
A Second View on SecureString 2.0

Günter Fahrnberger

University of Hagen, Universitätsstraße 1, 58097 Hagen, Germany
guenter.fahrnberger@fernuni-hagen.de

Abstract. Many companies have thought about using external hosting
solutions. Cloud computing as such a solution attracts prospective users
who want to avoid initial costs and standing expenses with the underlying
pay-as-you-use model. The outsourcing of sensitive information implies
security risks, like eavesdropping and sabotage, for them as soon as they
pass any unconfident area. If an outhouse hosting solution serves as data
storage only, then an end-to-end cryptosystem without the necessity of
having homomorphic properties comes up with the answer. Moreover,
secure computations on the encrypted data need the use of more com-
plex cryptosystems. SecureString 1.0 [3] and SecureString 2.0 [4] were
proposed as such complex cryptosystems that focus on computing on
encrypted character strings in untrustworthy environments (like clouds).
While SecureString 1.0 offered a too inflexible approach, SecureString
2.0 as its improvement was introduced textually at a high level only so
far. This paper contributes to foster the understanding of SecureString
2.0 by providing performance analysis for its supported operations plus
formal definitions, theorems and proofs.

Keywords: blind computing, character string, character string func-
tion, character string operation, cloud, cloud computing, secure comput-
ing, string function, string operation.

1 Introduction

The outsourcing of own computing power to external places shifts (the responsi-
bility of) the maintenance efforts of the outsourced facilities to a service provider
and has been a valid strategy since the commercial use of computers. It began
with central computations in mainframes and was supplemented with the hosting
of foreign IT-hard- and software. The will to commercialize less utilized or even
idle computing resources and the possibility of virtualized hardware has driven
the emergence of the topical cloud computing with its three major service models
Infrastructure as a service (IaaS), Platform as a service (PaaS) and Software as a
service (Saas). Users of cloud computing save maintenance efforts. Furthermore,
they also benefit of low or even no initial costs and standing expenses, because
almost all cloud providers offer their resources by means of the pay-as-you-use
model. The privacy level of outsourced digital data must be maintained some-
how to give malicious forces neither the chance to obtain knowledge of sensitive
information nor to endanger its integrity. Numeric or textual data intended just

R. Natarajan (Ed.): ICDCIT 2014, LNCS 8337, pp. 239–250, 2014.
c© Springer International Publishing Switzerland 2014



240 G. Fahrnberger

to be stored in the cloud without any reading or writing computations on them
can protected easily by employing one of the many available sorely approved as
secure end-to-end cryptosystems. For (keyword) searches on encrypted charac-
ter strings, there exist useful schemes in masses as well. The first big challenge
are calculations with ciphered numeric operands and results that require either
(fully) homomorphic cryptosystems [5,9] or disguising techniques [1]. The second
field of research delves for modifying operations on ciphertext character strings.
The use of trusted third parties [10], multiple parties [2,7] or cryptographic
hardware [6] has led to appropriate solutions, but obviously all of them depend
on substantial hardware efforts. Reasons, like the reduced or lost flexibility of
clouds, higher costs or the unwillingness of integration by the cloud providers,
make the use of additional hardware unattractive or even impossible.

SecureString 1.0 [3] was the first approach to overcome these extra hardware
resources with a pure software solution. The detection of considerable limitations
in this model ended up in the improved version 2.0 of SecureString [4] whose
performance analysis for its supported operations plus its formal definitions,
theorems and proofs are focus of interest in this publication.

Section 2 takes a formal look at the en- and decryption scheme of SecureString
2.0.

Section 3 contains the definitions of the three most important character string
functions querying, replacing and picking that are supported by SecureString 2.0.

In Section 4 the probabilistic success of statistical attacks against SecureString
2.0 is proved by varying either the n-gram length or the character string length.

Section 5 deals with the time performance of the three character string func-
tions querying, replacing and picking.

Section 6 summarizes and concludes the current document.

2 En- and Decryption Scheme

The en- and decryption scheme of SecureString 2.0 aims to protect the confiden-
tiality of character strings on their way through a P2P-network or a distributed
application comprising not only trustworthy nodes. While ciphertext character
strings may occur in all nodes and transmission paths, plaintext character strings
must not leave a trustworthy node. Therefore, en- and decryptions must be ex-
ecuted in confident environments only, which leads to the following encryption
scheme steps in a trustworthy node.

1. Initially, the following input parameters must be chosen: the polygram length
n ∈ N, the number of concurrent coexisting encryption steps a ∈ N, a filling
character which never occurs in plaintext character strings at all and the
underlying cryptosystem.

2. All confident nodes agree on a common secret key together.
3. A client repository with an amount of a encryption steps is created. Each

of these a steps contains a set of all possible ciphertext n-grams (character
strings of length n). Each encrypted n-gram of such a set is synthesized by



A Second View on SecureString 2.0 241

appending the same random character string (salt) to the end of the plain-
text n-gram and encrypting the merged string with the chosen underlying
cryptosystem and its secret key. Therefore, every set of encryption steps gets
attached to its own unique salt respectively.

4. An unused encryption step of the client repository is exclusively chosen for
each new plaintext character string v.

5. v is split it into its n-grams. If the string length |v| is not dividable by
n without having a remainder, then the last substring is be shorter than n
characters and must be padded to length n with the defined filling character.

6. Each plaintext n-gram is sought in the client repository and exchanged for
its encrypted pendant.

7. Just the ordered conglomeration of the ciphered n-grams represents the
wanted ciphertext alternative as result of this encryption scheme.

8. If the number of unused encryption steps in the client repository has fallen
below a critical threshold value, then the functionality of the client repository
must be maintained by renewing it with maximum a new encryption steps.

9. Continuation with step 4

The previously described encryption scheme gains reversal with the following
decryption scheme steps in a trustworthy node.

1. The decisions for the polygram length n, the filling character and the under-
lying cryptosystem are taken over from the encryption scheme.

2. All confident nodes have agreed on a common secret key together.
3. A new ciphertext character string is split into its ciphered n-grams.
4. Each gained ciphertext n-gram is decrypted separately with the selected

underlying cryptosystem and its secret key.
5. Salts and filling characters in the results of the previous step are clipped to

plaintext n-grams. The last portion can be shorter than length n of course.
6. Just the ordered sequence of the plaintext n-grams represents the wanted

plaintext character string as result of this decryption scheme.
7. Continuation with step 3

While Figure 1 depicts the cryptosystem as output of the previously described
en- and decryption scheme, Definition 2 expresses it formally. Definition 1 declares
reoccurring notations (emphasized) and their explanations initially as reference in
order to enhance the readability of all incident definitions, theorems and proofs.

Definition 1. Let Σ denote an alphabet, let D ⊆ Σ∗ denote a dictionary, let
the floor function �x� = max{y ∈ ZZ|y ≤ x} output the largest integer less
than or equal to x, let the ceiling function �x� = min{y ∈ ZZ|y ≥ x} output the
smallest integer greater than or equal to x, let m ∈ IN denote the block size of the
underlying cryptosystem, let the polygram length n ∈ IN denote the number of
characters that are salted and encrypted together as a n-gram in ECB (Electronic
CodeBook) mode, let a ∈ N|0 < a ≤ |Σm−n| denote the number of concurrent
coexisting encryption steps, let v ∈ Σ∗ denote a plaintext character string, let

|v| ∈ IN denote the length of a string v, let w ∈ Σm∗� |v|
n � denote the arisen



242 G. Fahrnberger

Fig. 1. En- and Decryption Scheme of SecureString 2.0 (n = 1)

ciphertext character string from splitting v into disjunctive n-grams before salting
and encrypting them separately during the encryption scheme of SecureString
2.0, opposed to the decryption scheme that takes w, decrypts its ciphered n-
grams and removes their salts in order to output v finally, let Cz = 1

z+1

(
2z
z

)|z ∈
IN the zth Catalan number, let u ∈ Σ∗ denote a plaintext matching pattern

string and q0, · · · ,qo, · · · ,qa−1 ∈ Σm∗� |u|
n � a set of a appropriate ciphertext

alternatives, where o ∈ IN|0 ≤ o < a < |Σm−n| denotes the oth alternative,
let qo0 , · · · ,qop , · · · ,qo� |u|

n
�
∈ Σm denote the encrypted n-grams of qo, where

p ∈ IN|0 ≤ p < � |u|
n � denotes the index of the pth n-gram, let t ∈ Σ∗ denote

a plaintext replacement string and r0, · · · , ro, · · · , ra−1 ∈ Σm∗� |t|
n � a set of a

appropriate ciphertext alternatives.

Definition 2. Let Σ,m, n, v, w denote according to Definition 1.

Then SecureString 2.0 is a polyalphabetic, |v|-graphic, (m∗ |v|
n )-partite cryptosys-

tem, which encrypts v with a bijective encryption step χ : Σ|v| → Σm∗ |v|
n and

decrypts w with a bijective decryption step χ−1 : Σm∗ |v|
n → Σ|v| that are based

on substitution and straddling.

3 Character String Functions

This section comes along with the formal definitions for the three most important
character string functions of SecureString 2.0: querying, replacing and picking.

3.1 Querying

A querying function tests the inclusion of any ciphertext alternative of the spec-
ified matching pattern string u in another, advisably longer encrypted string w.
A tree or another suitable data structure feeds this operation with the a different



A Second View on SecureString 2.0 243

ciphertext alternatives for u (see Definition 3). Topical programming languages
mostly reserve the method name contains for this function.

Definition 3. Let Σ, a, j,m, n, o, p, q0, · · · , qo, · · · , qa−1,
qo0 , · · · , qop , · · · , qo� |u|

n
�
, u, v, w denote according to Definition 1, and let

w0, · · · , wj , · · · , w� |v|
n � ∈ Σm denote the encrypted n-grams of w, where j ∈

IN|0 ≤ j < � |v|
n � denotes the index of the jth n-gram, then w is queried by

contains : Σm∗� |v|
n � ×Σm∗� |u|

n � → {false, true},
(w, q0, · · · , qa−1) 
→ contains((w, q0, · · · , qa−1))

:=

{
true if (∃o ∈ IN)(∀p ∈ {0, · · · ,  |u|

n �})(∃j ∈ {0, · · · ,  |v|
n �})wj = qop

false otherwise

3.2 Replacing

Initially, replacing does the same as querying a ciphered string w. Additionally,
it exchanges occurring ciphertext alternatives of the specified matching pattern
string u for ciphertext alternatives of the specified replacement string t (see
Definition 4). A function, which replaces just the first occurrence of a ciphertext
alternative of u with such one of t, is usually named replaceFirst. Such one,
which replaces all occurrences of ciphertext alternatives of u with such ones
of t, is commonly called replaceAll. Each replace function demands two trees or
equally good data structures as arguments. The first one contains the a encrypted
alternatives for u, and the second one possesses those ones for t. The replacement
t can be the empty string ε as well, which ends in cutting out the first respectively
all occurring ciphertext alternative(s) of u.

Definition 4. Let Σ, a, j,m, n, o, p, q, q0, · · · , qo, · · · , qa−1,
qo0 , · · · , qop , · · · , qo� |u|

n
�
, r0, · · · , ro, · · · , ra−1, u, v, w denote according to Defini-

tion 1, let w0, · · · , wj0 , qo, wj0+� |u|
n �+1

, · · · , wjy , qo, wjy+� |u|
n �+1

, · · · , w� |v|
n � ∈ Σm

|y ∈ IN denote the encrypted n-grams of w that includes y + 1 occurrences of qo
obviously, then the first occurrence of qo in w is exchanged for ro by

replaceF irst : Σm∗� |v|
n � ×Σm∗� |u|

n � ×Σm∗� |t|
n � → Σ{m∗� |v|

n �,m∗� |v−u+t|
n �},

(w, q0, · · · , qa−1, r0, · · · , ra−1) 
→ replaceF irst((w, q0, · · · , qa−1, r0, · · · , ra−1))

:=

{
w if contains(w, q0, · · · , qa−1) = false

w0 · · ·wj0rowj0+� |u|
n �+1

· · ·wjyqowjy+� |u|
n �+1

· · ·w� |v|
n � otherwise

or all occurrences of qo in w are exchanged for ro by

replaceAll : Σm∗� |v|
n � ×Σm∗� |u|

n � ×Σm∗� |t|
n � → Σ∗,

(w, q0, · · · , qa−1, r0, · · · , ra−1) 
→ replaceAll((w, q0, · · · , qa−1, r0, · · · , ra−1))

:=

{
w if contains(w, q0, · · · , qa−1) = false

w0 · · ·wj0rowj0+� |u|
n �+1

· · ·wjyrowjy+� |u|
n �+1

· · ·w� |v|
n � otherwise



244 G. Fahrnberger

3.3 Picking

A picking function, which is known under the name of substring generally, out-
puts a new string that is substring of an encrypted string w (see Definition 5).
A substring function needs two arguments: the position of the first and of the
last substring character in w. SecureString supports the second known kind of
substring as well which is called with a start index only in order to use the last
character of w as ending index implicitly.

Definition 5. Let Σ,n, v, w denote according to Definition 1, let d ∈ N denote
the beginning index, let e ∈ N denote the ending index,
and let w0, · · · , wd, · · · , we, · · · , w� |v|

n � ∈ Σm denote the encrypted n-grams of

w, where 0 ≤ d ≤ e ≤  |v|
n �, then a substring of w is picked out by

substring : Σm∗� |v|
n � × IN× IN → Σ∗, (w, d, e) 
→ substring((w, d, e)) :=

wd, · · · , we−1

or by

substring : Σm∗� |v|
n � × IN → Σ∗, (w, d) 
→ substring((w, d)) := wd, · · · , w� |v|

n �

4 Threat Model

The initial publication of SecureString 2.0 [4] demonstrated the resistance of
SecureString 2.0 against ciphertext-only-, known-plaintext-, (adaptive) chosen-
plaintext-, (adaptive) chosen-ciphertext-attacks and a combination of the both
latter ones as long as the secret key keeps concealed. This section addresses
the evaluation of the success probability of two ciphertext-only attacks that are
directed against cryptosystems based on substitution. Even if an opponent un-
covered a single cloud repository or ciphertext character string, e.g. with one of
these two ciphertext-only offenses, SecureString 2.0 would heal itself by using
salts only once and exchanging its exhausted repositories. Hence the prudent
design of SecureString 2.0 achieves forward and backward secrecy because com-
promised strings or repositories do not expose their predecessors or successors.

4.1 n-gram Repetition Pattern Attack

The first attack compares the n-gram repetition pattern of a ciphertext character
string with all known n-gram repetition patterns of an appropriate dictionary D
and the creation of a set of fitting plaintext character strings. A lack of reference
repetition patterns would make this attack unworkable.While n is varying during
the n-gram repetition pattern attack in Theorem 1, the character string length
is changing in Theorem 2.



A Second View on SecureString 2.0 245

n-gram Repetition Pattern Attack with Variation of n

Theorem 1. Let Σ,D,m, n, o, qo, ro, t, u, v, w denote according to Definition 1.
If n increases linearly, then the number of fitting plaintext character strings in
D as result of a n-gram repetition pattern attack against w, qo or ro increases
polynomially, and therefore the probability to reveal v, u or t decreases polyno-
mially.

The proof is done representatively for v/w-pairs by mathematical induction.
Basis (n = 1): The number of repetition patterns, to which all SecureString

2.0-ciphertext strings of lengthm∗� |v|
n � = m∗� |v|

1 � = m∗|v| in D are distributed,

is the |v|th Catalan number C|v| =
(2∗|v|)!

(|v|+1)!∗|v|! .
Induction step (n → n + 1): The number of repetition patterns, to which all

SecureString 2.0-ciphertext strings of length m ∗ � |v|
n+1� in D are distributed, is

the � |v|
n+1�th Catalan number C� |v|

n+1 �
=

(2∗� |v|
n+1 �)!

(� |v|
n+1 �+1)!∗� |v|

n+1 �!
. C� |v|

n+1 �
is

C� |v|
n �

C� |v|
n+1 �

=

(2∗� |v|
n �)!

(� |v|
n �+1)!∗� |v|

n �!
(2∗� |v|

n+1 �)!
(� |v|

n+1 �+1)!∗� |v|
n+1 �!

=
(2 ∗ � |v|

n �)! ∗ (� |v|
n+1�+ 1)! ∗ � |v|

n+1�!
(2 ∗ � |v|

n+1�)! ∗ (� |v|
n �+ 1)! ∗ � |v|

n �!
=

=

⎧
⎨

⎩

1 if � |v|
n+1� = � |v|

n �
2∗(2∗� |v|

n �−1)

� |v|
n �+1

otherwise

times lower than C� |v|
n �.

Accordingly, the incidence probability per repetition pattern increases poly-
nomially if n increases linearly. Therefore, the probability to reveal v decreases
polynomially. ��

n-gram Repetition Pattern Attack with Variation of Character String
Length

Theorem 2. Let Σ,D,m, n, o, qo, ro, t, u, v, w denote according to Definition 1.
If a length |w|, |qo| or |ro| increases linearly, then the number of fitting repetition
patterns in D as result of a n-gram repetition pattern attack against w, qo or ro
increases polynomially, and therefore the probability to reveal v, u or t decreases
polynomially.

The proof is done representatively for v/w-pairs by mathematical induction.
Basis (|v| = 1): The number of repetition patterns, to which all SecureString

2.0-ciphertext strings of length m ∗ � |v|
n � = m ∗ � 1

n� = m in D are distributed, is

the |v|th = 1st Catalan number C1 = (2∗|v|)!
(|v|+1)!∗|v|! =

(2∗1)!
(1+1)!∗1! =

2!
2! = 1.

Induction step (|v| → |v| + 1): The number of repetition patterns, to which

all plaintext character strings of length m ∗ � |v|+1
n � in D are distributed, is the

� |v|+1
n �th Catalan number C� |v|+1

n � =
(2∗� |v|+1

n �)!
(� |v|+1

n �+1)!∗� |v|+1
n �! .



246 G. Fahrnberger

C� |v|+1
n � is

C� |v|+1
n �

C� |v|
n �

=

(2∗� |v|+1
n �)!

(� |v|+1
n �+1)!∗� |v|+1

n �!
(2∗� |v|

n �)!
(� |v|

n �+1)!∗� |v|
n �!

=
(2 ∗ � |v|+1

n �)! ∗ (� |v|
n �+ 1)! ∗ � |v|

n �!
(2 ∗ � |v|

n �)! ∗ (� |v|+1
n �+ 1)! ∗ � |v|+1

n �!
=

=

⎧
⎨

⎩

1 if � |v|+1
n � = � |v|

n �
2∗(2∗� |v|+1

n �−1)

� |v|+1
n �+1

otherwise

times higher than C� |v|
n �.

Accordingly, the incidence probability per repetition pattern decreases poly-
nomially if |v| increases linearly, and therefore the probability to reveal v in-
creases polynomially. This proof assumes the same number of dictionary words
per character string length. In many dictionaries the number of character strings
per length resembles almost normal distribution. Such a case opposes a decreas-
ing number of words to an increasing number of repetition patterns for character
string lengths larger than the median length. Thus the incidence probability per
repetition pattern sinks respectively the probability to reveal v grows even faster
than proved. ��

4.2 n-gram Distribution Attack

The second attack compares the n-gram distribution of a ciphertext character
string with the overall n-gram distribution of an appropriate dictionary D sta-
tistically, e.g. with Fisher’s exact test [8]. This attack becomes infeasible if the
required reference n-gram distribution is unavailable. While n is varying dur-
ing the n-gram distribution attack in Theorem 3, the character string length is
changing in Theorem 4.

n-gram Distribution Attack with Variation of n

Theorem 3. Let Σ,D,m, n, o, qo, ro, t, u, v, w denote according to Definition 1.
If n increases linearly, then the probability to reveal v, u or t statistically de-
creases.

The proof is done representatively for v/w-pairs by mathematical induction.

Basis (n = 1): Each SecureString 2.0-ciphertext string of length m ∗ � |v|
n � =

m ∗ � |v|
1 � = m ∗ |v| in D consists of � |v|

n � = � |v|
1 � = |v| monograms (1-grams).

Induction step (n → n+1): Each SecureString 2.0-ciphertext string of length

m ∗ � |v|
n+1� in D consists of � |v|

n+1� (n+ 1)-grams.

� |v|
n+1� is

� |v|
n �

� |v|
n+1�

=

{
1 if � |v|

n+1� = � |v|
n �

n+1
n = 1 + 1

n otherwise

times lower than � |v|
n �.



A Second View on SecureString 2.0 247

Accordingly, lowering the number of included grams per ciphertext string
reduces the probability to reveal v statistically. ��

n-gram Distribution Attack with Variation of Character String Length

Theorem 4. Let Σ,D,m, n, o, qo, ro, t, u, v, w denote according to Definition 1.
If a length |w|, |qo| or |ro| increases linearly, then the probability to reveal v, u
or t statistically increases.

The proof is done representatively for v/w-pairs by mathematical induction.

Basis (|v| = 1): Each SecureString 2.0-ciphertext string of length m ∗ � |v|
n � =

m ∗ � 1
n� = m in D consists of � |v|

n � = � 1
n� = 1 n-gram.

Induction step (|v| → |v| + 1): Each SecureString 2.0-ciphertext string of

length m ∗ � |v|+1
n � in D consists of � |v|+1

n � n-grams.

� |v|+1
n � is

� |v|+1
n �

� |v|
n �

=

{
1 if � |v|+1

n � = � |v|
n �

|v|+1
|v| = 1 + 1

|v| otherwise

times higher than � |v|
n �.

Accordingly, a longer character string causes a higher number of grams in
average and therefore abets the probability to reveal w statistically. ��

5 Performance

This section evaluates the time performance of the three most important char-
acter string functions of SecureString 2.0: querying, replacing and picking. Ad-
ditionally, the investigation confronts the obtained mean turnaround times of
SecureString 2.0 with those ones of comparable cryptosystems, among them its
predecessor SecureString 1.0 and AES (Advanced Encryption Standard) as bare
transport cryptosystem. In contrast to the statistics of SecureString 1.0, those
ones of SecureString 2.0 were drawn for n = 1 only, because queried, inserted or
deleted substrings need not to follow the n-gram bounds if n > 1, and therefore
they cause too time-consuming inter-n-gram-operations despite better privacy.
For example let be n = 2, u =’bc’, v =’abcd’, then q = χ(’bc’) must be found in
w = χ(’ab’)χ(’cd’), even if ’b’ and ’c’ are parts of different n-grams obviously.
The memory consumptions of both SecureString-versions behave identically and
thus require a citation of the performance analysis for SecureString 1.0 [3] only.

5.1 Querying Performance

Firstly, the querying performance of SecureString 2.0 is tested for character
string lengths 1 ≤ |v| ≤ 64 and all possible matching pattern string lengths 1 ≤



248 G. Fahrnberger

Fig. 2. Performance of Character String Functions

|u| ≤ |v|. For each data value in Figure 2 a) the querying operation is conducted
for 1.000.000 random ciphertext character string/matching pattern string-pair
samples and the mean value shown in nanoseconds. As a result, the time com-
plexity for querying functions turns out to be O(|v| ∗ log (min (|u|, |v| − |u|)).

Secondly, the inclusion of random matching pattern strings of length |u| =
min (4, |v|) is tested in 1.000.000 random character string samples per length
1 ≤ |v| ≤ 64. This is evaluated in nanoseconds per operation. It can be easily
observed by means of Figure 2 b) that the performance of SecureString 2.0
behaves like that one of a transport cryptosystem and much more better than
that one of SecureString 1.0.



A Second View on SecureString 2.0 249

5.2 Replacing Performance

Like for querying, the performance of replacing operations with SecureString 2.0
is measured for character string lengths 1 ≤ |v| ≤ 64 and all possible matching
pattern string lengths 1 ≤ |u| ≤ |v| firstly. Each found matching pattern string
is replaced by a replacement string of equal length |t| = |u|. Each data value in
Figure 2 c) represents the mean value of 1.000.000 random ciphertext character
string/matching pattern string/replacement string-triplets in nanoseconds. The
time complexity can be recognized with O(|v| ∗ log (min (|u|, |v| − |u|)) again.

In the second part of the performance analysis for the replacing operation,
random matching patterns strings of length |u| = min (4, |v|) are replaced by
random equally long replacement strings in 1.000.000 random character string
samples per length 1 ≤ |v| ≤ 64. Again, this is measured in nanoseconds per
operation. Figure 2 d) displays that similar behavior as for the previous query-
ing operation can be observed: SecureString 2.0 displays lower efforts than Se-
cureString 1.0. Reference values for the characteristic function cryptosystem are
omitted here because it lacks to support replacing functions.

5.3 Picking Performance

Initially, the performance of picking operations is examined by picking out sub-
strings of all possible lengths 1 ≤ e − d ≤ |v|, where d is a random left and e
a random right border, out of character strings of length 1 ≤ |v| ≤ 64. Each
data mean value in Figure 2 e) consists of 1.000.000 samples and is scaled in
nanoseconds. An approximate time complexity of O(|v|) can be anticipated.

The comparison of the different cryptosystems for the picking operation is
performed by cutting out substrings of length min (4, |v|) at random beginning
indexes in 1.000.000 random character string samples per length 1 ≤ |v| ≤ 64.
Yet again, the measurement is taken in nanoseconds per operation. Figure 2 f)
displays that SecureString 2.0 also surpasses the picking performance of Secure-
String 1.0. Of course, both SecureString versions perform worse than a transport
cryptosystem, but provide privacy within the cloud application.

6 Conclusion

The cryptosystem SecureString 2.0 offers querying and modifying functions on
encrypted character strings in untrustworthy environments (like clouds).

After defining the en- and decryption scheme and the three most important
supported character string functions querying, replacing and picking formally, it
was shown that the success probability to break an encrypted character string
(with perceptible boundaries) by a n-gram distribution attack or a statistical
n-gram distribution attack decreases with an increasing number of commonly
ciphered characters n respectively increases with an increasing character string
length. Inferred from these results, an implementer of SecureString 2.0 ought be
firmly encouraged to use one salt only once and only to protect a single character



250 G. Fahrnberger

string. Nevertheless, if a text of SecureStrings is conveyed or processed together,
then each ciphered delimiter between two words or sentences, e.g. a blank or
a full stop, can share the salt with its previously neighbored character string
safely without risking detection of its meaning. Conducted analysis for three
character string functions exposed improved time performance of SecureString
2.0 compared to SecureString 1.0.

In short, SecureString 2.0 offers a good trade-off between privacy and time
performance. Nevertheless, better protection for the integrity of ciphertext char-
acter strings can be obtained, e.g. against cut and splice or replay attacks, by
assembling a random nonce, a timestamp and an incrementing counter in each
seeded salt.

References

1. Atallah, M.J., Pantazopoulos, K., Rice, J.R., Spafford, E.E.: Secure outsourcing of
scientific computations. In: Zelkowitz, M.V. (ed.) Trends in Software Engineering.
Advances in Computers, vol. 54, pp. 215–272. Elsevier (2002)

2. Brun, Y., Medvidovic, N.: Keeping data private while computing in the cloud.
In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD),
pp. 285–294 (2012)

3. Fahrnberger, G.: Computing on encrypted character strings in clouds. In: Hota,
C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753, pp. 244–254. Springer,
Heidelberg (2013)

4. Fahrnberger, G.: Securestring 2.0 - a cryptosystem for computing on encrypted
character strings in clouds. In: Innovative Internet Community Systems, VDI
Düsseldorf (2013)

5. Goluch, S.: The development of homomorphic cryptography - from rsa to gentrys
privacy homomorphism. Master’s thesis, Vienna University of Technology (2011)

6. Itani, W., Kayssi, A., Chehab, A.: Privacy as a service: Privacy-aware data stor-
age and processing in cloud computing architectures. In: Eighth IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing, DASC 2009,
pp. 711–716 (2009)

7. Maheshwari, N., Kiyawat, K.: Structural framing of protocol for secure multiparty
cloud computation. In: 2011 Fifth Asia Modelling Symposium (AMS), pp. 187–192
(2011)

8. Mehta, C.R., Patel, N.R.: A network algorithm for performing fisher’s exact test in
r x c contingency tables. Journal of the American Statistical Association 78(382),
427–434 (1983)

9. Rodŕıguez-Silva, D.A., González-Castaño, F.J., Adkinson-Orellana, L., Fernández-
Cordeiro, A., Troncoso-Pastoriza, J.R., González-Mart́ınez, D.: Encrypted domain
processing for cloud privacy - concept and practical experience. In: CLOSER, pp.
591–596 (2011)

10. Wei, L., Zhu, H., Cao, Z., Jia, W., Vasilakos, A.: Seccloud: Bridging secure stor-
age and computation in cloud. In: 2010 IEEE 30th International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 52–61 (2010)


	A Second View on SecureString 2.0
	1 Introduction
	2 En- and Decryption Scheme
	3 Character String Functions
	3.1 Querying
	3.2 Replacing
	3.3 Picking

	4 Threat Model
	4.1 n-gram Repetition Pattern Attack
	4.2 n-gram Distribution Attack

	5 Performance
	5.1 Querying Performance
	5.2 Replacing Performance
	5.3 Picking Performance

	6 Conclusion
	References




