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    Abstract     Fluorinated isoquinolines attract widespread attention as important 
 components of pharmaceuticals and materials, because of their unique characteristics 
such as biological activities and light-emitting properties. Thus, a number of fl uori-
nated isoquinolines have been synthesized. This chapter covers the syntheses, properties, 
and applications of ring-fl uorinated isoquinolines starting from earlier studies, as well 
as the syntheses of pyridine-ring-trifl uoromethylated isoquinolines. Modern syn-
thetic methodologies for fl uorinated isoquinolines have been greatly developed during 
last decade. These approaches are presented according to the classifi cation based on the 
standpoint of organic synthesis: (i) the direct introduction of fl uorine (or CF 3  group) 
onto the isoquinoline ring, (ii) the construction of a fused pyridine ring via cyclization 
of a precursor bearing a pre-fl uorinated benzene ring, and (iii) the simultaneous instal-
lation of an isoquinoline framework and a fl uorine substituent. This chapter also 
presents a discussion of the application of fl uorinated isoquinoline derivatives.  
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1         Synergy of Isoquinoline and Fluorine 

 Isoquinoline, which is a structural isomer of quinoline, possesses a nitrogen- 
containing heteroaromatics and benzene-ring-fused system. Isoquinolines are 
widely found in naturally occurring alkaloids [ 1 – 3 ]. Isoquinolines are essential in 
pharmaceutical, agricultural, and materials sciences because they exhibit various 
bioactivities and useful physical properties. Among isoquinolines, some tetrahy-
droisoquinoline derivatives exhibit severe neurotoxicity, which leads to Parkinson’s 
disease [ 4 ]. In contrast, a number of isoquinoline-related medicines are fl ourishing 
in worldwide pharmaceutical markets. For example, papaverine hydrochloride, 
morphine, and berberine tannate are prescribed as an antispasmodic drug, a pain-
killer, and an antidiarrheal, respectively [ 5 ]. 

 In general, supply of fl uorine-containing heterocycles has been mainly expanded 
for pharmaceutical uses, because electrostatic and steric effects that result from the 
introduction of fl uorine atoms often cause unique bioactivities [ 6 – 8 ]. Fluorinated 
isoquinolines, i.e., hybrid compounds with an isoquinoline framework and a fl uo-
rine substituent, have thus attracted a great deal of attention over the past several 
decades. A number of fl uorinated isoquinolines have been synthesized because of 
the remarkable progress in synthetic methodologies for fl uorinated heterocycles. 
Substantial enhancements of bioactivities have been observed with respect to some 
fl uorinated isoquinoline derivatives in comparison with the activities of the corre-
sponding fl uorine-free compounds. Furthermore, because other isoquinoline-related 
compounds have exhibited unique light-emitting properties, such compounds are 
expected to serve as electronic materials. 

 Some results of previous studies on perfl uoroalkylated isoquinolines were 
recently summarized by Petrov [ 7 ]. This chapter focuses on the syntheses, prop-
erties, and applications of ring-fl uorinated isoquinolines (limited to compounds 
that retain the aromatic isoquinoline scaffold), starting from the historical back-
ground of earlier studies. Additionally, an overview of the syntheses of pyridine-
ring- trifl uoromethylated derivatives is also given.  

2      Earlier Studies on Fluorinated Isoquinolines 

 Several typical synthetic methodologies for the preparation of fl uorinated isoquinoline 
derivatives emerged in the 1950s and 1960s. Fundamental reactivities and properties of 
such compounds were also concomitantly reported. In 1951, Roe and Teague reported 
the fi rst synthesis of monofl uorinated isoquinolines (Scheme  1 ) [ 9 ]. They successfully 
prepared 1-, 3-, 4-, and 5-fl uoroisoquinolines via heating diazonium intermediates 
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derived from the corresponding aminoisoquinolines on treatment with sodium nitrite 
and fl uoroboric acid, which is the Baltz–Schiemann reaction [ 10 ]. In the 1960s, Belsten 
and Dyke synthesized 8-fl uoroisoquinoline, [ 11 ] and Bellas and Suschitzky reported 
the fi rst synthesis of 6- and 7- fl uoroisoquinolines (Scheme  1 ) [ 12 ]. Both syntheses 
involved Baltz–Schiemann reactions similar to those used by Roe and Teague.

  Scheme 3    Difference in reactivities of fl uorinated isoquinolines       
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  Scheme 2    The Halex reaction toward 1-fl uoroisoquinolines       
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  Scheme 1    The Baltz–Shiemann reaction toward ring-fl uorinated isoquinolines       

   An alternative approach to the synthesis of 1-fl uoroisoquinolines was accomplished 
by the nucleophilic aromatic substitution (S N Ar) [ 12 ]. The chlorine–fl uorine exchange 
reaction (Halex reaction) [ 13 ,  14 ] was effected in 1-chloroisoquinolines with potas-
sium fl uoride to provide 1-fl uoroisoquinolines in high yield (Scheme  2 ). In the case of 
1,3-dichloroisoquinoline used as a substrate, 3-chloro-1- fl uoroisoquinoline was selec-
tively obtained despite the use of an excess of potassium fl uoride. The chemoselectivity 
was attributed to the lability of the carbon–halogen bond at the 1-position of the iso-
quinoline ring.

   The carbon–fl uorine bond at the 1-position of isoquinoline is also reactive. 
Although isoquinolines bearing a fl uorine atom at one of the 3–8-positions were 
easily converted to the corresponding  N -oxides by addition of hydroperoxide, 
1- fl uoroquinoline gave 1-isoquinolone (isocarbostyryl) via nucleophilic replace-
ment of the fl uorine substituent under the same reaction conditions (Scheme  3 ) [ 12 ].
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   More than one fl uorine atoms were introduced onto the isoquinoline framework 
(Scheme  4 ). In 1960, Bayer patented the synthesis of 1,3-difl uoroisoquinoline, 
which was derived from 1,3-dihydroxyisoquinoline and cyanuric fl uoride [ 15 ]. Six 
years later, Chambers and Musgrave successfully prepared heptafl uoroisoquinoline, 
[ 16 ] in which all hydrogen atoms of the parent isoquinoline were replaced by fl uo-
rine atoms via a chlorine–fl uorine exchange reaction. In this case, heating the mix-
ture of heptachloroisoquinoline and potassium fl uoride to 420 °C facilitated global 
fl uorination to provide an excellent yield of heptafl uoroisoquinoline.
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  Scheme 4    Syntheses of di- and perfl uorinated isoquinolines       

   Heptafl uoroisoquinoline thus formed easily underwent further S N Ar reactions 
with various nucleophiles (Scheme  5 ). Treatment of heptafl uoroisoquinoline with 
an equimolar amount of sodium methoxide selectively afforded hexafl uoro-1- 
methoxyisoquinoline because of the remarkable reactivity of the 1-fl uoro substituent 
(vide supra) [ 17 ,  18 ]. Monosubstitution at the 1-position also selectively occurred in 
reactions with ammonia, hydrazine, and lithium aluminum hydride to provide 1-ami-
nohexafl uoroisoquinoline, 1-hidrazinoisoquinoline, and 1 H -hexafl uoroisoquinoline, 
respectively. Even anhydrous hydrogen chloride gradually reacted with heptafl uo-
roisoquinoline at a high temperature to give the corresponding 1-chlorinated product 
[ 19 ]. Meanwhile, addition of two equivalents of sodium methoxide selectively gave 
pentafl uoro-1,6-dimethoxyisoquinoline.

   For the synthesis of functionalized fl uoroisoquinolines, cyclization of  N -[2-
(fl uorophenyl)ethyl]amides followed by aromatization was effective, which is 
called the Bischler–Napieralski reaction and is a typical method for 1-substituted 
3,4-dihydroisoquinolines directed toward isoquinoline synthesis [ 20 ]. The reaction 
smoothly proceeded, irrespective of the positions of fl uorine, when  N -[2-
(fl uorophenyl)ethyl]-2-phenylacetamides were used (Scheme  6 ) [ 11 ]. Notably, 
8-fl uoro-3,4-dihydroisoquinoline was not obtained by this method because  
N -[2-(3- fl uorophenyl)ethyl]-2-phenylacetamides gave 6-fl uoro-3,4-dihydroiso-
quinolines exclusively. The reduction of 3,4-dihydroisoquinolines to 
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tetrahydroisoquinolines followed by oxidative aromatization provided the corre-
sponding 1-benzyl- fl uoroisoquinolines, whereas the direct oxidation of fl uorinated 
3,4- dihydroisoquinolines failed and led to the loss of fl uorine with palladium spe-
cies [ 21 ].

  Scheme 5    Nucleophilic aromatic substitutions of heptafl uoroisoquinoline       

   The Pictet–Gams reaction, [ 22 ] which is known as a variation of the Bischler–
Napieralski reaction, enabled a sequential reaction consisting of cyclization and 
aromatization to give 1-benzyl-5-fl uoroisoquinoline from  N -[2-(2-fl uorophenyl)-2- 
methoxyethyl]-2-phenylacetamide (Scheme  7 ) [ 21 ].

  Scheme 6    Synthesis of fl uoroisoquinolines via the Bischler–Napieralski reaction       
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   As it was described previously, fl uoroisoquinoline chemistry has begun about 
half a century ago. Since the predawn of fl uoroisoquinoline chemistry, various syn-
theses of ring-fl uorinated isoquinoline derivatives have been accomplished, accom-
panied by remarkable progress in the aromatic ring fl uorination and in the 
construction of fl uorine-containing heterocycles. From the standpoint of organic 
synthesis, methodologies for fl uorinated isoquinolines can be classifi ed into three 
major groups: (i) the direct fl uorination onto the isoquinoline ring, (ii) the construc-
tion of a fused pyridine ring via cyclization of a precursor bearing a pre-fl uorinated 
benzene ring, and (iii) the simultaneous installation of an isoquinoline framework 
and a fl uorine substituent. In the following section, modern synthetic methodologies 
for fl uorinated isoquinolines are presented according to this classifi cation. The last 
section of this chapter presents a discussion of the application of fl uorinated iso-
quinoline derivatives in various scientifi c fi elds.  

3     Syntheses of Ring-Fluorinated Isoquinolines 

3.1     Direct Ring Fluorination 

 The Baltz–Schiemann reaction is still one of the most common methods for direct 
ring fl uorination because of the accessibility to aminated isoquinoline derivatives. 
The original conditions, which involve the use of tetrafl uoroboric acid (fl uoroboric 
acid), are still often employed, [ 23 – 27 ] even though several modifi ed procedures 
have been reported. For example, Myers synthesized 1-fl uoroisoquinoline  2  by the 
dealkylative diazotization of 1- tert -butyl-aminoisoquinoline  1  with pyridine hydro-
fl uoride instead of HBF 4  (Scheme  8 ) [ 28 ].
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  Scheme 8    Synthesis of 1-fl uoroisoquinoline via dealkylative diazotization       
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   Among neutral nitrogen substituents, a nitro group on an aromatic ring can be 
directly converted to a fl uorine substituent via the S N Ar mechanism [ 29 – 32 ]. In this 
fl uorodenitration method, tetraalkylammonium fl uorides and inorganic fl uoride 
salts have been used as fl uorine sources. For example, upon treatment with tetra-
methylammonium fl uoride, 8-nitroisoquinoline  3  afforded 8-fl uorinated isoquino-
line  4  (Scheme  9 ) [ 25 ].
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  Scheme 10    Synthesis of 5-fl uoroisoquinoline via fl uorodenitration with KF       
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  Scheme 9    Synthesis of 8-fl uoroisoquinoline via fl uorodenitration with Me 4 NF       

   Even potassium fl uoride induced fl uorodenitration of 5-nitroquinoline with the 
aid of 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]-hexacosane (Kryptofi x 
222) [ 33 ,  34 ] as a phase transfer agent under microwave irradiation, which led to 
5-fl uoroquinoline (Scheme  10 ) [ 35 ].

   The Halex reaction for the synthesis of multi-fl uorinated isoquinoline was 
investigated in detail by Matthews et al., and they attempted chlorine–fl uorine 
exchange reactions of several multi-chlorinated isoquinolines [ 36 ]. When 3,5,6,7,
8- pentachloroisoquinoline was treated with an excess of cesium fl uoride in deuter-
ated dimethyl sulfoxide (DMSO- d  6 ) at 100 °C, 3,5,7,8-tetrachloro-6-fl uoroiso-
quinoline and 3,5,6,7-tetrachloro-8-fl uoroisoquinoline were formed in a 7:3 ratio 
after 20 min (Scheme  11 ). The observation of the predominant substitution at the 
6-position was consistent with the fact that the 6-position of heptafl uoroisoquino-
line was the second most reactive to nucleophiles after the 1-position (vide supra, 
Scheme  5 ) [ 17 ]. Similar reaction conditions were also employed in the reaction of 
heptachloroisoquinoline, where the 1-position was found to be more reactive than 
other positions (Scheme  12 ).
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    With respect to other positions, Matthews concluded that the reactivity for substi-
tution in heptachloroquinoline was 1> > 6 = 7 = 8 > 3 = 5 > 4. Notably, the 3-position of 
haloisoquinolines was less reactive toward nucleophilic substitution even though it 
was adjacent to the nitrogen atom, whereas the 1-position of haloisoquinolines and 
the 2-position of haloquinolines were substantially reactive [ 37 ]. 

 The direct fl uorination of a C–H bond of nitrogen-containing heterocycles was 
achieved with gaseous fl uorine and iodine by Chambers and Sandford et al [ 38 ]. 
The mixture of fl uorine and iodine served as sources of both I +  and F −  (Scheme  13 ). 
The heterocycles activated by  N -iodination underwent fl uoride attack at the carbon 
adjacent to the nitrogen atom. Elimination of hydrogen iodide gave the correspond-
ing ring-fl uorinated heterocycles. In this report, phenanthridine, a benzo analogue 
of isoquinoline, was fl uorinated to afford 6-fl uorophenanthridine.

  Scheme 13    Synthesis of 6-fl uorophenanthridine via fl uorination with F 2  and I 2        
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  Scheme 11    The Halex reaction of 3,5,6,7,8-pentachloroisoquinoline       

N

Cl

ClCl

Cl

Cl

Cl Cl

CsF
(excess)

DMSO-d6, 100 °C
15 min

N

Cl6

F1

Position

Ratio

1

65

3

4

4

0

5

4

6

8

7

6

8

7

  Scheme 12    The Halex reaction of heptachloroisoquinoline       

   In contrast to nucleophilic fl uorination, fl uoroisoquinoline syntheses via direct elec-
trophilic fl uorination were reported relatively recently. In 2007, Price developed direct 
electrophilic C–H bond fl uorination of an isoquinoline derivative with Selectfl uor® 
(1-(chloromethyl)-4-fl uoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafl uoroborate), 
F-TEDA), [ 39 ] which is known as an effi cient electrophilic fl uorine source [ 40 – 42 ]. 
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Refl uxing the mixture of 6-bromo-1-hydroxyisoquinoline ( 5 ) and Selectfl uor® in 
 acetonitrile afforded 7-bromo-4-fl uoro-1-hydroxy-isoquinoline ( 6 ) as a single isomer 
in a one-pot reaction (Scheme  14 ). In contrast, fl uorinated methanol adduct  7  was 
quantitatively produced, when the reaction was conducted at ambient temperature in an 
acetonitrile–methanol mixed solvent. Subsequent aromatization of  7  with hydrochloric 
acid gave  6  in high overall yield, whereas the reaction with phosphoryl chloride pro-
vided 1-chlorinated 4- fl uoroisoquinoline  8  as another variation of 4-fl uorinated iso-
quinoline derivatives.
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  Scheme 15    Electrophilic fl uorination of 1-isoquinolylmagnesium reagent       
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  Scheme 14    Electrophilic fl uorination with Selectfl uor®       

   In 2010 Knochel et al. reported the electrophilic fl uorination of heteroarylmag-
nesium reagents by applying their magnesiation methodology, [ 43 ,  44 ] in which 
heteroaryl bromides underwent a Br–Mg exchange through the addition of an iso-
propylmagnesium chloride–lithium chloride complex [ 45 – 47 ].  N - fl uorobenzene- 
sulfonimide (NFSI) was used as an electrophilic fl uorinating agent to trap the 
generated heteroarylmagnesium species in good to excellent yield (Scheme  15 ). 
Although electrophilic fl uorination of standard aryl Grignard reagents had already 
been reported, [ 48 ] Knochel’s method signifi cantly improved the product yields. 
Thus, 1-fl uoroisoquinoline was readily prepared from 1-bromoisoquinoline.
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3.2        Ring Construction of Pre-fl uorinated Substrates 

 The construction of heterocycles from fl uoroarene substrates is an effi cient approach 
to synthesize ring-fl uorinated heterocycles with a fused benzene ring because fl uo-
roarenes are relatively easy to access and aromatic C–F bonds are suffi ciently robust 
to survive most of the reaction conditions. Nowadays a wide variety of methodolo-
gies for heterocyclic ring construction have been established, this strategy has been 
predominant in the syntheses of benzene-ring-fl uorinated isoquinolines. To employ 
this strategy, the nitrogen atom must be located at appropriate positions, and cycli-
zation accompanied or followed by aromatization must smoothly proceed. 

 Aryl or benzyl imines have been commonly used as precursors of isoquino-
lines. In cases starting with  N -substituted imines, the substituents on the nitro-
gen atom should be effi ciently incorporated or eventually removed (Scheme  16 , 
routes a–c). The method via simultaneous reductive elimination and removal 
of  N -substituents from nitrogen-containing metallacycles is also effective 
(Scheme  16 , route d). The intermediary metallacycles can be mainly obtained 
from ( ortho -haloaryl)methanimines.

  Scheme 16    Approaches to fl uoroisoquinolines starting from imines bearing a fl uoroaryl group       

   Benzylideneaminoacetoaldehyde acetals prepared from benzaldehydes have been 
key intermediates of a well-established method for isoquinoline synthesis known as 
the Pomeranz–Fritsch reaction (Scheme  16 , route a) [ 49 ,  50 ]. Intramolecular cycliza-
tion of this type of imines under acidic conditions provided isoquinolines, where the 
two-carbon substituent on the nitrogen atom was transformed into a part of the iso-
quinoline ring. For the synthesis of 8- fl uoroisoquinoline, the application of the stan-
dard procedure gave a low yield of the desired product (3 % in two steps from 
2-fl uorobenzaldehyde) [ 51 ]. However, in the modifi ed procedure using ethyl chloro-
formate, trimethyl phosphite, and titanium tetrachloride for the cyclization step [ 52 ] 
provided 6-fl uoroisoquinoline from 4- fl uorobenzaldehyde in 34 % overall yield 
(Scheme  17 ) [ 25 ].
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   Stoltz et al. [ 53 ] and Ramtohul et al. [ 54 ] independently and almost simultane-
ously reported an isoquinoline synthesis via the reaction of  N -acetylenamines with 
benzynes (Scheme  16 , route b; Scheme  18 ). In this reaction, intermediary 
 N -acetylimines underwent nucleophilic attack of the aryl anions to give the corre-
sponding isoquinolines after aromatization. The carbonyl carbon on the nitrogen 
atom was incorporated into the 1-position of the resulting isoquinolines.
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  Scheme 17    Synthesis of 6-fl uoroisoquinoline via the Pomeranz–Fritsch reaction       
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  Scheme 18    Synthesis of 6,7-difl uoroisoquinoline via the reaction of  N -acetylenamine with benzyne       

   2-Alkynylbenzaldehyde  O -alkyl oximes were also used as precursors of isoquin-
olines (Scheme  16 , route c). After intramolecular electrophilic cyclization,  N -alkoxy 
groups were eliminated to form aldehydes (for example benzaldehyde). Shin et al. 
synthesized 5-fl uoro-3-phenylisoquinoline using a AgOTf/TfOH catalytic sys-
tem (Scheme  19 ), [ 55 ] while Wu achieved Cu-catalyzed synthesis of several 
7- fl uoroisoquinoline derivatives [ 56 ].
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  Scheme 19    Ag-catalyzed electrophilic cyclization of 2-alkynylbenzaldehyde  O -alkyl oxime for 
5-fl uoroisoquinoline synthesis       
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   The intramolecular electrophilic cyclization of  N -(2-alkynylbenzylidene)hydrazides 
or 2-alkynylbenzoaldoximes afforded isoquinolinium-2-ylamides or isoquinoline 
 N -oxides, respectively (Scheme  16 , route c). The carbon atoms at the 1-position of these 
compounds were substantially electrophilic because of the polarization of the N–O or 
N–N bond. Therefore, these isoquinoliniums readily underwent [3 + 2] cycloaddition 
and nucleophilic attack to the 1-position, as discussed in the subsequent paragraph. 

 Wu et al. synthesized a 5-fl uoroisoquinoline derivative via the reaction of 
a 2-alkynylbenzoaldoxime and an isocyanide with a AgOTf/Bi(OTf) 3  catalyst 
(Scheme  20 ) [ 57 ]. Sequential rearrangements were triggered by the addition of the 
isocyanide to the 1-position of the intermediary isoquinoline  N -oxide. The [3 + 2] 
cycloaddition of the  N -oxide with a carbodiimide followed by ring-opening also 
afforded 6- and 7-fl uoroisoquinoline derivatives (Scheme  21 ) [ 58 ]. Recently, simi-
lar approaches to functionalized fl uoroisoquinolines have been frequently adopted 
[ 59 – 65 ]. In addition to the above-mentioned imine derivatives,  N - tert -butyl imines 
were used, where the  tert -butyl group was removed from the nitrogen atom [ 66 ]. 
Furthermore, primary imines have been shown to serve as precursors of fl uorinated 
isoquinolines, albeit under harsh conditions [ 67 ,  68 ].
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  Scheme 21    Ag-catalyzed electrophilic cyclization of 2-alkynylbenzoaldoxime for 6- fl uoroisoquinoline 
synthesis       
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    The reductive elimination from seven-membered nitrogen-containing metallacycles 
also leads to the construction of the isoquinoline framework (Scheme  16 , route d). 
Such metallacycles result from the insertion of alkynes into metal–aryl bonds mainly 
formed by oxidative addition of aryl–halogen bonds. Konno et al. achieved the synthe-
sis of 8-fl uoroisoquinoline  11  via the reaction of 2- iodobenzylidenamine  9  with trifl uo-
romethylalkyne  10  with the aid of a palladium catalyst (Scheme  22 ) [ 69 ]. Related 
synthetic methodologies have been established with a nickel catalyst [ 70 ] as well as 
palladium catalysts [ 71 – 73 ]. Fagnou et al. succeeded in a similar isoquinoline synthe-
sis via C–H bond activation with a rhodium catalyst, which provided 6-fl uoroisoquino-
line  12  (Scheme  23 ) [ 74 ].
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  Scheme 22    Pd-catalyzed domino insertion/cyclization sequence for 8-fl uoroisoquinoline synthesis       
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  Scheme 23    Route to 6-fl uoroisoquinoline via Rh-catalyzed C–H bond activation       

    Nitrogen-containing functional groups other than imines can also participate in 
this type of isoquinoline synthesis. For example, nitriles were convenient because 
they possess no extra groups on the nitrogen atom to be removed. Fluorinated iso-
quinolines were prepared via the intramolecular and intermolecular reactions of 
nitriles. The nitrogen atom of nitriles exhibited suffi cient nucleophilicity to form 
C–N bonds that contributed to the construction of isoquinoline scaffolds [ 75 ,  76 ]. 
Imine-metal species derived from nitriles and organometallic reagents were effec-
tive for this purpose [ 28 ,  77 – 79 ]. Amines, [ 80 – 82 ] amides, [ 83 – 86 ] azides, [ 87 ] 
triazoles, [ 88 ] and enamine-type intermediates [ 89 ,  90 ] also served as key precur-
sors for fl uorinated isoquinolines. 

 Construction of benzene rings has rarely been conducted in the last stage of fl uo-
roisoquinoline synthesis. The use of fl uorinated pyridines as starting materials allows 
the introduction of fl uorine on the heterocyclic ring carbons. Queguiner et al. reported 
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the multi-step synthesis of an indole-fused 1-fl uoroisoquinoline. [ 91 ] Platonov et al. 
synthesized 1,3,4-trifl uoroisoquinoline via the copyrolysis of 2,3,5,6-tetrafl uoropyr-
idine-4-sulfonyl chloride with butadiene (Scheme  24 ) [ 92 ].

  Scheme 25    Synthesis of perfl uoro-3-methylisoquinoline via the hetero Diels–Alder reaction       
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  Scheme 24    Synthesis of 1,3,4-trifl uoroisoquinoline via copyrolysis of pyridine-4-sulfonyl chloride 
with butadiene       

   Exceptionally, there is an example for simultaneous construction of both benzene 
and pyridine rings toward a perfl uorinated isoquinoline. Feast et al. reported the syn-
thesis of perfl uoro-3-methylisoquinoline via the hetero Diels–Alder reaction of perfl u-
oro-1,4,6,7-tetrahydro-1,4-ethanonaphthalene with trifl uoroacetonitrile followed by 
pyrolysis, which involved elimination of tetrafl uoroethylene (Scheme  25 ) [ 93 ].

3.3         Simultaneous Installation of an Isoquinoline Framework 
and a Fluorine Substituent 

 Intramolecular cyclizations of  ortho -functionalized  β , β -difl uorostyrenes provide a 
general access to ring-fl uorinated heterocycles. In this methodology, both the con-
struction of a heterocyclic nucleus and the introduction of a fl uorine substituent are 
simultaneously effected. 

 The difl uoromethylene carbon of 1,1-difl uoro-1-alkenes exhibits strong electro-
philicity because of the electron-defi cient and highly polarized carbon–carbon 
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double bond, and thus difl uoroalkenes readily react with nucleophiles instead of 
electrophiles. Furthermore, the nucleophilic attack to difl uoroalkenes followed by 
fl uoride elimination (vinylic nucleophilic substitution; S N V) provides products 
bearing a fl uorovinylic moiety. Ichikawa et al. constructed 5-membered and 
6- membered heterocycles via intramolecular S N V reactions of 1,1-difl uoro-1- 
alkenes [ 94 – 96 ]. This strategy can introduce a fl uorine substituent at a prescribed 
position, whereas the direct fl uorination methods generally require regioselec-
tive pre-functionalization. This methodology has been successfully applied to the 
synthesis of 3-fl uoroisoquinolines, which has been diffi cult to prepare with previ-
ous methods, including heterocyclic ring construction.  β , β -difl uorostyrenes as 
cyclization precursors have been mainly prepared via palladium-catalyzed cou-
pling of  ortho -functionalized aryl iodides and difl uorovinylborans, which were 
 generated from 2,2,2-trifl uoroethyl 4-methylbenzenesulfonate [ 97 ,  98 ].  o -Cyano-
 β , β -  difl uorostyrenes thus formed reacted with organometallics to give the corre-
sponding iminyl metal intermediates, which in turn underwent 6- endo  cyclization to 
give 3-fl uoroisoquinolines (Scheme  26 ) [ 99 ].
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  Scheme 26    Synthesis of 3-fl uoroisoquinolines via the intramolecular S N V reaction of iminyl 
metal intermediates       

   Sulfonamides are suffi ciently reactive to serve as nucleophiles in the reaction 
with difl uorostyrenes under basic conditions (Scheme  27 ) [ 100 ]. Imines and oximes 
have also been utilized as nucleophiles to provide 3-fl uoroisoquinolines and their 
 N -oxides, respectively (Scheme  28 ) [ 101 ]. When the isoquinoline  N -oxide was 
treated with an isocyanate, the oxygen atom on the nitrogen was consequently 
 eliminated after the 1,3-dipolar addition to afford a 1-amino-3-fl uoroisoquinoline 
(Scheme  28 ).
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4          Syntheses of Pyridine-Ring-Trifl uoromethylated 
Isoquinolines 

 As well as a fl uorine substituent, a trifl uoromethyl group have recently attracted 
much attention as the shortest perfl uoroalkyl group. A variety of methodologies for 
the introduction of a trifl uoromethyl group into heteroaromatics have been also 
developed [ 102 ]. In 1970, Kobayashi et al. reported the copper-mediated direct tri-
fl uoromethylation of aryl and heteroaryl halides using trifl uoromethyl iodide as a 
source of a trifl uoromethyl group [ 103 ]. Thus, 1-(trifl uoromethyl)isoquinoline was 
synthesized, albeit in low yield (Scheme  29 ).
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  Scheme 28    Synthesis of 3-fl uoroisoquinolines via the intramolecular S N V reaction of difl uorosty-
renes bearing a formyl group       
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   Pyridine-ring-trifl uoromethylated isoquinolines are easier to access compared to 
ring-fl uorinated counterparts. Syntheses of pyridine-ring-fl uorinated isoquinolines via 
pyridine-ring construction are mostly diffi cult except for the 3- fl uoroisoquinoline syn-
thesis, which was effected via the intramolecular S N V reaction of  β , β -  difl uorostyrenes 
(see also Sect.  3.3 ). This is because pyridine-ring closure using fl uorine-presubstituted 
components could be retarded by considerable reactivity changes caused by fl uorine 
substituents. On the other hand, the trifl uoromethyl group is rather chemically inert. 
Thus, pyridine-ring-trifl uoromethylated isoquinolines have been successfully synthe-
sized via ring closure of trifl uoromethylated precursors. The following is an overview 
of the syntheses of pyridine-ring-trifl uoromethylated isoquinolines. 

 The Bischler–Napieralski reaction [ 20 ] and the Pictet–Gams reaction [ 22 ] are 
both known as typical methods for the construction of the isoquinoline framework 
as described in Sect.  2 . Cambon et al. synthesized 1-(trifl uoromethyl)isoquinolines 
via the Bischler–Napieralski reaction of  N -(phenethyl)trifl uoroacetamides, [ 104 ] 
whereas Simig et al. utilized the Pictet–Gams reaction of  N -(2-aryl-3,3,3-trifl uoro- 
2-methoxypropyl)amides of acetic or cinnamic acids for the synthesis of 4-(trifl uo-
romethyl)isoquinolines (Scheme  30 ) [ 105 ].

  Scheme 30    Syntheses of 1- or 4-(trifl uoromethyl)isoquinolines via the Bischler–Napieralski 
reaction or the Pictet–Gams reaction       

  Scheme 29    Copper- mediated trifl uoromethylation for 1-(trifl uoromethyl)isoquinoline synthesis       

 

 

Syntheses, Properties, and Applications of Fluorinated Isoquinolines



198

   Upon pyridine ring construction, small molecules bearing a trifl uoromethyl 
group can be applied to intermolecular reactions as ring components. 
Trifl uoroacetonitrile has been used not only as a component of the pyridine ring 
but also as a source of a trifl uoromethyl group. Nauta et al. reported the synthe-
sis of 3-(trifl uoromethyl)isoquinoline via the reaction of 2-methylbenzonitrile 
with trifl uoroacetonitrile under basic conditions (Scheme  31 ) [ 106 ]. Palacios 
et al. synthesized a 3-trifl uoromethylated isoquinoline via electrocyclization of 
the aza-Wittig reaction product of an  N -vinylic phosphazene, which was pre-
pared via [2 + 2] cycloaddition of a phosphorus ylide and trifl uoroacetonitrile 
(Scheme  32 ) [ 107 ]. As previously described, Feast et al. also used trifl uoroace-
tonitrile for the synthesis of a 3-(trifl uoromethyl)isoquinoline via the hetero 
Diels–Alder reaction (Scheme  25 ) [ 93 ]. Stoltz et al. used an  N -trifl uoroacetyl 
dehydroalanine ester for the synthesis of a 1-trifl uoromethylated isoquinoline 
(Scheme  18 ) [ 53 ], whereas Konno et al. used trifl uoromethylalkynes for the 
synthesis of 4-(trifl uoromethyl)isoquinolines (Scheme  22 ) [ 69 ].

  Scheme 32    Synthesis of 3-(trifl uoromethyl)isoquinoline using trifl uoroacetonitrile via the aza- 
Wittig reaction       

  Scheme 31    Synthesis of 3-(trifl uoromethyl)isoquinoline using trifl uoroacetonitrile       

    The trifl uoromethyl group is inert enough to survive under harsh reaction condi-
tions. Schiess et al. synthesized 3-(trifl uoromethyl)isoquinoline via fl ash vacuum 
pyrolysis of trifl uoroacetyloxybenzocyclobutene (Scheme  33 ) [ 108 ]. Although the 
skeletal rearrangement required an ultra-high temperature, this reaction proceeded 
without the loss of the trifl uoromethyl group.
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   Since the trifl uoromethyl group stabilizes the carbanion at its proximal carbon 
atom due to the strong electron-withdrawing nature, 2-trifl uoromethyl-1-alkenes are 
subject to nucleophilic attack at their 1-positions. Ichikawa et al. have applied such 
a chemical property of the trifl uoromethyl group to intramolecular cyclizations with 
carbon and heteroatom nucleophiles, which led to various fl uorine-containing 
carbo- and heterocycles [ 95 ,  109 ,  110 ]. Among the studies, 4-trifl uoromethyl- 3,4-
dihydroisoquinoline was synthesized via 6- endo - trig  cyclization of the aldimine 
intermediate derived from an  α -trifl uoromethylstyrene bearing an  o -formyl group 
(Scheme  34 ) [ 111 ]. 4-Trifl uoromethyl-3,4-dihydroisoquinoline provided 4-(trifl uo-
romethyl)isoquinoline and 4-(difl uoromethyl)isoquinoline under oxidative and 
basic conditions, respectively. The difl uoromethyl group is one of recently- 
highlighted fl uoroalkyl groups, as well as the trifl uoromethyl group [ 112 ].

  Scheme 34    Intramolecular cyclization of  o -formyl- α -(trifl uoromethyl)styrene for 3-(trifl uoromethyl)- 
or 3-(difl uoromethyl)isoquinoline synthesis       

  Scheme 33    Route to 3-(trifl uoromethyl)isoquinoline via fl ash vacuum pyrolysis       
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5        Properties and Applications of Ring-Fluorinated 
Isoquinoline Derivatives 

 Ring-fl uorinated isoquinoline derivatives thus synthesized exhibit a wide range of 
bioactivities that rival or surpass those of the original fl uorine-free compounds. In 
addition to such remarkable potentials in the fi eld of pharmaceutical sciences, the 
formation of supramolecular structures and the use of ligands of light-emitting 
metal complexes have also attracted considerable attention as possible functions of 
fl uoroisoquinolines. This section describes concrete examples of the properties and 
applications of fl uoroisoquinoline derivatives. 

 In the 1960s, isoquinoline derivatives were tested in an antitumor assay [ 113 ]. French 
et al. found that 1-formylisoquinoline thiosemicarbazone  13a  was effective for a variety 
of mouse tumors (Fig.  1a ). They subsequently carried out a comprehensive study of 
antitumor assays using various thiosemicarbazones of 1- formylisoquinolines [ 24 ]. 
Among the compounds tested, 5-fl uoro derivative  13b , along with non-fl uorinated com-
pound  13a , exhibited the strongest activity against L-1210 leukemia and the Lewis lung 
carcinoma. 7-Fluorinated derivative  13c  was found to be specifi cally active against the 
B-16 melanoma. Recently, Zhu et al. developed isoquinoline–pyridine-based protein 
kinase B/Akt antagonists [ 114 ]. 3-Fluorinated isoquinoline derivative  14  served as an 
effective Akt1 inhibitor (IC 50  = 3.5 nM), and the related compounds worked even in 
MiaPaCa-2 human pancreatic cancer cells (Fig.  1b ).

   Isoquinoline derivatives have been expected to serve as drugs for type II diabetes. 
Protein tyrosine phosphatase 1B (PTB1B) is considered to be one of the targets because 
it works as a negative regulator of the insulin-signaling pathway. A series of 1-(iso-
quinolin-1-yl)guanidines was tested as a PTB1B inhibitor by Liu and Wu et al. (Fig.  2a ) 
[ 65 ]. They found that 6-fl uorinated isoquinoline  15  was highly effective (IC 50  = 6.38 μg/
mL). 11β-Hydroxydehydrogenase 1 (11β-HSD1), which catalyzes the transformation 
of cortisone to cortisol, is another target compound for diabetes therapy. Investigation 
of various 1-(benzylthio)isoquinolines and 1-(benzylthio)-5,6,7,8-tetrahydroisoquino-
lines revealed that ring-fl uorinated isoquinoline derivatives  16b ,  16c , and  16e  possess 
signifi cant activity against 11β- HSD1 as non-fl uroinated compound  16a  (Fig.  2b ) 
[ 115 ]. Among compounds bearing isoquinoline scaffolds, 7-fl uorinated compound 
 16d  showed the highest activity in the inhibition of both mouse (IC 50  = 7 nM) and 
human (IC 50  = 2 nM) 11β- HSD1 enzymes.
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  Fig. 1    Antitumor active fl uoroisoquinolines       
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   Napthyridinones inhibit the activity of Janus kinase 2 (JAK2), which plays 
important roles in hematopoiesis and immune response (Fig.  3a ). Among napthy-
ridinones, compounds bearing a 6-fl uoroisoquinoline substructure exhibited 
extraordinary potency as JAK2 inhibitors [ 85 ]. Besides above-mentioned fl uori-
nated isoquinolines, aminothiophene-containing fl uorinated isoquinolines contrib-
uted to the inhibition of the c-Jun N-terminal kinases (JNKs), which are members 
of the mitogen-activated protein kinase (MAPK) family (Fig.  3b ) [ 27 ]. Dinapsoline 
derivatives prepared from fl uorinated isoquinolines also showed substantial bioac-
tivities as dopamine receptor agonists (Fig.  3c ) [ 25 ].

   In addition to exhibiting bioactivities, polyfl uoroaromatic compounds often dis-
play unique properties for accessing supramolecular architectures in crystalline 
states. Arene and polyfl uoroarene molecules are well known to alternately stack 
through π–π interactions in their 1:1 co-crystals to give columnar structures [ 116 ]. 

 Homocrystals of 1,2,3,4-tetrafl uoronaphthalene, a partially fl uorinated naphtha-
lene, showed an obvious π–π stacking structure with a head-to-tail orientation like 
co-crystals of arenes and polyfl uoroarenes (Fig.  4a ) [ 117 ]. In contrast, the CF/π 
interaction [ 118 ,  119 ] was predominant in homocrystals of 1,3,4- trifl uoroisoquinoline, 
in which the C2–F fragment of 1,2,3,4-tetrafl uoronaphthalene was replaced by a 
nitrogen atom (Fig.  4b ) [ 117 ]. This difference forced 1,3,4-trifl uoroisoquinoline to 
adopt a head-to-head orientation without π–π stacking.

   Iridium complexes bearing isoquinoline-based bidentate ligands are phosphores-
cent (Scheme  35 ). 1-Phenylisoquinolinyliridium complexes emit red phosphores-
cence as the result of spin-forbidden triplet metal-to-ligand charge transfer ( 3 MLCT) 
excitation [ 26 ]. Such complexes, including some based on 5-fl uoroisoquinoline, 
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  Fig. 2    Drug candidate fl uoroisoquinolines for type II diabetes       
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were utilized for organic light-emitting devices (OLEDs), which were fabricated 
as follows: 4,4′- N , N ′-dicarbazolebiphenyl (CBP) was used as a host material for 
iridium complexes, bathocuproine (BCP) was used as a hole blocker, 4,4′-bis( N - 
 naphthylphenylamino)biphenyl (NPB) was used as a hole transport layer, and tris(8-
hydroxyquinolinyl)aluminum(III) (Alq 3 ) was used as an electron transport layer. 
The OLEDs thus fabricated from iridium complexes  17  showed good emission 
quantum yields and high brightness. For example, [Ir(5-f-1piq) 2 (acac)] ( 17b ; 
5-f-1piq = 5-fl uoro-1-phenylisoquinoline) showed a turn-on voltage of 35 V, low- 
working voltages (1,883 cd m –2  at 7.1 V and 8,329 cd m –2  at 9.0 V), and a maximum 
brightness of 38,218 cd m –2  (14.0 V), which suggests that this complex has strong 
potential for use in full color displays (Table  1 ). The emission color coordinates of 
 17b  on the Commission Internationale de I’Éclairage (CIE) chart were ( x  = 0.68, 
 y  = 0.31), which is close to the standard red color.

  Fig. 4    Supramolecular networks in crystal structures of ( a ) 1,2,3,4-tetrafl uoronaphthalene and ( b ) 
1,3,4-trifl uoroisoquinoline       
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    Later, iridium complexes with 6-fl uoroquinoline-based ligands, (35dmPh- 
6Fiq) 2 Ir(acac) ( 18a ; 35dmPh-6Fiq = 6-fl uoro-1-(3,5-dimethylphenyl)isoquinoline) 
and (4 t BuPh-6Fiq) 2 Ir(acac) ( 18b ; 4 t BuPh-6Fiq = 6-fl uoro-1-(4- tert -butylphenyl)
isoquinoline) were developed as red color emitting phosphorescent materials 
(Fig.  5 ) [ 120 ]. When these iridium complexes as red emitters were combined with 
benzimidazole–indolo[3,2- b ]carbazole-linked molecules (TICCBI and TICNBI) as 
donor–acceptor bipolar hosts, the OLEDs exhibited high external quantum effi cien-
cies (14.4–15.6 %).
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17b: R1 = F, R2 = R3 = H
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17d: R1 = R3 = F, R2 = H

  Scheme 35    Preparation of 1-phenylisoquinolinyliridium complexes       

   Table 1    Electrophosphorescent data of iridium complexes bearing isoquinoline-based bidentate 
ligands   

 Complex  Brightness (cd/m 2 )  External quantum effi ciency (%)  Voltage (V)  CIE coordinates 

  17a   1,514 a   8.46  8.53  x = 0.68 
 8,224 b   9.21  11.01  y = 0.32 

 24,978 c   7.00  13.92 
 31,776 d  

  17b   1,883 a   10.15  7.12  x = 0.68 
 8,329 b   9.00  8.98  y = 0.31 

 24, 038 c   6.50  11.04 
 38,218 d  

  17c   2,603 a   7.41  7.29  x = 0.60 
 9,644 b   5.28  8.79  y = 0.36 

 12,151 c   4.80  9.16 
 23,606 d  

  17d   1,511 a   5.48  9.02  x = 0.66 
 7,008 b   5.10  11.35  y = 0.33 

 19,661 c   3.86  14.10 
 31,490 d  

   a  J =  20 mA/cm 2  
  b  J =  20 mA/cm 2  
  c  J  = 20 mA/cm 2  
  d Maximum brightness at 14 V  
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6        Conclusions and Perspectives 

 In this decade, synthetic methodologies for ring-fl uorinated isoquinolines have been 
greatly developed as described above. The Baltz–Shiemann reaction provides a ver-
satile method for the syntheses of isoquinolines bearing a fl uorine atom at any posi-
tion, albeit with diffi culties in regioselective prefunctionalization. In the syntheses of 
benzene-ring-fl uorinated isoquinolines, a wide variety of methods can be employed 
to construct pyridine rings starting from fl uorobenzene derivatives. In terms of het-
erocyclic-ring-fl uorinated isoquinolines, 1-fl uoroisoquinolines are effectively pre-
pared via either nucleophilic or electrophilic substitution from 1-haloisoquinolines. 
3-Fluoroisoquinolines can be selectively synthesized via various intramolecular S N V 
reactions of  ortho -functionalized  β , β -difl uorostyrenes. 4-Fluoroisoquinolines can be 
obtained via electrophilic fl uorination of 1- hydroxyisoquinolines. As for the synthe-
ses of pyridine-ring-trifl uoromethylated isoquinolines, pyridine-ring construction 
methods are also quite effective. 

 In addition to the increasing diversity of ring-fl uorinated isoquinolines 
obtained, they have already been utilized not only as drug candidates but also as 
functional materials. The chemistry of the ring-fl uorinated isoquinolines will con-
tinue to progress; thus, in the near future, fl uoroisoquinolines with predominant 
properties will emerge in which the characteristics of the fl uorine substituent are 
fully utilized.     
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