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Foreword

D. Bigoni · A. Carini · M. Gei · A. Salvadori
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This Special Issue of the International Journal of Frac-
ture contains selected papers presented at the IUTAM
Symposium Fracture Phenomena in Nature and Tech-
nology that was held at the School of Engineering,
University of Brescia, Italy, during the week of July
1–5, 2012. The symposium focused on innovative
contributions in fracture research, interpreted broadly
to include new engineering and structural mechanics
treatments of damage development and crack growth,
large-scale failure processes as exemplified by earth-
quake or landslide failures, ice shelf break-up, and
hydraulic fracturing (natural, or for resource extrac-
tion or CO2 sequestration), small-scale rupture phe-
nomena in materials physics including inception of
shear banding, void growth, adhesion and decohesion

D. Bigoni (B) · A. Carini · M. Gei · A. Salvadori
Trento, Italy
e-mail: bigoni@ing.unitn.it

in contact and friction, crystal dislocation processes,
and atomic/electronic scale treatment of brittle crack
tips and fundamental cohesive properties. The Spe-
cial Issue manuscripts were limited to original work
and were reviewed following the standard procedures
of the Journal. The Organizing Committee is grateful
to the IUTAM that fostered and supported the sym-
posium, to the financial support from the EU (PIAP-
GA-2011-286110-INTERCER2), to the University of
Brescia (Italy) and to the University of Trento (Italy)
that contributed greatly to the success of the Confer-
ence, to the Municipality of Brescia that welcomed the
event and the participants.
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Modeling fracture by material-point erosion

A. Pandolfi · B. Li · M. Ortiz
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Abstract The present work is concerned with the
verification and validation of an implementation of the
eigenfracture scheme of Schmidt et al. (SIAM J Multi-
scale Model Simul 7:1237–1266, 2009) based on mate-
rial-point erosion, which we refer to as eigenerosion.
Eigenerosion is derived from the general eigenfrac-
ture scheme by restricting the eigendeformations in a
binary sense: they can be either zero, in which case the
local behavior is elastic; or they can be equal to the
local displacement gradient, in which case the corre-
sponding material neighborhood is failed, or eroded.
When combined with a material-point spatial discreti-
zation, this scheme gives rise to material-point erosion,
i. e., each material point can be either intact, in which
case its behavior is elastic, or be completely failed—or
eroded—and has no load bearing capacity. We verify
the eigenerosion scheme through convergence studies
for mode I fracture propagation in three-dimensional
problems. By way of validation we apply the eigene-
rosion scheme to the simulation of combined torsion-
traction experiments in aluminum-oxide bars.

A. Pandolfi (B)
Dipartimento di Ingegneria Strutturale, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
e-mail: pandolfi@stru.polimi.it

B. Li · M. Ortiz
Graduate Aeronautical Laboratories, California Institute
of Technology, Pasadena, CA 91125, USA
e-mail: libo@caltech.edu

M. Ortiz
e-mail: ortiz@aero.caltech.edu

Keywords Meshfree approaches ·
Material point erosion · Eigen fracture ·
Max-Ent shape functions · Brittle Fracture

1 Introduction

Lagrangian meshfree methods are well-suited to a
number of areas of application, such as terminal
ballistics, machining, fluid-structure interaction.
Lag-rangian meshfree methods offer significant
advantages over competing approaches, such as purely
Eulerian formulations, particle methods, purely
Lagrangian formulations with continuous adaptive
remeshing, arbitrary-Lagrangian–Eulerian (ALE).
These competing approaches may suffer from a vari-
ety of shortcomings, for example: the introduction
of large numerical diffusion errors; large discreti-
zation errors at fluid-solid interfaces; difficulties in
maintaining monotonicity, positivity and in tracking
state variables; spurious modes and tensile instabili-
ties; mesh entanglement; the need to remesh or rezone
arbitrary three-dimensional domains and the atten-
dant remapping of state variables; ad-hoc transition
or blending regions; difficulties in defining numerical
integration rules and satisfying essential boundary con-
ditions; unknown convergence and stability properties;
and others.

A representative example of Lagrangian mesh-
free schemes is furnished by the Optimal-Transpor-
tation Meshfree (OTM) method of Li et al. (2010).
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A. Pandolfi et al.

In the quasistatic setting of interest here, the OTM
method combines: (i) Maximum-entropy (max-ent)
meshfree interpolation Arroyo and Ortiz (2006) from
a nodal-point set; and (ii) material-point sampling
(cf., e. g., Sulsky et al. 1994) in order to track the local
state of material points, carry out complex constitutive
updates and perform spatial integrals. Max-ent inter-
polation Arroyo and Ortiz (2006) offers the advantage
of being meshfree and entirely defined—essentially
explicitly—by the current nodal-set positions, thus
effectively sidestepping the need for continuous reme-
shing in simulations of unconstrained flows. In addi-
tion, max-ent interpolation satisfies a Kronecker-delta
property at the boundary, which greatly facilitates the
enforcement of essential boundary conditions, and has
good accuracy convergence and monotonicity condi-
tions. Because of interpolatory nature, OTM is free
from the tensile numerical instabilities that plague par-
ticle methods. In dynamic problems, the OTM method
additionally draws on optimal transportation concept,
such as the Wasserstein distance between successive
mass densities, in order to discretize the action integral
in time. The optimal-transportation approach to time
discretization leads to geometrically-exact updates of
the local volumes and mass densities, and exact con-
servation properties including symplecticity, linear and
angular momentum.

Many of the applications where Lagrangian mesh-
free schemes, such as the OTM method, are attractive
involve material failure and fracture of some kind.
However, there is limited experience at present con-
cerning the simulation of fracture and fragmentation
processes within the framework of meshfree interpola-
tion schemes. Notable exceptions are the contributions
in the meshfree Galerkin approximation (Belytschko
et al. 1993; Lu et al. 1995; Belytschko et al. 1996),
and in the smooth particle hydrodynamics method
(Rabczuk and Eibl 2003; Rabczuk et al. 2004; Karekal
et al. 2011). In this paper we assess the performance of
a recently proposed approach to fracture, termed eigen-
fracture (Schmidt et al. 2009), within a meshfree frame-
work. The eigenfracture scheme resorts to the classical
device of eigendeformations (Mura 1987; Colonnetti
1917) in order to account for material fracture. To this
end, the energy functional depends on two fields: the
displacement field u and an eigendeformation field ε∗
that describes such cracks as may be present in the
body. Specifically, eigendeformations allow the dis-
placement field to develop jumps at no cost in local

elastic energy. In addition, in the eigenfracture scheme
the fracture energy is set to be proportional to the vol-
ume of the θ-neighborhood of the support of the eig-
endeformation field, suitably scaled by 1/θ. The opti-
mal crack set is obtained by minimizing the resulting
energy functional with respect to both the displacement
and the eigendeformation fields, subject to irreversibil-
ity constraints. We note that other two-field approxi-
mation schemes for brittle fracture, most notably the
Ambrosio-Tortorelli scheme (Ambrosio and Tortorelli
1992; Braides and Defranceschi 1998), have been pro-
posed in the past and used as a basis for numerical
approximations (Bourdin and Chambolle 2000; Bour-
din et al. 2000; Bourdin 2007), but the use of eigende-
formations to describe brittle fracture in a variational
framework does not appear to have been pursued prior
to Schmidt et al. (2009). We also note that other dam-
age regularizations of brittle fracture (Braides and Dal
Maso 1997; Braides 2002; Braides and Defranceschi
1998; Negri 2005) have been proposed in the past and
shown to be convergent.

In the present work, we specifically consider a mesh-
free approach based on maximum-entropy (max-ent)
interpolation (Arroyo and Ortiz 2006) combined with
material-point sampling and integration (Li et al.
2010). We confine our attention throughout to quasi-
static problems. Extensions of the max-ent meshfree
approach to dynamics, based on optimal-transportation
theory, may be found in Li et al. (2010). In the max-
ent/material-point scheme considered here, the spatial
discretization is based on two sets of points: the nodal
points and the material points. Specifically, the nodal
points carry the information concerning the displace-
ments, whereas the material points carry the material
state, including eigendeformations. The link between
material points and nodes is established through max-
ent interpolation. The max-ent shape functions exhibit
rapid decay and their support can be restricted to a
finite range, with the result that every material point
is connected to a limited number of nodes within its
immediate environment.

When combined with the max-ent/material-point
scheme, eigenfracture may be implemented as mate-
rial-point erosion, i. e., the material-points can be
either intact, in which case their behavior is elastic,
or be completely failed—or eroded—and have no load
bearing capacity. The implementation of the method,
included the all-important θ-neighborhood construc-
tion, is exceedingly simple and applies to general

123123 Reprinted from the journal4
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situations, possibly involving complex three-dimen-
sional fracture patterns such as branching and fragmen-
tation. The accuracy and convergence of the eigene-
rosion approach is comparable—at a much reduced
implementation cost and complexity—to that of other
numerical fracture schemes. We note that element ero-
sion has been extensively used to simulate fracture in a
number of areas of application, including terminal bal-
listics (Johnson and Stryk 1987; Belytschko and Lin
1987; Ortiz and Giannakopoulos 1990; Johnson and
Stryk 1990; Whirley and Hallquist 1991; Borvik et al.
2008). However, some of these methods fail to con-
verge or converge to the wrong limit (Negri 2003). By
contrast, the eigenfracture scheme is known to properly
converge to Griffith fracture (Griffith 1920) in the limit
of vanishingly small mesh sizes (Schmidt et al. 2009).
In particular, the local-neighborhood averaging of the
energy which underlies the calculation of the effective
energy-release has the effect of eliminating spurious
mesh-dependencies.

We base our assessment of the method on selected
verification and validation test cases. We verify the
approach by means of convergence studies for mode
I fracture propagation in three-dimensional plates. We
additionally present a validation of the method through
simulations of combined traction-torsion experiments
on aluminum oxide bars (Suresh and Tschegg 1987).
We find that the eigenerosion scheme indeed results in
convergent approximations, both as regards crack paths
as well as the attendant deformation fields and struc-
tural response. We also find that the scheme enables the
simulation of exceedingly complex three-dimensional
fracture patterns. The range and versatility afforded by
the approach is all the more remarkable given the sim-
plicity of its implementation.

The paper is organized as follows. In Sect. 2,
we begin by formulating the problem to be approx-
imated, namely, the problem of quasi-static crack-
growth in an otherwise linear-elastic solid. We
continue with brief review to the max-ent/material-
point approach in Sect. 3. Then we recall briefly the
eigenerosion method in Sect. 4. In Sect. 5.1 we verify
the approach by means of convergence studies for mode
I fracture propagation in three-dimensional plates. In
Sect. 5.2 we present a validation of the method through
simulations of combined traction-torsion experiments
on aluminum oxide bars, taken from Suresh and
Tschegg (1987). We conclude with some comments
on the actual results and possible extensions in Sect. 6.

2 Variational formulation of fracture mechanics

In this section we succinctly summarize the formula-
tion of fracture mechanics that we take as the basis
for subsequent developments. We specifically follow
Larsen et al. (2009) and Pandolfi and Ortiz 2012, which
may be consulted for additional mathematical detail.

We consider an elastic body occupying a domain
φ ⊂ R

n , n ≥ 2. The boundary ∂φ of the body con-
sists of an exterior boundary ω, corresponding to the
boundary of the uncracked body, and a collection of
cracks jointly defining a crack set C . In addition, ω

is partitioned into a displacement boundary ω1 and a
traction boundary ω2. The body undergoes deforma-
tions under the action of body forces, displacements
prescribed over ω1 and tractions applied over ω2, sub-
ject to a contact condition on C . Under these conditions,
the potential energy of the body is

E(u, C, t) =

⎧⎪⎨
⎪⎩

∫

φ

W (x, u,∇u) dx +
∫

ω2

V (x, u) dHn−1, if [[u]] · ν ≥ 0,

+∞, otherwise,

(1)

where, here and subsequently, Hd is the d-dimensional
Hausdorff measure,1 ν is a unit normal to C , [[u]] is the
displacement jump,

[[u]] · ν ≥ 0 (2)

defines the contact constraint, W is the elastic strain
energy density of the body—possibly including dis-
tributed body forces— and V is the potential of the
applied tractions. The explicit dependence of E on t
in (1) is meant to reflect the time dependence of the
forcing, namely, the applied forces and prescribed dis-
placements. Suppose now that the applied loads and
prescribed displacements are incremented over the time
interval [t, t + πt] and that, in response to this incre-
mental loading, the crack set extends from C(t) to
C(t + πt). Owing to the irreversibility of fracture we
must necessarily have that

C(t) ⊂ C(t + πt), (3)

i. e., the crack set must be monotonically increasing in
time. Let the elastic energy increment recorded during
the time increment be πE . Then, a classical calculation

1 cf., e. g., Dal Maso and Toader (2002); on smooth curves, dH1

is the element of length; on smooth surfaces, dH2 is the element
of area.
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Fig. 1 Crack advancing in a body occupying a domain φ and
zoom of the crack-front region showing the crack set C(t) at
time t , contained in the extended crack set C(t + πt) at time
t + πt . During the time interval πt the crack front L sweeps an
area πC of unit normal ν, and propagates in the direction of the
crack front velocity v

(Knees and Mielke 2008; Larsen et al. 2009) gives the
rate of energy release as

− Ė = − lim
πt→0

πE

πt
=

∫

L

Gv dHn−2 (4)

where L is the crack front, Fig. 1b, v is the crack-front
velocity, and

G = lim
πt→0

σ ν · [[ut+πt ]], σ =∂∇u W (x, u,∇u) (5)

is the energetic force acting on the crack front. The
identity (4) gives the rate at which energy flows to the
crack front.2 In continuum thermodynamics, the dual-
ity-pairing structure of (4) is conventionally taken to
mean that the energetic force G does power, or drives
on the crack-front velocity v. On this basis, within
Osanger’s general framework for inelastic processes,
we may postulate the existence of a crack-tip equation
of motion of the form

G = ∂ψ(v), (6)

where ψ is a dissipation potential density per unit
crack-front length. The total dissipation potential for
the entire crack front finally follows by additivity as

α(v) =
∫

L

ψ(v) dHn−2. (7)

We note that the dissipation attendant to crack growth
is localized to the crack front L . Under the assumption

2 cf. Larsen et al. (2009) for a rigorous mathematical definition
of the crack front and attendant crack-front velocity.

of rate-independence the dissipation potential is of the
form

ψ(v) = Gc|v|, (8)

which is subject to the monotonicity constraint (3). In
(8), Gc is the critical energy release rate, or specific
fracture energy, of the material. The assumption of rate-
independence is characteristic of ideally brittle behav-
ior and forms the basis of Griffith’s theory of fracture
Griffith (1920). Since the rate-independent dissipation
potential ψ(v), Eq. (8), is not differentiable at the ori-
gin, the equation of motion (6) must be understood in
the sense of subdifferentials, namely,

G − Gc ≤ 0, (9a)

v ≥ 0, (9b)

(G − Gc)v = 0, (9c)

which embody Griffith’s crack propagation and arrest
criteria.

Because of the rate-independent nature of Griffith’s
criterion, the crack tracking problem can be reduced,
in the spirit of the so-called deformation theory, to
the minimization of the energy-dissipation functional
Mielke and Ortiz (2007)

F(u, C, t) = E(u, C, t) + Gc|C | (10)

at every time, subject to the monotonicity constraint
(3), i. e.,

(
u(t), C(t)

⎛ ∈ argmin F(·, ·, t), (11a)

subject to: C(t1) ⊂ C(t2), whenever t1 < t2. (11b)

In (10), |C | denotes the area of the crack set. Thus, the
geometry of a growing crack and the corresponding
equilibrium elastic field in a perfectly brittle material
is obtained by jointly minimizing F(u, C, t) at all times
with respect to both the displacement field u and the
crack set C subject to the constraint (3). In particular,
the crack path results from a competition between: the
elastic energy, which promotes fracture as an energy-
release mechanism; the specific fracture energy, which
penalizes fracture proportionally to the crack area; and
the monotonicity and contact constraints, which intro-
duce irreversibility, path dependency, hysteresis and
tension-compression asymmetry.

A rigorous derivation of the deformation-theoretical
formulation (11) of the crack-tracking problem may be

123123 Reprinted from the journal6
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based on energy-dissipation functionals (Mielke and
Ortiz 2007), which in the present context supply a min-
imum principle that characterizes entire crack paths
Larsen et al. (2009). Problem (11) then follows simply
from by noting that, for monotonically growing brittle
cracks, the dissipation (7) is an exact time-differential
of Gc|C |, i. e.,

α(v) = d

dt
(Gc|C |) . (12)

Conditions for the existence of solutions of the crack-
tracking problem (11), which is not guaranteed in
general, may be found in Dal Maso and Toader (2002),
Francfort and Larsen (2003), and Dal Maso et al.
(2005).

In order to obviate the need for minimizing the
energy-dissipation functional F(u, C, t) with respect
to the crack set C , which may be numerically cum-
bersome, in the framework of linearized elasticity
Schmidt et al. (2009) have proposed a reformulation
of the crack-tracking problem (10) in terms of eig-
endeformations ε∗, with the aid of a small parameter
θ with units of length. In particular, the crack set is
approximated as C = {ε∗ ⊥= 0}, namely the support of
the eigendeformation field, i. e., the domain over which
the eigendeformation field is nonzero; and Cθ is the
θ-neighborhood of C , i. e., the set of points that are at a
distance less or equal to θ from C . The regularized
energy-dissipation functional proposed by Schmidt
et al. (2009) is

Fθ(u, ε∗, t) =
∫

φ

W (ε(u) − ε∗) dV

+
∫

ω2

V (x, u) dHn−1 + Gc
|Cθ |
2θ

. (13)

In this expression ε(u) = 1
2 (∇u + ∇uT ) is the the

strain operator of linear elasticity and |Cθ | denotes the
volume of the θ-neighborhood Cθ . We note that the reg-
ularized energy-dissipation functional Fθ(u, ε∗, t) now
allows for eigendeformation fields that are spread
over a volume, and thus represent a damaged volume
of material. As before, the eigendeformations allow
the material to relax its energy locally. The center-
piece of the approach of Schmidt et al. (2009) con-
cerns the proper evaluation of the fracture-energy
cost attendant to a distribution of eigendeformations,
which is given by the last term in (13). Indeed,
Schmidt et al. (2009) have shown that the regu-

larized energy-dissipation functional Fθ , Eq. (13),
ω-converges to the Griffith functional F , Eq. (10),
as θ → 0. We recall that ω-convergence is a notion
of variational convergence that implies convergence of
minimizers. In particular, the scaling of the volume of
the θ-neighborhood Cθ by θ−1 in the energy-dissipa-
tion functional (13) in turn penalizes the volume of the
approximate crack set C , which in the limit converges
to a surface.

The regularized crack tracking problem consists of
minimizing the regularized energy-dissipation func-
tional (13) for every time, subject to the monotonicity
constraint (3), which now requires that the approxi-
mate crack sets grow monotonically, and to a suitable
contact constraint in lieu of (2). For instance, the con-
straint

ε∗ ≥ 0, (14)

first proposed by Ortiz (1985) and widely used since,
can be used to enforce the contact constraint within an
eigendeformation framework. Constraint (14) specif-
ically requires that all the eigenvalues of ε∗ be non-
negative, which effectively satisfy the crack closure
constraint.

It bears emphasis that the net effect of the regular-
ization of the fracture energy in (13) is to eliminate
the spurious mesh-dependencies that afflict naive ero-
sion schemes and ensure convergence of the approx-
imations. For instance, a typical scheme consists of
introducing C0 finite-element interpolation for the dis-
placements and piecewise constant interpolation for
the eigendeformations, i. e., restricting the eigende-
formations to be constant over the elements, see,
e. g., Ortiz and Giannakopoulos (1990). These schemes
indeed converge pointwise as the mesh size goes to
zero, provided that the crack set is aligned with the
mesh, as in the case of a structured mesh in a rectan-
gular plate subjected to mode I loading, but may fail to
converge otherwise Negri (2003). The reason for the
lack of convergence is a geometrical one: as the crack
zig-zags in accordance with the mesh in order to match
the limiting crack path, it overestimates the amount of
fracture energy by a geometrical factor. Negri devel-
oped converging schemes that overcome this difficulty
by recourse to mesh adaption (Negri 2003, 2005) or to
nonlocal averaging schemes (Negri 2005; Lussardi and
Negri 2007).
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3 Max-ent shape functions

The remainder of the paper is devoted to a verifica-
tion and validation analysis of mesh-free approxima-
tion schemes based on the regularized crack-tracking
problem just described. The spatial discretization of
the energy-dissipation functional (13) considered in
this work is the quasistatic version of the optimal-
transportation meshfree (OTM) method developed in
Li et al. (2010) for particular applications to flow of
fluids and solids. The discretization is based on two
sets of points: the nodal points and the material points.
Thus, the nodal points xa carry the information con-
cerning the displacements, whereas the material points
x p carry the material state, including eigendeforma-
tions. The link between material points and nodes
is established through the displacement interpolation
rule:

u p =
n⎝

a=1

ua Na
(
x p

⎛
, (15)

where Na(x) are conforming shape functions defined
over φ. The support of the shape functions Na(x) is
expected to have a finite range, so that every material
point is connected to a limited number of nodes within
its immediate environment. Following Li et al. (2010),
in this work we specifically use the local max-ent inter-
polation introduced in Arroyo and Ortiz (2006). Thus,
the shape function for the node a is

Na(x) = 1

Z(x, λ∗(x))

× exp
[
−β|x − xa |2 + λ∗(x) · (x − xa)

⎞
,

a = 1, . . ., n, (16)

where

λ∗(x) = arg min
λ∈Rd

log Z(x, λ). (17)

The function Z : R
d ×R

d → R is the partition function
associated with the node set X , i. e.:

Z(x, λ) ≡
n⎝

a=1

exp [−β|x − xa |2 + λ · (x − xa)]. (18)

The scalar β can be chosen to be dependent on the
position, e. g., related to the size of the material-point
neighborhood h p as

βp = γ
1

h2
p
, (19)

Fig. 2 Sketch of the neighborhoods of three material points,
p1, p2 and p3, labeled V1, V2 and V3. The nodes are denoted
ni . Material point p1 has connections to five nodes lying in V1.
Node n1 lies inside the three neighborhoods Vk and, therefore,
is connected to the three material points

where γ is a dimensionless constant that assumes pos-
itive values close to the unity. In the present applica-
tions we assume γ = 0.1. The neighborhood size h p

measures the radius of a spherical volume Vp, centered
at the material point and including n p nodal points,
where the max-ent shape functions of the material point
are defined. The size h p—and therefore the number
of support nodes—is not necessarily constant for all
the material points. For example, in the present imple-
mentation h p is chosen to scale with the local distance
between material points. Fig. 2 illustrates the concept of
h p-neighborhood in two dimensions.

The discretization of the regularized energy-dissipa-
tion potential (13) requires the use of the shape-func-
tion derivatives, which can be found in Arroyo and
Ortiz (2006). The computation of the nodal forces due
to the tractions on ω2 may be simplified by introducing
a balanced stress field τ satisfying the identities:

∇ · τ = 0 in φ, τn = q on ω2, (20)

see Li et al. (2010), and applying the divergence the-
orem. By imposing the stationarity of (13), we obtain
the standard nonlinear equilibrium equations. In sta-
tic applications involving nonlinear material behaviors
and kinematics a consistent linearization of the internal
forces may be necessary. In the calculations presented
here we solve the nonlinear equilibrium equations by
means of an explicit dynamic relaxation algorithm
Oakley and Knight (1995), which does not require com-
putation of the tangent stiffness.
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4 The eigenerosion criterion

Schmidt et al. (2009) have proved that approximations
of the regularized problem converge to exact solutions
of the Griffith crack-tracking problem when the mesh
size and the regularization parameter θ tend to zero in
the right order. One specific scheme that was shown
to be convergent consists of approximating the dis-
placement field by means of conventional C0 finite-
element interpolations and taking the eigendeformation
field to be constant over elements but otherwise uncon-
strained, by using a local regularization Schmidt et al.
(2009). Since the local element eigendeformations are
allowed to take arbitrary values, they either are zero,
in order to minimize the attendant fracture energy, or
completely negate the local deformation of the element,
thus rendering its elastic energy zero. Thus, in that finite
element approximation scheme, the discrete crack-
tracking problem is reduced to successively fail-
ing or eroding elements when the attendant elastic
energy release exceeds the attendant cost in fracture
energy.

A detailed algorithm for finite element erosion has
been provided in Pandolfi and Ortiz (2012). The same
algorithm applies to the present material-point dis-
cretization, with elements replaced by material points
mutatis mutandis. In particular, the energy release rate
attendant to the erosion of one material point can be
computed explicitly, as the difference of the energies
of the body before and after the erosion of the material
point, or, more conveniently, it can be approximated
using first-order asymptotic formulae for notches Ortiz
and Giannakopoulos (1990). In addition, the fracture-
energy cost is computed by recourse to the θ-neighbor-
hood construction, where a small parameter θ with the
dimension of a length is used to define a volume-like
neighborhood that approximates the crack surface Pan-
dolfi and Ortiz (2012). Finally, the contact constraint
is imposed by restricting erosion to material points in
a state of volumetric expansion, i. e., material points
whose volume in the deformed configuration is larger
than the undeformed volume.

The simulation of crack propagation requires the
sequential solution of equilibrium step and material
point-erosion steps. If material points are eroded,
the equilibrium step needs to be repeated under the
same boundary conditions in order to restore mechan-
ical equilibrium. However, in some cases unstable
crack growth may result in several material-point

erosion steps at fixed external load, or on runaway
material-point erosion if the problem has no solution,
in the sense of existence of joint minimizers (u, C)

of the energy (10). Evidently, the intermediate con-
figurations resulting from multiple material-point ero-
sions at fixed applied load are the result of ancillary
constraints on the growth of the crack, namely, an
ordering of the material points by energy-release rate
and the sequential failing of material points according
to that ordering. A rigorous mathematical framework
for appending such ancillary quasistatic crack-growth
constraints has been put forth by Larsen et al. (2010b)
and Larsen (2010). An alternative regularization of
the problem consists of replacing the rate-indepen-
dent kinetics (12) characteristic of Griffith fracture by
kinetics defined by dissipation potentials Eq. (12), with
super-linear growth. This type of crack-growth kinet-
ics has been investigated in Larsen et al. (2009) by
means of energy-dissipation functionals Mielke and
Ortiz (2007). Yet another—physically based— regular-
ization of the problem consists of accounting for iner-
tia and dynamic crack growth Bourdin et al. (2011); Li
et al. (2012).

The implementation of the eigenerosion scheme into
the meshfree material-point code is particularly simple.
In addition to the standard arrays required by any sta-
tic solver, the eigenerosion scheme requires the intro-
duction of an array to keep track of the material points
that are progressively included in the evolving θ-neigh-
borhood of the crack. We recall that, according to the
ω-convergence analysis of Schmidt et al. (2009), the
size θ of the neighborhood can be chosen freely, as long
as it tends to zero more slowly than the mesh size. In
the calculations presented here we simply take, based
on calibration studies, θ = 2.5hmin, where hmin is the
minimum distance between nodes.

5 Numerical examples

In this section we collect verification tests aimed at
assessing the convergence characteristics of the eigene-
rosion scheme. We additionally present a validation
example concerned with the simulation of the mixed
mode I-III tests on aluminum oxide bars presented in
Suresh and Tschegg (1987). This validation example
showcases the ability of the eigenerosion scheme to
simulate complex three-dimensional crack geometries.

123Reprinted from the journal 9



A. Pandolfi et al.

0.5

0.5

1

0.25

(a)

Fig. 3 Displacement boundary conditions for the square plate
loaded in mode I. Edge H = 1, precrack a = 0.25, thickness
t = hmin

5.1 Edge-cracked square panel in mode I

We begin by assessing the performance of the
eigenerosion scheme by means of standard numerical
tests concerned with plane-strain crack growth in mode
I. For purposes of comparison, we replicate the dimen-
sionless conventions used in Pandolfi and Ortiz (2012).
Specifically, we consider a square plate of size H = 1
containing an initial edge crack of length a = 0.25H
loaded in pure mode I by displacement control on the
outer flanks of the plate, Fig. 3. The calculations are car-
ried out in finite deformations for a compressible neo-
Hookean material with Young’s modulus E = 1.06,
Poisson’s ratio ν = 0.333 and critical energy-release
rate Gc = 0.0001. Numerical simulations are per-
formed using a full three-dimensional code. In order
to simulate two-dimensional plane-strain geometries,
the boundary displacements in the third direction are
constrained. In addition, we place two material points
across the thickness, which is taken equal to the mesh
size.

We consider three discretizations defined by the
minimum distance between nodes hmin, and labeled
M1, M2 and M3, see Table 1. The distance hmin is taken
as a basis for the definition of the θ-neighborhood size,
leading from 3 to 4 material points in each material
point θ-neighborhood.

The cracks for the three discretizations at the final
–or at an advanced– stage of the fracture propagation
are compared in Fig. 4. The crack surfaces are generated
by the erosion of a single layer of material points and

Table 1 Data of the discretizations considered for the verifi-
cation analysis through convergence tests in the squared pre-
notched plate

Discretization Material points Nodes hmin

M1 9, 600 3, 382 0.0029

M2 38, 400 13, 162 0.0014

M3 153, 600 51, 922 0.0007

appear smooth and straight. The effective crack, mod-
eled by the set of eroded material points, converges to
a flat surface for θ → 0 following hmin → 0. Contour
levels in Fig. 4 refer to the normal component of the
Cauchy stress in the vertical direction.

Plots of global quantities per unit of thickness versus
the prescribed boundary displacement demonstrating
the expected mesh independency are shown in Fig. 5.
In particular, Fig. 5a illustrates the global vertical reac-
tion and Fig. 5b describes the total displacement norm
|u|L1, defined as:

|u|L1 =
∫

φ

|u(x)|dφ. (21)

Finally, Fig. 5c shows the dependence of the strain
energy E of the body on crack extension πa. Under a
prescribed boundary displacement δ the initial crack
does not propagate as long as the strain energy E
is less than the expenditure of fracture energy Gcl
necessary to break the initial ligament of length l =
0.75. In such situations, a null crack length πa = 0 is
the minimizer of the functional (13). When δ equals
the critical prescribed boundary displacement δc at
which E = Gcl, the crack extends through the
entire initial ligament with a discrete jump of length
πa = l, showing a sudden change of stability. At
this point, the minimizer of the functional (13) is
πa = l. We note that intermediate crack extensions
0 < πa < l are not energy-dissipation minimizers for
any prescribed boundary displacement δ and, therefore,
are devoid of special meaning within the variational
framework Larsen (2010).

5.2 Mixed tension-torsion experiment simulations

As a selected example of application showcasing
the range and scope of the eigenerosion scheme,
we proceed to simulate the combined tension-torsion
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Fig. 4 Edge-crack square panel. Predicted crack paths for three meshes of increasing fineness. Contour levels refer to the normal
component of the Cauchy stress in the vertical direction. a M1, b M2, c M3
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Fig. 5 Edge-cracked square panel. Dependence of: a global reaction force, and b displacement norm, on prescribed boundary displace-
ment. c Dependence of the strain energy on crack length at fixed prescribed boundary displacement

experiments on aluminum oxide bar specimens with
a circular notch reported by Suresh and Tschegg
(1987). Fig. 6 shows the geometry of the specimen
used in the experiments, with the detail of the annu-
lar pre-crack smooth notch. In the experiments the
pre-crack has been sharpened by fatigue through a
mode I cyclic loading in tension. To limit the com-
putational effort, in our numerical discretization we
model the central part of the specimen only, while
describing accurately the notch and the fatigue crack,
and apply displacement boundary conditions consis-
tent with the experimental tension-torsion configura-
tion, see Fig. 6. Specifically, we fix one end of the
computational domain and apply a uniform axial dis-
placement and rigid rotation about the axis at the other
end. The resultants of the nodal reactions on the fixed
base provide the numerical axial force and torque to be
compared with the experimental data. Displacements

are increased monotonically up to the onset of crack
growth from notch. Thereafter, the displacements
are kept constant, as in all cases the cracks grow
unstably.

The experimental paper provided the material prop-
erties used in the numerical analyses, i. e., the elastic
modulus E = 345 GPa and the mode I toughness
K I c = 3.35 MPam1/2. Assuming a Poisson’s coef-
ficient ν = 0.3, we derive the shear modulus μ =
138 GPa for the neo-Hookean model. The critical
energy release rate is computed through the relation

Gc = K 2
I c

E
(22)

which gives Gc = 32 N/m.
The three-dimensional numerical model comprises

603,996 material points and 221,191 nodes. The spa-
tial distribution of the material points is not uniform
and the discretization coarsens away from the notch,
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Fig. 6 Geometry of the
specimen used in the
experimental tests of Suresh
and Tschegg (1987). The
computational domain and
loading used for the
simulations is inset in the
lower-right corner

see Fig. 7. The minimum discretization size at the notch
is hmin = 0.0032 mm. In all calculations, the max-ent
interpolation parameter is set to γ = 0.1. By virtue of
this choice, the range of the max-ent shape functions
extends beyond nearest-neighboring nodes and, there-
fore, the attendant interpolation departs significantly
from finite-element interpolation. An initial triangula-
tion Fig. 7a is use in order to define the material-point
set Fig. 7b and assign volumes to each material point. In
order to calibrate the eigenerosion θ-neighborhood size
we begin by performing preliminary numerical analy-
ses in pure tension. The experimentally observed max-
imum axial force at failure is approximately 3,750 N
Suresh and Tschegg (1987). The minimum discrepancy
between the numerical and experimental axial force
is found to be 5 % and to occur for θ = 2.5hmin.
This value of θ is then used in all the subsequent
calculations.

We consider three loading cases leading to different
stress states at the notch: (i) pure tension or mode I load-
ing; (ii) mixed tension—torsion or mixed-mode I–III
loading, and (iii) pure torsion or mode III loading. In all
cases, failure occurs catastrophically once the limit load
is reached, in agreement with experiment. Suresh and
Tschegg (1987) provide the pictures of the post-mor-
tem crack surfaces for different specimens, included
the tension—pure mode I—and torsion—pure mode
III—cases. In the pure-tension case, the fracture surface
appears flat and smooth. In all other cases, the fracture
surfaces exhibit a striking saw-toothed pattern form-
ing inclined surfaces akin to petals. This orderly petal
structure breaks down in the central part of the spec-
imen. The sharpness of the petal structure, as well as
the failure load, increase with the magnitude of applied
torque.

Figures 8, 9, and 10 show the aspect of the numeri-
cally computed crack surfaces for the three simulations,
at one of the last stages of the fracture process. On the

left side of each figure, the fracture surface is visual-
ized by the collection of the eroded material points.
In this representation, the eroded material points are
located in proximity of—and trace—the crack surface.
By contrast, on the right side of the figure we show the
structure of the crack surface as obtained by means of
a rendering procedure based on averaging and smooth-
ing the positions of the eroded material points and on
spline approximation (cf. Alliez et al. 2007; Mullen
et al. 2010). This postprocessing construction aims to
determine a smooth surface, which may then be identi-
fied with the crack set, that is as close as possible to the
failed material-point set while costing the same amount
of fracture energy. Thus, whereas eigenerosion supplies
a volume approximation of the crack set, the postpro-
cessing construction effectively reverses that approxi-
mation and provides a sharp surface representation of
the crack set. A projection of the crack surfaces is addi-
tionally shown at the bottom of the figures in order to
visualize the complex crack front.

It may be seen from the figures that the pure-trac-
tion case is predicted to produce a flat crack surface,
whereas the pure-torsion case is predicted to result in
a periodic petal structure that breaks down in the cen-
tral part, in agreement with experiment. In addition,
the mixed-mode case generates less sharp petals that
converge smoothly towards the center of the specimen,
also in agreement with experiment. The precise frac-
tography predicted by the calculations cannot be com-
pared quantitatively with experiment, since the original
publication does not report quantitative fractograph-
ic measurements. This limitation notwithstanding, a
qualitative comparison can be performed in terms of
the observed number of petals, to wit: eight petals in
pure torsion and seven larger petals in the mixed-mode
case. Remarkably, the calculations predict exactly the
same number of petals in both cases, cf. Figs. 9
and 10.
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Fig. 7 Mixed-Mode tests of
Suresh and Tschegg (1987).
Computational model
consisting of 603,996
material points and 221,191
nodes. Note the strong
refinement at the notch.
a Initial triangulation of the
nodal set used to define the
material-point set.
b Visualization of the
resulting material-point set

Fig. 8 Simulation of the
mixed-mode tests of Suresh
and Tschegg (1987),
pure-tension case.
Left: failed material-point
set. Right: reconstructed
crack surface

Further insight into the formation of complex frac-
tographies in the pure torsion and mixed-mode exper-
iments and simulations may be derived from stability
analyses. Thus, in keeping with observation, our sim-
ulations describe the segmentation of the initially flat
annular crack into daughter cracks that rotate progres-
sively towards the direction of maximum tensile stress.
Subsequently, the axial symmetry of the test forces the
cracks to merge in the central part of the specimen.
As observed experimentally in other geometries, mode
I-III cracks often propagate unstably by the formation
of inclined facets, steps and self-similar branching pat-
terns. Stability analyses of mode I-III crack growth that
shed light into such observations may be found, e. g.,
in (Xu et al. 1994; Movchan 1998; Lazarus et al. 2001;
Lin et al. 2010; Leblond et al. 2011). These analyses
reveal the existence of a critical stress intensity factor
ratio K I I I /K I , dependent on Poisson’s ratio, that sepa-
rates stable and unstable planar crack growth (Xu et al.
1994; Movchan 1998; Leblond et al. 2011). Thus, for
sufficiently small, respectively large, K I I I /K I ratio

planar crack growth is stable, respectively unstable.
The stress-intensity ratio corresponding to the mixed-
mode test under consideration here is K I I I /K I ≈ 3,
which is greatly in excess of the stability limit for ν =
0.333. Under these conditions, planar crack growth is
unstable and the crack may indeed be expected to grow
out of the plane and form complex patterns, as predicted
by our calculations.

6 Summary and concluding remarks

We have described a meshfree material-point approx-
imation method for the numerical simulation of brit-
tle fracture propagation. The approach is based on
the combination of: meshfree max-ent interpolation
(Arroyo and Ortiz 2006); material-point sampling and
integration (Li et al. 2010); and a convergent material-
point erosion method based on the concept of eigende-
formations (Schmidt et al. 2009; Pandolfi and Ortiz
2012). Specifically, the crack set is approximated by
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Fig. 9 Simulation of the
mixed-mode tests of Suresh
and Tschegg (1987), mixed
tension-torsion case. Left:
failed material-point set.
Right: reconstructed crack
surface

Fig. 10 Simulation of
mixed-mode tests of Suresh
and Tschegg (1987),
pure-torsion case. Left:
failed material-point set.
Right: reconstructed crack
surface

means of eigendeformations, which enable the mate-
rial to develop displacement jumps at no cost of local
elastic energy. In the implementation developed in this
work, which we term eigenerosion, we compute the
energy-release rate attendant to the failure of one mate-
rial point by means of an θ-neighborhood construction.
This construction averages the elastic energy over a
length scale θ intermediate between the mesh size and
the size of the body. In this manner, the details of the
mesh are averaged over and the scheme results in mesh-
insensitive—and ultimately convergent—crack paths
and fracture energies. The overall convergence of the
method is clearly apparent in benchmark tests such as
crack initiation and growth in an edge-crack panel. The
range and scope of the method has been demonstrated
through the simulation of the combined torsion-traction
experiments of Suresh and Tschegg (1987). The abil-
ity of eigenerosion to predict the salient features of the

complex crack patterns that arise in those experiments
is remarkable.

As already noted, the algorithm presented here is
capable of tracking the propagation of both stable
and unstable cracks. For unstable cracks, by order-
ing the material points by energy-release rate and
failing them sequentially in accordance with that order-
ing, the algorithm provides crack-growth paths joining
two consecutive stable crack configurations or repre-
senting runaway unstable crack growth. There exist at
present rigorous mathematical approaches for under-
standing possibly-unstable quasistatic crack-growth in
brittle solids (Larsen et al. 2009, 2010b; Larsen 2010).
Whereas the present approach appears to be predic-
tive on the basis of direct comparisons with exper-
iment, a firm mathematical grounding of numerical
crack-tracking algorithms remains to be established
and is greatly to be desired.
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In closing, we additionally remark that the present
approach may be made extensive to inelastic behav-
ior, including plasticity, by recourse to variational
constitutive updates (Ortiz and Stainier 1999; Yang
et al. 2006). Thus, variational updates provide well-
defined incremental energies that combine both inter-
nal energy and dissipation. The incremental energies
can in turn be used in order to define the driving force
for fracture in the presence of inelasticity (Li et al.
2012).
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Abstract The problem of the in-plane dynamic per-
turbation of a crack propagating with a front that is
nominally straight is solved, to second order in the per-
turbation. The method of approach is a streamlined and
generalized version of that previously applied to first
order by the author and co-workers. It emerges, how-
ever, that the analysis at second order requires for its
consistency the introduction of a new singular term, of
a type not present at first order. The analysis is restricted
to the case of Mode I loading, for clarity of exposition.
It is carried out at a level of generality that incorpo-
rates viscoelastic response as well as propagation in
a “vertically stratified” medium including, as a spe-
cial case, propagation in a slab of finite thickness. For
illustration, the general solution is specialized to the
case of a stationary crack in an infinite elastic medium
and agreement with a solution recently developed by
methodology that is specific to the static case is con-
firmed.

Keywords Crack dynamics · Crack front
perturbation · Viscoelastic response
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1 Introduction

The author and co-workers over a period of years solved
a variety of problems involving the dynamic pertur-
bation of a propagating crack (see e.g. Movchan and
Willis 1995; Willis and Movchan 1995, 1997, 2007;
further references are given later). During the course of
this extended work, the methodology became increas-
ingly refined and the purpose now is to summarise the
approach that at the present time appears to be optimal.
Virtually all of the previous work was devoted just to the
first-order perturbation. Perturbation to higher order in
fact requires the introduction of terms different in char-
acter (and not needed) at first order. This is exposed by
developing the perturbation solution explicitly to sec-
ond order, showing the way, in principle, to obtaining
the solution to any order. The exposition is kept as sim-
ple as possible, by restricting attention to in-plane per-
turbation of a crack, propagating under Mode I loading.
In general, the cracked medium can be a slab, occupy-
ing the domain

D = {x : −∗ < x1, x2 < ∗,−h < x3 < h} (1.1)

subjected to loading which in the absence of the crack
would generate the stress field σ A

i j (x, t) and corre-

sponding displacement field u A
i (x, t). The crack occu-

pies the surface

Sε = {x : −∗ < x1 < V t + εφ(x2, t),

−∗ < x2 < ∗, x3 = 0}. (1.2)
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The more general case, involving out-of plane pertur-
bation, would define the perturbed crack to lie on the
surface x3 = εψ(x1, x2) but here ψ ⊂ 0 is assumed.
Out-of-plane perturbation was first treated by Willis
and Movchan (1997) but see also Willis (1999) for a
correction. Propagation in an elastic slab was addressed
by Movchan et al. (2005). The stress and displacement
fields in the presence of the crack are denoted σi j , ui .
They respond to the same external loading as σ A

i j , u A
i

but, in addition, correspond to zero tractions on the
surfaces of the crack and display a discontinuity in dis-
placement across the crack. Thus, the difference fields
σi j −σ A

i j , ui −u A
i satisfy the equations of motion with

zero body force, together with homogeneous boundary
conditions on the boundary of D (excluding Sε), while
on Sε,

σi3 − σ A
i3 = −σ A

i3, −∗ < x1 < V t + εφ(x2, t),

x3 = ±0. (1.3)

The medium is assumed to be homogeneous or, more
generally, to be vertically stratified, with properties
only varying with x3, and it can be linearly viscoelas-
tic, with time-harmonic moduli Ci jkl(ω) at radian
frequency ω. First-order perturbation of a crack in
an infinite viscoelastic medium has been treated by
Woolfries and Willis (1999), Woolfries et al. (2002),
Movchan and Willis (2001, 2002).

Now introduce the Green’s function G+
i j defined for

the medium occupying x3 > 0, with traction boundary
conditions applying on x3 = 0 and the same types of
conditions as those that define σ A

i j and u A
i , and σi j and

ui , on x3 = h.1 It follows that the difference fields
satisfy, on x3 = 0, the relation

ui − u A
i = −G+

i j ≥ (σ3 j − σ A
3 j ), (1.4)

the convolution being with respect to x1, x2 and t . Sim-
ilarly, for the region x3 < 0, on the boundary x3 = 0,

ui − u A
i = G−

i j ≥ (σ3 j − σ A
3 j ). (1.5)

From Eqs. (1.4) and (1.5), therefore,

[ui ] = −2∇Gi j ∞ ≥ (σ3 j − σ A
3 j ), (1.6)

where [ui ] represents the jump in displacement across
x3 = 0 and ∇Gi j ∞ is the average of G+

i j and G−
i j .

Specialising to Mode I loading (which implies both
symmetry of the loading and of the properties of the

1 In the case h → ∗, G+
i j satisfies a radiation condition so

that it is composed from waves travelling away from the surface
x3 = 0.

medium), the only non-zero jump in displacement is
[u3] and the only non-zero traction is σ33. Calling these,
respectively, [u]− and σ+, since [u]− = 0 ahead of the
crack and σ+ = 0 on the crack, it follows that these
satisfy the single equation

[u]− + 2G ≥ (σ+ − σ A) = 0, (1.7)

where ∇G33∞ is denoted G and σ A represents σ A
33. The

desired aspect of the solution is the stress intensity
factor. Its deduction from relation (1.7) constitutes the
main task of this work.

2 Method of solution

Before proceeding further, it is useful to change coor-
dinates to (X, x2, t) where

X = x1 − V t. (2.1)

It is easy to check that, with the functions re-defined
as functions of (X, x2, t), Eq. (1.7) remains exactly the
same, with the convolution now interpreted relative to
the new coordinates. It is also relevant to note that, if the
Fourier transform of any one of the functions is known
relative to the original coordinates—for instance

F G(ξ1, ξ2, ω) =∫ ∫ ∫
G(x1, x2, t)ei(ξ1x1+ξ2x2+ωt) dx1dx2dt, (2.2)

then its Fourier transform relative to the new coordi-
nates is

G̃(ξ1, ξ2, ω) =∫ ∫ ∫
G(X + V t, x2, t)ei(ξ1 X+ξ2x2+ωt) d Xdx2dt

= F G(ξ1, ξ2, ω − V ξ1). (2.3)

Interpreted relative to the new coordinates, at least
if ε = 0, Eq. (1.7) defines a problem of Wiener–Hopf
type. It is helpful, therefore, to factorize G as follows:

G = G− ≥ G+, (2.4)

where G− is zero for X > 0 and G+ is zero for X < 0.
Correspondingly G̃− is analytic in ξ1 for Im(ξ1) < 0
and G̃+ is analytic in ξ1 for Im(ξ1) > 0.

The basic relation (1.7) is now expressed in the form

1
2 (G−)−1 ≥ [u]− + G+ ≥ σ+ = G+ ≥ σ A. (2.5)

In preparation for describing the general strategy, con-
sider first the case ε = 0. The convolution G+ ≥ σ+ is
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a “+” function while (G−)−1 ≥ [u]− is a “−” function.
It follows from (2.5) that

G+ ≥ σ+ = {G+ ≥ σ A}+, (2.6)

meaning that the right side is defined to be zero when
X < 0. Hence, formally,

σ+ = (G+)−1 ≥ {G+ ≥ σ A}+. (2.7)

Similarly,

[u]− = 2G− ≥ {G+ ≥ σ A}−. (2.8)

Evidently, the type of singularity displayed by σ+, as
X → 0, is determined by the singularity of (G+)−1.2

Furthermore, the coefficient of this singularity is pro-
portional to {G+ ≥ σ A}+, evaluated as X → 0. In the
case of viscoelasticity and subsonic V , the singularity
in σ+ is of square-root type,

σ+ ≤ K0/(2π X)1/2 (2.9)

and, with suitable normalization of G+,

K0 = lim
X→0

{G+ ≥ σ A}+, (2.10)

the suffix on K0 indicating that ε = 0. For “inter-
sonic” V , a similar conclusion holds but the singularity
is no longer of square-root type. The relevant analysis
has been performed by Obrezanova and Willis (2003,
2008). Only subsonic V is considered from now on.

The general strategy is now outlined. The factors
G+ and G− are hard to find but it is a routine matter
to obtain their Fourier transforms; hence, working is
mostly performed within the Fourier domain.

First, relation (2.5) is considered as X→±0. Explic-
itly,

σ+ ≤ K (ε)/(2π(X − εφ))1/2 + A(ε)(X − εφ)1/2

+B(ε)(X − εφ)3/2 + · · · + σ ≥+(X − εφ, x2, t),

(2.11)

where σ ≥+ is non-singular and vanishes together with
all its X -derivatives as X → εφ. Correspondingly,

[u]− ≤ K u(ε)(εφ − X)1/2 + Au(εφ − X)3/2

+Bu(εφ − X)5/2 + · · · + u≥−(X − εφ, x2, t).

(2.12)

Also,

{G+ ≥ σ A}(X) ≤ {G+ ≥ σ A}(0)+X{G+ ≥ (σ A)∈}(0)

+ 1
2 X2{G+ ≥ (σ A)∈∈}(0) + · · · , (2.13)

2 If (G+)−1 has a singularity like X−s then σ+ has a singularity
like X (1−s).

having left implicit the dependence on x2 and t . The
prime denotes differentiation with respect to X .

Next, evaluate the Fourier transform of each side,
with respect to X ; this transformation will be indicated
with a hat symbol. Considering X → 0 is equivalent
to considering ξ1 → ∗. The transform of the left side
of (2.5) contains the products of the transforms of the
participating functions and hence involves, as X →
0, the asymptotic forms of Ĝ+ and (Ĝ−)−1 as ξ1 →
∗. These are easiest obtained from the corresponding
asymptotic forms of the transforms with respect to all
arguments:

G̃+ ≤ (2i)1/2

(ξ1 + 0i)1/2

{
1 + i

Q1

ξ1 + 0i
− Q2

(ξ1 + 0i)2

}
(2.14)

(G̃−)−1 ≤ 2(2i)1/2(ξ1 − 0i)1/2

A (V )

{
1 + i

R1

ξ1 − 0i
− R2

(ξ1 − 0i)2

}
,

(2.15)

having chosen what will be the right normalization for
G̃+ and employed the asymptotic form

G̃ ≤ A (V )

2|ξ1|

{
1 + i

G1

ξ1
− G2

ξ2
1

}
(2.16)

for G̃. The functions Q1 etc. depend on ξ2 and ω. Corre-
spondingly, Q1 etc. depend on x2 and t . They conform
to the relations

G1 = Q1 − R1, G2 = Q2 − R2 − R1(Q1 − R1).

(2.17)

Transforming (2.11) and (2.12) with respect to X
gives

σ̂+ ≤
{ (i/2)1/2 K (ε)

(ξ1 + 0i)1/2 + π1/2(i)3/2 A(ε)

2(ξ1 + 0i)3/2

−3π1/2(i)1/2 B(ε)

4(ξ1 + 0i)5/2

}
eiεξ1φ + σ̂ ≥+, (2.18)

[û]− ≤
{ K u(ε)π1/2(−i)3/2

2(ξ1 − 0i)3/2 − 3Au(ε)π1/2(−i)1/2

4(ξ1 − 0i)5/2

−15Bu(ε)π1/2(−i)3/2

8(ξ1 − 0i)7/2

}
eiεξ1φ + û≥−. (2.19)

Transforming (2.13) with respect to X gives

̂{G+ ≥ σ A} ≤
{

i

ξ1 + 0i
− i

ξ1 − 0i

}
{G+ ≥ σ A}(0)

−
{

1

(ξ1 + 0i)2 − 1

(ξ1 − 0i)2

}
{G+ ≥ (σ A)∈}(0)

−
{

i

(ξ1 + 0i)3 − i

(ξ1 − 0i)3

}
{G+ ≥ (σ A)∈∈}(0).

(2.20)

123Reprinted from the journal 19



J. R. Willis

The formulae just presented allow the development
of what amounts to the “inner limit” of relation (2.5),
when X → 0 (if preferred, when X = O(ε)). The
next step is to make an “outer expansion” of this inner
limit. This is done by now regarding X as fixed (and so
finite) and letting ε → 0. This is equivalent to taking
ξ1 fixed and letting ε → 0, which means adopting the
expansion (to second order in ε)

eiξ1εφ ≤ 1 + iξ1εφ − 1
2 (ξ1εφ)2. (2.21)

This, evidently, is equivalent to letting ξ1 → 0, or
X → ∗. Relation (2.5) is an identity; the result
of taking these two limits remains an identity from
which the desired information can be deduced. The
approach is conceptually simple but the new identity
contains many terms, summarised in the “Appendix”,
Section 5.

3 Deductions

Now set

K (ε) ≤ K0 + εK1 + ε2 K2 (3.1)

with similar expansions for A(ε), B(ε) and the para-
meters with superscript u.

Implications of the identity (2.5) will be explored,
using the expressions (2.20), (5.1) and (5.2). The terms

Ĝ+ ≥ σ ≥+ and ̂(G−)−1 ≥ u≥− are disregarded in the first
instance; they will be introduced only when strictly
necessary and this will first occur at order ε2. At order
ε0, the identity (2.5) delivers three relations, the first of
which is

K0
i

ξ1 + 0i
− (π/2)1/2

A (V )
K u

0
i

ξ1 − 0i

= {G+ ≥ σ A}(0)

{
i

ξ1 + 0i
− i

ξ1 − 0i

}
, (3.2)

from which it follows that

K0 = (π/2)1/2

A (V )
K u

0 = {G+ ≥ σ A}(0). (3.3)

The next, considering terms containing 1/ξ2
1 , yields

(π/2)1/2 A0 + Q1 ≥ K0 = − (π/2)1/2

A (V )
[ 3

2 Au
0 − R1 ≥ K u

0 ]
= {G+ ≥ (σ A)∈}(0). (3.4)

Finally, from the terms containing 1/ξ3
1 ,

3
2 (π/2)1/2 B0 + (π/2)1/2 Q1 ≥ A0 + Q2 ≥ K0

= (π/2)1/2

A (V )
[ 15

4 Bu
0 − 3

2 R1 ≥ Au
0 + R2 ≥ K u

0 ]
= {G+ ≥ (σ A)∈∈}(0). (3.5)

It may be noted that (3.4), taken with (3.3) and (2.17),
implies the relation

Au
0 = − 2

3 A (V )[A0 + (2/π)1/2G1 ≥ K0]. (3.6)

Similarly,

Bu
0 =2

5 A (V )[B0+ 2
3 (G1 ≥ A0+(2/π)1/2G2 ≥ K0)].

(3.7)

This provides some check on the algebra because σ+
and [u]− satisfy the relation (1.7) which involves only
the Green’s function G.

Next, consider terms of order ε. The first, which is
independent of ξ1, gives

− φK0 + φ
(π/2)1/2

A (V )
K u

0 = 0, (3.8)

which is true on account of (3.3). Now for the terms
containing 1/ξ1,

K1 − (π/2)1/2φ A0 − Q1 ≥ (φK0)

= (π/2)1/2

A (V )
[K u

1 + 3
2 φ Au

0 −R1 ≥ (φK u
0 )] = 0. (3.9)

The terms containing 1/ξ2
1 give

(π/2)1/2(A1 − 3
2 φB0)

+Q1 ≥ (K1 − (π/2)1/2φ A0) − Q2 ≥ (φK0)

=− (π/2)1/2

A (V )
[ 3

2 Au
1 + 15

4 φBu
0 −R1 ≥ (K u

1 + 3
2 φ Au

0)

+R2 ≥ (φK u
0 )]

= 0. (3.10)

The terms at order ε that contain 1/ξ3
1 are incomplete

through truncation of the basic expansions at just three
terms. Thus, B1 is undetermined.

Using results already obtained, the first equality in
(3.9) can be expressed

(π/2)1/2

A (V )
K u

1 = K1+φG1 ≥ K0−G1 ≥ (φK0) (3.11)

and the first equality in (3.10) gives

− (π/2)1/2

A (V )
( 3

2 Au
1 + 15

4 φBu
0 )=(π/2)1/2(A1− 3

2 φB0)

+ G1 ≥ (K1−(π/2)1/2φ A0)−G2 ≥ (φK0). (3.12)
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Further reduction is possible but the relations as dis-
played are obtainable directly from expansion of (1.7).

Consider, finally, terms of order ε2. The terms that
contain iξ1 give

− 1
2 φ

2 K0 + (π/2)1/2

A (V )
( 1

2 φ
2 K u

0 ) = 0, (3.13)

which is already known to be true. Now, however, con-
sider the terms that are independent of ξ1. They give

−φK1 + 1
2 (π/2)1/2φ2 A0 + 1

2 Q1 ≥ (φ2 K0)

+ (π/2)1/2

A (V )
[φK u

1 + 3
4 φ

2 Au
0 − 1

2 R1 ≥ (φ2 K u
0 )]

+ · · · = 0, (3.14)

where the terms not shown explicitly are associated

with {Ĝ+ ≥ σ ≥+ + 1
2

̂(G−)−1 ≥ u≥−}.
Equation (3.14) simplifies to

1
2 [G1 ≥ (φ2 K0)+φ2G1 ≥ K0]−φG1 ≥ (φK0)+· · ·=0.

(3.15)

It can be satisfied by assuming that σ ≥+ and u≥− have
“outer” expansions (i.e. as ε → 0 with X fixed or,
equivalently, as X → ∗ with ε fixed)

σ ≥+ ≤ ε2C≥ X−5/2, u≥− ≤ ε2C≥u(−X)−3/2. (3.16)

Correspondingly, as ξ1 → 0,

σ̂ ≥+ ≤ 4
3 ε

2C≥π1/2(i)−3/2(ξ1 + 0i)3/2,

û≥− ≤ −2ε2C≥uπ1/2(i)1/2(ξ1 − 0i)1/2. (3.17)

These must be multiplied3, respectively, by the asymp-
totic forms of Ĝ+, (Ĝ−)−1, obtainable from (2.14),
(2.15). The leading-order terms in the resulting expres-
sions are proportional to iξ1; they do not spoil Eq. (3.13)
if

C≥u = − 2
3 A (V )C≥. (3.18)

The complete version of Eq. (3.15) now becomes

1
2 [G1 ≥ (φ2 K0) + φ2G1 ≥ K0]
−φG1 ≥ (φK0) + 8

3 (π/2)1/2G1 ≥ C≥ = 0. (3.19)

3 Stated more precisely, convolutions with respect to x2 and t
must be performed.

Thus, C≥ and C≥u are determined. Finally, the terms of
order ε2 that contain 1/ξ1 give

K2 − (π/2)1/2φ A1 + 3
4 (π/2)1/2φ2 B0

−Q1 ≥ (φK1 − 1
2 (π/2)1/2φ2 A0)

+Q2 ≥ ( 8
3 (π/2)1/2C≥ + 1

2 φ
2 K0)

= (π/2)1/2

A (V )

{
K u

2 + 3
2 φ Au

1 + 15
8 φ2 Bu

0

−R1 ≥ (φK u
1 + 3

4 φ
2 Au

0)

−R2 ≥ (4(π/2)1/2C≥u − 1
2 φ

2 K u
0 )

}

= 0. (3.20)

The terms of order ε2 that contain 1/ξ2
1 or 1/ξ3

1 would
require for their completion more terms in the original
expansions. Thus, A2 and B2, as well as B1, remain
undetermined. Using results already established, the
first equality in (3.20) can be expressed in the form

(π/2)1/2

A (V )
K u

2 = K2 + φG1 ≥ K1 − G1 ≥ (φK1)

+(π/2)1/2{ 1
2 [G1 ≥ (φ2 A0) + φ2G1 ≥ A0] − φG1 ≥ (φ A0)}

+ 1
2 [φ2G2 ≥ K0 + G2 ≥ (φ2 K0)] − φG2 ≥ (φK0)

+G2 ≥ ( 8
3 (π/2)1/2C≥), (3.21)

again consistent with the fact that surface traction and
displacement are related through the Green’s function.
It follows also that

K2 = Q1 ≥ [φQ1 ≥ (φK0)] − φQ2
1 ≥ (φK0) + φQ2 ≥ (φK0)

− 1
2 Q2 ≥ (φ2 K0)

+ 1
2 (π/2)1/2 Q1 ≥ (φ2 A0) + 3

4 (π/2)1/2(φ2 B0)

− 8
3 (π/2)1/2 Q2 ≥ C≥, (3.22)

having substituted the relevant expressions for K1 and
A1.

Finally, with the definitions

L0 ={G+ ≥ (σ A)∈}|X=0, M0 ={G+ ≥ (σ A)∈∈}|X=0

(3.23)

and using (3.4)1 and (3.5)1, the result can be expressed
in the form

K2 = Q1 ≥ [φQ1 ≥ (φK0)]−φQ2
1 ≥ (φK0)

+ 1
2 [φ2 Q2

1 ≥ K0−Q1 ≥ (φ2 Q1 ≥ K0)]
+φQ2 ≥ (φK0)− 1

2 [Q2 ≥ (φ2 K0)+φ2 Q2 ≥ K0]
+ 1

2 [Q1 ≥ (φ2 L0)−φ2 Q1 ≥ L0]+ 1
2 φ

2 M0

− 8
3 (π/2)1/2 Q2 ≥ C≥. (3.24)
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4 Example: infinite uniform isotropic medium

It can be shown that, for this case, on the surface x3 = 0,

G+
33(x1, x2, t) = G−

33(x1, x2, t) = G(x1, x2, t) (4.1)

and that, relative to the frame (x1, x2, t),

F G(ξ1, ξ2, ω) = (ω2/b2)(ω2/a2 − |ξ |2)1/2

iμD(|ξ |, ω)
, (4.2)

where |ξ | = (ξ2
1 + ξ2

2 )1/2 and a, b are the speeds of
dilatational and shear waves:

a2 = (λ + 2μ)/ρ, b2 = μ/ρ. (4.3)

The medium has Lamé moduli λ, μ and density ρ, and

D(|ξ |, ω) = 4|ξ |2(ω2/a2 − |ξ |2)1/2(ω2/b2 − |ξ |2)1/2

+(ω2/b2 − 2|ξ |2)2. (4.4)

Then, relative to the moving frame, G̃(ξ1, ξ2, ω) is
given by replacing ω with ω − V ξ1, as prescribed in
(2.3).

It follows that, as ξ1 → ∗, G̃ has the expansion
(2.16), with

A (V ) = 2(V 2/b2)α

μR(V )
, (4.5)

where R(V ) is the Rayleigh discriminant

R(V ) = 4αβ − (1 + β2)2, (4.6)

with

α = (1 − V 2/a2)1/2, β = (1 − V 2/b2)1/2. (4.7)

If the medium is viscoelastic, then a and b become
functions of ω relative to the original stationary frame
and functions of ω− V ξ1 relative to the moving frame.
It follows immediately that

G1(ξ2, ω) = −iω
A ∈(V )

A (V )
. (4.8)

The corresponding operator in physical space is

G1≥ = A ∈(V )

A (V )

∂

∂t
. (4.9)

The first dependence on x2 comes in with G2.
Before proceeding further, consider Eq. (3.19) for

C≥: it reduces to

8
3 (π/2)1/2∂C≥/∂t = − 1

2 [∂(φ2 K0)/∂t + φ2∂K0/∂t]
+φ∂(φK0)/∂t ⊂ 0. (4.10)

Thus, remarkably, it is consistent to take C≥ = 0.4

Furthermore, this conclusion would persist even if the
medium were anisotropic, so long as the basic propaga-
tion is in a direction of symmetry. If the coupled Mode
II-III problem were considered, even for an isotropic
medium, terms analogous to C≥ would at least have
to be admitted. It is not known at the time of writing
whether or not such terms are zero if the medium is
isotropic. Detailed analysis is in progress and will be
reported separately.

Having established that C≥ = 0, for the sake of a
simple illustration, the problem is pursued just in the
static limit, for which there is no distinction between
F G and G̃ and the variable ω is simply absent. Thus,

F G = G̃ = 1 − ν

μ|ξ | , (4.11)

where ν = λ/2(λ + μ) is Poisson’s ratio. It follows
immediately that

G̃+ = (2i)1/2

(ξ1 + i |ξ2|)1/2 ,

(G̃−)−1 = (2i)1/2μ(ξ1 − i |ξ2|)1/2

1 − ν
(4.12)

so that

Q1 = − 1
2 |ξ2|, Q2 = 3

8ξ
2
2 . (4.13)

Also,

G1 = 0, G2 = 1
2 ξ

2
2 . (4.14)

Taken together with (3.22), these relations suffice to
complete the solution of the elastostatic problem.

Consider, finally, the particular case that σ A depends
on x1 only so that K0, A0 and B0 are constants, and
take the perturbation to be

εφ(x2) = a cos(kx2) (4.15)

(so that a is a suitably small length). In this case,

Q1 ≥ φ = Re
∫

Q1(x ∈
2)e

ik(x2−x ∈
2) dx ∈

2

= − 1
2 |ka| cos(kx2), (4.16)

since Q1 is given by (4.13)1. A repeat of this type of
reasoning gives

Q1 ≥ [φQ1 ≥ φ]= 1
4 (ka)2[cos2(kx2)−sin2(kx2)].

(4.17)

4 Movchan and Willis (2001) unwisely included (but did not use)
some results for second-order perturbation that were derived sim-
ply by comparing terms containing what is here called K2, with-
out checking the consistency of the other second-order terms.
Their formula is correct only because, as now established, C≥ =
0 in the case that they considered.
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The other terms in (3.22) are even simpler to obtain,
since Q2

1 and Q2 are both proportional to ∂2/∂x2
2 . The

final result is that

K2 = 1
8 K0(ka)2 sin2(kx2)

− 1
4 (π/2)1/2(A0a)|ka| cos(2kx2)

+ 3
4 (π/2)1/2(B0a2) cos2(kx2) (4.18)

or, in terms of the parameters L0 and M0 defined by
(3.23),

K2 = 1
8 K0(ka)2 sin2(kx2) − 1

4 (L0a)|ka| cos(2kx2)

+ 1
2 (M0a2) cos2(kx2). (4.19)

It is necessary to make one final observation: the def-
inition of K (ε), implicit in relation (2.11), was adopted
for mathematical convenience. The conventional stress
intensity factor, K I say, expresses the stress directly
ahead of the crack, asymptotically, as K I /(2πr)1/2,
where r is the distance taken in the direction normal
to the crack. This makes no difference at the level
of first-order perturbation but, to obtain K I to sec-
ond order, it is necessary to subtract 1

4 K0 (εφ∈)2 =
1
4 K0(ka)2 sin2(kx2) in the present case. Thus, to sec-
ond order,

K I ≤ K0 − 1
2 K0|ka| cos(kx2) + (L0a) cos(kx2)

− 1
8 K0(ka)2 sin2(kx2) − 1

4 (L0a)|ka| cos(2kx2)

+ 1
2 (M0a2) cos2(kx2). (4.20)

This result was recently derived, by an entirely different
method based on work of Rice (1989), by Leblond et
al. (2012), in the special case L0 = M0 = 0. The
complete result is consistent with the general formula
derived for elastostatics by Vasoya et al. (2013).

5 Appendix: Expansion of the basic identity
to second order

The term that must be equated to the right side of (2.20)
is composed from the limiting operations applied to
1
2 (G−)−1 ≥ [u]− + G+ ≥ σ+. Completing the algebra
gives

Ĝ+ ≥ σ+ ≤ − 1
2 iξ1ε

2φ2 K − εφK + 1
2 (π/2)1/2ε2φ2 A

+ 1
2 ε

2 Q1 ≥ (φ2 K ) +
{

K − ε(π/2)1/2φ A + 3
4 ε

2(π/2)1/2φ2 B

−Q1 ≥ [εφK − 1
2 (π/2)1/2ε2φ2 A] + 1

2 ε
2 Q2 ≥ (φ2 K )

} i

ξ1 + 0i

−
{
(π/2)1/2(A − 3

2 εφB) + Q1 ≥ (K − ε(π/2)1/2φ A

+ 3
4 ε

2φ2 B) − Q2 ≥ [εφK − 1
2 (π/2)1/2ε2φ2 A]

} 1

(ξ + 0i)2

−
{

3
2 (π/2)1/2 B + (π/2)1/2 Q1 ≥ (A − 3

2 εφB)

+Q2 ≥ [K − ε(π/2)1/2φ A + 3
4 ε

2(π/2)1/2φ2 B]
} i

(ξ1 + 0i)3

+ Ĝ+ ≥ σ ≥+. (5.1)

Also,

1
2

̂(G−)−1 ≥ [u]− ≤ − (π/2)1/2

A (V )

[
− 1

2 iξ1ε
2φ2 K u

−εφK u − 3
4 ε

2φ2 Au + 1
2 ε

2 R1 ≥ (φ2 K u)

+
{

K u + 3
2 εφ Au + 15

8 ε2φ2 Bu

− R1 ≥ (εφK u + 3
4 ε

2φ2 Au) + 1
2 ε

2 R2 ≥ (φ2 K u)
} i

ξ1 − 0i

+
{

3
2 Au + 15

4 εφBu − R1 ≥ (K u + 3
2 εφ Au + 15

8 ε2φ2 Bu)

+ R2 ≥ (εφK u + 3
4 ε

2φ2 Au)
} 1

(ξ1 − 0i)2

−
{

15
4 Bu − R1 ≥ ( 3

2 Au + 15
4 εφBu)

+R2 ≥ (K u + 3
2 εφ Au + 15

8 ε2φ2 Bu)
} i

(ξ1 − 0i)3

]

+ 1
2

̂(G−)−1 ≥ u≥−. (5.2)

The exact forms taken for Ĝ+ ≥ σ ≥+ and ̂(G−)−1 ≥ u≥−
are discussed in the main text.
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Abstract The paper deals with localisation of flex-
ural waves within gratings composed of either pinned
points or rigid inclusions of finite radius in a structured
plate. We study the filtering and resonant action of such
systems. The effect of the finite size of inclusions on the
dynamic localisation is analysed for the range of fre-
quencies where only zeroth grating orders propagate.
The structure of the resonant modes within gratings
of inclusions is of special interest. In particular, we
consider the circumstances under which such gratings
can deliver for flexural waves a phenomenon similar
to Electromagnetically Induced Transparency, where a
resonant maximum of transmission is cut in two by a
resonant minimum. We identify system designs which
yield very high concentration of flexural fields within
the interface that may lead to a further structural failure.
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1 Introduction

In problems of structural mechanics, studies of vibra-
tion of plates appear to be important for prediction of
the response of elastic systems to earthquakes and other
dynamic loads. Structures like aircraft, long bridges
and reinforced roads would also involve an arrange-
ment of inclusions, voids or masses as a part of the
structural design. Stress concentration often occurs for
different dynamic regimes. Special resonance regimes
characterised by an enhanced transmission are consid-
ered in this paper.

We consider here the interaction of flexural waves
in thin elastic plates with a structured interface con-
sisting of a finite number of periodic gratings. Finite-
thickness interfaces were analysed by Bigoni and
Movchan (2002) for both static and dynamic cases. The
term structural interface was introduced for a finite-
width material possessing inertia joining continuous
media, with continuum and semi-discrete microstruc-
tures being considered. The elastostatic theory of
structural interfaces was advanced by Bertoldi et al.
(Parts I - III, 2007). In the dynamic examples, the
effect of inertia was shown to be crucial for the fil-
tering properties of the interface. For low frequency,
time-harmonic vibrations and elastic waves of a spe-
cific nature, it was shown that exceptionally narrow
pass bands were demonstrable for the periodic struc-
tures. Further analysis of Bloch-Floquet waves for peri-
odic systems showed that structural interfaces can be
designed to illustrate similarly interesting properties of
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filtering for elastic waves (Bigoni et al. 2008; Gei et al.
2009 and Brun et al. 2010). Our periodically structured
interface supports sharp transmission resonances for
low-frequency flexural vibrations for the interaction of
a plane wave with the structured plate.

Such interaction problems, together with resonant
interaction and trapped waves, have been the subject of
a number of papers in recent years, notably by Evans
and Porter (2007), Movchan et al. (2007), Movchan et
al. (2009), Movchan et al. (2011), Farhat et al. (2010).
A related aspect that is also of great interest concerns
the design of systems which can cloak objects from
detection by flexural wave scattering by placing them
within structured “shields” (see, for example, Farhat et
al. 2009 and Stenger et al. 2012).

The investigations here were inspired by the strik-
ing results obtained in our previous papers Movchan
et al. (2009) and Haslinger et al. (2012). In that work
the interaction of flexural waves with gratings com-
posed of fixed pins of zero radius was considered.
It was shown that very high quality factor (Q) res-
onances could be easily obtained, with Q of around
3.5 × 104 being exhibited for a system of two gratings
(see Haslinger et al. 2012). Furthermore, for systems
of three gratings it was shown that one could achieve
a filtering action showing a strong resemblance to the
quantum mechanical phenomenon of Electromagneti-
cally Induced Transparency (for an authoritative review
of this topic see Fleischhauer et al. 2005).

We also mention that there have been related inves-
tigations involving transmission properties of electro-
magnetic waves through doubly periodic grids (Botten
et al. 1985; Ulrich and Tacke 1973; Pelton and Munk
1979). In these papers, square symmetric grids illu-
minated by normally-incident plane waves exhibited a
resonant transmission maximum, whereas for slightly
off-normal incidence, the transmission maximum was
bisected by a zero of transmission. It was shown that
this was due to the presence of a mode with the opposite
symmetry (odd) to that of the resonant mode for normal
incidence (even), the former not being able to couple
to the incident wave. However, for off-axis angles, its
coupling coefficient became nonzero, and the null of
reflectance was then caused by the resonances of the
even and odd modes coinciding and cancelling each
other. The paper of Botten et al. (1985) gives infor-
mation on the phase as well as amplitude of reflection
and transmission coefficients, and also remarks that the
resonance of the even mode can involve the carriage of

more than 100 % of the incident energy in the down-
ward direction (i.e. parallel to the incident wave), since
the odd mode resonance involves energy being carried
upwards (i.e. anti-parallel to the incident wave).

The effect of resonance transmission is illustrated in
Fig. 1 where the field plot shows the flexural displace-
ment inside a triple grating stack of rigid pins and the
plane wave outside the stack. The plane wave appears
to be virtually unperturbed for the chosen frequency.
In the present paper we show the effect of varying
the arrangement of inclusions within the gratings, and
analyse the resonance modes for inclusions of nonzero
radius.

In the main text of the paper we use the abbre-
viation EDIT for the Elasto-Dynamically Inhibited
Transparency. The change in the geometry from zero
radius pins to inclusions can have important effects on
the EDIT phenomenon. In particular, the symmetry
of the localised field is affected by the scattering from
the inclusions of nonzero radius: it has been noted by
Haslinger et al. (2012) that an anti-symmetric reso-
nance mode, where displacements are equal to zero
along the neutral line within the triple of rigid pins, is
unaltered for the case of a horizontal shift of the middle
grating; this is no longer the case for the situation when
the middle grating consists of rigid inclusions of finite
radius.

In Sect. 2 we give a brief account of the governing
equations and the method of solution for the problem
of scattering of a flexural wave by a finite set of gratings
of rigid inclusions of common period. (For the conve-
nience of the reader, all the key equations are given in
the Supplementary Material to the paper.) The studies
that follow Sect. 2 address interaction of scatterers of
finite radius. We show that the EDIT phenomenon can
still be obtained for the configuration in which the cen-
tral grating has rigid pins and the outer gratings have
finite radius scatterers. Parameters of the system which
enable the quality factors of transmission and reflection
resonances to be controlled are identified and flexural
wave patterns within the grating stack are exhibited.

2 Governing equations: scattering by a single
grating

This paper presents a considerable breakthrough com-
pared to the two previous publications by Movchan
et al. (2009) and Haslinger et al. (2012). The novel
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Localisation near defects

Fig. 1 a Triplet of aligned
rigid pin gratings with
period d and relative grating
separation ε = d. The angle
of incidence is denoted by
θi . b Flexural displacement
plotted as a function of x
and y for the transmission
resonance associated with a
symmetric trapped mode for
θi = 30◦ for the grating
stack illustrated in (a)

(a) (b)

Elasto-Dynamically Inhibited Transmission phenom-
enon has never been observed in elasticity problems,
but its analogues are common in electro-magnetism.
This is essential to emphasise the importance of the
defect modes for the case of stacks of gratings con-
taining rigid inclusions of finite radius a rather than
fixed pins. This makes it necessary to take into account
higher-order multipole terms characterising the scat-
tered field, and the periodicity of the grating will also
lead to the use of higher order lattice sums. The account
of the theory given below and in the Supplementary
Material is kept to the bare minimum and further details
can be found in the aforementioned papers. (Note that
references in the text to equations from the Supplemen-
tary Material have numbers with a prefix S.)

The flexural displacementw(x; t) = W (x) exp(iφt)
is considered to be time-harmonic of radian frequency
φ, and its amplitude W satisfies the following equation

∂2W (x) − ω4W (x) = 0, (1)

with ω2 = φ
√

νh/D. We also note that the flexural
rigidity of the plate is denoted by D = Eh3/(12(1 −
π2)), where h stands for the thickness of the plate, ν is
the mass density, E is the Young modulus and π is the
Poisson ratio.

The solution of Eq. (1) can be divided into two parts
WH and WM , which satisfy the Helmholtz equation
and its counterpart form which we call the modified
Helmholtz equation:(

∂ + ω2
)

WH = 0 and
(
∂ − ω2

)
WM = 0. (2)

An important aspect of the physics of the problem is that
WH contains both propagating and evanescent waves,
while WM consists entirely of evanescent waves.

Figure 2 shows a sample configuration, which will
be of considerable interest in the paper, and serves to

Fig. 2 Stack of gratings consisting of an outer pair of finite
nonzero inclusions with radius a and period d and a central
grating of rigid pins characterised by the relative lateral shift
σ . The relative grating separation between consecutive gratings
is denoted by ε

introduce important parameters characterising the grat-
ing structure and the incident wave. The stack of grat-
ings comprises two or three elements, each assumed
to be periodic, of period d, in the horizontal direction,
and typically the gratings are separated by the common
distance ε in the vertical direction. The successive grat-
ings may have a relative horizontal shift, denoted by σ

in Fig. 2. The stack may include a combination of fixed
pin gratings and gratings of rigid cylindrical inclusions
of finite radius a.

For each rigid inclusion, the boundary conditions
are

W

∣∣∣∣
r=a

= 0,
ψW

ψr

∣∣∣∣
r=a

= 0, (3)

where r represents the distance from the centre of the
inclusion. Physically the above boundary conditions
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represent clamping on the rigid boundary. In particular,
when the radius a tends to zero we retrieve the case
of fixed pins discussed by Movchan et al. (2009) and
Haslinger et al. (2012).

A plane incident wave is propagating towards the
grating in the upper half-plane. We need to consider
two cases, the first dealing with an incident wave of the
Helmholtz type, with amplitude AH :

Wi,H (x) = AH√|α0| exp{i(λ0x − α0 y)}, (4)

where λ2
0 + α2

0 = ω2 and λ0 is the Bloch parameter,
λ0 = ω sin θi , with θi being the angle of incidence
(see Fig. 2). The second case treats an incident wave of
modified Helmholtz type, with amplitude AM :

Wi,M (x) = AM√|α̂0|
exp{i(λ0x − α̂0 y)}, (5)

where this wave is always evanescent so that λ2
0 +α̂2

0 =
−ω2, α̂0 = iβ0, β0 > 0.

The periodicity of the structure in the horizontal
direction and the parameters of the incident wave are
represented by the quasi-periodicity condition for W
along the horizontal axis:

W
(

x + mde(1)
)

= W (x) eiλ0md , (6)

where m ∈ ZZ and d is the period.
We now sketch the method used to treat the scatter-

ing of the plane incident waves, either of the Helmholtz
type (4) or of the modified Helmholtz type (5), by a
grating of inclusions of radius a. The flexural displace-
ment W can be expanded for y > a and y < −a in
terms of sums of plane waves (WH ) and modified plane
waves (WM ). Above the grating the expansion has a
down-going incident wave term and up-going reflected
waves with amplitudes Rp and R̂p, for the respective
wave types. Below the grating the amplitudes of the
down-going transmitted waves are denoted by Tp and
T̂p.

In order to connect these two types of expan-
sions we introduce multipole expressions for W in
the region −a ≤ y ≤ a. The multipole expansion
for WH involves cylindrical waves Jn(ωr)einθ and
H (1)

n (ωr)einθ with respective amplitudes An and En :

WH (x) =
∞∑

n=−∞

{
An Jn(ωr) + En H (1)

n (ωr)
}

einθ . (7)

The multipole expansion for WM involves modified
Bessel function terms In(ωr)einθ and Kn(ωr)einθ with
respective amplitudes Bn and Fn :

WM (x) =
∞∑

n=−∞
{Bn In(ωr) + Fn Kn(ωr)}einθ . (8)

The amplitudes An, Bn, En, Fn are the multipole coef-
ficients to be determined, and they are related by the
boundary conditions (3). The coefficients An and Bn

are expressed in terms of the coefficients En and Fn

(see equations (S7), (S8)).
The next step in the argument is to write down

the Rayleigh identity, which expresses the part of the
expansion for W which is regular near the origin (i.e.
the terms involving the Bessel functions Jn and In) as
sums over the part which is irregular near the origin
(i.e. the terms involving the Bessel functions H (1)

n and
Kn), together with a term representing the expansion
of the incident wave in multipoles. While we refer to
Movchan et al. (2007), here the Rayleigh equations are
written with the use of the appropriate grating lattice
sums in place of the doubly periodic array lattice sums.
Equations (S11), (S12) in the Supplementary Material
give the connection between the two sets of multipole
coefficients An, Bn and En, Fn . These equations are
uncoupled for solutions of the Helmholtz and the mod-
ified Helmholtz type. The necessary coupling between
the two types of waves is provided by the boundary
conditions. The combination of the Rayleigh identity
and the boundary conditions gives a system of linear
equations (S13), (S14), which is then truncated (e.g. so
that Bessel functions of orders −L to L are retained)
and solved to evaluate a set of multipole coefficients.
These in turn are used to evaluate plane wave amplitude
coefficients for the fields above and below the grat-
ing, using what we call reconstruction equations (S25)–
(S28). The amplitudes of the reflected and transmitted
waves are determined for the set of incident fields cor-
responding to a range of grating orders, both propagat-
ing and evanescent. These are assembled into scattering
matrices for reflection and transmission that completely
characterise the grating’s scattering action.

3 Transmission resonance for pairs of aligned
gratings: normal incidence

Here we consider the filtering action in the transmis-
sion of flexural waves by systems of two gratings of
inclusions, with both of the gratings aligned. We con-
centrate on the effects of inclusion radius a and vertical
separation ε between gratings on the filtering action,
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characterised by the Q-factor1 of the transmittance
peak.

The phenomenon of transmission resonance for
gratings of rigid pins was addressed by Movchan et
al. (2009) and Haslinger et al. (2012). The increase of
the radius of inclusions within the gratings affects the
scattered fields; this consequently leads to the change
in the frequency of the resonance mode as well as its
Q-factor. The analytical representation of the physi-
cal fields between the gratings incorporates multipole
representations (7) and (8) outlined in Sect. 2.

The formulae for transmission and reflection matri-
ces were already obtained for a single grating, together
with the formulae for the transmission and reflection
matrices for a pair of identical gratings (see Movchan
et al. 2009)

T 2 = T 1[I − (R1)
2]−1T 1,

R2 = R1 + T 1R1[I − (R1)
2]−1T 1. (9)

The matrices T i ,Ri comprise the matrices Ti and
Ri respectively, where i = 1, 2, which are formed
using the coefficients for the plane wave representa-
tions (S25)-(S28), together with a diagonal propagation
matrix P :

Ri = PRiP, T i = PTiP . (10)

For the unshifted pair, this propagation matrix P
changes with the change of the vertical separation ε

between the gratings,

P =
(

P 0
0 P

)
, where P = [γtpei α̃pε/2], (11)

with α̃p = αp if p corresponds to a Helmholtz type
plane wave and α̃p = α̂p if p corresponds to a plane
wave of modified Helmholtz type. In contrast, the scat-
tering matrices Ti and Ri change with ω.

For the purpose of illustration, we consider several
configurations. A symmetric pair of gratings of inclu-
sions of finite radius is shown in Fig. 3. The geomet-
rical dimensions are normalised so that the distance d
between the centres of inclusions is unity. Table 1 gives
a summary of the resonance frequencies for different
configurations for the case of normal incidence.

The resonant frequency corresponding to the peak
in transmission is denoted by ω∗. For very high Q reso-
nances, additional decimal places are required to eval-
uate the spectral parameter ω∗ because the sampling,

1 For a resonant peak of transmittance T occurring at ω = ω∗
with T = Tmax there, if T = Tmax/2 for ω = ω+ and ω−, then
Q = ω∗/|ω+ − ω−|.

Fig. 3 Pair of gratings consisting of finite radius inclusions with
period d and relative grating separation ε

Table 1 Resonant frequencies ω∗ and the corresponding
Q-factors for various pairs of unshifted gratings for normal
incidence

a ε Resonant frequency Q

0 d ω∗ = 3.62810 20.0

0 2d ω
(1)∗ = 1.95200 6.19

ω
(2)∗ = 3.41020 25.2

ω
(3)∗ = 4.63308 539

0.01d d ω∗ = 3.82890 208

0.01d 2d ω
(1)∗ = 2.13669 33.4

ω
(2)∗ = 3.53658 138

ω
(3)∗ = 4.72190 76.6

0.02d d ω∗ = 3.90296 477

0.02d 2d ω
(1)∗ = 2.17529 50.8

ω
(2)∗ = 3.57980 219

ω
(3)∗ = 4.76865 68.2

0.1d d ω∗ = 4.5572187 6.51 × 104

0.1d 2d ω
(1)∗ = 2.40631 617

ω
(2)∗ = 3.925255 1.19 × 103

ω
(3)∗ = 5.23749 202

In this table, d = 1

needed to identify the characteristic values of the spec-
tral parameter, must be much finer. Throughout the
paper, appropriate accuracy is used in the Tables for
resonant frequencies. The first line in Table 1 corre-
sponds to the pair of gratings of rigid pins.
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Fig. 4 Total transmittance Ttot (curve 1) for a pair of rigid pin gratings and total reflectance Rtot (curve 2) for a single grating of
rigid pins as functions of ω. Data used: a ε/d = 1, b ε/d = 2. Here L = 0

Throughout this paper we consider the range of ω

values for which only the zeroth order plane waves
in reflection and transmission propagate i.e. p = 0.
For rigid zero-radius pins, it is sufficient for the corre-
sponding order of truncation L to be zero. Accordingly,
the total energy transmitted, Ttot, is given by |T0|2, |T0|
being the amplitude of the zeroth order transmission
coefficient (see equation (S26)).2 However as the radius
of the inclusion is increased, more terms are required
in the grating sums thereby increasing L .

The normalised resonant frequency is ω∗ = 3.62810
for the transmission peak with Q-factor 20, as illus-
trated by curve 1 in Fig. 4a. Curve 2 shows the reflected
energy for a single grating of rigid pins. It is clear that
there is a significant difference between the transmis-
sion properties of the single grating and of the pair of
gratings. The main emphasis is on the resonance mode
which arises due to the interaction between the grat-
ings, leading to a peak in transmission.

The increase in the vertical separation may bring
additional resonances. This is illustrated in Fig. 4b
for the vertical separation 2d. We observe the peak at
ω∗ = 3.41020 (rather than at ω∗ = 3.62810 as for the
vertical separation ε = d) and two additional peaks,
one at a much lower frequency of ω∗ = 1.95200, and
the other at a higher frequency (ω∗ = 4.633083) and
with a significantly higher Q-factor (see Table 1). The
reason for the very sharp peak at ω∗ = 4.633083 is
its proximity in frequency to very high reflectance for
a single grating of rigid pins for θi = 0◦. Figure 4b

2 Similarly, the total reflectance Rtot is equal to |R0|2, with |R0|
being the amplitude of the zeroth order reflection coefficient (see
equation (S25)).

illustrates two requirements for delivering high Q-
factor transmission peaks: the first is that the reflectance
of a single grating has to be close to unity, and the sec-
ond is that the separation of the gratings has to be cho-
sen to align the interference peak with the point of high
reflectance. We note that the physics here for flexural
waves is in keeping with that for optical waves (see
Born and Wolf 1959, Section 7.6).

For a grating of inclusions of radius a = 0.1d, Fig.
5a shows that the transmittance resonance for a pair
of gratings lies in the region of ω values where the
reflectance of a single grating is very close to unity.
This results in a high Q-factor (6.50 × 104) for the
pair of such gratings. By comparison, for a pair of grat-
ings with inclusions of radius a = 0.01d (Fig. 5b), the
Q-factor is 208, with the peak in transmittance for a
pair being significantly separated from the reflectance
peak for a single grating.

4 Transmission resonance for pairs of aligned
gratings: oblique incidence

With the introduction of nonzero angle of incidence,
additional physical effects become apparent. Firstly,
from Eqs. (11) and (S3) it follows that, if ε is fixed and
the angle of incidence θi increases, then α0 decreases
and thus the resonant value ω∗ must increase to pre-
serve the resonance transmission condition. Secondly,
the range of ω values in which only the zeroth order of
diffraction propagate changes according to the equation

ω−1 = 2τ

d(1 + sin θi )
, (12)
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Fig. 5 Total transmittance Ttot (curve 1) for a pair of gratings of inclusions of radius a and total reflectance Rtot (curve 2) for a single
grating of inclusions as functions of ω for separation ε/d = 1, and L = 2. Data used: a a = 0.1d, b a = 0.01d

Table 2 Resonant frequencies ω∗ and the corresponding
Q-factors for various pairs of unshifted gratings for examples
of oblique incidence

θi a ε Resonant frequency Q

30◦ 0 d ω∗ = 3.58221 5.42 × 103

30◦ 0 2d ω
(1)∗ = 3.6174737 3.55 × 104

ω
(2)∗ = 2.15950 10.4

30◦ 0.01d d ω∗ = 3.86164 238

30◦ 0.05d d ω∗ = 4.18486 253

20◦ 0.01d d ω∗ = 3.8507342 2.23 × 104

20◦ 0.05d d ω∗ = 4.1606161 2.57 × 103

15◦ 0.1d 2d ω
(1)∗ = 4.011852 1.75 × 103

ω
(2)∗ = 2.45092 639

10◦ 0.1d 2d ω
(1)∗ = 3.963273 1.40 × 103

ω
(2)∗ = 2.42564 626

In this table d = 1

with ω required to be smaller than ω−1. Thirdly, the
angle of incidence θi may be used to bring the resonant
frequency ω∗ for a pair of gratings into proximity with
the value for peak reflectance of a single grating.

Table 2 presents the results of computations of the
resonance frequencies in transmission and of the qual-
ity factors for pairs of aligned gratings (of zero shift).3

In Fig. 6 we give the transmittance curves for a pair
of rigid pin gratings with the separation being ε/d = 2
and with the angle of incidence θi = 30◦, with corre-

3 For rigid pin geometries, we use a more efficient method to
evaluate resonant frequencies than Movchan et al. (2009) and
Haslinger et al. (2012).

sponding curves for ε/d = 1 being given in Fig. 2 of
Haslinger et al. (2012). With the doubling of the grating
separation, the Q-factor goes up from 5.42 × 103 to
3.55 × 104. Note the very strong contrast in the quality
factors of the two transmission resonances in Fig. 6a,
caused by the difference in the reflectance values of the
single grating.

For the particular inclusion radius a = 0.1d we
show in Fig. 7 reflectance curves for a single grating
for angles of incidence ranging from 0◦ to 30◦. The
possible frequency range, for which the interference
peak may be aligned with the almost total reflectance,
is 4.4 < ω < 4.7 for 0◦ ≤ θi ≤ 15◦. Note that as the
angle of incidence increases the reflectance peak moves
closer and closer to the position of the Wood anomaly
whose frequency is given by Eq. (12). Since this Wood
anomaly marks the boundary of the region where two
orders propagate in both reflection and transmission, it
then becomes more and more difficult to choose para-
meters giving a sharp transmission resonance for a pair
of gratings.

5 Controlling transmission resonances for triplets
of gratings

In previous sections we have considered stacks in which
all gratings were aligned. In this section we generalise
the discussion to non-aligned stacks. The recurrence
procedure of Sect. 3 is adapted to this latter case if we
replace Eq. (10) by

Ri = Q̄PRiPQ̄, T i = Q̄PTiPQ̄, (13)
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Fig. 6 Total transmittance Ttot (curve 1) for a pair of rigid pin
gratings and total reflectance Rtot (curve 2) for a single grating of
rigid pins as functions of ω. Data used: ε/d = 2, θi = 30◦, and

L = 0. The diagram (b) is a blow up of the sharp transmission
resonance from (a)
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Fig. 7 Total reflectance Rtot as a function of ω for a single grat-
ing with inclusions of radius a = 0.1d (with order of truncation
L = 2) for the angle of incidence a θi = 0◦ (curve 1), 7.5◦

(curve 2), 15◦ (curve 3) and b θi = 30◦ (curve 1), 25◦ (curve 2),
θi = 20◦ (curve 3)

where P is as defined in (11) and

Q =
(

Qσ 0
0 Qσ

)

with Qσ = [γtpe−iλpσ/2], λp = λ0 + 2τp

d
.

(14)

Three types of triplets are considered here:

– triplets of identical gratings consisting of inclusions
with the same nonzero radius;

– triplets consisting of an outer pair of gratings of
rigid pins with a central grating of inclusions with
a nonzero radius;

– triplets with the central grating consisting of rigid
pins surrounded by a pair of gratings with inclu-
sions of nonzero radius.

The corresponding geometries are illustrated in
Fig. 8.

5.1 Triplets of identical gratings

The results of computations of the transmitted energy,
in normal incidence, for the triplet of gratings of small
inclusions of radius a = 0.02d, are shown in Fig. 9.
We observe a double peak for normal incidence. These
double peaks are characterised by symmetric and anti-
symmetric vibration modes, so that the flexural wave
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Fig. 8 a Triplet consisting of three identical gratings of inclu-
sions with nonzero radius a; b triplet consisting of a central grat-
ing of inclusions of nonzero radius a, surrounded by a pair of

rigid pin gratings; c triplet consisting of a pair of gratings with
inclusions of nonzero radius a surrounding a grating of rigid pins

within the triplet is an even or odd function of y,
respectively. A shift of the central grating results in a
perturbative effect on the frequency for which enhanced
transmission is observed. This shift in the double peak’s
frequency is illustrated in Fig. 9b where the central
grating is shifted by σ = 0.2d relative to the outer pair.
Although the change in the resonance frequencies in the
diagrams (a) and (b) appears to be small, we note that
the anti-symmetric mode depends on the longitudinal
shift for the case of inclusions of nonzero radius.

As a consequence of the symmetry of the grating
stack, we deduce that the resonant flexural vibration
modes are either symmetric or anti-symmetric. The
flexural displacement for frequencies ω

(2)∗ = 3.93753
and ω

(2)∗ = 3.948562 for the right hand peaks in
Fig. 9 correspond to anti-symmetric flexural modes,

whereas the other two frequencies ω
(1)∗ = 3.857309

and ω
(1)∗ = 3.863065 correspond to symmetric flex-

ural modes.
The results given here for inclusions of nonzero

radius differ from those obtained by Haslinger et al.
(2012) for triplets of rigid pins. One of the main dif-
ferences is related to anti-symmetric flexural modes,
which vanish on the central line of the grating stack.
The frequency of the transmission resonance for anti-
symmetric vibrations within the triplet of gratings of
rigid pins is invariant with respect to a horizontal shift
of the middle grating. This feature disappears when the
radius of inclusions is nonzero.

These comments are exemplified in the field plots
of Fig. 10. For a triplet of unshifted gratings of radius
a = 0.01d we identify two resonance transmission
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Fig. 9 Total transmittance Ttot (curve 1) as a function of ω

for normal incidence for a triplet of gratings of inclusions with
a = 0.02d, ε = d = 1 and L = 2. Curve 2 represents total

reflectance Rtot for a single grating of such scatterers: a aligned
gratings, σ = 0; b shifted central grating with σ = 0.2d

peaks for the angle of incidence θi = 30◦, as illustrated
in Fig. 10. It is noted that the symmetric mode corre-
sponds to a lower value of ω

(1)∗ = 3.819908 than the
anti-symmetric mode, which occurs at ω(2)∗ = 3.93678.
While plane waves outside the grating stack have the
orientation of the incident wave, inside the stack the
nodes and anti-nodes of the flexural displacement lie
broadly parallel to the y-axis.

5.2 Non-uniform triplets, with rigid pins on the
exterior boundary

We consider the triplet configuration shown in Fig. 8b,
where all three gratings are aligned with each other (i.e.
σ = 0). The triplet has rigid pin gratings on the outer
boundaries, and a grating of finite dimension inclusions
in the middle. In order for this configuration to deliver
sharp transmission resonances in normal incidence it
is necessary for the radius of inclusions in the middle
grating to be around 0.20d or larger. This is evident
from Fig. 11 where transmittance curves are compared
for radii a = 0, a = 0.15d and a = 0.20d. The trans-
mission peaks for the rigid pin triplet in part (a) are
far from being aligned with the maximal reflectance
for the single grating in normal incidence. To align the
peaks, and thereby increase the quality factors of the
resonances, the radius of the inclusions is increased to
a = 0.15d in part (b), and a = 0.20d in part (c). The
data for resonant frequencies and Q-factors for these
and other radii, together with data for different angles of
incidence, are given in Table 3. Of the two sharp peaks
in Fig. 11c that at ω(1)∗ = 4.42186394 has a Q-factor of

3.42 × 104 and corresponds to an anti-symmetric flex-
ural mode. The other peak at ω

(2)∗ = 4.445547468 has
the very high Q-factor of 7.68 × 105 and corresponds
to a symmetric flexural mode.

High quality factor transmission resonances may be
achieved either by specifying the angle of incidence
and then tuning the radius or by varying the angle of
incidence for a fixed radius. Examples of this can be
seen in Table 3. In Fig. 12 we show field plots of the
flexural displacement for the third case of Table 3. The
anti-symmetric mode ω

(1)∗ = 3.9995073 in this case
has a higher Q-factor (7.89 × 104) than the symmetric
mode (ω(2)∗ = 4.0416640, Q = 4.48 × 103).

5.3 Non-uniform triplets, with rigid pins in the central
grating

Triplets with a central grating of rigid pins have the
important property that the frequency of the trans-
mission resonance associated with the anti-symmetric
mode is invariant with respect to the horizontal shift
of the central grating. As the resonant frequency of
the symmetric mode is affected by such horizontal
shifts, they offer a means of controlling the frequency
gap between these modes. We illustrate this property
by studying the relationship between the transmission
resonances of grating triplets and those for the outer
pair of gratings.

In Fig. 13 we show total transmittance curves for an
aligned triplet with the outer gratings having a = 0.1d
(part (a)) and for the structure with the central grating
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Fig. 10 a Total transmittance Ttot as a function ofω for a triplet of
unshifted gratings of rigid inclusions of radius a = 0.01d, ε =
d = 1, for θi = 30◦. Field plots for transmission resonances:

b a symmetric mode with ω
(1)∗ = 3.819908; c an anti-symmetric

mode with ω
(2)∗ = 3.93678

of rigid pins removed (part (b)). The transmission reso-
nance shown in part (b) occurs at ω∗ = 4.011852 and it
coincides with the leftmost peak in part (a). The flexural
displacement plotted in Fig. 14a for this mode confirms
its anti-symmetric nature and shows also its nodal line,
coinciding with the central grating. The second trans-
mission peak in Fig.13a, of course, corresponds to a
symmetric mode, as confirmed in Fig.14b.

Figure 15 illustrates two different circumstances
which can arise when the central grating of pins is

shifted with respect to the outer gratings of inclusions
with nonzero radius. In case (a) the angle of incidence
is θi = 15◦ and the radius of inclusions is a = 0.1d.
The anti-symmetric transmission resonance (peak 1)
occurs at ω∗ = 4.011852 for all values of σ ∈
[−0.5d, 0.5d]. The symmetric mode resonance value
is an even function of σ which moves to higher values
of ω as σ increases from 0 to 0.5d. (Peaks 2 and 3 cor-
respond respectively to σ = 0.25d and σ = 0.5d.) Our
calculations show that, for this system, the positions of
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Fig. 11 Total transmittance Ttot as a function of ω for normal
incidence for a symmetric triplet with a a = 0 (total reflectance
Rtot for a single grating of zero-radius scatterers is shown by

the dashed curve) b a = 0.15d and c a = 0.20d for the central
grating. Here σ = 0, ε = d = 1, and L = 2

Table 3 Resonant frequencies ω∗ and the corresponding quality
factors for triplets of gratings with a middle grating consisting of
finite radius inclusions, and an outer pair comprising rigid pins

θi a ε σ Resonant Frequency Q

0◦ 0.2d d 0 ω
(1)∗ = 4.42186394 3.42 × 104

ω
(2)∗ = 4.445547468 7.68 × 105

0◦ 0.15d d 0 ω
(1)∗ = 4.22572 377

ω
(2)∗ = 4.26794 521

18◦ 0.1d d 0 ω
(1)∗ = 3.9995073 7.89 × 104

ω
(2)∗ = 4.0416640 4.48 × 103

18◦ 0.1d d 0.5d ω
(1)∗ = 4.06325990 4.79 × 104

ω
(2)∗ = 4.10531818 1.99 × 104

25◦ 0.01d d 0 ω
(1)∗ = 3.72273076 6.03 × 105

ω
(2)∗ = 3.7251407 1.24 × 104

The relative lateral shift of the central grating is denoted by σ

and the relative vertical separation between successive gratings
is denoted by ε

the anti-symmetric and symmetric resonance peaks do
not coincide for any values of σ in this range. However,
for the angle of incidence of θi = 20◦ and the inclusion
radius of a = 0.085d, Fig. 15b shows that the sym-
metric transmission resonance peaks for σ = 0.25d
(peak 2) and σ = 0.5d (peak 3) bracket the position
of the anti-symmetric resonance (peak 1). Therefore,
the symmetric and anti-symmetric resonances can be
brought into a coincidence for a value of σ in the inter-
val between 0.25d and 0.5d.

6 Shifted systems of gratings and the EDIT
phenomenon

The phenomenon of Elasto-Dynamically Inhibited
Transparency (EDIT), which can be demonstrated
via the analysis of resonance vibration modes within
triplets of periodic gratings, was identified by Haslinger
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Fig. 12 Flexural displacement as a function of x and y for a an anti-symmetric mode (ω∗ = 3.9995073) and b a symmetric mode
(ω∗ = 4.041664). Data: central grating inclusions of radii a = 0.1d, θi = 18◦ and ε = d = 1
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Fig. 13 Total transmittance Ttot as a function of ω: a for a triplet consisting of an outer pair of gratings with a = 0.1d and the central
grating of rigid pins (ε/d = 1); b for the outer pair of gratings with a = 0.1d and ε/d = 2. Data: θi = 15◦, L = 2.

et al. (2012) for the case of rigid pins. For a triplet
exhibiting up-down symmetry, a plane wave charac-
terised by the angle of incidence θi produces two trans-
mission resonances, one linked to an anti-symmetric
mode and the other associated with a symmetric mode.
The latter mode’s frequency depends on the relative
horizontal shift σ of the middle grating whilst the res-
onant frequency of the anti-symmetric mode is unaf-
fected by the value of shift for the rigid pin triplets.

By adjusting the shift parameter σ , the resonant fre-
quencies of the two modes can be aligned. For the case

of rigid pin triplets, three types of resonance coincide:
the symmetric and anti-symmetric resonances occur-
ring in the entire triplet, and the anti-symmetric reso-
nance for the outer pair of gratings.

Figure 16a gives the total transmittance as a function
of ω for the triplet studied by Haslinger et al. (2012),
and in addition in parts (b) and (c) it shows flexural
displacements for both the outer pair of gratings and
the entire triplet, at the ω value corresponding to the
point of minimum transmittance in part (a). The total
transmittance is negligibly small at this minimum. The
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Fig. 14 Flexural displacement as a function of x and y for a
triplet consisting of an outer pair of gratings with inclusions
of radius a = 0.1d and a central unshifted rigid pin grat-

ing, for an angle of incidence of 15◦. a Anti-symmetric mode
(ω∗ = 4.011852); b symmetric mode (ω∗ = 4.0496094). Data:
ε = d = 1 and L = 2
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Fig. 15 Total transmittance Ttot as a function of ω for two shifted triplets (σ = 0.25d and σ = 0.5d) containing a central grating of
rigid pins (ε = d = 1). a Angle of incidence θi = 15◦, outer scatterer radius a = 0.1d; b θi = 20◦, a = 0.085d

symmetric and anti-symmetric modes add in the upper
half of the structure and subtract in the lower half. The
result is that the flux of energy into the region below
the triplet is zero and the field above the triplet takes
the form of a standing wave.

We will now show that it is possible to obtain a
strong EDIT effect for grating triplets containing inclu-
sions of finite radius. To construct examples of this, it is
preferable to use triplets with the outer gratings having

inclusions of small but nonzero radius, with the central
grating consisting of rigid pins. Note that, if the inclu-
sions in the outer gratings are not sufficiently small,
the resonances of the anti-symmetric and symmetric
modes can be made to coincide, but the transmittance
peaks on either side of the zero transmittance point are
quite weak.

We have been able to achieve striking examples of
the EDIT phenomenon for triplets using inclusions with
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Fig. 16 a EDIT effect for a triplet of rigid pin gratings with the
central grating shifted by σ = 0.25200d for the angle of inci-
dence θi = 30◦. Total transmittance Ttot (curve 1) as a function
of ω for the triplet. Curve 2 represents the total transmittance for

the outer pair of gratings. b Flexural displacement for the outer
pair of gratings of rigid pins (ε/d = 2) as a function of x and y
for ω∗ = 3.61747. c Flexural displacement for the triplet of rigid
pin gratings (ε/d = 1) as a function of x and y for ω∗ = 3.61747

radius a = 0.01d for the outer pair of gratings. The
results for an initial design with an angle of incidence
of 27◦ are given in Fig. 17a while the results for an
optimised system are shown in Fig. 17b for the angle
of incidence of 26◦. The transmittance notch in the
latter case has an extremely high quality factor (around
1.80 × 105), five times the Q-factor for the rigid pin
triplet of Fig. 16. We give the field plots in Fig. 18.
The plot in part (a) shows the anti-symmetric mode for

the outer pair of gratings, which is a plane propagating
wave above and below the pair. The corresponding plot
(part (b)) for the triplet shows a standing wave above
the triplet and an evanescent field below it.

7 Concluding remarks

We have shown that a careful design of pairs or
triplets of platonic gratings can deliver resonances in
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Fig. 17 Total transmittance Ttot (curve 1) as a function of ω for
a triplet with a shifted central grating of rigid pins and the outer
pair of gratings of inclusions of radius a = 0.01d. Curve 2 rep-

resents the total transmittance for the outer pair of gratings. Data
used: a σ = 0.3112d, θi = 27◦. b σ = 0.23265d, θi = 26◦

Fig. 18 a Flexural displacement as a function of x and y for a
pair of gratings consisting of inclusions of radius a = 0.01d with
grating separation ε/d = 2 for ω∗ = 3.748779850. b Flexural
displacement as a function of x and y for a triplet with a shifted

central grating of rigid pins (σ = 0.23265d) and the outer pair
of gratings consisting of inclusions of radius a = 0.01d for
ω∗ = 3.748779784, ε/d = 1. Data: θi = 26◦

transmission with Q-factors ranging from 101 to 106.

These Q-factors can be varied by altering the grat-
ing separation ε, the angle of incidence θi and the
inclusion radius a. Furthermore, by controlling the
separation between the resonances for symmetric and
anti-symmetric modes, we have shown that the EDIT
phenomenon can deliver a high Q transmittance mini-
mum in the middle of the transmittance peak, together

with a strong variation in the magnitude and sign of
the dispersive properties of the triplet. These demon-
strated properties augur well for various applications
of platonic grating systems in the moulding of flexural
vibrations.
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Abstract Bones tissues are heterogeneous materi-
als that consist of various microstructural features at
different length scales. The fracture process in corti-
cal bone is affected significantly by the microstruc-
tural constituents and their heterogeneous distribution.
Understanding mechanics of bone fracture is neces-
sary for reduction and prevention of risks related to
bone fracture. The aim of this study is to develop a
finite-element approach to evaluate the fracture process
in cortical bone at micro-scale. In this study, three
microstructural models with various random distri-
butions based on statistical realizations were con-
structed using the global model’s framework together
with a submodelling technique to investigate the effect
of microstructural features on macroscopic fracture
toughness and microscopic crack-propagation behav-
iour. Analysis of processes of crack initiation and prop-
agation utilized the extended finite-element method
using energy-based cohesive-segment scheme. The
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obtained results were compared with our experimen-
tal data and observations and demonstrated good
agreement. Additionally, the microstructured cortical
bone models adequately captured various damage and
toughening mechanisms observed in experiments. The
studies of crack length and fracture propagation elu-
cidated the effect of microstructural constituents and
their mechanical properties on the microscopic fracture
propagation process.

Keywords X-FEM · Microstructured model ·
Crack propagation · Fracture toughening mechanisms

1 Introduction

Fracture of cortical bone can significantly affect struc-
tural integrity of a load-bearing skeletal system, and,
consequently, cause injuries, mobility loss and reduced
life quality. As a naturally formed composite material,
a cortical bone tissue is formed by heterogeneously dis-
tributed microstructural constituents that could be cat-
egorised into several hierarchical organizations from
nano-scale to macro-scale levels (Currey 2011; Ritchie
et al. 2005). At the nano-scale, bone is composed
of mineralized collagen fiber matrix and extrafibrillar
mineral particles known as carbonated hydroxyapatite
(Currey 1999; Fratzl et al. 2004). At the micro-scale,
cortical bone is laid down in layers of lamellar structure
(3–7 μ m in thickness) that is similar to that of plywood
composite—parallel with each other within layer, but
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having a staggered arrangement between the adjacent
layers (Ascenzi and Benvenuti 1986). Across a bone
section, concentric layers of lamellae together with
hollowed vascular channels form the most observable
structure under microscope—a Haversian system (con-
taining osteon and a Haversian canal) embedded into
the remnants of a bone’s remodelling process called
interstitial matrix. Osteons are, on average, a 200 μm in
diameter and up to 1 cm long cylindrical structure paral-
lel to the bone’s longitudinal axis (Ethier and Simmons
2007). In addition, a network of canals and channels
formed across the bone’s section accommodates blood
vessels and a nervous system; those large canals, on
average 50–90 μm in diameter, parallel to the bone’s
main axis are called Haversian canals. Bone has living
cells called osteocytes that live within an intercon-
nected network of microscopic channels called canali-
culi. The latter are responsible for exchange of nutrients
and waste between osteocytes (Ethier and Simmons
2007). The interface between osteons and interstitial
matrix is called cement line; it is 2–5 μm in thickness.
It plays a key role in the bone’s mechanical behaviour,
especially its fracture. However, the opinions in the
literature with regard to the mechanical properties of
cement line are rather controversial. Different experi-
mental observations reported that the cement line can
act either as a toughening mechanism deflecting a crack
from osteons or as a weakening path that facilitates the
crack initiation (Currey 2011; Ritchie et al. 2005). At
the millimetre length scale, the dense and thick outer
layer of cortical bone and the porous sponge-like tra-
becular bone make up the tissue-level bone structure
(Peterlik et al. 2006). All these hierarchical levels work
together in accord and complementing each other to
achieve enhanced macroscopic mechanical properties
of the bone tissue at the full-bone scale (Peterlik et al.
2006).

The micro-architecture of cortical bone has a signif-
icant effect on its mechanical and fracture properties.
Moreover, preferential alignment of both collagen fib-
rils and mineral crystals at nano-scale and the osteons
and Haversian cannals at micro-scale results in highly
anisotropic mechanical and fracture behaviour of the
tissue (Peterlik et al. 2006). The anisotropic ratio
of fracture toughness for different crack propaga-
tion directions can be significantly large—from 2 to
3—depending on interaction of a propagating crack
with the microstructural features, activation of various
toughening mechanisms affecting fracture resistance:

formation of microcracks in the vicinity of the main
crack due to stress concentrations ahead of its tip
(Vashishth et al. 2003; Zioupos and Currey 1994;
Zioupos et al. 1996) and crack deflection and blunting
at cement lines that create discontinuity at the bound-
ary layers (Liu et al. 1999). Recently, it was reported
that ligament bridging of crack in the wake zone is a
dominant toughening mechanism in cortical bone as it
reduces a driving force at the crack tip (Nalla et al. 2004,
2003, 2005). Several authors reported that toughening
mechanisms are highly dependent on a crack propa-
gation direction; therefore, fracture toughness of long
bones is significantly higher in transverse and radial
directions compared to the longitudinal one (Behiri and
Bonfield 1986; Martin and Boardman 1993; Nalla et al.
2005).

Being a physiological living tissue, bone has the
ability of continuously remodelling, repairing and
adapting itself to the surrounding environment. Due
to this inherent dynamics, both the microstructure of
cortical bone and its mechanical behaviour vary dra-
matically from one part to another. Considering dif-
ferences introduced by using various test methods and
specimen’s sizes, the spectrum of fracture energy per
unit area of cortical bone varies from 920 to 2,780 N/m
(Ritchie et al. 2005) for the same type of bone tested at
same orientation. This variability is significant even for
different cortices of a single bone (Bonney et al. 2011).
Unlike traditional artificial composite materials, which
have predefined average volume fraction and, conse-
quently, a limited range of their mechanical properties,
the volume fraction of each constituent of cortical bone
is not unique and changes during the bone remodelling
process. As a result, the randomly distributed elements
of microstructure at the local region have a signifi-
cant impact on variability of the mechanical behav-
iour of cortical bone at macro-scale level. However, a
rather small number of studies was performed to unveil
a correlation between the variation of microstructure
and variability of the mechanical behaviour of corti-
cal bone.

Finite-element simulations provide a powerful tool
to analyse the fracture behaviour of materials at dif-
ferent length scales. Ural and Vashishth (Ural and
Vashishth 2006) developed a cohesive-zone-element
model to capture an experimentally observed rising
crack-growth behaviour and age-related loss of bone
toughness. Later, the same authors investigated the
effects of age-related changes and orientation of crack
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growth on a toughening behaviour of human corti-
cal bone using the same model. The used approach—
cohesive-zone (CZ) method—accounts for the non-
linear fracture mechanism and describes the nonlin-
ear fracture process in terms of a traction-separation
law; it has been broadly used in the literature (Ural et
al. 2011; Yang et al. 2006) to investigate the fracture
mechanics of cortical bone. However, it has an inherent
drawback: the crack extension has to follow a prede-
fined path around elements of the mesh. Obviously, in
the case of fracture of real bones such a crack path is
hard to predict. Similar to the CZ technique, an ana-
lytical approach based on perturbation technique were
recently extended by Piccolroaz et al. (Piccolroaz et
al. 2012) to solve an interfacial crack problem in het-
erogeneous material where a crack path was assumed
coincide with a bonding interface between dissimi-
lar materials. The extended finite-element method (X-
FEM) was used in a small number of papers on fracture
in bones to overcome this issue. For instance, Budyn
and Hoc (Budyn and Hoc 2007) introduced a multi-
scale method to simulate multiple crack growth in a
cortical bone tissue using X-FEM under simplified ten-
sile loading conditions. In another recent attempt, Liu et
al. (Liu et al. 2010) developed a homogenised X-FEM
model to predict fracture of a proximal femur due to
impact. Despite many attempts by various researchers,
the model development for fracture of cortical bone is
still limited to simplified formulations: simplified mate-
rial properties; a microstructured model with applied
linear-elastic material properties and boundary condi-
tions for a very small region (less than 1 mm in length)
(Budyn and Hoc 2007); a full-size bone model but with
continuum homogenised material properties (Liu et al.
2010). There is still a need in a comprehensive X-FEM
model that can reflect adequately the main features
characteristic to the bone fracture process.

Therefore, in this paper, a microstructured model
of cortical bones is proposed to study the effect of its
microstructure on variability of fracture toughness and
crack-propagation process for the case of three-point
bending, typical for experimental fracture analysis.

2 Materials and methods

2.1 Modelling approach

To investigate the variability of fracture toughness and
various toughening mechanisms induced by random

microstructure, three two-dimensional microstructured
models of cortical bone were developed in commer-
cial finite-element software—Abaqus (Dassault Sys-
tèmes 2012). The models were established based on
configuration of our three-point-bending experiments
detailed in (Li et al. 2012). These models were con-
structed using a submodelling technique that focuses
the computational power at the crack-propagation
region while maintaining the full-scale approach of
the model. The submodelling technique allows devel-
opment of multiple models based on the same mod-
elling object and extends the level of interest into a
pre-defined region (usually with a finer mesh or more
local geometric details) to achieve adequate and accu-
rate results. The computational cost of submodelling
technique is usually lower when compared with the
whole-size model having the same level of accuracy.
The developed approach employed two different lev-
els of modelling of the bone tissue: full size global
model for the macroscopic response of the entire spec-
imen under three-point bending and three submodels
reflecting microscopic responses of different localized
microstructures during the crack propagation process.
The boundary conditions in the submodel were derived
for the correspondent region from the results of the
global model using the displacement-control criterion
based on the nodal field variables.

The model geometries correspond to those of the
specimens used in our experiment: 25 mm × 2.72 mm
× 5.43 mm (total length × width × thickness). Cylin-
drical loading pins at the three-point setup were mod-
elled as analytical rigid bodies with a radius of 5 mm.
The span (length between the centres of two holding
pins) and the pre-crack length were chosen accord-
ing to the experimental setup: 21.72 and 2.72 mm,
respectively. Then, the submodel was extruded from
the central un-cracked region of the global model with
dimension of 2.72 mm × 2.72 mm (Fig.1). The pre-
crack is mostly outside the submodel with only one
element of its bottom middle surface cut by it.

2.2 Model configuration

The random microstructural distributions inside the
submodels were constructed as four-phase composite
structures consisting of interstitial bones (i) and Haver-
sian systems that include osteons (ii), Haversian canals
(iii) and cement line (iv). All geometrical parameters of
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Fig. 1 Schematic
illustration of model
configuration for the
three-point-bending setup
using global model and
microstructured sub-model

each model were defined based on statistical analysis of
real microstructures (for details see (Abdel-Wahab et
al. 2010b)) obtained with optical microscopy of radial-
transverse sections from a lateral cortex where a large
portion of osteonal structure can be observed. That
analysis confirmed the volumetric fraction of osteons
in the range from 28 to 55 %. The porosity ratio was
measured between 5 and 13 %. The average width of
cement line was close to 5 μm. The distributions of
diameters of osteons and Haversian canals were reg-
ularized statistically using best-fit functions described
in detail in (Abdel-Wahab et al. 2010b). The average
diameters for osteons and Haversian canals were 99.89
and 23.1 μm, respectively.

The algorithm to generate random microstructures
in the submodels was first programed in a custom-
developed Matlab code according to the statistical data
for real bone specimens, and then all the geometrical
parameters were encoded into a python script to con-
struct the microstructural model in Abaqus. Three rep-
resentative microstructured cortical bone models were
developed and employed in this study based on the
statistical measurements for each constituent: osteons

volume fraction varies from 30 to 51 %, while poros-
ity changes from 5 % to around 8 % (Fig. 2). Full data
on the volume fractions of microstructure constituents
used in the models are listed in Table 1.

2.3 Material properties

In this study, the mechanical behaviour of cortical
bone was introduced using an elasto-plastic transverse
isotropic material formulation with regard to the radial-
transverse section plane (see Fig. 1). At macroscopic
level, the effective homogeneous material was used
in the global model neglecting microscopic hetero-
geneity. The effective elasto-plastic material properties
obtained from our macroscopic experiments (Abdel-
Wahab et al. 2010a) were applied in the global model.
On the other hand, at microscopic level, microstruc-
tural constituents play an important role in the localized
fracture process and formation of toughening mecha-
nisms. Consequently, the four-phase microstructured
models of cortical bone were employed in the sub-
model, and individual material properties based on
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Fig. 2 Schematic illustration of specimen, image of real microstructure, Cumulative distribution functions and three statistical realiza-
tions of random microstructures with different fractions of constituents for three submodels

nano-indentation results (Abdel-Wahab et al. 2010b)
were assigned to constituents. The elastic modulus of
cement line was initially set to be 25 % lower than
that of osteon based on the findings in (Budyn and
Hoc 2007; Montalbano and Feng 2011), and two other
levels—equal to that of osteon and 25 % higher—were
also used to investigate the effect of cement line’s
properties on the fracture process in cortical bone. A

strain-based yield criterion was implemented both in
the global model and submodels, and a yield strain of
0.6 % was chosen based on (Abdel-Wahab et al. 2010a).
The post-yield material behaviours in both global and
sub-models were based on flow stress-strain curves
obtained experimentally (Abdel-Wahab et al. 2010a,b).
A summary of material properties used in this study is
given in Table 2.
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Table 1 Volume fractions of microstructure constituents for
Models A, B and C

Constituent Model A
(%)

Model B
(%)

Model C
(%)

Osteon 30 44.5 51.2

Porosity 5.01 5.02 8.14

Interstitial matrix 58.77 41.25 30.04

Cement line 6.22 9.23 10.62

Damage and crack propagation in this study were
modelled using the X-FEM technique in Abaqus (Das-
sault Systèmes 2012) that allows a crack to initiate
and propagate through an arbitrary, solution-dependent
path subject on the local material response. Hence, the
X-FEM enrichment was applied to the whole model
for all the cases. The local crack initiation and evo-
lution were evaluated continuously based on chosen
criteria. Crack initiation in a hard biological tissue
(cortical bone) was commonly described with a strain-
driven criterion (Nalla et al. 2003). Therefore, a strain-
based crack-initiation criterion was set up both in global
and microstructured models. It assumes that crack
initiates when the maximum principal strain reaches
its critical value and the newly defined crack direc-
tion is orthogonal to that of the maximum principal
strain. A crack initiation strain of 0.65 % was cho-
sen based on our observations of material response
for the radial-transverse direction detailed in (Abdel-
Wahab et al. 2010a). Once initiated, crack conforms
to the energy-based damage evolution criterion, and
the cracked element starts degradation and eventu-
ally fails. The governing formulation for the onset of
crack utilizes a cohesive traction-separation constitu-
tive behaviour to define the damage evolution of the
cracked surface. It describes the rate, at which the
cohesive stiffness of the cracked surface degrades once

the crack-initiation criterion is fulfilled at particular
element. The energy dissipated (fracture energy) as a
result of damage progress is equal to the area under
the traction-separation curve at the point of complete
damage. The fracture energy in our models (Table 2)
was defined according to the previous results (Abdel-
Wahab et al. 2010b; Li et al. 2012; Ritchie et al. 2005).

2.4 Mesh-convergence analysis

The global model was discretised into 14,000 of four-
node bilinear plane-strain quadrilateral elements and
ran on an eight-processor (quad-core Intel I7 970 CPU)
PC while the submodels were meshed using 150,000
to 200,000 elements of the same type and ran on a
60-processors (five six-core Intel Westmere Xeon
X5650 CPUs) high-performance cluster. The Abaqus
implicit solver was used in both types of simulations.
A mesh-convergence study was carried out for the
global model using six different element sizes, and the
obtained results were analysed in terms of peak reac-
tion forces as demonstrated in Fig. 3. Apparently, the
reaction force converges when the minimum element
size reduces to 100 μm or below. Therefore, the min-
imum element size for the global model was chosen
to be 50 μm and the minimum element size for the
submodel was around 5 μm.

3 Results

3.1 Effect of microstructure on variability of fracture
toughness

Three microstructured models of cortical bone were
analysed in this study. Their results are compared
with that of the effective homogeneous model as well
as experimental data in terms of force—displacement

Table 2 Material properties
used in global model and
microstructured submodels
(Budyn and Hoc 2007; Katz
1984; Abdel-Wahab et al.
2010b; Ritchie et al. 2005)

Effective
homogenised
material

Osteons Interstitial matrix Cement line

Elastic modulus (GPa) 11.18 12.85 14.12 9.64

Poisson’s ratio 0.167 0.17 0.153 0.49

Yield strain 0.6 % 0.6 % 0.6 % 0.6 %

Fracture initiation strain 0.65 % 0.65 % 0.65 % 0.65 %

Fracture energy release rate (N/m) 2043 860 238 146
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Fig. 3 Mesh convergence study; mesh sizes varied from 500 to
30μm

Fig. 4 Comparison of experimental (Li et al. 2012) force—
displacement diagram with results for different FE models (error
bar indicates variations of experimental results)

diagram in Fig. 4. Dissimilar fracture-resistance behav-
iours were evidenced for three different microstruc-
tured models. The change in the microstructure at
microscopic level has a significant impact on the
macroscopic fracture toughness of cortical bone.
Among the three models, Model A has the highest crit-
ical value of J integral—2,503 N/m, while Models B
and C result in 2,369 and 2,212 N/m, respectively. This
decreasing trend in the fracture resistance is apparently
linked to the increasing volume fractions of osteons and
porosity (Haversian canals in this case). From the mor-
phological point of view, the bone remodelling process
generates new Haversian systems (each including an
osteon, a Haversian canal and a cement line) to replace
the old, damaged regions as an adaptive process. The
newly formed bone cell is usually less mineralized
than its surrounding area due to the fact that mineral
concentration period lasts longer than the remodelling
process (Currey 2011). As a result, a large fraction of

Fig. 5 Comparison of proportions of energy associated with
plastic deformation for different models

less mineralized osteons associated with the bone-mass
and stiffness reduction has a negative impact on the
overall fracture resistance of cortical bone. Still, bene-
fiting from their low stiffness but high fracture tough-
ness, osteons demonstrate a higher failure strain when
compared with interstitial matrix and, in general, offer
a positive effect on fracture toughness. On the other
hand, the increasing proportion of Haversian system
leads to the increase in structural compliance as a result
of cavitation, hence, to increased overall fracture strain
(Fig. 4). These mutual effects of microstructural con-
stituents result in the variation of macroscopic fracture
toughness. Significant nonlinearity observed at the ini-
tial loading stage during the experiment was success-
fully captured using the microstructured model. Com-
paring the proportion of the plastic component (Jp) of
the critical value of J-integral (Jc) in each model, an
increased tendency for the energy associated with plas-
tic deformation is observed for the increase of osteon
and porosity volume fractions (Fig. 5). Based on the
above findings, the bone remodelling process related
with the increasing fraction of osteons and porosity
changes the bone’s fracture resistance from a stress-
based mode to a more strain-based mode—fracture
stress resistance reduces but fracture strain resistance
increases.

3.2 Heterogeneous fracture process
due to microstructure

At the global level, the effective homogeneous material
model was able to capture a macroscopic response in
terms of force—displacement curve (Fig. 4). However,
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Fig. 6 Contour plots for von-Mises stress (a), maximum prin-
cipal strain (b), equivalent plastic strain (PEEQ) (c) and damage
scale factor for X-FEM (STATUS) (d) for Model B for crack

propagation approaching for maximum reaction force (a and b
represent full Model B)

the detailed fracture evolution process, especially the
localized damage zone was neglected at this level. On
the contrary, the heterogeneous models with random
microstructures, operating within the framework of
the global model using direct displacement-controlled
boundary conditions, emphasise the effect of the local
non-uniform stress-strain field on the crack propaga-
tion process at microscopic level. Figure 6 presents
contour plots for von-Mises stress, maximum principal
strain, equivalent plastic strain (PEEQ) and a damage
scale factor for X-FEM (STATUS) for Model B when

the crack is approaching the state of the maximum
reaction force. As evidenced from the figure, a dif-
fused stress pattern is characteristic for the von-Mises
contour, while a cross-hatched strain pattern for the
maximum principal strain contour is located ahead of
the crack tip (in the compressive region of the speci-
men) with a diffused strain pattern near it (in the ten-
sile region). These dissimilar stress and strain patterns
around the crack tip coincide with results of the previ-
ous experimental studies (Boyce et al. 2005; Ebacher
and Wang 2008; Nyman et al. 2009), in which the
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Fig. 7 Comparison of toughening mechanisms in radial-
transverse crack plane between experimental results (a–c) and
numerical simulations (d–f): a, d interface failure between osteon
and interstitial matrix; b, e crack deviation from its central line

towards vulnerable but twisted and deflected crack path as a result
of material heterogeneity; c, f splitting of osteons and breakage
of ligament due to crack opening observed in SEM image (c)

authors indicated that such distinctive stress and strain
fields in tension and compressive regions could lead to
realization of different damage fracture mechanisms.
Equivalent plastic strain illustrated in Fig. 6c indicates
that the area undergoes plastic deformation during the
crack propagation process. The identified plastic zone
around the crack tip is within 1–2 osteonal radius i.e.
approximately 100 μm in length. The value seems to be
higher than 17 μm reported in the experimental work
(Robertson et al. 1978). One possible reason for this
larger plastic-zone size predicted in our model is the
lack of multiple cracks formation in the current model,
while, in reality, micro-cracks and natural imperfec-
tions inclusions in front of the crack tip may develop
into mini cracks frontal that can release local stress
concentration, thus, reducing the plastic-zone size.

3.3 Microstructure-related difference in toughening
mechanisms

The damage scale factor denoted as STATUS in Fig. 6d
indicates that 1/3 of the crack surface is still under

Fig. 8 Crack length—displacement diagram for global and
microstructured models (the total crack length is measured until
reaching the maximum reaction force)

traction force and acts as toughening mechanisms that
contributes to the non-linear fracture process. The
toughening mechanisms active in a radial-transverse
crack specimen can be divided predominantly into three
types (Ritchie et al. 2005): (i) interfacial debonding as
a result of the material’s discontinuity at the interface
between osteons and interstitial matrix—the formation
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Fig. 9 Crack propagation
trajectories for various
elastic moduli of cement
line for three
microstructured models:
row (a): 25 % lower than
that of osteon; row (b):
equal to that of osteon; row
(c): 25 % higher than that of
osteon

of the weak path of cement line; (ii) crack diversion due
to microstructural heterogeneity and material imper-
fections at which crack is redirected towards the most
vulnerable part producing a twisted and deflected frac-
ture path; (iii) uncracked-ligament bridging caused by
osteon splitting and rupture acting as a post-crack
toughening mechanism behind the crack tip. In this
study, the microstructured models were able to cap-
ture these main features of the toughening mecha-
nisms as shown in Fig. 7. Figure 7d demonstrates an
interface failure predicted by the model as the crack
bends away from the osteon due to the discontinuity
in the cement-line region. Figure 7e reveals the crack-
diversion mechanism as crack deviates from its cen-
tral line towards a vulnerable but twisted and deflected
crack path. The uncracked-ligament bridging behind
the crack tip is presented as a cohesive traction force
between the damaged elements along the crack path
(Fig. 7f).

3.4 Crack lengths analysis

To investigate the effect of microstructural constituents
on the crack propagation process, the crack length is
plotted in Fig. 8 as a function of displacement of loading
pin for the global model and three different sub-models.
Their respective crack propagation paths are demon-
strated in Fig. 9, row a. The total crack length was mea-
sured until reaching the maximum reaction force. It is
clear from Fig. 8 that Model A has the longest overall
crack length, while Model C has the shortest one. Com-
paring the respective crack trajectories, the higher crack
length related to Model A is largely defined by signifi-
cant crack deflections observed in Fig. 9a. As a result of
increase in the fractions of osteons and porosity from
Model A to Model C, the effect of crack-deflection
mechanism gradually reduces (Fig. 9a–c). On the other
hand, the crack-propagation rate (with respect to the
loading-pin displacement) in Model C is higher at
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Fig. 10 Fractions of crack
path in microstructure
constituents for various
magnitudes of cement line’s
modulus

initial stage, but gradually reduces as the crack propa-
gates through more Haversian systems, whereas Model
B shows a moderate linear evolution process and Model
A demonstrates an increased crack-propagation rate. It
seems that an increased fraction of Haversian systems
has a negative effect on the crack-propagation rate and
constrains the crack-diversion magnitude. This finding
is consistent with experimental observation in (Zim-
mermann et al. 2011), where the authors concluded that
age-related changes in morphology of microstructure
as a result of remodelling process may lead to suppres-
sion of the crack-deflection mechanism and reduction
of the total crack length.

3.5 Effect of cement line

The effect of cement line was studied by changing the
magnitude of its elastic modulus within the range 25 %
below and above that of osteon. The respective results
for the crack propagation trajectory are compared in
Fig. 9 for three different microstructural models. The
result indicates that an increase in cement line’s modu-
lus to the levels equal to, or 25 % higher than that of the
osteon results in similar crack trajectories, that differ
from the initial ones (i.e. for 25 % lower modulus) for
both Model A and Model B. This higher stiffness of
cement line leads to some rise of fracture propagation

in the regions with low fracture toughness—interstitial
areas (Fig. 10). Moreover, higher stiffness also results
in a higher rate of interface debonding in Model A
and Model B (Fig. 9b, c) where cement lines facilitate
crack propagation around osteons. However, no sub-
stantial difference was found between the two groups
(equal to and 25 % higher). On the other hand, the lower
cement modulus increase the chance of osteonal frac-
ture and penetration into Haversian canal in Models A
and B, where high fracture toughness and high com-
pliance regions could potentially increase the overall
fracture resistance and may lead to more crack deflec-
tions and arrests. As the osteon and porosity density
increase in Model C, the effect of the local hetero-
geneity becomes more dominant. Cracks are likely to
grow along the most vulnerable path, and the effect
of cement line relents. Therefore, the influence on the
crack-propagation trajectory is less pronounced than
in two other models. In summary, cement line plays an
important role in the crack-propagation process in cor-
tical bone. Variation of its mechanical properties can
considerably affect the shape of local crack trajectory.
Both scenarios demonstrated in our models have been
widely discussed in previous research (Currey 2011;
Ritchie et al. 2005). Considering the fact that bone is
a dynamic living tissue, the mechanical properties of
cement line are likely to vary with time and locations.
It is thus sensible that a 25 % differences in the cement
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line’s modulus within the local area can cause both
toughening and weakening mechanisms as observed in
experiment (Chan and Nicolella 2012).

4 Conclusions

The fracture process in cortical bone was evaluated
in this study based on the developed X-FEM models.
Three models with different random microstructures
were developed and imbedded into a homogeneous
global model to investigate the effect of microstruc-
tural changes and the related varying local mechanical
behaviour on the fracture propagation process in cor-
tical bone. The results obtained in this study indicate
that local changes in volume fractions of microstruc-
tural constituents have a significant effect on variability
of the macroscopic fracture toughness. The developed
microstructured models of cortical bone are able to rep-
resent accurately the non-uniform plastic deformation
associated with the nonlinear fracture process as well
as realization of distinct damage and fracture toughen-
ing mechanisms observed in experiments. Moreover,
the use of different statistical realization of random
microstructure demonstrated importance of the local
heterogeneity on the fracture propagation process. Var-
ious crack propagation trajectories and crack lengths
were observed with different microstructured bone
models. The changes in the underlying microstructure
of cortical bone and its mechanical properties result in
different toughening mechanisms, that, in turn, affect
the crack propagation process in a dissimilar manner.
High volume fractions of osteons and porosity result
in a smoother fracture surface as a result of a lack
of crack-diversion mechanisms; the higher stiffness of
cement line supresses the osteonal crack and facilitates
the interstitial damage and interface debonding. The
knowledge obtained through the development of these
microstructured X-FEM models provides an additional
insight into the micro-scale fracture process in cortical
bone and might be used in the future to provide support
and guidance for treatments against bone fracture.
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Abstract The crack propagation problem for linear
elastic fracture mechanics has been studied by several
authors exploiting its analogy with standard dissipa-
tive systems theory (see e.g. Nguyen in Appl Mech
Rev 47, 1994, Stability and nonlinear solid mechan-
ics. Wiley, New York, 2000; Mielke in Handbook of
differential equations, evolutionary equations. Else-
vier, Amsterdam, 2005; Bourdin et al. in The varia-
tional approach to fracture. Springer, Berlin, 2008).
In a recent publication (Salvadori and Carini in Int
J Solids Struct 48:1362–1369, 2011) minimum the-
orems were derived in terms of crack tip “quasi sta-
tic velocity” for two-dimensional fracture mechanics.
They were reminiscent of Ceradini’s theorem (Ceradini
in Rendiconti Istituto Lombardo di Scienze e Lettere
A99, 1965, Meccanica 1:77–82, 1966) in plasticity.
Following the cornerstone work of Rice (1989) on
weight function theories, Leblond et al. (Leblond in
Int J Solids Struct 36:79–103, 1999; Leblond et al. in
Int J Solids Struct 36:105–142, 1999) proposed asymp-
totic expansions for stress intensity factors in three
dimensions—see also Lazarus (J Mech Phys Solids
59:121–144, 2011). As formerly in 2D, expansions can
be given a Colonnetti’s decomposition (Colonnetti in

A. Salvadori (B)· F. Fantoni
CeSiA—Research Center on Applied Seismology
and Structural Dynamics, Dipartimento di Ingegneria
Civile, Architettura, Territorio, Ambiente e di Matematica
(DICATAM), Università di Brescia, via Branze 43,
25123 Brescia, Italy
e-mail:alberto.salvadori@ing.unibs.it

Rend Accad Lincei 5, 1918, Quart Appl Math 7:353–
362, 1950) interpretation. In view of the expression of
the expansions proposed in Leblond (Int J Solids Struct
36:79–103, 1999), Leblond et al. (Int J Solids Struct
36:105–142, 1999) however, symmetry of Ceradini’s
theorem operators was not evident and the extension of
outcomes proposed in Salvadori and Carini (Int J Solids
Struct 48:1362–1369, 2011) not straightforward. Fol-
lowing a different path of reasoning, minimum theo-
rems have been finally derived.

Keywords Fracture mechanics · Crack growth ·
Brittle fracture · Variational formulations

1 Introduction

Fracturing processes reveal three distinct phases: load-
ing without crack growth, stable and unstable crack
propagation. Energy dissipation due to fracture growth
takes place in the process region, in the plastic region
outside the process region, and eventually in the wake
of the process region. When a fracture process is ide-
alized to infinitesimally small scale yielding, energy
dissipation is concentrated at the crack front. Smooth-
ness of the latter together with isotropic linear elasticity
on a domain ε ∗ R

3 is assumed in the present note,
making use of Hooke’s law without limitation of stress
and strain magnitudes.

The material response to the following quasi-static
external actions is sought: tractions p(x) on θp ⊂ φε,
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displacements u(x) on θu ⊂ φε, bulk forces f(x) in ε.
External actions are all assumed to be proportional, i.e.
that they vary only through multiplication by a time-
dependent scalar k(t), termed load factor, taken to be
zero at initial time1 t = 0 when the crack attained its
initial length.2 The stress-strain fields in the crack tip
vicinity are uniquely determined by the stress intensity
factors (SIFs) denoted as usual with K1, K2, K3 and
collected in vector K.

Similarly to the determination of the elastic limit, the
concept of incipient crack growth is difficult to identify:
in both cases, the difficulty is solved by a convention.
An onset of crack propagation and a safe equilibrium
domain are governed theoretically by a local condition
on K, describing when the process region reaches a
critical state which, in most cases of engineering inter-
est, is independent of body, geometry and loading: this
property is termed autonomy (see Barenblatt 1959).

The global incremental quasi-static fracture prop-
agation problem consists in seeking an expression of
the crack growth rate l̇(s, t) at a generic point s along
the crack front in the presence of a variation of the load
factor k̇ for all three phases of a fracturing process. The
problem can be framed in the mechanics of standard
dissipative systems and posed in the following way:
given the state of stress and the history of crack propa-
gation (if any) at time t , express the crack propagation
rate (if any) of the crack front due to a variation of the
external actions as a function of the stress and of the
history.

For two-dimensional linear elastic fracture mechan-
ics, the problem was studied in Salvadori and Carini
(2011), Salvadori (2008). A maximum dissipation prin-
ciple at the crack tip during propagation was postulated.
Associated flow rule and loading/unloading conditions
in Kuhn–Tucker complementarity form descended.
Consistency condition led to the formulation of an algo-
rithm for crack advancing, which was driven by the
increment of external actions and allowed the evalua-
tion of crack length increment at the crack tip.

Such an approach will be here extended to three-
dimensional fracture mechanics. The asymptotic expan-
sion of the SIFs in power of the crack extension length

1 In what follows, “time” represents any variable which
monotonically increases in the physical time and merely
orders events; the mechanical phenomena to study are time-
independent.
2 This hypothesis is not fundamental and can easily be substi-
tuted with a smooth variation of SIFs around the critical state.

in the normal plane to the crack front for the three-
dimensional case is presented in Sect. 2. The expansion
of SIFs can be put in analogy with Colonnetti’s decom-
position of stresses in plasticity as due to an elastic con-
tribution and to a distortion (Colonnetti 1918, 1950).

Assuming that the maximum energy release rate
(MERR) criteria models the onset of crack propagation
and the safe equilibrium domain, three conclusions are
stated: i) mixed mode crack propagation must satisfy
mandatory requirement (19); ii) the transition between
stable and unstable propagation regimes is ruled by
condition (22); iii) crack front “velocity” minimizes
linearly constrained quadratic functionals (38, 39).

Requirement (19) for mixed mode crack propagation
is established in Sect. 3. It is detailed in Appendix A,
under the assumption that between times ∂ > t and t the
principle of local symmetry applies and the propagation
is continuous in time, namely K2 = 0 at all instants.

In Sect. 4, moving from the consistency condition of
the plasticity analogy, condition (22) for stable crack
growth and, inherently, for the transition to the unstable
phase is derived. This transition between stable and
unstable propagation regimes is a crucial information
for the safety of a structural component, assuming that
unstable propagation leads to structural collapse.

Section 5.1 is devoted to the non trivial proof of
the symmetry property of the Gateaux derivative of
the linear operator defined in Eq. (23). As a con-
sequence of such a property, two variational state-
ments are proved in Sect. 5.2, in the range of stable
crack growth. They are reminiscent of Ceradini’s the-
orems for plasticity and characterize velocity l̇(s, t)
that solves the global quasi static fracture propagation
problem at time t as the unique minimizer of linearly
constrained quadratic functionals. Uniqueness is a con-
sequence of SIFs expansion (1) and can be avoided only
by using expansions for branched elongations.

The theoretical framework is tested on a simple
problem, the axialsymmetric example of a penny-
shaped crack subjected to uniform tensile stress, in
Sect. 6. Results confirm the potential of the proposed
incremental formulation.

2 Fracture propagation as a standard dissipative
system

Notation: Consider within a three dimensional elastic
body a crack of arbitrary shape as in Fig. 1, except that
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Fig. 1 Arbitrarily shaped crack in a three dimensional body.
Reference {O, x1, x2, x3} is the Frenet frame at point O along
the crack front F . Dark gray shadow shows the projection of the
crack surface S onto the tangent plane {O, x1, x3} (enlighten in
light gray)

both its surface S and front F are assumed to be of
class C≥, at least in the vicinity of F (Leblond 1999;
Leblond et al. 1999).

Let O denote an arbitrary point on F . Cartesian coor-
dinates x1, x2, x3 are attached to that point with Ox1 in
the tangent plane to S and orthogonal to F , Ox2 per-
pendicular to S and Ox3 coincident with the tangent
to F . Denote with s the curvilinear length of O on F ,
and with s∇ that of a generic point on that curve. Denote
with P a generic point on S. The local geometry of S
will be described with a degree of accuracy such that
distance x2(P) from P to its projection onto the tan-
gent plane at O be specified up to order O(x2

1 + x2
3 ).

This is achieved as in Leblond (1999), Leblond et al.
(1999) by prescribing the components C11, C13, C33 of
the curvature tensor C of S at point O . The local geom-
etry of F is then also described with a similar accuracy
by prescribing the curvature θ of its projection onto the
tangent plane at O.

A small arbitrary deviated extension will be then
added to the crack, as in Fig. 2. One makes the funda-
mental assumption that the original crack front belongs
to both the old and new crack surfaces, i.e. the crack
extension develops continuously and irreversibly from
that original front. At each point s∇ of F , the new tan-
gent plane is obtained by rotating the old one about the
local tangent to F by an angle ω(s∇) (the kink angle);

Fig. 2 Arbitrary crack with a small kinked and curved extension
l(s∇). Kink angle is denoted with ω and defined in the normal
plane at the abscissa s along the crack front. The normal plane
at the origin is highlighted in gray. Each kink is surrounded by
an unbranched, curvilinear crack path in the normal plane. In
agreement with Amestoy and Leblond (1992), Leblond (1999),
Leblond et al. (1999), the elongation in the normal plane is taken
to be: y2 = a∞ y3/2

1 + 1
2 C∞ y2

1 + O(y5/2
1 ) with axis {y1, y2}

denoting the Frenet frame right after the kink

the value ω(s) of function ω(s∇) at point O will often be
simply denoted with ω and the same convention will
be used for other functions defined along the crack
front. Function ω(s∇) will be assumed to be of class
C≥ with respect to s∇. The present paper will not con-
cern how to determine the crack kinking angle during
crack growth. Such an issue was largely debated in
the literature, including a few papers from one of the
authors (Salvadori 2008, 2010). It suffices here to point
out that given the geometry and the load history at time
t , ω(s∇) is uniquely defined for any s∇, i.e. the problem
of evaluating ω(s∇) is uncoupled with the evaluation of
the crack extension.
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Recall the formulation of the global incremental
quasi-static fracture propagation problem, namely:
given the state of stress and the history of crack propa-
gation (if any) at time t , express the crack propagation
rate (if any) of the crack front as a function of the stress
and of the history.3 To this aim, consider a “time” inter-
val ]t, t∞] in which the crack front elongates at point
s and an instant ∂ ∗]t, t∞]. Let l(s∇, ∂ ) > 0 denote the
curvilinear length of the crack extension, as measured
in the normal plane at s∇. The function l(s∇, ∂ ) will be
assumed to be of class C≥ with respect to s∇. The value
l → l(s, ∂ ) of l(s∇, ∂ ) at point O will be assumed to be
non-zero; this means that O will be supposed not to be
an endpoint of the active, effectively propagating part
of the front. The velocity of the elongation of the crack
at time t , also called crack tip quasi static velocity, will
be denoted with l̇(s∇, t). In view of the irreversibility
hypothesis l̇(s∇, t) ≤ 0.

SIFs expansion: It will be assumed that l(s∇, ∂ ) is
of the form ν(∂ )π(s∇) where ν(∂ ) is a small posi-
tive parameter and π(s∇) a given, fixed non-negative
function. The point of view that π(s∇) is a given
function is purely formal, since in reality that func-
tion is unknown a priori. Denoting with K(s∇, t) =
{K1(s∇, t), K2(s∇, t), K3(s∇, t)} the SIFs vector at any
point s∇ along the crack front at time t , the expansion
of K at time ∂ at the extended point in powers of ν(∂ )

was provided in Leblond (1999), Leblond et al. (1999).
At point s it takes the form:

K(s, ∂ ) = K∞(s, ∂ ) + K(1/2)(s, ∂ )
√

ν(∂ )π(s)

+ K(1)[k(∂ ), π(s)] ν(∂ ) + O(ν3/2) (1)

Terms K∞, K(1/2) are local factors at point s that depend
linearly on the load factor k. They are given componen-
twise (using the Einstein summation convention) by:

K ∞
i = Fi j (ω)K j (2)

K (1/2)
i = Gi j (ω)Tj + a∞ Hi j (ω)K j (3)

Symbol K(1)[·, ·] denotes a non local operator that
acts along the whole front F , whose expression was
provided in Leblond et al. (1999) moving from the
cornerstone work of Rice (1989) on weight function
theories: (see also Lazarus 2011)

3 The global incremental quasi-static fracture propagation prob-
lem at “time” t therefore depends on the geometry at “time” t as
well as on the external actions that drive the problem itself. In the
present note, external loads are merely considered. Propagation
by reason of temperature or environmentally driven are not taken
into account.

K (1)
i [k(∂ ), π(s)] = 1

2

[
φ2 Ki

φ(
∈

l)2

]C∞=0

l(s∇)→l(s)

π(s)

+ C∞Mi j (ω) K j π(s)

+ Ni j (ω) K j
φπ

φs

+
∫

F
Zi j (ε, s, s∇, ω(s), ω(s∇))

K j (s
∇)

(
π(s∇) − π(s)

)
ds∇ (4)

In these equations the K j s are the SIFs prior to the
crack kinking, T is the T-stress vector of components
Tj and a∞ and C∞ define the curvature of the extension.
The Fi j s, Gi j s, Hi j s, Mi j s and Ni j s are functions of
the kink angle ω(s), which are termed universal because
they obey to the autonomy concept; on the contrary the

terms 1
2

[
φ2ki

φ(
∈

l)2

]C∞=0

l(s∇)→l(s)
and Zi j s depend on the geom-

etry of body ε. Symbol
∫

F stands for the Cauchy Prin-
cipal Value along F . Expansion (1) details the behav-
iour of SIFs along crack front F due to an irreversible
change in the geometry of the same front F .

Onset of crack propagation and criteria for crack
kinking angle evaluation: The mathematical represen-
tation of the onset of crack propagation at point s and
time t can be given a general form:

σ(K, ω) = ψ(K, ω) − ψ(K C
1 , ωC ) = 0 (5)

in the normal plane of the Frenet reference defined
in Fig. 1. In Eq. (5) K C

1 is the fracture toughness
and ωC = 0 is the propagation angle in a mode
1 experimental test. For each σ, there is a “related
magnitude” ψ which increases monotonically with the
level k of applied loads and which is supposed to
obtain a critical value at the onset of crack growth
(Salvadori 2008). Specific examples for ψ are: i) Max-
imum Energy Release Rate (shortened in MERR)
G in incipient crack growth; ii) maximum hoop ten-
sile stress in the r−1/2 near-tip singular field. Cracks
cannot advance at “time” t if

σ(K, ω) < 0 (6)

The latter inequality defines the safe equilibrium
domain.

As seen in Eq. (5) and discussed in Salvadori (2010)
the onset of crack propagation is always related to a
prediction of the kinking angle ω in the eventuality
of a crack elongation. The safety of a configuration

123123 Reprinted from the journal60



3D incremental linear elastic fracture mechanics

at time t , no matter how far away it is from the crit-
ical state, depends on the angle the crack is going to
kink at the time it grows. Historically, any onset of
crack propagation has been provided with a criteria for
crack kinking evaluation. With the mere exception of
the local symmetry (Goldstein and Salganik 1974), the
two notions of onset of crack propagation and criteria
for crack kinking evaluation4 correspond one another
in the general formulation

f ind {k, ω} s. t. σ = 0 ,
φσ

φω
= 0 (7)

derived in Sect. 2.2 in Salvadori (2010).
There are two main “streams” of literature on crack

kinking criteria, that correspond to two different views.
An approach assumes that a crack propagates “as soon
as it can”, which means at the lowest values of exter-
nal actions that allow the onset of propagation to be
reached. In this view: (1) formula (7) insures that safety
is measured against the worst value of ω for the MERR;
(2) it was shown in Salvadori (2010) that crack propa-
gation criteria different from the MERR must be ruled
out and attempts of capturing crack growth by means
of a propagation criteria different from the MERR
should not not be undertaken in the Griffith stand-
point of fracture. This strong statement includes the
Local Symmetry (henceforth shortened as LS) princi-
ple at least in mixed mode. In particular, this implies
that the view of kinking K ∞

2 (t−) = 0 by means of LS
(Goldstein and Salganik 1974) criteria is incorrect, as it
requires a value for k higher than the one predicted by
(7). Assuming that a crack propagates at minimum
external actions implies that the energy stored in the
system is minimal as well. This seems to be in the
line of the revisitation of brittle fracture proposed in
Francfort and Marigo (1998), provided that the onset
of propagation is reached. Moving from energy min-
imality principle, Chambolle et al. (2009) shown that
the kinking never occurs with a propagation which is
continuous in time (see Property 4 in Chambolle et al.
2009). Analysis made in Salvadori (2010) confirm this
statement in the light of formula (7).

On the other hand, it seems intuitive to consider a
smooth in space and continuous in time crack evolution
at least after the kink. It has been proved (Chambolle et
al. 2009) that condition K ∞

2 = 0 is mandatory for any

4 Appendix B entails a short decryption of most relevant onsets
and criterions.

continuous propagation in time.5 Therefore, denoting
with t the time at which the crack kinks, a continuous
propagation in time after the kink requires K ∞

2 (t+) = 0.
Assuming that such a condition holds also at t− (and
thus a continuous in time propagation at a kink) leads
to the view of LS criteria for crack kinking, which still
makes use of MERR as an onset of propagation. This
view is not compatible with formula (7), in the sense
that the angle of propagation is different and also the
load at which crack elongates is larger than the one
required by formula (7). Assuming LS at a kink implies
accepting that the energy inserted in the system to prop-
agate the crack is not the minimal one, i.e. that some
energy barriers must be present at a kink.

Linking conditions at t− and K ∞
2 (t+) = 0 is an open,

challenging problem in the fracture mechanics commu-
nity. The choice made by mother nature has been not
understood clearly so far. In 2D, LS and MERR cri-
terion are so close one another that differences are far
below the accuracy of experimental analysis. As envis-
aged in Appendix B, the scenario in 3D propagation
appears to be different so that experimental campaigns
might be planned. Solving this controversy is in any
case far out of the scope of the present note, which nat-
urally develops in the framework of continuous propa-
gation at kinks.

The latter condition is not mandatory, however.
Throughout the paper it is assumed that the load factor
has no requirements apart being non negative, k(t) ≤ 0.
In other terms, k(t) may increase with t , decrease at
some point, eventually jump so that the crack proceeds
quasi-statically and continuously in time,6 keeping the
system at the onset of propagation (5). Starting from
K ∞

2 (t+) = 0 a continuous evolution in time along a
smooth crack path may proceed. The crack evolution
at any ∂ > t is stable with respect to k(t+) but not
with respect to k(t−) if MERR is assumed at a kink.
Of course, in realistic analysis, the jump k(t−)− k(t+)

in the load factor is unfeasible. A dynamic evolution

5 See property 3 in Chambolle et al. (2009), namely: assuming
the validity of the Energy Conservation and Stability Criterion,
a crack cannot propagate continuously in space and time in a
homogeneous, isotropic material unless it propagates in mode I.
6 Obviously, an arbitrary behavior of k(t) may be not “realistic”,
in the usual sense of k being a control parameter tuned within
a laboratory. Yet, the approach is not uncommon in mechanics.
Essentially, it is the same assumption that leads to model snap-
ping and buckling problems, allowing to follow incrementally
the equilibrium path after a peak (Riks 1979).
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is therefore localized at any crack kinking, similarly to
what happens in a snap through experiment. The crack
length at which a quasi-statical evolution may eventu-
ally start again corresponds to a time ∂ > t at which
k(∂ ) = k(t−), if a unique crack evolution takes place.

Maximum energy release rate: When cracks—idealized
to infinitesimally small scale yielding—advance, energy
dissipation is concentrated at the crack fronts. Whereas
in plasticity the choice of a yield function is free and the
relevant amount of dissipation descends, Irwin (1958)
formula in the Griffith standpoint of fracture restricts
the choice of the onset of crack propagation σ to the
MERR:7

σ = 1 − α2

E
(K ∞2

1 + K ∞2
2 ) + 1 + α

E
K ∞2

3 − GC (8)

where GC is the fracture energy, i.e. the dissipated
energy per unit crack elongation. The expression of the
energy release rate G is referred to an embedded crack
in which prevails a plane strain condition in a core of
the crack front. The radius of this core is a function of
the distance to the free surface.

Recent investigations (Chambolle et al. 2010) revis-
ited the notion of MERR in 2D and proved formula (8)
also by means of the l’Hopital theorem (Salvadori and
Giacomini 2012). Similar analysis in 3D have not been
carried out and the validity of Irwin’s formula (8) for
3D, widely accepted in the fracture mechanics commu-
nity, is here assumed.

Phases of the fracturing process: If σ < 0 at “time”
t , a “sufficiently small” load increment λk between
instants t and ∂ > t exists that does not elongate the
crack:

at any t s.t. σ(K(s, t), ω) < 0 for all ω it exists λk

= k(∂ ) − k(t) > 0 s.t.

λK(s, ∂ )= K(s, t)

k(t)
λk and σ(K(s, t)+λK(s, ∂ ), ω)

< 0 for all ω (9)

Such an incremental process describes the first phase
of the fracturing process, namely loading without crack
growth. When the onset of crack propagation is reached
at a point s at time t , the second phase, when present,
is triggered off: stable crack growth. A further increase
of load λk causes crack elongation at s. Denoting with

7 In Eq. (8), E is Young modulus and α Poisson’s coefficient.

λK = K(s, ∂ )−K(s, t+), λK∞ = K∞(s, ∂ )−K∞(s, t+)

at time t s.t. σ(K(s, t), ω(s, t)) = 0

for at least one ω(s, t) it exists λk = k(∂ )

−k(t+) > 0 s.t.

λK∞ = K∞(s, t+)

k(t+)
λk

λK = λK∞(s, ∂ ) + K(1/2)(s, t)
√

l(s, t) + O(l) (10)

All details of Eq. (10) will be discussed in Sect. 3
and Appendix A. Conceptually, it states that a quasi-
static fracture extension l(s, t) due to external actions
requires a contemporary variation λk such that the
global equilibrium is guaranteed. It is a reminiscence
of Colonnetti’s decomposition of stresses in plastic-
ity (Colonnetti 1918, 1950), as the variation of SIFs is
additively decomposed as due to an elastic contribution
(λK∞) and to a distortion (in fracture: crack elongation
l; in plasticity: plastic strain rate) which reverses itself
into SIFs (stresses in plasticity) by means of a stiff-
ness factor (in fracture: K(1/2), in plasticity: the action
of the Z matrix over the plastic part of the volume).
Equation (10) states also implicitly that the extension
l(s, t) cannot be arbitrary along the crack front. Equi-
librium, in the sense that λk is unique for all points s,
requires l(s, t) to assume a precise shape with respect
to s. Such a constraint is provided in plasticity by Cera-
dini’s functional which in fact will be extended to frac-
ture in Sect. 5.2.

The third phase of crack propagation, unstable crack
growth, is reached when condition λk > 0 in Eq. (10)
is no longer required at some point s. A quasi-static
growth, merely academic, can be simulated only with
a decrease of external action λk ⊥ 0 to recover the post
peak behaviour as typical in “arc length” techniques
for softening materials.

In reality, dynamics effects come into play. They fall
out of the scope of the present note.

Fracture propagation as a standard dissipative
system: In the Griffith theory (see Griffith 1921 but
also its review in Bourdin et al. 2008) and in the light of
Irwin’s formula (Irwin 1958), propagation is governed
at time t by the following conditions, reminiscence of
Kuhn-Tucker conditions of plasticity:

σ(K(s, t), ω(s, t)) ⊥ 0, l̇(s, t) ≤ 0,

σ(K(s, t), ω(s, t)) l̇(s, t) = 0 (11)

Conditions (11) can be derived on a thermodynamical
basis as done in Salvadori and Carini (2011) for two-
dimensional LEFM. Moving from a rigid-plasticity
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analogy between SIFs and stresses, crack propaga-
tion induces a dissipation which satisfies Clausius–
Duhem’s inequality through the introduction of a con-
vex dissipation potential, D. Such an idea extends
straightforwardly to three dimensional LEFM simply
considering any point s along the crack front as a locus
of possible dissipation. A “safe equilibrium domain” is
defined as:

E = {{K ∞
1 , K ∞

2 , K ∞
3 } ∗ R

+
0 × R × R | σ(K ∞

1 , K ∞
2 , K ∞

3 )

< 0} (12)

It has a “local” nature at each point s of the crack front.
A curve “onset of crack propagation” φE as the bound-
ary of the “safe equilibrium domain” can be defined at
any point s:

φE = {{K ∞
1 , K ∞

2 , K ∞
3 } ∗ R

+
0 × R × R | σ(K ∞

1 , K ∞
2 , K ∞

3 )

= 0} (13)

When K∞(s, t) ∗ E no elongation occurs, eventu-
ally corresponding to an elastic unloading. Vectors
K∞(s, t) ≡∗ E are ruled out. The definitions above are
reminiscent to the elastic domain and to the yield sur-
face in the plasticity theory (Han and Reddy 1999).
They implicitly label the SIFs vector K∞ as an internal
force for the LEFM problem.

Mechanical dissipation in LEFM is due to the irre-
versible nature of the crack extension, measured in an
incremental setting by the quasi-static crack tip veloc-
ity vector l̇(s, t). It is defined in the Frenet frame at
point s of F as the vector, slanted by kinking angle
ω(s, t), whose norm is equal to the quasi static crack
tip velocity l̇(s, t).

The internal variable conjugated to K∞ is here
termed “dissipation rate vector” ȧ∞ and unfortunately
cannot coincide with l̇(s, t). Its modulus is related to
l̇(s, t) by the following identity, which is part of the
definition of ȧ∞:

≈ȧ∞≈ = GC

K C
1

l̇ (14)

A “maximum dissipation” principle for LEFM is pos-
tulated at any point s in terms of the dissipation function
D(k∞; ȧ∞) = k∞ · ȧ∞ among all possible SIFs k∞ ∗ E.
It leads to the associative flow rule:

ȧ∞ = φσ

φK∞ β̇ (15)

and loading/unloading conditions in Kuhn–Tucker
complementarity form at any point s along the crack
front:

β̇ ≤ 0, σ ⊥ 0, β̇ σ = 0 (16)

Analogously to 2D, it can be proved in view of defin-
ition (14) that β̇ = l̇, thus Kuhn-Tucker complemen-
tarity Eq. (11) are recovered from (16). Consistency
condition finally read:

When σ = 0, l̇ ≤ 0, σ̇ ⊥ 0, l̇σ̇ = 0 (17)

3 On the mixed mode propagation

Expansion (1) at an instant ∂ ∗]t, t∞] may be rewritten
in view of (2–4) as:

K(s, ∂ ) = K∞(s, ∂ ) + K(1/2)(s, ∂ )
√

l(s, ∂ )

+K(1)
0 l(s, ∂ ) + K(1)

1
φl

φs
(s, ∂ )

+K(1)
nl [l(s∇, ∂ ) − l(s, ∂ )] + o(l) (18)

Vector

K(1)
0 = 1

2

[
φ2K(s, l)

φ(
∈

l)2

]C∞=0

l(s∇)=l(s)

+C∞(s)M(ω(s)) K(s)

accounts for the locally linear contribution of l(s, t) to
the variation of SIFs at s, whereas vector

K(1)
1 = N(ω(s)) K(s)

conveys the influence of derivative of l with respect to
the abscissa s on the crack front. Finally

K(1)
nl [ f (s∇)]=

∫
F

Z(ε, s, s∇, ω(s), ω(s∇)) K(s∇)f (s∇)ds∇

is the non local operator that provides, once applied to
l(s∇, ∂ ) − l(s, ∂ ) the contribution of the fluctuation of
crack advancing at s∇ to SIFs at s.

During stable crack growth, propagation is meant to
be a sequence of equilibrium states. At each load k(∂ )

a geometry configuration l(s, ∂ ) corresponds which
eventually evolves quasi-statically, keeping crack front
F at the onset of crack propagation K∞(s, ∂ ) ∗ φE.
In any “time” interval ]t, t∞] in which the crack front
elongates at point s one has:

σ(K∞(∂ )) − σ(K∞(t)) = 1 − α2

E
(K ∞2

1 (∂ ) + K ∞2
2 (∂ ))

+1 + α

E
K ∞2

3 (∂ )

−1 − α2

E
(K ∞2

1 (t) + K ∞2
2 (t))

−1 + α

E
K ∞2

3 (t)= 0 ∂∗]t, t∞]
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in view of (8). Assuming that the Principle of Local
Symmetry is the criteria for crack kinking and that the
elongation is a curve at least of class C1, in the limit
∂ ∅ t+, point s on the crack front never propagates
unless:
φσ

φK∞ (s, t) · K(1/2)(s, t) = 0 (19)

which appears to be a mandatory requirement for
mixed mode crack propagation. Proof is detailed in
Appendix A. Outcome (19) together with the required
assumptions will be taken in the rest of the paper.

With the aim of using SIFs expansion (1) with
respect to to the values “before the kink” at time t , the
assumption is made that the crack path in the normal
plane {O, x1, x2} at any s ∗ F is smooth8 in the “time”
interval ]t, t∞]. Then the kinking angle ω(s, ∂ ) = 0 and
F = 1l in expansion (1) for all ∂ > t . This in turn
implies K ∞

2 = K2 = 0 for all ∂ > t and in fact also
a∞ = 0 at time t .

The latter proposition is easily verified: all functions
Gi j vanish at ω = 0 in Eq. (3), that reduces in this case
to

K (1/2)
i = a∞ Hi j

∣∣
ω=0 K j

for all instants ∂ > t . For being K2 = K ∞
2 = 0, expan-

sion (1) implies K (1/2)
2 = a∞ H21|ω=0 K1 = 0. As

H21|ω=0 = 3/4, the geometrical restriction a∞ = 0
comes out for all instants ∂ > t . As a∞ at time t is
defined in the Frenet frame “right after the kink” and
as in the limit ∂ ∅ t the Frenet frame {O, y1, y2} at
time ∂ converges to the one at time t , so does a∞. One
concludes therefore that a∞ = 0 at time t as well.

Property (19) has been proven in Appendix A mak-
ing use of the MERR onset of propagation. The proof
of vanishing a∞ at time t stems merely on the criteria
of local symmetry. Onset and criterion convey separate
outcomes. Typically, it is not possible to obtain a∞ = 0
via the Griffith approach, in view of the fact that (19)
holds for all a∞ if ω = 0. On the other hand, the proof
in Appendix A shows that the crack tip velocity at the

8 Such a smoothness implies that each kink is surrounded
by an unbranched, curvilinear crack path in the normal plane
{O, x1, x2} of Fig. 2. In agreement with Leblond and coworkers
notation (Amestoy and Leblond 1992; Leblond 1999; Leblond
et al. 1999), the elongation in the normal plane is taken to be:

y2 = a∞(s) y3/2
1 + 1

2
C∞(s) y2

1 + O(y5/2
1 )

with axis {y1, y2} denoting the Frenet frame right after the kink,
as in Fig. 2b.

Fig. 3 Finite propagation length γ(s). The shadowed area rep-
resents the crack surface before elongation

kink must be zero, which cannot be proved by the local
symmetry criterion.

If a non smooth propagation after the kink is allowed,
unfortunately F ≡= 1l and it is not possible to use expan-
sion (1) with respect to the values “before the kink” at
time t .

4 A stability condition

Provided that mandatory condition (19) holds, the
“time” derivative of function σ(K∞(s, t), ω(s, t)) can
be properly defined. In view of consistency condition
(17) and of definition (8) for σ one writes:

σ̇(s, t) = φσ

φK∞ · (
K̇∞ + L[l̇(s, t)]) = Gc

k̇(t)

k(t)

+ φσ

φK∞ · L[l̇(s, t)] = 0 (20)

at a point s along the crack front at which σ = 0 and
l̇(s, t) > 0. In Eq. (20) L[·] is a linear operator defined
by:

L[l̇(s, t)] = K(1)
0 l̇(s, t) + K(1)

1
φ l̇

φs
(s, t)

+ K(1)
nl [l̇(s∇, t) − l̇(s, t)] (21)

in view of expansion (18). Note that Eq. (20) is defined
at time t , i.e. there is no reason to consider a further
instant ∂ after t .

In Colonnetti’s framework, K̇∞(t) is a mere elastic
contribution to K̇(t) due to k̇(t) and L[l̇(s, t)] corre-
sponds to the crack elongation rate l̇(s, t) considered
as an inelastic distortion. Consistency condition yields:

σ̇ l̇ =
(

Gc
k̇(t)

k(t)
+ φσ

φK∞ · L[l̇(s, t)]
)

l̇(s, t) = 0
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Fig. 4 A zoom of Fig. 3
allows to highlight the crack
front length increment ds

∇∇

Fig. 5 Penny shaped crack of variable radius R(t) in un
unbounded linear elastic media, subject to a uniform tensile stress
p = −k(t)n on a constant circular area of radius Rimp here
depicted in gray. n stands for the outer normal, so that p “opens
the crack”

whence:

Gc
k̇(t)

k(t)
l̇(s, t) = − φσ

φK∞ · L[l̇(s, t)] l̇(s, t)

The latter sets a condition for stable (i.e. k̇(t) > 0) crack
growth l̇(s, t) > 0 at any point s along the crack front:

k̇(t) > 0 ∅ φσ

φK∞ · L[l̇(s, t)] < 0 at all s ∗ F |σ=0 (22)

Inherently, Eq. (22) is the (local) condition for the
transition to the unstable phase at a point s. In other
words, when condition (22) is not met at point s, an
unstable propagation may take place in a neighborhood
of s.

5 Variational formulation

5.1 A property of symmetry

Consider the affine operator N [·]
N [ l̇ ] = φσ

φK∞ · K̇∞ + φσ

φK∞ · L[l̇(s, t)] (23)

The associated problem find l̇ ≤ 0 s.t. N [l̇] = 0 is
equivalent to consistency conditions (17, 20). From
well known theorems of variational calculus, in order

Fig. 6 Curves (45), (46) in
the case
Rimp = 1/2, K C

1 = 1. They
confirm the stable nature of
propagation

2 4 6 8 10
R

100

200

300

400

k

100 200 300 400
k

2

4

6

8

10

R

123Reprinted from the journal 65



A. Salvadori, F. Fantoni

to give a variational formulation in “a restricted sense”
(see Tonti 1984) to the nonlinear problem N [l̇] = 0, it
is necessary that the Gateaux derivative of N , defined
by virtue of ν ∗ R as:

N ∇̇
l
[ẇ] = d N [l̇ + νẇ]

dν

∣∣∣∣
ν=0

= φσ

φK∞ · L[ẇ] (24)

is symmetric with respect to the usual bilinear form,
namely:∫

F
N ∇̇

l
[ẇ]ż ds =

∫

F
N ∇̇

l
[ż]ẇ ds (25)

By noting that σ has been defined as the maximum
energy release rate criterion in Eq. (8), it turns out that
N ∇̇

l
[w] is precisely the energy release rate associated to

elongation w at constant boundary conditions, the term
φσ
φK∞ ·K̇∞ in definition (23) being the variation of energy
due to the variation of external loads k(t), i.e.

K̇∞ = K∞ k̇

k
It is not straightforward to envisage symmetry for N ∇̇

l
from definition (21) of linear operator L, although this
property seems quite natural if one thinks the energy
release rate as the derivative of the energy. On the con-
trary, term by term unsymmetry is apparent and one is
lead to erroneously conclude that a variational formu-
lation for problem N [l̇] = 0 cannot be given. To prove
symmetry for operator N ∇̇

l
one must follow a different

path of reasoning, based on the physical meaning of the
operator itself.

Consider a finite propagation length l(s) at a point
s of the crack front, given by the sum of two contribu-
tions:

γ(s) = Aτ(s) + Bδ(s) (26)

where A and B are two positive parameters and τ(s)
and δ(s) are formally two fixed and assigned non neg-
ative functions expressing the elongation of the front
in the normal plane.

The total (elastic) energy of body ε, denoted hence-
forth by W , is a function of the geometry, namely of the
advancing of the crack front which is uniquely defined
by parameters A and B. Then W = W (A, B) and apart
from higher order terms one has:

φW (A, B)

φ A
= −

∫

F
G(A, B, s) τ(s) ds∇∇ (27)

In Eq. (27) term G(A, B, s) represents the energy
release rate which is function of the location of the

crack front (A and B), but also of the position s along
the crack front. Furthermore, if ds refers to the front
before the elongation γ(s) and ds∇∇ to the final position
of the front, it turns out:

ds∇∇ = ds(1 + γ γ(s)) (28)

where γ is a local corrective factor that depends upon
the curvature of F . Fig. 3 and 4

Second order terms in A and B arise during propa-
gation, as the normal at point s changes direction at s∇∇.
Propagation in the normal plane modifies to:

τ(s)n(s) · n(s∇∇) = τ(s) + second order terms (29)

For all these reasons, Eq. (27) can be written as:
φW (A, B)

φ A
= −

∫

F
G(A, B, s)τ(s)

[1 + γ (Aτ(s) + Bδ(s))] ds (30)

from which:
φ2W (A, B)

φ Bφ A
= −

∫

F

φG(A, B, s)

φ B
τ(s)

[1 + γ (Aτ(s) + Bδ(s))] ds

−
∫

F
G(A, B, s)τ(s)γδ(s) ds

Setting A = B = 0 the latter becomes:

φ2W

φ Bφ A

∣∣∣∣
A=B=0

= −
∫

F

φG(A, B, s)

φ B

∣∣∣∣
A=B=0

τ(s) ds

−
∫

F
G(0, 0, s) γ τ(s) δ(s) ds

(31)

Analogously one has:
φW (A, B)

φ B
= −

∫

F
G(A, B, s)δ(s)[1 + γ (Aτ(s)

+Bδ(s))] ds

and setting again A = B = 0 one has:

φ2W

φ Aφ B

∣∣∣∣
A=B=0

= −
∫

F

φG(A, B, s)

φ A

∣∣∣∣
A=B=0

δ(s) ds

−
∫

F
G(0, 0, s) γ τ(s) δ(s) ds (32)

Comparing Eqs. (31) and (32) one states:∫

F

φG(s)

φ A
δ(s) ds =

∫

F

φG(s)

φ B
τ(s) ds (33)
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Define infinitesimal increments of propagation length
l1(s) = λA · τ(s), l2(s) = λB · δ(s) and the corre-
sponding infinitesimal variation of the energy release
rate λ1G(s) = φG(s)

φ A λA, λ2G(s) = φG(s)
φ B λB. It holds:

∫

F
λ1G(s) · l2(s) ds = λA λB

∫

F

φG(s)

φ A
δ(s) ds (34)

and∫

F
λ2G(s) · l1(s) ds = λAλB

∫

F

φG(s)

φ B
τ(s) ds (35)

Owing to Eq. (33) one concludes:∫

F
λ1G(s) l2(s) ds =

∫

F
λ2G(s) l1(s) ds (36)

As it was pointed out that N ∇̇
l
[w] is precisely the energy

release rate associated to elongation w, Eq. (36) is noth-
ing but the proof of symmetry property (25).

5.2 Variational statements

In view of the symmetry property (25), the follow-
ing two variational statements can be given. They are
reminiscent of Ceradini’s theorems (Ceradini 1965) for
plasticity and hold under the assumption of stable crack
growth

φσ

φK∞ · L[l̇(s, t)] < 0 for all l̇(s, t) ≤ 0

at any point s ∗ F |σ=0 (37)

Proposition 1 Under hypothesis (37), the crack tip
“velocity” l̇(s, t) that solves the global quasi-static
fracture propagation problem at “time” t minimizes
the functional:

χ [ v(s, t) ] = −1

2

∫

F |σ=0

φσ

φK∞ · L[v(s, t)] v(s, t) ds

−
∫

F |σ=0

φσ

φK∞ · K̇∞ v(s, t) ds (38)

under the constraint v(s, t) ≤ 0.

To prove the theorem, denote with v(s, t) =
l̇(s, t) + γl̇(s, t). Omitting the variable dependence
on s and t for the sake of clearness, one writes:

χ [ v ] − χ [ l̇ ] = −1

2

∫

F |σ=0

φσ

φK∞

· (L[l̇] γl̇ + L[γl̇] l̇ + L[γl̇] γl̇
)

ds

−
∫

F |σ=0

φσ

φK∞ · K̇∞ γl̇ ds

Owing to the symmetry property (36), in view of the
linearity of L one writes:

χ [ v ] − χ [ l̇ ] = −
∫

F |σ=0

φσ

φK∞ · (
L[l̇] + K̇∞) γl̇ ds

−1

2

∫

F |σ=0

φσ

φK∞ · L[γl̇] γl̇ ds

= −
∫

F |σ=0

σ̇ (v − l̇) ds

−1

2

∫

F |σ=0

φσ

φK∞ · L[γl̇] γl̇ ds

= −
∫

F |σ=0

σ̇ v ds +
∫

F |σ=0

σ̇ l̇ ds

−1

2

∫

F |σ=0

φσ

φK∞ · L[γl̇] γl̇ ds ≤ 0

because of the stable crack growth hypothesis, consis-
tency conditions σ̇ ⊥ 0 and σ̇ l̇ = 0 when σ = 0, and
constraint v ≤ 0.

Proposition 2 Under hypothesis (37), the crack tip
“velocity” l̇(s, t) that solves the global quasi-static
fracture propagation problem at “time” t minimizes
the functional:

ω[v(s, t)] = −1

2

∫

F |σ=0

φσ

φK∞ · L[ v(s, t) ] v(s, t) ds (39)

under the constraint: φσ
φK∞ · {

K̇∞ + L[ v(s, t) ]} ⊥ 0

To prove the theorem, denote again with v(s, t) =
l̇(s, t)+γl̇(s, t). Omitting the variable dependence on
s and t for the sake of clearness and in view of the
symmetry property (36), one writes:

ω[ v ] − ω[ l̇ ] = −
∫

F |σ=0

φσ

φK∞ · L[ l̇ ] γl̇ ds

−1

2

∫

F |σ=0

φσ

φK∞ · L[ γl̇ ] γl̇ ds
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By adding and subtracting the amount
∫
F |σ=0

φσ
φK∞ ·

K̇∞ l̇ ds the latter holds:

ω[ v ] − ω[ l̇ ] = −1

2

∫

F |σ=0

φσ

φK∞ · L[ γl̇ ] γl̇ ds

+
∫

F |σ=0

φσ

φK∞ · (
K̇∞ + L[ l̇ ]) l̇ ds

−
∫

F |σ=0

φσ

φK∞ · K̇∞ l̇ ds

−
∫

F |σ=0

φσ

φK∞ · L[ l̇ ] v ds

= −1

2

∫

F |σ=0

φσ

φK∞ · L[ γl̇ ] γl̇ ds

+
∫

F |σ=0

σ̇ l̇ ds

−
∫

F |σ=0

φσ

φK∞ · (
K̇∞ + L[ v ] )

l̇ ds

in view of the symmetry property (36). Owing to the
stable crack growth hypothesis, consistency conditions
σ̇ ⊥ 0 and σ̇ l̇ = 0 when σ = 0, and constraint φσ

φK∞ ·{
K̇∞ + L[ v(s, t) ]} ⊥ 0 the thesis follows.

6 A benchmark

As usual denote with t a variable that orders events and
consider a penny shaped crack (see Fig. 5) with radius
R(t) > Rimp > 0 embedded in a continuum body,
subject to an internal pressure p(t, r) that “opens the
crack” merely acting on a concentric circle of radius
Rimp:

p(t, r) = k(t) H(Rimp − r) (40)

k being the load factor and H(x) the Heaviside step
function

H(x) =
{

1 i f x ≤ 0
0 i f x < 0

In such mode I conditions, the crack evolution in space
is smooth, without kinking. The SIFs vector has a single
non vanishing component that amounts to Kassir and
Sih (1975):

K1(R(t)) = 2

ϒ

1∈
R(t)

R(t)∫

0

r p(t, r)

(R(t)2 − r2)1/2 dr

whence, in view of (40):

K1(R(t)) = 2
k(t)

ϒ

R(t) −
√

R2(t) − R2
imp∈

R(t)
(41)

Closed form solution (41) can be exploited in order to
benchmark the variational framework developed in the
previous sections.

When k(t) reaches a propagation threshold so that
K1 = K C

1 , the onset of crack propagation is reached.
Further increase of external actions allows fracture
propagation and the radius R becomes R + d R. As
the crack growth is axis-symmetric the amount d R is
independent on the abscissa s along the crack front and
Eq. (20) reduces to:

σ̇ = φσ

φK∞ ·
[

K∞ k̇(t)

k(t)
+ K(1)

0 Ṙ(t)

]

The closed form for the scalar K(1)
0 can be derived from

the series expansion of Eq. (41) in terms of R:

K1(R + d R) = K1(R)

− k

ϒ R
∈

R

R2+R2
imp −R

√
R2−R2

imp√
R2−R2

imp

d R+O(d R2)

(42)

According to definition (21), operator L[l̇(s, t)] =
K(1)

0 Ṙ(t) and stability condition (22) is satisfied. The
crack growth is therefore stable, as expected again.

Functional (38) holds:

χ [Ṙ(s, t)] = −1

2

∫

F |σ=0

φσ

φK∞ · K(1)
0 Ṙ2(s, t) ds

−
∫

F |σ=0

φσ

φK∞ · K∞ k̇(t)

k(t)
Ṙ(s, t) ds

under the unilateral constraint Ṙ(s, t) ≤ 0. Con-
sider a positive parameter ν and a positive elonga-
tion Q̇(s, t) ≤ 0, so that the configuration Ṙ(s, t) +
ν Q̇(s, t) ≤ 0 is in the set of admissible configurations
for functional (38). Optimality implies

χ [Ṙ(s, t) + ν Q̇(s, t)] ≤ χ [Ṙ(s, t)]
or equivalently

d

dν
χ [Ṙ(s, t) + ν Q̇(s, t)]

∣∣∣∣
ν=0

≤ 0

The crack front F |σ=0 can be split into two parts. In
the former, say F1, Ṙ is strictly positive. The comple-
mentary, say F2, is the part of F |σ=0 with vanishing
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velocity Ṙ = 0. Along F1 the usual Euler–Lagrange
equation χ ∇[Ṙ(s, t)] = 0 hold, whereas along F2 the
inequality χ ∇[Ṙ(s, t)] ≤ 0 has to be satisfied. Accord-
ingly, at all s ∗ F |σ=0 the Karush–Kuhn–Tucker con-
ditions hold:

Ṙ(s, t) ≤ 0 χ ∇[Ṙ(s, t)] ≤ 0 χ ∇[Ṙ(s, t)]Ṙ(s, t) = 0

In view of closed form (42), it becomes:

χ[Ṙ(t)] = −1 − α2

E
Ṙ(t)

[
q[R(t)] Ṙ(t) + 2 r [R(t)]) k̇(t)

k(t)

]

(43)

with:

q[R(t)] =
2ϒ R(t)∫

0

K1 · K 1
0 ds

=−
4k2

(
R(t)−

√
R2(t)−R2

imp

) (
R2(t)+R2

imp − R(t)
√

R2(t)−R2
imp

)

ϒ
√

R4(t)−R2(t)R2
imp

r [R(t)] =
2ϒ R(t)∫

0

K 2
1 ds = 8k2

ϒ

(
R(t) −

√
R2(t) − R2

imp

)2

Along F1 the minimizer of functional (43) must satisfy
the Euler–Lagrange equation:

−2
1 − α2

E

[
q[R(t)] Ṙ(t) + r [R(t)] k̇(t)

k(t)

]
= 0

By “time” integration one gets:

log
k(t)

k0
= 1

2
log

R(t)

R0
+ log

R(t) +
√

R2(t) − R2
imp

R0 +
√

R2
0 − R2

imp

(44)

having set R(0) = R0, k(0) = k0. Equation (44)
expresses the critical load factor corresponding to the
evolution of radius R(t) along F1. Due to the axial-
symmetry of the problem, either F1 coincides with the
whole circular crack front or is empty. In the latter case,
Ṙ(t) = 0 and the inequality

−2
1 − α2

E

[
q[R(t)] Ṙ(t) + r [R(t)] k̇(t)

k(t)

]
≤ 0

is satisfied only by k̇(t) ⊥ 0.
For example, setting K1(R0) = K C

1 and R0 =
Rimp, from Eq. (42) one has:

k0 = ϒ K C
1

2
∈

R0

from which the load factor as a function of the radius
follows:

k(t) = K C
1 ϒ

√
R(t)

R(t) +
√

R2(t) − R2
imp

2R2
imp

(45)

Equation (45) can be inverted in terms of R(t):

R(t)= 1

48αk2 K C
1

2

[
α2

ϒ2/3 +ϒ2αK C
1

4+ϒ2/3 K C
1

4

×
(

384k4 Rimp
2+ϒ4 K C

1
4
)]

(46)

with

α = ∈
3K C

1
4
(

576ϒ4k4 K C
1

4
Rimp

2 + 1536k6 Rimp
3

×
(∈

3
√

432k4 Rimp
2 + ϒ4 K C

1
4 + 36k2 Rimp

)

+ϒ8 K C
1

8
)

Curves (45) and (46) are pot in Fig. 6 in the case Rimp =
1/2, K C

1 = 1.

7 Conclusions

The present note aims at extending to three dimensional
problems the variational formulation for the global
incremental quasi-static linear elastic fracture propaga-
tion problem presented in Salvadori and Carini (2011).
Laws that describe onset and propagation of cracks fall
under the general Griffith theory (Griffith 1921), that
puts linear elastic fracture mechanics (LEFM) in anal-
ogy with standard dissipative systems thermodynamics
(Lemaitre and Chaboche 2000). The SIFs vector “right
after the kink, if any” K∞ acts as an internal force, con-
jugated to the internal variable a∞. The latter is related
to the crack length from definition (14) and its varia-
tion induces a dissipation which must satisfy Clausius–
Duhem’s inequality. Following this path of reasoning,
a plasticity analogy for LEFM was presented in Sal-
vadori (2008): as expected, it stems from a maximum
dissipation principle, the counterpart of the maximum
internal entropy generation (Tadmor et al. 2011) postu-
late for standard dissipative systems thermodynamics.
“Constitutively” the crack elongation is analogous to a
rigid-plastic behaviour. Griffith’s criterion is recovered
following a rigorous setting.

The key ingredients for this approach are: i) the
stress intensity factor expansion (1) with respect to the
crack elongation, provided in Leblond (1999), Leblond
et al. (1999). In the analogy it plays the role of a Colon-
netti’s decomposition of stress; ii) the 3D extension of

123Reprinted from the journal 69



A. Salvadori, F. Fantoni

Irwin’s formula, that relates the Energy Release Rate
to the SIFs; whereas a formal proof for mixed mode
has been recently provided for 2D in Chambolle et
al. (2010), a formal 3D derivation seems to be lack-
ing. In this regard, formula (8) is taken as a gener-
ally accepted result. In the analogy, it is equivalent to
the yield function in plasticity and allows the defini-
tion of the elastic domain and of its boundary; iii) the
maximum dissipation principle, whence the normality
and the complementarity laws come out. The rest fol-
lows from well known results of incremental plasticity
(Ceradini (1965, 1966)).

Whereas in the 2D case the discrete nature of the
number of crack tips made the formulation simple and
the variational formulation a minimum of functions, in
the 3D case the presence of a curved crack front requires
a detailed investigation of the symmetry property of
operator N (l̇) defined in (23). As shown in Sect. 5.1
the form (21) of non local operator L[ l̇ ] does not allow
a straightforward proof of symmetry for N . The latter
was here provided on the basis of the physical meaning
of operator N , because of its link with the concept of
energy release rate.

Once symmetry is provided, the two minimum the-
orems follows. They allow the formulation of effective
algorithms to determine the size of the increment of
crack growth, based upon the corresponding increment
for external loads. Such an outcome for incremental
fracture has the potential to place numerically calcu-
lated crack trajectories on a much firmer basis. In par-
ticular, it could be implemented in techniques such as
standard finite element or boundary element (Salvadori
and Gray 2007) method in which crack growth direc-
tion is usually determined based upon standard criteria
(Salvadori 2010), but the crack growth rate is by far
less well defined.

Conditions for stable crack growth and, inherently,
for the onset of unstable propagation have been firmly
formulated is Sect. 4. If these theoretical results will
be confirmed, they may reveal of great importance.
The safety of a structural component is usually mea-
sured against the stable/unstable crack growth transi-
tion, as one assumes in fact that unstable propagation
leads to structural collapse. Numerical validations are
in progress.

The plasticity analogy in which the present paper is
rooted allows the interpretation of “fracture as a stan-
dard dissipative system”. The details of such a theory
have been reviewed in Nguyen (1994, 2000), Mielke

Fig. 7 Plot of the kink angle ωM E R R = m ϒ as a function of the
ratio α32 = K3/K2 at K1 = 0

(2005), firmly formulating as variational inequalities
the stability and bifurcation conditions. A current yet
long lasting research target of us aims at relating sta-
bility and variational formulation presented in Sects. 4
and 5.2 to the general theory and in particular with
the notion of “non negativeness of second order work
density” attributed to Hill (1958). It did not reach a suf-
ficient maturity to be included here as a discussion and
will be considered in future publications.

Authors are aware that the proposed approach nar-
rows the picture very much with respect to other formu-
lations (Bourdin et al. 2008): going out of LEFM, where
SIFs are not defined, does not seem to be obvious. Nev-
ertheless, even within the proposed framework some
extension can be clearly devised. The issues of ther-
mally driven fracture processes and of environmentally
assisted brittle fracture might be included naturally,
once the correct driving force is described as done for
the increment of external loads. More ambitious exten-
sions pertain to fatigue of materials, which involves
the multiscale analysis of the growth of defects, still
embedded in a macroscopically linear elastic material
behavior.

Acknowledgments Authors are gratefully indebted with
J. B. Leblond for several, long, deep discussions and sugges-
tions. A large part of the proof in Sect. 5.1 was made by him.
Fruitful and, as always, exhaustive discussions with A. Giaco-
mini are gratefully acknowledged.

Appendix A: Crack propagation requirements

Stable crack propagation is meant to be a sequence
of equilibrium states. At each load k(∂ ) corresponds
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Fig. 8 Plot of the kink
angle ωM E R R = m ϒ as a
function of the ratios
α2 = K2/K1 and
α3 = K3/K1. At K2 = 0
(mode 1+3) the kinking
angle is vanishing. At
K3 = 0 the plane case is
recovered as well as the well
known curve ω versus α: it is
here highlighted with a thick
curve. As well documented,
ωM E R R and ωL S differ from
very small amounts in the
plane case. Accordingly, a
visualization of ωL S cannot
be distinguished from
ωM E R R and thus the thick
curve recovers ωL S as well.
Noteworthy, ωL S is
independent upon α3. It is
then easy to envisage the
surface plot of angle ωL S as
the cylindrical envelope of
the thick curve along axis
α3. The higher the mode 3
contribution α3 the higher
the difference in the angle
of propagation between LS
and MERR. This evidence
is clear in b, whose axis are
not in scale

a crack configuration l(s, ∂ ) which eventually evolves
quasi-statically, keeping the SIFs at the onset of prop-
agation K∞(∂ ) ∗ φE. Assume “time” ∂ in an interval
]t, t∞] in which crack grows steadily with “velocity”
0 < l̇(s, ∂ ) < ≥. One has in view of (8):

σ(∂)−σ(t) = A
(

K ∞2
1 (∂ )−K ∞2

1 (t)+K ∞2
2 (∂ )−K ∞2

2 (t)
)

+B
(

K ∞2
3 (∂ ) − K ∞2

3 (t)
)

= 0 (47)

with A = 1−α2

E and B = 1+α
E . If the crack path in the

normal plane at any s ∗ F is taken to be smooth in the
“time” interval ]t, t∞], in other words along a curve at
least of class C1, then the kinking angle ω(s, ∂ ) = 0

and K∞(∂ ) = K(∂ ) for being F = 1l in expansion (2). If
furthermore one selects the local symmetry (Goldstein
and Salganik 1974) as a kinking angle criterion, then
K ∞

2 = 0 and therefore:

σ(∂) − σ(t) = A[K ∞
1 (∂ ) + K ∞

1 (t)][K ∞
1 (∂ ) − K ∞

1 (t)]
+B[K ∞

3 (∂ )+K ∞
3 (t)][K ∞

3 (∂ )−K ∞
3 (t)]=0

(48)

Using SIFs expansion (18) one has:

[K ∞
1 (∂ ) − K ∞

1 (t)] = e1 ·
{

K∞(t)
k(∂ )

k(t)

+ K(1/2) k(∂ )

k(t)

√
l(s, ∂ ) + K(1)

0
k(∂ )

k(t)
l(s, ∂ )
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+ K(1)
1

k(∂ )

k(t)

φl

φs
(s, ∂ )+K(1)

nl
k(∂ )

k(t)
[(l(s∇, ∂ )−l(s, ∂ ))]

−K∞(t)
} + o(l)

=e1 ·
{

K∞(t)
λk

k(t)
+K(1/2)

√
l(s, ∂ )+K(1)

0 l(s, ∂ )+

+K(1)
1

φl

φs
(s, ∂ )+K(1)

nl [l(s∇, ∂ ) − l(s, ∂ )]
}

+o(λk · l)

(49)

where e1 denotes the unit vector in direction 1. Analo-
gously:

[K ∞
3 (∂ ) − K ∞

3 (t)]
= e3 ·

{
K∞(t)

λk

k(t)
+ K(1/2)

√
l(s, ∂ ) + K(1)

0 l(s, ∂ )

+K(1)
1

φl

φs
(s, ∂ )+K(1)

nl [ l(s∇, ∂ )−l(s, ∂ ) ]
}

+o(λk · l)

(50)

where e3 denotes the unit vector in direction 3.
By noting that l(s, 0) = 0 by definition of l(s, t) and

assuming that it exists a bounded quasi-static velocity
l̇(s, t) so that l(s, ∂ ) = l̇(s, t)(∂−t) and a load variation
velocity so that λk = k̇(t)(∂ − t) one has for ∂ ∅ t+:

0 = 2(A K ∞
1 (t) e1 + B K ∞

3 (t) e3)

· K(1/2)

√
l̇(s, t)

∈
∂ − t

+2(A K ∞
1 (t) e1 + B K ∞

3 (t) e3)

·
{

K∞ k̇(t)

k(t)
+ K(1)

0 l̇(s, t) + K(1)
1 l̇

∇
(s, t)

+K(1)
nl [ l̇(s∇, t) − l̇(s, t) ]

}
(∂ − t) + o(∂ − t)

(51)

whence the conditions:
φσ

φK∞ · K(1/2) = 0 (52)

φσ

φK∞ · [K∞ k̇(t)

k(t)
+ K(1)

0 l̇(s, t) + K(1)
1 l̇

∇
(s, t)

+K(1)
nl [(l̇(s∇, t) − l̇(s, t))] = 0 (53)

at K∞
2 = 0.

Appendix B: MERR and LS

Maximum energy release rate (MERR) onset of prop-
agation uses as a magnitude ψ the energy released dur-
ing crack advance at any point along the crack front.
Such a magnitude is related to stress intensity factors
after a kink via Irwin’s formula, recently revised at a

kink by several authors (Ichikawa and Tanaka (1982);
Chambolle et al. (2010)) in two-dimensions, whence
the onset of propagation reads

σ = 1 − α2

E
(K ∞2

1 + K ∞2
2 ) + 1 + α

E
K ∞2

3 − GC (54)

It seems extremely desirable, although probably
quite involved, an extension of Chambolle et al. (2010)
to the three dimensional case. As its formal derivation
in the presence of kinking seems not to be available,
the validity of Irwin’s formula for 3D, widely accepted
in the fracture mechanics community, is here assumed.

As stated already several times in this note, the prin-
ciple of Local Symmetry (LS) and MERR share the
same onset of propagation. They differ on the criteria
for kinking angle prediction. The kink angle predicted
by the MERR descends from the general form (7). It
reads:
φσ

φω
= 1 − α2

E

(
2K ∞

1
φK ∞

1

φω
+ 2K ∞

2
φK ∞

2

φω

)

+1 + α

E
2K ∞

3
φK ∞

3

φω
= 0 (55)

Matrix F has been defined in terms of the ratio m =
ω/ϒ in Leblond (1999), Leblond et al. (1999) as
F11(m) = 4.1m20 + 1.63m18 − 4.059m16 + 2.996m14

−0.0925m12 − 2.88312m10 + 5.0779m8

+
(

ϒ2

9
− 11ϒ4

72
+ 119ϒ6

15360

)
m6

+
(

ϒ2 − 5ϒ4

128

)
m4 − 3ϒ2m2

8
+ 1

F12(m) = 4.56m19+4.21m17−6.915m15+4.0216m13

+1.5793m11 − 7.32433m9 + 12.313906m7

+
(

−2ϒ − 133ϒ3

180
+ 59ϒ5

1280

)
m5

+
(

10ϒ

3
+ ϒ3

16

)
m3 − 3ϒm

2

F21(m) =−1.32m19−3.95m17+4.684m15−2.07m13

−1.534m11 + 4.44112m9 − 6.176023m7

+
(

−2ϒ

3
+ 13ϒ3

30
− 59ϒ5

3840

)
m5

−
(

4ϒ

3
+ ϒ3

48

)
m3 + ϒm

2

F22(m) = 12.5m20 + 0.25m18 − 7.591m16 + 7.28m14

−1.8804m12 − 4.78511m10 + 10.58254m8

+
(

−32

15
− 4ϒ2

9
− 1159ϒ4

7200
+ 119ϒ6

15360

)
m6
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+
(

8

3
+ 29ϒ2

18
− 5ϒ4

128

)
m4−

(
4+ 3ϒ2

8

)
m2+1

F33(m) =
(

1 − m

1 + m

)m/2

F13(m) = F31(m) = F32(m) = F23(m) = 0

It is straightforward to show that at K1 ≡= 0 Eq. (55)
is equivalent to[

(F11 + α2 F12)

(
φ F11

φω
+ α2

φ F12

φω

)

+(F21 + α2 F22)

(
φ F21

φω
+ α2

φ F22

φω

)]

+ 1

1 − α
α2

3
φ F33

φω
= 0 (56)

where α2 = K2/K1 and α3 = K3/K1. For a given
material (i.e. a given Poisson ratio) at any couple α2, α3

the corresponding kink angle ωM E R R solves Eq. (56).
At K1 = 0 angle ωM E R R is plot as a function of ratio
α32 = K3/K2 and of Poisson ratio in Fig. 7.

The local symmetry criterion is the only notable
exception to the mathematical representation (7). It pro-
vides the kink angle ωL S through the equation K ∞

2 = 0:

F21 + α2 F22 = 0 (57)

where α2 = K2/K1. For any α2 Eq. (57) provides the
kink angle ωL S which turns out to be independent on
the mode 3 stress intensity factor.

Whereas thus in 2D the two angles ωM E R R and ωL S

differ from very small amounts, in 3D the scenario
changes completely as it can be readily seen in Fig. 8.
This fact may allow experimental campaigns of inves-
tigation to provide conclusive statements on which cri-
teria better describes crack kinking in brittle materials.

References

Amestoy M, Leblond JB (1992) Crack paths in plane situations—
ii. Detailed form of the expansion of the stress intensity fac-
tors. Int J Solids Struct 29:465–501

Barenblatt GI (1959) On equilibrium cracks forming dur-
ing brittle fracture (in Russian). Prikladnaya Matematika i
Mekhanika 23:434–444; [see also, The mathematical theory
of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–
129 (1962)]

Bourdin B, Francfort G, Marigo JJ (2008) The variational
approach to fracture. Springer, Berlin

Ceradini G (1965) Un principio di massimo per il calcolo dei sis-
temi elasto-plastici. Rendiconti Istituto Lombardo di Scienze
e Lettere A99

Ceradini G (1966) A maximum principle for the analysis of
elastic-plastic systems. Meccanica 1:77–82

Chambolle A, Francfort GA, Marigo JJ (2009) When and how
do cracks propagate? J Mech Phys Solids 57(9):1614–1622

Chambolle A, Francfort GA, Marigo JJ (2010) Revisiting energy
release rates in brittle fracture. J Nonlinear Sci 20:395–424

Colonnetti G (1918) Sul problema delle coazione elastiche. Rend
Accad Lincei 27: NotaI: 257–270, NotaII:331–335

Colonnetti G (1950) Elastic equilibrium in the presence of per-
manent set. Quart Appl Math 7:353–362

Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an
energy minimization problem. J Mech Phys Solids 46:1319–
1342

Goldstein RV, Salganik RL (1974) Brittle fracture of solids with
arbitrary cracks. Int J Fract 10:507–523

Griffith AA (1921) The phenomena of rupture and flow in solids.
Phil Trans R Soc 221:163–198

Han W, Reddy BD (1999) Plasticity. Springer, New York
Hill R (1958) A general theory of uniqueness and stability in

elastic-plastic solids. J Mech Phys Solids 6:236–249
Ichikawa M, Tanaka S (1982) A critical analysis of the relation-

ship between the energy release rate and the SIFs for non-
coplanar crack extension under combined mode loading. Int
J Fract 18:19–28

Irwin G (1958) Fracture. In: Fluegge S (ed) Handbuch der Physik,
Bd. 6. Elastizitaet und Plastizitaet. Springer, Berlin, pp 551–
590

Kassir MK, Sih GC (1975) Mechanics of fracture, vol 2. Three-
dimensional crack problems. Noordhoff Int. Publ, Leyden

Lazarus V (2011) Perturbation approaches of a planar crack in
linear elastic fracture mechanics. J Mech Phys Solids 59:121–
144

Leblond JB (1999) Crack paths in three dimensional elastic
solids—i. Two term expansion of the stress intensity factors—
application to crack path stability in hydraulic fracturing. Int
J Solids Struct 36:79–103

Leblond JB, Lazarus V, Mouchrif S (1999) Crack paths in three
dimensional elastic solids—ii. Three term expansion of the
stress intensity factors—applications and perspectives. Int J
Solids Struct 36:105–142

Lemaitre J, Chaboche JL (2000) Mechanics of solid materials.
Cambridge University Press, Cambridge

Mielke A (2005) Evolution in rate-independent systems. In:
Dafermos C, Feireisl E (eds) Handbook of differential equa-
tions, evolutionary equations, vol 2. Elsevier, Amsterdam,
pp 461–559

Nguyen QS (1994) Bifurcation and stability in dissipative media
(plasticity, friction, fracture). Appl Mech Rev 47(1):1–30

Nguyen QS (2000) Stability and nonlinear solid mechanics.
Wiley, New York

Rice J (1989) Weight function theory for three-dimensional elas-
tic crack analysis. In: Wei RP, Gangloff RP (eds) Fracture
mechanics: perspectives and directions (20th symposium).
ASTM STP 1020, American Society for Testing and Materi-
als, Philadelphia, pp 29–57

Riks E (1979) An incremental approach to the solution of snap-
ping and buckling problems. Int J Solid Struct 15:529–551

Salvadori A (2008) A plasticity framework for (linear elastic)
fracture mechanics. J Mech Phys Solids 56:2092–2116

Salvadori A (2010) Crack kinking in brittle materials. J Mech
Phys Solids 58:1835–1846

123Reprinted from the journal 73



A. Salvadori, F. Fantoni

Salvadori A, Carini A (2011) Minimum theorems in incremental
linear elastic fracture mechanics. Int J Solids Struct 48:1362–
1369

Salvadori A, Giacomini A (2012) The most dangerous flaw ori-
entation in brittle materials and structures. J Mech Phys Solids
(submitted for publication)

Salvadori A, Gray LJ (2007) Analytical integrations and SIFs
computation in 2D fracture mechanics. Int J Numer Methods
Eng 70:445–495

Tadmor EB, Miller RE, Elliott RS (2011) Continuum mechanics
and thermodynamics: from fundamental concepts to govern-
ing equations. Cambridge University Press, Cambridge

Tonti E (1984) Variational formulation for every nonlinear prob-
lem. Int J Eng Sci 22:1343–1371

123123 Reprinted from the ournal74 j



ORIGINAL PAPER

Crack patterns obtained by unidirectional drying
of a colloidal suspension in a capillary tube: experiments
and numerical simulations using a two-dimensional
variational approach

C. Maurini · B. Bourdin · G. Gauthier ·
V. Lazarus

Received: 7 August 2012 / Accepted: 16 February 2013 / Published online: 5 March 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Basalt columns, septarias, and mud cracks
possess beautiful and intriguing crack patterns that are
hard to predict because of the presence of cracks inter-
sections and branches. The variational approach to brit-
tle fracture provides a mathematically sound model
based on minimization of the sum of bulk and fracture
energies. It does not require any a priori assumption
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on fracture patterns and can therefore deal naturally
with complex geometries. Here, we consider shrink-
age cracks obtained during unidirectional drying of a
colloidal suspension confined in a capillary tube. We
focus on a portion of the tube where the cross-sectional
shape cracks does not change as they propagate. We
apply the variational approach to fracture to a tube
cross-section and look for two-dimensional crack con-
figurations minimizing the energy for a given loading
level. We achieve qualitative and quantitative agree-
ment between experiments and numerical simulations
using a regularized energy (without any assumption on
the cracks shape) or solutions obtained with traditional
techniques (fixing the overall crack shape a priori). The
results prove the efficiency of the variational approach
when dealing with crack intersections and its ability
to predict complex crack morphologies without any a
priori assumption on their shape.

Keywords Brittle fracture mechanics ·
Griffith’s fracture energy · Variational approach to
fracture · Free-discontinuity problems · Drying of a
colloidal suspension · Shrinkage cracks

1 Introduction

Complex fracture networks involving crack interac-
tions and intersections are observed in a wide variety of
situations associated with shrinkage loadings. Giant’s
Causeway (DeGraff and Aydin 1987), Port Arthur
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tessellated pavement (Branagan and Cairns 1993),
Bimini Road (Shinn 2009), Mars polygons (Mangold
2005), septarias (Seilacher 2001), fracture networks in
permafrost (Plug and Werner 2001), and mud-cracks
in coatings or paintings (Colina and Roux 2000) are
a few examples that have intrigued people throughout
history. Significant efforts have been devoted to repro-
ducing similar phenomena in controlled experiments
using either shrinkage induced by cooling (Yuse and
Sano 1993; Ronsin et al. 1995; Yang and Ravi-Chandar
2001; Muller 1998), or drying (Hofmann et al. 2006;
Goehring et al. 2006; Toramaru and Matsumoto 2004;
Gauthier et al. 2010; Lazarus and Pauchard 2011). A
large body of theoretical and numerical work has also
be devoted to the propagation of preexisting cracks
using classical tools of linear fracture mechanics (see
for instance Bažant et al. 1979; Nemat-Nasser et al.
1980; Adda-Bedia and Pomeau 1995; Hofmann et al.
2006; Jenkins 2009; Bahr et al. 2010) or phase-field
approaches (Corson et al. 2009). Despite all this work,
many features of the complex crack networks observed
in experiments are still poorly understood. In particular,
a common limitation of all the references above is their
inability to deal with cracks branching or intersecting
(see Saliba and Jagla (2003) or Bahr et al. (2009) for
some attempts at dealing with these issues.)

In contrast, the variational approach to fracture
mechanics proposed by Francfort and Marigo (1998)
provides a solution to these issues by treating the crack
shape as a genuine unknown. In the context of brit-
tle fracture, it can be seen as a natural extension of
Griffith’s energetic formulation Griffith (1920). It is
based on the minimization amongst all admissible
crack sets and possibly discontinuous displacement
fields of a total energy functional consisting of the
sum of a bulk (elastic) and a surface term proportional
to the surface of the cracks (or their length in two
dimensions). The minimization problem is challenging
because it is in general technically not possible to test
all crack configurations. Instead, a regularized energy is
used to the numerical prediction of complex crack pat-
terns without any preliminary assumption on the over-
all cracks shape. In recent years, efforts have mainly
focused on its theoretical and numerical developments
(Bourdin et al. 2000, 2008) . However, applications to
the prediction of complex crack patterns with a close
qualitative but also quantitative comparison to experi-
mental results are still lacking, in particular when crack
intersections are involved. This paper constitute a first

effort aiming at filling this gap. We apply the varia-
tional approach to the controlled drying of a colloidal
suspension in a capillary tube for which fascinating
experimental results have been obtained when the col-
loidal suspension gradually turns into a drained porous
solid matrix.

During drying. the natural shrinkage of the solid
matrix which is prevented by the strong adhesion to
the wall of the tube, gives rise to high tensile stresses
and to a large number of disordered cracks which grad-
ually self-organize and propagate with a constant cross-
sectional geometry. The cross-sectional shape depends
on the geometry of the tube and the drying conditions
(e.g. Allain and Limat 1995; Dufresne et al. 2003, 2006;
Gauthier et al. 2007) and looks mostly like stars where
several straight cracks intersect at or near a single point.
In this paper, we focus on the two-dimensional problem
of the prediction of these cross-sectional crack shapes,
but we refrain to solve the entire, far more complex,
three-dimensional propagation problem.

Recently, Gauthier et al. (2010) modeled the dry-
ing porous solid by an elastic material loaded by a
tensile prestress and showed that the observed cross-
sectional crack patterns can be correctly predicted by
energy minimization amongst a given family of cracks,
namely arrays of parallel cracks for flat tubes or star-
shaped cracks for cylindrical ones. This demonstrated
that their simple model captures the key physical ingre-
dients. However, in this first study the overall crack
shape was fixed a priori. Here, we extent the experi-
ments of Gauthier et al. (2010) to non axisymmetric
square geometry, for which the crack shape is more
difficult to guess, and revisit them through the varia-
tional method developed by Bourdin et al. (2000) using
the physical model demonstrated previously. We show
that this method provides a qualitative and quantitative
description of the different cross-sectional crack pat-
terns observed experimentally without any preliminary
shape assumptions.

The outline of the article is the following. The exper-
imental setup is described in details in Section 2, illus-
trating the results obtained by changing the suspension
and the drying velocities. In addition to the experiments
on circular tubes previous reported in Gauthier et al.
(2010), new experiments on capillary tubes with square
cross-section highlight the relation between the tube
cross-sectional shape and the crack pattern. In Sect. 3,
we focus on the regime where the cross-sectional geom-
etry of the crack does not evolve. We describe our
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two-dimensional model assuming a linear elastic brittle
solid under plane-strain conditions and a drying loading
introduced through a tensile isotropic inelastic strain.
In Sect. 4, we recall the results of Gauthier et al. (2010)
and search for least-energy solutions amongst the class
of star-shaped cracks. This allows us to identify some
semi-analytical solutions to be used as reference for the
verification of the numerical implementation. We then
seek to fully identify the crack geometry by numer-
ical minimization of a regularized form of the total
energy functional (Sect. 5). There, we briefly describe
the details of the approach then introduce a selection
principle. We illustrate our approach by providing a
qualitative and quantitative comparison with experi-
mental and semi-analytical results in Sect. 7.

2 Experiments

Experiments are conducted in circular or square glass
capillary tubes. The height of the tubes is typically
10 cm and the radius of the cross-section of the circular
tubes are R = 0.05 mm, R = 0.15 mm, R = 0.5 mm or
R = 0.75 mm while the edge length of the square tubes
is 2R = 1 mm. According to the manufacturer, the pre-
cision on the radii is 10 %. The tubes are positioned in
vertical orientation and colloidal suspension is sucked
up from their bottom until they are 3/4 full (see Fig. 1a).
The top of the tubes is closed and maintained at a pres-
sure slightly below that of the surrounding. Because of
the capillary effect, this prevents the fluid from flow-
ing under gravity. Two type of colloids have been used,
both made of water silica dispersions: Ludox™HS40
and SM30 designated as HS40 and SM30 in the
following. HS40 and SM30 differ in mass fraction
(30 and 40 % mass fraction of silica particles for SM30
and HS40 respectively) and in particle size (r ∗ 3.5 nm
and r ∗ 6 nm for SM30 and HS40 respectively). As
soon as capillary tubes are filled, water contained in the
suspension evaporates from the bottom of the tube. In
the early stages of drying, particles aggregate at the wall
close to the open edge until they fill a section of the tube.
Once this porous layer is formed, the liquid interface
is composed of a high number of meniscus with a typi-
cal radius of curvature of the order of the particle size.
These meniscus generate high negative pressure that
cause the water to flow. The water flow drives the silica
particles to accumulate at the porous upper surface and
a porous plug further develops. Drying is then governed

by Darcy’s law (Dufresne et al. 2003, 2006). Since the
pressure gradient decreases as the plug extends, dry-
ing velocity decreases. However for plugs long enough
(⊂20 tube diameters) drying velocity is almost constant
over few diameters (⊂5). It is this region that is stud-
ied in the sequel. Once the plug height is about twenty
times the diameter, the tubes are placed in controlled
environment maintained at a constant relative humidity
(RH) and temperature (T). Experiments are performed
at three different conditions: (i) at a room tempera-
ture T ∗ 20 ≥C and RH maintained below 10% by
using desiccant, (ii) at T ∗ 20 ≥C and RH maintained
over 90 % by introducing water in the chamber, (iii) at
T ∗ 3 ≥C and RH < 10 %.

The high negative capillary pressure, imposed by
the interface, in the draining fluid generates high ten-
sile stresses in the gel (Dufresne et al. 2003) that cause it
to crack. The cracks pattern can be visualized either by
transparency, which allows to follow the crack prop-
agation during the drying, or by cutting the tube at
the desired height, to observe the cross-sectional crack
shape. Disordered cracks are first observed in the bot-
tom. As the plug extends, the cracks self-organize,
become vertical and grow along the drying direction
preserving their cross-sectional shape for a length cor-
responding to several tube diameters (Gauthier et al.
(2007) for a more detail description of the evolu-
tion). Examples are given in Fig. 1b. For square tubes,
two perpendicular diagonal cracks appear. For circular
tubes, star-shaped cracks where the tube cross section
is divided into n sectors (with a central angle 2ε/n) are
observed. Once these cracks have appeared, the porous
medium continues to dry and to undergo high tensile
stresses leading to secondary cracks appearing later on
along the cross section of the tube.

In the sequel, we focus only on (i) the tube region
where the crack cross-sectional geometry is indepen-
dent of the depth and on (ii) the time period after
the disordered cracks have self-organized and before
the appearance of secondary cracks. We observe that
the cross-sectional crack shape for a given suspen-
sion and tube geometry depends on the drying con-
ditions through the drying velocity only. Indeed drying
at T ∗ 3 ≥C/RH ∇ 10 % or at T ∗ 20 ≥C/RH ∞ 90 %
gives the same crack tip velocities and the same crack
patterns. Thus we refer to experiments conducted at
T ∗ 3 ≥C/RH ∇ 10 % or at T ∗ 20 ≥C/RH ∞ 90 % as
slow velocity (SV) experiments, and those conducted
at T ∗ 20 ≥C/RH ∇ 10 % as high velocity (HV)
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Fig. 1 A glass capillary
tube oriented vertically is
filled with a colloidal
suspension; the opened
bottom edge allows for
evaporation of the water in
an environment maintained
at a constant relative
humidity (RH) and
temperature (T ). The
cross-sectional shape of the
cracks depend on the tube
shape and size and on the
drying conditions. a
Experimental setup and
sketch of the self-organized
star-shaped cracks. b
Pictures of some cross
section cuts (the colors
depend on the light used)
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experiments. A summary of experiments made can be
found in Table 3 (Sect. 7). For small enough diameters,
the number of cracks observed increases with the diam-
eter. For larger containers, it is obvious that the crack
pattern in the center becomes independent of the walls
of the tube. We also observe that changing the dry-
ing conditions from SV to HV or HV to SV during
the same experiment produces a transition between the
two cross-sectional crack patterns obtained in pure HV
and SV experiments (Gauthier et al. 2010) and that this
rearrangement takes places over a distance approxi-
mately equal to the tube diameter. This suggests that
history effects can be neglected.

3 Model

3.1 Basic hypotheses

In this work, we focus our attention on the steady-
state regime where the cross-sectional geometry of the
cracks remains constant. We model the problem as a

two-dimensional plane-strain one on the cross-section
of the tube. We assume that (i) the only effect of dry-
ing is to introduce an inelastic strain ε0 = θ0 1, where
1 denotes the identity matrix and θ0 < 0 is assumed
constant throughout the cross section of the domain
and that (ii) the solid adheres perfectly to the tube
walls. Following the variational approach to brittle frac-
ture (Francfort and Marigo 1998), for a given loading
θ0, we search for the deformation and crack configu-
ration corresponding to a minimum of the total energy
defined as the sum of the bulk elastic energy and the
crack surface energy. The latter is of Griffith type, that
is: the energy S(φ ) per height unit, associated to a crack
set φ is proportional to its length and given by

S(φ ) := GcL(φ ),

where Gc is the specific fracture energy of the material,
and L denotes the length of the crack. For the elastic
energy, we suppose that the material is perfectly elas-
tic prior to failure, and we adopt the linearized theory
under the small displacement approximation. Finally,
we assume that the crack surfaces are stress-free.
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In the above formulation of the fracture mechanics
problem, we simply look for the optimal cross-sectional
crack pattern, according the energy minimality cri-
terion, for given values of the loading θ0. We do
not introduce any concept of history dependence of
the crack patterns. We solve a two-dimensional sta-
tic problem and not the three-dimensional quasi-static
evolution problem, in which one looks for the initia-
tion and propagation of cracks as a function of time
starting from a well-defined initial condition. Omit-
ting history effects is suggested by the reversibility of
the cross-sectional experimental patterns, using a two-
dimensional approximation by the experimental obser-
vations of depth-independence of the cross-sectional
crack patterns. The good agreement between numeri-
cal and experimental findings presented in Sect. 7 also
justifies this hypothesis, a posteriori.

3.2 Variational fracture model

Let us introduce the following equivalent two-dimen-
sional inelastic strain defined by ε2d

0 = (1 + ∂)θ0 12,
where 12 is the 2×2 identity matrix. With this notation
and the aforementioned hypotheses, the strain energy
can be written as:

w(ε, ε0) := E

2(1 + ∂)

(
∂

(1 − 2∂)
tr2(ε − ε2d

0 )

+(ε − ε2d
0 ) · (ε − ε2d

0 )
)

(1)

where E and ∂ are the Young modulus and the Poisson
ratio of the material, ε is the symmetric second-order
2 × 2 matrix representing the linearized plane strain,
tr denote the trace operator, and the dot is used for the
scalar product. In linear elasticity, kinematic compat-
ibility implies that ε(u) = 1

2 (→u + →uT ), where u
is the displacement field, → the gradient operator, and
the superscript T denotes the transpose operator. We
parameterize the inelastic strain ε2d

0 representing the
drying loading by a non dimensional drying intensity
θ̄, defined by (see the first remark at the end of this
section)

ε2d
0 := −θ̄

√
Gc

E R
12 (2)

where R is a characteristic length associated with the
cross-section, typically its radius. Hence, the potential
energy Pθ̄ of the cross-section occupying the open set
C and associated to a displacement field u and a crack
set φ for a loading parameter θ̄ is given by

Pθ̄ (u, φ ) :=
∫

C/φ

wθ̄(ε(u))dS, with

wθ̄(ε) := w
(
ε,−θ̄

√
Gc/E R 12

)
. (3)

The total energy is defined as the sum of the potential
energy and the surface energy required to create the
cracks:

Eθ̄ (u, φ ) := Pθ̄ (u, φ ) + S(φ ). (4)

For any given loading parameter θ̄, we seek to find
the crack set φ and displacement field u as the global
minimizer of (4) amongst any admissible crack set
and kinematically admissible displacement fields. The
admissible crack sets consist of all possible curves or
sets of curves inside the boundary of C. For any given
crack set φ , the space of the admissible displacements
is

U(φ ) := {u ≤ H1(C \ φ ; R
2), u = 0 on ωC}, (5)

i.e. it consists of all vector valued fields satisfying the
adhesion boundary condition and sufficiently smooth
(square integrable with square integrable first deriva-
tives) on the uncracked domain. More precisely, the
global minimality condition can be expressed as:

Find φ ∈ C, u ≤ U(φ ) : Eθ̄ (u, φ ) ∇ Eθ̄ (u
⊥, φ ⊥),

≡φ ⊥ ∈ C, u⊥ ≤ U(φ ⊥). (6)

Remark 1 The scaling factor
≈

Gc/E R in (2) renders
all the results, presented in terms of θ̄ in the rest of
the paper, independent of the material constants and
cross-sectional dimension. Other choices for the rele-
vant non dimensional parameter are possible. In partic-
ular, as in Gauthier et al. (2010), one could also chose to
parameterize the loading in terms of the Griffith length
Lc := EGc/ν

2
0 , where ν0 is a prestress. After some

calculations, one can relate θ̄ and Lc by

Lc = R

θ̄2 (1 − 2∂)2(1 + ∂)2. (7)

This relation will be useful in Sect. 7 as it will allow us
to estimate the value of θ̄ for various experiments.

4 Simple illustration: star-shaped cracks
in circular tubes

Before we dwell upon numerical implementation and
numerical experiments, it is possible to gain some
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(a) (b)

Fig. 2 Energy minimization amongst star-shaped cracks. a Total energy associated with φn for n = 1, 2, 3, 4, 5. b The lower envelope
of the family of energy curves gives the energy of the minimizer

valuable insight on the model by restricting the set of
admissible cracks to radial ones. It is essentially equiv-
alent to the work of Gauthier et al. (2010) with the
difference that the loading parameter we consider here
is the inelastic strain instead of the prestress. The con-
struction of the semi-analytic radial crack solution will
also be used as a reference point for the analysis of
the numerical solutions and the verification of the sug-
gested numerical approach.

We consider a circular tube with radius R and
star-shaped cracks. By φn , (n > 1), we denote a curve
consisting of the union of n equi-distributed radial seg-
ments partitioning the tube into n polar regions. By
analogy, we write φ1 = ∅. Our motivation for consid-
ering such geometries comes from the fact that they
are frequently observed in the experiments, at least for
small values of n.

Note first that for a given crack pattern φ , the poten-
tial energy can be computed by solving a linear elas-
ticity problem, and we write

Pθ̄ (φ ) := min
u≤U(φ )

Pθ̄ (u, φ ), (8)

the potential energy of the equilibrium displacement.
It is then easy to see that the form of the strain energy
density (1) implies that Pθ̄ (φ ) = θ̄2P1(φ ), so that we
can rewrite the total energy in the form

Eθ̄ (φ ) = θ̄2P1(φ ) + S(φ ). (9)

Furthermore, for a star-shaped crack φn , using eq. (1),
one has

Eθ̄ (φn) = θ̄2P1(φn) + n Gc R. (10)

For n = 1 the problem can be solved in closed form,
the elastic equilibrium is achieved for u = 0 and the
total energy is Eθ̄ (∅) = Pθ̄ (∅) = θ̄2εGc R/(1 + ∂)

(1 − 2∂). For n > 1, P1(φn) can be computed by
a simple finite element computation. In this setting,
for a given loading parameter θ̄, energy minimiza-
tion reduces to a discrete minimization problem with
respect to n. And the total energy of the solution as
a function of the loading parameter can be obtained
by taking the lower envelope of the family of energy
curves associated to each configuration.

Figure 2a represents the total energy associated
with φn as a function of the loading parameter θ̄ for
n = 1, 2, 3, 4, 5 and ∂ = 0.3. Using this graph and the
global minimality principle (6), it is easy to identify
the optimal crack configuration associated with a given
load (the branch of the energy with the smallest value
for a given θ̄) as well as the bifurcation points upon
which the geometry of the optimal crack set changes
(the crossing points upon which the energy branch
achieving minimality changes). We obtain that there
exists a family (0 = θ̄0, θ̄1, θ̄2, . . . ) of critical loadings
such that for θ̄i−1 < θ̄ < θ̄i , i = 1, 2, . . . , the opti-
mal crack configuration is any curve in the family φi .
Of course, in the absence of defects or impurities, the
solution for a given loading parameter is unique up to
a rotation. The numerical values of the critical load-
ings are θ̄1 ∗ 0.73, θ̄2 ∗ 0.97, θ̄3 ∗ 1.55, θ̄4 ∗ 2.15,
and θ̄5 ∗ 2.76. Figure 2b shows the energy associ-
ated with the optimal configuration, obtained by taking
the lower envelope of the family of curves plotted in
the left.
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Before closing this simple example, we stress again
that this analysis is based upon the assumption that
the optimal crack geometry is a star-shaped pattern.
As we will see in the following sections, relaxing this
hypothesis allows to show that the star-shape cracks
are indeed optimum for not too high loading and can
yield to more complicated but energetically least costly
crack patterns for higher loading.

5 General case: minimization over arbitrary crack
geometries

In the variational formulation (6), the admissible dis-
placement fields are potentially discontinuous across
cracks φ , but the location of the potential discontinu-
ities themselves is not known a priori. This renders
the numerical minimization of (4) challenging as most
numerical methods such as cohesive, discontinuous or
extended finite element methods require at least some
a priori knowledge of the crack path or of its topology.
Indeed, this problem falls into the broader class of free
discontinuity problems for which a wealth of mathe-
matical and numerical literature now exists (Ambrosio
et al. 2000). In the following, we solely focus on the
numerical implementation using an extension of that
proposed in Bourdin et al. (2000) and Bourdin (2007).
It relies on the concept of variational approximation
of the total energy functional by a family of regular-
ized elliptic functionals (Ambrosio and Tortorelli 1990,
1992; Braides 1998), depending on a scalar regular-
ization parameter π, and discretized by standard finite
elements. In the regularized functional, sharp cracks
are represented by a smooth auxiliary variable σ in the
sense that for small π, the non-zero values of σ are local-
ized along thin bands of high strains which can be inter-
preted as smeared representation of the cracks. From a
technical standpoint, the approximation takes place in
the sense of ψ -convergence (Braides 2002), i.e. one can
prove that as the regularization parameter π goes to 0,
the global minimizers and the energy values of the regu-
larized functionals approaches those of the total energy
with sharp discontinuities. We briefly recall the numer-
ical approach below and refer the reader to the literature
for further details. Note however that all the previ-
ous studies on the numerical simulations on fracture
mechanics using the variational approach focussed on
the quasi-static evolution problem. The fact that we

consider here the static problem entails further issues
on the selection of the solutions.

5.1 Regularization by elliptic functionals

The main idea of our approach was originally devel-
oped by Ambrosio and Tortorelli (1990, 1992) for an
image segmentation (Mumford and Shah 1989) prob-
lem, and adapted to fracture mechanics by Bourdin
et al. (2000). One introduces a small parameter π with
dimension of a length, a secondary variable σ taking
its values in [0, 1] and representing the crack set, and
the regularized functional

E (π)
θ̄ (u, σ) :=

∫

C
((1 − σ)2 + kπ)wθ̄(ε(u))dS

+3Gc

8

∫

C

[σ

π
+ π→σ · →σ

]
dS. (11)

Hence, one approximates the solution of (6) by those
of the following minimization problem:

min
u ≤U ,σ ≤A

E (π)
θ̄ (u, σ) (12)

where U = {u ≤ H1(C; R
2), u = 0 on ωC} and

A = {0 ∇ σ ∇ 1, σ ≤ H1(C; R), σ = 0 on ωC}.
The main advantages of this regularized formulation is
that it eliminates the issue of representing discontinu-
ous fields when their discontinuity set is not known a
priori. It also reduces energy minimization with respect
to any admissible crack geometry to minimization with
respect to a smooth field, a much simpler problem. In
addition, it can be discretized numerically using stan-
dard continuous finite elements.

This regularized functional can be shown to con-
verge in the sense of ψ -convergence to the total
energy (4). This implies that for any θ̄, the global min-
imizers of E (π)

θ̄ converge as π → 0 to global mini-
mizers of Eθ̄ , and that each term in (11) converges to
the matching one in (4). The parameter kπ is a small
residual stiffness introduced mainly for numerical pur-
poses which is known to have very little impact on
the minimizers. The convergence result is valid pro-
vided that kπ = o(π). We refer the interested reader
to Braides (2002), Dal Maso (1993) for more details on
ψ –convergence and to Braides (1998); Bourdin et al.
(2008) for details on the approximation of Eθ̄ by E (π)

θ̄ .
Formally, as π goes to 0, σ remains close to 0 away
from the cracks, and approaches 1 along the cracks.
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For small but non-zero values of π, both arguments
u and σ of E (π)

θ̄ are continuous functions with high gra-
dients (of order 1/π) in bands of width π. The regular-
ized energy we use here is slightly different from the
one in Bourdin et al. (2000) and Bourdin et al. (2008).
The form used here has some advantages from numeri-
cal and theoretical standpoints, which are not discussed
here. The interested reader is referred to Pham et al.
(2011a) for further details on this point.

Several authors noticed that the regularized form
of the energy may be interesting as a model per
se (Del Piero et al. 2007; Amor et al. 2009; Lancioni
and Royer-Carfagni 2009; Freddi and Royer-Carfagni
2010). In particular, it may be interpreted as the energy
of a gradient damage model, where σ plays the role
of the damage field and π of the internal length (Pham
et al. 2011a,b). The regularized formulation also resem-
bles phase field approximations of sharp interfaces
models (Hakim and Karma 2009; Corson et al. 2009).
However, there are significant differences between our
numerical approach and the phase-field fracture mod-
els. Even in the static or quasi-static case, phase-field
models are formulated as a rate-dependent evolution
equation and stated as fracture models per se.

In the present work, we do not see the regularized
formulation as a model in itself, but we consider it as a
mere numerical approximation of the total energy of the
variational approach of Francfort and Marigo (1998).
This approximation is deeply rooted in the mathemat-
ical literature on free-discontinuity problems (Braides
1998). In particular the minimization principle for the
regularized energy is derived from that of the varia-
tional model in the static case, which explains our focus
on global minimizations even though for gradient dam-
age laws, there are quasi-static models based on local
minimality. This comes with an added difficulty, that
of finding global minimizers of a non-convex func-
tional. This is a very challenging issue that we do not
claim to fully address in this article. Instead, we propose
some strategies leading to local minima with decreas-
ing energy which are therefore better candidates for
global optimality.

5.2 Numerical implementation

The numerical minimization of (11) is implemented
in a way similar to that described in Bourdin (2007).
We discretize the regularized energy by means of linear

Lagrange finite elements over an unstructured mesh. As
long as the mesh size h is such that h = o(π), the ψ -
convergence property of (11) to (4) is also true for the
discretization of the regularized energy (see Bellettini
and Coscia (1994); Bourdin (1999); Burke et al. (2010)
for instance). This compatibility condition leads to fine
meshes, which are better dealt with using parallel super-
computers. We use PETSc (Balay et al. 1997, 2010,
2011) for data distribution, parallel linear algebra, and
TAO (Benson et al. 2010) for the constrained optimiza-
tion. In order to avoid preferred directions in the mesh,
we use the Delaunay-Voronoi mesh algorithm imple-
mented in Cubit, from Sandia National Laboratories
(see Negri (1999); Chambolle (1999) for an analy-
sis of the anisotropy induced by structured meshes or
grids).

Due to the size of the problems, global minimiza-
tion algorithms are not practical. Instead, we look for
local minima by imposing numerically the first-order
necessary optimality conditions for (12). We notice that
although (11) is not convex, it is convex with respect
to each variable individually. We alternate minimiza-
tions with respect to u and σ, an algorithm akin to a
block Newton method or a segregated solver. Note that
minimization with respect to u is equivalent to solv-
ing a simple linear elasticity problem, but that mini-
mization with respect to σ ≤ [0, 1] requires an actual
box-constrained minimization algorithm. Of course,
as the total energy is not convex, one cannot expect
convergence to a global minimizer. However, one can
prove that the alternate minimization process is uncon-
ditionally stable and globally decreasing and that it
leads to a stationary point of (11) which may be a
local (or global) minimizer or a saddle point of the
energy.

This approach may fall short of our stated goal
of achieving global minimization of the regularized
energy as the outcome of a descent-based algorithms
for such a non-convex problem may depend on the reg-
ularization parameter π, the mesh size and type, and the
starting guess. From a practical standpoint we observe
that the algorithm is quite robust with respect to the
mesh discretization, provided that the regularization
length π is large enough compared to the mesh size.
However it can be sensitive with respect to the initial
value of σ. Different choices of the initial guess σ or of
the regularization parameter π can lead to convergence
to different solutions. This issue is much more trouble-
some in the present case, in which we attempt to solve
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a static problem, than when considering a quasi-static
evolution. In the quasi-static setting, one can follow
the evolution of the crack state as the loading increases
starting from a well-defined initial state, and formu-
lations based on local minimality of (11) may gain
a pertinent physical interpretation, linking the critical
load for fracture initiation to the value of the regular-
ization parameter (Pham et al. 2011a). In the present
static settings, for the lack of the concepts of history
and irreversibility, there is no physically consistent base
state and a selection criterion of the solutions obtained
by local minimization is necessary. Consistently with
the Francfort-Marigo model, we adopt a least energy
criterion: among a set of local minima correspond-
ing to a given θ̄ and different choices of the initial
guesses, we select the one with lowest energy. Again,
we make no claim of achieving global minimization of
the regularized energy. In our mind, that our numeri-
cal simulations match the semi-analytical solutions and
the experiments is the best (although still somewhat
unsatisfying) argument we can give in favor of this
approach.

6 Numerical simulations

We first illustrate our numerical approach on circu-
lar tubes (Sect. 6.1). The comparisons of the numer-
ical results with the semi-analytical results for the star-
shaped cracks from Sect. 4 gives a partial verification of
our numerical approach (Sect. 6.2). Results for square
tubes are briefly presented in Sect. 6.3.

6.1 Crack shapes for circular tubes

The presentation is organized in three steps: (i) first
we report the results obtained as a function of the dry-
ing intensity θ̄ and the non-dimensional the internal
length π̄ = π/R, by taking the elastic solution as ini-
tial guess for the alternate minimization algorithm; (ii)
then we show that a π-refinement technique may reduce
the dependence of the results on π̄ and produce lowest
energy solutions; (iii) finally, using the fact that the
elastic energy is a 2-homogeneous function of θ̄, we
identify for each value of the loading the crack shape
with the lowest energy among all those obtained after
π-refinement.

6.1.1 Results as function of θ̄ and π̄ taking the elastic
uncracked state as initial guess

Figure 3 presents the fieldσ obtained by numerical min-
imization of (11) for various choices of the parameters
θ̄ and π̄ with a tube of radius R = 1. The material para-
meters (E, Gc) were set to 1 without loss of generality,
and the Poisson ratio to 0.3. In each computation, the
mesh size was h = 0.025 and the residual stiffness was
set to kπ = 10−6. The alternate minimization algorithm
was initialized with σ = 0. The value 1 (correspond-
ing to cracks) of σ is encoded in red and the value
0 (the un-cracked material) in blue. A first glance at
the table highlights the wide variety of crack geome-
tries obtained, and that the complexity of the fracture
pattern increases with the loading parameter. Again we
stress that no hypothesis on this geometry is made in the
model and that the shape of the crack patterns is purely
an outcome of the minimization of the regularized
energy. We observe that the width of the transition zone
from 1 to 0 decreases as π̄ goes to 0, which is consistent
with the ψ -convergence property stated in Sect. 5. For
“large” values of π̄, when the width of the transition
zone is of the order of the diameter of the tube and as
θ̄ increases, one cannot distinguish between neigh-
boring cracks (see for instance the case π̄ = 0.2 for
θ̄ = 5.0).

A closer look at Fig. 3a highlights the dependency
of the crack pattern upon the regularization parame-
ter π̄. See for instance how for a loading parameter
θ̄ = 1.2, we obtain a triple junction for π̄ = 0.2,
but a complex crack made of two triple junctions for
π̄ = 0.1, and no cracks at all for π̄ = 0.05. Each of
these configuration correspond to a critical point of the
energy (11) (likely local minimizers). It may be theoret-
ically shown that below a critical load θ̄⊥(π̄) depending
on π̄, the un-cracked configuration σ = 0 is a stable crit-
ical point of (11). In a simpler 1d setting, it is known
that θ̄⊥(π̄) = O(1/

≈
π̄) (Pham et al. 2011a). Here, we

observe that θ̄⊥(π̄) increases as π̄ → 0. When alternate
minimizations iterates “escape” the un-cracked solu-
tion, they converge to the “nearest” critical point which
may or may not be the global minimizer of the energy. If
the regularized model (11) is seen as a gradient damage
model with internal length π̄ (see Pham et al. 2011a),
and if one focusses on criticality instead of global min-
imality, this behavior is consistent with a scale effect
linking the critical load and the ratio of the struc-
tural dimension and the internal length (Bažant 1999).
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Fig. 3 Numerical results by
minimization of
functional (11) for circular
cross-sections. The results
are obtained using uniform
Delaunay-Voronoi
unstructured meshes with
size h = 0.025 on disk of
radius R = 1. The material
properties are
E = 1, Gc = 1, ∂ = 0.3. a
Direct numerical
simulations. Each problem
was solved independently
initializing the alternate
minimizations algorithm
with the un-cracked solution
σ = 0. b Numerical results
obtained using π̄-refinement.
Each row corresponds to a
set of computations, each
taking the one at its left as a
first guess for u and σ

(a) (b)

In the case of a quasi-static evolution, Lancioni and
Royer-Carfagni (2009) and Pham et al. (2011a) sug-
gested that the internal length can be identified from
the critical load at the onset of crack nucleation. In

our context, where we only consider a static problem
and focus on the limiting energy (4), this interpreta-
tion is not meaningful. Also, in the experiments, the
initial state corresponds to that of the plug with many
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existing disordered cracks and the mechanism leading
to the selection of the steady state fracture pattern is
the self-organization of those cracks and not that of
loss of stability of the elastic solution. Hence, we stand
by the interpretation that the regularization length is an
artificial numerical parameter.

6.1.2 π-refinement

To obtain an accurate resolution for complex crack
patterns and, at the same time, avoid the persistence
of the purely elastic solution, we implemented an π̄-
refinement technique. For a given loading θ̄ and mesh
size h, we minimize the total energy E (π̄) for decreas-
ing values of the regularization length, initializing each
computation with the σ field obtained at the previous
one. Figure 3b represents the outcome of such a series
of computations highlighting, how this approach signif-
icantly reduces the sensitivity of the numerical results
on the regularization length π̄ and allows us to retrieve
an accurate representation of a large family of crack
geometries for small and high loadings. The outcome
of this set of simulations may still depend on the initial
value of π̄. This value, 0.2 for Fig. 3b, is chosen large
enough to avoid the persistence of the purely elastic
solution and small enough to allow for localization of
σ within the domain. In practice, these two criteria do
not give a large range for the choice of this parameter.
The key properties of the final result of Figs. 3b and
of the following Fig. 4b do not sensibly depend on the
initial value of π̄, provided that it fits within the (quite
strict) criteria above.

Table 1 provides a quantitative comparison of the
energies of the solutions of Fig. 3a, b for π̄ =
0.05. In each case, the configurations obtained using
π̄-refinement (last column of Fig. 3b) have a lesser
energy than the one obtained through a direct com-
putation (Fig. 3a). To obtain accurate values of the
fracture energies with this choice of h = O(π̄),
and following the discussion in Bourdin et al. (2008)
(Sec 8.1.1 p.103), the reported surface energies are
computed using the effective fracture toughness
G(num)

c = Gc/(1 + 3h/8π̄).

6.1.3 Lowest energy crack shapes

For each drying intensity θ̄ we select the final cross-
sectional crack geometry on the basis of a least
energy criterion inspired by the global minimality

(a)

(b)

Fig. 4 Minimization over star-shaped cracks vs. minimization of
functional (11). As the loading increases, our numerical method
identifies crack configurations with much lower energetically
than star-shaped cracks. a Energies associated with the crack
geometries identified in Fig. 3b as a function of the loading para-
meter. Thick black lines distinguishes among all the energy curves
(blue lines), the ones corresponding to configurations attaining
the minimal energy for some value of the loading parameters.
The vertical dotted lines correspond to the critical loading upon
which the energy branch for which energy minimality is attained
changes. Note that for large θ̄ the identification of critical load-
ings becomes difficult. b Comparison of the optimal energy
obtained using minimization over star-shaped cracks (dashed
line) and numerical simulation (continuous line). The contin-
uous line is the lower envelope of the curves in Fig. 4a . The
pictures represent the optimal crack shapes in each range of the
loading parameter delimited by the vertical dotted lines

principle (12). To this end, we use a method similar
to that in Sect. 4. Noticing that for a given σ-field (i.e.
crack geometry) the elastic part of the total energy (11)
scales quadratically with the loading, one can calculate
the total energy that each of the crack patterns obtained
numerically for a given loading θ̄⊥ would have for any θ̄.
Figure 4a represents the total energy obtained in this
way for each of the crack patterns in the last column
of Fig. 3b. From this figure, for each θ̄, is possible to
select the crack pattern with the lowest energy level.
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Table 1 Energies of the numerical solutions in Fig. 3 for
π̄ = 0.05 without (top) or with (bottom) π̄-refinement

θ̄ Elastic Surface Total

0.6 2.2 0 2.2

0.8 3.9 0 3.9

1.0 6.0 0 6.0

1.2 8.7 0 8.7

1.4 1.6 3.9 5.5

1.6 2.0 4.0 6.0

1.8 1.9 4.9 6.8

2.0 2.0 5.3 7.3

2.2 2.1 5.7 7.8

2.5 2.1 6.4 8.5

3.0 2.1 7.3 9.4

4.5 2.3 9.6 11.8

5.0 2.4 9.8 12.2

θ̄ Elastic Surface Total

0.6 2.2 0 2.2

0.8 1.5 1.8 3.4

1.0 1.3 2.8 4.1

1.2 1.7 2.9 4.6

1.4 2.0 3.3 5.3

1.6 2.0 3.9 5.9

1.8 2.0 4.4 6.4

2.0 2.0 4.9 6.9

2.2 2.0 5.4 7.4

2.5 2.1 5.9 8.0

3.0 2.1 6.9 9.1

4.5 2.3 9.2 11.5

5.0 2.4 9.9 12.3

Amongst all the curves, the ones attaining the lowest
energy for some value of the loading parameter are plot-
ted in black and thicker line width. Their lower enve-
lope is the continuous black line reported in Fig. 4b,
together with the associated optimal crack geometries.
Although it is of course never possible to prove global
optimality, the crack geometries depicted in Fig. 4b are
the lowest energy configurations we were able to attain,
and the ones which we will compare with star-shaped
cracks and experiments in the sequel.

6.2 Comparison with star-shaped cracks

Figure 4b compares the total energy of these con-
figurations with the energy of the star-shaped cracks

taken from Fig. 2 (dashed line). For small values of
the loading parameter, we obtain similar geometries
and critical loading. The surface energy obtained is
close to the number of branches, and the critical load-
ing upon which we obtain a single straight crack is
0.71 (vs. a theoretical value of θ̄2 = 0.73). Bifurca-
tion between straight and Y-shaped cracks take place
at θ̄ ∗ 0.94 (vs. a theoretical value of θ̄2 = 0.97).
More interestingly, for larger values of π̄, our numeri-
cal simulations have identified multiple configurations
that are energetically close to each other but always
less expensive than star-shaped cracks. In particular,
we show that perfect 5-branch stars are never optimal
and that configurations consisting of either two triple
junctions very close to each others (see for instance
θ̄ = 1.6 in Fig. 3b), a 4-branch star whose branches
split in two near the tube boundary (see for instance
θ̄ = 1.8, 2.0, 2.2 in Fig. 3b), or a more complicated
patterns like the “stick figure” looking 5 cracks config-
uration that we obtain for θ̄ = 2.5 have lesser energy.
Of course, that the local geometry near the crack cross-
ing resembles 2 triple junctions near each others rather
that an “X” does not really come up as a surprise.
As mentioned earlier, the fracture energy (4) resem-
bles the Mumford-Shah energy for edge segmentation
(Mumford and Shah 1989). Therefore, it seems nat-
ural to expect that if they posses some form of regu-
larity, optimal crack geometries satisfy the Mumford-
Shah conjecture which rules out crack crossing, kinks
and only allows cracks to meet at 120≥ triple junctions,
locally.

6.3 Square tubes

Finally, we performed another set of numerical sim-
ulations on unit square tubes. The results obtained
by the same π̄-refinement method, as in Fig. 3b for
circular tubes, are depicted on Fig. 5. The materials
parameters and mesh size are unchanged (E = 1,
Gc = 1, ∂ = 1, h = 0.025). Whereas for circular
tubes, star-shaped cracks are natural candidates, there
were no obvious family of cracks in this case. This
geometry also leads to a rich variety of crack patterns
and highlights the strength of the proposed method in
identifying complex crack patterns without a priori
hypothesis. Some of the quantitative properties of the
optimal cracks highlighted in the case of circular tubes
are still observed. Again, cracks seem to split near the
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Fig. 5 Numerical results
for square tubes by
minimization of
functional (11) using the
π̄-continuation method

edges of the tubes. Again, triple junctions seem to be
favored over crack crossing, although in the case of
two diagonal or longitudinal cracks, the resolution of
our numerical experiments does not allow us to clearly
identify the configuration. As for the circular tube, one
can further post process the numerical result in order
to identify the range of loadings for which each of the
identified configuration is optimal. This is presented
in Fig. 6. Again, for small values of the loading para-
meters, simple and somewhat predictable crack geome-
tries are obtained. For larger values of θ̄, more complex
and less intuitive patterns are energetically more advan-
tageous.

7 Comparison between experimental
and numerical results

7.1 Identification of the loading parameter θ̄

Dimensional analysis shows that the model relies on a
single parameter, θ̄ whose value needs to be estimated
in order to perform quantitative comparison between
experiments and numerical simulation. As θ̄ depends
on experimental conditions, colloidal suspension type,
and tube geometry, one solution is to try to measure

Fig. 6 Range of parameters in which the configuration identified
in Fig. 5 are optimal. The blue lines correspond to the energy
associated with cracks patterns that were identified in Fig. 5 but
are never optimal

separately θ0, E , and Gc appearing in the definition (2)
of θ̄. One may obtain the material constants E, Gc by
indentation (Malzbender et al. 2002) and the mismatch
strain θ0 by beam deflection technics (Tirumkudulu
and Russel 2004; Chekchaki et al. 2011) from a thin
film drying experiments, for instance. However, such
direct measurements are difficult, and transposing the
values obtained from one type of experiments (thin
film drying) to another (directional drying) is question-
able. Indeed, the parameters may depend on the type of
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Table 2 Values of Griffith’s length Lc (in μm) for several
Ludox®suspensions and drying rates (SV = [T ∗ 3 ≥C and
RH ∇10 % or at T ∗ 20 ≥C and RH ∞90 %] and HV = [T ∗
20 ≥C and RH ∇10 %])

Lc Ludox®SM30 Ludox®HS40
(r ∗ 3.5 nm) (r ∗ 6 nm)

HV 34 ± 10 40 ± 10

SV 60 ± 18 45 ± 15

experiments and even evolve in time. For example, the
material constants E and Gc of the porous medium may
depend on the microstructure, influenced by formation
dynamics.

Instead of performing such difficult measurements,
whose relevance to our problem may be questionable,
we used the method presented in Gauthier et al. (2010),
which we briefly summarize. The basis of the method is
to consider a directional drying experiment in thin rec-
tangular tubes (Allain and Limat 1995). In this geome-
try, an array of parallel tunneling cracks is obtained and
the cracks spacing α can be correlated with the Griffith
length Lc := EGc/ν

2
0 (ν0 being the prestress induced

by the film’s drying). Using an energy minimization
principle similar to the one in Sect. 4, one can show
that the spacing α is proportional to

≈
Lct, t being the

tube’s thickness and in particular, for ∂ = 0.3, one
obtains α ⊂ 3.1

≈
Lct . For a given material and drying

parameter, the value of Lc can therefore be deduced
from measurements of α. Table 2 presents the value of
Lc for Ludox®SM30 (r ∗ 3.5 nm) and Ludox®HS40
(r ∗ 6 nm) under high velocity and slow velocity con-
ditions.

We assume that the Griffith length Lc is a well-
defined parameter for a given suspension and drying
condition, and that it is independent of the cross-
sectional geometry of the directional drying experi-
ment. Hence, from the values of Lc in Table 2, we
estimate the value of θ̄ in the directional drying of cir-
cular and square tubes of different diameters using the
relation (7), which gives θ̄ = 0.52

≈
R/Lc for ∂ = 0.3.

7.2 Results and analysis

Table 3 reports on the series of experiments on circular
tubes described in Sect. 2. From a qualitative stand-
point we observe that star-shaped appear above a crit-
ical load, and that the number of branches increases

with the loading, which is consistent with the analysis
in Sect. 4 and the numerical simulations of Sect. 6. In
order to perform a quantitative comparison, we summa-
rize all the results obtained in the case of circular tubes
in Fig. 7. The first row corresponds to the outcome of the
semi-analytical minimization over star-shaped cracks:
the critical values of the loading parameters computed
in Sect. 4 upon which bifurcation between different
morphologies take place is printed in red letters, and
represented by red dashed vertical lines. The second
row corresponds to the numerical experiments with-
out a priori hypotheses on the crack path. The critical
loads extracted from Fig. 4a are printed in black letters,
and represented by vertical solid black lines. As high-
lighted in Fig. 4b, the critical loads obtained in the case
of the bifurcation from φ1 to φ2, then φ3 and φ4 are very
close. This part of the table can be seen as a verifica-
tion of the numerical implementation, i.e. as evidences
that the computed solutions are indeed solution of the
variational fracture model. The third row summarizes
the outcome of the experiments from Table 3. For each
experiment, the value of the loading parameter is shown
together with the accuracy of the measurement. When
available, pictures of the cross sections are also dis-
played. We observe that for every single choice of θ̄,
the crack geometry predicted by our approach matches
the one observed in the experiment. This acts as a vali-
dation of the variational fracture model as a predictive
tool in the setting of drying of colloidal suspension.

We also did a single experiment on a square tube, for
an estimated value θ̄ ∗ 1.8 of the loading parameter for
which we obtained two diagonal cracks (see the bottom
image in Figure 1b). Again, the numerical simulation
in this case matches the experiment (see Figs. 5 and 6).

Despite the modeling simplifying assumption, the
complexity of the numerical technique, and the uncer-
tainty of the measurement of the parameters, the agree-
ment between analysis, simulation, and experiments is
excellent. Our model correctly captures the essential
physics of the crack formation giving credit to the idea
that crack growth can be predicted by minimization
of the sum of elastic and surface energy over all pos-
sible crack path. In order to further justify this idea,
one will need to compare experiments and simulations
for higher loading parameters θ̄ in which case numeri-
cal simulations identify complex crack patterns with
significantly lower energy than classical star-shaped
solutions. For instance, better quality imaging will be
required to unambiguously determine if the 5 cracks
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Table 3 Experimental results on circular tubes. The value of n corresponds to the number of sectors delimited by the cracks as in
Sect. 4

Ludox® HV/SV Lc(μm) R (μm) n θ̄

a SM30 HV 34 ±10 50 ± 5 1 0.6 ± 0.12

b SM30 SV 60 ±18 150 ± 15 2 0.8 ± 0.16

c SM30 SV 60 ±18 500 ± 50 3 1.5 ± 0.30

d HS40 SV 45 ±15 500 ± 50 4 1.7 ± 0.37

e HS40 HV 40 ±10 500 ± 50 4 1.8 ± 0.27

f SM30 HV 34 ±10 500 ± 50 4 2.0 ± 0.39

g HS40 HV 40 ±10 750 ± 75 5 2.3 ± 0.41

h SM30 HV 34 ±10 750 ± 75 5 2.4 ± 0.48

Fig. 7 Comparison between semi-analytical, numerical and experimental results for circular tubes

configurations we observe experimentally (see Fig. 1b
or 7) resembles a “stick figure” as in our numerical
simulation (cf. Fig. 3 for θ̄ = 2.5), a regular 5-branch
star, or something completely different.

8 Conclusions and future work

In this paper, we have shown that a numerical imple-
mentation (Bourdin et al. 2000) of the variational
approach to fracture mechanics (Francfort and Marigo
1998) enhanced with a selection criterion is capa-
ble to qualitatively and quantitatively predict complex
crack shapes starting from an undamaged material.
For this, we have studied some unidirectional drying

experiments of colloidal suspensions performed in cap-
illary tubes where solvent evaporation leads to the for-
mation of a growing porous solid medium. In these
experiments, adhesion on the tubes walls combined
with shrinkage lead to high tensile stresses and give
rise to cracks whose morphologies depend on the tube
geometry and the drying velocities. We verified that the
changes in crack geometry can be accounted by a two-
dimensional static simple model depending on a single
dimensionless parameter θ̄ which represents the ratio
of the bulk elastic energy (which depends on the inten-
sity of the tensile strain induced by drying) over the
cost of fracture. Under the assumption that cracks are
star-shaped, the number of branches has been obtained
as a function of the loading parameter.
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We then presented a numerical method based on
the regularization of the total energy introduced in the
variational model, and enhanced it with a selection prin-
ciple and a refinement method. For small enough values
of the loading, this allowed us to verify that star-shaped
cracks are actually favored in circular tubes, to predict
cracks shapes in square tubes and to achieve quali-
tative and quantitative agreement between numerical
simulation, semi-analytical solutions and experiments.
This results are summarized in Fig. 7. For higher val-
ues of the loading parameters, more complex cracks
geometries are observed. These are the situations where
the virtue of the variational approach to fracture over
more conventional ones requiring at least some a pri-
ori knowledge of the crack path becomes more striking.
But at this point, though, we were not able to compare
them with experiments that will require additional work
in order to deal with larger tubes for instance. In these
situations, the main difficulty is the post-mortem analy-
sis of the crack geometry. Microphotography though
the sides of the tubes becomes hard to interpret, and
cutting the tubes without perturbing the cracks geom-
etry is difficult. Perhaps the solution lies in full three-
dimensional imaging of the tubes and post-processing
in order to highlight the location of the cracks.

From the modeling perspective, a full three-dimen-
sional linear poroelasticity model (Biot 1941) would be
welcome in particular to study the entire propagation
from the crack initiation to the crack self-organisation.
The complexity of this task mainly lies in the time-
dependence of the solid domain and of the material con-
stants. Finally, from a physico-chemical point of view,
the link between the drying velocity and the macro-
scopic θ̄ signature will have to be explored.
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Abstract Linear elastic fracture mechanics provides
a consistent framework to evaluate quantitatively the
energy flux released to the tip of a growing crack.
Still, the way in which the crack selects its veloc-
ity in response to this energy flux remains far from
completely understood. To uncover the underlying
mechanisms, we experimentally studied damage and
dissipation processes that develop during the dynamic
failure of polymethylmethacrylate, classically consid-
ered as the archetype of brittle amorphous materials.
We evidenced a well-defined critical velocity along
which failure switches from nominally-brittle to quasi-
brittle, where crack propagation goes hand in hand with
the nucleation and growth of microcracks. Via post-
mortem analysis of the fracture surfaces, we were able
to reconstruct the complete spatiotemporal microcrack-
ing dynamics with micrometer/nanosecond resolution.
We demonstrated that the true local propagation speed
of individual crack fronts is limited to a fairly low value,
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which can be much smaller than the apparent speed
measured at the continuum-level scale. By coalescing
with the main front, microcracks boost the macroscale
velocity through an acceleration factor of geometrical
origin. We discuss the key role of damage-related inter-
nal variables in the selection of macroscale fracture
dynamics.

Keywords Dynamic fracture ·
Amorphous polymers ·Fracture energy ·Fractography ·
High-deformation rate · Microcracks · PMMA

1 Introduction

Dynamic crack propagation drives catastrophic mate-
rial failure and is usually described using the linear
elastic fracture mechanics (LEFM) framework (Fre-
und 1990; Ravi-Chandar 2004). This theory considers
the straight propagation of a single smooth crack and
assumes all energy dissipating processes to be entirely
localized in a small zone at the crack tip, so called frac-
ture process zone (FPZ). Crack growth velocity v is
then selected by the balance between the mechanical
energy that flows within the FPZ per time unit and the
dissipated energy within the FPZ over the same time
unit. This yields (Freund 1990):

ε ∗ (1 − v/CR) K 2(c)/E, (1)

where CR and E are the Rayleigh wave speed and the
Young modulus of the material, respectively, ε is the
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fracture energy, and K (c) is the Stress Intensity Fac-
tor (SIF) for a quasi-static crack of length c. K only
depends on the applied loading and the cracked speci-
men geometry, and entirely characterizes the stress field
in the vicinity of the crack front.

Linear elastic fracture mechanics predictions agree
well with observations as long as the crack growth is
sufficiently slow (Bergkvist 1974). However, large dis-
crepancies are reported at high speed (Ravi-Chandar
2004; Bouchbinder et al. 2010). In particular, the maxi-
mal crack speeds attained experimentally in amorphous
materials are far smaller (typically by a factor of two)
than the limiting speed CR predicted by Eq. 1.

The existence of a micro-branching instability
(Fineberg et al. 1992) at a critical velocity vb (typically
of the order of 0.35–0.4CR) permits to explain part
of this discrepancy: Beyond vb, the crack front splits
into a multiple crack state that cannot be described by
Eq. 1 anymore. However, it is commonly stated (Sharon
and Fineberg 1999) that LEFM works well below vb,
or more generally when microbranching instabilities
are absent. As a matter of fact, most recent works
focused on failure regimes beyond vb (see e.g. Gumb-
sch et al. 1997; Adda-Bedia et al. 1999; Henry and
Levine 2004; Bouchbinder et al. 2005; Spatschek et al.
2006; Henry 2008). Still, several observations reported
at lower speeds remain puzzling. In particular, even for
velocities much lower than vb, the measured dynamic
fracture energy is generally found to be much higher
than that at crack initiation (Sharon and Fineberg 1999;
Kalthoff et al. 1976; Rosakis et al. 1984; Fond and
Schirrer 2001).

The experiments reported here were designed to bet-
ter understand the mechanisms that select crack veloc-
ity in dynamic fracture. In this context, we developed an
experimental setup (presented in Sect. 2) that permits
to characterize over a wide range of crack speeds, in
particular speeds below vb, the dissipative and dam-
age processes that develop in polymethylmethacry-
late (PMMA), classically considered as the archetype
of brittle amorphous materials. This setup allowed us
to evidence a novel critical velocity, smaller than vb,
beyond which crack propagation goes hand in hand
with the nucleation and growth of microcracks ahead
of the main crack front (Sect. 3). Via accurate post-
mortem analysis of the patterns let on fracture surfaces,
we were able to reconstruct the full spatio-temporal
dynamics of these microfailure events (Sect. 4). Their
statistics and their dependency with crack tip loading

Fig. 1 Sketch (top) and photo (bottom) of the experimental setup

have been characterized (Sect. 5). In Sect. 6, we will
show how microcracking acts and selects the apparent
velocity measured at the continuum-level scale.

2 Experimental setup

Fracture tests were performed in the wedge split-
ting geometry (Bruhwiler and Wittmann 1990; Kari-
haloo and Xiao 2001) depicted in Fig. 1. Specimens
were prepared from PMMA parallelepipeds of size
140 ×125×15 mm3 in the propagation (x-axis), load-
ing (y-axis), and thickness (z-axis) directions, respec-
tively. Table 1 gives the main characteristics of the
PMMA used in this study. Subsequently, a notch was
shaped (1) by cutting a 25 × 25 mm2 rectangle from
the middle of one of the 125 × 15 mm2 edges; and
(2) by subsequently adding a 10-mm groove deeper into
the specimen. Two steel blocks equipped with rollers
were then placed on both sides of this notch and the
specimen was loaded by pushing a wedge (semi-angle
of 15⊂) at a small constant velocity (40 μm/s) between
these two blocks. This permits (1) to spread the loading
force over a large contact area and prevent any plas-
tic deformation of PMMA at the loading contacts; and
(2) to suppress friction in the system. As a result, the
vicinity of the crack tip can be assumed to be the sole
dissipation source for mechanical energy in the system.

In such a wedge splitting geometry, the SIF decreases
with crack length. To obtain dynamic failure, we then
introduced a circular hole of tunable diameter from 2
to 8 mm at the tip of the seed crack. This hole blunts
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Table 1 Mechanical properties of the PMMA used in our fracture experiments

E(GPa) θ Density (kg/dm3) Cd (m/s) Cs (m/s) CR (m/s)

PMMA 2.8 ± 0.2 0.36 ± 0.08 1.18 ± 0.02 2010 ± 60 950 ± 10 880 ± 30

E and θ denote the Young modulus and the Poisson ratio, respectively. CD, CS , and CR denote the speeds of dilational, Rayleigh waves
respectively

the seed crack and delays the propagation onset. This
increases the mechanical energy stored in the sam-
ple at the onset of crack propagation. It allowed us
to widen the range of SIF (from 0.9 to 4.5 MPa

≥
m)

and that of crack velocity (from 75 m/s ∇ 0.08CR to
500 m/s ∇ 0.57CR) accessible in the experiments.

The apparatus used to carry out the experiments is
homemade (Fig. 1). One side of the machine is fixed
while the other moves via a stepper motor (Oriental
motor EMP400 Series) allowing incremental displace-
ments as small as 40 nm. The compressive force is mea-
sured, up to 20 kN via a S-type Vishay load cell 363
Series. In all performed tests, both the displacement
and the force are recorded via a computer with a time
resolution of 1 s. In particular, the value of the applied
force at propagation onset is recorded and later used in
the finite element analyses described thereafter.

To measure the instantaneous crack velocity, we
used a modified version of the electrical resistance
grid technique (Cotterell 1968; Anthony et al. 1970;
Boudet et al. 1996; Fineberg et al. 1992). A series of
90 parallel conductive lines (2.4-nm-thick Cr layer cov-
ered with 23-nm-thick Au layer) were deposited on
one of the two 140 × 125 mm2 sides of the specimen
using magnetron sputtering deposition through a poly-
mer mask glued on the sample surface. Stripes width
and length are 500 μm and 100 mm, respectively, and
they are separated by gaps of 500 μm. Once the sam-
ple is installed in the compression machine, each line
is connected in series with a resistor of 30 kφ—this
value was chosen to be extremely high with respect
to that of the strip (about few ohms) so that the lat-
ter is negligible. As the crack propagates through-
out the specimen, it successively cuts the conductive
lines, which, each time, makes the global system resis-
tance increase by a constant increment. The time loca-
tions of these jumps are detected via an oscilloscope
(acquisition rate: 10 MHz) through a voltage divider
circuitry. In order to increase the accuracy of jump
detection, we used the four channels of the oscillo-
scope in cascade with different offsets, so that each
channel is triggered as the previous one gets out of

its range (Fig. 2a, b). As a result, we obtained the
crack length c(t) as a function of time with space and
time accuracies of 40 μm and 0.1 μs, respectively (Fig.
2c). The profile of instantaneous velocity v(c) as a
function of crack length can then be easily deduced
(Fig. 2d).

Finite element analysis was used to estimate the SIF
evolution during failure. Figure 3:Top represents the
meshing of the complete system. The average mesh
size is 1 mm and reduces logarithmically down to 1 nm
at the crack tip (Fig. 3:Bottom), in order to resolve
in space the crack tip opening. Only half of the sys-
tem is required for symmetry reasons. Young modulus
and Poisson ratio are set to 2.8 GPa and 0.36, respec-
tively (see Table 1). The boundary conditions are the
following: (1) The left edge is perfectly adhesive to
a polymeric layer of thickness 5 mm, Young’s modu-
lus 3 GPa and Poisson ratio 0.41; (2) The left edge of
the layer has a no-displacement condition; (3) On the
right, the notch is loaded through a L-shaped block,
of thickness 5 mm, Young modulus 300 GPa and Pois-
son ratio 0.4, perfectly adhering to the sample; (4) The
L-shaped block is bounded to a virtual roller, the cen-
ter of which can only move along a line parallel to
the wedge side, at a distance equal to the roller radius;
(5) The crack edge is stress free; and (6) Vertical dis-
placement is forbidden along the uncracked part of
the symmetry plane (top line of Fig. 3:Top). For each
sample, the equilibrium position of the wedge yield-
ing the measured applied load at the onset of crack
propagation was determined using a plane stress static
finite element code (Cast3M 2007). Quasi-static crack
propagation is then simulated by increasing the crack
length while imposing the wedge position to remain
constant. This latter assumption is experimentally jus-
tified. Indeed, it has been observed that the load cell
signal started to be modified only after a few hundreds
of microseconds (typical time of an experiment) after
crack initiation1. This is attributed to the time required

1 To measure this time shift, we directly connected the Wheat-
stone bridge of the load cell to an oscilloscope, without passing

123Reprinted from the journal 95



D. Dalmas et al.

Fig. 2 Measurement of instantaneous crack velocity. a Voltage
as a function of time as recorded via the oscilloscope. b Zoom
that permits to distinguish the individual jumps yielded by the

successive cuts of the conductive lines as crack advances.
c Resulting position of crack tip as a function of time. d Final
curve showing the variations of crack velocity with crack length

for the sound waves to travel from the crack tip to
the load cell. As a result, the wedge position can be
assumed to be practically constant during crack propa-
gation. Static SIF is then determined, for each value c of
crack length, using the J-integral method (Rice 1968).
The validity of our SIF calculation was benchmarked
against literature results for wedge-splitting configura-
tions: Our code agreed to better than 2 % with the results
of Karihaloo and Xiao (2001) when using their system
parameters.

To image the post-mortem fracture surfaces, we
used a Leica DM2500 microscope. Most of the images
were taken with a 5× objective under polarized light.

Footnote 1 continued
through the signal conditioner. This latter, indeed, imposes a time
resolution of 1 s.

The resulting images are 1.4 × 1 mm2 in area, with a
pixel size of 677 nm. We also imaged the fracture sur-
faces with an interferometry profilometer (FOGALE
Nanotech) which allows one to gather topographical
information. These 3D images were taken with a 5×
objective. Their area is 1.4 × 1 mm2 with a pixel size
of 1.86 μm.

3 Selection of fracture energy with velocity
and evidence of a brittle/quasibrittle transition

In each of the experiments performed, both the SIF
profile K (c) and the instantaneous velocity profile
v(c) have been determined (Fig. 4:Left and center).
From these curves, one can derive the profiles of frac-
ture energy, ε (c), using Eq. 1 (Fig. 4:Right). We
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Fig. 3 Computation of SIF. Top typical mesh used for finite ele-
ments calculations, in order to access the stress/strain fields in the
experiments. Red polymeric layer. Black sample. Blue L-shaped
block. Green line cracked line. The slide link connected to the
L-shaped block is used to model the motion of the contact point
between the pushed wedge and the roller. Specimen loading is
achieved by translating horizontally the slide link, from (0) to

(1), over a distance uwedge selected so that the horizontal force
applying on the slide link is half that measured experimentally.
Bottom-Left zoom on the meshing in the transition region (red)
between coarse meshing (1 mm mesh size) in the bulk and fine
meshing close to the crack tip. On the right is shown part of the
circular hole at the seed crack tip. Bottom-Right zoom on the
crack-tip region (green), meshed with a size of 1 nm

note here that Eq. 1 is strictly valid in the case of
crack propagation in an elastic half-space, i.e. in the
absence of waves emitted by the crack and com-
ing back to it after reflection on sample boundaries
(Freund 1990; Goldman et al. 2010). We argue that
our experiments are essentially unaffected by such
reflected wave for at least two reasons: (1) as measured
by Boudet et al. (1995), the sound energy emitted by
a crack in PMMA lies within the range 1–4 J/m2, a
very small value compared to the energy required to
fracture the material (a few kJ/m2, see below); and
(2) this radiated energy is quickly dissipated within the
material’s bulk—The acoustic attenuation coefficient
has been measured to be 0.67 dB/(cm MHz).

Figure 5 superimposes the various curves ε versus v

measured in the various experiments performed at var-
ious levels U0 of the initially stored mechanical energy.
Several regimes can be evidenced:

• For small v, ε roughly remains constant, close to
K 2

c /E , as expected within standard LEFM;
• As v increases and reaches a first critical velocity

va ∇ 165 m/s ∇ 0.19CR, ε suddenly increases to

a value about four times larger than ε (v = 0) =
K 2

c /E ;
• Beyond va, ε slowly increases with v;
• As v reaches a second critical velocity vb ∇

350 m/s ∇ 0.36CR, ε starts to increase rapidly
again. It seems to diverge atv ∇ 450 m/s ∇ 0.5CR .

Note also the fairly good collapse of the differ-
ent curves ε (v) below vb, and the large dispersion
above. This suggests that Eq. 1 is relevant for v ∞
vb,—provided a suitable velocity dependence ε (v) is
ascribed—, but not beyond. The second critical value
vb ∇ 350 m/s ∇ 0.36CR is found to correspond
to the onset of microbranching instability widely dis-
cussed in the literature (see e.g. Fineberg et al. 1992;
Sharon and Fineberg 1999). The first critical value
va ∇ 165 m/s ∇ 0.19CR was observed in our series
of experiments and reported in (Scheibert et al. 2010)
for the first time. This observation was made possi-
ble by the use of the wedge-splitting geometry, which
is a decelerating crack configuration. It offers many
data points at relatively low velocities, contrary to most
other devices used before. The rapid increase of ε
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Fig. 4 Variation of SIF K (left), instantaneous crack velocity
v (center) and fracture energy ε (right) as a function of crack
length c for five experiments with different stored mechanical

energy U0 at propagation onset: 2.0 J (A, A→ and A→→), 2.6 J
(B, B→ and B→→), 2.9 J (C, C→ and C→→), 3.8 J (D, D→ and D→→), and
4.2 J (E, E→ and E→→)
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Fig. 5 Fracture energy ε as a function of crack velocity v for five
different experiments with different stored mechanical energies
U0 at crack initiation. The two vertical dashed lines correspond
to va and vb. The two horizontal dashed lines indicate the confi-
dence interval (95 %) for the measured fracture energy K 2

c /E at
crack initiation (taken from Scheibert et al. (2010))

with v around va provides a direct interpretation for
the repeated observations of cracks that span a large
range of ε , while keeping a nearly constant velocity
about 0.2CR (see e.g. Ravi-Chandar and Knauss 1984;
Ravi-Chandar and Yang 1997).

To shed light on the nature of the transition at v = va

evidenced on the curve relating ε to v, we examined
the post-mortem fracture surfaces and their evolution
as crack speed increases (Fig. 6). For v smaller than va ,
fracture surfaces remain smooth at optical scales. But
above this threshold, conic marks start to be observed.
These marks remain confined within a roughness scale
of few micrometers at the fracture surfaces, contrary to
the microbranches that deeply develop into the speci-
men bulk above vb (see side views and topographical
images in Fig. 7).

Similar conic marks were reported in the fracture
of other brittle materials, among which polystyrene
(Regel 1951), oxide glasses (Smekal 1953; Holloway
1968), cellulose acetate (Kies et al. 1950), polycrys-
talline materials (Irwin and Kies 1952), or homalite
(Ravi-Chandar and Yang 1997). They are classically
associated (Smekal 1953; Ravi-Chandar and Yang
1997; Rabinovitch et al 2000) with the presence of
microcracks that nucleate and grow ahead of the main
crack front, and subsequently coalesce with it.

Figure 8 shows the surface density ∂ of conic marks
as a function of crack speed v. Below va , no mark
is observed, irrespectively of the chosen magnifica-
tion (from 5× to 50×). Above this value, ∂ increases
almost linearly with v − va . The precise correspon-
dence between the critical velocity va at which the
curve ε (v) exhibits a kink and that at which conic
marks start to be observed suggests that both phenom-
ena are the signature of the same transition. Above
va , PMMA failure switches from nominally brittle to
quasi-brittle and goes hand in hand with microcracking
that develop ahead of the main front. In the following,
we will use the term “Damage Zone” (DZ) to refer to
the zone where microcracks develop in the vicinity of
the main crack tip. We will distinguish this zone from
the FPZ (smaller than the DZ) that embeds dissipative
mechanisms (crazing for instance) at the tip of each
(micro)crack front.

Note that the region of the fracture surface that bears
conic markings also has a characteristic aspect to the
naked eye, as it scatters ligth very efficiently. This is
markedly different from the high reflectivity of the
region that bears no microcrack. In fractography these
regions are classically referred to as the mist and mir-
ror zones, respectively (see e.g. Hull 1999; Rabinovitch

Fig. 6 1 × 1.4mm2 microscope images of fracture surfaces created at various speed v
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Fig. 7 Profilometric 1.4 × 1 mm2 surface (Top) and optical 0.7 × 0.25 mm2 side-view (Bottom) images taken at velocity smaller than
va (left), between va and vb (center), and above vb (right). Crack has propagated from left to right

Fig. 8 Surface density ∂ of conic marks as a function of
crack velocity for five different experiments with different stored
mechanical energies U0 at crack initiation (taken from Scheibert
et al. (2010))

and Bahat 2008). Our observation therefore strongly
suggests that the mirror/mist transition is simply the
morphological counterpart of the brittle/quasi-brittle
transition that occurs at va

4 Fractographic reconstruction of individual
microfailure events

In order to further characterize and understand the
dynamics of microcracking events which develop dur-
ing fast fracture in PMMA (v > va), we proposed

a numerical reconstruction based on the post-mortem
analysis of the traces left by these events (Guerra et al.
2012). The typical time between two successive micro-
cracking events is about 10 ns, which makes them inac-
cessible using standard techniques as e.g. fast imaging
or acoustic emission analysis.

The first step is to identify where microcracks have
initiated. On the optical images of post-mortem frac-
ture surfaces (Fig. 9a, b), many well defined points of
high optical reflectivity can be seen. These bright/white
areas are believed to come from large plastic defor-
mations accompanying the nucleation of microcracks.
Thus, they allow us to determine precisely the position
of the different nucleation sites. For some microcracks,
the precise location of their nucleation site is further
constrained by the convergence of fragmentation lines
onto it.

The second step is to infer, from the conic pat-
terns, the velocities at which the various microcracks
have grown. It is commonly admitted in the liter-
ature (Smekal 1953; Ravi-Chandar and Yang 1997;
Rabinovitch et al 2000) that the conical marks indi-
cate the intersection points between two interacting
microcracks. Let us then consider two microcracks that
propagate radially along slightly different planes with
velocities c1 and c2 (Fig. 9b). The intersection between
the initial (micro)crack front and the secondary micro-
crack leaves a visible trace (i.e. a tiny height differ-
ence) on the fracture surfaces. In the coordinate system
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Fig. 9 a Typical microscope image of the post-mortem frac-
ture surface. Bright regions indicate the nucleation centers.
b Interpretation of the conic marks: red dots sketch the succes-
sive positions of the fronts that, by interacting, will be giving rise
to the green branch of the conic mark. These two microcracks
form at t = 0 and t = ω , then radially grow at speeds c1 and c2.

Branch fitting via Eq. 2 permits to measure c2/c1. Note that a
conic mark can be made of several branches. c When c2 = c1,
branches are (mathematical) true conics and the nucleation dis-
tance dn between the front of the incident microcrack (1) and the
nucleation point of the forming one (2) is twice the apex-focus
distance 02P12 (taken from Guerra et al. (2012))

(ex , ey) centered on the site of nucleation of the first
microcrack and chosen so that the x-axis passes through
the two centers of nucleation, the equation describing
the mark left postmortem can be written as (Guerra et
al. 2012):

y

ν
=±

[
2c2

(c2−1)2

c1ω

ν

√(
1− 2x

ν

)
(c2−1)+c2

(c1ω

ν

)2

−
( x

ν

)2+ 1

(c2−1)2

+ c2+1

(c2−1)2

(
c2

(c1ω

ν

)2− 2x

ν

)]1/2

, (2)

where c = c2/c1,ν is the distance between the two
nucleation sites, and ω is the time interval between

two microcracking events. The analysis of this equa-
tion shows that the number c1ω/ν sets the aspect ratio
of the fractographic trace, while the ratio c = c2/c1

fixes its form (see Guerra et al. 2012 for details).
We used Eq. 2 to directly extract the ratio c = c2/c1

for each couple of interacting microcracks (≤ 400 cou-
ples per image) on different optical pictures obtained
at different speeds (Fig. 10). Regardless of the macro-
scopic crack velocity, we obtain for c a Gaussian distri-
bution centered on 1 with a standard deviation of about
0.03 (Fig. 10). This analysis permits to demonstrate that
all microcracks grow at the same velocity cm inside the
DZ. Note that, up to now, nothing prevents cm to vary
with v or K . The mechanism that fixes the value for
cm will be discussed later in this paper (see Sect. 6).
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Fig. 10 Direct extraction of the relative speed between two inter-
acting microcracks at three different microcrack densities. (Top)
Zones of investigation. Each conic branch has been attributed
a given color and the nuclei of the two corresponding inter-
acting microcracks has been joined by a dotted segment of the
same color. Note that a conic-like mark is often made of several
of these conic branches. The ratio c2/c1 is the only adjustable

parameter in Eq. 2 to determine the branch geometry once the
nuclei position and the branch apex are set. (Bottom) Correspond-
ing distributions for c2/c1: in the three cases, the distributions
are found to fit normal distributions of mean value 0.98–0.99 and
standard deviation 0.03–0.04, irrespective of ∂ (taken from the
supporting information of Guerra et al. (2012))

By using c2 = c1 = cm in Eq. 2, the following relation
can be obtained:
y
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= ±
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, (3)

where dn = (ν − cmω) represents the critical distance
between the front of the incident microcrack and the
center of the nucleated microcrack at the instant of its
nucleation. This distance is twice the distance between
the apex and the focus of the considered microcrack
and, as such, dn can be directly extracted from fracto-
graphic images (Fig. 9c).

We are now in a position to reconstruct the full
dynamics of microcracking events from the knowledge
of two series of parameters that can be directly extracted
from fractography: The position of nucleation sites and
the critical nucleation distance dn associated to each
conic mark. We analyzed several areas of the frac-
ture surfaces, corresponding to various macroscopic

velocities above the microcracking onset (v > va). In
all cases, nine optical images with partial overlap were
recorded and gathered into a single large image—This
ensures adequate statistics in the following analyses.
The methodology to extract the data is the following:

• We record the coordinates x and y of the nucleation
sites;

• We estimate the nucleation distance, dn , by infer-
ring, for each nucleation site, who was the parent
microcrack from the relative position of the conics
apex with respect to the nucleation site (family cri-
terion). Then, dn is twice the apex-nucleation center
distance.

Following Ravi-Chandar and Yang (1997), the
reconstruction is initiated with an originally straight
crack front positioned at the left of the zone of analy-
sis. This front propagates from left to right, at a con-
stant velocity of 1 pixel/timestep. Once the distance
between one of the microcrack nucleation sites and the
primary crack front reaches dn , a secondary microcrack
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starts to grow radially at the same velocity. The front
is now the combination of both the translating straight
front and the radially growing circular front. Beyond
a given time, these two fronts intersect and define the
position of the conic mark. When the growing front
reaches again a distance dn associated with another
site, a new microcrack is nucleated. The procedure is
repeated until all the nucleation sites have been trig-
gered.

Figure 11 shows two examples of reconstruction for
two different macroscopic velocities and Fig. 12 super-
imposes the conic marks obtained by the simulation to
those really observed in fractography. We note the fairly
good agreement between experiment and reconstruc-
tion away from the edges (in the center of the images).
This permits to validate the method. Thanks to it, we
are able to reconstruct deterministically the dynamics
of micro-damage during fast fracture in PMMA from
the observation and analysis of the patterns observed
on the post-mortem fracture surfaces. We emphasize
the resulting resolution of ≤ 1 μm (1 pixel) in space,
and of 10 ns in time (pixel size/cm with cm ∇ 200 m/s
as it will be demonstrated further in the paper). This is
far better than what can be obtained via conventional
experimental mechanics methods as e.g. acoustic emis-
sion or fast imaging methods.

Note however some discrepancies between exper-
iments and reconstructions on the left, top and bot-
tom edges of the analyzed zones. Such finite size
problems are unavoidable. Along the top and bottom
sides of the image, the influence of microcracks out-
side the field of view are naturally ignored. Also, a
non-realistic straight vertical front has been used, as we
cannot predict the precise instants at which the leftmost
centers have turned to microcracks during the recon-
struction. In order to test the sensitivity of the recon-
struction to the initial front shape, we have performed
different simulations with the same inputs except the
initial front shape. In Fig. 13, three different cases are
tested : (1) a straight vertical front, (2) a sinusoidal front
with an amplitude and a period equivalent to the mean
value of a wavy front far from the first step in previous
reconstruction and (3) the same sinusoidal front ver-
tically shifted by half a period. We can observe that,
except of course at the very beginning of the simu-
lation (i.e. on left side of the images), the difference
between these three cases are very small. Moreover,
these small differences tend to disappear as the front
to propagate, i.e. as more and more microcracks are

Fig. 11 Reconstructed sequence of crack propagation and
microfailure events at the microscale for two different values
of K , namely K = 2.53 MPa

≥
m (left) and K = 4.18 MPa

≥
m

(right). The blue part corresponds to uncracked material and we
ascribed an arbitrary gray level to each of the growing microc-
rack. From this, one can deduce the intersection points between
microcracks that coincide with the observed conics marks on
the fracture surfaces. The size of the two zones of analysis is
2.5 × 2.5 mm2. The macroscopic crack propagates from left to
right

involved. In some cases, we have observed differences
propagating over the whole image. Perfect reconstruc-
tions would be reached only by analyzing the whole
fracture surfaces, and not some partial areas. Know-
ing all the history of crack propagation is the only
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Fig. 12 Qualification of the procedure: superimposition of the
conic pattern as obtained from reconstruction onto that observed
by fractography. a K = 2.77 MPa

≥
m. b K = 4.18 MPa

≥
m.

Red dots indicate nucleation centers (taken from the supporting
information of Guerra et al. (2012))

solution for the determination of the real initial front
shape which could allow a perfect reconstruction.

5 Quantitative selection of the microdamaging
state by crack loading

The reconstruction method, described in the previous
section, shows that the dynamics of micro-damage
is entirely determined by the position of nucleation
sites, the nucleation distances dn , and the microscopic
velocity of the fronts cm . To understand what selects
these three parameters, they will be explored in more
detail.

Fig. 13 Influence of initial crack front morphology on the recon-
struction for ∂ = 45.0 mm−2 (K = 3.65 MPa

≥
m). Three

different initial conditions were used. a Straight vertical line.
b Vertical sinusoidal shape with a period of 186 μm and a peak-
to-peak amplitude of 242 μm. c Same sinusoidal shape, but trans-
lated vertically over half a period (taken from the supplementary
information of Guerra et al. (2012))
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Fig. 14 Cumulative distribution of the number of nucleation
centers contained in square regions of lateral size a, for two
different fractographic images. Solid lines represent Poisson fits
of parameter ∂a2, where the fitted value ∂ can be identified with
the center density

5.1 Spatial distribution of nucleation centers

To characterize the spatial distribution of nucleation
sites, we computed the distribution of the number of
sites that can be observed on a square of a given size
a. Figure 14 shows these distributions for two different
fractographic pictures, i.e. for two values of K . These
distributions follow a Poisson distribution with a sin-
gle parameter ∂a2 where ∂ is constant over a given
fractographic picture but varies with K . This reflects a
homogeneous and uncorrelated distribution of the sites
all along the post-mortem fracture surface. Then, ∂ can
be identified with the surface density of nucleation sites
and fully characterizes their spatial distribution.

Figure 15 presents the evolution of ∂ with load-
ing K . The density is naturally zero for K smaller

Fig. 15 Variation of the density ∂ of nucleation centers with
applied SIF. Black disks correspond to the eight images on which
post-mortem reconstruction was performed. Red line is a fit via
Eq. 4. Ka and Kb are associated with microcracking and micro-
branching onset, respectively (taken from Guerra et al. (2012))

than Ka (SIF value at microcracking onset, i.e. when
v = va) as there is no microcracking. Beyond this
value, it increases with K . Also, this curve exhibits
large fluctuations and seems to saturate when the
density reaches a value ∂sat ∇ 45.5 mm2, beyond Kb.
Note that this latter value coincide with microbranch-
ing onset and, therefore the ∂(K ) curve does not really
make sense above Kb since the front has splitted into
various microbranches, which prevents us from corre-
lating the macroscopic K value to the number of conic
marks on the main crack only.

To account for the curve ∂(K ), let us consider
(Scheibert et al. 2010) that a discrete population of
weak localized zones is present within the material with
a bulk density ∂v . Let us then assume that a microcrack
can nucleate in these areas provided the two following
conditions are fulfilled:

• The local stress at the considered zone is large
enough, i.e. larger than a given threshold value π ∈
(smaller than the yield limit πY of the material);

• The considered zone is far enough from the main
crack front to allow the microcrack to grow, i.e. at
a distance greater than da .

The density ∂ of nucleated microcracks per unit area of
fracture is then given by ∂v{h⊥ − da} where h⊥ is the
thickness of the layer where the stress has exceeded
π ∈(h⊥ is measured perpendicular to the mean plane
of fracture). The singular form of the stress field at
crack tip leads to write h⊥ ≡ K 2/π ∈2, which yields
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(Scheibert et al. 2010):
∂ = 0 for K ∞ Ka

∂ ≡ K 2 − K 2
a for K ≈ Ka,

(4)

with Ka ≡ π ∈≥da . This equation, plotted in red on
Fig. 15, reproduced quite well the experimental data
below Kb.

As the determination of ∂ from fracture surface is
much more accurate and consensual than the determi-
nation of K (based on FEM calculation with inherent
approximations), in the following, we will use ∂ rather
than K as the control parameter as a function of which
the various quantities further defined in this paper will
be plotted. Indeed, ∂ fully characterizes the spatial dis-
tribution of nucleation sites and monotonically evolves
with K within the relevant range Ka ∞ K ∞ Kb.

5.2 Chronology of microfailure events

Figure 16 shows the cumulative distribution of
nucleation distances dn measured on two typical frac-
ture surfaces. The probability density function (derived
from the cumulative distribution) is zero for dn ∞ dmin,
maximum at dmin, subsequently linearly decreases, and
is finally zero as dn exceeds dmax. This distribution
form was observed for all the fracture surfaces, irre-
spectively of ∂. dmax is found to increase with ∂, while
dmin decreases with ∂ and remains very close to zero
(Guerra et al. 2012).

The variation of the mean value d̄n of dn with
∂ exhibits two regimes (Fig. 17:Top): (1) A lin-
ear increase with ∂ followed by (2) a saturation
(d̄n

sat ∇ 50 μm) when ∂ is greater than the value ∂sat

associated in Fig. 15 with the microbranching onset
(at K = Kb).

To understand the saturation origin, we plotted, on
Fig. 17:Bottom, the evolution of the mean nearest-
neighbor distance ∅νr〉 with ∂ as it is predicted for a 2D
Poissonian spatial distribution (∅νr〉 = 1/(2

≥
∂)). The

plotted errorbars also indicate the associated standard
deviation (πνr = ≥

(4 − σ)/(4σ∂)). When ∂ reaches
∂sat , in some cases, the distance between two neigh-
bouring nucleation centers is of the order of the nucle-
ation distance. As a result, two centers can nucleate
almost at the same time (avalanche effect). The num-
ber of microcracks involved in such avalanches, also
plotted in the figure, increases in the vicinity of ∂sat .
This strongly suggests that the observed saturation in
the dn evolution (Fig. 17:Top) results from this steric
effect.

Fig. 16 Cumulative distribution of the nucleation distances dn ,
as measured for two different fractographic images. Solid lines
are fits with P(dn) = ((dmax − dn)/(dmax − dmin))

2

5.3 Velocity of microcrack growth

The fractographic analysis performed in Sect. 4 showed
that, within the DZ, all microcracks grow at the same
velocity cm . Unfortunately, it does not allow us to
directly measure the value of cm and its possible depen-
dence with ∂. Indeed, Eq. 2 shows that the form taken
by the conical brands depends only on the position of
the nucleation sites and on the nucleation distance but
not on the value of cm .

We propose to use the deterministic reconstructions
obtained in Sect. 4 to connect the macroscopic crack
speed v to cm . Figure 18a shows the evolution of the
mean front position measured from reconstructions of
different fracture surfaces (i.e. for different densities
of nucleation centers) as a function of numerical time
step normalized by cm (homogeneous to a distance,
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Fig. 17 Top mean distance at nucleation d̄n as a function of ∂.
The red curve is a linear fit over ∂ ∞ ∂sat = 45.5 mm−2 and
a plateau at d̄n

sat = 50 μm over ∂sat . Bottom saturation of d̄n
and avalanches. The red line is the same as in the top figure. It is
compared to the mean nearest-neighbor distance in a Poissonian
distribution (black solid line). Solid squares indicate the propor-
tion of microcracks involved in avalanches, as computed from
the reconstruction

corresponding to the distance travelled by a crack front
at a velocity cm in absence of micracking events). All
the curves are linear with a slope A that defines the
ratio v/cm . At this point, one should recall that the
reconstruction procedure starts with an unrealistic ini-
tial straight crack front. We checked that this does not
affect the measured value A (Guerra et al. 2012). Then,
since v is known, cm can be deduced and plotted, on
Fig. 18b as a function of ∂. This microscopic velocity
is found to be a constant, cm ∇ 217 m/s = 0.24CR ,
independent of the loading K , the density ∂, and the
macroscale velocity v. The implications of this result
will be further discussed in the next section.

The fracture energy measurements ε (v) made in
Sect. 3 will now allow us to understand why such a
constant velocity cm is selected within the microcrack-
ing regime. Figure 19 shows the evolution of ε with

Fig. 18 Determination of the local propagation velocity cm of
individual microcracks. Left evolution of the mean crack front
position as a function of cm × t . Different curves correspond to
different fractographic images with different microcrack density.
Slope of these curves defines the ratio A between continuum-
level scale failure velocity v and microcrack velocity cm . Right
variation of cm with ∂. Horizontal red line indicates the mean
value cm ∇ 217m/s

the dynamic SIF Kd . In the low speed regime (i.e. for
low Kd ) where crack propagates without involving any
microdamaging or microbranching, ε scales with K 2

d .
We can also expect that the FPZ size Rc scales with K 2

d :
Rc = K 2

d /ψπ 2
Y where ψ is a constant of order 1, and πY

is the material’s yield stress. The scaling of ε with Kd

thus indicates a linear variation between ε and Rc and,
following Scheibert et al. (2010), a constant dissipated
energy α per volume unit within the FPZ. The fracture
energy then writes:

ε = α

ψπ 2
Y

K 2
d +

(
1

E
− α

ψπ 2
Y

)
K 2

c (5)
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Fig. 19 Variation of the fracture energy ε with Kd = K ×
(1 − v/CR)/

≥
1 − v/CD . The vertical dashed line corresponds

to microcracking onset K a
d = 1.83 MPa

≥
m. Note that Kd can

stricto-senso be identified with the dynamic SIF in absence of
microcracking, i.e. for Kd ∞ K a

d . The solid red line is a fit with
Eq. 5

As long as v ∞ va (thus without microdamage),
one can relate Kd to K (Freund 1990): Kd = K ×
(1−v/CR)/

≥
1 − v/CD where CD refers to the speed

of dilational waves (cf. Table 1). By replacing K with
Kd in Eq. 1, and by subsequently injecting the result in
Eq. 5, one gets the following expression for ε versus v:

ε =
1 − αE

ψπ 2
Y

1 − αE
ψπ 2

Y

1−v/CR
1−v/CD

K 2
c

E
(6)

This expression yields a divergence of ε at a finite
velocity c∞ given by:

c∞ =
(

αE

ψπ 2
Y

− 1

)
CRCD

αE
ψπ 2

Y
CD − CR

(7)

In this expression, the only unknown quantity is α/ψπ 2
Y .

This can be evaluated by fitting the first linear part
(i.e for Kd ∞ K a

d ) of the curve ε versus K 2
d /E plotted

in Fig. 19 with Eq. 5. One then gets:

c∞ ∗ 204 m/s = 0.23CR (8)

This value sets the maximum crack growth velocity
in the absence of microcracking: Beyond c∞ dissipa-
tion diverges within the FPZ. Assuming that the same
dissipation mechanisms are involved within the FPZ of
each microcrack when v > va , we expect that the lim-
iting speed of microcracks is also determined by c∞,
so that cm ∇ c∞.

Fig. 20 Acceleration factor A = v/cm as a function of the
microcrack density ∂. Red line is a fit by Eq. 9 with b =
1.19±0.02. Horizontal dot line defines vb/cm and passes through
the slope breakdown observed when∂ = ∂sat (taken from Guerra
et al. (2012))

6 Role of microdamaging in the selection of
continuum-level scale failure velocity

The previous section has allowed us to better under-
stand how the different variables that characterize the
microdamage developing within the DZ are selected
when v exceeds va . The most surprising observation
concerns the propagation velocity of microcracks cm

that remains constant, of the order of 217 m/s, and sig-
nificantly lower than the macroscopic velocity v. In
other terms, damage does not slow down the macro-
scopic crack tip as it was commonly believed until now
(Ravi-Chandar 2004; Ravi-Chandar and Yang 1997;
Washabaugh and Knauss 1994), but on the contrary it
accelerates it. And this acceleration factor is all the
more important as ∂ (or equivalently K ) increases
(Fig. 20).

The temporal evolution of a given point on the main
front, shown in Fig. 21, permits to better understand the
effect of microdamage on the dynamics of macroscopic
cracking. The trajectory of this point exhibits random
and sudden jumps. These jumps actually correspond to
the coalescence of a microcrack with the main front.
Between these events, the local front velocity remains
close to cm (i.e. the slope is equal to 1). Such an accel-
eration effect can be captured by a simple mean-field
model, detailed in Guerra et al. (2012), which simply
consists in counting the number of coalescence events
as the main front propagates over a unit of length when
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Fig. 21 Position of a given point of the front as a function of
”time” cm × t as obtained from the reconstructed simulation,
applied to a fracture surface with ∂ = 64.6 mm−2. The dotted
straight line indicates the expected position without microdam-
age (slope 1). The jumps (arrows) correspond to coalescence
events with microcracks (taken from Guerra et al. (2012))

the nucleation sites are located at the nodes of a square
lattice. One then gets:

A = 1

1 − bd̄n
≥

∂
(9)

where b is a numerical factor close to 1. This equa-
tion, combined with the evolution of d̄n with ∂ (red
line in Fig. 17:Top) is plotted in red in Fig. 20. It repro-
duces quite well both the data coming from experiments
(grey triangles) and from the reconstruction (black cir-
cle). Note the change in slope observed at ∂sat . At this
point, A = Ab = 1.63. This corresponds to a ratio
Ab ∗ vb/cm where vb ∗ 0.4CR is associated with
the microbranching onset. This strongly suggests that
the steric effect at the origin of the saturation of dn

also plays a role (still unsolved) in the micro-branching
instability.

7 Conclusion

The series of experiments reported here were designed
to shed light on the dissipation mechanisms that
develop during fast crack growth in PMMA. They
reveal that, above a well-defined critical velocity,
PMMA stops to behave stricto senso as a nominally
brittle material and crack propagation goes hand in
hand with microcracks that nucleate and grow ahead of
the main front. Those let characteristic marks (referred

to as conic marks) on post-mortem fracture surfaces,
the morphological analysis of which allowed us to
reconstruct the full dynamics of microfailure events.
The simultaneous space and time accuracies were of
the order of the micrometer and the tens on nanosec-
onds, i.e. far better than what was reachable up to now.

Analysis of the reconstructions demonstrated that
the true local propagation velocity of single cracks
remains limited to a fairly low value cm ∗ 0.23cR

in PMMA, while the apparent fracture velocity mea-
sured at the continuum-level scale (e.g. via potential
drop method) can be much higher (up to twice larger!).
Such an anomalously high measured velocity results
in fact from the coalescence of microcracks with each
other and with the main front—all of them growing at
cm . In other words, the main effect of microdamaging
is not, as commonly believed up to now (Washabaugh
and Knauss 1994; Ravi-Chandar 2004; Ravi-Chandar
and Yang 1997), to slow down fracture by increasing
dissipation within the DZ, but on the contrary to boost
the propagation of the main crack.

The value cm that limits the true local velocity of
single crack fronts in PMMA in the dynamic regime
is set by the physico-chemical dissipative and non-
linear processes that develop within the FPZ, e.g. ther-
mal (Estevez et al. 2000), viscoelastic effects (Boudet
et al. 1996; Persson and Brener 2005) or hyperelas-
tic processes (Bouchbinder et al. 2008; Livne et al.
2010; Buehler et al. 2003). Hence, it will depend on
the considered material. On the other hand, the boost
effect induced by microdamaging takes the form of a
purely geometrical factor controlled by two quantities:
the density ∂ of nucleation sites and the mean distance
dn at nucleation. These two variables fully characterize
the damaging state within DZ and evolve with K . Once
ascribed, they permit to relate the continuum-level frac-
ture speed v to the true local propagation speed cm .
Further work is required to unravel how PMMA inter-
nal structure selects the material-dependent quantities
cm, ∂(K ), and dn .

The presence of microcracks forming ahead of a
dynamically growing crack has been evidenced in
a variety of materials, e.g. in most brittle polymers
(Ravi-Chandar 1998; Du et al. 2010), in rocks (Ahrens
and Rubin 1993), in some nanophase ceramics and
nanocomposites (Rountree et al. 2002), in oxide glasses
(Rountree et al 2010), in metallic glasses (Murali et al.
2011), etc. The boost mechanism demonstrated here
on PMMA is expected to hold in this whole class of
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materials. Note that a similar effect has also been
invoked (Prades et al 2005) in oxide glasses under
stress corrosion, where ultra-slow crack propagation
(down to few tenths of nanometers per second) was
found to involves ”nano”-cracks forming ahead of
the main crack tip (Célarié et al. 2003; Celarié et al.
2003; Bonamy et al. 2006; Ferretti et al. 2011). This
yields us to conjecture that failures with anomalously
high apparent velocities measured at continuum-level
scale may arise in all situations involving propagation-
triggered microcracks, including e.g. shear fracture in
compressed granite (Moore and Lockner 1995) , ther-
mal failure in shale (Kobchenko et al. 2011; Panahi
et al. 2012), and more generally failure of so-called
quasi-brittle materials. One of the most robust obser-
vations in this field is the power-law form followed by
the distribution in size and in time interval between
two successive microfailure events (see Bonamy 2009;
Deschanel et al. 2009 for recent reviews). It would be
interesting to see whether or not the microcracking evi-
denced here in dynamic failure regime share the same
scale-free features and how this affects the boost effect.
Work in this direction is under way.
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Abstract CO2 storage at depth is a promising way
to reduce the spread of greenhouse gases in the
atmosphere. Obviously the sedimentary cover should
ensure the sealing of reservoirs. The latter are period-
ically fractured to allow injection and we propose a
model to predict the maximum bearable gas pressure
before reinitiating these fractures in the caprock or inci-
dentally along the interface between the reservoir and
the caprock. The method is based on a twofold criterion
merging energy and stress conditions. Specific condi-
tions related to the gas pressure acting on the crack
faces and the swelling of the reservoir due to the pres-
sure rise require taking into account several terms in
addition to the classical singular term that describes
the state of stress at the tip of the main crack.

Keywords Rock mechanics · Brittle fracture ·
Asymptotics

1 Introduction

Due to increased human activity, reducing the amount
of greenhouse gas emitted in the atmosphere to prevent

D. Leguillon (B) · E. Karnaeva
Institut JLRA, CNRS UMR 7190, Université P. et M. Curie,
4 Place Jussieu, 75252 Paris Cedex 05, France
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92852 Rueil-Malmaison Cedex, France

global warming is becoming a big problem for mankind
(GIEC 2005). Although efforts are made to reduce fuel
consumption especially in transportation and replace
them with less pollutant fluids, it seems necessary to
find methods for their elimination. For CO2, one possi-
ble solution is the storage in suitable deep underground
geological formations made of porous rocks and cov-
ered by layers of impermeable sediments like depleted
oil reservoirs, coal seams or aquifers. However, this
technique is not free of drawbacks. The risk of leakage
through the sediments along existing fracture networks,
or caused by the high pressure injection, is a weak point.
Moreover, this phenomenon is enhanced by the corro-
sive properties of CO2 that can be interpreted, from the
mechanical viewpoint, as a degradation of the proper-
ties of the surrounding rocks.

The reservoir itself is highly fractured (otherwise
injection would be impossible) and our aim is to
establish the conditions for which the elastic contrast
between the reservoir and the sediment layers allows
inhibiting the intrusion of pre-existing dyke-type frac-
tures (i.e. perpendicular to the bedding) into the caprock
or deflecting them into sill-type cracks (parallel to the
bedding, i.e. along the interface between reservoir and
caprock).

A first criterion for crack deflection by an inter-
face, based on energy arguments, was proposed by He
and Hutchinson (HH) in 1989. It has been discussed
in several papers and we revisited it a first time in
2000 (Leguillon et al. 2000) considering the mech-
anism proposed by Cook and Gordon (1964). More
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recently, a general purpose criterion to predict crack
initiation in a brittle material has been developed
(Leguillon 2002). It is based on two conditions in
energy and stress which must be simultaneously ful-
filled and has proven effective in many situations. It
led to a new version of the HH criterion involving both
toughness and strength of the materials and the inter-
faces (Leguillon and Martin 2012a).

In the present work, the additional difficulty is to take
into account the variation of fluid pressure acting on the
walls of the fracture before and following a crack exten-
sion either in the next sediment bed or along the inter-
face. On the one hand, the classic Williams’ series at
the tip of a crack impinging on an interface is enriched
to include terms accounting for the fluid pressure and
the poroelastic behaviour of the reservoir. It provides a
description of the near stress field before the onset of
a crack extension. On the other hand, a matched asymp-
totic expansions procedure yields an expression for the
incremental energy release rate due to a virtual crack
extension. Emphasis is put: (i) on the contrast between
the materials analyzing different situations; and (ii) on
the role of the fluid pressure.

Provided that mechanical parameters and boundary
conditions are known for a given coverage area, this
approach should provide an upper bound for admissible
fluid pressure to avoid growth of a potential fracture and
thus to have a safe storage.

It should be emphasized that it is by no means the
study of crack propagation under the effect of a fluid
pressure as in hydraulic fracturing (e.g. Detournay
1999; Loret and Radi 2001; Mishuris et al. 2012).
There is no dynamic effect, the pre-existing cracks in
the reservoir are fixed, the loading due to CO2 injection
is quasi-static and we are interested only in the possi-
bility of reinitiating, either by penetrating the caprock
or by deflecting along the interface between the reser-
voir and the caprock. Clearly, for safety reasons, the
cracks should not penetrate the caprock, thus the initi-
ation step is crucial. The subsequent (dynamic) growth
of these cracks is outside the scope of this work.

2 The model

The application to CO2 storage is presented on a “repre-
sentative” volume (we do not discuss here the concept
of representativeness) (Fig. 1). It takes into account the
pressure inside the reservoir pC O2 (MPa), the overbur-

den vertical compression pV (MPa) and the horizontal
tectonic confinement (Karnaeva 2012; Karnaeva et al.
2012). To take full advantage of the supercritical prop-
erties of CO2, the injection depth is at least 800 m.
This determines the overburden load pV due to the
sediments weight which increases with depth with a
gradient around 2 MPa per 100 m. Throughout this
paper pV = 20 MPa is selected corresponding to an
injection depth of approximately 1,000 m. The tectonic
confinement is modelled by vanishing horizontal dis-
placements on the vertical boundaries. Such a condition
can be also interpreted as a symmetry condition, the
same situation reproducing periodically. This assump-
tion is known to correspond to a low confinement, other
models can be used, either a constant tectonic compres-
sion directly proportional to the sediments weight, or
better a stress state depending both on the overburden
load and the fluid pressure in the reservoir.

There are some difficulties in setting equations
and boundary conditions. Following Terzaghi’s law
(1936) the total stress is considered. The rock forming
the reservoir is assumed permeable and poro-elastic
(Young’s modulus E (R) = 2 GPa, Poisson’s ratio
ε(R) = 0.3, Biot’s coefficient θ(R) = 1). The con-
stitutive law is analogous to that of thermo-elasticity
(Segall and Fitzgerald 1998), the temperature change
being replaced by the pore pressure change, and the
thermal expansion coefficient by a term involving
Biot’s coefficient θ(R)

φ = C(R) :
⎧

∂ − 1 − 2ε(R)

E (R)
θ(R) pC O2 I

⎪
(1)

where, for simplicity, C(R) (MPa) denotes the elasticity
matrix relying on Young’s modulus and Poisson’s ratio
of the reservoir, ∂ and φ (MPa) the linearized strain and
stress tensors and I the identity matrix. The indices (R)

and (C) are used to denote respectively the reservoir
and the caprock.

The layer of covering sediments is assumed imper-
meable with an elastic constitutive law

φ = C(C) : ∂ (2)

The total stress merges with the effective stress in the
caprock.

Weak and strong contrasts in elasticity coefficients
are analysed (reservoir parameters are keeping con-
stant while for the caprock: E (C) = 5 MPa, or E (C) =
40 MPa, ε(C) = 0.3, θ(C) = 0).

If the fluid pressure in the reservoir is low, the main
crack is closed and the stress components of the solu-
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Fig. 1 The “representative”
volume with a dyke in the
reservoir impinging on the
interface with the caprock
made of sediments

Fig. 2 The two possible mechanisms of crack growth

tion to the elastic problem are constant in the 2 domains
and can be written (the horizontal displacement van-
ishes everywhere, U1 = 0) under the assumption of
plane strain elasticity
⎨⎩⎩
⎩⎩

φ
(C)
11 = − ε(C)

1−ε(C) pV ; φ
(C)
22 = −pV ; φ

(C)
12 = 0

φ
(R)
11 = − ε(R)

1−ε(R) pV − θ(R) 1−2ε(R)

(1−ε(R))(1+ε(R))
pC O2 ; φ

(R)
22

= −pV ; φ
(R)
12 = 0

(3)

The main crack (Fig. 1) opens as soon as the inside
pressure exceeds the horizontal stress in the reservoir

pC O2 >
ε(R)

⎛
1 + ε(R)

⎝
1 − ε(R)2 − θ(R)

⎛
1 − 2ε(R)

⎝ pV (4)

Then, the problem is to know if the main vertical crack
in the reservoir is likely to extend or to arrest, and in
case of extension to know if it evolves in a dyke or a
sill type extension (Fig. 2).

3 Williams’ expansion

For carrying out the matched asymptotic expansions
(Van Dyke 1964), it is necessary, in a first step, to define
the Williams expansion (1959) in the vicinity of the
crack tip prior to its extension. In addition to the usual
singular terms, complementary terms must be inserted
to take into account both the fluid pressure acting on
the faces of the main crack and the reservoir swelling
as a consequence of the injection of fluid. Then since
these two terms have constant stress components, it is
not allowed omitting the T-stress term which enjoys the
same property and is thus of the same order of mag-
nitude. (throughout this paper the Cartesian and polar
coordinates are mixed without confusion, Fig. 3)

U 0(r, ω) = C + krνu(ω)

+T rt(ω) − pC O2 rv(ω)

+pC O2 π(R)rw(ω) + · · ·
with; π(R) = θ(R)

1 + ε(R)
(5)

φ 0(r, ω) = krν−1s(ω) + T σ(ω) − pC O2ε(ω)

+π(R) pC O2ψ(ω) + · · · (6)

The second line (6) derives from (5) through the con-
stitutive laws (1) and (2). The explanation for the index
0 will be found further in Eq. (14). Units for U 0 and C
are m; for k and T they are respectively MPa.m1−ν and
MPa; units for u, t, v and w are MPa−1; s, σ , ε and ψ

are dimensionless.
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Fig. 3 The Cartesian x1, x2 and polar r, ω coordinates emanating
from the crack tip O

Besides the constant term C , the first relevant one is
singular (i.e. ν < 1) but although there is a crack tip, the
exponent differs from 1/2, it is larger if E (C) > E (R)

(as in the present case) and smaller in the opposite case.
It is associated with a symmetric mode u(ω) (another
mode is associated with ν but is antisymmetric and thus
not activated in the symmetric case illustrated in Fig. 1).
The exponent and the associated mode are easily com-
puted (Leguillon and Sanchez-Palencia 1987) solving
numerically an eigenvalue problem.

This analysis is limited to the case ν > 1/2 named
“weak singularity” (Leguillon and Sanchez-Palencia
1992) which is the only one to have a strengthening
effect (Leguillon and Martin 2012b). The opposite sit-
uation is unfavourable to crack arrest and promotes
penetration (He and Hutchinson 1989; Leguillon et al.
2000; Leguillon and Martin 2012a).

The next term is the T-stress. It is defined, under
the assumption of plane strain elasticity, in a vicinity
of the main crack tip (Fig. 1) and has not to satisfy
remote boundary conditions. It can be calculated easily
by hand knowing that it must check the first relations
in (8) and that the parameter a is adjusted to fulfil the
displacement continuity through the interface

⎨⎩⎩⎩⎩⎩
⎩⎩⎩⎩⎩

t (C)
1 (ω) =

[
(1+ε(C))(1−ε(C))

E (C) a − ε(C)(1+ε(C))

E (C)

⎞
cos ω

t (C)
2 (ω) =

[
(1+ε(C))(1−ε(C))

E (C) − ε(C)(1+ε(C))

E (C) a
⎞

sin ω

t (R)
1 (ω) = − ε(R)(1+ε(R))

E (R) cos ω

t (R)
2 (ω) = (1+ε(R))(1−ε(R))

E (R) sin ω

with a = ε(C)

1−ε(C) − E (C)

E (R)

ε(R)(1+ε(R))

(1+ε(C))(1−ε(C))

(7)

It enjoys the following properties

φ
(C)
22 = φ

(R)
22 = 1; φ

(C)
12 = φ

(R)
12 = 0;

φ
(R)
11 = 0; φ

(C)
11 = a (8)

The last property is original and due to the contrast
between materials, in addition to a tension parallel to
the crack the material undergoes a transverse tension
ahead of the tip (parameter a vanishes if there is no
contrast between materials).

The third term is associated with constant pressure
acting on the main crack walls, again it can be calcu-
lated easily by hand⎨⎩⎩⎩⎩⎩⎩
⎩⎩⎩⎩⎩⎩

v
(C)
1 (ω) =

⎛
1+ε(R)

⎝⎛
1−ε(R)

⎝
E (R) cos ω

v
(C)
2 (ω) = − ε(C)

⎛
1+ε(R)

⎝⎛
1−ε(R)

⎝
E (R)(1−ε(C))

sin ω

v
(R)
1 (ω) =

⎛
1+ε(R)

⎝⎛
1−ε(R)

⎝
E (R) cos ω

v
(R)
2 (ω) = − ε(R)

⎛
1+ε(R)

⎝
E (R) sin ω

(9)

φ
(C)
22 = φ

(R)
22 = 0; φ

(C)
12 = φ

(R)
12 = 0; φ

(R)
11 = 1;

φ
(C)
11 = E (C)

E (R)

⎛
1 + ε(R)

⎝ ⎛
1 − ε(R)

⎝
⎛
1 + ε(C)

⎝ ⎛
1 − ε(C)

⎝ (10)

The fourth term taking into account the swelling of the
reservoir is calculated by hand as well⎨⎩⎩⎩⎩⎩

⎩⎩⎩⎩⎩

w
(C)
1 (ω) =

⎛
1+ε(C)

⎝⎛
1−ε(C)

⎝
E (C) b cos ω

w
(C)
2 (ω) = − ε(C)

⎛
1+ε(C)

⎝
E (C) b sin ω

w
(R)
1 (ω) =

⎛
1−2ε(R)

⎝⎛
1+ε(R)

⎝
E (R) cos ω

w
(R)
2 (ω) =

⎛
1−2ε(R)

⎝⎛
1+ε(R)

⎝
E (R) sin ω

with b = E (C)

E (R)

⎛
1 − 2ε(R)

⎝ ⎛
1 + ε(R)

⎝
⎛
1 + ε(C)

⎝ ⎛
1 − ε(C)

⎝ (11)

φ
(R)
11 = φ

(R)
22 = 1; φ

(C)
12 = φ

(R)
12 = 0; φ

(C)
22 = 0;

φ
(C)
11 = b (12)

In the Williams expansion (5), this term has the multi-
plier π(R) which accounts for the poro-elastic law (1).

The generalized stress intensity factors (GSIF) k and
T in (5) and (6) are computed using a path independent
integral (Appendix 1). Note that in the present analysis
the GSIF’s k and T are extracted from

Û
0
(r, ω) = U 0(r, ω) + pC O2 rv(ω) − pC O2 rπ(R)

w(ω) = C + krνu(ω) + T rt(ω) + · · · (13)

Taking advantage of the properties of the path integral
(the right hand side is a classical Williams expansion
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with equilibrium and boundary conditions homoge-
neous to 0, Appendix 1). Clearly k is mainly governed
by pC O2 but receives also contributions from pV and
conversely T is mainly governed by pV but receives

contributions from pC O2 , through Û
0

in (13).

4 Outer and inner expansions

The crack extension lengths ld (deflected) and l p

(penetrated) are assumed to be small compared to the
dimensions of the representative volume. The outer
expansion can be written

U (x1, x2, ld/p) = U 0(x1, x2) + corrective terms ;

where U 0(x1, x2) = U (x1, x2, 0) (14)

It means that, at the leading order, the outer expan-
sion is independent of the extension mechanism, either
deflection or penetration. The crack extension is small
and not visible at this scale.

The inner expansion takes a special form which is
consequence of the matching conditions (Van Dyke
1964; Leguillon and Sanchez-Palencia 1987) governed
at the leading order by the Williams expansion (5)

U (x1, x2, ld/p) = U (ld/p y1, ld/p y2, ld/p)

= C + k lνd/p

[
ανu(ω) + V 1

d/p(y1, y2)
⎞

+T ld/p

[
αt(ω) + V 2

d/p(y1, y2)
⎞

+pC O2 ld/p

[
αv(ω) + V 3

d/p(y1, y2)
⎞

+π(R) pC O2ld/p

[
αw(ω) + V 4

d/p(y1, y2)
⎞

+ · · ·
(15)

The V j
d/p’s are solution to well posed problems on the

inner unbounded domain spanned by the dimensionless
space variables yi = xi/ ld/p(α = r/ ld/p) (Appendix
2). In this domain the crack extension length is 1 what-
ever its actual value (Fig. 2).

So now we have a description of the solution prior to
crack extension (with (14) and (5) or better (15) where
all the V j ’s vanish) and following it (with (14) and
(15)). Then it is possible to calculate the change in
potential energy λW = W (ld/p) − W (0)(Appendix 3)
between these two states and finally the incremental
energy release rate

Ginc
d/p = − λW

ld/p
=k2l2ν−1

d/p Ad/p + kT lνd/p Bd/p

+kpC O2 lνd/pCd/p + T 2ld/p Dd/p + p2
C O2

ld/p

Ed/p+T pC O2 ld/p Fd/p + · · ·
= k2l2ν−1

d/p

⎠
Ad/p + m1(ld/p)Bd/p + m2(ld/p)Cd/p

+ m1(ld/p)
2 Dd/p + m2(ld/p)

2 Ed/p

+ m1(ld/p)m2(ld/p)Fd/p
] + · · · (16)

where the coefficients the Ad/p . . . Fd/p are extracted

from the V j
d/p’s (Appendix 2, Karnaeva 2012). The

functions m1(ld/p) and m2(ld/p) are dimensionless
mixity parameters

m1(ld/p) = T

k
l1−ν
d/p ; m2(ld/p) = pC O2

k
l1−ν
d/p (17)

It is assumed here that the constant gas pressure pC O2

acts on the crack extension faces, which means that
the fluid instantaneously reacts and fills the extension.
It is a reasonable assumption for a fluid in a super-
critical state. Nevertheless it corresponds to the more
complicated situation, assuming that no pressure acts
along the extension faces is easier, some terms vanish
(Appendix 2). An intermediate solution is to postulate
a known pressure profile.

5 The mixed criterion

The mixed criterion (Leguillon 2002) states that two
conditions must be fulfilled to predict crack initiation
at stress concentrations due to “weak” singularities
(at corners for example): an energy rule and a stress
condition. The energy balance implies that if failure
occurs then

k2l2ν−1
d/p X (pV , pC O2 , ld/p) ≥ G(I/C)

c

with X (pV , pC O2 , ld/p)

= Ad/p + m1(ld/p)Bd/p + m1(ld/p)Cd/p

+ m1(ld/p)
2 Dd/p + m2(ld/p)

2 Ed/p

+ m1(ld/p)m2(ld/p)Fd/p (18)

where G(I )
c and G(C)

c denote respectively the toughness
of the interface between the reservoir and the caprock
and the toughness of the material forming the caprock.
The dependence on pV of X defined in (18) is through
k and T via m1 and m2 (17), the dependence on pC O2

is explicit through m1 and arises also through k and T .
Note that the failure parameters of the interface (G(I )

c

here and φ
(I )
c further in Eq. (20)) are very difficult to

determine and a good compromise is to select those
of the weaker of the two materials separated by the
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Fig. 4 Different situations
occurring when solving
inequality (18): a A wide
range of admissible crack
extension lengths (thick
line), b A short range, c No
solution

interface (Hutchinson et al. 1987; Karnaeva 2012), in
general the most porous material.

If ν > 0.5, the function Ginc
d/p is an increasing

function of ld/p when ld/p is small. Then, on the one
hand, this function can keep growing (within a rea-
sonable range fulfilling the assumption of smallness
on ld/p) and thus inequality (18) has solutions and
defines a lower bound of admissible crack extension
lengths (thick line in Fig. 4a). On the other hand, if
after the growing phase the function becomes decreas-
ing, the range of admissible lengths is reduced to a
segment (Fig. 4b) and may even disappear (Fig. 4c).
In this latter case, when pC O2 increases (c) turns
into (b).

As observed in Fig. 4, we must draw attention to the
fact that the admissible lengths cannot be indefinitely
small. According to the energy balance equation, at
failure there is a crack jump.

The stress condition can be stated as follows: prior
to crack nucleation, the tension must exceed the tensile
strength all along the presupposed crack path. This can
be written using the Williams expansion (6) and the
mixity parameters (17)

φ(r, ωd/p) = k rν−1 ⎠
s(ωd/p) + m1(r)σ (ωd/p)

−m2(r)ε(ωd/p)+πm2(r)ψ(ωd/p)
] + · · ·

(19)

The angle ωd/p is the angle made by the crack exten-
sion: ωd = β/2(deflection) and ωp = β (penetration).
The functions φ, s, σ, ε and ψ denote the normal stress
component of the tensors φ , s, σ , ε and ψ in the crack
extension direction (see (6)), i.e. the component 22 for
the crack deflection and the component 11 for the crack
penetration (Fig. 3).

It is observed that, within the range defined by the
energy condition, the function φ(r, ω) is a decreasing
function of r , then the stress condition can be written

Fig. 5 Admissible crack extension lengths (thick line) when
solving inequality (21)

φ(r, ωd/p) ≥ φ
(I/C)
c for 0 < r ≤ ld/p

⇒ φ(ld/p, ωd/p) ≥ φ
(I/C)
c (20)

Where φ
(I/C)
c denotes respectively the tensile strength

of the interface (index I ) and of the material forming
the caprock (index C). Then

k lν−1
d/p Y (pV , pC O2 , ld/p) ≥ φ

(I/C)
c

with Y (pV , pC O2 , ld/p) = s(ωd/p) + m1(r)

σ (ωd/p) − m2(r)ε(ωd/p) + πm2(r)ψ(ωd/p) (21)

Solving this inequality leads to define an upper bound
of admissible crack extension lengths (Fig. 5).

6 Numerical results—deflection—strong contrast

Compatibility between (18) and (21) must be consid-
ered separately in the cases illustrated in Fig. 4a–c.
Obviously, the fracture parameter values G(I/C)

c and
φ

(I/C)
c are crucial to discriminate between the differ-

ent cases. Figure 4a is the most favorable case. Indeed,
(18) provides a lower bound for admissible crack exten-
sion lengths whereas (21) gives an upper bound. The
compatibility leads to an implicit equation for ld/p

123123 Reprinted from the journal118



Tight sedimentary covers

0

0.002

0.004

0.006

0.008

0.0180.0160.014

k

p
CO2

k

k
d

Fig. 6 The GSIF k compared to the critical deflection
value kd (GPam1−ν) versus CO2 injection pressure (GPa) for
pV = 20 MPa

ld/p = G(I/C)
c

X (pV , pC O2 , ld/p)

Y (pV , pC O2 , ld/p)
2

φ
(I/C)2
c

(22)

Once this equation is solved, either (18) or (21) gives
the condition for failure

k ≥ kd/p =
⎧

G(I/C)
c

X (pV , pC O2 , ld/p)

⎪1−ν

×
⎧

φ
(I/C)
c

Y (pV , pC O2 , ld/p)

⎪2ν−1

(23)

where kd and kp denote respectively the critical values
of the GSIF k for deflection and penetration. If kd is
smaller than kp then deflection is promoted and vice
versa.

Such a situation is encountered when studying the
deflection in case of a strong contrast between reservoir
and caprock with G(I )

c = 20 Jm−2 and φ
(I )
c = 2 MPa

(quite small but realistic for a porous rock like the
reservoir). Strong contrast means E (C)/E (R) = 20 (see
Sect. 2) and ν = 0.687 in the Williams expansion (5).
The injection depth is supposed around 1,000 m leading
to a vertical compression pV = 20 MPa.

As expected, according to (4), the main crack open-
ing occurs for pC O2 = 15.3 MPa. For lower pC O2

values, the crack remains closed and k = 0, above k
increases linearly with pC O2 . The critical value kd can
be computed also as a function of pC O2 , and deflection
occurs when k exceeds kd , i.e. for pC O2 ≥ 16.1 MPa
(Fig. 6). The corresponding length is rather small ld =
55 μm, mainly because the compression prevails when
one moves away from the crack tip and from the influ-
ence of the singular term. But at this step, i.e. when
the short crack exists, the classical fracture mechanics
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l
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Gc
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l
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Fig. 7 Incremental (solid line) and differential (dashed line)
energy release rates (GPam) at deflection near the onset
length (l = ld ) versus the crack extension length l(m) for
pC O2 = 16.1 MPa

takes precedence and a simple Griffith analysis can be
carried out. Figure 7 shows the (differential) energy
release rate derived from (16) for pC O2 = 16.1 MPa

Gd/p = −γWd/p

γl
= k2l2ν−1

d/p

⎠
2νAd/p + (ν + 1)

m1(ld/p)Bd/p + (ν + 1)m1(ld/p)Cd/p

+2m1(ld/p)
2 Dd/p + 2m2(ld/p)

2

Ed/p + 2m1(ld/p)m2(ld/p)Fd/p
] + · · ·

(24)

Clearly Gd > G(I )
c at deflection onset and the gap

increases within Fig. 7 range. Passing at a larger scale
we see in Fig. 8 that the curve bends and Gd passes
below the value G(I )

c and go on decreasing. This point
(roughly lda = 1 cm) is a good candidate for crack

0.0E+00

2.0E-08
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6.0E-08
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differential
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Gc

(I)

llda

d

Fig. 8 Incremental (solid line) and differential (dashed line)
energy release rates (GPam) at deflection near the crack arrest
point (l = lda) versus the crack extension length l(m) for
pC O2 = 16.1 MPa
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Fig. 9 Incremental (solid line) and differential (dashed line)
energy release rates (GPa.m) at penetration (l = l p) versus the
crack extension length (m) for pC O2 = 20.2MPa

arrest, note that it remains small compared to the rep-
resentative volume (Fig. 1) and well within the asymp-
totic framework.

Nevertheless, this arrest length lda is very sensitive
to a small increase in pC O2 ; for pC O2 = 16.5 MPa,
lda = 30 cm and finally for pC O2 = 17 MPa no
arrest can be found (i.e. no small arrest length within
the asymptotic framework). As a conclusion pC O2 ≈
16 MPa is the critical value not to be exceeded to avoid
crack deflection.

7 Numerical results: penetration—strong contrast

This case refers to the situation observed in Fig. 4b,
c for G(C)

c = 80 Jm−2, φ
(C)
c = 10 MPa. Mother

crack opening still occurs for pC O2 ≥ 15.3 MPa,
but Ginc

p (see (16)) passes through a maximum which

remains smaller than G(C)
c up to pC O2 = 20.2 MPa

(Fig. 9), preventing any penetration mechanism. At this
point the tensile stress acting on the presupposed exten-
sion path (penetration) φ = 289 MPa, is far above the
tensile strength because l p is very small, around 8 μm,
and the Young modulus of the material is high (strong
contrast). Thus if penetration occurs, it is mainly gov-
erned by the energy criterion. But this defines also an
arrest point since the (differential) energy release rate
G is decreasing and takes exactly the value G(C)

c (Fig. 9)
for l = l p = l pa .

At this point, it is not necessary to go much further.
Penetration appears over a meaningless length at a CO2

pressure well above that which causes deflection, thus
it is the latter mechanism that is naturally selected.

8 Numerical results—weak contrast

In case of a more realistic weak contrast: E (C)/E (R) =
2.5 (see Sect. 2) then ν = 0.585. The situation differs
slightly, the exponent ν is closer to 0.5 and, as can be
seen for instance in (23), the role of the stress con-
dition regresses: 2ν − 1 = 0.17 and then 1 − ν =
0.417 (whereas it was respectively 0.374 and 0.313 in
the strong contrast case). Both mechanisms, deflection
and penetration, are mainly governed by the energy
condition.

According to (4), the mother crack opening occurs
for pC O2 =15.3 MPa as before since Poisson’s ratio
ε(R) and Biot’s coefficient θ(R) of the reservoir are
unchanged. There is a kind of hinge defined by G(I )

c =
20 Jm−2, φ

(I )
c = 2 MPa, G(C)

c = 40 Jm−2 and φ
(C)
c =

4 MPa where the situation is that of Fig. 4b, c in both
cases. One or the other mechanism is triggered when
pC O2 reaches 15.8 MPa, it is not possible to decide.
In particular, the two initiation (and arrest) lengths
ld and l p are almost equal, around 30 μm. Never-
theless, the mechanism seems more stable than in
Sect. 6, for pC O2 = 20 MPa, it comes lda ≈9 cm and
l pa ≈8 cm.

On the one hand, if G(I )
c changes from 10 to 100 J

m−2 without modifying the other parameters the results
evolve as follows: deflection occurs for pC O2 vary-
ing from 15.7 to 16.3 MPa and ld increases from 15
to 146 μm. The initiation length changes much, but
the arrest length for pC O2 = 20 MPa changes lit-
tle from 9.1 to 8.8 cm. On the other hand, changes in
φ

(I )
c within a reasonable range (from 1 to 10 MPa for

instance) do not produce significant changes although
when φ

(I )
c ≥ 3 MPa, the solution is calculated using

(23) because the stress condition (20) is no longer ful-
filled when the curve Ginc

d is tangent to the horizontal

line G(I )
c . Thus the load must be (slightly) increased

and the solution shifts to the left in the increasing part
of Ginc

d .

Similarly, if G(C)
c changes from 10 to 100 J m−2

without modifying the other parameters: penetration
occurs for pC O2 varying from 15.6 to 16.0 MPa and
l p increases from 9 to 83 μm. The arrest length for
pC O2 = 20 MPa changes little from 7.8 to 7.6 cm.
But now, any variation of the tensile strength φ

(C)
c

(within a wide range 1–30 MPa) has no effect at all
because at initiation the stress condition (20) is by
far true.
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9 Conclusion

With almost realistic elastic and fracture parameters
close to that of porous rocks (weak contrast and low
fracture parameters), it is clear that if the dyke type
crack in the reservoir starts to open (pC O2 =15.3 MPa)
as a result of the gas pressure rise due to injection,
the conditions are nearly met (pC O2 =15.8 MPa) for
crack propagation either along the interface (sill) or in
the caprock (dyke). Of course deflection is safer than
penetration but both mechanisms are likely to trigger
at CO2 pressure values too close to each other to be
meaningful.

The rock mass formed by the reservoir and the
caprock retains its stability due to strong compressions
prevailing at depth (tectonic confinement and overbur-
den load). But as soon as the conditions are met for
pre-existing cracks to open under tension, this equilib-
rium is near to being broken.

Appendix 1

Let us consider f and g solutions to an elastic problem
locally homogeneous to 0 in the vicinity of the main
crack tip (Fig. 1), i.e. such that the equilibrium equa-
tion has a vanishing right hand side member and such
that the boundary conditions are vanishing as well in
the vicinity under consideration. Then the following
integral is path independent

τ
(

f , g
)

= 1

2

∫

δ

[
φ

(
f
)

.N .g − φ
(

g
)

.N . f
⎞

ds

Here δ is any contour starting on one face and finishing
on the other face of the main crack (Fig. 1) and N the
normal to this contour pointing toward the crack tip.

Then if f can be expanded in a Williams series

f (x1, x2) = C + krνu(ω) + · · ·
The Generalized Stress Intensity Factor (GSIF) k
is given by (Leguillon and Sanchez-Palencia 1987;
Labossiere and Dunn 1999)

k =
τ

(
f (x1x2), r−νu−(ω)

)

τ
⎛
rνu(ω), r−νu−(ω)

⎝
where r−νu−(ω) is the so-called dual mode to rνu(ω),
it plays the role of an extraction function. Indeed,
in 2D if ν is solution to the eigenvalue problem

with and u(ω) as eigenmode, then −ν is also a
solution with its own eigenvector u−(ω) (Leguillon and
Sanchez-Palencia 1987). The primal mode has a finite
energy in the vicinity of the crack tip while the dual
mode has not but it plays no role since the contour δ

encompasses the crack tip at a finite distance.
Then, according to (13)

k =
τ

(
Û

0
(x1x2), r−νu−(ω)

)

τ
⎛
rνu(ω), r−νu−(ω)

⎝ ;

T =
τ

(
Û

0
(x1x2), r−1t−(ω)

)

τ
⎛
r t(ω), r−1t−(ω)

⎝

Appendix 2

Let us consider now two solutions f 0 and f ld/p to an
elastic problem, again locally homogeneous to 0 in the
vicinity of the main crack tip, corresponding respec-
tively to the initial state illustrated in Fig. 1 and to a
final state embedding a crack extension (deflection or
penetration) with length ld/p (Fig. 2). Then the change
in potential energy between these two states is given by

λW = τ
(

f ld/p (x1, x2), f 0(x1, x2)
)

The term f 0 admits a Williams expansion

f 0(x1, x2) = C + krνu(ω) + · · ·
As a consequence of matching conditions the inner
expansion of f ld/p is

f ld/p (x1, x2) = C + klνd/p

[
ανu(ω) + V 1

d/p(y1, y2)
⎞

+ · · · with yi = xi/ l and α = r/ l

where V 1
d/p is solution to an elastic problem posed on

the unbounded domain spanned by the yi ’s, with an
homogeneous equilibrium equation, vanishing forces
along the mother crack faces, a decay to 0 at infinity and
prescribed forces on the two faces γd/p(with normal
nd/p) of the crack extension

φ
(

V 1
d/p(y1, y2)

)
. nd/p = −φ

⎛
ανu(ω)

⎝
. nd/p

Equations for V 2
d/p, V 3

d/p and V 4
d/p (see (14)) can be

derived in the same way.
And then

λW = Ad/pk2l2ν + · · · with Ad/p

= τ
(

V 1
d/p(y1, y2), α

νu(ω)
)
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The difficulty in the present analysis comes from the
non homogeneous conditions due to the pressure pC O2

acting on the main crack walls and on the crack exten-
sion and the poro-elastic behaviour in the reservoir
triggering a swelling. Nevertheless these non homoge-
neous conditions are taken into account by the special
terms (9) and (11), finally all calculations give

Ad/p = τ
(

V̂
1
d/p(y1, y2), α

νu(ω)
)

Bd/p = τ
(

V̂
2
d/p(y1, y2), α

νu(ω)
)

+τ
(

V̂
1
d/p(y1, y2), αt(ω)

)

Cd/p = τ
(

V̂
3
d/p(y1, y2), α

νu(ω)
)

+τ
(

V̂
1
d/p(y1, y2), αv(ω)

)

+1

2

∫
γd/p

nd/p.V̂
1
d/p(y1, y2)dS

Dd/p = τ
(

V̂
2
d/p(y1, y2), αt(ω)

)

Ed/p = τ
(

V̂
3
d/p(y1, y2), αv(ω)

)

+1

2

∫
γd/p

nd/p.V̂
3
d/p(y1, y2)dS

Fd/p = τ
(

V̂
2
d/p(y1, y2), αv(ω)

)

+τ
(

V̂
3
d/p(y1, y2), αt(ω)

)

+1

2

∫
γd/p

nd/p.V̂
2
d/p(y1, y2)dS

Of course, under the simplifying assumption that pC O2

does not act on the crack extension faces, the integrals
on γd/p disappear.
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Abstract In several engineering areas structural
analyses concern also fracture processes of brittle mate-
rials and employ cohesive crack models. Calibrations
of such models, i.e. identification of their parameters
by tests, computer simulations of the tests and inverse
analyses, have been investigated in the literature par-
ticularly with reference to non-destructive indentation
tests at various scales.To this timely research, the fol-
lowing contributions are presented in this paper: a
simple piecewise-linear cohesive crack model is con-
sidered for brittle materials (here glass, for example);
for its calibration by “non-destructive” indentation tests
novel shapes are attributed to instrumented indenters,
in order to make fracture the dominant feature of the
specimen response to the test; such shapes are compar-
atively examined and optimized by sensitivity analy-
ses; a procedure for inverse analysis is developed and
computationally tested, based on penetration versus
increasing force only (no imprint measurements by pro-
filometers) and is made “economical” (i.e. computa-
tionally fast, “in situ” by small computers) by model
reduction through proper orthogonal decomposition in
view of repeated industrial applications.

V. Buljak
Department of Strength of Materials, Mechanical
Engineering Faculty, University
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1 Introduction

Indentation experiments, originally rooted in classi-
cal hardness tests, see e.g. Suresh and Giannakopou-
los (1998), at present provide the experimental basis
of a popular and still growing methodology for mate-
rial characterizations and model calibrations centered
on computer simulations of tests and inverse analy-
ses. The parameters to identify are included in the con-
stitutive model or/and in the residual stress tensor to
be employed for direct analyses of structures or plant
components. The main advantages arise from the “non-
destructive” features of the test and from possible fast
and economical, even often “in situ”, estimations of
parameters. Typical and representative contributions to
developments of indentation testing methodology can
be found in a vast literature, e.g. Abdul-Baqi and Van
der Giessen (2002), Oliver and Pharr (2004), Cao and
Lu (2004).

Several relatively recent research contributions in
this area are centered on the following innovative fea-
tures of the diagnostic methodology:

(a) substantial increase of experimental data with
recourse to imprint geometry measurements (by
laser profile-meter, atomic force microscope or
other instruments, depending on the testing scale),
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data which are additional to those provided by the
instrumented indenter, see e.g. Bolzon et al. (2004),
Bocciarelli et al. (2005), Maier et al. (2011);

(b) acceleration and economization of the inverse
analysis procedure in practice by means of “a pri-
ori” once-for-all computational efforts for “model
reduction”, see e.g. Ostrowski et al. (2008), Buljak
and Maier (2011), Buljak (2012).

In some practical engineering situations improve-
ment (a) turns out to be almost prohibitive (e.g. in
offshore engineering for applications under water) or
clearly expensive for routine applications (e.g. repeated
along an extensive network of pipelines). However,
tensorial entities such as anisotropic elastic-plastic
material models and residual stresses clearly cannot be
identified on the basis of indentation curves generated
by the popular axisymmetric (conical or spherical) or
pyramidal indenters. Therefore, for the above purposes,
indenters with “elliptical” conical shapes and test repe-
titions after rotations have been proposed and designed
in Buljak and Maier (2012).

In this paper, a new procedure is envisaged and
investigated for the calibration of isotropic fracture
models on the basis only of a penetration-versus-force
curve generated by an instrumented indenter endowed
with a novel shape with the following features: a typical
cross-section orthogonal to the indenter axis consists
of two circular arches, so that in one of the symmetry
axes two sharp edges (“cutting edges”) are generated;
the shape-defining lengths (called here “diameters”) of
the indenter cross-section grow from the bottom gen-
erating two diverse shapes, both with a sharp “cutting
edge” in one of the two symmetry planes which contain
the indenter axis. As an alternative, “double indenters”
are devised and examined, with a single plane contain-
ing the two parallel axes and the “cutting edges”.

The new geometric configurations of the indenter
are suggested by the clear usefulness of conferring,
in the present context, to the fracture propagation a
prevailing role in the response of the specimen to
the indentation test. Such prevalence, however, can be
expected in brittle and quasi-brittle behaviors, to which
the present study is confined, with further limitations
to the simplest cohesive models. As for ductile fracture
characterizations, the exploitation of imprint geometry
data (provision (a) mentioned above) is expected to be
practically necessary, see e.g. Maier et al. (2006) and
(2011).

The developments investigated and proposed herein
concerning brittle materials (glasses, ceramics “et
alia”) can be outlined as follows.

The novel geometry of the indenter pair is designed
in such a way that the penetration in the tested specimen
or structure generates first stress concentrations and
then two cracks starting from the sharp internal edges
and propagating along the “fracture plane” in the spec-
imen or in the real structure, with “non-destructive”
consequences in view of the small scale.

Digitalized indentation curves represent sources of
experimental data to be selected by sensitivity analyses
in preliminary design of the experiment after a suitable
choice of the inelastic material models apt to describe
brittle fracture.

For the inverse analyses the recently developed
computational procedure, above mentioned as provi-
sion (b), is adopted herein, namely “proper orthogonal
decomposition” followed by “radial basis functions”
interpolations and by mathematical programming (or
elsewhere “soft computing” algorithm) for the min-
imization of the “discrepancy function”, here with a
deterministic approach.

The simple cohesive crack models considered for
the present preliminary study are described in Sect.
2. Finite element modeling of the experiment is dis-
cussed in Sect. 3. Section 4 and 5 are devoted to sen-
sitivity analyses and to the design of indenters with
novel shapes characterized by slenderness and by sharp
“cutting edges”. In Sects. 6 and 7 computational pro-
cedures are outlined apt to make the inverse analyses
proposed herein more economical in practical appli-
cations. Some numerical exercises are comparatively
presented in order to check the validity of the method-
ological novelties proposed herein and to support the
conclusions gathered in Sect. 8.

2 Cohesive crack piecewise-linear models
and relevant parameters

Overall analyses of structures consisting primarily
of brittle materials (such as concrete, rock, ceram-
ics, cement, glass) are usually carried out to practical
engineering purposes with the following reasonable
assumptions: fracture processes concentrated as grow-
ing displacement discontinuities, surrounded by undam-
aged, linear elastic, frequently isotropic media.
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For computer simulations of structural behaviors
with nonlinearities confined to the surface of fracture
propagation “cohesive crack models” are frequently
adopted in engineering practice.

These models, which include contact friction as a
special case, describe a relationship between relative
displacements and tractions in “mode I” or “mixed
mode”, relationship formulated with various features
in the literature, see e.g. Xu and Needleman (1994),
Jirasek and Bažant (2001), Broek (1989), Stavroulakis
(2000), Zhi-He et al. (2003).

In the present study the piecewise-linear formulation
of cohesive crack models, proposed in Maier (1970),
Cocchetti et al. (2002), Tin-Loi and Que (2001) and
(2002), is adopted because of the following reasons: (a)
the mathematical description is a “linear complemen-
tarity problem” (LCP) not only in terms of rates, but
also for finite steps and under holonomy (i.e. reversibil-
ity) hypothesis, which turns out to be acceptable and
useful in the present context; (b) inverse analysis by
discrepancy minimization may be tackled as “math-
ematical programming under equilibrium constraints”
(MPEC), subject of vast literature; (c) if applied to non-
hardening (“perfect”) plasticity, piecewise lineariza-
tion reduces limit analysis and shakedown analyses
to classical linear programming, see e.g. Jirasek and
Bažant (2001), Kaliszky (1989).

The most general piece-wise linear (PWL) cohesive
crack model (CCM) reads (matrix notation, bold sym-
bols for vectors and matrices; details in Cocchetti et al.
2002; Bolzon et al. 1994 and 2002):

ϕ = NTt − (ϕ0 − H λ) , w = N̄ λ (1)

ϕ ∗ 0, λ̇ ⊂ 0, ϕT ε̇ = 0 (2)

Reference axes 1, 2 and 3 are related to a surface as nor-
mal (“mode one”) and tangential to it (“shear modes”),
surface which is assumed “smooth” and on which trac-
tions t are related through the model to possible relative
displacements w.

The other quantities here involved have the fol-
lowing meanings rooted in classical plasticity theory:
“yield functions” {ϕ1 . . . ϕm}T = ϕ defining, when
zero, current yield planes, subsequent to the initial
ones defined in t space by ϕ0 (“yield limits”); “flow
coefficients” {λ1 . . . λm}T = λ governing irreversible
“plastic flow” by their rates (derivatives, marked by
dots, with respect to ordinative, non-physical, time);
matrices N and N̄ contain the unit vectors which
define, respectively, orientations of the yield planes and

t1, w1

t2, w2

Fig. 1 Mixed mode cohesive crack model with piecewise lin-
earization (dashed lines define the final yield domain after soft-
ening processes)

(a) (b)

Gf

t

H

t0

w

λ

t

H

σn

w

'
H'

t0

λ

t0

Fig. 2 Piecewise linearized models of mode I cohesive crack
fracture

orientations of the relevant contributions by yielding
to displacements w; N̄ = N implies “associativity”;
matrix H governs hardening which here is merely soft-
ening (therefore in Eq. (1) a minus precedes H).

Details on the above general PWL-CCM and on its
potentialities and limitations with respect to other frac-
ture models can be found in Cocchetti et al. (2002),
Tin-Loi and Que (2002). An illustrative special case for
mixed-mode brittle fracture is shown in Fig. 1, where:
m = 5 yielding modes due to symmetry assumed with
respect to normal axis 1; two non-zero hardening coeffi-
cients, one concerning the yield plane normal to axis 1,
the second governing softening on the other 4 external
yield planes. It is worth noting that the “final” perfectly
plastic behavior described by dashed lines can be inter-
preted as Coulomb friction.

To the present purposes of a preliminary method-
ological study concerning novel indentation tests of
brittle fracture and subsequent inverse analyses, the
following further particularizations are assumed in the
above PWL-CCM context, with reference to Fig. 2.
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mode-I fracture (no sliding, hence “associativity” in
plasticity jargon); softening branch approximated by a
sequence of linear steps, Fig. 2a, but in what follows by
a single straight segment as shown in Fig. 2b (namely
with H’= 0 and t ≥0 = 0); holonomy (i.e. reversibility)
assumed in view of the present use of the opening phase
alone. Therefore, the simple fracturing model of Fig.
2b to consider in the sequel, as particularization of Eqs.
(1) and (2), reads (primed symbols concern the “detach-
ment stage”):
ϕ = t + H (w − λ) − t0 ∗ 0, w ⊂ 0, ϕ w = 0 (3)

ϕ≥ = w − λ − t0
H

∗ 0, λ ⊂ 0, ϕ≥
λ = 0 (4)

The parameters to identify for the calibration of the
above simple model of brittle fracture are merely two:
tensile strength t0 and softening coefficient H ; alterna-
tively, t0 and fracture energy Gf shown in Fig. 2b. Cor-
relation is expected between these main parameters and
the others in a general PWL model of brittle fracture.

The present holonomy assumption (reversibility of
deformation path) is justified by the following circum-
stance: experimental data to exploit are extracted from
penetration curves only, since the descending branch
provided by instrumented indenters may differ from the
loading branch only because of possible fragments in
the crack and/or possible inelastic strains; both events
are not considered here in the computer simulations
since marginal as for mechanical consequences in the
present context of brittle materials.

In what follows the material to characterize as for
fracture behavior is assumed isotropic linear elastic,
with Young modulus E and Poisson ratio θ “a priori”
known, identified by usual tension tests. The contact
between the indenter and the indented material will be
described as Coulomb friction without dilatancy, so that
another parameter to identify in practical applications
may be the friction coefficient.

3 Test modeling

The constitutive models for brittle materials considered
in what precedes contain (at least two) parameters in
cohesive crack model to be estimated by inverse analy-
sis resting on non-destructive economical indentation
tests. Clearly, crack generation and propagation should
be central and dominant events in such testing proce-
dure to design. Therefore, advantageous prospects arise
for a sharp indenter, a sort of blade with edges, quite
different from the traditional and popular indenters.

Assessments of residual stresses by indentation
alone have already led to propose indenter shapes
without axial symmetry with respect to the tip axis
(“elliptical indenters”, Buljak and Maier 2012). The
shape optimization to the present purposes will be per-
formed in the next Section. Basic features of the pro-
posed experiments and of their simulations are selected
here below.

According to an usual praxis in present experimen-
tal mechanics, the “instrumented” indenter provides in
digital form the “indentation curve”, namely the force
F imposed on the tip and the consequent tip penetra-
tion u into the specimen (with surface suitably polished
according to pertinent codes). The indenter tip mater-
ial considered herein is usual diamond, isotropic elastic
with moduli E I = 1170 GPa and νI = 0.1.

However, rigidity might be attributed to the indenter,
not only here for the comparative numerical exercises
performed in order to optimize its shape, but also in
practical applications to materials like glass.

As for the simplest cohesive crack model (mode I,
PWL with 2 parameters) specified in Sect. 2, Eqs.
(3), (4), glass is considered here with the following
“search intervals” conjectured by an “expert” (see e.g.
Le Bourhis 2007; McGee 2006):

20 MPa ∗ t0 ∗100 MPa,

20 MPa/μm ∗ H ∗80 MPa/μm (5)

The averages of the above lower and upper bounds are
considered in what follows as “reference values” of the
parameters to estimate, namely:

t̄0 = 50 MPa, H̄ = 50 MPa/μm (6)

The cohesive model, Eqs. (3), (4), with the above para-
meters is attributed at the beginning of each simula-
tion to the whole symmetry plane area within which
the crack propagation is expected to extend during the
test loading phase. The Young modulus and Poisson
ratio, are assumed here as “a priori” known, and read:
E = 70 GPa, θ = 0.25, respectively.

On the growing interface between indenter and spec-
imen, to the coefficient f of Coulomb friction without
dilatancy the following “a priori” conjectured lower
and upper bound and their mean value are attributed
here:

0.01 ∗ f0 ∗ 0.35, f̄0 = 0.15 (7)

For computer simulations of tests, the following provi-
sions are adopted herein: finite element (FE) modeling
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Fig. 3 Adopted mesh for test modeling with single indenter

by a commercial code (Abaqus 2010); boundary con-
ditions with zero displacements (alternatively, “infinite
elements”) in an area considered unperturbed by the test
in the specimen; exploitation of two orthogonal planes
of symmetry consistent with the expected symmetries
of the imprint (parallel to indenter central longitudinal
axis); large strain context.

The peculiar idealization of the test (a crack local-
ized in a pre-selected plane normal to the specimen
surface) would make possible, in a small-strain con-
text, the once-for-all “condensation” of the elastic
domain surrounding the crack: a provision, not adopted
here, which may alleviate the computational burden of
repeated simulations.

Other data which quantify the main features of the
numerical exercises in what follows are listed here:
8-node hexahedron elements for continuum in speci-
men and indenter, 8 nodes cohesive elements to model
fracturing surface; about 60,000 degrees of freedom
(relatively small changes with diverse geometries con-
sidered for indenter optimization). A typical adopted
FE mesh is visualized in Fig. 3 by exploiting the two
symmetries preserved in all indenter shapes.

4 New indenter shapes for brittle fracture tests

The novel geometrical features of indenters considered
here for the calibration of brittle fracture models are

(a) (b)

Ly(x)

Lz(x)z

y

Fig. 4 “Bi-circular conical” (BCC) indenter. a Cross section;
b overall shape

presented below. The common purpose pursued is the
presence of sharp edges as a provision contributing to
confer dominant role to crack generation and propaga-
tion.

(A) The simple basic geometry of popular conical
indenters (like those for Rockwell hardness tests, see
e.g. Oliver and Pharr 2004; Chen et al. 2007) can be
described by:

D(x) = 2x tan φ (8)

where: x is an abscissa along the cone axis, with origin
on the tip vertex V (smoothing not to be considered
here); φ is half of the opening angle; D is the diameter
of the cross-section circle. The new geometry consid-
ered here is visualized in Fig. 4: along the two orthogo-
nal axes y and z, by preserving symmetry with respect
to xy and xz planes, two lengths LY and LZ are selected
as maximal and minimal “diameters” of the new sec-
tion defined by circular arches ending at sharp edges,
as shown in Fig. 4a.

A second parameter, either β or “thickness” T , is
considered for the governance of the new geometry,
namely:

LY (x)=∂ · D(x), L Z (x)= 1

∂
D(x), T = L Z

LY
= 1

∂2

(9)

The indenter defined by Eqs. (8) and (9) are called
henceforth “bi-circular conical” (BCC); clearly, it pre-
serves cross-section areas and the vertex tip (x = 0) of
the original cone (which is recovered for T = 1).

(B) An indenter geometry alternative to the preced-
ing one is considered now.

The denomination proposed is “bi-circular blade”
(BCB) indenter. Its generation can be described as fol-
lows, with reference to Figs. 5a and 6. A fictitious cir-
cular cone described by Eq. (8) is considered as for its
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(a) (b)

z

Ly(x)

Lz(x)
y

D(x)/2
d

Fig. 5 Cross section (a) and overall shape (b) of a sharp
“bi-circular blade” (BCB) indenter

(a) (b)
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d D
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Ly

D/2

Fig. 6 Geometry of indenter BCB. a Section in the plane of
symmetry for both the original fictitious cone and new indenter;
b cross section

intersection with a plane parallel to its axis at a distance
d from it, with the role of symmetry plane of the new
indenter.

The cross section is therefore defined by circular
arches and exhibits the following “diameters”:

L Z (x) = D (x) − 2d,

LY (x) =
[
2D (x) · L Z (x) − L2

Z (x)
]1/2

(10)

The above geometric configuration is governed by two
parameters: α and d. Clearly, the origin from the ficti-
tious cone, Eq. (8), with vertex V (at x = 0), implies a
surfaces consisting of straight lines through V.

Now the “thickness” T of the cross-section changes
with the longitudinal coordinate x:

T (x) = L Z (x)

LY (x)
=

√
D (x) − 2d

D (x) + 2d
(11)

Figure 6 clarifies the generation of this indenter geom-
etry which exhibits no singular point as vertex and a
sharp edge represented for z = 0 by the equation:

(z + d)2 + y2 =
[

D (x)

2

]2

, z = 0 (12)

z

y 

Ly(x) 

Lz(x) 

Ly(x) 

Lz(x) 

γ

Fig. 7 Cross section either of a “double bi-circular conical”
(DBCC) indenter or of a “bi-circular blade indenter” (DBCB)

The sharp edge line in the symmetry plane containing
the axis and the maximal diameter L y is smooth (no
longer bi-linearly straight like in BCC indenters and
now without tip as vertex), like in a sort of blade or
knife, see Fig. 5b.

(C) Configurations of more complex and costly
indenters might be suggested by the advantages for
fracture parameters estimation expected from increased
role or dominance of crack-propagation promoted in
the indentation experiment. Therefore, it may be of
practical interest the association in a single indenta-
tion instrument of either two indenters BCC or two
BCB described in what precedes. The denominations
adopted include “double”, namely DBCC and DBCB
indenters, respectively. Figure 7 evidences the new
geometry requiring as third governing parameter the
distance γ between the axes. The two symmetries with
respect to planes xy and xz are preserved.

The two novel indenter shapes specified in Figs. 4
and 5 are further illustrated in Fig. 8, which visualizes
the two planes of symmetry and the FE meshes adopted
in the sequel (with features specified in Sect. 3).

5 Sensitivity analyses for indenter shape design

Sensitivity analysis in general means assessment of the
influence which the sought parameters have on quanti-
ties measurable in the experiment, see e.g. Kleiber et al.
(1997).

Clearly, such influence must be quantified through
simulations of the test in order to select the quantities
to measure and to design the experimental procedure.
Crucial is here the latter purpose, pursued in what fol-
lows by two approaches, both using the FE discretiza-
tions specified in Sect. 3 and visualized in Fig. 4.

(i) For the present innovation, in order to select
new indenter geometries, sensitivity analyses may
provide checks of compliance with the following
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Fig. 8 Novel shape of
indenters (one fourth in
view of the two
symmetries): a “bi-circular
conical”; b “bi-circular
blade” and relevant FE
mesh for test simulations

Fig. 9 Loading indentation
curves generated by BCC
indenter with φ = 16∇ and a
with thickness T = 0.4 and
b with T = 0.2: on the left
for H at reference value and
tensile strength t0 at
conjectured upper bound
(dashed line) and lower
bound (solid line); on the
right, analogously, for t0 at
reference value and H at
upper bound (dashed line)
and lower bound (solid line)

requirement: the differences between measurable quan-
tity values achieved when the parameters are at the
extremes of the intervals conjectured preliminarily “by
an expert” to localize the search, should be larger (say
by two orders of magnitude) than expected exper-
imental errors. While a conjectured extreme value
is attributed to one parameter, reference values are
assigned to the other parameters. In the present prelim-
inary shape design, preferable turns out to be the inden-
ter with higher sensitivity in the above sense. Clearly,
at this stage of investigation experimental errors cannot

be realistically quantified, but only assumed to compar-
ison purposes.

Figures 9, 10, 11 and 12 visualize some of the com-
putational exercises carried out in the present orien-
tative study. Such comparative exercises led to select
as preliminarily “optimal” indenter a DBCC with the
geometry parameters α = 16∇, T = 0.2 (namely
β = 2.236) and γ = 0.5mm.

The above outlined computations lead to the fol-
lowing conclusions: the main parameters in simple
cohesive crack models significantly influence the inden-
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Fig. 10 Diagrams with same meaning as those in Fig. 9, but here generated through simulations of tests by doubling with ω = 0.5mm
the same indenter (i.e. by a DBCC), and by applying the same final load level (namely 40 N) on the double indenter

Fig. 11 Pseudo–experimental results comparable to those in Fig. 9 (concerning a BCC), here achieved by simulation of indentation
with same loading but by a BCB indenter with geometry governed again by φ = 16∇ and by d = 0.26 mm and d = 0.6 mm

Fig. 12 Pseudo–
experimental results by a
DBCB: comparable to those
in Fig. 10 (concerning
DBCC indenter), but here
generated by doubling with
ω = 0.5 mm the same
indenter and by doubling
the final load level

tation curve, generated by bi-circular conical (BCC)
indenter, more with lower thickness T and more with
double pins. However, such conclusions obviously
should be combined with technological and stabil-
ity requirements of the indenter production and rou-
tine employments. Moreover, the above numerical
results have no general quantitative meaning, since they
depend on a particular choice of materials (here a kind
of glass).

(ii) The traditional sensitivity analysis in inverse
problems, see e.g. Kleiber et al. (1997), has a meaning
different from that above adopted at (i). Specifically,
this meaning is provided through the derivative of a
typical measurable quantity with respect to a sought
parameter, by attributing conjectured reference values
to all the other parameters to estimate. Such usual
sensitivity analysis quantifies the influence of sought
parameters on measurable quantities independently
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Table 1 Sensitivities of penetration measures under various
indentation loads F

F [N] 5 10 15 20 25

t0/umaxdu/dt0 0.004 0.016 0.043 0.232 0.329
H/umaxdu/d H 0.000 0.005 0.031 0.095 0.149

Fig. 13 Geometric configuration (account taken of symmetries)
of the crack on the specimen surface at the end of the penetration
by the DBCC indenter with thickness T = 0.2; diameter L y =
0.46mm is visualized by a thick segment on the abscissae axis

from accuracies of expert’s conjectures and of experi-
mental data.

By considering the above selected DBCC indenter,
sensitivities in the above sense have been computed
(by forward finite-difference approximation with incre-
ments of 5 % with respect to reference values of the two
parameters) for 5 penetration depths corresponding to 5
equal increase stages of indenter load. The normalized
results are collected in Table 1, which evidences the
growth of sensitivity with tip penetration, as obviously
expected. The normalization is performed by the max-
imum of the penetration (umax) and by the reference
values of the two sought parameters (tensile strength t0
and negative hardening or softening H ).

The FE simulation of the fracture test, above con-
sidered as an example of DBCC indenter employment,
has led to the crack shown in Fig. 13. The geometry
at the end of penetration (corresponding to the load-
ing branch top of the indentation curves) is character-
ized by the following numerical results: depth of the
indenter pin amounts to 0.22 mm; depth of the crack
to ∞ 0.5 mm; crack length and central opening on the
surface: L ∞= 5 mm and l ∞= 0.06 mm, respectively.

6 Inverse analysis procedures

The approach adopted in what follows for the parame-
ter identification is traditional and popular in practice,
see e.g. Bui (1994), Buljak (2012). It is centered on
the minimization with respect to the sought parameters

(here vector p = {t0, H}T) of the “discrepancy func-
tion” ω, discrepancy between experimental data (vector
ū, here of “pseudo-experimental data”) and their coun-
terparts u computed by test simulations as functions of
the variable parameter vector p:

ω (p) = [
u (p) − ū

]T C−1 [
u (p) − ū

]
,

min
p

{ω (p)} = ω
(
p̂
)

(13)

The covariance matrix C, which quantifies the mea-
surement inaccuracy, is assumed unit in this preliminary
deterministic investigation. For numerical illustrative
example, a double bi-circular conical (DBCC) with
thickness T = 0.2 is considered; with maximum
Fmax = 20N + 20N = 40N of the applicable force.
Vector ū contains here 50 “pseudo-experimental data”,
namely, 50 penetration depths corresponding to 50 lev-
els of force at equal intervals over the loading part of
the indentation curve, starting from zero up to the above
maximum force.

The numerical quantities (concerning materials and
FE mesh) assumed in what precedes, and the averages
of the bounds conjectured for the model parameters
to identify, are now considered as input for test sim-
ulations (direct analysis) apt to provide vector ū of
the measurable response quantities, here confined to
upward indentation curve (penetration phase).

The values, say p̄, attributed to the sought parameters
for the direct analysis leading to ū, if compared to the
results p̂ of inverse analyses based on ū, obviously lead
to checks of validity and accuracy of the estimation
procedure.

The relationship u(p) has been formulated in what
precedes as a nonlinear complementarity problem
(NLCP). Actually, in each FE simulation step, the linear
complementarity problems (LCP) of the cohesive crack
model, Eqs. (3), (4), and of Coulomb friction model, are
associated with linear elasticity, and with equilibrium
and compatibility equations. These equations are non-
linear in view of large strains considered herein accord-
ing to their implementation in the adopted commercial
code Abaqus (2010). Therefore, problem (13) turns out
to be a “mathematical programming under equilibrium
constraints” (MPEC) in the jargon of classical mathe-
matics originally oriented to economy, i.e. an optimiza-
tion with non-convex and non-smooth constraints and
with possible lack of convexity of the objective func-
tion ω(p), see e.g. Cottle et al. (1992), Luo et al. (1996),
Facchinei and Pang (2003).
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For the minimization of the discrepancy functions, a
(“first order” iterative) Trust Region Algorithm (TRA)
is employed to the present purposes by using its imple-
mentation in Matlab (2009). Descriptions of TRA are
widely available in the literature, e.g. Conn et al.
(2000), and are omitted here. The attainment of the
absolute minimum is here checked by initialization
multiplicity.

The double sharp bi-circular conical indenter
(DBCC) described in Sects. 4 and 5, and in Figs. 10
and 13, is considered here again with geometry defined
by the same parameters, namely α = 16∇, T = 0.2
(hence β = 2.236) and γ = 0.5 mm. With reference
to the present example, Fig. 14a visualizes by a map
the discrepancy function ω(p) over the search domain
and the step sequences starting from two different ini-
tializations; the convergence in one of them is shown
in Fig. 14b. The initial and final values of the objec-
tive function ω turn out to be 1.1022 × 106 and 0.069,
respectively, in one minimization; 4.2359 × 106 and
0.0325 in the other minimization process.

The following convergence criterion was adopted
for the end of the iterative procedure: the optimization
is terminated either when the change of the objective
function from one iteration to another is less than 0.01
or when the norm of the step length (i.e. vector of para-
meter changes from one iteration to another) is smaller
than 0.001 (with parameters normalized about refer-
ence values in this case).

Similar numerical exercises have corroborated the
prospect, arising in various practical applications, to
consider Coulomb friction coefficient as the third para-
meter to estimate. One of several results encouraging
the present method is visualized in Fig. 15 with TRA
convergence plots for estimation of strength t0, soften-
ing H and friction f on the basis of the same indenter
shapes BCC and DBCC and relevant tests considered
earlier. As a verification of the above inverse analy-
sis accuracy, the following numerical results related
to Fig. 15 are cited here as example: after 11 TRA
steps for one case and 8 steps for the other, estimates
of t0, H and f exhibit the following errors in per-
centage: 0.27, 0.9 and 0.31 %, respectively, from BCC
test; 0.001, 0.02 and 0.001 %, respectively, from DBCC
test.

The comparison is limited to the identification of the
three parameters t0, H and f by the same algorithm
TRA with same initializations which are visualized in
Fig. 15.

The comparative computational checks (and others
not presented here for brevity) of the novel indentation-
based inverse analysis proposed herein lead to the
following remarks. On the basis of the loading vs.
penetration curve alone provided by instrumented
indenters, simple cohesive crack models for brittle
fracture can be calibrated by the novel sharp shapes
envisaged here, with priority to be attributed to double
indenters.

7 Model reduction

Computer simulations of indentation tests are usually
expensive, and rather high numbers of simulations are
required in order to solve numerically the problem of
discrepancy function minimization, Eq. (13). Such cir-
cumstance is crucial for repeated frequent applications
of inverse analyses in industrial contexts, and concerns
practically all approaches and computational methods
for parameter identification (mathematical program-
ming like TRA adopted here, genetic algorithms, arti-
ficial neural networks).

A remedy frequently adopted at present consists of
“model reduction” by “proper orthogonal decomposi-
tion” (POD). Details on this methodology can be found
in, e.g., Buljak (2012), Buljak and Maier (2011) and
will not be presented here.

As anticipated in the Introduction, the sequence of
operative stages proposed in the present context can be
outlined as follows, with reference to the test by the
double indenter considered in what precedes DBCC
with α = 16∇, T = 0.2 (hence β = 2.236), γ =
0.5 mm (see Sect. 4) and to the estimation by it of
two parameters alone (t0 and H ) for clearer graphical
descriptions of some operative stages.

(a) In the “search domain” suggested by an expert and
specified in Sect. 3, a grid of N “nodes” is gener-
ated, here with N = 9 × 9 = 81. The grid gen-
eration is here performed by equi-intervals in both
axis directions. For higher number of parameters
to estimate it would be advantageous in practical
applications to a priori select the number of nodes
and then to optimize their collocations to form the
grid over the search domain.

(b) Assuming the parameters of each node pi, with
i = 1. . .N , the M = 50 penetrations depths
as measurable quantities (corresponding to equi-
intervalled indenter loads) are computed by FE test
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Fig. 14 With reference to
the same DBCC indenter as
in Figs. 10 and 13. a
Parameters search domain
with a map of the
discrepancy function and
two sequences of TRA
steps. b Convergence of the
TRA procedure from one of
the two initializations

Fig. 15 Convergence of
TRA, from the same
initializations, for the
identification of friction
coefficient f besides brittle
fracture parameters t0 and
H; indentation curve
provided a by a single pin
indenter BCC, and b by a
double indenter (DBCC)

simulations and are gathered in vector ui. All these
“snapshots” are collected in M × N (here 50×81)
matrix U = [u1, . . ., uN ].

(c) The eigenvalues and eigenvectors are computed
for the (positive semi-definite) matrix D = UTU,
here of order 81. According to the POD theory
(see e.g. Buljak (2012)) such computations are cen-
tral to the generation of new “basis” φ by exploit-
ing the “correlation” physically motivated by the
common origin of all the considered “snapshots”
of the pseudo-experimental data. The eigenvalues
of D provide guidance to “truncation”, namely
to removal of axes with negligible components
and thus to the generation of a new basis φ̄, with
N̄ << N dimensions, N̄ = 5 in the present con-
text.
Thus, a controllable approximation of any test
response snapshot ui(i = 1. . .N ) can be computed
by a linear transformation of an “amplitude” vector
ai with much lesser dimensionality, here reduced
to 5.

(d) Let p be one parameter vector among many within
the sequence of steps implied by TRA for the solu-
tion of the optimization, Eq. (13). For any p of
such variable vectors, the corresponding vector u
of measurable quantities is needed to assess the
consequent value of the objective function ω. If
the results of the POD are available, interpolation
among the amplitudes ai(i = 1. . .N ) leads to a(p),
namely to the amplitude N̄ -vector which defines,

with controllable approximation, in the original
basis the corresponding N̄ -vector u, “snapshot” of
the response to the test if the parameter were p.
The interpolations can be efficiently performed by
“radial basis functions” (RBF).

The above outlined POD + RBF + TRA procedure
has been applied frequently in recent times (e.g.
Ostrowski et al. 2008; Buljak and Maier 2011; Bul-
jak 2012) because of the earlier mentioned computa-
tional advantages, which are remarkable in practical
applications, if compared to TRA (or other optimiza-
tion algorithms) involving test simulations by FE in a
long sequence. Such advantages are evidenced in this
study by the following typical assumptions and results
of comparative exercises.

For the indentation, same DBCC indenter is employed
as in the preceding Sections; same test modeling; aver-
age computing time for a single FE simulation is about
45 minutes by a computer with processor Pentium i5,
and the amount of RAM memory is 4GB; total com-
puting time up to TRA convergence amounts to about
24 hours.

The adopted RBFs read, with the value 1 attributed
to the factor r according to advice in Buhmann (2003):

gi (p) = 1√
→p − pi→2 + r2

(14)

Other numerical features adopted in the present exam-
ples are specified in what follows. Equi-interval grid of
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N = 81 nodes already specified; truncation in eigen-
values of matrix D = UTU: once the eigenvalues
have been ordered in terms of decreasing values, the
neglected eigenvalues are those for which their sum,
starting from the smallest one, is less than 10−6 of the
sum of the whole set of eigenvalues; the average com-
puting time to assess snapshot u corresponding to para-
meters p amounts to: 0.003 sec.; computing time for the
solution of the inverse problem by POD + RBF + TRA:
0.1sec.; average errors of the estimates resulting from
TRA: 0.01 % on t0, 0.04 % for H ; errors of the esti-
mates achieved by POD + RBF + TRA: 0.001 % on t0,
0.06 % for H .

The robustness of the present inverse analysis pro-
cedure has been checked with positive results by sto-
chastic numerical exercises like the following one.
A random perturbation of ±2 % with uniform prob-
ability density has been induced into the inputs ū of
pseudo-experimental data; as a consequence, mean
values and standard deviation of the assessed para-
meters corresponding to 10 different inverse analysis
with randomly extracted noise of the above mention
level turned out to be t0 = 49.97 ± 0.13 MPa and
H = 50.04 ± 0.23 MPa/μm instead of reference val-
ues specified in Eq. (6). The error of the assessed para-
meters by the POD+RBF+TRA cohesive crack model
calibration turned out to be less than 1 % for the noise
level equal to ±2 %.

An alternative assessment of consequences due to
measurement inaccuracy may be based on attribution
of same measurement error (not in percentage) to all
experimental data concerning penetration depths dur-
ing the loading process. The errors attributed as an
example to such data are specified in the first row of
Table 2. Such errors have led to the percentage changes
indicated there (second and third row) as for the esti-
mates of strength t0 and hardening H . The parameter
H turns out to be affected by larger errors if compared
to strength. Clearly, such percentages might be reduced
by larger depth of indentation.

Furthermore, it is worth noting that the experimental
errors assumed in this numerical tests are more than the
resolution of displacement measurements by the most
advanced modern instrumented indenters operating on
the force scale used in present numerical examples.

The “a priori” evaluation of the Young modulus may
be affected by some errors which, quantified in percent-
age as examples in Table 3 first row, have caused the
percentage errors pointed out there.

Table 2 Influence of instrumental errors on measurable quanti-
ties ui on the fracture estimates

νui [μm] +2 (%) +5 (%) −2 (%) −5 (%)

νt0 [%] 1.9 5.8 1.5 2.8
νH [%] 3.7 9.1 3.3 6.3

Table 3 Consequences on the parameter estimates due to pos-
sible errors in the preceding assessment of the Young modulus

νE[%] +5 (%) +10 (%) −5 (%) −10 (%)

νt0[%] 1.61 2.95 1.73 3.61
νH [%] 5.11 9.02 4.51 9.95

The above numerical checks contribute to the con-
clusion that the inverse problem is stable and well posed
and that the influence of elastic properties uncertainty
turns out to be quite limited. The latter circumstance
is due to the specific design of the indenter. Unlike
classical, still widely employed indenters, the novel
sharp shape presented here reduces the elastic energy
involved in the indentation process, with respect to the
one related to the fracture.

Similar perturbations in percentage of the “a priori”
Poisson ratio have affected about an order-of-magnitude
less the two-fracture parameters resulting from the
inverse analyses, as exemplified in Table 3.

In the present investigation of possible fracture
parameter estimation by novel kinds of indenters and
inverse analysis, the dimensionality of the unknown
parameters space has been kept rather small, also in
order to easily visualize comparative results. With pos-
sibly larger number of parameters to identify, the triv-
ial approach to subdivide each conjectured parameter
interval in equal sub-intervals may become a practical
difficulty, since the number of nodes over the search
domain obviously grows exponentially with the num-
ber of parameters to estimate. An alternative approach
to grid generation might be based on Latin hypercube
sampling, McKay et al. (1979). It provides the advan-
tage that the nodes number N is chosen “a priori”, as
useful in practice.

8 Closing remarks

The results of the study outlined in what precedes leads
to the following conclusions.
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(a) Brittle materials can be mechanically character-
ized as for the main parameters governing simple
fracture models by means of indentation tests on the
basis of experimental data extracted merely from
the loading phase of the indentation curves.

(b) The shape of the indenter should be apt to make
brittle fracture as dominant feature of the specimen
response to indentation tests. Indenters with sharp
edges, particularly if double in the same instrument,
turn out to satisfy such requirement provided that
their geometry is optimized with respect to some
parameters governing it.

(c) Production of indenters with shapes not avail-
able on the market might impose some con-
straints not considered in this preliminary inves-
tigation. Another limitation of the present results
is their confinement to the simplest “mode-I”
piecewise-linearized cohesive crack model, with
only two parameters to identify (or three if fric-
tion coefficient is considered as unknown) and with
isotropic elasticity assumed as “a priori” known.
Further investigations are desirable by “pseudo-
experimental” comparative approaches in order to
overcome the above limitations.

(d) Model reduction by proper orthogonal decompo-
sition as proposed herein turns out to be crucial
in order to make computing efforts consistent with
economical constraints in routine industrial appli-
cations either in laboratory or “in situ”.

(e) Dimensions of indentation imprints (and conse-
quently sizes of indenters and entities of maxi-
mum loads) has to satisfy a compromise between
two main requirements: as small as possible to
avoid damages by “in situ” testing; much larger
than typical lengths in the material nanoscale struc-
ture. The almost microscale dimensions selected
in the present study clearly might turn out to be
inadequate in various applications, but the main
features of the method are likely to represent an
improvement of the current practices concerning
brittle structures diagnoses.

(f) If anisotropy is expected in the brittle fracture prop-
erties of the material, the non-destructive diagnostic
method presented herein based on sharp instru-
mented indenters only (i.e. without profilometers)
might be generalized, according to research in
progress, by recourse to the following main pro-
visions: some mixed-mode piecewise-linear cohe-
sive crack model like the one visualized in Fig. 1,

in order to preserve the mathematical formulation
and procedure adopted herein; repetitions of the
indentation tests on the vertices of a small triangle
containing the superficial place under examination,
by turning 45∇ the major diameters of the indenter
cross-sections. Such procedure has been adopted in
Buljak and Maier (2011) for identification of resid-
ual stress tensors (as an economical alternative to
the procedure proposed in Bocciarelli and Maier
2007); this is the subject of current research on cal-
ibrations of fracture models in anisotropic media.

(g) Clearly, stochastic approaches, e.g. such that
adopted in Bolzon et al. (2002) for diverse exper-
iments, will represent a further step ahead in the
present methodological context of inverse analy-
ses.
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Abstract The effect of material parameters on the
statistics of fracture surfaces is analyzed under small
scale yielding conditions. Three dimensional calcu-
lations of ductile crack growth under mode I plane
strain, small scale yielding conditions are carried out
using an elastic-viscoplastic constitutive relation for a
progressively cavitating plastic solid with two popula-
tions of void nucleating second phase particles repre-
sented. Large particles that result in void nucleation at
an early stage are modeled discretely while small par-
ticles that require large strains to nucleate are homo-
geneously distributed. The three dimensional analy-
sis permits modeling of a three dimensional material
microstructure and of the resulting three dimensional
stress and deformation states that develop in the frac-
ture process region. Material parameters characteriz-
ing void nucleation are varied and the statistics of the
resulting fracture surfaces is investigated. All the frac-
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ture surfaces are found to be self-affine over a size range
of about two orders of magnitude with a very similar
roughness exponent of 0.56 ± 0.03. In contrast, the full
statistics of the fracture surfaces is found to be more
sensitive to the material microscopic fracture proper-
ties: height fluctuations are shown to crossover from
a Student’s distribution with power law tails at small
scales to a Gaussian behavior at large scales, but this
transition occurs at a material dependent length scale.
Using the family of Student’s distributions, this transi-
tion can be described introducing an additional expo-
nent μ = 0.15 ± 0.02, the value of which compares
well with recent experimental findings. The description
of the roughness distribution used here gives a more
complete quantitative characterization of the fracture
surface morphology which allows a better compari-
son with experimental data and an easier interpretation
of the roughness properties in terms of microscopic
failure mechanisms.

Keywords Fracture surfaces · Roughness statistics ·
Ductile fracture · Crack growth · Scaling behavior ·
Finite elements

1 Introduction

Mandelbrot et al. (1984) first characterized the self-
affine scaling properties of fracture surfaces. A hope
in this study was to provide a quantitative correla-
tion between fracture surface roughness and a mate-
rial’s crack growth resistance. This hope has yet to be
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realized. Nevertheless, Mandelbrot et al. (1984) stimu-
lated a large body of experimental and theoretical work
aimed at characterizing the scaling properties of frac-
ture surfaces. Experimentally, the self-affine nature of
the roughness of fracture surfaces has been observed in
a wide variety of materials (metals, ceramics, glasses,
rocks…) under a wide variety of loading conditions
(quasi-static, dynamic, fatigue) and is typically char-
acterized by two exponents: one measured parallel to
the crack front, denoted by ε , and one measured along
the crack propagation direction, denoted by θ, see Pon-
son (2007), Alava et al. (2006), Bonamy and Bouchaud
(2011) for overviews. In some studies, e.g. Bouchaud
et al. (1990), Måløy et al. (1992), it was suggested that
the values of these exponents are universal.

Others have maintained that the characterization of
the roughness of fracture surfaces is more complex. For
example, in Bonamy and Bouchaud (2011), Bonamy
et al. (2006) it is argued that there are two roughness
regimes: one pertaining to length scales smaller than
the fracture process zone and the other to length scales
larger than the fracture process zone, with each regime
characterized by different values of the fracture sur-
face roughness exponents. Alternatively, a multifractal
characterization of fracture surface roughness has been
suggested as discussed in Cherepanov et al. (1995).
The extent to which the appropriate characterization
of fracture surface roughness depends on the material
microstructure and/or the fracture mechanism remains
an open question.

A variety of theoretical analyses of fracture surface
roughness have been carried out using a linear elastic
fracture mechanics framework, e.g. Ramanathan et al.
1997, or a molecular dynamics framework, e.g. Nakano
et al. (1995). For ductile fracture of structural metals
at room temperature the governing mechanism is the
nucleation, growth and coalescence of micron scale
voids, which involves large plastic deformations, and
occurs over size and time scales much larger than cur-
rently accessible by molecular dynamics. This process
governs the evolution of ductile fracture surface rough-
ness. The importance of accounting for porosity evo-
lution and the accompanying plastic deformation in
modeling fracture surface roughness is emphasized in
Bouchaud (2003), Bouchbinder et al. (2004).

Calculations of fracture surface roughness using a
finite deformation continuum mechanics formulation
for a progressively cavitating solid were carried out
in Needleman et al. (2012). The analyses in

Needleman et al. (2012) were based on a modified Gur-
son (1975) constitutive relation for a porous viscoplas-
tic solid with two types of void nucleating particles
modeled: large particles that nucleate voids at an early
stage and smaller particles that nucleate voids at a later
stage. The larger particles were represented as uniform
sized discrete ”islands” of void nucleation, thus intro-
ducing a material length scale, while the smaller par-
ticles were uniformly distributed. This framework nat-
urally accounts for the effects of damage evolution on
the stress and deformation state in the fracture process
zone.

In Needleman et al. (2012), the calculations were
carried out for fixed material properties but for four
random distributions of the larger particles. Here, we
employ the same theoretical framework as in Needle-
man et al. (2012) and solve the same small scale yield-
ing problem. We focus attention on one of the four
spatial distributions of the larger particles in Needle-
man et al. (2012) and vary two material parameters that
characterize void nucleation. We also use a more robust
procedure to define the fracture surface geometry from
the output of our simulations and investigate the rough-
ness statistical properties for the cases calculated in
Needleman et al. (2012) as well as for the simulations
presented here. We go beyond the characterization of
fracture surfaces by their correlation function and the
value of the roughness exponent, and investigate the
scaling of the full distribution of roughness. This scal-
ing can be described by a second exponent character-
izing the transition from power law tail at small scales
to Gaussian roughness statistics at large scales. This
quantitative characterization of fracture surface geom-
etry allows a better comparison with experimental data
and an easier interpretation of the roughness properties
in terms of microscopic failure mechanisms.

2 Problem formulation

The boundary value problem analyzed is identical to
that in Needleman et al. (2012). Only parameters char-
acterizing void nucleation differ. For completeness, the
formulation and constitutive relation are briefly stated
here.

The focus is on quasi-static crack growth but
dynamic analyses are carried out for numerical reasons.
The calculations are carried out using a Lagrangian,
convected coordinate formulation and the dynamic
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principle of virtual work written as
⎧

V

φ i j∂Ei j dV =
⎧

S

T i∂ui d S−
⎧

V

ω
ν2ui

νt2 ∂ui dV (1)

All field quantities are taken to be functions of the
convected coordinates, yi , and time, t ; Ei j are the
covariant components of the Lagrangian strain ten-
sor, T i are the contravariant components of the trac-
tion vector, φ i j are the contravariant components of
Kirchhoff stress on the deformed convected coordinate
net (τ = Jσ , with σ being the Cauchy or true stress
and J the ratio of current to reference volume), π j and
u j are the covariant components of the reference sur-
face normal and displacement vectors, respectively, ω

is the mass density, V and S are the volume and sur-
face of the body in the reference configuration, and
( ),i denotes covariant differentiation in the reference
(y1, y2, y3) Cartesian frame. In presenting the results
we will use the notations x , y and z for y1, y2 and y3,
respectively.

A slice of material orthogonal to the initial crack
plane is analyzed and the quasi-static mode I isotropic
elastic singular displacement field is imposed on the
remote boundaries. Also imposed are symmetry con-
ditions corresponding to an overall plane strain con-
straint.

As in Needleman et al. (2012), the in-plane block
dimensions are hx = hy = 0.4 m with an initial
crack tip with an opening of b0 = 1.875 × 10−4 m.
The finite element mesh consists of 428, 256 twenty
node brick elements giving 1, 868, 230 nodes and
5, 604, 690 degrees of freedom. Ten uniformly spaced
elements are used through the thickness hz of 0.005 m,
with 10 elements through the thickness, and a uniform
208 × 64 in-plane mesh is used in a 0.02 m × 0.006 m
region immediately in front of the initial crack tip
giving an in-plane element size of 9.62 × 10−5 m by
9.38 × 10−5 m.

2.1 Constitutive relation

The constitutive framework is the modified Gurson
constitutive relation with

d = de + dσ + dp (2)

and

de = L−1 : σ̂ (3)

dσ = ψσ̇I (4)

dp =
⎪

(1 − f )ᾱ ˙̄λ
σ : νβ

νσ

⎨
νβ

νσ
(5)

Small elastic strains are assumed, L is the tensor of
isotropic elastic moduli, σ̂ is the Jaumann rate of
Cauchy stress and σ is the temperature.

Adiabatic conditions are assumed so that

ωcp
νσ

νt
= γτ : dp (6)

with ω = 7, 600 kg/m3 = 7.6×10−3 MPa/(m/sec)2,

cp = 465 J/(kg ∗K), γ = 0.9 and ψ in Eq. (4) is 1 ×
10−5/K.

The flow potential is ( Gurson 1975),

β = α 2
e

ᾱ 2 +2q1 f ⊂ cosh

⎩
3q2αh

2ᾱ

)
−1−(

q1 f ⊂⎛2 =0

(7)

where q1 = 1.25, q2 = 1.0 are parameters introduced
in Tvergaard (1981), Tvergaard (1982a), f is the void
volume fraction, ᾱ is the matrix flow strength, and

α 2
e = 3

2
σ ≥ : σ ≥, αh = 1

3
σ : I, σ ≥ = σ − αhI (8)

The function f ⊂, introduced in Tvergaard and
Needleman (1984), is given by

f ⊂ =
⎝

f f < fc

fc+(1/q1− fc)( f − fc)/( f f − fc) f ∇ f

(9)

where the values fc = 0.12 and f f = 0.25 are used.
The matrix plastic strain rate, ˙̄λ, is taken as

˙̄λ = λ̇0

[
ᾱ

g(λ̄, σ)

⎞1/m

,

g(λ̄, σ) = α0G(σ) [1 + λ̄/λ0]N (10)

with λ̄ = ⎠ ˙̄λdt , E = 70 GPa, π = 0.3, α0 = 300 MPa
(λ0 = α0/E = 0.00429), N = 0.1, m = 0.01 and
λ̇0 = 103/s.

The function defining the temperature-dependence
of the flow strength is

G(σ) = 1 + bG exp(−c[σ0 − 273])
× [

exp(−c[σ − σ0]) − 1
]

(11)

with bG = 0.1406 and c = 0.00793/K. In (11), σ

and σ0 are in K and σ0 = 293K. Also, the initial
temperature is taken to be uniform and 293K.
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The initial void volume fraction is taken to be zero
and the evolution of the void volume fraction is gov-
erned by

ḟ = (1 − f )dp : I + ḟnucl (12)

where the first term on the right hand side of Eq. (12)
accounts for void growth and the second term for void
nucleation.

Eight point Gaussian integration is used in each
twenty node element for integrating the internal force
contributions. Lumped masses are used and twenty-
seven point Gaussian integration is used for the ele-
ment mass matrix. The discretized equations are inte-
grated using the explicit Newmark θ-method (θ = 0),
Belytschko et al. (1976). The constitutive updating is
based on the rate tangent modulus method of Peirce
et al. (1984) while material failure is implemented via
the element vanish technique in Tvergaard (1982b).

2.2 Inclusions and fracture properties

The calculations model a material with two popula-
tions of void nucleating second phase particles: (1) uni-
formly distributed small particles that are modeled by
plastic strain controlled nucleation and (2) large, low
strength inclusions that are modeled as “islands” of
stress controlled nucleation. In each case, void nucle-
ation is assumed to be described by a normal distribu-
tion as in Chu and Needleman (1980).

For plastic strain nucleation,

ḟnucl = D ˙̄λ, D = fN

sN
∞

2τ
exp

[
−1

2

( λ̄ − λN

sN

)2⎡

(13)

The parameters fN = 0.04 and sN = 0.1 are fixed.
For stress controlled nucleation

ḟnucl = A
[ ˙̄α + α̇h

]
(14)

with

A = fN

sN
∞

2τ
exp

[
−1

2

( ᾱ + αh − αN

sN

)2⎡
(15)

if (ᾱ + αh) is at its maximum over the deformation
history. Otherwise A = 0.

We confine attention to a single inclusion distrib-
ution that is the distribution labeled 411 in Needle-
man et al. (2012). There are 2016 possible inclusions
(mean spacing about 6.7×10−4 m) in the uniform mesh
region. Each inclusion radius is r0 = 1.5×10−4 m. For

an inclusion governed by stress nucleation centered at
(y1

0 , y2
0 , y3

0), the value of fN in Eq. (15) at the point
(y1, y2, y3) is

fN =
⎣⎤
⎦

f̄N for
⎟

(y1 − y1
0 )2 + (y2 − y2

0 )2 + (y3 − y3
0 )2 → r0;

0 for
⎟

(y1 − y1
0 )2 + (y2 − y2

0 )2 + (y3 − y3
0 )2 > r0

(16)

The values f̄N = 0.04 and sN /α0 = 0.2 are fixed.
In the following, materials having various values of

parameters characterizing void nucleation are investi-
gated (Fig. 1). For all materials analyzed the inclusion
distribution is that termed case411 in Needleman et al.
(2012):

– Material # 1 has the parameter values analyzed in
Needleman et al. (2012) which are λN = 0.3 and
αN /α0 = 1.5. The fracture surfaces for this case are
calculated using the procedure introduced here for
defining the roughness geometry and the statistical
geometry of this case is investigated in more detail
than in Needleman et al. (2012).

– Material # 2 has the nucleation strain of the small
particles changed from the reference value to λN =
0.4 with the nucleation stress of the inclusions fixed
at αN /α0 = 1.5.

– Material #2x has the nucleation strain of the small
particles changed from the reference value to λN =
0.2 with the nucleation stress of the inclusions fixed
at αN /α0 = 1.5. This calculation terminated after
an amount of crack growth that was too small to
provide a fracture surface that could be character-
ized statistically in the same manner as for the other
cases.

– Material # 3 has the nucleation stress of the inclu-
sions changed from the reference value to αN /α0 =
2.0 with the nucleation strain of the small particles
fixed at λN = 0.3.

The results of the calculations are regarded as mod-
eling quasi-static response via dynamic relaxation. The
results are reported as for a quasi-static solution; for
example, the absolute magnitude of geometric dimen-
sions do not matter; only geometric ratios matter. In the
following, the results are presented as for a quasi-static
solution.
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Fig. 1 Initial inclusion
distribution. a On z = 0.
b On z = hz. Note that the
positive y−axis is in
opposite directions in a
and b

Fig. 2 Void volume
fraction distribution
showing the mode of crack
growth for Material#2
(λN = 0.4, αN /α0 = 1.5).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

Fig. 3 Void volume
fraction distribution
showing the mode of crack
growth for Material #2x
(λN = 0.2, αN /α0 = 1.5).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

3 Results

3.1 Crack growth

Figures 2, 3 and 4 show distributions of void volume
fraction f that indicate the crack growth path on the
planes z = 0 and z = hz for Material #2, Material #2x

and Material #3, respectively. In each case, the stage of
loading corresponds to the last stage of loading com-
puted for that case. Note that in (a) for all three figures
the y−axis is positive to the left whereas in (b) for all
three figures the y−axis is positive to the right. The dark
gray regions show where f ∇ 0.1 so that the mater-
ial within those regions has essentially lost all stress
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Fig. 4 Void volume
fraction distribution
showing the mode of crack
growth for Material #3
(λN = 0.3, αN /α0 = 2.0).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

Fig. 5 Distributions of void volume fraction f in a plane z =
constant for material # 3 illustrating the definition of fracture
surfaces based on void volume fraction threshold values of ft =
0.03, 0.04 and 0.10

carrying capacity. The lighter gray regions which cor-
respond to 0.1 ∇ f ∇ 0.01 show the inclusions on the
two planes that have nucleated voids. Shear localiza-
tion can play a significant role in linking voids to the
main crack. For Material #2x with λN = 0.2, the cal-
culation was terminated after a relatively small amount
of crack growth because intense localized deformation
led to the stable time step becoming very small.

3.2 Fracture surface definition

The first step in defining the fracture surface is to
plot the void volume fraction f distribution on a cross

section z = constant. Next a threshold value ft is cho-
sen so that f ∇ ft corresponds to a connected crack
with ft being the largest value that gives a connected
crack over a predefined region. Figure 5 shows a typical
cross section with contour values of f = 0.03, 0.04
and 0.10. The fracture surfaces for these three con-
tour values are rather close. Changing the size of the
cracked region modifies the value of ft needed for a
connected crack. Interestingly, the scaling behavior,
and especially the value of the roughness exponent,
was found to be largely independent of this value. On
the contrary, the roughness amplitude was observed to
slightly increase while the value of ft was decreased.

For the fracture surfaces analyzed in the follow-
ing, ft is taken close to 0.10 but sufficiently small to
avoid any uncracked ligaments behind the main crack.
Regions with f ∇ ft , but that are not connected to the
main crack, were found—these are not shown in Fig. 5.
They do not contribute to the roughness of the fracture
surfaces.

The roughness is computed for the two fracture sur-
faces produced by each calculation. One fracture sur-
face, termed as the lower fracture surface, is obtained
from the smallest value of z, for a given position (x , y)
in the mean fracture plane, for which f ∇ ft on the con-
nected crack while the other fracture surface, termed
the upper fracture surface, corresponds to the largest
value of z, for a given position (x , y) in the mean frac-
ture plane, for which f ∇ ft on the connected crack.
The crack profiles obtained from the lower and upper
fracture surfaces are denoted by hbot(x) and htop(x),
respectively. These are shown on Fig. 6 for the void
volume fraction distribution of Fig. 5. The jumps in the
profiles reflect the overhangs in the connected crack
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Fig. 6 Fracture profiles extracted along the crack propagation
direction x obtained from the void volume fraction distribution
of Fig. 5 using ft = 0.04 for material # 3

as seen in the porosity distribution. Our definition of
the crack profiles mimics a profilometer that measures
only the highest point on the fracture surface and so pre-
vents the presence of overhang on the crack surfaces
analyzed subsequently.

4 Statistical analysis of fracture surfaces

4.1 Correlation functions of fracture surfaces and
roughness exponent

We first characterize the fluctuations of heights of
the fracture surface using the correlation function, δh,
defined as

δh(∂x) =
⎟〈[h(x + ∂x, y) − h(x, y)]2

〉
x, y (17)

Here, ≤ ∈x denotes the average over x and y. The quan-
tity δh(∂x) can be interpreted as the typical difference
of height between two points separated by a distance
∂x along the mean fracture plane. We focus on the cor-
relation of heights in the direction of propagation only
(x-axis), the width of the specimen in the perpendic-
ular direction z being too small to allow a statistical
analysis of the roughness in that direction.

The correlation function is computed for both the
upper and lower fracture surfaces. The final correla-
tion function is then obtained by averaging over these
statistically equivalent surfaces. Indeed, from symme-
try arguments, we expect the upper and lower fracture
surfaces in each calculation to share similar statistical
properties. The correlation function δh(∂x) is shown
in Fig. 7 on a logarithmic scale, after normalization of
the axis by the element spacing ex along the x-axis in
the fine mesh region. Figure 7a shows plots for the four
inclusion distributions analyzed in Needleman et al.

(2012) corresponding to material #1 (λN = 0.3 and
αN /α0 = 1.5) using the same notation as in Needle-
man et al. (2012) to identify the inclusion distributions.
The correlation functions exhibit a power law behavior

δh(∂x) ⊥ ∂xθ (18)

over more than two decades, characterized by the
roughness exponent θ. In this logarithmic represen-
tation, θ is the slope of the solid straight lines, power
law fits of the correlation functions computed from the
fracture surfaces. Although the roughness amplitude—
the position of the lines along the ordinates—may vary
from one sample to another, the slope remains rather
independent of the inclusion spatial distribution, as
illustrated by the values of θ given in the legend of
the figure and obtained from a power law fit of these
curves. These results give an average roughness expo-
nent θ = 0.55 ± 0.02, independent of the inclusion
distribution.

Our calculations capture the self-affine nature of
ductile fracture surfaces, as observed experimentally
in Bonamy and Bouchaud (2011), and as also found
numerically in Needleman et al. (2012), but here over
a larger range of length scales than in Needleman et al.
(2012). Since quadratic elements are used the mesh
spacing is ex/2 but the scaling in Fig. 7 holds for even
smaller ∂x values. This indicates that the interpolation
procedure between mesh points when defining the frac-
ture surface geometry still preserves the roughness scal-
ing. In Needleman et al. (2012) values 0.4 < θ < 0.6
were reported for the simulations in Fig. 7a. The pro-
cedure used in this study to define the fracture surfaces
from the porosity field gives a more precise character-
ization of the crack roughness, a more uniform value
of the roughness exponent and the value of the rough-
ness exponent θ exhibits a smaller variation with the
inclusion distribution than in Needleman et al. (2012).
There are variations in the amplitude of the roughness
that reflect variations in the threshold value ft of the
porosity used to define the fracture surfaces. Neverthe-
less, despite these fluctuations, the value of the rough-
ness exponent is very robust, and changes very weakly
from one inclusion distribution to another. We have also
checked that the value of the roughness exponent does
not depend much on the value of the threshold ft used
to define the fracture surfaces using both ft = 0.04 and
ft = 0.10, supporting the value θ ≡ 0.55 reported in
this study.
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Fig. 7 Correlation function of the roughness of simulated frac-
ture surfaces. a Material # 1: scaling behavior of the crack rough-
ness observed for four different spatial distributions of the inclu-
sions (see Needleman et al. 2012) characterized by a similar
roughness exponentsθ = 0.55 ± 0.02. b Comparisons of materi-

als #1, #2 and #3: Scaling behavior of the crack roughness for the
same spatial distribution of inclusions, but with different material
properties. regardless of the value of the nucleation threshold, the
roughness follows power law behavior with a roughness expo-
nent θ = 0.56 ± 0.01

Figure 7b shows the effect of varying a material para-
meter for a fixed spatial distribution of inclusions. The
inclusion distribution chosen here is case411 (Needle-
man et al. 2012). In one calculation, the void nucleation
strain is taken to be λN = 0.4 (material #2) while in the
other calculation αN /α0 = 2.0 (material #3). All other
material and void nucleation parameters remain fixed.
Also, for comparison purposes, the data for case411
with the reference void nucleation parameters (material
# 1) is also plotted. The simulated fracture surfaces here
show a power law behavior, with a roughness exponent,
θ ≡ 0.56, rather independent of the material proper-
ties in the range investigated. This result is consistent
with a large body of experimental work that reports a
universal value of the roughness exponent, independent
to a large extent of the microstructure of the material
studied, its mechanical properties or the loading condi-
tions used during the fracture test as seen in Bonamy
and Bouchaud (2011), Bouchaud et al. (1990), Ponson
et al. (2006).

4.2 Non-Gaussian statistics of height fluctuations

As seen in Fig. 7, the Hurst exponents calculated for the
various inclusion distributions and material parameter
variations considered here and in Needleman et al.

(2012) are nearly the same. In Vernède et al. (2013)
the full statistics of fracture surface height fluctuations
were obtained for cracks in a variety of materials. It was
found that the height fluctuations could be described by
a distribution that differed from a Gaussian by having
power law tails. The deviation from Gaussian statistics
was found to be material dependent. Therefore, in order
to explore possible effects of material characteristics on
the predicted fracture surface morphology, we inves-
tigate the full statistics of height variations ∂h(x, y)

defined by

∂h(x, y) = h(x + ∂x, y) − h(x, y) (19)

Following Ponson (2007), Santucci et al. (2007), the
procedure used to compute the histogram P(∂h) at a
given scale ∂x is the following.

1. We fix first a value of ∂x .
2. For each location (x, y) on both the upper and

lower fracture surface, the corresponding height
variations ∂h are computed. This procedure results
in a large set {∂h}∂x of height variations at a given
scale ∂x .

3. The histogram of this set of values is computed.
The histogram of ∂h is calculated by placing into
‘boxes’ [bminb2], [b2b3],…, [bn−1bmax] the values
of ∂h where the side b1, b2 of the boxes are distrib-
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Fig. 8 Histograms P(∂h|∂x) of height variations ∂h (see Eq.
(19)) for various values of ∂x for material #1 and the spatial dis-
tribution of particles labeled case421 in Needleman et al. (2012).
The solid lines are fits based on the Student’s distribution of Eq.
(20) using various values of the parameters k and ∂hc.The inset
represents the correlation function of the surface. The points (or
second moment) corresponding to the distributions represented
in the main panel are plotted using the same color code

uted homogeneously between bmin = min[∂h] and
bmax = max[∂h].

4. The histogram or probability density

Pi

⎩
∂hi = bi + bi+1

2
|∂x

)

is calculated as the fraction of values of ∂h con-
tained in the i th box.

In order to study the scaling behavior of the frac-
ture surface roughness, this procedure is repeated for
various scales ∂x , leading to a family of histograms
P(∂h|∂x). An important property is that the standard
deviation of the distributions P(∂h|∂x) corresponds to
the correlation function δh(∂x) of the fracture sur-
faces, as can be observed from its definition in Eq. (17).

The distribution P(∂h|∂x) is shown in Fig. 8 for
four values of ∂x for the simulation labeled case421 in
Needleman et al. (2012). The larger the value of ∂x , the
broader the distribution, as expected from the scaling of
the correlation function δh(∂x) ⊥ ∂xθ . The standard
deviation of these histograms is plotted in the inset as a
function of ∂x using the same color code as in the main
panel. As expected, the standard deviation evolves as a
power law with exponent θ = 0.56, in agreement with
the plot of δh(∂x) shown in Fig. 7.

The distribution of height variations computed on
numerical fracture surfaces are not Gaussian, but
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Fig. 9 Variations of the parameters
∞

k/(k − 2) and ∂hc/ex
obtained from the fit of the roughness distributions P(∂h) shown
in Fig. 8 for case 421 in Needleman et al. (2012) using Student’s
distribution (see Eq. (20)). The transition from power law tails
(
∞

k/(k − 2) ≈ 1) to Gaussian (
∞

k/(k − 2) ≡ 1) statistics as
the length scale ∂x increases is characterized by the exponent
μ = 0.15. The typical value of ∂hc of the roughness extracted
using fits by Student’s distribution also evolves as a power law
of the length scale ∂x with exponent γ = 0.71

exhibit fat tails with power law behavior P(∂h) ⊥
∂h(k+1)/2 for large values of ∂h. This means that large
height fluctuations are not exponentially rare on duc-
tile fracture surfaces as is the case for brittle fracture
surfaces (Ponson et al. 2007). Indeed, the crack profiles
in the calculations here display a non-negligible num-
ber of abnormally large fluctuations ∂h, as qualitatively
seen in Fig. 6.

To describe this effect more quantitatively, the distri-
butions P(∂h) are described using a family of probabil-
ity distributions referred to as Student’s t distributions

tk,∂hc(∂h) ⊥ 1

∂hc

(
1 + 1

k

⎩
∂h

∂hc

)2
)−(k+1)/2

(20)

with parameters k and ∂hc, and represented by solid
lines in Fig. 8. For reasons discussed in the next sec-
tion, it is more appropriate to consider the parameter∞

k/(k − 2) instead of k.
These parameters, obtained from the fit of the distri-

butions P(∂h|∂x), are represented in Fig. 9 as a function
of the scale ∂x . The first parameter that characterizes
the shape of the distribution decreases as a power law
with the scale ∂x√

k

k − 2
⊥ ∂x−μ (21)

with μ = 0.15 as illustrated by the straight line varia-
tions in the logarithmic representation of Fig. 9.
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The second fitting parameter used to describe the
roughness distributions P(∂h|∂x) is also represented
in Fig. 9 as a function of the scale ∂x . It here increases
as a power law

∂hc ⊥ ∂xγ (22)

with exponent γ = 0.71.

The ductile crack profiles studied here exhibit a more
complex behavior than brittle fracture surfaces. Indeed,
in brittle materials, distributions of height variations
follow a Gaussian behavior at all scales (Ponson 2007;
Ponson et al. 2007). In our description based on Stu-
dent’s t distribution, this corresponds to k ∅ ∞, or
equivalently, to

∞
k/(k − 2) = 1, for any value of ∂x .

In other words, only one exponent is needed to describe
the scaling of the roughness distribution, since μ = 0.
For ductile fracture surfaces, not one, but three scal-
ing exponents θ, μ and γ are required. However, this
can be reduced to two independent exponents based
on a simple relationship. Using the definition (20) of
Student’s t distribution, one can show that its second
moment, and so the correlation function, varies as

δh(∂x) ⊥ ∂hc

√
k/(k − 2) (23)

As a result, from the scaling relations in Eqs. (18), (21)

and (22), one obtains

θ = γ − μ. (24)

This relation is satisfied by the exponents extracted
here for which θ = 0.56 (case421) was measured (see
Fig. 7). This supports our description of the roughness
statistics based on Student’s t distribution.

The relation between exponents suggests an inter-
pretation of the roughness exponent θ that character-
izes the scaling behavior of the correlation function
with the scale ∂x as the combined effect of the varia-
tions of the typical roughness ∂hc with the scale ∂x and
the variations in the actual shape of the distribution of
height fluctuations. It also suggests that the universal
value of the roughness exponent θ relies on the value of
μ that describes the change in the shape of roughness
distribution. Experimental results in Vernède et al.
(2013) are consistent with these findings: the statistical
analysis of both aluminum alloy and mortar fracture
surfaces indicates a similar behavior, with a measured
value μexp ≡ 0.15. However, the experimental value
of the second exponent, γ exp ≡ 0.9, is larger than the
value obtained for the calculated fracture surfaces here.

In the following, we use the above analysis of the
distribution of height variations to compare the fracture
surfaces obtained for materials #1, #2 and #3.

4.3 Roughness statistics: comparison between the
materials

The analysis in Sect. 4.2 revealed that the scaling of
the roughness distribution of ductile fracture surfaces
could be described using Student’s tk,∂hc distribution
introduced in Eq. (20), with the adjustable parameters∞

k/(k − 2) and ∂hc that follow power laws with the
scale ∂x . We focus in this section on the parameter∞

k(k − 2) that characterizes the distribution shape. For
a finite value of the parameter k, Student’s t distribution
displays fat tails with

tk,∂hc(∂h) ⊥ ∂h(k+1)/2 for ∂h ≈ ∂hc

while tk,∂hc(∂h) approaches a Gaussian distribution
when k tends to infinity. As a result, this family of distri-
butions is suited to describe a transition from power law
tails to Gaussian statistics. In particular

∞
k/(k − 2) =

1 for a Gaussian distribution and
∞

k/(k − 2) > 1 oth-
erwise. We expect the value of

∞
k/(k − 2) to indicate

the distance from Gaussian behavior.
The analysis of the fracture surface of material

#1 has revealed that
∞

k/(k − 2) remains larger than
one, indicating fat tails statistics and deviation from
a Gaussian distribution at the length scales investi-
gated (see Fig. 9). However, extrapolating the power
law behavior

∞
k/(k − 2) ∼ ∂x−μ towards larger val-

ues of ∂x , predicts that it will reach
∞

k/(k − 2)(∂x =
ξ) = 1 at the crossover length ∂x = ξ . Interestingly,
it means that for ∂x > ξ , the fracture surface might
recover Gaussian statistics. Such an extrapolation leads
to ξ = 100ex for material #1.

The transition from fat tail statistics for ∂x < ξ to
Gaussian behavior for ∂x > ξ calls for an interpreta-
tion in terms of fracture mechanisms. In the scenario
proposed in Vernède et al. (2013), Gaussian statistics
of the roughness would be reminiscent of brittle frac-
ture surfaces while distributions with fat tails would
be signature of damage mechanisms. This behavior is
fairly consistent with the scaling behavior of the cor-
relation function that gives roughness exponents of the
order of θ = 0.5 for brittle failure and larger val-
ues around θ = 0.6 at a smaller scale when fail-
ure is accompanied by damage mechanisms ( Bonamy
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k/(k − 2) used in the fit
by Student’s distribution, Eq. (20), of the histrograms P(∂h) of
height fluctuations as a function of ∂x

et al. 2006; Morel et al. 2008). The crossover length
between the two regimes - large exponents and fat
tail statistics at small scale to small exponents with
Gaussian statistics at large scale - may be a reflection
of the size scale associated with the micro mechanism
of fracture. If so, the value of ξ extracted from the
analysis of the roughness statistics could serve as a
length scale associated with the underlying damage
process.

Figure 10 compares the variations of the parame-
ter

∞
k/(k − 2) for the materials analyzed. The power

law decay differs from one material to another. The
exponent μ ≡ 0.15 —the slope of the straight line
variations in this logarithmic representation—remains
rather constant. But the variations in the position along
the ordinates indicate different values of ξ , and more
generally, different level of deviations from Gaussian
(and so brittle) behavior.

The deviation from Gaussian behavior is more pro-
nounced for material #3 than for material #2 for which
the values of

∞
k/(k − 2) is smaller at all length scales

∂x . This may indicate that material #3 is more ductile
than material #2 which is expected due to the larger
value of the nucleation stress for the large inclusions.
Extrapolation of

∞
k/(k − 2) to large values of ∂x indi-

cates that the crossover value ξ = 300ex for material
#3 which is much larger than the value estimated for
the materials #1 and #2.

The comparison of material #1 with material #2
is more complex. The relative position of the curves

∞
k/(k − 2) indicates stronger deviations from Gaussian

behavior for material #1. However, the extrapolated
value of ξ ≡ 100ex gives a similar value for both
materials.

5 Discussion

Calculations have been carried out for a fixed size, den-
sity and distribution of discretely modeled void nucle-
ating inclusions. The statistics of the fracture surfaces
was investigated. In addition, the statistics of the frac-
ture surfaces obtained in Needleman et al. (2012) were
recalculated. In Needleman et al. (2012), the fracture
surface was defined by a threshold value ft = 0.1,
somewhat smaller than the material parameter ft used
in the constitutive model to define final failure. In the
present studies, in some cases, an even smaller value,
ft = 0.03, is chosen to define a well connected crack
surface. Fig. 5 shows that the crack surfaces obtained
by these definitions are rather close, as the value of f
increases steeply in the material near the fully open
crack. In Needleman et al. (2012), a thickness average
of the fracture surface height was calculated and this
average profile was used to obtain the correlation func-
tion δh(∂x). Here, instead, δh(∂x) is calculated for
each cross section, and is subsequently averaged, and
it turns out that this procedure gives power law scal-
ing over a larger range, with less difference between
the various inclusion distributions in Needleman et al.
(2012). Also in Needleman et al. (2012) only the rough-
ness exponent was calculated whereas here we calcu-
late more complete fracture surface statistics.

As noted in Needleman et al. (2012) the calcula-
tions contain several length scales: (1) the mean spac-
ing between inclusion centers; (2) the inclusion radius;
(3) the slice thickness; and (4) the finite element mesh
spacing. A significant difference between these length
scales is that the first three are physically relevant length
scales whereas any dependence of the results on the
finite element mesh length scale is a numerical arti-
fact. Whether or not there is a significant effect of the
finite element mesh spacing on the predicted statistics
of fracture roughness remains to be determined.

Our results give rise to a value of θ = 0.56 ± 0.03
that is essentially independent of the inclusion distribu-
tions and fracture properties considered and that is also
close to the value θ3D ≡ 0.6 reported for 3D fracture
surfaces of a wide range of ductile and quasi-brittle
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materials in the crack propagation direction Ponson
et al. (2006), Ponson et al. (2006). While the proba-
bility distribution of heights is a Gaussian for brittle
fracture, it is more complex for ductile fracture sur-
faces. We showed that Student’s t distribution can fit
all the histograms in Fig. 8. This distribution is equiva-
lent to a Gaussian at sufficiently small values of ∂h/ex

but crosses over to a power-law at larger values. Also,
as seen in Fig. 8 for small values of ∂x/ex the com-
puted distributions display fat power law tails whereas
for sufficiently large values of ∂x/ex the distribution
is well-fit by a Gaussian. The transition from fat tail
to Gaussian statistics is described by introducing a sec-
ond exponent μ ≡ 0.15. In the experiments in Vernède
et al. (2013) where the roughness statistics were calcu-
lated as an average over all directions in the fracture sur-
face, the statistics were also observed to deviate from
a Gaussian and the deviation was well-described by
two exponents. The value of μ was close to the one
obtained here but the value of γ was larger than in
our calculations. Hence, while for brittle fracture sur-
faces, knowledge of the roughness index θ is sufficient
to describe completely the probability distribution, for
ductile fracture surfaces independent exponents are
needed.

Our results indicate that for ductile fracture sur-
faces there is a length characterizing the crossover from
power law to Gaussian statistics. The results also sug-
gest that this length may correlate with the size of the
fracture process zone. What remains to be determined
is the extent to which this crossover length as well as
other aspects of the non-Gaussian statistics correlate
with measures of fracture toughness such as KIc and
crack growth resistance curves. For the type of materi-
als considered here, this requires more extensive calcu-
lations with increased crack growth, larger variations
of inclusion density and distribution, and greater varia-
tion in material properties. Such calculations are being
undertaken and the results here suggest the possibil-
ity of a connection being made between post-mortem
fracture surface statistics and crack growth resistance.

6 Conclusions

1. A central result of this paper is that, for the material
parameter variations analyzed, the computed duc-
tile fracture surfaces exhibit self-affine properties
with similar values of the fracture surface rough-

ness exponent θ but their full statistical properties
differ.

2. For the ductile fracture surfaces analyzed:

– The computed fracture surfaces are self-affine over
a range of length scales of about two orders of mag-
nitude.

– The computed values of the fracture surface rough-
ness exponents along the crack growth direction are
not sensitive to the larger particle distributions nor
to the fracture parameter variations investigated.

– The computed fracture surface roughness distrib-
utions are not Gaussian but they are all well fitted
by Student’s distribution. Both the roughness expo-
nent θ = 0.56 ± 0.03 and the exponent μ ≡ 0.15
characterizing the transition with ∂x/ex from fat
tail to Gaussian statistics are found to be rather
independent of the spatial distributions of the larger
inclusions and of material parameters in the range
investigated.

– The computed full fracture surface roughness sta-
tistics vary with the fracture parameters investi-
gated.
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Abstract In the paper, a novel algorithm employing
pseudo-spectral approach is developed for the PKN
model of hydrofracturing. The respective solvers com-
pute both the solution and its temporal derivative. In
comparison with conventional solvers, they demon-
strate significant cost effectiveness in terms of balance
between the accuracy of computations and densities
of the temporal and spatial meshes. Various fluid flow
regimes are considered.

Keywords Hydrofracturing · PKN model ·
Numerical modelling

1 Introduction and preliminary results

Hydraulic fracturing is a widely used method for
stimulation of hydrocarbons reservoirs. This technol-
ogy has been known and successfully applied for a
few decades (Khristianovic and Zheltov 1955; Hub-
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bert and Willis 1957; Crittendon 1959). Recently it
has been revived, due to economical reasons, as a
basic technique for exploitation of unconventional
deposits of oil and gas. The phenomenon of a fluid
driven fracture propagating in a brittle medium is
also present in many natural processes (e.g. magma
driven dykes—Rubin 1995, subglacial drainage of
water—Tsai and Rice 2010).

Throughout the years, starting from the pioneer-
ing works of Sneddon and Elliot (1946), Khris-
tianovic and Zheltov (1955), Perkins and Kern (1961),
Geertsma and de Klerk (1969), Nordgren (1972), var-
ious models of hydrofracturing have been formu-
lated and used in applications. A broad review of
the topic can be found in Kovalyshen and Detournay
(2009), Kovalyshen (2010), Linkov (2011c), Kusmier-
czyk et al. (2012). Together with increasing complexity
of the models describing this multhiphysics process,
the computational techniques have been continuously
enhanced. A comprehensive survey on the algorithms
and numerical methods used in hydrofracturing simu-
lation can be found in Adachi et al. (2007), Economides
(2000).

Responding to the recent demand, an increasing
stream of publications have appeared concerning addi-
tional information on seismic events, shear stresses
in the rock formation, multifracturing and others and
their implementation into the solvers (Zhang et al.
2004; Moos 2012; Olson 2008; Dobroskok and Linkov
2011). Also, a considerable effort has been made to
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improve the existing algorithms by incorporating new
efficient numerical techniques (Lecampion and Detour-
nay 2007; Linkov 2011c; Peirce and Detournay 2008,
2009).

The main computational challenges associated with
the modelling of hydraulic fractures are: (a) strong non-
linearity resulting from the coupling between the solid
and fluid phases, (b) singularity of the gradients of the
physical fields near the crack tip, (c) moving bound-
aries, (d) degeneration of the governing equations at
the crack tip, multiscaling and others.

To achieve the maximal possible efficiency of
numerical simulations, the computational algorithms
should be formulated in proper variables accounting
for all the problem peculiarities (Linkov 2011c). As a
result, they allow one to reduce the volume of processed
data, which is especially important when dealing with
complex geometries and/or multifracturing.

The analysis presented in this paper is devoted to the
PKN model of hydrofracturing. This model contains all
the peculiarities mentioned above, except for the non-
local relation for the fluid-solid coupling. Although we
restrict our interest only to a single fracture, the devel-
oped algorithms, thanks to their robustness, can be suc-
cessfully applied to model a system of cracks.

The numerical analysis of the problem should
be backdated to Nordgren (1972) who extended the
Perkins and Kern model (Perkins and Kern 1961) to
account for the fluid loss effect and fracture volume
change. As a result, the crack length was determined
as part of the solution. The author proposed a finite dif-
ference scheme to solve the problem, which is in fact
equivalent to the finite volume (FV) method.

Further development of the PKN formulation was
done by Kemp (1989), who (a) implemented the spe-
cific boundary condition at the moving crack tip into
the FV scheme, (b) incorporated asymptotic behaviour
of the solution near the crack tip in a special tip ele-
ment, (c) indirectly used the fourth power of the crack
opening (w4) as a new dependent variable, instead of
the crack opening itself. For the early-time asymptotic
model Kemp proposed a power series solution, present-
ing its first four terms.

The recent paper by Kovalyshen and Detournay
(2009) has extended most of Kemp’s results, incor-
porating all information on the PKN model available
to date. They present various asymptotics, complete
analytical solution for an impermeable rock (directly
extending the results from Kemp (1989) from four

leading terms to an infinite series representation), FV
algorithm with a special tip element and a numerical
benchmark for the Carter leak-off, linking the results to
the scaling approach developed in Adachi and Peirce
(2007), Detournay (2004), Mitchell et al. (2007a,b).

In Linkov (2011a,b,c), the PKN model was refor-
mulated to improve the efficiency and stability of
computations by (1) introducing proper dependent
variables (cubed fracture opening, w3), (2) utilizing the
speed equation and (3) by imposing a modified bound-
ary condition at a small distance behind the crack tip
(ε-regularisation). Additionally, the analytical solution
for an impermeable rock was evaluated for the new
dependent variable in a form of rapidly converging
series in Linkov (2011c). Moreover, the author high-
lighted (Linkov 2011a) that numerical schemes exploit-
ing a fixed position of the crack tip during the iterations
may become ill-posed.

In Mishuris et al. (2012) and Kusmierczyk et al.
(2012) the ε-regularisation technique was further
enhanced by (1) appropriate adaptation of the speed
equation to the chosen numerical scheme and (2)
improved way of imposing of the regularized boundary
condition. A detailed discussion on various aspects of
application of implicit and explicit numerical schemes
was provided.

In this paper we are presenting a novel algorithm
based on the pseudo-spectral approach. Namely, we
propose an efficient numerical algorithm to solve a spe-
cific self-similar problem and extend the results to the
general (transient) formulation. Since, the integration
schemes used in the algorithm incorporate the exact
boundary conditions at the crack tip, no regularization
technique is necessary. The most accurate two points
representation of the temporal derivative is used to
guarantee an optimal algorithm performance. Finally,
two solvers are developed which show their robustness
and stability. They both demonstrate high cost effec-
tiveness in terms of the relationship between the volume
of the processed data and the accuracy of computations.
Moreover, additionally to the crack opening and length,
the temporal derivative of the former and the crack tip
velocity are automatically returned as components of
the problem solution.

1.1 Problem formulation

Let us consider a symmetrical crack of length 2l situ-
ated in the plane x ∗ [−l, l]. The crack is fully filled by
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a Newtonian liquid injected at the middle point (x = 0)
with a known rate q0(t). Note here, that the crack length
evolution, l = l(t), is the result of fluid flow inside the
fracture. Due to the symmetry of the problem, one can
restrict the analysis to the half of the crack x ∗ [0, l(t)].

The classic mathematical formulation of the PKN
model of hydrofracturing was given in Nordgren
(1972). Below we present a system of equations con-
stituting the model. The mass conservation principle is
expressed by the continuity equation:

θw

θt
+ θq

θx
+ ql = 0, t ⊂ t0, 0 ≥ x ≥ l(t), (1)

while the Poiseuille equation describes the flow in a
narrow channel. In the case of a Newtonian fluid, it is
written in the following form:

q = − 1

M
w3 θp

θx
. (2)

Here w = w(t, x) stands for the crack opening, q =
q(t, x) is the fluid flow rate, p = p(t, x) (p = p f −φ0,
φ0-confining stress) refers to the net fluid pressure. The
constant M , involved in the Poiseuille equation, is com-
puted as M = 12μ, where μ denotes the dynamic vis-
cosity (see for example Adachi and Detournay 2002).
The function ql = ql(t, x) from (1) is the volumetric
rate of fluid loss to formation in the direction perpen-
dicular to the crack surfaces per unit length of the frac-
ture. This function is usually assumed to be given, but
it may depend on the solution itself as well. To account
for various leak-off regimes, we accept the following
behaviour of ql :

ql(t, x) = Ql(t)(l(t) − x)∂, for x ∇ l(t), (3)

for some constant ∂ ⊂ −1/2. Note that the case
∂ = −1/2 corresponds to the Carter law (Carter 1957),
while ∂ ⊂ 1/3 guarantees that the leak-off vanishes
near the crack tip as fast as the crack opening at least
(see for details Kusmierczyk et al. 2012).

The group of fluid equations is to be supplemented
by the relation describing deformation of the rock under
applied hydraulic pressure. In the case of the PKN
model, a linear relationship between the net fluid pres-
sure and crack opening is in use:

p = kw, (4)

where a known proportionality coefficient k = 2
ωh

E
1−ν2

is found from the solution of a plane strain elastic-
ity problem (Nordgren 1972) for an elliptical crack of
height h. E and ν are the elasticity modulus and Pois-
son’s ratio, respectively.

The above equations are equipped with the boundary
condition at a crack mouth (x = 0) determining the
injection flux rate:

− k

M

⎧
w3 θw

θx

⎪
x=0

= q0(t), (5)

and two boundary conditions at a crack tip:

w(t, l(t)) = 0, q(t, l(t)) = 0. (6)

In order to define the crack length, l(t), the global fluid
balance equation is usually utilized (see for example
Adachi et al. 2007)

l(t)⎨

0

[w(t, x) − w(0, x)]dx −
t⎨

0

q0(t)dt

+
l(t)⎨

0

t⎨

0

ql(t, x)dtdx = 0. (7)

Finally, the initial conditions are assumed in the fol-
lowing way:

w(0, x) = 0, l(0) = 0. (8)

System (1)–(8) constitutes the classic formulation of
the PKN problem. It was shown in Kemp (1989) and
Garagash and Detournay (2000) that the asymptotic
behaviours ofw and q near the crack tip are interrelated,
and the first term of the expansion for the crack opening
may be written as:

w(t, x) ∞ w0(t) (l(t) − x)π , as x ∇ l(t). (9)

For the classic PKN model the exponent π = 1/3 was
found in Kemp (1989). Thus condition (6)2 is always
satisfied as it follows from (2) and (4). As a result, the
model does not account for the standard stress singu-
larity of fracture mechanics at the crack tip, and thus
is relevant for the so-called zero toughness regime (see
e.g. Adachi and Detournay 2002).

Remark 1 Despite that zero crack opening and length
are considered as the initial conditions, all authors
begin their studies from the asymptotic model for the
small time. With the assumption of zero leak-off term in
the continuity equation and constant q0, the problem is
reduced to a self-similar formulation. The full numer-
ical analysis is then continued by taking the similarity
solution as the initial state. This effectively means that
the initial condition (8) can be replaced by the non-zero
crack opening

l(0) = l→, w(0, x) = w→(x), x ∗ (0, l→). (10)
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In this paper, the modified formulation of the PKN
model is considered, following the recent advance in
the area of numerical modelling (Linkov 2011a,b,c; Mi-
shuris et al. 2012). Thus, to trace the fracture front we
use the so-called speed equation, instead of the fluid
balance relationship (7):

dl

dt
= v0(t) = q

w

⎩⎩
x=l(t). (11)

The speed equation assumes that the fracture tip coin-
cides with the fluid front, which excludes the presence
of a lag or an invasive zone ahead of the fracture tip.
Originally it was introduced by Kemp (1989) and has
been recently revisited by Linkov (2011a,b,c).

Note that, on substitution of Eqs. (2), (4) and (9)
into (11), one obtains a relationship between the crack
propagation speed and the multiplier of the leading term
of the crack opening asymptotic expansion (9):

dl

dt
= k

3M
w3

0(t). (12)

This implies that the quality of the numerical estima-
tion of w0 [(see estimate (9)] should be vital for the
accuracy of computations.

By substituting the Poiseulle equation (2) into the
continuity equation (1) one obtains a lubrication (Rey-
nolds) equation for the considered problem, where the
net fluid pressure function p(t, x) is eliminated:

θw

θt
− k

M

θ

θx

(
w3 θw

θx

)

+ql = 0, t ⊂ t0, 0 ≥ x ≥ l(t). (13)

In this way the modified formulation of the PKN
model includes: (i) the Reynolds equation (13), (ii) the
boundary conditions (5)–(6)1, (iii) the asymptotics (9),
(iv) the initial conditions (10), (v) the speed equation
in the form (12).

The paper is organized as follows: in the next sub-
section we present the normalized formulation of the
problem. Then, two types of self-similar solutions for
the PKN model are discussed. These solutions are used
in Sect. 2 to investigate a numerical algorithm for a time
independent variant of the problem. In Sect. 3, the algo-
rithm is modified to tackle the transient regime. Two
alternative integral solvers are developed and their per-
formances and applicability are examined. Section 4
contains the final conclusions.

1.2 Normalized formulation

Following Kusmierczyk et al. (2012), we normalize the
problem by introducing dimensionless variables:

x̃ = x

l(t)
, t̃ = t

tn
, tn = M

kl→
, w̃→(x̃) = w→(x),

w̃(t̃, x̃)= w(t, x)

l→
, L(t̃)= l(t)

l→
, l2→q̃0(t̃)= tnq0(t),

l̃→q̃l(t̃, x̃)= tnql(t, x), l2/3
→ w̃0(t̃)/L1/3(t̃)=w0(t),

(14)

where x̃ ∗ [0, 1], L(0) = 1.
In the new variables Eq. (13) reads:

θw̃

θ t̃
− x̃

L ≤

L

θw̃

θ x̃
− 1

L2(t)

θ

θ x̃

(
w̃3 θw̃

θ x̃

)

+q̃l = 0, t̃ ⊂ 0, 0 ≥ x̃ ≥ 1. (15)

The boundary conditions (5)–(6)1 may be rewritten as:

− 1

L(t̃)

⎧
w̃3 θw̃

θ x̃

⎪
x̃=0

= q̃0(t̃), w̃(t̃, 1) = 0. (16)

The initial conditions (10) are defined as:

L(0) = 1, w̃(0, x̃) = w̃→(x̃), x̃ ∗ [0, 1]. (17)

The asymptotic expansion for crack opening (9) takes
the form:

w̃(t̃, x̃) ∞ w̃0(t̃)(1 − x̃)1/3, for x̃ ∇ 1. (18)

For the sake of completeness of the normalization,
we also present the global fluid balance equation (7),
although it will not be used later on:

L(t̃)

1⎨

0

w̃(t̃, x)dx −
⎨ 1

0
w̃(0, x)dx −

⎨ t̃

0
q̃0(t)dt

+
⎨ t̃

0
L(t)

⎨ 1

0
q̃l(t, x)dxdt = 0. (19)

Finally, the transformation of the speed equation (12)
yields:

d

dt
L(t̃) = V0(t̃) = 1

3L(t̃)
w̃3

0(t̃). (20)

As shown in Mishuris et al. (2012), Eq. (20) is con-
venient to trace the fracture front when standard ODE
solvers are in use for the dynamic system (DS) describ-
ing the problem. On the other hand, the crack length can
be computed from (20) by direct integration to give:
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L(t̃) =

⎛⎝⎝⎝√1 + 2

3

t̃⎨

0

w̃3
0(σ )dσ , (21)

which is useful when an implicit method (for example
Crank-Nicolson scheme) is utilised (see Mishuris et al.
2012).

On substitution of (20) into (15) one can rewrite the
later to obtain:

3L2
⎞

θw̃

θ t̃
+ q̃l(t̃, x̃)

⎠
= x̃w̃3

0
θw̃

θ x̃
+3

θ

θ x̃

⎞
w̃3 θw̃

θ x̃

⎠
.

(22)

In the following, Eq. (22) will be used as a basic relation
to formulate our integral solvers.

From now on, for convenience, we shall omit the
tilde symbol in all quantities. In this way all the nota-
tions refer henceforth to the normalized formulation.

1.3 Self-similar solutions

Let us assume

ql(t, x) = ψ eψ t q∈
l (x), (23)

and look for the similarity solution of the problem in
the form:

w(t, x) = u(x)eψ t , w0(t) = u0eψ t , (24)

where the asymptotic behaviour (18) holds true, and u0

is the limiting value of u defined in the same manner
as in estimate (18). Thus, Eq. (20) transforms to an
identity if one takes:

L2(t) = 2u3
0

9ψ
e3ψ t . (25)

On substitution of (23), (24), and (25) into the equa-
tion (22) one can reduce the latter to the following ordi-
nary differential equation:

αu3
0(u + q∈

l ) = A(u), (26)

with α = 2/3. Here, the nonlinear differential operator
A is defined by the right-hand side of equation (22) and
is equipped with the boundary conditions

− 3u−3/2
0

⎧
u3 du

dx

⎪
x=0

= q∈
0 , u(1) = 0, (27)

where we have introduced an auxiliary notation:

q∈
0 =

√
2

ψ
e− 5ψ t

2 q0(t). (28)

If q∈
0 is constant, then Eq. (26) together with the bound-

ary conditions (27) do not depend on time and consti-
tute a boundary value problem (BVP) degenerated at
point x = 1. Indeed, the nonlinear coefficient in front
of the second order term of the differential operator
vanishes at the point x = 1 in view of the boundary
condition (27)2. This BVP is in fact a self-similar for-
mulation of the original problem with specific, given
leak-off regime and the inlet flux.

Other class of similarity solutions can be found, for
some a ⊂ 0, by assuming:

ql(t, x)=ψ (t+a)ψ−1q∈
l (x), w(t, x)=(t+a)ψ u(x),

w0(t) = u0(t + a)ψ , (29)

L2(t) = 2u3
0

3(3ψ + 1)
(a + t)3ψ+1. (30)

As a result, one again obtains the BVP (26)–(27)
with α = 2ψ /(3ψ + 1) and

q∈
0 =

√
6

(3ψ + 1)
(a + t)

1−5ψ
2 q0(t). (31)

Thus, for ψ = 1/5 the self-similar solution corresponds
to the constant injection flux rate, while the crack prop-
agation speed decreases with time as L ≤(t) = O(t−1/5)

for t ∇ ⊥. If, however, one takes ψ = 1/3, the crack
propagation speed is constant and the injection flux rate
increases with time: q0(t) = O(t1/3) for t ∇ ⊥.

Note that self-similar solutions do not necessarily
satisfy the initial conditions (17) as the normalised ini-
tial crack lengths are:

L(0) =
√

2u3
0

9ψ
, L(0) =

√
2u3

0a3ψ+1

3(3ψ + 1)
,

for the first and the second type, respectively.

Remark 2 As one can see the second type of similarity
solution has a physical sense for any −1/3 < ψ < ⊥
and thus, can be used to model three different transient
regimes of the crack evolution: crack acceleration (ψ >

1/3), crack deceleration (ψ < 1/3), and a steady-state
propagation of the fracture (ψ = 1/3). The first type
of solution possesses a physical interpretation only for
positive values of ψ , which restricts its application to
the cases of accelerating crack.

The self-similar solutions formulated above are used
in the following sections to analyse computational
accuracy provided by the developed solvers. So far
to this end, the asymptotic models have been usually
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employed (Nordgren 1972; Kemp 1989; Kovalyshen
and Detournay 2009; Linkov 2011c). However, all of
them are restricted to the case of a constant influx, q0.

2 Numerical solution of the self-similar problem

In this section we will formulate an algorithm of
the solution for the self-similar problem defined by
Eq. (26) and the boundary conditions (27). The follow-
ing representation of the sought function u(x) will be
accepted:

u(x) = u0(1 − x)1/3 + λu(x). (32)

It results from the asymptotic behaviour (18) and
λu(x) = O((1 − x)β ) for x ∇ 0. Parameter β > 1/3
depends strongly on the behaviour of the leak-off func-
tion ql near the crack tip. In particular, when ql vanishes
near the crack tip in the same manner as the solution,
or faster, (∂ ⊂ 1/3) then β = 4/3. One can show that
[(compare (3)]

β = min{4/3, 1 + ∂} ⊂ 1/2, (33)

see also Kusmierczyk et al. (2012) for details.

2.1 Integral solver for the self-similar problem

Below we present an algorithm to solve Eq. (26)
by numerical inversion of the operator A. Exploit-
ing the solution representation (32), the inverse oper-
ator A−1 defines both components: u0 and λu. To
derive A−1, we integrate the Eq. (26) twice over the
interval [x, 1] taking into account the boundary con-
dition (27)2. Then, after simple transformations one
obtains:

3u3
0(1 − x)λu = −3

4

[
6u2

0(1 − x)2/3(λu)2

+4u0(1 − x)1/3(λu)3 + (λu)4
]

+u3
0

1⎨
x

λudγ + 2u3
0

1⎨
x

(γ − x)udγ

−(1 − x)u3
0

1⎨
x

udγ

+αu3
0

1⎨
x

(γ − x)(u + q∈
l )dγ. (34)

In short, the latter can be symbolically written in the
compact form:

λu = G1(α, u0,λu) + G2(α, u0,λu, q∈
l ), (35)

where the operators involved in the right-hand side are
defined as follows:

3u3
0(1 − x)G1 = −3

4

[
6(u2

0(1 − x)2/3(λu)2

+4u0(1 − x)1/3(λu)3 + (λu)4
]

+(2 + α)u3
0

1⎨
x

(γ − x)λudγ, (36)

3(1−x)G2 = x

1⎨
x

λudγ+ 3

28
(3α−1)u0(1−x)7/3

+α

1⎨
x

(γ − x)q∈
l dγ. (37)

One can conclude from (3) and (18) that for x ∇ 1

G1 = O
(
(1 − x)1+β

)
, G2 = O

(
(1 − x)β

)
, (38)

where β has been defined in (33).
The relation to compute u0 is derived by integration

of (26) with respect to x from 0 to 1. Then, taking
into account the representation (32) and the boundary
condition (27)1, one can formulate the condition:

G3(α, u0,λu, q∈
0 ) = 0, (39)

where

G3 = 3

4
(α + 1)u5/2

0

+u3/2
0

⎡
⎣(α + 1)

1⎨

0

λudx + α

1⎨

0

q∈
l dx

⎤
⎦ − q∈

0 .

It is easy to prove that for any q∈
0 > 0 and α > −1

there exists a unique positive solution u0 of equa-
tion (39), regardless of the values of the functions λu
and q∈

l .
The inverse operator A−1 is defined, by equations

(35) and (39), as:

[u0,λu] = A−1(α, q∈
l , q∈

0 ). (40)

Its numerical execution is based on the following iter-
ative algorithm:⎟


G3

(
α, u(i+1)

0 ,λu(i), q∈
0

)
= 0,

λu(i+1) = G1

(
α, u(i+1)

0 ,λu(i)
)

+G2

(
α, u(i+1)

0 ,λu(i), q∈
l

)
,

(41)
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where superscripts refer to the consequent iterations.
In the first step we assume that:

λu(0) = 0. (42)

Of course, if any better approximation is available, it
can replace (42). Note the first relation of (41) is a non-
linear algebraic equation that can be solved e.g. by the
Newton-Raphson method, while the second equation
is a typical iterative relationship.

2.2 Numerical examples and discussions

In this section we investigate the performance of the
numerical algorithm (41)–(42). To this end, the power
law type self-similar solution (29) is utilized as a bench-
mark. Apart from the fact that the equations for other
self-similar solution (24) look identically, the value of
the parameter α appearing in the exponential bench-
mark is always the same (α = 2/3). Thus the power
law type self-similar benchmark gives us an opportu-
nity to manipulate with the value of α, which will be
crucial for further implementation of the algorithm to
the transient regime.

Let us utilize the following variant of benchmark
solution used previously in Mishuris et al. (2012)
[(compare (63) in the “Appendix”]:

u(x) = (1 − x)1/3(1 + s(x)),

s(x)=− 1

8e

⎞
1

3
− 2ψ

3ψ + 1

⎠
(1 − x) + 0.05(1 − x)2,

(43)

which yields ∂ = 4/3.
Computations are carried out for different meshes

based on N + 1 nodal points:

x (τ)

j = 1 −
(

1 − j

N

)τ

, j = 0, 1, . . . , N . (44)

When one sets τ = 1, the points of spatial mesh are uni-
formly distributed over the whole interval—this mesh
will be called the uniform mesh. By taking τ > 1 we
obtain increased mesh density while approaching the
end point x = 1 (the larger τ the greater mesh den-
sity near the crack tip)—this mesh will be refereed to
as the non-uniform mesh. In our computations we will
use τ = 3. This choice is motivated by the following
reason. To increase the solution accuracy, we compute
integral operators from (41) using the classic Simp-
son quadrature, which gives an error controlled by the
fourth derivative of the integrand. Accounting for the

asymptotic behaviour of the solution, the transforma-
tion (44), for τ = 3, improves the smoothness of the
integrand with respect to the new independent vari-
able near the crack tip (replaces the fraction powers
function). In this way, the error of integration can be
minimized. We shall confirm this below in numerical
tests.

We use two parameters as the measures of compu-
tational accuracy: (1)—the maximal point-wise rela-
tive error (denoted as: δu) of the complete solution
u(x) and (2)—relative error (denoted by δu0) of the
coefficient u0 defining the leading asymptotic term
in (32).

The efficiency of computations will be assessed by
the number of iterations needed to compute the solu-
tion. The iterative process is stopped in each case
when the L2-norm of the relative difference between
two consecutive approximations becomes smaller than
ε = 10−10. Finally, we analyze how the solution errors
depend on the number of nodal points N .

The computations revealed that convergence of the
iterative process (41) may only be achieved for some
range of α values. For the analyzed benchmark it was:
α ∗ [−1.8, 4.8]. In fact, this interval is wider than one
could expect and fully covers any physically motivated
values of α ∗ (0, 2/3) following from the self-similar
formulation. Interestingly, there are also solutions for
α < −1 [compare discussions after Eq. (39)]. This
information shall be used later on, to construct a solver
for transient regimes.

In Fig. 1a the values of δu and δu0 obtained for
the analyzed benchmark (43) are shown. The computa-
tions were done for the meshes composed of 100 nodes.
As can be seen, the non-uniform mesh gives at least
one order better accuracy of the solution, for the same
number of nodal points. The error of u0 is lower than
the error of the complete solution u(x), as one could
expect, while its distribution is not as smooth as for
δu(x). The minimum of δu(x) is located near α = 1/3
which corresponds to the steady-state similarity solu-
tion. Interestingly, in the case of the uniform mesh the
aforementioned minimum is deeper and sharper than
for the non-uniform one.

Figure 1b depicts the number of iterations needed
to obtain the final solution for different values of α. It
shows that the convergence rate almost does not depend
on the type of mesh chosen. The best efficiency of com-
putations appears for approximately |α| < 1/2. Note
that this interval corresponds to the values of α which
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(a)

(b)

Fig. 1 (a) The accuracy of computations: maximal relative error
of u(x) and u0 as a function of α. (b) Number of iterations to
reach the final solution as a function of α. Dashed lines refer
to the uniform mesh, solid lines to the non-uniform mesh (for
τ = 3)

provide the best accuracy of computations. The time
of computations (number of iterations) increases with
|α| growth, however this trend does not exhibit a bilat-
eral symmetry (for negative and positive values of α).
Moreover, the cost of computations increases with the
solution error.

Figure 2 shows how the accuracy of computations
depends on the number of nodal points N . Both cho-
sen meshes are analyzed for three different values of
α = −1, 0, 1. It can be seen that the non-uniform mesh
gives at least two orders of magnitude better accuracy
than the regular one. For both types of meshes, the val-
ues of δu0 are much lower than respective δu, however
the best result for δu0 does not necessarily correspond
to the best δu (e.g. α = −1 for the regular mesh). The

(a)

(b)

Fig. 2 The maximal relative error of solution as a function of
the number of nodal points N . (a) δu, (b) δu0. Dashed lines refer
to the uniform mesh, solid lines to the non-uniform mesh (for
τ = 3)

non-uniform mesh provides much lower sensitivity of
solution accuracy to the variation of α than the uniform
one. Also the maximal level of accuracy is obtained
much faster for the non-uniform mesh. In the consid-
ered case, it is sufficient to take only 60 nodal points to
achieve the maximal possible accuracy.

The last test in this subsection identifies the influence
of spatial meshing on the solution accuracy. To this end,
we consider the following values of τ = 1, 2, . . . ,5
from representation (44). The benchmark taken here
accepts α = 1/3, as it provides the best accuracy
and will be important in next subsections. For each
of the values of τ, a characteristic δu(N ) was com-
puted. The results are presented in Fig. 3. It shows
that, regardless of the mesh under consideration (or
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Fig. 3 The maximal relative error of solution δu0 for various
spatial meshes. Computations were done for α = 1/3

equivalently, the value of the parameter τ), the maximal
achievable accuracy is the same. However, this ultimate
level is reached for different numbers of nodal points,
N . The fastest convergence takes place for τ = 3,
which confirms our previous predictions on the optimal
choice of the spatial meshing. The slowest convergence
to the saturation level manifests the uniform mesh
(τ = 1).

The overall influence of the value of the parameter
τ on the accuracy of computations results from the fol-
lowing trend: the larger the value of τ the lower error
near the crack tip and the greater error near the crack
inlet. The optimal balance between the local errors is
observed for τ = 3, which confirms our predictions.
In the following, only the non-uniform mesh for τ = 3
will be used in computations.

3 Solution to the transient problem

In this section we adopt the idea of the integral solver,
developed for the self-similar formulation, to the tran-
sient regime. The basic assumptions of the approach
remain the same, however the algorithm has to be mod-
ified in some essential aspects. First of all, one has to
build the mechanism of temporal derivative approxima-
tion into the numerical procedure together with nec-
essary measures to stabilize the algorithm. We will
propose two methods of doing this, constructing in
fact two different solvers. The second fundamental dif-
ference between the self-similar and time-dependent
formulations is that in the latter case, the crack length

L(t) becomes now an element of the solution, which
should be looked for simultaneously with the crack
opening w(t, x) and the first term of its asymptotics
near the crack tip w0(t).

The basic system of equations for the transient prob-
lem is composed of: the governing equation (22), the
boundary conditions (16), the initial conditions (17)
and the integral equation defining the crack length (21).

To avoid using multiple subscripts let us adopt the
following manner of notation:

w(t j , x) = w(x), w(t j+1, x) = W (x). (45)

Consequently, the asymptotic representations of the
solution near the crack tip read:

w(x) = w0(1 − x)1/3 + λw,

W (x) = W0(1 − x)1/3 + λW,
x ∇ 1, (46)

where β is defined in (33) and

λw = O((1 − x)β ),

λW = O((1 − x)β ), as x ∇ 1.

3.1 Solver using self-similar algorithm (40)–(41)

Below, we show the way to convert the initial boundary
value problem defined by equations (16), (21), (22) to
the form which may be tackled by the integral solver in
the form (41) for the self-similar solution. Obviously,
system (41) is to be supplemented with an additional
equation defining the crack length.

The main idea of the approach is to use the tempo-
ral derivative as one of the dependent variables in the
numerical procedure. To achieve this, we compute the
derivative of the solution at each time step t = t j+1 in
the following iterative process:

θW

θt

(i+1)

= G4

(
φ (i+1), W (i+1),

θW

θt

(i))

≡ φ (i+1) W (i+1) − w

λt
+

(
1 − φ (i+1)

) θW

θt

(i)

, (47)

where superscripts refer to the number of iteration,
λt = t j+1 − t j and the values of φ (i+1) are to be
defined later. The first approximation of the temporal
derivative is

θW (1)

θt
= θw

θt
. (48)
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Note that the derivative at initial time t = 0 can be
immediately found from the governing equation (22)
by substitution of the initial conditions.

Substituting (47) into (22) one obtains the problem
(26) and (27) with respect to the unknown function
W (x) by exploiting the following convention:

q∈
l = −w + λt

φ (i+1)

[
(1 − φ (i+1))

θW (i)

θt
+ ql(t, x)

]
,

αW 3
0 = 3φ (i+1)

λt

(
L(i+1)

)2
, (49)

and

q∈
0 (t) = 3q0(t)W −3/2

0 L(i). (50)

Finally, the crack length from equation (21) can be iter-
ated as:

L(i+1) = G5(W0) ≡
√(

L(i)
)2 + λt

3

(
W 3

0 + w3
0

)
.

(51)

Here the integral from (21) is computed by the
trapezoidal rule, taking into account the information
obtained from the previous time steps (t ≥ t j ).

In this way the governing partial differential equa-
tion and all the boundary conditions have been trans-
formed to the formulation used previously in the
self-similar problem. As a result, respective integral
operators (34)–(37) and (39) remain the same with
modified arguments (49) and (50), where (51) should
be taken into account.

To choose the value of the parameter φ (i+1) at each
iterative step, let us recall that the best performance of
the algorithm described in Sect. 2.2 has been achieved
near α = 1/3. Taking this fact into account in (49)2,
one can choose

φ (i+1) =
λt

(
W (i+1)

0

)3

9
(
L(i+1)

)2 . (52)

Thus, the inverse operator for A, defining the solu-
tion of the transient problem at the time step t = t j+1,
can be expressed in the following manner [compare
(40)]):
[
W0, L ,λW,

θW

θt

]
= A−1(1/3, q∈

l , q∈
0

)
. (53)

The iterative algorithm of the solver can be described
by the system:

⎟


G3

(
1/3, W (i+1)

0 ,λW (i), q∈
0

)
= 0,

λW (i+1) = G1

(
1/3, W (i+1)

0 ,λW (i)
)

+ G2

(
1/3, W (i+1)

0 ,λW (i), q∈
l

)
,

L(i+1) = G5

(
W (i+1)

0

)
,

θW

θt

(i+1)

= G4

(
φ (i+1), W (i+1),

θW

θt

(i)
)

,

(54)

Note that parameters q∈
0 = q∈(i)

0 , q∈
l = q∈(i+1)

l and
φ (i+1) are also iterated according to (49)1, (50) and
(52). To finalize the algorithm, it is enough to define
the initial forms of the crack opening W (1) and the
crack length L(1). This is achieved by choosing

W (1) = w + θw

θt
λt, L(1) = L(ti ), (55)

which finishes the description of the computation
scheme for the fixed time step λt = t j+1 − t j . Let
us recall that the temporal derivative of solution at time
t = 0 is computed using the initial conditions (17),
while for any next t = t j we utilize representation
(47).

We would like to underline here the fact that as the
output of the proposed algorithm, one obtains not only
the solution of the transient problem, that is, the crack
length L(t) and the crack opening w(t, x), but also the
temporal derivative of the latter, w≤

t (t, x) and the crack
propagation speed, V0(t), from (20).

3.2 Solver based on a modified self-similar algorithm

Temporal derivative of the solution can be taken in the
following form:

θW

θt
= 2

W − w

λt
− θw

θt
, (56)

which gives the error of approximation of the order
O(λt2). Note that any other two-points finite differ-
ence definition yields only O(λt).

Unfortunately, a direct use of the algorithm formu-
lated in Sect. 2.1 is not, generally speaking, possible,
as it may fail for small time steps. Indeed if one takes
φ = 2 and sufficiently small value of λt in the repre-
sentation (49)2, then the value of the parameter α may
be far away from its optimal magnitude α = 1/3. This
in turn, would at least result in a deterioration of the
efficiency of computations.

On the other hand, it is quite clear that BVP (26),
(27) is solvable for large values of the parameter α.
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Indeed, performing asymptotic analysis, one shows that
the solution can be represented in the form:

u(x) = −q∈
l (x) + b0(x) + b1(x), x ∗ (0, 1), (57)

where b0 and b1 refer to two boundary layers, account-
ing for the boundary conditions (27)1 and (27)2, respec-
tively.

Thus the algorithm should be modified to be able to
deal with large values of α. To achieve this goal, let
us look at the original representation (34), where only
the last term in the right-hand side depends on α. This
term violates the convergence of the iterative process
for large α. To prevent this from happening, at each
iteration we supplement the term in question with an
auxiliary so-called ‘viscous’ term in the form V(x) =
αu3

0(1 − x)(C0 + C1(1 − x)), where the constants,
C0, C1, are computed by comparing both the original
and the viscous terms. In this way one can construct
a modified algorithm, schematically represented in the
following manner
⎟


G3

(
α(i), W (i+1)

0 ,λW (i), q∈
0

)
= 0,

V(i+1) = V(W (i), q̂∈(i+1)
l ),

λW (i+1)

= Ĝ12

(
α(i+1), W (i+1)

0 ,λW (i), q̂∈
l ,V(i+1)

)
,

L(i+1) = G5

(
W (i+1)

0

)
,

θW

θt

(i+1)

= 2
W (i+1) − w

λt
− θw

θt
,

(58)

where

q̂∈
l = −w − λt

2

⎧
θw

θt
+ ql(t, x)

⎪
,

α(i) = 6

λt

(
L(i)

)2 (
W (i)

0

)−3
. (59)

The function q∈
0 (t) is defined in the same way as pre-

viously [see (50)]. At each time step the initial value
of W is taken in the form (55). We do not show here
the precise definition of the operator Ĝ12, as it may be
easily derived by merging operators G1 and G2 with
the viscous term V(x), where respective constants are
computed, for example by the least squares method.

3.3 Analysis of the algorithms performance

The aim of this subsection is to analyze and compare
the performances of the algorithms formulated in Sects.
3.1 and 3.2. To this end, the benchmark solution used

previously for the self-similar formulation is utilized,
for the time dependent term ψ(t) = (1+ t)ψ [compare
(63)]. First tests are performed for ψ = 1/5.

In the following, the notations solver 1 and solver 2
are attributed to the algorithms (54) and (58), respec-
tively.

Let us analyze the influence of the spatial mesh den-
sity on the accuracy of computations done by both
solvers. For this reason, we start with a single time step
(in our case λt = 10−2) and carry out the computa-
tions for different numbers of nodal points N , ranging
from 10 to 100. The following parameters are used for
the comparison: the maximal relative error of the crack
opening, δw, the relative error of the crack length, δL ,
and the maximal relative error of the temporal deriva-
tive of the crack opening, δwt .

The results of computations are depicted in Fig. 4a.
It shows that regardless of the considered parameter,
solver 2 always provides better accuracy (two orders of
magnitude for the crack opening, w, and an order for the
crack length, L). The only exception is for δwt , whose
values are of the same order and solver 1 may even
give a bit lower errors. However, this does not result in
a better accuracy of the two remaining components of
the solution: w and L . Note that for the first time step,
the accuracy of computation of the crack length, L(t),
is of two orders of magnitude better than that for the
crack opening, δw, regardless of the solver type and
the number of the nodal points, N .

Similarly to the trend observed in the self-similar
formulation, computational errors stabilize for some
critical value N = N∈(λt). Surprisingly, for the tran-
sient regime where the temporal derivative plays a cru-
cial role, the critical N∈ appears to be even slightly
lower than that for similarity solution. Thus, for both
solvers it is sufficient to take only 40 points to achieve
the maximal level of accuracy.

Remark 3 From first glance it may be surprising that
the accuracy of the temporal derivative, δwt , is up to
four orders of magnitude worse than that for δw in
the case of solver 2. However, this fact can be easily
explained when one analyses the estimation: δwt ≈
2wδw/(λtwt ) which follows from (56) for small λt .
Computing the multiplier in the right hand side of the
estimation, one obtains the respective value of the order
of 104. Note that the recalled formula does not account
for the error of the method of wt approximation itself.
In some cases (very small time steps) this value may be
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(a)

(b)

Fig. 4 The errors of computations: δL , δw, δwt as functions of
(a) spatial mesh density (number of nodal points, N ) for the fixed
time step λt = 10−2. (b) time step λt for fixed number of the
nodal points N = 40. Line with markers refer to solver 2

comparable to the former, and thus essentially influence
the overall error.

Remark 4 At the first time step, there also exists a
direct relationship between the error of the crack length,
δL , and the error of multiplier of the leading term of
the asymptotics (46), δW0. For small values of λt
it reads: 2δL = W 3

0 δW0λt . Having this relation we
do not show a separate analysis for W0 and conse-
quently, V0.

All the results presented above were obtained for a
single time step λt = 10−2. In order to illustrate the
influence of λt on the solution accuracy, a number of
computations were done in the interval λt ∗ [10−4, 1]
for a fixed number of nodal points, N = 40. The results

Fig. 5 Influence of the number of time steps, K , within time
stepping strategy (60), on accuracy of the computations for the
fixed non-uniform spatial mesh (N = 40, τ = 3). Lines with-
out markers correspond to solver 1, lines with markers refer to
solver 2

describing the solution errors are shown in Fig. 4b.
One can conclude from them that the errors decrease
when reducing the time step (at least in the analyzed
range of parameters). Simultaneously, one can expect
that this tendency should have its own limitation for
a fixed number of the nodal points, N , and starting
from some small value λt (N ), it will reverse to the
opposite. For both solvers, a fast decrease of δL is
observed as λt gets smaller (δL ≈ a10−4λt3 and
a ∞ 1).

Now let us analyze the accuracy of the solution on
a given time interval t ∗ [0, tK ]. As, it follows from
the results presented in Kusmierczyk et al. (2012) and
Mishuris et al. (2012), after the initial growth to the
maximal value, the error of computations stabilizes at
some level or even decreases, and thus further extend-
ing of the time interval does not contribute to the dete-
rioration of accuracy. Bearing this in mind we take here
tK = 100. First we test how the number of time steps K
affects the accuracy of computations within the same
time stepping strategy. For both solvers we took a fixed
number of spatial mesh points, N = 40, changing the
number of time steps K from 10 to 300. The utilized
time stepping strategy was the same as that used in Mi-
shuris et al. (2012) for the Crank-Nicolson scheme. It
is given by the following equation (i = 1, 2, . . . ,K ):

ti = (i − 1)δt + tK − (K − 1)δt

(K − 1)3 (i − 1)3, (60)
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Fig. 6 Distribution of the solution errors in time. Line with mark-
ers refer to solver 2. The time stepping strategy (60) is used for
K = 30. The number of nodal points, N = 40

where δt is a parameter controlling the first time step.
Note that by increasing the value of K one distributes
the time points near t = 0 almost uniformly.

The achieved accuracy, as a function of the number
of time steps K , is presented in Fig. 5. It shows that
for the same value of K solver 2 provides much more
accurate results again and this advantage increases with
growing K . One can expect, as it follows from the dis-
cussions after Fig. 4 which refers to a single time step,
that each solver gives the solution errors satisfying the
estimation: δL << δw << δwt for any set of the input
parameters. Indeed, solver 2 supports this statement
as can be seen Fig. 5, while for solver 1 surprisingly
another trend is observed: δw < δL << δwt .

To explain this apparent paradox, let us recall that
all errors in Fig. 5 are taken as the maximal values
over the time-space domain. However, since for the
assumed time stepping strategy the time steps increase
with growing time, one can expect (compare the results
in the Fig. 4b) that at some point δL may become greater
than δw. Moreover, the error accumulation in succes-
sive time steps may additionally influence the relation-
ship between δL and δw, especially if they are close
to each other as it is in the case of solver 1. Figure 6
depicts the evolution of computational errors in time.
For both solvers δw and δwt reach their maximal val-
ues and stabilize or decrease for t < tK . In the case
of solver 1 one can observe an intensive error accu-
mulation for the crack length, δL . Indeed, it can be
seen from the Fig. 6, that there exists a moment when

the error curves for δL and δw intersect for the solver
1. In the case of solver 2, respective errors of solution
(δL , δw and δwt ) have essentially different values. As a
result, this effect does not take place in the time interval
under consideration. However, it may be encountered
for tK > 100, as suggests the trend observed for t close
to tK .

It is interesting to compare the solution errors gen-
erated by the two integral solvers with those obtained
in Mishuris et al. (2012) for a DS approach. In the
latter case a standard MATLAB solver, ode15s, was
employed. The best results were obtained for a uni-
form spatial mesh, the presented data corresponded to
N = 100. The time stepping strategy chosen automat-
ically by the solver [whose character is approximated
by (60)] accepted 242 time steps. The maximal relative
error of the crack opening, δw, and the crack length,
δL , were 5.0 × 10−3 and 6.8 × 10−3 (see Table 1),
respectively.

When analyzing the data collected in Table 1, one
concludes that it is sufficient for any of the integral
solvers to take only N = 40 nodal points and K =
30 time steps, as suggested the previous analysis, to
have better (but comparable—solver 1), or much better
(solver 2) results. Indeed, the corresponding maximal
errors for the integral solvers are: δw = 3.7 × 10−3,
δL = 5.2 × 10−3 for solver 1, and δw = 1.1 × 10−4,
δL = 2.4 × 10−5 for solver 2. In other words, the first
solver provides the same accuracy for the crack open-
ing and the crack length as the DS solver using much
greater numbers of nodal points and time steps, while
the second one, under the same conditions, improves
the results at least one order of magnitude. It also shows
that the solver 2 yields one order of magnitude better
accuracy of the crack propagation speed, V0, than the
solver 1.

The new algorithms allow us to automatically com-
pute the temporal derivatives in the solution process.
The respective errors, δwt , are: 7.5 × 10−2—solver 1
and 1.5×10−3—solver 2. We decided to compare these
figures, with the ones obtained in postprocessing (here,
also the DS approach was examined). To this end two
FD schemes (2- and 3-points) were used. This time,
the corresponding errors, δwt , were: 4.6 × 10−2 and
2.0 × 10−2 for solver 1, 4.6 × 10−2 and 3.4 × 10−3 for
solver 2 and the same value 4.1×10−1 for both schemes
in the case of DS. It is worth mentioning that the values
obtained for DS appeared at the first time step. Then,
the errors decreased with time and stabilized to give
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Table 1 Comparison of the results obtained for the solver developed in Mishuris et al. (2012) and two integral solvers: solver 1 and
solver 2. The same benchmark solution with the leak-off vanishing near the crack tip is considered

Solver N K δL δw δV0 δwt δw
(FD2)
t δw

(FD3)
t

From Mishuris
et al. (2012)

100 242 6.8 × 10−3 5.0 × 10−3 – –
4.1 × 10−1

(1.0 × 10−2)

4.1 × 10−1

(4.8 × 10−3)

Solver 1 40 30 5.2 × 10−3 3.7 × 10−3 7.1 × 10−3 7.5 × 10−2 4.6 × 10−2 2.0 × 10−2

Solver 2 40 30 2.4 × 10−5 1.1 × 10−4 3.2 × 10−4 1.5 × 10−3 4.6 × 10−2 3.4 × 10−3

Solver 1 5 30 5.2 × 10−3 3.7 × 10−3 7.0 × 10−3 7.5 × 10−2 4.1 × 10−2 2.0 × 10−2

Solver 2 5 30 8.0 × 10−5 5.7 × 10−4 6.3 × 10−4 5.6 × 10−2 6.3 × 10−2 6.2 × 10−2

their minimal levels of 10−2 and 4.8 × 10−3, corre-
spondingly.

As can be seen, the integral solvers give at least
one order of magnitude better accuracy of wt than the
DS. Moreover, while the postprocessing gives smaller
(but comparable) error for the solver 1, solver 2 returns
more accurate values of wt than those obtained in the
postprocessing, even for the 3-points FD. Finally, apart
from the fact that δw and δL for the DS and solver 1
look comparable in values, the quality of the compu-
tation is better for the new solver as is clear from the
postprocessing analysis.

Just for comparison we also present in Table 1 the
results obtained for the spatial mesh composed of only
five nodal points, N = 5. It turned out that even for
such a drastic reduction of the mesh density, the solu-
tion accuracy for most of the parameters is of the same
order as for N = 40. Interestingly, solver 1 exhibits
almost no sensitivity to this mesh reduction. In fact the
distinguishable differences can be observed only for
the solver 2.

Let us now analyze the distribution of crack opening
error, δw, in time and space. The respective results are
presented in Fig. 7a—solver 1, and Fig. 7b—solver 2.
In both cases the maximal errors are located at the crack
tip while the error distribution in time follows the trend
visible in Fig. 6.

Figure 8 shows the distributions of δwt obtained by
the integral solvers. It confirms our previous observa-
tion, that solver 2 always provides better results than
solver 1. Moreover, the greatest error in the case of
solver 1 is located at the crack inlet and the lowest at
the crack tip, while solver 2 gives approximately the
same values of δwt along the crack length.

In the last test in this subsection we analyze the rela-
tion between the regimes of crack propagation and the

(a)

(b)

Fig. 7 The relative error of the crack opening obtained for N =
40 (nonuniform mesh, τ = 3) and the time stepping strategy (60)
with K = 30. (a) Corresponds to the solver 1, while (b) refers
to the solver 2

performances of respective solvers. As mentioned pre-
viously, the benchmark solution in form (29) can be
used to imitate various dynamic modes of the crack
evolution. So far we have utilized the exponent of the
time dependent term of the value ψ = 1/5 which refers
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(a)

(b)

Fig. 8 The relative error of the temporal derivative of the crack
opening. Solution obtained by (a) solver 1, (b) solver 2 for N =
40, non-uniform mesh (τ = 3) and the time step strategy (60)
with K = 30

to the constant injection flux rate. Now, let us consider
two other variants of ψ : (1) ψ = 0—for this choice
the normalized crack opening is constant in time; (2)
ψ = 1/3—this value corresponds to the steady state
propagation of the fracture. For the computations the
same spatial mesh as before is taken (N = 40). The
number of time steps accepted within strategy (60), K ,
ranges from 10 to 300. In this way the graphs (Fig. 9a, b)
describing the solution errors in the function of K were
prepared for both values of ψ (similarly as in Fig. 5).
The analyzed accuracy parameters were: relative error
of the crack opening, δw, relative error of crack the
length, δL , relative error of the crack opening temporal
derivative, δwt , for ψ = 1/3 and absolute error of the
crack opening temporal derivative, λwt , for ψ = 0.

The results depicted in Fig. 9 show that for ψ = 0
one obtains much more accurate results than for ψ =
1/3 that could have been predicted (wt = 0). However,

(a)

(b)

Fig. 9 The errors of solution for two variants of ψ . (a) ψ = 0,
(b) ψ = 1/3. Line with markers correspond to solver 2

it is a surprise that for ψ = 0 solver 1 provides better
solution accuracy than solver 2. Although the differ-
ence is moderate in case of δw and δL , the values of
λwt vary by at least two orders of magnitude. From
Fig. 9a it follows that for this regime of crack prop-
agation the solution accuracy cannot be improved by
simple refining the temporal mesh, and for solver 2
even a reverse relation is observed.

The situation is quite different for ψ = 1/3 (Fig. 9b).
This time again solver 2 proves its advantage over
solver 1 for all the analyzed parameters. For solver
2, it is sufficient to take only 30 time steps to have
much better results than those provided by solver 1 for
300 steps. The solution accuracy can be improved by
increasing the number of time steps, however it seems
that for solver 1 the saturation level is close to K = 300.
A similar trend was observed for ψ = 1/5 (see Fig. 5).
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A direct conclusion from this test is that for differ-
ent modes of crack propagation there are different opti-
mal time stepping strategies. This should be properly
accounted for especially in the cases when the values
of injection flux rate or leak-off to formation change
appreciably in the considered time interval.

The aforementioned analysis proves that in terms of
accuracy in most of the cases solver 2 is much better that
solver 1 with respect to all computed components of
the solution: the crack length, L , the crack opening, w,
its temporal derivative, wt and the fracture propagation
speed, V0. However, for some regimes of crack propa-
gation (low values of ψ ) solver 1 may give comparable
or even slightly better results than solver 2. The advan-
tage of solver 1 is better efficiency of computations: the
time of computations for this solver was on average one
third lower that for solver 2.

3.3.1 Example with singular leak-off regime

In (3) we have assumed that the behaviour of the leak-
off function near the crack tip can be described by
a power law, giving in the worst case a square root
singularity. Such a limiting behaviour corresponds to
the Carter leak-off model (Carter 1957). As a result,
although the leading term of the asymptotic expan-
sion for the crack opening near the fracture tip remains
the same, the higher terms change, disturbing the solu-
tion smoothness (see Kovalyshen and Detournay 2009).
A comprehensive analysis of this case was done in
Kusmierczyk et al. (2012) where it was also proved
that the deterioration of solution accuracy can be pre-
vented by employing the second asymptotic term in the
computational algorithm.

In this subsection we show that the algorithms devel-
oped in the paper are capable of tackling this kind of
problems without any additional modifications. To this
end let us consider another benchmark solution u(t, x)

[see (63)] defined by the functions:

h(x) = (1 − x)1/3(1 + s(x)), s(x) = 1

5
(1 − x)1/6,

(61)

with the same as before function ψ(t) for ψ = 1/5.
One can easily check, that the above form of s(x)

results in a singular behaviour of ql , with the leading
term of the order O((1−x)−1/2) as x ∇ 1. The value of
multiplier u0 in (63) was taken in such a way to make
the benchmark comparable with the one used previ-
ously, in a sense of an average particle velocity. Indeed,

in Mishuris et al. (2012) for a fluid velocity defined as
V = q/w, a parameter describing its variation along
the crack length was introduced:

ψv(t) = [
max

x
(V (x, t)) − min

x
(V (x, t))

]

×
⎡
⎣

1⎨

0

V (x, t)dx

⎤
⎦

−1

. (62)

This parameter reflects indirectly the balance between
the flux injection rate and leak-off to formation. It
was also shown there that it has a decisive influ-
ence on the accuracy of computations (the greater
value of ψv , the greater error of the computations).
For the benchmarks with comparable values of ψv ,
one can expect similar accuracy of the computations.
This trend was also confirmed in Kusmierczyk et al.
(2012). In our case, the deterioration of the solution
smoothness near the crack tip is an additional factor
which contributes to the increase of the computational
error.

Note that because of the chosen structure of (63),
the value of ψv is constant in time for all benchmarks
considered in this paper. For the benchmark (43) ψv

yields 0.408, while (61) leads to ψv = 0.411.
The computations were done for the same spatial

(N = 40, τ = 3) and temporal [K = 30, strat-
egy (60)] meshes as previously considered. The dis-
tributions of the errors δw and δwt are shown in
Figs. 10 and 11, respectively. Comparing these results
with those obtained for the finite leak-off regime (see
Figs. 7, 8) one can see that the accuracy of computa-
tions decreased significantly.

In the case of solver 1, the crack opening error, δw,
shown in Fig. 10 a) is of one order of magnitude greater
than that reported in Fig. 7a. For solver 2 in turn, δw

depicted in Fig. 10b is almost two orders higher than
the one obtained previously for ql vanishing at x = 1
(Fig. 7b). A pronounced jump of the error is observed
at the crack tip, especially for solver 2, which explains
the deterioration of accuracy when comparing with the
finite leak-off case. However, if one considers the accu-
racy of the solution away from the crack tip, it is still
of the same quality as before.

The same trend can be observed for the tempo-
ral derivative of the crack opening, wt (see Fig. 11).
Opposite to the benchmark case (43) with the finite
leak-off, the distribution of δwt for solver 2 becomes
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(a)

(b)

Fig. 10 The relative error of the crack opening. Solution
obtained by: (a) solver 1, (b) solver 2. Other parameters in the
computations were: N = 40, K = 30, τ = 3

highly non-uniform, with distinct increase at the crack
tip.

This deterioration of the solution accuracy near
x = 1 for the Carter leak-off model should not be
a surprise, as the algorithm described above in (34)–
(37) accounted directly only for the first (leading) term
of the asymptotic expansion for the crack opening.
For the singular leak-off model, the function λu and
other integrands employed in G1 and G2 are not suf-
ficiently smooth near the crack tip, which increases
the errors of integration. However, one can counter-
act this tendency by accounting for further asymp-
totic terms in the algorithm, which will be illustrated
in the following with the example of two terms of w

expansion.
Let us investigate the evolution of solution errors

(δw, δL and δwt ) in time in the way it was done in
Fig. 6 for the case of the finite leak-off. In Fig. 12a
we show the results obtained by direct execution of the

(a)

(b)

Fig. 11 The relative error of the temporal derivative of crack
opening. Solution obtained by (a) solver 1, (b) solver 2. Other
parameters in the computations are: N = 40, K = 30, τ = 3

algorithm (34)–(37). Figure 12b depicts the case of a
modified algorithm employing also the second asymp-
totic term of the crack opening. When analyzing the
results, one observes again the trend of δL accumu-
lation for both solvers. Interestingly, δL has the same
level for both the original and the modified algorithms.
In the case of solver 1 for other analyzed parameters as
well only a very slight improvement is reported. How-
ever, for solver 2 one obtains a pronounced reduction
of computational errors for w and wt . To have a further
advance here, the next terms of asymptotic expansion
of the crack opening may be taken into account. On
the other hand, for the Carter leak-off model the num-
ber of nodal points for which the accuracy saturation is
observed is larger than for a finite leak-off. Thus, if nec-
essary, one can also improve the accuracy by increasing
the value of N and by taking a greater number of time
steps K .
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(a)

(b)

Fig. 12 The relative error of the temporal derivative of crack
opening. Solution obtained by (a) original algorithms, (b) mod-
ified algorithms. The lines with markers refer to solver 2

From the analysis given in this subsection two main
conclusions can be drawn. First, that the problems with
singular leak-off regimes can be directly tackled by
the proposed algorithms. Also in such cases solver 2
yields more accurate results than solver 1. The second
conclusion is that in order to have the solution accuracy
comparable to that achieved for non-singular leak-off,
one has to use a larger number of nodal points and/or
employ further terms of asymptotic expansion for w in
the algorithm.

4 Conclusions

We would like to itemize the following conclusions as
a resume of this paper:

– Presented approach can be efficiently used for tack-
ling the PKN model of hydrofracturing and may be
adopted for multifracture systems.

– Both new solvers provide better computational
accuracy than the conventional algorithms from
Mishuris et al. (2012). Moreover, comparable accu-
racies can be achieved here at much lower com-
putational cost, as the new solvers enable one to
drastically reduce the densities of spatial and tem-
poral meshes.

– New solvers are appropriate for directly tackling the
problems with different fluid flow regimes, includ-
ing various injection flux rates and singular leak-
off.

– In order to increase the efficiency and accuracy of
computations, it is advisable to employ at least two
asymptotic terms of the crack opening, w.

– The developed algorithms do not require any regu-
larization techniques. The boundary conditions are
imposed directly into the numerical scheme. The
speed equation plays a crucial role in the analysis.
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5 Appendix: Numerical benchmarks

Let us define a set of benchmark solutions useful for
testing different numerical solvers. Consider a class of
positive functions C+(0, 1) described in the following
manner:

C+(0, 1) =
{

h ∗ C2(0, 1) ∅ C[0, 1],

lim
x∇1−(1 − x)−1/3h(x)=1, h(x) > 0, x ∗ [0, 1)

}
.

By taking an arbitrary h ∗ C+(0, 1), one can build a
benchmark solution for the normalized formulation of
the problem as:

u(x) = u0ψ j (t)h(x). (63)

where functions ψ j (t) and h(x) are specified below.
On substitution of (63) into (26) one finds:

ql(t, x) = ψ u0

⎧
1

α

(
xh3(x)h≤(x)

+3
(

h3(x)h≤(x)
)≤⎠ − h(x)

⎪
ψπ

j (t),

w0(t) = u0ψ j (t), (64)
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where two sets of the benchmark solutions can be con-
sidered. For the first one we choose ψ1(t) = eψ t and
α = 2/3, π = 1, while for the second, ψ2(t) = (a+t)ψ

and α = 2ψ /(3ψ +1), π = (3ψ −1)/ψ . Corresponding
crack lengths are defined in (25) and (30), respectively.
Finally, the injection flux rate is computed from the
boundary condition (16)1:

q0(t) = −u4
0ψ

4
j (t)

L(t)
h3(0)h≤(0), (65)

while the initial condition reads W (x) = u0ψ j (0)h(x).
Note that when taking the function h(x) from the

class C+(0, 1) in the following representation:

h(x) = (1 − x)1/3(1 + s(x)),

s ∗ C2[0, 1], s(x) > −1, x ∗ [0, 1)

ql automatically satisfies the condition ql(t, x) =
O((1 − x)1/3), x ∇ 1.

The presented benchmarks allow one to test numer-
ical schemes in various fracture propagation regimes
(accelerating/decelerating cracks) by choosing proper
values of the parameter ψ [see Mishuris et al. (2012)].
Additionally, if one reduces the requirements for the
smoothness of s(x) near x = 1, assuming that h ∗
C2[0, 1)∅ Hπ(0, 1) the benchmark can serve to model
singular leak-off regimes [compare with (61)].

Note that the zero leak-off case cannot be described
by the aforementioned group of benchmarks. However,
an analytical benchmark for this regime, represented in
terms of a rapidly converging series, has been devel-
oped in Linkov (2011c).
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Abstract Softening is a structural property, not a
material property. Any material will show softening,
but in this paper the focus is primarily on cement
and concrete, which show this property very clearly
owing to their coarse heterogeneity (relative to com-
mon laboratory-scale specimen sizes). A new model
approach is presented, based on pair-potentials describ-
ing the interaction between two neighbouring particles
at any desired size/scale level. Because of the resem-
blance with a particle model an equivalent lattice can
be constructed. The pair-potential is then the behavioral
law of a single lattice element. This relation between
force and displacement depends on the size of the con-
sidered lattice element as well as on the rotational
stiffness at the nodes, which not only depends on the
flexibility of the global lattice to which the element is
connected but also on the flexural stiffness of the con-
sidered element itself. The potential F − r relation is
a structural property that can be directly measured in
physical experiments, thereby solving size effects and
boundary effects.

Keywords Concrete · Fracture · Model parameters ·
Interaction potentials (F − δ) · Size effect ·
Asymptotic behaviour

J. G. M. van Mier
Swiss Federal Institute of Technology(ETH Zurich),
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1 Introduction

A reliable model for fracture of concrete is helpful for
the design of strong and flexible structures that can
withstand a variety of complex loadings. Two proper-
ties of concrete are of great importance when consid-
ering fracture. First of all, the material has a very low
tensile strength, much lower than its compressive resis-
tance. The imbalance between tensile and compressive
strength becomes even larger when high (compressive)
strength concrete is applied. Also in the case of con-
fined compression the relative difference increases. The
second, for fracture very important characteristic of
concrete is its rough heterogeneity. The heterogene-
ity is a consequence of economics: reducing the price
of concrete through the addition of relatively cheap
sand and gravel to the more expensive binder (Port-
land) cement is common practice. Not only the costs of
concrete decrease, the properties improve in compari-
son to the properties of pure hardened Portland cement,
in particular the cement’s brittleness is partly over-
come. Models for concrete for structural applications
are generally based on continuum mechanics. This
400-year old methodology is based on the assumption
that material properties can be described using stress
and strain as state variables, or stated differently, the
mechanical behaviour of the material can be described
by means of average properties. Central to developing
a sound continuum-based theory is, not surprisingly,
the so called Representative Volume Element (RVE),
i.e. the smallest material volume needed to define the
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average properties of the considered material. Conven-
tional wisdom learns that the RVE should at least be a
factor 3 to 5 larger than the largest heterogeneity found
in the material. For concrete, but also other materials,
the size of the grains is considered when defining the
RVE. From a series of uniaxial tensile tests on speci-
mens of varying size we concluded that the RVE should
be larger than at least 8 times the maximum aggregate
size, see Van Vliet and Van Mier (2000). This con-
clusion was based on the observation that beyond this
threshold the scatter in the experiments decreases and
becomes more-or-less constant. Small specimens, or
rather, small structures show clearly the effect of het-
erogeneity. The increase of scatter below the aforemen-
tioned threshold increases as one single aggregate may
be responsible for the structure’s behaviour. Next to
this, what we will call ‘RVE-based-on-fixed-material-
structure’, clearly the size of nucleating and actively
growing cracks must be considered. If a crack increases
to a size of the same order of magnitude as the charac-
teristic specimen size, boundary condition effects and
geometry-related effects cannot be ignored any longer.
In concrete cracks are not only caused by mechanical
loading, but environmental conditions may have a pro-
found influence as well. Differential temperature distri-
butions during the hydration of cement (when concrete
hardens) and/or differential moisture content in various
part of a structure lead to eigen-stresses and with that, if
the strength threshold is exceeded to crack nucleation
and growth.

Owing to the coarse heterogeneity of concrete severe
stress concentrations are present in the material when
external load is applied. The stress-concentrations are
the results from E-mismatch between the various mate-
rial phases in the composites and the material’s poros-
ity. An important factor leading to crack growth in
concrete at moderate external loading levels is the low
tensile strength of the interfacial transition zone (ITZ)
between matrix and aggregates. It is noted that when we
would scale-down the specimen/structure size below
the aggregate size, and zoom-in on a volume of cement
matrix, the same observations can be made. Compared
to the cement structure small sand grains will be rel-
atively coarse and cause stress-concentrations. Going
further down in scale will bring us to the scale of the
cement binder. Here we will find un-hydrated cement,
and the hydration products, which again can be seen
as aggregates (now the un-hydrated cement kernels)
embedded in a matrix with a clear smaller material

structure (the structure of hydrated cement is found at
nm-size/scale).

Thus, obviously, concrete and also cement are highly
heterogeneous at various size/scale levels. It would
be tempting to address the heterogeneity of concrete
(and cement) via a fractal analysis, but it appears that
‘jumps’ are made along the dimensional scale, which
would demand for a multi-fractal approach. We will
not discuss these matters further, but rather suggest a
different solution that will incorporate heterogeneity at
any size/scale level implicitly. The proposed solution
is based on a lattice model. Lattice models have been
suggested as a tool for analyzing fracture of disordered
materials in the last two decades of the past century,
see for instance Roux and Guyon (1985), Termonia
and Meakin (1986) and Herrmann et al. (1989), among
many others. Since 1990 we have applied lattice-type
models for simulating fracture of concrete, which has
shown to be a valuable tool for obtaining a better under-
standing of fracture, be it that the approach is most
fruitful when at the same time relevant experiments are
carried out; see for instance Schlangen and Van Mier
(1992) and Lilliu and Van Mier (2003) for 2D- and
3D-versions of the ‘Delft’ lattice model. Quite essen-
tial in our approach has been to incorporate the struc-
ture of concrete (or cement) directly into the model.
Various methods are available to do so; the interested
reader is referred to Van Mier (2012) for an overview.
In a lattice model the material is modeled as a regu-
lar or irregular network of linear elements. For fracture
it appears that the most realistic results are obtained
if beam elements are used. By means of a finite ele-
ment program forces and deformations in the network
are calculated, and given a fracture criterion it can be
decided which of the elements will break. Fracture
is simulated by removing in each load-step just one
element, re-calculating the stress-redistributions after
removal, after which the next critical element is deter-
mined and removed. The disadvantage of this rather
coarse way of simulating fracture is that the calcu-
lated load-displacement curves are generally too brittle.
This can be repaired by including a softening stress-
crack opening relation for the lattice elements as pro-
posed by Ince et al. (2003). The obvious disadvan-
tage is that not only the computation becomes more
elaborate but also the softening stress-crack opening
is in principle ‘un-determined. The main advantage of
our lattice approach based on element removal is that
it is simple and transparent. No complicated iterative
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procedures are needed, which is quite essential if the
model is used in combination with experiments. The
goal is getting a better understanding of fracture mech-
anisms in disordered materials like concrete; it is cer-
tainly not an attempt to develop a simulation model
that can be fitted as closely as possible to experimental
data. Up till now always the decision to fracture an ele-
ment was based on a simple ‘stress-criterion’, i.e. when
stresses in a lattice element would exceed a prescribed
maximum stress (e.g. normal stress, flexural stress, etc.)
the element would fail instantaneously (elastic-purely
brittle). This implies that still continuum beam theory
is used to decide whether an element will fail or not. In
view of the statements regarding the RVE this is quite
extraordinary (and probably not correct) since in the
aforementioned lattice models the size of a lattice ele-
ment is in the same order as the material’s heterogene-
ity, for instance in concrete usually the lattice element
length is selected 3 to 4 times smaller than the smallest
aggregate particle incorporated in the material struc-
ture. Clearly there is reason to look at these matters in
a different way, which is precisely what we will do in
this paper.

The organization of the paper is as follows. In Sect.
2 we will argue that softening is a structural prop-
erty, not a material property. This distinction is quite
essential since it will be necessary to deviate from
cohesive fracture models. In Sect. 3 we will show that
the consequence of softening as a structural property,
multi-scale approaches are deemed to fail. Rather an
approach called ‘up-scaling’ from a pre-defined small-
est size/scale level seems a more realistic option, which
is then worked out in Sect. 4 for fracture of concrete.
The softening relation needed in the ‘structural lattice’
debated in Sect. 4 is no longer expressed in terms of
σ and δ, but rather in F and δ, and must be regarded
as the structural property of a lattice element. A con-
sequence is that the sought relationship between F
and δ depends on the structural boundary conditions
(fixed or pinned support; more general, the rotational
stiffness kr of the supports) and on the size of the
lattice element, viz. a structural property. This is
precisely what can be measured routinely in basic
experiments in concrete technology, namely the uni-
axial tensile properties and the (confined) compressive
behaviour. A further advantage of using a ‘structural’
lattice model is that very likely compressive fracture
can be captured in a lattice model as well. Buckling of
lattice elements can be considered and can be included

in the model in a relatively simple and straightforward
manner. Again here we find the significant influence of
boundary conditions and element slenderness (geome-
try), which is now incorporated directly into the model.
Finally, in Sect. 5 methods are suggested that can be
used to validate the new model approach. Without that
the model would be incomplete as so many models are
today.

2 What can be measured directly in fracture
experiments?

In popular cohesive models for concrete the crack-tip
closing stress is modeled according to the outcome
of a uniaxial tension test between fixed (non-rotating)
loading platen. This is what the fictitious crack model
developers tell us; see Hillerborg et al. (1976). Since
the early 1980s there have been numerous efforts to
establish a standard tension or bending test that would
help quantifying the properties needed in the fictitious
crack model. What all experiments tell, however, is
that none of the required properties for the fictitious
crack model are true material properties. These para-
meters are the tensile strength ft , the fracture energy
G f , the maximum crack opening δc and the shape of
the softening curve σ(δ). In some way they all depend
on specimen size, specimen geometry and boundary
conditions. Drawing an equivalent to fracture under
(confined) compression shows the same effects, albeit
in this case specimen geometry and boundary condi-
tions appear to be even more influential. In the case
of tensile fracture researchers often revert to in-direct
tests under the argument that uniaxial tension tests are
too difficult. Instead seemingly simple experiments are
carried out like the Brazilian splitting test or a (3-point
of 4-point) bending test on prismatic beams. These lat-
ter tests require back-analysis of the results, and thus a
number of assumptions are usually needed that are not
always realistic. Here we focus on uniaxial tension and
draw a parallel to uniaxial compression tests because
both tests can deliver the data needed for the ‘structural’
lattice model, which is presented in Sect. 4. Observa-
tions from uniaxial tension and uniaxial compression
tests lead to the following overview:

(1) When considering concrete the characteristic spec-
imen size should be larger than 100–150 mm (i.e. 5
to 8 times the maximum aggregate size); for con-
cretes with very large aggregates (dam concrete)
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this would lead to even larger specimen sizes.
Along the same lines of reasoning: for hardened
cement paste the minimum required specimen size
would be 500–1000μm.

(2) In the fictitious crack model it has become common
practice to model the pre-peak stress-strain curve
as purely linear elastic. Experiments by Evans and
Marathe (1968) indicate that already at a relatively
low stress-level in the pre-peak regime microcrack-
ing starts. This is also the outcome from own exper-
iments and simulations, see Van Mier (2009).

(3) The fictitious crack model tells us that microcracks
propagate and widen in the softening regime. This
is not true. Not only the experiments by Evans and
Marathe (1968) lead to a different conclusion, a
survey carried out by Mindess (1991) shows that
the extent of a fracture process zone, commonly
associated with the length of the crack-tip bridg-
ing zone, not only depends on specimen geome-
try but also on the accuracy of the crack detection
methods used. It is also easy to show that in the
softening regime a macroscopic crack dominates
the behaviour of a test specimen, see Van Mier and
Nooru-Mohamed (1990). These finding for uniax-
ial tension can easily be extended to (confined)
compression; see Van Mier (2012).

(4) The specimen size has a significant influence
on the tensile strength of a specimen. In gen-
eral tensile strength will decrease with increas-
ing specimen size (Fig. 1a); see for instance
Van Vliet and Van Mier (2000) and Van Mier
and Van Vliet (2003). Several (competing) theo-
ries describe this decrease of structural strength
with specimen/structure size; see for instance
Weibull (1939), Bažant (1984) and Carpinteri et
al. (2003). The theory by Weibull is the only size
effect approach based on sound physics. The main
assumption here is that large structures have a
larger probability of containing defects and hence
are weaker. The other two models, sometimes
dubbed ‘laws’ are exercises in curve-fitting. Quite
important in both latter approaches is the notion
of the asymptotic behaviour for small and large
sizes (see Fig. 1a). Trying to validate the asymp-
totic behaviour in the small size range is impossi-
ble: as soon as the specimen/structure size becomes
smaller than the RVE experimental scatter will
become larger and a solid conclusion cannot be
drawn. The RVE is estimated at 8da and indicated

in Fig. 1a. The large-size asymptotic behaviour
cannot be established either because the laboratory
facilities will be decisive for the maximum size of a
specimen/structure that can be tested. In most labs
the characteristic specimen size will not exceed 2
m. A workable option would be to test larger spec-
imens floating on water. The large-size asymptote
is considered more important than the lower-size
asymptote for the sole reason that such results can
be used directly in structural engineering. Note that
at the lower-size asymptote, below the RVE, we
start testing different materials, namely the indi-
vidual constituents of concrete: hardened cement
paste and aggregate. In Fig. 1a conclusions about
models and experiments can only be drawn in the
area enclosed by the box of the diagram. Beyond
these boundaries only fruitless speculation is pos-
sible; many hours have been lost at conferences
in the past decade debating the best ‘size effect
law’ on the basis of the behaviour at the extremes.
It is obvious that it is impossible to discriminate
between the proposed models (Bažant 1984 and
Carpinteri et al. 2003) simply because it will never
be possible to validate the speculations by means
of physical experiment.

(5) With increasing specimen/structure size the frac-
ture energy (i.e. the area under the post-peak soft-
ening curve) increases as shown in Fig. 1b. For
large sizes (> 1.6 m for 8-mm concrete) the curve
seems to level of towards a horizontal asymptote.
Therefore it is believed that fracture energy may
be a true material property, but very large speci-
mens are needed to make the actual measurements
for a given concrete. Models based on local frac-
ture energy g f (for instance Duan and Hu 2004)
are difficult to feed with experimental data sim-
ply because at the lower end of the size-scale mea-
surements of fracture energy will not yield realistic
values. The complete stress-deformation diagram
is affected when specimen/structure size increases.
Larger specimens show a more brittle behaviour;
just beyond peak even snap-back behaviour may
occur depending on the choice of control parame-
ter in the closed-loop testing system (see also ref-
erences mentioned in the next paragraph).

(6) It is by no means clear for which characteris-
tic specimen size the softening diagram needed
in the fictitious crack model must be determined.
Obtaining a stable softening diagram is not easy if
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Fig. 1 Size effect on structural strength (a) and fracture energy
(b) from uniaxial tensile tests on dog-bone shaped specimens.
Testing below the RVE-size (taken here as 8 da , and indicated in
(a)) is not possible due to increasing scatter. Therefore assumed
asymptotic behaviour in the small size/scale regime can never
be validated experimentally. The fracture energy has been calcu-
lated up till 180 μ m crack opening, denoted as G F,180 and till full

separation G F . In the latter case measured curves were linearly
extrapolated to the point where they intersected with the x-axis.
Data are from Van Mier and Van Vliet (2003). The Weibull the-
ory has been fitted to the experimental data; for SEL and MFSL
only trends are shown indicating the asymptotic behaviour for
small and large sizes

the right equipment is lacking, see Van Mier and
Shi (2002). Considering that the fracture energy
grows towards an asymptotic value for larger speci-
mens, this might indicate that even larger specimens
(2-m range) would be required than based on con-
sidering the RVE. At those larger sizes maintaining
stability of crack growth in the softening regime is
most difficult because often snap-back behaviour
may occur. The difficulties can be overcome, how-
ever, as shown in Van Vliet and Van Mier (2000)
and Van Mier and Shi (2002), but require next to
the servo-hydraulic control system some additional
electronics.

(7) Boundary conditions have a pronounced influence
on the softening behaviour, both in tension and
under (confined) compression. More specifically, in

tension the rotational freedom at the nodes affects
the tensile strength, the pre-peak non-linearity,
the shape of the softening curve and the fracture
energy. In (confined) compression, in addition to
the rotational freedom of the supports the fric-
tional restraint at the specimen-loading platen inter-
face must be considered. In Fig. 2 three differ-
ent cases are shown: fixed boundaries (kr = ∞)

using a slender specimen (h/d > 2) in Fig. 2a,
pinned boundaries (kr = 0) using a slender spec-
imen in Fig. 2b and in Fig. 2c a stubby specimen
(h/d < 1) loaded between fixed boundaries. With
fixed boundaries two cracks will develop in the soft-
ening regime; restraining the rotations at the speci-
mens ends will cause the bump in the diagram as the
two cracks develop in sequence from two opposite
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sides of the specimen, see Van Mier (1986). In con-
trast, when a slender specimen is loaded between
pinned boundaries the first crack to develop is also
the crack leading to complete failure of the spec-
imen, i.e. no secondary cracking can occur. The
fracture energy is markedly smaller in the sec-
ond case as a direct consequence of the reduced
crack area; the tensile strength is smaller under
pinned boundaries in comparison to fixed bound-
aries; see Van Mier et al. (1995). When a stubby
specimen is used instead of a slender specimen the
stress-redistributions occur earlier, around peak,
and results by Hordijk (1991) show that the pre-
peak part of the diagram becomes more curved, the
deformation at peak-load increases and the ‘bump’
has disappeared. The result is shown schematically
in Fig. 2c. More recently, Akita et al. (2007) showed
that the specimen shape has a significant effect on
tensile strength as well.

(8) As a consequence of the size effect on strength and
deformation, and the influence of boundary rota-
tions it is impossible to choose the ‘best’ or ‘most
appropriate’ type of experiment for determining the
softening diagram of concrete in tension and with
that the closing stress-profile in a cohesive frac-
ture model. The point of view that comes closest
to all results is that softening is a ‘structural prop-
erty’, rather than a ‘material property’. It is impos-
sible to separate boundary effects from material
effects in all these experiments. The main reason
is that a crack with a size comparable to the speci-
men/structure dimensions is developing, and like in
classical fracture mechanics a correction for these
effects must be incorporated in any model trying

to deal with the aforementioned phenomena. Thus,
the behaviour measured in a uniaxial tensile test
is valid only for the chosen specimen size and the
applied boundary conditions. The resulting F − δ

relation should be used directly in a model, as this is
the only un-biased result that can be derived from an
experiment. We will return to these matters in Sect.
4. It should be noted that the last remaining ‘contin-
uum state variable’ in the fictitious crack model has
been dropped; rather than giving results in terms of
average stress over the specimens cross-section it
will be an improvement to present matters directly
in force and displacement, thereby also incorporat-
ing the pre-peak behaviour in the formulation. Note
that this is a significant deviation from the fictitious
crack model.

For compressive fracture the same situation emerges,
see Van Mier (2009, 2012). Next to the chosen bound-
ary rotations also frictional restraint between loading
platen and specimen ends will affect the measurements.
Higher boundary restraint results in a higher compres-
sive strength, larger deformations at peak stress and
a shallower softening branch. The interested reader is
referred to my recent book for a complete overview of
all factors affecting compressive fracture; see Van Mier
(2012). The aforementioned effects will also be found
under confined compression, provided the confinement
stays below the brittle-to-ductile transition.

In conclusion to this section it can be stated that it
does not make sense to continue with cohesive fracture
models for concrete. The essential parameter, the σ −w

relation is not a ‘material property’ but must be seen as
the response of the complete specimen-machine sys-
tem. Softening is a ‘structural property’. In Sect. 4 we

Fig. 2 Effect of boundary rotations on tensile stress-deformation
diagram of concrete. In a and b a slender specimen is loaded
between fixed (non-rotating) loading platen and pinned (freely

rotating) loading platen, respectively, whereas in c fixed speci-
men ends are used in a test on a stubby specimen
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Fig. 3 Two images of a
polished surface of
hardened cement paste,
before (a) and after
indentation with a
Berkovich diamond tip. The
almost white particles are
the remaining un-hydrated
cores of partially hydrated
cement grains. Light gray
and dark gray are the low
and high-density calcium
silicate hydrates (CSH), and
black is porosity. After Van
Mier (2007)

will see how we can still work with such a relation-
ship.

3 Multi-scale modeling?

Recently there has been quite some interest in multi-
scale modeling. At the smallest considered size/scale-
level the behaviour of the constituents of a compos-
ite are determined, for example, and used in sequen-
tial analyses at higher size/scale levels, all the way
up to the macroscopic (or engineering) level. Does
this make sense? It will only work when at the small-
est size/scale true material properties are used. In
scaling-up to larger size/scale levels boundary effects
and size effects can be incorporated, which would
lead to correct results at the macroscopic level. The
question is thus: are we capable of determining true
material properties at the smallest size/scale? In rela-
tion to this question immediately a second one can be
posed, namely: what is the most appropriate ‘small-
est’ size/scale to start from? Let us assume that we
are dealing with concrete and the appropriate lower
size/scale-level is the [μm]-level where the structure of
hydrated cement can be seen in great detail. In Fig. 3
the structure of cement at the [μm]-size/scale is shown,
before and after an indent with a Berkovich diamond
tip. The smooth gray area at the right corner of Fig. 3a
is part of a sand grain, the more-or-less white particle
in the center is an un-hydrated cement grain (approxi-
mately 50 μm across), the smaller darker gray patches
forming the matrix between the sand and un-hydrated
cement particles is hydrated cement, interspersed with

porosity, which appears as black specs. The hydrated
cement usually comes in two forms: low-density Cal-
cium Silicate Hydrates (in short: CSH) away from
the un-hydrated kernel, and high-density CSH directly
in contact with the un-hydrated cement grain. In the
smallest-scale part of the multi-scale model we need
to incorporate all these material phases and, in addi-
tion, the interfaces between the various components. A
minimum model would require knowledge about the
mechanical properties of un-hydrated cement (which
is a composite by itself, as can be seen in Fig. 3b after
the indentation has been made), low- and high density
CSH and at least 3 types of interfaces. The indenta-
tion shown in Fig. 3b is one of the few (in-direct) tests
available for determining the mechanical properties of
these material phases. For instance, Constantinides and
Ulm (2004) have attempted to determine the Young’s
modulus of low- and high-density CSH by means of
indentation tests, and reported a higher modulus for
high-density CSH in comparison to low-density CSH.
Problems in indentation testing are numerous, and just
the simple fact that the tests are in-direct makes them
suspicious. As an alternative one can try to carry out
uniaxial tension tests (see for instance Trtik et al. 2007).
Machining tiny specimens of hardened cement paste,
or isolating small probes made of the individual cement
hydrates (see below) is tedious, and often leads to using
larger specimens that contain all the aforementioned
material phases. Using a micro-mechanical model one
would then have to perform back-calculations and try to
estimate the properties of the various material phases.
For certain, not a simple task and not a small task
either.
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An alternative route is to scale-down from the micro-
mechanical tensile test and try to obtain specimens
consisting of pure cement phases (low-density CSH,
high-density CSH, calcium hydroxide and un-hydrated
cement), for instance by using a focused ion beam
(FIB). This is certainly not an easy task either, but
can be done. If we have succeeded in producing the
specimens and testing them as well, the same prob-
lems that we discussed in the previous Section will
return: what to do with size effects and boundary con-
ditions? The answer will not change: again we are mea-
suring structural properties rather than material prop-
erties, except perhaps for the Young’s modulus and
the fracture energy, but these are certainly not suffi-
cient for constructing a fracture model. So, the sugges-
tion to use a lattice model and to feed into the model
directly the structural properties of a lattice element
might be a workable approach. In the next Section we
will explore the advantages and disadvantages of such a
model.

4 Structural lattice based on multi-scale
interaction potentials (F-r)

There is a resemblance between the shape of the
attractive part of an atomic potential and the tensile
force-deformation diagram for concrete, see Van Mier
(2007). A well-known form for the atomic potential for
noble gases is the Lennard-Jones (LJ) potential, which
may be written as:

VL J (r)

ε
= −4

[(σ

r

)12 −
(σ

r

)6
]

, (1)

where σ and ε are units of length and energy, respec-
tively. The potential describes the balance between
attractive and repulsive forces at the level of atoms.
Is the distance between two atoms below the equilib-
rium separation r0, the repulsion must be overcome and
the atoms must be forced to remain at the prescribed
distance. With increasing separation distance between
the atoms the energy needed decreases. Equation (1)
can be rewritten as:

F

Fu
= α

[(σ

r

)m −
(σ

r

)n]
, (2)

A relation between the force F to keep the atoms
at prescribed separation distance 1/r . The powers n
and m can be varied to obtain the required shape of the
potential. In Fig. 4 we show the shape for the parameter

Fig. 4 Variation of the power m in Eq. (2) leads to the family
of potentials shown in this Figure. The shape corresponds to the
force-deformation diagrams for concrete under uniaxial tension.
After Van Mier (2007)

setting σ = 1, n = 6, α = −4, and m varies between
2 and 20. The curves flip over when m > 6. The family
of curves above this threshold resembles the shape of a
family of force-deformation curves from uniaxial ten-
sion tests on concrete, as shown for instance in Fig. 2.
It is therefore tempting to investigate whether the sim-
ple formulation can be used at higher size/scale-levels
as well. Note that the family of curves has been shown
relative to the response of a specimen of reference size
D0, having a maximum force Fu .

Beranek and Hobbelman (1992, 1994) showed that
a similarity exists between a particle model and a beam
lattice model. Starting point was the analysis of a stack
of equal-sized spherical particles in contact. The defor-
mations of this model were compared with those of a
beam lattice. Lattice beams were assumed to connect
the centers of two neighbouring particles. For a cer-
tain size of the lattice beams the similarity was perfect,
indicating that both models would lead to the same
result. The idea is now as follows. A tensile test on a
prismatic specimen is interpreted as the potential for a
pair of particles of the same size. The so-called pair-
potential is thus assumed to apply at larger size/scale
levels than the atomic level, even all the way up to the
macroscopic size/scale level. Testing a specimen at the
required size/scale will yield immediately the required
potential. As we show in Fig. 5, we can thus establish
the potential at various size/scale-levels such as the
nano-, micro-, meso- and macro-levels. Nano would
probably be far-fetched when dealing with cement and
concrete but the behaviour of the material at the other
scales is quite relevant.

Let us now consider the two different interpreta-
tions of the meso-structure of concrete as shown in
Fig. 6a, b. Following the interpretation of Fig. 6a con-
crete is seen as a three-phase composite, consisting
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Fig. 5 Pair-potentials for application in a beam-lattice model at
various size/scale levels (nano-, micro-, meso- and macro-level).
After Van Mier (2012). Note that the potential is active between
two particles of identical size; the distance between the particles
is here shown exaggerated to indicate that only normal forces are
considered between the interacting particles

of cement-matrix in which the various aggregates are
embedded. Between the two phases is an interfacial
transition zone, which has relatively low strength, and
is in fact the weakest part of the concrete structure.
Since the matrix is shown here as a continuous phase,
we could interpret this visualization as the situation
after hydration. The matrix is built up from the small-
est sand grains that have not been explicitly included
in the model, the Portland cement, and, if present, fly-
ash and/or condensed silica. In the lattice model that
we built in Delft and Zurich, as a series of consec-
utive PhD-projects, the visualization of Fig. 6a was
taken as a starting point. The regular or random lat-
tice was simply projected on top of the 3-phase mate-
rial structure and properties were assigned depending
on where a certain lattice element would be located,
see Fig. 6c. In Fig. 6b concrete is depicted as a stack
of spherical particles of varying size. In a way this
is the situation before the cement hydrates; only the
water needed for hydration is not shown in this Fig-
ure (note that the mixing water in concrete is initially
absorbed at the particle’s surfaces and possible excess
water will gather in voids between the particles). All
particles sizes are present: from the largest [mm]-size
aggregates to the smallest (sub-[μm] size) fly-ash and
condensed silica particles with the cement grains of
a size falling between these extremes. With such a
hierarchical system the densest possible material struc-
ture can be obtained, which will have the highest pos-
sible strength. The material interpretation of Fig. 6b
can also be turned into a lattice. By simply connect-
ing the centers of neighbouring particles a lattice is
constructed. Each lattice element represents the inter-

action between the two neighbouring particles. Inter-
preting the system as just a bunch of pair-interactions
is probably too simple, and higher order interactions
may be included, at the cost of a loss in transparency
of the model. In Fig. 6d the connectivity between the
particle centers is shown, in Fig. 6e the remaining
lattice.

The potential law, Eq. (2) describes the behaviour of
a lattice element, but an essential adjustment must be
made. The potential used in our lattice model depends
on the actual size of the individual lattice elements,
and on the rotational support stiffness at both nodes,
i.e. the connectivity to the other lattice elements. The
rotational stiffness at the supports depends not only
on the connectivity to the rest of the lattice but also
on the flexural stiffness of the lattice element itself. So,
rather than descending to a so-called material level, and
describing the properties of the lattice elements via con-
stitutive equations, we remain at the ‘structural level’
and describe the properties of each lattice element
directly as a function of size and support conditions.
The complication that arises in conventional cohesive
fracture models is solved, namely the dependence of
cohesive fracture properties on element size and bound-
ary conditions is now implicitly included in the model.
Figure 7 shows examples of (size-dependent) poten-
tials for three different boundary conditions and vary-
ing specimen slenderness. Specific characteristics of
a lattice element are included in the F − r poten-
tial. For instance the ‘bump’ in the softening curve
when a slender lattice element is tested between fixed
boundaries is included in the potential function. It is
not seen as an ‘inconvenience’ that at all costs must
be removed from the model. No, it is just part of the
behaviour of that particular lattice element when the
element’s ends are fixed against rotations. Likewise we
will have to use the smooth curve for a lattice element
between pinned supports, which is actually a condi-
tion that will not be found in a beam lattice model, and
the increased pre-peak deformations for a stubby lat-
tice beam between fixed supports. The latter case may
appear frequently since in the beam lattices explored
to date always relatively stubby elements have been
used, which came from the demand to justify the elastic
lattice properties to those of a real concrete specimen
or structure; see for instance in Schlangen and Mier
(1994).

Returning to the model of Fig. 6d, e, which was
derived from the concrete material structure of Fig. 6b,
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we can easily see the implications of this model. For
compression the effects from bc on lattice element
response are even more pronounced in comparison to
the effects shown here for tension; see the overview in
Chapter 8 in Van Mier (2012). The same approach as
sketched above can be applied, however. As an exam-
ple consider the particle stack of equal-sized disks
(2D is considered for explaining the matter here) sub-
jected to external compression in Fig. 8a. The con-
tact forces between the particles are either compres-
sive or tensile (splitting forces will occur between hor-
izontal oriented particle pairs), as shown in the equiv-
alent lattice model. If the disks are of varying size
the lattice element sizes vary correspondingly and the
potential functions describing the relation between lat-
tice element force F and deformation r will vary as
well.

5 Which experiments are essential?

In the model approach suggested in the previous section
the behaviour of a lattice element is described directly
in terms of force and deformation. The consequence is
that for each lattice element size and bc the behaviour
must be estimated from experiments. How can this be
done? In the first place the task will be simplified by
considering a limited set of bc’s, which could be iden-
tified from elastic analyses of a corresponding beam
lattice. The size of the lattice elements can be set using
the approach in Schlangen and Mier (1994). After the
rotational stiffnesses of the two nodes of an element
have been established, we know how large the speci-
men should be as well as the rotational support stiff-
nesses. After that it is rather simple and straightforward
to conduct the experiment. The main advantage of the

Fig. 6 Two different
interpretations of the
meso-structure of concrete:
a concrete as a three-phase
composite of matrix,
aggregate and interfacial
transition zone (ITZ), and b
as a stack of particles of
different size. The model of
(a) has been used frequently
in the past: a regular or
random lattice was
projected on top of the
material structure and the
lattice elements would be
assigned properties
according their location on
the material structure as
shown in (c). In the model
of (b) particles can be
anything from gravel, sand,
condensed silica, Portland
cement, fly-ash, and so on.
The particle stack of (b) can
form the basis for the
construction of a lattice as
shown in (d) and (e), which
would form the basis of the
‘structural lattice’ discussed
in this paper
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Fig. 7 Examples of pair-potentials F/Fu − r for three different
structural conditions of the lattice element: a slender lattice ele-
ment loaded between fixed (no-rotating) ends, b slender lattice

element loaded between pinned ends, and c stubby lattice ele-
ment between fixed ends

Fig. 8 Stack of equal-sized disks subjected to external com-
pression (a). Tensile splitting forces develop between horizontal
pairs and compressive stresses are transmitted between vertically
arranged particle pairs or inclined pairs. In (b) the equivalent

lattice element and its boundary conditions are shown. The input
potential is simply what is measured for such a lattice element
in a physical experiment

procedure sketched here is that the basis of the model
approach is defined from the constraints set by labora-
tory experiments. The model is defined based on what
we can actual derive from physical experiments and
no ad-hoc assumptions are necessary. As we have dis-
cussed in Sect. 2 properties for cohesive crack models
are dependent on specimen size and bc, and in that
respect cohesive crack models are rather useless. The
situation is more severe for compression than for ten-
sion. With the new approach one could argue that many
different specimen sizes and bc’s must be tested. Indeed
this is the case, but probably the number of cases can
be reduced significantly by simplifying the material
structure to some extent, for instance leaving out all
particles below a certain size-threshold. Such simplifi-
cations were also made in the lattice model mentioned

before (Schlangen and Van Mier 1992 and Lilliu and
Van Mier 2003), but the model outcomes will still be
useful for obtaining a profoundly improved insight in
the fracture behaviour of cement and concrete. Unfor-
tunately the simplicity and transparency of the original
lattice model are lost to some extent. Yet, the fit of the
load-displacement curve should improve substantially.
Since any type of structure is calculated as such (i.e.
reconstructing the exact boundary conditions), there is
no need to assume that some properties are ‘material
properties’. We simply calculate the effects from struc-
ture size and boundary conditions and the effort will
be rewarded because the model starts from the behav-
iour of single lattice elements that can actually be mea-
sured in laboratory experiments. In principle the ficti-
tious crack model also predicts size effects; yet there
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an un-resolved problem remains, i.e. softening is not a
material property.

Next to the tests aimed at establishing the potential-
law for the individual lattice elements, large scale
tests on larger material volumes are quite essen-
tial, in particular the determination of the evolution
of the crack populations under a variety of loading
paths. These large-scale tests are needed to establish
fracture mechanisms. A useful approach is the use of
X-ray tomography, which can provide the evolution of
the full three-dimensional crack population in time; see
for instance Trtik et al. (2007) and Meyer et al. (2009).

6 Conclusion

In this paper we discuss an alternative to cohesive crack
models, namely a lattice model based on F − r poten-
tials. The potential function to be used depends on the
size of the lattice element (slenderness h/d) and the
rotational stiffness at the nodes. The rotational stiffness
at the nodes of each lattice element depends on the con-
nectivity of an element to neighbouring lattice elements
as well as on the flexural stiffness of the lattice ele-
ments themselves. The implication is that for a variety
of boundary conditions and a variety of lattice element
sizes the potential function must be measured, but the
enormous advantage is that what is needed as input in
the model can actually be measured in physical exper-
iments. The potential describes the structural behav-
iour of a lattice element. Material properties do not
exist, which is the main deviation here from assump-
tions in cohesive models where the softening curve is
considered as a material property. Basically we start
from what can be measured in a fracture experiment,
in stead of trying to measure haphazardly proposed
parameters. The model approach explained in this short
paper is an elegant manner to overcome the parameter-
identification conundrum which seems to affect most
fracture models today.
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Abstract The problem of hydraulic fracture for the
PKN model is considered within the framework pre-
sented recently by Linkov (Doklady Phys 56(8):436–
438, 2011). The modified formulation is further enha-
nced by employing an improved regularized boundary
condition near the crack tip. This increases solution
accuracy especially for singular leak-off regimes. A
new dependent variable having clear physical sense
is introduced. A comprehensive analysis of numeri-
cal algorithms based on various dependent variables
is provided. Comparison with know numerical results
has been given.
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1 Introduction

In its broadest definition, hydraulic fracturing refers
to a problem of a fluid driven fracture propagating
in a brittle medium. The process has been known
for at least 50 years (Crittendon 1959; Desroches and
Thiercelin 1993; Desroches et al. 1994; Detournay
2004; Geertsma and de Klerk 1969; Harrison et al.
1954; Hubbert and Willis 1957; Khristianovic and
Zheltov 1955). The respective technology has been uti-
lized in the petroleum industry to intensify the extrac-
tion of hydrocarbons for decades.

Recently, due to economical reasons, it has been
revived for exploiting non-conventional hydrocarbon
deposits. The process has many other technological
applications (e.g. disposal of waste drill cuttings under-
ground (Moschovidis and Steiger 2000), geothermal
reservoirs exploitation (Pine and Cundall 1985) or in
situ stress measurements (Desroches and Thiercelin
1993). Hydrofracturing also appears in nature (e.g.
geological processes, like magma-driven dykes (Rubin
1995; Lister 1990) or a subglacial drainage of water
Tsai and Rice 2010). Due to the complexity of this mul-
tiphysical phenomenon, mathematical and numerical
simulation of the process still represents a challenging
task, in spite of the fact that immense progress has been
made since the first algorithms were developed.
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The mathematical model of the problem should
account for coupled mechanisms driving the process,
which are: (i) solid mechanics equations, describing the
deformation of the rock induced by the fluid pressure;
(ii) equations for the fluid flow within the fracture and
the leak-off to the rock formation; (iii) fracture mechan-
ics criteria defining the conditions for fracture propaga-
tion. Further development of the model involves incor-
poration of mass transport for the proppant movement,
fluid diffusion to account for the rock saturation by
the leak-off flux, thermal effects affecting rheological
properties of the fluid and others.

The computational challenges of the hydrofractur-
ing models result from several factors: (i) strong non-
linearity introduced by the Poiseuille equation describ-
ing the fluid flow; (ii) in the general case, a non-local
relationship between the fracture opening and the net
fluid pressure; (iii) moving boundaries of the fluid
front and the fracture contour; (iv) degeneration of the
governing PDE at the fracture front; (v) possible lag
between the crack tip and the fluid front.

The first simplified mathematical descriptions of
hydraulic fracture were summarized in the following
three main classical models. The so-called PKN model
was considered in Perkins and Kern (1961), where
the authors adopted Sneddon’s solution (Sneddon and
Elliot 1946) which was further enhanced by Nordgren
(1972) to account for the fluid loss effect and fracture
volume change. As a result, the crack length was deter-
mined as a part of the solution. The so-called KGD
(plain strain) model was developed independently by
Khristianovic and Zheltov (1955), and Geertsma and
de Klerk (1969). Finally, the radial or penny-shaped
model was introduced by Sneddon (1946) with con-
stant fluid pressure and was extended for the general
case by Spence and Sharp (1985).

Different variations of the aforementioned models
were used for treatment designs for decades, despite
the fact that each of them is valid only under very spe-
cific assumptions (like elliptic cross-section of the frac-
ture, and fracture half-length much greater than its con-
stant height for the PKN model). Recently, the classical
models have been largely replaced by the pseudo 3D
models (Mack and Warpinski 2000). A comprehensive
review of the history and techniques of hydrofracturing
simulation can be found in Adachi et al. (2007).

Although the classical models have been superseded
in most of the practical applications, they still play
a crucial role when developing and analyzing new

computational algorithms. The models enable one to
understand the nature of, and reasons for, computa-
tional difficulties, find the remedies for them and to
extend these ideas to the general case.

Thus, in the pioneering work by Nordgren (1972),
main peculiarities of the model were analyzed and a
numerical algorithm was proposed to deal with the
problem. Asymptotic analysis of the solution near the
crack tip for impermeable rock model was presented in
Kemp (1989) and an approximate solution for the zero
leak-off case, with an accuracy to the first four lead-
ing asymptotic terms, was given.1 Here, probably for
the first time, the speed equation was efficiently imple-
mented in the model. The fourth degree of the crack
opening was considered as the proper variable and used
in the numerical computations. Finally, Kemp (1989)
suggested to use a special tip element, compatible with
the asymptotic behaviour of the solution, within the
finite volume (FV) scheme.

For the leak-off function defined by the Carter law
the two leading terms of asymptotics can be found
in Kovalyshen and Detournay (2009), where the PKN
problem was revisited to take into account the multi-
scale arguments in the spirit of Garagash et al. (2011).
The authors also used the FV scheme with a special tip
element to tackle the transient regime.

Recently, the classical models of Nordgren and
Spence and Sharp have been revisited again in Linkov
(2011a,b,c,d). The author discovered that in some for-
mulations the hydraulic fracture problem may exhibit
ill-posed properties. To eliminate the difficulties result-
ing from these facts, a number of measures were pro-
posed: (i) speed equation to trace the crack front instead
of the usually applied total flux balance condition;2 (ii)
the so-called ε-regularization technique which consists
of imposing the computational domain boundary at a
small distance behind the crack tip; (iii) new boundary
condition to be imposed in the regularized formula-
tion; (iv) new dependent variables: the particle veloc-
ity and the crack opening taken in a degree to exploit
the asymptotic behaviour of the solution; (v) the spatial
coordinates moving with the crack front and evaluation

1 Extension of this solution to the full series representation was
given in Kovalyshen and Detournay (2009), while other form, in
terms of fast converging series, was obtained in Linkov (2011c).
2 Probably, for the first time, this idea was recalled in indirect
way in Spence and Sharp (1985) and utilized by Kemp (1989),
but later was abandoned as the particle velocity at the crack tip
is difficult to compute numerically.
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of the temporal derivative under fixed values of these
coordinates.

The advantages of the modified formulation were
clearly demonstrated on the basis of developed ana-
lytical benchmarks in Linkov (2011d). An immense
improvement of solution accuracy, computation effi-
ciency and stability was shown. In Mishuris et al.
(2012) a further step in employing the modified for-
mulation was done by analyzing the stiffness of the
system of differential equations arising after spatial dis-
cretization. An efficient modification of the algorithm
has been proposed to trace the fracture propagation.
Finally, the investigation of solution sensitivity to some
process parameters has been considered.

However, the aforementioned analysis is concerned
with the case when the leak-off vanishes near the crack
tip and, as a result, the fluid velocity does not change
much in this region.

The primary aim of this paper is to verify the recipes
delivered in Linkov (2011a,b,c,d) and Mishuris et al.
(2012) for an arbitrary leak off regime. In particular,
the analysis includes: (i) Investigation of performance
of numerical algorithms for hydrofracturing based on
different formulations (different dependent and inde-
pendent variables); (ii) Utilization of a new dependent
variable defined as an integral of the crack opening.
Such a variable has a clear physical and technological
sense and is not related to any specific type of solution
asymptotic behaviour near the crack tip; (iii) Modifi-
cation of the way to impose boundary conditions in
the framework of the ε-regularization technique3; (iv)
Identification of optimal ranges of the various tech-
nique parameters, accuracy of computations and stiff-
ness of the resulting dynamical systems; (v) Compari-
son of the solution for the Carter leak-off model with
the numerical results from Kovalyshen and Detournay
(2009) and discussion on the solution sensitivity.

The structure of this paper is as follows. In the
next section we collect known results for the PKN
model in various formulations. We restrict ourselves
only to the information which is absolutely necessary
to understand the paper. Section 2.3.2 contains an alter-
native formulation in terms of a new proper depen-
dent variable—fracture volume. In Sect. 3 we discuss
in details the numerical procedures and present main

3 Note that the problem regularization is the important issue. It
can be done by various techniques. Another type of the direct
regularisation is shown in Wrobel and Mishuris (2013)

results of the computations comparing performances
of different solvers under considerations. The solution
obtained for the Carter leak-off model is compared
with the available numerical data from Kovalyshen
and Detournay (2009). The main findings of this paper
are summarized in the conclusion section. Some new
results concerning the asymptotic behaviour of the
solutions for different leak-off regimes are presented
also in “Appendices A and B”.

2 Problem formulation and preliminary results

2.1 Physical fundamentals and basic equations

Consider a symmetrical crack of the length 2l situated
in the plane x ∗ (−l, l), where the length l = l(t) is
one of the solution components changing as a result
of the fluid flow inside the crack. The initial crack
length is assumed to be nonzero: l(0) = l⊂ > 0.
There are reasonable motivations behind this assump-
tion. Namely, for the initial (unstable) stage of the
crack propagation the acceleration of the process is too
large to neglect the inertial terms. For this reason, any
classical model not accounting for this effect is not
credible. On the other hand, in many cases the hydrofrac-
turing process is associated with the so-called ’perfo-
ration technique’. The latter consists of the creation
of a number of finger-shaped initial fractures by det-
onations of shaped charges spaced along the wellbore
(Economides and Nolte 2000). In this way, hydrofrac-
turing starts simultaneously from a number of non-zero
length cracks. Moreover, in many rock formations (e.g.
shale reservoirs) cracks already exist but are closed
by the confining stress (Economides and Nolte 2000).
Finally, the uncertainties involved in this complex mul-
tiphysics problem itself do not allow one to make any
reliable modelling of the crack nucleation in the rock
formation.

By convention, we assume that the crack is fully
filled by a Newtonian liquid injected at known rate q0(t)
at the crack mouth x = 0.

The Poiseulle equation for the Newtonian liquid flow
in a narrow channel is written in the form:

q = − 1

M
w3 θp

θx
, (1)

where q = q(t, x) is the fluid flow rate and w =
w(t, x) is the crack opening, while p = p(t, x) is the
net fluid pressure, that is, the difference between the
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fluid pressure p f inside the fracture and the confining
stress φ0 (p = p f − φ0). The constant M involved in
the equation is defined as M = 12μ, where μ stands
for the dynamic viscosity [see for example Economides
and Nolte 2000].

The continuity equation, accounting for the crack
expansion and the leak-off of the fluid, may be
expressed as:

θw

θt
+ θq

θx
+ ql = 0, t > 0, 0 < x < l(t), (2)

where ql = ql(t, x) is the volume rate of fluid loss to
formation in the direction perpendicular to the crack
surfaces per unit length of fracture.

Numerical algorithms for the PKN model, with and
without leak-off, have been considered in Nordgren
(1972), Kemp (1989), Kovalyshen (2010) and oth-
ers. Improvements based on the speed equation and
the ε-regularisation technique have been introduced
in Linkov (2011c), Linkov (2011d), Mishuris et al.
(2012), for the case when leak-off vanishes near the
crack tip. Below, we discuss the effectiveness of this
approach on the three most popular leak-off models:
Carter law (Carter 1957), modified law incorporat-
ing pressure difference (Clifton and Wang 1988) and
bounded leak-off near the crack tip. An extensive dis-
cussion on possible behaviour of the leak-off function
can be found in Kovalyshen (2010).

In our numerical simulations, we utilise one of the
following leak-off variants:

ql(t, x) = q( j)
l (t, x) + q⊂

j (t, x), j = 1, 2, 3, (3)

where

q(1)
l = C1(t)≥

t − ∂(x)
, q(2)

l = C2(t)p≥
t − ∂(x)

,

q(3)
l = C31(t)p + C32(t), 0 < x < l(t).

(4)

Here C1 = CL is usually assumed to be a known con-
stant defined experimentally (Carter 1957). Recently it
was estimated analytically for a poro-elastic material in
Kovalyshen (2010). The function ∂(x) contains infor-
mation on the history of the process. It defines the time
at which the fracture tip reaches the point x and can be
computed as the inverse of the crack length:

∂(x) = l−1(x), x > l⊂. (5)

For x ∇ l⊂ we conventionally set ∂(x) ∞ 0. Other
constants in (4), C j (t) = C j (t, w, p), ( j = 2, 3)
may depend on the solution itself but are bounded
functions in time. Finally, we assume that the terms

q⊂
j , ( j = 1, 2, 3) in (4) are negligible in comparison

with q( j)
l near the crack tip. Note that application of the

Carter leak-off law (Carter 1957) which is a simplified
model of established fluid diffusion through the frac-
ture walls, may be not justified at some stages of the
process (Nordgren 1972; Lenoach 1995; Mathias and
Reeuwijk 2009).

In this paper, we are aiming to build a general numer-
ical framework for the problem under consideration.
Thus, the collection of possible leak-off representa-
tions given in (4) covers the whole spectrum of possi-
ble bahaviours used in the hydrofracturing simulations
(Kovalyshen 2010).

The system of Eqs. (1)–(2) should be supplemented
by the elasticity equation. We consider the simplest
relationship used in the PKN formulation

p = kw, (6)

with a known proportionality coefficient k = 2
ωh

E
1−ν2

found from the solution of a plane strain elasticity prob-
lem for an elliptical crack of height h (Nordgren 1972).
Constants E and ν are the Young modulus and the Pois-
son ratio, respectively. In physical interpretation, this
condition refers to the case when the fracture resis-
tance of the solid is so small, that the energy dissipated
by the fracture extension is negligible compared to the
energy dissipated in the viscous fluid flow (Adachi and
Detournay 2002). However, it turns out that, even in
the models where the toughness dominated regime can
be accounted for, it may be of a minor importance. For
example, in Savitski and Detournay (2002) it has been
proven that radial hydraulic fractures in impermeable
rocks generally propagate in the viscosity regime, and
that the toughness regime is relevant only in excep-
tional circumstances (for the average values of the field
parameters the fracture would remain in the viscosity
dominated regime for many years).

On substitution of the Poiseulle Eq. (1) and elasticity
relationship (6) into the continuity Eq. (2), one obtains
a well known lubrication (Reynolds) equation defined
in the trapezoidal domain (t > 0, 0 < x < l(t)):

θw

θt
− k

M

θ

θx

⎧
w3 θw

θx

⎪
+ ql = 0. (7)

Since the system has its natural symmetry with respect
to variable x and the equations are local, it is convenient
to consider only half (symmetrical part) of the interval
[0, l(t)] instead of the full crack length [−l(t), l(t)].
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Following the discussion on the initial crack length
above, the initial conditions for the problem are:

l(0) = l⊂, w(0, x) = w⊂(x), x ∗ (0, l⊂). (8)

The boundary conditions include: known fluid injection
rate at the crack mouth, q0, zero crack opening and zero
fluid flux rate at the crack tip:

q(t, 0) = q0(t), w(t, l(t)) = 0, q(t, l(t)) = 0. (9)

Note that the problem formulated in this way looks
overdetermined as the governing Eq. (7) is of the second
order with respect to spatial variable. This issue shall
be discussed later.

Finally, by consecutive integration of Eq. (7) over
time and then space, one can also derive the standard
formula for the global fluid balance in the form:
l(t)⎨

0

[w(t, x) − w⊂(x)]dx −
t⎨

0

q0(t)dt

+
l(t)⎨

0

t⎨

0

ql(t, x)dtdx = 0, (10)

where it is accepted that w⊂(x) = 0 when x > l⊂ and
l →(t) ≤ 0.

As has been shown in Linkov (2011d), the crucial
role in the analysis of the problem plays the particle
velocity defined in the following manner:

V (t, x) = q

w
, t > 0, 0 ∇ x ∇ l(t), (11)

which indicates the average velocity of fluid flow
through the cross-sections of the fracture.

Under the assumption that the crack is fully filled
by the fluid and sucking, ejection or discharge through
the front can be neglected, the fluid velocity defines
the crack propagation speed and the following speed
equation is valid (Kemp 1989; Linkov 2011a,b)4:

l →(t) = V (t, l(t)) , t > 0. (12)

Moreover, for physical reasons, one can assume that
the fluid velocity at the crack tip is finite

0 ∇ V (t, x) < ∈, t > 0, x ∇ l(t) (13)

Note that, allowing the crack propagation speed to be
infinite, one has to simultaneously include the inertia
term in the equations. Thus, the estimate (13) is a direct
consequence of neglecting the acceleration terms.

4 In fact, the speed equation in this form is valid only under the
assumption of zero spurt loss at the crack tip (Nordgren 1972;
Clifton and Wang 1988; Adachi et al. 2007)

2.2 Asymptotic behaviour of the solution and its
consequences

As was mentioned in Spence and Sharp (1985), the fact
that both w and q are present in (11), creates serious
difficulties when trying to use the fluid velocity as a
variable. However, as shown in Linkov (2011a,b,c,d),
proper usage of fluid velocity may be extremely ben-
eficial. First, it allows one to replace two boundary
conditions at the crack tip (9)2,3 with a single one
additionally incorporating information from the speed
Eqs. (12), (13).

Indeed, the boundary conditions (9)2,3 in view of (1)
and (6) lead to the estimate

w(t, x) = o
⎩
(l(t) − x)

1
4

)
, x ⊥ l(t), (14)

which does not necessarily guarantee (13). However,
further analysis of the problem, for different leak-off
functions (see Kemp 1989; Kovalyshen and Detournay
2009 and “Appendix B” of this paper), shows that the
particle velocity is bounded near the crack tip and the
crack opening exhibits the following asymptotic behav-
iour:

w(t, x) = w0(t)
(
l(t) − x

⎛ 1
3 + w1(t)

(
l(t) − x

⎛π

+ o
(
(l(t) − x)π

⎛
, as x ⊥ l(t), (15)

with some π > 1/3. For the classical PKN model for
an impermeable solid (or when leak-off vanishes near
the crack tip at least as fast as the crack opening) the
exponent π = 4/3 was found in Kemp (1989). For the
case of the singular Carter’s type leak-off, the exponent
π = 1/2 was determined in Kovalyshen and Detournay
(2009).

Note that the asymptotics (15) shows that fluid
velocity is indeed bounded near the crack tip. More-
over,

V (t, x) = V0(t) + V1(t)
(
l(t) − x

⎛σ + o
(
(l(t) − x)σ

⎛
,

(16)

as x ⊥ l(t), where σ = π − 1/3 and

V0 = k

3M
w3

0(t), V1 = k

M

⎧
π + 2

3

⎪
w2

0(t)w1(t).

(17)

As follows from “Appendix B”, V (t, x) may not be
so smooth near the crack tip as one could expect and
the exponent σ in (16) plays an important role for this.
Indeed, if σ ≤ 1 then V (t, ·) ∗ C1[0, l(t)] and the
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particle velocity function is smooth enough near the
crack tip. However, this happens only in the special
case of π = 4/3 when Vx (t, x) is bounded near the
crack tip. In case of singular leak-off (0 < σ < 1), the
particle velocity near the crack tip is only of the Hölder
type V (t, ·) ∗ C1[0, l(t))

⎝
Hσ [0, l(t)]. In “Appendix

B” we present an exact form of the asymptotic expan-
sion (15), which yields the aforementioned smoothness
deterioration of V near the crack tip for the singular
leak-off models.

Note that estimate (15) [or (16)] is equivalent to
the condition (13). Thus, in view of (11), the pair of
conditions (9)2 and (9)3 is equivalent to (9)2 and (15).
This discussion clearly illustrates why accounting for
asymptotic behaviour of the solution in form (15) is of
crucial importance for effective numerical realisation
of any algorithm utilised in hydrofracturing (Adachi
and Peirce 2007; Garagash et al. 2011; Mitchell et al.
2007). On the other hand, the fact that the particle veloc-
ity function is smooth enough near the crack tip has
been one of the important arguments to use the speed
equation and proper variable approach as the basis
for improvement of the existing numerical algorithms
(Linkov 2011a). It should be emphasized that behav-
iour of V (t, x) near the crack tip may have serious
implications when using ε-regularization technique.

Therefore, the main aim of this paper is to show
that, regardless of possible smoothness of the particle
velocity near the crack tip, the approach proposed in
Linkov (2011a,b,c,d) and Mishuris et al. (2012) is still
efficient.

2.3 Normalised formulation

Let us normalize the problem by introducing the fol-
lowing dimensionless variables:

x̃ = x

l(t)
, t̃ = t

tn
, tn = M

kl⊂
, w̃⊂(x̃) = w⊂(x),

w̃(t̃, x̃) = w(t, x)

l⊂
, Ṽ (t̃, x̃) = tn

l⊂
V (t, x), L(t̃) = l(t)

l⊂
,

l2⊂ q̃0(t̃) = tnq0(t), l⊂q̃l(t̃, x̃) = tnql (t, x), (18)

where x̃ ∗ (0, 1) and L(0) = 1.
Using this notation, one defines the normalised par-

ticle velocity as:

Ṽ (t̃, x̃) = − w̃2

L(t̃)

θw̃

θ x̃
. (19)

The conservation law (2) in the normalised domain is
rewritten in the following manner:

θw̃

θ t̃

= 1

L(t̃)

[⎩
x̃ Ṽ (t̃, 1) − Ṽ (t̃, x̃)

) θw̃

θ x̃
− w̃

θ Ṽ

θ x̃

⎞
− q̃l(t̃, x̃),

(20)

The leading terms of the asymptotic estimate of the
leak-off function from (4) are now:

q̃(1)
l (t̃, x̃) = C̃1(t̃)D

(
t̃
⎛

≥
1 − x̃

, q̃(2)
l (t̃, x̃) = C̃2(t̃)D

(
t̃
⎛

≥
1 − x̃

w̃(t̃, x̃),

q̃(3)
l (t̃, x̃) = C̃31(t̃)w̃(t̃, x̃) + C̃32(t̃). (21)

Here, the function

D
(
t̃
⎛ =

⎠
L → (t̃

⎛
L

(
t̃
⎛ , (22)

is introduced in the “Appendix A”, where the remain-
der between the normalised total flux and the leading
term (21) has been effectively estimated. Thus the nor-
malised term q̃⊂

j (t̃, x̃) vanishes near the crack tip faster
than the solution itself.

Finally, normalised initial conditions (8) and bound-
ary conditions (9) are:

L(0) = 1, w̃(0, x̃) = w̃⊂(x̃), x ∗ (0, 1), (23)

and

− 1

L(t̃)
w̃3 θw̃

θ x̃
(t̃, 0) = q̃0(t̃), w̃(t̃, 1) = 0. (24)

The global fluid balance (10) can be written in the form:

L(t̃)

1⎨

0

w̃(t̃, x)dx −
1⎨

0

w̃(x, 0)dx −
t̃⎨

0

q̃0(t)dt

+
t̃⎨

0

L(t)

1⎨

0

q̃l(t, x)dxdt = 0. (25)

For convenience, from this point on we will omit the
“≡” symbol for all dependent and independent vari-
ables and will only consider the respective dimension-
less values.

Note that the particular representation (20) of the
Reynolds equation highlights an essential feature of the
problem - it is singularly perturbed near the crack tip.
Indeed, both coefficients in front of the spatial deriv-
atives on the right-hand side of the Eq. (20) tend to
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zero at x = 1. Thus, the asymptotic behaviour of the
solution near the crack tip (x ⊥ 1)

w = w0(t) (1 − x)
1
3 + w1(t) (1 − x)π + o

(
(1 − x)π

⎛
,

(26)

V = V0(t) + V1(t) (1 − x)π− 1
3 + o

⎩
(1 − x)π− 1

3

)
,

(27)

represents nothing but the boundary layer. Moreover,
normalizing (17)1 one obtains:

V0(t) = 1

3L(t)
w3

0(t). (28)

The terms w0, w1 and V0, V1 in (26) and (27) are dif-
ferent from those in (15) and (16). In fact, the former
should be written with “≡” symbol.

On substitution of (19) into (20), one eliminates the
particle velocity function from Reynolds equation:

θw

θt
=

1

L2(t)

[
1

3
w3

0x
θw

θx
+ 3w̃2

⎧
θw

θx

⎪2

+ w3 θ2w

θx2

⎞
− ql .

(29)

Here w0 is the multiplier of the first term of the asymp-
totic expansion (15). This form of lubrication equation
exhibits the same degenerative properties as (20). Also
the coefficients appearing in front of the leading terms
tend to zero near the crack tip.

The speed Eq. (12) defining the crack propagation
speed is given in the normalised variables as:

L →(t) = V0(t), t > 0. (30)

Taking into account (28), the latter can be rewritten in
the following form

d

dt
L2 = 2

3
w3

0(t), t > 0. (31)

This equation serves us to determine the unknown
value of the crack length L(t). As it has been shown
in Mishuris et al. (2012), such an approach has clear
advantages over the standard one based on the global
fluid balance Eq. (25).

As a result of the foregoing transformations, one can
formulate a system of PDEs describing the hydrofrac-
turing process. The system is composed of two opera-
tors:
d

dt
w = Aw

(
w, L2⎛, d

dt
L2(t) = Bw(w), (32)

where Aw is defined by the right-hand side of Eq. (29)
with the boundary conditions (24)1,2, while the second
operator Bw is given by (31). The system is equipped
with the initial conditions:

L(0) = 1, w(0, x) = w⊂(x), x ∗ (0, 1). (33)

2.3.1 Reformulation of the problem in proper
dependent variables. First approach

In Linkov (2011d) and later in Mishuris et al. (2012) it
has been shown that the dependent variable

U (t, x) = w3(t, x) (34)

is more favorable for the solution of the system (32),
(33) than the crack opening itself. This idea is based
on the fact that, according to the asymptotics of the
solution near the crack tip, the dependent variable U is
much smoother than w. In the case of an impermeable
solid, the solution U is analytic in the closed interval
[0, 1] (see Linkov 2011d). However, the type of leak-
off function is of significant importance here. Thus,
adopting asymptotic representation (26), one can see
that for x ⊥ 1

U = U0(t)(1 − x) + U1(t)(1 − x)
2
3 +π

+o((1 − x)
1
3 +2π), (35)

where the coefficients U0(t) and U1(t) are directly
related to those appearing in the crack opening for-
mulation:

U0(t) = w3
0(t), U1(t) = w2

0(t)w1(t). (36)

Depending on the type of leak-off described in (4), the
exponent in the second asymptotic term 2

3 +π may take
value 3/2, 11/6 or 2, respectively. Thus in the first two
cases, the transformation (34) no longer results in poly-
nomial representations of asymptotic expansion for U .
For this reason, the advantage of the approach using
variable U in more general cases, when the leak-off is
singular near the crack tip, should still be confirmed.
This is one of the aims of this paper. On the other hand,
at least two factors work in favor of this formulation.
First, the spatial derivative of U is not singular and,
second, the particle velocity is given by a linear rela-
tionship

V (t, x) = − 1

3L(t)

θU

θx
. (37)
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The governing Eq. (20) in terms of the new variable
can be written in the normalized domain x ∗ (0, 1) as:

θU

θt

= 1

L(t)

[
(xV (t, 1) − V (t, x))

θU

θx
− 3U

θV

θx

]
− 3U

2
3 ql ,

(38)

Similarly to (29) the particle velocity function may be
eliminated from the lubrication equation:

θU

θt

= 1

3L2(t)

[
xU0

θU

θx
+

⎧
θU

θx

⎪2

+ 3U
θ2U

θx2

⎞
− 3U

2
3 ql .

(39)

Note that Eqs. (38)–(39) are of a very similar structure
to those evaluated for the crack opening w. They exhibit
the same degenerative nature near the crack tip.

Finally, boundary conditions (24) transform to:

−
3
≥

U (t, 0)

3L(t)

θ

θx
U (t, 0) = q0(t), U (t, 1) = 0, (40)

while the speed Eq. (31) takes the following form:

d

dt
L2 = 2

3
U0(t), t > 0. (41)

The system of PDEs equivalent to (32) is now defined
as:
d

dt
U = AU (U, L2),

d

dt
L2(t) = BU (U ). (42)

The operator AU is described by (39) with boundary
conditions (40), while the second operator BU is given
by (41). Finally, the initial conditions are similar to
those in the previous formulation (23):

L(0) = 1, U (0, x) = w3⊂(x), x ∗ (0, 1). (43)

2.3.2 Reformulation of the problem in proper
dependent variables. Second approach

The aforementioned formulation of the problem in
terms of the dependent variable U has one considerable
drawback. It is well known that for different elasticity
models and different hydrofracturing regimes one has
various asymptotic behaviours of the solution near the
crack tip (Adachi and Detournay 2002). For example,
for exact equations of elasticity theory and the zero
toughness condition (K I C = 0), the exponent of the
leading term of w varies from 2/3, for the Newtonian

fluid, to 1, for the ideally plastic fluid. Thus, the same
reformulation to the type of the proper variable might
be inconvenient, or even impossible.

For this reason, we introduce another dependent
variable. Although it does not transform the asymptotic
behaviour of the solution in such a smooth manner as it
has been done previously when adopting U , this vari-
able has its own advantages. Namely, let us consider a
new dependent variable ψ defined as follows:

ψ(t, x) =
1⎨

x

w(t, α)dα. (44)

This variable is not directly related to any particu-
lar asymptotic representation of w(x, t), however it
assumes that w ⊥ 0 for x ⊥ 1. As a result the form of
governing equations for ψ remains the same regard-
less of w(x, t) asymptotics, i.e. this formulation has
a general (universal) character. Note, that in case of
U the optimal way of transformation for the lubrica-
tion equation essentially depends on the exact form of
asymptotic expansion (the leading term) for w.
Another advantage of ψ comes from the fact that it
has clear physical and technological interpretation.
Namely, it reflects the crack volume measured from the
crack tip.

Asymptotics of the function ψ near the crack tip
takes the following form:

ψ(t, x) = ψ0(t)(1 − x)
4
3 + ψ1(t)(1 − x)π+1

+ o((1 − x)π+1), x ⊥ 1,
(45)

where the coefficients ψ0(t) and ψ1(t) are related to
those in (26):

ψ0(t) = 3

4
w0(t), ψ1(t) = 1

π + 1
w1(t). (46)

Thus, similarly to U , the new variable is smoother than
the crack opening, w, and the first singular derivative
of ψ is that of the second order.

By spatial integration of (20) from x to 1 and sub-
stitution of (44) one obtains:

θψ

θt

= − 1

L(t)

[(
V (t, x) − xV (t, 1)

⎛ θψ

θx
+ V (t, 1)ψ

]
− Ql ,

(47)

where the monotonicity of L →(t) > 0 has been taken
into account and

Ql(t, x) =
1⎨

x

ql(t, α)dα.
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Here, the particle velocity (19) is computed in the man-
ner:

V (t, x) = 1

3L(t)

θ

θx

⎧
θψ

θx

⎪3

. (48)

By eliminating V (x, t) from the Eq. (47) we derive a
new formula for the lubrication equation:

θψ

θt

= − 1

L2(t)

[⎧
θψ

θx

⎪3
θ2ψ

θx2 + 64

81
ψ3

0

⎧
ψ − x

θψ

θx

⎪⎞
− Ql .

(49)

The boundary conditions (24) are expressed in the fol-
lowing way:

− 1

L(t)

⎧
θψ

θx

⎪3
θ2ψ

θx2 (t, 0) = q0,
θψ

θx
(t, 1) = 0.

(50)

Interestingly, the first boundary condition, directly sub-
stituted into the lubrication Eq. (47) can be equivalently
rewritten in the form
θψ

θt
(t, 0) = − 64

812 L(t)
ψ(t, 0)ψ3

0 (t)

+q0(t)

L(t)
− Ql(t, 0), (51)

This condition, in turn, represents nothing but the local
(in time) flux balance condition. To verify this, it is
enough to apply the time derivative to the Eq. (25).
Furthermore it appears much easier for implementation
into a numerical procedure than (50)1 itself, but may
lead to some increase of the problem stiffness, as we
will show later.

It is easy to check, by using the governing Eq. (47)
and limiting values of all its terms for x ⊥ 1 , that a
weaker boundary condition

ψ(t, 1) = 0 (52)

is equivalent to the original one (50)2. Finally, the speed
Eq. (31) in the ψ formulation assumes the following
form:
d

dt
L2(t) = 128

81
ψ3

0 (t). (53)

In this way we obtain another system of PDEs that is
composed of two operator relations:

d

dt
ψ = Aψ(ψ, L2),

d

dt
L2(t) = Bψ(ψ), (54)

where, as previously,Aψ is defined by (29) with bound-
ary conditions (50)1,2 or (51) and (52). The second

operator, Bψ , is given by Eq. (53). Here the initial con-
ditions are obtained from (23):

L(0) = 1, ψ(0, x) = ψ⊂(x) ∞
1⎨

x

w⊂(α)dα. (55)

2.4 ε-Regularization and the respective boundary
conditions

In our analysis we are going to use the so-called ε-
regularization technique. It was originally introduced
in Linkov (2011a) for the system of spatial coordinates
moving with the fracture front. In Mishuris et al. (2012),
the authors efficiently adopted the approach for the nor-
malised coordinate system.

The reason to separate the domain from the end point
x = 1 by a small distance of ε and to introduce ε-
regularisation has been thoroughly described in Linkov
(2011a). It consists of replacing the Dirichlet boundary
condition (40)2 with an approximate one:

U (t, 1 − ε) = 3εL(t)V (t, 1), (56)

emerging from deep physical arguments. The value of
the crack propagation speed V (t, 1) (and simultane-
ously the particle velocity at a fracture tip) was sug-
gested to be computed from the speed Eq. (41) in its
approximated form:

V (t, 1) = − 1

3L(t)

θU

θx
(t, 1 − ε). (57)

The pair of conditions (56) – (57) has shown an excel-
lent performance in terms of solution accuracy and, as
has been proven in Mishuris et al. (2012), reduced the
stiffness of dynamic system in case of leak-off func-
tion vanishing near the crack tip. One can check that
for such a leak-off model numerical error introduced by
using the approximate conditions, instead of the exact
ones, is of the order O(ε2). In view of all improvements
following from utilisation of the regularized conditions
(Linkov 2011d; Mishuris et al. 2012) such a strategy is
fully justified and in fact inevitable.

The conditions can be written in an equivalent form.
Indeed, one can merge (56) and (57) into a single con-
dition of the third type:

U (t, 1 − ε) + ε
θU

θx
(t, 1 − ε) = 0. (58)

Interestingly, the latter condition is nothing but the con-
sequence of a direct utilization of the information about
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the leading term of asymptotics of the solution near the
crack tip [compare with (35)].

Analogously, one can define the respective pairs of
boundary conditions in the regularized formulations.
Considering the dependent variable w one should take
(31) together with the condition

w(t, 1 − ε) + 3ε
θw

θx
(t, 1 − ε) = 0, (59)

while analysing the system based on the dependent
variable ψ , the speed Eq. (53) should be accompanied
by

4ψ(t, 1 − ε) + 3ε
θψ

θx
(t, 1 − ε) = 0. (60)

To conclude this subsection, one can make a predic-
tion that in the case of a singular leak-off function, even
when using the ε-regularization technique, the accu-
racy of the solution should be worse than that presented
in Linkov (2011a) and Mishuris et al. (2012). How-
ever, it is always possible to use information on accu-
rate asymptotic behaviour of the solution (employing
higher order terms) and in this way improve the accu-
racy of computations.

3 Numerical solution of the dynamic systems

In this section, three alternative systems of PDEs (32),
(42) and (54) describing the problem of hydrofracru-
ing are transformed into the corresponding non-linear
dynamic systems of the first order. Then, on the basis
of respective analytical benchmarks, we analyze their
stiffness properties, the accuracy and efficiency of com-
putations. The benchmark solutions in question are
described in “Appendix C”.

3.1 Representation of the boundary conditions
and the speed equation

Consider a spatial domain of the problem reduced in
accordance with the ε-regularization technique to the
interval x ∗ [0, 1 − ε], where ε is a small parameter.
Let the mesh, {x j }N

j=1, be composed of N nodes with
x1 = 0 and xN = 1 − ε.

For each of the problem formulations, two boundary
conditions should be accounted for: one specified at the
crack inlet and a regularized boundary condition at x =
1−ε. In the following we present a brief description of

how these conditions are introduced to the numerical
scheme.

From now on, for the dependent variables discussed
above (w(t, x), U (t, x), ψ(t, x)), we use common
notation f (t, x) together with a convention fk =
f (t, xk).

To discretize the first boundary condition (depend-
ing on the formulation: (24)1, (40)1 or (50)1) we exploit
the smooth character of the solution near the point
x = 0. Thus, accepting a polynomial approximation of
f (x, t) on the interval x ∗ [x1, x3], the respective non-
linear relation between f1, f2 and f3 may be derived:

A1( f1, t) f1 + A2( f1, t) f2 + A3( f1, t) f3 = q0. (61)

As mentioned in 2.4, the regularized boundary con-
dition in the ε-regularization technique proposed in
Linkov (2011a) is equivalent to a mixed boundary
condition based on the leading term of the asymp-
totic expansion [see (58), (59), (60)]. Below we pro-
pose a modification of this approach which consists in
employing two terms of the asymptotics. We will show
that such a strategy prevents the deterioration of accu-
racy when the solution is not so smooth as in the cases
originally considered in Linkov (2011a) and Mishuris
et al. (2012).

According to (26), (35) and (45), the following
asymptotics approximation is acceptable in the prox-
imity of the crack tip (x ∗ [xN−2, 1]):
f (t, x) = e( f )

1 (t)(1 − x)π1 + e( f )
2 (t)(1 − x)π2 . (62)

The values of π1 and π2 are known in advance and
depend, as has been discussed above, on the cho-
sen variable and the behavior of the leak-off function.
Assuming that the last three points of the discrete solu-
tion (xN−2, fN−2), (xN−1, fN−1) and (xN , fN ) lie on
the solution graph (x, f (t, x)), one can derive a for-
mula combining all these values in one equation:

fN + b( f )
N−1 fN−1 + b( f )

N−2 fN−2 = 0, (63)

where b( f )
j = b( f )

j (xN−2, xN−1, xN ). Relation (63) is
consequently used to represent the regularised bound-
ary condition at x = 1 − ε.

Remark 1 In the authors opinion, the presented appro-
ach is a direct generalization of that proposed in Linkov
(2011a). Indeed, if one takes e2 = 0 in the represen-
tation (62) then the pair of the Eqs. (58) and (57) fol-
lows immediately. If π

( f )
2 − π

( f )
1 = 1, which means

that the leak-off function ql is bounded near the crack
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tip, the second asymptotic term provides a small cor-
rection. However, in the case of the Carter law, when
π

( f )
2 − π

( f )
1 = 1/6, it brings an important contribution

and improves the accuracy of the computations, as will
be shown later.

Finally, coefficient e1 from (62) is substituted into
the pertinent form of the speed Eq. (31), (41) or (53)
to give the ordinary differential equations for the crack
length:
d

dt
L2 = 2

3

⎩
e(w)

1

)3
,

d

dt
L2 = 2

3
e(U )

1 ,

d

dt
L2(t) = 128

81

⎩
e(ψ)

1

)3
. (64)

Note that the right-hand sides of the equations define
the boundary operators Bw, BU and Bψ from (32)2,
(42)2 or (54)2, respectively.

Remark 2 As it follows from this analysis, the ε-
regularization is, in a sense, equivalent to the intro-
duction of a special tip element in the discrete solution.
Thus, one can see a complementarity with the approach
utilised in Kovalyshen (2010). However, and this is cru-
cial for the analysis, only the speed equation together
with ε-regularization allows to take into account both
the local and global phenomena, and to do this in the
most efficient way from the numerical point of view.

Remark 3 In the case of the dependent variable U ,
apart from the representations (62) of the boundary
condition near the crack tip in the linear form

UN = b(U )
1 UN−1 + b(U )

2 UN−2, (65)

one can use a nonlinear one, adopting the relationship
between this dependent variable and the crack opening
w:

UN =
⎩

b(w)
1

3
√

UN−1 + b(w)
2

3
√

UN−2

)3
. (66)

Note that the two terms representation (65) of the
function U is less informative than the same represen-
tation for the functions w (or ψ) and thus, using the
modified condition (66), one can expect a better solver
performance.

3.2 Spatial discretization of the Reynolds equation:
corresponding dynamic systems

Let us consider the Reynolds equations written in dif-
ferent dependent variables [(32), (42) or (54), respec-
tively]. By representing the spatial derivatives in the

right-hand sides of the corresponding equation by cen-
tral three point finite difference schemes, we obtain a
nonlinear system of N − 2 ordinary differential equa-
tions for the values fi (t) at each internal point of the
spatial domain (x2, . . . , xN−1). The respective bound-
ary conditions are embedded into the system through
Eqs. (61) and (63).

Supplementing the system with the pertinent form of
the speed Eq. (64), we obtain a non-linear dynamic sys-
tem of first order describing the process of hydrofrac-
turing which can be written in the form:

F→ = A( f )F + G( f ), (67)

where F = F(t) is a vector of unknown solution
[ f (t, x1), f (t, x2), . . . , f (t, xN ), L2(t)]of dimension
N − 1. Note that matrix A( f ) and vector G( f ) depend,
generally speaking, on the solution. Matrix A is the so-
called mass matrix of the system, in the case of which a
tri-diagonal form prevails (however the boundary con-
ditions and the last equation for L2(t) disturb the tri-
diagonal structure).

Remark 4 In the case when the boundary condition in
formulation (51) is in use, the dimension of the dynamic
system is N . Indeed, this condition has the form of
an ODE, and thus can be substituted directly into the
system as an additional equation.

In our numerical computations two different types
of spatial meshes are used. The first one is a regular
mesh with uniformly spaced nodes, while the second
one gives an increased nodes density when approaching
the crack tip. Both types of meshes can be described
by the formula:

xm(λ) = 1 −
⎩

1 −
⎩

1 − ε
1
λ

) m

N

)λ

, m = 1, ..., N .

(68)

In the foregoing, the parameter λ defines the mesh
type. Namely, for λ = 1 one has the uniform mesh
(henceforth denoted as x (I )), since any λ > 1 gives
the nodes concentration near the crack tip (this mesh
will be referred to as x (I I )(λ)). Mesh x (I I )(λ) allows
one to choose appropriate parameter λ to suppress the
stiffness of dynamic system or to increase the solution
accuracy.

The stiffness of a dynamic system may be described
by the condition number or the condition ratio (Aiken
1985) of a mass matrix A( f ). In general, the values
given by various measures are different (see some con-
sequences in Mishuris et al. 2012). In this paper we
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use the condition ratio as the measure of the system
stiffness. Some rough estimation of this parameter may
help to choose an optimal value of λ from the stiffness
point of view. In the case under consideration, one can
analyse the condition ratio of a simplified variant of
the system (39), where only the leading term (with the
second order derivative) is preserved and the nonlinear
multiplier is substituted by the first term of the asymp-
totic expansion for U . It turns out that λ = 2 gives
the lowest possible stiffness. Naturally, in the general
case, the optimal value of λ can be different. We have
checked however that, for three alternative problem for-
mulations, there are three different optimal values of the
parameter, but each of them is very close to 2. Thus, in
the following section all results concerning nonuniform
mesh are presented for λ = 2.

3.3 Stiffness analysis

In our analysis, we quantify the system stiffness by a
condition ratio βA defined in (69). Since the problem
is nonlinear, our investigation is to be done for the lin-
earized form of matrix A( f ). It is obvious that for all six
variants of benchmark solutions under consideration
(see “Appendix C”) one has different values of A( f ).
Computations are carried out for two types of meshes
(the uniform and non-uniform one). For each of the
benchmark solutions, one obtains a constant value for
the condition ratio (independent on time), apart from
the fact that the matrix A( f ) depends on time. Those
values of the condition ratio βA are, generally speaking,
different for various benchmarks and chosen meshes.

Before comparing the results for various dependent
variables, we have checked that for the dynamic system
based on U the stiffness is almost identical for both
forms of the regularized boundary condition at x = 1−
ε [(58) and (63) respectively]. Thus, for the rest of the
dependent variables (w and ψ) we restrict our stiffness
investigation only to the formulation (63). Remarkably,
the situation changes dramatically when one considers
the accuracy of computations, which shall be discussed
later on.

Computing the condition ratio for the next variants
of the matrix linearization, we have confirmed the fol-
lowing estimate valid for large values of N for all cases
under investigation:

β
( f )
A = |γmax |

|γmin| ≡ τ( f )N 2, N ⊥ ∈. (69)

Here |γmax |, and |γmin| are the largest and smallest
absolute values among the A( f ) matrix eigenvalues,
while the constant τ( f ) is to be estimated numerically.
Its values for all six benchmark cases are shown in
Table 1.

Although the qualitative character of the stiffness
behaviour (N 2) is rather obvious, its quantitative mea-
sure described byτ can be used to select the optimal (in
terms of the stiffness properties) variant of the dynamic
system.

The following analysis includes investigation of
stiffness sensitivity to: (i) the solution (benchmark)
type, (ii) choice of the dependent variable, (iii) choice
of the independent variable (spatial mesh), (iv) value
of the regularization parameter ε.

Remark 5 As mentioned previously, in case of the
variable ψ , there are two alternative ways to intro-
duce the boundary condition at x = 0 to the sys-
tem -formulations (51) and (61), respectively. In this
way one can construct two alternative dynamic sys-
tems of different dimensions (N and N − 1). The
results in Table 1 show that the stiffness properties
of the system corresponding to the boundary condi-
tion (61) are slightly better than those of the system
utilizing (51). Indeed, the respective parameter τ is
about two times smaller. One of the possible expla-
nations is the aforementioned difference in the sys-
tems’ sizes: dim A(ψ)

(1) = dim A(ψ)
(2) +1 (see Remark 3).

We have checked that the accuracy of computations
remains practically the same regardless of the system
variant. Taking this fact into account, we restrict our-
selves in the analysis only to the system which employs
the boundary condition at point x = 0 in the form (61).
Thus, from now on all the investigated dynamic sys-
tems (for all dependent variables) will be based on the
same mechanisms for incorporation of the boundary
conditions.

Influence of the value of ε on the condition ratio is
analyzed in Fig. 1. As an example, we present here the
benchmark q(1)

l for Ql/q0 = 0.9 (see “Appendix C”).
The results were obtained for the uniform mesh. For
other combinations of the benchmark solutions and dif-
ferent meshes the graphs have similar character. As
anticipated, the estimation (69) holds true only for suf-
ficiently large N . The threshold value of N depends on
the chosen ε. Thus for a fixed number of grid points N ,
there is a critical value of the regularization parameter
εs(N ) for which the stiffness characteristics changes its
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Fig. 1 Condition ratio β = β(w)(N ) for the dynamic system
based on w variable and different values of the regularization
parameter ε. The case of the uniform mesh is analyzed

behaviour. By taking ε < εs(N ) one increases appre-
ciably the system stiffness.

The results of the stiffness investigation are collected
in the Table 1 and Fig. 1 The following conclusions can
be drawn from this data:

(i) The nonuniform mesh reduces the stiffness approx-
imately up to five times regardless of the solution
type (Table 1);

(ii) The most important parameter affecting the stiff-
ness properties is the relation between the injection
flux rate and the leak-off to the formation Ql/q0

as can be clearly seen in Table 1. The value of this
parameter is more important than a particular dis-
tribution of the leak-off function (and its behaviour
near the crack tip);

(iii) When comparing systems for various dependent
variables, the lowest condition ratio gives the sys-
tem built for U (one order of magnitude lower
than the others). The worst stiffness performance
takes place for the system corresponding to the ψ-
variable. However, in some cases ψ may produce
lower stiffness than w;

(v) A value of the regularization parameter ε essen-
tially affects the stiffness of a dynamic system.

3.4 Accuracy of the computations

In this section, we analyze the accuracy of computa-
tions by the solvers based on different dynamic systems
corresponding to the respective dependent variables. To
solve the systems, we use MATLAB ode15s subroutine
dedicated for stiff dynamic systems which utilizes the
implicit numerical differentiation formulas.

Before we compare different approaches in terms
of their accuracy, let us recall two alternative ways to

Table 1 Values of the parameter τ( f ) from the approximation of the condition ratio (69) for the different dynamic systems (67) and
different benchmarks. The computations were provided for ε = 10−3

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

τ estimated for the system based on variable w

x (I ) 6.5e+0 6.6e+0 6.8e+0 1.8e+1 1.8e+1 1.8e+1

x (I I ) 1.7e+0 1.7e+0 1.7e+0 4.6e+0 4.7e+0 4.7e+0

τ estimated for the system based on variable U

x (I ) 3.0e+0 3.0e+0 3.2e+0 6.0e+0 6.1e+0 6.2e+0

x (I I ) 7.5e−1 7.7e−1 8.1e−1 1.5e+0 1.5e+0 1.6e+0

τ estimated for ψ(1) based on condition (51)

x (I ) 4.8e+1 4.8e+1 4.9e+1 1.7e+1 1.7e+1 1.7e+1

x (I I ) 1.2e+1 1.2e+1 1.3e+1 4.3e+0 4.3e+0 4.3e+0

τ estimated for ψ(2) based on condition (61)

x (I ) 2.3e+1 2.2e+1 1.9e+1 9.6e+0 1.0e+1 1.3e+1

x (I I ) 5.8e+0 5.7e+0 4.7e+0 2.5e+0 2.6e+0 3.5e+0
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Table 2 Comparison of the accuracy of the solution of dynam-
ical system based on variable U . The results depicted by U⊂
refer to the regularized boundary condition based on one asymp-
totic term, while those denoted by Ul and Un correspond to

two terms approximation (linear (65) and nonlinear (66), respec-
tively). Other problem parameters: N = 100, λ = 2 for the mesh
x (I I )

Comparison of conditions (58), (65), (66)

q(1)
l Ql/q0 = 0.9 q(3)

l Ql/q0 = 0.5

ε 10−2 10−4 10−6 10−2 10−4 10−6

λU⊂ x (I ) 1.6e−1 1.4e−1 1.3e−1 6.1e−3 3.7e−3 3.7e−3

x (I I ) 1.4e−1 7.6e−2 6.3e−2 4.5e−3 9.3e−5 8.9e−5

λUl x (I ) 5.0e−2 1.4e−2 1.7e−2 1.2e−5 1.1e−5 1.1e−5

x (I I ) 5.0e−2 1.7e−3 2.0e−3 4.9e−5 8.2e−5 8.7e−5

λUn x (I ) 4.4e−2 1.2e−2 1.3e−2 2.2e−5 1.3e−5 1.3e−5

x (I I ) 4.4e−2 9.9e−4 1.8e−3 4.2e−5 8.2e−5 8.7e−5

define the regularized boundary condition at the end
point x = 1 − ε. The first one is based on the ε-
regularization technique, as it was defined in Linkov
(2011d) (see also Mishuris et al. 2012). The second
approach to formulate the regularized condition is to
take into account the first two terms of asymptotics as
described in Sect. 3.1 [compare Eqs. (62) and (63)].
Finally, in the case of U , this condition may be imple-
mented in the non-linear form (66). One can expect that
the two term conditions would have a clear advantage,
at least in cases when the solution smoothness near the
crack tip deteriorates due to the singularity of the leak-
off function.

The results of the computations presented in Table 2
confirm such a prediction. We compare only conditions
for U , as originally the ε-regularization technique was
introduced for this variable. Indeed, the relative errors
of the solutions λUl or λUn are at least one order of mag-
nitude lower than that in the case of λU⊂, correspond-
ing to the formulation based on (58).5 Surprisingly, for
the variants of the non-singular leak-off function, the
improvement is even more pronounced (especially for
a uniform mesh).

We also made the computations for three different
benchmarks reported in Mishuris et al. (2012). They
correspond to the leak-off function vanishing near the
crack tip. It turned out that computational error cor-
responding to the modified form of the regularized

5 Here and everywhere later, by λ f we understand the maximal
value of the relative error of the function f over all discretized
independent variables (λ f ∞ ≈λ f ≈∈).

conditions (based on two terms of asymptotics) was
always two orders of magnitude lower than that
reported in the previous paper.

On the other hand, there is no difference observed
between the solutions λUl but λUn at least for those
two benchmarks and the choice of the parameters
(N = 100). However, as we will show later, for large
numbers of nodal points, or more severe leak-off func-
tion relationship (Ql/q0 ≡ 1), the nonlinear formula-
tion of the condition clearly manifests its advantage.

From now on only the regularized conditions based
on two asymptotic terms (63) will be utilized. Addi-
tionally, for variable U , two different forms, linear (65)
and nonlinear (66), will be adopted. For w and ψ two
formulations, (59) and (60), which are equivalent to
the condition (58) could not compete with their more
accurate analogue (63) in terms of solution accuracy
and will not be considered.

Graphs presented in Fig. 2 illustrate some peculiar-
ities of the computational process. Here, the maximal
relative errors of the solutions (over the time and space)
as functions of the number of mesh points N (λ f =
λ f (N )), are presented for different variables. The con-
sidered benchmark assumes Ql/q0 = 0.9 (see “Appen-
dix C”). Three different values of the regularization
parameter ε = 10−3, 10−4 and 10−5 were chosen.

In Fig. 2 two basic tendencies can be observed. The
first one is the monotonous error decrease with growing
N , up to some stabilization level. This level is differ-
ent for different dependent variables and values of ε,
and in some cases is reached for N > 1,000 (and thus
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Fig. 2 Maximal relative errors of the solutions computed in dif-
ferent variables λw, λU and λψ , for various number of the grid
points N in case of the nonuniform mesh x (I I )(λ = 2). Dif-
ferent values of ε have been considered. All computations were

performed for the benchmark q(1)
l for Ql/q0 = 0.9. Solutions

Ul and Un obtained by unitization of the linear and nonlinear
regularized conditions (65) and (66), respectively

cannot be identified in the figure). The second trend is
discernible when comparing results for different values
of ε. Namely, it turns out that for each dependent vari-
able there exists an optimal ε minimizing the solution
error. This value however depends on N . It is not a sur-
prise that the optimal stiffness properties and the max-
imal solution accuracy are not achieved for the same
values of the regularization parameter ε. To increase
computational accuracy one needs to decrease ε and
increase number of the nodal points N . However, both
of these leads to increase of the condition ratio.

Note that the relative errors of respective dependent
variables cannot be compared directly. Indeed, even
if the errors for w and U are interrelated via the evi-
dent relationship λU = 3λw, their comparison with λψ

necessitates an additional postprocessing of the latter.
This process, in turn, may introduce its own error. On
the other hand, there exists a common component of the
solutions, the crack length λL , which can be naturally
used for such comparison.

Below we adopt the following strategy for perfor-
mance test for different dynamic systems. First, we
set the number of nodal points, N , to 100. Next, for
each of the dependent variables we accept optimal (for
N = 100) values of the regularization parameter ε. It
turned out that the optimal ε differs slightly depend-
ing on the type of mesh chosen and the benchmark
variant. The general trend for ε can be identified for
different meshes (for x (I ) it is always smaller than for
x (I I )). However, the sensitivity to the benchmark type
is low. The results of computations described by vari-
ous accuracy measures are collected in Tables 3, 4, 5
and 6 (the optimal values of ε are specified in the cap-

tions). We present there: the relative error of solution
λ f , the absolute error of solution δ f and the relative
error of the crack length λL . The following conclusions
can be drawn from this data:

(i) Similarly as in case of the stiffness properties, the
solution accuracy is affected more by the value
of Ql/q0 than by the leak-off function behaviour
near the crack tip. There is a trend of simultaneous
increase of the ratio Ql/q0 and the relative errors
of dependent variables λ f . However this tendency
is not in place (or may be even reversed) when ana-
lyzing λL .

(ii) In case of the dependent variable U , the way in
which the regularized boundary condition is intro-
duced (linear or non-linear) does not play an essen-
tial role for the benchmarks and ranges of the para-
meters under consideration in the Tables 3, 4, 5 and
6. However, there are exceptions to this rule. One
of them can be seen in Fig. 2c) for large values of
N , where the non-linear condition proves its supe-
riority. Another case will be presented in the end of
this section.

(iii) When comparing the common accuracy parameter
λL , the dynamic system for ψ gives the best results.
The dynamic system for w is the worst performing
scheme and comparable to the one for U only in a
few cases.

(iv) Since ψ vanishes near the crack tip faster than other
variables, one could expect the worst relative error
in this case. Surprisingly, even when contrasting
the relative (incomparable) errors of the respective
dependent variables with each other, the system for
ψ seems to be the best choice. The advantage of
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Table 3 Performance of the solver based on the dependent variable w for number of nodal points N = 100 and various benchmarks.
Values of the regularized parameter are ε = 5 · 10−3 and ε = 10−3 for the meshes for x (I ) and x (I I ), respectively

Dynamic system built on the variable w

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

λw x (I ) 8.5e−3 5.4e−3 5.6e−3 5.2e−3 4.0e−3 3.5e−3

x (I I ) 2.2e−3 2.6e−3 2.9e−3 1.8e−3 1.9e−3 2.0e−3

δw x (I ) 7.4e−3 9.1e−3 8.8e−3 4.3e−3 4.6e−3 4.7e−3

x (I I ) 2.8e−3 3.0e−3 3.2e−3 2.1e−3 2.1e−3 2.2e−3

λL x (I ) 1.2e−3 1.3e−3 1.1e−3 5.2e−3 5.3e−3 5.2e−3

x (I I ) 4.0e−4 3.8e−4 3.1e−4 1.8e−3 1.8e−3 1.8e−3

Table 4 Numerical results for the system built on the dependent variable U with the linear regularized condition (65) for N = 100
and different ε for the uniform and nonuniform meshes (ε = 10−4 and ε = 10−5, respectively)

System built on Ul and condition (65)

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

λU x (I ) 1.4e−2 1.0e−2 1.2e−4 2.0e−3 1.4e−3 1.1e−5

x (I I ) 1.2e−3 6.0e−4 2.5e−4 2.2e−4 1.7e−4 8.6e−5

δU x (I ) 7.1e−2 4.4e−2 2.0e−3 6.6e−3 4.5e−3 3.9e−4

x (I I ) 3.1e−2 2.9e−2 7.9e−3 3.5e−3 3.2e−3 7.9e−4

λL x (I ) 4.4e−4 2.8e−4 4.4e−6 4.3e−4 2.9e−4 5.6e−6

x (I I ) 2.6e−4 2.4e−4 1.2e−4 9.5e−5 8.3e−5 4.3e−5

Table 5 Results for the solver based on the dependent variable U for nonlinear regularized condition for N = 100 and various
benchmarks. Values of the regularized parameter are ε = 10−4 and ε = 10−5 for the meshes for x (I ) and x (I I ), respectively

System built on Un and condition (66)

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

λU x (I ) 1.2e−2 9.2e−3 4.3e−5 1.9e−3 1.4e−3 1.3e−5

x (I I ) 1.2e−3 6.0e−4 2.5e−4 2.0e−4 1.7e−4 8.6e−5

δU x (I ) 6.4e−2 4.1e−2 1.7e−3 6.5e−3 4.4e−3 4.0e−4

x (I I ) 3.1e−2 2.9e−2 7.9e−3 3.5e−3 3.2e−3 7.9e−4

λL x (I ) 4.1e−4 2.7e−4 1.5e−6 4.2e−4 2.9e−4 6.3e−6

x (I I ) 2.6e−4 2.4e−4 1.2e−4 9.5e−5 8.3e−5 4.3e−5

ψ over w and U is especially pronounced for the
benchmarks variants with a higher ratio Ql/q0.

(v) Better solution accuracy is obtained for the non-
uniform mesh in almost every case.

We have not observed any significant difference
between the time step strategies chosen by the ode15s
solver for the different dynamic systems. The num-
ber of steps and the main trends were similar. For
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Table 6 Computation accuracy for the solver based on the dependent variable ψ for N = 100 and ε = 10−2 for x (I ) and ε = 5 · 10−3

for x (I I )

Dynamic system built on variable ψ

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

λψ x (I ) 2.5e−3 8.7e−4 3.0e−4 5.6e−4 3.3e−4 4.2e−4

x (I I ) 2.0e−3 7.3e−4 3.6e−4 4.4e−4 2.7e−4 3.1e−4

δψ x (I ) 9.4e−5 1.7e−5 5.9e−5 1.1e−4 1.3e−4 1.5e−4

x (I I ) 1.9e−4 2.1e−4 2.3e−4 1.3e−4 1.4e−4 1.4e−4

λL x (I ) 2.7e−6 5.0e−7 1.7e−6 2.1e−5 2.5e−5 2.9e−5

x (I I ) 5.5e−6 6.2e−6 6.7e−6 2.6e−5 2.7e−5 2.8e−5

this reason we have not presented any details in the
tables.

To visualize the results reported in the Tables 3, 4, 5
and 6, and to complement those presented in Fig. 2, in
Fig. 3 we show the relative errors of the crack length λL
computed by different dynamic systems (built on dif-
ferent variables). The same benchmark and the values
of all other problem parameters as previously discussed
in Fig. 2 were considered. If the trends for the different
relative errors of the solution λ f and the crack length
λL in case of ε = 10−3 look similar, the results for
the smaller value of the parameter are rather surpris-
ing. Indeed, the relative errors λUl and λUn are smaller
than λw and λψ , while the error λL computed for U
no longer follows this trend.

This paradox needs an explanation. A trivial one
could be that the maximal error for the solution (λ f )

is not situated near the crack tip but inside the compu-
tational domain. To verify this hypothesis and to give
a prospective reader a clear picture of the distribution
of the solution error in time and space, we present,
in Figs. 4 and 5, the corresponding absolute and rela-
tive errors computed for the nonuniform mesh built on
N = 100 nodal points with the corresponding optimal
regularized parameters discussed after Fig. 2. As it fol-
lows from Fig. 5, the maximum of the relative error is
always achieved near the crack tip (maxt λ f (t, 1−ε))).
Hence, the initial guess has not been confirmed. On the
other hand, the values of the relative errors λ f and the
respective λL( f ) are directly interrelated. The follow-
ing analysis identifies this relationship.

Using (62), after some algebra, one has the estimate:

λ f ∅ λe( f )
1 +

⎩
λe( f )

2 − λe( f )
1

) e( f )
2

e( f )
1

επ2−π1 . (70)

For the benchmark q(1)
l and Ql/q0 = 0.9 (see “Appen-

dix C”) which always provides the worst accuracy in
our computations, one can conclude

λw ∅ 1

3
λU ∅ λw0 + 1

10
(λw1 − λw0)

6
≥

ε, (71)

λψ ∅ λw0 + 8

90
(λw1 − λw0)

6
≥

ε. (72)

Finally, from (31) we can derive

λL ∅ 3

2
λw0. (73)

The last relationship has also been verified numeri-
cally by evaluating the values of the constant w0 in the
postprocessing procedure using the computed solution
(w, U or ψ) and the corresponding regularized bound-
ary condition (compare (62) and (63)).

It is clear from relations (71)–(72) that the relative
errors of the respective dependent variables also depend
on the quality of approximation of the second term in
the regularized boundary condition (62). This explains
the surprising relationship between λL and the respec-
tive λ f .

Interestingly, the results presented in Fig. 3 show
that the value of ε which provides the lowest relative
error, λ f , of the dependent variable f does not neces-
sarily give the best accuracy of the crack length λL .
Moreover, the relation ε = εL(N ) is much more sensi-
tive to the variation of N than ε = ε f (N ). Indeed, one
can observe sharp minima (see Fig. 3a, b) while there
is no such phenomenon in the respective graphs for λ f
(see Fig. 2). To demonstrate that the peaks are not com-
putational artifacts, we also include a small zoom of the
corresponding area of the figure Fig. 3b.

To complete the accuracy analysis, let us consider
some critical regime of crack propagation. Namely,
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(a) (b) (c)

Fig. 3 Distribution of relative errors of the fracture length λL
computed by solvers based on different dependent variables
(w, U and ψ). When dependent variable U is considered, two
different regularised boundary conditions are in use: (65) for Ul

and (66) for Un . Other parameters are the same as in Fig 2. Zoom
picture within the Fig. 3b corresponds to the sharp minimum of
λL for the variable Ul

(a) (b) (c)

Fig. 4 Absolute error for solutions w, Un and ψ computed for benchmark q(1)
l with ratio Ql/q0 = 0.9 and nonuniform mesh

x (I I )(λ = 2) with N = 100 nodal points. Other parameters: ε = 10−3 for w, ε = 5 · 10−3 for ψ , and ε = 10−5 for Un

(a) (b) (c)

Fig. 5 Relative error of the solutions w, Un and ψ computed on the corresponding solvers for the same parameters as in Fig. 4

assume that the leak-off flux almost entirely balances
the volume of fluid injected into the crack. Indeed,
when taking the Carter type benchmark (91) b1 = b2 =
1, one obtains the fluid balance ratio Ql/q0 = 0.9857.
This gives a very strong variation of the particle veloc-
ity function along the crack length [γv = 2.07—see
(95)].

In view of the previous conclusion on the influence
of the ratio Ql/q0 on the solution accuracy (which

in fact confirms the observations from Mishuris et
al. 2012), one can predict that the solution error will
increase appreciably in comparison with the figures
shown in Tables 3, 4, 5 and 6. In order to verify
this assertion the computations were made for respec-
tive dynamic systems (the system for U was analyzed
again for two forms of the regularized boundary condi-
tion). Both types of meshes, the uniform and the non-
uniform, were utilized, each composed of 100 nodal
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Table 7 Accuracy parameters for the limiting (critical) variant
of the benchmark solution (Ql/q0 = 0.9857, γv = 2.07) com-
puted for different meshes composed of N = 100 nodal points.

The blank positions in the table correspond to the case when the
solver ode15s could not complete the computations in a reason-
able time

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

x (I ) x (I I ) x (I ) x (I I ) x (I ) x (I I ) x (I ) x (I I )

λw 1.6e−2 1.6e−2 3.4e−2 2.5e−3 6.8e−2 2.1e−2 – 8.2e−2

λUl 1.9e−1 1.9e−1 8.2e−2 8.1e−2 1.0e−1 4.3e−2 1.5e−1 2.3e−2

λUn 4.8e−2 4.8e−2 1.1e−2 6.3e−3 1.9e−2 3.2e−3 2.0e−2 9.1e−3

λψ 2.6e−3 5.0e−3 3.0e−3 1.7e−3 3.9e−3 9.9e−3 4.0e−3 3.0e−2

λLw 2.0e−4 2.6e−4 2.0e−3 1.8e−4 3.4e−3 3.9e−4 – 6.2e−4

λLl 1.2e−3 1.1e−3 2.7e−4 1.3e−4 7.5e−4 2.8e−4 1.0e−3 3.2e−4

λLn 2.5e−4 1.2e−4 1.8e−4 2.6e−4 2.5e−4 3.0e−4 2.6e−4 3.2e−4

λLψ 8.1e−7 4.7e−7 1.1e−6 1.1e−6 1.2e−6 1.2e−6 1.2e−6 1.2e−6

points (N = 100). Four different values of the regular-
ization parameter ε , ranging from 10−5 to 10−2, were
analyzed. The results of the computations described by
respective accuracy parameters are presented in Table
7. Here, the symbols λUl and λUn stand for the rel-
ative error of U obtained for the conditions (65) and
(66), respectively. The subscript of λL informs us which
dynamic system the corresponding result was obtained
for.

The data in the table shows that the solution error
increased at least one order of magnitude, as compared
to the values from Tables 3 , 4, 5 and 6. The lowest
deterioration of the solution accuracy was obtained for
ψ , which proves the best overall performance of the
system built for this variable. Especially impressive is
its advantage when comparing the errors of crack length
estimation. In all considered cases λLψ is at least two
orders of magnitude lower than λL for other dependent
variables.

In this critical variant of benchmark solution, the
non-linear regularized boundary condition (66) for U
gives, in most cases, much better performance than its
linear counterpart (65) (compare with the discussion
after the Tables 2 and 3, 4, 5 and 6). Finally, the non-
uniform mesh seems to be a better choice from the point
of view of accuracy.

In the last test in this subsection we discuss the sen-
sitivity of respective algorithms to the variation of the
crack propagation regime. To this end, consider again
the benchmark solution (90) for the critical value of the
ratio Ql/q0 = 0.9857 (γv = 2.07). Now, we analyze a
range of parameters γ > −1/3, motivated by the phys-

0 2 4 6 8 10

10−5

10−4

10−3

Fig. 6 The relative errors of the crack length for different depen-
dent variables as functions of γ

ical sense of the solution. By changing this value, one
simulates different modes of crack propagation (see
“Appendix B”). The non-uniform mesh composed of
100 nodes nodes was utilized. For each of the depen-
dent variables an optimal value of the regularization
parameter, ε, was taken: ε = 10−3 for w, ε = 10−5

for U , and ε = 5 · 10−3 for ψ . The results of the com-
putations illustrated by the relative errors of the crack
length and the maximal relative errors of correspond-
ing dependent variables are shown in Figs. 6 and 7,
respectively.

As can be seen in Fig. 6, for all dependent variables
the crack length error rapidly decreases for γ ⊥ −1/3.
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Fig. 7 The maximal relative errors of respective dependent vari-
ables as functions of γ

Indeed, this is the case when L(t) ≡ L0. For w and U
solvers, λL remains very stable over most of the ana-
lyzed interval. The solver based on ψ exhibits quite
different behaviour. For γ greater than approximately
1.4, the error decreases to achieve the level of its ulti-
mate accuracy, the same as for γ ⊥ −1/3. Depending
on the crack propagation regime, this solver can pro-
duce up to two orders of magnitude better accuracy of
L(t) than others.

Figure 7 shows, that respective dependent variables
themselves are much less sensitive to the changes of γ

that the crack length. In the considered interval each
solver provides a relatively stable level of accuracy
(within the same order of magnitude).

This test proves that using the solver based on ψ is
especially beneficial when dealing with the problems
of fast propagating fractures (large values of γ ).

3.5 Comparison with known numerical results

Although the benchmark solutions utilized in the previ-
ous subsections incorporate among others the leak-off
term with a square root singularity, there is no analyti-
cal solution for the Carter leak-off. In Kovalyshen and
Detournay (2009), one can find the numerical results
for such a case. This data may be utilized as a reference
solution. Unfortunately, the authors provide only some

rough estimation of the solution error. Surprisingly,
they do not even verify their numerical scheme against
the early time asymptotic model (considered as an ana-
lytical benchmark) to establish quantitatively the accu-
racy of computations for the zero leak-off case.

The numerical method used in Kovalyshen and
Detournay (2009) is based on an implicit FV algorithm.
The data collected in their Table 1 (p. 332) describes
the normalized values of the crack length, the crack
propagation speed and the crack opening at x = 0, at a
number of times steps in the interval t ∗ [10−5, 5·102].
There is no precise information on the utilized number
of control volumes and the time stepping strategies (the
mentioned number of 10 control volumes refers to the
presented graphs, but it is not clear if the data from
table was obtained for the same parameters).

In the following we compare our numerical solution
(see Table 8) with that by Kovalyshen and Detournay
(2009). Note that, due to different normalizations, our
normalized crack length, L , is two times greater than
respective value in their paper. Our data was obtained
by the solver based on U variable for N = 1,000 nodal
points. Although from the previous analysis it emerges
that the system for ψ can provide better accuracy of
L , we do not use it here to avoid an additional post-
processing (numerical differentiation) when comput-
ing w(0, t). On the other hand, in the light of previous
investigations, the system for U for N = 1,000 can
give the accuracy of L up to 10−6.

First, we present the graphs for evolution of the
crack length, L(t),—Fig. 8, and the crack aperture at
zero point, w(t, 0)—Fig. 9. They depict the data for
early time and large time asymptotic models (respec-
tive formulae can be found also in Kovalyshen and
Detournay (2009)), and the numerical results for a tran-
sient regime connecting these asymptotes. The solution
by Kovalyshen and Detournay (2009) is indicated by
markers. A figure, equivalent to Fig. 8, has been also
published in Nordgren (1972), however there is no data
available for comparison.

We analyze the time interval t ∗ [10−8, 108] where
the initial conditions correspond to the early time
asymptote for t = 10−8. The same initial time was
taken by Kovalyshen and Detournay (2009), but the
authors presented their data starting from t = 10−5. In
order to increase the legibility of the graphs, we have
truncated the time axis to the range t ∗ [10−6, 5 · 103],
while the complete data is presented in Table 8.
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Table 8 Numerical
solution of the PKN fracture

log(t) L(t) w(t, 0) u(t) × 10

−7 3.283747e−6 3.988347e−2 7.9701

−6 2.049209e−5 6.298786e−2 7.9355

−5 1.265786e−4 9.915967e−2 7.8716

−4 7.660018e−4 1.551088e−1 7.7536

−3 4.456291e−3 2.397462e−1 7.5185

−2 2.412817e−2 3.629593e−1 7.1173

−1 1.163591e−1 5.326638e−1 6.5267

0 4.849863e−1 7.541837e−1 5.8885

1 1.779508e0 1.037495e0 5.4408

2 6.035529e0 1.403522e0 5.1993

3 1.968511e1 1.883411e0 5.0847

4 6.308563e1 2.518338e0 5.0378

5 2.006370e2 3.362113e0 5.0146

6 6.360179e2 4.485636e0 5.0071

7 2.013373e3 5.982935e0 5.0029
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Fig. 8 The crack length evolution in time

In Fig. 10 we show the normalized crack propagation
speed, defined in a manner introduced by Kovalyshen
and Detournay (2009).

As can be seen in the Figs. 8 and 9, in the pre-
sented scale, our solution is undistinguishable from
that by Kovalyshen and Detournay (2009) in terms of
L(t) and w(t, 0). However, the normalized crack prop-
agation speeds differ appreciably from each other. It
shows that our solution fits the asymptotes very well,
which suggests its good quality. We cannot examine,
how the solution of Kovalyshen and Detournay (2009)
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early time asymptote
large time asymptote
numerical solution
results by K&D

Fig. 9 The evolution of crack opening at zero point, w(t, 0)

approaches the asymptotic values due to the shortage
of data for time intervals t < 10−5 and t > 5 · 103 in
their table.

In the analyzed case, the value of the parameter
Ql(t)/q0(t) changes continuously with time from zero
to unit. From the data presented in Mishuris et al.
(2012) and in this paper, one can conclude that for
N = 100 nodal points, the relative error of the crack
length changes from 10−6 to 10−4 with the increase
of the parameter Ql/q0. On the other hand, analyzing
the data from Figs. 2 and 3 (Ql/q0 = 0.9), one can
expect the achievable level of accuracy of the order
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Fig. 10 The evolution of the normalized crack propagation
speed
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Fig. 11 Relative deviations from the numerical solution for L

10−7 for N = 1,000. This suggests that, in our com-
putations, the relative error of L varies between 10−4

and 10−6.
In order to additionally asses the credibility of our

solution (computed for N = 1,000 and presented in
the Table 8), we show in Fig. 11 the relative deviations
between it and other solutions. Namely, we analyze
the crack lengths L provided by: (a) early and large
time asymptotes; (b) the solution by Kovalyshen and
Detournay (2009); (c) the solution obtained for 100
nodal points and (d) the solution obtained for 1,000
nodal points at another starting point t0 = 10−7.

When tracing the data from Fig. 11 we can see
that the deviations of L from the early and large time
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10
−1

− d
L

− d
w(t,0)

− d
u

Fig. 12 Relative deviations of the solution by Kovalyshen and
Detournay (2009) from the results reported in Table 8

asymptotes at the ends of the considered interval are
of the order 10−4. Moreover, the relative deviation of
the solution obtained for 100 points is of the same
order in almost entire time range, which corresponds
very well to the figures from Table 7. The discrep-
ancy between the reference solution and the solution
for t0 = 10−7 decreases rapidly with time. All these
observations confirm the credibility of the reference
solution.

We do not present respective graph for w(t, 0). How-
ever, it is worth mentioning that in this case the devia-
tions from the asymptotes were even lower than for L ,
while the deviation of the solution for N = 100 did not
exceed the value of 10−4 on the substantial part of the
interval.

The relative discrepancies between the compo-
nents of our solution and the solution by Kovalyshen
and Detournay (2009) are shown in Fig. 12. Here
dL , dw(0,t) and du refer to the deviations of the crack
length, L , the crack opening, w(t, 0) and the normal-
ized crack velocity, u, respectively.

In the light of the presented results, we believe that
the data collected in Table 8 provide the accuracy at
least of the order 10−4 for both, the crack length, L , and
the crack opening at x = 0. Moreover, in the consider-
able time range (10−6 < t < 106), one can expect the
error lower by up to two orders of magnitude. The nor-
malized crack propagation speed u is computed with
accuracy of one to two orders of magnitude lower.

Summarizing the above discussions, the level of
accuracy for the results tabulated by Kovalyshen and
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Detournay (2009) can be estimated as 10−3 ÷10−2 for
L , 10−4÷10−3 for w(t, 0) and of the order 10−2 for u.

3.6 Remarks on the sensitivity of the Carter leak-off
model

It is well known that applicability of the empirical
Carter law (4)1 in the vicinity of the fracture tip is
questionable (see for example, Economides and Nolte
2000; Kovalyshen 2010; Mitchell et al. 2007). More-
over, when combining Carter’s leak-off with some non-
local variants of elasticity models (for example, KGD
model of hydrofracturing), one obtains an infinite par-
ticle velocity at the crack tip. As a result, the speed Eq.
(12) cannot be applied in such a case. One of the ways
to eliminate the negative consequences of this fact is
to assume that the Carter law becomes valid at some
distance away from the fracture tip (see for example
Mitchell et al. 2007).

The PKN model, which does not exhibit such a draw-
back, gives however a unique opportunity to assess how
the solution is affected by a modification of the classic
Carter law in the neighborhood of the fracture tip.

To this end, let us consider two ways of modification
of the law. The first one assumes that leak-off function
equals zero over some distance from the crack front
(d > ε). The second one accepts a constant value of
ql in the same interval. This value is taken in such a
manner to preserve the continuity of the leak-off func-
tion. Note, that both of these modifications change the
volume of fluid loss to the rock formation, with respect
to the original state.

The relative deviations of the crack lengths for
these modifications from the original one are shown
in Fig. 13. Results for two values of d: d = ε,
d = 10ε (for ε = 10−5) are depicted. The symbol
qld in the legend refers to the cases when the leak-off
function is complimented by the constant value over
1 − d ∇ x ∇ 1.

One can see from this picture that the maximal rel-
ative discrepancies (of the level of 1 %) appear at the
initial and large time ranges. To explain this phenom-
enon we can easily compute the additional volume of
fluid retained in the fracture as a result of the Carter law
amendments. Taking into account (74), these values are
δQl(t) = 2D(t)

≥
d and δQl(t) = D(t)

≥
d , for the

respective modifications [see (22) for D(t)]. Note that
D(t) = ≥

u(t)/t , which explains the level of deviation

10
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Fig. 13 Relative deviations of the crack lengths for different
variants of truncated Carter law

for the small time. For large time, the effect of accumu-
lation of the difference of the fluid loss,

∫ t
0 δQl(∂ )d∂

= O(
≥

td), plays a crucial role.
The above test proves that the application of the

Carter law modified in the aforementioned ways, is
acceptable in terms of both the stability and the accu-
racy of computations. This allows one to use such an
approach in the cases when the law leads to unphysical
results (see Mitchel et al. 2007). Note, however, that
the intermediate asymptotics related to the carter law
still holds true and thus should be taken into account.

On the other hand, appreciable sensitivity of the
solution to the slight modifications of the Carter law
calls the validity of the law near the crack tip into ques-
tion.

4 Conclusions

In this paper, we have revisited the PKN model of
hydrofracturing providing a comprehensive overview
of the known results together with:

(i) analysis of various leak-off regimes (vanishing,
bounded and singular near the fracture tip) sup-
plemented with the full asymptotic expansion of
the solution for the Carter model;

(ii) introduction of a new dependent variable, ψ , and
the resulting problem reformulation;

(iii) implementation of a new form of the regularized
boundary condition;
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(iv) analysis of different aspects of application of vari-
ous dependent and independent variables, includ-
ing the stiffness properties, accuracy and effi-
ciency of the computations;

(v) comparison of the results for the Carter leak-
off with the known numerical benchmark from
Kovalyshen and Detournay (2009).

The main conclusions of the paper are:

– The approach proposed in Linkov (2011d) and
Mishuris et al. (2012) is efficient even in the cases
when the smoothness of the particle velocity near
the crack tip is disturbed by the singular leak-off
function;

– For the best performance of a solver, the regularized
boundary condition should incorporate at least two
leading terms of asymptotics;

– The stiffness properties of the dynamic systems and
the accuracy of the computations can be effectively
controlled by the choice of dependent and indepen-
dent variables.

– The new independent variable, ψ , leading to a
slightly greater stiffness of the dynamic system,
considerably improves the accuracy of computa-
tions.

The value of the aforementioned findings was
demonstrated on various analytical benchmarks and for
the classic Carter law. Although, the presented analysis
concerns the 1-D PKN formulation, at least some of the
findings may be utilised in the more advanced cases.
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Appendices

A Carter’s leak-off function in the normalised formu-
lation

Consider the transformation of the Carter law described
by (4) when applying the normalization (18). Assume
that:

1≥
t − ∂(x)

= D(t)≥
1 − x̃

+ R(t, x̃), (74)

where function D(t) is defined in (22) while the remain-
der R is estimated later in (77).

To find function D(t), and thus to obtain an exact
form of Eq. (22), it is enough to compute the limit

D2(t) = lim
x̃⊥1

1 − x̃

t − ∂(x)
. (75)

This can be done by utilising L’Hopital’s rule with tak-
ing into account that x ⊥ L(t) as x̃ ⊥ 1,

∂(x) = ∂ (L(t)x̃) = L−1(L(t)x̃), (76)

and that the crack length is a smooth function of time
(L ∗ C1 at least). The last fact immediately follows
from the problem formulation in terms of evolution
system (32).

Having the value of D(t) we can estimate the
remainder R(t, x̃) when x̃ ⊥ 1, or, what it is equiva-
lent to when x ⊥ l(t) (or t ⊥ ∂(x)). For this reason,
we search for a parameter α �= 0 which guarantees that
the limit

A = lim
x̃⊥1

R(t, x̃)

(1 − x̃)α

= lim
x̃⊥1

1

2α(1− x̃)α−1

⎧
D(t)

(1− x̃)3/2 − L(t)∂ →(x)

(t−∂(x))3/2

⎪

does not turn to zero or infinity. Due to this assumption,
we can write

1≥
t−∂(x)

= D(t)≥
1− x̃

+ A(1− x̃)α +o
(
(1− x̃)α

⎛
, (77)

when x̃ ⊥ 1, or equivalently x ⊥ l(t). Taking the last
estimate into account A can be expressed as:

A = lim
x̃⊥1

1

2α(1− x̃)α−1

⎧
D(t)

(1− x̃)3/2 − L(t)∂ →(x)

t−∂(x)

D(t)≥
1− x̃

⎪

− AL(t)

2α
lim
x̃⊥1

(1 − x̃)∂ →(x)

t − ∂(x)

(
1 + o(1)

⎛
.

Now, on substitution of ∂ →(x) = 1/L →(t) at x = L(t)
and (75) into the limit one has:

A= lim
x̃⊥1

D(t)

2α(1− x̃)α−1/2

⎧
1

1− x̃
− L(t)∂ →(x)

t−∂(x)

⎪
− AL(t)D2(t)

2α L →(t)
.

Applying (75) and (22) here gives:

1 + 2α

2α
A= lim

x̃⊥1

D(t)

2α(1− x̃)α−1/2

⎧
1

1− x̃
− L(t)∂ →(x)≥

t −∂(x)

D(t)≥
1− x̃

⎪

− AD(t)L(t)

2α
lim
x̃⊥1

∂ →(x)
≥

1 − x̃≥
t − ∂(x)

.

By repeating the same process one more time we have:

(2 + 2α)A= lim
x̃⊥1

D(t)

(1− x̃)α

⎧
1≥

1− x̃
− L(t)∂ →(x)D(t)≥

t−∂(x)

⎪
.
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Finally by eliminating the square root with use of (77)
we obtain (after some algebra)

(3 + 2α)A = D(t) lim
x̃⊥1

1 − L(t)∂ →(x)D2(t)

(1 − x̃)α+1/2 .

This relationship gives a finite value of A if and only if
α = 1/2 and, as a result, we find:

A = 1

4
D3(t)L2(t)∂ →→(L(t)) = −1

4

L →→(t)
L →(t)

⎠
L(t)

L →(t)
.

B Asymptotics of the solutions for different leak-off
functions

Asymptotic expansion for the crack opening and the
fluid velocity near the crack tip in the normalised vari-
ables (18) can be written in the following general forms:

w(t, x)=
N∑

j=0

w j (t)(1−x)π j +O((1−x)�w ), x ⊥ 1,

(78)

and

V (t, x)=
N∑

j=0

Vj (t)(1−x)σ j +O((1−x)�V ), x ⊥ 1,

(79)

with �w > πn , �V > σn , π0 = 1/3, σ0 = 0 and
some increasing sequences π0, π1, . . . , πn and σ0, σ1,

. . . , σn . Note that the asymptotics are related to each
other by the speed Eq. (19) and thus, regardless of the
chosen leak-off function, we can write

N∑
j=0

Vj (t)(1 − x)σ j + . . . = 1

3L(t)

N∑
k=0

N∑
m=0

N∑
j=0

×π jw j (t)wm(t)wk(t)(1 − x)π j +πm+πk−1.

(80)

In line with the discussion after Eq. (16), we are inter-
ested only in the terms such that σ j ∇ 1, restricting
ourselves to the smallest �V > 1, since the values of σ j

are combinations of a sum of three consequent compo-
nents of the exponents π j . However, since π0 is known
(π0 = 1/3), one can write (compare with (17)):

V0(t) = 1

3L(t)
w3

0(t), (81)

V1(t)= 1

L(t)

⎧
π1+ 2

3

⎪
w2

0(t)w1(t), σ1 =π1 − 1

3
.

(82)

To continue the process one now needs to compute the
value of the exponent π1 as it is not clear a priori which
value determining the next exponent σ2 = min{2/3 +
π2, 1/3 + 2π1} is larger. To do so let us rewrite the
continuity Eq. (20) in the form:

θw

θt
+ V0(t)

L(t)
(1−x)

θw

θx
= 1

L(t)

θ
(
w(V0−V )

⎛
θx

−ql(t, x).

(83)

Here, the terms on the left-hand side of the equation
are always bounded near the crack tip, while those on
the right-hand side can behave differently depending
on the chosen leak-off function.

Consider the following three cases of ql behaviour.

(i) Assume first that

ql(t, x) = o
(
w(t, x)

⎛
, x ⊥ 1.

This case naturally includes the impermeable rock
formation. Analysing the leading order terms in
the Eq. (83), it is clear that w(V0 − V ) = O((1 −
x)4/3), as x ⊥ 1. This, in turn, is only possible
for σ1 = 1 and, therefore, π1 = 4/3. Finally,
comparing the left-hand side and the right-hand
side of the equation we obtain:

w→
0(t) = w0(t)

3L(t)

(
V0(t) + 4V1(t)

⎛
,

V1(t) = 2

L(t)
w2

0(t)w1(t). (84)

This case has been considered in Linkov (2011d)
and Mishuris et al. (2012).

(ii) If we assume that the leak-off function is estimated
by the solution as O

(
w(t, x)

⎛
, or equivalently;

ql(t, x) ≡ ϒ(t)w0(t)(1 − x)1/3, x ⊥ 1,

then the previous results related to the values of
π1 and σ1 and, therefore, the Eq. (84)2 remain the
same, while the first one changes to

w→
0(t) = 1

3L(t)
w0(t)

(
V0(t)+4V1(t)

⎛−ϒ(t)w0(t).

(85)

This case corresponds to (21)3 when C32 = 0 and
ϒ(t) = kC31(t).

(iii) The leak-off function in a general form:

ql(t, x)=�(t)(1−x)θ +o((1−x)1/3), x ⊥ 1,

where −1/2 ∇ θ < 1/3. Here, one can conclude
that w(V0 − V ) = O((1 − x)1+θ ), as x ⊥ 1
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or equivalently, σ1 = θ + 2/3, and π1 = 1 + θ .
Moreover, in this case:

(1 + θ)w0V1 = L(t)�(t),

V1(t) = 1

L(t)

⎧
θ + 4

3

⎪
w2

0(t)w1(t), (86)

and, thus

w1(t) = 3L2(t)�(t)

(4 + 3θ)(1 + θ)w3
0(t)

. (87)

Note, that as one would expect, the particle veloc-
ity function is not smooth in this case near the
crack tip, its derivative is unbounded and exhibits
the following behaviour:

θV

θx
= O

(
(1 − x)θ−1/3⎛, x ⊥ 1.

To formulate the equation similar to (84)1 or (85),
one needs to continue asymptotic analysis of the
Eq. (83) incorporating the available information.
Apart from the fact that the analysis can be done
in the general case, we restrict ourselves only to
three variants used from the beginning (compare
(4)), respectively: θ = 0, θ = 1/3−1/2 = −1/6
and θ = −1/2.

When θ = 0, π1 = 1 and σ1 = 2/3, returning to the
Eq. (80), one concludes that σ2 > 1 and, therefore,

w→
0(t) = 1

3L(t)
w0(t)V0(t). (88)

This case corresponds to (21)3 when �(t) = C (2)
3

(t)w0(t) and C (1)
3 = 0.

If θ = −1/6, then π1 = 5/6 and σ1 = 1/2. In
this case the function �(t) can be written as �(t) =
C2 D(t)w0(t) [compare to (21)2] and again Eq. (80)
gives σ2 > 1, while Eq. (83) leads to

w→
0(t) = 1

3L(t)

(
w0(t)V0(t) + 4w1(t)V1(t)

⎛
. (89)

Summarizing, in both mentioned above cases, there
exists a single term in asymptotics of the particle veloc-
ity which has singular derivative near the crack tip.
Moreover, those terms (w1 and V1, respectively) are
fully defined by the leak-off function �(t) and the coef-
ficient w0 in front of the leading term for the crack
opening in (87) and (86)1.

The situation changes dramatically when θ = −1/2
(Carter law). We now have π1 = 1/2 and σ1 = 1/6
and �(t) = C1 D(t). In this case, however, σ2 < 1

and we need to continue the asymptotic analysis fur-
ther to evaluate all terms of the particle velocity which
exhibit non-smooth behaviour near the crack tip. We
omit the details of the derivation, presenting only the
final result in a compact form. The first six exponents in
the asymptotic expansions (78) and (79), that introduce
the singularity of wx , are:

π j = 1

2
+ j

6
, σ j = j

6
, j = 1, 2, . . . , 6.

w j (t) = β j
� j (t)L2 j (t)

w
4 j−1
0 (t)

, Vj (t) = ψ j
� j (t)L2 j−1(t)

w
4 j−3
0 (t)

,

where j = 1, 2, . . . , 5 and

β1 = 12
7 , ψ1 = 2, β2 = − 270

49 , ψ2 = − 24
7 ,

β3 = 9768
343 , ψ3 = 828

49 , β4 = − 2097252
12005 , ψ4 = − 5136

49 ,

β5 = 1081254096
924385 , ψ5 = 1234512

1715 .

C Benchmark solutions

There are several benchmarks in the literature to be
utilized for investigation of the numerical algorithms.
Benchmark solutions for impermeable rock have been
constructed in Kemp (1989); Linkov (2011d), while
that corresponding to the non-zero leak-off model with
ql vanishing at a crack tip has been analyzed in Mishuris
et al. (2012).

In this paper, we introduce three different analytical
benchmark solutions corresponding to the representa-
tions (21). Moreover, for each of the leak-off functions
under consideration we take two different relationships
between the injection flux rate q0 and the leak-off to for-
mation ql . In this way six different benchmark solutions
are analyzed.

In order to formulate the benchmark solutions let us
assume the following form of the crack opening func-
tion:

w(t, x) = W0(1 + t)γ h(x), W0 = 3

⎡
3

2
(3γ + 1),

(90)

where γ is an arbitrary parameter, and the function h(x)

(0 < x < 1) is given by:

h(x) = (1 − x)
1
3 + b1(1 − x)γ1 + b2(1 − x)γ2 . (91)

The choice of the next powers 1/3 < γ1 < γ2 will
depend on the leak-off variant from (4). On consecutive
substitutions of (90)–(91) into the relations (19), (24),
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Table 9 The values of
parameters b1 and b2 for
different benchmark
solutions modelling desired
leak-off to fluid injection
ratios

Ql/q0 = 0.9 Ql/q0 = 0.5

q(1)
l q(2)

l q(3)
l q(1)

l q(2)
l q(3)

l

b1 0.1 0.19 0.74 0.02 0.03 0.15

b2 0.5 0.41 −0.13 0.1 0.08 −0.02

γv 1.69 1.70 1.65 0.55 0.56 0.55

(a) (b) (c)

Fig. 14 Distributions of the leak-off functions ql (t, x) and the respective particle velocity V (t, x) over x̃ ∗ (0, 1) at initial time t = 0

(29) and (31) one obtains the remaining benchmark
quantities:

L(t) = (1 + t)
3γ+1

2 ,

V (t, x) = −W 3
0 (1 + t)

3γ−1
2 h2(x)

θh

θx
. (92)

q0(t) = −W 4
0 (1 + t)

5γ−1
2

⎧
h3 θh

θx

⎪
|x=0. (93)

ql(t, x) = W0(1 + t)γ−1 ×
⎩3

2
(3γ +1)

⎣1

3
x
θh

θx
+3h2

⎧
θh

θx

⎪2

+h3 θ2h

θx2

⎤
−γ h

)
.

(94)

It can be easily checked that for γ1 = 1/2 and
γ2 = 4/3 the leak-off function incorporates a square
root singular term of type (21)1. By setting γ1 = 5/6
and γ2 = 4/3 we comply with representation (21)2.
Although in both of these cases q⊂

1(2) exhibits a singular
behaviour at the crack tip, it does not detract from the
applicability of our benchmarks. Finally, when using
γ1 = 4/3 and γ2 = 7/3, the benchmark gives a non-
singular leak-off function in the form (21)3.

Note also, that by manipulating with the value of γ

one can simulate some very specific regimes of crack
propagation. For example γ = 1/5 corresponds to the
constant injection flux rate, while γ = 1/3 gives a con-
stant crack propagation speed. For our computations we
always set the value of γ = 1/5.

Choosing appropriate values b1 and b2 one can
change the relation between the amount of fluid loss
to formation and the injection rate. This ratio can be
defined by the measure, Ql/q0, where Ql is the total
volume of leak-off

∫ 1
0 qldx . It is important to note that

this measure decreases in time, from its maximum value
to zero, for all chosen benchmarks. Thus, taking the
maximal value high enough and tracing the solution
accuracy in time, one can analyse performance of the
algorithm for any possible value of the parameter. We
consider two variants of Ql/q0, one where fluid injec-
tion doubles the size of total fluid loss, and a second
where the total fluid loss is close to injection rate. The
values of the corresponding parameters b1, b2 are pre-
sented in Table 9.

Additionally one can compute a parameter γv

defined in Mishuris et al. (2012) as a measure of the
uniformity of fluid velocity distribution:

γv = [max(V (t, x)) − min(V (t, x))]

⎦
⎟

1⎨

0

V (t, α)dα




−1

.

(95)

Interestingly, this measure is directly correlated with
the leak-off ratio Ql/q0.

In Fig. 14 the distributions of the leak-off functions
and the corresponding particle velocities for the respec-
tive benchmarks are presented. It shows that the veloc-
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ity near the crack tip depends strongly on the bench-
mark variant. To highlight this fact, a zoom picture is
placed in the Fig. 14b.

Note that the benchmark q(1)
l is worse, in a sense,

than the original Carter’s model as it contains additional
singular terms of the leak-off function. These terms are
absent in the normalised Carter’s law as it follows from
“Appendix B”.
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Abstract Slip localization is widely observed in
metallic polycrystals undergoing cyclic deformation
or post-irradiation tensile deformation, whatever their
crystallographic structure. Hence, strong strain local-
ization occurs in thin slip bands (SBs) inducing by the
way local stress concentrations at their intersections
with grain boundaries (GBs). Many GB stress field for-
mulae based on the dislocation pile-up theory have been
proposed since the pionnering work of Stroh and oth-
ers. These allow the use of the Griffith criterion for pre-
diction GB fracture initiation. However, recent obser-
vations show that assuming that slip is localized on a
single atomic plane leads to unrealistic results. In fact,
a large number of slip planes are plastically activated
and then finite slip band thickness should be accounted
for. Numerous crystalline finite element (FE) compu-
tations have been carried out using considering a slip
bands with low critical resolved shear stress embed-
ded in an elastic matrix. The computed GB normal and
shear stress fields:

– are considerable lower than the pile-up ones and
exhibit strong dependency on the slip band thickness
close to the SB corner

– but are in fair agreement with the solution predicted
by the pile-up theory far away.

Since the pile-up theory leads to the overestimation of
the local GB stress fields, the main goal of the current

M. Sauzay (B) · M. O. Moussa
CEA, DEN, DMN, SRMA, 91191 Gif-sur-Yvette, France
e-mail: maxime.sauzay@cea.fr

paper is to perform analytical model of GB stress com-
ponents based upon FE calculations. The effect of var-
ious parameters can be understood in the framework
of matching asymptotic expansions which is usually
applied to cracks with V notches of finite thickness.
Finally, the predicted remote stresses to GB fracture
in pre-irradiated austenitic stainless steels subjected to
tensile loading in various environment are compared to
experimental data and the pile-up based predictions.

Keywords Micro-cracks · Slip bands ·
Pile-up theory · Linear fracture mechanics ·
FE method · Crystalline plasticity

1 Introduction

Slip localization occurring at the grain scale has been
extensively observed, particularly in Faced-Centred
Cubic (FCC) metals and alloys subjected to either post-
irradiation tensile tests (proton or neutron irradiation at
high dose) (Sharp 1967; Victoria et al. 2000; Lee et al.
2001; Edwards et al. 2005; Jiao et al. 2005; Byun et
al. 2006), cyclic loadings (Lukas and Knesnil 1968;
Finney and Laird 1975; Winter et al. 1981; Blochwitz
and Veit 1982; Lim and Raj 1984a; Mughrabi and
Wang 1988; Man et al. 2002), or even simply ten-
sile loading (Perrin et al. 2010). Plastic slip is local-
ized in thin slip bands. Their thickness is lower than
1 μm but higher than a few ten nm. Usually, slip bands
cross all the grains from one grain boundary to the
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opposite one. Therefore the slip band length is approxi-
mately equal to the grain size which usually varies from
a few microns to a few hundred microns. Following
the Atomic Force Microscopy (AFM) measurements
of Jiao et al. (2005), the local SB plastic deformation is
ten times higher than the remote one in austenitic steels
subjected to post-irradiation tensile loading. Transmis-
sion Electronic Microscopy (TEM) observations lead
to similar evaluations (Sharp 1967; Edwards et al. 2005;
Sauzay et al. 2010). Such thin SBs are called channels
or clear bands because they are almost empty of irra-
diation defects whereas the surrounding matrix is still
full of defects. Their thickness is about 50 nm. Plas-
tic strain is highly localized in slip bands induced by
cyclic loadings as well. Such SBs are often called per-
sistent slip bands (PSBs). Their local plastic strains are
about hundred times higher than the remote ones (Win-
ter et al. 1981; Wejdemann and Pedersen 2004; Weid-
ner et al. 2006, 2010). PSB thickness is about 0.5μm
in Face Centred Cubic (FCC) polycrystals (Mughrabi
and Wang 1988; Man et al. 2002). Slip localization is
observed during tensile loading as well (Tong and Hec-
tor 1997; Perrin et al. 2010).

At least two main mechanisms explain the slip band
formation. The first mechanism holds for mechanical
tests carried out on pre-irradiated FCC metals/alloys,
as well as alloys containing shearable precipitates
(Gerold and Steiner 1982). It is based on interactions
between mobile dislocations and irradiation-induced
defects/precipitates (Lee et al. 2001). The second
mechanism corresponds to the case of FCC (ductile)
metals and alloys subjected to cyclic loadings. Slip
localization seems to be essentially due to dislocation
glide, cross-slip and interactions. Cross-slip seems to
be required for PSB formation (Essmann and Differt
1996). Similar slip localization has often been reported
in body centred cubic (BCC) or hexagonal compact
(HCP) metals and alloys.

Several computations were carried out for evalu-
ating the plastic slips inside slip bands. Authors first
modelled slip bands as elongated inclusions embed-
ded in a matrix which mimics the whole polycrystal
(Rasmussen and Pedersen 1980). This permitted them
to use the analytical solution given by Eshelby (1957)
for a bulk inclusion. Polycrystalline homogeneisation
taking into account slip localization at the grain size
allowed Collard et al. to take into account the ratios
between SB spacing and grain size as well as SB thick-
ness and grain size (Collard et al. 2010). Then, Finite

Element computations using crystalline plasticity per-
mitted the investigation of surface effects (Repetto and
Ortiz 1997; Sauzay and Gilormini 2000, 2002). Ana-
lytical modelling has been proposed as well (Li et al.
2007; Sauzay and Gilormini 2000).

Clear bands and slip bands impinge to grain bound-
aries. This induces stress or plastic strain concen-
trations as shown in a copper polycrystal deformed
after neutron irradiation by Edwards et al. (2005) who
observed indeed either local lattice rotations corre-
sponding to high local strain concentrations or a con-
siderable amount of (plastic) shearing at the grain
boundary as another channel has been nucleated on
the opposite side of the grain boundary and spreads
in the neighbour grain. Such propagation of a chan-
nel in the neighbouring grain was more often observed
in the case of singular grain boundaries such as twin
boundaries (Jiao et al. 2005; Liu et al. 1992). If no
transmission through GBs occurs, then large stress
concentrations are induced by the impingement of
SBs towards GBs. Recently, high resolution EBSD
allowed the measurement of elastic strains at the sub-
micron scale showing the strong stress concentrations
induced by slip localization (Ben Britton and Wilkin-
son 2012).

Because of these interactions with GBs, clear bands
or slip bands are often considered as triggering grain
boundary crack initiation and propagation. Such a
mechanism has been investigated experimentally for
copper (Liu et al. 1992) and nickel (Lim and Raj 1984b)
polycrystals subjected to cyclic loadings. Similarly,
slip localization in clear bands has been considered as
promoting intergranular crack initiation in the case of
irradiation assisted stress corrosion cracking (IASCC)
(Simonen and Bruemmer 1995; Toivonen et al. 2005;
Edwards et al. 2005). Impinging deformation-induced
twin bands have been found to trigger intergranular
crack initiation as well (Toivonen et al. 2005; Chung et
al. 2001; Onchi et al. 2003). Twinning is another mech-
anism of slip localization inducing in addition crystal-
lographic rotation (Kadiri et al. 2013). Finally, previ-
ous cold-work deformation of austenitic steels leads to
earlier GB crack initiation during SCC tests, which is
considered to be due to slip localization during cold-
work (Couvant 2001). Many experimental studies con-
cerning the influence of grain boundary characteristics
on intergranular crack initiation have been published
(McMurtrey and Was 2011). Concerning grain bound-
aries, two extreme cases can be considered (Sutton and
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Balluffi 1995; Priester 2001). On the one hand, gen-
eral GBs display almost no crystal periodicity along
the grain boundary plane. Their energy as well as their
diffusion coefficients are very high (Sutton and Bal-
luffi 1995; Priester 2001). On the other hand, special
boundaries present a crystal periodicity along the grain
boundary plane. Their grain boundary energy as well as
their diffusion coefficients are low (Sutton and Balluffi
1995; Priester 2001). All authors concluded that special
boundaries, and particularly ε3 twin boundaries, are
the less prone to stress corrosion cracking (SCC) initi-
ation even if some of them may crack (Alexandreanu
and Was 2003; Tan et al. 2005). The same result was
obtained in copper (Liu et al. 1992) or nickel (Lim and
Raj 1984b) subjected to cyclic deformation carried out
in either air or inert environment. Their low GB energy
values lead to high fracture energy and the observed slip
band transmission through special GBs decreases GB
stress concentrations which is not the case for general
GBs.

Several modelling approaches focused on the eval-
uation of grain boundary stress concentrations. Neu-
mann showed that crystalline elasticity induces stress
concentration at grain boundaries (Neumann 1992) in
agreement with experimental analysis of slip traces
(Chuang and Margolin 1973; Margolin and Stanescu
1975). Recently, Diard et al. (2005) used large-scale
Finite Element computations for evaluating stress gra-
dients in the vicinity of grain boundaries, induced by
plastic deformation incompatibilities between neigh-
bour grains. All these studies highlighted stress con-
centrations which may promote intergranular crack ini-
tiation. Concerning the influence of slip band impinge-
ment, GB stress fields have been evaluated analytically
using the theory of discrete or continuous dislocation
pile-ups. This approach is based on the well-known
Stroh model (1957). The stress singularity induced by
an edge or screw pile-up of length Lpile-up is the same
as the one of a crack in the framework of linear elastic
fracture mechanics (LEFM) (Stroh 1957; Smith and
Barnby 1967). This length is usually assumed to be
close to one-half of the grain size, L. Thanks to the
similarity with the LEFM crack problem, the energy
release rate, G, may be computed in a straightforward
way. Following the pioneering work of Griffith, an
energy balance criterion has been applied by Smith and
Barnby for predicting GB microcrack initiation (Smith
and Barnby 1967). As the stress singularity exponent
is 1/2, the application of the Griffith criterion leads to

possible microcrack initiation, which is not be true for
lower stress exponent values (Leguillon 2002; Taylor et
al. 2005). The Griffith criterion is based on the equality
between the energy release rate, G, and the GB frac-
ture energy, γfract. This means that only an energy cri-
terion is required and the crack increment is assumed
to be infinitesimal. This modelling has been applied
to the prediction of GB microcrack initiation, either
in copper polycrystals subjected to cyclic loading (Liu
et al. 1992) or pre-irradiated austenitic stainless steels
subjected to tensile loading (Evrard and Sauzay 2010).
These authors predicted critical remote tensile stresses
much lower than the observed ones, whatever the envi-
ronment (Evrard and Sauzay 2010). Therefore, the pile-
up theory seems to lead to underestimations of the crit-
ical remote stresses when compared to experimental
data.

Pile-up theories assume that slip is localized on one
atomic plane only. But, many experiments and observa-
tions show that for many materials and loading condi-
tions, a non-negligible fraction of the slip occurs inside
the fatigue slip bands (interferometry measurements
(Finney and Laird 1974), TEM observations (Sauzay
et al. 2010) and AFM measurements (Jiao et al. 2005;
Wejdemann and Pedersen 2004; Tabata et al. 1983;
Weidner et al. 2006 and Weidner et al. 2010). Con-
cerning 316L austenitic stainless steel deformed after
pre-irradiation, Byun et al. (2006) concluded that shear
strain is uniformly distributed through the thickness
of channels (clear bands). Similar conclusions were
drawn by Jiao et al. (2005) and Sauzay et al. (2010).
As plastic slip is indeed much more homogeneously
distributed than assumed by pile-up theories, these last
ones may overestimate the local GB normal stress fields
as well as energy release rate values which may lead to
the underestimation of the critical remote stress men-
tioned previously. Taking into account not only the slip
band length, L, but also its thickness, t, may lead to
more realistic GB stress fields and improve the micro-
crack initiation predictions. The finite element (FE)
method has been used recently in the framework of
crystalline elastoplasticity because of the non-linear
behaviour of slip bands (Sauzay and Vor 2013). Slip
bands of various thickness and lengths were embedded
at the free surface of an elastic matrix. The effect of
slip band thickness and length as well as remote tensile
stress was studied based on the results of numerous
FE computations. Analytical formulae describing the
GB normal stress singularities induced by slip bands
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were deduced but only for steels and only particular
microstructure geometry.

The present study aims to compute both GB nor-
mal and shear stress fields in various FCC met-
als/alloys and for various microstructure geometries.
For instance, various GB orientations should be con-
sidered (McMurtrey and Was 2011) and slip bands
appear not only in well-oriented grains (Schmid fac-
tor equal to 0.5), but also in grains of various crys-
tallographic orientations and therefore various orien-
tations may characterize slip planes (Mughrabi and
Wang 1988; McMurtrey and Was 2011). In order to
deduce analytical formulae predicting GB stress fields
and GB fracture, numerous FE computations consid-
ering a much larger range of material parameters and
microstructure geometries have been carried out. The
study focuses on:

– both normal and shear stress fields;
– the effect of isotropic elasticity parameters as well

as crystalline elastic anisotropy;
– the influence of grain boundary orientation and crys-

tal orientation;
– use of finite fracture mechanics for predicting the

remote stress to GB microcrack initiation. The GB
stress fields and critical remote tensile stress pre-
dicted by pile-up theories are compared to the ones
taking into account slip bands of finite thickness,
t > 0;

– finally, the remote stress required for grain boundary
fracture of pre-irradiated austenitic stainless steels
subjected to tensile loading in either inert or oxidiz-
ing environment is computed using fracture energy
data published in the literature and avoiding any
adjusted parameter. The values are quantitatively
compared to experimental data and once more to the
predictions of the classical theory of pile-ups.

2 Computation hypothesis

2.1 Modeled microstructures

To study the influence on GB stress fields of SB
thickness and length as well as crystallographic and
GB orientation, various microstructures (Fig. 1) have
been generated using the FE software Cast3m (Cast3m
2012). Individual SBs, defined by their thickness, t,
length, L, inclined by an angle αSB with respect the

Fig. 1 Microstructure with a slip band and its grain embed-
ded at the free surface of the matrix (zoom). Microstructure
angles: αSB = 45∗ and αGB = 33∗ (for instance). The angle
between the SB and the GB planes, θ, may be easily deduced:
θ = 90−αSB+αGB = 78∗

tensile axis, and surrounded by a grain, have been gen-
erated. The considered grain and its SB are embed-
ded at the free surface of a homogeneous matrix which
mimics the other grains of the whole polycrystal. The
vector perpendicular to the GB is inclined by an angle
αGB with respect the tensile axis. In order to maxi-
mize strain localization, the SB emerges at the free
surface. To study the influence of the two angles, αSB

and αGB, various microstructures, have been generated,
using various values of both angles, belonging to the
40∗–70∗ and 20∗–50∗ ranges respectively. For instance,
the mesh of the microstructure built for αSB = 45∗ and
αGB = 0∗, is plotted in Fig. 2a (zoom on the slip band).
The SB length, L, is at least ten times lower than the
whole mesh size in order to avoid any influence of the
whole matrix size. Therefore, using a large matrix does
not affect the computed GB stress fields.

Following several observations from the literature
(Mughrabi and Wang 1988; Man et al. 2002), slip
bands are mostly well-oriented (maximum value of the
Schmid factor: 0.5). For the FCC metals or alloys, the
slip systems are defined by the {111} normal directions
and ⊂110≥ slip directions (12 slip systems). The well-
oriented grains present one slip system (n,m) with a
Schmid factor, f, equal to its maximal value, 0.5. The
(unit) normal vector to the slip system is denoted as
n whereas the (unit) slip vector is denoted as m. For
such a crystal orientation, both the n and m vectors
are inclined of 45∗ with respect to the tensile direc-
tion with αSB = 45∗, (Fig. 2a). The following direc-
tions of the well-oriented slip system have been chosen:
n = 1/

∇
3(1, 1, 1) and m = 1/

∇
2(1, 0,−1) for FCC

metals. Slip bands are parallel to the easy slip plane
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Fig. 2 a Mesh of the
microstructure
corresponding to:
αSB = 45∗ and αGB = 0∗
(Fig. 1) and built using the
Cast3M FE software. b
Radial mesh generated at
the intersection between a
slip band and a GB. Mesh
built using the Cast3M FE
software

(a) (b)

and therefore perpendicular to the n vector. (Byun et
al. 2006). This conclusion holds for BCC and HCP
metals and alloys in which slip localization is observed
as well (Onimus et al. 2004).

The resolved shear stress is defined as the maxi-
mum value among the shear stress amplitudes com-
puted on the 12 slip systems and the Schmid factor is the
ratio between the resolved shear stress and the macro-
scopic tensile stress or stress amplitude, ε0. Assum-
ing a homogeneous stress state, the Schmid factor, f,
depends on the αSB angle only: f = cos(αSB) sin(αSB).
Because of the scatter induced by the neighbour grain
effect (Sauzay and Jourdan 2006) or because of an
increasing remote stress (Jiao et al. 2005), grains of
various crystallographic orientations and lower Schmid
factors may contain slip bands. That is why we make
the αSB angle vary in the 35∗–70∗ range. This corre-
sponds to the following range of Schmid factor values:
0.32–0.5.

As random microstructures usually contain GBs
of various orientations, that is why we make the
angle αGB vary in the 20∗–50∗ range. The remote
GB normal stress depends on the αGB angle and
remote tensile stress only: ε∞

n = cos2(αGB)ε0. The
same holds for the remote GB shear stress: T∞

nm =
cos(αGB) sin(αGB)ε0.

Following the pile-up model (Stroh 1957), the GB
stress field in the vicinity of the head of a pile-up may
be written as θ

pile-up
n (r, θ) = f(r)h(θ). The SB would

be replaced by a single plane in Fig. 1 and (r, θ) are the
polar coordinates (Figs. 1, 2b). Then, because of the
similarity between a pile-up and a slip band, a radial
mesh has been generated at the intersection Channel-
GB (Fig. 2b). The angle between the SB and GB plane,
θ, depends on the SB and GB orientation as follows:

θ = 90− αSB + αGB . This angle will be used in Sect. 4 for
plotting the dependence of on the singularity parame-
ters with respect to both αSB and αGB angles. Numer-
ous meshes including a SB have been built consider-
ing not only values of the length L varying from 3 to
100 μm, but also values of the thickness t, varying from
40 to 500 nm. The meshes have been extruded in the
third direction and 3D meshes of the microstructures
are finally built. The influence of mesh size has been
carefully studied and it is low enough to let us avoid
any influence on the computed GB stress fields. The
relative numerical error concerning the GB stress val-
ues in the vicinity of the SB-GB intersection is lower
than 5 %. In the following, the GB stress fields will be
plotted as a function of the distance, r, such as defined
in Fig. 2b. Finally, the time increment has been checked
to be low enough to avoid any effect on the computed
stress fields

The microstructures are subjected to a uniform ten-
sile stress, ε0, on the two right and left matrix vertical
boundaries, such as shown in Fig. 1. Some displace-
ments have been set to zero in order to avoid any rigid
body motion and impose plane strain state.

2.2 Constitutive laws

2.2.1 Elasticity

As a first approach, slip band, grains and matrix are
assumed to obey isotropic elasticity which may be char-
acterized for instance by the values of the Young’s
modulus, Y, and the Poisson ratio, v. Using isotropic
elasticity allows an easy comparison between the FE
results and the predictions of the pile-up theory which
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generally assumes homogeneous isotropic elasticity.
In order to provide general results, several mate-
rials have been considered: aluminium, copper and
austenitic stainless steels. The values of the parameters
of isotropic elasticity have been found in (Matweb.com
2012). For instance, the Young’s modulus and Pois-
son ratio used for austenitic stainless steel are equal to
200 GPa and 0.3, respectively.

In reality, grains obey crystalline elasticity rather
than isotropic elasticity. In the case of cubic sym-
metry, only three parameters are required, C11, C12

and C44 (Huntington 1958). Even if the polycrystal
is untextured, the effect of the anisotropy of crys-
talline elasticity may be noticeable at the grain scale
as shown by multicrystal FE computations (Sauzay
and Jourdan 2006; Sauzay 2007; Sauzay and Man
2008). In the case of cubic symmetry, the anisotropy
level may be evaluated using the anisotropy coefficient,
a = 2C44/(C11 − C12). It is equal to the ratio between
the maximum and minimum elastic shear moduli con-
sidering all slip systems in a 3D continuum framework.
In copper and austenitic stainless steels, its value is as
high as 3.3, in nickel and ferrite, it reaches 2.5 and is
only 1.1 in aluminium crystals which behave almost on
an isotropic manner. As expected, the anisotropy coef-
ficient, a, is equal to one in an isotropic material. For
these metals and alloys, the maximum of the Young’s
modulus values is reached along the ⊂111≥ direction,
Y111, and its minimum along the ⊂100≥ direction, Y100.
The ratio of both, Y111/Y100, is very close to the value
of the anisotropy coefficient, a.

Computations have been carried out for austenitic
stainless steels using:

– either crystalline elasticity in the surface grain
(C11 =197 GPa, C12 =125 GPa and C44 =122 GPa
leading to a strongly anisotropic behaviour with
a = 3.3);

– or isotropic elasticity (same parameters as the macro-
scopic ones which leads to a = 1). This allows us to
study the effect of crystalline elasticity on the local
GB stress fields.

2.2.2 Crystalline (visco)plasticity

For a Face-Centred Cubic (FCC) metal or alloy, twelve
easy slip systems, (ni, mi), are defined in each crys-
tal. The unit normal vector of the ith slip system is
denoted as ni whereas its unit slip vector is denoted

as mi. The shear stress on each slip system is defined
by | τi | = |mT

i σni| (i = 1, . . . , 12). The local stress
tensor is denoted as σ .

Basic crystalline (visco)plasticity laws are applied
to each of the twelve slip systems through a slip crite-
rion and a linear hardening evolution law of slope H0. In
the case of increasing load, the Schmid criterion (Eq. 1)
characterizes the activation of the ith slip system, using
the shear stress, | τi |, and its critical value, τc,i, which
initial value is denoted as τ0. Equation 2 describes the
evolution law of the critical shear stress τc,i with d
the interaction matrix between the twelve slip systems.
The plastic slip on the ith slip system is denoted as γp

i .
The three parameters of the crystalline (visco)plasticity
laws are: τ0 (the initial critical shear stress), H0 (the
linear hardening slope) and q (the latent hardening
coefficient).

|τi| = τc,i (1)

φ̇c,i = H0

12∑
j=1

di j

∣∣∣∂̇ p
j

∣∣∣ with dij = q for i →= j and

dij = 1 for i = j (2)

These laws have been implemented in the software
Cast3m using a subroutine UMAT which has already
used in (Sauzay et al. 2010; Evrard and Sauzay 2010)
for studying the effect of slip localization in irradi-
ated metals and alloys. As explained below, viscosity
effects may be neglected for the considered materials
and loading conditions. Viscoplasticity laws are never-
theless used because they improve numerical conver-
gence. The exponent of the power law linking shear
stress to (visco)plastic slip rate is higher than 100.
Practically, no difference in the GB stress fields is
observed for applied strain rate between 10−8 and
10−3/s. That is why we may considere that the SB
behaviour is rate-independent and SBs obey quasi-
elastoplasticity.

The finite strain theory as well as crystallographic
rotations are accounted for. But, it should be noticed
that our FE computations show that their effect rota-
tions on GB normal and shear stress fields is rather
weak.

Enhanced (visco)plasticity laws may be used in case
of Portevin-Le Châtellier effect (Zavattieri et al. 2009)
or yield point elongation followed by hardening (Xie
et al. 2004).
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2.2.3 Adjustment of slip band plasticity parameters

The typical values of the initial critical shear stresses,
τ0, are about a few ten MPa for either channels (Sharp
1967; Yao et al. 2002, 2004) or PSBs (Lukas and Knes-
nil 1968; Finney and Laird 1975; Winter et al. 1981;
Blochwitz and Veit 1982).

The hardening slope in channels in pre-irradiated
metals is usually considered to be weak (Sharp 1967;
Yao et al. 2002, 2004), similar to the ones measured
during tensile loading of well-oriented single crys-
tals (H0 ≤ μ/2000). Most often, only single slip
is observed in slip bands (Sharp 1967) which means
that very high values of the latent hardening coef-
ficient, q ∈ 1, should be used in order to hinder
secondary slip as experimentally observed. And vis-
cosity is considered to be negligible in agreement
with macroscopic and microscopic observations (Sharp
1967). Typical tensile curves of pre-irradiated mate-
rials with single crystal microstructure are plotted in
Fig. 3a.

Similar observations have been made concerning
PSB hardening (Lukas and Knesnil 1968; Finney and
Laird 1975; Winter et al. 1981; Blochwitz and Veit
1982), predominant single slip (Lukas and Knesnil
1968; Finney and Laird 1975) and very weak viscosity
effect at room temperature (see Sauzay and Kubin 2011
for a recent review).

The effect of SB plasticity parameters, τ0, H0, and
q, has been studied in detail in Sauzay and Vor (2013).
As expected, the higher the SB hardening, the lower
the stress fields. Activation of several slip systems
instead of the primary one only leads to slightly higher
GB stresses (+10 %). The closed-form expressions pro-
posed in Sect. 3.2 and valid for quasi perfect plasticity
may be easily extended to quasi plasticity including
hardening using the formulae given in (Sauzay and Vor
2013).

3 Influence of slip band thickness on grain
boundary stress fields: numerical and theoretical
results

3.1 Finite element computation results

First of all, the dependence of grain boundary normal
stress field with respect to the slip band crystalline
length, L, and thickness, t, is studied. The microstruc-
ture is defined by: is αSB = 45∗ (well-oriented grain)
and is αGB = 33∗ (slightly inclined GB with respect to
the tensile direction). Stress concentrations at the bot-
tom of the slip band plotted in Fig. 3b is clearly visible.
As we intend to predict GB microcrack fracture initi-
ation, the study of the GB normal stress fields, θn(r),
is of main interest, as well as the GB shear stress field,
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Fig. 3 a Tensile curve characterizing the plasticity behaviour of
slip bands. Low initial critical shear stress: τ0 = 1 − 100 MPa
(here 60 MPa), latent hardening coefficient: q ≤ 105 (single slip),
low hardening slope: H ≤ 0 − 250 MPa, no strain rate effect
(quasi-perfect plasticity). b Isovalues of the local tensile stress,

θ , plotted in the vicinity of the intersection between the slip band
and the grain boundary. Parameters: L = 10 μm, t = 0.1 μm,
τ0 = 60 MPa, H0 = 250 MPa, q = 1.4, ε0 = 300 MPa (αSB =
45∗ and αGB = 33∗)
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Fig. 4 a Plots of the GB normal stress versus r for various slip band length values, L (αSB = 45∗ and αGB = 33∗, t = 0.09 μm τ0 =
60 MPa, H0 = 1 MPa, q = 105, ε0 = 878 MPa); b plots of the GB shear stress in similar conditions

τn(r). Large ranges of variation of L have been taken
into account: 3–200μm as well as the thickness range
40–500 nm.

The higher the slip band length, the higher the GB
normal stress as shown in Fig. 4a. The same result holds
for the GB shear stress (Fig. 4b). As shown later, the
dependence to the SB length, L, is similar to the one
predicted by the pile-up theory, that is the square root
one. It should be noticed that GB normal and shear
stress are rather close, which means that both GB brit-
tle fracture and GB sliding may be triggered by slip
localization depending on temperature and GB proper-
ties (Lim and Raj 1984a and Lim and Raj 1984b). As
shown in Sect. 4, the ratio between the GB shear and
normal stress depends strongly on the GB orientation.

But, contrary to the pile-up theory, the slip band
thickness affects the GB normal stress field (Fig. 5a, b).
The higher the thickness, the lower the GB normal
stress computed at the same distance from the slip band
corner. Its influence is not negligible which shows that
the pile-up theory is not valid any more close to the slip
band corner. Indeed, the pile-up based modeling over-
estimates local GB normal stress fields near the slip
band corner (Fig. 6). GB stress fields are more sensi-
tive to the slip band length than to its thickness, as may
be guessed by comparing Figs. 4 and 5. As shown in

Sect. 3.2, the power-law dependence of the stress fields
with respect to the SB thickness, t, is in fact lower than
the one with respect to the SB length, L.

These curves are plotted considering the close-field
domain only. As expected from the theory of match-
ing asymptotic expansions (Leguillon and Sanchez-
Palencia 1987; Murer and Leguillon 2010) applied to
cracks with a V-notch tip, two domains should indeed
be distinguished (Fig. 6a, b):

– the close-field domain (Fig. 7a) in which the local
geometry of the crack tip affects the stress field (r ⊥
t). The slip band behaves similarly (Fig. 5a, b);

– the far-field domain (Fig. 7b) in which the tip geom-
etry does not affect the stress field any more and the
crack can be considered as sharp crack (t ⊥ r ⊥ L).
Once more, the same result holds for a slip band
(Fig. 5a, b).

3.2 Analytical description of the GB stress fields

As expected, the stress fields computed by the FE
method are not affected by the thickness t far away from
the slip band (Fig. 5a, b). They are in fact very close
to the one predicted by the pile-up theory. This means
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Fig. 5 a Plots of the GB normal stress versus r for various slip band thickness values, t (αSB = 45∗ and αGB = 33∗, L = 10.7 μm, τ0 =
60 MPa, H0 = 1 MPa, q = 105, ε0 = 156 MPa); b plots of the GB shear stress in similar conditions
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Fig. 6 Plots of the GB normal stress field computed either using
the FE method (finite SB thickness, t = 90 nm) or the pile-up the-
ory (edge dislocations, Lpile-up ≡ L/2, see Sect. 2.1) (αSB = 45∗
and αGB = 33∗, L = 10.7 μm, τ0 = 60 MPa, H0 = 1 MPa, q =
105, ε0 = 878 MPa)

that the GB stress field is well predicted by the pile-up
theory, provided t ⊥ r ⊥ L which means that the con-
sidered GB segment is far away enough from the slip
band corner. On the contrary, close to the slip band cor-
ner (Fig. 6a), the pile-up theory overestimates largely
the GB stress fields obtained in case of slip bands of

finite thickness, t. For r/t = 0.001, the GB normal stress
is overestimated by a factor three by the pile-up theory.
As it may guessed from the curves plotted in Fig. 5a,
b, the stress singularity exponent in the case of finite
thickness is lower than the classical pile-up or LEFM
crack one which is about 1/2. This is now discussed in
details in order to provide analytical formulae allowing
an easy computation of the GB normal stress fields in
case of slip bands of finite thickness, t.

The theory of matching expansions (Leguillon and
Sanchez-Palencia 1987; Leguillon 2002) applied to the
case of a crack with a V-noch tip in an elastic matrix
predicts the dependence of the stress close field with
respect to the crack length, L, the notch thickness, t,
and the stress exponent characterizing the V notch sin-
gularity, 1 − ω:

θi j
(
r, ν ≈) = A≈ε0

√
L

t

(
t

r

)1−ω

pi j
(
ν ≈) + ε0,i j (3)

with A≈ a geometry factor which is usually computed by
the FE method, pij(θ

≈) describing the dependence with
respect to the polar angle, θ

≈, and εij the remote stress
tensor components (Leguillon 2002). Polar coordinates
are indeed used as plane strain problems are considered
here. This theory is based on the inner expansion (close-
field for r ⊥ t) and the outer expansion (far-field for
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Fig. 7 a Schematic view of the close-field area (0 < r ⊥ t) (red
circle) with t and L the thickness and length of the channel/slip
band (t ⊥ L). b Schematic view of the far-field area (t < r ⊥
L) (blue circle) with t and L the thickness and length of the
channel/slip band (t ⊥ L)

t < r ⊥ L) (Leguillon and Sanchez-Palencia 1987;
Leguillon 2002). In an intermediate area, it is assumed
that the inner and outer expansions hold and are then
close. This corresponds to the so-called ‘matching con-
ditions’.

The problem we are interested in differs from this
one by several ways

– the slip band corner is not a V-notch but a flat notch.
Nevertheless, this does not change the previous gen-
eral expansion except that the geometry coefficient
and the stress singularity exponent, 1 − ω, would be
different from the ones computed for a V-notch;

– the slip band is inclined with respect to the loading
axis. This only means that not only mode I load is of
interest but also mode II;

– more importantly, slip bands obey non-linear behav-
iour whereas the theory of matching expansions is
usually applied in the LEFM framework. Neverthe-
less the close-form asymptotic fields predicted by
the linear theory of matching expansions may be
used as guidelines for proposing analytical formu-
lae which should then be validated with respect to
the GB stress fields plotted using the FE method. It
should be added that if slip band hardening is negli-
gible and the latent hardening coefficient, q, is very
high, the long slip band boundaries of length, L, are
loaded in mode II by a shear stress of almost τ0.
Moreover, a condition is applied on the stress vec-
tor acting on the short slip band boundary which
depends on τ0 (shear component of the stress tensor

in plane strain). In the case of a GB perpendicular to
the SB plane (θ = 90∗ + αGB − αSB = 90∗, Fig. 1a)
then the short bottom boundary is subjected to an
almost uniform shear stress, τ0, in the case of neg-
ligible hardening. This may looks like to an elastic
problem involving stress boundary conditions on the
boundaries of a blunted crack with a square tip at its
bottom (Fig. 1) and reinforces the analogy with the
problem of a LEFM crack with a V-notch solved by
the theory of matching expansions. But this anal-
ogy does not allow the direct comparison of an ana-
lytical approach and FE computations carried out
independtly as it can be made in case of elasticity
(Zavattieri et al. 2007a).

Therefore, the quantitative dependence of the GB
normal and shear stress fields with respect to the driving
force, T = fε0 − τ0, the slip band length, L and t and
finally the distance to the slip band corner, r, has been
studied in details based on the numerous results of FE
computations:

– the stress fields are found to be proportional to the
driving force, T = fε0 − τ0 which is expected fol-
lowing the analogy with a crack subjected to a remote
mode II shear stress, fε0, and a crack lip friction
stress, τ0 (Fig. 8a);

– the dependence of the stress close-fields with respect
to r/t is shown to be correctly described by a power
law of exponent (1 − ω). The stress fields are in
addition inversely proportional to the square root of
the aspect ratio, L/t as expected from the theory of
matching expansions (Eq. 3);

– the exponent of the stress singularity about 1 − ω ≡
0.27 whatever the GB an slip band orientations
whereas the one of the far-field is about 0.5. The
close-field stress singularity is indeed weaker than
the pile-up one as shown in Fig. 6.

The GB normal stress field may therefore be described
by an equation similar to the one provided by the the-
ory of matching expansions, that is, for a negligible
hardening slope:

θn (r) = Ann ( f ε0 − φ0)

√
L

t

(
t

r

)1−ω

+ ε∞
n (4)

Similarly, the GB shear stress field may be described
by:

φnm (r) = Anm ( f ε0 − φ0)

√
L

t

(
t

r

)1−ω

+ T ∞
nm (5)
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Fig. 8 a Crack or slip band embedded in an infinite matrix
loaded by pure shear. Remote shear stress: fε0 with the Schmid
factor, f = 0.5. Shear stress applied on the crack lips or slip
band shear stress: τc = τ0 + H0 γp; b Numerical evaluation of

the stress singularity parameters: Ann = 0.72, Anm = 0.64 and
1 − ω = 0.27 (Eqs. 4 and 5) (αSB = 45∗ and αGB = 33∗, L =
10.7 μm, t = 0.09 μm, τ0 = 60 MPa, H0 = 1 MPa, q =
105, ε0 = 393 MPa)

The geometry coefficients, Ann and Anm, as well as
the stress exponent, 1 − ω, depend on the GB–SB
angle, θ = 90− αSB + αGB (Fig. 1). The Schmid factor, f,
depends on the SB angle,αSB, as mentioned in Sect. 2.1.
And the remote GB normal and shear stresses, denoted
as ε∞

n and T∞
nm depend on the GB angle, αGB, as shown

in Sect. 2.1. For each set of GB / SB angles, the stress
singularity parameters, Ann, Anm and (1 − ω) are eval-
uated using one set of GB normal/shear stress curves
computed by the FE method for one value of the remote
stress and one single set of SB sizes, L and t (Fig. 7b).
For instance, for αSB = 45∗ and αGB = 33∗(θ = 53∗),
the adjusted values are: Ann = 0.72 Anm = 0.64
and (1 − ω) = 0.27 (Fig. 8b). Then, the analytical
formulae are validated using numerous curves com-
puted by the FE method for various applied stresses,
ε0, and slip band characteristic lengths, L and t, but
for the same value of the GB–SB angle. As shown
in Figs. 9 and 10, the agreement between analytical
modelling and FE computations is satisfying for rather
large ranges of SB characteristic sizes. The remote

stress values differ as well, which shows the validity
of the closed-form expressions (Eqs. 4 and 5), what-
ever the remote stress, close or much higher than 2 τ0.
The considered SB sizes, L and t, vary by factors of 15
and 5, respectively. The stress values computed either
by the FE method or the analytical formulae differ by
<7 %.

In case of non-negligible hardening slope, the
driving shear stress, T = fε0 − τ0, should be replaced
by: T = fε0 − τc with τc = H0 γp and γp the mean
slip band plastic slip which may be esaily computed
depending on the SB aspect ratio, L/t, SB orienta-
tion and remote stress (Sauzay and Gilormini). Equa-
tions (4) and (5) may be modified slightly to take into
account non negligible SB hardening. More details
about the effect of SB plasticity parameters may be
found in (Sauzay and Vor 2013).

It should be noticed that the inverse approach may
be used as FE computations are not suitable: analyti-
cal modelling may be the direct way of solving such
mechanical problems (Zavattieri et al. 2007a,b).
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Fig. 9 Validation of the closed-form expressions (Eqs. 4 and
5) by comparing the predicted stress fields with the ones com-
puted by the FE method. a GB normal stress fields; b GB shear

stress fields (αSB = 45∗ and αGB = 33∗, t = 0.09 μm τ0 =
60 MPa, H0 = 1 MPa, q = 105). SB lengths, L: 6.7 and 100
microns, and various remote tensile stresses, ε0
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Fig. 10 Validation of the closed-form expressions (Eqs. 4 and
5) by comparing the predicted stress fields with the ones com-
puted by the FE method. a GB normal stress fields; b GB shear

stress fields (αSB = 45∗ and αGB = 33∗, L = 10.7 μm, τ0 =
60 MPa, H0 = 1 MPa, q = 105). SB thickness: 0.04 and 0.2
micron, and various remote tensile stresses, ε0

4 Influence of elasticity and plasticity parameters

4.1 Influence of isotropic elasticity parameters

First, various FCC metals and alloys have been consid-
ered: aluminium, copper and austenitic stainless steels.

As shown in Fig. 11a, the GB normal and shear stress
fields are not affected by the elasticity parameter val-
ues. As mentioned earlier, both GB normal and shear
stress values are close even if the GB normal stress
is a bit higher than the shear stress for the considered
GB and SB orientations. The influence of the Poisson
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Fig. 11 Effect of isotropic elasticity parameters on the GB
stress fields: a various Young’s moduli but very close Poisson
ratios (austenitic stainless steel, copper, aluminium); b Vari-

ous Poisson ratio values (Y = 200 GPa) (αSB = 45∗ and
αGB = 33∗, L = 10.7 μm, t = 0.09 μm, τ0 = 60 MPa, H0 =
1 MPa, q = 105, ε0 = 393 MPa)

ratio has been studied as well. The same value of the
Young’s modulus was used but various values of the
Poisson ratio have been used between 0.25 and 0.45.
Once more, it can be noticed that the value of the Pois-
son ratio does affect only slightly the GB stress fields
(Fig. 11b). Only the GB normal stress is modified by
about 3 %. On the whole, these results are similar to
the ones obtained by the LEFM and pile-up theories.
Therefore, the analytical formulae proposed previously
(Eqs. 4 and 5) are valid whatever the values of isotropic
elasticity parameters.

4.2 Influence of cubic elasticity parameters

On the contrary, assuming that the considered grain
obeys crystalline elasticity rather than isotropic elastic-
ity may lead to non negligible differences as shown in
Fig. 11a, b. For copper and austenite (a ≡ 3.3), taking
into account cubic elasticity rather than isotropic one,
leads to GB normal and resolved shear stresses reduced
by −33 and −23 %. This may be explained by the low
Young’s and shear stress moduli of well-oriented grains
if a > 1 (Sauzay and Jourdan 2006; Sauzay 2007). Such
elasticity anisotropy leads to a decrease of the shear
stress magnitude in well-oriented grains. Therefore the
driving shear stress is no more directly linked to the
remote shear stress, but rather to the mean grain shear

stress which is much lower (Sauzay and Jourdan 2006;
Sauzay 2007). The Schmid factor f = 0.5 should be
replaced by the effective Schmid factor, feff , which is
equal to 0.43 in the case of austenite or copper (a ≡ 3.3)

and a well-oriented grain obeying crystalline elasticity
embedded in a homogeneous matrix obeying isotropic
elasticity (Sauzay and Jourdan 2006; Sauzay 2007).
The effective Schmid factor value is defined by the
ratio between the mean grain resolved shear stress com-
puted by the FE method, and the remote tensile stress,
ε0. The effective driving shear stress may be defined
by: Teff = feffε0−τ0 . For ε0 = 393 MPa and τ0 =
60 MPa (Fig. 12a, b), this effective driving force is 20 %
lower than the usual driving shear stress, T = fε0 −τc,
computed for isotropic elasticity. Therefore, this simple
analysis explains qualitatively the effect of crystalline
elasticity on GB stress field. In fact, the slip band and
grain sizes are similar and therefore the slip band may
not be considered as small with respect to the grain,
which shows that the previous analysis is not strictly
valid. The effect of crystalline elasticity should depend
on the anisotropy coefficient, a, grain orientation, SB
aspect ratio Schmid factor, f, remote tensile stress, ε0,
and critical shear stress, τc. And the use of the effec-
tive Schmid factor shows qualitatively what the effect
of crystalline elasticity is, depending on the previous
parameters.
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Fig. 13 Effect of the GB orientation on the GB stress fields (Fig. 1): a normal stress; b shear stress (αSB = 45∗, L = 10.7 μm, t =
0.09 μm, τ0 = 60 MPa, H0 = 1 MPa, q = 105, ε0 = 393 MPa)

5 Effect of random microstructure

5.1 Influence of grain boundary orientation

Grain boundary angles, αGB, between 20∗ and 50∗ have
been considered while the SB angle is kept constant:
αSB = 45∗ (Fig. 1). The GB normal and shear stress
fields are plotted in Fig. 13a, b, respectively. The lower
the GB angle, the higher the GB normal stress. The

shear stress behaves in the opposite way. The effect
is rather strong as the local stress is affected by more
than a factor 2 for the angle αGB varying between 20∗
and 50∗. For each value of the αSGB angle, the corre-
sponding stress singularity parameters, Ann, Anm, and
(1 − ω) have been deduced from one GB normal stress
curve and the corresponding shear stress one (Eqs. 4
and 5, see Fig. 7b). The singularity parameters are plot-
ted with respect to the SB–GB angle, θ = 90−αSB+αGB,
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Fig. 14 Plot of the singularity parameters (Eqs. 4 and 5) depend-
ing on the GB angle, αGB, and SB angle, αGB (Fig. 1): a Ann;
b Anm; c (1 − ω) (H0 = 1 MPa, q = 105, L = 10.7 μm, t =
0.09 μm, ε0 = 393 MPa) and d plot of the normalized remote

tensile stress to GB microcrack initiation (τ0 = 0 MPa, see
Sect. 6.4). The SB–GB angle, θ = 90−αSB+αGB is used for the
plotting (Fig. 1)

in Fig. 14a–c. First of all, the exponent, (1 − ω), is not
affected by the value of the αSGB angle, at least in the
studied range of variation (Fig. 14c). It is about 0.27 for
the whole range of variation of αGB, that is only about
one-half of the pile-up exponent, 0.5. The SB singular-
ity is therefore much weaker than the pile-up one. This
means that the same singularity exponent holds for the
whole considered range of GB orientations whereas
the singularity pre-factors are much more affected as
shown in Fig. 14a, b. It should be noticed that in the pile-
up theory, the pre-factor of the normal stress singularity

is much less affected by change in αGB as it changes by
less than ±13 %, provided θ belongs to a rather broad
range of variation: 25∗–100∗ (Smith and Barnby 1967;
Evrard and Sauzay 2010).

5.2 Influence of crystallographic orientation

The SB angle, αSB, defined in Fig. 1, varies between
35∗ and 70∗ for a constant GB angle of αGB = 33∗.
The GB normal and shear stress fields are plotted
in Fig. 15a, b, respectively. As expected, the higher
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Fig. 15 Effect of the SB orientation on the GB stress fields (Fig. 1): a normal stress; b shear stress (αGB = 33∗, τ0 = 60 MPa, H0 =
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the Schmid factor, the higher the GB stress fields.
The Schmid factor value can be computed as fol-
lows: f(αSB) = cos(αSB)sin(αSB). It reaches its max-
imum for αSB = 45∗, which leads to the maximum
remote shear stress, T(αSB) = f(αSB)ε0 − τ0. But,
the SB angle affects not only the driving shear stress,
T(αSB), but also the geometry coefficients, Ann and
Anm, as shown in Fig. 14a, b. More precisely, as the SB
angle becomes far from 45∗, the geometry coefficients,
Ann and Anm (Fig. 14a, b), drop down whereas the
stress singularity exponent is still stable with respect
to αSB (Fig. 14c). As the angle becomes low, the ratio
between the GB shear and normal stresses increases
(Fig. 15a, b). For the considered GB and crystal orien-
tation, the ratio varies between 1/2 and 2 which shows
that both stress components have the same order of
magnitude.

As expected, the SB–GB angle, θ, allows the plot of
a kind of master curve for each singularity parameter.
The maximum prefactor is reached for θ values between
60∗ and 80∗, which is very close to the angle value pre-
dicted by the pile-up theory, 70.5∗ (Smith and Barnby
1967; Evrard and Sauzay 2010). It should be noticed
that the shear stress singularity pre-factor, Anm, does
not vanish as θ is close to 70.5∗, contrary to the predic-
tion of the pile-up theory (Smith and Barnby 1967).
Finally, the dependence of the pre-factor, Ann, with
respect to the θ angle, predicted by the pile-up theory
differs quantitatively with the one found considering

SBs of finite thickness, t > 0. A much smoother depen-
dence evolution is indeed predicted by the pile-up the-
ory (Smith and Barnby 1967; Evrard and Sauzay 2010).

6 Prediction of grain boundary microcrack
initiation

6.1 Finite fracture mechanics

As mentioned in Sect. 1, the weak stress singularity
(1 − ω ≡ 0.27 < 0.5) does not allow us to use the
Griffith criterion which corresponds to an energy bal-
ance equation for an infinitesimal crack nucleus. On the
contrary, the use of finite fracture mechanics (Leguil-
lon 2002; Taylor et al. 2005) (or quantized fracture
mechanics (Pugno and Ruoff 2004)) involving a finite
crack nucleus, ac > 0, allows us to predict GB micro-
crack initiation. Nevertheless an additional equation is
needed because two unknown values should be com-
puted, on one hand the critical remote tensile stress for
GB microcrack initiation, εc > 0, and on the other
hand the microcrack nucleus length, ac > 0. Follow-
ing the physics of brittle fracture, a stress criterion
seems to be suitable. A local critical stress, θc, should
indeed be reached following atomistic analytical com-
putations (Averbach 1968; Rose et al. 1981; Rice
and Wang 1993) or more recent molecular dynamics
ones (Yamakov et al. 2006). Cohesive zone modelling
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Fig. 16 a Mesh of the area around the grain boundary close to
the slip band corner. Cracks of various lengths, a, have been intro-
duced in the mesh in order to compute the J integral using the
G θ method (Cast3m 2012). Geometry parameters: L = 10 μm,

t = 0.1 μm and a = 0.75, 1, 1.5, 2.5, 3 nm; b dependence of the
J integral value with respect to the remote stress, ε0, and crack
length, a

(CZM) of brittle fracture may be directly based on
the atomic force—separation curves (Yamakov et al.
2006). The same two main parameters are used by CZM
as well: local critical stress, θc, and fracture energy,
γfract. And the comparison between the crack initia-
tion predictions based on either CZM or finite fracture
mechanics using both stress and energy criteria leads to
similar results (Murer and Leguillon 2010; Henninger
et al. 2007) provided the fracture parameters are the
same.

Some directs observations of the fracture of oxidized
GBs during in-situ testing show that fracture energies
as low as a few J m−2 may be required (Dugdale et al.
2013). This seems to correspond to brittle fracture. In
case of slip localization, as the matrix is almost elasti-
cally deformed because of dislocation source exhaus-
tion and/or strong pinning effect induced by irradiation
defects, precipitates,… at least some of the GBs are
fractured without plastic blunting, at least during the
initiation stage. And these correspond to the preferen-
tial GB fracture sites because of their low fracture ener-
gies. In some cases plasticity may occur in the vicinity
of GBs or small GBs cracks because of stress concen-
trations. Then crack tip blunting and much higher dis-
sipated energy should be taken into account (Zavattieri
et al. 2007b).

6.2 Prediction of grain boundary microcrack initiation

The stress criterion can be written simply as follows:

| θn (r) | = θc if r < ac (6)

As the slip band obeys elastoplasticity, the J integral is
computed instead of the energy release rate, G. The J
integral is computed using the FE method after intro-
ducing GB crack of different lengths in some of the
meshes used previously plotted (Fig. 2b). For instance,
in the mesh built using L = 10 μm and t = 0.1 μm,
short cracks of lengths lengths of a = 0.75/1/1.5/2.5
and 3 nm have been introduced in five different meshes
(Fig. 16a). The J integral has been computed depend-
ing on both crack length, a, and driving shear stress,
T. The computation of J is based on the G θ method
(Cast3m 2012). The dependence of J with respect to
the various geometry and loading parameters is the
following:

– it is proportional to the square of the remote driving
shear stress, T, as may be guessed from Fig. 16b and
from the theory of matching expansions (Leguillon
2002);

– a power law dependence with respect to the crack
length, a, is found with an exponent of (2ω − 1)
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as expected once more from the theory of matching
expansions (Leguillon 2002).

– it is finally expected from the asymptotic expansion
of the GB stress fields close to the slip band corner
(Eqs. 4 and 5) that the dependence of the J integral
with respect to the slip band thickness and length, t
and L should be the following:

J (a, f ε0−φ0) = C ( f ε0−φ0)
2 L

(a

t

)2ω−1
(7)

with C depending on the isotropic elasticity coeffi-
cients only. It is found to be about: 2.3×10−11 Pa−1.
Using the Young’s modulus value, Y = 180 GPa, an
adimensional parameter is obtained: YC ≡ 3.69 for
αGB = 33∗ and αSB = 45∗.

The opposite of the variation in mechanical energy is
computed by integration of J between a = 0 and a =
ac (Pugno and Ruoff 2004). Then the energy balance
equation is applied, using the GB fracture energy. The
combination of the stress and energy criteria allows us
to evaluate both critical remote stress, εc, and crack
nucleus length, ac:

f εc − φ0 =
(

2ω

C

)1−ω

A1−2ω
nn

(
t

L

)1/2 (∂ f ract

t

)1−ω

θ 2ω−1
c (8)

and then:

εc = (1/ f )

(
φ0 +

(
2ω

C

)1−ω

A1−2ω
nn

(
t

L

)1/2

×
(∂ f ract

t

)1−ω

θ 2ω−1
c

)
(9)

Whatever the hardening slope value, the critical crack
length is given by

ac = 2ω

(
A2

nn

C

) (
∂ f ract

θ 2
c

)
(10)

Physical theories of brittle fracture of metals allow us
to link the local critical stress, θc, to the fracture energy,
γfract. For instance, Stroh assumed that the Hooke elas-
ticity law is valid up to fracture (Stroh 1957; Averbach
1968). He computed the mechanical work up to fracture
and deduced the following equation (Averbach 1968):

θc =
√

Y∂ f ract

d0
(11)

With Y the Young’s modulus and d0 the distance
between two neighbour close-packed atomic planes.

Some more accurate formulae have been proposed
(Averbach 1968; Rose et al. 1981; Rice and Wang
1993) but they differ from the previous one (Eq. 11)
only by less than a factor two. The Orowan theory
assumes that the stress dependence with respect to the
inter-plane distance may be described by a sinusoï-
dal law which leads to a microscopic brittle fracture
stress, θc,

∇
2 lower than the Stroh one (Eq. 11). The

universal bounding theory of Rose et al. is the most
physically-based and leads to a microscopic fracture
stress, θc, e/

∇
2 lower than the one given by Eq. (11).

Following Eq. (10), and using the universal bounding
theory as well as the highest values of Ann, evaluated
in Sect. 4 leads to: ac ≤ 1.5d0. This length is low but
nevertheless meaningful. In addition, it is much smaller
than t which is required for using the above stress close-
field expansion (Eq. 4).

Using Eq. (9) and for instance the Orowan equation,
the dependence of the critical remote stress with respect
to the GB fracture energy, γfract, is deduced:

εc = (1/ f )

(
φ0 +

(
2ω

Y C

)1−ω

×A1−2ω
nn

(
t

L

)1/2(d0

t

)1−ω
√

Y∂ f ract

2d0

)
(12)

still in case of negligible slip band hardening.
Or equivalently with respect to the local critical

stress, θc:

εc = (1/ f )

(
φ0 +

(
2ω

Y C

)1−ω

A1−2ω
nn

(
t

L

)1/2 (
d0

t

)1−ω

θc

)
(13)

The final expression of the length of the critical crack
nucleus is rather simple:

ac = 4ω

(
A2

nn

Y C

)
d0 (14)

The effect of the hardening slope, H0, may be taken into
account as well as shown by Sauzay and Vor (2013).

6.3 Comparison with the predictions of the pile-up
theory

As mentioned earlier, the Griffith criterion can be
applied directly because of the stress singularity expo-
nent of 1/2 induced by dislocation pile-ups. The energy
balance equation may be written as follows:
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Fig. 17 Ratio between the remote tensile stress to GB micro-
crack initiation computed using either Eq. (12) (SBs of finite
thickness, t > 0) or the pile-up theory (Eqs. 16, 17, see Sect. 6.3).
Dependence of microscopic tensile, θc, with respect to the frac-

ture surface energy, γfract : Stroh theory, Orowan theory or Rose
et al. universal bounding correlation; a linear scale and b loga-
rithm (αSB = 45∗ and αGB = 33∗, τ0 = 0 MPa, π = 0.3, d0 =
0.21 nm)

G = ∂fract = 2∂s−∂GB (15)

The energy release rate, G, can be computed using the
mode I and mode II stress intensity factors and the elas-
ticity constants (Smith and Barnby 1967). The critical
remote tensile stress leading to GB microcrack initia-
tion is easily deduced (Smith and Barnby 1967):

ε
pile-up
c = 1

f

[√
σμ∂fract

4(1−π)Lpile-up

1

(F (ν))1/2 + φ0

]

(16)

with:

F (ν) = (1/4)
(

5 + 2 cos (ν) − 3 cos2 (ν)
)

,

ν = 45∗ + ψGB − ψSB(Fig. 1) and Lpile−up ≡ L/2.

It should be noticed that the application of both
energy and stress criteria to the pile-up stress singu-
larity leads to the same expression, as already noticed
by Leguillon (2002) in case of a sharp crack which sin-
gularity exponent is 1/2. Using the Orowan computa-
tion of the microscopic brittle fracture stress, the ratio
between the critical remote stresses computed either
assuming a finite thickness, t > 0, and assuming the
formation of a pile-up is easily deduced from Eqs. (12)
and (16) by neglecting τ0:

εc

ε
pile-up
c

=
(

2ω

Y C

)1−ω

A1−2ω
nn

(
t

d0

)ω− 1
2

×
(

2
(
1 − π2

)
σ

) 1
2

(F (ν))
1
2 ≡

(
t

d0

)ω− 1
2

(17)

It is proportional to (t/d0)
ω−1/2 with ω − 1/2 ≡ 0.23.

The higher the slip band thickness, the larger the
difference between the critical remote tensile stresses
predicted by the FE method (finite thickness) and the
pile-up theory. The ratio is plotted with respect to the
normalized SB thickness using the three previous atom-
istic theories of brittle fracture (Fig. 17a, b). The trends
are very similar. The exponent value, ω− 1/2, is rather
weak but the effect of slip band thickness is neverthe-
less large provided it belongs to its physically-based
range of variation (from a few ten nm to a few hundred
nm) as shown in Fig. 16a, b. Considering the univer-
sal bonding correlation (Rose et al. 1981), and using
the previous numerical evaluations of ω, Ann and YC
(αSB = 45∗ and αGB = 33∗), as well as b = 0.25 nm
(d0 = 0.21nm) and π = 0.3, a ratio equal to 1.6 is
found for t = 50 nm (channels in FCC metals and
alloys subjected to tensile loading) and about 2.9 for
t = 500 nm (FCC metals and alloys subjected to cyclic
loading). Therefore, the finite thickness of slip bands
affects strongly the values of the critical remote tensile
stresses and the pile-up theory leads to large underes-
timations whatever the material and loading condition
considered here. It should be noticed that the relation
ship between the microscopic critical stress, θc, and
the fracture energy, γfract, affects the results: the crit-
ical remote stress, εc, computed using the universal
bounding correlation is about 30 % lower than the one
computed using the crude Stroh theory (Fig. 17a, b).

123Reprinted from the journal 233



M. Sauzay, M. O. Moussa

As it is more physically-based, the universal bounding
correlation is used in the following.

6.4 Influence of GB and crystal orientations
on microcrack initiation

Grain boundary and crystal orientations affects the
remote stress to GB microcrack initiation by at least
two ways (Eq. 12):

– the Schmid factor, f, depends on the SB angle, αSB,
following: f = cos(αSB)sin(αSB) in the case of uni-
axial tension;

– the singularity parameters, Ann and YC, depend on
the angle θ = 90− αSB + αGB as shown in Sect. 5,
but the singularity exponent, (1 − ω, ), does not
(Fig. 14c).

It has been checked that the YC value varies only
slightly with respect to the GB and SB angles in the
considered ranges of variation. The dependence of the
critical remote stress, εc, with respect to YC is a power
law one. Its exponent, (1 − ω) = 0.27, is low, then the
influence of this geometry parameter, YC, is weak. For
the sake of clarity, the normalized critical remote stress,
εc/εR is plotted with: εR = (t/L)0.5(d0/t)0.5 θc

and τ0 is assumed to be negligible with respect to εc

(Eq. 13).
The dependence of εc with respect to the θ angle has

been plotted in Fig. 14d for the whole range of GB and
SB orientations considered in this work. It reaches its
minimum for θ belonging to the 60∗–80∗ range, which
agrees with pile-up theory predictions. Nevertheless,
the pile-up theory predicts a very smooth variation of
the remote shear stress to GB microcrack initiation in
the range of variation θ = 0∗ − 180∗ [see Fig. 4 in
(Smith and Barnby 1967)]. But the modelling including
the effect of SB finite thickness predicts a stronger vari-
ation, even without taking into account the dependence
of the Schmid factor with respect to the SB angle. The
remote critical stress increases strongly for high αSB

values (65∗–70∗) because of the low Schmid factor val-
ues as well as the low Ann prefactor values (Fig. 14a).

It should be noticed that GBs vary in terms of orien-
tation, as well as SBs. Grain sizes varies rather strongly
from one grain to another [see in Fig. 1a (Sauzay
and Man 2008)] and SB thickness as well but not
so much (Byun et al. 2006). All these variations in
microstructure features affect the value of the predicted

remote stress to GB fracture (Eq. 16). This explains at
least qualitatively numerous experimental observations
showing the random character of GB cracking as well as
continuous microcrack initiation during tensile loading
(McMurtrey and Was 2011). Intrinsic characteristics of
GBs play a role as well (Eq. 15) with general GBs of
high GB energy whereas the ones of special GBs are
much lower (Sutton and Balluffi 1995; Caul et al. 1997;
McMurtrey and Was 2011).

Finally, the modeling of interface fracture and
induced crack propagation by CZM (Cordisco et al.
2012; Antico et al. 2012) does not take into account
microstructure details such as slip bands and the mesh
size may not be too low for saving computation time
and memory. Therefore, the parameters of the CZM
used in such larger scale computations should be
modified for taking into account only implicitly both
stress concentrations induced by slip localization and
physically-based fracture energy values such the ones
obtained from DFT computations (see Sect. 7). It may
be suitable to adjust the CZM parameters of such
large scale computations by inverse identification. They
would be adjusted for allowing the prediction of GB
fracture initiation at remote stresses comparable to
the ones predicted using the micromechanical model-
ing including slip bands. Of course the obtained frac-
ture stress and energy would be lower than the one
used in the micromechanical modeling because of the
lack of stress concentrators in the large scale CZM
computation.

7 Application to GB microcrack initiation
in pre-irradiated austenitic stainless steels

7.1 Tensile deformation in inert environment

Nishioka et al. (2008) and Fukuya et al. (2008) tested
in argon environment austenitic stainless steels previ-
ously pre-irradiated up to a neutron dose equivalent to
35 displacements per atom (dpa) at a temperature of
320 ∗C. The tensile tests have been carried out at very
slow strain rate (≡ 10−8s−1) and at a temperature of
about 320 ∗C. In these experimental conditions, dislo-
cation channels are observed at the surface of the spec-
imens as well as close to GBs. Both authors measured
the macroscopic tensile stress to GB microcrack initia-
tion which is found to be close to the conventional yield
stress: i.e εc/εy ≡ 1 (Fig. 18). Furthermore, Nishioka
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Fig. 18 Comparison between the predictions of the normalized
remote tensile stress leading to GB microcrack nucleation in
pre-irradiated austenitic stainless steels and experimental data
(Nishioka et al. 2008; Fukuya et al. 2008). The predictions based
on either Eq. (12) (slip band of finite thickness, t) assuming uni-
versal bounding correlation or the pile-up theory (Eq. 16) are
shown. Inert environment (αSB = 45∗ and αGB = 33∗, τ0 =
60 MPa, q = 105, H0 = 1 MPa, Y = 180 GPa, π = 0.3, L =
50 μm, t = 50 nm). Surface energy: γs = 2.5 Jm−2 and grain
boundary energy γGB = 1.2 J m−2 (general grain boundary) (see
Sect. 7.1)

et al. observed no influence of the irradiation dose on
the macroscopic microcrack initiation stress for doses
higher than 4dpa (Nishioka et al. 2008).

In the following, the predictions of Smith and
Barnby (Eq. 16) and the proposed criterion (Eq. 12)
are compared to the previous experimental results. The
grain size and the channel thickness of austenitic stain-
less steels studied by Nishioka et al. and Fukuya et al.
are about L = 50 μm and t = 50 nm, respectively.
Nogaret et al. (2008) simulated by discrete disloca-
tion dynamics the formation of a channel during tensile
loading of a pre-irradiated austenite crystal. They found
a channel shear stress, τ0, of a few ten MPa which is
indeed negligible with respect to the remote stress, ε0.
Channels in irradiated FCC metals and alloys usually
display almost no hardening (Sharp 1967; Nogaret et
al. 2008), that is why H0 ≤ 0. The free surface energy
for an austenitic stainless steel belongs to the range:
γs = 2−3J m−2 (Vitos et al. 1998) and this one depends
only slightly on the considered crystallographic plane.
The grain boundary energy, γGB, for an austenitic stain-
less steel, without strong segregation at GBs, has been
reported by Caul et al. (1996) to belong to a rather broad
range: γGB = 0.3 − 1.2 J m−2. These values depend
strongly of the GB characteristics (LABs, special GBs
or general GBs, see Sect. 1). In order to apply both cri-
teria to predict microcrack initiation in argon environ-
ment, an average free surface energy is used, 2.5 J m−2

(Vitos et al. 1998). Concerning, the GB energy value,

general GBs should be the most sensitive to microc-
rack initiation following the definition of the fracture
energy: γfract = 2 γs − γGB, which is confirmed by
experiments (Dropek et al. 2004). That is why the high-
est GB energy has been considered, γGB = 1.2 J m−2

(Caul et al. 1996). The yield stress is considered to be
equal to εy = 1,000 MPa (Jiao et al. 2005). The results
plotted in Fig. 18 show that the Smith and Barnby cri-
terion, based on the Stroh pile-up model, underesti-
mates strongly the microcrack initiation stress. This
result confirms that pile-up models are not suitable for
predicting intergranular microcrack initiation in pre-
irradiated metallic polycrystals. On the contrary, the
proposed criterion, using the universal bounding cor-
relation, is able to correctly predict the remote stress
to GB microcrack initiation. It should be noticed that
no adjustable parameter was used as applying the pro-
posed criterion (Eq. 12, modified to take into account
the universal bounding correlation).

7.2 Tensile deformation in water environment

Recently, Nishioka et al. (2008) and Takakura et al.
(2007) carried out uniaxial constant load tests on
austenitic stainless steels previously pre-irradiated up
to 38dpa. The tests have been carried out in pressur-
ized water reactor (PWR) environment. They measured
the stress at which failure occurred (named irradia-
tion assisted stress corrosion cracking (IASCC) failure
stress). In the experimental conditions (temperature of
300 ∗C and constant load), it is reasonable to assume
that channelling occurred and contributed to intergran-
ular microcrack initiation and failure. The experimen-
tal results (Fig. 19a, b) show that at 38dpa, the ratio
εcrit/εy is equal to about 0.5, while this ratio evalu-
ated for the same irradiation dose is equal to about 1 in
argon environment as mentioned previously. The role
of oxidation on the lower value of the ratio εcrit/εy

for pre-irradiated material tested in PWR environment
is now investigated theoretically.

Many authors measured the GB chromium con-
centration in pre-irradiated austenitic stainless steels
(Asano et al. 1992; Bruemmer et al. 1999). They
observed that the chromium concentration decreases
when the irradiation dose increases. The minimum con-
centration reaches about 11 % at 10dpa. Furthermore,
an enrichment in nickel is observed at GBs. The GB
chemical composition variations are due to the Kirk-
endall inverse effect (Bruemmer et al. 1999; Was 2007).

123Reprinted from the journal 235



M. Sauzay, M. O. Moussa

0

0,2

0,4

0,6

0,8

1

1,2

ΣΣ
c//

ΣΣ y

Experiment

Proposed model 
(Rose et al.)
Pile-up

0

0,2

0,4

0,6

0,8

1

1,2

ΣΣ
c//

ΣΣ y

Experiment

Proposed model 
(Rose et al.)
Pile-up

(a) (b)

Fig. 19 Comparison between the predictions of the normalized
remote tensile stress leading to GB microcrack nucleation in
pre-irradiated austenitic stainless steels and experimental data
(Nishioka et al. 2008; Takakura et al. 2007). The predictions
based on either Eq. (12) (slip band of finite thickness, t) assuming

universal bounding correlation or the pile-up theory (Eq. 16) are
shown. Water environment: a hydrated surfaces and b hydrox-
ylated (see Sect. 7.2). Parameters: αSB = 45∗ and αGB =
33∗, τ0 = 60 MPa, q = 105, H0 = 1 MPa, Y = 180 GPa,
π = 0.3, L = 50 μm, t = 50 nm

It is probable that at the intersection between the free
surface and the GB, the oxide layer can be broken due to
both channelling and the depletion of chromium which
does not allow the repassivation of the oxide layer. Oxy-
gen can then diffuse inside the material. Oxide such as
Fe2O3, Fe3O4, Cr2O3, NiO can be formed and embrit-
tle GBs (Bruemmer and Thomas 2005). The fracture
surface energy is also modified by the presence of
oxide. At 38dpa, GB chromium content is too low for
continuous repassivation and GBs can be oxidized. Free
surface energies per unit area have been calculated for
Fe2O3, Fe3O4, Cr2O3, or NiO oxides using ab-initio
computations. The obtained values are about 2γs = 3−
5 J m−2 (Fisher 2004; Sun et al. 2006). De Leeuw and
Cooper (2007) computed free surface energy, γs, for
pure, hydrated and hydroxylated Fe2O3. They obtained
respectively, 2γs = 4.2 J m−2, 2γs = 2.9 J m−2 and
2γs = 1.7 J m−2. Only the two last values should be
close to the one of iron oxide surfaces newly formed
in water environment. Very quickly, hydratation and/or
hydroxylation should indeed occur in water at the sur-
face of the newly formed oxide. Unfortunately, we are
not aware of any study allowing the computation or
measurement of GB energies for these oxides. Never-
theless, ab-initio computations showed that in rutile
TiO2, the value of the energy of the ε = 1536.9∗
(210)[001] tilt boundary is 1.7 J m−2 (Dawson et al.
2006). Molecular Dynamics computations showed that
the ε = 5 symmetrical tilt boundary has an energy of
about 1 J m−2 (Chartier et al. 2010). As mentioned in
the introduction, general GBs are more prone to micro-
crack initiation (Alexandreanu and Was 2003; Tan et al.
2005). Consequently, a GB energy of γGB = 1.2 J m−2

is used which gives the right order of magnitude for
general GBs for various materials (Sutton and Balluffi
1995). Using the values computed by De Leeuw and
Cooper (2007), two applications of the proposed cri-
terion as well as the Smith and Barnby one are per-
formed using: (i) fracture surface energy of 2γs =
2.9 J m−2 minus a GB energy of γGB = 1.2 J m−2

(i.e 2γs − γGB = 1.7 J m−2) (hydrated oxide) and (ii)
fracture surface energy of 2γs = 1.7 J m−2 minus a
GB energy of γGB = 1.2 J m−2 (i.e 2γs − γGB =
0.5 J m−2) (hydroxylated oxide). As before, the grain
size, the dislocation channel thickness and the yield
stress are chosen to be: L = 50 μm, t = 50 nm
and εy = 1,000 MPa respectively, in agreement
with experimental observations. The results plotted in
Fig. 18a, b shows that the Smith and Barnby crite-
rion underestimates strongly the IASCC stress what-
ever the used fracture surface energy. Using the fracture
surface energy of 2γs − γGB = 1.7J m−2 (hydrated
Fe2O3) (Fig. 19a), the proposed criterion underesti-
mates slightly the IASCC stress. However, based on
a fracture surface energy of 2γs − γGB = 0.5 J m−2

(hydroxylated Fe2O3), the proposed criterion underes-
timates slightly the IASCC stress (Fig. 19b). Therefore,
taking into account the real channel thickness improves
the prediction of GB microcrack initiation in oxidizing
as well as in inert environment.

7.3 Application to GB crack initiation during cyclic
tests

Applying the pile-up theory to the prediction of inter-
granular crack initiation at the free surface of copper
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polycrystals subjected to cyclic loading, Liu et al.
(1992) found that the predicted critical remote stress
was generally reached when GB microcracks were
observed. Their modelling is based on the Smith and
Barnby one. A similar approach was followed by
Tanaka and Mura (1981). But Kim and Laird (1977)
showed that GB microcracks appear only when the
steps between adjacent grains increasing cycle by cycle
are high enough. Generally many cycles are required,
which contradicts the conclusions of Liu et al. of instan-
taneous microcrack initiation provided slip bands exist
and stress saturation is reached. The number of cycles
should indeed be explicitely introduced in such mod-
elling. Either cumulation of slip irreversibilities along
cycling (Mughrabi 2009; Sauzay and Gilormini 2002)
or continuous production of point defects may allow
the introduction of the number of cycles in the mod-
elling. SEM pictures published in the literature show
often kinds of extrusions in the surface plane, through
the GBs where PSBs impinge (Weidner and Skrotzki
2010). These extrusions seem to be similar to the ones
classically observed at the specimen surface showing
a rather round smooth shape. This make us think that
this profiles are due to point defects accumulation rather
than slip irreversibility with leads to finer and sharper
roughness (Mughrabi 2009). For explaining the con-
tinuous extrusion growth observed experimentally at
room temperature, Polak proposed an extension of the
well-known EGM theory (Mughrabi 2009), highlight-
ing the effective role of point defect production by
cyclic plasticity in PSBs and diffusion towards the
surrounding matrix (Polak 1970, 1987). The analyti-
cal modelling of point defect production, annihilation
and diffusion has been proposed recently (Polak and
Sauzay 2009) following the numerical one of Repetto
and Ortiz (1997). Work is in progress for computing
both GB stress fields and crack initiation depending on
the production and annihilation rates of point defect
production in PSBs as well as diffusion towards the
matrix.

8 Conclusions

Slip localization is widely observed in metallic poly-
crystals after tensile deformation, cyclic deformation or
pre-irradiation followed by tensile deformation. Such
strong deformation localized in thin slip bands induces
local stress concentrations in the quasi-elastic matrix

around, at the intersections between slip bands (SBs)
and grain boundaries (GBs) where microcracks are then
often observed.

Since the work of Stroh, such stress fields have
been mostly modeled using the dislocation pile-up the-
ory which leads to stress singularities similar to the
LEFM ones. The Griffith criterion has then been widely
applied, leading usually to strong underestimations of
the macroscopic stress to GB crack initiation.

In fact, slip band thickness is finite. It varies from a
few 10 nm to a few μm, depending on material, temper-
ature and loading conditions. Then, many slip planes
are plastically activated through the thickness, and not
only one single atomic plane. To evaluate more real-
istic stress fields, numerous crystalline finite element
(FE) computations are carried out using microstruc-
ture inputs (slip band aspect ratio, crystal and GB ori-
entation...). Slip bands of low critical resolved shear
stress are embedded in an elastic matrix. The following
results are obtained concerning GB normal and shear
stress fields:

– strong influence of slip band thickness close to the
slip band corner, which is not accounted for by the
pile-up theory. But far away, the thickness has a neg-
ligible effect and the predicted stress fields are close
to the one predicted by the pile-up theory provided
the pile-up length is assumed to be equal to the grain
size;

– closed-form expressions are deduced from the numer-
ous FE computation results allowing an easy predic-
tion of GB stress fields. Slip band plasticity parame-
ters, such as length and thickness, as well as crys-
tal orientation, GB plane and remote stress are taken
into account. The dependence with respect to the var-
ious parameters can be understood in the framework
of matching expansions usually applied to cracks
with V notches of finite thickness;

As the exponent of the GB stress close-field is about
two times lower than the pile-up or LEFM crack one,
the Griffith criterion may not be used for GB microc-
rack prediction in case of finite thickness. That is why
finite crack fracture mechanics is used together with
both energy and stress criteria leading to the following
results:

– the effect of SB finite thickness, t, is found to affect
strongly the predicted value of the remote stress to
GB microcrack initiation with respect to pile-up pre-
dictions;
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– the predicted dependence of this critical remote
stress with respect to SB orientation as well as GB
plane is discussed with respect to the one predicted
by the pile-up theory;

– the predicted macroscopic tensile stresses to GB
microcrack initiation are close to the experimen-
tal values measured in the case of pre-irradiated
austenitic stainless steels subjected to slow tensile
loading in either inert or water environment. But,
the pile-up theory leads to large underestimation of
the critical remote stress because it overestimates the
local GB stress fields.
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Abstract The effects of pockets of retained austenite
on the behavior of martensitic steels have been inves-
tigated. A dislocation-density based crystalline plas-
ticity and specialized finite-element formulation were
used to investigate how f.c.c. austenite pockets interact
with b.c.c. martensitic laths. Quasi-static and dynamic
analyses were undertaken to investigate how the effects
of the orientations of parent austenite grains and differ-
ent crystallographic interfaces affect shear strain local-
ization, strength, and toughness. It is shown that the
orientations of the parent austenite grain have a sig-
nificant effect on the dominance of specific interfacial
slip systems, and this subsequently affects whether the
retained austenite has incompatible slip with marten-
sitic laths, for low austenite Euler angles, or compatible
slip with martensitic laths, for high values of austenite
Euler angles.

Keywords Dislocation-density · Crystal plasticity ·
Martensitic steel · Retained austenite · Failure

1 Introduction

A small amount of retained austenite is frequently
observed in martensitic steel depending on the car-

Q. Wu · P. Shanthraj · M. A. Zikry (B)
Department of Mechanical and Aerospace Engineering,
North Carolina State University, Raleigh, NC
27695-7910, USA
e-mail:zikry@ncsu.edu

bon content and heat treatment conditions (Thomas
1978; Park et al. 2004). The morphology and vol-
ume fraction of retained austenite have been inves-
tigated by transmission electron microscopy (TEM)
and scanning electron microscopy (SEM), and retained
austenite is mainly located at martensitic inter-lath
boundaries and within laths (Song et al. 2010; Ma
et al. 2012). Experimental investigations indicate that
retained austenite can improve ductility and toughness,
but decrease the strength of martensitic steel (see, for
example, Nakagawa and Miyazaki 1999; Moor et al.
2008), Using X-ray diffraction line profile analysis,
Zhang et al. (2011) observed that the orientation rela-
tionship (OR) between martensite and retained austen-
ite plays a significant role in how dislocation densi-
ties propagate from martensite to retained austenite
pockets.

Lath martensitic steels due to their high strength, and
toughness have myriad military and civilian applica-
tions. These properties are uniquely inherent to marten-
sitic steels, as a result of its lath microstructure that
has distinct orientations, distributions, and morpholo-
gies pertaining to martensitic transformations, (see,
for example, Morito et al. 2003, 2006). Specifically,
the effects of lath martensite (b.c.c.) morphology, par-
ent austenite (f.c.c.) orientation, and retained austen-
ite all have interrelated effects on deformation and
failure.

One of the issues that need to be understood, how-
ever, is how dislocation density evolution at the inter-
faces of austenite–martensite affects failure modes
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and overall behavior. The objective of the present
work, therefore, is to obtain a detailed quasi-static
and dynamic understanding of the interrelated phys-
ical mechanisms that can result in the interaction
of martensite b.c.c. laths with f.c.c. retained austen-
ite pockets. Specifically, we want to understand how
dislocation-density accumulation and interaction along
austenite (f.c.c.) and martensite (b.c.c.) interfaces affect
plastic-slip accumulation and local stresses. Further-
more, a detailed understanding of how lath morphol-
ogy and orientation, due to block and packet distri-
butions, affects local behavior will be investigated.
A multiple-slip dislocation-density based constitutive
formulation is used to obtain a detailed understanding
and accurate characterization of interrelated material
mechanisms, which occur over different scales in crys-
talline materials due to different austenite grain ori-
entations. The formulation is based on the framework
recently developed by Shanthraj and Zikry (2011) for
f.c.c. and b.c.c. crystalline structures. The dislocation-
density evolution equations are coupled through the
interaction of forest densities, which account for the
formation and annihilation of junctions. The evolu-
tion equations are coupled to a multiple-slip crystal
plasticity formulation, and specialized finite-element
techniques (Zikry 1994) are used to characterize
the dominant dislocation-density interaction mecha-
nisms between the f.c.c. retained austenite pockets
and the b.c.c. martensitic laths at different orienta-
tions that govern the competition between strength and
toughness.

This paper is organized as follows: the dislocation-
density crystalline plasticity formulation and the evo-
lution equations are presented in Sect. 2, the numerical
implementation is outlined in Sect. 3, the results are
presented and discussed in Sect. 4, and a summary of
the quasi-static and dynamic results and conclusions
are given in Sect. 5.

2 Constitutive formulation

In this section, only a brief outline of the multiple-
slip crystal plasticity rate-dependent constitutive for-
mulation and the evolution equations for the mobile
and immobile dislocation-densities, which are cou-
pled to the constitutive formulation, are presented.
A detailed presentation is given by Shanthraj and Zikry
(2011).

2.1 Multiple-slip dislocation-density based crystal
plasticity formulation

The dislocation-density based crystal plasticity con-
stitutive framework used in this study is based on a
formulation developed by Zikry (1994), Ashmawi and
Zikry (2003), and Shanthraj and Zikry (2012), and a
brief outline will be presented here. It is assumed that
the velocity gradient is decomposed into a symmetric
deformation rate tensor Dij and an anti-symmetric spin
tensor Wij (Asaro and Rice 1977). The tensors Dij and
Wij are then additively decomposed into elastic and
inelastic components as

Dij = D∗
i j + D p

ij , Wi j = W ∗
ij + W p

i j , (1 a-b)

The superscript * denotes the elastic part, and the super-
script p denotes the plastic part. W ∗

ij includes the rigid
body spin. The inelastic parts are defined in terms of
the crystallographic slip-rates as

D p
ij =

⎧
α

P(α)
ij γ̇ (α), and W p

ij =
⎧
α

ω
(α)
ij γ̇ (α),

(2 a-b)

where α is summed over all slip-systems, and P(α)
ij and

ω
(α)
ij are the symmetric and anti-symmetric parts of the

Schmid tensor in the current configuration respectively.
A power law relation can characterize the rate-

dependent constitutive description on each slip system
as

γ̇ (α) = γ̇
(α)
ref

⎪
⎨τ (α)

τ
(α)
ref

⎩


⎪
⎨

∣∣τ (α)
∣∣

τ
(α)
ref

⎩


1
m −1

, (3)

where γ̇
(α)
ref is the reference shear strain-rate which cor-

responds to a reference shear stress τ
(α)
ref , and m is the

rate sensitivity parameter. τ (α) is the resolved shear
stress on slip system α. The reference stress used is
a modification of widely used classical forms (Fran-
ciosi et al. 1980) that relate reference stress to immobile
dislocation-density ρim as

τ
(α)
ref =

⎛
⎝τ (α)

y + G
nss⎧
β=1

b(β)

√
aαβρ

(β)
im

⎞
⎠

(
T

T0

)−ξ

, (4)
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where τ
(α)
y is the static yield stress on slip system α, G

is the shear modulus, nss is the number of slip systems,
b(β) is the magnitude of the Burgers vector, and aαβ

are Taylor coefficients which are related to the strength
of interactions between slip-systems (Devincre et al.
2008; Kubin et al. 2008a,b). T is the temperature, T0 is
the reference temperature, and ξ is the thermal soften-
ing exponent, which is chosen as 0.3.

2.2 Mobile and immobile dislocation density
evolution equations

Following the approach of Zikry and Kao (1996), it is
assumed that, for a given deformed state of the mate-
rial, the total dislocation-density, ρ(α), can be addi-
tively decomposed into a mobile ρ

(α)
m and an immo-

bile dislocation-density, ρ
(α)
im . Furthermore, the mobile

and immobile dislocation-density rates can be coupled
through the formation and destruction of junctions as
the stored immobile dislocations act as obstacles for
evolving mobile dislocations. This is the basis for tak-
ing the evolution of mobile and immobile dislocation
densities as

dρα
m

dt
= ∣∣γ̇ α

∣∣
(

gα
sour

b2

(
ρα

im

ρα
m

)
− gα

mnter−ρα
m − gα

immob−
b

√
ρα

im

)
,

(5)
dρα

im

dt
= ∣∣γ̇ α

∣∣
(

gα
mnter+ρα

m + gα
immob+

b

√
ρα

im − gα
recovρ

α
im

)
,

(6)

where gsour is a coefficient pertaining to an increase
in the mobile dislocation-density due to dislocation
sources, gmnter are coefficients related to the trapping of
mobile dislocations due to forest intersections, cross-
slip around obstacles, or dislocation interactions, grecov

is a coefficient related to the rearrangement and anni-
hilation of immobile dislocations, and gimmob are coef-
ficients related to the immobilization of mobile dislo-
cations.

2.3 Determination of dislocation density evolution
coefficients

To couple the evolution equations for mobile and
immobile dislocation densities to the crystal plasticity
formulation, the non-dimensional coefficients in (5–6)
were determined as functions of the crystallography

Table 1 g coefficients in Eqs. (5–6)

g Coefficients Expression

gα
sour bαϕ

∑
β

√
ρ

β
im

gα
mnter− lc f0

∑
β

⊂
aαβ

[
ρ

β
m

ρα
m bα + γ̇ β

γ̇ αbβ

]

gα
immob−

lc f0⊂
ρα

im

∑
β

⊂
aαβρ

β
im

gα
mnter+

lc f0
γ̇ αρα

m

∑
β,γ

nβγ
α

⊂
aβγ

[
ρ

γ
m γ̇ β

bβ + ρ
β
m γ̇ γ

bγ

]

gα
immob+

lc f0

γ̇ α
⊂

ρα
im

∑
β

nβγ
α

⊂
aβγ ρ

γ
imγ̇ β

gα
re cov

lc f0
γ̇ α

⎡∑
β

⊂
aβγ

γ̇ β

bβ

⎣
e

⎛
⎤⎤⎝

−H0

⎡
1−

⎦
ρα

im
ρs

⎣

K T

⎞
⎟⎟⎠

and deformation mode of the material, by considering
the generation, interaction and recovery of dislocation
densities as discussed in Shanthraj and Zikry (2011).
These expressions are summarized in Table 1, where
f0, and ϕ are geometric parameters. H0 is the reference
activation enthalpy, ρs is the saturation density and the
average junction length, lc, can be approximated as

lc = 1
∑

β

√
ρ

(β)
im

, (7)

An interaction tensor, nβγ
α , is introduced and defined

as having a value of 1 if dislocations on slip-systems β

and γ interact to form an energetically favorable junc-
tion on slip system α, and a value of 0 if there are no
interactions. This interaction tensor is used to map the
dislocation-density interactions with the corresponding
slip system, and the energy criterion based on Frank’s
rule is used to determine the formation of junctions as

nβγ
α =

{
1 if Gb(α)2 <Gb(β)2+Gb(γ )2 and b(α) =b(β)+b(γ )

0 otherwise
,

(8)

To obtain the interaction tensor, nβγ
α , the total

number of interactions between slip systems has to
be considered. In f.c.c. crystals, using the family of
<110>{111} slip systems, the total interactions can
be reduced to six basic interaction types based on the
symmetry of the crystal structure (Kubin et al. 2008b).
These interactions are: the self interaction, between the
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same slip system; the co-linear interaction, between slip
systems with parallel Burgers vectors; the co-planar
interaction, between co-planar slip systems; the inter-
action between slip systems forming Lomer locks; the
glissile junction, between non-co-planar slip systems;
and the interaction between slip systems forming Hirth
locks. The interaction tensor can be obtained by consid-
ering the product of each interaction type. To explic-
itly account for the storage of locks, the mobile and
immobile dislocation densities on the 12 slip systems
in f.c.c. crystals are appended with six immobile dis-
location densities pertaining to the storage of Lomer
locks on the {100} planes. This leads to a total of
12 × 12 mobile–mobile interactions and 12 × 18
mobile-immobile interactions. Similarly, in b.c.c. crys-
tals, using the <111>{110} and <111>{112} fami-
lies of slip systems, the total interactions are reduced
to three interaction types. These interaction types are:
the self and co-linear interaction between the same
slip system and slip systems with parallel Burger’s
vector; the interaction between slip systems to form
binary junctions having <100> Burger’s vectors; and
the interaction between slip systems and binary junc-
tions to form ternary junctions having <111> Burger’s
vectors. To explicitly account for the storage of junc-
tions, the mobile and immobile dislocation densities
on the 24 slip systems in b.c.c. crystals are appended
with 19 immobile dislocation densities pertaining to
the storage of <100> binary junctions on various
crystallographic planes. This leads to a total of 24 ×
24 mobile–mobile interactions and 24 × 43 mobile-
immobile interactions. Thus, the formation of ternary
junctions (Bulatov et al. 2006; Madec and Kubin 2008),
can be explicitly accounted for through the interaction
of dislocation locks and binary junctions with mobile
dislocation densities. It should be noted that the coef-
ficients in Table 1 are functions of the immobile and
mobile densities, and hence are updated as a function
of the deformation mode (Shanthraj and Zikry 2011).

3 Numerical methods

The total deformation rate tensor, Dij, and the plas-
tic deformation rate tensor, D p

ij , are needed to update
the material stress state. The method used here is the
one developed by Zikry (1994) for rate-dependent crys-
talline plasticity formulations, and only a brief outline
will be presented here. For quasi-static deformations,

an implicit FE method with BFGS iteration is used to
obtain the total deformation rate tensor, Dij. To over-
come numerical instabilities associated with stiffness,
a hybrid explicit-implicit method is used to obtain the
plastic deformation rate tensor, D p

ij . This hybrid numer-
ical scheme is also used to update the evolutionary
equations for the mobile and immobile densities. The
hybrid method is based on using explicit Runge Kutta
and it is switched to an implicit Euler method, when
numerical stiffness is encountered. Numerical stiffness
can be encountered when due to different rate changes
along slip systems, slip-rates, resolved shear–stresses,
and dislocation-densities can vary widely. For dynamic
deformations, an explicit method is used with a lumped
mass, one point integration, central-time-difference,
and a stiffness based hourglass control. Details for this
dynamic approach are given in Zikry (1994) and Shan-
thraj and Zikry (2011).

4 Results and discussion

The multiple-slip dislocation-density-based crystal
plasticity formulation is coupled to the specialized
FE method to investigate the large strain behavior of
martensitic steel with distributions of retained austen-
ite. To model the microstructure of the martensite,
we used a combination of blocks and packets. This
approach is based on the approach developed by Hatem
and Zikry (2009). Blocks are collections of laths with
low misorientation, and packets are collections of
blocks that have the same habit plane. In this study,
40 martensitic blocks are distributed randomly with 14
packets from one parent austenite grain, and the vari-
ant of martensite blocks were obtained based on the
orientation relationships between the parent austenite
grain and martensite blocks. The variant arrangements
were obtained from experimental EBSD observations
by Morito et al. (2003). It is assumed that the retained
austenite has a volume fraction of 5 % (Thomas 1978),
and that the pockets of retained austenite are randomly
distributed inside the martensite blocks, or between the
blocks and the packets (Fig. 1). It is assumed that the
retained austenite pockets has the same grain orienta-
tion as the parent austenite grain. The material proper-
ties (Table 2) that are used are representative of low-
carbon martensitic steel and austenitic stainless steel
(Byun et al. 2004).

The parent austenite grain is oriented based on the
loading plane of (0 0 1)γ and a loading direction of
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Fig. 1 Microstructural model and retained austenite pocket,
block/packet arrangement

Table 2 Material properties

Properties Retained
austenite

Martensite

Young’s modulus, E 100 GPa 228 GPa

Static yield stress, τy 100 MPa 517 MPa

Poisson’s ratio, ν 0.3 0.3

Rate sensitivity
parameters m

0.01 0.01

Reference strain rate, γ̇ref 0.001 s−1 0.001 s−1

Critical strain rate, γ̇critical 104 s−1 104 s−1

Burger vector, b 3.0 × 10−10 m 3.0 × 10−10 m

Saturation dislocation
density, ρs

1.0 × 1014 m−2 1.0 × 1016 m−2

Thermal softening
exponent, ξ

0.3 0.3

Fraction of plastic
energy to heat, χ

1.0 1.0

Geometric parameter, ϕ 0.1 0.1

Geometric parameter, f0 0.1 0.05

[0 1 0]γ. The Kurdjumov–Sachs (K–S) OR is adopted
as the martensite OR, and {111}γ is assumed as the
habit plane. A convergent plane strain FE mesh of
4,893 elements was used with a specimen size of
3.2 mm × 6.4 mm, and a displacement load is applied

Fig. 2 Nominal stress–strain curve for experimental and numer-
ical model

for a quasi-static nominal strain rate with symmetric
boundary conditions applied on the left and bottom
edges.

To validate the modeling approach, comparisons
were made with experiments conducted by Shibata et
al. (2012) on low carbon martensitic steel for a quasi-
static tensile strain rate of 8.3×10−6 s−1. For this com-
parison, it is assumed that the material is 100 % marten-
site. The nominal stress strain curves for the numerical
and the experimental results are shown in Fig. 2. The
maximum difference between the experimental and the
numerical stress values is approximately 10 %. This
small differences further validates the model. However,
it should be noted the experimental results soften at
approximately 4 %, and the model shows instability at
approximately 6 %. This difference can be due to het-
erogeneities, such as second phase particles, which are
not accounted for in the proposed model.

4.1 Retained austenite–martensite interaction

Different distributions of pockets of retained austen-
ite were randomly distributed within the martensitic
aggregate for a volume fraction of 5 % (Fig. 1). It is
initially assumed that the austenite grain had a cube
Euler orientation of (0≥, 0≥, 0≥). The contours for the
normalized (by the initial mobile dislocation density)
mobile dislocation densities and the normalized (by
the initial immobile dislocation density) immobile dis-
location densities corresponding to the most active
slip system of the martensite and retained austenite
aggregate at a nominal strain of 20 % are shown in
Fig. 3. For the most active slip system of martensite
(1̄12)[11̄1], the maximum normalized mobile disloca-
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ρρmo                                               ρρim                                                  ρρmo                                              ρρim

(a) (b) (c) (d)

Fig. 3 Mobile and immobile dislocation densities at a nominal strain of 20 % for, a, b most active slip system in martensite (1̄12)[11̄1],
c, d most active slip system in retained austenite (11̄1)[011]

Fig. 4 Behavior at a nominal strain of 20 %, a shear slip, b lattice rotation, c normalized total interaction dislocation density,
d normalized normal stress

tion density is 2.0 × 107, and the maximum normal-
ized immobile dislocation density is 1.8 × 105. The
evolution of dislocation densities along selected blocks
results in the localization of plastic slip (Fig. 4a). The
dislocation density at the interface between marten-
site blocks and retained austenite pockets is a max-
imum, and this is likely due to the interaction of
the martensitic slip systems and the retained austen-
ite slip systems. Based on the K–S orientation rela-
tionship, the slip systems {110}<111> in martensite
should be aligned with the slip systems {111}<110>

in austenite. However, the {112}<111> slip sys-

tems in martensite are incompatible with the austen-
ite slip systems, which can impede dislocation density
transmission between martensite blocks and retained
austenite interfaces. For the most active slip system
in austenite of (11̄1)[011], the normalized mobile dis-
location density is 2.0 × 106, and the normalized
immobile dislocation density is 1.0 × 104, which are
much lower than those in martensite. This can be
due to the initial cube orientation of the austenite
grain and the lower number of available f.c.c. slip-
systems in comparison with the available b.c.c. slip-
systems.
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The accumulated plastic slip at a nominal strain of
20 % is shown in Fig. 4a. The maximum accumulated
slip is 0.5, and it occurs within the retained austenite
pockets. The tensile loading direction is aligned along
the [010]γ direction, which can result in a maximum
resolved shear stress along the [011]γ directions. The
slip-direction [011]γ of the f.c.c. retained austenite is
also parallel to the long direction of martensitic laths
and blocks, and parallel to the slip direction [111]α
based on the K–S OR. The retained austenite grains
are at the martensite inter-lath and block boundary, and
the long direction should, therefore, be parallel to that
of martensite. This would align the austenite slip sys-
tems with the maximum resolved shear stress along the
long direction of the martensitic blocks and retained
austenite grains, which would result in the shear–strain
localization of plastic slip. Furthermore, due to the
incompatibility of the b.c.c. slip system (1̄12)[11̄1]
and the f.c.c. slip system (11̄1)[011], the accumula-
tion of plastic slip occurs at the b.c.c.-f.c.c. interface,
which is also exacerbated by the geometrical softening
associated with the lattice rotation of both slip-systems
(Fig. 4b).

The interaction density on slip system α, which
relates the increase in immobile dislocation density due
to junction formation on the slip system relative to the
decrease of mobile dislocation density, can be defined
(cf. Eq. 6) as

ρα

intr =
∫

γ̇ α

(
gα
mnter+ρα

m + gα
immob+

b

√
ρα

im (9)

−gα
mnter−ρα

m − gα
immob−

b

√
ρα

im

)
dt,

which can be used to characterize the dominant interac-
tion mechanism on the active slip systems in the crys-
talline material. Values of ρα

intr < 0 indicate that the
annihilation of dislocation-density junctions is domi-
nant, while values of ρα

intr > 0 indicate that the forma-
tion of dislocation-density junctions is dominant (Shan-
thraj and Zikry 2012). The normalized (by the initial
immobile dislocation density) total interaction dislo-
cation density at a nominal strain of 20 % is shown
in Fig. 4c. The maximum normalized total interac-
tion dislocation density is 1.0 × 105, which occurs in
the retained austenite. This indicates that the dominant
interaction mechanism in retained austenite is the for-
mation of dislocation junctions, which results in the
localization of plastic slip and hardening of retained

austenite. The normalized total interaction dislocation
density around the periphery of retained austenite pock-
ets in martensite is −1.0×104, which indicates that the
dominant interaction mechanism is the annihilation of
dislocation junctions. This can soften martensite, which
can render it more susceptible to shear–strain localiza-
tion.

The normalized (by the static yield stress of marten-
site) normal stress is shown in Fig. 4d. The maximum
value is 14, which occurs at the interface of marten-
site and retained austenite. The incompatibility of slip
systems in these regions can impede dislocation den-
sity transmission, and it would result in these high
local stresses. These localized areas of retained austen-
ite with such high stresses may transform to marten-
site, which can relax these stress accumulations, and
inhibit crack nucleation (Jacques et al. 2001). The nor-
mal stresses in the retained austenite are much lower,
almost by a factor of 5.0, which is an indication of the
toughness (as opposed to its strength) of the retained
austenite.

4.2 Effects of parent austenite orientation

The effects of the initial austenite orientation on
the inelastic deformation of the martensite–austenite
microstructures have also been investigated. The
martensite blocks and retained austenite volume frac-
tions and distributions are the same as before, but the
parent austenite Euler angle orientations were varied.
Two cases were investigated, one case with a low initial
Euler angles of (2≥, 4≥, 8≥), and a second case with a
high initial Euler angles of (15≥, 25≥, 35≥).

The contours for the normalized mobile disloca-
tion densities and the normalized immobile disloca-
tion densities corresponding to the most active slip sys-
tem of martensite and retained austenite, for the Euler
angles of (2≥, 4≥, 8≥) at a nominal strain of 20 %, are
shown in Fig. 5. The most active slip systems for the
martensite blocks and retained austenite pockets are the
same as those for the Euler angles (0≥, 0≥, 0≥). For the
most active slip system in martensite of (1̄12)[11̄1],
the maximum normalized mobile dislocation density
is 2.8 × 107, which is higher than the cube orientation
case by approximately 40 %. The maximum normal-
ized immobile dislocation density, for the low angle
case, is 2.4 × 105, which is 33 % higher than the cube
case. These larger immobile and mobile dislocation
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ρρmo                                               ρρim                                                  ρρmo                                              ρρim

(a) (b) (c) (d)

Fig. 5 Mobile and immobile dislocation densities at a nominal strain of 20 % for the low Euler angle case of (2≥, 4≥, 8≥) for, a, b most
active slip system in martensite (1̄12)[11̄1], c, d most active slip system in retained austenite (11̄1)[011]

Fig. 6 Behavior at a nominal strain of 20 % for the low Euler angle case of (2≥, 4≥, 8≥), a shear slip, b lattice rotation, c normalized
total interaction dislocation density, d normalized normal stress

densities are obviously due to the higher incompatibil-
ities of the slip-systems between the retained austenite
and the martensite blocks.

The accumulated plastic slip, lattice rotation, and
normalized total interaction dislocation density, for the
low Euler angle case at a nominal strain of 20 %, are
shown in Figs. 6a–c. The maximum plastic slip is 0.55,
and the maximum normalized total interaction disloca-
tion density is 1.1×105, which is 10 % higher than the
cube orientation case. The maximum lattice rotation
is 30≥, which is higher than the cube orientation case
by approximately 20 %. These maximum values occur

in the retained austenite regions adjacent to the inter-
face of martensite and retained austenite (Figs. 6a–c).
The higher positive values of the total interaction dis-
location density indicate that more dislocation density
junctions can form, which results in the hardening of
the retained austenite. The maximum normalized nor-
mal stress is 20 (Fig. 6d), and these high stresses are due
to the slip system incompatibility between the retained
austenite and martensite.

The contours for the normalized mobile dislocation
densities and the normalized immobile dislocation den-
sities corresponding to the most active slip system of
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ρρmo                                               ρρim                                                  ρρmo                                              ρρim

(a) (b) (c) (d)

Fig. 7 Mobile and immobile dislocation densities at a nominal strain of 20 % for the high Euler angle case of (15≥, 25≥, 35≥) for, a, b
most active slip system in martensite (21̄1)[111̄], c, d most active slip system in retained austenite (11̄1)[1̄01]

Fig. 8 Behavior at a nominal strain of 20 % for the high Euler angle case of (15≥, 25≥, 35≥), a shear slip, b lattice rotation, c normalized
total interaction dislocation density, d normalized normal stress

martensite and retained austenite, for the high Euler
angle case at a nominal strain of 20 %, are shown
in Fig. 7. The most active slip system in martensite
is (21̄1)[111̄], and the most active slip system in the
retained austenite pockets is (11̄1)[1̄01], which are not
the same as the cube orientation case and the low Euler
angle case.

Some of {110}<111> slip systems in martensite,
which are compatible with f.c.c. austenite slip systems,
are highly active, as indicated by the high immobile
and mobile dislocation densities. This compatibility
can result in plastic accumulation as shown in Fig. 8a.

The accumulated plastic slip, lattice rotation, normal-
ized total interaction dislocation density, and normal-
ized normal stress, for this high Euler angle case at a
nominal strain of 20 %, are shown in Fig. 8. The accu-
mulated plastic slip is uniformly distributed in marten-
site, and the maximum value is 0.5. The maximum lat-
tice rotation is 35≥, and it occurs in the retained austen-
ite pockets (Fig. 8b). The normalized total interaction
dislocation densities have an average value of 5.0×104

in the retained austenite pockets, and −1.0×104 in the
martensite blocks (Fig. 8c). This indicates that fewer
dislocation-density junctions form in retained austen-
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Fig. 9 Nominal stress–strain curves for different parent austen-
ite orientations

ite, and more dislocation-density junctions are anni-
hilated in martensite, which can result in shear strain
localization and soften the material. The maximum nor-
malized normal stress is 12, and occurs in the marten-
sitic blocks. The stresses are significantly lower than
that of the cube orientation by approximately 14 %,
and 40 % lower than the low Euler angle case. These
changes in behavior are due to the compatibility of
the slip systems and the domination of annihilation
processes due to dislocation-density interactions at the
interface of martensite blocks and retained austenite
pockets.

4.3 Dynamic behavior

In this section, we investigate the dynamic behavior of
martensitic steel with retained austenite. The marten-

site blocks and retained austenite volume fractions and
distributions are as before, and the parent austenite low
Euler angle orientation of (2≥, 4≥, 8≥) was used. A dis-
placement load at a steep slope, such that a nominal
strain rate of 5,000 s−1 results along the tensile axis
(Fig. 1). The nominal strain-rate was obtained by scal-
ing the nominal strain over an appropriate time-scale.
The nominal stress–strain curves are shown in Fig. 9.
The coscillations at high strain rate occur due to stress
wave reflection along the free and fixed boundary.

The accumulated plastic slip, lattice rotation, nor-
malized temperature (normalized by the martensite
melting temperature of 1,700 K) and the normalized
normal stresses, at a nominal strain of 10 %, are shown
in Fig. 10. The maximum plastic slip is 0.4, and it
occurs within the retained austenite pockets. The large
values of plastic slip are as a result of geometrical soft-
ening and thermal softening. The geometrical soften-
ing occurs due to large lattice rotations (Fig. 10b). The
maximum value of lattice rotation is 25≥. In addition
to the geometrical softening, adiabatic heating results
in a thermal accumultion (Fig. 10c). It is assumed in
our approach that the thermal accumulation is due to
adiabatic heating, and the rate of change of temperature
is obtained from the balance of energy as

ρcpṪ = χσ ∇
ij D

p
i j , (10)

where ρ is the mass density, cp is the specific heat
capacity, and χ is the fraction of plastic work trans-
formed to heat energy, and is chosen as unity, which

Fig. 10 Behavior at a nominal strain of 10 % for the low Euler angle case of (2≥, 4≥, 8≥) at a strain rate of 5,000 s−1, a shear slip, b
lattice rotation, c normalized temperature, d normalized normal stress
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indicates that all plastic work transforms into heat
energy. The highest value of normalized temperature is
0.32, and it occurs at the interface of martensite blocks
and retained austenite pockets. This increase in tem-
perature further indicates that due to adiabtic heating,
the material can soften. These two softening mecha-
nisms would lead to shear strain localization, but it is a
material competition with the dynamic strain harden-
ing, which results in large normalized normal stresses
of approximately 13 (Fig. 10d).

5 Conclusions

Newly developed dislocation-density based evolution
equations are coupled to a multiple-slip crystal plas-
ticity formulation, and a framework is established that
relates immobile and mobile dislocation-density evolu-
tion to austenitic and martensitic crystallographic ori-
entations and behavior. Specialized FE methodologies
were then used to investigate the effects of retained
austenite, parent austenite grain orientations, and quasi-
static and dynamic loading rates on deformation and
failure in martensitic steel.

For the cube orientation case, the dominant slip
system in martensitic blocks is (1̄12)[11̄1], which is
incompatible with the retained austenite (f.c.c.) slip
systems. The interfaces between martensite blocks and
retained austenite pockets can impede dislocation den-
sity transmission, and result in local strengthening at
the interface. The dominant interaction mechanism was
predicted to be the formation of dislocation junctions
in austenite pockets, and the annihilation of dislocation
junctions around the periphery of retained austenite in
the martensitic blocks. This would result in the hard-
ening of the austenitic pockets and the softening of
martensitic blocks, which can render the martensitic
blocks more susceptible to shear–strain localization.
Furthermore, the high local stresses at the interface of
martensite and retained austenite may induce a marten-
sitic transformation, which can relax stress accumula-
tions and inhibit crack nucleation.

In comparison with the cube orientation case, the
low Euler orientation of the parent austenite grain does
not change the dominant slip system, but exacerbates
the incompatibility of slip system. This resulted in an
increase of dislocation densities, plastic slips, and lat-
tice rotations, and the formation of more dislocation
junctions in retained austenite. The high Euler orien-

tation of the parent austenite grain changes the dom-
inant slip system in comparison with the cube orien-
tation case and the low Euler angle case. Some of
{110}<111> slip systems, which are compatible with
f.c.c. austenite slip systems, were activated. This results
in the annihilation of more dislocation junctions in
martensite, and subsequently softens the material.

The effects of dynamic load have been investigated
for a strain rate of 5,000 s−1. The coupled effects of
the geometrical and thermal softening accelerate shear
strain localization. As the strain-rate is increased, the
material strain hardens, and this is a competing effect
with the thermal and geometrical softening mecha-
nisms.
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Abstract We examine the nucleation of a crack from
a notch under a dominant shear loading in Al 6061-T6.
The specimen is loaded in nominally pure shear over the
gage section in an Arcan specimen configuration. The
evolution of deformation is monitored using optical and
scanning electron microscopy. Quantitative measure-
ments of strain are made using the 2nd phase particles
as Lagrangian markers which enable identification of
the true (logarithmic) strains to levels in the range of
two. Electron microscopy reveals further that the 2nd
phase particles do not act as nucleation sites for dam-
age in the regions of pure shear deformation. The ini-
tial notch is shown to “straighten out”, forming a new,
sharper notch and triggering failure at the newly formed
notch. Numerical simulations of the experiment, using
the conventional Johnson–Cook model and a modified
version based on grain level calibration of the failure
strains, reveal that it is necessary to account for large
local strain levels prior to the nucleation of a crack in
order to capture the large deformations observed in the
experiment.
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1 Introduction

The problem of ductile failure under shear has been
addressed in numerous studies in the literature.
Through the early investigations of Orowan (1948),
Tipper (1949), Rogers (1960), Puttick (1960), and oth-
ers, it is now established that failure occurs initially
as a concentration of shear localization, followed by
the nucleation of a large number of voids within this
shear zone and their eventual coalescence. However,
such failures were typically examined and observed
in specimens with a triaxiality value—the ratio of the
mean stress to the equivalent—in the range of 0.5–1.
For pure shear loading, it is not evident how eventual
failure occurs; the inability to trigger the localization
that precedes failure under pure shear (low triaxiality)
is rather well-known. Recently, Bao and Wierzbicki
(2004), Barsoum and Faleskog (2007), Beese et al.
(2010), and others have investigated failure of struc-
tural materials under conditions of high shear and
low triaxiality. While the earlier results of Hancock
and Mackenzie (1976) and Johnson and Cook (1985)
reported a monotonic increase in the strain-to-fracture
with decreasing triaxiality, the results of Beese et al.
(2010) and Barsoum and Faleskog (2007) indicate a
nonmonotonic dependence, with a cusp at different tri-
axiality levels for different materials and a drop in the
strain-to-failure at lower triaxialities.
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Fig. 1 Variation of strain-to-failure with triaxiality. The blue
ellipses indicate the range of strain levels obtained from grain
level measurements without damage at the levels of triaxiality
indicated. Based on these, a lower bound estimate for the failure
strain is suggested by the red line

In recent papers, (Ghahremaninezhad and Ravi-
Chandar 2012, 2013; Haltom et al. 2013), we explored
the appearance of very large deformations at the level
of grains without development of damage in the form
of voids in Al 6061-T6 alloy. Nevertheless, we reported
that the final failure surface had a dimpled appearance
and hence must have formed through the nucleation,
growth and coalescence of voids in a localized man-
ner. Based on these observations and measurements, a
lower-bound strain-to-failure criterion that has an expo-
nential dependence on the triaxiality as predicted by
the cavity growth model of Rice and Tracey (1969) was
proposed for this material, as shown in Fig. 1. The lower
bound estimate of the strain-to-failure was fitted with
an exponential of the form ε f = D2 exp (D3θm/θe),
where θm is the mean stress and θe is the effective
stress; the parameters of the model for Al 6061-T6 were
found through a simple fitting procedure: D2 = 1.8
and D3 = −0.82. In contrast, the calibration by
Lesuer et al. (2001), of the Johnson–Cook (JC) model
ε f = D1 + D2 exp (D3θm/θe) based on macroscopic
strain measurements yielded the following parameters:
D1 = −0.77, D2 = 1.45 and D3 = −0.47; this fail-
ure curve is also plotted in Fig. 1. The calibration of
the modified Mohr–Coulomb criterion of Beese et al.
(2010) for the same Al 6061-T6 alloy is also shown in
Fig. 1 for comparison. It is clear that the estimate of
the lower bound for the strain-to-failure provided by
Ghahremaninezhad and Ravi-Chandar (2013) is sig-
nificantly higher than the traditional JC model and the

modified Mohr–Coulomb model; however, it should be
noted that the lower bound can be used appropriately
only when the length scales at which this criterion is
used are on the order of the grain size.

In this article, our main objective is to examine the
predictive ability of the proposed grain level failure cri-
terion. We accomplish this through an example dealing
with crack nucleation from a notched specimen under
dominant shear loading. Specifically, we consider an
Arcan specimen with a notch machined by electric dis-
charge machining to have a notch angle of ∼ 90◦ and
a notch radius of ∼ 160μm, subject it to a pure shear
loading in the Arcan fixture, and follow the develop-
ment of deformation and failure in the notch region as
well as in the interior through interrupted tests. There
is a body of literature that deals with a similar problem,
where mixed-mode fracture initiation in specimen con-
figurations that are dominated by the stress concentra-
tion associated with a single crack is considered. For
example, Aoki et al. (1990), explored ductile failure
under mixed mode loading in Al 5083-O aluminum
alloy; mixed mode loading was applied in a compact-
tension-shear configuration to explore crack initiation
from a fatigue pre-crack. They found that one region
of the pre-crack blunted, while the other region sharp-
ened; the extent of such blunting was characterized by
measuring the zone in which stretching occurred and
shown to depend on the degree of mode mixity; further-
more, crack initiation was reported from the blunted
crack tip since the triaxiality was higher in this region.
Ghosal and Narasimhan (1994, 1996) performed finite
element studies of crack response under mixed mode
loading using a Gurson model that incorporates mater-
ial damage, and examined various aspects of the prob-
lem, such as the debonding of inclusions, the deforma-
tion and sharpening of the notch, and the dependence
of the fracture toughness on the mode mixity. They
also report the separation of the pre-crack into blunted
and sharpened corners, with significant void growth
occurring in the blunted region. The goal of the studies
cited above and others was mainly to investigate the
dependence of the fracture toughness, characterized in
terms of the J -integral, on mode-mixity. In contrast, the
present paper is concerned with examining the evolu-
tion of deformation and the initiation of failure in speci-
mens without an initial crack; we examine the develop-
ment of deformation and damage in Al 6061-T6 leading
up to the nucleation of a crack from a notch under shear
dominant loading. In particular, we are interested (i) in
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Fig. 2 a Geometry of the
Arcan specimen (all
dimensions are in mm).
Rolling direction is along
the x-direction. b Geometry
of the fixture used in the
modified Arcan tests
(reproduced from Hung and
Liechti 1999). The two
arrows from the dotted
circles indicate pure shear
loading; other pairs of holes
result in shear plus
compression or tension
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understanding the role of the second phase particles in
generating damage, (ii) in determining how cracks are
nucleated from the notch and (iii) finally in examining
the use of the failure criterion presented in Ghahre-
maninezhad and Ravi-Chandar (2013), to simulate the
nucleation of a crack.

This paper is organized as follows: experiments
under pure shear loading of a notched Arcan-type spec-
imen are described in Sect. 2. These experiments pro-
vide macroscopic measurements of the load-elongation
response along with grain level strain measurements
in order to provide local strain estimates. The nucle-
ation/onset of crack initiation is also examined in
this section through optical and scanning electron
microscopy of interrupted tests. The response of the
notched specimen is modeled in Sect. 3 using the finite
element code ABAQUS, endowed with a JC model
as calibrated by Lesuer et al. (2001) and also modi-
fied with the results of Ghahremaninezhad and Ravi-
Chandar (2013). The main conclusions are summarized
in Sect. 4.

2 Experimental results

The Arcan specimens were cut from the same rolled
sheet stock (2.44 mm thick) used for the tension and
shear tests described in Ghahremaninezhad and Ravi-
Chandar (2012, 2013), with the rolling direction ori-
ented along the x-direction as indicated in Fig. 2a.
These specimens were loaded in a modified Arcan
fixture shown in Fig. 2b. The grains are platelets
that are about 14 μm thick, 46 μm wide, and 39 μm

long, as characterized by Ghahremaninezhad and Ravi-
Chandar (2012). In an effort to examine the grain
level strains during the deformation stages, without the
post-test measurements reported in our prior investiga-
tions, the specimen was polished and etched prior to
testing using Weck’s etchant (details of the specimen
preparation for metallographic observations are given
in Ghahremaninezhad and Ravi-Chandar 2012). The
nominal stress (force/initial gage cross-sectional area)
versus normalized crosshead displacement1 response
curves from one pure shear test is shown in Fig. 3.
Note that the beginning of the load drop in the exper-
iment corresponds to initiation of a crack from the
notch regions and that the material continues to exhibit
a strain hardening response. In order to examine the
evolution of deformation and failure at the grain level,
the loading on this specimen was interrupted at dif-
ferent stages along the overall response at points indi-
cated as A, B, and C and then taken to final failure
at D; at each of these stages, optical micrographs of
the x–y plane near the center of the specimen were
taken at high resolution and stitched together using
the Microsoft Image Composite Editor (ICE) software,
to explore a large spatial domain. Damage evolution
in another specimen at approximately the same load-

1 The compliance of the loading system has not been removed;
therefore the slope of the linear region is significantly smaller
than the slope of the specimen alone and the normalized displace-
ments should not be compared directly to those determined in the
simulations reported later in Sect. 4. Macroscopic scale digital
image correlation (DIC) could provide adequate measurements
to prescribe realistic boundary conditions arising from the load-
ing system compliance, but this was not considered essential to
the objectives of the present work.

123Reprinted from the journal 255



A. Ghahremaninezhad, K. Ravi-Chandar

Fig. 3 Normalized shear stress (force/initial gage cross-
sectional area) versus crosshead displacement (φ) normalized by
the gage length (L = 12.22 mm: see Fig. 2a) response of Arcan
specimen. Points A and B correspond points when the specimen
was unloaded and examined under an optical microscope. The
point D corresponds to complete failure of the specimen. Note
that the load drop near the point B is due to initiation of crack
growth from the notch tips and not due to material softening

ing stages was investigated through scanning electron
microscopy of the region near the notch tip. The opti-
cal microscopy focused on regions in between the two
notches, while the scanning electron microscopy was
restricted to the region of the notch, where very large
strains are expected. These examinations eliminate pol-
ishing and etching effects and allow unhindered exam-
ination of the actual deformation and failure mecha-
nisms; specifically, the actual strains can be determined
by following the same set of grains over many deformed
stages of the specimen.

2.1 Grain level measurement of local deformation

Real-time measurements of grain level deformation
using digital image correlation (DIC) methods (Héripré
et al. 2007; Carroll et al. 2013), X-ray tomography (Bay
et al. 1999; Limodin et al. 2011), and other methods
are becoming increasingly simpler to use and interpret;
nevertheless, the strain levels encountered in almost
all of these applications is quite small. For example,
Héripré et al. (2007) examined polycrystalline plas-
ticity and measured strains in the range of 0.1 using
a square grid of gold deposited on the material; Car-
roll et al. (2013) used DIC to determine local strains
in the vicinity of a fatigue crack; the strains measured
in the vicinity of the crack were only about 0.01 even
when the fatigue crack was extended. In contrast, the

equivalent strains encountered in elastic-plastic frac-
ture under monotonic loading are at least one to two
orders of magnitude greater; true strains in the range of
two have been estimated in some cases prior to nucle-
ation of damage and fracture (see Fig. 1). In this range
of strains, DIC typically encounters difficulties arising
from image registry. Therefore, a more direct method
of strain measurement is desirable. Here we develop a
tracking scheme that is perhaps tedious, but still man-
ageable; we present measurements from the interrupted
tests, but in principle, this can be accomplished continu-
ously if a loading stage attached to a microscope is used.

The principle of the method is quite simple: we fol-
low the movement of the 2nd phase particles as a func-
tion of the global deformation and extract estimates
of the local strain; it turns out that human eyes are
surprisingly good in pattern recognition, and one can
track the same set of particles even after substantial
deformation, and sometimes, even when some of the
particles break up into smaller pieces. The 2nd phase
particles in the sheet are typically about 2 μm wide
and about 10 μm long (see Figure 14 of Ghahrema-
ninezhad and Ravi-Chandar 2012). A high magnifica-
tion image of one such particle at Stage B of the loading
is shown in Fig. 4; the initial orientation of the particles
is such that the long direction of the particle is oriented

Fig. 4 SEM image of a 2nd phase particle after loading to Stage
A. The long particle was initially aligned along the rolling direc-
tion (vertical), but broke into smaller fragments that rotate sub-
sequently with the shear deformation. Note that there is no cavity
formation; furthermore, the “gap” between the broken pieces is
“filled” by the matrix flowing into it during the shearing defor-
mation
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Fig. 5 Optical micrographs
of the midsection of the
specimen a undeformed, b
Stage A, c Stage B and d
Stage D. The direction of
shear is indicated by the
yellow arrows. 58 particles
identified between the
undeformed specimen and
Stage A and 33 particles
identified between Stages A
and B are tracked by the red
circles and lines. The image
in d was obtained with a
z-focus microscope to be
able to focus on the
significantly deformed
specimen

(d)

(a) (c)

(b) 

with the rolling direction (vertical in this image). From
the shear loading in the direction indicated by the yel-
low arrows, the particle rotates, and breaks into many
smaller pieces. Furthermore, the pieces exhibit rela-
tive rotation with respect to each other indicating that
after breaking, they continue to rotate with the deforma-
tion of the matrix. There is no indication of cavitation
or other types of damage; in fact, it appears that the
matrix simply “fills in” any gaps caused by the relative
movement of the broken particles. Furthermore, there
appears to be no failure mechanism that is generated at
this scale under such shear loading; we note that fail-
ure of the specimen occurs eventually as a result of the
deformation near the notch, which occurs at a triaxial-

ity that is quite different from the pure shear state as
we describe later.

Figure 5 shows four images of a region near the
center of the specimen taken with an optical micro-
scope; the grid lines superposed on the images rep-
resent squares that are 50 μm to a side. All of these
images were obtained by taking multiple high resolu-
tion images at 200× magnification and stitching them
together to be able to observe a much larger region. Fig-
ure 5a–d correspond to the (a) unstrained specimen, (b)
loading Stage A, (c) loading Stage B, and (d) final fail-
ure. The images were then viewed under their original
magnification in order to identify the same set of 2nd
phase particles in each image; 58 particles were iden-
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tified between the unstrained image and Stage A, and
are indicated by the open red circular symbols and con-
necting lines in Fig. 5a, b. However, only 33 of these
particles could be tracked between loading Stages A
and B, mainly because the out of plane deformation of
the specimen caused defocusing of some of the particles
and made it difficult to identify the particles; the iden-
tified particles are indicated by the open red circular
symbols and connecting lines in Fig. 5c. Finally, it was
nearly impossible to identify the corresponding points
between Stage B and final failure; however, if we draw
tangent lines to the grain boundaries, the shear angle ∂

can be determined easily as indicated by the red line in
Fig. 5d. This figure also indicates that the region of high
shear strains is localized to an extremely narrow zone
along the center of the specimen. Comparing Fig. 5a–c,
it is evident that the positions of the 2nd phase parti-
cles changes significantly, but their relative order does
not change, strongly suggesting that these particles are
simply carried by the flow of the matrix aluminum,
and therefore they represent good Lagrangian markers
to evaluate the strain variation averaged over a length
scale much larger than the particle size.

The deformation of the Arcan specimen can be writ-
ten as x1 = X1 + k X2, x2 = aX2, where k = tan ∂

is the amount of shear, and a is the stretch perpen-
dicular to the direction of shear; then, the principal
stretches may be estimated directly from the deforma-
tion observed in Fig. 5. These measurements indicate
that the maximum principal true (logarithmic) strain
(averaged over a 500×500 μm2 square) increases from
0.41 to 0.93 to 2 as we go from Stage A to Stage B
to final failure. These strain levels are commensurate
with the values shown in Fig. 1 for pure shear con-
ditions. However, while the strain levels in that figure
were inferred from a statistical estimate of changes in
the grain dimensions, the present measurements repre-
sent a direct measurement of the strain using the same
2nd phase particles as Lagrangian markers. While we
have only identified the average strain over a small
region, the method used here clearly has the potential
to resolve strains on a much smaller level, approaching
grain level identification; this, however, requires that
the experiments be performed in a scanning electron
microscope that can image over large depth variations
or in an optical microscope with a z-focus capability to
reconstruct full three-dimensional image of the surface.
These approaches are currently under investigation; the
image in Fig. 5d was obtained using the z-focus capa-

bility of the microscope to focus over the entire field
of view.

In order to explore the origins of failure under pre-
dominantly shear loading, the unstrained specimen and
deformed specimens at Stages A and B, were examined
in a scanning electron microscope. These observations
are discussed in the next section.

2.2 Scanning electron microscopy of deformation

The development of deformation near the notch tip is
rather spectacular, and is easily tracked using scanning
electron microscopy. Figure 6a shows SEM images of
the regions near one of the notches corresponding to
the undeformed configuration. The line segment a–b–
c–d of total length 1,400μm identifying the edge of
the specimen through the notch tip is marked by the
green line in this figure for easy visual identification of
the deformation. The spatial position of two additional
points on the surface of the specimen near the notch
(points e and f ) are also marked in this figure. The
deformed shape of the line a–b–c–d as well as the cur-
rent position of the points e and f are traced through
the two stages of deformation A and B in Fig. 6b, c. The
specimen was initially polished to be flat and etched to
reveal the grain boundaries; in the secondary electron
imaging mode, the contrast in the undeformed SEM
images is low. Nevertheless, some features resulting
from an uneven coating of Au–Pd on the surface are
visible even in the undeformed specimen, and these fea-
tures are used to identify the deformation. As the defor-
mation progresses, there is some out-of-plane defor-
mation of the grains due to local three dimensionality
of the deformation and stress fields, and this results
in improved contrast in the last stage image shown in
Fig. 6c. For ease of visualization of the deformation,
the corresponding points in each image in Fig. 6a–c are
traced by the solid and dashed lines with the arrows.
We record the following important observations:

– Comparing Fig. 6a, b, the deformation of the line
a–b–c–d is most striking; this line is seen to have
“unfolded”, with the segments a–b and c–d hardly
exhibiting any changes, while the segment b–c has
rotated significantly and elongated substantially.
The EDM-cut notch at c has disappeared completely,
and a “new”, sharper notch has been created at the
point b. Although we have only examined the notch
at these two stages, it is apparent that as the “old”
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Fig. 6 SEM images of the
a undeformed, b Stage A
and Stage B specimens. The
deformation of the notch
region and selected points
on the specimen is tracked
between the three images.
The green line labeled
a–b–c–d identifies the initial
notch. With deformation, it
is seen that the initial notch
straightens out and a new
notch is formed. The
contrast in c arises from
nonuniform out-of-plane
deformation of the grains. A
crack is nucleated near the
point b after significant
plastic deformation

a

b

c

d

a
b

c

d

e

f

a

b

c

d

f

e

e

notch at c straightened out, the “current” notch must
have moved progressively from the point c to the
point b.

– It is evident that the deformation along the line
a–b–c–d is not uniform; the deformation of each
line segment can be estimated using the change in
the length of each line segment. While the true log-
arithmic strains in segments a–b and c–d are about
−0.05 and 0.13 respectively, segment b–c experi-
ences rather large extensional strains, as high as 0.31.

– Segment b–c lies on the side of the band of high
deformation extending in x-direction across the gage
length of the specimen. This band is visualized easily
in SEM images in Fig. 6c as the region of high con-
trast, arising from large out-of-plane-deformation at
the level of the grains.

– At some loading between Fig. 6b, c, a crack was
nucleated between the segment a–b, but very close
to the point b, and grew towards the opposite notch
region. A high-magnification image of the region
near the crack in Fig 6c is shown in Fig. 7; the con-
trast seen in these images is from the fact that the
random orientation of the grains relative to the plane
of shear loading causes different out-of-plane dis-
placements in each grain. Recalling that the rolling
direction is vertical relative to the orientation of this
image, it appears that there are large grain rotations,
and grain elongations. Furthermore, there are many

Fig. 7 A high magnification SEM image showing the crack
extension from the current notch tip corresponding to the Stage
B. The location of attempted crack nucleation at lower strain lev-
els is marked with arrows. Surface relief arising from anisotropic
grain deformation in the band of high deformation is easily seen
in the SEM image

locations of attempted nucleation of cracks along the
boundary b–c as identified by the red arrows in the
figure.

– The crack borders on the region of highly localized
shear deformation in the Arcan specimen and does
not nucleate from the original notch. Eventually,

123Reprinted from the journal 259



A. Ghahremaninezhad, K. Ravi-Chandar

Fig. 8 a, b Schematics
showing the detailed and
overall mesh, respectively,
used in the simulations.
Fine mesh was used near the
notch tip

L
R=160 μm 

Δ

when the crack nucleates and grows from the newly-
formed notch, the material in this vicinity is quite
different from the initial material in terms of its grain
size, grain boundary morphology, anisotropy etc,
suggesting that grain boundary morphology and tex-
ture evolution will be important aspects in dictating
the onset of fracture. The stress-state is also signifi-
cantly different from the initial state corresponding
to the pure shear loading, as will become apparent
from the numerical simulations in the next section.

These observations provide ample support to the idea
that significant plastic deformation, to levels indicated
by the lower bound estimate in Fig. 1, must occur prior
to the onset of damage and nucleation of a crack in duc-
tile materials such as Al 6061-T6. In the next section,
we explore such crack nucleation through numerical
simulations.

3 Numerical simulations

Numerical simulations of the Arcan specimen were
performed in the finite element software ABAQUS/
Explicit 6.11-2 with the objective of using the grain-
based failure criterion of Ghahremaninezhad and Ravi-
Chandar (2013) to predict the nucleation of the crack in
the Arcan specimen. The geometry of the Arcan speci-
men was discretized using fine linear brick elements
with reduced integration (C3D8R) in the gage sec-
tion and gradually coarsened elements in the regions
towards the outer boundaries of the specimen. The
gage section consisted of 200 × 40 × 88 elements in
x × y × z directions. A mesh size of 34 × 16 × 61 μm
in x × y × z directions is used near the notch tip to
explicitly represent the EDM cut notch radius, which
is about 160 μm in the simulations. Since our previ-

ous studies have shown that deformation localization
and failure in the polycrystalline aluminum alloy being
studied here occur at a scale that is on the order of the
grain size, it is expected that the finite radius of the
notch will most likely influence the failure initiation in
this specimen. Figure 8a, b show the detail of the fine
mesh near the notch tip, and specimen geometry and
overall mesh used in the simulation, respectively. The
material model described in Ghahremaninezhad and
Ravi-Chandar (2012, 2013) is used: specifically, the
flow theory of plasticity with Hill’s anisotropy is used.
The Lankford parameters were measured experimen-
tally and are given in Table 3 of Ghahremaninezhad and
Ravi-Chandar (2012); the power-law hardening rule
given in Eq. (2) of this article was used only up to the
Considère strain and then extrapolated for larger strain
levels through an inverse procedure where the global
uniaxial response from experiments and simulations
are matched (the true-stress vs strain curve is given in
Figure 21b of Ghahremaninezhad and Ravi-Chandar
2012). It is recognized that an accurate prediction of
material response will require the use of more complex
phenomenological plasticity models where the effects
of texture evolution are considered; additionally, crys-
tal plasticity models can also provide insights into the
evolution of material deformation and texture evolution
in polycrystalline materials. This has been attempted
recently in an effort to analyze crack tip fields in a
polycrystalline material under mixed tension and shear
loading (Sreeramulu et al. 2010). All these models con-
sist of several material parameters and require lengthy
material calibration programs and were not pursued in
the present work.

A simple ductile failure model based on relating the
strain-to-failure versus triaxiality was assumed using
two calibration methods, namely, Johnson–Cook and
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grain-based methods as described in detail in our
previous work (Ghahremaninezhad and Ravi-Chandar
2013); these two failure criteria are shown in Fig. 1.
The JC failure model is based on material parameter
calibration due to Lesuer et al. (2001), which is based
on strain measurements using specimen dimensions as
the gage length, whereas our calibration of the grain-
based failure model uses statistical measurements of
strains using grain size change with respect to an intrin-
sic grain size as the gage length. More information on
the methodology of grain based measurements is pro-
vided in (Ghahremaninezhad and Ravi-Chandar 2011,
2012, 2013). The JC failure model as implemented in
ABAQUS/Explicit 6.11-2 through a cumulative dam-
age approach is used. A linear strength degradation
with a displacement to failure of 1 μm is assumed
for elements at which failure initiation has been trig-
gered, and element deletion was used to remove the
elements once load carrying capacity of elements falls
below 25% of that in undamaged condition; we note
that while this may not be the best procedure to reach
final failure, our main objective is to show that plastic-
ity alone is responsible for much of the response of the
structure and that failure processes are initiated very
late, and then progress very rapidly. A semi-automatic
mass scaling scheme with a minimum time increment
of 10−6 s was used to increase the computational effi-
ciency. Macroscopic quasi-static in-plane shear load-
ing was simulated by specifying a constant velocity
in y-direction at the top surface and zero velocity at
the bottom surface. The out-of-plane displacements (z
direction) at both end surfaces were fixed at zero.

A brief discussion of the length scales involved in
using the failure criteria is important prior to deal-
ing with the results of the simulations. The impetus to
define strain-to-failure as a material property is driven
primarily by the need to use such a parameter in numer-
ical simulations of structural reliability. The dilemma
one must face immediately is that it is essential to
include a length scale in constructing such a definition;
this has been considered in the literature in different
ways. The most common method involves measuring
the reduction in the cross-sectional area at the loca-
tion of failure and using this measurement to define the
strain-to-failure. This sets the scale to the characteristic
transverse dimension, which is typically on the order
of a few millimeters. The JC model is typically charac-
terized at this scale. However, the model is considered
a material failure model and typically reported (and

commonly used) without restrictions on the size of the
discretization. If we admit that they are to be used only
at the scale of calibration—specimen thickness—then
elements should be about a few mm large; one cannot
even represent the notch in our problem with such an
element size! Our simulations will demonstrate that a
macroscopic failure model calibrated at the thickness
scale cannot reproduce the experimentally observed
behavior. A more recent method that has been used to
calibrate failure models is a hybrid technique where a
numerical simulation is performed to mimic the global
response of the specimen and the strain at the critical
element in the simulation mesh is taken to be the strain-
to-failure; in this case, the failure strain is considered
to be calibrated to this specific mesh size. The works
of Barsoum and Faleskog (2007); Beese et al. (2010)
and Dunand and Mohr (2010) fall in this category. The
main drawback in this method is that it is very sensitive
to the constitutive model used in the numerical simu-
lations; as can be seen from Fig. 1 for the Al 6061, the
mesh-based calibration of the failure strains does not
differ too greatly from the calibration of Lesuer et al.
(2001). In contrast, our calibration arises from direct
measurements of the local strain on the verge of final
failure, and is associated with a length scale that is of
the order of a few grains.

3.1 Prediction of Johnson–Cook and grain-based
failure models

The variation of the nominal stress (force/gage cross
sectional area) versus normalized boundary displace-
ment (φ/L) obtained from the simulations using the JC
and grain-based methods are shown in Fig. 9. L is the
distance between the notches as shown in Fig. 8 and is
used as the “gage” length. A sequence of images show-
ing the equivalent plastic strain and triaxiality con-
tours near the notch for the JC model calibrated by
Lesuer et al. (2001) are shown in Fig. 10; these corre-
spond to the stage B and crack initiation as marked in
Fig. 9.Another sequence of images showing the equiva-
lent plastic strain and triaxiality contours near the notch
tip for the grain-based failure model is shown in Figs. 11
and 12, corresponding to stages B–C–D–E marked by
diamond symbols in Fig. 9. The location of the notch
tip at mid thickness of the specimen in the undeformed
and deformed configurations is marked with a white
square in Figs. 10a, b and 11 and by the black squares in
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Fig. 9 Nominal Stress (force/cross sectional area) versus nor-
malized boundary displacement (φ/L) from simulation using
grain-based and J–C methods. Points B–E denote nominal dis-
placement levels at which the plastic strain and triaxiality are
evaluated for display in Fig. 12. The point E corresponds to the
onset of crack nucleation observed in experiments

Fig. 12 to aid in tracking deformation in the vicinity of
the notch. The simulation based on the grain-based fail-
ure criterion exhibits many features that are observed in
the experiments, while the JC criterion triggers failure

prematurely and does not allow significant deformation
near the notch region:

– It can be seen from Fig. 9 that the JC method predicts
a premature failure in the specimen at a very small
overall displacement in comparison to that observed
in the experiments. From Fig. 10, it is seen that the
notch has not deformed (or “unfolded”) as observed
in the experiments. The strains developed in the inte-
rior of the specimen are also significantly smaller
than observed in the experiments.

– Figure 10b shows the prediction of JC method at
a stage where a crack has nucleated just below
the initial notch tip, and extended partially into
the specimen. As can be seen from this figure,
the region below the notch is where the triaxial-
ity develops to levels of 0.5 and hence the failure
strain of the JC model is reached rather early in
the overall deformation. The inability of JC method
to obtain a prediction of failure nucleation arises
from the fact that average failure strains calibrated
from measurements over a large gage length that is
on the order of ten millimeters (characteristic spec-
imen cross-sectional dimensions) is now applied

Fig. 10 a, b Plastic strain contours and deformed configura-
tions, and c, d triaxiality contours corresponding to the stage B
and crack initiation, respectively, as marked in Fig. 9, obtained

from the JC model. The white squares (in a, b) indicate the loca-
tion of the initial notch tip
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Fig. 11 a–d Plastic strain contours and deformed configurations at various stages of deformation (B–E) indicated in Fig. 9, obtained
from the simulation using grain-based model. The white squares indicate the location of the initial notch tip

Fig. 12 a–d Triaxiality contours at various stages of deformation (B–E) as indicated in Fig. 9, obtained from the simulation using
grain-based model. The black square indicates the initial location of the notch tip
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on a scale that is a couple of orders of magnitude
smaller.

– The sequence of images shown in Fig. 11 clearly
indicates that the initial notch does not trigger fail-
ure when the grain-based calibration of the strain-
to-failure model is used, but rather large deforma-
tion of the notch tip region occurs with the resulting
“unfolding” of the notch and the development of
a new notch, similar to what was observed in the
experiments.

– The stage E in Fig. 11 corresponds to the onset of
crack initiation in the experiment as determined by
comparing the distance between the initial and cur-
rent notch tips in the experiments; this distance was
measured to be 670 μm (Line b–c in Fig. 6b). The
force-displacement response from the grain-based
simulation shown in Fig. 9 was terminated corre-
sponding to the arrival of the notch at the location of
crack nucleation observed in the experiment; at this
point, the cumulative damage parameter was at the
threshold of failure. The global response in Fig. 9
indicates a hardening behavior with no indication of
macroscopic localization up to the onset of nucle-
ation of the crack, as observed in the experiment.

– A line of length 1,850μm drawn on the notch sur-
face symmetrically along the middle of the thickness
of the specimen as shown in Figs. 10 and 11 is used
to quantify the evolution of equivalent plastic strain
and stress triaxiality near the notch tip. This line is
analogous to the notch line a–b–c–d that was used
to identify the deformation in the experiments. First,
this line also “unfolds” with overall deformation of
the specimen and results in large strains of about
1.3 in the vicinity of the notch. Second, we obtain a
quantitative measure of the true strain and triaxiality
at points a, b, c, and midway between b and c (here-
after denoted as bc) along this line (approximating
the path d–c–b–a from the experiment) during the
overall deformation, and plot them in Fig. 13. It is
seen from Fig. 13b that at any loading stage, the
segment of the line above the current location of
the notch experiences a state of compression with
a triaxiality of −0.5 and the segment below the
current location of the notch experiences a state of
tension with a triaxiality of about 0.5. This can be
readily seen from the values of triaxiality at points
a, c, which lie above and below the current notch
tip, respectively, during the deformation. As a point
passes through the current notch tip, the stress state

Fig. 13 Variation of (a) equivalent plastic strain and b triaxiality
at points a, b, c and the midway point between b and c denoted
by bc as marked in Fig. 6, obtained from the simulation using
grain-based model. The dashed line marks the stage at which
failure was observed in the experiments

exhibits a rather sharp transition from compression
to tension; this is demonstrated in Fig. 13b by track-
ing the triaxiality of the points b and bc.

– The peak plastic strain is always at the current notch
tip; however, as the notch moves from c towards b,
there is a monotonic increase in the magnitude of the
peak plastic strain as the overall loading increases.
Eventually, the combination of the triaxiality and
plastic strain cross over the lower-bound failure
envelope and crack initiation occurs. A dashed line
in Fig. 13a, b marks the stage corresponding to fail-
ure as observed in the experiments. The path taken
by material points at b, c and bc in the space of tri-
axiality and plastic strain is shown in Fig. 14. The
triaxiality at the point c reaches about 0.5, but as the
notch straightens out, the deformation at c stops at a
strain level of about εp = 0.3; therefore, ductile fail-
ure is not triggered at this point. The triaxiality at the
point bc changes rapidly as the notch approaches this
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Fig. 14 The equivalent plastic strain-triaxiality variation at
points b, bc and c, as marked in Fig. 6 superposed onto the
lowerbound strain-to-failure curve obtained from grain-based
measurements

point; at this stage, the plastic strain reaches about
εp = 1.16; this is shown in Fig. 14 by the blue line
that stops just short of penetrating the failure enve-
lope; we note that the grain level calibration is a
lower bound estimate based on statistical estimates.
As the notch moves further up, the triaxiality-plastic
strain state at point b crosses over the lower bound
failure envelope and results in the crack nucleation as
observed in the experiment. Therefore, even though
the simulation was terminated corresponding to the
arrival of the notch at the location of crack nucle-
ation observed in the experiment, at this point, the
cumulative damage parameter was at the threshold
of failure, indicating that the grain-based calibration
of the failure model yields an acceptable prediction
of failure.

– The strains in the interior of the specimen are sig-
nificantly greater than at the notch root, but they
develop under a significantly lower triaxiality since
these regions are under pure shear; such large strains
were examined in our previous work (Ghahrema-
ninezhad and Ravi-Chandar 2013).

The results of the numerical simulations, in comparison
to the experiments indicate that the grain-based method
is able to provide a realistic lower bound prediction of
material deformation and failure until large strains. The
primary focus here has been to elucidate a picture of
material deformation and the onset of failure initia-
tion under shear loading in ductile polycrystalline Al
6061-T6. For quantitative prediction of fracture initia-
tion and growth, the incorporation of initial anisotropy

of flow, and the further evolution of the material struc-
ture with its attendant effects on material properties is
required. In particular, final fracture that appears along
the reoriented microstructure needs additional consid-
erations not included in the lower-bound failure cri-
terion indicated in Fig. 1. While we adopted the JC
method for comparison, the general outcome of this
study applies to other failure models such as modified
Gurson-Tvergaard-Needleman (Nahshon and Hutchin-
son 2008) and modified Mohr Coulomb model (Beese
et al. 2010) unless these models are recalibrated with
measurements on the scale of the grains; the ability
of the material to deform plastically to a very large
equivalent plastic strain prior to the onset of damage is
an essential ingredient that must be introduced in any
model.

4 Conclusions

Nucleation of a crack from a notch under dominant
shear loading is considered in this article. In addition to
following the load-displacement at the specimen level,
optical and scanning electron microscopy are used in
interrupted tests to track the deformation and failure in
Al 6061-T6. The main conclusions are as follows:

– The local variation of strains can be determined to
very large strain levels by proper identification and
tracking of the 2nd phase particles that are distrib-
uted randomly in the material. The resolution can
be improved by improving the spatial and temporal
sampling during the experiments.

– The 2nd phase particles break up into smaller pieces
but rotate and move with the flow of the matrix
material. They do not form cavities or trigger other
damage mechanisms; the matrix flows into any gaps
that form as a result of differential rotation of the
broken 2nd phase particles.

– The initial notch does not cause crack nucleation
from its root, but triggers substantial deformation
that results in the migration of the notch along the
upper part of the notch; large grain deformations
and rotations are observed in this vicinity. Crack
nucleation occurs from the newly-formed notch,
where the material is quite different from the ini-
tial material in terms of its grain size, orientation,
anisotropy etc, suggesting that texture and grain
boundary morphology evolution will be important
aspects in dictating the onset of fracture.
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– Numerical simulations using the JC model, cal-
ibrated on the basis of strains measured over
length scales of specimen cross-sectional dimen-
sions underestimate the ability of the material to
strain; contradictory to experimental observations,
these simulations predict premature nucleation of
the crack at the root of the initial notch. It is noted
that the typical calibrations of the JC model are per-
formed at the scale of the specimen cross-section,
but are always presented as material failure models,
without any associated length scale.

– Numerical simulations using the grain-based cal-
ibration of Ghahremaninezhad and Ravi-Chandar
(2012, 2013) are able to provide a realistic lower
bound prediction of material deformation and fail-
ure until large strains. It must be emphasized that
in order to use the gain-based calibration, the finite
element discretization must also be at a comparable
length scale—of the size of a few grains.

The lower bound failure envelope in Fig. 1 provides
appropriate predictions of the plastic response of the
material; for complete failure analysis, additional mod-
eling of the changes in texture, failure properties etc is
needed.
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