
Chapter 9
Future Directions

Abstract What changes may the future bring to climate time series analysis?
First, we outline (Sects. 9.1–9.3) more short-term objectives of “normal science”
(Kuhn, The Structure of Scientific Revolutions, 2nd edn. University of Chicago
Press, Chicago, 210 pp, 1970), extensions of previous material (Chaps. 1–8). Then
we take a chance (Sects. 9.4 and 9.5) and look on paradigm changes in climate
data analysis that may be effected by virtue of strongly increased computing
power (and storage capacity). Whether this technological achievement comes in
the form of grid computing (Allen, Nature 401(6754):642, 1999; Allen et al.,
Nature 407(6804):617–620, 2000; Stainforth et al., Philos Trans R Soc Lond
Ser A 365(1857):2145–2161, 2007) or quantum computing (Nielsen and Chuang,
Quantum Computation and Quantum Information. Cambridge University Press,
Cambridge, 676pp, 2000; DiCarlo et al., Nature 460(7252):240–244, 2009; Lanyon
et al., Nat Phys 5(2):134–140, 2009; Rieffel and Polak, Quantum Computing: A
Gentle Introduction. MIT Press, Cambridge, MA, 372pp, 2011)—the assumption
here is the availability of machines that are faster by a factor of 10 to the power of,
say, 12, by a midterm period of, say, less than a few decades.

Keywords Timescale modelling • Atmosphere–ocean general circulation
models • Regional climate models • Ensemble approach • Perturbed physics
approach • Data assimilation • Climate forecasting uncertainty • Climate model
bias correction • Optimal estimation

9.1 Timescale Modelling

Climate time series consist not only of measured values of a climate variable but also
of observed time values. Often the latter are not evenly spaced and also influenced
by dating uncertainties. Conventional time series analysis largely ignored uneven
and uncertain timescales; climate time series analysis has to take them into account.
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The process that generated the times, ftX .i/g for univariate and also ftY .j /g
for bivariate series, depends on the climate archive. We have studied linear and
piecewise linear processes for speleothem or sedimentary archives (Sect. 4.1.7) and
nonparametric models for ice cores (Sect. 8.6.1). Such types of models are the basis
for including uncertain timescales in the error determination by means of bootstrap
resampling (

˚
t�
X .i/

�
and also

˚
t�
Y .j /

�
). In bivariate and higher-dimensional estima-

tion problems, also the joint distributions of the timescale processes are important.
See the example of the Vostok ice core (Sect. 8.6.1) with the coupled timescales for
the ice and the gas.

Climate archive modelling should be enhanced in the future to provide accurate
descriptions of uncertain timescales. Archive models should evidently include the
physics of the accumulation of the archive. One may even think of physiolog-
ical models describing the performance of humans in layer counting of regular
sequences such as varves (Table 1.2). A second ingredient of climate archive
modelling is statistical constraints, for example, a strictly monotonically increasing
age–depth curve in a speleothem archive or an absolutely dated fixpoint in a
marine sediment core. An exemplary paper (Parrenin et al. 2007) of climate archive
modelling studies the accumulation and flow in an ice sheet, into which a core
is drilled. The Bayesian approach may be suitable for combining the inputs from
physics and statistical constraints (Buck and Millard 2004).

A recent overview is given in the background material (Sect. 9.6). It is encour-
aging to see that the various climate-related scientific communities (which often
associate themselves with the type of archive typically employed) become active in
developing methods for constructing chronologies. The degree of overlap among
those methodical ideas should be kept healthily reduced if these communities
manage to be active also in studying methods from other communities, especially
statistical science.

9.2 Novel Estimation Problems

Chapters 2–6 presented stochastic processes and estimation algorithms for inferring
the fundamental properties of univariate climate processes in the climate equation
(Eq. 1.2): trend, variability, persistence, spectrum and extremes. Chapters 7 and 8
studied bivariate processes: correlation and the regression relation between two
univariate processes. We believe to have covered with these chapters the vast
majority of application fields for the climate sciences.

However, in science, there is always room for asking more questions, that is, in a
quantitative approach, for attempting to estimate different climate parameters in the
uni- or bivariate setting.

An obvious example of such a novel estimation problem is SSA, mentioned in the
background material of Chap. 1. This decomposition method has been formulated
so far only for evenly spaced, discrete time series. Interpolation to equidistance is
obsolete because it biases the objectives of the decomposition (estimates of trend,
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variability, etc.). SSA formulations applicable to unevenly spaced records should
therefore be developed.

Other novel estimation approaches are expected to come from the array of
nonlinear dynamical systems theory (Sect. 1.6). This field has focus more on
application data from controlled measurements or computer experiments and less
on unevenly spaced, short palaeoclimatic time series. A breakthrough, also with
respect to SSA, may come from techniques of reconstructing the phase space at
irregular points.

9.3 Higher Dimensions

Climate is a complex, high-dimensional system, comprising many variables. There-
fore, it makes sense to study not only univariate processes (Part II), X , or bivariate
processes (Part III), X and Y , but also trivariate processes, X and Y and Z, and
so forth. A simple estimation problem for such high-dimensional processes is the
multivariate regression, mentioned occasionally in the previous chapters (Sects. 4.2
and 8.7),

Y.i/ D �0 C �1X.i/ C �2Z.i/ C � � � C SY .i/ � Ynoise.i/: (9.1)

The higher number of dimensions may also result from describing the climate
evolution in the spatial domain (e.g. X is temperature in the northern, Y in the
southern hemisphere). There is a variety of high-dimensional, spatial estimation
problems: multivariate regression, PCA and many more (von Storch and Zwiers
1999: Part V therein).

As regards the bootstrap method, there is no principle obstacle to perform
resampling in higher dimensions. An important point is that resampling the marginal
distributions, of X and Y and Z separately, is not sufficient; the joint distribution
of .X; Y; Z/, including dependences among variables, has to be resampled to
preserve the original covariance structure. This requires adaptions of the block
bootstrap (MBB) approach. A further point, which may considerably exacerbate the
estimation as well as the bootstrap implementation, is unequal observation times.
The sets

ftX .i/gnX

iD1 ; ftY .j /gnY

j D1 ; ftZ.k/gnZ

kD1 (9.2)

need not be identical. Depending on the estimation problem and the properties of
the joint climate data generating process (e.g. persistence times), the algorithm for
determining �0; �1; �2 and so forth has to be adapted. This is a step into new territory.
An example from the bivariate setting is the “synchrony correlation coefficient”
(Sect. 7.5.2). A final point of complication from the move into higher dimensions
is dependence among the timescale variables. Since this type of complication can
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occur already in two-dimensional problems (Sect. 8.6.1), we expect it in higher
dimensions as well. This challenge must be met by means of timescale modelling
(Sect. 9.1).

9.4 Climate Models

Computer models render the climate system in the form of mathematical equations.
The currently most sophisticated types, AOGCMs (Fig. 1.10), require the most
powerful computers. Nevertheless, the rendered spatial and temporal scales are
bounded by finite resolutions and finite domain sizes. Also the number of simulated
climate processes is limited.

The problem of a finite spatial resolution is currently tackled by means of using
an AOGCM (grid size several tens to a few hundred kilometres) for the global
domain and nesting into it a regional climate model or RCM (grid size reduced by
a factor �20) for a sub-domain of interest (say, Europe). The AOGCM “forces”
the RCM (Meehl et al. 2007; Christensen et al. 2007), that is, prescribes the
conditions at the boundaries of the sub-domain. Sub-grid processes, not resolved
even by the RCM (e.g. cloud processes) and therefore not explicitly renderable by
the AOGCM–RCM combination, can be implicitly included by employing inferred
parametric relations (e.g. between cloud formation and temperature). The AOGCM–
RCM combination includes many variables, .X; Y; Z; : : :/0 � X, from the climate at
grid points, and many parameters, .�0; �1; �2; : : :/0 � � , from the parameterizations
(Stensrud 2007) and other model equations. For convenience of presentation, we
consider the climate variable vector, X, and the climate model parameter vector, � .

Our premise of a future “quantum boost” by a factor �1012 can make region-
alization dispensable, and let more realistic AOGCMs (grid size several tens to a
few hundred metres) become calculable with computing times reduced from, say,
a year to less than a month. Regarding the sophistication of a climate model, the
increased computing power can also be utilized for including processes from the
fields of biology and economy, greenhouse gas emissions (Moss et al. 2010; van
Vuuren et al. 2011) and “climate engineering” measures; see also Sect. 9.6. Indeed,
a finer spatial grid does require more processes to be explicitly included. Regarding
the temporal scale, the boost should allow to simulate much larger spans (transient
palaeoclimate runs) by the means of AOGCMs and their successors.

There exists, however, another field where to invest computing power, namely,
the uncertainty determination of climate model results. We sketch this area in light
of the methodology presented in this book, statistical estimation and bootstrap
resampling.

Physics formulates climate dynamics by means of nonlinear coupled differential
equations,

PX D f .X; R; �/ ; (9.3)
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where the dot denotes time derivative, f is a function, and R represents uncoupled,
external forcing variables (e.g. solar activity). Time discretization yields

X.i C 1/ D X.i/ C �T � PX; (9.4)

where �T is a time step, in an AOGCM typically in the order of minutes to hours.
From an initial climate state, X.1/, the climate evolution is derived. This sample
from the climate model “archive” is

fx.i/gn
iD1 : (9.5)

The climate evolution can also be observed, yielding a multivariate time series
sample:

fxo.i/gn
iD1 : (9.6)

The observations are, of course, strongly limited in the number of climate variables,
geographic locations and time resolutions. There have been few observations made
of, say, temperature in 1000 m height above sea level at 130ıW, 30ıS for the time
interval from 1850 to 2010 and a spacing of d.i/ D �T D 30 min.

9.4.1 Fitting Climate Models to Observations

Let us view climate modelling as an estimation problem. The task is to estimate
the model parameters, � , given observations, fxo.i/gn

iD1. This set shall include the
“missing observations”. The task requires to run the model and produce fx.i/gn

iD1.
The less distant the model output is to the observations, the better the fit.

Let us introduce a cost function to measure the distance:

SSQGXYZ�.�/ D g
� fxo.i/gn

iD1 ; fx.i/gn
iD1

�
: (9.7)

g may be a form of a generalized least-squares cost function that takes into account
predictor uncertainty and the degrees of freedom; Sect. 9.4.3 considers the design of
g in more detail. The parameter estimate minimizes the cost function:

O� D argmin
n
g

� fxo.i/gn
iD1 ; fx.i/gn

iD1

�o
: (9.8)

The parameter vector is included in the right-hand side of the equation because the
model output, fx.i/gn

iD1, depends on it.
The outlined procedure is with current computing power not feasible for a full

estimation of AOGCM parameters. It has been performed for a simple climate
model containing only three variables (Hargreaves and Annan 2002) and an
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Earth system model of intermediate complexity (Paul and Schäfer-Neth 2005).
The concept of fitting climate models to data is also denoted as data assimilation
or state estimation (Wunsch 2006).

Subsequent to the estimation, we should like to know the parameter uncertainties
for the fitted climate model. This knowledge may be achieved by means of bootstrap
methods, producing the replications:

O�� D argmin
n
g

� ˚
x�

o .i/
�n

iD1
; fx�.i/gn

iD1

�o
: (9.9)

The observation resample, x�
o .i/, can be obtained via the surrogate data bootstrap

(Sect. 3.3.3), taking into account the errors of the observation devices, the dis-
tributional shapes (which may be Gaussian or not), the covariances (which may
be rather small) and the “internal climate variability” (which may have to be
estimated by means of separate model experiments). The model output resample,
x�.i/, incorporates a new (trial) set of parameters, ��. However, it should also
be based on a random initial state, x�.1/, because the initial conditions are not
exactly known. x�.1/ may be taken randomly from a set of time series values
of a climate model run without changing forcing components (stationarity). This
“ensemble technique” is already currently being applied to quantify the uncertainty
component owing to imperfectly known initial conditions (Randall et al. 2007;
van der Linden and Mitchell 2009). Also the forcing variable, R.i/, may have to
be described stochastically for being included in the surrogate data approach.

The replications, f O��bgB
bD1, serve in the usual manner (Sect. 3.4) for constructing

CIs. Of particular interest should be the joint PDF of the climate model parameter
estimators, which may be described by means of confidence regions in the parameter
hyperspace (Smith et al. 2009; Tebaldi and Sansó 2009). Realistic climate model
error and CI determination do not require a handful of runs (current ensemble
technique) but rather B runs, with B in the usual order of 2000 or even higher
(because of the dimensionality).

9.4.2 Forecasting with Climate Models

Models are employed to forecast future climate, x.nC1/, at time t.nC1/. (Indeed,
forecasts are made for many time steps to cover the typical range from the present
to the year 2100.) This is achieved in our vision by a run of the model employing
the estimated, optimal parameters, O� . That run has to use also a guess of the future
forcing, R.n C 1/.

Of crucial importance, scientifically and socioeconomically, is to determine the
size of the forecasting error. The bootstrap methodology, utilized for that purpose
in the bivariate setting (Sect. 8.5), should be helpful also in the high-dimensional
setting.
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The recommendation is to produce forecast resamples, x�.n C 1/, from which to
calculate standard errors, CIs, confidence bands (over a time span), and so forth.

How are the x�.n C 1/ produced to reflect the full range of the various sources
of uncertainty?

• The parameterization uncertainty can be taken into account by resampling from

the set of replications, f O��bgB
bD1. This preserves the covariance structure of the

parameter estimates.
• The initial-condition uncertainty can be taken into account by means of the

ensemble technique.
• The forcing uncertainty may be difficult to include in a quantitative manner. This

step does likely necessitate the usage of separate forcing models.

9.4.3 Design of the Cost Function

Designing the cost function (Eq. 9.7) is important for achieving small standard
errors and narrow CIs for the climate forecasts and the model parameter estimates.
It is rather difficult to demonstrate theoretically the optimality of a certain cost
function. One should perform Monte Carlo simulations to find “empirically” a
suitable function. The following points may guide the design endeavour:

• A least-squares technique is mandatory. It seems impossible to write down a
likelihood function (for maximization) owing to the size of the body of the
climate model equations. One may wish to make the sum of squares more robust
with respect to “outliers”. On the other hand, one may give the “outliers” instead
more weight in situations where the focus is on modelling the climate extremes.

• GLS, employing the covariance matrices (variability, persistence) of the many
climate variables, is a possible technique to reduce the estimation standard errors.
The normalization (variability) produces dimensionless SSQG terms for each
variable, which can be processed further (e.g. summed up).

• A problem is multicollinearity (correlated predictors), stemming from spatial
dependence among the climate variables (neighbouring grid points). This may
indicate to reduce the number of variables in the cost function by means of spatial
binning. PCA techniques should help evaluating geographically meaningful bins
(regions).

• Errors in the observations (SX; SY ; SZ; : : :) should lead researchers to consider
techniques like WLSXY estimation (Sect. 8.1.2) to reduce estimation bias.

• Further weighting could be performed “in the time domain” to enforce, for
example, the most recent years to be more accurately simulated.

• The degrees of freedom, �, of the observation–model combination can be taken
into account (a simple division by �).

• One may put bounds to the � hyperspace to exclude estimation results that
are inconsistent with physics (hard bounds) or prior knowledge (soft bounds).
Bayesian formulas may help here.
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The envisaged availability of “quantum computing power” does not release us
from the task of developing efficient methods to search through the hyperspace, to
locate the minimum of the cost function: gradient techniques, Brent’s search, hybrid
procedures or Bayesian approaches (Markov chain Monte Carlo, see Hargreaves and
Annan (2002) and Leith and Chandler (2010)).

9.4.4 Climate Model Bias

Climate model bias regards, generally speaking, a function of the climate variable
vector:

� D h .X/ : (9.10)

The function, h, can be used to make � an index variable (Easterling et al. 2003)
or extract a geographic region. For example, we may wish to study time-dependent,
annual-mean, regional-mean, land-surface precipitation in central Europe,

�.j / D n�1
k n�1

i

X

k 2 region

X

T .i/ 2 year j

Xk.i/; (9.11)

where Xk.i/ is precipitation at grid point k and time T .i/, ni is the number of
time values within year j and nk is the number of model grid points within central
Europe.

Let us now view the modelled sequence as an estimate obtained by means of a
climate model, O�.j /. Next, we consider the true sequence. Since the truth is hidden,
we take instead an observed sequence, �o.j /. This leads, in analogy to Eq. (3.2), to
the climate model bias:

bias O�.j / D E Œ O�.j /� � �o.j /: (9.12)

In the example of precipitation in central Europe, there are indications from
a range of AOGCM–RCM combinations that biasO�.j / > 0 for the time interval
from 1950 to the recent past (Jacob D 2009, personal communication), that is, the
climate models systematically overestimate precipitation. Similar overestimations
were found for the region of Scandinavia (Goodess et al. 2009).

In the context of climate forecasting (Sect. 9.4.2), better predictions may there-
fore include a climate model bias correction. For example, if the model bias is
simply a constant, bias O�, then

�0.jfuture/ D �.jfuture/ � bias O�; (9.13)
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where jfuture indicates future (unobserved) time and the prime denotes bias cor-
rection. Evidently, the time-dependence of the bias and also its form (additive,
multiplicative) should be analysed in such situations. Further developments may
employ more complex stochastic models of the climate model bias (Jun et al. 2008).

9.5 Optimal Estimation

Increased computer power would also allow to perform optimal estimation. We
have sketched this concept in the previous parts of this book (Sect. 6.2.7 and
section “Optimal Estimation” in Chap. 7). Not only climatology, other science
branches as well may benefit from optimal estimation.

Central to the investigation in natural sciences, such as climatology, is to infer
the truth from the data. This calls for the statistical language. In quantitative
climatology, the investigative questions can be translated into a parameter, � ,
which needs to be estimated using the data. The investigation cycles through
loops: question, estimation, refined question based on the estimation result, new
estimation, and so forth.

An estimator, O� , is a recipe on how to guess � using the data. Since the
sample size is less than infinity and the sampled climate system contains unknown
influences (noise), we cannot expect that O� equals � . However, we can calculate
the size of that error, the uncertainty. This leads to the measures se O� , bias O� , RMSE O�
and the confidence interval, CI O�;1�2˛

, which is thought to include � with probability
1 � 2˛. Without having the information contained in such measures, it is difficult to
assess how close O� is to � : estimates without error bars are useless.

For simple estimation problems (e.g. mean estimation) and simple noise prop-
erties (e.g. Gaussian distributional shape), the error measures can be analytically
derived via the PDF of an estimator. However, climate is more complex—as regards
the noise as well as the estimation problem. This book advocates therefore the
bootstrap resampling approach, which allows to analyse complex problems for
realistic (i.e. complex) properties such as non-Gaussian shape or serial dependence.

For the most part of this book, we have assumed the uncertainty to have
its origin in the complex climate system and the measured variables (proxy,
measurement and dating errors). We have occasionally considered (section “Monte
Carlo Experiments” in Chap. 4, Sects. 4.4 and 8.3.4) another error source, a mis-
specified model. Statistical science refers to this error source as model uncertainty;
see Chatfield (1995), Draper (1995), Candolo et al. (2003) and Chatfield (2004:
Sect. 13.5 therein). By fitting a range of candidate models, it is possible to infer the
range of feasible estimation outcomes. For example, one may compare the estimated
100-year return level, HQ100, from a Weibull fit with the estimated HQ100 from
a GEV fit to observed runoff data, and look whether the difference of the results
is comparable to the statistical standard errors. Note that model uncertainty may
regard also the assumed noise model (e.g. short versus long memory). A method
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Fig. 9.1 Hyperspace of climate parameter estimation. The Monte Carlo experiment prescribes the
stochastic model, parameters and other properties (shape, sample size, spacing, persistence, etc.)
in a way that the problem at hand (data and estimation) is covered. The method regards estimation
and CI construction. The optimal estimation is determined by using a measure

to reduce model uncertainty is to employ graphical and computational tests of
model suitability. As a method to quantify model uncertainty, we may study not
only the range of the estimation outcomes but impose a weighting according to the
probability that a particular model is correct. The “model probability” may be based
in a Bayesian approach on a prior consultation of experts (Smith et al. 2009); but
see also the critical paper (in the context of emission scenarios and test significance)
by von Storch and Zwiers (2013). In the example of HQ100, there is hope that the
hydrologists would put more weight on the GEV model than on the Weibull. It is
principally possible to add model uncertainty as a new dimension to the hyperspace
of climate estimation (Fig. 9.1).

Climate is a paradigm of a complex system that requires for its analysis the boot-
strap. In addition, climate opens the new problem dimensions of unequally spaced
series and timescale errors. This book has presented various bootstrap algorithms
to adapt closely to the estimation problem imposed by the data: ARB, MBB, SB,
surrogate data, timescale-ARB, timescale-MBB, pairwise-ARB, pairwise-MBB and
pairwise-MBBres. It also described algorithms to support bootstrap resampling and
CI construction: block length selection, calibration, the CI types normal, Student’s
t , percentile and BCa.

The critical question is: What is the best method for inferring the truth from the
data? What is the optimal estimation method, and how are the most accurate CIs
constructed?
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Future, strongly increased computing power allows to approach that question by
means of Monte Carlo experiments. We outline this optimal estimation approach
(Fig. 9.1). We reiterate that optimal estimation is not limited to the field of climate
sciences.

The hyperspace of climate estimation has many, but not infinite, dimensions. It
consists of the three subspaces Monte Carlo design, method and measure.

The Monte Carlo design (Fig. 9.1) describes the data generating process. The
design is used to generate artificial data, to which the method is applied. The
design should, in some sense, cover the estimation problem (data and estimation)
to be carried out. One group of dimensions is occupied by the type of estimation
model and the parameters. For example, one may be interested in a linear regression
model with the two parameters intercept and slope (Chaps. 4 and 8). To restate,
the Monte Carlo parameters (e.g. prescribed intercept and slope) should be close
to the estimated parameters (estimated intercept and slope). The other group of
dimensions in the Monte Carlo subspace describe the sample size (prescribed n,
which should be close to the size of the sample at hand), the spacing (again,
similar to the spacing of the sample) and the noise properties (also similar). An
option is to invest three dimensions to model the persistence of the noise as an
ARFIMA(p; ı; q) process (which contains the simpler types such as AR(1)) and
one or two to model the shape (skewness, kurtosis). Heteroscedasticity may also be
modelled. The ARFIMA process contains the preferred parsimonious, embedding-
problem free AR(1) process (p D 1; ı D 0; q D 0). Some dimensions have integer
values (e.g. the ARFIMA parameter p), and some have real values (e.g. the slope
parameter). Timescale errors may also be modelled (additional dimensions).

The method subspace (Fig. 9.1) describes the estimation and CI construction. The
ticks along the estimator dimension are named least squares, maximum likelihood,
and so forth. CI construction requires more dimensions: one for distinguish-
ing between classical and bootstrap CIs and several for detailing the bootstrap
methodology (block length selection for MBB, calibration, subsampling, etc.) and
calculating the interval bounds from the replications. Consider, for example, the
brute-force block length selector (Berkowitz and Kilian 2000): one dimension with
integer values between 1 and n � 1.

The measure subspace (Fig. 9.1) describes how to detect the optimal estimation
method for the Monte Carlo experiment: CI accuracy and width, RMSE, bias,
robustness, and so forth. It should make sense to consider also joint measures (e.g.
CI accuracy and robustness).

The hyperspace of climate parameter estimation is large. Present computing
power limits our ability to explore it and find the optimal method for solving a
(climate) estimation problem. This book has examined many important estimation
problems (regression, spectrum, extremes and correlation) but visited only parts
of the hyperspace by means of Monte Carlo experiments. For example, in linear
regression (Chap. 4), we have studied the following:

• � D ˇ0 (intercept) and ˇ1 (slope)
• Prescribed ˇ0 D 2; ˇ1 D 2
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• n 2 f10; 20; 50; 100; 200; 500; 1000g
• Spacing: even and uneven (timescale errors)
• Shape: Gaussian and lognormal
• Persistence: AR(1), AR(2) and ARFIMA(0; 0:25; 0)
• Estimator: least squares only
• Resampling: ARB, MBB, subsampling, timescale-ARB, timescale-MBB and

pairwise-MBB
• CI type: classical and bootstrap BCa
• Confidence level: 90, 95 and 99 %
• Calibration loop: none
• Measure: RMSE, CI accuracy and CI length

We have found “acceptable” results (mainly judged via CI accuracy) from the boot-
strap method applied to Monte Carlo samples generated from designed processes
that are considered as close to the climate processes. These positive results have
given us confidence that the results (estimate with CI) from analysing the observed,
real climate time series are valid. However, we have to concede that there may
exist more accurate methods, resulting in particular from (computing-intensive) CI
calibration. This may be of relevance especially for small sample sizes.

The envisaged large increase in computing power may bring the following idea
of optimal climate estimation into existence. Given a time series, ft.i/; x.i/gn

iD1,
some prior information (e.g. measurement standard errors, age–depth curve) and a
set of questions (parameters to be estimated), the first task is simple: perform an
initial estimation on basis of existing knowledge and experience with such types of
estimation problems. The second task requires the computing power: explore the
hyperspace (Fig. 9.1) to find the suitable method, that is, the mode of estimation and
CI construction that optimizes a selected measure for prescribed values close to the
initial estimates. Also here, intelligent exploration methods (gradient, Brent, etc.)
are useful. The third task is to apply the optimal estimation method to the climate
time series.

9.6 Background Material

Timescale modelling has experienced a recent activation in the development
of methods for constructing chronologies. The types of methods depend on the
employed climate archive. As regards ice cores, Wheatley et al. (2012) presented an
automated layer-counting method, which works in the presence of strong univariate
signals. They tested their method on a recent instrumental record of hydrogen
peroxide from Antarctica and applied it to the late Pleistocene NGRIP ice core
records of ammonium and calcium from Greenland. Klauenberg et al. (2011)
developed a Bayesian glaciological modelling approach, which simulates snow
accumulation and ice deformation and which can take constraints into account,
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such as from layer counting. As regards speleothems, Scholz and Hoffmann (2011),
Fohlmeister (2012) and Hercman and Pawlak (2012) presented, all in the journal
Quaternary Geochronology, construction algorithms, see Sect. 4.5 for software
links. Another algorithm (Hendy et al. 2012), presented for amino acid racemization
dates (interconversion of amino acid types at a certain rate after death) obtained
from corals, is applicable also to speleothem material. However, none of these
algorithms is able to output on a routine basis, in addition to the best-fit age–
depth curve, also simulated curves. Mudelsee et al. (2012) used two algorithms
(Scholz and Hoffmann 2011; Fohlmeister 2012), adapted to output simulated curves,
to analyse centennial-scale trends in western German climate (temperature and
precipitation) over the later part of the Holocene. They utilized nonparametric
kernel regression and standard-error band construction from MBB resampling
with/without parametric timescale simulation to study effects of timescale errors
(which were negligible). Also uncertainty in the form of the timescale model was
minimal in case of the western German stalagmites (Mudelsee et al. 2012). A certain
step constitutes the recent paper by Scholz et al. (2012), who compared by means of
artificially generated series different algorithms of timescale construction. However,
they looked only for the best algorithm in terms of an error measure. What remains
to be done is a Monte Carlo comparison of algorithms in terms of coverage accuracy
of the delivered confidence bands. As regards the tree-ring archive and radiocarbon
dating, Blaauw (2010) and Blaauw and Heegaard (2012) review the previous papers
critically, noting that (Blaauw 2010: p. 512 therein) “they are usually not explained
sufficiently”. Fraver et al. (2011) took into account tree growth for formulating and
testing linear and nonlinear regression models on the basis of tree-ring counts.

Greenhouse gas emissions contribute a major part of the radiative forcing, R.i/.
It is difficult to quantify R.i/ owing to the complexity of the system: components,
such as carbon dioxide or methane, are part of the “nonlinear dynamical” carbon
cycle, which shows threshold and feedback behaviour (Tans 2009). The carbon
budget for the interval from 1959 to 2011 has been estimated and various climate
forcing models assessed in their ability to reproduce the observations (Le Quéré
et al. 2013). The future forcing, which depends on the modes of energy conversion
(“peak oil”) is considered by Murray and Hansen (2013).
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