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Abstract. Anonymous authentication protocols aim to provide means to anony-
mously prove membership in a group. Moreover, the membership should not be
transferable i.e. a subgroup of members should not be able to help an outsider to
gain access on behalf of a group. In this note we present two attacks on a recently
published protocol of this kind (ICUIMC ’11 Proceedings of the 5th International
Conference on Ubiquitous Information Management and Communication, article
no. 32) and thereby we show that it failed the security targets for an anonymous
authentication protocol.
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1 Introduction

With the growth of technology many new kinds of information systems were created.
There exist systems which can be accessed by anyone and there exist systems which
require the user to authenticate before granting access. There are many ways of authen-
tication such as login and password, asymmetric keys etc. One thing all those methods
have in common is that the system always knows which user is trying to gain access.
This is very convenient when the user accesses his account in the system. However,
there are systems which only verify the users membership in the system e.g. access
to buildings, company resources. Obviously, in such cases, some privacy issues arise
when using those standard authentication methods. Some users do not want the system
to know, how many times and when they accessed it. This issue inspired cryptographers
to create anonymous authentication protocols. The idea is simple. We consider a set of
users (called provers), a group manager and verifiers which verify the membership of
users to a particular group (system), created by the group manager. So, a group manager
is responsible for generating the system parameters, publishing a group verification key
and issuing secret keys. Each prover, having a secret key, may use it to create a proof
for a verifier such that he is certain that the prover is a member of a group which has
access to the system. In addition, a verifier should not be able to tell if two attempts to
access the system were made using the same keys (ie the same prover).

The notion of anonymous authentication protocols, or sometimes called group iden-
tification protocols were first proposed in [1]. Since that time, researchers have studied
the problem of authenticating as member of a group. There are many approaches to
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achieve this goals. One of it is using a group signature scheme. In adversity to anony-
mous authentication schemes, a signer can anonymously sign a message on behalf of
the group. The problem of anonymously sign messages were first suggested by Chaum
and van Heyst [2]. By now, group signatures come by a very rich literature, [3,4,5,6,7]
to name only a few, and already cover many interesting problems.

To construct an authentication scheme from any group signature scheme it suffices,
that a prover signs a challenge from a verifier. Another approach is to design a „clean”
authentication scheme. Such schemes appeared in the literature in [8,9,10,11,12]. Un-
fortunately, in all of these schemes the execution time is linear dependent by the number
of group members. This property make these schemes highly impractical, especially for
large groups, or if the proving algorithm has to be implemented on devices with lim-
ited resources (e.g. smart cards). An interesting scheme was proposed in [13] which
execution time and message size is independent of the size of the group. However, the
schemes introduced [13] are in a bit different notion than group signatures or group
authentication schemes, namely it introduces ad hoc anonymous identification. An ad
hoc anonymous identification allows to create new groups in an ad hoc formation in the
sense of ring signatures. The main contribution of [13] was introducing constant size
ring and group signatures supporting efficient identity escrow capabilities. The main
practical problem in [13] is that, when a new user joins a group any group member has
to update their secret keys.

An anonymous authentication protocol have to fulfill some basic requirements. Such
schemes must provide soundness (or unforgeability in case of group signatures),
anonymity and correctness. Roughly speaking, by soundness we mean that the veri-
fier rejects with overwhelming probability when the prover is not a legitimate group
member. By anonymity we mean that no information about the users identity is re-
vealed to the verifier besides that the prover is a group member. To be more specific,
suppose we have two executions of an anonymous authentication protocol, then deter-
mining whether the executions were produced by a single prover or two distinct provers
should be hard. Correctness of an anonymous authentication scheme guaranties that, if a
prover is a member of the group, then a verifier accepts with overwhelming probability.
Other desired features include revocation of a single user, and identity escrow. An very
important property of anonymous authentication protocols is that only a group manager
should be able to add new users to a group. So, we require untransferability of mem-
bership. Practically, this means that a coalition of users (possibly malicious) should not
be able to create secret keys for a new group member. In some articles like [11] this
is called „resilience” or „k-resilience” were k is a threshold number of corrupted users
for which a scheme stays still resilient (i.e. more than k legitimate users are needed to
create a new group member).

Contribution: In this paper we examine the recent work from [14]. The proposed pro-
tocol has the execution time and message size independent of the size of the group.
Moreover, unlike the scheme from [13], group members do not have to update their
keys when a new user joins the group. However, we encountered some design flaws
which allows to perform attacks against the protocol. The first one is a collusion attack
in which two cooperating group members, using their secret keys, are able to com-
pute the group manager’s secret keys. The second attack is against anonymity, where a
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verifier (or an eavesdropper) can easily determine whether two transcripts were pro-
duced by the same prover or by distinct provers.

Organization of the Paper: First, we give a full description of the protocol from [14]
in section 2. In section 3 we describe a collusion attack against this scheme. Then, we
show how to link two protocol executions of the protocol i.e. we describe an attack
against anonymity. Finally, we give some conclusions and design suggestions.

2 Protocol Description

Designations: We denote as GM the group manager who’s role is to issue secret keys to
group members and public group verification keys. In the original protocol description
in [14] the role of GM is denoted as TTP (Trusted Third Party). However, we want
to stay consistent with other work in this field. We assume also that H is a secure hash
function and || means concatenation of bit strings. The scheme from [14] describes also
a certificate authority denoted as CA. The role of the certificate authority is to issue
certificates on user public keys in order to verify the relevance of a user by the GM .
Suppose that G is a point on an elliptic curve, then byRx(G) we denote the x coordinate
of that point and by Ry(G) the y coordinate.

Bilinear maps: Let G1, G2 be cyclic groups of prime order q and let e : G1×G1 → G2

be a function with the following properties:

– (bilinearity) For all P ∈ G1, Q ∈ G1 and a, b, c ∈ Zq , we have

e(P a + P b, Qc) = e(P,Q)a·ce(P,Q)b·c

and

e(P a, Qb +Qc) = e(P,Q)a·be(P,Q)a·c,

– (non-degeneracy) For all P,Q ∈ G1, P �= Q we have e(P,Q) �= 1,
– (computability) e can be efficiently computed.

2.1 Setup

The GM chooses a group generator G ∈ G1. Then GM chooses two secret keys
s, kGM ∈ Zq at random, and computes sG, YGM = kGMG. The values G, sG
and YGM are public, while s and kGM are GM ’s secrets. We will denote H0 =
H((Rx(YGM ||Ry(YGM ))). The value H0 don’t has to be published since any party
in the system can compute it by itself.

Each user has a private key kU and a corresponding public key YU = kUG. User
public key YU are bounded to a unique identifier IDU with a certificate from CA. We
denote the certificate as certCA(YU , IDU ).
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2.2 Registration

First, a user U establishes a secure communication channel with the GM . After this step
U sends his certificate certCA(YU , IDU ) to the GM . The GM verifies the certificate
and extracts the users public key and identifier. Then it performs the following steps:

1. Selects ωU,1 ∈ Zq randomly,
2. Computes AU := ωU,1G− YU = ωU,1G− kUG,
3. Computes ωU,2 := sωU,1,
4. Computes γU,1 := H0ωU,1 +Rx(AU )kGM ,
5. Computes γU,2 := H0ωU,2 + kGM = H0sωU,1 + kGM ,
6. Stores γU,1, γU,2, AU , YU , ωU,1, ωU,2 and IDU in GM ’s internal database,
7. Sends values AU , γU,1 and γU,2 to user U .

User U can then verify the validity of these values by checking whether the equa-
tions:

γU,1G = H0ωU,1G+Rx(AU )YGM = H0(AU + YU ) +Rx(AU )YGM

and
γU,2G = H0sωU,1G+ YGM = H0(sAU + sYU ) + YGM

hold.
Note that the user is able to compute sAU by himself. He computes γU,2G =

H0sωU,1G + YGM = H0sAU + H0sYU + YGM . Since H0sYU = kuH0(sG) and
sG is public, we have that sAU = H−1

0 (γU,2G)− YGM −H0sYU .

2.3 Computing of Membership Proof

A verifier sends a random nonce Ns and the user U chooses five random values x, t, t1,
x1 and ψ ∈ Zq . Then U computes the following values:

t1G, t2G,
zG, x2 := x · x−1

1 ,
L := xG, sL := x(sG),
L1 := x1G, L2 := x2G,
sL1 := x1(sG), sL2 := x2(sG),
T := ψG, z := t ·Rx(AU ),
B := t(AU + T ), t2 := t · t−1,
B1 := t1(AU + T ), B2 := t2(AU + T ),
stT := tψ(sG), sB := tsAU + stT,
sB1 := t1sAU + st1T, sB2 := t2sAU + st2T.

Let M be a message or set of instructions, which user U will send to the verifier.
We define D = (M,L, sL, L1, sL1, L2, sL2, zG, t1G, t2G,B,B1, B2, sB, sB1, sB2).
and the hash of D is computed as:

H(D) := H(H(M)||H(L)||H(sL)||H(L1)||H(sL1)||H(L2)
||H(sL2)||H(zG)||H(t1G)||H(t2G)||H(B)||H(B1)
||H(B2)||H(sB)||H(sB1)||H(sB2)||H(Ns))
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User U computes the last five values λ1, λ2,1, λ2,2, λ3,1, λ3,2 as follows:

λ1 := γU,1t+H0(ψt− kU t+ xH(D)),
λ2,1 := γU,2t1 +H(D),
λ2,2 := γU,2t2 +H0x2H(D),
λ3,1 := t1(ψ − kU ) + x,
λ3,2 := t2(ψ − kU ) + x.

Finally U sends the values λ1, λ2,1, λ2,2, λ3,1, λ3,2, L, sL, L1, sL1, L2, sL2, zG,
t1G, t2G, B, B1, B2, sB, sB1, sB2 along with the message M to the verifier.

2.4 Verification of the Proof

The verifier, holding the values sent by a user U , performs the following steps:

– Computes zYGM := λ1G−H0(B +H(D)L).
– Computes t1YGM and t2YGM as follows:

t1YGM := λ2,1G+ λ3,1sG−H0(sB1 +H(D)L1)− sL
t2YGM := λ2,2G+ λ3,2sG−H0(sB2 +H(D)L2)− sL

– For j = {1, 2} checks whether the discrete logarithm of tjG equals the discrete
logarithm of tjYGM with respect to G:

e(t1YGM , G)
?
= e(YGM , t1G) e(t2YGM , G)

?
= e(YGM , t2G)

– Similarly, verifies the relation between the computed value zYGM and zG sent by
the user.

e(zYGM , G)
?
= e(YGM , zG)

– Then, he verifies whether the discrete logarithm of L is the multiplication of the
discrete logarithms of L1 and L2 with respect to G.

e(L1, L2)
?
= e(L,G)

– Checks the relations:

e(sB,G)
?
= e(B, sG) e(sB1, G)

?
= e(B1, sG)

e(sB1, t2G)
?
= e(sB,G) e(sB2, t1G)

?
= e(sB,G)

e(sL,G)
?
= e(sG,L) e(sL,G)

?
= e(sG,L)

e(sL1, G)
?
= e(sG,L1) e(sL2, G)

?
= e(sG,L2)

– He accepts only if every of the above equations hold and having λ3,1 and λ3,2 the
verifier checks whether the following equations hold

λ3,1sG
?
= sB1 + sL λ3,1sG

?
= L1

λ3,2sG
?
= sB2 + sL λ3,2sG

?
= L2
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3 The Flaws and Attacks

In this section we give details about the flaws we found in the design of the examined
protocol. We argue, that those flaws are so significant, that the protocol should never
be implemented since it do not fulfill the basic security requirements for anonymous
authentication schemes namely anonymity and untransferability of group membership.

3.1 Collusion Attack

We investigate the case when two users cooperate. Although, the authors of [14] assume
that only one user can become malicious. This is a very strong assumption and may be
impractical in real world. Note that the below attack also works if one user registers
twice, possible under different identifiers.

Let U1 and U2 be two users registered by the GM . Each of them obtains three values
from GM . Suppose U1 received:

γU1,1 = H0 · ωU1,1 +Rx(AU1 ) · kGM ,
γU1,2 = H0 · s · ωU1,1 + kGM

and AU1 .

Note that H0 is a publicly known value, thus we got two equations with three unknown
variables ωU1,1, s and kGM . This gives us an indefinite system of linear equations.
However, if another user registers into the GM , we get two additional equations

γU2,1 = H0 · ωU2,1 +Rx(AU2 ) · kGM ,
γU2,2 = H0 · s · ωU2,1 + kGM ,

but only one new unknown variable, namely ωU2,1. Note that AU2 is given to the user
U2 in the registration phase.

So, if these two users collude, then they have enough information to compute the
GM ’s secrets s and kGM , since we get a definitive system of four linear equations
where there are four unknown variables s, kGM , ωU1,1 and ωU2,1.

Computing the private keys of GM obviously corrupts the system totally. Two co-
operating users having these keys can create new identities at will, so even tracking
these „false” identities is highly impractical because of the possible number of identi-
ties which can be created.

3.2 Attack against Anonymity

In this section we explore the possibility to break the anonymity of the scheme presented
in [14]. We will show that there exists an algorithm A that given two transcripts of a
protocol execution can distinguish if they were produced by the same prover. The idea
behind algorithm A is presented in the proof of lemma 1.

Lemma 1. Let

T1 = (λ1, λ2,1, λ2,2, λ3,1, λ3,2, L, sL, sL1, L2, sL2, t1G,
t2G, zG,B, sB,B1, sB1, B2, sB2, Ns, H(D))

T2 = (λ′
1, λ

′
2,1, λ

′
2,2, λ

′
3,1, λ

′
3,2, L

′, sL′, sL′
1, L

′
2, sL

′
2, t

′
1G,

t′2G, z′G,B′, sB′, B′
1, sB

′
1, B

′
2, sB

′
2, N

′
s, H(D′))



312 L. Hanzlik and K. Kluczniak

be two transcripts of executions of the protocol from [14]. There exists an PPT algo-
rithm A that on input:

(H0, G, sG, (λ2,1, sL, t1G,H(D)), (λ′
2,1, sL

′, t′1G,H(D′)))

outputs, with overwhelming probability, 1 if T1 and T2 are transcript of communication
between a verifier and the same prover and 0 otherwise.

Proof. We will show the construction of algorithm A. First, it computes:

λ2,1 · sG−H0 ·H(D) · sL =
= γU,2t1sG+H0x1H(D)sG−H0H(D)sx1G
= γU,2t1sG

and

λ′
2,1 · sG−H0 ·H(D′) · sL′ =

= γU ′,2t
′
1sG+H0x

′
1H(D′)sG−H0H(D′)sx′

1G
= γU ′,2t

′
1sG.

Note that A can compute those values using only the received input. Finally, the algo-
rithm outputs 1 if

e(γU,2t1sG, t′1G)
?
= e(γU ′,2t

′
1sG, t1G)

and 0 otherwise. By the bilinearity of the pairing function e this final verification is
equal to:

e(G,G)γU,2t1st
′
1

?
= e(G,G)γU′,2t

′
1st1

Note that this equation is only valid if γU,2
?
= γU ′,2, which implies that U = U ′.

Now, since by lemma 1 there exists such algorithm A, so each verifier can run A
and break the anonymity of any prover in the system. Note that a prover sends the
required, by algorithm A, data while sending the membership proof. In addition, imag-
ine that there is an adversary that eavesdrops on the secure communication between
provers and a verifier, using for example a man-in-the-middle attack. Such an adversary
is therefore able to run algorithm A, since it eavesdrops all necessary input data. There-
fore, such attack cannot only be run by an active adversary in form of the verifier, but
also by a passive adversary which eavesdrops on the communication between provers
and verifiers.

4 Final Comments

4.1 Design Suggestions

The easiest way to secure the scheme against a collusion attack is to store the secret
keys is secure memory (e.g. a Hardware Security Module) and assume that users can-
not access these keys and the authentication algorithm is also executed in a separated
environment. These however, are very strong assumptions which in practice costs addi-
tional infrastructure.
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If a secret key issuance procedure, issues keys or part of keys which are linear equa-
tions, then one has to take into account the number of unknown variables issued to new
users. Basically, for each new equation introduced to the system, in order to keep the lin-
ear system indefinite, a new unknown variable has to be introduced as well. There are
security assumption which cover this problem e.g. one-more Diffe-Hellman assump-
tions, [15] for instance. The idea behind such type of assumptions is the following:
even if the adversary is given l distributions of a given type, he is unable to produce
a l + 1 distribution. Note that this simulates the collusion of l users who are trying to
create a new user.

The protection of user identity is a more complex task. Especially, when we use
pairing friendly groups in the system. The use of pairings allows to create new and
interesting protocols which overcome some design problems difficult to solve without
them. However we must remember that in some cases (e.g. type 1 pairing) the Deci-
sional Diffe-Hellman is easy in the underlying group. The authors of [14] used a type 1
pairing and we exploited the symmetry of e (i.e. e(P,Q) = e(Q,P ) for all P,Q ∈ G1)
to perform a cross attack against anonymity. We encourage them to look at type 3 pair-
ing functions and the XDH (External Diffe-Hellman) assumption (see [16]). In such a
scenario the pairing function e takes arguments not from one group G1 but from two
different groups G1 and G2. Thus, pairing of type 3 is asymmetric. In addition, if we
assume that the XDH assumption holds (it is suspected that it holds for certain MNT
curves [17]) we may use the assumption that the DDH problem is intractable in G1.

4.2 Conclusion

We have shown flaws in the design of the scheme from [14] and we presented attacks
exploiting them. It follows that the proposed scheme should not be implemented since it
do not fulfill the security requirements for anonymous authentication protocols. We also
described some design suggestions which may help the authors of [14] to fix the flaws
in their construction and maybe produce a secure version of the proposed anonymous
authentication protocol.
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