Engineering for design, optimization and operation (CSE) [14]

be shortened and better integrated. Up to now there has been a lack of method and
tool integration. The result is a rupture in the engineering work flow between the
different phases and the different disciplines.

Another challenge focused on during the last 5 to 10 years is the integration of
the different views of functional aspects of a production automation system, such
as mechanical, electrical/electronic, and software. Regarding these different aspects
a specific challenge can be identified: the necessity to integrate the different disci-
plines to achieve a more appropriate solution, taking into account all aspects of a
system.

During the last few years methods and technologies have been generated to allow
the first promising developments of such an integration:

• From computer science, meta modeling has been introduced and is now widely
spread in engineering domains, as are model coupling techniques [18, 19] and
tools. Eclipse for example is one opportunity for the coupling of models of dif-
ferent engineering phases and of different engineering disciplines.

• From the discipline of automation, AutomationML, containing a high-level de-
scription of the topology of a system within CAEX, and several lower-level de-
scriptions for specific aspects of a system such as PLCOpen XML, has been in-
troduced as an XML-based description approach for engineering information [5].

• Embedded systems in production automation systems become more powerful
computationally, which is a prerequisite for the use of model information and
the implementation of intelligent algorithms for adaptive control systems during
runtime.

• Last but not least, model based engineering is becoming more popular in the
different disciplines of product and production automation, that being the prereq-
uisite for acceptance of re-use and model coupling.

This chapter is organized as follows: first the different views from production
automation are introduced and explained using a continuous thermo-hydraulic par-
ticle board press as application example. Section three highlights the modeling of
functional and nonfunctional requirements, which need to be integrated into the en-
gineering approach and the whole life cycle. Section four presents a first attempt to
integrate safety and functional design by mapping the traditional safety models, for
example Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA)
to the functional models using an object oriented approach. The example mentioned
above, a real industrial application, is given as an evaluation example. The benefit of
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integrating basic model engineering information into the control code for dynamic
reconfiguration during runtime is demonstrated in section five, based on the assump-
tion that an integrated approach is to be used. This approach allows the control sys-
tem to cope with malfunctions and, under given safety and operational constraints,
to adapt its behavior autonomously. Section six presents some new ideas, and seven
summarizes the results and gives our outlook on future work.

2 Different Views on Production Automation Systems

Thramboulidis [12] introduces a three-view model, modeled in the Systems Mod-
eling Language (SysML).1 The three views of Thramboulidis comprise software
engineering, mechanical engineering, and electrical engineering. The central “+1”
model is the mechatronic system (MTS) model which is specified using SysML.
Thramboulidis et al. highlight that safety is one aspect of the MTS +1 view [13].
They claim that as a result of the synergistic modeling and the integration it is possi-
ble to make extensive dependability predictions during the development phases. Un-
fortunately, this is only a first concept and has not yet been implemented or proven.
As a limiting prerequisite, Thramboulidis et al.’s modeling approach requires that
all disciplines agree on the same component interfaces, which is rarely the case in
industry. Li et al. [4] focus on the integration of mechanical models and models of
information technology using SysML.

Wannagat and Vogel-Heuser [16] and Schütz and Wannagat [11] introduce a dif-
ferent three-view model for modeling production automation systems. It is sug-
gested to view systems in the perspective of the technical process, the technical
system, and the automation control system. The model supports the interdisciplinary
work of different disciplines. Dividing the plant into different domain-specific views
enables the description of the different disciplines with one modeling language
such as SysML. The model allows each domain-specific engineer to have his/her
own view on their components as well as a view of interfaces depicted as rela-
tions to components of other disciplines and their requirements. Schütz and Vogel-
Heuser [10] use the three views and SysML as an approach to model energy aspects
integrated into the functional models.

According to Wannagat and Vogel-Heuser [16], the three views can be described
as follows: The technical system relates to the mechanical parts of a plant; there-
fore it contains information about the layout and the connections of the mechatronic
components, as well as energy and material flows between them. In the automation
control system controllers, networks, sensors, and actuators are included. Thram-
boulidis separates this view into software and electrical engineering, which is mod-
eled as a sub-layer in our concept. The technical process itself describes the manu-
facturing of the product, taking account of the chronological order and all physical

1SysML is an extension of the Unified Modeling Language (UML), defined by the OMG, to satisfy
the requirements of system engineers. In particular it offers “a semantic foundation for modeling
system requirements, behavior, structure, and parametrics, . . . ” [26].
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Fig. 2 Process and
Instrumentation Diagram of
the continuous
thermo-hydraulic particle
board press as application
example for basic engineering
information and model base
for dynamic
reconfiguration [16]

changes made during the process, e.g. chemical or pharmaceutical processes. In our
opinion this view is essential because it represents the actual purpose of the system
and is not addressed in Thamboulidis et al.’s approach. All three views allow for
specialized observation of the whole system and its components. One component
contains all aspects that have been assigned to it in the different views. This way the
component establishes a connection concerning the content of the different views,
enabling the analysis and comparison of all aspects.

Illustration 2.1 Sample application of a continuous thermo-hydraulic particle
board press according to [16].

A model of a continuous production process, as basic engineering information,
will be introduced in this section. With this model dynamic reconfiguration in order
to increase availability will be demonstrated in Sect. 5. The continuous thermo-
hydraulic particle board press is a real industrial application (Fig. 2). It is composed
of up to 80 separately controlled frames (in Fig. 2 two frames are depicted). Each
frame consists of 5 separately controlled cylinders with sensors for pressure (p1)
and distance (s1, s2).

The technical process (Fig. 3) is modeled as an internal block diagram (SysML).
It shows the different sections of a continuous thermo-hydraulic particle board press
from a technologist’s point of view. The raw material for the particle board (wooden
fibers with glue, i.e. mat) is fed into the press on the left side and will be heated
and pressed. The different sections are modeled with regard to different techno-
logical functionality. From the initial description an activity diagram (Fig. 4) of
this technical process is designed showing the three sections of the press. They are
modeled using so-called swim lanes, which are used for structuring activity dia-
grams.
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Fig. 3 Internal block diagram of the technical process view (top level) of the application example:
continuous thermo-hydraulic particle board press [16]

Fig. 4 Activity diagram of the technical process (top level) [16]

The technical system consists of a generator for electric power supply, the hy-
draulic system and its interface to the mat (technical process view), the hydraulic
main valve and the five valves as well as pressure cylinders of each frame as can be
derived from Fig. 2. The mat (bottom right Fig. 5) is pressed by these cylinders, in-
dicated by connectors from each cylinder to the mat representing the force (F). The
cylinders increase the pressure as soon as the valves are opened (connector Pres-
sure). These structural aspects of the technical system are depicted in the internal
block diagram (Fig. 5).

The automation control system (Fig. 6) represents the chosen automation con-
cept with a classical automation device—a Programmable Logic Controller (PLC
(S7))—connected via a bus coupler to the input and output connectors of the
single frame of the press. Some of the components are only partially indicated
behind a similar component so as to show better the most important connec-
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Fig. 5 Internal block diagram technical system, excerpt with five cylinders in one press frame [16]

Fig. 6 Internal block diagram of the automation concept
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tions within the automation concept. The generator (bottom right), the pressure
cylinders, the valve and the frame show the connection to the technical system
via a dashed line because they are not part of the automation control system;
they belong to another view. Their sensors and actuators, however, belong to the
automation system. By representing the most important links between different
views using dashed lines the domain engineer has, on the one hand, an overview
of his aspects, which helps to reduce complexity, and, on the other hand, the
understanding of related components between the disciplines supported by the
links.

Recent concepts allow us to generate code for automation applications out
of more detailed SysML models [10]. After introducing the three views of
the disciplines as one prerequisite, the modeling of requirements will be dis-
cussed, regarding also the three different views for one small application exam-
ple.

3 Modeling Functional and Nonfunctional Requirements

Nonfunctional requirements in general are classified in [1] and from a software en-
gineering point of view in [24]. Dependability and security (Fig. 7) as well as in-
teroperability, maintainability, and time constraints are such nonfunctional require-
ments. Quality of Service (QoS) has been used recently for different domains (see
Sect. 5.1.2). In the case of the continuous thermo-hydraulic particle board press, the
application example introduced in this book chapter, QoS comes in where a sensor
may be replaced by a calculated one in case of a malfunction (dynamic reconfig-
uration, Sect. 5). The replacement strategy increases the dependability of the plant
under the prerequisite that a minimum required product quality can still be produced
with the replacements (virtual sensors).

In our approach functional and nonfunctional requirements are included as con-
straints to the different views of the production automation system on different lev-
els of detail and granularity starting from a sensor or an actuator up to the entire
plant. In Sect. 5.1.2 the tolerance model is introduced as a means to trace whether
the required reliability will be maintained, and whether the required probability of a
given quality will be reached. If requirements apply to the behavior (dynamic) they
need to be modeled in one of the behavior diagrams of the SysML such as the activ-
ity diagram. In those diagrams the requirements can be connected to the matching
activities fulfilling these requirements.

Illustration 3.1 Temperature and lifespan requirements on the continuous thermo-
hydraulic particle board press.

In the requirements model, which consists of different requirement diagrams
(documents) according to the three views on the system (upper part of Fig. 8), the
requirements of the different domains are described. The domain “technical pro-
cess” requires the compliance with a defined temperature profile (up to 280 °C)
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Fig. 7 The dependability and
security tree [1]

inside the inlet zone of the press, whereas the domains “automation system” and
“technical system” restrict the temperature to ranges in which their components
cannot be damaged (automation system: up to 60 °C; technical system: up to
300 °C).

These functional requirements are traced to corresponding constraint blocks us-
ing the “satisfy” relation (middle part of Fig. 8). The constraints are instanced in-
side the blocks which describe the modules of the plant that has to fulfill these
requirements by means of a composite aggregation (lower part of Fig. 8). For exam-
ple the block “InletZone” instances the constraint that is linked to the requirement
defining a temperature profile. To show how nonfunctional requirements are mod-
eled, a requirement for the valve to reach its defined lifespan is modeled in Fig. 8.
The nonfunctional requirement “Lifespan valve” is modeled the same way the func-
tional requirements are modeled. It is linked to a constraint limiting the frequency
of opening and closing the valve and is also categorized as part of the technical
system.

A heating valve—being part of the automation system of the press—instances
the constraint that restricts the temperature due to the limitations of its electronic
components (“tempPAS”). Additionally, it references the constraints expressing
the limitations resulting from requirements of the other two domains by means
of shared aggregations (“TempInletZone” and “TempHeatExch”). With this in-
formation a parametric diagram can be modeled that describes the limitations re-
garding the temperature, which were originally stated in the requirements dia-
grams (documents). The SysML parametric diagram of a heating valve (Fig. 9)
within the continuous thermo-hydraulic particle board press contains the differ-
ent domains’ limitations regarding temperature affecting this module. The con-
straints that are referenced by the valve only by shared aggregations are displayed
with dashed lines. This indicates that the valve does not constrain the tempera-
ture to these limitations; however, the limitations of other modules of the contin-
uous thermo-hydraulic particle board press (“InletZone” and “HeatExchanger”) af-
fect the valve. The temperature outside the valve is composed of the three mod-
ules’ temperatures. To calculate the temperature inside the valve, thus the tem-
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Fig. 8 Requirements and block definition diagram for the requirements concerning temperature

Fig. 9 Parametric diagram depicting the temperature of the heating valve

perature actually affecting the electrical components, the constraint “CalcTempera-
turePAS”, which expresses a formula for the heat transmission through the surface,
is used.

The SysML models are the basis for coping with faults in production automation
systems (see Sect. 5).
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4 Integration of Potential Malfunctions and Faults as an
Integrated Part of Production Automation Systems’ Behavior

The task of risk analysis is to identify and evaluate risk for the entire system (see
Chap. 12, [25]) at an early stage, based on the weaknesses of individual components
of a system. In the first part of this section the traditional safety analysis approaches,
which analyze and evaluate faults, errors, and failures, are introduced, i.e., Failure
Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA). We further
discuss their application as part of production automation systems design.

Laprie et al. define faults, errors, and failures in relation to provided services
or functions. An “adjudged or hypothesized cause of an error is called a fault”
[1, p. 13]. The “definition of an error is the part of the total state of the system that
may lead to its subsequent service failure” [1, p. 13], which means an error does not
inevitably lead to a failure. A “failure is an event that occurs when the delivered
service deviates from correct service” [1, p. 13].

In the automotive domain the current standard follows VDA [27] to check the
safety of systems using FMEA [22] and FTA [21].

Rink2 proposes a method that combines requirement analysis, system modeling,
design of control functions, and creation of a safety concept and risk analysis of
the system using an integrated object-oriented system model similar to the approach
proposed in Sect. 2. The model takes both the desirable and the undesirable behavior
of the system into account. Hence a universal system model is created that can be
used for the design of functions as well as for the safety concept and risk analysis.
Objects that are modeled as components within the system model are determined,
based on the physical structure. The components’ parameters and state variables
appear as attributes in the object specification. The desirable and the undesirable
behaviors are described as operations and graphically represented in state charts
and activity diagrams. Interactions between objects are depicted by collaboration
diagrams. The requirements for the nominal behavior are the basis for the design
of control functions. The safety concept must recognize possible system errors and,
if necessary, activate appropriate replacement functions so the system maintains or
reaches a safe state again. Rink presents a use case-oriented approach for risk anal-
ysis generating the structures of the risk analysis based on mapping rules from an
object-oriented system. The risk analysis starts with the construction of the FMEA
system structure based on object and class diagrams of the object-oriented system
model (Fig. 10).

Then the FMEA function structure is derived from the state charts, the activity,
and the collaboration diagrams that model the desired behavior. On the basis of the
undesired behavior of the system model the FMEA malfunction structure is created.
To facilitate the generation of the FMEA-function and malfunction structure from
the object-oriented system model, it is necessary to limit the variety of the means of
description available in (UML/SysML) using modeling guidelines. These guidelines

2In the following the results of a research cooperation with an automotive company will be intro-
duced which refers to the PhD of Anton Rink [6–9].
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Fig. 10 Steps and procedure
during risk analysis [7]

are the basis for the development and use of efficient transformation algorithms to
generate the structures of the risk analysis. Both the qualitative and the quantitative
risk analysis are performed by means of FMEA form sheets (see Sect. 4.1, Fig. 13)
and fault trees (Sect. 4.2, Fig. 14). Depending on the results of the analysis, measures
to optimize the control functions and the safety concept are taken in order to meet
the requirements regarding availability and safety.

4.1 Failure Mode and Effects Analysis (FMEA)

FMEA is used to analyze whether all malfunctions of the control function have
been detected in the safety concept and whether measures to avoid critical states are
available. For this purpose possible errors of a system and its control function are
registered and in the filled-in FMEA form sheet (see Fig. 13). With support of a fault
simulation, consequences of errors and their impact on a system are determined. Due
to the object-oriented structure of the system model, specific information from the
FMEA forms can be considered as attributes of the objects in the object-oriented
system model. Hence a system model which can be used for the functional design,
the creation of the safety plan, and the risk analysis is developed.

In accordance with Bertsche et al. [2] the FMEA follows five steps:

1. Creation of a hierarchical system structure out of system elements (system struc-
ture tree)

2. Description of the functions and the function structure (function structure tree)
3. Implementation of the malfunction analysis, e.g. detection of possible errors,

causes of failures and failure sequences (malfunction structure)
4. Risk evaluation in the FMEA form sheet
5. System optimization with the goal of avoiding malfunctions or reducing risks
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Fig. 11 FMEA—system structure tree showing the system structure of the frame pressure control;
objects are modeled as system elements of the system “frame pressure control”

Fig. 12 FMEA—function structure tree (of step 2, Fig. 10) showing the function structure section
of the control deviation calculation [8]

Illustration 4.1 Sample application: FMEA “pressure control” for the continuous
thermo-hydraulic particle board press.

The FMEA system structure (Fig. 11) is derived from class and object process
diagrams by depicting objects as system elements to bridge the gap between an
object oriented approach and the safety analysis with FMEA (explained later in this
illustration). Object and activity diagrams define the function structure.

Starting from the system function structure tree (Fig. 12) the malfunction struc-
ture can be determined. Figure 13 shows the completed FMEA form sheet for
the system element “comparison unit”, which can be found in Fig. 11 as a sub-
component of “controller”. The function analyzed in this particular form sheet is
called “Receive nominal pressure”, which is only one of the functions that are ful-
filled by the comparison unit. All possible malfunctions of the system are identified
and entered into the FMEA form sheet (Fig. 13). By means of a fault simulation the
failure sequences and their effects on the comparison unit are recognized. In this ex-
ample a potential failure sequence begins with the comparison unit storing the actual
pressure at too high a level. Subsequently, the pressure is assumed to be too high and
a negative control difference is calculated. A potential effect of this failure is that the
control receives a nominal pressure that is too low. If an error causes a critical state,
a high value (maximum 10) is filled into the failure severity column (S). The next
step is to check if one of the surveillance functions is available for the recognition
of the failure and to evaluate the quality the detection of the failure has. In case of
an absolute certainty that the failure is detected, the minimum value of 1 is filled
into the column “detection probability” (D). If there is a substitute strategy, which
allows avoiding the negative effects of the failure, a positive rating (low value) in
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Fig. 13 FMEA—form sheet for the function “Receive nominal pressure” of the system element
“comparison unit”

the column of occurrence probability of the failure (O) is recorded. In this example
it is possible to model the particle board press and to estimate the nominal pressure
in a simulation. Therefore the plausibility of the value can be checked, the failure
can be detected, and the substitute strategy of estimating the actual value can be ap-
plied. The weaknesses are ranked by risk priority numbers (RPN), which are derived
for each failure by calculating the product of risk importance, detection probability
and occurrence probability. Possible risk priority numbers are values between 1 (no
weakness) and 1000 (extremely critical weakness).

4.2 Fault Tree Analysis (FTA)

While FMEA is used for qualitative failure analyses, the FTA enables quantitative
analyses [3]. Thus it complements the FMEA and is especially effective when used
in combination with it. The FTA analysis is classified as a Top-Down Analysis [2].
With the FTA [21] all possible failure combinations leading to an undesirable state
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are detected. If the failure occurrence of the individual failures is known, the failure
occurrence for the considered undesirable event can be calculated. In consequence
if all of the individual failure rates are known, the failure rate of the different system
failures may be calculated. The aim of the FTA is to define the failure combinations
that lead to undesirable events and their occurrence frequency. The fault tree for
an undesirable event can be derived from the malfunction structure by extending the
cause-effect information with logical information. If a fault tree contains exclusively
OR, AND and NOT links, the frequency of occurrence of an undesirable event can
be determined with the application of Boolean algebra and probability theory. In
order to determine the probabilities of failures, the parameters of the failure behavior
must be established. The FTA is especially useful when identifying critical failure
paths. It allows in particular the consideration of the effects of multiple failures. If
an FMEA is already available, this information can be used as a basis for the FTA
as a possible form of failure [2]. In what follows, the FTA will be discussed for the
continuous thermo-hydraulic particle board press.

Illustration 4.2 FTA: “pressure control” for the continuous thermo-hydraulic par-
ticle board press.

One segment of the fault tree, that for the case of the pressure control not op-
erating regularly (chosen wording “Do_not_calculate_correct_control_deviation”),
is given in Fig. 14. In a fault tree the object name is given at the first position and
the name for the operation responsible for the undesirable event at the second po-
sition (e.g. Fig. 14: ComparisonUnit.Do_not_calculate_correct_control_deviation).
As already mentioned, individual object failures are linked by Boolean operators in
such a way that the failure occurrence can be calculated using Boolean algebra and
probability theory [20]. The occurrence of failures of the pressure control (plogic) is
calculated using the failure probabilities (p1,p2,p3,p4,p5) of the different com-
ponent failures for bus inlets, control logic, and the nominal pressure determination
(see Eq. (1)).

plogic = (1 − (1 − p1) · (1 − p2) · (1 − p3)
) · (1 − (1 − p4) · (1 − p5)

)
. (1)

The fault tree (Fig. 14) may also be derived from the technical system. If the
nominal value of the pressure cannot be calculated, for example, the cause may be
a bus problem (p3, Message was not received), the encoder not working (p2), or
a faulty configuration or programming of the unit (p1, reception of actual pressure
too high/too low). The nominal pressure cannot be estimated if the frame model
is not modeled (p5) or the actual distance (p4) is not received. The whole control
deviation cannot be calculated if both the nominal pressure is not calculated and the
estimated pressure is not available.

On the basis of qualitative (FMEA) and quantitative (FTA) risk assessment, mea-
sures to optimize system safety are initiated in a way that risks of individual failures
and probabilities of system failure do not exceed specified limits. In the approach
proposed by Rink, faults cannot be compensated according to the safety concept. If
the unavailability of a function is detected the system is turned into a safe state until
the error is corrected and the user is informed in addition. In the next section we
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Fig. 14 Fault tree for the malfunction “Do not calculate correct control deviation”

argue why this strategy is appropriate and accepted for the automotive domain, but
is not applicable to machine and production automation.

5 Coping with Faults in Production Automation Systems

After stops reached during the production process in production automation, restarts
are time consuming and not always done easily. For this reason they are executed
only when absolutely necessary, such as in situations of fire, hazard, or a long shut
down as a result of cleaning and maintenance procedures. This is the case for the
particle board press introduced in Sect. 2. Therefore, mechanisms are required to
cope with the failures of one or more subsystems, devices, or sensors, and to operate
the plant with a possible lower product quality until a regular shut down can be
scheduled.

5.1 Adaptive Control by an Agent Based Approach

An3 approach well suited to coping with failures of one or more subsystems is
dynamic reconfiguration during runtime based on adaptive control systems using
agent-oriented software. By implementing additional engineering models into the
control code a basis for adaptive behavior can be reached. In the following the agent

3In the following the results of research of Wannagat and Vogel-Heuser will be presented which
refers to [15–17].
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definition of the VDI/VDE guideline 2653 is applied: “An agent is an encapsu-
lated (hardware/software) entity with specified objectives. An agent endeavors to
reach these objectives through its autonomous behavior, in interacting with its en-
vironment and with other agents. Agents represent a modeling concept for solving
technical problems independently of a specific form of realization” [28].

A main part of the agents’ duties in the context of increasing availability of
a control system is to detect, analyze, and handle faults. In the present state of
the art, agents merely focus on instrument fault detection by using analytical re-
dundancy between different measurement points. For every real sensor, which has
functional dependencies to other sensors, we calculate additional virtual sensors
using values of neighboring real sensors. The virtual sensors are used to validate
the corresponding measurements and detect faults (parity space approach). If there
is more than one virtual or real sensor available at one measurement-point, it is
possible to detect a single fault (isolation). In principle, the virtual sensor values
will never be as precise as real sensor values, but the information is beneficial
for fault diagnosis purposes as well as for substitution. In the case of fault diag-
nosis the lack in precision may cause false alarms or a lack in sensitivity. In the
case of substituting a real sensor by a virtual one, this loss of precision is rele-
vant for closed loop controls and for the whole control strategy of the production
process. Therefore it is insufficient just to calculate virtual sensors and to substi-
tute for faulty real sensors. Additionally, the consequences of such substitutions
and the constraints of the control system have to be taken into consideration. An
agent knowledge base contains two main components—constraints and knowledge.
Constraints define the margin of the action space that is used by the agents to take
decisions. Use of basic engineering models representing knowledge about systems
allows choice of alternative means to cope with failures at a certain point within the
action space.

5.1.1 Requirements and Boundaries to Define an Action Space

The requirements defined for the agents, such as time and dependability as nonfunc-
tional requirements, are the basis for specifying the action space (Fig. 15) and for
defining the goals together with the parameters to achieve them.

In the first step, the requirements relating to contained modules, interfaces, and
connections are collected separately for each of the system views presented in
Sect. 2. Unlike the components, which can be related to more than one view, these
requirements are strictly related to their own view. The same component can be
viewed under different aspects. For example a valve is an actuator for the automa-
tion control system, it has a mechanical representation in the technical system, and it
controls the flow rate from the technical process view. This leads to two advantages:
firstly, it reduces the complexity because the requirements survey is distributed to
three views for each element and secondly, it is the first integration of the require-
ments of different views in the same element (see Sect. 3).
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Fig. 15 Boundaries of the
agent’s action space [16]

In the second step, relations between functional and nonfunctional requirements
defined in the first step need to be analyzed and linked to each other. The predefined
functions of the modules are linked to the appropriate requirements and boundaries
regardless of the three views. The result is a network of requirements and their
relations, which makes it easy for the developer to get an overview of functionalities,
requirements, and boundaries.

In the third step the developer evaluates if the desired flexibility may be reached
with the predefined boundaries, and specifies how much flexibility the agents should
have. The action space allows the agents to navigate and to achieve their goal within
the appointed boundaries. Every parameter has to be checked regarding its influ-
ence on the time delay according to real time requirements and the failure prob-
ability of its related functionality in matters of dependability. Using these rela-
tions the agents are able to achieve their goal by changing the relevant parame-
ters.

5.1.2 Diagnosis and Fault Management

To fulfill the requirements concerning the reliability of a plant, the agents have to
know the effect of their actions as well as estimate the significance of a changing
environment regarding their requirements within the whole system.

Similar to an FTA using the given modular structure, the developer is able to
specify the relationship between the functionality of a module and its sub modules
(Fig. 16). The goal is to specify the probability for correct execution of each func-
tion based on functions of the related subsystem, until the basic elements of the
control system at the bottom level are reached. In this way it is possible to calcu-
late the probability of a malfunction at the time a quality of a sensor measurement
changes. The tolerance model is similar to a fault tree, but focuses not only on the
top event, the function or the malfunction of the system and its probability, but also
on the quality similar to a QoS with which the operation will continue under the pre-
requisite of a given replacement strategy (discussed in Sect. 5.1.3). This is realized
by software agents, who implement the knowledge about the relation between the
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Fig. 16 Tolerance model combined with modular structure (boxes show module, small grey
squared boxes depict interfaces between modules)

quality of a control system element, for example the quality of the sensors’ measure-
ments, the precision of the actuators’ actions, and the functionality of a component.
This relation is used to calculate both the risk of a failure regarding the observed
changes and the effect of possible counteractions such as replacement of a sensor
by a virtual (calculated) sensor value. Each agent is able to observe all elements of
the control system and to relate the real values to the calculated values of its internal
system model.

5.1.3 The Knowledge Base

Next, a knowledge base, which allows detecting sensor failures, calculating a sur-
rogate value, and estimating the resulting precision at runtime, will be introduced.
One important point for the design of such a knowledge base is that it is easy to
design and implement in a Programmable Logic Controller (PLC) environment so
as to be calculated during runtime. A very simple and powerful notation for this pur-
pose, which is well known in the domain of automation, is the directed graph [20].
In this graph, each node represents a measurement point. It is equipped with a value
source that can be either a real or a virtual sensor. A quality value at each node de-
scribes the accuracy of the measured or calculated value. The quality value ranges
continuously from 0 to 1. The edges of the graph describe functional correlations
(f , Fig. 17) between the measurement points and represent the analytical depen-
dencies which are used to calculate virtual sensor values at runtime. The directions
of the arrows indicate sensor values that are appropriate for a substitution (Fig. 17).
In Fig. 17 on the right side, the sensors used within the quality model are shown.
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Fig. 17 Analytical dependencies of sensors in the hydraulic press in the quality model [15]

Sensor “S2_1” can be calculated, using the function “fS2” (edge) and the sensor
values “P1_1” and “S1_1”, for example. The function “fS2” expresses the depen-
dency between the thickness of the incoming material into the frame concerned (one
of the sensors s1), the pressure of the hydraulic cylinder (one of the sensors p1), and
the thickness of the outgoing material, using a spring model. The spring constant
(C, Fig. 17, bottom left) represents the elasticity of the material and depends on the
values of the actual temperature, the density, and the humidity of the wood. The
black dots are used if more than one sensor is required to calculate a virtual sensor
(Fig. 17, right).

It is possible to use virtual sensors as source for other virtual sensors and the
probability for that rises with the number of failures and corresponding substitu-
tions. The precision of virtual sensor values is possibly reduced by inaccurate mod-
els and time aspects, e.g. dead time or delays because of the underlying measure-
ment, the field bus, or the calculation of virtual sensor values in the PLC. Reduced
precision lowers the quality of the virtual sensors compared with original measure-
ments. This loss of precision is given by a quality factor q similar to QoS for a
measuring value (q , Fig. 17, right) which is bound to every arrow of the graph and
described by values between 0 and 1. It represents the decreased quality (preci-
sion) by using this calculated virtual sensor instead of the real sensor. In addition
a quality value Q (Q, Fig. 17, see QoS Sect. 3) at every node represents the pre-
cision of the real sensor itself. Therefore, the quality (precision) “q13” of a virtual
sensor replacing “S2_1” may be calculated by the precision of the real sensor qual-
ity value “QS1_1” of “S1_1” and the quality value “QP1_1” of the real pressure
“P1_1” multiplied by the loss of the quality because of the replacement represented
by “q21” as quality factor.

Furthermore, the agents use the quality value of a virtual sensor to determine the
effect on the availability of the plant operation and to compare it with the given re-
quirements and constraints. The reliability of sensor values is evident for processing
automated production systems. Although the substitution of real sensors with calcu-
lated virtual sensors increases readiness in case of partial faults, it risks the accuracy
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of the process flow. While the correctness of possible alternative strategies for static
systems is determined during development time, an agent based dynamic system
decides this during runtime. Both have to decide whether the production process
can be continued with replaced, calculated values or if it has to be suspended. The
threshold, which defines the agent’s decision, is oriented by a user defined safety
requirement for the specific part of the process or the technical system. The loss
of a sensor triggers the reconfiguration of the control behavior automatically. The
automated result may be a single parameter adjustment or an immediate shut down
of an entire plant and is characterized as dynamic reconfiguration at runtime.

The introduced concept was evaluated successfully by applying it to the particle
board press. The reconfiguration took a maximum of two PLC cycles to adjust.
Further information about the application is given in [17].

6 Food for Thoughts

There is still a great need for engineering support for adaptive control systems in
manufacturing, to increase dependability as well as their interaction with the human
as the operator, and by that adaptable behavior for individuals. Our contributions in
the future will focus on these tasks. Besides this, a lack in visualization of adaptive
control systems is clearly apparent and needs to be covered in future research. As
the acceptance of any new technology is based on transparency and trust, we need to
find appropriate visualization patterns to open the black box of intelligent behavior
for operators, to gain acceptance and trust. On the other hand we need to provide
automatic models derived from engineering data to reduce modeling effort for in-
dustrial application. This is another challenging application-oriented research topic,
because it is strongly related to different domain-specific models in different tools
and their interfaces.

7 Summary

The introduced methods and measures of an integrated safety and functional analy-
sis, including the different views in a production automation system, help to reduce
time to market and cost, as mentioned in the introduction. There is still a lack of
meta models for the different disciplines and domains as well as in a support of inte-
grating different models under the constraint of changes in variants and versions. In
tool support some deficiencies must be accepted as well, but the basic concepts are
available, which provide the foundation for necessary improvements. We have intro-
duced three first steps on the road to an integrated modeling of safe and dependable
complex systems: the cross-disciplinary modeling with SysML, a first approach of
integrating safety and functional modeling, and finally the adaptive behavior based
on basic engineering models to support dynamic reconfiguration of manufacturing
systems during runtime.
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Chapter 14
Information Technology Risks:
An Interdisciplinary Challenge

Michael Schermann, Manuel Wiesche, Stefan Hoermann,
and Helmut Krcmar

This chapter introduces students to general concepts and theoretical foundations of
managing risks induced by developing and using information technology (IT risks).
This chapter first provides an overview of the broad nature of IT risks. We intro-
duce categories of IT risks to illustrate its diverse and heterogeneous causes and
consequences as well as possible strategies required to balance the risks and ben-
efits of information systems. Second, we illustrate the interdisciplinary challenges
that come with managing IT risks on the most researched form of IT risk, namely IT
project risks. We discuss the subjectivity of IT risks, various IT risk assessment tech-
niques, outline the process of managing IT project risks, and introduce the dynamics
of IT project risks. Third, we present five perspectives on IT risks as a fruitful lens
to structure the variety of topics in IT risk research. Using these five perspectives as
a framework, we present the most frequently cited IT risk research papers and the-
ories. We conclude with an IT risk research agenda that posits worthwhile avenues
for advancing the understanding and control of IT risks.

Keywords Information systems · IT risk · IT risk management · IT projects ·
Information technology

The Facts

• As information technology (IT) becomes ubiquitous, IT risks become an issue of
all stakeholders of an organization. The perspective of the stakeholder determines
the impact and magnitude of IT risks. Hence, there is no objective measure for IT
risks.

• IT risks come into effect when IT impairs the goals of an organization. For in-
stance, a faulty hard disk is not an IT risk per se until a travel agent is no longer
able to book air flights.
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• The term “IT risk” covers a wide range of issues such as: hacking attacks due
to insecure software, loss of revenues due to faulty hardware, legacy systems that
make organizations dependent on outdated hardware and software, customers that
do not trust electronic commerce websites.

• IT risk research and practice have developed a variety of risk analysis techniques
to cover the range of potential IT risks. Checklists help to identify recurring IT
risks. Delphi studies support the prioritization of IT risk mitigation measures.
Benchmarks illuminate shortcomings in running data processing centers.

• IT risks are bound to a specific situation. A malfunctioning online shop may not
have a huge impact at 2 a.m. but consequences may be severe in the weeks before
Christmas.

• IT and thus IT risks change at a fast-paced rate. Data leaks due to lost mobile
phones or laptops were not an issue several years ago. IT risks are characterized
by an arms race between IT risks and mitigation solutions. Again and again, on-
line banking solutions need new security measures.

• The most researched IT risks are IT project risks; that is, risks that occur dur-
ing the development of new software, hardware, and IT services. Thus, IT project
risks serve as an exemplary illustration for the interdisciplinary challenges of han-
dling IT risks.

• IT project risks include technical, social, and organizational aspects. IT projects
develop new technology that have unintended side effects. The projects’ progress
is impaired by weak customer engagement. Project stakeholders may have con-
flicting views on the project requirements, which often result in extensive com-
pletion delays.

• IT risks propagate through organizations. The strategic goal of reducing expen-
ditures often forces organizations to outsource their IT to IT service providers.
The service provider upgrades the outsourced information systems resulting in
incompatible interfaces. This lack of control affects the IT enablement of critical
business processes and raises new requirements that delay strategic IT projects.
Finally, the daily IT operations are impaired by communication barriers and un-
expected additional efforts.

• Reflecting the diverse nature of IT risks, IT researchers apply theories from
many disciplines. IT investment decisions are grounded in decision-making the-
ory while security risks are resolved by transferring methods from engineering
disciplines.

1 Introduction

Information systems are entanglements of information technology (hardware and
software), people, and organizations. Our fast-changing and technologically pro-
gressing economies, societies, and organizations result in complex risks induced by
information technology (IT risks) that we are just beginning to understand [7]. The
following examples illustrate the complexity of the nature of IT risks:
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• Using the wireless Internet connection, the CEO of an international corporation
is finalizing an important email on an upcoming merger in his hotel room. How-
ever, being jetlagged, he forgets to establish a secure connection and sends the
email over the publicly accessible Internet connection of the hotel. A journalist
following the CEO because of rumors about the merger eavesdrops on the Inter-
net traffic of the hotel and intercepts the CEO’s email. The content of the email
circulates to journalists, analysts, and competitors causing the multi-billion dollar
merger to fail.

• The social network Facebook collects information on the private and professional
lives of its users to market advertising space on the Facebook platform. However,
several privacy issues and concerns have heightened the awareness of potential
risks from using Facebook on a private or organizational level. Organizations that
prohibit the use of Facebook at the workplace must deal with the efforts their
employees use to circumvent technological measures of blocking Facebook.

• The project of constructing a nation-wide billing system in Germany for toll roads
that involved satellite-based vehicle tracking was delayed by almost three years
and far exceeded the planned budget. Mal-specified and faulty communication
and privacy concerns raised by non-governmental agencies caused excessive de-
lays, budget overruns and legal actions. Today, the system is operating very ef-
fectively and other countries are interested in adopting it.

Managing risks induced by developing and using information systems has been
an on-going challenge for practitioners and researchers alike [8]. The increasing im-
portance of information systems in every aspect of our lives makes IT risk research
a highly relevant and fruitful ground for interdisciplinary research. This chapter
presents an overview of two important streams of IT risk research. In the first stream,
researchers categorize important sources of IT risks, such as IT projects or IT oper-
ations [9]. In the second stream, researchers study the important steps of managing
IT risks [10]. We illustrate both streams of IT risk research using the example of
IT project risk management. Next, we sketch the theoretical foundations of IT risk
research. The chapter concludes with a presentation of our thoughts on an agenda
for interdisciplinary IT risk research.

2 Sources of IT Risks: Where Do IT Risks Come from?

Figure 1 shows important categories of IT risks as they occur in the various stages
of interaction between information systems and business processes. In general, in-
formation systems provide the most value if they are aligned with the strategic ob-
jectives of the organization.

Strategic IT alignment risks originate from situations and events in which in-
formation systems do not align with the strategic objectives of the organization.
A prominent example for strategic alignment risk stems from the banking industry.
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Fig. 1 Sources of IT risks [12]

The advent of mobile banking has drastically changed customers’ banking behavior.
Most banks struggled with the subsequent business processes because the underly-
ing information systems were inflexible and could not adequately serve these busi-
ness processes. Typical banking information systems were designed with the highest
security standards. This resulted in information systems that were sealed off from
the outside world. Customer interaction with these systems was unthinkable. Hence,
banks were forced to invest significant sums in the renewal of their information sys-
tems. Other strategic alignment risks stem from using (at the time) new technology
to support business processes such as IT for e-commerce, financial risk manage-
ment, support in decision-making, and knowledge management. New information
technologies are associated with high uncertainty about the actual capabilities, un-
intended implications, and their potential business value. For instance, during the
rise of e-commerce technologies, risks stemmed from a lack of understanding on-
line consumer behavior [11]. Similar risks are induced by electronic data exchange
between organizations and strategic information processing [12].

In contrast to poor strategic decision making, IT portfolio risks refer to situations
in which the IT department makes bad decisions about what kind of IT should be
used and which information systems are necessary to enable business processes. For
instance, portfolio risks often arise from outsourcing IT functions [13]. During out-
sourcing endeavors, organizations usually switch to the information systems of the
IT service providers. If future requirements cannot be mapped to these information
systems, organizations need to invest in expensive workarounds with poorer perfor-
mance. For inter-organizational systems, portfolio risks become even more complex
and demand cooperation on several levels. This means, organizations need to agree
on a shared set of information technologies to establish value chains. More funda-
mental portfolio risks include IT investment decisions and a missing fit between IT
and the corporate culture [14]. For example, while some organizations easily include
social networks in their corporate culture, others struggle with deriving value from
it.

IT operations risks describe undesired events from a lack of availability, integrity,
or confidentiality. Operations risks stem from the failure or misuse of IT [15]. Large-
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scale invasions by viruses prevent employees from conducting even the most basic
duties such as answering emails or receiving purchase orders. Operations risks can
be further divided into two categories: new and unknown risks and known but un-
solved risks. In known risks, the degree of uncertainty is relatively low and the
number of risks occurring is relatively high. This makes it easier to quantify prob-
ability and impact of the considered risks. New and unknown risks usually occur
with the emergence of new technologies.

IT project risks describe undesired events during designing, developing, and im-
plementing new information systems [16, 17]. For instance, often stakeholders are
not able to define a stable set of requirements. Even after beginning the program-
ming of the information systems, stakeholders change requirements. This results in
additional programming efforts that delay project completion. We discuss project
risks in detail later in the chapter.

3 Steps of IT Risk Management: How Can One Handle IT
Risks?

The goals of IT risk research are to understand what causes IT risks, what are the
consequences of IT risks, and how does one deal with IT risks in the most effec-
tive manner. Figure 2 illustrates five important steps in handling IT risks based on
the ‘risk thermostat’ by Adams [18] and provides a map for the various research
areas on IT risk management. The idea of presenting risk management as a ‘ther-
mostat’ highlights that the activities of risk management (risk identification, risk
assessment, risk mitigation, etc.) are highly intertwined and should not be perceived
as an ordered process (though it is being presented that way in most of the litera-
ture). Furthermore, the ‘thermostat’ illustrates that risk mitigation activities do not
only affect the original perception and assessment of risks but also the originally
stated objectives [18]. Hence, risk management should be seen as a tool to balance
objectives and risk with appropriate risk mitigation interventions.

For the first step in the process of risk management, researchers study IT failures
to understand their specific causes. To do so, they develop explanations of why such
failures occur and identify indicators that allow practitioners to identify the asso-
ciated IT risks as early as possible [17]. For instance, delayed and cost-exceeding
software development projects occur from employing immature information tech-
nologies. Here, an early indicator would be difficulty in procuring project staffing,
i.e., the project manager is not able to find software developers that have experience
with the particular technology. Unsecure software often originates in development
errors or misuse of information systems [15].

A large body of IT risk research focuses on advancing our understanding of and
capabilities for IT risk assessment. This literature adopts a general definition of risk
from other disciplines [19]. IT risks are events with a probability of occurrence
and with either an established or estimated negative impact on the objectives of
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Fig. 2 Steps of IT risk
management [18]

stakeholders [20–22]. The challenge with IT risk assessment lies in the subjectivity
of IT risks: the stakeholders’ perspective determine the impact and the magnitude
of IT risks. Hence, it is difficult to establish an objective measure for IT risks.

For the third step in the process of risk management, IT risk research investi-
gates how organizations manage their risk appetite through various levels of IT risk
propensities that control behavior and decision-making. This stream of research fo-
cuses on the integration of risk management in the organization’s strategy or strate-
gic decisions on IT through analytical systems or long-term planning and decision
support systems. In general, researchers study the decision makers’ risk taking be-
havior [13, 14].

For the fourth step in the process of risk management, IT risk research studies the
relationship of risk behavior and the objectives of IT endeavors. IT risks come into
effect when IT impairs the objectives of an organization. For instance, a faulty hard
disk is not an IT risk per se until it hinders a travel agent from booking flights. This
literature views IT risks as variations in (often uncertain) outcomes of IT endeavors
[11, 23, 24].

The fifth step in the process of risk management, IT risk mitigation, is about the
design, implementation, and operation measures that help reduce the probability or
the impact of IT risks. Here, the major challenges stem from integrating these mea-
sures in the business processes. Usually, risk mitigation measures such as entering
passwords or using encryptions are perceived as burdensome. Hence, raising the se-
curity awareness and ensuring compliance with risk mitigation measures is pivotal
in this step of handling IT risks [15].

In sum, the five steps of IT risk management present important fields for study-
ing risks in IT and highlight the intertwined and complex nature of IT risk. The
structure of Fig. 2 highlights the dynamics of IT risks and risk management. Effec-
tive risk mitigation activities are highly dependent on contextual factors. The variety
and interplay between the four perspectives illustrates the challenges of understand-
ing and establishing effective risk mitigation mechanisms in organizations [25]. In
the next chapter, we will illustrate these steps using the example of IT project risk
management.
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4 The Example of IT Project Risk Management

IT project risk management is the most prominent stream of research in IT risk re-
search. Hence, herewith follows an in-depth presentation on the state of knowledge
on this topic.

Identifying Causes and Explanations of Failure: The Subjectivity of IT Project
Risk The research to date on project failures is inconclusive. The well-known and
widely cited Standish Group [26] report that around 68 % of the sampled IT projects
are considered as failures (24 %) or challenged (44 %) in regards to either budget,
completion schedule, or scope. Other researchers report different results. Sauer et
al. [27], for example, find that about 67 % of the analyzed projects met budget,
schedule and scope expectations. Based on the common understanding that risk
denotes the probability and the loss associated with an unsatisfactory outcome (e.g.,
[21]), the question arises, ‘What exactly renders an outcome unsatisfactory?’. The
answer to this question largely depends on the respective stakeholder’s expectation
or objectives concerning the project. Stakeholders typically comprise the project
manager, the project team members, the customer, the user, and the project sponsors.
Depending on which perspective one takes, objectives, unsatisfactory outcomes, and
thus risks, can vary. For instance, a software development project manager might
strive for schedule, budget and scope objectives whereas the customer considers a
high user acceptance rate more important. Similarly, for the project manager, an
unsatisfactory outcome might be schedule and budget overrun or scope constraints
(e.g. unstable requirements) while for the customer unsatisfactory outcomes refer to
anything that impedes user acceptance (e.g. an unintuitive graphical user interface).
In sum, the multidimensional nature of project success drives our understanding of
risk [28]. The perspective of stakeholders determines the impact and magnitude of
IT risks.

Assessing the Technical, Social, and Organizational Domains of IT Project
Risks The literature describes project risks by grouping them according to com-
mon characteristics [8]. This grouping enables researchers to establish checklists
of common risks. Although discussed controversially in literature, such checklists
provide an easy and low cost approach to identifying risks in a project and are thus
popular in research and practice. Table 1 shows a sample of existing studies on IT
project risks.

Risks in IT projects can be grouped into three risk domains: the social subsys-
tem, the technical subsystem, and the organizational subsystem. While the latter
domain refers to the project management capabilities of the project team and the
planning/control techniques applied by the project manager, the social subsystem
domain comprises an unstable or highly political social context and users unable or
not willing to contribute to project success. The technical subsystem domain cap-
tures risks related to unstable requirements, high project complexity and new or
unfamiliar technology.

Figure 3 shows empirical evidence on how IT project risks affect the suc-
cess of the project in terms of process performance (How well does the project
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Table 1 Common risks in IT projects ranked by importance [30]

Rank Schmidt et al. [9] Kappelman et al. [29] Hoermann et al. [30]

1 Lack of effective project
management skills

P Lack of top management
support

S Inadequate technical
infrastructure

T

2 Lack of top management
commitment

S Lack of documented
requirements

P Customer
expectations

S

3 Lack of required skills in
project personnel

P Weak project manager P Core development
dependencies

T

4 Not managing change
properly

P No change control process
(change management)

P Complex system
architecture

T

5 No planning or
inadequate planning

P No stakeholder involvement
and/or participation

S Post go live
approach not defined

P

6 Misunderstanding the
requirements

P Ineffective schedule planning
and/or management

P Customer financial
obligations

S

7 Artificial deadlines P Weak commitment of project
team

P Expected
performance issues

T

8 Failure to gain user
commitment

S Communication breakdown
among stakeholders

S Customer inability
to undertake project

S

9 Lack of frozen
requirements

P Team members lack requisite
knowledge and/or skills

P Non-T&M payment
terms

S

10 Lack of people skills in
project leadership

P Subject matter experts are
overscheduled

P Functionality gaps T

T: Technical subsystem, S: Social subsystem, P: Project management subsystem

Fig. 3 Effects of IT risk domains on project performance [31]
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proceed?) and product performance (How well does the result match the objec-
tives?).

Mitigating IT Projects Risks: Towards Standards of IT Project Risk Man-
agement Most authors acknowledge risk management as an integral part of
IT projects, especially when it comes to managing large and complex projects.
Boehm [21] introduces the concept of risk exposure (defined as probability and
impact of an unsatisfactory outcome) to software development projects and charac-
terizes risk management as a process comprising the six steps: risk identification,
risk analysis, risk prioritization, risk management planning, risk resolution, and risk
monitoring (see Fig. 4).

Instead of describing the risk management process in detail, Lyytinen, Mathi-
assen, and Ropponen [16] provide a framework to evaluate project risk management
approaches as a distinct form of organizational behavior. The framework comprises
three distinct environments (the management environment, the project environment,
and the system environment), which are linked by the (risk) management process
and the development process and help to organize risk management activities in a
systematic and comprehensive way.

Understanding the Risk Propensity: The Dynamics of IT Project Risks In ad-
dition to the question which risks appear in IT projects and how can these risks be
organized, the question of when they appear and how they evolve is also of substan-
tial interest to IT project managers and researchers. Alter et al. [20] discuss several
potential limitations of extant research on IT project risk, one of them being the ‘fre-
quent omission of the temporal nature of risk’. As the authors state, risks are likely
to have different temporal patterns; not only their importance but also the points of
time at which they occur can vary over the project life cycle.

In an earlier study, Alter et al. [8] studied the temporal aspect of IT project risks
and suggested that linking them to project phases and consequently adapting project
risk management increases the likelihood of successful IT projects. The authors
identify eight risks and allocate them to seven project phases depending on when
their effects become apparent. The identified risks include: non-existent or unwilling
users; multiple users and designers; disappearing users, designers or maintainers;
inability to specify the purpose or usage pattern in advance; lack or loss of support;
lack of prior experience with similar systems; inability to predict and cushion the
impact on all parties; and technical problems or cost-effectiveness issues. Alter et
al. [8] map these risks to particular project phases and propose several risk-reducing
strategies.

In a more recent study, Gemino et al. [32] introduce a temporal model of IT
project performance that classifies IT project risks into a priori risks and emer-
gent risks. While the a priori risks are associated with structural elements of the
project and with knowledge resources available to the project team, emergent risks
denote deficiencies in organizational support or result from the volatility of projects.
A project manager might estimate a priori risks before the start of the project; emer-
gent risks only become apparent during particular project phases. Using structural
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Fig. 4 Project risk management [21]
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Fig. 5 The temporal model of IT project performance [32]

equation modeling, the authors show that their model offers an improved explana-
tory power over traditional models of performance, partly resulting from the tempo-
ral perspective on IT project risks (see Fig. 5).

Safeguarding the Organizations’ Objectives: The Benefit of IT Project Risk
Management The benefits of project risk management are difficult to express in
financial or other quantitative terms [33]. This means that practitioners of project
risk management usually need to justify any effort associated with risk management.
Other stakeholders often perceive risk management as an effort that comes on top
of an already heavy operational workload. Subsequently, they try to resist or even
avoid risk management. A considerable amount of research attempts to provide an
empirical verification of the benefits of project risk management (e.g. [17, 24, 31]).
Barki et al. [34], derive a contingency model, and hypothesize that project success
is affected by the fit between the project’s risk profile and its risk management pro-
file. These authors conducted a survey of IT project managers to assess 75 Canadian
IT projects in terms of system quality and cost gap (constructs for project success),
as well as internal integration, user participation, and formal planning (constructs
for the risk management practices). A project’s risk exposure can be assessed us-
ing Barki et al.’s [23] instrument which comprises 23 risk variables. Analysis of
a correlation between the degree of fit between a project’s risk profile and its risk
management profile and the performance measures indicates that projects that better
adapt to their degree of risk exposure usually perform better. In a methodologically
quite different action research approach, Baskerville and Stage [35] apply risk anal-
ysis to improve the managerial control over prototyping projects. By defining risks,
specifying their consequences, assigning priorities, and selecting resolution strate-
gies, the authors suggest that risk management can help improve the communication
among users and developers, point out difficulties in maintaining the original project
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Table 2 The 10 most-cited publications on IT risk

Citation Discipline Domain Focus

Boehm, 1991 [21] CS IT projects Risk management

Jarvenpaa et al., 2000 [38] IT E-commerce Consumer trust

McFarlan, 1981 [36] IT IT projects Risk management

Alter and Ginzberg, 1978 [8] IT IT projects Risk models

Pavlou, 2003 [39] IT E-commerce Consumer trust

Charette, 1989 [22] CS IT projects Risk management

Barki et al., 1993 [23] IT IT projects Risk factors

Nidumolu, 1995 [24] IT IT projects Risk models

Keil et al., 1998 [37] IT IT projects Risk factors

McKnight et al., 2003 [40] IT E-commerce Consumer trust

CS = Computer science; IT = Information systems research

plan, and get a clearer picture on the status of the project. Using this approach, the
authors reported few if any disruptions from the identified risks during the course of
the project.

5 Theoretical Foundations of IT Risk

In this section, we discuss the most-cited publications as of April 2011 as a starting
point for students who wish to explore IT risk research. On the one hand, reflecting
the diverse nature of IT risks, IT researchers apply theories from many disciplines.
On the other hand, the field of IT risk research is still very young and thus lacks
original theories. This makes IT risk research a very promising ground for interdis-
ciplinary research. The following sections serve as starting points to IT risk research.

Starting Point: The 10 Most-Cited Publications on IT Risk One of the most
prominent publications on IT risks originates from the discipline of Computer Sci-
ence (CS) (see Table 2). Boehm’s [21] publication on risks in software development
practices provides risk examples, recommendations for best practice, and principles
for effective risk management to prevent software project disasters. Other pieces
of research address the separate and aggregated assessment of project risks to en-
sure proper decision-making [36] and strategies for coping with uncertainty in man-
agement information systems development projects [8, 22]. Extensive research ex-
ists on the effects of coordination mechanisms and risk drivers on project perfor-
mance [24], the detailed elements, which influence failure in developing systems
(tasks, structure, technology, and actors), and lists of software risk factors and mit-
igation strategies for specific risks [23]. In the field of risk factors, IT project re-
search concentrates on the effects of risk management and environmental factors on
risk components, determination and prioritization of risk lists in IT projects [37].
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Table 3 Most-cited theories in IT risk research

Citation Domain Topic

Williamson,
1979 [41]

Transaction
cost economics

Transaction costs vary for firms, markets, and
contractors depending on situational setting

Mayer et al.,
1995 [44]

Trust Propose a model of antecedents and outcomes of trust,
incorporating trustor, trustee, and the role of
uncertainty

Boehm, 1988 [45] Software
development

Proposes a spiral model for software development
which consists of four phases of activities and
incorporates elements of specification- and
prototype-driven processes

Davis, 1982 [46] Technology
acceptance

Develops strategies for determining requirements for
IT development on both an organizational and
individual level

Grover et al.,
1996 [43]

Outsourcing Determine the importance of service quality and
partnership within outsourcing relationships

DeLone and
McLean, 1992 [42]

IT Success Propose an integrated model of information systems
success, including the impact of system quality and
information quality on organizations

Ang and Straub,
1998 [47]

Outsourcing Identify the economic determinants of IT outsourcing
to incorporate outsourcing decisions in the strategy of
an organization

Ganesan, 1994 [48] Buyer-seller
relationships

Finds mutual dependence and trust as determining
factors for marketing endeavors under a given timely
horizon

Zucker, 1986 [49] Trust Discusses processes, contingencies, and institutions as
central elements of trust production

Zmud, 1986 [50] Software
development

Develops an approach for staffing, planning, and
controlling software development

Akerlof, 1970 [51] Buyer-seller
relationships

Discusses the role of information uncertainty regarding
quality heterogeneity in buyer-seller relationships

March and Simon,
1958 [52]

Organization
theory

Discuss the motivational and affective aspects of
human behavior, and cognition processes in
organizations

The second area of research concentrates on the role of IT for on-line trans-
actions. Existing research provides various perspectives on the role of consumer
trust in e-commerce transactions. Research provides four high-level constructs: dis-
position to trust, institution-based trust, trusting beliefs, and trusting intentions for
developing and empirically validating measures for a multidisciplinary and multi-
dimensional model of trust in e-commerce [40]. Research also exists on the role of
organizational size and popularity on trustworthiness and risk perception [38], and
intention to transact and on-line transaction behavior as key drivers for engaging
consumers in on-line transactions [39].

Starting Point: The Core Theories of IT Risk IT risk research is grounded in
an interdisciplinary set of theories from organizational behavior, management, and
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IT. Examples of such theories are thoughts on transaction cost economics which
propose: transaction costs vary for firms, markets, and contractors depending on the
situational setting [41], IT success is a multi-dimensional construct including influ-
encing factors such as system quality and information quality [42], and the impor-
tance of service quality and partnership within outsourcing relationships [43]. Such
theories represent the historical development of IT as a socio-economical discipline.
Table 3 provides an overview of the most-cited theories.

6 Towards Interdisciplinary IT Risk Research

We return to the examples given in the introduction to illustrate the multi-
dimensional character of IT risks. The impact of IT and the associated risk are
continuously produced and reinterpreted on all levels of society. In the first ex-
ample, the CEO chose convenience over security by sending confidential emails
over an unsecured network. Through deliberately ignoring security advice, the CEO
renders as useless the risk mitigation strategies of his company. In his work set-
ting at a hotel, the risk of eavesdropping conflicted with achieving his objective,
which was to communicate a message intended to be received by a specific, tar-
geted group.

Facebook accumulates mass data through continuously adding new functionality,
such as geo-coding of messages, and people begin using it in unanticipated ways,
such as organizing political uprisings. Hence, governments and institutions have be-
gun to criticize Facebook because of either privacy concerns or a sense of loss of
control. Despite any real or perceived issues of privacy, people and organizations in-
creasingly use Facebook to communicate. Similarly, appropriate mitigation strate-
gies are the temporary result of agreement among many stakeholders within and
across an organization. In the case of the billing systems for road tolls, the project
should be considered a total failure according to typical project success measures.
However, the steady governmental income and the ease of use of the system on an
organizational level have led to reinterpretations of the project. In light of the sys-
tem’s success, even the privacy concerns on a societal level took a back seat in the
public discussion.

To cover these aspects of IT risks, a multi-disciplinary body of theory is nec-
essary. Therefore, we identified and reviewed publications on risk outside of the
IT discipline. We analyzed these publications using qualitative data analysis and
present these central publications on risk and discuss their potential for advancing
IT risk research.

What Are Elements of IT Risks? Other disciplines discuss the fundamental el-
ements of risk in great detail. For instance, Kahneman and Tversky ([53], cited
572 times per year) theorize about biases and the role of heuristics in individual risk
perception. On a societal level, Beck ([54], cited 592 times per year) analyzes the
structures and social systems of communicating risks as well as reaching societal
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consensus on risks. Still, research on the elements of risks in information systems
provides promising ground for advancing a commonly shared understanding of IT
risk. This issue is highlighted by the fact that no established and commonly shared
definitions of “IT risk” exist [20].

What Are Measures of IT Risks? Measures of risks are an enduring topic in
other disciplines. Artzner et al. ([55], cited 226 times per year) develop risk mea-
sures for financial markets. Similarly, Sharpe et al. ([56], cited 169 times per year)
measure the effect of adding assets to a financial portfolio. By contrast, Slovic
([57], cited 142 times per year) explores contortions in measuring risk perception
in groups. Kahneman and Tversky ([53], cited 572 times per year) show that utility
is an inappropriate measure for risks. Although many authors question the applica-
bility of financial risk measures to IT risks [58], some IT authors show their appli-
cability in the domains of contract portfolios of IT services [59]. The research of
Slovic [57] and Kahneman and Tversky [53] provides valuable insights into mea-
suring qualitative risk as it is often suggested in the IT project management litera-
ture.

What Are Acceptable IT Risks? Given limited resources for risk mitigation, an
important challenge in risk management is determining acceptable levels of risk.
Here again, other disciplines provide promising trains of thought. Jorion ([60], cited
206 times per year) introduces the value at risk measure to determine acceptable
levels of risk in the financial domain. Criticism against transferability to other do-
mains has been expressed [58]. However, IT researchers have begun to explore the
use of value of risk to determine acceptable levels of project risks [61]. Research on
the social acceptability of risks offers valuable insight on risk. Douglas ([62], cited
148 times per year) explores the collaborative interpretation of acceptable risks by
diverging stakeholders. IT researchers increasingly argue that strategic IT decisions
under risk, successful IT projects, and collaboration risks in IT need to evolve from
a single dimensional (shareholder) perspective to a multi-dimensional (stakeholder)
perspective. Using the body of knowledge on risk research in sociology and thoughts
on acceptable risk could provide a fresh perspective and help to develop theories
with potential to bring about significant progress in risk research in IT.

What Are the Benefits of Risky Behavior with IT? Knight ([19], first edition
from 1921), has been cited 732 times per year across disciplines, which makes
the publication one of the fundamental and most-influential publications on risk.
Knight’s [19] main argument is that coping with unknown risks determines the suc-
cess of economic organizations. Thus, organizations that mitigate risks effectively
are able to allocate more resources to dealing with uncertain issues. Zuckerman
([63], cited 483 times per year) explores the psychological mechanisms for taking
risks. His view provides a fresh perspective on risk for the IT discipline where risk
is commonly associated with negative effects, failures, and loss (e.g. [23]). Beck
([64], cited 170 times per year) analyzes the potentials of transparent and open soci-
etal processes that construct shared understanding of risk and uncertainty. Research
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in IT could fundamentally benefit by incorporating the notion of uncertainty in risk
research. This would shift the focus from risk exposure as a basis of decision mak-
ing to situations where the probability distribution of a random outcome is unknown.
Measures could be developed to cope with new and unknown risks effectively, such
as through early warning systems. Unfortunately, many risk incidents incorporate a
high degree of uncertainty and often lack the necessary number of empirical inci-
dents to soundly predict the underlying distribution.

In sum, this chapter provides an overview of IT risk research, outlines the existing
body of knowledge on IT risk research, and identifies promising areas for future
research. With information systems becoming ubiquitous, IT risks permeate every
aspect of life and effective risk mitigation increasingly requires an interdisciplinary
approach.

7 Food for Thought

• Collect IT risks from newspapers and press releases. Identify what caused the IT
risk, what mitigation activities where taken, and what was the damage or loss of
the project.

• Consider the case of a faulty airline check-in system that was not online for a day
and a half. The faulty system caused quite a stir among customers and the press
but an analysis two months after the incident showed that the actual damage was
way below €250,000. Discuss and develop an explanation.

• Discuss the statement of a CIO of a major corporation: “IT risks are a daily issue
but without IT risks I would be afraid we would be behind our competition”.

• Discuss the case of the billing systems for road tolls. First, stakeholders, press,
and public opinion considered the project to be a total failure. Two years after
the project was completed, the steady incomes on the governmental level as well
as the system’s ease of use have led to reinterpretations of the project. Today the
system is being exported to other countries.

• Develop an IT risk assessment for the risk of hackers entering the billing system
of a large online shopping system and stealing 100,000 sets of credit card infor-
mation. Develop the risk assessment from the perspective of a person affected
by this incident and from the perspective of the provider of the online shopping
systems.

8 Summary

To operationalize the advancement of IT risk research, we first conceptualize three
levels of research inquiry as one dimension of a research agenda. On the individ-
ual level, risk research focuses on the mechanisms of risk perception and the sub-
jective assessment of risks. On the organizational level, risk research focuses on
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Fig. 6 Starting points for interdisciplinary IT risk research

managing risks as a function to achieve organizational goals. On a societal level,
risk research focuses on the social construction processes that lead to either con-
sensual or conflicting norms and practices for coping with risks. The other dimen-
sion of the research agenda consists of the four bodies of theoretical foundations
of risk research, which we discussed above. Figure 6 shows the research agenda
along with seminal publications as starting points toward interdisciplinary IT risk
research.

References

Selected Bibliography

1. S. Alter, S. Sherer, A general, but readily adaptable model of information system risk. Com-
mun. AIS 2004(14), 1–28 (2004)

2. H. Barki, S. Rivard, J. Talbot, Toward an assessment of software development risk. J. Manag.
Inf. Syst. 10(2), 203–225 (1993)

3. R. Charette, Software Engineering Risk Analysis and Management (Multiscience Press, New
York, 1989)

4. R.K. Rainer Jr., C.A. Snyder, H.H. Carr, Risk analysis for information technology. J. Manag.
Inf. Syst. 8(1), 129–147 (1991)

5. D.W. Straub, R.J. Welke, Coping with systems risk: security planning models for management
decision making. MIS Q. 22(4), 441–469 (1998)

6. L. Wallace, M. Keil, A. Rai, How software project risk affects project performance: an in-
vestigation of the dimensions of risk and an exploratory model. Decis. Sci. 35(2), 289–321
(2004)

Additional Literature

7. M. Wiesche et al., Classifying information systems risks: what have we learned so far? in 46th
Hawaii International Conference on Systems Science (HICSS 2013), Maui, HI, USA (2013)



404 M. Schermann et al.

8. S. Alter, M. Ginzberg, Managing uncertainty in MIS implementation. Sloan Manag. Rev.
20(1), 23–31 (1978)

9. R. Schmidt et al., Identifying software project risks: an international Delphi study. J. Manag.
Inf. Syst. 17, 5–36 (2001)

10. J.R.K. Rainer, C.A. Snyder, H.H. Carr, Risk analysis for information technology. J. Manag.
Inf. Syst. 8(1), 129–147 (1991)

11. P.A. Pavlou, D. Gefen, Psychological contract violation in online marketplaces: antecedents,
consequences, and moderating role. Inf. Syst. Res. 16(4), 372–399 (2005)

12. M. Junginger, Wertorientierte Steuerung von Risiken im Informationsmanagement (Univer-
sität Hohenheim, Stuttgart, 2004)

13. C.L. Iacovou, R. Nakatsu, A risk profile of offshore-outsourced development projects. Com-
mun. ACM 51(6), 89–94 (2008)

14. M. Benaroch, Y. Lichtenstein, K. Robinson, Real options in information technology risk man-
agement: an empirical validation of risk-option relationships. MIS Q. 30(4), 827–864 (2006)

15. D.W. Straub, R.J. Welke, Coping with systems risk: security planning models for management
decision making. MIS Q. 22(4), 441–469 (1998)

16. K. Lyytinen, L. Mathiassen, J. Ropponen, A framework for software risk management. J. Inf.
Technol. 11(4), 275–285 (1996)

17. J. Ropponen, K. Lyytinen, Can software risk management improve system development: an
exploratory study. Eur. J. Inf. Syst. 6(1), 41 (1997)

18. J. Adams, Risk (Routledge, Oxford, 1995)
19. F.H. Knight, Risk, Uncertainty and Profit (BeardBooks, Washington, 2002)
20. S. Alter, S. Sherer, A general, but readily adaptable model of information system risk. Com-

mun. AIS 2004(14), 1–28 (2004)
21. B. Boehm, Software risk management: principles and practices. IEEE Softw. 8(1), 32–41

(1991)
22. R. Charette, Software Engineering Risk Analysis and Management (Multiscience Press, New

York, 1989)
23. H. Barki, S. Rivard, J. Talbot, Toward an assessment of software development risk. J. Manag.

Inf. Syst. 10(2), 203–225 (1993)
24. S. Nidumolu, The effect of coordination and uncertainty on software project performance:

residual performance risk as an intervening variable. Inf. Syst. Res. 6(3), 191 (1995)
25. M. Schermann, Risk Service Engineering: Informationsmodelle für das Risikomanagement

(Gabler, Wiesbaden, 2011)
26. The Standish Group, CHAOS Summary for 2010 (The Standish Group, Boston, 2010)
27. C. Sauer, A. Gemino, B. Reich, The impact of size and volatility on IT project performance.

Commun. ACM 50(11), 79–84 (2007)
28. A. Shenhar et al., Project success: a multidimensional strategic concept. Long Range Plan.

34(6), 699–725 (2001)
29. L. Kappelman, R. McKeeman, L. Zhang, Early warning signs of IT project failure: the domi-

nant dozen. Int. J. Proj. Manag. 23, 31–37 (2006)
30. S. Hoermann, M. Schermann, H. Krcmar, Towards understanding the relative importance of

risk factors in IS projects. A quantitative perspective, in 18th European Conference on Infor-
mation Systems, Pretoria, South Africa (2010)

31. L. Wallace, M. Keil, A. Rai, How software project risk affects project performance: an in-
vestigation of the dimensions of risk and an exploratory model. Decis. Sci. 35(2), 289–321
(2004)

32. A. Gemino, B. Reich, C. Sauer, A temporal model of information technology project perfor-
mance. J. Manag. Inf. Syst. 24(3), 9–44 (2007)

33. K. de Bakker, A. Boonstra, H. Wortmann, Does risk management contribute to IT project
success? A meta-analysis of empirical evidence. Int. J. Proj. Manag. 28(5), 493–503 (2010)

34. H. Barki, S. Rivard, J. Talbot, An integrative contingency model of software project risk man-
agement. J. Manag. Inf. Syst. 17(4), 37–69 (2001)



14 Information Technology Risks: An Interdisciplinary Challenge 405

35. R. Baskerville, J. Stage, Controlling prototype development through risk analysis. MIS Q.
20(4), 481–504 (1996)

36. F.W. McFarlan, Portfolio approach to information systems. Harv. Bus. Rev. 59(5), 142–151
(1981)

37. M. Keil et al., A framework for identifying software project risks. Commun. ACM 41(11),
76–83 (1998)

38. S.L. Jarvenpaa, N. Tractinsky, M. Vitale, Consumer trust in an Internet store. Inf. Technol.
Manag. 1(1–2), 45–71 (2000)

39. P.A. Pavlou, Consumer acceptance of electronic commerce: integrating trust and risk with the
technology acceptance model. Int. J. Electron. Commer. 7(3), 101–134 (2003)

40. D.H. McKnight, V. Choudhury, C. Kacmar, Developing and validating trust measures for e-
commerce: an integrative typology. Inf. Syst. Res. 13(3), 334–359 (2003)

41. O.E. Williamson, Transaction-cost economics: the governance of contractual relations. J. Law
Econ. 22(2), 1–30 (1979)

42. W.H. DeLone, E.R. McLean, Information systems success: the quest for the dependent vari-
able. Inf. Syst. Res. 3(1), 60–95 (1992)

43. V. Grover, M.J. Cheon, J.T.C. Teng, The effect of service quality and partnership on the out-
sourcing of information systems functions. J. Manag. Inf. Syst. 12(4), 89–116 (1996)

44. R.C. Mayer, J.H. Davis, F.D. Schoorman, An integrative model of organizational trust. Acad.
Manag. Rev. 20(3), 709–734 (1995)

45. B.W. Boehm, A spiral model of software development and enhancement. IEEE Comput. 21(5),
61–72 (1988)

46. G.B. Davis, Strategies for information requirements determination. IBM Syst. J. 21(1), 4–30
(1982)

47. S. Ang, D. Straub, Production and transaction economies and IS outsourcing: a study of the
US banking industry. MIS Q. 22(4), 535–552 (1998)

48. S. Ganesan, Determinants of long-term orientation in buyer-seller relationships. J. Mark.
58(2), 1–19 (1994)

49. L.G. Zucker, Production of trust: institutional sources of economic structure, 1840–1920. Res.
Organ. Behav. 8, 53–111 (1986)

50. R. Zmud, Management of large software development efforts. MIS Q. 4(2), 45–55 (1980)
51. G.A. Akerlof, The market for “lemons”: quality uncertainty and the market mechanism. Q. J.

Econ. 84(3), 488–500 (1970)
52. J. March, H. Simon, Organizations (Wiley, New York, 1958)
53. D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk. Econom., J.

Econom. Soc. 47(2), 263–291 (1979)
54. U. Beck, Risk Society: Towards a New Modernity (Sage, Frankfurt am Main, 1992)
55. P. Artzner et al., Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)
56. W.F. Sharpe, Capital asset prices: a theory of market equilibrium under conditions of risk. J.

Finance 19(3), 425–442 (1964)
57. P. Slovic, Perception of risk. Science 236(4799), 280 (1987)
58. D.B. Parker, Risks of risk-based security. Commun. ACM 50(3), 120 (2007)
59. R.J. Kauffman, R. Sougstad, Risk management of contract portfolios in IT services: the profit-

at-risk approach. J. Manag. Inf. Syst. 25(1), 17–48 (2008)
60. P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, vol. 2 (McGraw-

Hill, New York, 2007)
61. M. Sutter et al., Calculating the conditional value at risk in IS projects: towards a single mea-

sure of project risk, in 19th European Conference on Information Systems (ECIS), Helsinki,
Finland (2011)

62. M. Douglas, Risk and Blame: Essays in Cultural Theory (Routledge, New York, 2002)
63. M. Zuckerman, Sensation Seeking and Risk (American Psychological Association, Washing-

ton, 2007)
64. U. Beck, World Risk Society (Polity Press, Cambridge, 1999)



Chapter 15
Risk Issues in Developing Novel User Interfaces
for Human-Computer Interaction

Gudrun Klinker, Manuel Huber, and Marcus Tönnis

When new user interfaces or information visualization schemes are developed for
complex information processing systems, it is not readily clear how much they do,
in fact, support and improve users’ understanding and use of such systems. Is a new
interface better than an older one? In what respect, and in which situations? To pro-
vide answers to such questions, user testing schemes are employed. This chapter
reports on a range of risks pertaining to the design and implementation of user in-
terfaces in general, and to newly emerging interfaces (3-dimensionally, immersive,
mobile) in particular.

Keywords Human-computer interaction · Design-risk · Miscommunication risk ·
Augmented reality · Usability testing

The Facts

• In our modern society, much of what we do is at least partially supported, guided
or influenced by information stored, simulated or analyzed in computers.

• It is important that everybody is able to use and understand such virtual informa-
tion without mental or physical barriers.

• Research in human-computer interaction strives towards finding suitable interac-
tion paradigms that support people in using computer information in their daily
activities—for both personal and professional use.

• Research on suitable interaction metaphors analyzes risks of miscommunication
between humans and computers.

• Potential miscommunication can be a challenge (e.g., in games), a nuisance (in
uncritical situations) or a physical danger (in life-critical situations).
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Fig. 1 Cycle of interaction based on human and computer-based perception, interpretation and
action/presentation (adapted and extended from [2])

1 Introduction

When users interact with computer systems, they, as well as their real, physical
environment, get in contact with the virtual world in the computer, as shown in the
interaction cyle adapted from Bowman et al. [2] in Fig. 1. At the interface between
the physical and virtual worlds are input and output devices that sense human actions
via dedicated sensors as input signals, interpret and act upon them before rendering
suitable output signals on displays. These, in turn, are perceived by the users and
interpreted before a new interaction cycle starts.

Risks of misperception, misinterpretation and mispresentation exist at all stages
in this interaction cycle. Users may not know well enough what actions they have
to perform and how carefully they need to act them out such that the system
can decipher them unambiguously. Sensor systems suffer from noise and vari-
ous physical limitations. Furthermore, interpretation algorithms may be lacking
some of the physical-world context when they analyze their input data, resulting
in false positive and negative decisions in their command recognitions. The sub-
sequently generated visualizations may fall short of representing the wealth of
available information with appropriate clarity and detail on the available display
hardware. Users may overlook important issues in the visualizations, or they may
draw wrong conclusions because they are not familiar with the metaphors that were
used.

For these reasons, human-computer interfaces need to be tested thoroughly and
repeatedly to minimize the risk of miscommunication. In user-centered approaches,
various different testing methods are applied throughout the entire product design
and development life cycle. Yet, such testing has its own set of risky fallacies. The
subsequent sections address each of these issues in detail. We begin with a brief
description of a few current developments.
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2 Examples

In recent years, user interfaces have progressed rapidly. They move away from the
well-established WIMP1 style of the Desktop metaphor that provides direct manipu-
lation on a raster display, as described in the seminal text book by Shneiderman and
Plaisant [13] towards highly immersive, multi-modal and multi-media, ubiquitous or
mobile multi-touch-based interfaces (see, for example, Myers, Hudson, and Pausch
[43] for further reading). Technological advances, regarding speed, resolution and
accuracy of sensing devices, have recently triggered a number of novel user inter-
face schemes to find their way into commodity devices, such as smartphones and
game consoles. This section presents a few examples of such novel, post-WIMP
user interfaces, as described by van Dam [16], and briefly glimpses at associated
current user interaction issues.

2.1 Multi-touch

Very prominently, novel devices, such as smartphones, tablets2,3 and larger sur-
faces4 provide (multi-)touch input facilities: one or more users can jointly manipu-
late several virtual objects on small or large screens by touching them with one or
more fingers.

The left picture in Fig. 2 shows three users collaboratively solving a Sudoku
game on a large tabletop surface, presented by Echtler [30]. In the right picture, an
ambulant incident officer uses a multi-touch tablet PC to monitor and organize the
actions of a medical relief unit during the triage process of a catastrophic event,
discussed in Nestler [44] (see also Iserson and Moskop [37]).

Issues: Some interaction schemes, such as a pinching gesture to resize an object,
are becoming commonly understood. Yet, beyond such basic schemes, there is not
yet a generally accepted way of moving, grouping and manipulating objects via
multi-touch. We investigate suitable multi-touch use on a heavy, rugged device while
a user is holding it in two hands (Coskun et al. [5]).

2.2 Mobility, Augmented Reality

By tracking users, mobile location-based services or ubiquitous computing (Weiser
[17]) and augmented reality (AR) (Azuma et al. [1]) provide users with computer

1Windows, Icons, Menus, Pointers.
2http://www.apple.com/iphone/ (accessed 2012-02-26).
3http://www.android.com (accessed 2012-02-26).
4http://www.microsoft.com/surface (accesses 2012-02-26).

http://www.apple.com/iphone/
http://www.android.com
http://www.microsoft.com/surface
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Fig. 2 Multi-touch interaction. (a) A collaborative sudoku game. (b) Coordinating support during
a catastrophic event on a tablet PC

Fig. 3 Navigation assistance on mobile devices. (a) A bird’s eye view on a PDA. (b) Logistics:
ego-centric tunnel in a head-mounted display, leading to an object. (c) Ego-centric driver assistance
in a car

information directly based on where they currently are and what they do. With AR,
users see such information three-dimensionally embedded into their physical envi-
ronment.

The left picture in Fig. 3 shows a PDA-based (2D) navigation assistant for each
member of a rescue team in catastrophic events (Nestler [44]). The red dots indicate
injured patients who need help urgently. Assignments of patients to rescuers are
coordinated by the ambulant incident officer (right picture of Fig. 2), as well as
collaboratively in the rescue center on a multi-touch table, such as in the left picture
Fig. 2. The central picture of Fig. 3 shows an AR-based (3D) navigation assistant
for commissioning tasks in large warehouses (Schwerdtfeger [52]). The logistics
workers wear a head-mounted display which shows a tunnel (pink rings) that reaches
from the display to the shelf. The right picture comes from a car driver assistance
application. It indicates the locations of potential obstacles in the car’s drive path, as
detected by the on-board sensors (Tönnis et al. [58]). Current research investigates
how such information can be presented to the driver: in a central information display,
by warning sounds, vibrations, or potentially directly in the driver’s view in a head-
up display.

Mobile user interfaces raise several critical issues. Since users are seeing such
information while they also participate in activities of their physical environment,
they must not be distracted from looming dangers. Human-computer interaction
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Fig. 4 Tangible interaction. (a) Augmented chemical reactions. (b) Intelligent welding gun.
(c) Phone-based terrain exploration in a flexibly reconfigurable virtual environment

in time-critical or dangerous settings must ensure that secondary tasks, such as
responding to computer information systems, do not overwhelm users such that
they ignore primary tasks, such as attending to a patient (Nestler [44]) or evad-
ing physical obstacles (Tönnis [15]). Such issues will become even more ur-
gent when AR is used in mobile settings and users have to operate in compli-
cated physical settings, such as adapting their motion to uneven or slippery sur-
faces.

2.3 Tangible Interaction, Three-Dimensional User Interaction

By tracking not only users but also physical objects in a three-dimensional physical
environment, three-dimensional user interaction (3DUI) beyond mouse, keyboard
or multi-touch surface has become possible (Bowman et al. [2]). Tangible user in-
terfaces (TUIs) (Ishii and Ullmer [9]) allow users to affect virtual worlds in AR
and virtual reality (VR) applications by manipulating physical objects (Burdea and
Coiffet [4]).

Examples of such tangible interaction are shown in Fig. 4. In the left picture,
a user investigates and controls bonding activity between atoms of two molecules in
a chemical simulation by rotating and moving the molecules via two sticks, one in
each hand. The molecules change shape depending on their proximity to one another
and the exerted energy fields. Special user gestures, such as holding both hands still
for some time, establish and finalize proposed bonds between the molecules (Maier
et al. [42]). In the central picture, a user holds a welding gun to attach a number of
studs to a car frame. Using a notch and bead metaphor, a display on top of the gun
indicates by an arrow inside several concentric rings where the next welding position
is. When the user moves the gun to this location, a virtual ball becomes visible; when
it fills the center ring completely, the gun is in perfect welding position (Echtler et al.
[31]). In this case again, the (tangible) gun is tracked. Extra commands such as the
welding itself and the selection of the next stud from a list are activated by special
triggers and buttons on the gun. In the right picture, a user flies through a large
virtual terrain by moving a smartphone in his hands like a toy airplane. Steering
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Fig. 5 Interaction triangle
between human, computer
and physical environment
(extension of Fig. 1: the white
plane shows Bowman’s
interaction cycle, the
perpendicular dark plane
separates the physical world
from the virtual world, with
the user, other people, objects
and input/output devices
residing on the physical side)

commands are derived from the accelerometers in the phone and thumb gestures on
the built-in small multi-touch display. This is not a one-to-one mapping from the
phone motion to the virtual flight path since the user can move only slightly in front
of the screen. Current research investigates what motion gestures are most useful
for users to navigate as quickly or precisely as possible along an intended path in a
large virtual environment (Benzina et al. [24], Tönnis, Benzina, and Klinker [57]).

Research on three-dimensional human-computer interaction needs to determine
the most suitable combination of interaction facilities, such as object or user motion
(gestures), buttons, voice commands and more (Bowman et al. [2], Sandor [50]).
Furthermore, research needs to determine where in the vicinity of a user these fa-
cilities exist (fixed within the environment or attached to the user or to an object)
(Feiner et al. [32]).

An important issue regards the question how users can immerse deeply into
exploring a high-dimensional space of simulated or measured data without being
distracted by the human-computer interfaces. Visualization, simulation, virtual an-
imation and interaction need to be so intuitive that the computer becomes virtually
invisible (Norman [46]). The computer and human become partners in exploring
and analyzing the information, with the computer amplifying human intelligence
(Brooks [3]).

This human-computer partnership, embedded within a physical setting, is the
overarching issue across all areas of multi-touch, mobile, AR-related or virtual
human-computer interaction (HCI). Human users, the physical world includ-
ing sensors and displays, and the computer system (including a virtual world
full of simulations and animations), form an intricate triangular relationship
(Fig. 5). Each corner of this triangle has its own set of errors or risks, all of
which need to be dealt with in order to determine good human-computer inter-
faces.
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3 Computer-Related Risks

The development and enhancement of human-computer interfaces, such as those
presented in Sect. 2, has various sources of uncertainty, as represented by edges and
nodes in Fig. 1. Uncertainties in measurements, interpretations, and presentations
or actions result in the risk of miscommunication between humans and machines,
which, in turn bear the risk of harmful consequences, if the user interfaces control
computer programs with significant impact on our lives. This and the following sec-
tion describe issues related to these risks. Tables 1–6 relate them to the application
examples of Sect. 2.

Figure 1 shows the full interaction cycle between humans and computers (Bow-
man et al. [2]). This section presents issues pertaining to the uncertainties on the
computer side, i.e., issues a computer system designer has to take into account when
conceiving, building and testing the system hardware, the computer algorithms, and
the underlying concepts. These are represented in the lower part of Fig. 1.

3.1 Sensing

Sensing is the first technical step in human-computer interaction. It is represented
by the lower left arrow in Fig. 1. It receives the original input from human users
and provides it to the computer system. Table 1 describes sensing requirements and
impacts for the exemplary post-WIMP interfaces that were presented in Sect. 2.

To determine user input, suitable sensors need to be installed and registered, and
their sensing properties need to be calibrated. Even though this is an issue with any
kind of user interface, the following section focuses on issues pertaining to track-
ers for the multi-touch and tangible interfaces that have been presented in Sect. 2.
Position p = (x, y, z)T and orientation r = (θ,φ,ψ)T of a user or an object are
generally described as a pose X = (p,q)T with six degrees of freedom in a three-
dimensional environment.5 Orientation corresponds to rotations around three axes
that can be provided as Euler angles, in matrix notation or as quaternions. Different
fields refer to the rotation angles in different terms, such as yaw, pitch and roll for
aircrafts or azimuth, elevation and tilt in astronomy.

Several physical principles can be used to determine and track object poses: opti-
cal, inertial, electro-magnetic, acoustic, radio-based, or mechanical tracking (Welch
and Foxlin [18]). Each such principle suffers from errors that are generally classified
and handled in a number of ways. To some extent, sensor error may be character-
ized as white noise N (0,�), following a Gaussian distribution with mean value 0
and covariance matrix � that depends on sensor-internal imprecision with respect
to all six degrees of freedom. This is the accumulation of many unknown physi-
cal sources and is summarized according to the central limit theorem. Yet, not all

5Two-dimensional multi-touch surfaces require three degrees of freedom with p = (x, y)T and
maximally one rotation angle θ .
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Table 1 Computer sensing issues in exemplary applications

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs
(Figs. 2a, 4c)

Sensing and system reaction must be immediate and very robust
and reliable such that users are able to build up an intuition for
proper system control [30].

Catastrophic
events

Multi-touch,
Mobile
(Figs. 2b, 3a)

System reliability is very important and devices thus need special
protection (ruggedization), reducing e.g. the sensitivity of the
touchscreen. Input signals are thus rather noisy [5, 44].

Logistics Mobile, AR
(Fig. 3b)

The position of the logistics worker (esp. the head pose) must be
determined both precisely and robustly across a wide area of a
warehouse, requiring complex tracking setups [48]. Further input
devices (such as push buttons on a belt) are needed for system
control. They must be usable intuitively and blindly [52].

Driver
assistance

Mobile, AR
(Fig. 3c)

Apart from user input, a large amount to environmental sensor data
is required [58]. Relevant measurements include for example the
friction coefficient of the street at the relevant section in order to
correctly compute and display the breaking distance. For driver
assistance, the state of the driver also has to be taken into account.
To this end, eye and head tracking are becoming integrated into
driver cabins.

Augmented
chemical
reactions

AR, TUIs
(Fig. 4a)

The application uses a “desktop-AR” setup, consisting of tangible
objects with markers, in front of a desktop monitor and a camera
close to the user’s head [42]. The optical marker tracking
algorithm must be fast, precise and robust against partial
occlusions of the markers. The camera must be close to the user’s
eyes in order to minimize discrepancies between the fields of view
of the camera and the user.

Intelligent
welding gun

Mobile,
TUIs
(Fig. 4b)

Stud welding requires sub-millimeter precision and thus very
precise tracking. Further input methods for system control must be
accessible during the (mobile) welding process [31].

Terrain
exploration

TUIs, VR
(Fig. 4c)

Sensing of flying gestures requires suitably accurate tracking data,
either from a stationary tracker in a fixed VR setup, or from mobile
inertial or touch sensors, e.g. built into mobile phones or tangible
objects [24]. Thus this represents a tradeoff between high tracking
fidelity with high setup costs and mediocre tracking quality
without setup costs.

influences average out that way. Some, rather specific errors contribute systematic
deviations from the true mean pose of an object, resulting in an inaccurate pose es-
timate with a systematic offset in position and/or orientation. This may stem from
misaligned, or imprecisely placed sensors in an environment, such as a camera after
someone has bumped into it. It can also stem from inaccurate depth measurements,
if, for instance, a camera possesses an automatic zooming function. A third cause
of inaccurate pose estimations is temporal measurement lag. Careful calibration and
registration procedures both in the spatial and in the temporal domain are required
in order to obtain precise and accurate input data (Huber [8], Keitler [39]).
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Further problems arise from the physical limitations of sensors. Camera-based
tracking fails when the direct line of sight to a tracked object is lost, e.g. because the
object is temporarily occluded by another object due to current object or user motion
or when an object leaves the field of view of a camera. Inertial sensors suffer from
drift. Field-sensing devices, such as electro-magnetic trackers, compasses or radio-
based trackers, loose precision when unforeseen further sources, such as magnetic
objects, are added to the environment.

Due to individual sensor limitations, hybrid combinations of sensors are investi-
gated. Many concepts of sensor fusion exist in probabilistic robotics (Thrun, Bur-
gard, and Fox [56]), including Kalman filtering and particle filters. An important
aspect involves the construction of robust, redundant sensor networks that combine
mobile and stationary sensors (Pustka et al. [48]). In such networks, pose estima-
tions from different sensors are transformed back and forth between different sensor
coordinate systems, using forward and backward propagation, with respect to both
geometry and sensor errors (Bauer [21]).

Furthermore, diligent calibrations and registrations of sensors and physical ref-
erence targets are required, to be performed by a tracking engineer. The degree of
quality of this work, as well as of the sensors involved, has a serious impact on
the performance of the entire human-computer interaction system, to the extent that
poor quality may render the system dysfunctional. There is the risk that quality can
vary over time, with users not being aware of the current quality level. In applica-
tions, such as medical surgery (Bauernschmitt et al. [22]) or high precision metrol-
ogy (Keitler [39], Luhmann [40]), the current quality has to be checked frequently.

3.2 Interpretation

Interpretation is the central computational step in human-computer interaction. It is
represented by the bottom circle in Fig. 1. Table 2 describes computer interpretation
issues for the exemplary post-WIMP interfaces that were presented in Sect. 2.

Interpretation receives low-level information, such as a continuous flow of pose
data, from the sensors and analyzes it in order to derive higher-level interpretations
of users’ intended commands to the system, as well as the current state of a chang-
ing physical environment. In the background, the computer system then does, what
it is best at. According to the received commands, it accesses and analyzes data,
computes new results and/or simulates situations within the constraints of a given
model and according to further sensor input that monitors aspects of the physical
world. Finally, the computer system then provides its analysis to the computer out-
put component to generate appropriate output (visualizations and/or actions).

The complexity of interpreting user input depends on the number of different
commands or steering controls that need to be distinguished. In principle, com-
mands can be discrete events or they can relate to continuous control. For continuous
control, the stream of tracked user or object poses is transformed into manipulation
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Table 2 Computer interpretation issues and solutions in exemplary applications

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs

Due to similarities between multi-touch gestures, these are
occasionally misinterpreted. E.g., there can be confusions between
two-finger zooming and rotation.

Catastrophic
events

Multi-touch,
Mobile

Gestures are sometimes not sensed well on a ruggedized device
and thus not recognized. Continuous signals can thus be
interrupted. Extrapolations from history into a limited future are
able to bridge small sensor gaps [5].

Logistics Mobile, AR To reduce the risk of wrong interpretations, control input is
collected via a rotary dial with a push button [52].

Driver
assistance

Mobile, AR Car traffic scenes—especially at large intersections or in varying
weather conditions are extremely complex and variable. The
analysis of such sensor data is a long-standing research issue in
robotics. For driver assistance, head tracking [58] and the
determination of the driver’s current state of mind (e.g., from
glancing behavior) is added.

Augmented
chemical
reactions

AR, TUIs Several different gestures are necessary to select and confirm one
of many potential bonds between molecule models. These may
differ only minimally from each other. Accordingly, the
recognition may misinterpret these gestures [42].

Intelligent
welding gun

Mobile,
TUIs

The main input device is the welding gun itself. The risk of wrong
gesture interpretation is avoided by using menu-based interaction.

Terrain
exploration

TUIs, VR There is no unique mapping from 6 DoF pose tracking to the
control of the flight path of an airplane—with only 4 parameters.
Proper transfer functions need to be defined [24].

of virtual objects according to predefined transfer functions. Steering results are di-
rectly related to the tracking quality of the sensors. Yet, the transfer functions may
provide some filtering such as damping to reduce jitter that is due to sensor noise.

For recognizing discrete commands, the system designer needs to know how
many different commands exist and how they can be distinguished. This means that
a vocabulary of gestures needs to be considered, with each gesture being associ-
ated with distinctive features. Using machine learning and pattern recognition tech-
niques, sequences of user poses (i.e.: user gestures) need to be compared and clearly
separated from each other. For each gesture, the features form a cluster in some mea-
surement space. Clusters from different gestures should not overlap—better: there
should be a wide gap between clusters such that they can be distinguished even un-
der the presence of noise. To this end, recognition algorithms need to be designed
that derive appropriately distinguishable properties (the measurement space) from
pose sequences. In addition to distinguishing between gestures, also false alarms
(false positives) need to be considered and discarded.

The risk of misinterpreting gestures arises from non-unique situations, i.e. situa-
tions for which noisy pose sequences cannot be associated clearly with exactly one
command. Another risk comes from the fact that the underlying world model for the
design of appropriate gestures and the reaction to measurements of physical events
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may not have been complete: in real-world physical settings, situations may arise
that lead to unintended gestures that are interpreted inappropriately in the limited
scope of a computer application because the overall context was not fully modeled
and understood (Neumann [11]).

3.3 Presentation

Presentation is the last computational step in human-computer interaction. It is rep-
resented by the lower right arrow in Fig. 1. It receives interpretations of the current
user input and of the state of the physical environment from the interpretation com-
ponent as well as the results of the background work, such as the current state of a
simulation. It generates appropriate visualizations on output devices, to be perceived
by the users. Table 3 describes computer interpretation issues for the exemplary
post-WIMP interfaces that were presented in Sect. 2.

The amount of information that is acquired, generated and processed inside com-
puters can be tremendous. The information presentation component is concerned
with issues (1) what to show, (2) how to show it and (3) where to show it. Informa-
tion presentation may involve hundreds of different attributes in a high-dimensional
property space. Objects can have very intricate relations to one another, forming
clusters, correlations, anti-correlations etc.

The first question is, what to show. Data reduction schemes such as projections
from high-dimensional spaces to lower dimensions, as well as selections and com-
binations or rearrangements of dimensions using, e.g. principal component analysis
are employed. There is a risk that important information is omitted or hidden in
accumulations or projections along an attribute dimension. Interactive data explo-
ration schemes and automatic data mining are part of an answer to such risks, allow-
ing users to poke at the data and massage it until they are convinced that they have
observed and explored all relevant aspects. Yet, short of performing an exhaustive
search, little guarantee can be given that the entire body of information has been
presented in all possible combinations of and along all attribute dimensions. An
emerging concept of information selection for mobile applications concerns con-
text dependency. It cannot be formulated as succinctly in mathematical terms but
rather depends strongly on the interpretation of sensor data and the assumed world
(context) model—bearing the risk that such model may not be complete and inter-
pretations thus deficient (see Sect. 3.2).

The next question is, how to show the selected information. Information vi-
sualization and scientific visualization are concerned with developing schemes to
present a wealth of information to users, bringing out the essential details without
loosing the overview of the general context (Spence [14], Bederson and Shneider-
man [23], Nielson, Hagen, and Müller [45], Tufte [59]). Quite a number of concepts
exist on how to represent information in perceivable (visual, aural or tactile) form,
by mapping attribute dimensions to the dimensions of a representation scheme. In-
formation can be represented both for individual objects (object visualization) and



418 G. Klinker et al.

Table 3 Computer presentation issues

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs

Since the display is partially occluded by the hand during a
multi-touch interaction, users may not be aware of all provided
feedback. In programs that make heavy use of motion-sensors as
input, showing detailed information could lead the user to either a
bad performance or ignoring the information because the user
needs to stop the motion of the display to be able to read the
information properly.

Catastrophic
events

Multi-touch,
Mobile

The system shows a map plus icons of victims, rescue personnell,
ambulances etc. Issues involve how to provide both an overview
and detail and how to arrange the icons in dense areas where there
is not enough space to show them side-by-side. Another issue is
the suitable presentation of aggregate information. The entire
presentation is shown on a large multi-touch table. Specialized
views are also shown on a handheld tablet PC and on mobile
phones to support and coordinate activities on-site [20].

Logistics Mobile, AR The logistics application shows a tunnel that directs the user to the
picking target. The curvature of the tunnel reflects the distance and
the turning angle to the target. Additionally, the application
identifies the relevant target at the destination [52].

Driver
assistance

Mobile, AR Information related to neighboring or approaching traffic
participants can be shown in a variety of modalities and at several
places in a car, e.g. in a central display, a head-up display, as well
as via sound or a vibrating seat, steering wheel or gas pedal.
Examplary information includes driving directions, augmented
onto the street, required breaking distances, the drive path, as well
as the direction of looming dangers that the driver should attend
to [15].

Augmented
chemical
reactions

AR, TUIs Aside from showing the current state of two molecules, it is
important to show some or all potential further bonds, as well as
the status of current gesture analysis and recognition (e.g. the
upcoming timeout for a “holding still” gesture) [42].

Intelligent
welding gun

Mobile,
TUIs

To guide the welder with the required accuracy, not only
navigational aids are displayed, but also accuracy indicators that
show the deviation of the current position of the tip of the welding
gun from the targeted welding spot. Furthermore, the target
position is presented textually at the top of the display—as a
global orientation aid [31].

Terrain
exploration

TUIs, VR To immerse viewers into the terrain data, it is spread across an
arrangement of 3 walls of a fully recoverable cave, FRAVE [57].
Each wall consists of two large stereo displays. Two further
displays are placed on the floor, equipped with multitouch sensing
facilities.

for statistical aggreations with respect to attribute dimensions (attribute visualiza-
tion), such as histograms, scatter plots, and parallel coordinates plots. To this end,
two or three spatial dimensions and the temporal dimension (animations or inter-
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active, iterative steering) can be used to layout data geometrically as framing di-
mension that span the spatial layout of a representation scheme. These spatial di-
mensions can also be recursively sub-arranged (nested) to show blocks of data from
further dimensions—contained dimensions representing information in each cell of
the framing dimensions. Visualization schemes for contained dimensions are, for ex-
ample, color, semi-transparent presentations, texts and glyphs with special shapes,
orientations etc. The use of special structures such as trees or graphs leads to fur-
ther well-established options. In many mobile and AR-based applications, the huge
amount of data is not as much an issue as the question how to find suitable three-
dimensional metaphors to relate the virtual data to the physical world of the user
without occluding too much of the environment. Should the information be repre-
sented in a first-person perspective (ego-centric view) or in a bird’s-eye perspective
(exocentric view) (Bowman et al. [2])? What are suitable metaphors to indicate
information behind a physical object—i.e., information that is currently occluded
(Dey, Cunningham, and Sandor [29])? The x-ray metaphor is not immediately in-
tuitive since it is inconsistent with physical reality. Other questions discuss how
to represent operational information, social information about groups of objects or
people or abstract background information that does not have a unique spatial con-
notation.

The final question is, on what physical displays and where in the environment
to show the information. Representational layouts of information depend on the de-
vice, as well as on the available compute power and network bandwidth. Current
presentation schemes vary from large, detailed presentations on combinations of
multiple wide screens, such as a CAVE in VR over large single screens to desktop
systems, tablet solutions and tiny displays on smartphones, with and without audio
support (Artinger et al. [20], MacWilliams et al. [41], Sandor and Klinker [51]).
Display characteristics such as the resolution, the dynamic range and color gamut
of a display, the field of view and field of regard that it subtains in front of a user,
and its current pose play an important part in devising an information presenta-
tion concept for the human-computer-interaction aspects of a computer application
(Bowman et al. [2]). Providing interactivity, e.g. via WIMP-based devices, multi-
touch, or tracking also influences the information presentation schemes since the
UI also needs to have visual representations on the display in form of GUIs, virtual
hands, icons or avatars.

Design decisions with respect to these issues bear many risks—yet those are
generally not directly related to the technical issues that are presented in this section
but rather to human issues and thus will be discussed in the following sections.

4 Human Issues

Following the discussion on uncertainties on the computer side, this section presents
issues pertaining to the uncertainties on the human side: human sensing, perception
and interpretation, and action. These are represented in the upper part of Fig. 1.



420 G. Klinker et al.

Human issues are not risks in themselves. Yet, they need to be considered as
human factors when designing the computer interaction schemes of Sect. 3. To this
end, they become the focus of user-centered design and testing schemes that are
presented in Sect. 5.

4.1 Human Sensing

Human sensing is the first step on the human side of human-computer interaction.
It is represented by the upper right arrow in Fig. 1. It describes the instant when hu-
mans sense computer output with their innate sensory organs (Eysenck and Keane
[6]). Table 4 describes human sensing issues for the exemplary post-WIMP inter-
faces that were presented in Sect. 2.

Human sensing has general properties and limitations, as well as special limi-
tations of individuals, depending on age, health and other factors. In the following,
the discussion is restricted to visual sensing. The human retina has two kinds of sen-
sory cells: cones and rods. They respond to light stimuli in the spectrum of “visible
light”. Cones have three different pigmentations that make them sensitive to differ-
ent wavelengths and allow humans to see colors. They need significant amounts of
light in order to respond. That’s why color vision works well in broad daylight, but
not at night. Color blindness is caused by deficient pigmentation, e.g., when green
pigments are missing. Rods, on the other hand, work at low light levels. Yet, they re-
spond to the entire visible spectrum rather than to subranges of wavelengths. Thus,
they allow humans to see at night time—in grayscale rather than in color (Eysenck
and Keane [6], Gregory [7]).

An important property of human eyes is foveal acuity. The retinal focus of the
eye, the fovea, contains cones with very high density. Humans can see very acutely
with this part of the eye, whereas vision in the remaining areas of the retina (periph-
eral vision) is decreasingly acute with increasing distance from the fovea. Yet, the
peripheral area is known to help humans in detecting object motion. It also provides
a wider, coarse overview of the physical environment for a field of view of about
175 degrees.

A further important issue of human vision is depth perception. A large number
of monoscopic and stereoscopic depth cues exist. One of the most important ones is
stereopsis. With two eyes, humans see objects in front of them twice, with a horizon-
tal offset (disparity) on each retina. The disparity depends on the distance between
the eyes and the distance of an object from the eyes. The smaller the distance the
larger the disparity. By triangulating, the human brain is able to estimate depth from
disparity, up to a distance of about 6 meters (Gregory [7]).

Further important cues are summarized under the term adaption, describing ocu-
lomotor (muscle) activity in the eye. Humans converge their eyes inward such that
the most important object is seen in the foveal areas of both eyes with the highest
acuity. This converging eye rotation is used by the brain as an additional source of
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Table 4 Human sensing issues

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs

Multi-touch tables can be rather large; inspecting objects at the
other side of the table is less precise than at close distance.
Objects/text can also be upside-down relative to the current
viewpoint.

Catastrophic
events

Multi-touch,
Mobile

This application takes place in a very stressful physical
environment. Users are possibly bombarded by many physical
sensations, such as bright or very dim illumination, loud sounds,
and physical obstacles. Virtual presentations need to be shown
with the right amount of contrast such that they are neither too
strong nor too weak.

Logistics Mobile, AR Virtual navigation information is shown in an optically see-through
head mounted display (HMD). Such displays present information
at a specific virtual distance from the user’s eyes—typically
approximately at arms’ length. If the object is not close to the
virtual presentation distance, users cannot focus simultaneously on
a physical object and on its annotation. Furthermore, if the current
background if similar to the presentation in the HMD, the virtual
information cannot be perceived well.

Driver
assistance

Mobile, AR When information is displayed inside the car, users need to adapt
their eyes, both for brightness and for focal distance when they
look at the information and also when they go back to the road.
This takes valuable time that can be critical when reacting to
physical dangers. Head-up displays show information outside the
car, thereby reducing the adaptation time.

Augmented
chemical
reactions

AR, TUIs The molecules are shown on a common desktop monitor,
providing only monoscopic depth cues and motion parallax. In this
case, people have shown problems seeing the 3D structure of the
molecule well. There can also be a hand-eye coordination problem.

Intelligent
welding gun

Mobile,
TUIs

The welder needs to look at color images on a small screen. The
navigational arrows are shown in 3D. Depth perception might be
an issue. Yet, motion parallax is a dominant cue since the welder
and the gun are mobile. Furthermore, at welding time, the physical
car frame provides strong haptic cues.

Terrain
exploration

TUIs, VR To trigger the human ability to see stereoscopically in three
dimensions, each screen of the FRAVE shows two versions of the
scene, one for each eye of a tracked user. He/she has to wear
shutter glasses that are synchronized to all displays simultaneously
such that each eye only sees the version dedicated to its viewpoint.

depth information. Accomodation is a further depth cue. Muscles contract or di-
late the lens in the human eye to allow it to focus on objects at different distances.
Accomodation also contributes to the brain’s estimation of object distances.

In normal physical settings, stereopsis and oculomotor cues all contribute to a
consistant depth perception of objects in front of a person’s eyes.

In human-computer interaction, computer displays present representations of vir-
tual information that are subject to human sensing capabilities and limitations. It is
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important to account for potential color blindness, as well as for the fact that presen-
tations can only be seen sharply in the very small foveal area of each eye. Thus, most
parts of a computer presentation are seen without high resolution. It takes humans
time to actively move their eyes across important areas of a display in order to see
each area with the foveal area of their eyes. Eyes jump in saccades between different
display areas. This may be in conflict with computer animations that expect users
to focus on a certain display area at a particular instant in time. Thus, there is a risk
that parts of a presentation are not seen with sufficient acuity by a user, since these
areas were not within the foveal area at that moment.

Peripheral vision must also be considered with care (Jones et al. [38]). In many
cases, it is not integrated into information presentation schemes and devices. Since
peripheral vision provides humans with overview and advance notice of potential
hazards in their environment, lack of peripheral input can result in risky or tiring
situations: if a head-mounted display is closed around the eyes it shuts off users’
peripheral view of the physical world. If open, but not covered by the display, there
is a visible seam between the virtual and physical world. Furthermore, users have
to rotate their heads continuously from side to side to see the information that is
geometrically related to areas that are not covered by a small field of view in a wide
geometric range (Rolland and Fuchs [49]).

Another issue is a sensory mismatch of depth cues for three-dimensional presen-
tations of virtual objects in a stereoscopic display (Bowman et al. [2]). Here, conver-
gence and stereopsis—induced by unnatural viewing conditions involving shutters,
polarized or red-green glasses in front of a user’s eyes—provide a depth impres-
sion that is inconsistent with accomodation: the eyes focus on the display surface
rather than on the simulated depth of the virtual object. Such sensory mismatch is
a problem for VR and also for AR, using head-mounted displays. Depending on
the situation and the physical constitution of the user, one cue may dominate over
another, thereby inducing the respective depth impression. Yet, there is the risk of
users getting head aches or suffering from simulator sickness (especially, if motion
cues are involved). Furthermore, there is a risk of potential after effects, i.e. the
brain may adjust to this sensory mismatch and remain in this stay even when the
user deals with physical objects—with thus reduced sensory ability.

If, on the other hand, a video-based presentation scheme is used that replaces the
optically see-through direct integration of virtual information into video streams
of the real world (e.g. in a mobile phone on a stationary display, or on opaque
head-mounted glasses), humans suffer from reduced hand-eye coordination since
the viewpoint of the camera does not coincide perfectly with their eyes.

4.2 Perception

Human perception is the central step on the human side of human-computer inter-
action. It is represented by the top circle in Fig. 1. It describes the process when
humans attend to a sensed computer output, become aware of it and thus perceive
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Fig. 6 Stages of action as a dynamic process of execution and evaluation during human-computer
interaction (adapted and extended from [12])

it (Eysenck and Keane [6]). According to the perceived computer output, they rea-
son about the world. They analyze the situation and draw conclusions, forming a
goal and intention towards performing the next action. In the background, humans
may meanwhile perform a number of independent autonomous tasks that are re-
lated to the project but do not need computer support. Eventually, they return to
the human-computer interaction cycle, with the intention to provide input to the
computer. Table 5 describes human perception issues for the exemplary post-WIMP
interfaces that were presented in Sect. 2.

A seminal schematic of human cognitive work during human-computer-
interaction has been presented by Norman [12]. Figure 6 shows Norman’s action
cycle, integrated into the cycle of interaction of Fig. 1. Norman’s cycle spells out
human cognitive activity in more detail, focusing on perception and interpretation
as the central part. Norman connotates the transitions both from the sensing phase
(Sect. 4.1) and to the action phase (Sect. 4.3) with metaphorical gulfs that users have
to cross and that might overwhelm them with great or even unsurmountable chal-
lenges: the gulf of evaluation, i.e., perceiving and fully understanding the current
state of a computer program from its current and past output, and the gulf of execu-
tion, i.e.: deciding what next step to take and how to convey this to the computer via
its input system.

Perception requires humans to attend to stimuli. By doing so, humans may pay
less attention to other stimuli. This situation is known as perceptual tunneling
(Wickens and Hollands [19]) or inattentional blindness. Furthermore, experiments
have demonstrated that humans can be completely oblivious to changes in parts of
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Table 5 Human perception and interpretation issues

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs

On a large multitouch table, players may not be able to perceive all
simultaneous changes on the board, if multiple players are
interacting with the game (local focus, change blindness, cognitive
capture).

Catastrophic
events

Multi-touch,
Mobile

Important information events can be missed by the rescue workers
e.g. while treating the patient (change blindness). To avoid wrong
decisions, each change should be clearly visible continuously, even
if the rescuer missed the change when it occurred.

Logistics Mobile, AR The visual augmentations in an HMD may overwhelm
commissioners such that they do not pay enough attention to the
physical environment and run into physical obstacles (inattentional
blindness).

Driver
assistance

Mobile, AR Information presentation in cars needs to be kept to a minimum to
ensure that drivers are not overly distracted from the physical
world. In tests, drivers have shown symptoms of perceptual
tunnelling from as little as a single polygonal presentation of the
expected drive path “contact analog” in a head-up display: in an
experiment in a driving simulator, they drove significantly faster
when seeing the drive path than when seeing only a line indicating
the current breaking distance [15]. Furthermore, many users also
suffer from simulator sickness, due to a very strong visual stereo
impression inconsistent with their haptic sense (balance,
proprioception).

Augmented
chemical
reactions

AR, TUIs When interacting with large molecules, users may be overwhelmed
by the amount of information and simulated activity. While a user
is holding still and watching the simulation, a bonding activity may
get activated accidentally (change blindness, cognitive capture).
The system must ensure that the user is properly informed suitably.

Intelligent
welding gun

Mobile,
TUIs

Welders may be so fascinated by the AR-based guidance on the
display that they ignore their physical environment and bump into
obstacles (perceptual tunneling).

Terrain
exploration

TUIs, VR Due to a very strong stereo impression that does not match haptic
sensing, users often suffer from simulator sickness.

their surroundings that are not within their current focus—a problem called change
blindness (Steinicke et al. [54]). In addition to ignoring stimuli, humans here also
exhibit problems memorizing recent images with the level of detail that is required
to compare them agains newly incoming stimuli. Another well-known problem is
cognitive capture. In this case, humans are so absorbed by a cognitive task that they
ignore new, unexpected stimuli, as shown by the stunning video experiment of a
gorilla walking through a basket ball game without being perceived by a large num-
ber of test persons.6 Even further, humans may suffer from conceptual or cognitive

6D. Simonis and C. Chabris. Selective Attention Test. http://www.youtube.com/watch?v=
vJG698U2Mvo, 1999. (Accessed 2012-03-02.)

http://www.youtube.com/watch?v=vJG698U2Mvo
http://www.youtube.com/watch?v=vJG698U2Mvo
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overload, i.e. they receive so much information that they are unable to deal with
it. The result can be cognitive tunneling (Wickens and Hollands [19]): humans be-
come unable to make decisions due to information overload. They may then restrict
themselves to pursue only a very limited subset of available options.

These are serious concerns for information visualization and human-computer
interaction schemes since the mere fact that information has been presented can-
not be taken as a guarantee that users have actually perceived and understood it.
This covers some of the aspects of Norman’s gulf of evaluation. Beyond being over-
whelmed by too much information, users may also experience a gulf of evaluation
due to poor, misleading representation schemes. Reasons could lie in sensing diffi-
culties (color blindness, poor resolution), or in the choice of confusing presentation
metaphors.

AR and VR have different strategies and goals towards dealing with human per-
ceptual limitations. VR strives towards generating a virtual immersive experience
by exploiting human limitations, such as perceptual tunnelling, change blindness,
and cognitive capture—just as magicians when they confuse spectators with their
tricks. Users are expected to overlook of suppress the perception of cues that tell
them that the physical reality is different from the virtual experience. VR faces the
danger of simulator sickness or a non-perfect sense of presence when sensing mis-
matches are not sufficiently strongly overwhelmed by the sense that is intended to
be dominant. AR, on the other hand, needs to ensure that users co-exist safely with
their physical environment. To this end, virtual information must not overwhelm the
user’s senses to an extent that physical reality is ignored. Virtual distractions may
lead to a lack of situation awareness due to perceptual tunnelling, information over-
load or cognitive capture—with potential physical harm to the user. In evaluations
of AR-related applications, users need to be assessed regarding their level of dis-
traction, e.g. by requiring them to simultaneously perform activities related to the
physical environment while also interacting with virtual information. The amount
of distraction is determined via eye-tracking, analysis of the response time, and the
amount of errors.

After interpretating sensor input, users face the gulf of execution when plan-
ning the next action. To this end, users need to be aware of the options that the
input devices of the user interface offer. These options either need to be learned
and memorized from manuals of from trial and error experiences, or the interface
must be flexible enough to allow natural, spontaneous human input (such as natural
speech or natural gestures). It is crucial that the user interface allows users to inter-
act with as little contemplation of available options as possible. Users may get lost
and confused in poor, unclear and inconsistent input schemes.

4.3 Action

The third, final step on the human side of the human-computer interaction cycle
involves executing/performing the planned action. It is represented in Fig. 1 by the
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Table 6 Human action issues

Applications Interfaces Issues

Sudoku game Multi-touch,
TUIs

At a large multi-touch table or in a large virtual 3D space, players
may not always be able to directly touch and manipulate an object
on the far side of where they are. They either have to move, or the
system needs to provide metaphors for non-linear motion or
manipulation via indirect pointing or selection, using a prop [2].

Catastrophic
events

Multi-touch,
Mobile

Collaborative control via a multi-touch table raises issues similar
to the games scenario above. For the mobile part, the ruggedized
tablet PC is very heavy and needs to be carried with two hands.
Thus, only the thumbs are able to touch the multi-touch area of the
tablet—along the vertical rims of the device. The application takes
these limitations into account to design special “thumbs-only”
metaphors to select and manipulate icons on the map while also
scrolling and zooming the map [5].

Logistics Mobile, AR The user interface of the logistics application was deliberately kept
simple and uses only a rotary encoder and a push-button. Still,
picking incorrect items cannot be prevented by the system. Also a
certain amount of training is necessary to adapt to the system.

Driver
assistance

Mobile, AR Car drivers need to be able to reach all computer control elements
with their limbs while sitting in their seat. Suitable arrangements
and semantic grouping of knobs and dials around the primary
control area involving the stearing wheel and the gas, break and
clutch pedal are major issues of modern car design.

Augmented
chemical
reactions

AR, TUIs A common problem is that different users perceive different
gestures as natural or intuitive. For example shaking a tangible
object may be interpreted as removing the current molecule from
the tangible by one user, or as moving to the next selected atom in
the molecule by another user.

Intelligent
welding gun

Mobile,
TUIs

Apart from welding the studs, the only user actions concern setup
and selection of welding scenarios as well as the inspection of
previously recorded data. For deployment in an industrial
environment, this interface was kept simple and robust. It has been
in industrial use for several years; the welder(s) did not report
problems with the required human action.

Terrain
exploration

TUIs, VR Flying a toy airplane is, in principle, well understood by most
people. Yet, the relationship between the physical actions
(recorded in a 6 DoF space) to the 4 DoF flight control of an
airplane is not easy to grasp. Experiments show that it requires
significant physical talent and gaming experience to isolate the
important parameters from the redundant ones.

upper left arrow. It takes a user’s planned action and tranforms it into a physically
measurable action, suitable to the input devices of the system. Table 6 describes
human action issues for the exemplary post-WIMP interfaces that were presented in
Sect. 2.

Even when users have decided what action to take, it requires skill, experience
and dexterity to actually perform the necessary physical action, depending on the
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input devices. The action may need to be executed with specific speed or precision,
e.g. when typing on a keyboard, pointing (double clicking) with a mouse, pen or
finger, speaking a command, looking at an object (glance control), or performing a
free-form 3D gesture. Proper execution may require high reactive skills, good gross
or fine motor control or even a well-developed sense of balance or rhythm (e.g. when
interacting via a balance board in a sports game).

Users may not be fully aware of the assumptions and requirements of the input
system, regarding the speed and precision for the intended actions to be recognizable
by the system. Furthermore, even if the requirements are clear, it is not always easy
for users to act according to the input specifications—or it may be uncomfortable or
straining for them to perform the actions.

Depending on the application, this may be a thrilling and interesting challenge
(games of skill), a frustrating hinderance (e.g. in office applications), or a poten-
tial source of danger (e.g. in safety-critical situations). Such issues are topics in
ergonomics and human factors research (Shneiderman and Plaisant [13]).

Keyboard layouts and pointing devices have been analyzed, regarding users’ abil-
ity to produce fast and/or precise input. As a prominent example, Fitts’ law describes
a relationship between the size of a target and its distance from a user’s current point-
ing position (Fitts [33]): the larger a target, the faster can users move across a long
distance to hit it easily. Vice versa, the shorter the distance to the target, the smaller
can the target be—an essential aspect for designing layouts of icons on desktop-
style graphical user interfaces. The GOMS model (Card, Moran, and Newell [27])
describes user interaction as an interplay of goals, operators, methods, selection
rules. It was designed to help dividing interactive tasks into series of small actions
in order to predict the time required to perform complex tasks. For example, this
has been done for typing, using the keystroke-level model (KLM) (Card, Moran,
and Newell [26]).

The so-called QWERTY keyboard7 is a negative example: more than a century
ago, the arrangement of keys was not designed to improve humans’ typing speed
but rather to keep the physical hammers from jamming.

There are also many evaluations of pointing devices. Critical distinctions exist
between the concepts of direct pointing/touching versus indirect pointing. Direct
pointing and touching, e.g. with a pen, with one’s fingers on a multi-touch sur-
face, or in augmented reality and tangible interaction, provides users with a direct
association between their action and the visual object/icon that they are manipu-
lating. In its purest form, the performed action has a one-to-one mapping to the
intended manipulation, such as moving, rotating or enlarging a virtual photo that
is shown on an interactive table, or manipulating a physical object. Yet, fingers or
pens may not provide sufficient precision and accuracy when selecting very small
objects—probably within a densely populated neighborhood of further objects—
and/or when intending to perform minuscule manipulations. Indirect pointing e.g.
with a computer mouse, on the other hand, allows much more precise selection and

7Called so due to its arrangement of keys in the upper row: Q-W-E-R-T-Y (English version).
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manipulation—especially when they can be performed in conjunction with suffi-
ciently large widgets such as scroll bars and dials. Yet, the direct association be-
tween user action and resulting object manipulation is missing. Users have to fa-
miliarize themselves with a mismatch of the position and direction of their physical
manipulation with respect to consequences in the virtual computer world. For ex-
ample, novice users of a computer mouse (such as very young children) have been
observed lifting the mouse vertically upwards (rather than pushing it horizontally
on a table) when trying to control upward cursor motion on the vertical screen of a
desktop monitor.

Another critical issue are the dimensions of the physical interaction space ver-
sus the virtual world. Direct manipulation such as multi-touch interaction cannot
work in locations (e.g. on very high screens on a wall) that users cannot reach. Fur-
thermore, even if a location can be reached, users may not always want to move
across extended distances. To this avail, rate control and non-uniform mappings be-
tween user action and virtual interpretation have been established (Bowman et al.
[2], Shneiderman and Plaisant [13]).

5 Testing Issues

The previous Sects. 3 and 4 have presented and discussed a large number of issues
and uncertainties pertaining to the design and the implementation of suitable inter-
faces for human-computer interaction. There is a huge parameter space of design
options with many alternatives. At the outset, it is not clear which design choice
is better than another one—or even optimal with respect to some criterion. More-
over, criteria and options may change over time, due to improving computational,
sensing and presentation facilities of computers, as well as due to evolving cultural
backgrounds on the human side regarding the ease of understanding upcoming in-
teraction metaphors.

For each interaction concept, there exists the risk of misunderstanding and misin-
terpretation. Depending on the application, such miscommunication may be a chal-
lenge, a nuisance, or a source of danger, bearing potential harm to the user and/or
the environment. Independently of the severity of the consequences, it is manda-
tory for the design of human-computer interaction systems to be accompanied by
dedicated evaluation procedures, from project conception to product delivery in a
user-centered design process. The evaluations are typically conducted empirically,
using hypothesis-based testing procedures with a specified level of significance and
associated alpha and beta errors (Sirkin [53], Swan, Ellis, and Adelstein [55]).

5.1 Evaluation Design

During the entire process of conceiving, building and finalizing a human-computer
interaction concept, the current state of the design and implementation needs to un-
dergo continuous evaluation. This is not a one-step task. Rather, design, prototypical
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implementation, evaluation and re-design build upon one another in ever-continuing
circles (Bowman et al. [2], Shneiderman and Plaisant [13], Chandler and Chandler
[28]).

Yet, the test designs may change over time, depending on the maturity of the
system, as well as on the urgency of obtaining a preliminary appreciation of vague
ideas vs. an in-depth comparison of well-thought-through metaphors or devices.

5.1.1 Strategies and Methods for Different Process Phases

A number of different evaluation approaches exist that are appropriate in differ-
ent phases of a project and/or serve different evaluation strategies (Bowman et al.
[2], Shneiderman and Plaisant [13]). Evaluation designers use a palette of different
approaches during the course of the project.

In the very early, conceptual phase of a project and while the very first prototypes
are being built, first evaluations and feedback are often acquired via expert reviews:
the ideas and concepts are presented to a small number of experts at the example of
use cases, e.g. by walking them mentally through the intended interaction processes
or by demonstrating a rudimentary prototype. Feedback is gathered via question-
naires or interviews. If possible, experts will also be asked for heuristic evaluations,
relating the current ideas to known guidelines and cases of best practice in the field.
Such early feedback is valuable in cutting back on ideas that experts can quickly
identify as unsuitable, based on their background expertise.

When early prototypes become available, usability testing becomes an option.
Initial tests are typically conducted as formative evaluations, involving only few
test persons and investigating only a small, well-selected subset of issues to form
the base for a consistent interface design. As with expert reviews, designers can
retrieve quick and very valuable feedback from such small evaluations: typically,
very few test runs suffice to indicate the initial, major issues that need to be im-
proved (Schwerdtfeger [52]). At later project phases—especially shortly before re-
lease, more substantial summative evaluations are conducted to sum up thorough
comparisons of all options. The next Sect. 5.2 presents usability testing in detail.
Usability tests are typically surrounded by demographic and subjective question-
naires, as well as closing interviews. Those are the topic of Sects. 5.3 and 5.4. In
principle, the entire design space needs to be evaluated at this point. Yet, some sim-
plifications are typically made for the sake of reduced complexity (Chandler and
Chandler [28]).

At a later, more mature phase, larger target groups of users are also increasingly
involved via user surveys and acceptance tests. A good example is the early re-
lease of beta-versions of computer systems, e.g. before the roll-out of a new game
(Chandler and Chandler [28]).

Finally, after product release, feedback is gathered online, e.g. in newsgroups, as
well as via telephone call centers, further acceptance tests, and user surveys.
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5.1.2 Evaluation Criteria

A number of different metrics can be used to compare and evaluate the quality of
different designs (Bowman et al. [2]).

For computer systems, system performance, such as the average frame rate or
latency, or the network delay is of utmost importance. For visual systems, optical
distortions of cameras and displays, the provided field of view and the resolution are
further important evaluation criteria. These can be measured and compared without
much user involvement. Yet, they also need to be considered in the context of user-
centered evaluations since different performance metrics may have a large impact
on the user-based test results.

The next set of evaluation criteria focuses on task performance: how fast can a
user reach a specific location? What accuracy is being achieved? How many errors
do users make when selecting or manipulating an object? Further criteria are the
speed of learning a concept, the spatial awareness a user has gained when interacting
with objects in a three-dimensional space and the degree of distraction induced by
the system (e.g. by analyzing users’ eye movements: when did they look where?).
These are metrics that can be measured objectively, using automatic procedures.
Data is collected during a test run and stored for subsequent statistical analysis.
These criteria are describing the pragmatic quality (PQ) of a user interface, i.e. its
effectiveness and efficiency.

The final set of evaluation criteria deals with subjective metrics involving user
satisfaction—the so-called hedonic quality (HQ) of a system (Hassenzahl, Kekez,
and Burmester [36]). In questionnaires, users are asked to describe their perceived
ease of use, ease of learning and their satisfaction during the interaction process on
a given scale. Further parameters, related to novel three-dimensional user interfaces
are related to users’ sense of presence in a virtual environment, and their degree
of comfort (simulator sickness), pertaining to the elaborations in Sect. 4.1 on user
accomodation, adaption, and potential after effects. How long does it take users
when they subjected to optical illusions (sensory mismatches) during an experiment
to re-adapt to the true physical interpretation of their senses after an experiment?

5.2 Usability Testing

Usability testing has gained much attention and importance. It represents the attempt
to parameterize all important issues of a human-computer interaction approach sys-
tematically, describing them as a set of factors (dimensions). If these factors are in-
dependent, and if there are no additional, confounding factors, different approaches
can be compared by letting a sufficiently large group of representative users interact
with the computer in all different variants.

In order for such testing to be successful (i.e. to produce significant results), great
care has to be taken to design a good test plan. In the following, several aspects of
the physical environment, the underlying concept, and the established process and
experimental structure are presented.
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5.2.1 Test Setup in a Usability Lab

A usability lab typically consists of two areas that should be separated from each
other as much as possible.

The first area is set up for the test person to interact with the system, as de-
signed in the test plan. The environment may be as simple as a desktop monitor
with WIMP-style interaction devices, or as complicated as an immersive, multi-
media, three-dimensional driving or flight simulator, possibly even integrated into a
motion platform. It may also be mobile, e.g. integrated into a real car driving in real
traffic, or a mobile phone in pedestrian applications, such as in an augmented reality
context. In all cases, the setup should be as realistic as possible, and the test person
should be disturbed as little as possible while the experiment is running. The test
area should be instrumented with extra recording equipment, such as microphones,
cameras, eye trackers etc—in order to store as much information as possible about
the course of the experiments and especially about the users’ actions, reactions, ges-
tures, mimics and side remarks. Such data can be invaluable during the post-analysis
step when questions arise because a particular experiment has unusual results (i.e.,
outliers).

A second area is arranged for the person in charge of running the experiment.
The experimenter should not influence the test person. Thus, the areas should be
separated—ideally by a wall with a semi-transparent window.

Contrary to these well-established standards, the evaluation of novel user inter-
faces (e.g. for augmented reality) may require arrangements that conflict with prior
guidelines of best practise. Schwerdtfeger argued in his dissertation that, for AR-
based user interfaces in a logistics application, it was more reasonable to interrupt
test persons when they consistently went astray than to let them fail during the entire
experiment—since the reason for such errors was often related to poor calibrations
of the optical-see-through display on their heads or to a basic misunderstanding of
some aspect of the very novel hardware and interaction metaphors they were ex-
posed to Schwerdtfeger [52].

5.2.2 Process of Collecting the Data

When preparing and conducting user tests, utmost care has to be taken to apply
proper procedure—such that the results are not unneccessarily tainted and thereby
rendered unusable. It is extremely difficult and costly to rerun an experiment: test
persons will not react the same when they are exposed to the same interface a second
time. Acquiring new test persons is time consuming and difficult.

Thus, much care must be taken during the planning phase of the experiment.
All potential aspects that might have an influence have to be identified and either
explicitly discarded from the test design or accounted for as one of the parameters
under evaluation (see Sect. 5.2.3).

During the experimental part, proper procedure has to be set up and executed for
each test person. A well-established procedure consists of greeting and introduc-
ing each newly arriving test person to the test setup in a predefined way (possibly
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using rehearsed sentences) such as not to bias persons at this stage. Typically test
persons fill out a demographic questionnaire requesting information about general
human factors (age, sex, . . . ) as well as special factors (color-blindness, familiarity
with novel user interfaces or games, . . . ). The test in itself may consist of one or
several parts, exposing test persons to different kinds of user interfaces or to dif-
ferent scenarios. Inbetween, further questionnaires may ask people about subjective
impressions (see Sect. 5.3). The experimental session closes after the last set of
experiments—possibly with a further subjective questionnaire and/or with a stan-
dardized or open interview (see Sect. 5.4).

After all test persons have participated in the experiment, the collected data is
analyzed, filtered, and subjected to statistical analysis tools for hypothesis testing
(Sirkin [53]). The results are compiled into a report.

5.2.3 Multi-factorial Design

As stated in Sect. 5.2.2, the design of a usability test has to account for all parameters
that have a potential impact on the results. Multiple parameters are modeled by
multi-factorial design approaches (Mukerjee and Wu [10]).

One or more measurement functions td = fd(x, y, z, . . .) are established that de-
scribe criteria listed in Sect. 5.1.2, td , as functions fd of parameters x, y, z, . . . .
The metrics td are dependent variables since they are the result of running test-
ing with respect to varying x, y, z, . . . . The parameters x, y, z, . . . are independent
variables—so-called factors. Each can assume values—also called levels—within a
predefined range.

When testing a user interface with respect to metric td , all independent variables
need to be checked with respect to all their levels. Thus, the design space of the user
interface, with respect to the given evaluation criterion, is the cross product of all
factors. Its cardinality is the product of the cardinality of all level ranges: ‖Td‖ =
‖X‖ × ‖Y‖ × ‖Z‖ × · · · . In a practical example, this means: test designers want
to compare a novel multi-touch interface to a traditional mouse-based interface.
This results in an independent variable UI-TYPE with levels MOUSE and MULTI-
TOUCH. At the same time, the designers want to explore the benefit of sound and
thus introduce an independent variable SOUND with levels SOUND-ON and SOUND-
OFF. This creates 2 × 2 = 4 variants of user interfaces that need to be compared to
one another in a statistical test procedure. If the designers were to include one more
UI-TYPE level, PEN, the space of UI variants would extend to 2 × 3 = 6 variants.
Evaluations have to test each of these variants in their experiments.

In addition to these planned factors, experiments may also be subject to
unwanted—yet unavoidable—further factors, so-called confounding factors. Ex-
amples are learning effects, user fatigue or simulator sickness. This means that, if
test persons are requested to participate in experiments for more than one variant,
the sequencing of the variants may have an impact on the results since test persons
may learn something about the scenario in the first test run (e.g. about the traffic
situation in a driving simulation) that they can exploit during the second test run
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with a second variant of the user interface. They may thus perform better in the
second test—not due to a superior user interface but due to learning effects. Con-
versely, fatigue or simulator sickness may have a negative impact on the results that
also needs to be discounted: test persons may perform better in the first run than in
subsequent runs.

To discount the effects of such confounding factors, the sequencing of the eval-
uations for different variants needs to be permuted between different test persons—
requiring n! different sequencing plans for n variants. For the given example of 6
variants, this means that 6! = 720 test persons are needed for the evaluations, one
for each permutation of the 6 variants. Without level PEN for factor UI-TYPE, only
4! = 24 permutations need to be compared. This small example exemplifies the crit-
ical impact of introducing more levels to a factor: the resulting design space rapidly
explodes to unmanageable numbers of user interface variants that all need to be
compared systematically in the test design, requiring rapidly increasing numbers of
test persons.

5.2.4 Experimental Structure

Critical to successful evaluations is the proper selection of test persons. These
should correspond to the population of the targeted final users of an application.
If the new user interface is expected to be helpful across many applications, test
users must be drawn from a wide, diverse background. In most cases, it is not rea-
sonable to recruit test persons only from the immediate, close circle of friends and
co-workers since such group might be rather homogeneous regarding age, educa-
tion, sex and experience with computers. On the other hand, some initial problems
with a novel user interface might be so universal that they are criticized by nearly
everybody—except for the developer of the interface. In such cases, first formative
usability tests may be conducted with colleagues and friends who are more easily
accessible than a non-biased, well-balanced broad group of representative test per-
sons. When reporting on an evaluation, it is critical to describe the demographic
constitution of the selected test group and to present the rationale why these people
were selected.

As discussed in the previous Sect. 5.2.3, several variants of a user interface need
to be compared. To this end, all variants have to be tested with the same depth, i.e.:
test persons have to be organized in groups for each such variant. Two approaches
exist for organizing such groups of test persons.

In a so-called between-subject test design, test persons are assigned to different
groups, with each group testing exactly one user interface. This approach has the
advantage that no learning effects of fatigue can occur since users participate in
only one evaluation. A disadvantage of this approach is the need to balance all test
groups such they all have a demographically similar distribution with respect to age,
sex, etc. To ensure well-balanced (i.e., unbiased) test groups, a large number of test
persons are required.
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Alternatively, in a so-called within-subject test design, each test person is asked to
work with all variants. In this setup, demographic bias is not as much of an issue—
especially for initial formative evaluations. Yet, confounding factors such as learn-
ing or fatigue are a considerable problem (see Sect. 5.2.3). In order to discount
biases due to confounding factors, the variants need to be presented to different test
persons in permuted order. Still, the problem remains that test persons may be overly
strained and exasperated from very long series of experiments (possibly with inter-
leaved subjective questionnaires). Thus, the design of the test procedure per variant
should be kept as short as possible.

5.3 Subjective Evaluations

When working with a particular user interface, objective measurements of user per-
formance are generally accompanied by questionnaires. Increasingly, such subjec-
tive user feedback, is becoming more and more essential to the success of a novel
product or computer system. Concepts such as user satisfaction and user experience
are becoming central issues in user interface design.

Yet, it is not easy to measure subjective feedback from test persons. Research in
psychology and human factors has established a number of standardized question-
naires that have been the result of thorough investigations how to pose questions
such that individually differing degrees of emotions can be discounted.

The NASA Task Load Index (TLX) (Hart and Staveland [34]) measures mental
workload. To this end, users are asked to grade the mental, physical and temporal
demand of the system, as well as their appreciation of their own performance, and
the amount of effort and frustration they experienced during the test. For each of
these six criterions, test persons are asked to indicate their rating on a 20 point scale
ranging from VERY LOW to VERY HIGH.

The System Usability Scale (SUS) (Brooke [25]) determines the effectiveness,
efficiency and satisfaction of test persons working with a particular user interface.
Users are requested to comment on ten standardized statements on a 5 point scale
ranging from STRONGLY DISAGREE to STRONGLY AGREE, resulting in a score in
the range from 0 to 100.

Finally, a method using a Semantic Differential (Osgood, Suci, and Tannenbaum
[47]) and the AttrakDiff (Hassenzahl, Burmester, and Koller [35]) test use a list of
opposing attribute pairs with a 5 point scale to elicit indications from the test per-
sons, regarding ideas and affective attitudes which are associated with an interface.

5.4 Interviews and Anecdotal Use

Despite all attempts towards gathering objective or subjective measurements from
test persons that can be quantitatively evaluated, verbal feedback and anecdotal us-
age are invaluables forms of in-depth information. Especially in the early phases of
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developing a novel human-computer interaction concept, a large number of issues
are undefined. It is generally impossible to properly design a test setup that covers
all of these issues. Careful inspection and recording of the test persons’ every move
and interrogating them about any observed moment of confusion or irritation sheds
light on a sizeable number of essential problems that need to be mastered before
large-scale systematic tests lead to conclusive results.

To this end, interviews are conducted in all stages of interface design and imple-
mentation. They can be associated with presentations, demonstrations and exhibits
during expert reviews, small-scale usability studies, or random quests for user feed-
back. Interviews can be completely unstructured. Yet, already known issues are also
cast into a systematic sequence of questions to be answered as part of the interviews
by every interviewee.

6 Food for Thought

This chapter has reported on a large number of things that can go wrong in human-
computer communication. Just as in human to human communication, there is much
potential for misunderstanding. Humans can misinterpret computer presentations
and animations, due to misleading metaphors or simply due to misled attention and
overload. Conversely, machines can misinterpret human input commands, due to
noisy sensor data or due to unprecisely performed human actions.

In conversations between humans, we are aware—to some extent—of potential
misunderstandings, and we thus also communicate on a meta-level about the course
of conversation with one another. We question, ascertain and reassure that the im-
portant issues have been clearly conveyed. We also express level of completeness
when we simplify complicated matters for didactic matters such that the commu-
nication partner can comprehend an issue gradually over time. How can computer
interfaces communicate on such a meta level, in parallel to conducting the principle
exchange of information? This a topic of increasing importance, pertaining to issues
of uncertainty analysis and uncertainty visualization.

Another important issue covers consciencious resource management—both on
the human side and for the computer. Neither one has unlimited resources to
perceive, interpret and act/present. There may be shortages of sensing/perception
power, as well as memory and processing capacity. Human-computer interaction
systems need to be aware of such resource limitations. Communication processes
need to take explicitly into account that a communication partner may be currently
overwhelmed by information and that it is, thus, better, to slow down and maybe
even to keep quiet for a while. How can computers monitor resource shortages and
adapt their communication strategy accordingly? This in another topic that is re-
quires increasing attention.
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7 Summary

This chapter has presented risks and issues of potential miscommunication on the
basis of the interaction cycle by Bowman et al. [2]. For each step along this cycle,
the chapter has discussed a number of critical issues and related them in associated
tables to experiences that were made in the FAR-lab for when building and evalu-
ating novel user interfaces for a number of applications. The chapter closes with a
presentation of the most critical issues for planning proper test designs to evaluate
novel human-computer interaction concepts in a human-centered approach.
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Chapter 16
Translational Risk Models

Donna Pauler Ankerst, Vanadin Seifert-Klauss, and Marion Kiechle

With rapid progression of computing and other technological advances, the practice
of modern medicine has moved from primarily anecdotal to largely quantitative.
With due credit to the Internet and the new cyber-society, individuals have taken a
more active role in the decision-making process concerning their health, from de-
ciding whether or not to get screened for a disease to which treatment is best for
their specific clinical profile. Treating physicians are more connected with latest
medical breakthroughs through vast dissemination via the Internet. Statistical pre-
diction models assembled on large well-designed cohorts, multiply validated and
easily accessible through online calculators play a role in translating basic science
results to implementation in the community for public health benefit. This chapter
describes the risk model building process that forms the basis of modern medical
decision-making, from statistical estimation to validation and implementation on
the Internet. The early diagnosis of cancer is used as the context to illustrate princi-
ples, though the concepts immediately transcend to other disciplines as concluding
examples in forestry and finance will show.
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The Facts

• Logistic regression for predicting disease from multiple risk factors, or more gen-
erally a dichotomous outcome from covariates, will be covered.

• Latest developments in external validation, including its distinct components of
discrimination, calibration and net benefit, will be reviewed.

• How risk prediction tools get converted to online risk calculators will be dis-
cussed.

1 Introduction

Risks provide the currency by which doctors, patients and individual members of
the general population communicate and make informed decisions regarding health.
Examples of daily media encounters with risk include claims that diets rich in fruits
and vegetables reduce the risk of heart disease, smoking increases the risk of lung
cancer, or one glass of red wine per day reduces blood pressure, just to name a few.
Increasingly it has been recognized that risks agglomerate from a multitude of fac-
tors rather than being the product of any single factor acting in isolation, for exam-
ple, that both diet and exercise work more effectively in combination to reduce the
risk of cardiovascular disease. Experience has also revealed that there is uncertainty
underpinning estimates of risk, in other words, that one study may undo a previous
study report on risk. Most people obtain information concerning health risk either
passively through the media, or more actively, through the Internet. These sources
in turn obtain their information from peer-reviewed published scientific studies and
hence often serve as the translators of basic science to public use. The scientific
studies have typically involved observation of a cohort or group of voluntary partic-
ipants under the relevant controlled or uncontrolled environments of a clinical trial
or observational study, respectively, followed by subsequent observation of outcome
and an observed statistically significant association between risk factors, interven-
tions and outcomes. Statisticians, epidemiologists and other quantitative scientists
scrutinize the findings from such cohorts, determining which biases may have been
at play that could ultimately limit validity of the findings or generalizability to pop-
ulations beyond that on which the studies have been performed. For example, a risk
model constructed primarily from people of one ethnicity may not apply to people of
other ethnicities. They build risk models when applicable, and validate them in other
cohorts, a process sometimes taking years beyond the already many years invested
in conducting the original study collecting the data and unfortunately, sometimes re-
sulting in failure to validate, thus limiting the scientific impact of the original study
reporting a positive finding.

This chapter describes the process beginning with the end of a published study
reporting a significant association between risk factors and outcomes and ending
with implementation of a risk prediction model for public use via the Internet. The
general concept of building a risk model applies to a vast variety of applications,
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Fig. 1 The risk building
paradigm

data and statistical models, the details of which cannot be delivered in a single chap-
ter or even a single textbook. Hence, to concretely illustrate the general concepts,
a specific application of the online Prostate Cancer Prevention Trial Risk Calcu-
lator (PCPTRC) for detection of prostate cancer will be used throughout. In later
sections of the chapter, an overview of the most prominently used risk models in
prostate, breast, lung, colorectal, and ovarian cancer will be reviewed, followed by
generalizations to other diseases and other disciplines, such as ecology, business and
finance.

2 Building Risk Models

The fundamental paradigm for building risk models is shown in Fig. 1 and proceeds
as follows. First a population- or clinically-relevant risk question is identified. Sec-
ond, the appropriate data sources are located that could be used to address the risk
question. For example, existing data repositories could be mined retrospectively to
see what risk factors led to development of a disease or outcome, or a new study
could be designed to prospectively follow individuals. Once the data are collected,
the third step requires statistical analysis, entailing data cleaning, fitting of an ap-
propriate model, selection of covariates to include in the model, adjustments for po-
tential biases in the data collection and then internal testing of model performance.
Once this is complete, the model is published in order to disseminate the results, for
the media, for further validation, which is the fifth step, and hopefully ultimately for
use by the public. Technologies and risk factors change over time and new biomark-
ers of disease (biological entities that can be measured in the blood or urine) or
new risk factors are continually discovered. Therefore the last step of the process
is the continual task of keeping a risk model contemporary. To give an example of
the process a brief overview of the PCPTRC from its conception to ongoing efforts
to update as new biomarkers for prostate cancer are discovered is illustrated. De-
tails for the specific steps of Fig. 1 will be more thoroughly described in subsequent
sections of the chapter.
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Example 2.1 We illustrate the risk building paradigm through the PCPTRC.

(1) (Identify risk question) Prostate cancer has the highest incidence of all cancers
affecting U.S. men and is the second leading cause of cancer-related death be-
hind lung cancer [10]. Prostate-specific antigen (PSA) is the leading blood test
used for the early detection of prostate cancer and it is now common for men
over 55 years of age to undergo routine screening for prostate cancer. Of con-
cern to older men is given their PSA values and other clinical test results, what
is their risk of prostate cancer? If sufficiently high, then they might be advised
to undergo prostate biopsy, a more invasive diagnostic procedure.

(2) (Patient databanks and prior studies) The PCPTRC was developed based on
analysis of data from 5519 placebo arm participants who had undergone an-
nual PSA and digital rectal examination (DRE) screening as part of the 7-year
Prostate Cancer Prevention Trial (PCPT) [24]. All PCPT participants were re-
quested to undergo prostate biopsy, both during the trial when prompted by a
PSA value exceeding 4 ng/mL or abnormal digital rectal exam (DRE) result
and at the end of the trial regardless of PSA and DRE findings. The latter aspect
made the PCPT cohort unique in the world in having prostate cancer status as-
certained by biopsy even among men who did not meet the clinical criteria for
recommendation to biopsy.

(3) (Statistical modeling) For predicting prostate cancer outcome all potential risk
factors measured on participants during the trial were identified, including age,
family history of prostate cancer in a first degree relative, whether or not a prior
prostate biopsy had been performed that was negative for prostate cancer, race,
ethnicity, and PSA and DRE outcomes within one year prior to the biopsy result
used in the analysis. Participants could have multiple biopsies up until either
a positive cancer diagnosis or the end-of-study required biopsy; only the last
biopsy of each participant was used. Logistic regression was used to statistically
model the association between the multiple risk factors to the outcome, prostate
cancer or not, on biopsy. A separate logistic regression was performed for the
association of risk factors to high grade prostate cancer, defined as prostate can-
cer with Gleason grade ≥7. High grade cancer is a particularly aggressive form
of cancer that is more often associated with mortality.

(4) (Publication) The PCPTRC appeared online as soon as the algorithm for the
PCPTRC appeared by [24].

(5) (External validation) Accuracy of the PCPTRC has been validated in a range
of external populations, from healthy populations undergoing annual screening
with men referred to prostate biopsy for elevated PSA or abnormal DRE, similar
in art to the PCPT [16], to clinical populations where men underwent biopsy
based on clinical symptoms [5, 7, 8, 15].

(6) (Update) The PCPT was enhanced in 2008 to include a new urine marker for
prostate cancer, PCA3 [2] and due to the online posting of the updated calcu-
lator, soon thereafter externally validated [18]. It has recently been updated to
include the biomarkers percent free PSA and [−2]proPSA (two recently dis-
covered relatives of PSA that are also measurable in the blood) and externally
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validated [3]. Minor updates to the PCPTRC were made to tailor for men cur-
rently taking finasteride [25] and to incorporate body mass index [12].

3 Statistical Models

Risk calculators can predict a range of outcome types, such as the probability of
having prostate cancer on biopsy, of developing breast cancer in the next 5 years,
or surviving past 10 years post-treatment for a disease. Accordingly they are built
on the appropriate statistical model for the outcome of interest. For example, Cox’s
proportional hazards model is a popular model for predicting times to an event with
possible censoring (end of follow-up time preceding occurrence of the event) be-
cause it incorporates risk factors and makes minimal assumptions on the baseline
event hazard rate. Logistic regression is commonly used to predict binary events,
and will be used to illustrate the principles throughout this chapter. The principles
of model selection and testing applied to logistic regression easily extend to other
statistical models for other outcome types.

Logistic regression is a method for relating multiple risk factors X1, . . . ,Xp as-
sembled in a vector X = (X1, . . . ,Xp) to a dichotomous outcome Y which will be
assumed to take the value of 1 for a bad outcome, such as disease and 0 for the
opposing good outcome, such as no disease. Specifically it relates the log odds of
the bad outcome (Y = 1) to the risk factors X through the relationship:

log
P(Y = 1|X)

1 − P(Y = 1|X) = α+ β ′X, (1)

where in the formula, log denotes the natural logarithm (base e), α is an intercept,
and β a vector of log odds ratios, one for each risk factor assembled in X.

To understand why β defines log odds ratios, it is helpful to consider the simple
scenario of just one dichotomous risk factor,X, taking the value 1 for an unfavorable
risk factor value versus 0 for a favorable risk factor value. Based on the logistic
model, the odds of the bad outcome based on the single risk factor X is:

P(Y = 1|X)
1 − P(Y = 1|X) = exp{α + βX},

where exp denotes the exponential function. This equation implies that for the
individual with risk factor X, the probability of the bad outcome is a multiple,
exp{α + βX}, times the probability of the good outcome. The odds of the bad out-
come for individuals with the unfavorable risk factor (X = 1) and favorable risk
factor (X = 0) are given by:

P(Y = 1|X = 1)

1 − P(Y = 1|X = 1)
= exp{α+ β}, P (Y = 1|X = 0)

1 − P(Y = 1|X = 0)
= exp{α},

respectively. From these expressions one might expect β to be greater than 0 since
individuals with the unfavorable risk factor should have a higher probability, and
hence odds, of the bad outcome than individuals with the favorable outcome. The
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ratio of odds for individuals with the unfavorable (X = 1) to favorable (X = 0) risk
factor describes the magnitude by which the odds of the bad outcome accordingly
changes:

P(Y=1|X=1)
1−P(Y=1|X=1)
P (Y=1|X=0)

1−P(Y=1|X=0)

= exp{α+ β}
exp{α} = exp{β}.

The simplified expression, exp{β}, is the odds ratio (OR) for individuals with the
unfavorable compared to favorable risk factor.

For the case of a single predictor X that is continuous rather than dichotomous,
the OR gives the ratio of odds of outcome Y for a unit-increase in X (to see this
compute the OR for X = x + 1 compared to X = x). An OR > 1 implies that an
increase in the risk factor increases the odds of the bad outcome, OR< 1 means it
decreases the odds and OR = 1 means it has no impact. From the relationship above,
β = log{exp{β}} is the log odds ratio (log OR), and values of β > 0, <0, and =0
have the same interpretations as for OR> 1, <1 and =1, respectively.

If X were a categorical risk factor with more than two levels, such as race with
levels African American, Caucasian, and Other, the logistic model can still be fit
by choosing one level as a reference (say Caucasian) and then returning two odds
ratios, one for the comparison of each of the remaining levels, African Americans
and Other, to the reference. In many aspects such as this logistic regression operates
similarly as for linear regression. In the general case of multiple risk factors (1),
β = (β1, β2, . . . , βp) is the vector of respective log OR’s for each of the multiple
risk factors comprising X = (X1,X2, . . . ,Xp):

log
P(Y = 1|X)

1 − P(Y = 1|X) = α + β1X1 + β2X2 + · · · + βpXp.
The interpretation of each parameter βi is the log OR corresponding to a unit in-
crease in the respective risk variable Xi , with all other risk variables in the model
held constant.

Statistical packages return estimates of log odds ratios (β’s), their standard errors,
and p-values for tests of the null hypotheses that they equal 0 (no effect) versus
two-sided alternative hypotheses that they do not equal 0. From these approximate
95 percent confidence intervals for log ORs can be constructed as (estimated log
OR) ± 1.96 × (standard error); to obtain estimates and confidence intervals for the
OR’s, take the exponent of the estimates and 95 percent confidence interval bounds,
respectively.

Typically many risk factors or individual characteristics, including demographic,
environmental or other variables are available for potential inclusion in the model
and additionally more complicated relationships between the variables and out-
comes can be modeled using transformations and interactions. Therefore, a vari-
ety of model selection techniques are available in statistical packages, many of
which automatically sort through large numbers of models. Some of the most
commonly used model selection techniques are based on finding the model with
the lowest Akaike’s information criterion, AIC = −2 × maximized log likeli-
hood + 2 × number of parameters, or the lowest Bayesian Information criterion,
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BIC = −2 × maximized log likelihood + log(sample size) × number of param-
eters [1, 19]. The first terms of both criteria seek to find the model maximizing
goodness of fit to the developmental data set, while the second terms penalize for
over-parameterization, with the BIC tending to penalize more, and hence selecting
smaller models with fewer parameters than the AIC on average.

As a preliminary indication of how the model may validate, internal validation
can be performed by splitting the dataset into a training and test set or into a group
of equally sized subsets that alternatively serve as training and test sets. A logistic
regression model is fit from scratch on the training set and then evaluated on the test
set using any one of the metrics to be defined later for external validation. For mul-
tiple splits of the dataset, test set performances are simply averaged. Bootstrapping,
repeated random sampling with replacement of test and training sets, can also be
used.

Example 3.1 The BIC and average cross-validated area underneath the receiver
operating characteristic curve (AUC) were used to find the optimal multivariable
logistic regression model relating potential risk factors to prostate cancer outcome
on biopsy on data from the 5519 PCPT placebo arm participants used to develop
the PCPTRC [24]. The AUC is a rank-based measure of how well a risk model dis-
criminates the bad outcomes it aims to predict from the good outcomes and will
be further defined in later sections. For the PCPT, 4-fold internal cross-validation
was implemented, whereby the developmental dataset of 5519 observations was
randomly partitioned into four subsets, three of size 1380 and one of size 1379,
with randomization stratified to keep the proportion of prostate cancer cases be-
tween 20 % and 23 % in each subset. Over 50 models, some including two-way
interactions, were evaluated by a combination of forward, backward and stepwise
selection and subjective measures, such as including only statistically significant ef-
fects at the 0.05 level. BIC and cross-validated AUC values were tabulated for each
of the models. The model with the lowest BIC value contained only main effects and
no interactions among risk factors and was also one of the models with lowest AUC
values. Therefore this model was selected to form the PCPTRC. The final selected
logistic regression model contained four risk factors: PSA (OR = 2.34 for logPSA),
DRE (OR = 2.47), family history of prostate cancer (OR = 1.31) and history of a
prior negative prostate biopsy (OR = 0.64). All were statistically significant with a
p-value less than 0.001 except for family history with a p-value of 0.002 [24].

4 External Validation

Once a risk model has been constructed, it is critical to evaluate its performance
on a population independent to that on which it was developed. Internal validation,
evaluating the model on the same population as on which the model was developed,
even though it has been split into separate training and test sets, is not enough,
since unmeasurable cohort effects will still favorably bias the performance of the



448 D.P. Ankerst et al.

model compared to what might be achieved in a completely distinct cohort collected
elsewhere. A variety of evaluation methods for risk models have been proposed
in the literature, and these can be grouped into those that measure discrimination,
calibration, or both. Recent reviews detangle the different objectives of the many
metrics currently employed to evaluate risk prediction models [20, 21]. All of these
metrics require an external validation cohort or data set, whereby all individuals in
the cohort have all risk factorsX required for evaluation of the risk prediction model
and the true outcome Y .

For missing covariates X, [9] showed by simulation that imputation results in
less biased estimates of validation metrics than other currently used practices of ei-
ther excluding the entire patient from the analysis or throwing the covariate out of a
model. The current state of the art in imputation for X is based on specification of
full conditional distributions for missing covariates and termed Multivariate Impu-
tation by Chained Equations (MICE) and implementable in the R statistical pack-
age [26]. For missing outcomes Y in logistic regression, verification bias algorithms,
which repeatedly impute the missing Y values using the assumed logistic regression
form can be used if the missing data mechanism is assumed to be missing-at-random
(MAR), meaning that the reason for missing data does not depend on the missing
outcome value [4, 23].

4.1 Discrimination

Discrimination metrics focus on how well risk prediction models perform if used
as the basis for making binary decisions as to whether individuals will have bad or
good outcomes, sometimes referred to as hard classifications. Moving from a risk
prediction, varying from 0 % to 100 %, to a positive versus negative decision on the
bad outcome requires selection of a threshold r such that a risk above r corresponds
to a positive test and below r , a negative test. The misclassification rate, or number
of wrong test results made, is calculated separately for the subpopulations with bad
and good outcomes.

How successfully the risk prediction predicts bad outcomes is termed sensitivity
and on the external validation set is estimated by the percent positive tests among
the bad outcomes:

Sensitivity(r)= Number of bad outcomes with risk> r

Number bad outcomes
,

where sensitivity is indexed by r as a reminder that it depends on the user-selected
threshold r . How successfully the risk prediction tests negative for the good out-
comes is termed specificity and is accordingly estimated by:

Specificity(r)= Number of good outcomes with risk ≤ r
Number good outcomes

.

The higher the sensitivity and specificity at any threshold r the better the risk pre-
diction tool is. The problem is that as r increases from 0 % to 100 % specificity
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increases from 0 % to 100 % while sensitivity decreases from 100 % to 0 %, so
that finding the threshold r that simultaneously optimizes sensitivity and specificity
is difficult to achieve in practice. Sensitivity is often referred to as the true positive
rate (TPR), one minus the sensitivity as the false negative rate (FNR) and one minus
the specificity as the false positive rate (FPR).

The receiver operating characteristic (ROC) curve provides a summary of sen-
sitivity and specificity for all choices of r ranging from 0 % to 100 %; it typically
displays sensitivity on the y-axis and false positive rates on the x-axis, with both
axes ranging from 0 % to 100 % [22]. The higher the ROC curve, the better its
capacity for distinguishing bad from good outcomes. An appealing feature of ROC
curves is that they are invariant with respect to measurement scales, for example,
risks and the logits of risks (1) will yield the same ROC curve. This makes ROC
curves particularly useful when comparing tests on completely different measure-
ment scales, for example for directly comparing risk predictions from a model to
the leading risk factor or covariate in the risk prediction model. Finally, as rank-
based measures, ROC curves are by definition independent of disease prevalence in
external validation set and hence can be applied to the case-control study situation
in addition to prospective studies. An interesting single summary of the ROC curve
is the area under the ROC curve (AUC), which in addition, conveniently holds the
intuitive definition as the probability that a randomly chosen individual with a bad
outcome has a higher risk prediction than a randomly chosen individual with a good
outcome. The AUC ranges from a minimum at 50 %, implying predictive power of
the risk prediction tool no better than flipping a coin to a maximum of 100 % for a
perfectly discriminating risk prediction tool.

As seen by their formulas sensitivities and specificities for each threshold r can
be calculated by just computing the appropriate sample proportions in the exter-
nal validation set. The AUC is equivalent to the non-parametric Mann-Whitney or
Wilcoxon rank sum statistic for comparing two populations and is hence easily com-
putable using standard statistical software. The Wilcoxon test can be used for testing
the null hypothesis that the AUC equals 0.5 versus the alternative that it exceeds 0.5.
External packages can be imported into the statistical package R for computing the
AUC and for performing various statistical tests for comparing AUCs of multiple
tests.

Example 4.1 In 2009 the generalizability of the PCPTRC, which had been devel-
oped on a cohort of primarily Caucasian, healthy and elderly men, for potential
applicability to other populations was investigated. The Early Detection Research
Network (EDRN) clinical cohort comprised 645 men, some younger than mem-
bers of the PCPT cohort, who had been referred to multiple urology practices across
5 states in the northeastern U.S. and had received a prostate biopsy due to some clin-
ical indication, including persistent elevated PSA or abnormal DRE [7]. PCPTRC
risks were calculated for each member of the EDRN cohort and compared to the
actual clinical outcome on biopsy using sensitivities, specificities and the AUC. The
PCPTRC demonstrated statistically significant superior discrimination for detect-
ing prostate cancer cases compared to PSA (AUC = 69.1 % compared to 65.5 %,
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respectively, p-value = 0.009), and the ROC curve for the PCPTRC consistently
fell at or above that for PSA for all false positive rates, with the greatest difference
for false positive rates less than 25 %. For example, the thresholds of the PCPT
Risk Calculator and PSA which obtained a false positive rate of 20 % were 48.4 %
and 6.9 ng/mL, respectively (Table 2 of [7]). One can view these as two alternative
tests for referral to further intensive diagnostic testing by prostate biopsy, each with
equal specificities: the PCPTRC refers a patient to prostate biopsy if his PCPT risk
exceeds approximately 50 % and the PSA test if his PSA exceeds 6.9 ng/mL. If
these two diagnostic tests had been implemented in the EDRN population to “rule
in” patients who should undergo prostate biopsy and “rule out” patients who should
not, the PCPTRC would have correctly referred 47.1 % of the prostate cancer cases
(sensitivity) and the PSA test 35.4 % of the prostate cancer cases. Although better
than PSA, the PCPTRC would still have missed 50 % of the prostate cancer cases!
Insisting that 80 % of prostate cancer cases get caught for both tests would have
meant that the thresholds for referral would have had to be lowered, to 38.0 % and
4.0 ng/mL, for the PCPTRC and PSA test, respectively (Table 3 of [7]). But this
would have approximately halved the specificity of both tests, to 40.3 % for the
PCPT Risk Calculator and 44.1 % for PSA. In other words, approximately 60 % of
the men who did not have prostate cancer would have been referred to a prostate
biopsy unnecessarily (false positive rate), an error rate unacceptable from a public
screening perspective.

4.2 Calibration

Calibration concerns itself with how close predicted risks from a model are to actual
risks observed in an external validation population. Observed risks should match
predicted risks among homogenous groups defined by the same risk profile. How-
ever, obtaining an external validation set large enough to have enough individuals
with the same risk factors in order to make comparisons quickly becomes infeasible
as the number of risk factors increases; hence approximations are made by further
grouping.

One of the most commonly used calibration tests is based on an approximation
to Pearson’s chi-square goodness-of-fit test recommended by Lemeshow and Hos-
mer [11]:

X2 =
k∑
i=1

(Oi − niπi)2
niπi(1 − πi) ,

where the validation set has been partitioned into k equally-sized groups (typically
k = 10 with groups defined by deciles of the predicted risks in the validation set),
Oi are the observed numbers of bad outcomes in the groups, ni the observed num-
bers of participants in the groups, and πi the mean risks of the groups. Under the null
hypothesis, observed outcomes Oi are close to expected outcomes niπi , hence X2
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should be small. Asymptotically under the null hypothesis, the X2 statistic follows
a chi-square distribution with k degrees of freedom.

An alternative measure of calibration, which measures reliability, was proposed
by [6] and elaborated upon in [13]. The approach requires logistic regression of the
outcomes (Yi = 0 good outcome, Yi = 1 bad outcome) on the logit of the predicted
risks (πi ) as covariates for the i = 1, . . . ,N individuals in the validation set:

log
P(Yi = 1)

1 − P(Yi = 1)
= α + β log

πi

1 − πi .
A perfect match of predicted to actual risks would occur when α = 0 and β = 1.
Therefore, a test of the composite null hypothesis H0 : α = 0, β = 1 provides an
overall reliability test for the predictions. More specifically, the intercept α controls
the calibration of the model, which is most clearly seen when β = 1. When β = 1,
α < 0 implies the predicted risks are too high and α > 0, too low. When β �= 1,
noting that for πi = 0.5:

log
P(Yi = 1)

1 − P(Yi = 1)
= α,

one can interpret the intercept α as a calibration measure at πi = 0.5. The slope
parameter β is referred to as the refinement parameter: β > 1 implies the predicted
risks do not vary enough, 0 < β < 1 they vary too much, and β < 0 they show
the wrong direction. Therefore, additional tests of calibration given appropriate
refinement,H0 : α = 0|β = 1, and of refinement given appropriate calibration,H0 :
β = 1|α = 0, can be performed.

Example 4.2 In [7] it was reported that the average PCPTRC risk over all 645 men
of the EDRN cohort was 45.1 %, which is fairly high in keeping with the nature
of the cohort as elicited from multiple Urology practices. As a first indication of
calibration the average PCPTRC risk among the cohort should correspond to the
actual percent of the cohort that did have prostate cancer on biopsy. The percentage
of the 645 men in the EDRN cohort diagnosed with prostate cancer was 43.4 %,
fairly close to the average PCPTRC risk, providing a crude indication of calibration.

As an exploratory and primarily descriptive analysis of calibration among spe-
cific risk groups, Table 4 of [7] assessed the degree to which the PCPTRC calibrated
to actual risks for specific subgroups, such as for Caucasians, African Americans,
men with a positive family history and men with PSA less than 4.0 ng/mL. Across
all subgroups the average PCPTRC risk never varied by more than approximately 5
or 6 percentage points from the observed risk but there were some subgroups where
PCPTRC risks were better calibrated to actual risks than others. For example, among
the 47 African American participants in the cohort, 51.1 % had prostate cancer but
the average PCPTRC risk among these men was only 45.4 %. Application of the
Lemeshow and Hosmer test of calibration yielded a p-value of 0.10, not rejecting
the null hypothesis of a good fit at the 0.05 level of statistical significance. Cox’s lo-
gistic regression of observed prostate cancer status on logits of predicted PCPTRC
risks was also performed. The composite hypothesis test of reliability was not per-
formed; however, the intercept from the logistic regression was estimated as −0.014
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with standard error 0.091 and the slope by 1.291 with standard error 0.159. Separate
95 % confidence intervals for these estimates overlapped with 0 and 1, respectively,
indicating that predicted PCPTRC risks were reliable estimates of observed risks in
the EDRN population.

4.3 Net Benefit

Discrimination and calibration metrics objectively summarize accuracy but do not
provide information as to which thresholds of a prediction model might be useful
for basing clinical decisions. Towards this end, Vickers and Elkin [27] proposed a
measure of net benefit justified through a layman’s decision analysis framework that
does not rely on user-specified costs associated with various outcomes as full-blown
decision analyses typically do. As with the other accuracy measures, net benefit is
evaluated on an external cohort to the one on which the risk model was developed
as the expectation over the true and false positive counts:

NetBenefit(Cohort, r)= True Positive Count(Cohort, r)

Sample Size(Cohort)

− False Positive Count(Cohort, r)

Sample Size(Cohort)

(
r

1 − r
)
,

where for emphasis dependencies on the chosen cohort and user-selected cutoff r
are included in the definitions. The expression for the net benefit can be rewrit-
ten to show that it is also a function of the discrimination measures sensitivity and
1-specificity, TPR(Cohort, r) and FPR(Cohort, r), respectively, evaluated on the co-
hort and weighted by the proportions of bad outcomes (% Bad Outcomes(Cohort))
and good outcomes (% Good Outcomes(Cohort)) in the cohort:

NetBenefit(Cohort, r)= TPR(Cohort, r)× % Bad Outcomes(Cohort)

− FPR(Cohort, r)× % Good Outcomes(Cohort)

×
(

r

1 − r
)
.

This expression illustrates further the dependence of the net benefit on the evaluation
cohort. The discrimination metrics TPR and FPR already tend to depend on the
cohort, net benefit further relies on how prevalent the disease is in the evaluation
cohort. In other words, for two cohorts with the same operating characteristics of
a prediction model, the cohort with a higher disease prevalence will demonstrate
higher net benefit for using the prediction tool for clinical decisions.

Vickers and Elkin suggested evaluating the net benefit over all possible thresh-
olds r of the prediction model ranging from 0 to 1. The specific numbers obtained
for the net benefit can be difficult to interpret in isolation so they also recommended
overlaid decision curves for the strategies of referring no patients to action or all
patient’s to action regardless of the threshold r selected. For these curves the last
expression [r/(1 − r)] remains the same but the TPR and FPR are calculated based
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on the test rule that assigns no patients positive (in other words, r > 1) and all pa-
tients positive (in other words, r < 0). For taking no action, the TPR and FPR are
identically 0 so the net benefit curve for taking no action is the horizontal line at
0 across all thresholds r . For taking action on all patients the TPR and FPR are 1
and the net benefit curve is % Disease(Cohort)−% NotDisease(Cohort)[r/(1− r)],
which seemingly ironically, still depends on the threshold r , but that is an artifact
from the derivation of relative values of false positive results used in the derivation
of the net benefit.

4.4 Overall Performance Measures

There are overall measures that combine discrimination and calibration that have
been proposed for evaluating risk models but these have not gained widespread use
largely for two reasons. Firstly, they have awkward properties because of the di-
chotomous nature of the outcome predicted by a continuous measure and secondly,
they do not have an intuitive clinical interpretation.

The ubiquitous R2 measure of proportion of variability explained by a linear
regression of a continuous outcome Y on a series of variables has been extended
to the case of generalized linear models, including logistic regression, where Y is
dichotomous in the form of Nagelkerke’s R2 [14]:

R2 = 1 − exp

[
−2

n

{
l(β̂)− l(0)}

]
= 1 −

[
L(0)

L(β̂)

]2/n

,

where L(·) and l(·) are the likelihood and loglikelihood functions, respectively, de-
fined at the maximized values of β , the logistic regression log odds ratios, and for
a null model with no covariates (β = 0). The problem with this measure is that for
dichotomous outcomes it has a maximum less than 1, so is not as easy to judge as
for continuous outcomes, where the maximum of R2 is 1. Modifications by the max
obtainable R2 have been proposed but these are awkward to implement in prac-
tice. Therefore the criterion has not become widely used outside the case of linear
regression with Normal outcomes.

A similar metric extended for dichotomous outcomes that has not found
widespread use is the Brier score, which is simply the squared difference between
the 0–1 Y outcomes and predictions from the model:

Brier score = 1

n

n∑
i=1

(Yi − p̂i)2.

Predictions are good if the Brier score is small but squared Euclidean distance be-
tween a dichotomous outcome Y and a continuous predictor p is not intuitive and
will give coarse results for small sample sizes n. The Brier score also obtains a
maximum less than one and similarly, attempts to correct it are awkward [21].
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4.5 Integrated Discrimination Index

Noting shortcomings in the AUC for comparing risk prediction tools, Pencina and
colleagues [17] proposed the integrated discrimination index (IDI) for comparing
risk predictions from a new model to risk predictions from an old model that is
simply the difference in discrimination slopes between the new and old predictions
as proposed by Yates [28]:

IDI =
(

1

nevents

nevents∑
i=1

pnew,i − 1

nnonevents

nnonevents∑
i=1

pnew,i

)

−
(

1

nevents

nevents∑
i=1

pold,i − 1

nnonevents

nnonevents∑
i=1

pold,i

)
,

where nevents are the number of events, or bad outcomes, and nnonevents are the
number of non-events, or good outcomes, and the summations sum over the pre-
dicted probabilities from the new and old models as subscripted on the n’s. The
logic of the IDI is clear, a good prediction model should provide higher estimated
risks among the bad outcomes in the validation set compared to the good outcomes,
how good is determined by the discrimination slopes of the models. A positive IDI
would indicate a new model has better discrimination slope than the old.

Example 4.3 Ankerst and colleagues [30] have developed an extension of the PCP-
TRC to incorporate the novel prostate cancer markers % freePSA and [−2]proPSA,
which are both obtainable by blood tests. The methodology for updating the PCP-
TRC for new markers is based on Bayes algorithm for updating the prior odds of
prostate cancer, which in this case are based on PCPTRC risks, via likelihood ratios
of the distributions of the new marker among prostate cancer cases and controls to
obtain posterior odds and hence updated posterior risks for prostate cancer; for more
details see [29]. The updated PCPTRC is now available online at the same location
as the PCPTRC. A developmental dataset of 474 participants in the San Antonio
Biomarkers of Risk (SABOR) study were used to build the updated PCPTRC and
the model was validated on an external EDRN dataset comprising 575 men. The
IDI for comparing the new updated PCPTRC incorporating the two new markers to
the standard PCPTRC evaluated on the EDRN validation set was 6.3 % (95 % CI
3.0 to 9.6 %), indicating a statistically significant positive improvement to using the
updated model. Figure 2 compares the net benefit curves of the updated PCPTRC
model (called posterior PCPTRC risks), the original PCPTRC, and the strategies of
simply referring all men or no men to prostate biopsy irrespective of any risk pre-
diction model. The benefit curves indicated benefit of using both the PCPTRC and
updated PCPTRC for situations where risk thresholds exceeding 20 % for both of
these rules would be used for referral to biopsy over the blanket rule of referring all
men in the EDRN cohort to prostate biopsy, but no clear benefit of the more compli-
cated updated PCPTRC to the standard PCPTRC in this region. Both the standard
and updated PCPTRC provided benefit over the rule referring no patients to biopsy.
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Fig. 2 Net benefit curves

5 Food for Thought

To illustrate fundamental principles this chapter has focused on risk models for can-
cer diagnosis, but similar principles apply for all aspects of cancer treatment and
follow-up care, and easily extend to prediction problems in other disciplines outside
of medicine.

For projecting risks over expanded time periods, such as the 10-year risk of heart
attacks or other cardiovascular events in elderly people, models incorporating risks
of death from other causes, referred to in the medical literature as competing risks,
need to be implemented. Prognostic models refer to models used to predict treatment
outcomes, such as how long a patient can expect to live after a given a treatment is
administered. They may rely on other methodologies than logistic regression, such
as the Cox proportional hazards models which are appropriate for handling the com-
monly occurring censored survival times. A censored survival time refers to the case
where the exact date of death of a patient is not observed; it is only known that the
patient has lived a certain number of years, such as up until the end of the clini-
cal trial. Projections from such models can be used as a basis for making treatment
decisions, by favoring treatments that have the longest survival period for specific
patient clinical characteristics. The picture is not unidimensional as benefits in sur-
vival might be offset by loss in quality of life due to side effects. More compli-
cated decision functions incorporating multiple outcomes are required for weighing
the cost-benefits of competing treatment options. Increasingly, models addressing
multiple long-term effects of preventative or curative treatments for cancer, such as
higher incidences of ovarian and endometrial cancer in women taking tamoxifen,
are being implemented in order to provide a unified picture of the pros and cons
of various actions, providing many avenues for research in risk prediction for the
future of medicine.
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The principles of model building and online prediction outlined in this chapter
also directly apply to other disciplines, including forestry, ecology, informatics and
finance. For forest management, [32] have developed an online tool called SILVA
that projects growth of trees over expanded time periods. Their model accounts for
man-induced thinning, mortality, and other natural- and human-induced impacts.
Using an expanded database of 40000 trees observed at 5-year intervals in Bavaria,
Boeck and colleagues [31] implemented logistic regression to update the mortal-
ity simulator module of the SILVA program. Similar collaborations with ecologists
are working towards prediction of microhabitats on trees representing biological di-
versity, a concept of interest to forest conservationalists. Informatic scientists are
using the techniques to develop online predictions of project margins for large and
complex software development portfolios. One can foresee similar applications for
online predictions of financial success indicators based on the types of advanced
time series models used in that field.

6 Summary

This chapter has detailed the step-by-step program by which risk prediction models
are built, using as one illustration construction of the PCPTRC, one of the currently
most widely used prostate cancer risk calculators. The importance of external vali-
dation across multiple cohorts pushing the envelope in terms of generalizability of
the risk tool has been emphasized, as well as the separate components of validation
which address discrimination, calibration, and net benefit. As risk prediction tools
are typically founded on once-in-a-lifetime large well-designed studies, methodolo-
gies are needed for updating them based on new data and risk factor discoveries
based on smaller more recent studies. This chapter has discussed the need for com-
paring existing to updated risk models, using the integrated discrimination index as
one possible measure. To end a summary on risk prediction tools in current use was
provided along with extensions to other outcomes in medicine and applications in
other disciplines such as forestry and finance.
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Chapter 17
Risk Reduction of Cervical Cancer Through
HPV Screening and Vaccination—Assumptions
and Reality

Leonore Thümer, Ulrike Protzer, and Vanadin Seifert-Klauss

Cancer is a leading cause of death worldwide. It is estimated that about 20 % of all
cancer deaths are originally caused by infectious diseases, making them an impor-
tant risk factor. The classical approach to lower cancer risk has been the screening
for precancerous lesions. In addition, screening for primary infections has become
an option in order to evaluate individual cancer risks and to offer an intensive follow-
up and intervention for patients who have tested positive. Furthermore, vaccines
have been developed to prevent high risk infections and subsequent malignant dis-
eases in the first place. Prospective epidemiological studies are necessary to evaluate
the effect of prevention methods on cancer incidences but will give results only af-
ter a very long follow-up period. Therefore, mathematical models for risk prediction
and risk reduction will be helpful tools to determine the effectiveness of screening
and prevention programs. In this chapter we discuss cervical cancer as an example
of a malignancy which may in many cases be preventable. During the last decades
cervical cancer screening was based on cytological abnormalities. Since human pa-
pillomaviruses (HPV) have been identified to be the main risk factor for cervical
cancer, the detection of HPV DNA in cells of the cervix has been investigated as a
surrogate marker for high cancer risk. Here, we give an overview about the epidemi-
ology and natural course of cervical cancer and HPV infections. We discuss benefits
and limitations of current screening and prevention options which include cytology,
histology, HPV detection, and HPV vaccination. Finally, we make special emphasis
on the complex factors that need to be considered when developing mathematical
models for prediction of risk reduction of cancer rates.
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The Facts

• Cervical cancer screening is currently based on cytology, and HPV detection is
used for modulating the use of other diagnostic procedures.

• Cytology based screening detects abnormalities in cervical cells and predicts the
likelihood of precancerous lesions.

• HPV based screening detects DNA of high risk HPV in cervical cells.
• The main risk factor for cervical cancer is a persistent infection with high risk

HPV, especially HPV 16 and 18, which are found in 70 % of cervical cancer
cases.

• The main limitation of current screening strategies is the low positive predic-
tive value because transient HPV infections and cytological abnormalities are
frequent.

• HPV DNA tests have a higher sensitivity but lower specificity for precancerous
lesions than cytology based tests.

• A vaccine against HPV 16 and 18 is available.
• Comprehensive mathematical models will help to evaluate the effects on risk re-

duction of different prevention strategies.
• High participation rates in prevention programs are essential to their success, as

the major social risk factor for cervical cancer is non-participation in screening.

1 Cervical Cancer

Cervical cancer is the second most common cancer in women worldwide, with about
500,000 new cases each year. In Germany, each year over 6000 women are diag-
nosed with cervical cancer, the 5 year survival rate is around 60 %. Cervical cancer
arises in the narrow portion of the uterus that joins to the vagina. Most cancers are
squamous cell carcinomas deriving from flattened epithelial cells, the second most
common type are adenocarcinomas deriving from glandular epithelial cells.

Since cervical cancer is a slow-developing disease progressing through several
precancerous stages that can be detected and treated before they develop to inva-
sive cancer, it is a potentially preventable disease. Screening programs based on
detecting cytological and histological abnormalities have reduced incidence rates of
invasive cervical cancer successfully by 50–80 % during the past decades. In Ger-
many, the incidence of cervical cancer was reduced from 40/100,000 new cases
per year in 1971 to 14/100,000 new cases in 2004 [3]. The incidence of precancer-
ous lesions which put women at risk to develop cervical cancer, however, is 50 to
100 times higher than that of actual cancer development. Currently, German health
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authorities recommend an annual cervical cancer screening with the so called Pa-
panicolaou test (PAP test) for women starting at age 20. The PAP test is based on a
sample of cervical cells taken with a swab to detect cytological abnormalities and to
classify cancer risk.

Since it was discovered that a persistent infection with high risk human papil-
lomaviruses (HPV) is the central cause of cervical cancer, HPV DNA detection in
cervical swabs has been investigated as a new screening marker. In comparison to
PAP tests, HPV DNA based screening reaches a higher sensitivity to detect precan-
cerous lesions. However, HPV tests tend to have a lower specificity because transient
HPV infections are relatively frequent in women, and because both HPV infection
and cytological abnormalities regress in most cases without progressing to cancer.

In comparison to other European countries, German cervical cancer incidences
are still in the upper third range, which has raised the question of improving na-
tional screening and prevention strategies. This touches the subject of how many
women at risk participate in a screening program (see Sect. 5.2), but has also raised
discussions to which extent HPV DNA tests should be included into national screen-
ing strategies. HPV tests could be performed in combination with PAP tests or as
an alternative for primary screening. Another option of preventing cervical cancer
is vaccinating young women against HPV so that the risk of an HPV infection is
reduced in the first place. The different strategies, HPV versus PAP screening and
HPV vaccination, are investigated in large prospective epidemiological and clini-
cal studies. Since these studies require large cohorts and take many years or even
decades to generate data on risk reduction of cancer rates, mathematical models can
help to assess the medical and cost-effectiveness of the different strategies.

2 Ideal Screening Test Characteristics

The purpose of a screening program is to stratify cancer risk for each individual
patient and to offer intervention for those who are at high risk to develop cancer.
The ultimate goal of screening is the reduction of the individual and population risk
for cancer and to reduce mortality rates due to cancer.

An ideal screening test is on the one hand expected to identify every patient who
will develop cancer and on the other hand to give a negative result to all patients
who will stay healthy. However, it seems impossible to develop tests which such
high sensitivity and specificity. In reality a sensitive test will always give false pos-
itive results leading to anxiety, distress and unnecessary treatment or follow-up at
high costs. A highly specific test will give false negative results missing early can-
cer diagnosis resulting in loss of confidence and potential legal consequences. The
following aspects are of central interest to determine whether a screening method is
efficient in terms of risk stratification, benefits and costs for each patient and for the
health system:

• Sensitivity: In how many sick patients will the test be false negative and the diag-
nosis will be missed?
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• Specificity: How many healthy patients will be tested false positive and thus be
over-diagnosed?

• Positive predictive value: How many patients with a positive screening result will
develop cancer?

• Negative predictive value: How many patients with a negative screening result
will stay healthy?

• Therapeutic consequences:

• How effective is the resulting health care intervention?
• How many patients with positive screening do you need to treat in order to save

one patient from cancer? At what costs?
• What are the risks for the patient in case of over-diagnosis and over-treatment?

What costs does this raise?

• Cohort: Who takes part in the screening, at which age, at which intervals?
• Adherence: Is screening accepted and performed as being recommended?
• Health education: Is the population well informed about benefits and risks?

3 Screening with Cytology (PAP Test)

The so-called PAP test was developed by G. Papanicolaou and is used to detect
cytological abnormalities in cervical cells and to stratify cancer risk. During a gy-
necological exam, single and clustered cells are wiped from the cervix surface with
a cotton swab and from the cervical canal with a little brush onto two separate glass
slides. The obtained cells are stained and inspected for abnormalities by experienced
cytologists and are classified as PAP I–IV. This cytological classification expresses
the likelihood of the presence of histological abnormalities, so-called epithelial dys-
plasia or cervical intraepithelial neoplasia (CIN grades 1–3) as lined out in Table 1.
Misclassification of CIN likelihood by cytology happens in 8–10 % of cases, and
can be due to (non-HPV) infections, incorrect timing or incomplete collection of the
cells or incorrect handling, conservation or staining of the cytology specimen. The
verification of cytological abnormalities depends upon a tissue sample (histology),
in which the layering of cells can be visualized. Such tissue samples are either a
biopsy or a conization specimen. The first is usually small which raises the problem
of sufficiently representative sampling. Conization requires general anaesthesia and
prolonged healing and leads to the shortening of the cervix by approximately 1 cm.
On the other hand, conization is often not only a diagnostic but also a therapeutic
procedure in which the lesion is removed. Table 1 shows the different systems of
nomenclature which exist for cytological classification and which predict the likeli-
hood of cervical intraepithelial neoplasia (CIN).
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Table 1 Comparison between cytology (Munich and Bethesda nomenclature) and histology
(WHO nomenclature) in cervical cancer screening

Cytology Histology

Munich nomenclature (Central Europe)
PAP test

Bethesda system (USA)
Squamous intraepithelial
lesion

WHO nomenclature
Cervical intraepithelial
neoplasia

PAP I Normal

PAP II Mild inflammatory,
degenerative or metaplastic
changes

PAP III Undetermined result: severe
inflammatory, degenerative
changes, suspicious
glandular cells; cannot
exclude dysplasia,
carcinoma in situ or
malignancy

ASC-US: Atypical
squamous cells of
undetermined significance
ASC-H: Atypical
squamous cells—cannot
exclude HSIL

PAP IIID Mild to moderate dysplasia LSIL: Low grade squamous
intraepithelial lesion

CIN 1: Low-grade
intraepithelial neoplasia
(mild dysplasia)

CIN 2: Moderate
intraepithelial neoplasia
(moderate dysplasia)

PAP IVa Severe dysplasia or
carcinoma in situ

HSIL: High grade
squamous intraepithelial
lesion

CIN 3: High-grade
intraepithelial neoplasia
(severe dysplasia or
carcinoma in situ)

PAP IVb Severe dysplasia or
carcinoma in situ, cannot
exclude invasive carcinoma

PAP V Invasive carcinoma

3.1 Epithelial Dysplasia—A Precancerous Lesions?

Dysplasia is by definition a histological diagnosis, requiring the analysis of a spec-
imen of tissue with layered cells which is obtained by a biopsy or conization. Dys-
plasia is defined as cell changes within a multi-layered epithelium and is graded
according to whether these cell changes occur only in the superficial layers of the
epithelium (cervical intraepithelial neoplasia grade 1) or also in the intermediate
(CIN 2) or basal layers (CIN 3). The nearer the cell changes are to the basal mem-
brane, the higher the risk of progression to cancer. If the basal membrane is involved
and cell changes are found beneath it, the neoplasia is no longer intraepithelial, but
invasive. CIN 1 lesions regress spontaneously in up to 80 % of cases over the course
of one year, CIN 2 lesions may still regress in 40 %, while CIN 3 lesions carry a
likelihood of 90 % of progressing to become invasive cervical cancer, even if the
lesions may be very small. This is why only CIN 3, which includes cervical cancer
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Table 2 A proposed algorithm of dealing with screening results in Germany (graded after G.
Papanicolaou) in the S2k-guidelines by the working group colposcopy and infection in the German
society of gynecologists (DGGG). Colposcopy: inspection of the cervix with an enlarging optical
device and two diagnostic staining methods to detect abnormalities

Cytology result hrHPV
result

Cytology
checkup

Other diagnostic procedures

PAP I/II Negative 12 months –

Positive 12 months HPV control simultaneously
If still hrHPV positive or cytology abnormal:
colposcopy

PAP II W
(unclear result)

Negative 12 months HPV control

Positive 6 months HPV control simultaneously
If still hrHPV positive or cytology abnormal:
colposcopy

PAP III 4 weeks

PAP III D
(first time)

Negative 6 months HPV control

Positive 3–6 months HPV control simultaneously
If still hrHPV positive: colposcopy and biopsy

PAP III D
(repeatedly)

Negative 6 months HPV control
Colposcopy after 12 months

Positive – Colposcopy and biopsy

PAP IVa + Positive or
negative

– Colposcopy and biopsy

in situ, is considered to be an obligatory precancerous lesion, requiring surgery soon
after detection.

4 Screening with HPV Test

The principle of HPV testing is to find nucleic acids of high risk human papillo-
maviruses (hrHPV) in cervical cells, by means of molecular methods. HPV can be
detected in cell material obtained from the cervix with brush swabs (similar to cy-
tology) during a gynecological exam. In most of the tests used, probes can check
whether any of a certain panel of HPV types is present. High risk HPV detection is
currently used for modulating the use of other diagnostic procedures (see Table 2).
It is also being discussed as an alternative for primary screening or for triaging cy-
tology intervals in conjunction with cytology.

4.1 HPV Infection

In the 1970s an infection with human papillomaviruses (HPV) was identified as a
necessary but not sufficient condition to develop invasive cervical cancer, and in
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subsequent epidemiological studies HPV was detected in over 99 % of cases of
invasive carcinoma of the cervix [4, 21]. Of the more than 150 HPV types known to
date, only 10–15 types have been associated with lesions that can progress to cancer
and are therefore classified as high risk HPV (hrHPV). HPV 16 and 18 are the types
most commonly found in cervical cancer and are deemed to be the most aggressive.
The other hrHPV include types 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59. Infections
with multiple (low and high risk) HPV types are possible. A meta-analysis of 243
studies involving 30,848 cases of invasive cervical cancer worldwide from 1990 to
2010 found some type of hrHPV to be present in 90 % of all tumors. HPV16 was
found in 57 % of all cases and HPV18 in 16 %, with both types contributing to over
70 % of all invasive cervical cancers. Multiple types were detected in 11 % of all
affected women [16].

Human papillomaviruses are transmitted by direct contact with infection foci
and can cause genital and skin warts as well as papillomas within the respiratory
tract. However, mostly the infection is asymptomatic. HPV infection is one of the
most common sexually transmitted diseases: worldwide the overall age-adjusted
prevalence of current HPV infection is about 10 % in women, and up to 30 % in
young women below 25 years of age [5]. HPV positivity largely depends on the
sexual behavior of the woman and her partner, with a risk increase of approximately
4 % per new sexual partner. The cumulative lifetime prevalence, which reflects the
number of people infected with HPV at least once in their life, can reach up to
80 % [14].

In most cases HPV are spontaneously cleared due to a gradual development of
an effective immune response. In a prospective study following 608 college women
at 6 months intervals for three years, it was shown that the cumulative 3-year inci-
dence of HPV infection was 43 % and that the median duration of new infections
was 8 months [10]. In general, it is assumed that 60–80 % of all HPV infections
are cleared within 12 months, and 90 % within 24 months [18]. In cells infected
with HPV, mild cytological abnormalities can be found which frequently regress
spontaneously. Only in 10 % of cases a persistent HPV infection develops which
can induce a transformation of the cervical epithelium. Dysplasia may develop in
1–10 % of women having a persistent HPV infection over the course of 0.5–5 years
and which may progress through several stages to cancer with a latency of several
years.

Risk factors to develop cervical cancer clearly relate to a high probability of ac-
quiring a genital infection with HPV, such as a high number of sexual partners or a
partner with many differing sexual partners, and early age at first sexual intercourse.
Other risk factors which might determine the progression from HPV infection to
precancerous lesions reflect an inability to build up a sufficient immune response
against HPV, such as immunosuppression due to infection with the human immun-
odeficiency virus (HIV) or medication, a high number of pregnancies, or smoking.
The use of condoms has been associated with a high rate of regression of dyspla-
sia [11].
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4.2 Molecular Tests in Clinical Trials

For risk stratification on cervical cancer based on HPV tests it has to be kept in
mind, that infection with HPV is frequent especially in women under 30, mostly
transient, and that only a persistent infection with high risk human papillomaviruses
(hrHPV) represents a risk for cancer. In addition, only a small proportion of patients
with a persistent hrHPV infection develop cancer. From 1 million women infected
with hrHPV, only 8000 will develop carcinoma in situ, and only 1600 will develop
invasive cervical cancer.

There are different molecular methods available for detecting HPV DNA in a
sample of cervical cells, which is collected in a similar way as the PAP test. The
Hybrid Capture 2 (hc2) assay detects DNA from 13 high risk HPV types, however
an exact determination of the HPV type is not possible. This assay proved to be of
great clinical value in many important clinical trials [17]. In women with abnormal
cytology the hc2 HPV assay showed a higher sensitivity, with similar specificity
for CIN 2 or worse (CIN 2+) compared to cytology alone [8]. Primary screening
with the hc2 for hrHPV for identifying CIN 2+ lesions proved to be—compared
to cytology—more sensitive (around 99 %) but significantly less specific (around
28 %). The low specificity rate is due to the transient nature of many HPV infec-
tions and to cross-reactivity of the probe cocktail with non-high risk HPV types,
both of which do not cause cellular abnormalities. Next generation assays are fo-
cusing on the detection of hrHPV DNA including the genotyping for HPV16 and
HPV18, since 70 % of all cervical cancer cases are associated with these two geno-
types. Superiority of HPV16 and HPV18 testing in terms of positive predictive rates
for CIN 3+ was proven by a long term study following 20,810 women aged 30
and older. 10-year cumulative incidence rates of CIN 3 or invasive cancer were
17.2 % among women positive for HPV16 and 13.6 % among women positive for
HPV18. In comparison, only 3 % of women who tested positive for hrHPV other
than HPV16/18 developed CIN 3 or invasive cancer after 10 years [13]. Figure 1 il-
lustrates the results of the study performed on HPV genotyping. Based on these data,
assays for clinical routine use were developed which give results on positivity for
one of 14 hrHPV types, and specific positivity for HPV16 and HPV18. Alternative
HPV assays detecting RNA as a marker of transcription of oncogenic viral genes
are being investigated, which have a higher specificity (around 70 %) and confer
a higher positive predictive value (around 50 %) [20]. Since these tests are expen-
sive and show a lower sensitivity (around 74 %), they can only serve as second-line
screening in case of a positive HPV DNA test.

5 Finding the Optimal Strategy for Cervical Cancer Screening

In the case of cervical cancer screening, a high sensitivity and high negative predic-
tive value can be reached because practically most cancers are caused by an HPV
infection and can be identified as dysplasia in early stages. However, it is far more
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Fig. 1 Cumulative incidence rate of cervical intraepithelial neoplasia grade 3 or invasive cervical
cancer (CIN 3+) over 15 years following a single HPV test. The risk estimates show primarily
that in this older cohort (20,000 women, average age approximately 35 years), absence of hrHPV
(hrHPV negative) predicts very low risk of subsequent CIN 3+. Baseline test positivity for HPV16,
HPV18, or HPV31 was most strongly linked to subsequent CIN 3+. Note that the y-axis ends at
16 %. From: [19]

difficult to reach high specificity and a high positive predictive value. Currently
available screening methods analyze markers that are relatively frequent in women:
about 3–4 % of PAP smears are abnormal and 10 % of screened women (up to
30 % below the age of 30) are positive for HPV, with 2.6 % positive for HPV16 [5].
Abnormal cytology, HPV infection and mild precancerous lesions regress sponta-
neously in most cases and only a low percentage of women with persistent abnor-
malities and hrHPV infection develop cancer after a long period of time. Women
with positive test results on HPV require time-intensive counselling, follow-up and
shorter screening intervals, since they carry a risk factor but do not know whether
they will develop a disorder at all, nor when this disorder might disappear. On the
other hand, thanks to the high negative predictive value of HPV tests, screening
intervals might be extended in case of HPV negativity, which can contribute to low-
ering screening costs.

5.1 PAP Test Versus HPV Test in Clinical Trials

Screening with PAP tests has successfully lowered incidence rates of cervical can-
cer during the last decades. However, it needs individual interpretation and thus is to
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some extent subjective. In comparison to cytology, HPV testing provides an objec-
tive test outcome that is highly reproducible and test procedures can be easily auto-
mated [7]. Most importantly, a recent meta-analysis showed that HPV DNA testing
achieves higher sensitivity (relative sensitivity increase 33 %) than PAP tests to de-
tect high-grade CIN and invasive cancer but lower specificity (relative reduction in
specificity 6 %) when compared to cytology [8]. Therefore it has been proposed to
use HPV testing as an addition or even alternative for cytology based screening.

Study results have led to the recommendation to use high risk HPV screening
together with the PAP test for women aged 30 and older as a primary screen in or-
der to identify women who need to be monitored for cytological and histological
abnormalities more closely than others. However, the TOMBOLA study assessing
the value of a single HPV test in women with mild and borderline cytological abnor-
malities, proposed to shift this age limit towards 40 [6]. The study, which included
4439 women from the UK aged 20–59, showed that an additional test on hrHPV,
increased the positive predictive value for CIN 3+ from 9.7 % to 17.5 %. Speci-
ficity rates increased in older ages, leading to the conclusion that in women over
40, a negative HPV test could rule out further investigation. The study also found
22 % of women of all ages with CIN 3+ to be HPV negative. This of course raises
concerns regarding the reliability of HPV negativity and the quality of HPV tests
being used.

To evaluate whether HPV test or PAP test could better predict who is at low risk
and who is at high risk to develop cancer, a large prospective study with a screening
interval of 3 years was conducted in 300,000 women aged 30 and older and pub-
lished in 2011 [12]. In the 16,757 women who tested positive for HPV, the presence
of an abnormal cytology result greatly increased the cumulative incidence of CIN
3+ over 5 years from 5.9 % to 12.1 %. By contrast, abnormal cytology did not in-
crease the 5-year risk of CIN 3+ for women negative by HPV testing to a substantial
level (0.16 % vs 0.86 %). 73 % of the women positive by HPV testing had no cy-
tological abnormality in PAP tests, but when biopsied still had a high rate of CIN
3+ and accounted for 30 % of the cancers and even 63 % of the adenocarcinomas
detected in this study. Based on these results, the authors discussed whether test-
ing for HPV without adjunctive cytology might be sufficiently sensitive for primary
screening for cervical cancer.

In 2011, the German institution for evaluation of health system quality and eco-
nomic concerns (IQWIG) evaluated six large population-based studies using differ-
ent screening strategies for at least 3 years. The experts were unable to recommend a
certain screening strategy, despite documented benefits of HPV test based screening
alone or in combination with cytology compared to cytology alone. Benefits were
documented for earlier diagnosis of CIN 3 and early cervical cancer, but did not
show better survival. One of the reasons for not giving a recommendation by the
institute was that a possible disadvantage through this new screening strategy could
not be evaluated since no study data existed on primary screening with HPV tests
alone (outside the present cytology-based screening system). However, the large
study by Katki et al. [12] suggesting benefits of HPV screening has to be taken into
account by further re-evaluations.
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5.2 General Limitations of Screening

In 2007, 34 million women in Germany would have been eligible for cervical cancer
screening, but only 21.8 million PAP smears were performed, 15.8 million in the
course of screening. Low participation rates are a major reason for the limitations
to any screening: in the United States, 50 % of women with a new diagnosis of
cervical cancer have never had cervical cytology screening, another 10 % had not
been screened within 5 years before diagnosis [1], and women who are immigrants
to the US from countries where cytology screening is not the norm are an especially
high-risk group [2]. Very recently, the German government has announced to change
the organisation of cervical cancer screening from mere eligibility towards personal
invitation mailings to patients.

The feeling of insecurity when facing repeat examinations in the absence of ther-
apeutic measures may lead to mistrust in the medical system providing such screen-
ing. Women confronted with a positive result of either an HPV test or cytology
need to be informed about potential consequences. Since HPV positivity is more
common than abnormal cytology findings, the need for information increases. HPV
is a risk factor, which may or may not lead to cytological abnormalities over the
course of several years. The following relevant basic information should be pro-
vided to women on cytology and HPV testing in case of a positive result, accord-
ing to German regulatory authorities: Nature and origin of an abnormal cytology,
natural course of HPV infection and associated cell changes, HPV types (low risk/
high risk), route(s) of infection, prevalence, latency, regression, effects on the sexual
partner, management options and their consequences for fertility, and risk of cervi-
cal carcinoma. The need and capacities for counselling and management in case of
any abnormal test finding must be considered along with resources supplying such
counselling when discussing a change of mode of screening, as the large number of
positive risk factor results will lead to a massive increase in demand for information.

6 Vaccine Against HPV

Vaccination is traditionally the most cost-effective approach to prevent infections
and subsequent diseases. Two vaccines are currently available for primary preven-
tion of HPV infection: one bivalent including types 16 and 18, and one quadrivalent
vaccine covering additionally types 6 and 11, which are frequent in genital warts.
It is recommended to apply three vaccine doses in girls before their first sexual in-
tercourse. In Germany, health insurances cover the costs for girls between 12 and
17 years of age. Other countries have extended the recommended vaccination age
for girls from 9 to 26 years, and even included vaccination of boys into their recom-
mendations in order to achieve herd immunity.

Clinical studies proved the vaccine to be well tolerated and highly immunogenic.
Most efficacy studies focused on the protection from HPV-related intraepithelial le-
sions and persistent HPV infection by the HPV types used in the vaccine. It was
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shown that the vaccine provided 100 % protection from persistent HPV16 infection
over 17 months, and 94 % protection after 3.5 years [9, 15]. Studies with the clin-
ically more relevant endpoints neoplasia and invasive cancer are still ongoing and
results will not be available before 2020.

The success of an HPV vaccine clearly depends on the strength of the immune re-
sponse induced, the HPV types included, cross-protection to untargeted HPV types
and selection of the vaccinees (age and gender). Other important aspects are vaccine
costs and the ability to deliver vaccines to countries with low health care resources
where cancer screening rates are usually low. However, since current vaccine for-
mulations neither protect against all high risk HPV types nor allow treating persis-
tent infection, screening programs must continue, but intervals in vaccinated women
might be extended.

7 Mathematical Models on Risk Reduction and
Cost-Effectiveness

Since health economic resources are limited, decisions to introduce a new preven-
tion strategy into a national prevention program need to be based on the evaluation
of its clinical impact in terms of risk reduction and on cost-effectiveness. Prospec-
tive clinical studies are cost-intensive and require a long duration to show results on
relevant clinical outcomes. So called health technology assessments (HTA) could
represent important tools for public health decision makers to establish priorities on
health care choices. HTA use mathematical modeling to determine risk reduction
by certain strategies and their costs, taking into account comprehensive clinical,
epidemiological and economic data.

In 2010, a health technology assessment was performed by German public health
scientists in order to evaluate the long-term effectiveness and cost-effectiveness of
HPV DNA testing as a primary screening method for cervical cancer in the con-
text of the German health system [24]. The HTA evaluated 18 different strategies
which varied in the combination and intervals of PAP and HPV testing (Table 3).
Medical effectiveness was determined by the reduction of lifetime-risk for cervi-
cal cancer, reduction of mortality by cervical cancer and gained life-expectancy.
Cost-effectiveness was calculated as life-time costs of a certain strategy including
costs for screening and therapy, and the incremental cost-effectiveness-ratio (ICER),
which represents the costs per gained life-year (LYG) in comparison to a less effec-
tive strategy. The goal of the HTA was to identify the optimal strategy for cervi-
cal cancer screening and to give recommendations for German health care decision
makers.

The HTA used a Markov model with a hypothetical cohort of 15 year old women
who moved through different states of HPV infection, cervical precancer and cancer
over the course of a lifetime, simulating transition probabilities from one state to an-
other. The report aimed at covering the complex factors involved in risk prediction
and risk reduction of cervical cancer. Clinical, epidemiological and economic data
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from Germany was used as the basis of the model including the natural course and
mortality of the disease, incidences of HPV infection, cervical cancer and its pre-
cancerous lesions, as well as common practice and costs of subsequent diagnostic
and therapeutic options. In a base case analysis, test accuracy data was derived from
international meta-analyses: sensitivity of PAP test and HPV test for CIN 3+ was
set at 72 % and 98 %, specificity at 95 % and 92 %, reflecting the higher sensitiv-
ity but lower specificity of HPV DNA testing. In a scenario analysis, which took
into account data on test accuracy from a German screening study, the sensitivity
of PAP test was set at only 46 % for CIN 3+. The model was validated by com-
paring outcomes of model prediction with data from German cancer registries and
literature.

Table 3 shows the medical effectiveness of the different strategies in the base case
analysis compared to no screening: reduction of cervical cancer risk by screening
varied between 53 % and 97 %, reduction of mortality between 61 % and 99 %,
and gained life-expectancy between 56 and 91 undiscounted life days per woman.
Annual PAP screening as currently being performed in Germany reduced the risk
of cervical cancer by 93 %. HPV screening starting at age 30 combined with PAP
screening for women aged 20 to 29, both at 2-year intervals, reduced the risk of
cervical cancer by a comparable 91 %. In the scenario analysis with the lower PAP
sensitivity, risk reduction with annual PAP tests was calculated to be only 78 %, and
therefore at a significant lower level than HPV testing strategies at 1, 2, or 3 year
intervals starting at age 30.

Cost-effectiveness was evaluated by determining the ICER of the dominat-
ing strategies, calculating the ratios of incremental costs and incremental life-
expectancy, as represented by the slopes in Fig. 2. Biennial PAP screening between
age 20 and 29 combined with biennial HPV screening starting at age 30, being
equally effective as annual PAP screening, resulted in an ICER of 28,400 Eur/LYG
in the base case analysis. Screening at 1 year intervals both for PAP and HPV test-
ing would reduce risk of cervical cancer by only an additional 6 % at an ICER of
155,500 Eur/LYG. Acceptance of ICER depends on each society, no limits are ap-
plied in Germany. However, the WHO recommends ICERs not to exceed 3 times
the BIP per person, for Germany this would correspond to 90,000 Eur/LYG. In the
scenario analysis, increasing the interval of HPV testing to 3 years would reduce
costs significantly with a reduction of cancer risk by 83 %, and therefore still at
a higher level than annual PAP tests. Furthermore, an additional analysis revealed
that starting screening at a later age allows health care resources to be saved without
a relevant loss of effectiveness. The authors of the HTA therefore concluded that
the optimal strategy for cervical screening in Germany could be performing bien-
nial PAP tests between ages 25 and 29 followed by biennial HPV tests age 30 and
above. Main limitations of the HTA were not considering life expectancy adjusted to
quality of life, as screening results and precancer treatment might cause psycholog-
ical distress and adverse events, which might also affect cost-effectiveness-ratios.
Furthermore, adherence rates to screening were only estimated and not based on de-
tailed data, neither were the effects of different HPV types considered in the model.
This raises the need for further studies, as higher participation rates or reduced rates
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Table 3 Results of a German HTA using a Markov model. Medical effectiveness of 17 strategies
on cervical cancer screening compared to no screening. Before: age 20–29 [24]

Strategy Risk reduction
Cervical
cancer vs. no
screening (%)

Risk reduction
Mortality vs.
no screening
(%)

Gained life
expectancy vs.
no screening
(days per
woman)

1-year-interval

HPV, 1y, age 30; before PAP, 1y 97.4 98.7 91

PAP, 1y, age 20 92.7 96.1 88.7

2-year-interval

HPV+PAP triage, 2y, age 30; before PAP, 2y 91.7 95.0 87.7

HPV+PAP, 2y, age 30; before PAP, 2y 91.6 94.9 87.6

HPV, 2y, age 30; before PAP, 1y 91.4 94.8 87.6

HPV, 2y age 30; before PAP, 2y 91.2 94.6 87.4

PAP, 2y, age 20 80.5 86.8 80.0

3-year-interval

HPV+PAP triage, 3y, age 30; before PAP, 2y 84.8 89.6 82.7

HPV+PAP, 3y, age 30; before PAP, 2y 84.7 89.5 82.5

HPV, 3y, age 30; before PAP, 1y 84.7 89.4 82.7

HPV, 3y, age 30; before PAP, 2y 84.1 89.0 82.1

PAP; 3y, age 20 69.8 77.2 71.0

5-year-interval

HPV+PAP triage, 5y, age 30; before PAP, 2y 72.2 78.2 72.7

HPV+PAP, 5y, age 30; before PAP, 2y 72.1 78.0 72.5

HPV, 5y, age 30; before PAP, 1y 72.0 77.9 72.8

HPV, 5y, age 30; before PAP, 2y 71.3 77.3 71.9

PAP, 5y, age 20 53.3 60.7 55.9

of HPV infection (as expected by HPV vaccination) might allow to extend screening
intervals. Models taking into account quality-of-life data, effects of HPV vaccina-
tion and the heterogeneity of different HPV types might better evaluate long-term
and cost effectiveness and might improve decision-analytic modeling.

Another HTA was performed in Italy in 2007, in order to assess the clinical and
economic impact of the bivalent HPV vaccine in comparison to screening only [23].
Additionally to data on the epidemiology, screening and treatment of HPV infection
and its related diseases, the authors took into account efficacy and costs of the HPV
vaccine as well as women’s knowledge and attitudes toward screening and vaccina-
tion. With the help of a systematic review and meta-analysis of efficacy studies on
the bivalent HPV vaccine, the prevention rate of a persistent HPV infection was esti-
mated to be 87 % for HPV16 and 78 % for HPV18. Mathematical modeling showed



17 Risk Reduction of Cervical Cancer Through HPV Screening and Vaccination 473

Fig. 2 Results from a German HTA using a Markov model. Cost-effectiveness is based on incre-
mental life-expectancy versus incremental costs. Before: age 20–29 [24]

that vaccinating against HPV plus screening was the best strategy for risk reduction
and could reduce the incidence and mortality of cervical cancer by 67 % in compar-
ison to screening only, with an ICER of 22,000 Euros per quality adjusted life year.
Analysis of questionnaires revealed a broad interest of women toward vaccination.
On the other hand, adherence to screening was found to vary greatly between re-
gions, with only 14 % to 70 % of women repeating the PAP test every 3 years as
being recommended by Italian health authorities.

The results of these reports reflect the great value that HTAs can provide for
evaluating clinical and economic impacts of new prevention strategies in national
health programs. However, in order to allocate health care resources efficiently and
successfully, it is essential to strengthen organisational and social involvements like
educational campaigns on health care choices throughout the population.

8 Food for Thought

On the one hand, carcinoma of the cervix is the second most common cancer of
women in the world, and a persistent infection with high risk HPV types is a major
risk factor. On the other hand, this risk factor may or may not lead to cytological ab-
normalities over the course of several years. Most HPV infections are cleared within
12 months and 90 % within 24 months. Other infections, such as HIV-infection in-
crease the likelihood of disease (a big problem in Africa).

Can assumptions based on African data be transferred to Germany (a country
with much lower incidence of cervical cancer)?
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Table 3 shows a hypothetical cohort of women under 20 years of age. The dif-
ferent stages of infection, precancerous and cancer disease are modeled based on
assumptions from clinical epidemiologic and economic data in Germany. But test
accuracy data were derived from international meta-analyses.

How can mathematical models be constructed for an entity so difficult to predict?
The most widely used tests check whether any of a certain panel of HPV types

is present. They cannot check whether more than one HPV type is present. Since
more refined HPV tests recently allow the identification of more than one HPV type,
knowledge can be expected in the future on how combinations of various HPV types
act together.

Possibly certain combinations are particularly dangerous?
Apart from specifics applying to the virus type, it is likely that factors affecting

transmission of mucosal human papillomavirus play a role.
How can immune-biological factors of the host (patient) be incorporated in mod-

els?

9 Summary

Cervical cancer is a slow-developing disease progressing through several precan-
cerous stages. Screening programs based on detecting cytological and histological
abnormalities have successfully lowered cancer incidence rates in the last decades.
Since it was discovered that a persistent infection with high risk human papillo-
maviruses is the major risk for cervical cancer, HPV detection in cervical swabs has
been investigated as a new screening marker. High sensitivity and high negative pre-
dictive values can be reached with currently available screening methods, but speci-
ficity and positive predictive values of cancer risk tend to be low because both HPV
infection and cytological abnormalities occur frequently and regress in most cases.
Discussions are still ongoing whether HPV screening should be used additionally
to or instead of cytology based screening. Since large prospective epidemiological
and clinical studies are expensive and take many years or even decades to generate
data on how prevention programs influence cancer rates, mathematical models will
be helpful tools to determine cancer risks as well as (cost-)effectiveness of preven-
tion programs. Risk prediction and estimations of risk reduction must be based on
a comprehensive analysis, considering the various risk factors and probabilities of
transition to precancerous lesions and invasive cancer, as well as the diagnostic and
therapeutic consequences and their costs. Assumptions must also take into account
the variable rates of participation in prevention programs, which largely depend on
the public knowledge about benefits and limitations of screening and vaccination.
A multidisciplinary team including medical doctors, health economists, mathemati-
cians, public health experts and sociologists is needed to determine the risks and
evaluate the effectiveness of prevention strategies comprehensively.
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