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Abstract As demonstrated by recent events, railway systems are often the target of
terrorist bombings and attacks. To preserve public safety and essential economic
functions, railroad networks should be made as secure and resilient as possible.
However, railway protection investments may involve significant and often unaf-
fordable capital expenditure. Given the limited resources available for protection
efforts, it is essential that a strategic approach to the planning of security invest-
ments is adopted. This chapter presents a mathematical model for identifying the
optimal allocation of protective resources among the components of a railway
network. The aim is to minimize the impact on passenger flow of worst-case
disruptions which might affect both railway stations and tracks. The proposed
model is tested on an Italian railroad network to demonstrate how the model results
can be used to inform policy making and protection investment decisions.

1 Introduction

In light of numerous recent terrorist attacks to transportation systems, the issue of
protecting critical transportation infrastructures has become a necessity. Railways,
in particular, have often been the target of terrorist activity. Examples include the
1995 Paris metro bombing, the 2004 Madrid train bombing, the 2005 London
underground suicide attacks, and the 2010 Moscow bombing. These events have
demonstrated that rail systems are a crucial yet sensitive component of a nation’s
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infrastructure and that disruptions in railroad services can have a significant adverse
impact not only on the economy but also on public health and safety.

In some countries like the US, the rail industry and the government have
undertaken extensive efforts to protect the movement of freight and passenger
trains. Nevertheless, rail security remains an exercise in risk mitigation, as opposed
to risk prevention, and protection efforts are mostly undermanned and underfunded
[1]. Undoubtedly, railway protection presents some inherent difficulties, due to the
specific characteristics of rail systems. First of all, railways are geographically
extensive, open and easily accessible infrastructures. As an example, the Italian
railroad comprises 16,741 km of operational rail lines, and 2,260 passenger stations.
Strengthening all these assets to targeted safety levels may require unacceptable
expenditures. In addition, effective security improvements specific to rail transport
are difficult to identify and implement. Security mechanisms used by other trans-
portation modes (e.g., aviation passenger screening) cannot be readily applied in the
rail environment. Given these difficulties, it is key that protection expenditures are
invested wisely in a manner that optimises both service efficiency and public safety.

Railway security can be improved by optimizing the allocation of protection
devices within a single asset (e.g., security cameras in a station) but also through a
cost efficient allocation of protective resources across the entire railway network.
This involves identifying the most critical network components whose loss or
temporary closure might have the greatest impact on daily service provision and
allocating protection resources among these components so as to make the overall
system as robust as possible to external disruptions.

Several quantitative models and analytical approaches have been developed in
recent years to identify critical components of and sound protection strategies for
distribution and transportation networks. These can be broadly categorized into
protection models to counter probabilistic risks and models to counter strategic or
premeditated risks [2]. Probabilistic models deal with protection investments
against random disruptions (e.g., accidental failures or natural hazards) and imply
that the probability of failure of single assets is known or can be estimated, for
example through the analysis of historical data or by using domain-specific infor-
mation provided by structural engineers. Protection models for strategic risks
consider protection investments to minimize the impact of worst-case scenario
disruptions. These are suitable to model man-made or intentional disruptions (e.g.,
terrorist attacks or labour union strikes). However, they can be applied to natural
disasters as well, if the aim is to protect the system against worst-case scenario
losses or if failure probabilities cannot be easily obtained or accurately estimated.

Modeling strategic disruption risks requires emulating the game played between
a network attacker (or interdictor) and a network defender. Game theory has,
therefore, been widely used to model and design defensive strategies against
malicious attack. Defender-attacker games can be expressed mathematically as
bilevel optimization models where the upper level problem of optimally allocating
protection resources has embedded within it a lower-level problem which endog-
enously generates worst-case scenario losses [3–5].
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This chapter considers a bilevel optimization model to deal with security
resource allocation in railway systems. We model the rail system as a network of
nodes and links, where the nodes represent the stations and the links are the track
segments. A limited budget is available for increasing the system security through
the protection of nodes and or links. Different security measures can be employed,
depending upon the asset to be protected. For example, a link containing a bridge or
a tunnel can be protected through monitoring devices or structural reinforcement.
A station can be protected by increasing surveillance and patrolling, or installing
security cameras. Obviously, different costs are incurred for protecting different
components (e.g., protecting a high-traffic commuter station requires significantly
more protective resources than protecting a small station or a secondary rail track).
Costs also depend on the type of security measure adopted. We assume that a
protected component becomes completely invulnerable to possible disruptions.
Likewise, if a failure occurs, the affected component becomes completely inoper-
able and unable to provide service. The aim of the model is to identify a cost-
efficient allocation of the available budget so as to minimize the impact of worst-
case scenario disruptions to the system. We focus, in particular, on passenger traffic
and measure the disruption impact in terms of lost customer flow or demand. More
specifically, we assume that if a node or a link fails, traffic must be rerouted through
alternative paths on the network. However, detour routes may not exist or be too
long from a user point of view. In this case, passengers may resort to different
transport modes or abandon the trip all together. The amount of customer flow
which is lost provides an indication of the disruption extent. To evaluate the worst-
case amount of disrupted flow, we use an adaptation of the flow interdiction model
proposed by Murray et al. [6]. A common assumption in interdiction modeling is
that there is a limit to the number of components that can be lost simultaneously.
Without loss of generality, we also assume that interdiction resources are limited
and that the amount of resources needed to disable a component varies according to
the component size and topology.

2 Background

The use of network optimization models as a tool for identifying the most vital
components of a network dates back several decades (see, for example, the seminal
works by [7–9]). Many optimization models, also known as interdiction models,
have been developed throughout the years to assess the importance and criticality of
network components in different settings [10, 11]. These models identify the net-
work links or nodes that, if lost or damaged, have the worst-case impact on system
performance. System performance can be measured in a variety of ways, depending
upon the topology of the system, the operational protocol in use, and the type of
service provided. Typical system performance measures include travel time, con-
nectivity, average throughput or flow, transportation cost, demand coverage, and
recovery times among others.
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Interdiction models are a useful tool for assessing facility importance and several
authors have suggested using the outcome of interdiction models to prioritize
protection and or recovery investment efforts [12–14]. However, it can be easily
demonstrated that securing those assets that are identified as critical in an optimal
interdiction solution does not necessarily provide the greatest protection against
malicious attacks [15]. Protection decisions must, therefore, be explicitly captured
within a modeling framework to guarantee that security investments are optimized.
Optimization models which incorporate protection decisions embed interdiction
models to evaluate the worst-case scenario loss in response to each protection
strategy.

Most of the protection models existing in the literature have been developed for
allocating protection resources among service and supply facilities (e.g., ware-
houses, distribution centers and power plants) within distribution type networks [5,
16, 17]. Within the transportation literature, only a few papers have addressed the
problem of optimizing protection investments among systems components and
most of them have dealt with stochastic models to hedge against random disruptions
rather than intentional attacks. As an example, Liu et al. [18] propose a stochastic
optimization model for allocating limited retrofit resources over multiple highway
bridges to improve the reliability of transportation networks. The benefit of retrofit
is quantified as savings in reconstruction and travel delay costs. Fan and Liu [19]
present a two-stage stochastic model for distributing security resources among road
segments so as to minimize total physical and social losses caused by random
disasters. Peeta et al. [20] optimize investment decisions for strengthening a
highway network. They assume that the network links are subject to random fail-
ures due to earthquakes and protection investments reduce failure likelihood. The
objective is to maximize the post-disaster connectivity for first responders and
minimize the travel time in the surviving network. Miller-Hooks et al. [21] analyze
the optimal investment allocation of a fixed budget between preparedness activities
(e.g., protection) and recovery activities. They focus on intermodal freight transport
networks and measure network resilience as the expected fraction of demand that
can be satisfied post-disaster.

To the best of the authors knowledge, the only defender-attacker game- theoretic
approach to hedge against intentional disruptions in transportation networks is the
one proposed by Cappanera and Scaparra [22]. Their model aims at identifying the
set of components to harden in a freight transport network so as to minimize the
length of the shortest path between a supply node and a demand node after a worst-
case disruption of some unprotected components. Disruption results in traffic delays
and network performance is measured in terms of total travel time.

Focusing on protection models specifically designed for railway systems, the
literature is even more sparse. Peterson and Church [23] propose a modeling
framework for identifying the impact on rail operations when one or more bridges
and tunnels are lost. This model is useful for estimating freight rail network vul-
nerability but does not explicitly identify countermeasures for protection. Perea and
Puerto [24] present a model to distribute security resources over a railway network
so as to minimize the probability of a successful bombing attack. They provide
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some theoretical results on the optimal protection strategy but do not propose an
efficient solution technique to make the model applicable to real-size rail networks.

In this chapter, we attempt to redress this shortcoming in the literature by proposing
amodel which allocates security resources among railway network components while
taking into account railroad specific properties and performance measures.

3 The Railway Protection Investment Model

To formulate the railway protection investment problem mathematically, we con-
sider a railway network as composed of a set of nodes N (the stations) and a set of
arc A (the track segments). We assume that the daily traffic flow between any two
stations s and t is known and that, in case of disruption, passengers are willing to
use alternative railroad routes only if they are not significantly longer than their
normal journey time. We call these routes acceptable paths and we compute them
in a pre-processing phase. This evaluation is done by comparing each alternative
path between an origin and a destination node with the shortest path: all the paths
whose length exceeds a given threshold are discarded. The threshold is computed
by adding a tolerance parameter to the length of the shortest path.

The other model assumptions can be summarized as follows:

• An interdicted element is excluded from the network.
• Both arcs and nodes can be interdicted. This assumption is made to simulate the

disruptions of tunnels, bridges and stations at the same time.
• All the arcs directly linked to an interdicted node are interdicted as well.
• A protected element cannot be interdicted.
• A limited amount of interdiction resources is available.

The mathematical model uses the following notation.
Sets and Indices
N = set of nodes
A = set of arcs
s ∈ N = index used for flow sources
t ∈ N = index used for flow destinations
i ∈ N = index used for network nodes
j ∈ A = index used for network arcs
fst = traffic demand between s and t
Nst = set of acceptable paths that connect s and t
β ∈ Nst = index used for network paths
N (β) = set of nodes along path β
A (β) = set of arcs along path β
q = protection budget (or amount of resources available to the defender)
p = amount of resources available to the attacker
qni = estimate of the amount of resources needed to protect node i
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pni = estimate of the amount of resources needed to disrupt node i
qnj = estimate of the amount of resources needed to protect arc j
paj = estimate of the amount of resources needed to disrupt arc j

Decision variables:

Xn
i ¼ 1 if node i is disabled

0 otherwise;

�

Xa
j ¼ 1 if arc j is disabled

0 otherwise;

�

Yn
i ¼ 1 if node i is protected

0 otherwise;

�

Ya
j ¼ 1 if arc j is protected

0 otherwise;

�

Zst ¼ 1 if the flow between s and t is lost
0 otherwise;

�

The railway protection investment model can be formulated as the following
bilevel problem:

min
Y

FðYÞ ð1Þ
X
i

qni Y
n
i þ

X
j

qaj Y
a
j � q; ð2Þ

Yn
i 2 0; 1f g 8i 2 N; ð3Þ

Ya
j 2 0; 1f g 8j 2 A; ð4Þ

where F Yð Þ ¼ max
X

X
s

X
t

fstZst; ð5Þ

s: t:
X
i

pni X
n
i þ

X
j

paj X
a
j � p; ð6Þ

Xn
i � 1� Yn

i 8i 2 N; ð7Þ

Xa
j � 1� Ya

j 8j 2 A; ð8Þ
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X
i2NðbÞ

Xn
i þ

X
j2AðbÞ

Xa
j � Zst 8s; t; b 2 Nst; ð9Þ

Xn
i 2 0; 1f g 8i 2 N; ð10Þ

Xa
j 2 0; 1f g 8j 2 A; ð11Þ

Zst 2 0; 1f g 8s; t 2 N: ð12Þ

In this leader-follower model the leader chooses the optimal strategy to minimize
the objective function F (1), that is the amount of flow that cannot be served after the
interdiction. Constraint (2) is the budget constraint: the leader can allocate at most
q protection resources among the nodes and arcs of the network. Constraints (3) and (4)
are the binary restrictions on the protection variables. The lower level program (5–12)
is the interdiction model used to evaluate worst-case losses. The aim of the follower is
to choose the attack strategy that maximizes the amount of flow disrupted (5). Con-
straint (6) is the follower resource constraint: the attacker has at most p resources to
interdict the nodes and arcs of the network. Constraints (7) state that protected nodes
cannot be disrupted. Similarly, constraints (8) state that protected arcs cannot be dis-
rupted. Constraints (9) state that the flow between s and t can be considered disrupted
(Zst = 1) only if all the acceptable paths between s and t are disrupted, i.e., at least one of
their nodes or arcs is interdicted. If there is at least one acceptable path without
interdicted components, the value of the variable Zst is forced to be zero. Finally,
constraints (10–12) are binary restrictions on the interdiction and path variables.

4 Solution Methodology

Different methodologies have been used in the literature to solve this type of
defender-attacker models. These include: reformulation, dualization, and decom-
position [25–27]. To solve the bilevel problem (1–12), we used a decomposition
method based on super valid inequalities. Namely, the bilevel model is split into two
interlinked subproblems: an upper level protection master problem, and a lower level
interdiction subproblem. Each protection strategy identified by the master problem is
fed into the subproblem to determine an optimal interdiction plan. Special cuts,
called super valid inequalities (SVI), are then generated based on the solution to the
interdiction problem and added to the master problem, which then computes a new
protection strategy. The process is iterated until a sufficient number of SVIs has been
added to make the protection problem unfeasible. This approach had been previously
used to solve a two-level protection model in Losada et al. [28].

The decomposition algorithm was implemented in C++ inside the Visual Studio
environment. At each iteration, both the master problem and the sub-problem were
solved using the IBM ILOG optimization software Cplex 12.5.
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5 Case Study and Analysis

To demonstrate the practical applicability of our approach, we applied the model to
the railway network infrastructure of Campania, a region in Southern Italy. The
region Campania is populated by almost 6 million people, making it the second-
most-populous region of Italy. Its capital city is Naples. The railway network under
consideration is composed by a primary network which connects major cities in
Italy and has high traffic (high speed and inter-regional rail services), a secondary
network which connects an highly populated urban centre to outer suburbs
(Cumana, Circumlfegrea, Circumvesuviana and north-east metro services), and
some complementary lines which connect small regional centres. The overall net-
work is depicted in Fig. 1. The network has 26 nodes, corresponding to cities and
towns in the region, and 37 arcs.

In the absence of real data on passenger traffic between pairs of stations, we have
generated estimates of the origin-destination flows as a function of the size of the
connected cities, and the frequency and capacity of the trains operating on the

Fig. 1 Campania rail network
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network. We assumed that disrupting an arc requires one unit of resource (paj ¼ 1),
whereas the cost of protecting an arc, qaj , depends upon the number of tunnels and
bridges along the arc. We do not consider the protection of arcs without tunnels or
bridges. To generate realistic values for the interdiction and protection resources
associated with the nodes (qni and pni ), we have divided the stations in four groups
according to their dimension. The values chosen for the stations in each group are
shown in Table 1. Obviously, bigger stations require more resources to be pro-
tected/disrupted. As an example, Caianello is a very small station and only requires
2 units, whereas Naples is the biggest station and requires 12 units.

In our empirical study, we have analyzed and compared protection strategies to
hedge against disruptions of different magnitudes. Specifically, we considered
small, medium, large and very large disruptions. The amount of interdiction
resources associated with each event size are displayed in Table 2. With this choice,
a small disruption can only affect a very small station, whereas a very large event is
able to interdict a big station and a few other smaller assets.

The analysis also considers different budget levels. These were chosen as a
percentage of the budget needed to protect the whole network.

Some preliminary results are displayed in Table 3, which shows the total amount
of flow which is lost in different disruption scenarios and for different protection
investment levels. It can be seen that even a small disruption can have a considerable
impact on traffic flow if protective measures are not carried out: the worst-case loss

Table 1 Resources needed to
protect/interdict a node Node dimension Interdiction/protection resources

Very small 2

Small 4

Medium 8

Big 12

Table 2 Disruption scenarios
Size Resource units

Small 2

Medium 5

Large 10

Very large 20

Table 3 Percentage of lost
flow for different disruption
scenarios and protection
budget levels

No protection 1 % 5 % 10 %

Small 38 18 10 5

Medium 67 39 20 16

Large 88 75 35 28

Very large 98 96 77 54
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after a small disruption can result in a loss of 38 % of the total flow. This can reach
67, 88 and 98 % for medium, large, and very large disruptions respectively. The
effect of protecting even as little as 1 % of the assets can be considerable, if pro-
tection resources are allocated optimally. This is true especially for small and
medium size disruption scenarios, where the total losses can be reduced from 38 to
18 % for small events and from 67 to 39 % for medium events. For large and very
large events, greater protection investments are needed to get significant reductions
in flow losses. As an example, an optimal investment equal to 5 % of the protection
cost of the total network, can more than halve the flow loss resulting from a large
disruption (from 88 to 35 %).

To provide a better understanding of how increasing budget levels may affect the
system losses in case of disruption, in Fig. 2 we show the percentage marginal
reduction inflow losses for each percentage point increase in protection resources.We
let the budget vary between 1 and 10 % of the protection cost of the whole network.

This analysis sheds light on possible tradeoffs between protection expenditures
and flow loss reductions in case of worst-case system disruptions. As an example, if
a large disruptive event is considered, a 1 % investment results in a worst-case loss
reduction of about 15 % (first segment of the third bar in the chart). However, if an
investment of 2 % can be made, the benefit is more than doubled, bringing an
additional 25 % flow loss reduction and an overall reduction of 40 %.

The differences between the four disruption scenarios can be further analyzed
through the graphs plotted in Figs. 3, 4, 5 and 6. For each scenario, the corresponding
graph displays the contribution of a percentage point increment in protection
resources on the overall objective improvement.

Fig. 2 Marginal percentage decrease in flow loss due to percentage point increments of the
protection budget
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Fig. 3 Analysis of the contribution of percentage point increases of the protection resources on
the overall improvement for small disruptions

Fig. 4 Analysis of the contribution of percentage point increases of the protection resources on
the overall improvement for medium disruptions
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Fig. 5 Analysis of the contribution of percentage point increases of the protection resources on
the overall improvement for large disruptions

Fig. 6 Analysis of the contribution of percentage point increases of the protection resources on
the overall improvement for very large disruptions
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The first clear difference is that in the scenarios with low and medium level
disruptions (Figs. 3 and 4) the first percentage point increase is responsible for more
than half of the overall benefit. To reach similar results for large disruptions, a two
point increment is needed (Fig. 5). When very large disruptions are considered, the
first few increments have a somewhat limited effect on reducing flow losses
whereas a peak can be noticed in correspondence of a 5 % investment (Fig. 6). An
additional percentage point increase, results in another significant flow loss
reduction. This seems to indicate that if large disruptions are anticipated, a pro-
tection budget in this range (5–6 % of the total protection costs) should be war-
ranted to maximize the benefits of security investments.

It is clear that the protection strategies identified by the model may differ quite
significantly, depending on the magnitude of the disruption given in input to the
model (parameter p). Our next analysis aims at identifying protection plans which
are robust across all scenarios, so as to hedge against the uncertainty characterizing
the size and extent of disruptive events. To this end, we evaluate how the optimal
solution identified for a given disruption size performs in all the other scenarios.

The results of this analysis are shown in Tables 4 and 5 for two budget levels,
equal to 5 and 10 % of the resources needed to protect the whole network. These
cases correspond to values of q equal to 17 and 35 respectively. The tables show the
percentage flow loss increase which is observed when the optimal protection strategy
computed for a given scenario (supposed scenario) is used in a different scenario
(actual scenario). The last two columns display the maximum and average increase
across all the other scenarios. From the analysis of Table 4 (q = 17), it is clear that the

Table 4 Cross-comparison of different optimal protection plans

Supposed
scenario

Actual scenario MAX (%) AVG (%)

Small (%) Medium (%) Large (%) Very
large (%)

Small 0 98.8 75.2 20.3 98.8 48.6

Medium 21.8 0 0 22.5 22.5 11.1

Large 21.8 0 0 22.5 22.5 11.1

Very large 133.8 104 78.1 0 133.8 79

Relative flow loss increase in percentage. Case q = 17

Table 5 Cross-comparison of different optimal protection plans

Supposed
scenario

Actual scenario MAX (%) AVG (%)

Small (%) Medium (%) Large (%) Very
large (%)

Small 0 138.4 106.3 74.8 138.4 79.9

Medium 85.7 0 8.6 71.6 85.7 41.5

Large 98.1 3.2 0 74 98.1 43.8

Very large 126.1 19.9 19.7 0 126.1 41.4

Relative flow loss increase in percentage. Case q = 35
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optimal solution for medium and large events is the same. It is also the solution that
works better across the different scenarios, with an average error of 11.1 % and a
maximum error of 22.5 %. In the second case (Table 5), all the solutions are different
and the best choice, in terms of average percentage increase of disrupted flow, is the
optimal protection strategy computed for very large disruptions. Nevertheless,
assuming a medium size disruption may result in a better compromise solution: the
average percentage increase is really close to the one obtained for very large events
(41.5 vs. 41.4 %) but the maximum value is considerably smaller (85.7 vs. 126.1 %).
Overall this analysis indicates that the assumptions made on the disruption size may
have a significant impact on the identification of effective protection strategies. In
general, avoiding the extreme cases and assuming medium to large disruptions leads
to the most robust defensive plans.

Finally, in Tables 6 and 7 we display the solutions to the model for different
disruption scenarios and protection budget levels. Table 6 shows the network
components chosen for protection, whereas Table 7 shows the interdiction plans
(i.e., the worst-case losses) after protection.

We can see that Afragola and Barra appear quite often in the protection and
disruption strategies. This can be explained by noticing that the first station is a
crucial node of the high speed service and its disruption affects the connection
between Rome and Naples; the second station belongs to the Circumvesuviana
railway network and intercepts a huge portion of the traffic generated by that
service. It is interesting to note that Cancello appears very frequently among the
components to be interdicted, in spite of being a very small station. This may be due
to its very central position. Cancello, in fact, intercepts the flow between the largest
cities of the region and this makes it an attractive target for an intelligent attacker.
Finally, it can be noted that Naples only appears in a few solutions probably
because, although it is the most important station, is also the most difficult and
expensive asset to protect and or disrupt.

6 Conclusions and Discussion

To increase railway system security, it is crucial that scarce protection resources are
allocated across the network assets in the most cost-efficient way. This chapter has
presented an optimization model for the strategic planning of protection invest-
ments. The proposed model identifies the optimal allocation of defensive resources
to hedge against worst-case scenario flow losses due to malicious attacks. We have
demonstrated how the model results can be used to identify the optimal investment
level to achieve a desirable degree of protection, and highlighted possible trade-offs
between protection expenditure and traffic flow preserved. Finally, we have shown
how to select robust solutions that perform well under disruptive scenarios of
different magnitude.

The proposed model can be extended in several ways to capture additional
realism and the complexities characterizing railway systems. As an example, our
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model objective is to minimize the amount of passenger flow which is lost after a
disruption. Other performance measures could be considered which combine both
system cost and customer disutility into a multi-objective model. These measures
should include issues such as delays, increased travel time and duration of the
disruption. We also made the assumptions that protected components are com-
pletely immune to failure and that attacks on unprotected components are always
successful. Other modeling frameworks should be developed to model different
degrees of protection and interdiction. For example, partial protection could be
considered where protected components only preserve part of their operational
capabilities or have shorter recovery times or smaller failure probabilities depending
on the level of protection investment.
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