
Agile Requirements Engineering: A Research
Perspective

Jerzy Nawrocki�, Mirosław Ochodek, Jakub Jurkiewicz, Sylwia Kopczyńska,
and Bartosz Alchimowicz

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 2, 60-965 Poznań, Poland

{Jerzy.Nawrocki,Miroslaw.Ochodek,Jakub.Jurkiewicz,Sylwia.Kopczynska,
Bartosz.Alchimowicz}@cs.put.poznan.pl

Abstract. Agile methodologies have impact not only on coding, but also
on requirements engineering activities. In the paper agile requirements
engineering is examined from the research point of view. It is claimed
that use cases are a better tool for requirements description than user
stories as they allow zooming through abstraction levels, can be reused
for user manual generation, and when used properly can provide quite
good effort estimates. Moreover, as it follows from recent research, parts
of use cases (namely event descriptions) can be generated in an automatic
way. Also the approach to non-functional requirements can be different.
Our experience shows that they can be elicited very fast and can be quite
stable.

Keywords: Requirements engineering, agility, use cases, non-functional
requirements, effort estimation, user manual.

1 Introduction

Agile methodologies, like XP [6] and Scrum [31], have changed our way of think-
ing about software development and are getting more and more popular. They
emphasize the importance of four factors: oral communication, orientation to-
wards working software (main products are code and test cases), customer col-
laboration, and openness to changes.

Agility impacts not only design and coding but also concerns requirements
engineering [7,8]. In this approach classical requirements specification based on
IEEE Std. 830 [1] is replaced with user stories [6,12] and face-to-face communi-
cation. User stories can be used for effort estimation and planning. Effort esti-
mation is based rather on personal judgement than on such methods as Function
Points [3] or Use-Case Points [17]. Moreover, in the agile approach, requirements
are not predefined – they emerge while software is being developed [8].

As pointed out by Colin Doyle1, agile requirements engineering based on user
stories has some advantages and disadvantages . On the one hand, it encourages
� Invited Speaker.
1 C. Doyle, Agile Requirements Management – When User Stories Are Not Enough,
http://www.youtube.com/watch?v=vHNr-amZDsU

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 40–51, 2014.
c© Springer International Publishing Switzerland 2014

http://www.youtube.com/watch?v=vHNr-amZDsU

Agile Requirements Engineering: A Research Perspective 41

effective communication and better adapts to change. On the other hand, it
cannot be applied in a project where a request-for-tenders is used (this requires
an up-front specified requirements), the customer is not always available for
just-in-time requirements discussions, or the product/project is complex (many
conflicting customers, lots of requirements). Another problem is human memory:
the Product Owner cannot remember all the requirements and s/he is prone to
forgetfulness. In such cases documented requirements would help a lot.

In this paper a research perspective concerning agile requirements engineering
is discussed. We focus on the following questions:

– Q1-UStories: User stories have an old competitor: use cases invented by
Ivar Jacobson in the 80s [15] and later elaborated upon by Alistair Cockburn
et al. [2,11]. Are user stories really the best choice?

– Q2-NFRs: How can non-functional requirements be elicited to obtain a
good balance between speed and quality?

– Q3-Effort: One of the key activities in release planning (e.g. performed
by playing the Planning Game) is effort estimation. Can automatic effort
estimation provide reliable enough estimates?

– Q4-Manual: Can the effort concerning auxiliary activities, like writing a
user manual, be significantly reduced by using requirements specification?

Those issues are discussed in the subsequent sections of the paper.

2 Written vs. Oral Communication

Agile approaches emphasize oral communication when it comes to requirements
elicitation. User stories, which are advocated by XP [6] and Scrum [30], are not
supposed to provide complete requirements, they are rather “reminders to have
a conversation” [12] with the customer. User Story answers three questions: what
action is possible?, who performs this action? and what is the business value of
this action? User Stories are short, they are usually expressed in one sentence.
Example of a user story is presented in Figure 1A. Similar information is pre-
sented in UML Use Case Diagrams [28]. They convey information about actors
and their goals (actions). Example of a UML Use Case diagram is presented
in Figure 1B. Apparently, User Stories and UML Use Case Diagrams provide
roughly the same amount of information about the requirements. Therefore,
UML Use Case Diagrams can be used instead of user stories.

User Stories, as reminders for future conversation, are good when a customer
is non-stop available for the software delivery team. This is supported by the XP
on-site customer practice. Unfortunately, on-site customer is rarely available in
real life projects, mostly due to high costs. Therefore, more information needs to
be captured during the short times when customer is available. While, with user
stories only so called acceptance criteria can be documented, use-cases allow for
more precise capture of requirements. These requirements are documented in a
textual main scenario - sequence of steps presenting interaction between actor

42 J. Nawrocki et al.

As a Customer I can add
items to the basket in order

to buy them.
Customer

Add items to
basket

System

User Story UML Use Case DiagramA B

Fig. 1. A - Example of a user story; B - Example of a UML Use Case Diagram

and system. Main scenario should always demonstrate the interaction which
leads to obtaining a goal by an actor.

Observation 1. Use cases are more general (flexible) than user stories as they
provide an abstraction ladder (zooming).

The highest abstraction rung is the level of context diagram (just actors).
Below is the level of use case diagrams (such a diagram can be zoomed-out to
a context diagram). More details are available at the level of use case scenarios
(they can be zoom-out to a context diagram), beneath which are events and
alternative activities (they can be easily trunkated to main scenarios). Scenarios
can be decorated with low-fidelity screen designs and that way one can generate
mockups (see e.g. [22]). Those mockups can be used to elicit test cases from end
users, what makes use cases testable.

2.1 HAZOP-Based Identification of Events in Use Cases

To have a complete use case one has to identify all events that can appear when
use case steps are executed. A question arises: how to identify events in use cases
in effective and efficient way?

Events in use cases resemble deviations in mission-critical systems. Therefore,
a HAZOP-based method, called H4U [16], for events identification has beed
proposed. HAZOP [29] is a method for hazard and deviations analysis in mission-
critical systems. This method is based on sets of primary and secondary keywords
which are used in brain-storming sessions in order to identify possible hazards.
H4U is also built on the idea of keywords which help to identify possible events
in use cases. The accuracy and speed of H4U were evaluated and compared
to the ad hoc approach in two experiments: with 18 students and with 64 IT
professionals. Based on the experiments it could be concluded that H4U method
offers higher accuracy (maximum average accuracy was equal to 0.26) but lower
speed (maximum average speed was equal to 1.04 steps per minute) comparing

Agile Requirements Engineering: A Research Perspective 43

to the ad hoc approach (maximum average accuracy was equal to 0.19, maximum
average speed was equal 2.23 steps per minute).

2.2 Automatic Identification of Events in Use Cases

Using H4U one can achieve higher accuracy of events identification, however,
higher effort is required. What if events in use cases could be identified in an
automatic way? This could reduce the effort and time required to identify events.
Moreover, this would mean that Analyst can focus on actors’ goals and positive
scenarios which require a lot of creative work and the more tedious task of events
identification could be done automatically. Results from our initial research show
that around 80% of events of the benchmark requirements specification [4] can
be identified in an automatic way. Morover, speed of automatic events identifi-
cation was at the level of 10 steps per minute. This results were achieved with a
prototype tool built with a knowledge base from real-life use-cases, inference en-
gine, NLP and NLG tools. Comparing these results to the results from the ealier
mentioned experiments with the ad hoc and H4U method, it can be concluded
that events can be effectively idetified in an automatic way. This allows Analyst
to focus on the core of the requirements (use-case names and main scenarios)
and have descriptions of events generated automatically.

This research poses a more general research question:

Question 1. To what extend requirements specification can be supported by
a computer?

3 Elicitation of Non-functional Requirements

Although user stories are considered by XP [6] and Scrum [30] as the main tool
to record requirements, as we stated in Section 3, they may not be sufficient.
At first, a user story is not supposed to express a complete requirement. Sec-
ondly, it focuses on what actions and activities are performed by a user in the
interaction with a system. Such approach may lead to omission of the require-
ments regarding how the functions provided by the system should be executed.
According to the results of the investigation of agile projects carried out by Cao
and Ramesh [8], customers often “focus on core functionality and ignore NFRs”.
They also found that in many organizations non-functional requirements(NFRs)
are frequently ill defined and ignored in early development stages [8]. It may
have severe consequences, as in the cases of Therac-25[19], Arline 5 accident[23]
etc., it may lead to excessive refactorings, or cease further system development
as its architecture was ill-designed based on insufficient information. However, in
agile methodologies, thorough analysis and completeness of requirements (e.g.
required by IEEE 830[1]) are no longer a prerequisite to software design and
coding - time to market is getting more and more important. Thus, in the con-
text of NFRs, the challenge is how to achieve “a proper balance between the cost
of specifying them and the value of reducing the acceptance risk” [9]. There exist

44 J. Nawrocki et al.

a number of methods and frameworks which deal with non-functional require-
ments, e.g., NFR Framework [21], KAOS [32]. However, the existing methods
are claimed to be too heavy-weight to be used in agile context [10], and there is
little known about cost and value of using them.

To respond to the challenge and fill the gap we proposed a quick method, called
SENoR (Structured Elicitation of Non-functional Requirements), dedicated to
agile software development. It consists of 3 steps that are presented in Figure 2).
The cornerstone of SENoR is Workshop which consists of: (1) a presentation
of the business case of the project and of the already known functionality of
the system, (2) a series of short brainstorming sessions driven by the quality
subcharacteristics of ISO25010 [14] - this is the main part of the Workshop, (3)
a voting regarding the importance of the elicited requirements.

PROJECT SPECIFIC INPUT PRODUCTS RESUSABLE INPUT PRODUCTS

SENoR
Step 1 Preparation
 Moderator ensures that funding, resources and facilities are available, confirms appropriate management support. He/she answers

the questions: who? when? where?, so he identifies participants, assigns roles, schedules and arranges Workshop.
Step 2 Workshop
 1 Introduction (ca.5min.)

Moderator presents the goal and agenda of Workshop.
 2 Project Overview (ca. 10min.)

Presenter presents an overview of the project that aims at development of the software product for which the requirements are
to be elicited. The presentation should cover: the business case and the functional requirements that were defined.

 3 NFR Elicitation
For each of the selected ISO25010’s subcharacteristic the following 3 steps are executed:

 1 Definition (ca. 1-2min.)
Moderator reminds the definition of the current subcharcteristic, e.g., by reading it aloud.

 2 Individual Work (ca. 1-2min.)
Each participant thinks about current subcharacteristic in terms of their expectations.

 3 Discussion (ca. 3min.)
A short brainstorming-like session. NFRs are being proposed and discussed by Experts, and recorded by Recorder

 4 Voting (ca.10min.)
Participants make collaborative decisions about the priority of each recorded NFRs.

 5 Closing (ca. 2min.)
Moderator summarizes Workshop, decides if a continuation is required, thanks for the participation.

Step 3 Follow-up
 Recorder analyzes the elicited NFRs to identify contradictory and duplicated information, improve the construction of the

sentences (syntactic analysis). Then, the results should be announced, e.g., distributed by mail to the participants, and comments
should be gathered. The lessons learned should be packaged.

Non-functioanal
Requirements

Lessons Learned

Business Case Context Diagram
High-level Func.

Reqs
Template of

Project Overview
Templates of
NFRs (NoRTs)

Meeting Assistant
software

Fig. 2. SENoR – process, input and output products

SENoR workshops are supported with short definitions of quality subcharac-
teristics and templates of non-functional requirements. Each SENoR workshop
lasts no longer than 2 hours.

The data about SENoR workshops have been collected since its first appli-
cation in 2008 [18]. They have been used to improve the method. Recently,

Agile Requirements Engineering: A Research Perspective 45

7 agile projects run at the Poznan University of Technology have been observed.
Those projects used SENoR workshops and their aim was to deliver internet
applications to be used by the university for administrative purposes.

The average time of a SENoR workshop was ca. 1h 15min, (the shortest took
2854s and the longest — 7554s). 89% (34 out of 38) participants claimed that
they are for organizing such workshops in their future projects. On average,
27 NFRs were defined in a workshop, and 92% participants regarded quality
of the elicited NFRs good-enough (sufficiently correct and complete) to start
architectural design. We also investigated stability of the elicited NFRs, i.e.
how many of them ’survived’ development changes. What is surprising, average
stability of NFRs collected within SENoR workshops was at the level of 80%.

From the point of view of the Q2-NFRs question, the presented results are
very promising:

Conjecture 1. A sequence of very short brainstorming sessions driven by quality
characteristics can provide quite stable set of non-functional requirements and
represents a good balance between cost (time) and quality (stability).

If the above conjecture was true, it would imply that software architecture,
which strongly depends on NFRs, can also be quite stable.

4 Automatic Effort Estimation Based on Use Cases

Although project planning is not directly a part of the RE process, they both
visibly relate to each other. In order to plan a project or development stage,
one has to determine and analyze its scope. The connection between planning
and RE is especially visible in the context of agile software development, where
constant project planning is often placed next to the core RE practices [8].

Indisputably, in order to plan a project one has to first estimate the effort
required to perform all the project’s tasks. Depending on the chosen type of bud-
get, an accurate effort estimation becomes more important at different stages of
the project. For a fixed scope budget, obtaining an accurate estimate is already
extremely important at the early stages of software development, when the cru-
cial decisions about the overall budget are made. If an unrealistic assumption
about the development cost is made, the project is in danger. Both underesti-
mated and overestimated effort is harmful. Underestimation leads to a situation
where a project’s commitments cannot be fulfilled because of a shortage of time
and/or funds. Overestimation can result in the rejection of a project proposal,
which otherwise would be accepted and would create new opportunities for the
organization. In the fixed budget approach the situation is different. The budget
could be allocated in advance, but the project team is trying to incrementally
understand the customer’s needs and deliver as much business value as possible
until the available resources are depleted.

When it comes to agile software development methods, they are naturally well
suited to fixed budget projects. They assume that changes in requirements are
an inherent property of software development projects, thus, it is not reasonable

46 J. Nawrocki et al.

to invest too much time in the preparation of comprehensive software require-
ments specification at the beginning of the projects, which can quickly become
obsolete. As a result, project planning in agile software development is more
oriented towards estimating and planning releases than the project as a whole
(e.g, using the planning game, story points, planning poker [6,12,13,20]). There-
fore, an important question emerges about what to do in the case of fixed scope
projects being developed in an agile environment or when a customer agrees to
the fixed budget approach, but would also like to know if he/she can afford to
solve the problem.

An answer to the question would be to elicitate high-level requirements at
the project’s beginning, and then to estimate its total effort assuming the re-
quirements forming the scope of the project. According to Cao and Ramesh [8]
elicitating such requirements is not such an uncommon practice in agile projects.
Still providing an accurate estimate based on such requirements is a challenge.

One of the methods that could be used for effort estimation based on high-level
requirements is the TTPoints method [26,27]. It is designed to provide functional
size measurement based on use cases, but contrary to other use-case-based effort
estimation methods, such as Use Case Points [17], it is not strictly bounded to
the syntax of use cases. Instead it relies on the semantics of interaction presented
in use-case scenarios.

The main, considered unit of interaction in TTPoints is called semantic trans-
action. Empirical analysis of use cases has led us to define a catalogue of 12
semantic transactions-types presented in Figure 3. Each transaction type corre-
sponds to the main intent of the interaction between the user and the system
under development. This enables their identification even if the details of a use-
case scenario are still to be determined. An example of a create-type transaction
identified in a use case and user story is presented in Figure 4. If fully-dressed
use cases are available transaction identification is more accurate and could even
be automated using NLP (natural language processing) tools [24,25]. It visibly
reduces the effort required to analyze a use-case-based requirements specifica-
tion.

Semantic
transaction types

Create Update

Change State

Delete

Delete Link
Asynchronous

Retrieve
Dynamic
Retrieve

Retrieve

LinkTransfer

Complex
Internal
Activity

Check
Object

11 11 11 11 11

1111 11 121212

12

Fig. 3. Semantic transaction-types in use cases with the numbers of core actions

Agile Requirements Engineering: A Research Perspective 47

Conference Management System

Submit a paper
Author

UC1: Submit a paper
Level: User
Main actor: Author
Main Scenario:
1. Author chooses the option to submit a paper.
2. System presents the submission form.
3. Author provides necessary information about the paper.
4. System informs Author that the paper was submitted.
Alternatives, Extensions, Exceptions:
3.A. Not all required data was provided.
 3.A.1. System displays error message.
 3.A.2. Go to step 2.

User story:
As an Author I would like to
be able to submit a paper to
the SOFSEM 2014 conference.

Create
transaction

11

Choice of
option

Presentation Provision Presentation

S

Presentation
Software

NLP tools

S

NP VP

NNP VBZ

System presents

NP
ADJP

RB

all

VBN

defined

NNS

categories

.

.

nsubj (presents, System)
advmod (defined, all)
amod (categories, defined)
dobj (presents, categories)

Graph analysis

Expert

Expert

Fig. 4. An example of create semantic-transaction in a use case and user story

The next step is the analysis of each transaction. One has to determine the
number of different actors that interact with the system under development and
the number of domain objects being processed within a transaction.

Finally, one can calculate the functional size expressed in TTPoints according
to the following formula:

TTPoints =

n∑

i=1

Core_Actionsi × Objects i × Actorsi (1)

where

– n is the number of semantic transactions within the scope of the count;
– Core_Actionsi is the number of core actions of the i-th transaction (see

Figure 3);
– Objectsi is the number of meaningful (independent) domain objects pro-

cessed by the i-th transaction;
– Actorsi is the number of actors in the i-th transaction which cooperate with

the system under development.

The TTPoints size measure can be further used to estimate development
effort. If historical data is available in organization one can construct a regression
model or simply calculate average product delivery rate (PDR). According to
our research the average PDR for TTPoints is around 25h/TTPoint.

48 J. Nawrocki et al.

The obvious drawback of early-effort estimation is its low accuracy due to
the high level of uncertainty related to the final scope of the project. Still, the
results we obtained for effort estimation based on TTPoints are promising [27].
We were able to estimate effort with on-average error (MMRE) at the level of
∼0.26, which was on-average lower by 0.14 to 0.22 than the estimation error for
different variants of the Use Case Points method.

Claim 1. Effort estimation based on use cases can provide reasonably good
estimates.

5 User Manual Generation

Ongoing research shows that up-to-date project documentation can be benefi-
cial, especially when it facilitates the work of a software development team in
an automatic way. This section describes initial research concerning automatic
generation of a user manual on the basis of software requirements and other in-
formation available in a project. An example of a tool that creates a description
of fields used in forms is also presented.

The proposed approach focuses on web applications and static documents
(documents that do not allow any interaction with users). It is also assumed
that the generated user manual is aimed at IT-laymen, people whose computer
knowledge is low.

Results of the conducted research show that on the basis of project documen-
tation a number of descriptions can be generated and the produced elements
can be used to create a user manual. Functional requirements in the form of
use cases are especially helpful, since this form of representation contains an
amount of information which is important from the point of view of end users.
For example, it is possible to create a list of functionalities available to end users.
Each function can be decorated with a description of actions required to get the
desired results and a description of exceptions that may occur. To improve the
usefulness of the user manual, the description of available functionality can be
enriched by a set of screen shots taken from the running application. To get them
in an automatic way one can use acceptance tests. After combining use cases and
acceptance tests (such information can be got from tools used for traceability),
one can easily obtain images.

The process of enhancement can go further, depending on the available infor-
mation and the possibility of processing it. An example of additional information
provided to end users is the field explanation presented in Figure 5. This figure
is generated on the basis of a regular expression used in an application to check
whether data provided by a user is a valid number of a credit card or not. Our
research shows that regular expressions are sufficient to generate three types of
description: an explanation in natural language, a diagram and a set of examples.
To present regular expressions in an easy to understand way, a special version
of syntax diagrams has been designed [5].

Conjucture 2. Use cases can significantly support generation of a user manual.

Agile Requirements Engineering: A Research Perspective 49

Syntax
diagram

Verbal
explanation

Examples

Credit Card is described by the following diagram:

4 0..9

12

0..9

3

Credit Card

It consists of digit 4, followed by 12 digits and followed by optional three
digits.

Example Correct?
4056324648328 Yes
4295324322567 Yes
4056324648328123 Yes
056324648328 No (absence of digit 4)
40566236489281234 No (too long)

Fig. 5. Field explanation of a credit card number

6 Conclusions

In this paper we have discussed research issues concerning agile requirements
engineering. Our findings are as follows:

– Use-cases provide a flexible way of describing functional requirement. They
can be presented at several abstraction levels: from extremely concise context
diagrams, through use-case diagrams, main scenarios, exceptions, down to
the level of alternative steps. Some use-cases can be presented only at the
level of use-case diagrams (i.e. lacking further description) while others can
also have exceptions and alternative steps specified.

– People are not very good at identifying exceptions (events). Their effective-
ness is below 30%. However, from our early experiments it follows that events
identification performed by a computer can have effectiveness at the level of
80%. That is a good incentive for further research in this area.

– Non-functional requirements can be elicited in very short brain-storming
sessions driven by ISO 25000 quality characteristics. The stability of non-
functional requirements elicited in that way for Internet applications was
at the level of 80%. It suggests that non-functional requirements are pretty
stable and can be collected early.

– The TTPoints method of effort estimation fits use cases well and its average
estimation error is below 30%. This is a pretty good result, but further
research seems necessary.

– Taking care of requirements specification pays-off, and not only with effort
estimates. When functional requirements (in the form of use cases) are com-
plete, then a considerable part of a user manual can be generated. That
option should be particularly interesting in Software Product Lines where
there are many variants of the same systems and the same user manual.

50 J. Nawrocki et al.

Acknowledgments. This work has been partially supported by two projects
financed by the Polish National Science Center based on the decisions DEC-
2011/01/N/ST6/06794 and DEC-2011/03/N/ST6/03016, and by a Poznan Uni-
versity of Technology internal grant 91-518 / 91-549.

References

1. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std
830-1998, pp. 1–40 (1998)

2. Adolph, S., Bramble, P.: Patterns for Effective Use Cases. Addison Wesley, Boston
(2002)

3. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of
the Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92
(October 1979)

4. Alchimowicz, B., Jurkiewicz, J., Ochodek, M., Nawrocki, J.: Building benchmarks
for use cases. Computing and Informatics 29(1), 27–44 (2010)

5. Alchimowicz, B., Nawrocki, J.: Generating syntax diagrams from regular expres-
sions. Foundations of Computing and Decision Sciences 36(2), 81–97 (2011)

6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional (2004)

7. Bjarnason, E., Wnuk, K., Regnell, B.: A case study on benefits and siede-effects
of agile practices in large-scale requirements engineering. In: Agile Requirements
Engineering Workshop, Agile RE 2011, pp. 9–13. ACM (2011)

8. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical study.
IEEE Software 25(1), 60–67 (2008)

9. Cleland-Huang, J.: Quality Requirements and their Role in Successful Products. In:
IEEE International Requirements Engineering Conf., pp. 361–361. IEEE (October
2007)

10. Cleland-Huang, J., Czauderna, A., Keenan, E.: A persona-based approach for ex-
ploring architecturally significant requirements in agile projects. In: Doerr, J.,
Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 18–33. Springer, Heidelberg
(2013)

11. Cockburn, A.: Writing Effective Use Cases. Addison Wesley, Boston (2000)
12. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley

Longman Publishing Co., Inc., Redwood City (2004)
13. Haugen, N.C.: An empirical study of using planning poker for user story estimation.

In: Agile Conference, pp. 25–34. IEEE (2006)
14. ISO. ISO/IEC 25010:2011 - Systems and software engineering – Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) – System and software qual-
ity models. International Organization for Standardization, Geneva, Switzerland
(2011)

15. Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley (1992)
16. Jurkiewicz, J., Nawrocki, J., Ochodek, M., Glowacki, T.: HAZOP-based identifi-

cation of events in use cases. an empirical study. Empirical Software Engineering
(2013) (accepted for publication), doi:10.1007/s10664–013–9277–5

17. Karner, G.: Metrics for objectory. No. LiTH-IDA-Ex-9344:21. Master’s thesis,
University of Linköping, Sweden (1993)

18. Kopczyńska, S., Maćkowiak, M., Nawrocki, J.: Structured meetings for non-
functional requirements elicitation. Foundations of Computing and Decision Sci-
ences 36(1), 35–56 (2011)

Agile Requirements Engineering: A Research Perspective 51

19. Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. Com-
puter 26(7), 18–41 (1993)

20. Mahnič, V., Hovelja, T.: On using planning poker for estimating user stories. Jour-
nal of Systems and Software 85(9), 2086–2095 (2012)

21. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Transactions on Software En-
gineering 18(6), 483–497 (1992)

22. Nawrocki, J.R., Olek, Ł.: UC workbench – A tool for writing use cases and gener-
ating mockups. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005.
LNCS, vol. 3556, pp. 230–234. Springer, Heidelberg (2005)

23. Nuseibeh, B.: Ariane 5: Who dunnit? IEEE Software 14(3), 15–16 (1997)
24. Ochodek, M., Alchimowicz, B., Jurkiewicz, J., Nawrocki, J.: Improving the relia-

bility of transaction identification in use cases. Information and Software Technol-
ogy 53(8), 885–897 (2011)

25. Ochodek, M., Nawrocki, J.: Automatic transactions identification in use cases. In:
Meyer, B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp.
55–68. Springer, Heidelberg (2008)

26. Ochodek, M., Nawrocki, J.: Enhancing use-case-based effort estimation with trans-
action types. Foundations of Computing and Decision Sciences 35(2), 91–106 (2010)

27. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on
Use Case Points. Information and Software Technology 53(3), 200–213 (2011)

28. OMG. OMG Unified Modeling LanguageTM(OMG UML), superstructure, version
2.3 (May 2010)

29. Redmill, F., Chudleigh, M., Catmur, J.: System safety: HAZOP and software HA-
ZOP. Wiley (1999)

30. Schwaber, K.: Scrum development process. In: Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and Ap-
plications, pp. 117–134 (1995)

31. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
(2001)

32. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262.
IEEE (2001)

	Agile Requirements Engineering: A ResearchPerspective
	1 Introduction
	2 Written vs. Oral Communication
	3 Elicitation of Non-functional Requirements
	4 Automatic Effort Estimation Based on Use Cases
	5 User Manual Generation
	6 Conclusions
	References

