
Chapter 3
Bootstrap Confidence Intervals

Abstract In statistical analysis of climate time series, our aim (Chap. 1) is to
estimate parameters of Xtrend.T /; Xout.T /; S.T / and Xnoise.T /. Denote in general
such a parameter as � . An estimator, O� , is a recipe how to calculate � from a set
of data. The data, discretely sampled time series ft.i/; x.i/gn

iD1, are influenced by
measurement and proxy errors of x.i/, outliers, dating errors of t.i/ and climatic
noise. Therefore, O� cannot be expected to equal � . The accuracy of O� , how close
it comes to � , is described by statistical terms such as standard error, bias, mean
squared error and confidence interval (CI). These are introduced in Sect. 3.1.

With the exploration of new archives or innovations in proxy, measurement
and dating techniques, new O� values, denoted as estimates, become available and
eventually join or replace previous estimates. A telling example from geochronology
is where � is the time before present when the Earth’s magnetic field changed
from reversed polarity during the Matuyama epoch to normal polarity during the
Brunhes epoch, at the beginning of the late Pleistocene. Estimates published over the
past decades include 690 ka (Cox, Science 163(3864):237–245, 1969) and 730 ka
(Mankinen and Dalrymple, J Geophys Res 84(B2):615–626, 1979), both based
on K/Ar dating, and 790 ka (Johnson, Quat Res 17(2):135–147, 1982) and 780 ka
(Shackleton et al., Trans R Soc Edinb Earth Sci 81(4):251–261, 1990), both based
on astronomical tuning. The currently accepted value is 779 ka with a standard
error of 2 ka (Singer and Pringle, Earth Planet Sci Lett 139(1–2):47–61, 1996),
written as 779 ˙ 2 ka, based on 40Ar=39Ar dating (a high-precision variant of K/Ar
dating). An example with a much greater uncertainty regards the case where � is the
radiative forcing (change in net vertical irradiance at the tropopause) of changes in
atmospheric concentrations of mineral dust, where even the sign of � is uncertain
(Penner et al., Aerosols, their direct and indirect effects. In: Houghton et al. (eds)
Climate Change 2001: The Scientific Basis. Contribution of Working Group I to
the Third Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, pp 289–348, 2001; Forster et al., Changes
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62 3 Bootstrap Confidence Intervals

in atmospheric constituents and in radiative forcing. In: Solomon et al. (eds) Climate
Change 2007: The Physical Science Basis. Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, pp 129–234, 2007). It is evident that the
growth of climatological knowledge depends critically on estimates of � that are
accompanied by error bars or other measures of their accuracy.

Bootstrap resampling (Sects. 3.2 and 3.3) is an approach to construct error bars
and CIs. The idea is to draw random resamples from the data and calculate error
bars and CIs from repeated estimations on the resamples. For climate time series,
the bootstrap is potentially superior to the classical approach, which relies partly
on unrealistic assumptions regarding distributional shape, persistence and spacing
(Chap. 1). However, the bootstrap, developed originally for data without serial
dependence, has to be adapted before applying it to time series. Two classes of
adaptions exist for taking persistence into account. First, nonparametric bootstrap
methods resample sequences, or blocks, of the data. They preserve the dependence
structure over the length of a block. Second, the parametric bootstrap adopts a
dependence model. As such, the AR(1) model (Chap. 2) is our favourite.

It turns out that both bootstrap resampling types have the potential to yield
acceptably accurate CIs for estimated climate parameters. A problem for the
block bootstrap arises from uneven time spacing. Another difficult point is to find
optimal block lengths. This could make the parametric bootstrap superior within
the context of this book, especially for small data sizes (less than, say, 50). The
block bootstrap, however, is important when the deviations from AR(1) persistence
seem to be strong. Various CI types are investigated. We prefer a version (so-
called BCa interval) that automatically corrects for estimation bias and scale effects.
Computing-intensive calibration techniques can further increase the accuracy.

Keywords Error bar • Confidence interval • Standard error • Standard
deviation • Expectation value • Root mean squared error • Coefficient of
variation • Bias • Monte Carlo experiment

3.1 Error Bars and Confidence Intervals

Let � be the parameter of interest of the climatic process fX.T /g and O� be the
estimator. Extension to a set of parameters is straightforward. Any meaningful
construction lets the estimator be a function of the process, O� D g .fX.T /g/. That
means O� is a random variable with statistical properties. The standard deviation of
O� , denoted as standard error, is

se O� D
h
VAR

� O�
�i1=2

: (3.1)
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Fig. 3.1 Standard error (se
O� ), bias (bias

O� ) and equi-tailed confidence interval (CI
O�;1�2˛ D Œ O�lI O�u�)

for a Gaussian distributed estimator, O� . The true parameter value is � ; the confidence level is
1 � 2˛ D 90 %

The bias of O� is

bias O� D E
� O�

�
� �: (3.2)

bias O� > 0 (bias O� < 0) means a systematic overestimation (underestimation). se O�
and bias O� are illustrated in Fig. 3.1. Desirable estimators have small se O� and small
bias O� . In many estimations, a trade-off problem between se O� and bias O� occurs. A
convenient measure is the root mean squared error:

RMSE O� D
�

E

�� O� � �
�2

�� 1=2

D �
se O�

2 C bias O�
2
	1=2

:

(3.3)

The coefficient of variation is

CV O� D se O�
.ˇ̌

ˇE
� O�

�ˇ̌
ˇ : (3.4)

While O� is a best guess of � or a point estimate, a CI is an interval estimate that
informs how good a guess is (Fig. 3.1). The CI for � is

CI O�;1�2˛
D

h O�lI O�u

i
; (3.5)

where 0 � 1 � 2˛ � 1 is a prescribed value, denoted as confidence level. The
practical examples in this book consider 90 % (˛ D 0:05) or 95 % (˛ D 0:025)
CIs, which are reasonable choices for climatological problems. O�l is the lower and
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O�u the upper endpoint of the CI. O�l and O�u are random variables and have statistical
properties such as standard error or bias. The properties of interest for CIs are the
coverages

�l D prob
�
� � O�l

�
; (3.6)

�u D prob
�
� � O�u

�
(3.7)

and

� D prob
� O�l < � < O�u

�
D 1 � �l � �u: (3.8)

Exact CIs have coverages, � , equal to the nominal value 1 � 2˛. Construction
of exact CIs requires knowledge of the distribution of O� , which can be achieved
only for simple problems. In more complex situations, only approximate CIs can be
constructed (Sect. 3.1.3). As regards the division of the nominal coverage between
the CI endpoints, this book adopts a practical approach and considers only equi-
tailed CIs, where nominally �l D �u D ˛. As a second CI property besides coverage,
we consider interval length, O�u � O�l, which is ideally small.

Preceding paragraphs considered estimators on the process level. In practice, on
the sample level, we plug in the data ft.i/; x.i/gn

iD1 for fT .i/; X.i/gn
iD1. Following

the usual convention, we denote also the estimator on the sample level as O� . An
example is the autocorrelation estimator (Eq. 2.4).

3.1.1 Theoretical Example: Mean Estimation of Gaussian
White Noise

Let the process fX.i/gn
iD1 be given by

X.i/ D EN.�; �2/.i/; i D 1; : : : ; n; (3.9)

which is called a Gaussian purely random process or Gaussian white noise. There is
no serial dependence, and the times T .i/ are not of interest. Consider as estimator
O� of the mean, �, the sample mean, written on process level as

O� D NX D
nX

iD1

X.i/=n: (3.10)
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Let also � be unknown and estimated by the sample standard deviation, O� D Sn�1,
given in the next example (Eq. 3.19). The properties of NX readily follow as

se NX D � � n�1=2; (3.11)

bias NX D 0; (3.12)

RMSE NX D se NX (3.13)

and

CV NX D � � n�1=2 � ��1: (3.14)

An exact CI of level 1 � 2˛ can be constructed by means of the Student’s t

distribution of NX (von Storch and Zwiers 1999):

CI NX;1�2˛ D 
 NX C tn�1.˛/ � Sn�1 � n�1=2I NX C tn�1.1 � ˛/ � Sn�1 � n�1=2
�

: (3.15)

t�.ˇ/ is the percentage point at ˇ of the t distribution function with � degrees of
freedom (Sect. 3.9).

On the sample level, we write the estimated sample mean,

O� D Nx D
nX

iD1

x.i/=n; (3.16)

the estimated standard error,

bse Nx D
(

nX
iD1

Œx.i/ � Nx�2 =n2

) 1=2

; (3.17)

and the confidence interval,

CI Nx;1�2˛ D 
 Nx C tn�1.˛/ � sn�1 � n�1=2I Nx C tn�1.1 � ˛/ � sn�1 � n�1=2
�
; (3.18)

where sn�1 is given by Eq. (3.25).
The performance of the CI in Eq. (3.18) for Gaussian white noise is analysed

by means of a Monte Carlo simulation experiment. The CI performs excellent
in coverage (Table 3.1), as expected from its exactness. The second CI property,
length, decreases with data size. It can be further compared with CI lengths for
other location measures.
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Table 3.1 Monte Carlo experiment, mean estimation of a Gaussian purely random process.
nsim D 4;750;000 random samples of fX.i/gn

iD1 were generated after Eq. (3.9) with � D
1:0; � D 2:0 and various n values. An exact confidence interval CI

Nx;1�2˛ was constructed for each
simulation after Eq. (3.18) with ˛ D 0:025. Average CI length, empirical RMSE

NX and empirical
coverage were determined subsequently. The entries are rounded

n RMSEa
Nx Nominalb hCI lengthic Nominald �e

Nx Nominal

10 0.6327 0.6325 2.7832 2.7832 0.9499 0.9500
20 0.4474 0.4472 1.8476 1.8476 0.9498 0.9500
50 0.2828 0.2828 1.1310 1.1310 0.9501 0.9500
100 0.2000 0.2000 0.7916 0.7917 0.9499 0.9500
200 0.1415 0.1414 0.5570 0.5571 0.9499 0.9500
500 0.0894 0.0894 0.3513 0.3513 0.9500 0.9500
1000 0.0633 0.0632 0.2482 0.2482 0.9499 0.9500

aEmpirical RMSE
NX , given by

hPnsim
iD1 . Nx � �/2

=nsim

i1=2

b� � n�1=2

cAverage value over nsim simulations
d 2 � tn�1.1 � ˛/ � � � c � n�1=2, where c is given by Eq. (3.24)
eEmpirical coverage, given by the number of simulations where CI

Nx;1�2˛ contains �, divided
by nsim. Standard error of �

Nx is (Efron and Tibshirani 1993) nominally Œ2˛.1 � 2˛/=nsim�1=2 D
0:0001

3.1.2 Theoretical Example: Standard Deviation Estimation
of Gaussian White Noise

Consider the Gaussian white-noise process (Eq. 3.9) with unknown mean and as
estimator of � the sample standard deviation, written on process level as

O� D Sn�1 D
(

nX
iD1



X.i/ � NX�2

=.n � 1/

) 1=2

: (3.19)

The properties of Sn�1 are as follows:

seSn�1 D � � �
1 � c2

	1=2
; (3.20)

biasSn�1 D � � .c � 1/ ; (3.21)

RMSESn�1 D � � Œ2.1 � c/�1=2 (3.22)

and

CVSn�1 D �
1=c2 � 1

	1=2
; (3.23)

where

c D Œ2=.n � 1/�1=2 � �.n=2/ = �..n � 1/=2/: (3.24)
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Table 3.2 Monte Carlo experiment, standard deviation estimation of a Gaussian purely random
process. nsim D 4;750;000 random samples of fX.i/gn

iD1 were generated after Eq. (3.9) with
� D 1:0; � D 2:0 and various n values. An exact confidence interval CIsn�1;1�2˛ was constructed
for each simulation after Eq. (3.26) with ˛ D 0:025. Average CI length, empirical RMSESn�1 and
empirical coverage were determined subsequently

n RMSEa
sn�1

Nominalb hCI lengthic Nominald �e
sn�1

Nominal

10 0.4677 0.4677 2.2133 2.2133 0.9500 0.9500
20 0.3232 0.3233 1.3818 1.3819 0.9500 0.9500
50 0.2018 0.2018 0.8174 0.8174 0.9499 0.9500
100 0.1421 0.1420 0.5659 0.5659 0.9499 0.9500
200 0.1002 0.1002 0.3960 0.3960 0.9500 0.9500
500 0.0633 0.0633 0.2489 0.2489 0.9500 0.9500
1000 0.0447 0.0447 0.1757 0.1757 0.9501 0.9500

aEmpirical RMSESn�1 , given by
hPnsim

iD1 .sn�1 � �/2
=nsim

i1=2

b� � Œ2.1 � c/�
1=2

cAverage value over nsim simulations
d
h�

	2
n�1.1 � ˛/

	
�1=2 � �

	2
n�1.˛/

	
�1=2

i
� � � c � .n � 1/1=2

eEmpirical coverage, given by the number of simulations where CIsn�1;1�2˛ contains � , divided by
nsim. Standard error of �sn�1 is nominally Œ2˛.1 � 2˛/=nsim�1=2 D 0:0001

On the sample level, we write

O� D sn�1 D
(

nX
iD1

Œx.i/ � Nx�2 =.n � 1/

) 1=2

(3.25)

and use the chi-squared distribution of S2
n�1 (von Storch and Zwiers 1999) to find

CIsn�1;1�2˛ D
h
sn�1



.n � 1/

ı
	2

n�1.˛/
�1=2 I

sn�1



.n � 1/

ı
	2

n�1.1 � ˛/
�1=2

i
; (3.26)

where 	2
�.ˇ/ is the percentage point at ˇ of the chi-squared distribution function

with � degrees of freedom (Sect. 3.9).
The performance of the CI in Eq. (3.26) for Gaussian white noise is analysed

by means of a Monte Carlo simulation experiment. The CI performs excellent in
coverage (Table 3.2), as expected from its exactness. The CI property length can be
compared with CI lengths for other measures of spread or variation.

3.1.3 Real World

The two theoretical examples (Sects. 3.1.1 and 3.1.2) presented convenient settings.
X.i/ was normally distributed and persistence was absent; for the latter reason the
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Table 3.3 Monte Carlo experiment, mean and median estimation of a lognormal purely random
process. nsim D 4;750;000 random samples of fX.i/gn

iD1 were generated after X.i/ D
exp



EN.�; �2/.i/

�
; i D 1; : : : ; n; with � D 1:0; � D 1:0 and various n values. The density

function is skewed (Fig. 3.2). Analysed as estimators of the centre of location of the distribution
were the sample mean (Eq. 3.16) and the sample median, Om (see background material, Sect. 3.8).
CI

Nx;1�2˛ was constructed after Eq. (3.18) with ˛ D 0:025

n RMSE
Om RMSE

Nx �a
Nx Nominal C b

10 1.1647 1.8575 0.8392 0.9500 �0:1108

20 0.7893 1.3140 0.8670 0.9500 �0:0830

50 0.4884 0.8309 0.8991 0.9500 �0:0509

100 0.3430 0.5880 0.9170 0.9500 �0:0330

200 0.2418 0.4155 0.9296 0.9500 �0:0204

500 0.1526 0.2627 0.9399 0.9500 �0:0101

1000 0.1078 0.1858 0.9442 0.9500 �0:0058
aStandard error of �

Nx is nominally 0.0001
bEmpirical coverage error of CI

Nx;1�2˛, given by �
Nx minus nominal value

0

0.1

0.2
f(x)

0150
x

Fig. 3.2 Lognormal density function from Example 3 (Table 3.3), with � D 1:0 and � D 1:0.
The expression for f .x/ is given by Eq. (3.64)

spacing was not relevant. The simple estimators O� and O� could then be applied for
mean and standard deviation estimation, which allowed to deduce their distributions
as Student’s t and chi-squared, respectively. Finally, exact CIs were obtained using
the percentage points of the distributions of the estimators.

In the real climatological world, however, such simple assumptions regarding
distributional shape, persistence and spacing cannot be expected to be fulfilled
(Chap. 1). In the practical setting, further questions than just after mean and standard
deviation are asked, leading to more complex parameters, � . The major part of
the rest of this book is devoted to such problems. Also the estimators of those
parameters have commonly more complex distributions, f . O�/.

Example 3 (Table 3.3) goes a small step from the theoretical in the direction
of the real world. This case illustrates the effects of violations of the distributional
assumption. Example 3 assumes that X.i/ are Gaussian distributed, although the
prescribed true distribution is lognormal. This leads to a Student’s t CI with an
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empirical coverage that deviates from the nominal value by several standard errors
(Table 3.3). The difference is the coverage error (see next paragraph); its absolute
value decreases with the data size. This CI is not exact but only approximate.
Table 3.4 summarizes theoretical and practical settings.

Coverage error, C , is defined by means of a single-sided CI endpoint (Efron and
Tibshirani 1993), for example,

C D �l � ˛: (3.27)

If C decreases with sample size as O �
n�1=2

	
, that is, if C is composed of terms of

powers of 1=n that are greater than or equal to 1=2, then the CI is called first-order
accurate; if C is of O �

n�1
	
, then the CI is called second-order accurate; and so

forth. The same CI accuracy applies also to two-sided CIs. Desirable approximate
CIs have a high-order accuracy. Coverage accuracy is the major criterion employed
in this book for assessing the quality of a CI. As a second property, we consider
interval length, O�u � O�l, which is ideally small. Related to CI accuracy is CI
correctness (Efron and Tibshirani 1993: Sect. 22.2 therein), which refers to the
difference between an exact CI endpoint (which has C D 0) and an approximate CI
endpoint, expanded in terms of powers of n.

For practical situations it is conceivable that different estimators, O�1 and O�2, of the
same parameter, � , exist. Consider, for example, parameter estimation of the AR(p)
model, for which Priestley (1981: Sect. 5.4.1 therein) gives four sets of estimators,
namely, exact likelihood, least squares, approximate least squares and Yule–Walker.
Each estimator has its own properties such as standard error, bias, RMSE, CI length
or CI coverage accuracy.

An important attribute of an estimator is robustness, which means that the
O� properties depend only weakly on made assumptions (shape, persistence and
spacing). Robust estimators perform better (e.g. have smaller RMSE or higher
coverage accuracy) than non-robust in nonideal situations. Example 3 shows that
the sample median as an estimator of the centre of location of a distribution is
more robust (with regard to RMSE O� ) than the mean. In essence, because of the
complexity of the setting in the real world and the dependence on the situation and
the aims of the analysis, there is no general rule how to construct best an estimator.
It has something of an art, which is not meant negatively. In this light, the growth of
climatological knowledge does not only depend on more and better data but also on
improved methods to analyse them.

Table 3.4 shows also how real-world climatological estimation problems may
be tackled. The classical approach comes from theory and aims to extend the
applicability by introducing countermeasures. Regarding distributional shape, a
measure may be to estimate the shape of the noise data (Sect. 1.6). Then one looks
and applies the estimator for the parameter � that performs for this particular
shape best in terms of a user-specified property, say RMSE. The CI follows
from the estimator’s distribution. The problem is that only for simple shapes and
parameters, knowledge is available that would allow this procedure. (In this regard,
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the lognormal without is clearly simpler than the lognormal with shift parameter
(Sect. 3.8).) Transformations of the data, such that the noise part has a simple shape,
can also be tried, but then the problem is that the systematic part of the model
(Eq. 1.2) can take intractable forms; see Atkinson and Cox (1988) on this dilemma.
(The double-logarithmic transformation described in Sect. 2.6 was in the converse
direction. It produced a simpler systematic part and a more complex noise part.)

Regarding persistence, the effective data size, n0, can be used instead of n for CI
calculation. The problem here is that n0 depends on the persistence model and on
which estimator is used (Chap. 2). One may take n0

� (Eq. 2.7), n0
�2 (Eq. 2.36) or n0




(Eq. 2.38) for the AR(1) process and hope that deviations to the problem at hand are
small. Regarding spacing, it is fair to say that the classical approach mostly ignores
unevenness because its influence on n0 and the distribution of O� can in the general
case not be deduced. As a result, the classical approach often contents itself with
approximate normality, that is, with f . O�/ approaching normal shape as n ! 1.
For many theoretical estimations, approximate normality can be proven. However,
the point is that in practice n is limited and it is mostly unknown how accurate the
normal approximation of the CI is.

3.2 Bootstrap Principle

Table 3.4 lists also the bootstrap approach to solve practical estimation problems.
These tasks include constructing CIs for estimators more complex than the mean,
and this in the presence of nonnormal distributions, persistence and uneven spacing.
The main idea behind the bootstrap is to use the data to mimic the unknown
distribution function, which is now replaced by the empirical distribution function
(Eq. 3.46). Mimicking the data generating process is achieved by drawing random
samples from the data set. The simplest form is the ordinary bootstrap, that is,
drawing one by one with replacement. Preserving the persistence properties of
time series data requires adaptions of the ordinary bootstrap, which are explained
in Sect. 3.3. Reapplying the estimation procedure to the new random samples,
called resamples, yields new estimates, called replications. Section 3.4 explains CI
construction using the replications. Figure 3.3 shows the bootstrap principle and the
workflow. It gives also a simple bootstrap CI variant (bootstrap normal CI).

The bootstrap means that numerical simulation replaces theoretical derivation
of the distribution of an estimator. This can be an improvement, especially if the
complexity of the problem defies obtaining an exact theoretical result. However, also
the bootstrap is not free of assumptions. The main requirement is that the properties
distributional shape and persistence are preserved by the bootstrap resampling.
There is also “simulation noise”, but this can be made arbitrarily small by using
a large number of resamples, B . Assumptions made at CI construction add to the
fact that in complex situations, bootstrap CIs, like classical CIs, are not exact but
approximate. In complex cases, for small sample size, non-smooth functionals such
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Sample,
estimate

Resamples

Confidence
interval

Replications

Fig. 3.3 Bootstrap principle for constructing confidence intervals. Given is a sample of data and
an estimate of a parameter of interest. Using bootstrap resampling (Sect. 3.3), new data sets—
resamples—are formed. The resamples ideally preserve fully the statistical properties of the
process that generated the data. For convenience of presentation, we assume that this process
(Eq. 1.2) consists only of the noise part; the following chapters analyse bootstrap resampling
where the model has also a systematic part. In the simple case where t .i / are perfectly known
and also persistence is absent, t�.i/ D t .i /; i D 1; : : : ; n, and fx�.i/gn

iD1 is obtained by drawing
randomly, one by one and with replacement, n elements from the set of sample values, fx.i/gn

iD1.
The resamples are marked with an asterisk and numbered with an index, b D 1; : : : ; B . The
number of resamples, B , is typically a few thousand. The estimator is applied to each of the
resamples, yielding B new estimates—the replications. The set of replications f O��bgB

bD1 is then
used for CI construction. Several methods exist for that purpose (Sect. 3.4), which can, for example,
correct for estimation bias. In the simple case of normal bootstrap confidence intervals, henceforth
denoted briefly as normal CIs, CI

O�;1�2˛ D Œ O� C z.˛/ � bse
O��

I O� � z.˛/ � bse
O��

�, where bse
O��

is the
sample standard error of the replications, denoted as estimated bootstrap standard error, and z.˛/

is the percentage point of the normal distribution (Sect. 3.9)

as the median and without underlying theory, even the bootstrap may fail to yield
acceptable results (LePage and Billard 1992). However, bootstrap CIs seem to be
more flexible and require less strict assumptions than classical CIs (Table 3.4).
A word on usage of “simulation”: henceforth we reserve this for Monte Carlo
experiments, where statistical methods are tested by means of artificial data from
models with predefined properties. The bootstrap procedure, on the other hand, is
referred to as “resampling”.

3.3 Bootstrap Resampling

The ordinary bootstrap, resampling one by one with replacement, is a nonparametric
method because it can virtually be applied to data from any continuous PDF
without involvement of distributional parameters. By resampling one by one, the
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serial dependence in fX.i/gn
iD1 is lost. For the analysis of time series, the ordinary

bootstrap has therefore to be adapted to take serial dependence into account. This
can be done nonparametrically, by resampling block by block of data. Alternatively,
persistence can be modelled. The preferred model in the case of climate time series
is the AR(1) process (Chap. 2).

For convenience of presentation, this chapter omits the effects of errors in the
timescale, t.i/, that is, it sets t�.i/ D t.i/; i D 1; : : : ; n; or briefly ft�.i/gn

iD1 D
ft.i/gn

iD1 : Bootstrap adaptions for solving estimation problems associated with an
uncertain timescale, which are relevant for climatology, seem not to have been
developed yet in the statistical literature. The subsequent chapters present some
possible bootstrap adaptions. These are steps into new territory.

3.3.1 Nonparametric: Moving Block Bootstrap

The moving block bootstrap algorithm, denoted as MBB, divides the time series
values fx.i/gn

iD1 into sequences or blocks of l consecutive points (Algorithm 3.1).
The blocks may overlap and their number is n � l C 1. MBB draws randomly a
block and inserts the contained values as the first l resample values, fx�.i/gl

iD1.
The following randomly drawn block yields fx�.i/g2l

iDlC1 and so forth. When the
last point, x�.n/, has been inserted, the algorithm stops; remaining block values are
discarded. The resampled times are unchanged (Algorithm 3.1). One indexes the
first resample as

˚
t�1.i/; x�1.i/

�n

iD1
and repeats MBB until B resamples exist.

A possible adaption of the MBB to uneven spacing is introduced later in this
section. Other nonparametric bootstrap algorithms are described briefly in the
background material (Sect. 3.8).

Block Length Selection

Selection of the block length, l , is a crucial step because it determines properties like
bootstrap standard error or bootstrap CI coverage accuracy. Berkowitz and Kilian
(2000: p. 20 therein) describe the trade-off problem involved as follows:

As the block size becomes too small, the [MBB] destroys the time dependency of the data
and its average accuracy will decline. As the block size becomes too large, there are few
blocks and [resamples] will tend to look alike. As a result, the average accuracy of the
[MBB] also will decline. This suggests that there exists an optimal block size [lopt] which
maximizes accuracy.

A simple block length selector can be derived from Sherman et al. (1998), who
adapted a formula from Carlstein (1986), to the MBB:

lopt D NINT

�h
61=2 � ONa

.�
1 � ONa2

�i2=3 � n1=3

�
; (3.28)
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Algorithm 3.1 Moving block bootstrap algorithm (MBB). Note: An equation such as
ft�.i/gn

iD1 D ft .i /gn
iD1 is used to denote t�.i/ D t .i /; i D 1; : : : ; n

Block 1

Block 2 Block n– l+1

x (1) x (2) x (l ) x (l+1) x (n)x (n– l+ 1)

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times unchanged {t∗(i)}n
i=1 = {t(i)}n

i=1

Step 3 Blocks j (see above) {x(i)}j+l−1
i=j , j = 1, . . . , n − l + 1

Step 4 Set counter c = 1

Start resampling

Step 5 Draw random block j∗ j∗ ∈ {1, . . . , n − l + 1}
Step 6 Insert block data {x∗(i)}c+l−1

i=c = {x(i)}j∗+l−1
i=j∗

If x∗(n) has been inserted Stop inserting and exit

Step 7 Increase counter c → c + l

Step 8 Go to Step 5

End resampling

where NINT .�/ is the nearest integer function and ONa D exp.� Nd= O�/ is the estimated
“equivalent autocorrelation coefficient” (Fig. 2.3) of an AR(1) process fitted to the
data with uneven spacing. (If ONa ! 0 and ONa ! 1, then take lopt D 1 and lopt D n� 1,
respectively.) In the case of even spacing, ONa can be taken from Eq. (2.4). Instead
of ONa, also a bias-corrected version, ONa0, can be used; see Sect. 2.6. Employing this
block length selector for real-world problems is evidently a simplification because
it was developed for normal shape, AR(1) persistence, even spacing and bootstrap
standard error estimation. Hall et al. (1995a) show that for bootstrap CI estimation,
lopt should increase at a slower rate with n. On the other hand, in practice some
simplification is inevitable, and the formula may yield acceptable results. This can
be assessed by means of Monte Carlo simulations of real-world conditions, as is
done in subsequent parts of this book.

Bühlmann and Künsch (1999) presented a fully data-driven block length selector
(Algorithm 3.2). They showed the equivalence of lopt selection and smoothing in
spectral estimation (Chap. 5).

Berkowitz and Kilian (2000) presented a brute-force block length selector:

1. Approximate the data generating process by a parametric model (e.g. ARMA).
2. Generate Monte Carlo samples from this fitted model.
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Algorithm 3.2 Block length selector after Bühlmann and Künsch (1999). Notes: bIF .X.i// is the
estimated influence function (Efron and Tibshirani 1993: Sect. 21.3 therein). O�.j / is the delete-one,

jackknife value of O� , that is, the O� value calculated from the data with the j th point removed; see
Sect. 3.4.4. wSC is the split-cosine window; wSC.z/ D 1 for jzj � 0:8, wSC.z/ D Œ1 C cos.5.z �
0:8/�/�=2 for 0:8 < jzj � 1 and wSC.z/ D 0 for jzj > 1. wTH is the Tukey–Hanning window;
wTH.z/ D Œ1 C cos.�z/�=2 for jzj � 1 and wTH.z/ D 0 for jzj > 1

Step 1 Calculate fY.i/gn
iD1 D

nbIF .X.i//
on

iD1
, where

bIF .X.j // D n �
� O� � O�.j /

�

Step 2 Calculate OR.h/ D n�1
Pn�jhj

iD1 Y.i/ � Y.i C jhj/; h D �n C 1; : : : ; n � 1

Step 3 Calculate iteratively:

b0 D n�1,

bk D n�1=3
h�Pn�1

hD�nC1
OR.h/2

�

�
�
6

Pn�1
hD�nC1 wSC.h � bk�1 � n4=21/2 � h2 � OR.h/2

�
�1

�1=3

,

k D 1; 2; 3; 4,

Ob D n�1=3 � .2=3/1=3
h�Pn�1

hD�nC1 wTH.h � b4 � n4=21/ � OR.h/
�

�
�Pn�1

hD�nC1 wSC.h � b4 � n4=21/ � jhj � OR.h/
�

�1
�2=3

Step 4 Set lopt D NINT . Ob�1/

3. Select the parameter of interest, � , and an estimation property of interest, say,
bootstrap CI accuracy.

4. Prescribe a search grid. For example, lsearch runs from a start to an end value with
some spacing.

5. Calculate the empirical bootstrap CI coverage error (or another property) using
the Monte Carlo samples and MBB with lsearch.

6. Select lsearch with best performance.

Other block length selectors are described briefly in the background material
(Sect. 3.8).

Uneven Spacing

Applying the MBB to unevenly spaced time series increases the estimation uncer-

tainty because the time spacing values within the inserted block, fd.i/gj �Cl�2

iDj �
, need

not equal the spacing values at the insertion place, fd �.i/gcCl�2
iDc . This may reduce

the ability to preserve serial dependence.
An attempt to adapt MBB to this situation could be to resample only blocks

with spacing similar to the spacing at the insertion place. For example, only the ˇ%
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blocks with nearest spacing could be made drawable. The unevenness in a block
could be quantified by the coefficient of variation of the spacing, CVd , similarly as
was done in Fig. 2.3. In the case of equidistance, one would have CVd D 0 and
take ˇ D 100 %, that is, one would use MBB. It is, however, unclear which ˇ value
to take for CVd > 0. A second measure could be to decrease l when reducing the
number of drawable blocks.

A Monte Carlo experiment (Sect. 3.8) tested a rather simple MBB adaption:
ˇ D 50 % for CVd > 0. This was applied to mean estimation of a Gaussian AR(1)
process. It turned out, however, that the accuracy of the BCa CI was lower compared
to usage of the ordinary MBB under the same block length selector (Eq. 3.28).
More Monte Carlo studies of ˇ choices in dependence on CVd and other spacing
properties have to be carried out to find more accurate MBB adaptions to uneven
spacing.

The practical conclusion is that for small CVd and large deviations from AR(1)
persistence, one may use MBB. On the other hand, large CVd and minor deviations
from the AR(1) model indicate to employ the parametric autoregressive bootstrap
(next section). This resampling method could have a higher relevance than MBB for
practical applications because the AR(1) persistence model is generally a suitable
first-order approximation for weather and climate time series (Chap. 2). Such a
combined approach should yield acceptable results also for small data sizes. For
that purpose, we tend to prefer the ARB over the MBB resampling type on the basis
of the Monte Carlo experiments of mean estimation (Tables 3.5 and 3.7). If CVd is
large and also the deviations from AR(1) dependence are large, both the MBB and
the parametric autoregressive bootstrap may be tried and results compared. This
difference should indicate the size of the difference of the approximate bootstrap
CIs to the exact CI.

Systematic Model Parts and Nonstationarity

For explaining the bootstrap principle (Fig. 3.3), we assumed for convenience of
presentation x.i/ D xnoise.i/. Realistic climate processes contain more parts,
such as trend, outliers and variability (Eq. 1.2). The MBB can be applied to such
processes by resampling from the residuals. Plugging in the estimates into the
climate equation (Eq. 1.2) yields

r.i/ D Œx.i/ � Oxtrend.i/ � Oxout.i/�
. OS.i/; i D 1; : : : ; n; (3.29)

where Oxtrend.i/; Oxout.i/ and OS.i/ are estimated trend, outlier and variability compo-
nents, respectively. The following chapters explain such estimations. The residuals,
r.i/, are realizations of the noise process. (Analogously, the residuals, .i/, in
Chap. 2 are realizations of a white-noise process.) The MBB for realistic climate
processes is listed as Algorithm 3.3.
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Algorithm 3.3 MBB for realistic climate processes, which comprise trend, outlier and variability
components

Step 1 Data ft .i /; x.i/gn
iD1

Step 2 Resampled times ft�.i/gn
iD1 D ft .i /gn

iD1

unchanged

Step 3 Residuals (Eq. 3.29) r.i/ D Œx.i/ � Oxtrend.i/ � Oxout.i/�
. OS.i/

Step 4 Apply MBB

(Algorithm 3.1)

to residuals fr.i/gn
iD1

Step 5 Resampled residuals fr�.i/gn
iD1

Step 6 Use resampled residuals

to produce resamples x�.i/ D Oxtrend.i/ C Oxout.i/ C OS.i/ � r�.i/

The trend, outlier and variability components allow to describe nonstationary
climate processes. A further type of nonstationarity regards persistence. Consider as
example ice-volume fluctuations over the past 4 Ma. In the early part (Pliocene), the
persistence was weaker than in the late part (Pleistocene), when huge continental
ice sheets had been built up (Mudelsee and Raymo 2005). Such nonstationarity can
be accounted for by the local block bootstrap (Paparoditis and Politis 2002), where,
in the example, Pliocene resamples, x�.i/, are restricted to come from the Pliocene
data, x.i/, analogously for Pleistocene resamples. The local block bootstrap could
also be applied, as an alternative to using MBB and the residuals, to produce
nonparametric trend and variability estimates with CIs (Bühlmann 1998). The cited
paper applies smoothing to an ozone time series from Switzerland, 1932–1996.
Evidently, the size of the locality region should be chosen taking prior knowledge
about the data generating process into account.

3.3.2 Parametric: Autoregressive Bootstrap

The autoregressive bootstrap algorithm (ARB) is the ordinary bootstrap applied to
the white-noise residuals, .i/. We first take the residuals, r.i/, from the climate
equation as in Eq. (3.29). Using the persistence model for r.i/, the residuals .i/

are then formed. .i/ are treated as realizations of a white-noise process; see
Eq. (2.5). We employ the AR(1) persistence model as a suitable description for
climate processes (Chap. 2). Advantageously, the distributional shape need not be
Gaussian. Even and uneven spacings are treated separately.
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Even Spacing

The ARB for even spacing is listed as Algorithm 3.4. Although the bias correction
(Step 7) is only approximate (Sect. 2.6), this is considered an important step because
ignoring bias can lead to a bad bootstrap performance (Stine 1987). Scaling, as done

in Step 8 using a factor


1 � . Oa0/2

��1=2
, is non-standard. It has the computational

advantage that no transient behaviour is required in Step 11. Centering (Step 9)
achieves that the resample generating process has expectation zero, as the white-
noise process is supposed to have. After Step 9, a further scaling with a factor
Œ.n � 1/=.n � 2/�1=2 (Stine 1987) is omitted. This factor is in the general case only
approximate (Peters and Freedman 1984) and its effect is considered negligible
compared with the other uncertainties. Lahiri (2003) explains the “traditional”
method to generate a number of samples that is very much larger than n at Step 10
and use those at Step 11 for extracting r�.i/ from the transient sequence. The
advantage of the non-standard formulation (Step 8) corresponds to the advantage
of strict stationarity of the non-standard formulation of the AR(1) model (Chap. 2).

Uneven Spacing

The ARB for uneven spacing is listed as Algorithm 3.5. It corresponds basically
to the ARB for even spacing, where the persistence parameter, a, is replaced by
expf�Œt.i/� t.i �1/�=�g. Bias correction for O� at Step 7 goes via ONa0 D exp.� Nd= O� 0/.

3.3.3 Parametric: Surrogate Data

The surrogate data approach (Algorithm 3.6), related to ARB, is a simulation rather
than a resampling method. No residuals are drawn as in the ARB. Instead, climate
equation residuals fr�.i/gn

iD1 are obtained by numerical simulation (Step 8) from
the persistence model with estimated (and bias-corrected) parameters. Because also
the distributional shape is specified, the surrogate data approach is bounded stronger
by parametric restrictions than the ARB. Therein lies its danger: it is more prone
than the ARB to systematic errors from violated assumptions.

3.4 Bootstrap Confidence Intervals

Estimation of � is repeated for the resamples, ft�b.i/; x�b.i/gn
iD1; b D 1; : : : ; B .

This yields the bootstrap replications, f O��bgB
bD1. The replications are used to

construct equi-tailed (1 � 2˛) confidence intervals, CI O�;1�2˛
; see Fig. 3.3.
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Algorithm 3.4 Autoregressive bootstrap algorithm (ARB), even spacing

Step 1 Data ft .i /; x.i/gn
iD1

Step 2 Resampled times ft�.i/gn
iD1 D ft .i /gn

iD1

unchanged

Step 3 Estimated trend, f Oxtrend.i/gn
iD1 , f Oxout.i/gn

iD1,
n OS.i/

on

iD1

outliers, variability

Step 4 Climate equation fr.i/gn
iD1

residuals (Eq. 3.29)

Step 5 Assume fr.i/gn
iD1 to

come from AR(1)

model for even

spacing (Eq. 2.1)

Step 6 Estimate AR(1)

parameter (Eq. 2.4) Oa
Step 7 Bias correction Oa0

Step 8 White-noise residuals .i/ D Œr.i/ � Oa0 � r.i � 1/�

� 

1 � .Oa0/2

�
�1=2

;

i D 2; : : : ; n

Step 9 Centering Q.i/ D .i/ � Pn
iD2 .i/=.n � 1/

Step 10 Draw Q�.j /,

j D 2; : : : ; n,

with replacement from fQ.i/gn
iD2

Step 11 Resampled climate r�.1/ drawn from fr.i/gn
iD1,

residuals r�.i/ D Oa0 � r�.i �1/C 

1 � .Oa0/2

�1=2 � Q�.i/;

i D 2; : : : ; n

Step 12 Resampled data x�.i/ D Oxtrend.i/ C Oxout.i/ C OS.i/ � r�.i/,

i D 1; : : : ; n
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Algorithm 3.5 Autoregressive bootstrap algorithm (ARB), uneven spacing

Step 1 Data ft .i /; x.i/gn
iD1

Step 2 Resampled times ft�.i/gn
iD1 D ft .i /gn

iD1

unchanged

Step 3 Estimated trend, f Oxtrend.i/gn
iD1 , f Oxout.i/gn

iD1,
n OS.i/

on

iD1

outliers, variability

Step 4 Climate equation fr.i/gn
iD1

residuals (Eq. 3.29)

Step 5 Assume fr.i/gn
iD1 to

come from AR(1)

model for uneven

spacing (Eq. 2.9)

Step 6 Estimate persistence

time (Eq. 2.11) O�
Step 7 Bias correction O� 0

Step 8 Abbreviation Oa0.i/ D expf�Œt .i/ � t .i � 1/�=O� 0g,

i D 2; : : : ; n

Step 9 White-noise residuals .i/ D Œr.i/ � Oa0.i/ � r.i � 1/�

� ˚
1 � Œ Oa0.i/�2

�
�1=2

; i D 2; : : : ; n

Step 10 Centering Q.i/ D .i/ � Pn
iD2 .i/=.n � 1/

Step 11 Draw Q�.j /,

j D 2; : : : ; n,

with replacement from fQ.i/gn
iD2

Step 12 Resampled climate r�.1/ drawn from fr.i/gn
iD1,

residuals r�.i/ D Oa0.i/ � r�.i � 1/ C ˚
1 � Œ Oa0.i/�2

�1=2

� Q�.i/; i D 2; : : : ; n

Step 13 Resampled data x�.i/ D Oxtrend.i/ C Oxout.i/ C OS.i/ � r�.i/,

i D 1; : : : ; n
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Algorithm 3.6 Surrogate data approach

Step 1 Data ft .i /; x.i/gn
iD1

Step 2 Resampled times ft�.i/gn
iD1 D ft .i /gn

iD1

unchanged

Step 3 Estimated trend, f Oxtrend.i/gn
iD1 ,

outliers, f Oxout.i/gn
iD1,

variability
n OS.i/

on

iD1

Step 4 Climate equation fr.i/gn
iD1

residuals (Eq. 3.29)

Step 5 Assume fr.i/gn
iD1 to

come from

specific model

(shape, persistence)

Step 6 Estimate model

parameters

Step 7 Bias correction

Step 8 Simulate climate

equation residuals fr�.i/gn
iD1

from estimated model

Step 9 Simulated data x�.i/ D Oxtrend.i/ C Oxout.i/ C OS.i/ � r�.i/,

i D 1; : : : ; n

Two approaches, standard error based and percentile based, dominate theory and
practice of bootstrap CI construction. The estimated bootstrap standard error is the
sample standard error of the replications,

bse O��

D
(

BX
bD1

h O��b �
D O��b

Ei2


.B � 1/

) 1=2

; (3.30)

where
D O��b

E
D PB

bD1
O��b=B . The percentiles result from the empirical distribution

function (Eq. 3.46) of the replications. The accuracy of bootstrap CIs depends
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critically on the similarity (in terms of standard errors or percentiles) of the
distribution of the bootstrap replications and the true distribution, f . O�/. Various
concepts exist for accounting for the deviations between the two distributions.

Suppressing “simulation noise” requires more resamples for percentile estima-
tion than for bootstrap standard error estimation. This book follows the recommen-
dation of Efron and Tibshirani (1993) and sets throughout B D 2000 (or 1999 for
percentile CIs). For a reasonable ˛ value such as 0.025, this means that a number of
50 replications are outside the percentile bound. An own simulation study, analysing
the coefficient of variation of a CI endpoint in dependence of B , confirmed that this
choice is sufficient also in a bivariate setting (Mudelsee and Alkio 2007).

3.4.1 Normal Confidence Interval

The bootstrap normal confidence interval, already given in Fig. 3.3, is

CI O�;1�2˛
D

h O� C z.˛/ � bse O��

I O� � z.˛/ � bse O��

i
; (3.31)

where z.˛/ is the percentage point of the normal distribution (Sect. 3.9).

3.4.2 Student’s t Confidence Interval

The bootstrap Student’s t confidence interval is

CI O�;1�2˛
D

h O� C t�.˛/ � bse O��

I O� � t�.˛/ � bse O��

i
; (3.32)

where t�.˛/ is the percentage point of the t distribution function with � degrees of
freedom (Sect. 3.9). It is in practice presumably always more accurate to prefer,
as this book does, Student’s t CIs over normal CIs because they recognize the
reduction of degrees of freedom. (For data sizes above, say, 30, the difference
becomes negligible.)

3.4.3 Percentile Confidence Interval

The bootstrap percentile confidence interval is

CI O�;1�2˛
D

h O��.˛/I O��.1 � ˛/
i

; (3.33)

that is, it is the interval between the 100˛th percentage point and the 100.1 � ˛/th

percentage point of the empirical distribution of
n O��b

oB

bD1
. Because of finite
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B , “simulation noise” is introduced in estimating percentile-based CIs. B D
1999 sufficiently reduces this effect; see the introduction to this section. One
takes this value instead of 2000 because then commonly used percentage points
can be evaluated without interpolation (e.g. 95th percentage point D 0:95 �
.1999 C 1/th = 1900th largest replication value).

3.4.4 BCa Confidence Interval

The bootstrap bias-corrected and accelerated (BCa) confidence interval is

CI O�;1�2˛
D

h O��.˛1/I O��.˛2/
i

; (3.34)

where

˛1 D F

�
Oz0 C Oz0 C z.˛/

1 � Oa ŒOz0 C z.˛/�

�
(3.35)

and

˛2 D F

�
Oz0 C Oz0 C z.1 � ˛/

1 � Oa ŒOz0 C z.1 � ˛/�

�
: (3.36)

F.�/ is the standard normal distribution function (Eq. 3.52). Oz0, the bias correction,
is computed as

Oz0 D F �1

0
@#

n O��b < O�
o

B

1
A ; (3.37)

where #f O��b < O�g means the number of replications where O��b < O� and F �1.�/ is
the inverse function of F.�/. The acceleration, Oa, is computed (Efron and Tibshirani
1993) as

Oa D
Pn

j D1

hD O�.j /

E
� O�.j /

i3

6

�Pn
j D1

hD O�.j /

E
� O�.j /

i2
� 3=2

; (3.38)

where O�.j / is the jackknife value of O� . Consider the original sample with the j th
point removed, that is, ft.i/; x.i/g ; i D 1; : : : ; n; i ¤ j . The jackknife value is

then the value of O� calculated using this sample of reduced size. The average,
D O�.j /

E
,

is given by
hPn

j D1
O�.j /

i.
n.
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Oz0 corrects for the median estimation bias; for example, if just half of the
replications have O��b < O� , then Oz0 D 0. The acceleration, Oa, takes into account
scale effects, which arise when the standard error of O� itself depends on the true
parameter value, � .

3.5 Examples

In the first, theoretical example, we compare classical and bootstrap CIs in terms of
coverage accuracy (Table 3.5). The mean of AR(1) processes with uneven spacing
was estimated for two distributional shapes, normal and lognormal. The classical
CI employed the effective data size for mean estimation; the bootstrap CI used the
ARB algorithm and the BCa method.

The classical CI performed better for the normal than for the lognormal shape.
This is because the normal assumption made at CI construction is violated in the
case of the lognormal shape. With increasing data size, the lognormal approaches
the normal distribution (Johnson et al. 1994: Chap. 14 therein) and the difference in
performance decreases. However, this difference is still significant for n D 1000 in
the example.

Also the bootstrap CI performed better for the normal than for the lognormal
shape. This may be because persistence time estimation ( O�) and persistence time
bias correction ( O� 0) are less accurate for nonnormally distributed data.

Table 3.5 Monte Carlo experiment, mean estimation of AR(1) noise processes with uneven
spacing, normal and lognormal shape. nsim D 47;500 random samples were generated from the
Gaussian AR(1) process, fX.i/gn

iD1, after Eq. (2.9) with � D 1. The samples from the lognormal
AR(1) process were generated by taking exp ŒX.i/�. The start was set to t .1/ D 1; the time
spacing, d.i/, was drawn from a gamma distribution (Eq. 2.48) with order parameter 16, that is,
a distribution with a coefficient of variation equal to .16/�1=2 D 0:25, and subsequently scaled
to Nd D 1. Two CI types for the estimated mean were constructed, classical and bootstrap. The
classical CI employed n0

� calculated from Eq. (2.7) with ONa0 D exp
�� Nd=O� 0

	
plugged in for a and

the t distribution (Eq. 3.18). The bootstrap CI used the ARB (Algorithm 3.5) and the BCa method
(Sect. 3.4.4) with B D 1999 and ˛ D 0:025

�a
Nx

Distribution

Normal Lognormal
CI type CI type

n Classical Bootstrap Classical Bootstrap Nominal

10 0.918 0.863 0.835 0.789 0.950
20 0.929 0.903 0.845 0.845 0.950
50 0.938 0.929 0.876 0.888 0.950
100 0.943 0.941 0.897 0.909 0.950
200 0.942 0.943 0.914 0.922 0.950
500 0.947 0.948 0.926 0.930 0.950
1000 0.947 0.949 0.933 0.937 0.950
aStandard error of �

Nx is nominally 0.001
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Fig. 3.4 Determination of mean CO2 levels in the Vostok record (Fig. 1.4b) during a glacial and an
interglacial. The interval from 140 to 177 ka represents the glacial (MIS 6), the interval from 115
to 130 ka the interglacial (marine isotope substage 5.5). The 95 % bootstrap CIs for the estimated
means are shown as shaded bars

For small sample sizes (n / 50 (normal distribution) or n / 20 (lognormal
distribution)), the classical CI performed better than the bootstrap CI. This advan-
tage is likely in part owing to the fact that a formula for the effective data size for
mean estimation is known; it may disappear for more complex estimators, where no
formula for the effective data size exists. For larger sample sizes (n ' 100 (normal
distribution) or n ' 50 (lognormal distribution)), the bootstrap CI is as good as the
classical CI (normal shape) or better (lognormal shape).

In the second, practical example, Fig. 3.4 shows the transition from a glacial
(MIS 6) to the last interglacial (MIS 5) in the Vostok CO2 record. The mean CO2

concentration was estimated for the time intervals from 140 to 177 ka (glacial) and
from 115 to 130 ka (interglacial). Student’s t CIs (Sect. 3.4.2) were constructed
using nonparametric stationary bootstrap resampling, a variant of the MBB, where
the block length is not constant (Sect. 3.8). The number of resamples was B D 2000.
The average block length was set to NINT

�
4 � �= Nd	

.
The mean glacial CO2 level was determined as 192.8 ppmv with 95 % CI

[188.3 ppmv; 197.3 ppmv]; the mean interglacial CO2 level was 271.9 ppmv with
95 % CI [268.8 ppmv; 275.0 ppmv]. Because of the reduced data sizes in the
intervals (glacial, n D 13; interglacial, n D 24), also the accuracies of the CIs
may be reduced. The enormous glacial–interglacial amplitude in CO2 documents the
importance of this greenhouse gas for late Pleistocene climate changes, the ice age.
The relation between CO2 and temperature changes is analysed in Chaps. 7 and 8.

3.6 Bootstrap Hypothesis Tests

By the analysis of climate time series, ft.i/; x.i/gn
iD1, we make, generally speaking,

a statistical inference of properties of the climate system. One type of inference
is the estimation of a climate parameter, � . In addition to a point estimate, O� , an
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interval estimate, CI O�;1�2˛
, helps to assess how accurate O� is. The bootstrap is used

to construct CIs in complex situations regarding data properties shape, persistence
and spacing. The second type of inference is testing a hypothesis, a statement about
the climate system, using the data sample. Again, this can be a difficult task (shape,
persistence and spacing), and again, the bootstrap can be a powerful tool in such a
situation. Hypothesis tests are also called significance tests or statistical tests.

A hypothesis test involves the following procedure. A null hypothesis (or short:
null), H0, is formulated. H0 is tested against an alternative hypothesis, H1. The
hypotheses H0 and H1 are mutually exclusive. H0 is a simple null hypothesis if
it completely specifies the data generating process. An example would be “X.i/

is a Gaussian white-noise process with zero mean and unit standard deviation.”
H0 is a composite null hypothesis if some parameter of X.i/ is unspecified, for
example, “Gaussian white-noise process with zero mean.” Next, a test statistic, U , is
calculated. Any meaningful construction lets U be a function of the data generating
process, U D g

�fT .i/; X.i/gn
iD1

	
. On the sample level, u D g

�ft.i/; x.i/gn
iD1

	
.

In the example H0: “Gaussian white-noise process with � D 0”, one could take
U D NX D Pn

iD1 X.i/=n, the sample mean. U is a random variable with a
distribution function, F0.u/, where the index “0” indicates that U is computed
“under H0”, that is, as if H0 were true. F0.u/ is the null distribution. In the example,
F0.u/ would be Student’s t distribution function (Sect. 3.9). If in the example the
alternative were H1: “� > 0”, then a large, positive u value would speak against
H0 and for H1. Using F0.u/ and plugging in the data ft.i/; x.i/gn

iD1, the one-sided
significance probability or one-sided P -value results as

P D prob .U � u j H0/

D 1 � F0.u/: (3.39)

The P -value is the probability that under H0 a value of the test statistic greater than
or equal to the observed value, u, is observed. If P is small, then H0 is rejected
and H1 accepted; otherwise, H0 cannot be rejected and H1 cannot be accepted. The
two-sided P -value is

P D prob .jU j � juj j H0/ : (3.40)

In the example, a two-sided test would be indicated for H1: “Gaussian white noise
with � ¤ 0”. Besides the P -value, a second result of a statistical test is the power.
In the one-sided test example:

power D prob .U � u j H1/ : (3.41)

A type-2 error is accepting H0, although it is a false statement and H1 is true. The
probability of a type-2 error is ˇ D 1�power. A type-1 error is rejecting H0 against
H1, although H0 is true. P , the significance probability, is therefore denoted also as
type-1-error probability or false-alarm probability; u is denoted also as false-alarm
level.
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Fig. 3.5 Hypothesis test and confidence interval. The parametric null hypothesis H0: “� < 0”
cannot be rejected against H1: “� � 0” with a P -value equal to ˛

Although H0 can be a composite null, it is usually more explicit than H1. In
climatological practice, the selection of H1 should be guided by prior climatological
knowledge. H1 determines also whether a test should be designed as one- or
two-sided. For example, if H0 were “no temperature change in a climate model
experiment studying the effects of doubled CO2 concentrations, �T D 0”, then
a one-sided test against H1: “�T > 0” would be appropriate because physics
would not let one expect a temperature decrease. Because H1 is normally rather
general, it is difficult to quantify the test power. Therefore, more emphasis is put on
accurate P -values. Various test statistics, U1; U2; : : : ; may be appropriate for testing
H0 against H1. The statistic of choice has for a given data set a small type-1-error
probability (small P -value) as first quality criterion. The second quality criterion is
a small type-2-error probability (large power), preferably calculated for some realis-
tic, explicit alternative. We can say that a test does not intend to prove that a hypoth-
esis is true but rather that it does try to reject a null hypothesis. A null hypothesis
becomes more “reliable” after it has been tested successfully against various realistic
alternatives using various data samples; see Popper (1935). It is important that H0

and H1 are established independently of the data to prevent circular reasoning; see
von Storch and Zwiers (1999: Sect. 6.4 therein). As a final general remark, it is more
informative to give P -values than to report merely whether they are below certain
specified significance levels, say P < 0:1; 0:05 or 0:01.

When H0 concerns a particular parameter value (U D �), a CI can be used to
derive the P -value (Efron and Tibshirani 1993: Sect. 15.4 therein). Suppose that a
test observes u D O� < 0. Then select ˛ such that the upper CI bound equals zero.
Nominally, prob.� � 0/ D ˛ (Fig. 3.5). This gives a P -value of ˛ for the test of
H0: “� < 0” against H1: “� � 0”. An example from a bivariate setting with data
fx.i/; y.i/gn

iD1 would be the comparison of means �X and �Y . If the CI at level
1 � 2˛ for the absolute value of the difference of means, j�X � �Y j, does contain
zero, then H0: “�X D �Y ” cannot be rejected against H1: “�X ¤ �Y ” at the level
p D 1�2˛ in this two-sided test. A criticism to this CI method of hypothesis testing
would be that the CIs are not necessarily constructed as if H0 were true. There
might be scale changes and F0.u/ depend on H0. However, the BCa CI provides a
correction to this effect (Efron and Tibshirani 1993: p. 216 therein). Another option
would be to construct a test statistic, U , such that F0.u/ is the same for all H0. Such
a statistic is called a pivot.
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Davison and Hinkley (1997: Chap. 4 therein) explain the construction of hypoth-
esis tests by approximating F0.u/ with OF0.u/ obtained from bootstrap resampling or
the bootstrap surrogate data approach (Sect. 3.3.3). The permutation test, developed
in the 1930s (Edgington 1986), is the bootstrap test with the difference that no
replacement is done for drawing the random samples. This book here puts more
emphasis on bootstrap CIs than on bootstrap hypothesis test because CIs contain
more quantitative information. We subscribe to Efron and Tibshirani’s (1993: p. 218
therein) view that “hypothesis tests tend to be overused and confidence intervals
underused in statistical applications.” We also agree with Yates (1951: p. 32 therein),
who assessed the influence of Fisher’s (1925) classic on the practice of “scientific
research workers” as not entirely positive because it had caused them “to pay
undue attention to the results of the tests of significance they perform on their data,
particularly data derived from experiments, and too little to the estimates of the
magnitude of the effects they are investigating”.

An illustrative example is the case where � is the anthropogenic signal proportion
in the increase of the global temperature over the past 150 years. Specifically, � can
be defined as �Twith � �Twithout, where �Twith is the temperature change calculated
using an AOGCM and taking human activities such as fossil fuel consumption
into account and �Twithout is the temperature change without the effects of human
activities (“control run”). Hasselmann (1993) and Hegerl et al. (1996) developed the
“fingerprint” approach to derive a powerful test statistic from the high-dimensional,
gridded AOGCM output and showed that H0: “� D 0” can be rejected against
H1: “� > 0”. One task was to quantify the natural temperature variability in the
temporal and spatial domains, in order to derive the null distribution. This is difficult
because the observed variability contains both natural and anthropogenic portions.
It was solved using AOGCM experiments without simulated anthropogenic forcings
and a surrogate data approach (Sect. 3.3.3), that is, several control runs with
perturbed initial conditions. It is evident that an estimate, O� , with confidence
interval, CI O�;1�2˛

, for the anthropogenic signal proportion would mean a step further
towards quantification.

3.7 Notation

Table 3.6 summarizes the notation.

3.8 Background Material

We use RMSE instead of the mean squared error (given by RMSE2
O� ). RMSE, with

the same units as the data, is a handy parameter.
We use a coefficient of variation operator (Eq. 3.4) with the absolute value of

the mean to avoid negative values; the standard formulation does not do this.
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Table 3.6 Notation

X.T / Climate variable, continuous time, process level
Xtrend.T / Trend component, continuous time, process level
Xout.T / Outlier component, continuous time, process level
S.T / Variability, continuous time
Xnoise.T / Noise component, continuous time, process level
T Continuous time

X.i/ Climate variable, discrete time, process level
Xtrend.i/ Trend component, discrete time, process level
Xout.i/ Outlier component, discrete time, process level
S.i/ Variability, discrete time
Xnoise.i/ Noise component, discrete time, process level
T .i/ Discrete time
i Index
j Index
EN.�; �2/.i/ Gaussian noise process with mean � and standard deviation � , discrete time

x.i/ Climate variable, discrete time, sample level
t .i / Discrete time, sample level
ft .i /; x.i/gn

iD1 Data or sample, discrete time series
d.i/ Time spacing, sample level
Nd Average time spacing, sample level
n Data size

� (Climate) parameter
O� Estimator of (climate) parameter, process and sample levels, estimate
O�1; O�2 Other estimators
PDF Probability density function
f . O�/ PDF of O�
F.�/ Probability distribution function
F �1.�/ Inverse probability distribution function
Femp.�/ Empirical distribution function

E.�/ Expectation operator
VAR.�/ Variance operator
g.�/ Function
�.�/ Gamma function
NINT .�/ Nearest integer function

se
O� Standard error of O�

bias
O� Bias of O�

RMSE
O� Root mean squared error of O�

CV
O� Coefficient of variation of O�

CI Confidence interval
CI

O�;1�2˛ Confidence interval for O� of level 1 � 2˛

O�l Lower bound of CI for O�
O�u Upper bound of CI for O�
�l Coverage, below lower CI bound

(continued)
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Table 3.6 (continued)

�u Coverage, above upper CI bound
� Coverage of CI
� Mean
O� Mean estimator
NX Sample mean, process level
Nx Sample mean, sample level
�

Nx Coverage of CI
Nx;1�2˛

� Standard deviation
O� Standard deviation estimator
Sn�1 Sample standard deviation, process level
sn�1 Sample standard deviation, sample level
�sn�1 Coverage of CIsn�1;1�2˛

z.ˇ/ D zˇ Percentage point at ˇ of the standard normal distribution
t�.ˇ/ Percentage point at ˇ of the t distribution function with � degrees of freedom
	2

�.ˇ/ Percentage point at ˇ of the chi-squared distribution function with � degrees
of freedom

ˇ Probability

nsim Number of (Monte Carlo) simulations
c Constant
c Counter
C Coverage error
O.�/ Order of
h�i Average

AR(1) Autoregressive process of order 1
AR(p) Autoregressive process of order p

MA(q) Moving average process of order q

ARMA(p; q) Mixed autoregressive moving average process

n0 Effective data size
n0

� Effective data size for mean estimation
n0

�2 Effective data size for variance estimation
n0


 Effective data size for correlation estimation
a AR(1) autocorrelation parameter (even spacing)
Oa AR(1) autocorrelation parameter (even spacing) estimator
Oa0 AR(1) autocorrelation parameter (even spacing) estimator, bias-corrected
� AR(1) persistence time (uneven spacing)
O� AR(1) persistence time (uneven spacing) estimator
O� 0 AR(1) persistence time (uneven spacing) estimator, bias-corrected
Na AR(1) equivalent autocorrelation parameter (uneven spacing)
ONa AR(1) equivalent autocorrelation parameter (uneven spacing) estimator
ONa0 AR(1) equivalent autocorrelation parameter (uneven spacing) estimator,

bias-corrected

t�; t�.i/ Bootstrap version of discrete time, sample level
t�b.i/ Indexed bootstrap version of discrete time, sample level

(continued)
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Table 3.6 (continued)

b D 1; : : : ; B Index
B Number of bootstrap resamples
x�; x�.i/ Bootstrap version of climate variable, discrete time, sample level
x�b.i/ Indexed bootstrap version of climate variable, discrete time, sample level

d�.i/ Bootstrap version of time spacing, sample level
ft�.i/; x�.i/gn

iD1 Bootstrap resample
O�� Bootstrap replication
O��b Indexed bootstrap replication

MBB Moving block bootstrap
ARB Autoregressive bootstrap
NBB Nonoverlapping block bootstrap
CBB Circular block bootstrap
SB Stationary bootstrap
MaBB Matched-block bootstrap
TaBB Tapered block bootstrap

l Block length
lopt Optimal block length
lsearch Block length search value

Y.i/ Variable (lopt selector after Bühlmann and Künsch (1999))
bIF .X.i// Estimated influence function
OR.h/ Function (lopt selector after Bühlmann and Künsch (1999))
OR.h/ Autocovariance estimator (Chap. 2)
O
.h/ Autocorrelation estimator (Chap. 2)
h Lag
b0; b1; b2; b3; b4; Ob Parameters (lopt selector after Bühlmann and Künsch (1999))
wSC.�/ Split-cosine window
wTH.�/ Tukey–Hanning window
z Auxiliary variable

CVd Coefficient of variation of the spacing
ˇ Percentage of drawable blocks (adaption of MBB to uneven spacing)

Oxtrend.i/ Estimated trend component, discrete time, sample level
Oxout.i/ Estimated outlier component, discrete time, sample level
OS.i/ Estimated variability, discrete time
r.i/ Residual of climate equation, discrete time (Eq. 1.2)
r�.i/ Bootstrap version of residual of climate equation, discrete time (Eq. 1.2)
.i/ White-noise residual, discrete time
Q.i/ Centred white-noise residual, discrete time
Q�.i/ Bootstrap version of centred white-noise residual, discrete time
Oa0.i/ Abbreviation (ARB algorithm)

BCa CI Bias-corrected and accelerated CI
ABC CI Approximate BCa CI
bse

O��
Estimated bootstrap standard error

(continued)
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Table 3.6 (continued)

O��.˛/ Percentage point at ˛ of the empirical distribution of O��

˛1; ˛2 Other ˛ values
Oz0 Bias correction
Oa Acceleration
#fg Number of cases
O�.j / Jackknife value of O�
H0 Null hypothesis
H1 Alternative hypothesis
U Test statistic, process level
u Test statistic, sample level (u is also denoted as false-alarm level)
U1; U2 Other test statistics, process level
F0.u/ Null distribution
OF0.u/ Estimated null distribution

P P -value, probability of a type-1 error or false-alarm probability
ˇ Probability of a type-2 error

Nxw Weighted mean
se

Nxw;ext External error of the weighted mean
se

Nxw;int Internal error of the weighted mean

M Median
OM Sample median, process level
Om Sample median, sample level
X 0.i/ Size-sorted X.i/

 Small value
O��b
l .�/ Indexed lower bootstrap CI bound over a grid of confidence levels

� Variable, determines confidence level
Op.�/ Empirical probability (bootstrap calibration)

y; p0; p1; p2; p3; p4; Parameters (z.ˇ/ approximation)
q0; q1; q2; q3; q4

u; v; w Parameters (error function approximation)
b; ı Parameters (lognormal distribution)
p; q Parameters (geometric distribution)

Z Set of whole numbers
S Set of numbers
S� Set of permuted elements of S

AOGCM Atmosphere–Ocean General Circulation Model
MIS Marine isotope stage (sometimes also loosely used for marine isotope

substage)
�T Modelled temperature change
�Twith Modelled temperature change, with fossil fuel consumption
�Twithout Modelled temperature change, without fossil fuel consumption
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The weighted mean of a sample of data points (e.g. measurements) with
known individual standard deviations (e.g. measurement errors), fx.i/; S.i/gn

iD1,
is a combined summary estimate (Birge 1932; Bevington and Robinson 1992):

Nxw D
"

nX
iD1

x.i/
ı

S.i/2

# ,"
nX

iD1

1
ı

S.i/2

#
: (3.42)

The internal error of the weighted mean is given by

se Nxw;int D
"

nX
iD1

1
ı

S.i/2

#�1=2

: (3.43)

The external error of the weighted mean is given by

se Nxw;ext D
(

nX
iD1

Œ .x.i/ � Nxw/= S.i/�2

) 1=2

�
(

.n � 1/

"
nX

iD1

1
ı

S.i/2

#) �1=2

: (3.44)

The internal error measures the variation via the average statistical error from the
individual (measurement) errors. The external error measures via the spread of the
individual data values. A deviation between internal and external errors indicates
violated assumptions; a smaller external error may point to overestimated individual
standard deviations, and a larger external error may point to hidden systematic
influences that are not included in the individual standard deviations. Researchers
should report both internal and external errors and, adopting a conservative approach
(Birge 1932), should consider the maximum of both for the interpretation of results.
The weighted mean is a special case of weighted linear least-squares regression
(Sect. 4.1.1), where the slope is prescribed as zero.

Standard deviation estimation for Gaussian white noise seems to have raised
more interest in previous decades than today, as the discussion from 1968 in
the journal The American Statistician illustrates (Cureton 1968a,b; Bolch 1968;
Markowitz 1968a,b; Jarrett 1968). For example, the choice O� D c � Sn�1, with
c given by Eq. (3.24), yields minimal RMSEO� among all � estimators for Gaussian
white noise (Goodman 1953). Or, O� D c�1 � Sn�1 yields biasO� D 0 for Gaussian
white noise; see, for example, Holtzman (1950). Today, it appears for practical
purposes rather arbitrary whether or not to scale Sn�1, or whether to use n � 1

or n. The resulting differences are likely much smaller than the effects of violations
of the Gaussian assumption.
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The median of a distribution is defined via F.M / D 0:5. (F.�/ is the distribution
function; see Eq. (3.52).) The sample median as estimator of M is on the process
level

OM D
(

X 0..n C 1/=2/ for uneven n;

0:5 � ŒX 0.n=2/ C X 0.n=2 C 1/� for even n;
(3.45)

where X 0.i/ are the size-sorted X.i/. On the sample level, Om results from
using x.i/.

A robust estimation procedure “performs well not only under ideal conditions,
the model assumptions that have been postulated, but also under departures from
the ideal” (Bickel 1988). In the context of this book, the assumptions regard
distributional shape, persistence and spacing; the performance regards an estimator
and its properties such as RMSE or CI coverage accuracy. Under ideal conditions,
robust estimation procedures can be less efficient (have higher se O� ) than non-robust

procedures. For example, for Gaussianity and n ! 1, se Om ! .�=2/1=2 � se O�
(Chu 1955). Robust estimators can require sorting operations, which makes it often
difficult to deduce their distribution. The term “robust” was coined by Box (1953)
and Box and Andersen (1955); relevant papers on robust location estimation include
Huber (1964) and Hampel (1985); for more details, see Tukey (1977) or Huber
(1981). Unfortunately, today’s usage of “robust” in the climate research literature is
rather arbitrary.

The empirical distribution function of a sample fx.i/gn
iD1 is given by

Femp.x/ D number of values � x

n
: (3.46)

Femp.x/ is the sample analogue of the theoretical distribution function, for example,
Eq. (3.52).

Bootstrap resampling was formally introduced by Efron (1979); this article
summarizes also earlier work. Singh (1981) soon recognized that the ordinary
bootstrap yields inconsistent results in a setting with serial dependence. A consistent
estimator, O� , converges in probability to � as n increases. Convergence in probability
means

lim
n!1 prob

�
j O� � � j > 

�
D 0 8  > 0: (3.47)

Textbooks on bootstrap resampling include those written by Efron and Tib-
shirani (1993), Davison and Hinkley (1997), and Good (2005). Statistical point
estimation is covered by Lehmann and Casella (1998).

The moving block bootstrap or MBB was introduced by Künsch (1989) and
Liu and Singh (1992). The MBB resamples overlapping blocks. Carlstein (1986)
had earlier suggested a method (denoted as NBB) that resamples nonoverlapping
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blocks and does not truncate the final block. This may lead to resamples with
data size less than n, that is, subsampling (see below). Hall (1985) had already
considered overlapping and nonoverlapping block methods in the context of spatial
data. Bühlmann (1994) showed that if

1. X.i/ is a stationary Gaussian process with short-range dependence
2. O� is a smooth function g .fx.i/g/ of the data (e.g. the mean is a smooth function,

but the median not) and
3. The block length, l , increases with the data size, n, within bounds, l D

O �
n1=2�

	
; 0 <  < 1=2

then the MBB produces resamples from a process that converges to the data
generating process. The MBB is then called asymptotically valid. The questions
after the validity and other properties of the MBB and other bootstrap methods
under relaxed assumptions (non-Gaussian processes, long-range dependence, etc.)
are currently extensively studied in statistical science. For long-range dependence
and the sample mean as estimator with an asymptotically Gaussian distribution,
MBB can be modified to provide a valid approximation (Lahiri 1993). For long-
range dependence and non-Gaussian limit distributions, MBB has to be changed
to subsampling one single block (Hall et al. 1998). Block length selection is less
explored for long-range dependence; intuitively, a larger length should be used than
for short-range dependence. See Berkowitz and Kilian (2000), Bühlmann (2002),
Politis (2003), Lahiri (2003) and references cited in these overviews.

Other block length selectors for the MBB and also for other nonparametric
bootstrap methods have been proposed. Hall et al. (1995a) gave an iterative method
based on subsamples and cross-validation. As regards the subsample size, consult
Carlstein et al. (1998: p. 309 therein). Although the convergence properties in
the general case are unknown, the method performed well in the Monte Carlo
simulations shown. Politis and White (2004) developed a rule that selects block
length as two times the smallest integer lag, after which the autocovariance function
(Eq. 2.18) “appears negligible”. A related rule, based on the persistence time, � , of
the AR(1) process for uneven spacing (Sect. 2.1.2), would set l D NINT

�
4 � �= Nd	

;
Mudelsee (2003) suggested this rule for correlation estimation of bivariate, unevenly
spaced time series (Chap. 7).

An MBB adaption to uneven spacing was analysed using a Monte Carlo
experiment. The following simple rule was employed. Instead of allowing all
n � l C 1 blocks to be drawn for insertion, only the 50 % blocks closest (plus
ties) in the coefficient of variation of the spacing, CVd , were made drawable. This
was applied to mean estimation of a Gaussian AR(1) process. The comparison
between this MBB adaption and the ordinary MBB was made in terms of coverage
accuracy and average CI length (Table 3.7). The experiment used the BCa CI and
employed the block length selector after Eq. (3.28) for the MBB and its adaption.
The result (Table 3.7) exhibits a reduced coverage accuracy of the MBB adaption.
The following deficit outweighed the advantage of the adaption (increased similarity
of CVd between sample and resample). Reducing the drawable blocks to 50 %
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Table 3.7 Monte Carlo experiment, moving block bootstrap adaption to uneven spacing. nsim D
47;500 random samples were generated from the Gaussian AR(1) process, fX.i/gn

iD1, after
Eq. (2.9) with � D 1. The start was set to t .1/ D 1; the time spacing, d.i/, was drawn from a
gamma distribution (Eq. 2.48) with order parameter 16, that is, a distribution with a coefficient of
variation equal to .16/�1=2 D 0:25, and subsequently scaled to Nd D 1. Bootstrap BCa CIs for the
estimated mean were constructed with B D 1999 and ˛ D 0:025. The ordinary MBB resampling
algorithm was compared with an MBB adaption to uneven spacing. The adaption made drawable
only the 50 % blocks closest (plus ties) in the coefficient of variation of the spacing. Both the MBB
and its adaption to uneven spacing yield clearly larger coverage errors than the ARB because in that
Monte Carlo experiment (Table 3.5), the prescribed AR(1) dependence matches the assumption
made by the ARB (Sect. 3.3.2)

�a
Nx hCI lengthib

Resampling method Resampling method

n MBB Adapted MBB Nominal MBB Adapted MBB

10 0.591 0.623 0.950 0.836 0.864
20 0.799 0.788 0.950 0.915 0.890
50 0.874 0.861 0.950 0.685 0.672
100 0.901 0.888 0.950 0.510 0.505
200 0.913 0.903 0.950 0.374 0.372
500 0.929 0.920 0.950 0.244 0.244
1000 0.935 0.923 0.950 0.176 0.175
aStandard error of �

Nx is nominally 0.001
bAverage value over nsim simulations

reduced, in comparison with the ordinary MBB, the variation between resamples.
This in turn reduced the variation between the replications (sample means of
resamples). This led to narrower CIs from the adapted MBB algorithm (last two
columns in Table 3.7). The CIs from the adapted MBB, finally, contained the true �

value less often than the CIs from the ordinary MBB. This means a reduced accuracy
because the empirical coverages were in this case of mean estimation always less
than the nominal value.

Other nonparametric bootstrap resampling methods than the MBB have
been proposed. The circular block bootstrap (CBB) (Politis and Romano 1992a)
“wraps” the data fx.i/gn

iD1 around a circle such that x.n/ (Algorithm 3.1) has
a successor, x.1/. The CBB then resamples overlapping blocks of length l from
this periodic structure. That overcomes the deficit of the MBB that data near the
edges, x.1/ or x.n/, have a lower probability to be resampled than data in the
centre. Also the stationary bootstrap (SB) (Politis and Romano 1994) uses the
periodic structure to ensure stationarity of the resampling process. Also the SB uses
overlapping blocks—however, the block length is not constant but geometrically
distributed. Similar selectors as for the MBB (Sect. 3.3.1) can be used for adjusting
the average block length. As regards the choice among MBB, NBB, CBB and SB,
Lahiri (1999) showed that (1) overlapping blocks (MBB, CBB, SB) are better than
nonoverlapping blocks (NBB) in terms of RMSE of estimation of variance and
related quantities like bootstrap standard error and (2) nonrandom block lengths



3.8 Background Material 97

(MBB, CBB) are, under the same criterion, at least as good as random block lengths
(SB). For estimation of the distribution function and related quantities like CI points,
less is known, but there are indications that also here MBB and CBB perform better
(Lahiri 2003: Chap. 5 therein). Some recent developments are the following. The
matched-block bootstrap (MaBB) (Carlstein et al. 1998) introduces dependence
between blocks to reduce bias in the bootstrap variance by imposing probability
rules. One rule prefers resampling blocks such that block values at the endpoints,
where the blocks are concatenated, show a higher agreement than under the MBB.
The tapered block bootstrap (TaBB) (Paparoditis and Politis 2001) tapers (weights)
data by means of a function before concatenating blocks. The idea is to give reduced
weight to data near the block endpoints. This could make the TaBB have lower
estimation bias than MBB or CBB (Paparoditis and Politis 2001). Advanced block
bootstrap methods could be better than MBB for analysing equidistant climate
time series, especially in the case of the MaBB, which shows good theoretical and
simulation results when X.i/ is an AR(p) process (Carlstein et al. 1998). For uneven
spacing, it could be more important to enhance MBB by matching blocks in terms of
their spacing structure. This point deserves further study by means of Monte Carlo
experiments. Subsampling refers to a procedure where the bootstrap resample size
is less than the data size. NBB can lead to subsampling. Also the jackknife (Efron
1979), where l D n � 1 and one block only is resampled, is a subsampling variant.
A detailed account is given by Politis et al. (1999). We finally mention the wild
bootstrap, which attempts to reconstruct the distribution of a residual r.i/ (Eq. 3.29)
by means of a two-point distribution (Wu 1986; Härdle and Marron 1991). The
adaption of the wild bootstrap to nonparametric autoregression by Neumann and
Kreiss (1998) has not yet been extended to uneven spacing, however.

The autoregressive bootstrap or ARB has been developed in the early 1980s;
relevant early papers include Freedman and Peters (1984), Peters and Freedman
(1984), Efron and Tibshirani (1986), and Findley (1986). Then Bose (1988) showed
second-order correctness of the ARB method for estimating stationary AR(p)
models—not necessarily Gaussian—and even spacing. Validity of the ARB for
nonstationary AR(p) models (e.g. random walk or unit-root processes) requires
subsampling, that is, drawing less than n resamples at Step 12 of the ARB
(Algorithm 3.4); see Lahiri (2003: Chap. 8 therein). The ARB was extended to
stationary ARMA(p; q) models with even spacing by Kreiss and Franke (1992). It
seems difficult to generate theoretical knowledge about ARB performance for time
series models with uneven spacing.

Other parametric bootstrap resampling methods than the ARB have been
proposed. The sieve bootstrap (Kreiss 1992; Bühlmann 1997) assumes an AR(1)
process. Because of the high number of terms, this model is highly flexible and can
approximate other persistence models than the AR(p) with p < 1. Therefore, the
sieve bootstrap could also be called a semi-parametric bootstrap method. The deficit
of this method regarding application to climate time series is that it is restricted
to even spacing. The parametric bootstrap for Gaussian ARFIMA processes was
shown to yield similar asymptotic coverage errors of CIs for covariance estimation
as in the case of independent processes (Andrews and Lieberman 2002).
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The frequency-domain bootstrap is explained in Chap. 5.
The surrogate data approach comes from dynamical systems theory in physics

(Theiler et al. 1992). Contrary to the assertion in the review on surrogate time series
by Schreiber and Schmitz (2000: p. 352 therein), this approach is not the common
choice in the bootstrap literature. The same as the surrogate data approach is the
so-called Monte Carlo approach (Press et al. 1992: Sect. 15.6 therein).

Bootstrap CIs, their construction and statistical properties are reviewed in
the above-mentioned textbooks and by DiCiccio and Efron (1996) and Carpenter
and Bithell (2000). The challenging question “why not replace [CIs] with more
informative tools?” has been raised by Hall and Martin (1996: p. 213 therein). This
is based on their criticism that “the process of setting confidence intervals merely
picks two points off a bootstrap histogram, ignoring much relevant information
about shape and other important features.” It has yet to be seen whether graphical
tools such as those described by Hall and Martin (1996) will be accepted by the
scientific communities. The percentile CI was proposed by Efron (1979), the BCa
CI by Efron (1987). A numerical approximation to the BCa interval, called ABC
interval, was introduced by DiCiccio and Efron (1992). See Sect. 3.9 on numerical
issues concerning construction of BCa intervals. Götze and Künsch (1996) show the
second-order correctness of BCa CIs for various estimators and the MBB for serially
dependent processes. Hall (1988) determined theoretical coverage accuracies of
various bootstrap CI types for estimators that are smooth functions of the data.
Bootstrap-t CIs are formed using the standard error, se�

O� , of a single bootstrap

replication (Efron and Tibshirani 1993). For simple estimators like O� D NX , plug-
in estimates can be used instead of se�

O� . However, for more complex estimators,
no plug-in estimates are at hand. A second bootstrap loop (bootstrapping from
bootstrap samples) had to be invoked, which would increase computing costs.

Bootstrap calibration can strongly increase CI coverage accuracy. Consider that
a single CI point is sought, say, the lower bound, O�l, for an estimate, O� . Let the bound
be calculated for each bootstrap sample, b D 1; : : : ; B , and over a grid of confidence
levels, for example,

O��b
l .�/; � D 0:01; : : : ; 0:99: (3.48)

For each �, compute

Op.�/ D
#

n O� � O��b
l .�/

o

B
: (3.49)

Finally, solve Op.�/ D ˛ for �. In case a two-sided, equi-tailed CI is sought, the
calibration curve Op.�/ D 1 � 2˛, where

Op.�/ D
#

n O��b
l .�/ < O� < O��b

u .�/
o

B
; (3.50)
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is solved for �. To calculate the CI points for a bootstrap sample requires to
perform a second bootstrap–estimation loop. Analysing second-loop bootstrap
methods like calibration or bootstrap-t interval construction may require enor-
mous computing costs. Relevant papers on calibrated bootstrap CIs include Hall
(1986), Loh (1987, 1991), Hall and Martin (1988), Martin (1990), and Booth and
Hall (1994). Regarding the context of resampling data from serially dependent
processes, Choi and Hall (2000) report that the sieve or AR(1) bootstrap has a
significantly better performance than blocking methods in CI calibration. However,
the sieve bootstrap is not applicable to unevenly spaced time series. This book
presents a Monte Carlo experiment on calibrated bootstrap CIs for correlation
estimation (Chap. 7), with satisfying coverage performance despite the used MBB
resampling.

Bootstrap hypothesis tests are detailed by Davison and Hinkley (1997: Chap. 4
therein); see also Efron and Tibshirani (1993: Chap. 15 therein) and Lehmann and
Romano (2005: Chap. 15 therein). The relation between making a test statistic
pivotal and bootstrap CI calibration is described by Beran (1987, 1988). Guidelines
for bootstrap hypothesis testing are provided by Hall and Wilson (1991). An
extension of MBB hypothesis testing of the mean from univariate to multivari-
ate time series has been presented by Wilks (1997). The dimensionality may
be rather high, and the method may therefore be applicable to time-dependent
climate fields such as gridded temperature output from a mathematical climate
model. Beersma and Buishand (1999) compare variances of bivariate time series
using jackknife resampling. They find significantly higher variability of future
northern European precipitation amounts in the computer simulation with elevated
greenhouse gas concentrations than in the simulation without (control run). Huybers
and Wunsch (2005) test the hypothesis that Earth’s obliquity variations influence
glacial terminations during the late Pleistocene using parametric resampling of
the timescale (Sect. 4.1.7). Huybers (2011) extends this work to Earth’s precession
variations.

Multiple hypothesis tests may be performed when analysing a hypothesis that
consists of several sub-hypotheses. This situation arises in spectrum estimation
(Chap. 5), where a range of frequencies is examined. The traditional method is
adjusting the P -values of the individual tests to yield the desired overall P -value.
A recent paper (Storey 2007: p. 347 therein) states “that one can improve the overall
performance of multiple significance tests by borrowing information across all the
tests when assessing the relative significance of each one, rather than calculating
P -values for each test individually”.

The anthropogenic warming signal has stimulated much work applying var-
ious types of hypothesis tests using measured and AOGCM temperature data.
More details on the fingerprint approach are contained in the following papers:
Hasselmann (1997), Hegerl and North (1997) and Hegerl et al. (1997). Correlation
approaches to detect the anthropogenic warming signal are described by Folland
et al. (1998) and Wigley et al. (2000). A recent overview is given by Barnett et al.
(2005).



100 3 Bootstrap Confidence Intervals

3.9 Technical Issues

The standard normal (Gaussian) distribution has the following PDF:

f .x/ D .2�/�1=2 exp
��x2=2

	
: (3.51)

Figure 3.1 shows the distributional shape. The distribution function,

F.x/ D
xZ

�1
f .x0/dx0; (3.52)

cannot be expressed in closed analytical form. We use

F.x/ D 1 � 0:5 erfcc
�
x

.p
2

�
; (3.53)

where for x � 0 the complementary error function, erfcc, is approximated (Press
et al. 1992: Sect. 6.2 therein) via

erfcc.u/ � v exp.�w2 � 1:26551223 C v .1:00002368 C v .0:37409196

C v .0:09678418 C v .�0:18628806 C v .0:27886807

C v .�1:13520398 C v .1:48851587

C v .�0:82215223 C v 0:17087277/////////; (3.54)

v D 1=.1 C w=2/; (3.55)

w D juj: (3.56)

For x < 0, use the symmetry, F.�x/ D 1 � F.x/. For all x, this approximation has
a relative error of less than 1:2�10�7 (Press et al. 1992). The inverse function of F.x/

defines the percentage point on the x axis, z.ˇ/, with 0 � ˇ � 1. Approximations
are used for calculating z.ˇ/; for the Monte Carlo simulation experiments in this
book, the formula given by Odeh and Evans (1974) is employed:

z.ˇ/ ' �y � fŒ.y � p4 C p3/ � y C p2� � y C p1g � y C p0

fŒ.y � q4 C q3/ � y C q2� � y C q1g � y C q0

; 0 < ˇ < 0:5;

(3.57)
where

y D 

ln

�
ˇ�2

	�1=2
(3.58)
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and

p0 D �0:322232431088; p1 D �1:0;

p2 D �0:342242088547; p3 D �0:0204231210245;

p4 D �0:453642210148 � 10�4; q0 D 0:0993484626060; (3.59)

q1 D 0:588581570495; q2 D 0:531103462366;

q3 D 0:103537752850; q4 D 0:38560700634 � 10�2:

If 0:5 < ˇ < 1, then z.ˇ/ D �z.1 � ˇ/. This approximation produces, for
example, the values z.1 � 0:025/ � 1:959964 and z.1 � 0:05/ � 1:644854. For
10�20 � ˇ � 1 � 10�20, Eq. (3.57) yields an approximation that is accurate to
seven decimal places (Odeh and Evans 1974). The percentage point of the standard
normal distribution can be used to calculate approximate percentage points of other
distributions such as Student’s t and chi-squared (see the following paragraphs).
See the following for more details on the Gaussian distribution: Johnson et al. (1994:
Chap. 13 therein) and Patel and Read (1996).

Student’s t distribution with � degrees of freedom has the following PDF:

f .x/ D �..� C 1/=2/

.��/1=2 �.�=2/

�
1 C x2 =�

	�.�C1/=2
; � D 1; 2; : : : : (3.60)

Approximations have to be used for calculating the percentage point, t�.ˇ/. For
the Monte Carlo simulation experiments in this book, the following formula
(Abramowitz and Stegun 1965: p. 949 therein) is employed:

t�.ˇ/ ' zˇ C z3
ˇ C zˇ

4�
C 5z5

ˇ C 16z3
ˇ C 3zˇ

96�2

C 3z7
ˇ C 19z5

ˇ C 17z3
ˇ � 15zˇ

384�3

C 79z9
ˇ C 776z7

ˇ C 1482z5
ˇ � 1920z3

ˇ � 945zˇ

92,160�4
; (3.61)

where zˇ D z.ˇ/ is the percentage point of the standard normal distribution. For
� � 10 and 0:0025 � ˇ � 0:9975, this approximation has a relative accuracy of
less than 0.015 % (own determination using Johnson et al. 1995: Table 28.7 therein).
See Johnson et al. (1995: Chap. 28 therein) for more details on the t distribution.

The chi-squared distribution with � degrees of freedom has the following PDF:

f .x/ D exp.�x=2/x�=2�1
ı


2�=2 � �.�=2/
�
; x � 0; � > 0: (3.62)
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It has mean � and variance 2�. Approximations are used for calculating the
percentage point, 	2

�.ˇ/. For the Monte Carlo simulation experiments in this book,
the following formula (Goldstein 1973) is employed:

	2
�.ˇ/ ' �

(
1 � 2

9�
C 4z4

ˇ C 16z2
ˇ � 28

1215�2

C 8z6
ˇ C 720z4

ˇ C 3216z2
ˇ C 2904

229,635�3

C .2=�/1=2

�
zˇ

3
� z3

ˇ � 3zˇ

162�
� 3z5

ˇ C 40z3
ˇ C 45zˇ

5832�2

C 301z7
ˇ � 1519z5

ˇ � 32,769z3
ˇ � 79,349zˇ

7,873,200�3

�) 3

; (3.63)

where zˇ D z.ˇ/ is the percentage point of the standard normal distribution. For
� � 10 and 0:001 � ˇ � 0:999, this approximation has a relative accuracy of less
than 0.05 % (Zar 1978). See Johnson et al. (1994: Chap. 18 therein) for more details
on the chi-squared distribution.

The lognormal distribution can be defined as follows. If ln ŒX.i/� is distributed
as N.�; �2/, then X.i/ has a lognormal distribution with parameters � and �

(shape). It has the PDF

f .x/ D .2�/�1=2 � ��1 � x�1 � exp
n
� Œln.x=b/�2

ı�
2�2

	o
; x > 0; (3.64)

where b D exp.�/. The lognormal has expectation exp.� C �2=2/ and vari-
ance

˚
exp.2�/ � exp.�2/ � Œexp.�2/ � 1�

�
. Other definitions with an additional shift

parameter (.X.i/ � ı/ instead of X.i/) exist. See Aitchison and Brown (1957),
Antle (1985), Crow and Shimizu (1988) or Johnson et al. (1994: Chap. 14 therein)
for more details on the lognormal distribution.

The geometric distribution is a discrete distribution with

prob .X D x/ D p � qx; x D 0; 1; 2; : : : ; (3.65)

where q D 1 � p and 0 < p < 1. It has expectation q=p. See Johnson et al. (1993:
Chap. 5 therein) for more details on the geometric distribution.

BCa CI construction has numerical pitfalls. Regarding the bias correction, Oz0,
in the case of a discretely distributed, unsmooth estimator, O� , own experiments with
median estimation and x.i/ 2 Z (whole numbers) have shown that a higher CI
accuracy is achieved when using instead of Eq. (3.37) the following formula:

Oz0 D F �1

0
@#

n O��b < O�
o

B
C

#
n O��b D O�

o

2B

1
A : (3.66)
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Because only a finite number, B , of O�� values are computed, O��.˛1/ and O��.˛2/

are calculated by interpolation. If now B is too small, the acceleration, Oa, too
large and ˛ too small, then ˛1 may become too small or ˛2 too large to carry
out the interpolation. The choice of values for this book (B D 2000; ˛ � 0:025),
however, prohibits this problem. See Efron and Tibshirani (1993: Sect. 14.7 therein)
and Davison and Hinkley (1997: Sect. 5.3.2 therein) on the interpolation pitfall, and
further Andrews and Buchinsky (2000, 2002) on the choice of B . Refer to Polansky
(1999) on the finite sample bounds on coverage for percentile-based CIs. As regards
estimation of the acceleration, possible alternatives to Eq. (3.38) are analysed by
Frangos and Schucany (1990).

The balanced bootstrap (Davison et al. 1986) is a bootstrap variant where over
all n�B resampling operations, each of the values fx.i/gn

iD1 is prescribed to be drawn
equally often (B times). This can increase the accuracy of bootstrap estimates or,
instead, allow to reduce B with the same accuracy as when using the “unbalanced”
bootstrap with a higher number of resamples. In the case of a process without serial
dependence, a simple algorithm for a balanced version of the ordinary bootstrap is
as follows (Davison and Hinkley 1997: Sect. 9.2.1 therein). Step 1. Concatenate B

copies of fx.i/gn
iD1 into a single set S of size n � B . Step 2. Permute the elements of

S at random and call this set S�. Step 3. For b D 1; : : : ; B , take successive sets of n

elements of S� as balanced resamples fx�b.i/gn
iD1: In the case of serial dependence,

a balanced version of the MBB would permute blocks of elements of S. A reduced
number of resamples, B , means reduced computing costs for the balanced bootstrap.
How large this gain is depends on the type of estimation. The gain may not be large
for quantile estimation (Davison and Hinkley 1997), which is required in BCa CI
construction (Sect. 3.4.4).

2SAMPLES (Mudelsee and Alkio 2007) is a Fortran 90 program for performing
comparisons of location measures (mean and median) and variability measures
(standard deviation and MAD) between two samples. The difference measures
are estimated with BCa CI. It is freely available from the web site for this book
(9 November 2013).

boot is an R package implementing the functions (and datasets) from the book
by Davison and Hinkley (1997). It is available from the site http://cran.r-project.org/
web/packages/boot/ (9 November 2013).

Resample is a Windows software that is freely available for download on http://
woodm.myweb.port.ac.uk/nms/resample.htm (9 November 2013).

Good (2005) is a reference where routines for bootstrap resampling, BCa and
bootstrap-t CI construction can be found. Also two- and multi-sample comparisons
are included. The following languages/environments are supported: C++, EViews,
Excel, GAUSS, Matlab, R, Resampling Stats, SAS, S-Plus and Stata.

A Matlab/R computer code for practical implementation of the block length
selector of Politis and White (2004) can be downloaded from http://econ.duke.edu/
�ap172/ (9 November 2013).

http://cran.r-project.org/web/packages/boot/
http://cran.r-project.org/web/packages/boot/
http://woodm.myweb.port.ac.uk/nms/resample.htm
http://woodm.myweb.port.ac.uk/nms/resample.htm
http://econ.duke.edu/~ap172/
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Resampling Stats is a resampling software purchasable as standalone, Excel and
Matlab versions from http://www.resample.com (9 November 2013).

Shazam is a commercial econometrics software that includes bootstrap resam-
pling (http://shazam.econ.ubc.ca, 9 November 2013).

SPSS is a tool that includes bootstrap resampling and CI construction (http://
www-01.ibm.com/software/analytics/spss/products/statistics/, 9 November 2013).

http://www.resample.com
http://shazam.econ.ubc.ca
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
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