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Abstract. One of the most representative and studied Distance-Based
Queries in Spatial Databases is the K-Closest-Pairs Query (KCPQ).
This query involves two spatial data sets and a distance function to mea-
sure the degree of closeness, along with a given number K of elements
of the result. The output is a set of pairs of objects (with one object ele-
ment from each set), with the K lowest distances. In this paper, we study
the problem of processing KCPQs between RAM-based point sets, using
Plane-Sweep (PS) algorithms. We utilize two improvements that can be
applied to a PS algorithm and propose a new algorithm that minimizes
the number of distance computations, in comparison to the classic PS
algorithm. By extensive experimentation, using real and synthetic data
sets, we highlight the most efficient improvement and show that the new
PS algorithm outperforms the classic one, in most cases.

Keywords: Spatial Query Processing, Plane-Sweep, Closest-Pair Query,
Algorithms.

1 Introduction

Spatial database is a database that offers spatial data types (for example, types
for points, line segments, regions, etc.), a query language with spatial predicates,
spatial indexing techniques and efficient processing of spatial queries [11]. It has
grown in importance in several fields of application such as urban planning,
resource management, transportation planning, etc. Together with them come
various types of complex queries that need to be answered efficiently. While
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queries involving a single data set have been studied extensively in the litera-
ture, Distance Join Queries (DJQs) on spatial data like K-Closest-Pairs Query
(KCPQ) has not been paid similar attention. For this reason, in this work we
will improve this kind of DJQ for spatial data (points) in terms of execution
time using the plane-sweep (PS) technique.

One of the most important techniques in the computational geometry field
is the PS algorithm, which is a type of algorithm that uses a conceptual sweep
line to solve various problems in the Euclidean plane, E2, [10]. The name of PS
is derived from the idea of sweeping the plane from left to right with a vertical
line (front) stopping at every transaction point of a geometric configuration to
update the front. All processing is done with respect to this moving front, without
any backtracking, with a look-ahead on only one point each time [6]. The PS
technique has been successfully applied in spatial query processing, mainly for
intersection joins [8]. In the context of DJQs, the PS technique has been used
to restrict all possible combinations of pairs of points from the two data sets.

In the context of computational geometry, in [6], the PS algorithm is applied
to find the closest pair in a set of points, in an elegant way. Two improvements
when a new pair can be formed are proposed. The first one examines only can-
didates which may form a new closest pair with the fixed point p on the sweep
line that lie in a half-circle centered at this point, with radius δ (the current dis-
tance threshold). The second one, since the use of a half-circle in a PS algorithm
is complex, examines only candidates within a boundary rectangle (a rectangle
with width δ in X-axis and, height 2 * δ in Y-axis (p+ δ and p− δ from p)). A
critical observation made in [6] is that, as the sweep line passes through a fixed
point, there is at most a constant number of points that need to be checked.
But this property does not hold in the KCPQ, which is essentially a general-
ization of the Bichromatic Closest-Pair problem and the number of points with
monochromatic color in this problem cannot be bounded (Section 5.1 of [13]).
Moreover, the algorithm of [6] uses an array and a balanced binary tree (e.g.
AVL-tree) to sort on both axes, while we will use one array for each data set,
sorting on one axis (e.g. X). Finally, our proposed PS algorithm can be easily
adapted to distance-based join query processing on disk resident data.

The contributions of this paper consist in the following:

1. We enhance the classic PS algorithm for KCPQ with two improvements
(sliding window and sliding semi-circle), which were proposed in [6] for
the closest-pair problem over one data set, and here have been adapted to
KCPQ, where two data sets are involved.

2. We improve processing of the classic PS algorithm for KCPQ, with a new
algorithm called Reverse Run Plane-Sweep, RRPS or RR PS, that minimizes
Euclidean and sweeping axis distance computations.

3. We present results of an extensive experimentation, that compares the per-
formance of the different algorithms and algorithmic improvements.

The paper is organized as follows. In Section 2, we review the related literature
and motivate the research reported here. In Section 3, we describe the classic
PS for KCPQ. In Section 4, a new PS algorithm for KCPQ is presented. In
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Section 5, a comparative performance study is reported. Finally, in Section 6,
conclusions on the contribution of this paper and future work are summarized.

2 Related Work and Motivation

There are numerous papers that study processing of join queries, and recently, an
exhaustive analysis of techniques for spatial join taking into account a filter-and-
refinement approach appeared in [8]. We can classify the spatial join methods
depending on whether the sets of objects involved are indexed or not, but in all
cases the PS technique plays an important role for reducing the CPU cost [8].

The KCPQ discovers the K pairs of data elements formed from two data sets
that have the K smallest distances between them. The KCPQ is a combination
of spatial join and nearest neighbor queries. Like a spatial join query, all pairs
of objects are candidates for the result. Like a nearest neighbor query, proximity
forms the basis for the final ordering. If both data sets are indexed by R-trees,
the concept of synchronous tree traversal and Depth-First (DF) or Best-First
(BF) traversal order can be combined for the query processing [3,4,7,12]. In [7],
incremental and non-recursive algorithms based on BF traversal using R-trees
and additional priority queues for DJQs are presented. In [12], additional tech-
niques as sorting and application of PS during the expansion of node pairs, and
the use of the estimation of the distance of the K-th closest pair to suspend un-
necessary computations of MBR distances are included to improve [7]. In [3,4]
non-incremental recursive (DF) and non-recursive (BF) algorithms are presented
for solving the KCPQ, when the data sets are indexed by R*-trees. The main
issue of the non-incremental variant is to separate the treatment of the terminal
candidates (the elements of the leaf nodes) from the rest of the candidates (in-
ternal nodes) in the index data structures. In [4] the PS technique is also applied
to limit the number of MBRs and points that must be paired up, thus reducing
the number of distance computations. Finally, in [9] the PS technique has been
used to answer the K Distance Join Query, another way to call to KCPQ, in
order to find exactly K nearest pairs in non-incremental fashion, where R*-tree
and Quadtree-like index structures are compared.

Recently, in [13] the PS technique is used to obtain the α-Distance for spa-
tial query processing for fuzzy objects. Essentially, the computation of the α-
Distance is to find the closest pair of qualified points of two fuzzy objects. The
main property of this variant of the PS method is the use of two sweep lines to
facility the search for the particular types of spatial queries with fuzzy objects,
that has been presented in such research work.

Finally, the main motivation of this work is to improve the classic PS algo-
rithm proposed in [4,12] for KCPQs, in order to reduce the number of distance
computations, making the query processing faster in terms of execution time.

3 Plane-Sweep in K-Closest-Pairs Query Processing

A common approach to performing spatial joins when both data sets are stored
on disk is to partition the data until it is of a size that can be processed using
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internal memory PS algorithm [8]. The classic PS algorithm for KCPQ sweeps
a scan line (sweepline) that is vertical to one of the axes through two sorted (in
relation to this axis) arrays of the two data sets. In general terms, this algorithm
is an adaptation of the PS algorithm for intersection of MBRs presented in [2],
considering two sets of points and a distance threshold δ (the distance of the K-
th closest pair found so far) in the sweeping axis [4,12]. This classic PS algorithm
can be considered a greedy variant of the algorithm for the closest-pair problem
described in [10,6]. It is a greedy algorithm, because it always makes the choice
that looks best at the moment. It also combines PS and nested loop techniques.
Compared to the naive nested loop algorithm, except in unlikely situations, the
sweepline limits the number of points that must be tested against one another
[11].

In general, if we assume that the two point sets are P and Q, the classic PS
algorithm consists of the following steps [4,12]:

1. Sorting the entries of the two point sets, based on the coordinates of one of
the axes in increasing or decreasing order. The axis for the sweepline can be
established based on sweeping axis criteria (e.g. X-axis) and the order can
be fixed by sweeping direction criteria (e.g. forward sweep (increasing order)
or backward sweep (decreasing order)); both criteria are presented in [12].

2. After that, two pointers are maintained initially pointing to the first entry for
processing of each sorted set of points. Assuming that X -axis is the sweeping
axis and the order is increasing (from left to right, i.e forward sweep), let
pivot be the point with the smallest X-value pointed by one of these two
pointers, e.g. P , then the pivot is initialized to this point, ppivot ∈ P .

3. Afterwards, the pivot must be paired up with the points stored in the other
set of points (qj ∈ Q) from left to right, satisfying dx = qj .x− ppivot.x ≤ δ,
processing all points as candidate pairs where the pivot is fixed. After all
possible pairs of entries that contain pivot have been paired up (i.e., the
forward lookup stops when qj .x − ppivot.x > δ is verified), the pointer to
the set of the pivot is increased to the next entry, pivot is updated with the
point of the next smallest X-value pointed by one of the two pointers, and
the process is repeated until one of the set of points is fully processed.

Highlight that the PS technique applies the distance function over the sweep-
ing axis (in this case, the X-axis) because in the PS technique, the sweep is
only over one axis (the best axis according to the criteria suggested in [12]).
Moreover, the search is only restricted to the closest points with respect to the
pivot according to the current distance threshold (δ). No duplicated pairs are
obtained, since the points are always checked over sorted sets. Note that this
kind of processing is called forward sweep, since it scans from left to right (or
from right to left, backward sweep) the sorted sets in order to obtain pairs of
points that will have a distance smaller than or equal to δ.

Clearly, the application of this technique can be viewed as a sliding strip on
the sweeping axis with a width equal to the δ value starting from the pivot (i.e.,
[0, δ] in the X-axis), where we only choose all possible pairs of points that can
be formed using the pivot and the other points from the remainder entries of
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Fig. 1. Classic (left) and RR (right) PS algorithms, using sliding window or semi-circle

the other set of points that fall into the current strip. See in Figure 11 left, the
strip in light grey color.

According to the ideas proposed in [6] to improve the PS applied to the closest-
pair problem over one set of points, here we will propose two improvements of
the previous classic PS algorithm over two data sets to reduce the number of
point-point distance computations on KCPQ algorithms.

1. An intuitive way to save the number of point-point distance computations
is to bound the other axis (not only the sweeping axis) by δ as is illustrated
in Figure 1 left. In this case, the search space is now restricted to the closest
points inside the window with width δ and a height 2 ∗ δ (i.e., [0, δ] in the
X-axis and [−δ, δ] in the Y-axis, from the pivot). Clearly, the application
of this technique can be viewed as a sliding window on the sweeping axis
with a width equal to δ and height equal to 2 ∗ δ starting from the pivot.
And we only choose all possible pairs of points that can be formed using the
pivot point and the remainder points of the other data set that fall into the
current window. See in Figure 1 left, the window in dark grey color.

2. If we try to reduce even more the search space, we can only select those
points inside the semi-circle (or half-circle) centered in the pivot with radius
δ (remember that the equation of all points t = (t.x, t.y) ∈ E2 that fall inside
the circle, centered in the point ppivot = (ppivot.x, ppivot.y) ∈ P and radius
δ is (t.x − ppivot.x)

2 + (t.y − ppivot.y)
2 ≤ δ2). And the application of this

new improvement can be viewed as a sliding semi-circle with radius δ along
the sweeping axis and centered on the pivot point, choosing only the points
that fall inside the current semi-circle. See in Figure 1 left, the semi-circle
centered at pivot.

4 Reverse Run Plane-Sweep Algorithm for KCPQs

The Reverse Run Plane-Sweep (RRPS, or RR PS) algorithm is based on two
concepts. First, every point that is used as a reference point (pivot) forms a run

1 In both parts of Figure 1, a dotted arrow points to a point not included in the
KCPQ result (paired with pivot), due to large dx; a thin arrow points to a point
not included in the result, due to large distance to pivot; a thick arrow points to a
point included in the KCPQ result (paired with pivot); the value of K is 3.
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with other subsequent points of the same set. A run is a continuous sequence
of points of the same set that doesn’t contain any point from the other set. For
each set, we keep a left limit, which is updated (moved to the right) every time
that the algorithm concludes that it is only necessary to compare with points
of this set that reside on the right of this limit. Each point of the active run
(reference point) is compared with each point of the other set (current point)
that is on the left of the first point of the active run, until the left limit of the
other set is reached. Second, the reference points (and their runs) are processed
in ascending X-order (the sets are X-sorted before the application of the RRPS
algorithm). Each point of the active run is compared with the points of the other
set (current points) in the opposite order (descending X-order).

A max binary heap (keyed by pair distances and calledMaxKHeap) that keeps
the K closest point pairs found so far is utilized. For each point of the active run
being compared with a current point, there are 2 cases. Case 1: If the distance
between this pair of points d is smaller than the distance of δ, then the pair
will be inserted in the heap (rule 1). In case the heap is not full (it contains
less than K pairs), the pair will be inserted in the heap, regardless of the pair
distance. Case 2: If the distance between this pair of points in the sweeping axis
dx is larger than or equal to δ, then there is no need to calculate the distance
of the pair (rule 2). The left limit of the other set must be updated at the index
value of the point being compared (a comparison with a point of the other set
having an index value smaller than, or equal to the updated left limit will have
X-distance larger than dx and is unnecessary).

Moreover, if the rightmost current point has an index value equal to the left
limit of its set, then all the points of the active run will have larger dx from all
the current points of the other set and the relevant pairs need not participate in
computations (the algorithm advances to the start of the next run - rule 3). The
RRPS algorithm is depicted in Algorithm 1. The following example illustrates
its operation. Let’s consider the points of the right part of Figure 1 (depicting
a snapshot of the RRPS operation), presented, in commonly sorted X-order, in
Table 1. To simplify the algorithm operation (the stopping conditions), a sentinel
point with X-coordinate equal to ∞ is added to each set (line 2). In case the
two point sets overlap in X-dimension, initialization sets i (j) equal to 0, since
the first run of P (Q) set starts at P [0] (Q[0]). Moreover, initialization sets the
left limit leftp (leftq) equal to -1 (line 5), since the first P (Q) point to be used
in comparisons is P [leftp+1] (Q[leftq+1]).

Table 1. The points of Figure 1 in X-sorted order

i 0 1 2 3 4 5 6 7
P [i] (1,1) (2,6) (3,3) (5,1) (8,4) (9,7) (10,1) (∞,−)
j 0 1 2 3 4
Q[j] (4,2) (5,4) (15,4) (16,3) (∞,−)
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Algorithm 1. Reverse Run Plane-Sweep

Input: P [0..N − 1], Q[0..M − 1]: X-sorted arrays of points. K: positive int
Output: MaxKHeap: binary Max Heap storing the K closest pairs between P and Q

// Initialization
1: i ← 0 j ← 0 continue ← TRUE
2: P [N ].x ← ∞ Q[M ].x ← ∞ // sentinel points for simpler stoping conditions
3: if P [N − 1].x ≤ Q[0].x then i ← N // the sets do not overlap

4: if Q[M − 1].x ≤ P [0].x then j ← M // the sets do not overlap

5: leftp ← −1 leftq ← −1 // comparisons start at P [leftp+ 1], Q[leftq+ 1]
// Main Algorithm. P [i] (Q[j]): start of next P -run (Q-run)

6: while continue do
7: if P [i].x < Q[j].x then // the active run is from the P set
8: while P [i].x < Q[j].x do // while active run unfinished. P [i]: ref point
9: if j − 1 = leftq then // Q[j − 1]: last cur point - rule 3
10: advance i to next P -run and break while l.8
11: for k = j − 1 downto leftq+ 1 do // Q[k]: cur point
12: if MaxKHeap is not full then
13: calculate distance d b/t ref point (P [i]) and cur point (Q[k])
14: insert (ref point, cur point) with key d into MaxKHeap
15: else
16: calculate x-distance dx b/t ref point (P [i]) and cur point (Q[k])
17: if dx ≥ key of MaxKHeap root then // dx ≥ δ - rule 2
18: leftq ← k and break for l.11

19: calculate distance d b/t ref point (P [i]) and cur point (Q[k])
20: if d < key of MaxKHeap root then // d < δ - rule 1
21: insert (ref point, cur point) with key d into MaxKHeap

22: increment i // update ref point P [i]

23: else if j < M then // the active run is from the (unfinished) Q set
24: P [N ].x ← Q[M − 1].x + 1 // P [N ] should be < Q[M ], since ...

// ... else l.23 handles equal X-values b/t P and Q points
25: while Q[j].x ≤ P [i].x do // while active run unfinished. Q[j]: ref point
26: if i− 1 = leftp then // P [i− 1]: last cur point - rule 3
27: advance j to the next Q-run start and break while l.25

28: for k = i− 1 downto leftp+ 1 do // P [k]: cur point
29: if MaxKHeap is not full then
30: calculate distance d b/t ref point (Q[j]) and cur point (P [k])
31: insert (ref point, cur point) with key d into MaxKHeap
32: else
33: calculate x-distance dx b/t ref point (Q[j]) and cur point (P [k])
34: if dx ≥ key of MaxKHeap root then // dx ≥ δ - rule 2
35: leftp ← k and break for l.28

36: calculate distance d b/t ref point (Q[j]) and cur point (P [k])
37: if d < key of MaxKHeap root then // d < δ - rule 1
38: insert (ref point, cur point) with key d into MaxKHeap

39: increment j // update ref point Q[j]

40: P [N ].x ← Q[N ].x // revert the P sentinel at the maximum real X-value
41: else continue ← FALSE // the points of both sets have been processed
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Since P [0].x < Q[0].x (line 7), the active run is from the P set and consists of
P [0], P [1] and P [2] (P [2] is the last point of P before Q[j]). Each of the points
of the active run should be compared with each of the current points of Q in
reverseX-order which form the sequence Q[j−1], . . . , Q[leftq+1]. However, since
j − 1 =leftq (line 9), i is advanced to 3 (P [3] is the start of the next P run) and
processing of the active run is broken (rule 3).

During the next iteration of the “while” loop at line 6, P [3].x > Q[0].x. Thus
the active run is from the Q set (line 232) and consists of Q[0] and Q[1] (Q[1]
is the last point of Q before P [i]) and each of these points will be compared
with each of the current points of P in reverse X-order which form the sequence
P [i − 1], . . . , P [leftp+1] (P [2], . . . , P [0]). The pairs (P [2], Q[0]), (P [1], Q[0]) and
(P [0], Q[0]) are inserted in the non-full heap (K = 3). The pair (P [2], Q[1]) is
inserted in the heap, replacing (P [1], Q[0]), since its distance is smaller than δ
(rule 1). The pair (P [1], Q[1]) is not inserted in the heap, due to its distance.
The pair (P [0], Q[1]) is not inserted in the heap, due to dx ≥ δ (rule 2). leftp
is advanced to 0 (only comparisons with P points after P [0] are necessary) and
“for” loop at line 28 is broken. The active run ends with i = 3 and j = 2.

During the next iteration of the while loop at line 6, the active run consists of
P [3], P [4], P [5] and P [6]. Each of these points will be compared with Q[1] and
Q[0]. The pair (P [3], Q[1]) is inserted in the heap, replacing (P [0], Q[0]) since its
distance is smaller than δ (rule 1). Next, the pair (P [3], Q[0]) is inserted in the
heap, replacing (P [3], Q[1]), since its distance is smaller than δ (rule 1). The pair
(P [4], Q[1]) is not inserted in the heap, due to dx ≥ δ (rule 2). leftq is advanced
to 1 (only comparisons with Q points after Q[1] are necessary) and “for” loop
at line 28 is broken (so the comparison of P [4] with Q[0] is avoided). During the
next iteration of the “while” loop at line 8, j − 1 = leftq (line 9), meaning that
the rest of the P run will be skipped, saving comparisons (rule 3). The active
run ends with i = 7 and j = 2.

During the next iteration of the while loop at line 6, the active run consists
of Q[2] and Q[3]. Each of these points will be compared with each point of the
sequence P [6], . . . , P [1]. The pair (P [6], Q[2]) is not inserted in the heap, due to
dx ≥ δ (rule 2). leftp is advanced to 6 (only comparisons with P points after
P [0] are necessary) and “for” loop at line 28 is broken (so the comparisons of
Q[2] with P [5], . . . , P [1] are avoided).

During the next iteration of the “while” loop at line 25, i− 1 is equal to leftp
(line 26), meaning that the rest of the Q run (in fact, only point Q[3]) will be
skipped, saving comparisons (rule 3). The active run ends with i = 7 and j = 3.

During the next iteration of the while loop at line 6, since P [i = 7] = Q[j =
3] = ∞ and j = M , processing of the two sets is completed.

2 Note that the extra check “j < M” at line 23 guarantees that we have not reached
the sentinel of the Q set and is necessary, since the “else” part of the main loop
(Lines 23-39) handles the case of equal X-values between points and, at the time of
this check, both sentinels equal ∞. At line 24, only for the duration of this “else”
part, we set the P sentinel to a value between the last Q point and the Q sentinel
(to terminate the loop at line 24 when the last run belongs to the Q set).



486 G. Roumelis et al.

Note that the classic PS algorithm always processes pairs from left to right,
even when the distance of the pivot point to its closest point of the other set
is large (this is likely, since, runs of the two sets are in general interleaved).
On the contrary, RRPS processes pairs of points in opposite X-orders, starting
from pairs consisting of points that are the closest possible, avoiding further
processing of pairs that is guaranteed not to be part of the result and substituting
distance computations by simpler dx computations, when possible. This way, δ
is expected to be updated more fastly and the processing cost of RRPS to be
lower. In the specific example described previously, the classic PS algorithm
would perform 9 distance computations, 15 dx computations, 8 heap insertions
and would examine 18 pairs. RRPS performed 7 distance computations, 7 dx
computations, 6 heap insertions and examined 10 pairs.

5 Experimentation

In order to evaluate the behavior of the proposed algorithms, we have used 6
real spatial data sets of North America, representing cultural landmarks (NAcl
with 9203 points) and populated places (NApp with 24493 points), roads (NArd
with 569120 line-segments) and railroads (NArr with 191637 line-segments). To
create sets of points, we have transformed the MBRs of line-segments from NArd
and NArr into points by taking the center of each MBR (i.e., |NArd| = 569120
points, |NArr| = 191637 points). Moreover, in order to get the double amount
of points from NArr and NArd, we chose the two points with min and max
coordinates of the MBR of each line-segment (i.e., |NArdD| = 1138240 points,
|NArrD| = 383274 points). The data of these 6 files were normalized in the range
[0, 1] and the files were combined in pairs, excluding the combinations of NArr
with NArrD and NArd with NArdD (since these data sets are correlated, due
to the way D versions were created), we made 13 combinations of input sets.
We have also created synthetic clustered data sets of 125000, 250000, 500000
and 1000000 points, with 125 clusters in each data set (uniformly distributed in
the range [0− 1]), where for a set having N points, N/125 points were gathered
around the center of each cluster, according to Gaussian distribution. We made
4 combinations of synthetic data sets by combining two separate instances of
data sets, for each of the above 4 cardinalities. For each of these 17 (=13+4)
combinations of data sets, we executed the classic PS algorithm and the RRPS
algorithm, using a sliding strip, a sliding window and a sliding semi-circle, for
K equal to 1, 10, 100, 1000 and 10000. This sums up to 510 experiments (17
combinations × 2 algorithms × 3 variations × 5 K values). All experiments were
performed on a PC with Intel Core 2 Duo, 2.2 GHz CPU with 4 GB of RAM
and several GBs of secondary storage, with Ubuntu Linux v. 14.04, using the
GNU C/C++ compiler (gcc). The performance measurements were:

1. The response time (total query execution time) of processing the KCPQ,
not counting reading from disk files to main memory and sorting.

2. The number of Euclidean distance computations (dist).
3. The number of X-axis distance computations (dx).
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5.1 Performance Comparison of PS Algorithms for KCPQs

In the following, out of the large amount of results obtained from experimen-
tation, some representative results are presented. In the upper (lower) part of
Table 2, the execution time in milliseconds of the classic (RRPS) algorithm, for
two real and two synthetic data set combinations, for the sliding strip, window
and semi-circle variations and for all K values are depicted. First, it is observed
that among the algorithmic variations, the sliding semi-circle is constantly the
most efficient one in both algorithms. Second, it is observed that the RRPS
algorithm outperforms the classic one in all cases for the NApp-NArdD com-
bination, for K > 1 for the 250KC-250KC combination, for K = 1 / sliding
strip and for K > 1 / sliding window or semi-circle for the 1000KC-1000KC
combination and for K > 100 for the NArr-NArd combination. In Figure 2,

Table 2. Execution times of the classic (above) and RR (below) PS algorithms

PS NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K Strip Window sCircle Strip Window sCircle Strip Window sCircle Strip Window sCircle

1 7.7 7.4 7.5 9.0 8.3 7.6 21.5 15.5 12.1 133.2 87.6 67.9
10 9.4 8.7 8.2 19.9 16.4 12.5 45.1 31.2 21.9 255.8 165.8 119.0
100 15.2 13.1 10.5 39.8 32.3 20.9 121.4 81.2 53.4 740.5 464.5 322.5
1000 34.3 28.1 19.6 98.1 76.9 46.1 329.2 221.0 140.9 2193.3 1378.3 936.7
10000 131.6 109.7 77.9 300.0 241.4 145.8 806.2 570.0 349.6 5353.3 3561.7 2281.1

RRPS NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K Strip Window sCircle Strip Window sCircle Strip Window sCircle Strip Window sCircle

1 5.8 5.7 5.4 9.0 8.5 7.7 21.0 15.8 12.3 127.3 85.8 67.4
10 7.5 7.1 6.2 19.6 16.7 12.6 40.1 28.6 20.3 219.3 147.1 105.6
100 13.0 11.2 8.2 39.2 32.2 21.1 96.3 66.7 43.5 537.0 355.6 238.1
1000 30.4 24.8 15.5 94.7 74.2 44.2 247.6 172.0 106.4 1457.5 970.0 625.4
10000 108.9 88.5 56.2 276.1 214.6 124.8 667.5 475.5 288.5 3848.3 2615.0 1632.5

the relative performance of the two algorithms is depicted for the NApp-NArdD
(upper-left diagram), NArr-NArd (upper-right diagram), 250KC-250KC (lower-
left diagram) and 1000KC-1000KC (lower-right diagram) combinations, for all
K values and all algorithmic variations. The percentages depicted express the
fraction of the difference of the execution time of the classic minus the execution
time of the RRPS algorithm, over the execution time of the classic algorithm
(called gain). In other words, they express how much time is saved (positive val-
ues) or wasted (negative values) when the RRPS replaces the classic algorithm.
These two figures were created by the same data that are depicted in Table 2
and they visualize the above conclusions about the relative performance of the
two algorithms. Note that the variation of gain values depends on the distribu-
tions of the data sets and the value of K, both of which affect the number of
computations each algorithm performs and how fast it approaches a good δ.

In Table 3 we summarize the results of relative performance for all the 255
(=510/2) cases of experimental comparisons performed. A “−” expresses gain
≤ −1.5% (the classic algorithm is more efficient), a “×” expresses −1.5% < gain
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Fig. 2. Relative performance of the classic and RR PS algorithms

< 1.5% (the two algorithms are almost equal) and a “+” expresses gain ≥ 1.5%
(the RRPS algorithm is more efficient). Moreover, in each row the minimum and
maximum gain is shown. The RRPS algorithm is more efficient in 217 (or in 85%
of the) cases (in fact, gain≥ 5% in 76% of the cases), the two algorithms are equal
in 22 cases, while the classic algorithm is more efficient in 16 cases. Moreover, in
all experiments the sliding semi-circle was the most efficient variation for both
algorithms.

Table 3. Summary of the relative performance of the classic and RR PS algorithms

Algorithmic variant: Sliding Strip Sliding Window Sliding Semi-Circle gain %
Set combinations K: 100 101 102 103 104 100 101 102 103 104 100 101 102 103 104 min max
NAcl−NApp + × + + + − × + + + − × + + + -4.4 39.6
NArr−NArd × × × + + − − × + + × × × + + -2.0 14.4
NArrD−NArd − − × + + − − × + + − − − + + -9.9 11.3
NArrD−NArdD + + × + + − × × + + − × × + + -2.6 10.6
All other (9/13) real
data combinations

+ + + + + + + + + + + + + + + 3.5 36.4

125KC−125KC × + + + + − + + + + × + + + + -2.5 19.8
250KC−250KC + + + + + − + + + + − + + + + -1.8 24.8
500KC−500KC + + + + + × + + + + × + + + + -0.5 29.7
1000KC−1000KC + + + + + + + + + + × + + + + 0.7 33.5

In Table 4, the relative gains in dist and dx computations of using the RRPS al-
gorithm instead of the classic algorithm, utilizing only (due to space limitations)
the semi-circle variant in both algorithms, for the same data set combinations
and K values of Table 2, are depicted. It is obvious that the use of the RRPS
algorithm saves both dist and dx computations. The percentages of gain varies
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significantly. Studying the rest of the results of the 510 experiments performed,
we reach the same conclusion: the use of the RRPS algorithm always saves dist
and dx computations, but the percentage of gain varies significantly and depends
on the data sets combination, the algorithmic variation and K. Moreover, there
is no linear or other obvious relation of these percentages to the execution time
gain of using the RRPS algorithm instead of the classic algorithm. We plan to
investigate this relation futher in future work.

Table 4. Relative gain in dist and dx computations of RRPS (semi-circle variant)

NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K dist dx dist dx dist dx dist dx

1 80.5% 86.1% 91.6% 47.0% 36.4% 16.7% 38.2% 12.9%
10 56.3% 67.1% 83.2% 18.9% 33.7% 19.0% 38.4% 19.9%
100 37.9% 36.9% 75.7% 7.6% 37.8% 23.8% 40.3% 29.6%
1000 41.2% 16.9% 59.7% 3.0% 38.2% 25.4% 33.3% 34.0%
10000 47.2% 7.0% 52.5% 1.9% 25.6% 16.4% 26.6% 28.0%

6 Conclusions and Future Work

In this paper, we studied the problem of answering theKCPQ between two point
sets that reside on RAM, using PS algorithms. We utilized two improvements
(sliding window and sliding semi-circle) and proposed a new algorithm (RRPS)
that minimizes the number of dist and dx computations, in comparison to the
classic PS algorithm. By extensive experimentation using real and synthetic data
sets, we concluded that the semi-circle improvement is the most efficient one,
while the RRPS algorithm outperformes the classic one in 76% (85%) of the
cases with a performance gain ≥ 5% (1.5%) and may approach 40%.

In future work, we plan to extend the RRPS algorithm for finding closest pairs
between non point data sets, like MBR sets that are stored in nodes of two trees
and are combined during processing of distance join queries.

The development of the RRPS algorithm is the first step in developing a PS
algorithm for the K-Closest-Pairs query for data sets that cannot be completely
transferred to RAM, due to their large cardinalities. For such cases, the PS
algorithm should utilize the available RAM and process the data sets in parts,
minimizing not only distance computations but disk accesses too.
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