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Abstract. Reinforcement learning has gained wide popularity as a tech-
nique for simulation-driven approximate dynamic programming. A less
known aspect is that the very reasons thatmake it effective in dynamic pro-
gramming can also be leveraged for using it for distributed schemes for cer-
tain matrix computations involving non-negative matrices. In this spirit,
we propose a reinforcement learning algorithm for PageRank computation
that is fashioned after analogous schemes for approximate dynamic pro-
gramming. The algorithm has the advantage of ease of distributed imple-
mentation and more importantly, of being model-free, i.e., not dependent
on any specific assumptions about the transition probabilities in the ran-
domweb-surfermodel.Weanalyze its convergence andfinite time behavior
and present some supporting numerical experiments.

Keywords: Reinforcement Learning, PageRank, Stochastic Approxi-
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1 Introduction

Reinforcement learning has its roots in models of animal behavior [1] and mathe-
matical psychology [2], [3]. The recent resurgence of interest in the field, however,
is propelled by applications to artificial intelligence and control engineering. By
now there are several textbook accounts of this development [4] (Chapter 16),
[5], [6], [7], [8], [9]. To put things in context, recall that methodologically, rein-
forcement learning sits somewhere in between supervised learning, which works
with a reasonably accurate information regarding the performance gradient or
something analogous (e.g., parameter tuning of neural networks), and unsuper-
vised learning, which works without such explicit information (e.g., clustering).
To be specific, supervised learning is usually based upon an optimization formu-
lation such as minimizing an error measure, which calls for a higher quantum of
information per iterate. Reinforcement learning on the other hand has to manage
with signals somehow correlated with performance, but which fall short of the
kind of information required for a typical supervised learning scheme. It then
makes simple incremental corrections based on these ‘suggestive though inexact’
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signals, usually with low per iterate computation. The latter aspect has also
made it a popular framework for models of bounded rationality in economics
[10].

Our interest is in its recent avatar as a scheme for simulation-based methodol-
ogy for approximate dynamic programming for Markov decision processes which
has found applications, among other things, in robotics [11]. These can be viewed
as stochastic approximation counterparts of the classical iterative methods for
solving dynamic programming equations, such as value and policy iteration.
Stochastic approximation, introduced by Robbins and Monro [12] as an iterative
scheme for finding the roots of a nonlinear function given its noisy measurements,
is the basis of most adaptive schemes in control and signal processing. What it
does in the present context is to replace a conditional average appearing on the
right hand side of the classical iterative schemes (or their variants) by an actual
evaluation at a simulated transition according to the conditional distribution
in question. It then makes an incremental move towards the resulting random
quantity. That is, it takes a convex combination of the current value and the
random right hand side, with a slowly decreasing weight on the latter. The av-
eraging properties of stochastic approximation then ensure that asymptotically
you see the same limiting behavior as the original scheme.

But there are other situations wherein one encounters iterations involving
conditional averages. In fact, by pulling out row sums of a non-negative matrix
into a diagonal matrix pre-multiplier, we can write it as a product of a diagonal
matrix and a stochastic matrix. This allows us to cast iterations involving non-
negative matrices as iterations involving averaging with respect to stochastic
matrices, making them amenable to the above methodology. This opens up the
possibility of using reinforcement learning schemes for distributed matrix com-
putations of certain kind. Important instances are plain vanilla averaging and
estimation of the Perron-Frobenius eigenvectors [13]. Reinforcement learning lit-
erature is replete with means of curtailing the curse of dimensionality, a hazard
only too common in dynamic programming applications. This machinery then
becomes available for such matrix computations. An important special case is
the case of linear function approximation, wherein one approximates the desired
vector by a weighted combination of a moderate number of basis vectors, and
then updates these weights instead of the entire vector [14].

In the present article, we illustrate this methodology in the context of Google’s
PageRank, an eigenvector-based ranking scheme. It is primarily based on the
stationary distribution π of the ‘random web-surfer’ Markov chain, equivalently,
the normalized left Perron-Frobenius eigenvector of its transition probability
matrix. This chain is defined on a directed graph wherein each node i is a web
page. Let N (i) := the set of nodes to which i points. Let d(i) := |N (i)| and N :=
the total number of nodes. The chain moves from i to j ∈ N (i) with a probability
(1 − c) 1

d(i) +
c
N , and to any other node in the graph with probability c

N where

c > 0 is the ‘Google constant’. The latter renders it irreducible, ensuring a unique
stationary distribution. An excellent account of the numerical techniques for
computing π, essentially based on the ‘power method’ and its variants, appears
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in [15], along with a brief historical account. See also [16]. While a bulk of the
work in this direction has been on efficient computations for the power method,
there have also been alternative approaches, such as Markov Chain Monte Carlo
[17], [18], optimization based methods [19], and schemes based on stochastic
approximation and/or gossip [20], [21], [22].

Such ‘spectral ranking’ techniques, made popular by the success of PageRank,
are in fact quite old. See [23] for a historical survey. Evaluative exercises of
this kind occur in other applications as well, such as reputation systems or
popularity measures on social networks. In such applications (for that matter,
in search), it is unclear whether the assumption that each j ∈ N (i) is equally
important to i is reasonable. Motivated by this, we propose a model-free scheme
based on ideas from reinforcement learning. This idea has also been discussed
in [13]. The present scheme, however, differs in an essential way from [13] in
that whereas [13] views PageRank as a special instance of the general problem
of eigenvector estimation, we exploit the special structure of the random web-
surfer model to simplify the problem to a simple linear scheme. This is very
much in tune with some of the works cited above (notably [20], [22]), but with
a non-standard sample and update rule. The outcome is an algorithm that can
run on accumulated traces of node-to-node interactions without requiring us to
explicitly estimate the probabilities associated with these.

The next section describes our algorithm and its convergence analysis. Section
3 describes finite time analysis and a variant of the basic scheme. Section 4
presents some numerical experiments. Section 5 concludes with some general
observations.

2 The Algorithm

Let P be an N × N stochastic matrix. Define P̂ := cP + 1−c
N

⎡
⎢⎣
1 · · · 1
...
. . .

...
1 · · · 1

⎤
⎥⎦. Let

π denote the unique stationary probability distribution of P̂ . That is, for 1 :=
[1, 1, · · · , 1]T ,

π = πP̂

= πcP + π
1− c

N

⎡
⎢⎣
1 · · · 1
...
. . .

...
1 · · · 1

⎤
⎥⎦

= cπP +
1− c

N
1T

⇒ π(I − cP ) =
1− c

N
1T

⇒ π =
1− c

N
1T (I − cP )−1.
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Here π is a row vector and every other vector is a column vector. Since we
are only interested in ranking we can neglect the factor 1−c

N . Thus by abuse of
terminology,

πT = 1+ cPTπT .

To estimate π, we run the following N dimensional stochastic iteration. Sample
(Xn, Yn) as follows: Sample Xn uniformly and independently from {1, 2, ..., N}.
Sample Yn with P (Yn = j|Xn = i) = p(i, j), independent of all other random
variables realized before n. Update zn as follows:

zn+1(i) = zn(i) + a(n)(I{Xn+1 = i}(1− z(n)) + czn(Xn+1)I{Yn+1 = i}), (1)

where the step-sizes a(n) > 0 satisfy
∑∞

n=0 a(n) = ∞ and
∑∞

n=0 a(n)
2 < ∞.

Hence zn(i) is updated only if Xn+1, Yn+1 or both are i. We can write (1) as
follows:

zn+1(i)

= zn(i) + a(n)(I{Xn+1 = i}(1− z(n)) + czn(Xn+1)p(Xn+1, i) +Mn+1(i)),

where Mn+1 := czn(Xn+1)I{Yn+1 = i} − czn(Xn+1)p(Xn+1, i) is a martingale
difference sequence w.r.t. σ(Xm, Ym,m ≤ n;Xn+1). By Theorem 2, p. 81, [24],
the ODE corresponding to the iteration is

ż(i) =
1

N
(1 +

N∑
j=1

cz(j)p(j, i)− z(i)).

In vector form,

ż =
1

N
(1+ cPT z − z).

Since the constant 1/N doesn’t affect the asymptotic behavior, we consider

ż = (1+ cPT z − z) =: h(z). (2)

Define h∞(z) := lima↑∞
h(az)

a = cPT z − z. It is easy to see that h(az)
a → h∞(z)

uniformly on RN .

Theorem 1. Under the above assumptions, z(t) → z∗ a.s., where z∗ is the
unique solution to h(z∗) = 0.

Proof: Define Vp(z(t)) := ‖z(t)− z∗‖p, p ∈ [1,∞). As in the proof of Theorem
2, p. 126, [24], for 1 < p < ∞,

V̇p(z(t)) ≤ ‖cPT (z(t)− z∗)‖p − ‖z(t)− z∗‖p.
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Integrating,

Vp(z(t))− Vp(z(s)) ≤
∫ t

s

(‖cPT (z(r)− z∗)‖p − ‖z(r)− z∗‖p
)
dr.

Letting p ↓ 1,

V1(z(t))− V1(z(s)) ≤
∫ t

s

‖cPT (z(r) − z∗)‖1 − ‖z(r)− z∗‖1dr,

≤ −
∫ t

s

(1 − c)‖z(r)− z∗‖1dr,
≤ 0,

with equality iff z(t) = z∗. We similarly get that V1(z(t)) := ‖z(t)‖1 is a Lya-
punov function for the scaled o.d.e ż(t) = h∞(z(t)) which has the origin as
its globally asymptotically stable asymptotic equilibrium. By Theorem 9, p. 75,
[24], supn ‖z(n)‖ < ∞ a.s. In turn (2) has z∗ as its globally stable asymptotic
equilibrium with V (z(t)) = ‖z(t) − z∗‖1 as its Lyapunov function. The claim
follows from Theorem 7 and Corollary 8, p. 74, [24]. �

3 Remarks

1. We first look at sample complexity of the stochastic iteration. We mainly
use section 4.2 of [24] to derive sample complexity estimates.

Let 1 ≤ m < M < N . Let z∗ denote the stationary distribution. Without
loss of generality (by relabeling if necessary), let z∗1 ≥ z∗2 ≥ .... ≥ z∗N ,
i.e., the components of z∗ are numbered in accordance with their rank-
ing. We shall consider as our objective the event that the top m ranks
of z∗ fall within the top M ranks of the output of our algorithm when
stopped, for a prescribed pair m < M . This is a natural criterion for rank-
ing problems, which are an instance of ‘ordinal optimization’ [25]. To avoid
pathologies, we assume that z∗m > z∗M . We shall derive an estimate for the
number of iterates needed to achieve our aim with ‘high’ probability. Let
C := {z ∈ ΔN : if zl1 ≥ zl2 ≥ .... ≥ zlN then zi ≥ zlM , 1 ≤ i ≤ m}, where
N
1−cΔ

N is the N-dimensional probability simplex. Thus C consists of all dis-
tributions such that the top m indices of z∗ are in the top M indices of the
given distribution.

Let ΦT be the time-T flow-map associated with the differential equation,
where T > 0. Thus,

ΦT (z) = e
cPT −I

N T (z − (cPT − I)−11)− (cPT − I)−11,

with ΦT (z
∗) = z∗. Define

C∗ := {z ∈ C : ‖z − z∗‖1 ≤ min
z′∈∂C

‖z′ − z∗‖1},



Reinforcement Learning for Matrix Computations: PageRank as an Example 19

and for ε > 0,
Cε := {x : inf

y∈C
‖x− y‖1 < ε}.

Then

min
z∈ΔN−C

[
‖z − z∗‖1 − ‖ΦT (z)− z∗‖1

]

= min
z∈ΔN−C

[
‖z − z∗‖1 − ‖e cPT −I

N T (z − z∗)‖1
]

≥ min
z∈ΔN−C

[
‖z − z∗‖1 − ‖e cPT −I

N T ‖1‖(z − z∗)‖1
]

= (1− ‖e cPT −I
N T ‖1) min

z∈ΔN−C
‖z − z∗‖1

= (1− ‖e cPT −I
N T ‖1)κ

where κ := minz∈ΔN−C ‖z − z∗‖1 and ‖A‖1 for a matrix A is its induced

matrix norm. We argue that ‖e cPT −I
N T ‖1 < 1. To see this, view Q = cP − I

as the rate matrix of a continuous time Markov chain killed at rate 1 − c.
Then e

cP−I
N T is its transition probability matrix after time T

N , whose row
sums will be uniformly bounded away from 1. The claim follows. Let γ > 0
and pick T > 0 such that

γ ≥ min
z∈ΔN−C

[‖z − z∗‖1 − ‖ΦT (z)− z∗‖1].

Since maxz∈ΔN ‖z − z∗‖1 = 2,

maxz∈ΔN ‖z − z∗‖1
γ/2

× (T + 1) ≤ τ :=
4

(1− ‖e cPT −I
N T ‖1)κ

× (T + 1).

Let n0 := min{n ≥ 0 :
∑n

m=0 a(m) ≥ τ}. Also, let Nη(S) := {z : infy∈S ‖z−
y‖2 < η} denote the open η-neighborhood w.r.t. ‖ · ‖2 norm of a generic
set S. Set δ := γ

2
√
N
. Then ‖x − y‖2 < δ =⇒ ‖x − y‖1 < γ

2 . Arguing as in

Corollary 14, p. 43 of [24], we have

P (zn ∈ Nδ(C
γ
2 ) ∀n ≥ n0 + k) ≥ 1− 2Ne

− Kδ2

N
∑∞

m=k
a(m)2 = 1− o(

∞∑
m=k

a(m)2),

where K > 0 is a suitable constant. (In ibid., replace Hε by C∗ and Δ by γ.)

2. Note that at each time n, we can generate more than one, say m pairs
(X i

n, Y
i
n), 1 ≤ i ≤ m, which are independent, each distributed as (Xn, Yn)

above, and change the iteration to:

zn+1(i) = zn(i) + a(n)(I{i ∈ {Xj
n+1, 1 ≤ j ≤ m}}(1− z(n))

+ c

m∑
j=1

zn(X
j
n+1)I{Y j

n+1 = i}).

That is, we update several components at once. This will speed up conver-
gence at the expense of increased per iterate computation.
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4 Numerical Experiments

In this section we simulate the algorithm for different number of nodes. The
results for the cases when the number of nodes are 50, 200 and 500 are plotted
in Figure 1, Figure 2 and Figure 3 resectively. The dotted line indicates the dis-
tance between z∗ and zn w.r.t. n. The solid line indicates the percentage of top
5 indices of z∗ that do not feature in the top 10 indices of zn. Figure 4, Figure 5
and Figure 6 further show (for 200 nodes) that the number of iterations required
to achieve this objective varies inversely with variance of z∗.

Fig. 1. Varaince of z∗=47.1641
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Fig. 2. Variance of z∗=277.3392

Fig. 3. Variance of z∗ = 743.4651
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Fig. 4. Varaince of z∗=259.6187

Fig. 5. Variance of z∗=335.6385
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Fig. 6. Variance of z∗ = 365.0774

5 Conclusions

In conclusion, we highlight some of the important features of the above scheme,
which are facilitated by the reinforcement learning framework.

1. As already mentioned, the scheme does not depend on an a priori model for
transition probabilities, but is completely data-driven in this aspect.

2. We use ‘split sampling’ introduced in [14] for reinforcement learning, sam-
pling pairs (Xn, Yn) with the desired conditional law for Yn given Xn, but
with uniform sampling for {Xn}. This is a departure from classical reinforce-
ment learning, where one runs a single Markov chain {Xn} according to P̂
and Yn = Xn+1.

3. Since we are iterating over probability vectors as they evolve under a tran-
sition matrix, the scheme requires left-multiplication by row vectors thereof.
This is different from usual reinforcement learning schemes, which involve av-
eraging with respect to the transition probabilities, i.e., right-multiplication
by a column vector. We have worked around this difficulty by modifying the
update rule. In classical reinforcement learning algorithms based on a simu-
lated Markov chain {Xn}, one updates the Xnth component at time n, i.e.,
the ith component gets updated only when Xn = i. In the above scheme,
the ith component gets updated both when Xn+1 = i and when Yn+1 = i,
albeit in different ways. This is another novel feature of the present scheme.
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