Chapter 3
Design Patterns: Applications and Open Issues

K. Lano

Abstract The field of software design patterns has grown extensively since the first
work on patterns in the 1990s. Design patterns have proved useful as encodings of
good design practice and expert knowledge in a wide variety of domains, from enter-
prise information systems to software security. We look at some recent developments
in the application of patterns, and identify some remaining theoretical and practical
issues with the use of patterns.

1 Introduction

The concept of software design patterns originated in the late 1980s and early 1990s,
based on analogy with the architectural design patterns which had been formulated
by Christopher Alexander in his series of books [1, 2].

The key text introducing software design patterns to software engineers and devel-
opers was “Design Patterns” by Gamma, Helm, Vlissides, Johnson, published in
1994 [7]. This introduced 23 patterns, such as Observer, Visitor, Singleton, Iterator,
Template Method, classified into the three general categories of Creational, Structural
and Behavioural patterns. Subsequently there has been widespread identification and
application of patterns in a wide range of software domains.

Classic design patterns include:

— Template method, Observer, Strategy (Behavioural)
— Facade, Adapter (Structural)
— Singleton, Builder (Creational).

A design pattern expresses a characteristic solution to a common design problem:
the pattern describes classes, objects, methods and behaviour which constitute the

K. Lano (X))
Department of Informatics, King’s College London, London, UK
e-mail: kevin.lano@kcl.ac.uk

C. Blackwell and H. Zhu (eds.), Cyberpatterns, DOI: 10.1007/978-3-319-04447-7_3, 37
© Springer International Publishing Switzerland 2014

38 K. Lano

Subject Observer
observers
attach(Observer) update()
detach(Observer)
notify()
) for all 0 in observers
| do
o.update()
ConcreteObserver
subject observerState

ConcreteSubject update()
subjectState: T

getState(): T return subjectState
setState(val: T) _ |

subjectState = val;
notify();

observerState =
subject.getState()

Fig.1 Observer pattern

solution. The solution is intended to be an improvement on the system without the
pattern: more flexible and adaptable, more modular, easier to understand, etc.

For example, the Observer pattern describes a way to organise a system which
involves a data source (of arbitrary complexity) and multiple views or representations
of that data. The pattern separates out the data and views into independent hierarchies
of classes, connected by an association which represents the observation relationship
(Fig.1).

The pattern improves the modularity of the system by separating the system
code into two distinct components which have clearly distinguished responsibilities:
the data component (Subject) is purely concerned with internal data management,
whilst the view component (Observer) is purely concerned with presentation of the
data. The pattern improves the adaptability and extensibility of the system by using
inheritance: new forms of data and new kinds of view can be added to the system
without changing the observer mechanism, provided that the data and view classes
conform to the Subject and Observer interfaces. On the other hand, the pattern has
potentially negative implications for efficiency, because all interaction between the
data and views has to take place via method calls. This is a common problem with
many design patterns: improvements in the logical structure of a system may reduce
efficiency. However it is generally considered that the gains are more significant
for software quality—and therefore long-term reductions in software maintenance
costs—than the loss of optimal performance.

3 Design Patterns 39

Fig. 2 Front controller Client tier
pattern

Client
component

request

Presentation tier

Controller
Delegation, via forwarding

[T

Patterns are distinguished from idioms: small-scale repetitive structures of code,
such as the standard for-loop header in C. They are also distinguished from refactor-
ings of programs or models: small-scale and incremental structural transformations
of systems, eg.: pulling up attributes from a subclass to a superclass. However, in some
cases refactorings can be used as steps by which a pattern can be introduced [10].

2 Specialised Design Patterns

Following the identification and formulation of a large collection of general purpose
software patterns, work began on the identification of patterns specialised for partic-
ular domains. For example, in [13], a collection of patterns aimed at improving the
design of enterprise information systems (EIS) is described. The patterns serve an
educational purpose, transferring some expertise in this complex domain from expe-
rienced developers to those unfamiliar with its particular problems and solutions.
EIS patterns include Front Controller (Fig. 2), Intercepting Filter, Value Object, Data
Access Object, etc.

These patterns are in some cases specialisations of classical patterns (e.g.: Inter-
cepting Filter can be regarded as a special case of Chain of Responsibility, and Front
Controller as a version of Facade), or they may be specific to the domain (e.g.: Value
Object).

Likewise, in the domain of service-oriented architectures (SOA), patterns for
services, such as Broker, Router, etc. have been formulated, and for security concerns
there are patterns such as Access Proxy [9]. Patterns have also been recognised at
the specification and analysis stages, e.g.: the Scenario pattern of [5]. More recently,
patterns have been defined for model transformations, such as Auxiliary Metamodel,
Phased Construction, etc. [15].

40 K. Lano

3 Design Patterns in Model-Driven Development

Model-driven development (MDD) emphasises the use of models such as UML class
diagrams and state machines as the key documents of a software system develop-
ment, and aims to raise the level of abstraction in system development away from
platform-specific and programming language-specific coding towards business-level
specifications and platform-independent designs. Design patterns certainly have an
important role in model-driven development, as a platform-independent technique
which can be applied to specifications and analysis models as well as to language-
independent designs.

A key element of model-driven development are model transformations, which
are used to map models from one level of abstraction to another (e.g.: generation of a
design from a specification, or of a program in a particular language from a design),
or to restructure, filter or combine models.

There is a two-way relationship between design patterns and model transforma-
tions: a design pattern can be seen as a kind of model or program transformation,
defining how a system can be rewritten from an initial structure that is deficient or of
poor quality in some sense, to an improved version. Such a transformation is termed
a restructuring or refactoring transformation. On the other hand, transformations
themselves can be the subject of patterns.

In the first case, patterns have been used in semi-automated MDD to guide devel-
opment by identifying good design choices [11]. Patterns have also been incorporated
into programming languages and frameworks, such as the use of Iterator within Java,
C# and C++ libraries, and of Observer/Model-View-Controller in internet application
frameworks.

Model transformation patterns, together with quality measures of transformations,
have been used to guide model transformation development, eg., to define modular
designs, and to optimise transformations [15].

An example of a model transformation design pattern is the Phased Construction
pattern of [15], shown in Fig. 3.

This pattern defines a particular style of organisation for a transformation speci-
fication, where successive layers of the structure of the target model are constructed
by successive rules of the transformation. This contrasts with a recursive style of
specification in which a rule may carry out the mapping of all layers of structure
navigable from a particular object. The phased construction pattern improves the
modularity of the specification.

4 Design Pattern Formalisation and Verification

Design patterns are usually described using text, diagrams such as UML class or
interaction diagrams, and code. A standard form of pattern descriptions has evolved
from the Gamma et al. book onwards, and usually involves a description of the

3 Design Patterns

Fig. 3 Phased construction
pattern

_{LPost} R

41

{SCond} <<transforms to>> {TCond}
{GPost}
* |sr e Tt
SSub TSub

<<transforms to>>

problem that the pattern is designed to solve, positive and negative indicators for
using the pattern, and a description of how to introduce the pattern, together with a
rationale for using it.

While such informal descriptions are useful to communicate the concepts and
purpose of the pattern, they are insufficient to support automated selection and appli-
cation of the pattern, or to support verification that the introduction of the pattern
preserves desirable properties of the system, or that it actually improves some mea-
sure of quality such as modularity.

Approaches for pattern formalisation include [3, 4], which characterises pattern
instances using a first-order predicate over the UML metamodel. For example, to
specify that there is an instance of Template Method in a system, the predicate
asserts that there is an abstract class in the set classes of classes of the system, that
it has a finalised (leaf) template method which calls non-leaf operations, etc. This
approach enables checking of a model for conformance to a pattern, but does not
represent the process of introducing a pattern as a design improvement. A related
approach using metamodelling to represent patterns and their applications is [11].
In [12] we characterise design patterns as model transformations, based on a modal
logic semantics for UML.

Patterns are difficult to formalise because they often have considerable variability:
the Template Method pattern for example could apply to any number of classes in
the initial system model which have the same operation, and the factoring out of
common code from these classes could be carried out in many alternative ways.

However, despite these limitations, we consider that it is of benefit to try to for-
malise patterns as far as possible, and to do so in a manner which supports their
automated selection and application, and which supports their verification. We sug-
gest that:

42 K. Lano

A A
op()
[] |]
B c B C
op() D1 op() D2 op() D1 op() D2

Fig. 4 Pull-up method refactoring

1. Measures of system quality should be defined by which pattern applications can be
selected: values of measures which indicate a poor quality aspect in a system will
identify that particular patterns should be applied to improve this measure; if there
are several possible alternative pattern applications, then one which maximally
improves the measure should be chosen.

2. Pattern applications should be formalised as model transformations, usually as
update-in-place restructuring transformations.

This approach models both the purpose of a design pattern (improvement in particular
quality measures) and the process of introducing a pattern, as a model transformation.
A range of quality measures could be defined, which characterise the modularity,
complexity, degree of code duplication, data dependency and operation dependency
structure of the system.
For example, two measures of a design-level UML class diagram which could be
formulated are:

1. The number of classes A which have two or more subclasses, and where all
these subclasses have a common operation op(T'1) : T2 (possibly with different
definitions, but with the same signature), but A does not have this operation
defined.

2. The sum of all syntactic complexities of method definitions, e.g.: the sum of
the number of features, operators and statements in their code, if expressed in a
pseudocode programming language.

Non-zero values for measure 1 will identify cases where commonalities of subclasses
have been incompletely recognised (e.g.: the LHS of Fig.4), and indicate the appli-
cation of the ‘Pull up method’ refactoring [6], to produce a system with an improved
measure (RHS of Fig.4).

If the definitions D1 and D2 have no common subcode, then measure 2 cannot
be improved. However, if they share some small segment DO of code, then a single
definition of this code can be factored out and placed in A, reducing measure 2 by
complexity(DO0), in the case of two subclasses, and by (n — 1) x complexity(DO0) if
there are n subclasses with the duplicated code. Finally, if the majority of the code
of D1 and D2 is in common, then the factorisation can be inverted, which leads

3 Design Patterns 43

A op() D
hook()
| | | 1
_B c B C
op() D1 op() b2 hook() H1 hook() H2

Fig. 5 Template method pattern application

to application of the Template Method pattern (Fig.5), and a reduction in overall
complexity of complexity(D) or (n — 1) % complexity(D).

The introduction of a pattern can be considered as the application of a transfor-
mation rule, of the general form:

if pattern applicable to model part —

rewrite model part according to pattern

In the case of Template Method, the pattern is recognised as applicable if there is a
situation shown on the LHS of Fig.5 where the common parts of D1 and D2 have
a larger complexity than the distinct parts. The application of the pattern should
factor out the maximum common part D of D1 and D2 in order to maximise the
reduction in measure 2. Likewise, Front Controller should be introduced if there
is duplicated request checking code in two or more presentation tier request target
components. The duplicated code should be factored out of the maximal number of
such components possible.

In [15] we give a set of measures and design patterns for transformation specifi-
cations, and give rules for selection of patterns based on the measures. For example,
an alternation of quantifiers value greater than 0 in a constraint conclusion suggests
applying the “Phased construction” pattern to the constraint, in order to remove this
alternation, which complicates analysis, adaption and verification of the constraint.
Similarly, if an expression of more than a given critical complexity occurs in two or
more separate places in a specification, it should be factored out as a called operation:
the larger the expression complexity and the higher the number of occurrences, the
higher is the priority for application of this refactoring.

44 K. Lano

4.1 Pattern Verification

If we consider pattern introduction as a form of model transformation, then definitions
of transformation correctness can be adopted for design patterns. The following
correctness definitions are adapted from [14]:

Semantic preservation of ¢: if the original system m satisfies a property ¢ so does
the transformed model n:

mEg = nEge

For example, factoring out code of an operation by applying Template Method does
not change the pre-post semantics of the operation.

Syntactic correctness: the transformed model satisfies necessary restrictions of the
modelling/programming language. For example, that Template Method cannot intro-
duce name conflicts of features into classes: in order to ensure this, names of hook
methods should be chosen appropriately to avoid any existing method names.

Termination: that an automated series of pattern applications will eventually
terminate.

In fact the use of measures will help to ensure termination: if each pattern applica-
tion definitely reduces one measure and does not increase any other, then eventually
the process will terminate with no pattern being applicable (assuming that measure
values are always non-negative integers).

Confluence is also important in some cases, i.e.: a guarantee of the uniqueness of
models resulting from a transformation process is required. One technique to ensure
this is to show that the quality measures attain their minimal (best) values in an
essentually unique situation, amongst those which can be reached by applying the
rules. This holds for Pull up Methods and measure 1, for example.

5 Conclusions

Patterns have been a very productive area of research in software engineering, with
many practical applications and benefits. The use of patterns is consistent with Model-
driven development in raising the level of abstraction in software development from
low-level coding to the level of concepts and ideas.

Itis still an open-ended issue of how best to describe and formalise design patterns,
and how to automate/semi-automate the selection and application of patterns. In
addition, the general verification of the correctness of pattern applications is not
solved.

In this chapter we have surveyed the research into these issues, and we have pro-
posed that design patterns should be treated as model transformations for the purpose

3 Design Patterns 45

of formalisation and verification, and that measures should be defined to support the
detection and selection of patterns, and to provide evidence of improvements obtained
by introducing a pattern.

References

10.
11.

12.

13.

14.

15.

16.

. Alexander C. A Pattern language: towns, buildings, construction. New York: Oxford University

Press; 1977.

Alexander C. The timeless way of building, New York: Oxford University Press; 1979.
Bayley I, Zhu H. Formalising design patterns in predicate logic, SEFM ’07. Taiwan: IEEE
Press; 2007.

Bayley I, Zhu H. Specifying behavioural features of design patterns in first order logic COMP-
SAC ’08. Washington: IEEE Press; 2008.

Fowler M. Analysis patterns: reusable object models. Boston: Addison-Wesley; 1997.
Fowler M. Refactoring: improving the design of existing code. Boston: Addison-Wesley; 2000.
Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: Elements of reusable object-
oriented software. Reading: Addison-Wesley; 1994.

Grand M. Patterns in Java. New York: John Wiley & Sons, Inc; 1998.

Hafiz M. Security pattern catalog. http://www.munawarhafiz.com/securitypatterncatalog/
index.php 2013.

Kerievsky J. Refactoring to patterns. Reading: Addison Wesley; 2004.

Kim D. Software quality improvement via pattern-based model refactoring, 11th IEEE high
assurance systems engineering symposium. Washington: IEEE Press; 2008.

Lano K. Formalising design patterns as model transformations. In: Taibi T. editor. Design
pattern formalisation techniques. Hershey, PA: IGI Press; 2007.

Lano K. Model-driven software development with UML and Java. London: Cengage Learning;
2009.

Lano K, Kolahdouz-Rahimi S, Clark T. Comparing verification techniques for model transfor-
mations. MODELS: Modevva workshop; 2012.

Lano K. Kolahdouz-Rahimi S. Optimising model-transformations using design patterns. MOD-
ELSWARD: 2013.

Massoni T, Gheyi R., Borba P. Formal refactoring for UML class diagrams, 19th Brazilian
symposium on software engineering. Uberlandia: 2005.

http://www.munawarhafiz.com/securitypatterncatalog/index.php
http://www.munawarhafiz.com/securitypatterncatalog/index.php

	3 Design Patterns: Applications and Open Issues
	1 Introduction
	2 Specialised Design Patterns
	3 Design Patterns in Model-Driven Development
	4 Design Pattern Formalisation and Verification
	4.1 Pattern Verification

	5 Conclusions
	References

