
The Proof Is in the Process: A Preamble
for a Philosophy of Computer-Assisted
Mathematics

Liesbeth De Mol

Mechanization tends to emphasize practice rather than theory,
deeds rather than words, explicit answers rather than existence
statements, definitions that are formalized rather than
behavioristic, local rather than global phenomena, the limited
rather than the infinite, the concrete rather than the abstract,
and one could almost say, the scientific rather than the artistic.

Lehmer (1966)

1 Introduction

Is the computer really affecting mathematics in some fundamental way? Despite
the historical connection between mathematics and computers, research within
philosophy, history and sociology of mathematics on this question has remained
relatively limited.

The main philosophical issues discussed within this context are mostly related
to the challenge posed by computer-assisted mathematics to more traditional
accounts within the philosophy of mathematics, accounts which view mathematics
as an a priori, non-empirical and purely deductive science that generates absolute
knowledge through the progressive accumulation of theorems. Computer-assisted
proofs of important theorems like the four color theorem by Appel and Haken or
the use of “computer experiments” to e.g. give support to important mathematical
conjectures seem to challenge the very idea of an infallible and a priori mathematics.
In this sense, studies of CaM fit in well with the growing emphasis in recent years on

L. De Mol (�)
Centre for Logic and Philosophy of Science, University of Ghent, Blandijnberg 2,
9000 Ghent, Belgium
e-mail: Elizabeth.DeMol@UGent.be

M.C. Galavotti et al. (eds.), New Directions in the Philosophy of Science, The Philosophy
of Science in a European Perspective 5, DOI 10.1007/978-3-319-04382-1__2,
© Springer International Publishing Switzerland 2014

15

mailto:Elizabeth.DeMol@UGent.be


16 L. De Mol

mathematical practices.1 However, not all authors agree on the role of the computer
here. In fact it has been argued before that, if experiments exist at all in mathematics,
the computer is not (Baker 2008, p. 343) “an essential feature of experimental
mathematics. There is experimental mathematics that makes no use of computers.”

In Avigad (2008) it is argued that some of the typical questions within the
philosophical literature on computer-assisted mathematics are too vague. Examples
of such questions are (id., pp. 3–4):

• In what sense do calculations and simulations provide “evidence” for mathemat-
ical hypotheses? Is it rational to act on such evidence?

• Does formal verification yield absolute, or near absolute, certainty? Is it worth
the effort?

Instead such questions should be formulated “in such a way that it is clear
what types of analytic methods can have a bearing on the answers.” The task
of the philosopher is then to study how these “pre-theoretic [questions] push us
to extent the traditional philosophy of mathematics in two ways: first, to develop
theories of mathematical evidence, and second to develop theories of mathematical
understanding” (id., p. 5). Hence, we should study such pre-theoretic questions in
their proper philosophical context. Furthermore, since “none of the core issues are
specific to the use of the computer per se [. . . ] issues regarding the use of computers
in mathematics are best understood in a broader epistemological context” Avigad
draws two important methodological conclusions from this:

Ask not what the use of computers in mathematics can do for philosophy; ask what
philosophy can do for the use of computers in mathematics [. . . ]

What we need now is not a philosophy of computers in mathematics; what we need is
simply a better philosophy of mathematics.

This paper nicely sums up the general tenor of some of the recent philosophical
literature on computer-assisted mathematics: the object under study are issues
within the philosophy of mathematics which already have a tradition and, even
though the computer raises some questions that challenge more traditional accounts
of philosophy of mathematics, these issues are not really essential to the use of the
computer.

Even though this approach of studying CaM in a broader philosophical frame-
work is valuable, its insistence on viewing computer-assisted mathematics as
something which doesn’t really change anything fundamental and merely serves
existing debates, runs the risk of underestimating the actual effect on practices of
CaM.

A complementary approach which does take the practice of computer-assisted
mathematics more seriously seems necessary in order to get a more balanced
account of the impact of the computer on (the philosophy of) mathematics. This

1See for example van Kerkhove and van Bendegem (2008).



The Proof Is in the Process 17

has already been argued to some extent by van Kerkhove and van Bendegem (2008)
where it is stated that we should account for the practices underpinning formal
proofs, including the use of experimental methods (id., p. 434):

[I]t is clear that already today mathematicians rely on computers to warrant mathematical
results, and work with conjectures that are only probable to a certain degree. Every so often,
we get a glimpse of what is happening back stage, but what seems to be really required
is not merely the idea that the front can only work if the whole of the theatre is taken
into account, but also that, in order to understand what is happening front stage, an insight
and understanding of the whole is required. If not, a deus ex machina will be permanently
needed.

But what does it mean to take the machine more seriously? What does it mean to
give an account of “the whole theatre”? Several approaches are possible but the
one I propose is one which includes a study of the technical details underpinning a
practice and, as such, is bottom-up. Within this approach the computer is regarded as
a real medium in the sense of people like Friedrich Kittler and Martin Carlé (Carlé
and Georgaki 2013):

The entire impact of a technically informed media theory, from matters of the vowel
alphabet all the way to the realm of digital signal processing, brings about one insight: that
far more than ideas, it is the ‘instrumentality’ of thought or the means of communication
which establish a dominant regime of knowledge, thus shaping historical reality and its
associate notion of truth. Media are no tools. Far more than ‘things at our disposal’ they
constitute the interaction of thinking and perception–mainly unconsciously.

An implication of this point of view is that our mathematical knowledge is really
shaped by the machine. The problems that result from its usage must thus be
regarded as specific to the use of the computer per se. More concretely this view
results in a methodology that does not shy away from the “gory” details of the
(history of) computer-assisted mathematics and takes the conditions, imposed by
the computer on mathematics, more seriously. On the basis of an extensive analysis
of CaM, the purpose of this approach is to detect which issues are inherent to the use
of the computer and, on their basis, to detect how the practice of mathematics is or is
not affected by the computer. Such an approach is sensitive to historical fluctuations
and does not aim at providing a once-and-for all given answer to the question of the
impact of the computer on mathematics.

2 Human-Computer Interactions, Time-Sensitivity
and Internalization

In what follows I will focus on experimental mathematics and will thus not consider
issues like on-line communities of collaborating mathematicians, the impact of type-
setting software on mathematics, etc.

Experimental mathematics is understood here in the sense of number theorist and
computer pioneer Derrick H. Lehmer. Lehmer identifies two “schools of thought”
in mathematics (Lehmer 1966, p. 745):



18 L. De Mol

The most popular school now-a-days favors the extension of existing methods of proof
to more general situations. This procedure tends to weaken hypothesis rather than to
strengthen conclusions. It favors the proliferation of existence theorems and is psycholog-
ically comforting in that one is less likely to run across theorems one cannot prove. Under
this regime mathematics would become an expanding universe of generality and abstraction,
spreading out over a multi-dimensional featureless landscape in which every stone becomes
a nugget by definition. Fortunately, there is a second school of thought. This school favors
exploration [m.i.] as a means of discovery. [B]y more or less elaborate expeditions into the
dark mathematical world one sometimes glimpses outlines of what appear to be mountains
and one tries to beat a new path. [N]ew methods, not old ones are needed, but are wanting.
Besides the frequent lack of success, the exploration procedure has other difficulties. One
of these is distraction. One can find a small world of its own under every overturned stone.

For Lehmer it is exactly this possibility of exploration that opens up the path of
“mathematics [as] an experimental science”.

In my previous research I made several detailed case-studies throughout the
history of computer-assisted “experimental mathematics” to understand on a more
concrete basis the impact of the computer on mathematics. These studies show very
clearly the significance of technological advances in computer science (hardware,
software and theoretical) for the way experiments are set-up, the types of methods
that are developed and the way they are interpreted (see e.g. Bullynck and De Mol
2010; De Mol 2011): in fact, the short history of computer-assisted experimental
mathematics itself already underwent important changes due to e.g. increase
in computing speed, more efficient read and write operations, developments in
programming etc. It are exactly these technological changes that are specific to the
use of the computer and allow to trace characteristics of practices of experimental
mathematics that come to the fore because of these technological conditions. These
characteristics allow to partially explain the increasing popularity of so-called
experimental mathematics (see Sect. 2.3).

2.1 Mathematician-Computer Interactions

If there is one characteristic inherent to the use of the computer per se, it is the
interaction with the machine. Of course, there is a long history in mathematics
of interactions between mathematicians and non-human instruments. The most
frequently used is the pen-and-paper method: writing on a piece of paper, a
blackboard etc.2 Figure 1 illustrates the interactive feedback process of such writing
practices. Evidently, such interactions are processual – one does not just have one
interaction with the piece of paper but many while developing e.g. some idea for a
proof or writing a result down to be communicated to the mathematical community.

2In this paper I do not consider earlier uses of mechanical devices within mathematics (for instance,
Hartree’s differential analyzer). These were much less frequently used than digital computers.
A comparative study of such devices would be very interesting. It might be that some of the
characteristics studied in this paper might also apply to some extent to these earlier devices.



The Proof Is in the Process 19

Paper

WYSIWYG

M(athematician)

writing/codingFig. 1 Scheme of the
interactive aspects of
mathematical writing
practices – first
approximation

Within such interaction you write something down. This writing act always involves
a certain level of “coding”: you use symbols, drawings, abbreviations, plain text
etc. This coding practice is historically determined and depends on the goal of the
writing act. For instance, mathematical writings in the sixteenth century are very
different from mathematical writings in the twenty-first century. Also, writing in
notebooks in the process of developing for instance, a good symbolization is very
different from writing a textbook. All these writing practices share the property that
what you get back from the writing is usually in a WYSIWIG format: this is a term
from computer science and stands for What You See is What You Get – it refers to
software which uses an interface where you indeed immediately see what you get.3

When you write or type something on a piece of paper you also immediately get
what you write – a stroke is a stroke, a number is a number (at least when your pen
or your typewriter are not malfunctioning).

So what happens if we transpose this scheme to interactions with a computer in
the context of experimental mathematics? When you are programming a machine
to tackle or explore some mathematical problem/object/process, this also involves a
process of coding. However, this coding is of a very different nature when compared
to “coding” on a piece of paper: whereas the “interpreter” of the mathematical
writings on paper is always a human, the coding on a machine has also a non-
human interpreter: the machine which executes the code. As a consequence, the
coding requires a “language” that is somehow also understandable by a machine.
Such intermediary language is called an interface.4 A mathematician-computer
interaction thus involves at least three components: the human, the part of the
computer that processes the code and the interface. This results in the feedback
scheme of Fig. 2.

This scheme produces several stages of an interaction. First of all, there is the
preparatory mathematical stage which involves two substages: first, the under-
standing of the problem as a computational problem that can be tackled with a
machine (Ia). Secondly, there is the translation of the problem into algorithms (Ib).
A second stage is the translation of the algorithms to an interface – this is the actual

3An example of such software is Office Word where you have a direct visual of the lay-out of your
text (e.g. a word in italics looks like a word in italics on your screen).
4Note that the use of the term “language” is a bit tricky here from a historical perspective, hence the
use of double quotes. Very early machines like ENIAC did not have such intermediary language:
programs had to be set up by physically cabling the machine. In this context the components of the
machine, their switches and the cables used to connect them constitute the interface.



20 L. De Mol

Cc

IV

(de)coding(IV)

I
N
T
E
R
F
A
C
E

interpret/compile(III)

interpret(V)

M

program(II)

Ia/b

Fig. 2 Scheme of mathematician-computer interactions – first approximation

programming stage and involves the implementation of the problem. Thirdly, there
is the interpretation or compilation of the program into machine code and ultimately
electronic pulses (Stage III) which can then be executed resulting in an output which
has a form specified by the program, e.g., a visualization, a printed (punched) table
etc (Stage IV). Note that the interpretation/compilation phase in the modern sense
of the word does not really apply for early digital computers. However, there are
also certainly processes of translation at work in this context.5 Finally, there is the
interpretation or use of the output by the mathematician which can result in a new
programming cycle (Stage V). Figure 2, however, is still a serious simplification
of an actual mathematician-computer interaction. When a mathematician is using
a computer to do (experimental) mathematics, the interaction is always one that
develops over time and in fact involves many sequences of different interactions.
For instance, there is always a process of debugging. Furthermore, it is not unusual
that several different interfaces are used: the programming interface itself (some
text editor like Emacs coupled with an interpreter or compiler), the interface used
for the output, a debugger etc. On top of this, the communicative process between
the computer and the mathematician is influenced by the communication channels
themselves. This was already observed in a different context by Benoît Mandelbrot
who refined Shannon’s theory of communication by interpreting a communication
between a sender and receiver as a game played against Nature (Mandelbrot 1953).
These considerations result in more complicated feedback schemes such as the one
shown in Fig. 3.

Even though this is still a simplification, this scheme indicates how complicated
mathematician-machine interactions in the context of experimental mathematics
actually are, involving many different stages affected by the physical and biological
conditions imposed by the machine, the interface and the human (Nature). This is a
very different kind of interaction when compared with that of Fig. 1.

5For instance, in the wiring of conditionals for ENIAC. See Bullynck and De Mol (2010) for more
details.



The Proof Is in the Process 21

IPL

S3

interpret
I1

interpret

Cc,PL,i

debug

(de)coding

(de)coding(de)coding

(de)coding

I2 interpret M

program(S1b+S2)

debug

S1a

...

In

interpret

NATURE

Fig. 3 Scheme of mathematician-computer interactions – second approximation

Of course, one can object against this comparison that the difference lies in
the fact that the scheme of Fig. 1 does not include the actor who “reads” and,
possibly, “acts upon” what is written on the piece of paper. Hence, the comparison
is misleading. Indeed, the piece of paper itself is but a passive receiver of a message
which can then be passed on to a second actor: the mathematician him/herself
who is writing e.g. in his/her notebooks or a group of mathematicians who are
reading what is written on a blackboard (without delay) or in a journal paper (with
delay). However, if we were to include this second actor in Fig. 1, we would be
comparing interactions between humans and non-humans with interactions amongst
humans.

Such comparison between mathematician-computer interactions (MCI) and non-
oral interactions between mathematicians requires that we make a detailed study
of how the different aspects of MCI are affected by the fact that a non-human is
involved. One telling example in this context is the stage of algorithmization: this is
shaped by the fact that the algorithm is not meant for human but for machine use, the
machine which is assumed to be fundamentally different from humans with its own
particular “talents” to tackle a given problem.6 Throughout the history of CaM this

6To put it roughly, a machine has an extremely big memory (at least nowadays) and is much more
faster. Moreover it can more easily deal with certain logical complexities. A human on the other



22 L. De Mol

has resulted in the development of entirely new types of algorithms (for instance,
the development of pseudo-random number generators) and the transformation of
existing human algorithms to machine algorithms.

One early example of this, studied in detail in Bullynck and De Mol (2010),
involves the ENIAC, one of the first electronic and general-purpose machines.
During a labour day weekend in 1947 Derrick H. Lehmer, his wife Emma and their
children spent their time with ENIAC to compute exponents e of 2 modp, viz. the
smallest value of e such that 2e � 1 mod p. It was a known fact that Fermat’s little
theorem could be used as a primality test. If for a given number b, 2b � 2 mod b

than b is with high probability a prime number. Unfortunately, an infinite set of
exceptions to this primality test exists. A table of exponents can be used to compute
such exceptions. Before, Lehmer had been using Kraîtchik’s tables. These tables,
however, only extended to 300,000, and contained rather a lot of errors. As a result of
his ENIAC computation Lehmer published a list of errors to Kraîtchik’s tables and a
list of factors of 2n ˙ 1. Several different subroutines needed to be implemented on
the machine including the so-called Exponent routine. Now, this exponent routine is
very different from the procedure a human being would follow. A human computer
would calculate the exponents e more or less in the following way. First, he would
take an existing prime table to select the next prime p. Then he would calculate
powers of 2 and reduce them modulo p, though not all powers, but only those that
are divisors of p � 1. This is because a number-theorist knows that if there is an
exponent e (< p � 1) of 2 so that 2e � 1 mod p (p prime), than e is either a
divisor of or equal to p � 1. He might also make use of already existing tables of
exponents. The ENIAC, in contrast, “was instructed to take an ‘idiot’ approach”
(Lehmer 1974, p. 4). First of all, the machine needs a list of prime numbers. Of
course, this list of primes could be feeded to the machine by means of punched
cards, but, since this is a mechanical procedure, this would significantly slow down
the computational process. Hence, it was decided not to use an existing prime table
but to let the machine compute its own next value of p as it was needed.7 The
next step was to calculate the powers of 2 reduced modulo p (p being a prime) to
compute exponents as follows (Lehmer 1974, pp. 4–5):

In contrast, the ENIAC was instructed to take an ‘idiot’ approach, based directly on the
definition of e, namely, to compute

2n � �n.modp/; n D 1; 2; : : : :

until the value 1 appears or until n D 2001, whichever happens first. Of course, the
procedure was done recursively by the algorithm:

�1 D 2; �nC1 D
�
�n C �n if �n C �n < p

�n C �n � p otherwise

hand can rely on his/her background knowledge which he/she understands and is able to exhibit
human creativity.
7This was done by implementing a prime sieve. See Bullynck and De Mol (2010) for more details.



The Proof Is in the Process 23

Only in the second case can �nC1 be equal to 1. Hence this delicate exponential question
in finding e.p/ can be handled with only one addition, subtraction, and discrimination at a
time cost, practically independent of p, of about 2 seconds per prime. This is less time than
it takes to copy down the value of p and in those days this was sensational.

As this example shows, from the very early days of computing, it was necessary
to completely transform human methods for tackling a given problem. Viz., the
problem needs to be analyzed also from the machine’s eye. A simple translation
of the human methods would not only result in an extremely slow computation but
would also require the internalization into the machine of knowledge it does not
really need in order to have an efficient algorithm.

As this short analysis of MCI shows, the digital computer introduces a new type
of interaction at work in mathematical practice, a practice that affects the knowledge
that results from such interactions. These interactions seem to have more in common
with interactions between human mathematicians than with interactions between a
mathematician and his writing devices.8 As such, we are dealing with a new social
situation in mathematics which certainly is in need of further analysis.

Whereas this interactive aspect of computer-assisted experimental mathematics
can perhaps be regarded as the structure through which practices of experimental
mathematics are conducted, there are several other basic characteristics that are part
of this interaction and affect the mathematics resulting from it. I will discuss two
such characteristics here. The first is the internalization of mathematical tools and
knowledge into the machine, the second is the significance of time-based reasoning
within such interactions.

2.2 Internalization

If one looks at the short history of computer-assisted mathematics, it is clear that
the first examples of so-called computer-assisted experimental mathematics are very
different from contemporary experiments. One reason for this is that theoretical and
technological advances have affected the way knowledge and skills are distributed
between the human and the computer: increases in speed and memory, advances in
interfaces, and advances in the “art of programming”9 have resulted in an increasing
internalization of mathematical tools and knowledge into the computer itself. There
are two related aspects to such internalization: storage of information in the machine

8In this context, it is not surprising that mathematicians who have embraced the computer in their
work have insisted on the idea of mathematician-machine collaborations. One interesting example
in this context is Doron Zeilberger who has several papers with a certain Shalosh B. Ekhad as his
co-author, who is Zeilberger’s computer (see http://www.math.rutgers.edu/~zeilberg/pj.html).
9This refers to the so-called bible for programmers, viz. Donald Knuth’s volumes on The art of
computer programming.

http://www.math.rutgers.edu/~zeilberg/pj.html


24 L. De Mol

and algorithmization. Advances in these two aspects of internalization have affected
the nature of the interaction between mathematicians and computers.

During the early years of digital computing, there were two major bottlenecks.
The first was the programming bottleneck, viz. the fact that it took too much time to
set-up a program on a machine because there was no such thing as a programming
language (De Mol et al. in press). The second problem was the memory bottleneck:
the early machines did not have a large electronic memory. This implies that one
could not take advantage of the electronic speed of the machine if one implemented
a procedure which needed a lot of intermediary data during the computation itself.
One consequence of this was the steady replacement of such tables of data by
algorithms – if possible, values were not stored but computed by the machine as they
were needed hence resulting in the internalization of data by means of algorithms
(see the example of Sect. 2.1). If this was not possible, one had to rely on punched
cards which seriously slowed down the computational process.

Another consequence of these two bottlenecks is that the interactive process
mostly consisted of clearly separated phases in time. The machine was used
mostly for the computational work itself, the calculation. The human took care
not only of the programming but also of the exploration or consecutive analysis
of the data provided by the machine. For instance, for the Lehmer computation on
the ENIAC, the machine was used for the actual computation of the exponents.
However, the additional work required to determine on the basis of these exponents
the composite numbers was still done by a human. A similar observation can
be made for the ENIAC computation of more than 2,000 digits of � and e to
explore the statistical distribution of the decimal extension of these numbers.
Also in this case, the main computation was done by the machine. However, the
statistical analysis was done by humans. Indeed, what one typically sees with these
early machines is that the interaction proceeds as follows: first, the program is
prepared, then, it is programmed on and executed by the machine. This phase was
often followed by one or more “debugging” phases.10 Finally, the human does
the exploration or inspection of the output which might result in a new sequence
of preparation, programming, computation, (debugging) and exploration, provided
there was enough machine time available. Thus, in the early years of computing,
processes of internalization mostly concern the process of algorithmization either
to replace the human computational work and to avoid the use of introducing large
amounts of data during the computation.

This starts to change with the steady resolvement of the two bottlenecks. The
availability of a bigger electronic memory together with advances in programability
makes possible the steady internalization of more and more subroutines. This is
for instance clear from Grace Hopper’s keynote address for the ACM SIGPLAN
History of programming languages conference, June 1–3, 1978 (Hopper 1981).
She explains, amongst others, how important it was to develop subroutines which

10It is interesting to point out that for the ENIAC computation of � and e half of the programming
was done to have “absolute digital accuracy” (Reitwiesner 1950).



The Proof Is in the Process 25

were general enough to be used for a variety of purposes (e.g. a search algorithm
that applies to different types) which could then be internalized into the machine
(either hard-wired or programmed). One fundamental development in this context
mentioned by Hopper is the significance of the machine’s ability to write its
own program, viz. compiling. This is a precondition for developing programming
languages as intermediary languages between the human and the computer. The
machine needs the ability to make its own programs in machine code when it is
provided with, for instance, the following command in LISP, one of the oldest
programming languages:

.�2 .= 8 4/ .C 4 6//

This possibility of the machine writing its own programs was, initially, met with
great skepticism (id., p. 9):

Of course, at that time the Establishment promptly told us [. . . ] that a computer could not
write a program; it was totally impossible; that all that computers could do was arithmetic,
and that it couldn’t write programs; that it had none of the imagination and dexterity of a
human being. I kept trying to explain that we were wrapping up the human being’s dexterity
in the program that he wrote [. . . ] and that of course we could make a computer do these
things so long as they were completely defined.

This is indicative of the transition from using computers as mere calculating aids
to machines which can basically do anything an abstract Turing machine can do.11

This relates directly to processes of internalization: the fact that the computer can
do more and more and that this is being understood by humans, goes hand-in-
hand with more and more subroutines being internalized into the machine. These
subroutines are no longer restricted to the “pure” calculation of “raw data”: they are
used to visualize data, to statistically analyze data, to inspect data searching e.g. for
patterns etc. In this sense, what was in the 1940s and 1950s the human’s dexterity is
now considered as the machine’s dexterity. This development however was possible
not only because of increases in programmability but also because technological
advances resulted in an exponential increase in the speed by which data can be read
or written in the electronic memory, both locally on individual computers as well as
globally in networks of computers and humans. Indeed, it makes no sense to have
a statistical tool internalized into the computer to deal with billions of data if these
data themselves cannot somehow be stored internally into the machine or network
of machines.

Nowadays, there exist huge libraries of subroutines not only in programming
languages but also in software packages like Maple and Mathematica where “tools
of dexterity” can simply be called by their name without the mathematician having

11From Hopper’s quote one is tempted to conclude that she was not aware of developments in
theoretical computer science: it was known since 1936 that there are well-defined problems that
cannot be computed, provided one accepts Turing’s thesis viz. that anything that is computable is
also computable by a Turing machine (see Daylight (2012) for more details).



26 L. De Mol

to know the complete procedures behind such names. One interesting example in
this context is Sloane’s on-line encyclopedia of integer sequences (OEIS) which is
used by several mathematicians as an explorative tool in their work and has resulted
in several mathematical papers (see http://oeis.org/wiki/Works_Citing_OEIS for
over 2,000 papers that reference the encyclopedia in their work). The encyclopedia
stores over 200,000 integer sequences. One very interesting feature of OEIS is that,
if you have some number sequence which is not in the encyclopedia and for which
you want an explanation, you can mail it to Superseeker. This is an algorithm which:

tries very hard to find an explanation for a number sequence [using] an extensive library
of programs that tries a great many things [. . . ] Some programs try to find a formula or
recurrence or rule that directly explains the sequence. [. . . ] Other programs apply over 120
different transformations to the given sequence to see if any transformed sequence matches
a sequence in the OEIS.12

This simple example indicates how processes of increased internalization affect the
interaction between the mathematicians and the computer. Whereas in the early
years of digital computing the division of labor was very clearly separated into
the calculatory work, done by the machine, and the more “intelligent” work done
by the human, this division becomes more and more blurred as more sophisticated
techniques and more data are internalized into the machine. Nowadays, the machine
does part of the programming, part of the inspection, etc. This changes the
interaction more and more into a mathematician-machine collaboration or, as it has
been described before by people like Licklider, a symbiosis:

Computing machines can do readily, well, and rapidly many things that are difficult or
impossible for man, and men can do readily and well, though not rapidly, many things
that are difficult or impossible for computers. That suggests that a symbiotic cooperation,
if successful in integrating the positive characteristics of men and computers, would be of
great value.

However, the fact that more and more information and algorithms are internalized
into the machine often means that they are hidden from, inaccessible to or
unsurveyable for the (community of) mathematician(s). As such, this situation of
increased internalization gives rise to a wide variety of new problems: how can we
understand a result if part of it is hidden inside the machine? Can we trust results
from the machine? Can we trust the conclusions drawn by fellow mathematicians
on the basis of their experiments without having full access to the complete code
and data? What does it mean to patent an algorithm? What does it mean for
the community of mathematicians that they are using software packages that are
not open source and which imply that it is impossible to know all the methods
one is using to attain a certain result? etc. These problems lie beyond the scope
of this paper but they indicate that the increased internalization of mathematical
knowledge into the machine not only affects the interaction between machines and
mathematicians but also results in several new problems which cannot simply be
discarded.

12Taken from http://oeis.org/demos.html on April 5, 2013.

http://oeis.org/wiki/Works_Citing_OEIS
http://oeis.org/demos.html


The Proof Is in the Process 27

2.3 Time and Finite Processes

Internalization of mathematical knowledge is one aspect that results from interac-
tions between mathematicians and computers. Another fundamental feature is the
increasing significance of time and processes in mathematics.

From the early beginning onwards the fact of the speed of electronic computing
was, besides its programmability, considered by many a computer pioneer as one of
its greatest impacts. Hamming, a mathematician, described the effect of the signifi-
cance of this electronic computing speed as follows (Hamming 1965, pp. 1–2):

[An] argument that continually arises is that machines can do nothing that we cannot do
ourselves, though it is admitted that they can do many things faster and more accurately.
The statement is true, but also false. It is like the statement that, regarded solely as a
form of transportation, modern automobiles and aerolplanes are no different than walking.
[A] jet plane is around two orders of magnitude faster than unaided human transportation,
while modern computers are around six orders of magnitude faster than hand computation.
It is common knowledge that a change by a single order of magnitude may produce
fundamentally new effects in most fields of technology; thus the change by six orders of
magnitude in computing have produced many fundamentally new effects that are being
simply ignored when the statement is made that computers can only do what we could do
ourselves if we wished to take the time.

This speed-up in computation time is often underestimated. It is stated that the
mere capability of being faster than a human doesn’t change anything fundamental
since, in principle, we can still do what the machine is doing. It is but a quantitative
change. But of course, this in principle argument is where the catch lies as indicated
by Hamming’s quote: in reality we simply cannot do what the machine is doing.
If one is really taking seriously the mathematical practice, then one must account
for the qualitative changes that are effected by this quantitative change, else, one
should neglect all such, basically, technological changes and one would end up
exactly where the philosophy of mathematical practice did not want to go, viz. a
largely dehistoricized mathematics which is not sensitive to external changes.

This speed-up of computations goes hand-in-hand with the fact that the objects
of computers are not the traditional infinitary and stable objects of mathematics, but
highly dynamic and finite processes: a computation is something that develops in
and takes time. As a consequence, the computation itself can never be completely
captured in the mathematical procedure to be computed and it is the task of the
programmer to somehow find a way to control the dynamic processes induced by
the program he/she writes: one must be able to write a program that will indeed do
what we want it to do. This problem was already understood by John von Neumann
who explicitly connected it to the time aspect of computations (von Neumann 1948,
pp. 2–3):

[C]ontemplate the prospect of locking twenty people for two years during which they would
be steadily performing computations. And you must give them such explicit instructions
at the time of incarceration that at the end of two years you could return and obtain the
correct result for your lengthy problem! This dramatizes the necessity for high planning,
foresight, and consideration of the logical nature of computation. This integration of logic
in the problem is a consequence of the high speed. [m.i.]



28 L. De Mol

This need for (logical) control over the behavior of the program is highly relevant
in the context of computer-assisted proofs like the four-color theorem, and, more
broadly, computer-assisted experimental mathematics. Usually one has thousands of
lines of code which makes it extremely hard to verify that the code is doing/will do
what it should do. This is the reason why it took for instance several years to review
the computer-assisted proof of the sphere packing problem by Thomas Hales. It
is also the reason why there is a growing need for formal proofs constructed with
the help of proof-assistants like HOL. However, to have a formal proof one first
needs a traditional proof. Furthermore, “[i]t is a large labor-intensive undertaking
to transform a traditional proof into a formal proof.” (Hales et al. 2010, p. 3). An
alternative strategy to increase the confidence in such computer-assisted results is
corroboration. This was for instance proposed by Brady who proved a certain result
in theoretical computer science with the help of the computer (Brady 1983, p. 662).

The fact that one needs to deal with highly dynamical processes also very often
implies the irreversibility of such processes (Margenstern 2012, p. 645):

Let us note that in our discrete time of computations, time is irreversible: it is very often
extremely difficult to run an algorithm backward. At the highest level of generality it is
impossible.

Such irreversibility introduces the arrow of time in the processes studied by means
of the computer and, as a consequence, also in those aspects of mathematics
that are studied with the help of the machine. In fact, it is this irreversibility in
computational processes that has given rise to fundamental problems that resulted in
new mathematical developments, for instance, the study of dynamical systems like
the quadratic iterator (f .xi / D axi1.1�xi�1/). Such studies historically originate in
the problem of error propagation during computations which became an important
problem with electronic computing: since one squeezes thousands of computational
steps into a feasible amount of time combined with the fact that computers are finite
machines, errors resulting from truncation become highly problematic (see e.g. von
Neumann 1948, pp. 3–4).

The irreversibility of computational is also reflected in the languages used to
write programs. The most basic example of this is the assignment usually written
as13:

var WD expr

A simple example of this is:

x WD xC 1

As explained by Margenstern (2012, p. 645), “the notation WD explicitly indicates
that what is on the left-hand side is not the same as what is on the right-hand side,

13Note that assignment is a typical feature of imperative languages. It is discouraged and sometimes
even forbidden in functional languages.



The Proof Is in the Process 29

and that there is a process, a consequence of which, after some time, is what we
call an [assignment].” Programming languages are full of these kind of notations
and, as such, introduce a notation which incorporates the processual character of
computation into computer-assisted mathematics.

Such highly dynamic and often irreversible processes also mostly have the prop-
erty of being unpredictable both theoretically and practically speaking. Hamming
describes this unpredictability as follows (Hamming 1965, p. 2):

One often hears the remark that computers can only do what they are told to do. True, but
that is like saying that, insofar as mathematics is deductive, once the postulates are given all
the rest is trivial. [T]he truth is that in moderately complex situations, such as the postulates
of geometry or a complicated program for a computer, it is not possible on a practical level
to foresee all of the consequences. Indeed, there is a known theorem that there can be no
program which will analyze a general program to tell how long it will run on a machine
without actually running the program.

The speed of the machine combined with the theoretical problem that one can often
not predict in advance when a program will halt, if at all, implies that we cannot
foresee the output. Hence, all one can do is wait and see.

This unpredictability is not just some theoretical problem or property. Indeed, it
is in fact this unpredictability that usually brings mathematicians to the computer:
because they cannot predict the outcome of a certain computational problem they
need to rely on the machine’s abilities. This often results in the need for developing
local programming strategies which do not always guarantee an outcome. Since
in such cases there is often the possibility of infinite programs (for instance, infinite
loops) the mathematician has to make certain decisions of when a certain “program”
should stop even if it is without outcome. Such decisions are informed guesses based
on previous exploratory work. In all of the cases I have studied I found instances
of such programs and these are often identified by the mathematicians themselves
as “heuristic”, “experimental” or “explorative”. To give just one example, Brady,
when working on his proof mentioned on p. 28 had to program the machine in such
a way that it was able to differentiate between different types of infinite loops in
the context of Turing machines. Such loop detection is a very difficult task since
it involves infinite processes. After several computer-assisted explorations of the
behavior of different Turing machines, Brady had identified two types of loops A

and B and discovered a property which allowed to tentatively but quickly classify
a given Turing machine as being a loop of type A, B or an unknown type. This
was programmed as a filter called BBFILT and was described by Brady as follows
(Brady 1983, p. 662):

[It] must be remembered that the filtering was a heuristic technique based upon experimental
observation.

This is also one of the reasons why he describes his “proof techniques, embodied in
programs [as] entirely heuristic” (id., p. 647)

Time and processes are an inherent part of MCI: the access to the mathematical
results is mediated by highly dynamical processes which introduce the problem
of control over and the irreversibility of computational process, reflected in the



30 L. De Mol

language used to communicate with the machine; the mathematician is confronted
with the unability to predict what will come and must therefore rely on “heuristic”
programming techniques and an external device to get his/her (tentative) answers.
These features are part of the practice of computer-assisted experimental mathemat-
ics. They not only add an important time dimension to mathematics but even help to
partially understand why mathematicians themselves often talk about “experimental
mathematics” in this context.

These time-related features are part of the interaction between the mathematician
and the computer and, as such, affect it. The fact that one has to wait and see during
the sequences of interactions with the machine shifts this interaction further in the
direction of a human-human interaction.

Dijkstra, a famous computer pioneer, in discussing the need for a formal seman-
tics of programming languages, once explained the need for human conversation as
a means to resolve semantical issues arising from human communication (Dijkstra
1961, p. 8):

[W]e only know what we have said, when we have seen our listener reacted to it; we only
know what the things we are going to say will mean in as far as we can predict his reaction.
However, we only know other people up to a (low!) point and in human communication
every message is therefore to a high degree a trial, a gamble to see whether the other will
understand us as we had hoped. As we do not master the behavior of the other, we badly
need in speaking the feed back, known as ‘conversation’.

This situation also applies to a certain extent in the context of experimental
computer-assisted mathematics: the humanly unpredictable processes of the com-
puter combined with the problem of verifying that the program does what it
is supposed to do also introduces uncertainty about the meaning of our own
programs.14 This is exactly why, during such interactions, we cannot simply
downplay the replies by the machine as mere results of a computation which we
could also have executed in principle. Even though we can have more control over
the behavior of the machine than over that of our fellow human beings, we do not
completely master it and as such we need its feedback not only to understand our
programs but also to determine our own replies-as-programs to the machine. This is
also part of the reason why machine-assisted proofs are presented in a very different
manner/style than traditional proofs: since the proof results from a process of MCI
in which the work of the computer is not only unsurveyable but also unpredictable
and not completely controllable, the proof-as-communicated reflects this processual
character of the practice that resulted in the proof. In such published proofs one
indeed does not get all the details. But one does get the programs that result in it, a
survey of the general structure of the proof, the strategies developed to avoid errors,
etc. As such, one sees that the (communicated) proof is not some stable object but a
constructive process.

14To be clear, Dijkstra would not have agreed on this point: according to him “[W]e can fully
master [. . . ] the way in which the computer reacts” But see in this context the quote by Hamming
on p. 29.



The Proof Is in the Process 31

3 Discussion

What is the impact of the computer on mathematics? From a philosophical
meta-perspective the answer seems to be that nothing fundamentally changes to
mathematics itself since, in principle, the machine can do nothing that we cannot do
ourselves and it merely does what it is told to do. It is admitted that the computer
does pose some new challenges for traditional philosophical problems but this
merely shows that we are in need of a better philosophy of mathematics that can
deal with these challenges. A serious philosophy of computer-assisted mathematics
however is considered to be unnecessary.

Even though such views are perfectly arguable from a meta-perspective, they run
the risk of underestimating the effects of the computer on mathematics in reality
and on its philosophy which is itself rooted in the history of mathematics and hence
sensitive to change. I am strongly convinced that it would be a missed chance for the
philosophy of if it would not even make the effort of investigating more seriously
practices of computer-assisted mathematics for their own sake (and less for existing
philosophical debates). To this end, I have proposed an approach which takes the
machine seriously as a medium. Such view implies that we do need a philosophy of
the computer (in mathematics). Within such an approach, one conducts research
from the bottom-up in order to trace down characteristics of computer-assisted
practices which are specific to the use of the machine.

In this paper I have discussed three such characteristics: MCI, the steady process
of internalization of knowledge and techniques into the machine and the significance
of time and processes within computer-assisted practices. One could of course argue
against this that one already has internalization of knowledge before the rise of the
computer in another form, viz. by way of writing and the printed press. Similarly,
one could say that since computations were already important to mathematics before
the digital computer this processual nature was already part of mathematics long
before the rise of the digital computer. And indeed, the claim of this paper is
certainly not that there is some sudden discontinuity from what was before. What
I do claim here is that these two further characteristics, as being aspects of the
mathematician-computer interaction, are seriously affected by the machine and as
such gain a new meaning resulting in an effect on mathematics proper. Viz., the
machine has not resulted in an immediate and sudden change, but it is steadily
changing features that are inherent to the practice of the mathematician, knowledge
transfer, communication, collaboration, mathematical notation, etc. are changing
due to the use of the computer.

Two important consequences for mathematics follow from the present discussion
and show that we are in need of a better understanding of practices of CaM.
Firstly, the computer introduces a new social situation into mathematics: the
interaction between digital machines and mathematicians. It is striking that, on
the basis of the analyses from Sects. 2.1–2.3, this interaction is shifted into the
direction of communication and even collaboration between human mathematicians.
Evidently, the two forms of interaction shouldn’t be identified because of the active



32 L. De Mol

involvement of a non-human. However, it does show that one cannot simply discard
the machine as being just another tool and that further research into comparing
these two modes of interaction is necessary. One obvious approach for such a
comparison might be to build formal models which allow a more detailed and exact
comparison.15

Secondly, computer-assisted mathematics explicitly and abundantly introduces
time into the practice of the mathematician. John von Neumann, who was very keen
on using digital machinery to study problems of applied mathematics, once stated
that as mathematics (von Neumann 1947):

travels far from its empirical source, or still more, if it is a second and third generation only
indirectly inspired by ideas coming from ‘reality’, it is beset with very grave dangers. It
becomes more and more purely aestheticizing, more and more purely l’art pour l’art. [. . . ]
there is a grave danger that the subject will develop along the line of least resistance, that
the stream, so far from its source, will separate into a multitude of insignificant branches,
and that the discipline will become a disorganized mass of details and complexities. In other
words, at a great distance from its empirical source, or after much ‘abstract’ inbreeding, a
mathematical subject is in danger of degeneration [W]henever this stage is reached, the only
remedy seems to me to be the rejuvenating return to the source: the reinjection of more or
less directly empirical ideas. I am convinced that this was a necessary condition to conserve
the freshness and the vitality of the subject and that this will remain equally true in the
future.

Far more than reinjecting empirical ideas into mathematics, perhaps the computer
is reinjecting time into a discipline that has long been regarded as being above and
without time.

References

Allo, P., J.-P. van Bendegem, and B. van Kerkhove. 2013. Mathematical arguments and distributed
knowledge. In The argument of mathematics, ed. A. Aberdein and I.J. Dove, 339–360. Berlin:
Springer.

Avigad, J. 2008. Computers in mathematical inquiry. In Philosophy and the many faces of science,
ed. P. Mancosu, 302–316. Oxford.

Baker, A. 2008. Experimental mathematics. Erkenntnis 68: 331–344.
Brady, A.H. 1983. The determination of the value of Radó’s noncomputable function � for four-

state turing machines. Mathematics of Computation 40: 647–665.
Bullynck, M., and L. De Mol. 2010. Setting-up early computer programs: D. H. Lehmer’s ENIAC

computation. Archive for Mathematical Logic 49: 123–146.
Carlé, M., and A. Goergaki. 2013. Re-configuring ancient Greek music theory through technology:

An adaptive electronic tuning system on a reconstructed ancient Greek barbiton. In La musique
et ses instruments [Music and its instruments], ed. M. Castellengo and H. Genevois, 331–380.
Paris: Editions Delatour.

Daylight, E. 2012. The dawn of software engineering: From turing to Dijkstra. Heverlee/Belgium:
Lonely Scholar.

15See Allo et al. (2013) where epistemic logics are used to study processes of finding proofs by
communities of mathematicians.



The Proof Is in the Process 33

De Mol, L. 2011. Looking for busy beavers. A socio-philosophical study of a computer-assisted
proof. In Foundations of the formal sciences VII. Bringing together philosophy and sociology
of science, Studies in logic, vol. 32, ed. K. Francois, B. Löwe, Th. Müller, and B. van Kerkhove,
61–90. London: College publications.

De Mol, L., M. Carlé, and M. Bullynck. in press. Haskell before Haskell: An alternative lesson in
practical logics of the ENIAC. Journal of Logic and Computation. doi:10.1093/logcom/exs072.

Dijkstra, E.W. 1961. On the design of machine independent programming languages. Report
MR34, Stichting Mathematisch Centrum, Amsterdam.

Hales, Th., J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller. 2010. A revision
of the proof of the Kepler conjecture. Discrete and Computational Geometry 44: 1–34.

Hamming, R.W. 1965. Impact of computers. The American Mathematical Monthly 72: 1–7.
Hopper, F.M. 1981. Keynote address. In History of programming languages, ed. R.L. Wexelblat,

7–20. New York: Academic.
Lehmer, D.H. 1966. Mechanized mathematics. Bulletin of the American Mathematical Society 72:

739–750.
Lehmer, D.H. 1974. The influence of computing on mathematical research and education. In

Proceedings of symposia in applied mathematics, vol. 20, ed. J. Lasalle, 3–12. Providence:
American Mathematical Society.

Mandelbrot, B. 1953. Contribution à la théorie mathématiques des jeux de communication. Paris:
Laboratoires d’électroniques et de physique appliquées.

Margenstern, M. 2012. Comment. In A computable universe, ed. H. Zenil, 645–646. Singapore:
Worldscientific.

Reitwiesner, G.W. 1950. An ENIAC determination of � and e to more than 2000 decimal places.
Mathematical Tables and Other Aids to Computation 4: 11–15.

Van Kerkhove, Bart, and Jean Paul van Bendegem. 2008. Pi on earth, or mathematics in the real
world. Erkenntnis 68(3): 421–435.

von Neumann, J. 1947. The mathematician. In The works of the mind, ed. R.B. Heywood, 180–196.
Chicago: University of Chicago Press.

von Neumann, J. 1948. Electronic methods of computation. Bulletin of the American Academy of
Arts and Sciences 1: 2–4.


	The Proof Is in the Process: A Preamble for a Philosophy of Computer-Assisted Mathematics
	1 Introduction
	2 Human-Computer Interactions, Time-Sensitivity and Internalization
	2.1 Mathematician-Computer Interactions
	2.2 Internalization
	2.3 Time and Finite Processes

	3 Discussion
	References


