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    Abstract     Present review contains recent literature data published since 2009 for 
2012 as till 2009 four reviews on this fi eld have been published. The methods of 
synthesis of 2-, 3-, 4-fl uoropyridines, di-, tri-, polyfl uoropyridines, perfl uoroalkyl-
pyridines and also fl uoropyridines fused with carbo-, heterocycles are presented. 
Methods for synthesis of F 18  substituted pyridines for local radiotherapy of cancer 
and other biological active compounds are also presented.  
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1         Introduction 

 The present review contains the literature published since 2009 for 2012. Till 2009 
four reviews on this fi eld have been published, completely [ 1 ,  2 ] or in part [ 3 ] 
devoted to methods syntheses C-F pyridines and perfl uoroalkyl pyridines [ 2 ,  4 ]. To 
display full information about synthesis fl uorinated pyridines in the present review 
earlier classical works also are included. 

 An arising interest towards fl uoropyridines is explained by their interesting and 
unusual physical, chemical and biological properties owing to the presence of the 
strong electron-withdrawing substituent(s) in the aromatic ring. Fluoropyridines 
have reduced basicity and are usually less reactive than their chlorinated and bromi-
nated analogues. A selective synthesis of fl uoropyridines remains a challenging 
problem. Here a synthetic methods for preparation of 2-, 3-, 4-fl uoropyridines and 
di- and poly-fl uoropyridines are reviewed along with some synthetic routes towards 
 18 F-substituted pyridines, which present a special interest as potential imaging 
agents for various biological applications. 

 In the search for new agricultural products having improved physical, biological, 
and environmental properties, one of the most generally useful chemical modifi ca-
tions is the introduction of fl uorine atoms into lead structures. Fluorine-containing 
substituents are most commonly incorporated to carbocyclic aromatic rings, and a 
large number of compounds possessing fl uorine-containing substituents on aryl 
rings have been commercialized as agricultural active ingredients [ 5 ,  6 ]. 

 About 10 % of the total sales of pharmaceuticals currently used for the medical 
treatment are drugs containing fl uorine atom. Over 50 years, many fl uorinated 
medicinal and agrochemical candidates have been discovered and the interest toward 
development of fl uorinated chemicals has been steadily increased. High availability 
of the fl uorinated synthetic blocks and the effective fl uorinating reagents, the widely 
reliable fl uorination technology, and the accumulation of basic and advanced knowl-
edge of the fl uorine chemistry rapidly accelerated developments in this fi eld [ 7 ].  

2     Synthesis of 2-Fluoropyridines 

2.1     N-Fluoropyridinium Salts. The Umemoto Reaction 

 The chemistry of the pyridine ring has been enriched by the development of many 
signifi cant transformations. These reactions include addition, addition-elimination, 
elimination-addition, and ring-opening, as well as proton-abstraction reactions 
followed by nucleophilic substitution. The course of the reaction depends on the 
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nature of the pyridine rings and bases employed [ 8 ]. New reactions involving 
 N -fl uoropyridinium salts  3  have now been added to the fi eld of pyridine chemistry. 
In 1986, stable  N -fl uoropyridinium salts  3  were isolated and fully characterized by 
the T. Umemoto and his coworker [ 9 – 12 ]. These salts were synthesized by the 
 counteranion replacement reaction of unstable pyridine-F 2  compounds [ 13 ] which 
violently decompose above -2 °C. The isolation of the stable salts followed shortly 
after Gakh’s earlier report that the pyridine-F 2  compound, proposed as an 
JV-fl uoropyridinium structure, reacted in situ with a trinitromethane salt to form 
2-(trinitromethyl)pyridine in a 14 % yield [ 14 ]. The results of these efforts, including 
the discovery of the stable  N -fl uoropyridinium salts, have opened up a new area in 
pyridine chemistry [ 15 ,  16 ]. In 1987, the T. Umemoto and coworker reported novel 
base-induced reactions of the stable  N -fl uoropyridinium salts  3  [ 17 ] (Scheme  1 ).
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     Scheme 1              

    N -Fluoropyridinium salts  5  are effi cient precursors in the synthesis of substituted 
2-fl uoropyridines. They can be conveniently prepared in good yields by the reaction of 
the corresponding pyridine with F 2 /N 2  at the presence of strong acid [ 17 ]. 
 N -Fluoropyridinium tetrafl uoroborates, hexafl uoroantimonates or hexafl uorophosphates 
( 5 , X=BF 4 , SbF 6 , PF 6 ) upon treatment with a base undergo an exothermic reaction to 
form selectively 2-fl uoropyridines in moderate to high yield (Table  1 ) [ 18 ]. The reaction 
yields depend on the media’s basicity and in a stronger degree on the presence of sub-
stituents in the pyridine ring. In addition, it was demonstrated that the yields of com-
pounds  6  using ammonium fl uoride as a base without a solvent were identical to the 
yields of  6  using Et 3 N. Based on experimental data it was suggested that the fl uorine 
substituent in products  6  arrives from counter anion (BF 4  − , SbF 6  −  or PF 6  − ) [ 18 ] (Scheme  2 ).
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  Scheme 2           

    Compounds  6  can be obtained in one-pot process by reacting the corresponding 
pyridines with F 2 /N 2  mixture, followed by the subsequent treatment with Et 3 N [ 18 ]. 
However, the yields of the fl uorinated pyridines obtained by this protocol are 
 signifi cantly lower (22–35 %). 
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   Table 1    Preparation of 2-fl uoropyridine  6  from  N -fl uoropyridinium salts  5  [ 18 ]   

 R  X  Base (equiv.)  Yield, % 

 H  BF 4   Et 3 N (1)  66 
 H  BF 4   Et 3 N (3)  73 
 H  BF 4   Et 3 N (10  79 
 H  BF 4    n- Bu 4 N + F − (2.6)  80 
 H  SbF 6   Et 3 N (10)  78 
 H  BF 4   KF (9) (7 days, 40  ° C)  26 
 H  PF 6   Et 3 N (10)  74 
 4-Me  BF 4   Et 3 N (10)  80 
 3,5-(Me) 2   BF 4   Et 3 N (10)  87 
 3,5-(Me) 2   BF 4   Py (10)  30 
 4- t -Bu  BF 4   Et 3 N (10)  91 
 2-MeO  BF 4   Et 3 N (10)  75 
 2-MeO  BF 4   Py (10)  10 
 3,5- bis (CF 3 )  BF 4   Et 3 N (10)  99 
 3-CN  BF 4   Et 3 N (10)  51 
 3-CN  BF 4   Py (10)  49 
 4-NO 2   BF 4   Et 3 N (10)  21 
 4-NO 2   BF 4   Py (10)  31 

 The mechanism of this reaction was discussed in several publications [ 17 ,  18 ]. 
It was demonstrated that under workup with triethylamine in CH 2 Cl 2  or CH 2 Br 2  
trifl ate salt  3  gives a mixture of three compounds: 2-fl uoropyridine (7), 2- halopyridine 
 8 , and compound  9  [ 17 ] (Scheme  3 ). Similarly, it was demonstrated that salts  5  give 
2-diethylaminopyridines, 2-phenylaminopyridines, or 2-(2-furyl and 3-furyl) pyridines 
when they are reacted with Et 2 NH, benzene, or furan.

   It was proposed that under basic conditions salt  3  undergoes heterolytic C 2 -H 
bond cleavage to form carbene  10↔11 , which in its turn eliminates F ̄  to give cation 
 12↔13 . A subsequent reaction of  12↔13  with nucleophiles or  n -π-electron con-
taining molecules gives above mentioned products. Some transformations of salt  3  
leading to 2-substituted pyridines are shown below [ 17 ,  19 ] (Schemes  4  and  5 ).
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    Direct fl uorination of pyridine also can be carried out using CsSO 4 F as a source 
of fl uorine. It was shown that pyridine readily reacts with CsSO 4 F at room tempera-
ture producing a mixture of products (2-fl uoro-, 2-fl uorosulfonate- and 2-chloro- or 
2-alkoxy-pyridines) (Table  2 ) [ 20 ] (Scheme  6 ).
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2.2         Synthesis of 2-Fluoropyridines from 2-Aminopyridines 

 One of the typical examples of the Baltz-Schiemann reaction is synthesis of fl uoro-
substituted pyridines  19  from aminopyridines  18  [ 21 ]. In this variation the Baltz- 
Schiemann reaction is most often used for the synthesis of 2-fl uoropyridines [ 22 ]. 
On the fi rst step a diazonium tetrafl uoroborate is generated from 2-aminopyridine, 
NaNO 2  and solution of HF and BF 3  (HBF 4 ), while subsequent thermal decomposition 
of the diazonium salt leads to formation of 2-fl uoropyridines (Scheme  7 ). In this 
part of the chapter examples of synthesis 2-fl uoropyridines and illustrations of 
specifi c use Baltz-Schiemann reaction for preparation of biologically active derivatives 
of 2-fl uoropyridines are described.
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20 21
R NH2
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R = H, Me

  Scheme 8           
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  Scheme 7           

   Table 2    Products distribution in reaction between pyridine and CsSO 4 F [ 20 ]   

 Solvent 

 Yield, % 

 Solvent 

 Yield, % 

  7    17    8    7    17    8  

 n-C 5 H 12   56  44  –  CHCl 3   47  17  36; X = Cl 
 (CH 3 CH 2 ) 2 O  61  39  –  CH 2 Cl 2   26  12  62; X = Cl 
 c-C 6 H 12   70  30  –  C(CH 3 ) 3 OH  64  18  18; X = OC(CH 3 ) 3  
 CCl 4   70  30  –  CH(CH 3 ) 2 OH  22  7  71; X = OCH(CH 3 ) 2  

N
+ 2CsSO4F

N F

22°C, 0.5-4 h

N XN OSO2F

1 8

+ +

7 17

  Scheme 6           

   The reaction has general character. It is applied for the synthesis of various 2-, 3- or 
4-fl uoropyridines and is full enough described in earlier reviews [ 1 ,  3 ,  4 ]. Practical use 
the Baltz-Schiemann reaction for preparation of pesticides or medicines is described 
in reviews [ 6 ,  7 ]. Several variations of the Baltz-Schiemann reaction allow synthesis 
of fl uorinated pyridines in almost quantitative yields. For example, 2-fl uoropyridines 
 21  were prepared in 91–94 % yields by diazotization of 2-aminopyridines  20  with 
sodium nitrite in anhydrous HF or HF-pyridine complex [ 23 ] (Scheme  8 ).
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   3-Hydroxy-2-fl uoropyridine (25) was prepared from 2-amino-3- hydroxypyridine 
(24) by diazotization with NaNO 2  in HBF 4  solution [ 25 ]. Next, compound  25  was 
used for the preparation of 2-fl uoro-3-[2(S)-2-azetidinylmethoxy]pyridine (26), a 
closely related analog of the high affi nity nicotinic ligand A-85380 (Scheme  10 ).
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  Scheme 11           
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  Scheme 9           

   Substituted 2-fl uoro-5-fl uoroalkoxypyridines (23) were prepared in good to high 
yields by diazotization of substituted 2-aminopyridines  22  with NaNO 2  in HF. 
Subsequently they were used as starting materials for the synthesis of some herbi-
cides and insecticides [ 24 ] (Scheme  9 ).

   Synthesis of  exo -2-(2′-fl uorosubstituted 5′-pyridinyl)-7-azabicyclo[2.2.1] heptanes 
(28), novel nicotinic receptor antagonists, was based on diazotization reaction of cor-
responding 2-aminopyridines  27  using HF-pyridine complex [ 26 – 29 ] (Scheme  11 ). 
Classical examples of use of this reaction are resulted in earlier works [ 23 – 29 ]. Now 
the Baltz-Schiemann reaction continues to use for synthesis fl uorinated pyridines.

   2-Amino-3-methylpyridine (29) has been used for synthesis fl uorine-containing 
pyridine aldoximes of potential use for the treatment of organophosphorus nerve- 
agent poisoning [ 30 ]. The Baltz-Schiemann technique was used to convert 2-amino- 
3-methylpyridine into 2-fl uoro-3-methylpyridine (30), subsequent permanganate 
oxidation of  30  provided acid  31 . Finally conversion of  31  to acyl chloride  32  and 
Rosenmund reduction resulted in carboxaldehyde  33 . Previously this technique was 
reported to give poor yields with heterocyclic acyl chlorides. The conversion of  32  
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to carboxaldehyde  33  in good yield (66 %) demonstrated that fl uoroheterocyclic 
compounds could undergo facile catalytic reduction by hydrogen in boiling xylene. 
Carboxaldehyde  33  reacted smoothly with hydroxylamine to provide oxime  34  in 
60 % yield (Scheme  12 ). 2-Fluoropyridine-6-aldoxime was prepared similarly from 
2-amino-6-methylpyridine (→ 2-fl uoro-6-methylpyridine 39 % → -6-carboxylic 
acid 50 % → -6-carboxylic acid chloride 72 % → -6-carboxaldehyde 68 % → 6-oxime 
71 %) [ 30 ].
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  Scheme 12           

   Recently the Baltz-Schiemann reaction occupies important practical place for 
synthesis substituted 2-fl uoropyridines as an inhibitor and modulators of various kinase 
[ 31 – 33 ] and other biologically active compounds [ 1 ,  2 ,  34 ,  35 ], including F 18 -pyridines 
for radiotherapy of a cancer. Nucleoside analogues can be used to investigate a variety 
of enzyme substrate interactions, including polymerase dNTP recognition or protein-
DNA targeting. They can also be incorporated into nucleic acid sequences using con-
ventional synthesis protocols to explore the structural and functional aspects of DNA 
or RNA. In one class of DNA analogues fl uorine replaces the carbonyls and methyl 
replaces the exocyclic amino groups in the nucleobase heterocycle yielding a hydro-
phobic isostere of the natural nucleoside with the desired molecular shape [ 36 – 38 ]. 
Substituted 2-fl uoropyridines were recently used in the synthesis of pyridine 
C-nucleosides as analogues of the natural nucleosides dC and dU [ 39 ]. Commercially 
available 2,6-diaminopyridine (35) was used as the starting material for these synthe-
sis. Compound  35  was fi st transformed into the 2,6-diamino-3-iodopyridine (36) which 
was acylated and then converted into 6-amino-2-fl uoro-3-iodopyridine (39), which was 
transformed into 6-(4-nitrophenyldimethoxy)-2-fl uoro-3-iodopyridine (41). Both  39  
and  41  were used for the synthesis of nucleosides  42  and  43  [ 39 ] (Scheme  13 ).

2.3        Nucleophilic Substitution in 2-Substituted Pyridines 

 Pyridines containing leaving groups (Hal, R 3 N + , SO 2 R, NO 2 ) in position 2 are often 
used as starting materials for preparation of 2-fl uoropyridines in nucleophilic 
 substitution reactions. Typical nucleophiles are fl uorides of alkaline metals, hydro-
fl uoric acid, tetrabutylammonium fl uoride, and fl uoroboric acid. Although this 
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method allows preparation of 2-fl uoropyridines in good yields, its main disadvantages 
include a set of special demands towards fl uorine producing reagents, which, if not 
otherwise met, will signifi cantly reduce the yield of the fi nal products. In majority 
of all cases these reactions must be conducted in a dry aprotic solvents (DMSO, 
DMF, THF) with fl uoride source introduced as a fi ne dry powder (normally due to 
its low solubility of fl uorides in these solvents), since the hydration signifi cantly 
reduces the nucleophilicity of fl uoride anion. Dry environment for these reactions is 
dictated by a very high solvation ratio of the fl uoride anion in water, which in its 
turn signifi cantly increases its steric hindrance and reduces its nucleophilicity. 
However, in some cases high reactivity of the fl uoride anion in water-organic solvent 
two-phase system can be maintained, for example, using crown ethers [ 40 ]. Recently 
it was shown that bulky  tert -butanol as a solvent in nucleophilic substitution reactions 
gives only partially shielded solvates with fl uoride anion and actually increases 
fl uoride anion reactivity [ 40 ]. 

 It was shown that 2-halopyridines  44  containing chlorine substituent in position 
3, can be selectively converted into 2-fl uoropyridines  45  by treatment with KF [ 41 ] 
(Scheme  14 ). The reactions were conducted at elevated temperature (100–200 °C) 
producing fi nal pyridines  45  in 14–94 % yields (Table  3 ).
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  Scheme 13           
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    One-step synthesis 2-fl uoropyridine (7) from 2-chloropyridine (4) in HF at tem-
perature 350 °C with use as catalyst MgO is of interest for the industry [ 42 ] 
(Scheme  15 ). This method is the advanced of three-steps method [ 43 ]. For synthesis 
2-F 18 -pyridines (46) reactions of nucleophilic substitution of F-, NO 2 - and NH 2 - 
groups by F 18  are used [ 44 – 46 ] (Scheme  16 ). The effective reagent – catalyst in 
synthesis 2-F 18 -pyridines appeared 2,2,2-Cryptand (49) at the presence of which 
time of reaction is reduced up to 20 min. It is necessary to note, that 2-F 18 -pyridines 
are used in radiobiology of a cancer, and half-life period of F 18  is equal to 12 h.
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4 46

R, K2CO3, H2O, 20 min., 140°C

N NNO2 F18

47 46

R, K2CO3, KF,H2O, 20 min., 140°C
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O

N O

O
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OO

O
F 18FR = .

49 2,2,2-Cryptand

  Scheme 16           

    Table 3    Preparation of 2-fl uoropyridine  45  [ 41 ]   

 Compound  X  Y  R  Temp. °C  Compound  Y  R  Yield % 

  44a   Cl  Cl  Cl  200   45a   Cl  Cl  76.6 
  44b   Cl  H  Cl  200   45b   H  Cl  72.4 
  44c   Cl  H  CH 3   200   45c   H  CH 3   33 
  44d   Cl  Cl  CH 3   200   45d   Cl  CH 3   69.4 
  44e   Cl  H  CF 3   200   45e   H  CF 3   83–94 
  44f   Br  H  NO 2   100   45f   H  NO 2   14 

N NCl F
4 7

HF, MgO, 4.5h, 350°C

  Scheme 15           

    Fluorination of pyridine by complex AlF 3  and CuF 2  at 450–500 °C forms a 
 mixture of 2-fl uoropyridine and 2,6-difl uoropyridine in yields 32 and 11 % accord-
ingly [ 47 ]. 3-Bromo-2-nitropyridine reacts with Bu 4 N + F −  in DMF at 20 °C to form 
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2- fl uoro-3-bromopyridine. Nucleophilic substitution proceeds highly  regioselectively 
in the second position of pyridine [ 48 ]. 5-Amino-2-fl uoropyridine used as an 
 epilepsy medicine [ 49 ] was it is synthesized from 2-chloro-5-nitropyridine. 

 Fluorine-18 labeling and the pharmacological evaluation of a 2-fl uoropyridine 
analog of ABP688, [ 18  F]-(E)-3-((6-fl uoropyridin-2-yl)ethynyl)cyclohex-2-enone 
O-methyl oxime ([ 18 F]-FPECMO) (50), as a potential mGluR 5 imaging agent is 
described in the work [ 50 ]. Compound  50  was synthesized by reaction of nucleo-
philic substitution with use Kryptofi x K 222  (Scheme  17 ).
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  Scheme 17           
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  Scheme 18           

   3-Cyano-2-fl uoropyridines are an important class of biologically active com-
pounds that include potent kinase inhibitors, potassium channel inhibitors, and CNS 
active agents  51–53  (Fig.  1 ) [ 51 – 55 ]. In addition, fl uorinated pyridines can be poten-
tially used as labeling agents for various spectroscopic techniques such as positron 
emission tomography, X-ray photoelectron spectroscopy, and NMR spectroscopy.

   Paper [ 56 ] describes the synthesis of 3-cyano-2-fl uoropyridines (54) by nucleo-
philic substitution of 2-nucleofuge-containing substituted 3-cyanopyridines 
(Scheme  18 ). This method employs classic sources of nucleophilic fl uoride such 
as KF and Bu 4 NF in DMF or DMSO at higher temperatures. The use of chloride 
and bromide 2-nucleofuges affords 3-cyano-2-fl uoropyridines in moderate to 
good yields. The 2-bromo substituted starting materials (55) present the advantage 
of being synthesized in one step in good yields, contrary to the 2-chloro-3- 
cyanopyridines (56) which are prepared in moderate yields. Readily available 
3-cyanopyridine-2(1 H )-thiones have also been C2-fl uorinated in good yields via 
3-cyano-2-methanesulfonylpyridines (57) and tetrahydrothiophenium (58) salt [ 56 ].
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   Substituted 2-bromo-3-cyanopyridines (59) were successfully converted into 
substituted 3-cyano-2-fl uoropyridines (60) (Scheme  19 ). A nucleophilic replace-
ment of bromine with fl uorine was achieved in heated DMF with dry KF (Method 
A) or with dry TBAF (Method B). The yields of 2-fl uoropyridines  60  were 15–20 % 
higher for Method B [ 56 ].

Ar1

Ar2 BrN

CN method A: KF, DMF, D

method B: Bu4NF, DMF, D

59

Ar1

Ar2 FN

CN

60

Ar1 Ar2 Yield 
(method A)

Yield 
(method B)

C6H5 C6H5 62 90
C6H5 4-F-C6H4 62 82
4-Cl-C6H4 C6H5 68 76
4-CH3-C6H4 C6H5 76 87
4-CH3O-C6H4 C6H5 76 90
2-C4H3S C6H5 63 76

  Scheme 19           
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  Fig. 1    Examples of biologically active fl uorinated pyridines       

   Due to hydration signifi cantly reduces the nucleophilicity of the fl uoride anion 
[ 1 ,  56 ], these reactions are normally conducted in dry aprotic solvents (DMSO, 
DMF, THF) with the fl uoride source introduced as a fi ne dry powder (due to its low 
solubility in these solvents). At the same time, reactions of 2- and 4-halopyridines 
with KF ̇ 2H 2 O or reactions in aqueous solutions were shown to be very slow and 
incomplete. Although, considerable effort has gone into the development and opti-
mization of anhydrous conditions for the preparation of fl uorinated pyridines, to the 
best of our knowledge, there are no reports on these reactions in untreated reagent 
grade solvents or in aqueous medium. 

 Recently it has been shown a practical synthetic approach towards 3-cyano- 2-
fl uoropyrines based on nucleophilic substitution of various leaving groups at the 
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2-postion of pyridine using “spray-dried” KF or Bu 4 NF in dry DMF and DMSO 
[ 56 ]. The developed protocols offered good to high yields of the fl uorinated pyri-
dines, however, they suffered from relatively harsh conditions, prolonged  reaction 
times, and the necessity to use anhydrous solvents and reagents. As such, 3-cyano- 
2-fl uoropyridines (54) were obtained from pyridines  55, 56  by heating for 8 h at 
140 °C (Scheme  20 ) (Table  3 ).

R1

R2

N

Z

Hal

Hal = Br (55); Cl (56).

2 KF.2H2O
MW, DMSO

55;56

R3

R1

R2

N

Z

F

54

R3

  Scheme 20           

   Being based on fact that microwave irradiation can promote dehydration, nucleo-
philic substitution reaction using a series of substituted halogen azines under micro-
wave irradiation using readily available KF ̇ 2H 2 O in non-dry reagent-grade 
dimethylsulfoxide were investigated [ 57 ]. 

 2-Bromo(chloro)-3-cyanopyridines (55, 56) were reacted with KF ̇ 2H 2 O in 
DMSO in a sealed vessel using a focused microwave synthesis system (CEM 
Discover BenchMate) under continuous stirring [ 57 ]. The incubation time was 
1.5–4 min with a fi xed 300 W microwave irradiation power and a maximum tem-
perature of 120 °C. Under such conditions the highest yields of the target  compounds 
were achieved when the ratio of halogenazine to KF ̇ 2H 2 O was 1:2 (Table  4 ).

   Taking into account that nucleophilic substitution reactions of azines  55, 56  typi-
cally do not occur in untreated DMSO and KF ̇ 2H 2 O under traditional heating, it is 
safe to assume that microwave irradiation promotes dissociation of KF and desolva-
tion of the fl uorine anion, which subsequently takes part in the nucleophilic substi-
tution reaction, similarly to “spray-dried” KF in anhydrous DMSO (Fig.  2 ).

3         Synthesis of 3-Fluoropyridines 

3.1     Synthesis of 3-Fluoropyridines from 3-Aminopyridines 

 The Baltz-Schiemann reaction is frequently used in synthesis substituted 
3- fl uoropyridine  58 –intermediate for synthesis of biologically active compounds 
[ 58 – 62 ]. In particular, compound  58  was used for synthesis of compound  59  active 
against atherosclerosis dyslipidemias [ 59 ,  60 ] (Scheme  21 ).

   2,6-Dibromopyridine-3-diazonium tetrafl uoroborate (60) was transformed at 
heating into 2,6-dibromo-3-fl uoropyridines (61), which was used in synthesis 
inhibitors of Btk (Bruton’s Tyrosine Kinaze) (62) [ 63 ] (Scheme  22 ).
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   The modifi ed method for the synthesis of 3-fl uoropyridine (63) by heating of 
borofl uoropyridines diazonium salts (64) or 3-(diisopropyltriazo)-pyridine (65) in 
perfl uorohexane [ 64 ] was recently developed (Scheme  23 ).

   The Baltz-Schiemann reaction was applied for the synthesis of 2-amino-5- 
fl uoropyridine (67) which is a starting material for synthesis pyridothiadiazene 
1,1-dioxides (68) acting as AMPA potentiators [ 65 ]. 2-Amino-5-fl uoropyridine (67) 
was obtained from 2-amino-5-nitropyridine (66) by row of transformations: acety-
lation by acetic anhydride to protect a 2-amino group, hydrogenation of nitro group 
to the amine and then by Baltz-Schiemann reaction enter atom of fl uorine and at a 
fi nal stage removing protection of 2-amino group afforded  67  (Scheme  24 ).

    Table 4    Structures of starting materials  55, 56  and yields of fl uoroazines  54    

 Starting material  Reaction product 

 Yield, % 

 “Spray-dried” KF, anhydrous 
DMSO, 140 °C, 8 h  56   

 KF ̇ 2H 2 O, DMSO, MW 
300 W  57   
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CN
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F

      
N
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      N F
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  N
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      N
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CH3

    

 75  78 

  

CN

ClN       

CN
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CN

Cl

      

N
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  Fig. 2    Desolvation of F −  anion under microwave irradiation       
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  Scheme 21           
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   3-Fluropyridine-2-aldoxime was prepared similarly compound  34  from 3-amino- 
2-methylpyridine [ 30 ] (Scheme  25 ).

   The Baltz - Schiemann reaction is the most often used method for the synthesis 
of 3-fl uoropyridines. This method utilizes readily accessible 3-nitropyridies as the 
precursors; since they can be readily reduced into amines and then used in the Baltz- 
Schiemann reaction. In this section selected examples applied for the synthesis of 
practically important compounds are given. For example, the Baltz-Schiemann 
reaction was used for the synthesis of fl uorosubstituted epibatidine analog  69  
(epibatidine is a high affi nity nonselective ligand for nicotinic cholinergic receptor 
(nAChRs)) [ 66 ] (Scheme  26 ).

Boc
Boc

N
N

N
N

F

69

NH2

HF.Py, NaNO2

72%

  Scheme 26           
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55% N N

F N
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CH3

CH3

H3C CH3
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71%

64 6563
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  Scheme 24           
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   3-Deoxy-3-fl uoropyridoxamine 5′-phosphate (75) (a coenzyme B 6  analog) was 
also synthesized using the Baltz-Schiemann reaction [ 67 ]. First substituted pyridine 
 70  was nitrated to form 3-nitropyridine  71 , which was subsequently treated with 
PCl 5  to form 2-chloro-5-nitropyridine  72 . It was then reduced in two steps to form 
3-aminopyridine  73 , converted into 3-fl uoropyridine  74  by the Baltz-Schiemann 
reaction, and afterwards was transformed into 3-deoxy-3-fl uoropyridoxamine 
5′-phosphate (F-PMP) (75) (Scheme  27 ).

N

COOC2H5

CN

OHH3C N

COOC2H5

CN

OHH3C

O2N

N

COOC2H5

CN

ClH3C

O2N
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H2; Pd/BaCO3

N
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CN

H3C

H2N

N

COOC2H5

CN

H3C

FNaNO2, HF, Py

NH3C

F
OPO3

-

NH2

7170 72

4737

75

74%

  Scheme 27           

3.2        Substitution Reactions in the Synthesis 
of 3-Fluoropyridines 

 The nucleophilic substitution reactions leading to 3-fl uoropyridines are rare. 
Although 2-amino (or buthylthio)-3-aminopyridines do not react with TBAF [ 68 ], 
the introduction of the electron-withdrawing group in position 2 of the pyridine ring 
in some cases makes possible such transformations. For example, 2-cyano-3- 
nitropyridine reacts with TBAF forming 2-cyano-3-fl uoropyridine in 64 % yield 
[ 68 ]. Similar transformations were reported for 3-substituted-4- carbethoxypyridines, 
which also undergo nucleophilic substitution at the position 3 of pyridine ring [ 69 ]. 
Potent  Bradykinin B  was synthesized from bromopyridine  77 . This compound 
was obtained from 5-bromo-2-cyano-3-nitropyridine (76). At the reaction of 
nucleophilic substitution of NO 2 -group the TBAF and H 2 SO 4  as the catalyst were 
used. The further transformations result in compound  78  [ 70 ] (Scheme  28 ). The 
similar method of synthesis of compound  77  was used in synthesis of biologically 
active substances [ 71 ]. The nucleophilic substitution of NO 2 -group by fl uorine in 
compound  76  followed by addition of 2 N HCl results in muriatic 5-bromo-2-cyano- 
3-fl uoropyridine [ 72 ].
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   The replacement of bromine into fl uorine in compound  79  was performed in 
two-steps. Transmetallation with BuLi followed by fl uorination of the organolith-
ium compound with N-fl uorobenzenesulfonimide resulted in 3-fl uoropyridine  80 . It 
was used as a starting material for synthesis of substituted 6-thia-1,2,3,5- 
tetraazabenzoazulenes (81) – anticancer medicines [ 73 ] (Scheme  29 ).

Cl N
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O

O
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   High yield method for the preparation of substituted 3-fl uoropyridines  83  with 
use Selectfl uor® (1-(chloromethyl)-4-fl uoro-1,4-diazoniabicyclo-[2.2.2] octane bis 
(tetrafl uoroborate)) has been applied in synthesis of compounds possessing by her-
bicidal activity [ 74 ] (Scheme  30 ). This way allows to incorporate into a molecule 
atom of fl uorine, not touching an amino group and halogens in initial compound  82 .
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   N-fl uoro-2,4,6-trimethylpyridinium tetrafl uoroborate (F-TMP-BF 4 ) is also 
 effective fl uorinating reagent which have been used in synthesis 3-fl uoropyridine 
(63) from Grignard mediated compound (85) [ 75 ] (Scheme  31 ).

Br Mg.LiCl
or

MgBr.LiCl F-TMP.BF4

F-TMP-BF4F-TMP-BF4 =

heptane

F

N

638584
61%
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F
N

Me Me
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N

  Scheme 31           
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  Scheme 33           

N N

B(OH)2 F
1. 1.2 equiv NaOH, MeOH;
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3 A MS, acetone, 23°C86 63

  Scheme 32           

   Wide spectrum of fl uorinated aromatic compounds has been synthesized by elec-
trophilic fl uorination of arylboronic acids. So 3-fl uoropyridine (63) has been obtained 
from 3-pyridine boronic acids  86  and F-TEDA-BF 4  in 72 % yield [ 76 ] (Scheme  32 ).

   A new strategy for the synthesis of poly-substituted pyridines  88  based on C-F 
bond breaking of the anionically activated fl uoroalkyl group  87  is described 
(Scheme  33 ). A series of 2,6-disubstituted 4-amino pyridines were prepared through 
this domino process in high yields under noble metal-free conditions, making this 
method a supplement to pyridine synthesis [ 77 ].

   A possible mechanism of this transformation includes hydroamination of alkyny-
limine with amine to form the intermediate vinylogous amidine  89  (Scheme  34 ), 
which undergoes deprotonation and dehydrofl uorination to generate an anion and 
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an imine coexisting in one molecule. When the reaction is carried out at a low 
 temperature with a soluble base (path a), the in situ generated amide nucleophile 
attacks imine immediately without isomerization to form dihydropyrimidine  90  
through a kinetically controlled pathway. Raising the reaction temperature (path b), 
however, makes the carbon nucleophilic addition become an option, rendering a 
1,2- dihydropyridine ring under thermodynamic control, which fi nalizes the pyri-
dine ring after proton migration,  β -F elimination, and isomerization, and an insolu-
ble base can effectively inhibit the kinetic pathway.
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  Scheme 34           

4         Synthesis of 4-Fluoropyridines 

 In general, the reactivity of the pyridine ring in nucleophilic substitution reaction 
decreases in the row C2 > C4 > C3. Consequently, more synthetic routes are reported 
for 4-fl uoropyridines compared to 3-fl uoropyridines. Pyridines can form cationic 
complexes with electrophiles resulting in activation of heterocyclic ring towards 
nucleophilic substitution. On the other hand, pyridines have signifi cantly reduced 
reactivity towards electrophiles and typically undergo electrophilic substitution 
reactions in the presence of strong Lewis acids selectively in the position 3 [ 78 ]. 

4.1     Baltz-Schiemann Reaction in the Synthesis 
of 4-Fluoropyridines 

 The Baltz-Schiemann reaction can also be used for the synthesis of 4-fl uoropyridine 
derivatives [ 21 ,  22 ,  26 – 29 ]. For example, it was successfully applied to the synthe-
sis of 4-fl uoroazafl uorene [ 79 ]. First, 1-amino-4-azafl uorene (92) was synthesized 
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by amination of 4-azafl uorene (91) using the Chichibabin reaction and then was 
converted into 1-fl uoro-4-azafl uoren (93) in 18 % yield (Scheme  35 ).
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  Scheme 35           

   6-Hydroxy-2-chloro-4-fl uoroquinolones (95) have been synthesized by Baltz- 
Schiemann reaction for creation of novel quinolone compounds applied as 
S-nitrosoglutathione reductase (GSNOR) inhibitors [ 80 ] (Scheme  36 ). 
4-Fluoropyridinone synthesized by Baltz-Schiemann reaction from 2-chloro-4- 
fl uoropyridine, it is used in synthesis 4-fl uorocytisine [ 81 ].

4.2        Substitution Reaction in the Synthesis 
of 4-Fluoropyridines 

 Usually 4-fl uoropyridines are synthesized from their nucleofuge-containing precursors 
by the nucleophilic substitution reaction. For example, 4-nitropyridines  96  react 
with TBAF in DMF with the formation of substituted 4-fl uoropyridines  97  [ 68 ] 
(Scheme  37 ). This reaction is highly regioselective despite of the presence of relatively 
good leaving group (Cl or CN) in position 2 of pyridine.

   Radiolabeled 4-[ 18  F]fl uoropyridine can be synthesized by no-carrier-added 
nucleophilic aromatic substitution with K[ 18  F]F-K 222  [ 82 ]. In another instances, the 
nucleophilic substitution reaction was also employed for the synthesis of steroids 
containing 4-fl uoropyridine motif [ 83 ,  84 ], and for the synthesis of 4- fl uoropyridines 
annulated with pyrrole (azoindoles) [ 85 ,  86 ]. Substantial difference in the reactivity 
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of the pyridinium ring toward nucleophilic substitution in 5-iodo-2,4- difl uorpyridine 
was effectively used for the preparation of 4-fl uoropyridines  99, 100  using difl uoro-
pyridine  98  as starting material [ 87 ] (Scheme  38 ).
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   Unsubstituted 4-fl uoropyridine has been synthesized by reaction of 4- nitropyridine 
with Bu 4 NF at heating in DMSO [ 88 ]. Nucleophilic substitution of NO 2 -group in 
quinolone  101  proceeds with use KF in DMSO at 140 °C (1.5 h) with formation 
substituted 4-fl uoroquinolone  102  in 37 % yield [ 89 ] (Scheme  39 ).

   New anesthetic compound – tetrahydro-1H-cyclopropa[3,4]cyclopenta[1,2-c]
pyrazole (104) has been prepared by reaction iodopyridine  103  with CsF in DMSO 
without change of stereochemistry at rather hard conditions (60 min. at 200 °C) [ 90 ] 
(Scheme  40 ). Compounds  104  are modulators of receptors of cannabinoids and can 
be used against a cancer and Alzheimer’s and Parkinson’s diseases [ 90 ].

   Compound  106  was obtained by multistep approach including nucleophilic 
 substitution of NO 2  group by F (using Bu 4 NF as fl uorination agent) in  105  
(Scheme  41 ). Compound  106  is used in synthesis of new drugs against Alzheimer’s 
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disease, schizophrenia and others [ 91 ]. The reaction of nucleophilic substitution 
used for synthesis of 4-fl uoro(pyridines)quinolones as starting materials to obtain 
new biologically active compounds [ 89 ,  92 ,  93 ]. It is possible to note, that in various 
conditions for this reaction have been published, however as a whole this method 
became classical, that is evidently displayed in reviews [ 1 – 4 ], and also in book of 
Fainzil’berg and Furin [ 94 ].

   Monofl uoropyridines were obtained also from polyfl uoropyridines, using reac-
tions of nucleophilic substitution. N-Ethyl-2,6-diamino-4-fl uoropyridinium trifl ate 
(108) was synthesized from N-ethyl-2,4,6-trifl uoropyridinium trifl ate (107) by 
interaction anhydrous ammonia gas in MeCN at 0 °C during 5–10 min. in 72 % 
yield [ 95 ] (Scheme  42 ). Compound  108  is used for synthesis biologically active 
8-fl uoro-4-ethyl-4H-bis[1,2,3]dithiazolo[4,5-b:5′,4′-e]pyridine-3-yl [ 95 ].
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  Scheme 42           

   Substituted 4-fl uoropyridine  110  was synthesized from 2-chloro-5-tert-butylcar-
bonylaminopyridine (109). Treatment of  109  (Scheme  43 ) with  n -BuLi followed by 
quenching with  N- fl uorobenzenesulfonimide (NFSI) gave the desired fl uoropyri-
dine  110  in 60 % yield [ 96 ]. Compound  110  is used in synthesis a potent, orally 
active, brain penetrant inhibitor of phosphodiesterase 5 (PDE5).
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   New effective deoxyfl uorination reagent – N,N-diaryl-2,2-difl uoroimidazol 
(112) was applied for synthesis of fl uorinated pyridines from corresponding 
hydroxypyridines [ 97 ]. Fluorination of pyrine-4(1H)-one (111) with compound  112  
in toluene at the presence of 3 equivalents of CsF at 80 °С lead to 4-fl uoropyridine 
(113) [ 98 ] (Scheme  44 ). Similarly 3-fl uoro- and 2-fl uoropyridines were obtained in 
84 and 50 % yields accordingly.
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5         Synthesis of Di- and Polyfl uoropyridines 

 In many cases, di- and polyfl uoropyridines can be prepared using the same reactions 
for preparation of monofl uorinated analogues. The degree of fl uorination in some 
case can be controlled, however often it leads to mixtures of polyfl uorinated 
 compounds. Some polyfl uoropyridines can be reduced back to di- or monofl uoropyri-
dines, which can be successfully used for a selective synthesis of these compounds. 

5.1     Synthesis of Difl uoropyridines 

 Pentafl uoro- and tetrafl uoropyridines, which are usually prepared from pentachloro-
pyridine using Halex process, can be used as the starting materials for the  synthesis of 
difl uoropyridines [ 99 ]. For example, it was demonstrated that pentafl uoropyridine can 
be utilized in the synthesis of substituted 3,5- difl uoropyridines, which were investi-
gated as new antithrombotic drugs [ 100 ,  101 ]. However, one of the most  commonly 
used reaction for the synthesis of difl uoropyridines is a selective reduction of polyhalo-
genated pyridines [ 99 ]. For example, chlorodifl uoropyridines  114, 116, 118  can be 
reduced to the corresponding difl uoropyridines  115, 117  and  98  using palladium on 
carbon/ammonium formate in 80 % acetic acid. The described reaction is highly 
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selective and only chlorine atom is getting reduced. Similarly, a catalytic hydrogenation 
of 3-chloro-4,5- difl uoropyridine (119) provided mixture of 3,4-difl uoropyridine (120) 
along with small amount of 3-fl uoropyridine (ratio 95:3) [ 99 ] (Scheme  45 ).
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   Other possible synthetic route leading to difl uoropyridines such as  123, 120  and 
 98  is based on the reductive deamination of difl uoropyridinehydrazines in the pres-
ence of CuSO 4  or MnO 2  combined with the removal of SiR 3  group [ 99 ] (Scheme  46 ).
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   3,4-Difl uoropyridine ( 120 , 79 %) can be synthesized by the nucleophilic 
 substitution of chlorine in 4-chloro-3-fl uoropyridine with KF [ 99 ], while, 
2,5- difl uoropyridine ( 117 , 75 %) can be prepared by deamination reaction of 
2-hydrazino-3,6-difl uropyridine in the presence of NaOH [ 99 ]. 

 An interesting example is synthesis of 3,5-difl uoropyridine  130  [ 102 ]. This com-
pound was prepared from 3,5-dibromo-4-formylpyridine (127) by electrophilic 
fl uorination of its protected forms  128  or  129  by  N -fl uoro-benzenesulfonimide 
(NFSI) (Scheme  47 ).
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   As it was mentioned, substituted difl uoropyridines can be used for the synthesis 
of monofl uorinated pyridines. For example, varied difl uoropyridines were converted 
into monofl uoropyridyl-carboxylic acids [ 103 ,  104 ] and hydrazines [ 79 ,  105 ] by the 
reaction with the corresponding nucleophilic reagents. Reactions of nucleophilic 
substitution in dichloro-, trichloro- and also trifl uoro-or tetrafl uoropyridines by 
waterless KF, Bu 4 NF and others nucleophilic reagent most are frequently used for 
synthesis difl uoropyridines. For example, the reaction of 2,3,5-trichloropyridine 
(131) with KF in DMF proceeds during 6 h at 150 °С to give 5-chloro-2,3- 
difl uoropyridine (114) in 95 % yield [ 106 ] (Scheme  48 ). Similarly compound  114  
was obtained using Bu 4 NBr in a mixture with KF in 42 % yield [ 107 ].

   5-Bromo-2,3-difl uoropyridine (133) it is synthesized by Baltz-Schiemann 
reaction from 2-amino-5-bromo-3-fl uoropyridine (132) [ 108 ] (Scheme  49 ).
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   Reaction of compound  114  with boronic acid  134  resulted in a derivative 
2,3-difl uoropyridine  135 , used as HGF (Hepatocyde Growth Factor) modulators 
[ 109 ] (Scheme  50 ).
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   Substituted 2,3-difl uoropyridine  137  was prepared from 3-fl uoropyridine precur-
sor  136  using nucleophilic substitution with KF [ 110 ] (Scheme  51 ). Compound  137  
was obtained similarly from substituted 3-fl uoropyridine  138  by multistep sequence 
including chlorination, protection amino group, nucleophilic substitution with KF 
and removal of protective acyl groups [ 111 ] (Scheme  51 ). Compound  137  is used 
for synthesis of insecticides [ 110 ,  111 ].

   4- or 5-halosubstituted 2,3-difl uoropyridines are widely used for synthesis of 
biologically active compounds [ 108 ,  112 – 115 ]. These reactions of nucleophilic 
substitution are highly regioselective. Various heterocycles containing 
2,3- difl uoropyridine group  139–143  were synthesized by this method (Fig.  3 ).

   Various polyfl uoropyridines have found application in synthesis hardly available 
difl uoropyridines fused with others heterocycles [ 116 ]. Reaction of pentafl uoropyri-
dine (144) with 2-amino-3-picoline (145) under basic conditions in acetonitrile at 
refl ux or under microwave heating gave only one product – dipyridoimidazole  146  
(Scheme  52 ).

   Reaction of 2-amino-3-picoline (145) with 4-phenylsulfonyl-tetrafl uoropyridine 
(147) was less selective than the reactions described above and three major 
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products,  148 ,  149  and  146 , were synthesized accordingly  19  F NMR. Interaction of 
4-cyano-tetrafl uoropyridine (150) with 2-amino-3-methylpyridine (145) also 
resulted in formation a mixture of isomers of dipyridoimidazoles  151, 152  [ 116 ] 
(Scheme  53 ).
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   Various substituted difl iorodipyridoimidazoles  153–158  have been synthesized 
on the basis of obtained dipyridoimidazole  146  [ 116 ]. All reactions of  146  with 
nucleophiles gave products arising from selective displacement of fl uorine located 
at the C-1 position. Reaction with only one equivalent of lithium benzenethiolate 
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gave the disubstituted derivative  160  as the major product (44 %) arising from 
 displacement of fl uorine atoms located at the C-1 and C-4 positions, with only a 
small amount of the monosubstituted product  159  (2 %). Subsequently, reaction of 
 146  with two equivalents of lithium benzenethiolate gave high yields of  160  [ 116 ] 
(Scheme  54 ).
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   4-Phenylsulfonyl tetrafl uoropyridine (147) was used successfully for synthesis 
difl uoropyridines fused with hydrogenated pyridines  162–170  [ 117 ]. Synthesis of 
such compounds is based on reaction double (threefold) nucleophilic substitution of 
atoms of fl uorine (sulfonyl groups) with 1,4-dinucleophiles (161) (Scheme  55 ).

   By reaction of 5-chloro-2,3,6-trifl uoropyridine (171) with vinylstannane  172  and 
monothioacetic acids (173) 5,6-difl uoro-2,3-dihydrothieno[2,3-b]pyridine (174) 
was obtained and used as precursor for synthesis of anticancer drugs [ 118 ] 
(Scheme  56 ).

   Examples of synthesis substituted 2,6-difl uoropyridines are not numerous 
(Scheme  57 ). 3-Chloro-2,6-difl uoropyridine (176) was obtained by interaction 
2,3,6- trichloropyridine (175) with KF in sulfolane in 89 % yield [ 119 ]. 4-Bromo- 
2,6-difl uoropyridine (178) it is synthesized from symmetric trifl uoropyridine (177) 
[ 120 ]. Reaction of 2,6-dichloropyridine (179) with KF at heating in sulfolane at 
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presence of 18-crown-6 give 2,6-difl uoropyridine (180) in 78 % yield [ 121 ]. Heating 
of 2,6-dichloro-4-triphenylmethylaminopyridine (181) with 2,2,2-cryptand, KF in 
DMSO during 72 h give a mixture of compounds  182–184  [ 122 ].

   Synthesis of substituted 2,6-difl uoropyridine – starting materials for generation 
of potential medicines, is based on use of polyhalogenated pyridines in reactions of 
nucleophilic substitution. Compound  185a  was transformed successively to 
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substituted 2,6-difl uoro-4-hydroxymethylpyridine ( 186a ), which was used in 
 synthesis of HIV-1 non-nucleoside reverse transcriptase inhibitor  187a  [ 123 ] 
(Scheme  58 ).
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   A range of fl uorinated 3-hydroxypyridin-4-ones having fl uorine or fl uorinated 
substituent attached at 2- or 5- position of the pyridine ring has been synthesized in 
order to improve biological properties of 3-hydroxypyridin-4-ones. The syntheses 
of di- and trifl uoro-3-hydroxypyridin-4-ones ( 191a ) and ( 191b ) started from the 
pentahalo substituted pyridines  185 . Treatment of the commercially available 
3,5-dichloro-2,4,6-trifl uoropyridine ( 185a ) or 3-chloro-2,4,5,6-tetrafl uoropyridine 
( 185b ) with 1 equivalents of sodium methoxide yielded  188  in good yield. Treatment 
of  188  with 10 % Pd/C at the presence of ammonium formate at 50 °C for 10 h gave 
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compounds  189  in high yields. Subsequent lithiation, electrophilic substitution, and 
oxidation as outlined above, introduced a hydroxyl group to afford compound  190 . 
The 4-methyl protecting group was removed to produce  191a  and  191b , respec-
tively [ 124 ] (Scheme  59 ).
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   2,4-Difl uoro-3-nitropyridine ( 193 ) was used for synthesis antibacterial agents. 
 193  was prepared from 4-hydroxy-3-nitropyridine-2(1H)-on ( 192 ) by sequential 
processing with POCl 3  and then with KF [ 125 ] (Scheme  60 ).
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   Sequential reactions of N-substituted 4-fl uoroindole  194  with s-BuLi, NFSI and 
then with Bu 4 NF led to 4,5-difl uoroindole  195  in 60 % yield. Compound  195  was 
used as a starting material for synthesis of kinase inhibitors [ 126 ] (Scheme  61 ).
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   Pyrazolopyridine kinase inhibitors, containing 3,5-difl uoropyridine fragment 
 201  were prepared by multistep synthesis. Three-component reaction of trifl uoro-
pyridylpyridopyrazole ( 196 ), 3-methyl-2-(piperazin-2-yl)butan-2-ol ( 197 ) and 
1-trimethylsilylimidazole (198) proceeded with formation of a mixture isomers  199  
(R, S) and  200  (R, R). The reaction of isomer  199  (R, S) with TBAF in THF gives 
target compound  201  having (R, S) confi guration [ 127 ] (Scheme  62 ).
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   3,5-Difl uoro-2,4,6-triazidopyridine ( 202 ) has been synthesized by reaction of 
nucleophylic substitution from pentafl uoropyridine (144) and sodium azide [ 128 , 
 129 ]. The 3,5-difl uoro-2,4,6-trinitren ( 203 ) has been obtained further from this 
compound and investigated by IR-spectroscopy [ 128 ,  129 ] (Scheme  63 ).

   Nucleophilic substitution of 3,5-dichloropyridine ( 204 ) with KF led to 
3,5- difl uoropyridine (123) [ 130 ] (Scheme  64 ).
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   Substituted 2,5-difl uoropyridines  206  are obtained from the corresponding 
 aminopyridines  205  by Baltz-Schiemann reaction, which are used in various areas 
of organic synthesis, including synthesis of biologically active compounds [ 108 , 
 131 – 133 ]. For example, by few steps reaction 2-amino-3-bromo-5-fl uoropyridine 
( 205 ) was converted to biologically active compounds ( 210 ) by few steps [ 133 ] 
(Scheme  65 ).
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   2,3,6-Trifl uoropyridines were used for synthesis of substituted 
2,5- difl uoropyridines. The atom of fl uorine which is taking place in the position 2, 
is most nucleophilic. Therefore, reactions with nucleophilic reagent proceeded 
highly regioselectively. 3,6-Difl uoro-2-methoxypyridine ( 212 ) has been obtained 
from 2,3,6-trifl uoropyridine ( 211 ) in methanol at presence MeONa [ 134 – 136 ] 
(Scheme  66 ). Pyridine ( 212 ) was applied in synthesis of antiviral compounds [ 134 ]. 
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3,6-Difl uoropyridine-2(1 H )-one ( 213 ) has been obtained by reaction of  121  with 
MeONa in MeOH followed by treatment with Me 3 SiCl and NaI in MeCN [ 136 , 
 137 ] (Scheme  66 ).

   Trifl uoroazoindoline  215  has been widely used in reaction of nucleophilic 
 substitution for synthesis substituted difl uoroazoindolines  216–224 . The starting 
compound  215  has been obtained from tetrafl uoropyridine  214  by two steps 
(Scheme  67 ). It is interesting to note, that pyrrole ring formation at the second step 
of process proceeds under action of peroxide and explained by the radical mecha-
nism. Nucleophilic substitution with various N-, O- and S-nucleophiles proceeded 
regioselectively with replacement of atom F in the second position as well as in the 
previous cases [ 138 ].
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5.2        Synthesis of Trifl uoropyridines and Polyfl uoropyridines 

 Usually trifl uoropyridines are prepared by the reduction or nucleophilic substitution 
of perhalogenated pyridines [ 99 ]. However, the reaction of the corresponding 
2,3,5-trichloropyridine (131) with KF (in sulfolane, dimethylpropyleneurea, 220 °C, 
16 h) resulted in only partial fl uorination and formation of 2,3-difl uoro-5- 
chloropyridine (114) [ 99 ]. Attempts to prepare 2,3,5-trifl uoropyridine (121) from 
the corresponding trichloropyridine were unsuccessful (Scheme  68 ).
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   Pentachloropyridine ( 225)  was used as the starting material in the reaction with 
KF, fi rst producing dichlorotrifl uoropyridine ( 185a ). At higher temperature, this 
compound was converted into 3-chlorotetrafl uoropyridine ( 185b ) and then pentaf-
luoropyridine (144) [ 99 ]. Tetrafl uoropyridines  226, 228  were used in the reduction 
reactions for the selective synthesis of 2,3,6-trifl uoropyridine (121) or 
2,4,5- trifl uoropridine ( 230 ) [ 99 ] (Scheme  69 ).

   Various tri- and tetrafl uoropyridines  233, 236  and  239  have been synthesized 
from the corresponding di- and trifl uoropyridines  115 ,  121, 123.  The starting mate-
rial was fi rst lithiated by  n -BuLi and transformed into chlorofl uoropyridines  232 , 
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 238  and bromofl uoropyridine  238  by the reaction with C 2 Cl 3 F 3  or Br 2 . The last step 
of the synthesis is based on Halex exchange reaction using spray-dried KF in anhy-
drous DMSO to give corresponding polyfl uorinated pyridines  233 ,  236 ,  239  [ 99 ] 
(Scheme  70 ).
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  Scheme 70           

   Mixtures of polyfl uorinated pyridines can be obtained from the corresponding 
pyridines by fl uorination with tetrafl uorocobaltates (III) [ 139 ], this reaction has a 
low selectivity. For example, the reaction mixture derived from the reaction of pyri-
dine with KCoF 4  at 220 °C is reported to contain more than seven fl uoropyridines, 
two fl uoro-2-azahexenes, three azahexadienes, and two fl uoro-N - methylpyrrolidines. 
Four fl uorinated products were isolated from a fl uorination of pyridine by CoF 3  at 
150 °C: a 2-azahexene, two  N -methylpyrrolidines and 4 H -nona-fl uoropiperidine 
[ 140 ]. 

 2,3,5,6-Tetrafl uoro-4-trifl uoromethylthiopyridine ( 240 ) was prepared in high 
yield by the reaction of pentafl uoropyridine (144) with the CF 3 S ̄  anion, generated 
from F 2 C = S or its trimer, and cesium fl uoride at –15 °C [ 139 ] (Scheme  71 ). When 
the trimer was used as a precursor of the CF 3 S ̄  anion compound  240  reacted further 
at 20 °C to give a mixture of polysubstituted pyridines  241–243  in the ratio of 4.5: 
2: 1, respectively. When the reaction mixture was then heated at 100 °C both com-
pounds  241  and  243  were fully converted into compound  242 . Compound  242  was 
the only product (65 %) of the reaction which was carried out at 100–110 °C [ 141 ] 
(Scheme  71 ).

   Pentafl uoropyridine (144) was applied for the synthesis 2,4-diamino-3,5,6- 
trifl uoropyridine ( 244 ) [ 142 ]. Thus double nucleophilic substitution of fl uorine 
atoms in 2 and 4 positions of the pyridine  144  occurred to give  244 . The same 
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reaction of nucleophilic substitution with 4-chloro-2,3,5,6-tetrafl uoropyridine ( 246 ) 
or 3-chloro-2,4,5,6-tetrafl uoropyridine ( 185b ) results to diamino-difl uoropyridines 
 247  or mixture of isomers of diaminodifl uoropyridine  248  and triaminofl uoropyri-
dine  249  [ 142 ] (Scheme  72 ).
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  Scheme 72           

   The scope and limitation of the synthesis of polynitroxides ( 250 ) by nucleophilic 
substitution of electron-defi cient fl uorinated pyridines was described [ 143 ] 
(Scheme  73 ). The method provided a facile route to the formation of polynitroxides 
exhibiting strong electron exchange between nitroxide groups.

   The tendency perfl uoropyridines to nucleophilic substitution is widely used in 
synthesis fl uorinated and fused pyridines. In most cases the fi rst nucleophilic 
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substitution proceeds at 4 or 2 positions, sometimes at once 2,4-disubstituted 
 trifl uoropyridine is formed. Selective double substitution is used for synthesis fl uo-
roazoindoles  253,  through intermediate  251, 252  [ 144 ] (Scheme  74 ).
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  Scheme 74           

   Various compounds benzothieno(furano)pyridines [ 145 ], 4-cyclopen tadi enyl-
pyridines [ 146 ], 4-phenoxypyridines [ 147 ], 4- acetylenepyridines [ 148 ], furano[2,3-
b]pyridines [ 149 ], 4-aminopyridines [ 150 ], bistetrafl uoro-4,4′-pyridine [ 151 ] and 
others practically important pyridines [ 152 – 155 ] were obtained by the reaction of 
nucleophilic substitution.   

6     Synthesis of Perfl uoroalkylpyridines 

 Perfl uoroalkylpyridines have reliably come in synthetic practice. These compounds 
are components of molecules applied as medicines, pesticides, dyes and other prac-
tically important compounds [ 1 – 3 ,  21 ]. 
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6.1     Substitution Reaction 

 Various perfl uoroalkylhalides, perfl uoroalkylsilanes and also fl uorinated organome-
tallic compounds were used most frequently for reactions of substitution. 
Pentafl uoroethyltrimethylsilane  (254)  reacts selectively with 2-cyano-4- iodopyrydine 
( 255 ) at presence KF and CuI in NMP to form substituted 4- pentafl uoroethylpyridine 
( 256 ) which is used for synthesis of pesticides  257  [ 156 ] (Scheme  75 ).

N I

Zn(CF3)Br  2DMF/CuBr(1:2)

80 °C,6 h N C2F5

260, 7%
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259 93%
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260 20%
N CF3
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Zn(CF3)Br  2DMF/2CuBr

N C2F5
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258

+

+
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  Scheme 75           

   2-Trifl uoromethylpyridine ( 259 ) and 2-pentafl uoroethylpyridine ( 260 ) were 
obtained by the reaction of 2-iodopyridine ( 258 ) and tri- and pentafl uoroethylcoo-
per at heating in DMF Trifl uoromethylcopper and pentafl uoroethylcopper are pre-
pared conveniently via the reaction of the solid complex Zn(CF 3 )Br  .  2DMF with 
copper(I) bromide in N,N-dimethylformamide (Scheme  76 ). The maintenance of 
trifl uoromethyl- and pentafl uoroethyl derivatives was determined by  19  F NMR 
spectroscopy in both the mixtures [ 157 ].

   Reaction of 2-chloro-5-iodopyridine  (261)  and sodium pentafl uoropropionate 
( 262 ) at presence CuI in NMP resulted in 2-chloro-5-pentafl uoroethylpyridine ( 263 ) 
in 30 % yield [ 158 ] (Scheme  77 ).
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   Pentafl uoroethylquinoline  265  was obtained by the reaction of pentafl uoroethyl-
trimethylsilane  (254)  with substituted quinoline  264  [ 159 ]. Compound  265  was a 
precursor for the synthesis of  266  as VR1 receptor for treating pain, infl ammation 
and other diseases (Scheme  78 ).

N NCl Cl
+ CF3CF2COONa

261 262 263

CuI, NMP
I F3CF2C

30%

  Scheme 77           
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  Scheme 78           

   2-Perfl uorohexyl-1,2-dihydroquinoline ( 268 ) was obtained in 72 % yield together 
with trace amounts of 2-(periluorohexyl)quinoline ( 269 ), the latter being formed by 
the autoxidation of  268 . The perfl uoroalkylation was improved up to 90 % yield by 
using 2 equiv. each of pertluorohexyl iodide, boron trifl uoride, and methyllithium-
lithium bromide. The autoxidation of dihydroquinoline  268  was complete in chlo-
roform after 2 days and  269  was obtained quantitatively [ 160 ] (Scheme  79 ).
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  Scheme 79           
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   Some articles have described synthesis of 3-trifl uoromethylquinoline ( 271 ) 
[ 161 – 165 ]. Catalytic oxidative trifl uoromethylation of 3-qunolineboronic acid  (270)  
resulted in 3-trifl uoromethylquinoline in 49 % yield [ 161 ]. Use Togni’s reagent 
 (272)  in reaction with boronic acids  270  resulted in increase yield of  271  up to 53 % 
[ 162 ]. 3-Trifl uoromethylquinoline was also obtained by reaction of boronic acids 
 270  with CF 3 I [ 163 ] or with trifl uoromethyl sulfonium salts [ 164 ] in 87 % yield. 
Interaction of 3-iodoquinoline ( 273 ) with sodium trifl uoromethyl formate at pres-
ence Cu and Ag 2 O also led to compound  271  [ 165 ] (Scheme  80 ).
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CH3
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53%

N N

271, 58%

I CF3

+ CF3OCOONa

Cu (30 mol%)
Ag2O (30 mol%)

DMF, 15h, 130 °C
273

  Scheme 80           

   Convenient reagents for incorporation of perfl uoroalkyl groups in a molecule of 
pyridine are 1,10-phenanthroline-ligated (perfl uoroalkyl) copper (I) complexes  274  
[ 166 ], which were obtained by reaction of copper 1,10-phenanthroline complex 
with Ruppert reagent and its C 2 F 5 -analog. The 1,10-phenanthroline complex  (274a)  
has been used in reaction with 3-iodopyridine  (273)  for synthesis 
3- trifl uoromethylpyridine  (275)  [ 167 ,  168 ] (Scheme  81 ).

   Cu(I)-diamine complexes were found to catalyze the trifl uoromethylation of 
other heterocycles. In the presence of a small amount of CuX (X = Cl, Br, I) and 
1,10-phenanthroline, the cross-coupling reactions of iodoazines with trifl uorometh-
ylsilanes proceeded smoothly to afford trifl uoromethylated azines in good yields 
[ 169 ]. For example, trifl uoromethylazines  277, 279  have been synthesized in good 
yields [ 169 ] by such method from iodoazines  276, 278  (Scheme  82 ).

   The corresponding trichloromethylazines  280  are frequently used for synthesis 
trifl uoromethylazines  281  (pyridine, quinoline, phenantroline and others.). SbF 3 , 
SbF 5 , liquid HF or their mixtures can be used for chlorine-fl uorine replacement 
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[ 170 – 173 ] (Scheme  83 ). Trifl uoromethylazines  281  are formed by this method usu-
ally in good yield.
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   Interaction of complex  282  obtained from copper difl uoride, trifl uoromethyltri-
methylsilane and three moles of PPh 3  with 2-iodopyridine ( 258 ) led to 
2- trifl uoromethylpyridine ( 259 ) in 75 % yield [ 174 ] (Scheme  84 ).
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   Ample opportunities are opened with synthesis of trifl uoromethylated azines via 
oxidative nucleophilic substitution of hydrogen by trifl uoromethyl carbanions 
[ 175 ]. This pathway to the synthesis of trifl uoromethylazines includes reaction of 
quaternization of azines  283  by p-methoxybenzylbromide (PMB) ( 284 ) to obtain 
salts  285 . Further KF is added to reaction mixture of salt  285  and CF 3 Si(CH 3 ) 3  to 
generate anion  286 . Regioselective trifl uoromethylation results in formation of 
1,2-dihydropyridines  287  which then have been oxidized by action CAN to get 
appropriate trifl uoromethylazines  288  (Table  4 ) [ 175 ] (Scheme  85 ). Regioselectivity 
of the reactions is determined by the nature of substituent at pyridine’s cycle. So in 
case of an ether of nicotinic acid and 3-benzoylpyridine the mixture of 2-and 
6- trifl uoromethylpyridines are formed (Table  5 ).
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  Scheme 84           

6.2         Synthesis of Perfl uoroalkylpyridines Based on Cyclization 
Reactions 

 Reactions of cyclization are widely used for synthesis hardly available multifunc-
tional perfl uoroalkylpyridines [ 2 ,  3 ,  176 ]. As a rule, these reactions proceed regiose-
lectively and in good yields. A perfl uorocarbonyls, 1,3-dicarbonyls, α,β-unsaturated 
carbonyl compounds and enamines are basic raw material for this synthesis [ 2 ,  3 , 
 176 ]. For example, condensation of trifl uoromethyl substituted 1,3-dicarbonyl com-
pounds  289  with cyanacetamide ( 290 ) proceeds highly regioselectively to form sub-
stituted 4-trifl uoromethylpyridine-2(1H)-ones ( 291 ) [ 2 ,  3 ,  176 – 179 ]. 1,3-Dicarbonyl 
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   Table 5    Aromatization of 2-Trifl uoromethyl-1,2-dihydroazines  287    

 Substrate  287   Product  288  (yield) 
 Overall yield 
for three steps 

 Total yield of 
two isomers 

  

N

H

CF3
PMB     

  N CF3    

 (77 %)  59 % 

  
N

H

F3C
PMB

COOCH3

    
  NF3C

COOCH3

    

 (79 %)  32 %  46 % 

  
N

H

CF3
PMB

COOCH3

    
  N CF3

COOCH3

    

 (47 %)  14 % 

  

N

H

F3C
PMB

CN

    
  NF3C

CN

    

 (62 %) a   18 % 

  

N

H

F3C
PMB

O

Ph

    
  NF3C

O

Ph

    

 (91 %)  40 %  62 % 

  
N

H

CF3
PMB

O

Ph

    
  N CF3

O

Ph

    

 (60 %)  22 % 

  
N

H

CF3
PMB

OCH3

    
  N CF3

OCH3

    

 (90 %)  68 % 

   a DDQ was used it stead of CAN (2.2 equiv. of DDQ, CH 2 Cl 2 , 0 °C to rt)  

compounds  292  and cyanthioacetamide  (293)  are used for synthesis substituted 
4-trifl uoromethylpyridine-2(1H)-thiones  294  [ 180 – 182 ]. More simple and conve-
nient way of synthesis of compounds  294  is based on use of sodium salt of 
1,3- dicarbonyl compounds  295  and cyanthioacetamide  (293)  [ 183 ]. Thus isolation 
and purifi cation of 1,3-diketones  292  is not required. As a whole, synthesis of 
4-three(di)fl uoromethylpyridine-2(1H)-thiones  294  from sodium salts  295  and  293  
proceeded highly regioselective in good yields (Scheme  86 ).

   New method for synthesis 7-fl uoro-8-(trifl uoromethyl)-1Н-1,6-naphthyridines 
 (303)  is based on intermolecular cyclization of N-silyl-1-azaallyl anion  (298)  with 
perfl uoroalkylethylenes  299  [ 184 ] (Scheme  87 ).

   Reaction of aniline  (304)  and ethyl trifl uoroacetoacetate  (305)  resulted in formation 
of 4-trifl uoromethylquinolin-2-one  (306)  from which 2-brom-4-trifl uoromethyl-
quinoline  (307)  was synthesized further. Reaction of compound  307  with pyridines 
 308  at the presence of a palladium complex as the catalyst resulted in quinoline 
ligands  309  [ 185 ] (Scheme  88 ).
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   Reaction of enamine  310  with pentafl uoropropionic anhydride  (311)  gives com-
pound  312 . The condensation of  312  with two moles of diethyl iminomalonate 
hydrochloride  (313)  led to substituted perfl uoroalkylpyridine  314 , which further is 
used in synthesis inhibitors of phosphoesterase [ 186 ] (Scheme  89 ).
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   Perfl uoroalkyl [1, 8]-naphtiridine ( 318 ) with herbicidal effect was synthesized 
by reaction of 2-amino-3-formylpyridine ( 315 ), 1,3-dicarbonyl compound  316  and 
1,3-cyclohexanedione ( 317 ) [ 187 ] (Scheme  90 ).
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   Substituted 3-perfl uoroethylisoquinoline  (321)  was obtained by interaction of 
compound  319  and pyridine-3-carbaldehyde ( 320 ). Compound  321  has been 
obtained also by three-component condensation directly from salt  322 , pentafl uoro-
acetonitrile ( 323 ) and pyridine-3-carbaldehyde ( 320 ) [ 188 ]. These reactions pro-
ceed with formation of two cycles at hard conditions (refl ux in xylene for a long 
time) (Scheme  91 ).
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  Scheme 91           

   The methods of synthesis of fl uorine-containing pyridines described in the given 
review specify growing interest to chemistry of these compounds that is caused by 
the big practical importance of fl uorinated azines.      
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