
Tight Bounds for the Advice Complexity

of the Online Minimum Steiner Tree Problem�

Kfir Barhum

Department of Computer Science, ETH Zurich, Switzerland
barhumk@inf.ethz.ch

Abstract. In this work, we study the advice complexity of the online
minimum Steiner tree problem (ST). Given a (known) graph G = (V,E)
endowed with a weight function on the edges, a set of N terminals are
revealed in a step-wise manner. The algorithm maintains a sub-graph
of chosen edges, and at each stage, chooses more edges from G to its
solution such that the terminals revealed so far are connected in it. In
the standard online setting this problem was studied and a tight bound
of O(log(N)) on its competitive ratio is known. Here, we study the power
of non-uniform advice and fully characterize it. As a first result we show
that using q · log(|V |) advice bits, where 0 ≤ q ≤ N − 1, it is possible
to obtain an algorithm with a competitive ratio of O(log(N/q). We then
show a matching lower bound for all values of q, and thus settle the
question.
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1 Introduction

Online algorithms are a realistic model for making decisions under uncertainty.
As opposed to classical computational problems, in the online setting the full
input to the problem is not known in advance, but is revealed in a step-wise man-
ner, and after each step the algorithm has to commit to a part of its solution.
The competitive analysis of an algorithm, as introduced first in [1], measures the
worst-case performance of the algorithm compared with the optimal offline solu-
tion to the respective optimal offline (classical) computational problem. We refer
to [2] for a detailed introduction and survey of many classical online problems.

In recent years, motivated, among others, by the fact that for some problems
(e.g. Knapsack [3]) no deterministic algorithm can admit any competitive ratio,
the natural question, “how much information about the future is needed in
order to produce a competitive solution?”, was posed by Dobrev et al. [4] and
Böckenhauer et al. [5], and independently by Emek et al. [6]. In this work we use
the framework of Hromkovic et al. [7], that unifies the models and allows posing
the question in its full generality: “What is the exact power of advice bits for
some specific online problem?”.
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In online computation with advice, the algorithm’s machine has access to a
special infinite advice string φ, produced by an oracle that has access to the
entire input. The general goal is to try to characterize the dependence of the
achievable competitive ratio to the maximal number of advice bits read from
the advice tape.

In this work, we focus on the advice complexity of the online version of the
well-studied minimum Steiner tree problem. In the offline setting, an instance
I to ST is a graph G = (V,E) endowed with a weight function on the edges
w : E → R

+ and a set T ⊆ V of vertices called terminals. A subgraph σ of G is
a solution to the instance if every pair of terminals is connected in it. The cost
of a solution σ, denoted cost(σ), is the sum of the weights of the edges in it, and
a solution is optimal if there exists no other solution with smaller cost.

Following previous work of Imase and Waxman [8], we consider the following
natural online version of the minimum Steiner tree problem. Given a (known)
weighted graphG, the terminals appear in a step-wise manner, and the algorithm
maintains a subset of the edges as its solution. Upon receiving a new terminal, the
algorithm extends the current solution so that the new terminal is connected to
the old ones. The entire graph is known in advance, and only the specific subset
of terminal vertices (and an ordering on it) is part of the instance.

More formally, given a ground graph G with a weight function w, an instance
to ST(G,w) is an ordered list of vertices called terminals [v1, v2, . . . , vN ], where
vi ∈ V . At time step i, the algorithm receives terminal vi and extends its current
solution by choosing additional edges from G. The augmented solution computed
by the algorithm by the end of step i is a solution to the offline problem on G
with {v1, . . . , vi}. As in the offline case, the cost of the solution is the total weight
of edges chosen by the algorithm. An instance for ST(G,w) with N vertices is
encoded canonically as a binary string of length N · �log(|V |)�.

An online algorithm with advice for ST(G,w) is strictly c-competitive using b
advice bits if, for every instance, there exists an advice string φ such that the
total weight of edges chosen by the algorithm during its computation with φ
is at most c times the weight of the edges of an optimal solution to the offline
problem, and at most b bits are read from φ. In general, c = c(·) and b = b(·)
are function of some parameter of the input, typically the input length.

1.1 Our Contribution

We obtain a complete and exact characterization of the power of advice bits for
the online Steiner tree problem.

In Section 2, we first give a variant to the greedy algorithm of [9] (without
advice), which is O(log(N))-competitive on an input with N terminals, and then
show that our modified algorithm, which we call terminal-greedy algorithm, is
O(log(Nq ))-competitive, utilizing an advice of size q · log(|V |). Informally, the
advice we employ is a description of the q most expensive terminals. Namely,
the q terminals for which the terminal-greedy algorithm added the largest total
weight of edges during its execution without advice.
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In Section 3, we complement our algorithm with a matching lower bound, for
the full range of advice bits.

We revisit the construction of [8], that shows a matching lower bound of
Ω(log(N)) for the competitive ratio in the standard online setting (without
advice). Inspired by their construction, we introduce Diamond graphs and study
their properties. The construction they use can be viewed as a degenerated
diamond graph. Our analysis takes a new approach using probabilistic arguments
and requires a more general class of graphs in order to handle algorithms that
use advice.

For every q s.t. 0 ≤ q ≤ N − 1 and an online algorithm taking advice of size
q · log(|V |), we construct a different instance distribution on a suitable Diamond
graph. We then employ the mechanism developed earlier in order to show that
for this graph there exists an instance for which the algorithm is Ω(log(Nq ))-
competitive. Our lower bound here holds already for the unweighted case, where
w(e) = 1 for every e ∈ E.

We observe (details are omitted in this extended abstract) that a partial
result of a matching lower bound for some values of advice size q log(|V |) can be
obtained using the original construction presented in [8], albeit using a different
analysis. We emphasize that our new construction is essential for the proof of
a matching lower bound for the full range 0 ≤ q ≤ N − 1 of online algorithms
using q · log(|V |) advice bits.

1.2 Related Work

Imase and Waxman [8] were the first to study the Steiner Tree problem in the
online setting and showed a tight bound of Θ(log(N)) for its competitive-ratio.
Alon and Azar [9] show that almost the same lower bound holds also for the
planar case, where the vertices are points in the Euclidean plane. Berman and
Coulston [10] and Awerbuch et al. [11] study a generalized version of the problem
and related problems. More recently, Garg et al. [12] considered a stochastic
version of the online problem.

1.3 Some Notation

For two understood objects a and b, (i.e., instances, paths, etc.) we denote their
concatenation by a ◦ b. All logarithms are to base 2. For a non-empty set S we
denote by x

r← S choosing an element x uniformly at random from S. For a

positive natural number n, we denote [n]
def
= {1, . . . , n}. For a graph G = (V,E)

and two vertices s, t ∈ V , we denote by s � t a simple path from s to t in G.

2 The Terminal-Greedy Algorithm

In this section, we present an O(log(Nq ))-competitive algorithm that utilizes

q′ def
= q · log(|V |) advice bits, for any q ∈ [N − 1].
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Observe that an advice of size (N − 1) log(|V |) is always sufficient in order
to obtain an optimal solution, since the algorithm is required to make its first
decision only upon receiving the second vertex. Therefore, one could canonically
encode the rest of the input using (N − 1) log(|V |) bits.

Recall that the online greedy algorithm that connects the current termi-
nal vi using the shortest weighted path to a vertex from the current solution
is O(log(N))-competitive. Our algorithm is obtained by a modification of the
greedy algorithm. Whereas the greedy algorithm connects the next vertex to the
current solution by using the shortest path to any vertex of the current solution,
the terminal-greedy algorithm connects a new vertex using a shortest path to one
of the terminals of the current input, ignoring possible shorter paths connecting
to some non-terminal vertices already chosen by the solution.

The following lemma, whose proof is omitted in this extend abstract, was
used in the proof of [9] for the standard greedy algorithm and still holds for our
terminal-greedy algorithm.

Lemma 1. Let OptVal denote the value of the optimal solution to an instance.
Let k ∈ N. The number of steps in which the terminal-greedy algorithm (without
advice) adds edges of total weight more than 2 ·OptVal/k is at most k − 1.

The terminal-greedy algorithm utilizes its advice as a list of q vertices from the
instance. Intuitively, the vertices given as advice are the q most expensive ones
for the input when given in an online fashion (without advice). The challenge is
to show that no further costs are incurred by the algorithm using this approach.

Next, we describe the terminal-greedy algorithm with advice of size q·log(|V |):1
When the algorithm receives its first terminal vertex v1 from the instance it com-
putes the optimal (offline) Steiner Tree for the terminal set that consists of the
q vertices given as advice along with v1. Then, it sets the computed tree for this
terminal set (which consists of q + 1 vertices) as the current solution.

For i ≥ 2, upon receiving a terminal vi, the algorithm proceeds as follows: If
vi has already appeared in the advice, it does nothing. Otherwise, the algorithm
computes the shortest path (in G) from vi to all the terminals that have previ-
ously appeared as part of the instance (v1, . . . , vi−1) and connects vi using the
shortest path among those i− 1 paths (and to the lexicographically first in case
that there is more than one).

Theorem 1. Let 1 ≤ q ≤ N −1. The terminal-greedy algorithm with q · log(|V |)
advice bits is O(log(Nq ))-competitive.

Proof. Using induction one shows that, in every step, the chosen subgraph is a
solution to the current instance. The rest of the proof is concerned with showing
the bound on the cost of the algorithm.

1 Fomally, following the model of Hromkovic et al. [7] the advice string is infinite, and
therefore another 2 log(|V |) advice bits are given at the beginning of the input, en-
coding the value q. In our setting this can be ignored, incurring an additive constant
imprecision of at most 1.
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We show that, for every q > 0, there exists a set of size q such that, for every
instance with N terminals with optimal (offline) solution of value OptVal, the
solution computed by the algorithm has cost at most O(OptVal · log(Nq )).

For any vi ∈ {v1, . . . , vN} we denote by c(vi) the cost incurred when adding
vertex vi according to the terminal-greedy algorithm (without advice). That is,
c(vi) is the sum of the weights of all the edges chosen at step i in order to
connect vi to the solution. Let us sort the vertices of the instance according to
their costs. That is, let [v′1, v′2, . . . , v′N ] be the sorted permutation of [v1, . . . , vN ],
where c(v′1) ≥ c(v′2) ≥ · · · ≥ c(v′N ).

We claim that the terminal-greedy algorithmwith advice [v′1, . . . , v
′
q] is log(

N
q )-

competitive. Indeed, the tree computed by the algorithm after v1 is received has
cost at most OptVal, as the optimal tree is one possible solution to it. Now, when-
ever a vertex vi is received, it behaves exactly

2 as the greedy-terminal algorithm
without advice would, and therefore its cost for this vertex is c(vi).

By Lemma 1, we know that for every i ∈ [n] it holds that c(v′i) ≤ (2 ·OptVal)/i
as otherwise, since the vi’s are sorted, we get i vertices that each incurs a cost of
more than (2 ·OptVal)/i. Since c(v1) = c(v′n) = 0, the total cost of the algorithm
is bounded by

OptVal+
N−1∑

i=q+1

c(v′i) ≤ OptVal+ 2 · OptVal
N−1∑

i=q+1

1

i

= OptVal

(
1 + 2(

N−1∑

i=1

1

i
−

q∑

i=1

1

i
)

)

< OptVal

(
1 +

2

log(e)
· log(N − 1

q
) +

1

q

)
,

where in the last inequality we used the fact that
∑k

i=1
1
i = ln(k)+γ+ 1

2k ±o( 1k ),
where γ ≈ 0.5772 is the Euler-Mascheroni constant. Finally, recall that a subset
of the vertices of size q can be described using q ·log(|V |) bits. The bound follows.

�

3 A Matching Lower Bound

In this section we show a lower bound matching the competitive ratio guarantee
of the algorithm presented in Section 2. As mentioned, our construction holds
already for the unweighted case where w(e) = 1, thus we omit w from our
notation.

3.1 Edge-Efficient Algorithms

It will be useful for us to analyze the performance of algorithms that enjoy a
canonical structure and have some guarantees on their behavior. We identify such

2 Note that in general this does not hold for the ’standard’ greedy-algorithm.
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a class of algorithms next. An online algorithm A for ST is edge-efficient if, for
every instance I, when removing any edge from the solution A(I), the resulting
graph is not a solution. That is, removing any edge from A(I) disconnects two
terminals v, v′ ∈ I.

The next lemma shows that edge-efficient algorithms are as powerful as general
algorithms and therefore we can focus our analysis on them. The proof of the
following lemma is omitted in this extend abstract.

Lemma 2. For every deterministic online algorithm A for ST there exists an
edge-efficient algorithm A′ such that, for every instance I, we have cost(A′(I)) ≤
cost(A(I)).

3.2 Diamond Graphs and Our Instance Distribution

For vertices s and t and a list of natural numbers [�1, �2, . . . , �n], we define the
diamond graph of level n on vertices s and t, denoted Dn[�1, . . . , �n](s, t), recur-
sively as follows:

1. The graph D0[ ](s, t) (of level n = 0 with an empty list) consists of the
vertices s and t and the single edge (s, t).

2. GivenG(s′, t′) def
= Dn[�1, . . . , �n](s

′, t′), a diamond graph of level n on vertices
s′, t′, the graph Dn+1[z, �1, �2, . . . , �n](s, t) is constructed as follows: We start
with the vertices: s, t and m1, . . . ,mz. Next, we construct the following 2z
copies of G(s′, t′): G(s,m1), . . . , G(s,mz) and G(m1, t), . . . , G(mz, t), where
G(x, y) is a copy of the graph G(s′, t′), where the vertices s′ and t′ are
identified with x and y. Finally, the resulting graph is the union of the 2z
diamond graphs G(s,m1), . . . , G(s,mz), G(m1, t), . . . , G(mz , t).

We call the parameter �i the width of level i of the graph. and the vertices
m1, . . . ,m�1 the middle vertices of Dn[�1, . . . , �n](s, t). Note that the graphs in
the union are almost disjoint, that is, any two of them share at most one vertex
(and no edges).

For a fixed n ∈ N our instance distribution generates simultaneously an in-
stance I that contains N + 1 = 2n + 1 terminals, and a path P from s to t
of length N = 2n, which is an optimal solution to it.3 The first two vertices
are always s and t, and vertices along the path are chosen level by level, where
choosing the vertices of level i+1 can be thought of as a refinement of the path
along the vertices of level i. The idea is that the algorithm has to connect all the
level-i vertices before level-(i + 1) vertices are revealed. Formally, the instance
of ST(Dn[�1, . . . , �n](s, t)) is generated according to Process 1.

The following propositions follow by simple induction and the definitions of
Dn[�1, . . . , �n](s, t), GenerateInstance and GeneratePath.

Proposition 1. The graph Dn[�1, . . . , �n](s, t) contains 2n ·∏n
i=1 �i edges.

3 For simplicity of presentation, we use an instance of N + 1 instead of N terminals.
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Fig. 1. Diamond Graphs

Process 1. GenerateInstance
Input: A graph Dn[�1, . . . , �n](s, t)
Output: An instance I of ST(Dn[�1, . . . , �n](s, t))
1: I ← [s] � Every instance starts with the vertex s
2: I ← I ◦ [t] � followed by the vertex t.
3: P ← GeneratePath(Dn[�1, . . . , �n](s, t))
4:
5: procedure GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v))

6: if k = 0 then
7: return e = (u, v)
8: else
9: Choose x

r← {m1, . . . ,m�′1} � m1, . . . ,m�′1 are the middle vertices of

10: I ← I ◦ [x] � Dk[�
′
1, . . . , �

′
k](u, v)

11: P1 ← GeneratePath(Dk−1[�
′
2, . . . , �

′
k](u, x))

12: P2 ← GeneratePath(Dk−1[�
′
2, . . . , �

′
k](x, v))

13: return P1 ◦ P2

14: end if
15: end procedure
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Proposition 2. Let n ≥ 1. A simple path s � t on Dn[�1, . . . , �n](s, t) is of the
form s � x � t for some x ∈ {m1, . . . ,m�1} and contains exactly 2n edges.

Proposition 3. The path P computed during the execution of
GenerateInstance(Dn[�1, . . . , �n](s, t)) is a solution to the generated instance
that contains exactly 2n edges.

Proposition 4. During the run of GeneratePath(Dk[�
′
1, . . . , �

′
k](u, v)), when

the algorithm adds a vertex x as the next vertex of the instance I (Line 10), both
u and v have already appeared in I and no other vertex from Dk[�

′
1, . . . , �

′
k](u, v)

is contained in I.
Lemma 3. Consider an execution of GenerateInstance(Dn[�1, . . . , �n](s, t)),
and let A be an edge-efficient algorithm. The number of edges added to the so-
lution by A during every call to GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) is at least

Wk
def
=

∑k
i=1

(
2k

2i

∑2i−1

j=1 Xi,j

)
, where the Xi,j’s are independent Bernoulli ran-

dom variables with Pr[Xi,j = 0] = 1/�′i = 1− Pr[Xi,j = 1].

Before proving the lemma, we prove the following proposition on the struc-
ture of the current solution restricted to the subgraph Dk[�

′
1, . . . , �

′
k](u, v) when

GeneratePath(u, v) is called.

Proposition 5. Let k ∈ {1, . . . , n} and let A be an edge-efficient algorithm.
Consider an execution of GeneratePath(Dn[�1, . . . , �n](s, t)). Whenever a call
GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) is made, either (1) the current solution

chosen by A restricted to the subgraph Dk[�
′
1, . . . , �

′
k](u, v) contains no edges, or,

(2) Dk[�
′
1, . . . , �

′
k](u, v) contains a simple path of the form u � y � v for some

y ∈ {m1, . . . ,m�′1}, where m1, . . . ,m�′1 are the middle vertices Dk[�
′
1, . . . , �

′
k](u, v),

and no other edges.

Proof. By Proposition 4, we know that the vertices u and v have already ap-
peared in the instance, and therefore they are connected in the current solution,
and, in particular, by some simple path u � v. Consider the first edge (u, z) of
this path. If z is contained in Dk[�

′
1, . . . , �

′
k](u, v), then, since the only way to

reach a vertex outside of Dk[�
′
1, . . . , �

′
k](u, v) is through the vertices u and v, the

entire path is contained in Dk[�
′
1, . . . , �

′
k](u, v). Conversely, if z is not contained

in Dk[�
′
1, . . . , �

′
k](u, v), by the same argument, it follows that the path u � v

does not contain any inner vertex of Dk[�
′
1, . . . , �

′
k](u, v).

We argue that in both cases no other edges of the current solution are incident
to Dk[�

′
1, . . . , �

′
k](u, v). Assume the contrary, and let e ∈ Dk[�

′
1, . . . , �

′
k](u, v) be

such an edge (not in u � v in the first case and any edge in Dk[�
′
1, . . . , �

′
k](u, v)

in the second case).
Observe that, since e is an internal edge of Dk[�

′
1, . . . , �

′
k](u, v) not on the path

u � v and since by Proposition 4 at this point no other internal vertex is chosen
to the current instance, the vertices of the current instance remain connected
after removing e. This contradicts the edge-efficiency property of the current
solution chosen by A. �
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Proof (of Lemma 3). We use induction on k, the parameter of the diamond
subgraph. For k = 0, the claim holds trivially since W0 = 0 and at least zero
edges are added. Let k > 0, and assume that the claim holds for all k′ < k.
Let GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) be a call made during the execution of

GenerateInstance(Dn[�1, . . . , �n](s, t)). By Proposition 5, the solution chosen
limited to Dk[�

′
1, . . . , �

′
k](u, v) either (1) has no edges, or, (2) has exactly one

simple path between u and v, which by Proposition 2 has the form u � y � v,
for y ∈ {m1, . . . ,m�′1}. Without loss of generality, we assume that the path is
of the form u � m1 � v. In the first case, after lines 9 and 10, the algorithm
connects the vertex x to the graph, which must be via the vertex u or v, in which

case 2k

2 edges are added. In the second case, with probability 1− 1/�′1 the vertex
x is chosen from m2, . . . ,m�′ , in which case as before, it must be connected using

a path from u or v, which adds 2k

2 edges.
We conclude that the number of edges added to the solution due to the

choice of the vertex x is at least 2k

2 X1,1, where X1,1 is distributed according
to Pr[X1,1 = 0] = 1/�′1 = 1− Pr[X1,1 = 1].

Additionally, using the inductive hypothesis, the algorithm adds W ′
k−1 =

∑k−1
i=1

(
2k−1

2i

∑2i−1

j=1 X ′
i,j

)
and W ′′

k−1 =
∑k−1

i=1

(
2k−1

2i

∑2i−1

j=1 X ′′
i,j

)
edges during the

executions of GeneratePath(Dk−1[�
′
2, . . . , �

′
k](s, x)) and

GeneratePath(Dk−1[�
′
2, . . . , �

′
k](x, t)), respectively, where X ′

i,j and X ′′
i,j are

Bernoulli random variables distributed according to Pr[X ′
i,j = 0] = Pr[X ′′

i,j =
0] = 1/�′i+1 = 1− Pr[X ′′

i,j = 1] = 1− Pr[X ′
i,j = 1].

Moreover, since the random choices of GeneratePath are independent, we

have that the Bernoulli random variables are independent. Setting Xi+1,j
def
=

X ′
i,j and Xi+1,2i−1+j

def
= X ′′

i,j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2i−1}, we
obtain that during the execution of GeneratePath the algorithm adds at least
2k

2 X1,1 + W ′
k−1 + W ′′

k−1 =
∑k

i=1

(
2k

2i

∑2i−1

j=1 Xi,j

)
edges to the solution. The

lemma is proved. �

Corollary 1. Any deterministic algorithm A for ST, when given an instance
generated by GeneratePath(Dn[�1, . . . , �n](s, t)), outputs a solution that con-
tains at least

log(N)∑

i=1

⎛

⎝N

2i

2i−1∑

j=1

Xi,j

⎞

⎠

edges, where the Xi,j’s are as in Lemma 3.

Proof. By Proposition 2, we may assume that A is an edge-efficient algorithm.
The corollary follows by Lemma 3. �

We refer to an edge added due to some Xi,j = 1 as an edge of level i and
say that in this case the algorithm made a wrong choice on Xi,j . Indeed, in this
case it was possible to connect some vertices u and v through a middle vertex
m such that the algorithm would not have had to add edges due to Xi,j .
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3.3 Deriving the Lower Bound

In this section, we show that for every algorithm with advice size q · log(|V |) the
terminal-greedy algorithm is best possible.

The input distribution we use is a diamond graph with parameters that de-
pend on the advice length of the specific algorithm it seeks to fail. Consider an
algorithm taking N · 2−j(N) · log(|V |) advice bits, where log(N) ≥ j(N) ≥ 0.

We can assume that log(N) ≥ j(N) > 10 and, furthermore, that j(N) is an
even integer number. The first assumption is trivial to satisfy, since every algo-
rithm is at most strictly 1-competitive and so for a constant j(N) the asymptotic
bound already holds. The second assumption incurs an additive term of 2 (recall
that the bound we show is logarithmic). Therefore, both assumptions are made
without loss of generality.

Set j′(N)
def
= j(N)

2 and consider Dn[�1, . . . , �n](s, t), the diamond graph with
log(N) levels, where the first log(N) − j′(N) levels are of width 2 and the
last j′(N) levels are of width N2. That is, �1 = · · · = �log(N)−j′(N) = 2 and
�log(N)−j′(N)+1 = · · · = �log(N) = N2. For the rest of this section we refer to this
graph as G.

We can show that for every online algorithm with q · log(|V |) advice bits there
exists an input on which it does not perform better than Ω(log(Nq )) compared
to an optimal offline solution:

Theorem 2. Let A be an online algorithm for ST taking q′ def
= q · log(|V |) advice

bits, where q
def
= N · 2−j(N) and log(N) ≥ j(N) ≥ 0. Then A has a competitive

ratio of at least Ω(log(Nq )).

We present an overview of the proof. Recall that for a fixed advice string
φ ∈ {0, 1}q′, the algorithmA “hard-wired” with φ (denoted Aφ) is a deterministic
online algorithm and therefore Corollary 1 establishes that on a random instance
of GenerateInstance(Dn[�1, . . . , �n](s, t)) it chooses at least Wn edges.

We show that, a solution for an instance chosen by GenerateInstance
contains, with very high probability, roughly N · log(Nq ) edges, and then use

the union bound to show that there exists an instance that makes all of the 2q
′

algorithms choose this number of edges.
Using the machinery developed for general diamond graphs and the properties

of GenerateInstance we show that, by our choice of j′(N), it holds that
log(|V |) is not too large, and for each of the last j′(N) levels of the graph,
a fixed deterministic algorithm chooses a linear (in N) number of edges with
probability roughly 2−q′ = 2−q·log(|V |).

Finally, we use the probabilistic method and show that there exists an instance
on G, such that every Aφ chooses many edges on every level τ of the last j′(N)
levels in G.

Proof. Using Proposition 1 we have that the number of edges in G is 2n ·
2(n−j′(N)) · (N2)j

′(N) < 4n · (N2)j
′(N). Since the number of vertices in a graph is

at most twice the number of its edges, we obtain that |V |, the number of vertices
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in G, is at most 2 · 4n · (N2)j
′(N), and therefore log(|V |) < 4 · log(N) · j′(N).

Therefore, we can bound the advice size by

q′ = 2n−j(N) ·log(|V |) < 2n−j(N) ·4·log(N)·j′(N) = 4·2n−2·j′(N) ·n·j′(N) . (1)

By Lemma 3 and Corollary 1, for every level τ , where n− j′(N) < τ ≤ n, the
probability that an edge-efficient deterministic algorithm is correct on at least
2τ−1

4 of its choices for level τ (i.e., at least this number of X ′
τ,js are 0) can be

computed as

Pr

[
∃S ⊂ [

2τ−1
]
: |S| = 2τ−1

4
∧ ∀p ∈ S : Xτ,p = 0

]
<

(
2τ−1

2τ−1

4

)
·
(

1

N2

) 2τ−1

4

≤ (
2τ−1

) 2τ−1

4 ·
(

1

N2

) 2τ−1

4

=

(
2τ−1

22n

) 2τ−1

4

≤
(

1

2n

) 2τ−1

4

= 2
−
(

n·2τ−1

4

)

≤ 2
−
(

n·2n−j′(N)

4

)

.

Next we apply the union bound twice: The probability p that there exists a
level n− j′(N) < τ ≤ n for which one of the 2q

′
deterministic algorithms makes

more than 2τ−1

4 correct choices can be bounded as follows:

p < 2q
′ · j′(N) · 2−

(
n·2n−j′(N)

4

)

(2)

< 2

(
4·2(n−2·j′(N))·n·j′(N)

)
· 2log(j′(N)) · 2−

(
n·2n−j′(N)

4

)

(3)

< 2

(
5·2(n−2·j′(N))·n·j′(N)

)
· 2−

(
n·2n−j′(N)

4

)

(4)

= 2

((
n·2n−j′(N)

)(
5·2−j′(N)·j′(N)− 1

4

))
< 1 (5)

In turn, observe that this implies that there exists a fixed instance I ′ such
that the algorithm A, for every choice of advice of length q′, and for every level τ

in the range, makes at least 3·2τ−1

4 incorrect choices, each of which results in an

addition of N
2τ edges by the algorithm. Therefore, for this instance, the algorithm

chooses a solution that contains at least

log(N)∑

τ=log(N)−j′(N)+1

N

2τ
· 3 · 2

τ−1

4
=

3

8
·N · j′(N) ∈ Ω(N · j(N)) = Ω

(
N · log(N

q
)

)
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edges.
On the other hand, recall that, by Proposition 3, since I ′ is just one of the

possible instances generated by GenerateInstance, there exists a solution
that consists of N edges. The lower bound of Ω(log(Nq )) on the competitive
ratio follows. �
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