
Viliam Geffert Bart Preneel
Branislav Rovan Július Štuller
A Min Tjoa (Eds.)

 123

LN
CS

 8
32

7

40th International Conference on Current Trends
in Theory and Practice of Computer Science
Nový Smokovec, Slovakia, January 2014
Proceedings

SOFSEM 2014:
Theory and Practice
of Computer Science

Lecture Notes in Computer Science 8327
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Viliam Geffert Bart Preneel
Branislav Rovan Július Štuller
A Min Tjoa (Eds.)

SOFSEM 2014:
Theory and Practice
of Computer Science
40th International Conference on Current Trends
in Theory and Practice of Computer Science
Nový Smokovec, Slovakia, January 26-29, 2014
Proceedings

13

Volume Editors

Viliam Geffert
P. J. Šafárik University, Košice, Slovakia
E-mail: viliam.geffert@upjs.sk

Bart Preneel
Katholieke Universiteit Leuven, Belgium
E-mail: bart.preneel@esat.kuleuven.be

Branislav Rovan
Comenius University, Bratislava, Slovakia
E-mail: rovan@dcs.fmph.uniba.sk

Július Štuller
Institute of Computer Science, Prague, Czech Republic
E-mail: stuller@cs.cas.cz

A Min Tjoa
Vienna University of Technology, Austria
E-mail: amin@ifs.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04297-8 e-ISBN 978-3-319-04298-5
DOI 10.1007/978-3-319-04298-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956643

CR Subject Classification (1998): G.2.2, F.2.2, H.3.3-5, D.2.13, D.2.11, D.2.2,
I.2.3-4, H.5.3, H.4.3, E.1, F.1.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the invited and contributed papers selected for presenta-
tion at SOFSEM 2014, the 40th Conference on Current Trends in Theory and
Practice of Computer Science, which was held January 26–29, 2014, in Atrium
Hotel, Nový Smokovec, High Tatras, in Slovakia. SOFSEM 2014 was jointly
organized by the Institute of Computer Science of the P. J. Šafárik University,
Košice, Slovakia, and by the Slovak Society for Computer Science. The confer-
ence is supported by the Czech Society for Cybernetics and Informatics.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and
fosters cooperation among researchers and professionals from academia and
industry in all areas of computer science. SOFSEM started in 1974 in for-
mer Czechoslovakia as a local conference and winter school combination. The
renowned invited speakers and the growing interest of the authors from abroad
gradually moved SOFSEM to an international conference with proceedings pub-
lished in the Springer LNCS series. SOFSEM became a well-established and fully
international conference maintaining the best of its original Winter School as-
pects, such as a number of invited talks (7 for the year 2014) and an in-depth
coverage of novel research results in selected areas of computer science. SOF-
SEM 2014 was organized around the following four tracks:

– Foundations of Computer Science (chaired by Viliam Geffert)
– Software and Web Engineering (chaired by A Min Tjoa)
– Data, Information, and Knowledge Engineering (chaired by Július Štuller)
– Cryptography, Security, and Verification (chaired by Bart Preneel)

With its four tracks, SOFSEM 2014 covered the latest advances in research, both
theoretical and applied, in leading areas of computer science. The SOFSEM 2014
Program Committee consisted of 86 international experts from 22 different coun-
tries, representing the track areas with outstanding expertise.

An integral part of SOFSEM 2014 was the traditional SOFSEM Student
Research Forum (chaired by Roman Špánek, Institute of Computer Science of
the Academy of Sciences of the Czech Republic in Prague), organized with the
aim of presenting student projects on both the theory and practice of computer
science, and to give the students feedback on the originality of their results. The
papers presented at the Student Research Forum were published in separate local
proceedings.

In response to the call for papers, SOFSEM 2014 received 104 submissions by
258 authors from 34 different countries of all continents (except for Antarctica).
Two submissions were later withdrawn. The remaining submissions were dis-
tributed in the conference tracks as follows: 53 in the Foundations of Computer
Science, 24 in the Software and Web Engineering, 18 in the Data, Information,
and Knowledge Engineering, and 7 in the Cryptography, Security, and Verifica-
tion. From these, 19 submissions fell in the student category.

VI Preface

After a detailed reviewing process, with 3.22 reviewers per paper on average,
a careful selection procedure was carried out between September 27 and Octo-
ber 11, 2013, using the EasyChair Conference System for an electronic discus-
sion. Following strict criteria of quality and originality, 40 papers were selected
for presentation, namely: 23 in the Foundations of Computer Science, 8 in the
Software and Web Engineering, 5 in the Data, Information, and Knowledge En-
gineering, and 4 in the Cryptography, Security, and Verification. From these,
6 were student papers.

Based on the recommendation of the Chair of the Student Research Forum
and with the approval of the Track Chairs and Program Committee members,
seven student papers were chosen for the SOFSEM 2014 Student Research Fo-
rum.

The editors of these proceedings are grateful to everyone who contributed to
the scientific program of the conference, especially the invited speakers and all
the authors of contributed papers. We also thank the authors for their prompt
responses to our editorial requests. SOFSEM 2014 was the result of a consider-
able effort by many people. We would like to express our special thanks to the
members of the SOFSEM 2014 Program Committee and all external reviewers
for their precise and detailed reviewing of the submissions, Roman Špánek for
his handling of the Student Research Forum, Springer’s LNCS team for its con-
tinued support of the SOFSEM conferences, and the SOFSEM 2014 Organizing
Committee for the support and preparation of the conference.

November 2013 Viliam Geffert
Bart Preneel

Branislav Rovan
Július Štuller
A. Min Tjoa

Organization

Program Committee

General Chair

Branislav Rovan

Foundations in Computer Science

Andris Ambainis
Witold Charatonik
Jürgen Dassow
Volker Diekert
Martin Dietzfelbinger
Pavol Ďurǐs
Viliam Geffert (Chair)
Lane A. Hemaspaandra
Markus Holzer

Kazuo Iwama
Klaus Jansen
Christos Kapoutsis
Juhani Karhumäki
Daniel Král
Andrzej Lingas
Maciej Lískiewicz
Markus Lohrey
Carlo Mereghetti

Rolf Niedermeier
Alexander Okhotin
Jean-Éric Pin
José Rolim
Kai T. Salomaa
Igor Walukiewicz
Thomas Zeugmann

Software and Web Engineering

Armin Beer
Miklós Biró
Matthias Book
Ruth Breu

Volker Gruhn
Michael Kläs
Óscar Pastor López
Rudolf Ramler

Andreas Rausch
Barbara Russo
A. Min Tjoa (Chair)

Data, Information, and Knowledge Engineering

Bernd Amann
IoannisAnagnostopoulos
Zohra Bellahsène
Mária Bieliková
Ivan Bratko
Barbara Catania
Richard Chbeir
Johann Eder
Uwe Egly
Johann Gamper
Hele-Mai Haav

Siegfried Handschuh
Theo Härder
Hannu Jaakkola
Leszek Maciaszek
Yannis Manolopoulos
Andreas Nürnberger
Tadeusz Pankowski
Adrian Paschke
Tassilo Pellegrini
Dimitris Plexousakis
Jaroslav Pokorný

Mark Roantree
Marie-Christine Rousset
Matthew Rowe
Harald Sack
Umberto Straccia
Július Štuller (Chair)
Massimo Tisi
Remco Veltkamp
Manuel Wimmer

VIII Organization

Cryptography, Security, and Verification

Dieter Gollmann
Thorsten Holz
Stefan Katzenbeisser
Aggelos Kiayias
Marek Klonowski
Markulf Kohlweiss

Václav Matyáš
Kaisa Nyberg
Kenny Paterson
Krzysztof Pietrzak
Mila Dalla Preda
Bart Preneel (Chair)

Jean-François Raskin
Tamara Rezk
Ahmad-Reza Sadeghi
Martin Stanek
Graham Steel
Claire Vishik

External Reviewers

Amin Anjomshoaa
Alla Anohina-Naumeca
Aleksandrs Belovs
Amine Benelallam
Marian Benner-Wickner
Sebastian Berndt
Maria Paola Bianchi
Matthias Book
Vladimir Braverman
Robert Bredereck
Srečko Brlek
Georg Buchgeher
Boban Čelebić
Kit Yan Chan
Krishnendu Chatterjee
Taolue Chen
Jacek Cichoń
Michael Domaratzki
Jürgen Etzlstorfer
Marco Faella
Martin Fleck
Peter Floderus
Hervé Fournier
Pawe�l Gawrychowski
Annemarie Goldmann
Petr Golovach
Alexander Golovnev
Simon Grapenthin
Torsten Hahmann
Christian Haisjackl
Matthew Hammer
Florian Häser
Erik Hebisch

Ulrich Hertrampf
Marc Hesenius
Lucian Ilie
Sebastian Jakobi
Philipp Kalb
Michael Kaufmann
Jonathan Kausch
Markus Kleffmann
Kim-Manuel Klein
Dušan Knop
Magnus Knuth
Christian Komusiewicz
Boris Köpf
Jakub Kowalski
Miros�law Kowaluk
Stefan Kraft
Rastislav Královič
Kyriakos Kritikos
Martin Kutrib
Felix Land
Kati Land
Alexander Lauser
Văn B`̆ang Lê
Thierry Lecroq
Christos Levcopoulos
Jianyi Lin
Eva-Marta Lundell
Marten Maack
Salvador Mart́ınez
Tanja Mayerhofer
Ian McQuillan
Klaus Meer
Stefan Mengel

George Mertzios
Tobias Mömke
Irina-Mihaela Mustaţă
André Nichterlein
Dirk Nowotka
Beatrice Palano
Alexandros Palioudakis
Denis Pankratov
Dana Pardubská
Theodore Patkos
Giovanni Pighizzini
Lars Prädel
Narad Rampersad
Daniel Reidenbach
Christian Rosenke
Peter Rossmanith
Christian Salomon
Fernando Sánchez

Villaamil
Stefan Schirra
Thomas Schneider
Martin R. Schuster
Juraj Šebej
Patrice Séébold
Dzmitry Sledneu
Florian Stefan
Christoph Stockhusen
Alexandre Termier
Johannes Textor
Vojtěch Tůma
Torsten Ueckerdt
Victor Vianu
Imrich Vrt’o

Organization IX

Jörg Waitelonis
Tobias Walter
Antonius Weinzierl

Armin Weiss
Magdalena Widl

Piotr Witkowski
Jānis Zuters

Steering Committee

Ivana Černá Masaryk University, Brno, Czech Republic
Keith Jeffery STFC Rutherford Appleton Laboratory, UK
Miros�law Kuty�lowski Wroc�law University of Technology, Poland
Jan van Leeuwen Utrecht University, The Netherlands
Branislav Rovan Comenius University in Bratislava, Slovakia
Petr Šaloun Observer, Technical University of Ostrava,

Czech Republic
Július Štuller Chair, Institute of Computer Science,

Czech Republic

Organizing Committee

Gabriela Andrejková
Jozef Gajdoš
Frantǐsek Galč́ık
Peter Gurský
Tomáš Horváth
Ondrej Kŕıdlo
Rastislav Krivoš-Belluš
Gabriel Semanǐsin (Chair)

Invited Talks

Episode-Centric Conceptual Modeling

Nicola Guarino

ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

Nicola.Guarino@cnr.it

Most conceptual modeling and knowledge representation schemes focus on re-
lations. The Entity-Relationship approach is a paradigmatic example in this
respect. However, formal ontology distinguishes between two main kinds of rela-
tions: formal relations, which hold by necessity just in virtue of the existence of
their relata, and material relations, which do not necessarily hold whenever their
relata exist, but require in addition the occurrence of a specific condition. For
example, 3 is greater than 2, the specific mass of lead is higher than that of iron,
humans are different from tables are all relations of the first kind, while John
works for Mary is a relation of the second kind, since, in addition to the mere
existence of John and Mary, it requires something to happen (at a specific time)
in order for the relation hold. In other words, material relations presuppose a
certain temporal phenomenon to occur whenever they hold.

In this talk I will argue in favor of the systematic, explicit representation of
the temporal phenomena underlying material relations. The terminology used
in the literature for such temporal phenomena is multifarious: events, processes,
states, situations, occurrences, perdurants. . . I will focus here on a large rele-
vant subclass of temporal phenomena, which I will call episodes . According to
the Oxford Advanced Learning Dictionary, an episode is “an event, a situation,
or a period of time that is important or interesting in some way”. I will interpret
the interestingness requirement as a requirement on the maximal temporal con-
nectedness of the phenomenon at hand: an episode is a temporal phenomenon
occurring in a maximally connected time interval. This means that, for instance,
a sitting episode has a starting time which coincides with the transition between
not being sitting and being sitting, and an end time which coincides with the
opposite transition.

My main point will be that, whenever there is an episode which corresponds
to a particular relationship, it is very useful to model such episode explicitly,
putting it in the domain of discourse. Once we make this modeling choice, we
can easily express relevant information which would otherwise be hidden: how
long will the work relationship last? What is the different role of the participants?
What are their mutual rights and obligations? Where does the work take place?
In addition, we can easily describe the internal dynamics of the relationship,
distinguishing for instance phases of hard work or vacation which will be modeled
as sub-episodes of the main one.

XIV N. Guarino

Finally, I will investigate the technical implications of this approach in the
light of current research on the ontology of temporal phenomena, and illustrate
a number of open ontological issues concerning episodes, their participants, and
the spatiotemporal context where the episode occur.

Open Services for Software Process Compliance

Engineering

Miklos Biro

Software Competence Center Hagenberg GmbH,
Softwarepark 21,4232 Hagenberg, Austria

miklos.biro@scch.at

http://www.scch.at

Abstract. The paper presents an update of the change of expectations
and most recent new approaches regarding software processes and their
improvement following the Software Process Improvement Hype Cycle
introduced earlier by the author as an extension of the Gartner Hype
Cycle idea. Software process assessment and improvement can itself be
considered on the more abstract level as a quest for compliance with
best practices. Etics and regulatory regimes explicitly addressing safety-
critical systems mean however stringent compliance requirements beyond
the commitment to improve process capability. New approaches are nec-
essary for software engineers to fulfill the considerably growing expecta-
tions regarding quality under much slower changing development bud-
get and deadline constraints. Open Services for Lifecycle Collaboration
(OSLC) is the emerging initiative inspired by the web which is currently
at the technology trigger stage along its hype cycle with the potential to
have a determining impact on the future of Software Process Compliance
Engineering.

Towards a Higher-Dimensional String Theory

for the Modeling of Computerized Systems

David Janin�

LaBRI, Université de Bordeaux,
351, cours de la libération
F-33405 Talence, France

janin@labri.fr

Abstract. Recent modeling experiments conducted in computational
music give evidence that a number of concepts, methods and tools be-
longing to inverse semigroup theory can be attuned towards the concrete
modeling of time-sensitive interactive systems. Further theoretical devel-
opments show that some related notions of higher-dimensional strings
can be used as a unifying theme across word or tree automata theory. In
this invited paper, we will provide a guided tour of this emerging theory
both as an abstract theory and with a view to concrete applications.

* CNRS temporary researcher fellow (2013-2014).

Advice Complexity:

Quantitative Approach to A-Priori Information
(Extended Abstract)

Rastislav Královič

Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

Abstract. We survey recent results from different areas, studying how
introducing per-instance a-priori information affects the solvability and
complexity of given tasks. We mainly focus on distributed, and online
computation, where some sort of hidden information plays a crucial role:
in the distributed computing, typically nodes have no or only limited
information about the global state of the network; in online problems,
the algorithm lacks the information about the future input. The tra-
ditional approach in both areas is to study how the properties of the
problem change if some partial information is available (e.g., nodes of
a distributed system have sense of direction, the online algorithm has
the promise that the input requests come in some specified order etc.).
Recently, attempts have been made to study this information from a
quantitative point of view: there is an oracle that delivers (per-instance)
best-case information of a limited size, and the relationship between the
amount of the additional information, and the benefit it can provide to
the algorithm, is investigated. We show cases where this relationship has
a form of a trade-off, and others where one or more thresholds can be
identified.

Matching of Images of Non-planar Objects

with View Synthesis

Dmytro Mishkin and Jǐŕı Matas�

Center for Machine Perception, Faculty of Electrical Engineering,
Czech Technical University in Prague

ducha.aiki@gmail.com, matas@cmp.felk.cvut.cz

Abstract. We explore the performance of the recently proposed two-
view image matching algorithms using affine view synthesis – ASIFT
(Morel and Yu, 2009) [14] and MODS (Mishkin, Perdoch and Matas,
2013) [10] on images of objects that do not have significant local texture
and that are locally not well approximated by planes.

Experiments show that view synthesis improves matching results on
images of such objects, but the number of “useful” synthetic views is
lower than for planar objects matching. The best detector for matching
images of 3D objects is the Hessian-Affine in the Sparse configuration.
The iterative MODS matcher performs comparably confirming it is a
robust, generic method for two view matching that performs well for
different types of scenes and a wide range of viewing conditions.

* Invited Speaker.

Agile Requirements Engineering: A Research

Perspective

Jerzy Nawrocki�, Miros�law Ochodek, Jakub Jurkiewicz,
Sylwia Kopczyńska, and Bartosz Alchimowicz

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 2, 60-965 Poznań, Poland

{Jerzy.Nawrocki,Miroslaw.Ochodek,Jakub.Jurkiewicz,Sylwia.Kopczynska,

Bartosz.Alchimowicz}@cs.put.poznan.pl

Abstract. Agile methodologies have impact not only on coding, but also
on requirements engineering activities. In the paper agile requirements
engineering is examined from the research point of view. It is claimed
that use cases are a better tool for requirements description than user
stories as they allow zooming through abstraction levels, can be reused
for user manual generation, and when used properly can provide quite
good effort estimates. Moreover, as it follows from recent research, parts
of use cases (namely event descriptions) can be generated in an automatic
way. Also the approach to non-functional requirements can be different.
Our experience shows that they can be elicited very fast and can be quite
stable.

* Invited Speaker.

Table of Contents

Invited Papers

Open Services for Software Process Compliance Engineering 1
Miklos Biro

Towards a Higher-Dimensional String Theory for the Modeling
of Computerized Systems . 7

David Janin

Advice Complexity: Quantitative Approach to A-Priori Information
(Extended Abstract) . 21

Rastislav Královič

Matching of Images of Non-planar Objects with View Synthesis 30
Dmytro Mishkin and Jǐŕı Matas

Agile Requirements Engineering: A Research Perspective 40
Jerzy Nawrocki, Miros�law Ochodek, Jakub Jurkiewicz,
Sylwia Kopczyńska, and Bartosz Alchimowicz

Contributed Papers

Fitting Planar Graphs on Planar Maps . 52
Md. Jawaherul Alam, Michael Kaufmann,
Stephen G. Kobourov, and Tamara Mchedlidze

Minimum Activation Cost Node-Disjoint Paths in Graphs
with Bounded Treewidth . 65

Hasna Mohsen Alqahtani and Thomas Erlebach

Tight Bounds for the Advice Complexity of the Online Minimum
Steiner Tree Problem . 77

Kfir Barhum

On the Power of Advice and Randomization for the Disjoint Path
Allocation Problem . 89

Kfir Barhum, Hans-Joachim Böckenhauer, Michal Forǐsek,
Heidi Gebauer, Juraj Hromkovič, Sacha Krug, Jasmin Smula, and
Björn Steffen

Goal-Based Establishment of an Information Security Management
System Compliant to ISO 27001 . 102

Kristian Beckers

XXII Table of Contents

ProofBook: An Online Social Network Based on Proof-of-Work
and Friend-Propagation . 114

Sebastian Biedermann, Nikolaos P. Karvelas, Stefan Katzenbeisser,
Thorsten Strufe, and Andreas Peter

Platform Independent Software Development Monitoring: Design
of an Architecture . 126

Mária Bieliková, Ivan Polášek, Michal Barla, Eduard Kuric,
Karol Rástočný, Jozef Tvarožek, and Peter Lacko

Towards Unlocking the Full Potential of Multileaf Collimators 138
Guillaume Blin, Paul Morel, Romeo Rizzi, and Stéphane Vialette

Parameterized Complexity of the Sparsest k-Subgraph Problem
in Chordal Graphs . 150

Marin Bougeret, Nicolas Bousquet, Rodolphe Giroudeau, and
Rémi Watrigant

Error-Pruning in Interface Automata . 162
Ferenc Bujtor and Walter Vogler

Aspect-Driven Design of Information Systems . 174
Karel Cemus and Tomas Cerny

Exact Algorithms to Clique-Colour Graphs . 187
Manfred Cochefert and Dieter Kratsch

Supporting Non-functional Requirements in Services Software
Development Process: An MDD Approach . 199

Valeria de Castro, Martin A. Musicante, Umberto Souza da Costa,
Plácido A. de Souza Neto, and Genoveva Vargas-Solar

Safety Contracts for Timed Reactive Components in SysML 211
Iulia Dragomir, Iulian Ober, and Christian Percebois

Graph Clustering with Surprise: Complexity and Exact Solutions 223
Tobias Fleck, Andrea Kappes, and Dorothea Wagner

On Lower Bounds for the Time and the Bit Complexity of Some
Probabilistic Distributed Graph Algorithms (Extended Abstract) 235

Allyx Fontaine, Yves Métivier, John Michael Robson, and
Akka Zemmari

Active Learning of Recursive Functions by Ultrametric Algorithms 246
Rūsiņš Freivalds and Thomas Zeugmann

Efficient Error-Correcting Codes for Sliding Windows 258
Ran Gelles, Rafail Ostrovsky, and Alan Roytman

Table of Contents XXIII

Integrating UML Composite Structures and fUML 269
Alessandro Gerlinger Romero, Klaus Schneider, and
Mauŕıcio Gonçalves Vieira Ferreira

Deciding the Value 1 Problem for #-Acyclic Partially Observable
Markov Decision Processes . 281

Hugo Gimbert and Youssouf Oualhadj

Bidimensionality of Geometric Intersection Graphs 293
Alexander Grigoriev, Athanassios Koutsonas, and
Dimitrios M. Thilikos

Attack against a Pairing Based Anonymous Authentication Protocol . . . 306
Lucjan Hanzlik and Kamil Kluczniak

Finding Disjoint Paths in Split Graphs . 315
Pinar Heggernes, Pim van ’t Hof, Erik Jan van Leeuwen, and
Reza Saei

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip
Packing . 327

Klaus Jansen and Lars Prädel

A Stronger Square Conjecture on Binary Words . 339
Nataša Jonoska, Florin Manea, and Shinnosuke Seki

DSL Based Platform for Business Process Management 351
Audris Kalnins, Lelde Lace, Elina Kalnina, and Agris Sostaks

Bounded Occurrence Edit Distance: A New Metric for String Similarity
Joins with Edit Distance Constraints . 363

Tomoki Komatsu, Ryosuke Okuta, Kazuyuki Narisawa, and
Ayumi Shinohara

Deterministic Verification of Integer Matrix Multiplication in Quadratic
Time . 375

Ivan Korec and Jǐŕı Wiedermann

Comparison of Genetic Algorithms for Trading Strategies 383
Petr Kroha and Matthias Friedrich

Probabilistic Admissible Encoding on Elliptic Curves-Towards PACE
with Generalized Integrated Mapping . 395

�Lukasz Krzywiecki, Przemys�law Kubiak, and Miros�law Kuty�lowski

An Algebraic Framework for Modeling of Reactive Rule-Based
Intelligent Agents . 407

Katerina Ksystra, Petros Stefaneas, and Panayiotis Frangos

XXIV Table of Contents

Parameterized Prefix Distance between Regular Languages 419
Martin Kutrib, Katja Meckel, and Matthias Wendlandt

Ordered Restarting Automata for Picture Languages 431
Frantǐsek Mráz and Friedrich Otto

Unary NFAs with Limited Nondeterminism . 443
Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

Recommending for Disloyal Customers with Low Consumption Rate 455
Ladislav Peska and Peter Vojtas

Security Constraints in Modeling of Access Control Rules for Dynamic
Information Systems . 466

Aneta Poniszewska-Maranda

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 478
George Roumelis, Michael Vassilakopoulos, Antonio Corral, and
Yannis Manolopoulos

Mastering Erosion of Software Architecture in Automotive Software
Product Lines . 491

Arthur Strasser, Benjamin Cool, Christoph Gernert,
Christoph Knieke, Marco Körner, Dirk Niebuhr,
Henrik Peters, Andreas Rausch, Oliver Brox,
Stefanie Jauns-Seyfried, Hanno Jelden, Stefan Klie, and
Michael Krämer

Shortest Unique Substrings Queries in Optimal Time 503
Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda

Oracle Pushdown Automata, Nondeterministic Reducibilities,
and the Hierarchy over the Family of Context-Free Languages 514

Tomoyuki Yamakami

Author Index . 527

Open Services for Software Process Compliance

Engineering

Miklos Biro

Software Competence Center Hagenberg GmbH,
Softwarepark 21,4232 Hagenberg, Austria

miklos.biro@scch.at

http://www.scch.at

Abstract. The paper presents an update of the change of expectations
and most recent new approaches regarding software processes and their
improvement following the Software Process Improvement Hype Cycle
introduced earlier by the author as an extension of the Gartner Hype
Cycle idea. Software process assessment and improvement can itself be
considered on the more abstract level as a quest for compliance with
best practices. Etics and regulatory regimes explicitly addressing safety-
critical systems mean however stringent compliance requirements beyond
the commitment to improve process capability. New approaches are nec-
essary for software engineers to fulfill the considerably growing expecta-
tions regarding quality under much slower changing development bud-
get and deadline constraints. Open Services for Lifecycle Collaboration
(OSLC) is the emerging initiative inspired by the web which is currently
at the technology trigger stage along its hype cycle with the potential to
have a determining impact on the future of Software Process Compliance
Engineering.

Keywords: software, process, improvement, safety, traceability, open,
lifecycle, hype, regulatory, compliance, productivity, www.

1 Introduction

The popular concept of Hype Cycle was coined in 1995 at the Gartner infor-
mation technology research and advisory company based in the U.S. Referring
to the complete analysis of the subject to [2], the phases of this hype cycle,
originally applied to emerging technologies are:

1. ”Technology Trigger”
2. ”Peak of Inflated Expectations”
3. ”Trough of Disillusionment”
4. ”Slope of Enlightenment”
5. ”Plateau of Productivity”

The software process improvement movement started with the CMM being a
significant innovation. The hype cycle was triggered at the end of the 1980s and

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 1–6, 2014.
c© Springer International Publishing Switzerland 2014

http://www.scch.at

2 M. Biro

went through altered phases which do not purely follow the one promoted by
Gartner. One of the reasons of the difference is the support and acceptance of the
model, worked out and managed at the SEI, by the U.S. Department of Defence
which helped the CMM avoiding the full trough of disillusionment by supporting
continuous innovation in the form of the Capability Maturity Model Integration
(CMMI) [4] for example. The other major parallel high impact initiative is the
trial and adoption of the ISO/IEC 15504 (SPICE) international standard. SPICE
and CMMI are both the results and the further catalysts of the spreading of
process maturity models to other disciplines than software development. This
plateau of spreading to other disciplines and models is followed by the trough of
doubts and new triggers like the Agile Manifesto with a new hype cycle starting
with new expectations and also the SPI Manifesto [5] . The altered hype cycle of
software process improvement consists of the following phases analysed in more
detail in [1] extended with the currently last hype promising new perspectives
as discussed below:

1. Awareness of process capability weaknesses triggered by the software crisis
and CMM.

2. SPI and ISO 9000 expectations.
3. Bridging the trough of disillusionment.
4. Enlightenment leading to further recognition of the importance of business

goals
5. Plateau of spreading to other disciplines and models.
6. Trough of doubts and new triggers.
7. Plateau of reconciliation and industrial adoption.
8. Perspective: SPI and its industrial adoption to be fertilized by Web technol-

ogy

2 Growing Expectations Regarding Safety-Critical
Systems

The growing expectations regarding software components of safety-critical sys-
tems, to which the category of ProgrammableElectricalMedical Systems (PEMS)
belongs, is a consequence of the changing impact of software on the consumer value
of PEMS which was earlier fundamentally determined by hardware components
with software primarily used for algorithmic tasks. Increasingly, embedded soft-
ware is creating competitive differentiation for manufacturers [6].

Software, on the other hand, is perceived by business as more capable to be
adapted to fluid requirements changes than hardware. In the software engineer-
ing discipline, it has for long been recognized however that the only way to
achieve high reliability is to follow appropriately defined processes. The neces-
sary processes are summarized in international standards (ISO/IEC 12207 for
software, ISO/IEC 15288 for systems), while their assessment and improvement
is facilitated by the ISO/IEC 15504 series of standards currently evolving into
the ISO/IEC 330xx series.

Open Services for Software Process Compliance Engineering 3

Focusing on medical systems, the Association for the Advancement of Medi-
cal Instrumentation (AAMI) software committee reviewed ISO/IEC 12207:1995
and identified a number of shortcomings due to the fact that it was a generic
standard. As a result a decision was taken to create a new standard which was
domain specific to medical device software development, and in 2006, the new
standard IEC 62304:2006 Medical device software - Software life cycle processes,
was released. IEC 62304:2006 is approved today by the FDA (U.S. Food and
Drug Administration) and is harmonized with the European MDD (Medical De-
vice Directive). The quality management standard ISO 13485:2003, and the risk
management standard ISO/IEC 14971:2007 are considered to be aligned with
IEC 62304:2006 and their relationship is documented in IEC 62304:2006 itself.

An extensive revision of the ISO/IEC 12207 standard took place in its release
in 2008. As a result, all derived standards, including IEC 62304:2006, are under
review.

To facilitate the assessment and improvement of software development pro-
cesses for medical devices, the MediSPICE model based upon ISO/IEC 15504-5
is being developed. The Process Reference Model (PRM) of MediSPICE will en-
able the processes in the new release of IEC 62304 to be comparable with those of
ISO 12207:2008 [7]. The above points give just a glimpse of the changes heavily
affecting software developers in the medical devices domain. Nevertheless, the
key initial issues ultimately addressed by the standards, namely traceability in
achieving and rigor in certifying the safety of PEMS must be kept in focus.

3 Traceability, Interoperability, OSLC

Traceability and even bilateral (ISO/IEC 15504) or bidirectional (CMMI) trace-
ability are key notions of all process assessment and improvement models. Un-
fortunately, traceability as well as interoperability is difficult to achieve with the
heterogeneous variety of application lifecycle management tools companies are
faced with [8], [9].

Full traceability of a requirement throughout the development chain and even
the entire supply chain is also a major focus point of the recently completed
authoritative European CESAR project (Cost-Efficient Methods and Processes
for Safety Relevant Embedded Systems) which adopted interoperability tech-
nologies proposed by the Open Services for Life-cycle Collaboration (OSLC)
initiative [10].

OSLC is the recently formed cross-industry initiative aiming to define stan-
dards for compatibility of software lifecycle tools. Its aim is to make it easy and
practical to integrate software used for development, deployment, and monitor-
ing applications. This aim seems to be too obvious and overly ambitious at the
same time. However, despite its relatively short history starting in 2008, OSLC
is the only potential approach to achieve these aims at a universal level, and
is already widely supported by industry. The OSLC aim is of course of utmost
significance in the case of the Programmable Electrical Medical Systems.

The unprecedented potential of the OSLC approach is based on its foundation
on the architecture of the World Wide Web unquestionably proven to be powerful

4 M. Biro

and scalable and on the generally accepted software engineering principle to
always focus first on the simplest possible things that will work.

The elementary concepts and rules are defined in the OSLC Core Specification
[11] which sets out the common features that every OSLC Service is expected to
support using the terminology and generally accepted approaches of the World
Wide Web Consortium (W3C). One of the key approaches is Linked Data being
the primary technology leading to the Semantic Web which is defined by W3C as
providing a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries. And formulated at the most
abstract level, this is the exact goal OSLC intends to achieve in the interest of
full traceability and interoperability in the software lifecycle. Similarly to the
example of the capability maturity models, the software focused OSLC is having
a determining cross-fertilizing effect on the progress of the more general purpose
Semantic Web itself.

The OSLC Core Specification is actually the core on which all lifecycle element
(domain) specifications must be built upon. Examples of already defined OSLC
Specifications include:

– Architecture Management
– Asset Management
– Automation
– Change Management
– Quality Management
– Requirements Management

Focusing on the example of the RequirementsManagement Specification whose
version 2.0 was finalized in September 2012 [12], it builds of course on the Core,
briefly introduced above, to define the resource types, properties and operations
to be supported by any OSLC Requirements Definition andManagement (OSLC-
RM) provider.

Examples of possible OSLC Resources include requirements, change requests,
defects, test cases and any application lifecycle management or product lifecycle
management artifacts. Resource types are defined by the properties that are
allowed and required in the resource.

In addition to the Core resource types (e.g. Service, Query Capability, Dia-
log, etc...), the minimal set of special Requirements Management resource types
simply consists of:

– Requirements
– Requirements Collections.

The properties defined in the OSLC Requirements Management Specification
describe these resource types and the relationships between them and all other
resources. The relationship properties describe for example that

– the requirement is elaborated by a use case
– the requirement is specified by a model element
– the requirement is affected by another resource, such as a defect or issue

Open Services for Software Process Compliance Engineering 5

– another resource, such as a change request tracks the requirement

– another resource, such as a change request implements the requirement
– another resource, such as a test case validates the requirement
– the requirement is decomposed into a collection of requirements
– the requirement is constrained by another requirement

OSLC is currently at the technology trigger stage along its hype cycle, it is
already clear however that it is the approach which has the potential to have a
determining impact on the future of Software Process Compliance Engineering.

4 Conclusion

The original paradigm underlying software process improvement was based on
the highest priority to be attributed to the organization of software develop-
ment processes with the possession of the necessary methodological knowledge
having high but lower significance, and technology considered to be indispens-
able of course, but having the lowest impact on the actual capability of software
processes [3].

It turns out that considering the heterogeneity of application lifecycle man-
agement tools companies are using, it can be claimed that today, technology is
becoming the bottleneck of improving traceability and interoperability being key
elements of software process improvement and subject to intensively growing ex-
pectations regarding compliance to etical, regulatory, and business requirements.

The future will have to lead to the mutual appreciation of the special ad-
vantages of the different approaches to software process improvement positively
cross-fertilized by evolving WWW technology.

References

1. Biro, M.: The Software Process Improvement Hype Cycle. Invited contribution to
the Monograph: Experiences and Advances in Software Quality. In: Dalcher, D.,
Fernndez-Sanz, L. (Guest eds.) CEPIS UPGRADE, vol. X (5), pp. 14–20 (2009),
http://www.cepis.org/files/cepisupgrade/issue%20V-2009-fullissue.pdf

(accessed: October 21, 2013)

2. Fenn, J., Raskino, M.: Mastering the Hype Cycle. Harvard Business Press (2008)

3. Biro, M., Feuer, E., Haase, V., Koch, G.R., Kugler, H.J., Messnarz, R., Remzso,
T.: BOOTSTRAP and ISCN a current look at the European Software Quality
Network. In: Sima, D., Haring, G. (eds.) The Challenge of Networking: Connecting
Equipment, Humans, Institutions, pp. 97–106. R.Oldenbourg, Wien (1993)

4. CMMI for Development, Version 1.3. SEI, (2010) http://www.sei.cmu.edu/

reports/10tr033.pdf (accessed: October 21, 2013)

5. SPI Manifesto Version A.1.2.2010, EuroSPI (2010), http://www.eurospi.net/

images/documents/spi manifesto.pdf (accessed: October 21, 2013)

6. Bakal, M.: Challenges and opportunities for the medical device industry. IBM
Software, Life Sciences, Thought Leadership White Paper (2011)

http://www.cepis.org/files/cepisupgrade/issue%20V-2009-fullissue.pdf
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.eurospi.net/images/documents/spi_manifesto.pdf
http://www.eurospi.net/images/documents/spi_manifesto.pdf

6 M. Biro

7. Casey, V., McCaffery, F.: The development and current status of mediSPICE. In:
Woronowicz, T., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2013. CCIS,
vol. 349, pp. 49–60. Springer, Heidelberg (2013)

8. Pirklbauer, G., Ramler, R., Zeilinger, R.: An integration-oriented model for appli-
cation lifecycle management. In: Proceedings of the 11th International Conference
con Enterprise Information Systems (ICEIS 2009), pp. 399–403. INSTICC (2009)

9. Murphy, T.E., Duggan, J.: Magic Quadrant for Application Life Cycle Manage-
ment. Gartner (2012)

10. Open Services for Lifecycle Collaboration (2008), http://open-services.net/
11. Open Services for Lifecycle Collaboration Core Specification Version 2.0 (2013),

http://open-services.net/bin/view/Main/OslcCoreSpecification

12. Open Services for Lifecycle Collaboration Requirements Management
Specification Version 2.0 (2012), http://open-services.net/bin/view/Main/

RmSpecificationV2/

http://open-services.net/
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/RmSpecificationV2/
http://open-services.net/bin/view/Main/RmSpecificationV2/

Towards a Higher-Dimensional String Theory
for the Modeling of Computerized Systems

David Janin�

LaBRI, Université de Bordeaux,
351, cours de la libération
F-33405 Talence, France

janin@labri.fr

Abstract. Recent modeling experiments conducted in computational
music give evidence that a number of concepts, methods and tools be-
longing to inverse semigroup theory can be attuned towards the concrete
modeling of time-sensitive interactive systems. Further theoretical devel-
opments show that some related notions of higher-dimensional strings
can be used as a unifying theme across word or tree automata theory. In
this invited paper, we will provide a guided tour of this emerging theory
both as an abstract theory and with a view to concrete applications.

1 Introduction

As Mozart’s character puts it in Milos Forman’s masterpiece Amadeus, opera
was for many years the only medium in which everyone could be talking at the
same time and still manage to understand each other. Today, this has become
common practice in communication networks.

Music theory has been developed empirically down the ages until it achieved
status as a recognized discipline. It now provides us with the means for describing
the underlying mechanisms and subtle interaction between musicians as they
perform, based on complex combinatory rules relating to rhythm, harmony and
melody. Computer science also aims to describe the subtle organization and
treatment of data. It therefore follows that the study of modeling in the field
of music might lead to the discovery of concepts, abstract tools and modeling
principles which are applicable to modern computer engineering.

It is by developing language theoretical models of musical rhythmic structures
that the author of this paper eventually re-discovered inverse semigroup theory:
a part of semigroup theory that has been developed since the 50s. Further ex-
periments, both in the field of computational music and in the field of formal
language theory, provide evidence that such a theory can be further developed
and attuned towards concrete computer engineering.

The purpose of this paper is to give an overview of these recent experiments
and the underlying emerging ideas, methods and tools.

� CNRS temporary researcher fellow (2013-2014).

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 7–20, 2014.
c© Springer International Publishing Switzerland 2014

janin@labri.fr

8 D. Janin

Mathematical Frameworks for Computer Science and Engineering.
In computer science and, more specifically, software or hardware engineering,
formal methods are mathematically rigorous techniques for the specification, de-
velopment and verification of computerized systems. Based on research fields in
theoretical computer science as varied as type theory, automata and language
theory, logic, these methods have already demonstrated their relevance for in-
creasing the reliability of both software and hardware systems.

For instance, in functional programming, it is now common knowledge that
proof and type theory does provide numerous metaphors and concepts that can
be efficiently used by systems architects and developers. Typed functional lan-
guages such as Haskell or OCAML illustrate how deep mathematical theories
can effectively be attuned towards relevant concepts which may be applied with
ease. A similar observation can be made concerning data-base system design
that now integrates highly usable methods and concepts that are deeply rooted
in model theory.

Mathematical Frameworks for Interactive System Design.
One of the most demanding application areas of automata and formal language
theories is the domain of interactive system design. These systems are commonly
viewed as state/transition systems, that is automata, and the behavior of these
systems is commonly represented by the sets of their possible execution traces;
that is, formal languages. A formal method such as event B [1], whose applica-
bility to industry is clearly demonstrated regards to its use in automated public
transport, is based on state/transition formalisms. With many features inherited
from method B [3], it offers a particularly good example of how topics as varied
as logic, proof theory, automata theory and formal languages can be combined
and shaped towards applications [36].

However, while the mathematical frameworks that are available for functional
programming or database design have been considerably and successfully devel-
oped and attuned towards applications over the last decades, the mathematics
for interactive system modeling does not yet seem to have reached the same
level of maturity. Since the early 80s, developing what became the theory of
concurrency, many authors promoted the idea of modeling interactive systems
by means of two distinct operators: the sequential composition and the parallel
composition of system behaviors (see e.g. [11,29]). However, examples of (dis-
tributed) system modeling show that such a distinction does not necessarily fit
the abstraction/refinement methodology that system designers follow.

For instance, at the abstract specification level the well known distributed
algorithm for leader election in a graph (see e.g. [4]) is based upon the successive
execution of two global phases: the construction of a spanning tree followed by
the pruning of that spaning tree. However, at the (distributed) concrete execution
level these two phases overlap in time. Indeed, the pruning phase may start
locally as soon as the spanning tree phase is locally completed. In other words,
when composing two distributed algorithms one “after” the other, a composition
of this type is neither purely parallel nor purely sequential: it is a sort of mixed
product of some higher-dimensional models of spatiotemporal behaviors.

Towards a Higher-Dimensional String Theory 9

Towards a Theory of Higher Dimensional Strings.
This raises the question of whether there could be a mathematical theory of
higher-dimensional strings. By describing quasi-crystals in physics [22], Kellen-
donk showed how such strings should be composed.

In one dimension, each string has two ends and, once a convention has been
made on parity, a unique multiplication may be defined, called string concate-
nation, which enables pairs of strings to be multiplied, thereby giving rise to the
structure of a free monoid. In higher dimensions, there is no uniquely defined
way of composing patterns. Kellendonk hits upon the idea of labeling patterns
by selecting two tiles of the pattern: one to play the role of the input and the
other that of output. By using this labeling, a unique composition can be de-
fined. The resulting semigroup is no longer free but is some kind of inverse
semigroup [22,23].

In music system programming where the time vs space problematic also ap-
pears (see e.g. [14]), similar ideas, also rooted in inverse semigroup theory, have
led to the definition of a higher abstraction layer into which both strings and
streams may be embedded into a single object type: tiled streams [20]. As a re-
sult, this new programming layer allows for the combination of both (sequential)
strings and (parallel) streams with a single mixed product: the tiled product.

By capitalizing on theoretical developments within the general theory of in-
verse semigroups (see [25] for instance) and the associated emerging notion of
higher-dimensional strings [22,23], we thus aim at developing the idea of an in-
verse semigroup theory for computer science much in the same way that the
development of logic for computer science is advocated in [36].

In this paper, we provide a guided tour of the first experiments conducted in
this direction, both as an abstract theory and with a view to concrete applica-
tions.

2 From Partial Observations to Inverse Semigroups

On the footpath of Kellendonk for describing the local structures of quasi-crystals
that leads to the discovery of (a notion of) tiling semigroups [22,23], we aim here
at illustrating how inverse semigroup structures naturally arise by performing
partial observations of (the local structure of) computerized system behavior
spaces.
Partial Observations.
We assume that the behavior of a system can be viewed as the traversal of a
complex space S of all potential behaviors that describe both the way data are
structured in space but also the way they can evolve as time passes. Then, a
partial observation is defined by the observation resulting of an out of time1

traversal of such a space S, that induces some domain of the traversal, together
with the starting point of such a traversal, called the input root, and the end
point of such a traversal, called the output root. Such a (meta) notion of partial
observation may be depicted as in Figure 1. Of course, the exact nature of a
1 Time flows does not matter at that stage.

10 D. Janin

(Global behaviors space)

• ••in •
outA

Fig. 1. A partial observation A

partial observation, that is, the nature of its domain and the associated input
and input roots, depends on the mathematical nature of the space S.

For instance, in the approach of Kellendonk [22], the space S is a quasi-crystal,
that is a collection of distinct tiles that tiles the Euclidian space Rd. Then, a
partial observation is defined as a set T of tiles of S that cover a connected
subset of Rd together with two distinguished tiles I ∈ T and O ∈ T acting as
input and output roots (see [22] and [23] for more details).

In free inverse monoids [32,30], the space S is defined as the Cayley graph of
the free group FG(A) generated by a given alphabet A. Then, partial observa-
tions are defined as finite connected subgraphs of that Cayley graph with two
distinguished vertices: one for the input root and the other for the output root.

In this case, partial observations are birooted trees, that is, finite directed tree-
shaped graphs with deterministic and co-deterministic A-labeled edges. Exten-
sion with labeled vertices are considered in [18] in connection with tree walking
automata and also in [16] in connection with non deterministic tree automata.

Restricting to linear birooted trees, we obtain what may be called birooted
words, structures that already appear in the 70’s as elements of the monoid of
McAlister [26].
Observation Composition.
Two observations A and B can be composed in a two step procedure defined by,
first, a synchronization that amounts to sewing the output root of A with the
input root of B, followed secondly by a fusion that amounts to merging the sub-
domains that may overlap. Such a (meta) notion of composition of observations
can be depicted as in Figure 2.

• ••in A • ••
out

B
outA/inB

Fig. 2. The product A ·B of two partial observations A and B

In many settings, the fusion operation may fail hence, apriori, the product of
two observations is a partial product. In such a case, it is completed by adding an
undefined observation, denoted by 0, that simply acts as zero, i.e. A·0 = 0 = 0·A
for every observation A. It is an easy exercise to check that such a zero element
is necessarily unique and idempotent, i.e. 0 · 0 = 0.

It may also be the case that the structure of observations allows for the defini-
tion of a special element, the unit, denoted by 1, that is neutral for the product,

Towards a Higher-Dimensional String Theory 11

i.e. A ·1 = A = 1 ·A for every observation A. It is an easy exercise to check that,
necessarily, such a neutral element is also unique and idempotent.
The Semigroup/Monoid of Partial Observations.
In general, nothing guarantees that such a product is associative so we simply
assume this, that is, we assume that (A ·B) ·C = A ·(B ·C) for every observation
A, B and C. Though simple, let us insists on the fact that associativity is the
first key property for a robust and usable implementation for it means that a
complex product can be specified and computed in any order.

In algebra, the resulting structure is known as a semigroup. In the case there
is also a unit, it is a monoid.

Without any further assumptions, two special observations can already be
defined out of a given one. Indeed, given an observation A, we may also consider
the observation AR, called the reset or right projection of A, defined by moving
the output root to the input root, and, symmetrically, the observation AL, called
the co-reset or left projection of A, defined by moving the input to the output
root. The resulting observations are depicted in Figure 3. We observe that the

• ••in •
out

AR • ••in •
outA • •• in•

outAL

Fig. 3. The reset and co-reset operators

mapping A �→ AL and A �→ AR are indeed projection since, for every observation
A, we have (AL)L = AL = (AL)R and (AR)L = AR = (AR)R. The left and right
projection are extended to zero by taking 0L = 0 = 0R. It is then possible
to define two derived operators, called fork and join, by fork(A,B) = AR · B
and join(A,B) = A · BL. These derived operators are depicted in Figure 4.

• ••in AR• ••in
•

out
B • ••in A

• ••
out

BL

Fig. 4. The fork and join derived operators

Interpreting for a while the paths from input to output roots as time flows, in
the fork operation, everything looks as if the two observations “start” at the
same “time” in their input roots. Similarly, in the join operation, it looks as if
the two observations “end” at the same “time” in their output roots.

More generally, at the abstract syntactic level, the composition A · B of two
successive observations A and B, actually admits, at the concrete model level,
some parallel flavored characteristics induced by the possible overlaps that may

12 D. Janin

arise in the resulting structure. In other words, everything looks as if the ob-
servation product we are defining here at some meta level is a good candidate
for the mixed sequential and parallel operator we are looking for as mentioned
above.
Example. In computational music, such an approach is already used as follows.
Every finite audio stream is enriched with input and output synchronization
marks that, when mixing two streams, allows for automatically positioning them
in time, one with respect to the other. Doing so, synchronization specifications
have thus been internalized in some sense into the audio streams themselves,
much like music bars in a music score. The resulting algebra [2], with product,
left and right projections, and some other operators acting on tempos, provides
a fairly robust and versatile language for music composition. Further implemen-
tation experiments have been conducted in [21].
Product by Synchronized Superposition.
In the concrete inverse semigroups mentioned above, the definition of the product
of two partial observations can be refined as follows:

Definition 1. The product A · B of two observations A and B is defined to be
the observation C (assumed to be uniquely defined up to isomorphism when it
exists) such that there exist two embeddings ϕA : A → C and ϕB : B → C so
that:

– the input root of A (resp. the output root of B) is mapped to the input root
(resp. the output root) of C,

– the output root of A and the input root of B are mapped to the same image,
– the domain of C is the union of the domains of ϕA(A) and ϕB(B),

the product being completed by zero when no such observation C exists.

Remark. In other words, in that case, everything looks as if the product A · B
is performed by translating the two observations A and B in such a way that
their output and input root coincide. Then, the fusion just amounts to checking
that the resulting overlapping subdomains are isomorphic.

More generally, Stephen’s representation theorem of inverse semigroups [34]
tells that every elements of every inverse semigroup have a graphical representa-
tions. In view of applications, this fact that is of high interest. However, it may
be the case that the product induces a graph composition that does not fit the
above definition.

In other words, the informal point of view that has been previously given is
still worthy of being kept in mind when looking for new instances of models of
partial observations and the related compositions.
Resulting Idempotents (System States).
When the observation product is defined by synchronized superposition, as well
as with Stephen graphical representation of inverse semigroups, and probably in
many other settings still to be defined and studied, elements for which the input
and output root coincide plays an especially important rôle.

Towards a Higher-Dimensional String Theory 13

In a context even more general than inverse semigroups as shown in the next
section, these elements are be called subunits. By definition, both the left and
right projection AL and AR of an arbitrary observation A, are subunits.

The fact is that subunits are both idempotent and commute, that is, for every
elements E and F with identical input and output roots, we have E · E = E
and E · F = F ·E. They can thus be partially ordered as follows. For every two
subunit observation E and F , we say that E is smaller than F , which is written
E ≤ F , when E = E · F .

One can easily check that this indeed defines a partial order relation, that is,
a reflexive, transitive and antisymmetric relation. Moreover, the meet E ∧ F of
every two subunits E and F , that is the greatest subunit below both E and F ,
exists and can simply be computed by E ∧ F = E · F . Such an order relation is
called the natural order for it can be defined within the semigroup itself [31].
Example. Potential application oriented views of such an order relation are
numerous. For instance, one may view every subunit as the partial description
of the state of the modeled system. The underlying domain of a subunit E tels
how far in the past, in the future and also in the present time the system has
been observed in E.

Then, the natural order tells us how wide such an observation is: the wider the
observation is, the lower it is in the natural order, until it becomes incoherent. In-
deed, the lowest subunit is zero. Then, the product of two partial states/subunit
observations simply describes the union of the descriptions associated with these
two partial states.

Quite strikingly, as recently observed by Dominique Méry and the author,
when observations are viewed as models of behaviors, realizing a system that
goes from a state specification S0 to a state specification S1 amount to finding
a system behavior X such that 0 < (S0 ·X)L ≤ S1. Some modeling experiments
of similar ideas have been conducted in [6].
The Inverse Semigroup of Partial Observations.
The inverse semigroup of observations arises when we assume, as is the case with
the product by superposition, that, for every observation A, the observation A−1

obtained just by inverting the input and the output root of the observation A,
as depicted in Figure 5, satisfies the following properties:

A · A−1 · A = A and A−1 · A · A−1 = A−1 (1)

for every observation A, and,

A · A−1 ·B ·B−1 = B ·B−1 ·A · A−1 (2)

for every observation A and B.
In semigroup theoretical terms, Property (1) says that elements A and A−1

are semigroup inverses one with respect to the other. Property (2) says that
the resulting idempotent elements of the form A · A−1 commute. Indeed, by
associativity, we have (A · A−1) · (A · A−1) = (A · A−1 · A) · A−1 hence, by
applying Property (1), we have (A · A−1) · (A · A−1) = A · A−1. Then we also

14 D. Janin

• ••in •
outA • •• in

•
out

A−1

Fig. 5. An observation and its inverse

have AR = A · A−1 and AL = A−1 · A, as depicted in Figure 6. Even more, we
have AR ·A = A = A ·AL, i.e. these projections are (the least) local units of the
observation A. Forming an inverse semigroup, the natural order on observations

• ••in •
out

A ·A−1 • ••in •
outA • •• in•

outA−1 · A

Fig. 6. Inverses and left and right projections

is extended to all semigroup elements by letting A ≤ B when A = AR · B or,
equivalently, A = B · AL. This order relation is depicted in Figure 7. One can
easily check that the natural order is stable under product, i.e. if A ≤ B then
A·C ≤ B ·C and C ·A ≤ C ·B for every observations A, B and C. In the concrete
cases mentioned so far, we even have A ≤ B when there exists an embedding
ϕ : B → A that preserves input and output roots. Let us mentioned that many

• ••in •
outA ≤ • ••in •

outB

Fig. 7. The natural order

other properties of inverse semigroups can be found in [25] that provide a much
deeper (and precise) description of such a peculiarly rich theory.
Remark. It may be the case that the partial observations described so far are
defined on a structure space that forces input root and output root to be ordered,
the input root always preceding or being equal to the output roots, as this can
be the case with positive birooted words studied in [17] or positive birooted trees
that are known to be the elements of the free ample monoids [10].

The resulting semigroups are no longer inverse semigroups for inverses them-
selves are not elements of these semigroups. However, these semigroups are quasi-
inverse in some sense: the natural order and the left and right projections are
still available.

It must mentioned that, since the late 70s in semigroups theory, Fountain
et al. have develop a theory of semigroups with local units (see [9,24,12,5]),

Towards a Higher-Dimensional String Theory 15

quasi-inverse in the above sense, which underlying concepts are of high interest
for developing a language theory of higher-dimensional strings as in the next
section.

3 On Languages of Higher-Dimensional Strings

In view of applications to computer science, there is a need for a language the-
ory for observations. Indeed, when specifying the expected behavior of a system
one generally describes some characteristic properties of its correct behavior. In
general, especially in the context of an abstraction/refinement designed method,
there is no reason for such specifications to characterize a single possible be-
havior. In this section, we thus aim at defining adequate algebraic tools for a
language theory of observations.
Recognizability and Logic: The Classical Approaches.
In the absence of concrete structures, as it is the case in the general and abstract
setting described here, algebraic recognizability is a major tool for defining lan-
guages, that is, subsets of peculiar semigroups or monoids.

More precisely, a mapping ϕ : S → T from a semigroup S to a semigroup T is
a semigroup morphism when ϕ(x · y) = ϕ(x) ·ϕ(y) for every x and y ∈ S. When
both S and T are monoid, the semigroup morphism ϕ is a monoid morphism
when ϕ(1) = 1. A subset L ⊆ S of a semigroup S (resp. monoid S) is said to
be recognizable by a semigroup (resp. monoid) T when there exists a semigroup
(resp. monoid) morphism such that X = ϕ−1(ϕ(X)).

In the case of languages of words, that is subsets of the free monoid, the
algebraic notion of recognizability does coincide with the notion of recognizability
by finite state automata.

Indeed, given a morphism ϕ : A∗ → S with finite monoid S, one can define the
automaton AS with set of state S, initial state 1, and deterministic transition
s

a→ t whenever s · ϕ(a) = t. Then, for every X ⊆ S, the language ϕ−1(X)
exactly correspond to the language of words recognized by the automaton AS

with accepting states X . Incidentally, this observation also gives a fairly efficient
way to compute ϕ(w) for every w ∈ A∗ given as input.

However, if we restrict target semigroups to be inverse as in [27], or if we
consider languages of free inverse monoids as in [33], besides the inherent interest
of the results established in these studies, the notion of recognizability by or even
from inverse semigroups collapses. Indeed, when logical definability in monadic
second order (MSO) logic [35] is available, as with birooted words [17] or birooted
trees [16], the languages that are recognizable by means of finite monoids and
morphisms are far simpler than the languages definable by means of an MSO
formula (see [17,33,16]).

This comes from the fact that the direct image of an inverse semigroup by a
semigroup morphism is an inverse semigroup hence the automaton AS defined
above is of a very special kind: it is reversible in some sense.

16 D. Janin

Relaxing Morphisms into Premorphisms.
A remedy to the above mentioned collapse is based on the fact that inverse
monoids are partially ordered by means of their natural order. Then, we can relax
the morphism condition into the following condition. A mapping ϕ : S → T from
one partially ordered monoid S in a partially ordered monoid T is a premorphism
(or ∨-premorphism in [13]) when ϕ(x · y) ≤ ϕ(x) · ϕ(y) for every x and y ∈ S
with ϕ(1) = 1.

Then, as with morphisms, it is tempting to define recognizability by partially
ordered monoid via premorphism ϕ : S → T . However, premorphism condition
alone is too weak. It can be shown that there are premorphisms from finitely
generated inverse monoids into finite monoids that are even not computable [15].
The difficulty thus lies in defining an adequate restriction of both premorphisms
and partially ordered monoids that induces a notion of recognizability that is
both sufficiently expressive and still computable.

Our proposal is based on the fact that, in a finitely generated inverse monoid
such as monoids of birooted words [19] or monoids of birooted trees [16], every
element can be defined out from the finite generators, a notion of disjoint product
and left and right projections. In other words, neither arbitrary product nor
inverses themselves are needed to generate these monoids.
Remark. Though premorphisms have been known and used for quite some time
in inverse semigroup theory [28], it seems that their use for language recogniz-
ability has been first proposed by the author himself in [15].
Adequate Monoids and Premorphism.
The recognizers we use instead of semigroups (or monoids) are adequately or-
dered monoids. Following the research track initiated by Fountain, our proposal
is based on ordered monoids that are quasi-inverse in the sense that, though
without inverses themselves, these monoids are still equipped with left and right
projection that behaves like xx−1 and x−1x.

Definition 2. A partially ordered monoid is a monoid S equipped with a stable
partial order relation ≤, that is, for every x, y and z ∈ S, if x ≤ y then xz ≤ yz
and zx ≤ zy. Then, an adequately ordered monoid is a partially ordered monoid
so that, for every element x ∈ S:

– if x ≤ 1 then xx = x, i.e. subunits are idempotent,
– both xL = min{z ≤ 1 : xz = x} and xR = min{z ≤ 1 : zx = x} exist.

It is an easy exercice to check that, by stability, subunits also commute and, or-
dered by the order relation, form a meet semi-lattice with product as meet. When
S is finite, subunits even form a complete lattice which suffices to guarantee the
existence of left and the right projections.
Examples. Every monoid S, trivially ordered with a new leaset element zero, is
an adequately ordered monoid with projections xL = 1 = xR for every x ∈ S.
Also, as already observed, every inverse semigroup S is adequately ordered by
the natural order with xL = x−1x and xR = xx−1 for every x ∈ S. The monoid
P(Q × Q) of relations over a set Q and ordered by relation inclusion is also
adequately ordered.

Towards a Higher-Dimensional String Theory 17

The notion of observation disjoint product, though defined in a quite adhoc
way in each concrete settings, essentially amounts to saying that the product A·B
of two observations A and B is disjoint when it is non zero and the intersection
of (the embedding of) their domains in the resulting product is limited to the
output root of A that has been sewn with the input root of B. An example of a
disjoint product of this type is depicted in Figure 8.

• ••in A • ••
out

B

Fig. 8. Disjoint product of two observations

Definition 3. A adequate premorphism is a premorphism ϕ : S → T from a
given concrete monoid S of observations into an adequately ordered monoid T
such that:

– if A ≤ B then ϕ(A) ≤ ϕ(B),
– ϕ(AL) = (ϕ(A))L and ϕ(AR) = (ϕ(A))R,
– if the product A ·B is disjoint then ϕ(A · B) = ϕ(A) · ϕ(B).

for every observations A and B ∈ S.

Remark. An immediate consequence of such a definition is that in the case ob-
servations can be generated from a finite set of elementary observations, disjoint
products and left and right projections, i.e. every observations admits a good
representations, then the image ϕ(A) by any adequate premorphism ϕ into a
finite adequately ordered monoid is computable in linear time in the size of the
good representations. This happens with birooted words or trees [15,16].
Quasi-recognizability.
We are now ready to define quasi-recognizability, that is, recognizability by ad-
equate premorphisms and ordered monoids.

Definition 4. A language L ⊆ S − 0 is quasi-recognizable when there is an
adequate premorphism ϕ : S → T from S to a finite adequately ordered monoid
T such that L = ϕ−1(ϕ(L)).

Such an extension of language recognizability has been proposed in [17] and
studied further in [19] and [16]. It happens that it is quite robust in the sense
that, in the studied case of birooted words and birooted trees where definability
in MSO is available, we prove that:

Theorem 1 (see [19,16]). When S is the concrete monoid of birooted words
or (labeled) birooted trees, a language L ⊆ S is quasi-recognizable if and only if
it is a finite boolean combination of upward closed MSO definable languages.

18 D. Janin

Proving these results is achieved via a fairly simple extension of the notion of
finite state non deterministic automata to birooted structures. These finite state
automata are shown to characterize MSO definable upward closed languages or,
equivalently, upward closed quasi-recognizable languages.

Generalized to languages, finding a set X of possible behaviors from a set of
initial states S0 to a set of possible final states S1 amounts still to solving an
inequality of the form 0 < (S0 ·X)L ≤ S1 with product and projections extended
in a point wise manner.
Remark. It must be mentioned that walking automata on trees also induce
premorphisms that must satisfy certain kinds of (greatest fixpoint) equations
that, in turn, make the premorphism (simply) computable [18].

Quite interestingly, these premorphisms do not preserve disjoint products but,
instead, some extension of the well known notion of restricted products in inverse
semigroup theory. Since the theory of recognizability by premorphisms is still in
its infancy, it may be the case that this fixpoint approach could well be much
more fruitful than the one presented here.

4 Conclusion

It shall be clear that the higher-dimensional string theory proposed here is still in
its early stages of development. Further studies are currently conducted towards
deeper modeling experiments, extension to infinite structures [7] and towards
developing the underlying algebraic tools [8].

For instance, our logical characterization stated above ensures that the quasi-
recognizable languages of positive birooted words or trees are closed under prod-
uct or iterated product. Yet, providing direct algebraic or automata theoretic
proof of these facts has been surprisingly difficult [8]. This means that the al-
gebraic setting that is proposed here needs to be understood in a much greater
depth.

More generally, every mathematical framework that can be used in computer
science can be seen as a spotlight that helps us understanding the nature of the
objects computer science and engineering may handle. The various experiments
and theoretical developments that have been sketched in this paper tend to prove
that inverse semigroup theory may provide, in the long term, an especially bright
light for such a purpose.

Acknowledgment. Developing a trans-disciplinary research program that also
aims at achieving advances in each of the specific research fields that are covered
would probably be simply impossible without the support, encouragement and
knowledge of true experts in the covered fields. The author wishes to express his
deepest gratitude to all those he has had the pleasure of meeting and discussing
questions with during the last two years.

More specifically, to name but a few, grateful thanks to Myriam DeSainte-
Catherine, Florent Berthaut, Jean-Louis Giavitto and Yann Orlarey in the field

Towards a Higher-Dimensional String Theory 19

of Computational Music, Marc Zeitoun, Victoria Gould, Mark Lawson and Syl-
vain Lombardy in the field of Semigroup Theory, Anne Dicky and Dominique
Méry in the field of Formal methods, Sylvain Salvati and Paul Hudak in the field
of Typed Functional Programming, and, last, Lucy Edwards for her invaluable
knowledge of the English language itself.

The pleasure and honor the author felt when being kindly invited by Professor
Viliam Geffert to give a lecture at SOFSEM 2014 in the beautiful landscape of
the High Tatras in Winter is to be shared with all of them.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Berthaut, F., Janin, D., Martin, B.: Advanced synchronization of audio or sym-
bolic musical patterns: an algebraic approach. International Journal of Semantic
Computing 6(4), 409–427 (2012)

3. Cansell, D., Méry, D.: Foundations of the B method. Computers and Informatics
22 (2003)

4. Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based
on mazurkiewicz’s algorithm. Fundam. Inform. 80(1-3), 221–246 (2007)

5. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial ac-
tions. Journal of Pure and Applied Algebra 216, 935–949 (2012)

6. Dicky, A., Janin, D.: Modélisation algébrique du diner des philosophes. Modélisa-
tion des Systèmes Réactifs (MSR). Journal Européen des Systèmes Automatisés
(JESA) 47(1-2-3) (November 2013)

7. Dicky, A., Janin, D.: Embedding finite and infinite words into overlapping tiles.
Technical report, LaBRI, Université de Bordeaux (October 2013)

8. Dubourg, E., Janin, D.: Algebraic tools for the overlapping tile product. Technical
report, LaBRI, Université de Bordeaux (October 2013)

9. Fountain, J.: Right PP monoids with central idempotents. Semigroup Forum 13,
229–237 (1977)

10. Fountain, J., Gomes, G., Gould, V.: The free ample monoid. Int. Jour. of Algebra
and Computation 19, 527–554 (2009)

11. Hoare, C.: Communicating Sequential Processing. International Series in Computer
Science. Prentice-Hall International (1985)

12. Hollings, C.D.: From right PP monoids to restriction semigroups: a survey. Euro-
pean Journal of Pure and Applied Mathematics 2(1), 21–57 (2009)

13. Hollings, C.D.: The Ehresmann-Schein-Nambooripad Theorem and its successors.
European Journal of Pure and Applied Mathematics 5(4), 414–450 (2012)

14. Hudak, P.: A sound and complete axiomatization of polymorphic temporal me-
dia. Technical Report RR-1259, Department of Computer Science, Yale University
(2008)

15. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional over-
lapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 516–528. Springer, Heidelberg (2012)

16. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 312–323. Springer, Heidelberg (2013)

20 D. Janin

17. Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013.
LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013)

18. Janin, D.: Overlapping tile automata. In: Bulatov, A.A., Shur, A.M. (eds.) CSR
2013. LNCS, vol. 7913, pp. 431–443. Springer, Heidelberg (2013)

19. Janin, D.: Walking automata in the free inverse monoid. Technical Report RR-
1464-12, LaBRI, Université de Bordeaux (2013)

20. Janin, D., Berthaut, F., DeSainte-Catherine, M., Orlarey, Y., Salvati, S.: The T-
calculus : towards a structured programming of (musical) time and space. In: Work-
shop on Functional Art, Music, Modeling and Design (FARM). ACM Press (2013)

21. Janin, D., Berthaut, F., DeSainteCatherine, M.: Multi-scale design of interactive
music systems: The libTuiles experiment. In: Sound and Music Computing, SMC
(2013)

22. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants.
Comm. Math. Phys. 187, 115–157 (1997)

23. Kellendonk, J., Lawson, M.V.: Tiling semigroups. Journal of Algebra 224(1), 140–
150 (2000)

24. Lawson, M.V.: Semigroups and ordered categories. I. the reduced case. Journal of
Algebra 141(2), 422–462 (1991)

25. Lawson, M.V.: Inverse Semigroups: The theory of partial symmetries. World Sci-
entific (1998)

26. Lawson, M.V.: McAlister semigroups. Journal of Algebra 202(1), 276–294 (1998)
27. Margolis, S.W., Pin, J.E.: Languages and inverse semigroups. In: Paredaens, J.

(ed.) ICALP 1984. LNCS, vol. 172, pp. 337–346. Springer, Heidelberg (1984)
28. McAlister, D., Reilly, N.R.: E-unitary covers for inverse semigroups. Pacific Journal

of Mathematics 68, 178–206 (1977)
29. Milner, R.: Communication and concurrency. Prentice-Hall (1989)
30. Munn, W.D.: Free inverse semigroups. Proceeedings of the London Mathematical

Society 29(3), 385–404 (1974)
31. Nambooripad, K.S.S.: The natural partial order on a regular semigroup. Proc.

Edinburgh Math. Soc. 23, 249–260 (1980)
32. Scheiblich, H.E.: Free inverse semigroups. Semigroup Forum 4, 351–359 (1972)
33. Silva, P.V.: On free inverse monoid languages. ITA 30(4), 349–378 (1996)
34. Stephen, J.: Presentations of inverse monoids. Journal of Pure and Applied Alge-

bra 63, 81–112 (1990)
35. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,

vol. III, ch. 7, pp. 389–455. Springer, Heidelberg (1997)
36. Thomas, W.: Logic for computer science: The engineering challenge. In: Wilhelm,

R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol. 2000, pp. 257–267.
Springer, Heidelberg (2001)

Advice Complexity:

Quantitative Approach to A-Priori Information

(Extended Abstract)

Rastislav Královič

Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

Abstract. We survey recent results from different areas, studying how
introducing per-instance a-priori information affects the solvability and
complexity of given tasks. We mainly focus on distributed, and online
computation, where some sort of hidden information plays a crucial role:
in the distributed computing, typically nodes have no or only limited
information about the global state of the network; in online problems,
the algorithm lacks the information about the future input. The tra-
ditional approach in both areas is to study how the properties of the
problem change if some partial information is available (e.g., nodes of
a distributed system have sense of direction, the online algorithm has
the promise that the input requests come in some specified order etc.).
Recently, attempts have been made to study this information from a
quantitative point of view: there is an oracle that delivers (per-instance)
best-case information of a limited size, and the relationship between the
amount of the additional information, and the benefit it can provide to
the algorithm, is investigated. We show cases where this relationship has
a form of a trade-off, and others where one or more thresholds can be
identified.

1 Introduction

Computation is often thought of as information processing: The input instance
contains some implicit, hidden information, and the role of the algorithm is to
make this information explicit, which usually means to produce some specified
form of output. While from the information-theoretic point of view, all the rel-
evant information is contained in the input, some of this information may not
be available to the algorithm due to its limited resources, or due the nature of
the computational model. In the talk we mainly focus on two areas where the
missing information plays a crucial role.

In online problems [13], the algorithm must make irreversible decisions based
only on partial knowledge about the input. There has been an extensive research
concerning the augmentation of the algorithm with some a-priori information
about the input, an approach known as semi-online algorithms.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 21–29, 2014.
c© Springer International Publishing Switzerland 2014

kralovic@dcs.fmph.uniba.sk

22 R. Královič

In distributed computing the global state of the system is usually not known
to the computing entities, yet it often plays a crucial role in the efficiency (or
even feasibility) of the solution. Many works have been studying the impact of
knowledge of the network topology on the efficiency and feasibility of various
distributed tasks. Other pieces of information that influence the distributed al-
gorithm are the knowledge of (some) identifiers, and, possibly, the knowledge of
failure patterns.

While in both areas the traditional approach is to consider various particular
forms of a-priori information, there are recent attempts analyzing the impact of
a-priori information in a quantitative way.

2 Online Computing

The notion of a competitive ratio was introduced by Sleator and Tarjan [80]:
a (minimization) algorithm A is called c-competitive, if it always produces an
output where cost(A) ≤ c · Opt. Note that in online problems the main concern
is not the computational complexity, but the inherent loss of performance due
to the unknown future.

Online computation has received considerable attention over the past decades
as a natural way of modeling real-time processing of data. Since the algorithm
does not know the future input, and because it is compared to the offline opti-
mum in the worst case, many problems have no good competitive algorithms.
In order to make the situation less unfair for the algorithm, randomization is
often employed. Here, the algorithm has additional access to a random string.
In order to be c-competitive, it is sufficient that E [cost(A)] ≤ c · Opt+ α where
the expectation is taken over all random strings.

Many results have been proven about enhancing the algorithm with a partic-
ular type of information about the input, see e. g.[1,14,58,74].

The first attempt to analyze the impact of added information quantitatively
was due to Halldórsson et al [53]. The authors considered the problem of find-
ing the maximum independent set online, and introduced a model where the
algorithm can maintain a set of solutions. The final solution produced by the
algorithm is the best one from the set at the time of the last input request. If the
algorithm is allowed to maintain r(n) solutions, this model can be interpreted
as running the algorithm with log r(n) bits of advice describing the particular
input.

In [33], the authors start a systematic quantitative treatment of the problem-
specific information. In the model from [11], the algorithm has, from the be-
ginning of the computation, access to a tape with the advice describing the
particular input. The maximal number of bits the algorithm reads from the tape
during the computation is the advice complexity of the algorithm.

A number of problems have been considered in this model, including paging
[11], k-server [10], knapsack [12], set cover [61], metrical task systems [37] buffer
management [35], job shop scheduling [11], independent sets in various classes
of graphs (general graphs [53], interval graphs [11], bipartite graphs [32]), and

Advice Complexity 23

various variants of online coloring (bipartite graphs [7], paths [43], 3-colorable
graphs [78], L(2, 1) coloring [8]).

In general, there are three questions that are usually asked about a problem:

– What advice is needed to get optimal solution?
– What advice is needed to get the competitive ratio of the best possible

randomized algorithm?
– What is the relationship between the size of the advice and the competitive

ratio?

The comparison of advice and randomization is an interesting point, since
the two approaches use different properties of the solution space: to have a
randomized algorithm with good expected performance, many good witnesses
for each input instance are needed. On the other hand, for good performance
of advice algorithms, only one witness is sufficient for a given instance, but the
space of possible witnesses must be small. In general, it holds (see [10]) that a
randomized algorithm can be turned into an almost equally good deterministic
one using O(log log |I(n)|) bits of advice, where I(n) is the set of all inputs of
length n. However, in many cases significantly smaller advice is sufficient to be
on par with randomization.

The relationship between the size of the advice and the competitive ratio
is a complex one. In some cases, a trade-off relation exists, where increasing
the advice yields a better competitive ratio, as is, e. g., the case of constant
competitive ratio of paging [11]. On the other hand, there are thresholds, where
increasing the advice does not help (e. g.[12]).

Notable is also the approach from [9], where an artificial problem of string
guessing is analyzed, and a reduction is used to prove lower bounds on the advice
complexity of online set cover.

3 Distributed Computing

Distributed systems consist of independent entities connected in a network that
can communicate by some form of exchange of messages. There are two basic
views on such systems, which are in essence equivalent, but yield themselves
to different types of questions – either the active components are the nodes of
the network, and messages are pieces of data send among them, or the active
components are the messages (agents) that traverse the network, and the nodes
passively provide resources for computation and communication. Typical prob-
lems solved in the message-based systems include communication tasks such as
broadcasting, wake-up, leader election, or computational problems where some
graph-theoretic objects are to be constructed, like, e. g., various spanners, color-
ings, independent or dominating sets, etc. On the other hand, typical problems
tackled in the agent-based view include many variants of graph exploration, map
drawing, agent rendezvous, and similar.

The quantitative study of the topological information in message based sys-
tems was introduced in the work of Fraigniaud, Ilcinkas, and Pelc [48], where

24 R. Královič

a distinction has been shown between two similar problems: broadcasting, and
wakeup, for which results for specific forms of information (e. g.sense of direction)
have been known (e. g., [27,34,41]). In [48] the authors model the topological in-
formation in the following way: a-priori, each node knows its identity, and the
local labeling of incident edges. Before the algorithm starts, each node v is pro-
vided with a binary string f(v). The function f assigning the strings is called
an oracle, and the overall length of the strings is its size. The smallest num-
ber of messages, over all oracles of a given size, exchanged by the algorithm is
considered as a complexity measure.

The same notion of oracle size has been addressed for a number of other
problems in the synchronous setting. Fusco and Pelc [51] consider wakeup in a
rooted tree in the one-port model, where each node may send in each step only
one message, and the aim is to minimize the number of steps.

In the LOCAL model from [75],i. e.,, in a synchronous message-passing system
with nodes that have unique identifiers proper 3-coloring of cycles and trees
([46]), and the construction of minimum spanning tree ([50]) have been studied.

Broadcasting in radio networks has been considered in [57], where a trade-off
between the size of advice and broadcasting time has been devised.

Also, let us note that the above mentioned work is tightly connected with
the study of informative labeling schemes (see, e. g., [18,20,44,62,63,64] and
references therein): here, the aim is to label vertices of the graph in such a
way that it is possible to extract, based solely on the labels of a subset of ver-
tices V ′ ⊆ V some parameter concerning V ′ (e. g., if V ′ is any two-element set,
and the parameter is distance, the scheme is called distance labelling scheme).

In the agent-based systems, the main focus is given to various graph ex-
ploration problems by either a single agent or a team of co-operating agents
[3,15,16,38,23,36,45,47,72,73,79]. Directed graphs have been treated, e. g., in
[2,6,24,40]. Apart from the various variants of graph exploration, problems like
rendezvous (e. g., [5,17,26,66]) or black hole search (e. g., [22,28,29]) have been
investigated.

When considering the additional information, and how it affects the explo-
ration, one should note that the local labelling of the incident links is a potential
source of information. A series of papers [30,52,56,65,81] investigates how the
properly chosen labeling may help the algorithm.

The oracle-based approach where additional advice strings can be placed in
the nodes was applied in [19], where it is proven that 2 bits in every node are
sufficient for a finite automaton to explore all graphs, a task that is not possible
without any information.

In the same model, the problem of drawing a map of an unlabeled graph
([25]), and traversing an unknown tree ([49]) have been considered.

Contrary to the local port scenario, where the agent residing in a given node
can locally distinguish the incident links, in the so-called fixed graph scenario
introduced by Kalyanasundaram and Pruhs in [59], the nodes have identifiers,
and when the agent arrives at a node v ∈ G, it learns all incident edges,
their endpoints, and, if the graph is weighted, their weights. While learning the

Advice Complexity 25

endpoints of the incident edges is stronger than the typical exploration scenario,
it does have a justification (see [59] and [69]); it also corresponds to the previ-
ously studied neighbourhood sense of direction [42].

In [31], the following problem was addressed from the point of view of advice
size: the agent starts at a node v of an undirected labeled graph with n nodes,
where each edge has a non-negative cost. The agent has no knowledge about the
graph, and has to visit every node of the graph and return to v. The agent can
move only along the edges, each time paying the respective edge cost. The natural
Nearest Neighbor heuristics has competitive ratio of Θ(log n) ([77]), which is
tight even on planar unit-weight graphs ([55]). Despite many partial results
([4,59,70,69]), the main question, whether there exists a constant-competitive
algorithm is still open. The same concept of advice has been also applied to the
graph searching problem in [71].

4 Conclusion

Recently, there have been several attempts to analyze the impact of the hidden
information in a quantitative way. Although they are applied in different areas,
they share a common framework: The algorithm is enhanced by some informa-
tion about the unknown part of the input, which may be of any type, but of
bounded size. This approach may deepen the understanding of the structure of
the respective problems. Finally, we note that the term advice complexity has
traditionally been used as a synonym for relativized complexity (i. e., a sequen-
tial computation where the Turing machine gets an advice that depends on the
length of the input), which may cause some confusion. Also, we note similar ap-
proaches in the treatment of the problem of factorization ([21,54,68,76]) where
the number of queries to a yes/no oracle needed to determine the factors of a
number was studied.

References

1. Albers, S.: On the influence of lookahead in competitive paging algorithms. Algo-
rithmica 18(3), 283–305 (1997)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Com-
put. 29(4), 1164–1188 (2000)

3. Antelmann, H., Budach, L., Rollik, H.-A.: On universal traps. Elektronische
Informationsverarbeitung und Kybernetik 15(3), 123–131 (1979)

4. Asahiro, Y., Miyano, E., Miyazaki, S., Yoshimuta, T.: Weighted nearest neighbor
algorithms for the graph exploration problem on cycles. Information Processing
Letters 110(3), 93–98 (2010)

5. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: Impact of sense of direction. Theory Comput. Syst. 40(2), 143–162
(2007)

6. Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn
unlabeled directed graphs. In: FOCS, pp. 75–85. IEEE Computer Society (1994)

26 R. Královič

7. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

8. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the
advice complexity of the online L(2,1)-coloring problem on paths and cycles. In:
Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer,
Heidelberg (2013)

9. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp.
493–505. Springer, Heidelberg (2013)

10. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

11. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

12. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

13. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

14. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference (preliminary version). In: Koutsougeras, C., Vitter, J.S. (eds.) STOC,
pp. 249–259. ACM (1991)

15. Budach, L.: On the solution of the labyrinth problem for finite automata. Elektro-
nische Informationsverarbeitung und Kybernetik 11(10-12), 661–672 (1975)

16. Budach, L.: Environments, labyrinths and automata. In: Karpinski, M. (ed.) FCT
1977. LNCS, vol. 56, pp. 54–64. Springer, Heidelberg (1977)

17. Chalopin, J., Das, S., Widmayer, P.: Rendezvous of mobile agents in directed
graphs. In: Lynch, Shvartsman (eds.) [67], pp. 282–296

18. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Addi-
tive spanners and distance and routing labeling schemes for hyperbolic graphs.
Algorithmica 62(3-4), 713–732 (2012)

19. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms 4(4) (2008)

20. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling schemes
for tree representation. Algorithmica 53(1), 1–15 (2009)

21. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

22. Czyzowicz, J., Dobrev, S., Královič, R., Mikĺık, S., Pardubská, D.: Black hole search
in directed graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS,
vol. 5869, pp. 182–194. Springer, Heidelberg (2010)

23. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3), 34–48 (2007)

24. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph
Theory 32(3), 265–297 (1999)

25. Dereniowski, D., Pelc, A.: Drawing maps with advice. In: Lynch, Shvartsman (eds.)
[67], pp. 328–342

Advice Complexity 27

26. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

27. Diks, K., Dobrev, S., Kranakis, E., Pelc, A., Ruzicka, P.: Broadcasting in unlabeled
hypercubes with a linear number of messages. Inf. Process. Lett. 66(4), 181–186
(1998)

28. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black
hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

29. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agents protocols. Distributed Computing 19(1)
(2006)

30. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-
the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

31. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

32. Dobrev, S., Královič, R., Královič, R.: Independent Set with Advice: The Impact
of Graph Knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS,
vol. 7846, pp. 2–15. Springer, Heidelberg (2013)

33. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant infor-
mation in input. RAIRO Theoretical Informatics and Applications 43(3), 585–613
(2009)

34. Dobrev, S., Ružička, P.: Broadcasting on anonymous unoriented tori. In:
Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 50–62. Springer,
Heidelberg (1998)

35. Dorrigiv, R., He, M., Zeh, N.: On the advice complexity of buffer management.
In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp.
136–145. Springer, Heidelberg (2012)

36. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why robots need maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007)

37. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

38. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Novi Commentarii
Academiae Scientarium Imperialis Petropolitanque 7, 9–28 (1758-1759)

39. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

40. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg
(2005)

41. Flocchini, P., Mans, B., Santoro, N.: On the impact of sense of direction on message
complexity. Inf. Process. Lett. 63(1), 23–31 (1997)

42. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing.
Theor. Comput. Sci. 291(1), 29–53 (2003)

43. Forǐsek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

44. Fraigniaud, P.: Informative labeling schemes. In: Abramsky, S., Gavoille, C., Kirch-
ner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS,
vol. 6199, pp. 1–1. Springer, Heidelberg (2010)

28 R. Královič

45. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

46. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with
advice: information sensitivity of graph coloring. Distributed Computing 21(6),
395–403 (2009)

47. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2-3), 331–344 (2005)

48. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication tasks. In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 179–187. ACM
(2006)

49. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Com-
put. 206(11), 1276–1287 (2008)

50. Fraigniaud, P., Korman, A., Lebhar, E.: Local mst computation with short advice.
Theory Comput. Syst. 47(4), 920–933 (2010)

51. Fusco, E.G., Pelc, A.: Trade-offs between the size of advice and broadcasting time
in trees. In: auf der Heide, F.M., Shavit, N. (eds.) SPAA, pp. 77–84. ACM (2008)

52. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic
graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 808–822
(2008)

53. Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent
sets. Theor. Comput. Sci. 289(2), 953–962 (2002)

54. Herrmann, M., May, A.: On factoring arbitrary integers with known bits. In:
Koschke, R., Herzog, O., Rödiger, K.-H., Ronthaler, M. (eds.) GI Jahrestagung,
Part II. LNI, vol. 110, pp. 195–199 (2007)

55. Hurkens, C.A., Woeginger, G.J.: On the nearest neighbor rule for the traveling
salesman problem. Operations Research Letters 32(1), 1–4 (2004)

56. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput.
Sci. 401(1-3), 236–242 (2008)

57. Ilcinkas, D., Kowalski, D.R., Pelc, A.: Fast radio broadcasting with advice. Theor.
Comput. Sci. 411(14-15), 1544–1557 (2010)

58. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with
locality of reference. In: Frederickson, G.N. (ed.) SODA, pp. 228–236. ACM/SIAM
(1992)

59. Kalyanasundaram, B., Pruhs, K.R.: Constructing competitive tours from local in-
formation. Theoretical Computer Science 130(1), 125–138 (1994)

60. Komm, D., Královič, R.: Advice complexity and barely random algorithms. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 332–343. Springer, Heidelberg
(2011)

61. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover
problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)

62. Korman, A.: Labeling schemes for vertex connectivity. ACM Transactions on Al-
gorithms 6(2) (2010)

63. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22(4), 215–233 (2010)

64. Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal
matrices. Algorithmica 57(4), 641–652 (2010)

65. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic explo-
ration. Algorithmica 63(1-2), 26–38 (2012)

Advice Complexity 29

66. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Com-
put. Sci. 399(1-2), 141–156 (2008)

67. Lynch, N.A., Shvartsman, A.A. (eds.): DISC 2010. LNCS, vol. 6343. Springer,
Heidelberg (2010)

68. Maurer, U.M.: On the oracle complexity of factoring integers. Computational Com-
plexity 5(3/4), 237–247 (1995)

69. Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: New results
on old and new algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

70. Miyazaki, S., Morimoto, N., Okabe, Y.: The online graph exploration problem
on restricted graphs. IEICE Transactions on Information and Systems 92(9),
1620–1627 (2009)

71. Nisse, N., Soguet, D.: Graph searching with advice. Theoretical Computer Sci-
ence 410(14), 1307–1318 (2009)

72. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2),
281–295 (1999)

73. Panaite, P., Pelc, A.: Impact of topographic information on graph exploration
efficiency. Networks 36(2), 96–103 (2000)

74. Pandurangan, G., Upfal, E.: Can entropy characterize performance of online algo-
rithms? In: Kosaraju, S.R. (ed.) SODA, pp. 727–734. ACM/SIAM (2001)

75. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Math-
ematics (2000)

76. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

77. Rosenkrantz, D.J., Stearns, R.E., Lewis II., P.M.: An analysis of several heuristics
for the traveling salesman problem. SIAM Journal on Computing 6(3), 563–581
(1977)

78. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring prob-
lem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357.
Springer, Heidelberg (2013)

79. Shannon, C.E.: Presentation of a maze solving machine. In: von Foerster, H., Mead,
M., Teuber, H.L. (eds.) Cybernetics: Circular, Causal and Feedback Mechanisms
in Biological and Social Systems, Transactions Eighth Conference, March 15–16,
pp. 169–181. Josiah Macy Jr. Foundation, New York (1951)

80. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

81. Steinová, M.: On the power of local orientations. In: Shvartsman, A.A., Felber, P.
(eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 156–169. Springer, Heidelberg (2008)

Matching of Images of Non-planar Objects

with View Synthesis

Dmytro Mishkin and Jǐŕı Matas�

Center for Machine Perception, Faculty of Electrical Engineering,
Czech Technical University in Prague

ducha.aiki@gmail.com, matas@cmp.felk.cvut.cz

Abstract. We explore the performance of the recently proposed two-
view image matching algorithms using affine view synthesis – ASIFT
(Morel and Yu, 2009) [14] and MODS (Mishkin, Perdoch and Matas,
2013) [10] on images of objects that do not have significant local texture
and that are locally not well approximated by planes.

Experiments show that view synthesis improves matching results on
images of such objects, but the number of ”useful” synthetic views is
lower than for planar objects matching. The best detector for matching
images of 3D objects is the Hessian-Affine in the Sparse configuration.
The iterative MODS matcher performs comparably confirming it is a
robust, generic method for two view matching that performs well for
different types of scenes and a wide range of viewing conditions.

Keywords: feature detectors, view synthesis, image matching.

1 Introduction

The authors of the recently developed algorithms [14], [10] for wide baseline
matching reported significant progress in the ability to deal with large viewpoint
differences of matched images. The ASIFT method [14] generates synthetic affine
transformed views of given images in order to improve the range of transforma-
tions handled the DoG detector. This idea has been further extended in [10] who
incorporate multiple affine-covariant detectors and adopt an iterative approach
that attempts to minimize the matching time.

However, the methodology and datasets [8], [14], [10] used in the evaluation
are limited to images related by a homography. We study the performance of
ASIFT and MODS on images of objects that do not have significant local texture
and are not locally well approximated by planes. Such will be referred to as ”3D
objects” and image collections capturing such objects ”3D datasets”.

We have adopted MODS algorithm for the matching of images of such objects
and present results of the matching performance evaluation obtained on 3D
dataset [12]. We show, that affine view synthesis improves performance of 3D
object matching, although the gain is significantly less pronounced than for
planar objects.

� Invited Speaker.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 30–39, 2014.
c© Springer International Publishing Switzerland 2014

Matching of Images of Non-planar Objects with View Synthesis 31

Algorithm 1. ASIFT

Input: I1, I2 – two images.
Output: List of corresponding points.

for I1 and I2 separately do
1 Generate synthetic views according to the tilt-rotation-detector setup.
2 Detect and describe local features.

end for
3 Generate tentative correspondences for each pair of the synthesized views of

I1 and I2 separately using the 2nd closest ratio.
4 Add correspondences to the general list.

Reproject corresponding features to original images.
5 Filter duplicate, “one-to-many” and “many-to-one” matches.
6 Geometrically verify tentative correspondences using ORSA [11]

while estimating F.

Table 1. ASIFT view synthesis configuration

Detector View synthesis setup

DoG {S} = {1}, {t} = {1;√2; 2; 2
√
2; 4; 4

√
2; 8}, Δφ = 72◦/t

Related Work. The performance of the detectors and descriptors for object on
3D scenes have been evaluated by Moreels and Perona [12],[13]. Authors tested
distinctness of the detectors using large database of features contained both fea-
tures from the related and unrelated images and did not evaluated performance
of the whole matching system which involves geometric verification. The best
performance was shown be Hessian-Affine [9] detector.

Dahl et al . [2] have tested matching performance of the descriptor-detector
pair on synthetic dataset and reported the domination of the DoG [6] and
MSER [7] as a detectors with SIFT [6] descriptor.

2 Tested Matchers

The MODS [10] and ASIFT [14] matchers and different view synthesis setups
for Hessian-Affine [9], MSER [7] and DoG [6] interest point detectors proposed
in [10] have been tested. In this section we shortly overview matching algorithms.

The ASIFT pipeline is presented in Alg. 1. The synthetic affine views are
generated according to the affine transformation decomposition proposed in [14]:

A = HλR1(ψ)TtR2(φ) = λ

(
cosψ − sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosφ − sin φ
sinφ cos φ

)
(1)

where λ > 0, R1 and R2 are rotations, and Tt is a diagonal matrix with t > 1.
Parameter t is called the absolute tilt, φ ∈ 〈0, π) is the optical axis longitude
and ψ ∈ 〈0, 2π) is the rotation of the camera around the optical axis.

32 D. Mishkin and J. Matas

Algorithm 2. MODS-F

Input: I1, I2 – two images; θm – minimum required number of matches;
Smax – maximum number of iterations.

Output: Fundamental matrix F; list of corresponding points.
Variables: Nmatches – detected correspondences, Iter – current iteration.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 separately do

1 Generate synthetic views according to the
scale-tilt-rotation-detector setup for the Iter (Tables 2, 3).

2 Detect and describe local features.
3 Reproject local features to original image.

Add described features to general list.
end for
4 Generate tentative correspondences using the first geom. inconsistent rule.
5 Filter duplicate matches.
6 Geometrically verify tentative correspondences with DEGENSAC [1]

while estimating F.
7 Geometrically verify inliers with local affine frame shape.

end while

Table 2. MODS configuration [10]

Iter. View synthesis setup

1 MSER,{S} = {1; 0.25; 0.125}, {t} = {1}, Δφ = 360◦/t
2 MSER,{S} = {1; 0.25; 0.125}, {t} = {1; 5; 9}, Δφ = 360◦/t

3 HessAff, {S} = {1}, {t} = {1;√2; 2; 2
√
2; 4; 4

√
2; 8}, Δφ = 360◦/t

4 HessAff , {S} = {1}, {t} = {1; 2; 4; 6; 8}, Δφ = 72◦/t

The parameters of synthesis are: set of scales {S}, Δφbase step of longitude
samples at tilt t = 1, and a set of simulated tilts {t}.

The feature detection and description are the same as in original SIFT [6].
The tentative correspondences are generated for each pair of generated views, i.e.
matching stage consists of n2 separated parts1, which results are concatenated.

The duplicate filtering prunes correspondences with close spatial distance
(2 pixels) of local features in both images – all this correspondences except one
(random) are eliminated from the final correspondences list. “One-to-many” cor-
respondence means situation when features which are close to each other (are
situated in radius of

√
2 pixels) in one image correspond to the features situated

in different locations in other images. All such correspondences are eliminated,
although some of them can be correct. ORSA [11] is RANSAC-based method,
which exploits an a-contrario statistic-based approach to detect incorrect epipo-
lar geometry. Instead of having constant error threshold, ORSA looks for the
matches that have the highest “diameter”, i.e. matches which cover larger image

1 n – number of synthesized views per image.

Matching of Images of Non-planar Objects with View Synthesis 33

Table 3. Tested view synthesis configurations for single detectors [10]

View synthesis setup

Detector Sparse Dense

MSER
{S} = {1; 0.25; 0.125},
{t} = {1; 5; 9}, Δφ = 360◦/t

{S} = {1; 0.25; 0.125},
{t} = {1; 2; 4; 6; 8}, Δφ = 72◦/t

HessAff
{S} = {1}, {t} = {1;√2;
2; 2

√
2; 4; 4

√
2; 8}, Δφ = 360◦/t

{S} = {1}, {t} = {1; 2; 4; 6; 8},
Δφ = 72◦/t

DoG
{S} = {1}, {t} = {1; 2; 4; 6; 8},
Δφ = 120◦/t

{S} = {1}, {t} = {1;√2;
2; 2

√
2; 4; 4

√
2; 8}, Δφ = 72◦/t

area having minimum possible error and it estimates whether such inliers could
be non-random.

Unlike the ASIFT, MODS (see Alg. 2) uses different detectors for the detection
of local features – MSER and Hessian-Affine. The tentative correspondences are
generated using kd-tree [15] which is build for all features detected in all views
generated from the one image. The features detected in all views generated
from the other image are used as a query. The first geometrically inconsistent
distance ratio is used instead of 2nd closest distance ratio. Descriptors in one
image are geometrically inconsistent, if the Euclidean distance between centers
of the regions is ≥ 10 pixels [10]. The elimination of the duplicate matches is
done the same way as in ASIFT. LO-RANSAC [4], used in the original MODS
algorithm, was replaced with DegenSAC [1], which estimates fundamental matrix
instead of homography.

Since that an epipolar geometry constraint is much less restrictive than a
homography, wrong correspondences as well as correct ones can be consistent
with some (random) fundamental matrix. The local affine frame consistency
check (LAF-check) was applied for elimination of the incorrect correspondences.
We use coordinates of the closest and furthest ellipse points from the ellipse
center of both matched local affine frames to check whether the whole local
feature is consistent with estimated geometry model. This check is performed
for the selected geometry model and regions which do not pass the check are
discarded from the list of inliers. If the number of correspondences after the
LAF-check is fewer than the user defined minimum, matcher continues with the
next step of view synthesis. Because LAF-check is performed after the RANSAC
step, it helps to reject incorrect geometry models.

The single detector configurations specified in Table 3 were matched using
MODS algorithm with single iteration.

3 Experiments

3.1 Evaluation Protocol

The evaluation dataset consists of 32 image sequences taken from the Turntable
dataset [13] (“Bottom” camera) shown in Table 4. Eight image sets contain

34 D. Mishkin and J. Matas

Table 4. Reference views of the image sequences used in the evaluation (from [13])

Abroller Bannanas Camera2 Car

Car2 CementBase Cloth Conch

Desk Dinosaur Dog DVD

FloppyBox FlowerLamp Gelsole GrandfatherClock

Horse Keyboard Motorcycle MouthGuard

PaperBin PS2 Razor RiceCooker

Rock RollerBlade Spoons TeddyBear

Toothpaste Tricycle Tripod VolleyBall

Matching of Images of Non-planar Objects with View Synthesis 35

relatively large planar surfaces and the rest twenty-four are “full” 3D and low-
textured.

The view marked as “0◦” in the Turntable dataset was used as a reference
view and 0 − 90◦ and 270-355 ◦ views with a 5◦ step were matched against it
using the procedure described in Sec. 2, forming a [−90◦, 90◦] sequence. Note
that reference view is not usually the “frontal” or “side” view, but rather some
intermediate view which caused asymmetry in results (see Fig. 1, Table 5).

The output of the matchers is a set of the correspondences and the estimated
geometrical transformation. The accuracy of the matched correspondences was
chosen as the performance criterion, similarly to in [2]. For all output correspon-
dences, the symmetrical epipolar error [3] eSymEG was computed according to
the following expression:

eSymEG (F,u,v) =
(
v�Fu

)2 ×
(

1

(Fu)21 + (Fu)22
+

1

(F�v)21 + (F�v)22

)
, (2)

where F – fundamental matrix, u, v – corresponding points, (Fu)2j – the square
of the j-th entry of the vector Fu.

The ground truth fundamental matrix was obtained from the difference in
camera positions [3], assuming that turntable is fixed and the camera moved
around object, according to the following equation:

F = K−�RK�[KR�t]×,

R =

⎛⎝ cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

⎞⎠ ,K =

⎛⎝ mf
FRX

0 m
2

0 nf
FRY

n
2

0 0 1

⎞⎠ , t = r
⎛⎝ sinφ

0
1− cosφ

⎞⎠ , (3)

where R is the orientation matrix of the second camera, K – the camera pro-
jection matrix, t – the virtual translation of the second camera, r – the distance
from camera to the object, φ – the viewpoint angle difference, FRX ,FRY – the
focal plane resolution, f – the focal length, m, n – the sensor matrix width and
height in pixels. The last five are obtained from from EXIF data.

One of the evaluation problems is that background regions, i. e. regions that
are not on the object placed on the turnable, are often detected and matched
influencing the geometry transformation estimation. The matches are correct,
but consistent with an identity transform of the (background of) the test images,
not the fundamental matrix associated with the movement of the object on the
turntable.

The median value of the correspondence errors was chosen as the measure of
precision because of its tolerance to the low number of outliers (e.g. the above-
mentioned background correspondences) and its sensitivity to the incorrect ge-
ometric model estimated by RANSAC.

An image pair is considered as correctly matched if the median symmetrical
epipolar error on the correspondences using ground truth fundamental matrix is
≤ 6 pixels.

36 D. Mishkin and J. Matas

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

MSER no synth

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

MSER Sparse

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

MSER Dense

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

HesAff no synth

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

HesAff Sparse

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

HesAff Dense

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

DoG no synth

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

DoG Sparse

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

DoG Dense

90°

75°

60°

45°

30°
15°0°−15°

−30°

−45°

−60°

−75°

−90°

ASIFT MODS

90°

75°

60°

45°
30°

15°0°−15°
−30°

−45°

−60°

−75°

−90° 0

0.5

1

Fig. 1. A comparison of view synthesis configurations on the Turntable dataset [13].
The fraction of correctly matched images for a given viewpoint difference.

3.2 Results

Figure 1 and Table 5 show the percentage and the number of image sequences
respectively for which the reference and tested views for the given viewing angle
difference were matched correctly. On average, view synthesis adds 5 − 10◦ to
the handled viewpoint difference for structured objects. The results show that
the MODS matching algorithm used in DoG Dense configuration outperforms
the ASIFT algorithm with the same view synthesis setup.

The difference between Dense and Sparse configurations is small for struc-
tured scenes — unlike planar ones [10]. Difficulties in matching are caused not by
the inability to detect distorted regions but by object self-occlusions. Therefore
synthesis of the additional views does not bring more correspondences.

Experiments with view synthesis confirmed Moreels and Perona [13] results
that the Hessian-Affine outperforms other detectors for matching of the struc-
tured scenes and can be used alone in such scenes.

All computations have been performed on Intel i7 3.9GHz (8 cores) desktop
with 16Gb RAM. Examples of the matched images are shown in Fig. 2.

Matching of Images of Non-planar Objects with View Synthesis 37

Fig. 2. Correspondences found by the MODS algorithm. Green – corresponding re-
gions, cyan – epipolar lines.

4 Conclusion

We have shown that view synthesis improves matching performance of images
of non-planar objects. The gain is less prominent than for matching of locally
planar object, but yet significant.

The best detector for matching images of 3D objects is the Hessian-Affine in
the Sparse configuration, additional view synthesis beyond this configuration
does not increase the number of correct correspondences.

The iterative MODS matcher performs comparably to the Hessian-Affine
Sparse configurations but it is slower. The experiments thus confirm that MODS
is a robust, generic method for two view matching that performs well for different
types of scenes and a wide range of viewing conditions.

38 D. Mishkin and J. Matas

Table 5. The number of correctly matched image pairs and the runtime per pair

Image sets solved (out of 32)

Viewpoint angular difference Time
Matcher 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ ≥ 45◦ [s]

MSER no synth 26 23 18 17 13 10 8 8 8 3 0.6
MSER Sparse 31 28 24 21 17 16 11 10 8 6 1.5
MSER Dense 32 28 25 24 19 17 12 11 10 7 9.5
HesAff no synth 32 28 27 24 22 18 13 11 10 6 0.8
HesAff Sparse 32 30 29 26 25 21 19 16 11 11 1.8
HesAff Dense 32 31 28 25 21 19 16 15 12 9 5.3
DoG no synth 32 29 24 23 16 13 10 7 4 4 0.9
DoG Sparse 32 31 25 22 17 17 12 11 7 5 4.0
DoG Dense 32 30 26 20 17 15 14 9 8 7 8.0
ASIFT 32 29 21 16 12 8 7 5 4 3 27.7
MODS 32 28 27 27 23 21 19 16 16 11 4.3

Acknowledgment. The authors were supported by The Czech Science Foun-
dation Project GACR P103/12/G084.

References

1. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a
dominant plane. In: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2005), vol. 01, pp. 772–779.
IEEE Computer Society, Washington, DC (2005)

2. Dahl, A.L., Aanaes, H., Pedersen, K.S.: Finding the best feature detector-descriptor
combination. In: Proceedings of the 2011 International Conference on 3D Imag-
ing, Modeling, Processing, Visualization and Transmission, 3DIMPVT 2011, pp.
318–325. IEEE Computer Society, Washington, DC (2011)

3. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press (2004)

4. Lebeda, K., Matas, J., Chum, O.: Fixing the Locally Optimized RANSAC. In:
Proceedings of the British Machine Vision Conference, pp. 1013–1023 (2012)

5. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans.
Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

6. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision 20, 91–110 (2004)

7. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from
maximally stable extrema regions. In: Proceedings of the British Machine Vision
Conference, pp. 384–393 (2002)

8. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky,
F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput.
Vision 65(1-2), 43–72 (2005)

9. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int.
J. Comput. Vision 60, 63–86 (2004)

10. Mishkin, D., Perdoch, M., Matas, J.: Two-view matching with view synthesis re-
visited. In: Proceedings of the 28th Conference on Image and Vision Computing,
New Zealand (2013)

Matching of Images of Non-planar Objects with View Synthesis 39

11. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches
between two images and estimate the fundamental matrix. Int. J. Comput. Vi-
sion 57(3), 201–218 (2004)

12. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based
on 3d objects. In: Proceedings of the Tenth IEEE International Conference on
Computer Vision, pp. 800–807 (2005)

13. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on
3d objects. Int. J. Comput. Vision 73(3), 263–284 (2007)

14. Morel, J.M., Yu, G.: ASIFT: A new framework for fully affine invariant image
comparison. SIAM J. Img. Sci. 2(2), 438–469 (2009)

15. Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm
configuration. In: VISAPP International Conference on Computer Vision Theory
and Applications, pp. 331–340 (2009)

Agile Requirements Engineering: A Research
Perspective

Jerzy Nawrocki�, Mirosław Ochodek, Jakub Jurkiewicz, Sylwia Kopczyńska,
and Bartosz Alchimowicz

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 2, 60-965 Poznań, Poland

{Jerzy.Nawrocki,Miroslaw.Ochodek,Jakub.Jurkiewicz,Sylwia.Kopczynska,
Bartosz.Alchimowicz}@cs.put.poznan.pl

Abstract. Agile methodologies have impact not only on coding, but also
on requirements engineering activities. In the paper agile requirements
engineering is examined from the research point of view. It is claimed
that use cases are a better tool for requirements description than user
stories as they allow zooming through abstraction levels, can be reused
for user manual generation, and when used properly can provide quite
good effort estimates. Moreover, as it follows from recent research, parts
of use cases (namely event descriptions) can be generated in an automatic
way. Also the approach to non-functional requirements can be different.
Our experience shows that they can be elicited very fast and can be quite
stable.

Keywords: Requirements engineering, agility, use cases, non-functional
requirements, effort estimation, user manual.

1 Introduction

Agile methodologies, like XP [6] and Scrum [31], have changed our way of think-
ing about software development and are getting more and more popular. They
emphasize the importance of four factors: oral communication, orientation to-
wards working software (main products are code and test cases), customer col-
laboration, and openness to changes.

Agility impacts not only design and coding but also concerns requirements
engineering [7,8]. In this approach classical requirements specification based on
IEEE Std. 830 [1] is replaced with user stories [6,12] and face-to-face communi-
cation. User stories can be used for effort estimation and planning. Effort esti-
mation is based rather on personal judgement than on such methods as Function
Points [3] or Use-Case Points [17]. Moreover, in the agile approach, requirements
are not predefined – they emerge while software is being developed [8].

As pointed out by Colin Doyle1, agile requirements engineering based on user
stories has some advantages and disadvantages . On the one hand, it encourages
� Invited Speaker.
1 C. Doyle, Agile Requirements Management – When User Stories Are Not Enough,
http://www.youtube.com/watch?v=vHNr-amZDsU

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 40–51, 2014.
c© Springer International Publishing Switzerland 2014

http://www.youtube.com/watch?v=vHNr-amZDsU

Agile Requirements Engineering: A Research Perspective 41

effective communication and better adapts to change. On the other hand, it
cannot be applied in a project where a request-for-tenders is used (this requires
an up-front specified requirements), the customer is not always available for
just-in-time requirements discussions, or the product/project is complex (many
conflicting customers, lots of requirements). Another problem is human memory:
the Product Owner cannot remember all the requirements and s/he is prone to
forgetfulness. In such cases documented requirements would help a lot.

In this paper a research perspective concerning agile requirements engineering
is discussed. We focus on the following questions:

– Q1-UStories: User stories have an old competitor: use cases invented by
Ivar Jacobson in the 80s [15] and later elaborated upon by Alistair Cockburn
et al. [2,11]. Are user stories really the best choice?

– Q2-NFRs: How can non-functional requirements be elicited to obtain a
good balance between speed and quality?

– Q3-Effort: One of the key activities in release planning (e.g. performed
by playing the Planning Game) is effort estimation. Can automatic effort
estimation provide reliable enough estimates?

– Q4-Manual: Can the effort concerning auxiliary activities, like writing a
user manual, be significantly reduced by using requirements specification?

Those issues are discussed in the subsequent sections of the paper.

2 Written vs. Oral Communication

Agile approaches emphasize oral communication when it comes to requirements
elicitation. User stories, which are advocated by XP [6] and Scrum [30], are not
supposed to provide complete requirements, they are rather “reminders to have
a conversation” [12] with the customer. User Story answers three questions: what
action is possible?, who performs this action? and what is the business value of
this action? User Stories are short, they are usually expressed in one sentence.
Example of a user story is presented in Figure 1A. Similar information is pre-
sented in UML Use Case Diagrams [28]. They convey information about actors
and their goals (actions). Example of a UML Use Case diagram is presented
in Figure 1B. Apparently, User Stories and UML Use Case Diagrams provide
roughly the same amount of information about the requirements. Therefore,
UML Use Case Diagrams can be used instead of user stories.

User Stories, as reminders for future conversation, are good when a customer
is non-stop available for the software delivery team. This is supported by the XP
on-site customer practice. Unfortunately, on-site customer is rarely available in
real life projects, mostly due to high costs. Therefore, more information needs to
be captured during the short times when customer is available. While, with user
stories only so called acceptance criteria can be documented, use-cases allow for
more precise capture of requirements. These requirements are documented in a
textual main scenario - sequence of steps presenting interaction between actor

42 J. Nawrocki et al.

As a Customer I can add
items to the basket in order

to buy them.
Customer

Add items to
basket

System

User Story UML Use Case DiagramA B

Fig. 1. A - Example of a user story; B - Example of a UML Use Case Diagram

and system. Main scenario should always demonstrate the interaction which
leads to obtaining a goal by an actor.

Observation 1. Use cases are more general (flexible) than user stories as they
provide an abstraction ladder (zooming).

The highest abstraction rung is the level of context diagram (just actors).
Below is the level of use case diagrams (such a diagram can be zoomed-out to
a context diagram). More details are available at the level of use case scenarios
(they can be zoom-out to a context diagram), beneath which are events and
alternative activities (they can be easily trunkated to main scenarios). Scenarios
can be decorated with low-fidelity screen designs and that way one can generate
mockups (see e.g. [22]). Those mockups can be used to elicit test cases from end
users, what makes use cases testable.

2.1 HAZOP-Based Identification of Events in Use Cases

To have a complete use case one has to identify all events that can appear when
use case steps are executed. A question arises: how to identify events in use cases
in effective and efficient way?

Events in use cases resemble deviations in mission-critical systems. Therefore,
a HAZOP-based method, called H4U [16], for events identification has beed
proposed. HAZOP [29] is a method for hazard and deviations analysis in mission-
critical systems. This method is based on sets of primary and secondary keywords
which are used in brain-storming sessions in order to identify possible hazards.
H4U is also built on the idea of keywords which help to identify possible events
in use cases. The accuracy and speed of H4U were evaluated and compared
to the ad hoc approach in two experiments: with 18 students and with 64 IT
professionals. Based on the experiments it could be concluded that H4U method
offers higher accuracy (maximum average accuracy was equal to 0.26) but lower
speed (maximum average speed was equal to 1.04 steps per minute) comparing

Agile Requirements Engineering: A Research Perspective 43

to the ad hoc approach (maximum average accuracy was equal to 0.19, maximum
average speed was equal 2.23 steps per minute).

2.2 Automatic Identification of Events in Use Cases

Using H4U one can achieve higher accuracy of events identification, however,
higher effort is required. What if events in use cases could be identified in an
automatic way? This could reduce the effort and time required to identify events.
Moreover, this would mean that Analyst can focus on actors’ goals and positive
scenarios which require a lot of creative work and the more tedious task of events
identification could be done automatically. Results from our initial research show
that around 80% of events of the benchmark requirements specification [4] can
be identified in an automatic way. Morover, speed of automatic events identifi-
cation was at the level of 10 steps per minute. This results were achieved with a
prototype tool built with a knowledge base from real-life use-cases, inference en-
gine, NLP and NLG tools. Comparing these results to the results from the ealier
mentioned experiments with the ad hoc and H4U method, it can be concluded
that events can be effectively idetified in an automatic way. This allows Analyst
to focus on the core of the requirements (use-case names and main scenarios)
and have descriptions of events generated automatically.

This research poses a more general research question:

Question 1. To what extend requirements specification can be supported by
a computer?

3 Elicitation of Non-functional Requirements

Although user stories are considered by XP [6] and Scrum [30] as the main tool
to record requirements, as we stated in Section 3, they may not be sufficient.
At first, a user story is not supposed to express a complete requirement. Sec-
ondly, it focuses on what actions and activities are performed by a user in the
interaction with a system. Such approach may lead to omission of the require-
ments regarding how the functions provided by the system should be executed.
According to the results of the investigation of agile projects carried out by Cao
and Ramesh [8], customers often “focus on core functionality and ignore NFRs”.
They also found that in many organizations non-functional requirements(NFRs)
are frequently ill defined and ignored in early development stages [8]. It may
have severe consequences, as in the cases of Therac-25[19], Arline 5 accident[23]
etc., it may lead to excessive refactorings, or cease further system development
as its architecture was ill-designed based on insufficient information. However, in
agile methodologies, thorough analysis and completeness of requirements (e.g.
required by IEEE 830[1]) are no longer a prerequisite to software design and
coding - time to market is getting more and more important. Thus, in the con-
text of NFRs, the challenge is how to achieve “a proper balance between the cost
of specifying them and the value of reducing the acceptance risk” [9]. There exist

44 J. Nawrocki et al.

a number of methods and frameworks which deal with non-functional require-
ments, e.g., NFR Framework [21], KAOS [32]. However, the existing methods
are claimed to be too heavy-weight to be used in agile context [10], and there is
little known about cost and value of using them.

To respond to the challenge and fill the gap we proposed a quick method, called
SENoR (Structured Elicitation of Non-functional Requirements), dedicated to
agile software development. It consists of 3 steps that are presented in Figure 2).
The cornerstone of SENoR is Workshop which consists of: (1) a presentation
of the business case of the project and of the already known functionality of
the system, (2) a series of short brainstorming sessions driven by the quality
subcharacteristics of ISO25010 [14] - this is the main part of the Workshop, (3)
a voting regarding the importance of the elicited requirements.

PROJECT SPECIFIC INPUT PRODUCTS RESUSABLE INPUT PRODUCTS

SENoR
Step 1 Preparation
 Moderator ensures that funding, resources and facilities are available, confirms appropriate management support. He/she answers

the questions: who? when? where?, so he identifies participants, assigns roles, schedules and arranges Workshop.
Step 2 Workshop
 1 Introduction (ca.5min.)

Moderator presents the goal and agenda of Workshop.
 2 Project Overview (ca. 10min.)

Presenter presents an overview of the project that aims at development of the software product for which the requirements are
to be elicited. The presentation should cover: the business case and the functional requirements that were defined.

 3 NFR Elicitation
For each of the selected ISO25010’s subcharacteristic the following 3 steps are executed:

 1 Definition (ca. 1-2min.)
Moderator reminds the definition of the current subcharcteristic, e.g., by reading it aloud.

 2 Individual Work (ca. 1-2min.)
Each participant thinks about current subcharacteristic in terms of their expectations.

 3 Discussion (ca. 3min.)
A short brainstorming-like session. NFRs are being proposed and discussed by Experts, and recorded by Recorder

 4 Voting (ca.10min.)
Participants make collaborative decisions about the priority of each recorded NFRs.

 5 Closing (ca. 2min.)
Moderator summarizes Workshop, decides if a continuation is required, thanks for the participation.

Step 3 Follow-up
 Recorder analyzes the elicited NFRs to identify contradictory and duplicated information, improve the construction of the

sentences (syntactic analysis). Then, the results should be announced, e.g., distributed by mail to the participants, and comments
should be gathered. The lessons learned should be packaged.

Non-functioanal
Requirements

Lessons Learned

Business Case Context Diagram
High-level Func.

Reqs
Template of

Project Overview
Templates of
NFRs (NoRTs)

Meeting Assistant
software

Fig. 2. SENoR – process, input and output products

SENoR workshops are supported with short definitions of quality subcharac-
teristics and templates of non-functional requirements. Each SENoR workshop
lasts no longer than 2 hours.

The data about SENoR workshops have been collected since its first appli-
cation in 2008 [18]. They have been used to improve the method. Recently,

Agile Requirements Engineering: A Research Perspective 45

7 agile projects run at the Poznan University of Technology have been observed.
Those projects used SENoR workshops and their aim was to deliver internet
applications to be used by the university for administrative purposes.

The average time of a SENoR workshop was ca. 1h 15min, (the shortest took
2854s and the longest — 7554s). 89% (34 out of 38) participants claimed that
they are for organizing such workshops in their future projects. On average,
27 NFRs were defined in a workshop, and 92% participants regarded quality
of the elicited NFRs good-enough (sufficiently correct and complete) to start
architectural design. We also investigated stability of the elicited NFRs, i.e.
how many of them ’survived’ development changes. What is surprising, average
stability of NFRs collected within SENoR workshops was at the level of 80%.

From the point of view of the Q2-NFRs question, the presented results are
very promising:

Conjecture 1. A sequence of very short brainstorming sessions driven by quality
characteristics can provide quite stable set of non-functional requirements and
represents a good balance between cost (time) and quality (stability).

If the above conjecture was true, it would imply that software architecture,
which strongly depends on NFRs, can also be quite stable.

4 Automatic Effort Estimation Based on Use Cases

Although project planning is not directly a part of the RE process, they both
visibly relate to each other. In order to plan a project or development stage,
one has to determine and analyze its scope. The connection between planning
and RE is especially visible in the context of agile software development, where
constant project planning is often placed next to the core RE practices [8].

Indisputably, in order to plan a project one has to first estimate the effort
required to perform all the project’s tasks. Depending on the chosen type of bud-
get, an accurate effort estimation becomes more important at different stages of
the project. For a fixed scope budget, obtaining an accurate estimate is already
extremely important at the early stages of software development, when the cru-
cial decisions about the overall budget are made. If an unrealistic assumption
about the development cost is made, the project is in danger. Both underesti-
mated and overestimated effort is harmful. Underestimation leads to a situation
where a project’s commitments cannot be fulfilled because of a shortage of time
and/or funds. Overestimation can result in the rejection of a project proposal,
which otherwise would be accepted and would create new opportunities for the
organization. In the fixed budget approach the situation is different. The budget
could be allocated in advance, but the project team is trying to incrementally
understand the customer’s needs and deliver as much business value as possible
until the available resources are depleted.

When it comes to agile software development methods, they are naturally well
suited to fixed budget projects. They assume that changes in requirements are
an inherent property of software development projects, thus, it is not reasonable

46 J. Nawrocki et al.

to invest too much time in the preparation of comprehensive software require-
ments specification at the beginning of the projects, which can quickly become
obsolete. As a result, project planning in agile software development is more
oriented towards estimating and planning releases than the project as a whole
(e.g, using the planning game, story points, planning poker [6,12,13,20]). There-
fore, an important question emerges about what to do in the case of fixed scope
projects being developed in an agile environment or when a customer agrees to
the fixed budget approach, but would also like to know if he/she can afford to
solve the problem.

An answer to the question would be to elicitate high-level requirements at
the project’s beginning, and then to estimate its total effort assuming the re-
quirements forming the scope of the project. According to Cao and Ramesh [8]
elicitating such requirements is not such an uncommon practice in agile projects.
Still providing an accurate estimate based on such requirements is a challenge.

One of the methods that could be used for effort estimation based on high-level
requirements is the TTPoints method [26,27]. It is designed to provide functional
size measurement based on use cases, but contrary to other use-case-based effort
estimation methods, such as Use Case Points [17], it is not strictly bounded to
the syntax of use cases. Instead it relies on the semantics of interaction presented
in use-case scenarios.

The main, considered unit of interaction in TTPoints is called semantic trans-
action. Empirical analysis of use cases has led us to define a catalogue of 12
semantic transactions-types presented in Figure 3. Each transaction type corre-
sponds to the main intent of the interaction between the user and the system
under development. This enables their identification even if the details of a use-
case scenario are still to be determined. An example of a create-type transaction
identified in a use case and user story is presented in Figure 4. If fully-dressed
use cases are available transaction identification is more accurate and could even
be automated using NLP (natural language processing) tools [24,25]. It visibly
reduces the effort required to analyze a use-case-based requirements specifica-
tion.

Semantic
transaction types

Create Update

Change State

Delete

Delete Link
Asynchronous

Retrieve
Dynamic
Retrieve

Retrieve

LinkTransfer

Complex
Internal
Activity

Check
Object

11 11 11 11 11

1111 11 121212

12

Fig. 3. Semantic transaction-types in use cases with the numbers of core actions

Agile Requirements Engineering: A Research Perspective 47

Conference Management System

Submit a paper
Author

UC1: Submit a paper
Level: User
Main actor: Author
Main Scenario:
1. Author chooses the option to submit a paper.
2. System presents the submission form.
3. Author provides necessary information about the paper.
4. System informs Author that the paper was submitted.
Alternatives, Extensions, Exceptions:
3.A. Not all required data was provided.
 3.A.1. System displays error message.
 3.A.2. Go to step 2.

User story:
As an Author I would like to
be able to submit a paper to
the SOFSEM 2014 conference.

Create
transaction

11

Choice of
option

Presentation Provision Presentation

S

Presentation
Software

NLP tools

S

NP VP

NNP VBZ

System presents

NP
ADJP

RB

all

VBN

defined

NNS

categories

.

.

nsubj (presents, System)
advmod (defined, all)
amod (categories, defined)
dobj (presents, categories)

Graph analysis

Expert

Expert

Fig. 4. An example of create semantic-transaction in a use case and user story

The next step is the analysis of each transaction. One has to determine the
number of different actors that interact with the system under development and
the number of domain objects being processed within a transaction.

Finally, one can calculate the functional size expressed in TTPoints according
to the following formula:

TTPoints =

n∑
i=1

Core_Actionsi × Objects i × Actorsi (1)

where

– n is the number of semantic transactions within the scope of the count;
– Core_Actionsi is the number of core actions of the i-th transaction (see

Figure 3);
– Objectsi is the number of meaningful (independent) domain objects pro-

cessed by the i-th transaction;
– Actorsi is the number of actors in the i-th transaction which cooperate with

the system under development.

The TTPoints size measure can be further used to estimate development
effort. If historical data is available in organization one can construct a regression
model or simply calculate average product delivery rate (PDR). According to
our research the average PDR for TTPoints is around 25h/TTPoint.

48 J. Nawrocki et al.

The obvious drawback of early-effort estimation is its low accuracy due to
the high level of uncertainty related to the final scope of the project. Still, the
results we obtained for effort estimation based on TTPoints are promising [27].
We were able to estimate effort with on-average error (MMRE) at the level of
∼0.26, which was on-average lower by 0.14 to 0.22 than the estimation error for
different variants of the Use Case Points method.

Claim 1. Effort estimation based on use cases can provide reasonably good
estimates.

5 User Manual Generation

Ongoing research shows that up-to-date project documentation can be benefi-
cial, especially when it facilitates the work of a software development team in
an automatic way. This section describes initial research concerning automatic
generation of a user manual on the basis of software requirements and other in-
formation available in a project. An example of a tool that creates a description
of fields used in forms is also presented.

The proposed approach focuses on web applications and static documents
(documents that do not allow any interaction with users). It is also assumed
that the generated user manual is aimed at IT-laymen, people whose computer
knowledge is low.

Results of the conducted research show that on the basis of project documen-
tation a number of descriptions can be generated and the produced elements
can be used to create a user manual. Functional requirements in the form of
use cases are especially helpful, since this form of representation contains an
amount of information which is important from the point of view of end users.
For example, it is possible to create a list of functionalities available to end users.
Each function can be decorated with a description of actions required to get the
desired results and a description of exceptions that may occur. To improve the
usefulness of the user manual, the description of available functionality can be
enriched by a set of screen shots taken from the running application. To get them
in an automatic way one can use acceptance tests. After combining use cases and
acceptance tests (such information can be got from tools used for traceability),
one can easily obtain images.

The process of enhancement can go further, depending on the available infor-
mation and the possibility of processing it. An example of additional information
provided to end users is the field explanation presented in Figure 5. This figure
is generated on the basis of a regular expression used in an application to check
whether data provided by a user is a valid number of a credit card or not. Our
research shows that regular expressions are sufficient to generate three types of
description: an explanation in natural language, a diagram and a set of examples.
To present regular expressions in an easy to understand way, a special version
of syntax diagrams has been designed [5].

Conjucture 2. Use cases can significantly support generation of a user manual.

Agile Requirements Engineering: A Research Perspective 49

Syntax
diagram

Verbal
explanation

Examples

Credit Card is described by the following diagram:

4 0..9

12

0..9

3

Credit Card

It consists of digit 4, followed by 12 digits and followed by optional three
digits.

Example Correct?
4056324648328 Yes
4295324322567 Yes
4056324648328123 Yes
056324648328 No (absence of digit 4)
40566236489281234 No (too long)

Fig. 5. Field explanation of a credit card number

6 Conclusions

In this paper we have discussed research issues concerning agile requirements
engineering. Our findings are as follows:

– Use-cases provide a flexible way of describing functional requirement. They
can be presented at several abstraction levels: from extremely concise context
diagrams, through use-case diagrams, main scenarios, exceptions, down to
the level of alternative steps. Some use-cases can be presented only at the
level of use-case diagrams (i.e. lacking further description) while others can
also have exceptions and alternative steps specified.

– People are not very good at identifying exceptions (events). Their effective-
ness is below 30%. However, from our early experiments it follows that events
identification performed by a computer can have effectiveness at the level of
80%. That is a good incentive for further research in this area.

– Non-functional requirements can be elicited in very short brain-storming
sessions driven by ISO 25000 quality characteristics. The stability of non-
functional requirements elicited in that way for Internet applications was
at the level of 80%. It suggests that non-functional requirements are pretty
stable and can be collected early.

– The TTPoints method of effort estimation fits use cases well and its average
estimation error is below 30%. This is a pretty good result, but further
research seems necessary.

– Taking care of requirements specification pays-off, and not only with effort
estimates. When functional requirements (in the form of use cases) are com-
plete, then a considerable part of a user manual can be generated. That
option should be particularly interesting in Software Product Lines where
there are many variants of the same systems and the same user manual.

50 J. Nawrocki et al.

Acknowledgments. This work has been partially supported by two projects
financed by the Polish National Science Center based on the decisions DEC-
2011/01/N/ST6/06794 and DEC-2011/03/N/ST6/03016, and by a Poznan Uni-
versity of Technology internal grant 91-518 / 91-549.

References

1. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std
830-1998, pp. 1–40 (1998)

2. Adolph, S., Bramble, P.: Patterns for Effective Use Cases. Addison Wesley, Boston
(2002)

3. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of
the Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92
(October 1979)

4. Alchimowicz, B., Jurkiewicz, J., Ochodek, M., Nawrocki, J.: Building benchmarks
for use cases. Computing and Informatics 29(1), 27–44 (2010)

5. Alchimowicz, B., Nawrocki, J.: Generating syntax diagrams from regular expres-
sions. Foundations of Computing and Decision Sciences 36(2), 81–97 (2011)

6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional (2004)

7. Bjarnason, E., Wnuk, K., Regnell, B.: A case study on benefits and siede-effects
of agile practices in large-scale requirements engineering. In: Agile Requirements
Engineering Workshop, Agile RE 2011, pp. 9–13. ACM (2011)

8. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical study.
IEEE Software 25(1), 60–67 (2008)

9. Cleland-Huang, J.: Quality Requirements and their Role in Successful Products. In:
IEEE International Requirements Engineering Conf., pp. 361–361. IEEE (October
2007)

10. Cleland-Huang, J., Czauderna, A., Keenan, E.: A persona-based approach for ex-
ploring architecturally significant requirements in agile projects. In: Doerr, J.,
Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 18–33. Springer, Heidelberg
(2013)

11. Cockburn, A.: Writing Effective Use Cases. Addison Wesley, Boston (2000)
12. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley

Longman Publishing Co., Inc., Redwood City (2004)
13. Haugen, N.C.: An empirical study of using planning poker for user story estimation.

In: Agile Conference, pp. 25–34. IEEE (2006)
14. ISO. ISO/IEC 25010:2011 - Systems and software engineering – Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) – System and software qual-
ity models. International Organization for Standardization, Geneva, Switzerland
(2011)

15. Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley (1992)
16. Jurkiewicz, J., Nawrocki, J., Ochodek, M., Glowacki, T.: HAZOP-based identifi-

cation of events in use cases. an empirical study. Empirical Software Engineering
(2013) (accepted for publication), doi:10.1007/s10664–013–9277–5

17. Karner, G.: Metrics for objectory. No. LiTH-IDA-Ex-9344:21. Master’s thesis,
University of Linköping, Sweden (1993)

18. Kopczyńska, S., Maćkowiak, M., Nawrocki, J.: Structured meetings for non-
functional requirements elicitation. Foundations of Computing and Decision Sci-
ences 36(1), 35–56 (2011)

Agile Requirements Engineering: A Research Perspective 51

19. Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. Com-
puter 26(7), 18–41 (1993)

20. Mahnič, V., Hovelja, T.: On using planning poker for estimating user stories. Jour-
nal of Systems and Software 85(9), 2086–2095 (2012)

21. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Transactions on Software En-
gineering 18(6), 483–497 (1992)

22. Nawrocki, J.R., Olek, Ł.: UC workbench – A tool for writing use cases and gener-
ating mockups. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005.
LNCS, vol. 3556, pp. 230–234. Springer, Heidelberg (2005)

23. Nuseibeh, B.: Ariane 5: Who dunnit? IEEE Software 14(3), 15–16 (1997)
24. Ochodek, M., Alchimowicz, B., Jurkiewicz, J., Nawrocki, J.: Improving the relia-

bility of transaction identification in use cases. Information and Software Technol-
ogy 53(8), 885–897 (2011)

25. Ochodek, M., Nawrocki, J.: Automatic transactions identification in use cases. In:
Meyer, B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp.
55–68. Springer, Heidelberg (2008)

26. Ochodek, M., Nawrocki, J.: Enhancing use-case-based effort estimation with trans-
action types. Foundations of Computing and Decision Sciences 35(2), 91–106 (2010)

27. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on
Use Case Points. Information and Software Technology 53(3), 200–213 (2011)

28. OMG. OMG Unified Modeling LanguageTM(OMG UML), superstructure, version
2.3 (May 2010)

29. Redmill, F., Chudleigh, M., Catmur, J.: System safety: HAZOP and software HA-
ZOP. Wiley (1999)

30. Schwaber, K.: Scrum development process. In: Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and Ap-
plications, pp. 117–134 (1995)

31. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
(2001)

32. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262.
IEEE (2001)

Fitting Planar Graphs on Planar Maps

Md. Jawaherul Alam1, Michael Kaufmann2,
Stephen G. Kobourov1, and Tamara Mchedlidze3

1 Department of Computer Science, University of Arizona, USA
2 Institute for Informatics, University of Tübingen, Germany

3 Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. Graph and cartographic visualization have the common objective to
provide intuitive understanding of some underlying data. We consider a problem
that combines aspects of both by studying the problem of fitting planar graphs
on planar maps. After providing an NP-hardness result for the general decision
problem, we identify sufficient conditions so that a fit is possible on a map with
rectangular regions. We generalize our techniques to non-convex rectilinear poly-
gons, where we also address the problem of efficient distribution of the vertices
inside the map regions.

1 Introduction

Visualizing geographic maps may require showing relational information between enti-
ties within and between the map regions. We study the problem of fitting such relational
data on a given map. In particular, we consider the problem of fitting planar graphs on
planar maps, subject to natural requirements, such as avoiding edge crossings and en-
suring that edges between points in the same region remain in that region.

Fitting planar graphs on planar maps is related to cluster planarity [2,3,12]. In cluster-
planar drawing we are given the graph along with a clustering and the goal is to find
disjoint regions in the plane for the clusters for a valid plane realization of the given
graph. The realization is valid if all the vertices in a given cluster are placed in their
corresponding region, and there are no edge-crossings or edge-region crossings (i.e.,
edges crossing a region in the map more than once).

In our setting (fitting graphs on maps), we are given both the graph and the regions
embedded in the plane, and must draw the clusters in their corresponding regions. The
regions form a proper partition of the plane, such that the adjacency between two clus-
ters is represented by a common border between their corresponding regions.

1.1 Related Work

The concept of clustering involves the notion of grouping objects based on the simi-
larity between pairs of objects. In graph theory, this notion is captured by a clustered
graph. Clustering of graphs is used in information visualization [17], VLSI design [15],
knowledge representation [18], and many other areas.

Feng et al. defined c-planarity as planarity for clustered graphs [13]; also see Sec-
tion 2 for related definitions. For clustered graphs in which every cluster induces a con-
nected subgraph, c-planarity can be tested in quadratic time. Without the connectivity

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 52–64, 2014.
c© Springer International Publishing Switzerland 2014

Fitting Planar Graphs on Planar Maps 53

condition, the complexity of testing c-planarity is still an open problem. Algorithms for
creating regions in the plane in which to draw c-planar graphs have also been studied.
Eades et al. [10] presented an algorithm for constructing c-planar straight-line draw-
ings of c-planar clustered graphs in which each cluster is drawn as a convex region,
while Angelini et al. [1] show that every such c-planar clustered graph has a c-planar
straight-line drawing where each cluster is drawn inside an axis-aligned rectangle.

Many visualizations take advantage of our familiarity with maps by producing map-
like representations that show relations among abstract concepts. For example, treemaps
[24], squarified treemaps [5] and news maps represent hierarchical information by
means of space-filling tilings, allocating area in proportion to some metric. Concept
maps [8] are diagrams showing relationships among concepts. Somewhat similar are
cognitive maps and mind-maps that represent words or ideas linked to and arranged
around a central keyword. GMap [17] uses the geographic map metaphor to visual-
ize relational data by combining graph layout and graph clustering, together with the
creation and coloring of regions/countries.

Also related is work on contact graphs, where vertices are represented by simple
interior-disjoint polygons and adjacencies are represented by a shared boundary be-
tween the corresponding polygons. For example, every maximally planar graph has a
contact representation with convex polygons with at most six sides, and six sides are
also necessary [9]. Of particular interest are rectilinear duals, where the vertices are
represented by simple (axis-aligned) rectilinear polygons. It is known that 8 sides are
sometimes necessary and always sufficient [16,22,26]. If the rectilinear polygons are
restricted to rectangles, the class of planar graphs that allows such rectangular duals
is completely characterized [21,25] and can be obtained via bipolar orientation of the
graph [14]; see Buchsbaum et al. [6] and Felsner [11] for excellent surveys.

1.2 Our Contributions

We first consider the question of testing whether a given planar clustered graph fits on
a given planar map and show that the decision problem is NP-hard, even in the case
where the map is made of only rectangular regions and each region contains only one
vertex. Then we provide sufficient conditions that ensure such a fit on a rectangular
map. Finally, we generalize the fitting techniques to rectilinear maps with rectangles,
L-shaped and T-shaped polygons. In particular, we describe an efficient algorithm for
distributing vertices appropriately in the case of maps with L-shaped polygons.

2 Preliminaries

In this section we introduce definitions used throughout the paper and then describe the
properties of clustered graphs considered in the paper.

Let G = (V,E) be a planar graph, with vertex set V partitioned into disjoint sets
V = {V1, . . . , Vk}. We call the pair C = (G,V) a planar clustered graph. We consider
the following partition of the edges of G that corresponds to the given partition of
vertices V = {V1, . . . , Vk}. Let Ei, for each i, 1 ≤ i ≤ k be the set of edges in E
between two vertices of Vi and let Einter be the set of all the remaining edges in E.

54 M.J. Alam et al.

Note thatE = E1∪E2∪ . . .∪Ek∪Einter . We callGi = (Vi, Ei), 1 ≤ i ≤ k, a cluster
of G, the edges of Ei, 1 ≤ i ≤ k, the intra-cluster edges and the edges of Einter the
inter-cluster edges.

The cluster-graph of a clustered graphC = (G,V) is the graphGC = (V , E), where
the edge (Vi, Vj) ∈ E , 1 ≤ i, j ≤ k, i �= j if there exists an edge (u,w) in G so
that u ∈ Vi and w ∈ Vj . A clustered graph C = (G,V) is said to be connected (resp.
biconnected) if each of Gi, 1 ≤ i ≤ k, is a connected (resp. biconnected) graph.

A drawing of a planar clustered graph C = (G,V) is a planar straight-line drawing
of G where each cluster Gi is represented by a simply-connected closed region Ri

such that Ri contains only the vertices of Gi and the drawing of each edge e between
two vertices of Gi is completely contained in Ri. An edge e and a region R have an
edge-region crossing if the drawing of e crosses the boundary of R more than once.
A drawing of a planar clustered graph C is c-planar if there is no edge crossing or
edge-region crossing. If C has a c-planar drawing then we say that it is c-planar.

A polygonal map M is a set of interior-disjoint polygons on a plane. A dual graph
GM of M is a graph that contains one vertex for each polygon of M . Two vertices of
GM are connected by an edge if the corresponding polygons have a non-trivial common
boundary. Given a planar graphGM , a polygonal mapM is called a contact map ofGM

if GM represents the dual graph ofM . Let C = (G,V) be a planar clustered graph. A
polygonal map M which represents a contact map of the cluster-graph GC is said to
be compatible with C. Notice that this definition yields a correspondence between the
clusters ofC and polygons ofM . In this paper we are interested in determining whether
each cluster Gi of C can be drawn with straight-line edges inside its corresponding
polygon in M , so that there is no edge crossing and no edge-region crossing. In case
such a drawing exists we say that planar clustered graph C has a straight-line planar
fitting, or just planar fitting on mapM .

It is natural to consider all planar graphs, regardless of the clustering they come with.
We preview the construction of a straight-line planar fitting and isolate the problem we
are interested in. Recall that, by the definition of a planar fitting, each cluster has to
be drawn inside a polygon, and there should be no edge crossings and no edge-region
crossings. This implies that a clustered graph that has a planar fitting is also c-planar, so
we consider only c-planar graphs. Unfortunately, the characterization of c-planar graphs
is still an open problem. Thus we restrict ourselves to clustered graphs for which we
know that c-planarity can be efficiently tested. We use the results of Feng et al. [13]
who provide a polynomial-time algorithm to test whether a connected clustered graph
is c-planar. Thus, in the rest of the paper we consider only connected c-planar graphs.

3 Fitting on a Rectangular Map

Here we consider the problem of deciding whether a connected c-planar graphG has a
straight-line planar fitting on a given compatible rectangular mapM . We first show that
such a fitting does not always exist. To construct the counterexample we use a wheel
map, which contains four “thin rectangles” that surrounds an inner rectangle; see Fig. 1.

Intuitively, the notion of a thin rectangle will be clear in the following constructions
from the way it is used, but to be more precise, we formally define it. A thin rectangle

Fitting Planar Graphs on Planar Maps 55

(a) (b)

Fig. 1. Wheel maps cw (a), ccw (b)

is one whose larger side is at least 4 times its
smaller side, i.e., it has aspect ratio at least
4. A thin rectangle is horizontal if its smaller
side is its height; otherwise it is vertical. We
assume all four thin rectangles in a wheel
map have the same size (same length of larger
sides, same length of smaller sides).

Let {V1, . . ., Vk} be the set of clusters of
G and let (vi, vj) be an edge of G such that
vi ∈ Vi, vj ∈ Vj , 1 ≤ i, j ≤ k. Then there
exists a common boundary between the poly-
gons representing Vi and Vj in M . Call the common boundary the door for the edge
(vi, vj). Consider a wheel map W and its dual G which has a simple clustering: each
vertex constitutes a cluster. For the rest of the section we often assume that a wheel
map is associated with this clustered graph. With this consideration in mind, each thin
rectangle ofW contains two doors, one for each incident thin rectangle. We define the
entry door to be the one which contains a complete side of the rectangle, and the exit
door to be the one that contains a complete side of a neighboring thin rectangle. We
call a wheel map a clockwise (cw) wheel when going from the entry door to the exit
door in each rectangle requires a clockwise walk through the wheel; see Fig. 1(a). A
counterclockwise (ccw) wheel is defined analogously; see Fig. 1(b).

We now define the notion of “proximity region” for each door inside each thin rect-
angle of a wheel map. Given that the thin rectangles of a wheel map are of the same
size, using basic geometry we can define inside each thin rectangle a triangular region
of maximum area where these two conditions hold: (i) the triangular region inside each
thin rectangle contains the entry door of this rectangle; and (ii) for each point inside the
triangle of one of the four thin rectangles, there exists a point inside the triangle of each
other rectangle such that the visibility line between the two points inside any pair of
neighboring rectangles passes through the corresponding door. We call these triangular
regions the proximity regions of the corresponding entry doors; see Fig. 2(a). For each
exit door we can analogously define a quadrangular proximity region; see Fig 2(b). Next
we state a simple observation that follows from these definitions:

Observation 1. Let W be a wheel map and let G be its dual graph. In a straight-line
planar fitting of G the vertices in the thin rectangles either all lie inside the proximity

(c)(b)(a)

Fig. 2. (a)–(b) Proximity regions for the doors in a wheel map, (c) a clustered graph and a map
with no fit (the visibility regions of the bridge are highlighted)

56 M.J. Alam et al.

region of the entry doors, or they all lie in the proximity region of the exit doors. There
exists a straight-line planar fitting in each case.

Proof: The sufficiency follows from the definition of proximity regions. The necessity
follows from the fact that the proximity regions for the entry and the exit doors inside
each thin rectangle are disjoint since the aspect ratio of the thin rectangles is ≥ 4. ��

The next lemma shows that fitting a planar clustered graph on a compatible map is
not always possible.

Lemma 1. There exist a planar clustered graph C = (G,V) and a compatible rectan-
gular mapM , so that there is no straight-line planar fitting of C onM .

Proof: Consider a rectangular map M made of two wheel maps (of the same size)
joined together by a thin horizontal rectangle, called a bridge; see Fig. 2(c). We choose
the height of the bridge to be at most the length of the smaller sides in the thin rectan-
gles of the wheels and we attach the bridge in the middle of the neighboring two vertical
rectangles. For each of these two thin rectangles, the visibility region of the bridge is the
set of points in it from which the visibility line to at least one point in the proximity re-
gion of either of the entry or exit door of the rectangle passes through the door between
the bridge and the rectangle. We choose the length of the bridge to be long enough, such
that the two visibility regions for the two rectangles do not overlap.

Let G be the dual ofM : two 4-cycles connected by a path of length two. Assume a
clustering ofGwhere each vertex constitutes a separate cluster. ThenG has no straight-
line planar fitting onM . IfG had a straight-line planar fitting Γ onM , by Observation 1,
all the vertices inside the thin rectangles of both the wheels must be placed in the prox-
imity regions of the doors in Γ . But then, there is no feasible position for the vertex that
represents the bridge since the two visibility regions of the bridge do not overlap. ��

3.1 Fitting Is NP-Hard

We show that deciding if a given planar clustered graph has a planar fitting inside a
given map is NP-hard, even for rectangular maps, with a reduction from Planar-3-SAT
which is known to be NP-complete [23]. Planar-3-SAT is defined analogously to 3-
SAT with the additional restriction that the variable-clause bipartite graph GF for a
given formula F is planar. There is an edge (xi, Aj) in GF if and only if xi or xi
appears inAj . Knuth and Raghunathan [20] showed that one can always find a crossing-
free drawing of the graph GF for a Planar-3-SAT instance, where the variables and
clauses are represented by rectangles, with all the variable-rectangles on a horizontal
line, and with vertical edge segments representing the edges connecting the variables to
the clauses. The problem remains NP-complete when such a drawing is given.

Theorem 1. Let C = (G,V) be a planar clustered graph with a rectangular map M ,
compatible with C. Deciding if C admits a straight-line planar fitting onM is NP-hard.

Proof: We reduce an instance of Planar-3-SAT to an instance (C,M) of our problem.
Let F := A1 ∧ . . . ∧ Am be an instance of a Planar-3-SAT, where each literal in each
clause Ai is a variable (possibly negated) from U = {x1, . . . , xn}. Let ΓF be the

Fitting Planar Graphs on Planar Maps 57

x x
x

xx
x

x x

(a) (b) (c) (d)

Fig. 3. Representation of variables

given planar rectilinear drawing for this instance, as defined in [20]. From ΓF we first
construct the rectangular map M , then take G as the dual of M , where each vertex
constitutes a separate cluster. We represent each literal by a wheel map (of the same
size) in M : a positive (negative) literal is a cw (ccw) wheel. From the two possible
vertex configurations inside each wheel we take the one in which the corresponding
literal assumes a true value when the vertices inside the thin rectangles of the wheel
lie in the proximity region of the exit doors and the literal assumes a false value when
they lie in the proximity region of the entry doors. Unlike in ΓF , we use a distinct
wheel for each literal in each clause. For each variable x, we draw the wheels for all
the (positive and negative) literals for x appearing in different clauses in a left-to-right
order, according to the ordering of the edges incident to the corresponding vertices in
ΓF . To maintain consistency, we ensure that a true (false) value for a literal x implies a
true (false) value for every other instance of x and a false (true) value for each instance
of x. This is done by means of thin rectangular bridges between two consecutive literals;
see Fig. 3. The size of the bridges is chosen equal to the thin rectangles in the wheels.

For each clause A = (x∨ y∨ z) of F , with the corresponding vertex lying above the
variables in ΓF , we draw vertical rectangles lAx , lAy and lAz from the topmost rectangles
Tx, Ty, Tz of the wheels for x, y and z, respectively, attached at the end that is not
shared by other thin rectangles. (The case when the vertex lies below the variables in
ΓF is analogous.) We place lAx , lAy , lAz so that they are completely visible from all the
points in the proximity of the exit doors of Tx, Ty, Tz , respectively. We choose the
length of the rectangles lAx , lAy , lAz so that not all points inside them are visible from any
point of the proximity region of the entry doors of Tx, Ty, Tz, respectively; see Fig. 5.

l

l
A

l
A

A

h

A

A

h

yx z

x

y

x

z

y

Fig. 4. Clause representation

We then draw a rectangle R for the clause and
attach these three thin rectangles lAx , lAy and lAz
to R. For z we attach the vertical rectangle lAz
to the bottom of R, while for each of x and
y, we attach horizontal rectangles hAx , hAy to R
that also touch the vertical rectangles lAx and lAy
coming from x or y, respectively. A point p in
rectangle hAx (hAy) is reachable from a point q
inside Tx (Ty) if there exists a point r inside
lAx or lAy such that the two lines pr and rq pass
through the doors between the corresponding
rectangles. The reachable region of hAx (hAy) is
the set of all points that are reachable from a
point inside the proximity region of the entry

58 M.J. Alam et al.

A
h

A 1

l
A 3

h
A 3

A 2l
A 1l

A 3l

l
A 1

l
A 3 h

A 3

l
A 2

h
A 2l

A 2

h
A 2

1h

A 2

A 1

A 3

A 1
A 2

A 3

l
A 1

(

(

a + c + d

a + b + c)

)

a b c d

(a + b + d)

a b d

(

b

a + b + d

a b

b

c c d

b

a

)

)

a

a

b

c

a

(

a

a
c

a

c

a + c + d

d

a + b + c()

d

Fig. 5. Planar 3-SAT instance and corresponding map fitting instance

door of Tx (Ty). Similarly a point p inside lAz is
reachable from a point q inside rectangle Tz of
the wheel for z if the line pq passes through the door between the two rectangles. The
reachable region of lAz is the set of all points reachable from a point inside the prox-
imity region of the entry door of Tz. Choose the lengths for the horizontal rectangles
hAx , hAy and the vertical rectangles lAx , lAy , lAz so that the reachable regions inside them
do not coincide with the entire inside of these rectangles. For this purpose it is sufficient
that the sizes of these rectangles are comparable to the sizes of the rectangles inside the
wheels. Thus the sizes of all the wheels and other rectangles are polynomial in the size
of the Planar-3-SAT instance.

Next we attach the thin rectangles hAx , hAy , lAz to R in such a way that the areas
visible from the reachable regions of hAx , hAy , lAz do not have a common intersection,
while every pair of them does have a common intersection; see Fig 4. We now observe
that the size of R does not have to be too big to ensure this. Specifically, we attach lAz
to the left half of the bottom line of R and choose the height of R small enough so that
the visible area from its reachable region is only in the left half of R. We also adjust
the vertical distance between the horizontal rectangles hAx and hAy and adjust the width
of R so that the areas visible from the reachable regions of hAx and hAy do not intersect
in the left half of R but they do intersect in the right half. This can be achieved if for
example we take the vertical distance between hAx and hAy to be a constant multiple of
their height, while we take the width of R to be a constant multiple of the length of hAx ,
hAy . Finally we fill all the unused regions in the map with additional rectangles to get the
final map M . Since the sizes of all the rectangles are constant multiples of each other
and the total size is polynomial in the size of the Planar-3-SAT instance, the coordinates
for the map can be chosen to be polynomial in the size of the Planar-3-SAT instance.

Lemma 2. F is satisfiable if and only if G has a straight-line planar fitting onM .

Proof: Assume first that there exists a straight-line planar fitting Γ of G on M . We
show that F is satisfiable, i.e., there is a truth assignment for all the variables of F such
that for each clause A = (x, y, z) of F , at least one of x, y and z is true. LetWx be the
wheel for x. If the vertices in Wx are placed inside the proximity regions of the entry
doors, then by construction of M , the vertex in the horizontal rectangle hAx is placed
inside the reachable region. Thus this vertex can see only the highlighted visible area
in Fig. 4 inside the rectangle R for A. However if the vertices in Wx are placed in the

Fitting Planar Graphs on Planar Maps 59

proximity regions of the exit doors, then the vertex in the horizontal rectangle hAx can
be placed outside the reachable region so that it can see the entire interior of R. This
is true for each of the three literals. Since the visible areas of the three literals have no
common intersection, the vertices in the wheel for at least one of x, y and z must be
placed in the proximity region of the exit door. We make each such literal true. This
assignment has no conflict, because of the way the wheels for a particular variable are
attached to each other. Furthermore, this assignment satisfies F .

Conversely if F is satisfiable, for each clauseA = (x, y, z) of F , at least one of x, y,
z is true. Without loss of generality, assume that x is true. Place the vertices in the wheel
of x in the proximity regions of the exit doors. Then the vertex in the hAx can be placed
outside the reachable region and it can see the entire interior of R. Place the vertex for
R in the intersection of the areas visible from reachable regions of hAy and lAz . This
ensures that we can place the vertices in the wheel for y and z in the proximity regions
of either the entry doors or the exit doors and we are still able to place the vertices in
rectangles hAy , lAy , lAz so that all the straight-line edges create no area-region crossings.
This yields the desired straight-line planar fitting of G onM . ��

The proof of Lemma 2 completes the NP-hardness proof. Fig. 5 illustrates a 3-SAT
formula, its Planar-3-SAT realization with the conditions of [20], and the corresponding
instance for the map fitting problem (rectangles filling up the holes are not shown). ��

Note that Bern and Gilbert [4] and recently Kerber [19] obtained NP-completeness
results using similar techniques. In particular, Bern and Gilbert [4] consider the problem
of drawing the dual on top of the drawing of a plane graphG, such that each dual vertex
lies in the corresponding face of G, while each dual edge is drawn as a straight-line
segment that crosses only its corresponding primal edge. They show that this problem is
NP-complete and the techniques used are similar to ours, as this problem can be thought
of as a special case of fitting a clustered graph on a map, where each cluster consists
of a single vertex. However, we consider the more restricted class of rectangular maps
instead of the generic drawing of a planar graph, and hence the NP-completeness of
our problem is not implied by [4]. Kerber [19] considers the problem of embedding the
dual on top of a primal partition of the d-dimensional cube into axis-aligned simplices
and proved that this problem is NP-complete. In 2D, this problem is also a special case
of our problem, with the exception that in Kerber’s setting edge-region crossings are
allowed. Thus the result in [19] also does not imply our results.

4 Sufficient Conditions for Fitting

We showed in Lemma 1 that not every c-planar connected graph admits a planar straight-
line fitting on a compatible map even if each cluster is a single vertex. The counterexam-
ple relies on two facts: (1) there is a vertex in some cluster (the bridge) that is connected
to vertices in two different clusters (the wheels); (2) its cluster-graph contains two cy-
cles. By considering graphs that do not have at least one of the above characteristics we
show planar straight-line fittings are always possible. In this sense the following two
lemmas give tight sufficient conditions for graphs to admit planar straight-line fittings.

60 M.J. Alam et al.

Lemma 3. Let C = (G,V) be a biconnected c-planar graph. Let M be a rectangular
map compatible with C. If for each vertex v ofG, all the vertices adjacent to v through
an inter-cluster edge lie in the same cluster, C has a straight-line planar fitting onM .

Proof: Let Γ be a c-planar drawing of C. Let G1, G2, . . . , Gk be the clusters of C and
let V = {V1, V2, . . . , Vk} be the corresponding vertex partition. For each rectangle Ri,
1 ≤ i ≤ k, ofM representing the cluster Gi, denote by Oi the ellipse inscribed in Ri.
We first place the vertices on the outer boundary ofGi in Γ on Oi as follows. Consider
two adjacent rectanglesRi andRj inM . Let vi1 , . . . , vir ∈ Vi and vj1 , . . . , vjs ∈ Vj be
the vertices of Vi and Vj , incident to the inter-cluster edges between these two clusters,
taken in the order they appear on the outer boundary ofGi andGj , respectively. Define
pi, p

′
i and pj , p′j to be points of Oi and Oj , respectively, such that the straight-line

segments pipj and p′ip
′
j cross the common border of Ri and Rj , without crossing each

other. Place the vertices vi1 , . . . , vir of Vi and vj1 , . . . , vjs of Vj onOi andOj , between
points pi, p′i and pj , p′j , respectively, so that all the inter-cluster edges between these
vertices cross the common border of Ri and Rj . Repeat the above procedure for each
pair of adjacent rectangles in M . Since each vertex thus placed is adjacent to a unique
cluster, its position is uniquely defined. For each cluster Gi, 1 ≤ i ≤ k, we have thus
placed some vertices on the outer boundary of Gi in Γ on the ellipse Oi. Distribute the
remaining vertices of the boundary of Gi on Oi, so that the order of the vertices is the
same as in the boundary of Gi. Since the resulting drawing of the outer boundary of
Gi is convex and Gi is biconnected, apply the algorithm for drawing a graph with a
prescribed convex outer face [7] to complete the drawing of each cluster. ��

Lemma 4. Let C = (G,V) be a biconnected c-planar graph. Let M be a rectangular
map compatible with C. If each connected component of cluster-graph GC contains at
most one cycle, then C has a straight-line planar fitting onM .

Proof Sketch: Assume that each connected component ofGC contains at most one cy-
cle. Let v1, . . . , vk be the vertices ofGC that represent clustersG1, . . . , Gk respectively.
To complete the proof we go through the following steps:

(1) We show that GC has a planar fitting onM .
(2) We blow up the drawing of GC , so that the edges of GC are represented by strips

of width ε > 0, without creating edge-region crossings; see Fig. 6(a). For each
vertex vi ofGC , we draw a small circle circ(Gi) centered at the intersection of the
strip-edges that are adjacent to vi.

(3) We draw the boundary of Gi on the circle circ(Gi), i = 1, . . . , k, so that the
inter-cluster edges, when drawn with straight-line segments, intersect neither the
boundaries of the clusters, nor each other; see Fig. 6(b).

(4) Since the boundary of each Gi is a convex polygon and Gi is biconnected, we can
apply the algorithm for drawing a graph with a prescribed convex outer face [7] to
complete the drawing of the clusters; see Fig. 6(c).

While steps (2) and (4) are straight-forward, steps (1) and (3) need to be proved. We
provide a detailed proof of step (1) below. Step (3) is intuitively easy, however, its exact
proof is quite technical; we omit the proof for this step here due to the space constraints.

Fitting Planar Graphs on Planar Maps 61

vi
circ(Gi)

+

(a) (b) (c)

Fig. 6. (a) Drawing of GC , each edge is represented by a strip of width ε > 0. (b) Placing the
boundary vertices of the clusters on the corresponding circles. (c) Step 4 of the proof of Lemma 4.

Step (1). We show that GC = (VC , EC) has a straight-line planar fitting on M . Con-
sider first the case when GC is a tree and let v1 ∈ VC be the root of GC . We prove
that even if the position of v1 is fixed in its corresponding rectangle R1, we can place
the remaining vertices of GC in their corresponding rectangles so that the resulting
straight-line drawing is a planar fitting of GC on M . Let v2, . . . , vf be the children of
v1 and let R2, . . . , Rf be the corresponding rectangles of M . Place v2, . . . , vf inside
R2, . . . , Rf , respectively so that the straight-line edges (v1, vi), 2 ≤ i ≤ f cross the
common boundary of R1 andRi. Continue with the children of v2, . . . , vf , recursively.

Assume now that each connected component of GC = (VC , EC) contains at most
one cycle. We show how to draw a single connected component ofGC . Let v0, . . . , vm ∈
VC induce the unique cycle ofGC and letR0, . . . , Rm be the rectangles that correspond
to them, so that Ri andR(i+1)mod(m+1), 0 ≤ i ≤ m, are adjacent. Place vi, 0 ≤ i ≤ m
inside Ri such that for any point p ∈ R(i+1)mod(m+1), segment pvi crosses the com-
mon boundary of Ri and R(i+1)mod(m+1). (For example placing vi right on the door
suffices.) The removal of the edges of this cycle results in several trees. Root the trees at
the vertices v0, . . . , vm, to which they are adjacent and apply the procedure described
in the first part of the proof. This completes the construction. ��

Putting together the results in this section we obtain the following theorem:

Theorem 2. Let C = (G,V) be a biconnected c-planar graph. LetM be a rectangular
map compatible with C. If (a) for each vertex v of G, all the vertices adjacent to v
through an inter-cluster edge lie on the same cluster, or (b) each connected component
of cluster-graphGC contains at most one cycle, thenC has a straight-line planar fitting
on M . Moreover, there exist a c-planar graph C and a compatible map M which do
not fulfill condition (a) and (b) and do not admit a planar straight-line fitting.

5 Fitting Graphs on Rectilinear Maps

In this section we give a short overview of our results for more general rectilinear maps.
It is known that only a restricted class of planar graphs can be realized by rectangular

maps. For general planar graphs, 8-sided polygons (T-shapes) are necessary and suffi-
cient for contact maps [16]. In this section, we assume that the input is a rectilinear map,
with rectangles, L- and T-shapes, together with a c-planar graphG with a cluster-graph

62 M.J. Alam et al.

a

e

g

c f

d
b

Fig. 7. Illustrating how vertices on the boundary of a T -shape are placed and how the cluster is
partitioned by an (a � c)-path and a (b � c)-path, such that it fits into three adjacent convex
polygons with the paths as common boundaries

GC . The first condition that we require is that the subgraph induced by the inter-cluster
edges is a matching. From Lemma 3 this condition is sufficient for rectangular maps.
Now, we extend this to L-shaped and T-shaped polygons (maps). We impose several
conditions under which we prove the existence of a fitting. Because of the presence
of concave corners, we impose our second condition: none of the clusters contains a
boundary chord, i.e., a non-boundary edge between two boundary vertices.

The idea is to apply the algorithm for drawing a graph with a prescribed convex
outer face [7]. We partition the polygons into convex pieces. Since the polygons form a
contact map, for each common boundary of adjacent polygons there is at least one edge
between the corresponding clusters. Our last condition restricts this further: between
any two adjacent clusters there exist at least two independent inter-cluster edges. We call
a graph in which every pair of adjacent clusters has this property doubly-interconnected.

Note that the common boundary of two adjacent polygons contains at most two con-
cave corners, one in each polygon. We place the vertices next to the common boundary
on both sides of these concave corners. This ensures that the cycle spanned by the
boundary vertices of the cluster is completely within the corresponding polygon and
there are at most two concave corners along the cycle. Let a and b be the vertices at
these corners; see Fig. 7. We choose a third boundary vertex c lying opposite a and b.
Straight-line cuts between a, c and b, c define 3 convex regions. Now we compute an
(a � c)-path and a (b � c)-path. These paths cannot have shortcuts, where a shortcut
of a path P is an edge between vertices nonadjacent in P , so that we can place the
vertices on these two paths on the two cuts between a, c and b, c. Note that such a path
should not contain any other boundary vertex, already placed elsewhere.

The above strategy for T-shaped polygons can also be applied to L-shaped poly-
gons, where the straight-line segment splitting this polygon into two convex parts is
between the concave corner of the L-shaped polygon and its opposite convex corner of
the neighboring polygon. Together, these yield the following theorem.

Theorem 3. Let G be a doubly-interconnected and biconnected c-planar graph such
that the inter-cluster edges ofG form a matching and there is no boundary chord in any
cluster. Then there exists a straight-line planar fitting ofG on any compatible map with
rectangular, L-shaped, or T-shaped polygons.

Fitting Planar Graphs on Planar Maps 63

Note that any algorithm that distributes vertices inside non-convex regions while pre-
serving cluster-planarity must distribute the vertices among the convex components of
the regions. It is only natural to try to make such distribution balanced. We define a mea-
sure called ”imbalance” which captures the difference between the geometric partition
of the non-convex regions into convex regions (e.g., region area) and the partition of the
clusters into subclusters (e.g., subcluster size) corresponding to the convex regions.

First we consider the distribution inside one L-shaped polygon partitioned into two
pieces by a straight-line cut; then we use this result to minimize the maximum imbal-
ance in all L-shaped polygons in the map. We prove that the global imbalance mini-
mization problem can be solved optimally, using dynamic programming and min-max
shortest paths. These techniques are interesting by themselves.

Theorem 4. Let G be a connected c-planar graph, GC be the cluster-graph of G and
let M be a rectilinear map of GC with six-sided polygons such that M represents the
contact map of GC . Then one can split the regions of M in O(n4) time into convex
shapes and distribute the vertices and faces of the clusters within the regions, such that
the maximum imbalance is minimized.

6 Conclusion and Future Work

We showed that fitting planar graphs on planar maps is NP-hard. The proof involves
skinny regions; it is natural to ask whether the problem becomes easier if all regions are
“fat”. We presented necessary and sufficient conditions for the construction of planar
straight-line fitting on rectangular map, for c-planar graphs with biconnected clusters.
These conditions are tight, in the sense that violating them makes it possible to con-
struct counterexamples. Relaxing the biconnectivity requirement is an open problem.
Finally, we gave a rather restricted set of sufficient conditions for fitting planar graphs
on maps with non-convex regions. It would be worthwhile to investigate whether these
conditions can be relaxed. We gave an algorithm for finding a fitting with a “balanced
distribution” of the vertices. Another interesting question is whether an exact bound on
vertex resolution can be guaranteed.

References

1. Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs.
In: Symposium on Algorithms & Data Structures (WADS), pp. 25–36 (2009)

2. Battista, G.D., Drovandi, G., Frati, F.: How to draw a clustered tree. Journal of Discrete
Algorithms 7(4), 479–499 (2009)

3. Battista, G.D., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with
small faces. Journal of Graph Algorithms and Applications 13(3), 349–378 (2009)

4. Bern, M.W., Gilbert, J.R.: Drawing the planar dual. Information Processing Letters 43(1),
7–13 (1992)

5. Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Joint Eurographics and IEEE
TCVG Symposium on Visualization, pp. 33–42 (2000)

6. Buchsbaum, A., Gansner, E., Procopiuc, C., Venkatasubramanian, S.: Rectangular layouts
and contact graphs. ACM Transactions on Algorithms 4(1) (2008)

64 M.J. Alam et al.

7. Chambers, E., Eppstein, D., Goodrich, M., Löffler, M.: Drawing graphs in the plane with
a prescribed outer face and polynomial area. Journal of Graph Algorithms and Applica-
tions 16(2), 243–259 (2012)

8. Coffey, J.W., Hoffman, R.R., Cañas, A.J.: Concept map-based knowledge modeling: per-
spectives from information and knowledge visualization. Information Visualization 5(3),
192–201 (2006)

9. Duncan, C., Gansner, E., Hu, Y., Kaufmann, M., Kobourov, S.G.: Optimal polygonal repre-
sentation of planar graphs. Algorithmica 63(3), 672–691 (2012)

10. Eades, P., Feng, Q.-W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierar-
chical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

11. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty
Essays on Geometric Graph Theory. Springer (2012)

12. Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In: Li, M., Du,
D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)

13. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: European Symposium
on Algorithms (ESA), pp. 213–226 (1995)

14. Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line
drawings. Discrete Mathematics 309(7), 1870–1894 (2009)

15. Harel, D.: On visual formalisms. Communications of the ACM 31(5), 514–530 (1988)
16. He, X.: On floor-plan of plane graphs. SIAM Journal of Computing 28(6), 2150–2167 (1999)
17. Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Com-

puter Graphics and Applications 30(6), 54–66 (2010)
18. Kamada, T.: Visualizing Abstract Objects and Relations. World Scientific Series in Computer

Science, vol. 5 (1989)
19. Kerber, M.: Embedding the dual complex of hyper-rectangular partitions. Journal of Com-

putational Geometry 4(1), 13–37 (2013)
20. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM Journal on

Discrete Mathematics 5(3), 422–427 (1992)
21. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15, 145–157

(1985)
22. Liao, C.-C., Lu, H.-I., Yen, H.-C.: Compact floor-planning via orderly spanning trees. Journal

of Algorithms 48, 441–451 (2003)
23. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11(2),

329–343 (1982)
24. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans-

actions on Graphics 11(1), 92–99 (1992)
25. Ungar, P.: On diagrams representing graphs. Journal of London Mathematical Sociery 28,

336–342 (1953)
26. Yeap, K.-H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear

modules. SIAM Journal on Computing 22, 500–526 (1993)

Minimum Activation Cost Node-Disjoint Paths

in Graphs with Bounded Treewidth

Hasna Mohsen Alqahtani and Thomas Erlebach

Department of Computer Science, University of Leicester, Leicester, UK
{hmha1,t.erlebach}@leicester.ac.uk

Abstract. In activation network problems we are given a directed or
undirected graph G = (V,E) with a family {fuv : (u, v) ∈ E} of mono-
tone non-decreasing activation functions from D2 to {0, 1}, where D is
a constant-size subset of the non-negative real numbers, and the goal
is to find activation values xv for all v ∈ V of minimum total cost∑

v∈V xv such that the activated set of edges satisfies some connectiv-
ity requirements. We propose algorithms that optimally solve the min-
imum activation cost of k node-disjoint st-paths (st-MANDP) problem
in O(tw((5 + tw)|D|)2tw+2|V |3) time and the minimum activation cost
of node-disjoint paths (MANDP) problem for k disjoint terminal pairs
(s1, t1), . . . , (sk, tk) in O(tw((4+3tw)|D|)2tw+2|V |) time for graphs with
treewidth bounded by tw.

1 Introduction

In activation network problems, we are given an activation network, which is a di-
rected or undirected graph G = (V,E) together with a family {fuv : (u, v) ∈ E}
of monotone non-decreasing activation functions from D2 to {0, 1}, where D is
a constant-size subset of the non-negative real numbers. The activation of an
edge depends on the chosen values from the domain D at its endpoints. An
edge (u, v) ∈ E is activated for chosen values xu and xv if fuv(xu, xv) = 1.
An activation function fuv for (u, v) ∈ E is called monotone non-decreasing if
fuv (xu, xv) = 1 implies fuv (yu, yv) = 1 for any yu ≥ xu, yv ≥ xv. The goal
is to determine activation values xv ∈ D for all v ∈ V so that the total acti-
vation cost

∑
v∈V xv is minimized and the activated set of edges satisfies some

connectivity requirements. As activation network problems are computationally
difficult in arbitrary graphs, it is meaningful to investigate whether restricted
graph classes admit efficient algorithms. In this paper we consider the prob-
lems of finding minimum activation cost k node-disjoint st-paths (st-MANDP)
and finding minimum activation cost node-disjoint paths (MANDP) between k
disjoint terminals pairs, (s1, t1), . . . , (sk, tk), for graphs of bounded treewidth.
Throughout this paper we consider undirected simple graphs.

The problem of finding k node/edge-disjoint paths between two nodes s and
t in a given graph can be solved in polynomial time using network flow tech-
niques [1], but no polynomial-time algorithm is known for the network activation
setting. The problem of finding node/edge-disjoint paths (NDP/EDP) between

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 65–76, 2014.
c© Springer International Publishing Switzerland 2014

66 H.M. Alqahtani and T. Erlebach

k terminals pairs, (s1, t1), . . . , (sk, tk), in a given graph is NP-complete if k is
part of the input [5] (and already for k = 2 in directed graphs [4]). However,
the problem is polynomial-time solvable for undirected graphs when k is fixed
[11]. Scheffler [12] gave a linear-time algorithm that follows a classical bottom-
up approach to solve the NDP problem for arbitrary k in graphs of bounded
treewidth. In this paper we adapt Scheffler’s algorithm [12] to the activation
network version of node-disjoint path problems and devise polynomial-time op-
timal algorithms for solving the MANDP problem and the st-MANDP problem
in graphs of bounded treewidth.

Related work. Activation network problems were introduced recently by Pan-
igrahi [10]. The problem of finding the minimum activation st-path (MAP) can
be solved optimally in polynomial-time [10]. However, the minimum activa-
tion edge-disjoint st-paths (st-MAEDP) problem is NP-hard [10]. The minimum
spanning activation tree (MSpAT) problem is NP-hard to approximate within
a factor of o(logn). The MSpAT problem is a special case of the problems of
finding the minimum Steiner activation network (MSAN) and the minimum
edge/node-connected activation network (MEAN/MNAN) (activating a network
with k edge/node-disjoint paths between every pair of vertices). Therefore, these
problems are also NP-hard to approximate within o(log n). As mentioned in [10],
there exist O(log n)-approximation algorithms for MSpAT, and for MEAN and
MNAN in the case of k = 2. There is a 2-approximation algorithm for the st-
MANDP problem and a 2k-approximation algorithm for the st-MAEDP problem
[8]. The st-MAEDP and st-MANDP problems when k = 2 have been studied
recently by the authors [2]. They show that a ρ-approximation algorithm for the
minimum activation 2 node-disjoint st-paths (st-MA2NDP) problem implies a
ρ-approximation algorithm for the minimum activation 2 edge-disjoint st-paths
(st-MA2EDP) problem. They also obtained a 1.5-approximation algorithm for
the st-MA2NDP problem and hence for the st-MA2EDP problem. Furthermore,
they showed that the st-MANDP problem for the restricted version of activation
networks with |D| = 2 and a single activation function for all edges can be solved
in polynomial time for arbitrary k (except for one case of the activation function,
in which they require k = 2). However, the st-MAEDP problem remains NP-
hard under this restriction [10,2]. It is not yet known whether the st-MANDP
and st-MAEDP problems for an arbitrary constant-size D and fixed k ≥ 2 are
NP-hard.

Activation network problems can be viewed as a generalization of several known
problems inwireless network design such as power optimizationproblems. In power
optimization problems, we are given a graphG = (V,E) and each edge (u, v) ∈ E
has a threshold power requirement θuv. In the undirected casewe say the edge (u, v)
is activated for chosen values xu and xv if each of these values is at least θuv, and
in the directed case it is activated if xu ≥ θuv. [7] shows that a simple reduction to
the shortest st-path problem can solve the minimum power st-path (MPP) prob-
lem in polynomial time for directed/undirected networks. The problem of find-
ingminimum power k node-disjoint st-paths (st-MPkNDP) in directed graphs can
be solved in polynomial time [6,13]. However, the minimum power k edge-disjoint

Minimum Activation Cost Node-Disjoint Paths 67

st-paths (st-MPkEDP) problem is unlikely to admit even a polylogarithmic ap-
proximation algorithm for both the directed and undirected variants [6]. In power
optimization, the MSpAT problem is APX-hard and theMEAN andMNAN prob-
lems have 4-approximation and 11/3-approximation algorithms, respectively. See
[2,8,9,10] for further motivation and applications of activation network problems.

Our results. We propose algorithms that optimally solve the st-MANDP
problem in O(tw((5 + tw)|D|)2tw+2|V |3) time and the MANDP in O(tw (4 +
3tw)2tw+2 |D|2tw+2 |V |) time for graphs with treewidth bounded by tw.

This paper is organized as follows. In Section 2, we introduce some notations
and definitions used throughout this paper. In Section 3, we propose an exact
algorithm that solves the st-MANDP problem on graphs with bounded treewidth
tw in polynomial-time. Section 4 presents an optimal algorithm that solves the
MANDP problem on graphs with bounded treewidth in linear-time.

2 Preliminaries

The class of graphs of bounded treewidth [11] has attracted attention due to the
fact that many NP-complete problems for arbitrary graphs are polynomial or
even linear time solvable in graphs of bounded treewidth.

Definition 1. A tree-decomposition for a given graph G = (V,E) is a pair
(X , T) of a tree T = (I, F) and a family {Xi}i∈I of subsets of V (called bags)
satisfying the following two conditions: (1) For every edge (v, w) ∈ E, there
exists an i ∈ I with v ∈ Xi and w ∈ Xi. (2) For every vertex v ∈ V , the nodes
i ∈ I with v ∈ Xi form a subtree of T . The width of a tree-decomposition is
maxi∈I |Xi| − 1. The treewidth tw of the graph G is the minimum width among
all possible tree-decompositions of the graph.

As shown in [3], there exists a linear-time algorithm that checks whether a
given graph G = (V,E) has treewidth at most tw, for fixed tw, and outputs the
tree-decomposition (X , T) of G.

Definition 2. A tree-decomposition (X , T) is called a nice tree-decomposition,
if T is a binary tree rooted at some r ∈ I that satisfies the following:

– Each node is either a leaf, or has exactly one or two children.
– Let i ∈ I be a leaf. Then Xi ⊆ {u : (u, v) ∈ E}∪{v} = N [v] for some v ∈ V .
– For every edge (u, v) ∈ E, there is a leaf i ∈ I such that {u, v} ⊆ Xi.
– Let j ∈ I be the only child of i ∈ I, then either Xi = Xj ∪ {v} or Xi =
Xj \ {v}. The node i is called an introduce node or forget node, respectively.

– Let j, j′ ∈ I be the two child nodes of a node i ∈ I, then Xj = Xj′ = Xi.
The node i is called a join node of T .

Scheffler [12] shows that any given tree-decomposition (X , T) can be easily con-
verted into a nice tree-decomposition.

Theorem 1 ([12]). A nice tree-decomposition of width tw and size O(|V (G)|)
can be constructed for a graph G = (V,E) with treewidth at most tw in linear
time, if tw is a fixed constant.

68 H.M. Alqahtani and T. Erlebach

To give a simpler description of our algorithms, we assume that every bag of
a leaf of the nice tree-decomposition consists of two vertices that are connected
by an edge in G, and that for every edge (u, v) of G there is exactly one leaf
i ∈ I such that u, v ∈ Xi (and we say that the edge (u, v) is associated with
that leaf i ∈ I). A nice tree-decomposition with this property can also be easily
obtained from any given tree-decomposition in linear time. In the remainder of
the paper, we assume that the input graph G is given as a simple undirected
graph together with a nice tree-decomposition of width at most tw.

Let us define X+
i to be the set of all vertices in Xj for all nodes j ∈ I such

that j = i or j is a descendant of i. Let G+
i describe the partial graphs of G.

For a leaf node i, G+
i is the subgraph of G with vertex set Xi and the edge of

G that is associated with i. For a non-leaf node i, G+
i is the graph that is the

union of G+
j over all children j of i. Note that the graph G+

r for the root r of
the tree-decomposition is equal to G.

3 Minimum Activation Cost k Node-Disjoint st-Paths

Let G = (V,E) be an activation network and s, t ∈ V be a pair of source and
destination vertices. The goal of the st-MANDP problem is to find activation
values {xv : v ∈ V } of minimum total cost

∑
v∈V xv such that the activated

set of edges contains k node disjoint st-paths Pst = P1, . . . , Pk. In this section
we present a polynomial-time algorithm that solves the st-MANDP problem
optimally in the case of graphs of bounded treewidth. The algorithm follows
a bottom-up approach based on a nice tree-decomposition. In our algorithm,
each node i of the tree-decomposition has a table tabi to store its computed
information. The algorithm computes a number of possible sub-solutions per
tree node i ∈ I based on the information computed previously for its children.
Let P = P1, . . . , Pk be a solution for the st-MANDP problem. Let P i = P [G+

i]
be the induced solution in a partial graph G+

i (i.e., the set of vertices and edges
that are both in P and in G+

i). The interaction between P i in G+
i and the rest of

the graph happens only in vertices of Xi. The partial solution P i can therefore
be represented by an activation-value function Λi : Xi → D and a state function
βi : Xi → {s, t, o,∞} ∪ {0, 1, . . . , k} ∪ (Xi × {c}). As the algorithm needs to
consider partial solutions in G+

i that cannot necessarily be completed to form
a global solution, we call any subgraph of G+

i (with suitable activation values)
a partial solution (or sub-solution) if it contains all vertices in {s, t} ∩ X+

i and
each connected component C satisfies one of the following conditions:

1. C is an isolated vertex v ∈ Xi.
2. C is a simple path having both end-vertices v, w ∈ Xi and containing neither
s nor t.

3. C contains s but not t and consists of several (at least one) paths that are
node-disjoint (apart from meeting in s), each connecting s to a vertex in Xi

(or the same condition with s and t exchanged).
4. C contains s and t and consists of some number of paths from s to t, some

paths from s to a vertex in Xi, and some paths from t to a vertex in Xi.

Minimum Activation Cost Node-Disjoint Paths 69

All these paths are node-disjoint (apart from having s or t in common). If
s /∈ Xi, s has degree k, otherwise s has degree ≤ k, and likewise for t.

Intuitively, partial solutions are subgraphs of G+
i that could potentially be com-

pleted to a global solution if the rest of the graph is of suitable form.

State Function. A partial solution P i in G+
i can be represented by a state

function βi : Xi → {s, t, o,∞} ∪ {0, 1, . . . , k} ∪ (Xi × {c}) as follows:

– For any v ∈ Xi, we set βi(v) = 0 iff v ∈ P i and has degree zero in P i, i.e., v
is a connected component of P i that satisfies condition 1 above.

– For any v ∈ Xi, we set βi(v) = ∞ iff v /∈ P i.
– For any v ∈ Xi \ {s, t}, we set βi(v) = o iff v has degree 2 in P i.
– For any v ∈ Xi ∩ {s, t}, we set βi(v) = k′ ∈ {1, . . . , k} iff a connected

component C of P i contains v together with k′ incident edges, i.e., C satisfies
condition 3 or 4 above. We call v an occupied vertex if k′ = k.

– For any v ∈ Xi \ {s, t}, we set βi(v) = u ∈ {s, t} iff there is a non-empty
path u, . . . , v not containing s or t as internal node that is a subgraph of a
connected component of P i that satisfies condition 3 or 4 above and v has
degree 1 in that component.

– For any pair u, v ∈ Xi \ {s, t}, we set βi(u) = (v, c) and βi(v) = (u, c) iff
u and v are connected with a path u, . . . , v that is a maximal connected
component of P i that does not contain s and t, i.e., the maximal connected
component u, . . . , v satisfies condition 2 above.

3.1 Processing the Tree Decomposition

Let val(βi, Λi) denote the optimal cost of an assignment of activation values for
G+

i which satisfies the restriction Λi and activates a partial solution satisfying
βi. In each row of the table tabi of tree node i ∈ I, we store a solution of a unique
combination of a state function βi and a function of activation values Λi (each
vertex of Xi has a state value and is assigned an activation value). Additionally,
we store the activation cost value val(βi, Λi) for the solution. We can compute
the sub-solution tables in a bottom-up approach.

Leaf. Let i ∈ I be a leaf, Xi = {u, v}. Let (βi, Λi) be any row of tabi. We
distinguish the following cases and define val(βi, Λi) for each case. Each case
corresponds to a possible sub-solution in G+

i . Recall that G
+
i is a single edge.

The sub-solution’s cost val(βi, Λi) is set to
∑

v∈Xi
Λi(v) if one of the following

cases applies:

– βi(w) ∈ {0,∞} for all w ∈ Xi, and βi(w) = 0 for w ∈ Xi∩{s, t}. Intuitively,
this means that the sub-solution has no edges.

– βi(u) = v and βi(v) = 1 and u /∈ {s, t} and v ∈ {s, t} and fuv(Λi(u), Λi(v)) =
1. Intuitively, the sub-solution is a path with one edge and one endpoint equal
to s or t. (The roles of u and v can be exchanged.)

– βi(u) = βi(v) = 1 and u, v ∈ {s, t} and fuv(Λi(u), Λi(v)) = 1. Intuitively,
the sub-solution is a path with one edge containing s and t.

70 H.M. Alqahtani and T. Erlebach

– βi(u) = (v, c) and βi(v) = (u, c) and u, v /∈ {s, t} and fuv(Λi(u), Λi(v)) = 1.
Intuitively, the sub-solution is a path with one edge not containing s or t.

If none of the above cases applies, val(βi, Λi) = +∞. In these cases, (βi, Λi) does
not represent a subgraph of G+

i that could be part of a global solution.
Introduce. Let i ∈ I be an introduce node, and j ∈ I its only child. We have

Xj ⊂ Xi, |Xi| = |Xj | + 1 and let v be the additional isolated vertex in Xi.
The vertex v always has state value βi(v) ∈ {0,∞}. For every row (βj , Λj) in
tabj , there are 2|D| rows in tabi such that βi(u) = βj(u) and Λi(u) = Λj(u)
for all u ∈ Xi \ {v}. The sub-solution cost val(βi, Λi) for these rows is set
to val(βj , Λj) + Λi(v) if v /∈ {s, t} or if v ∈ {s, t} and βi(v) = 0. Otherwise
val(βi, Λi) = +∞.

Forget. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xj | = |Xi| + 1 and let v be the discarded vertex. For each (βi, Λi), consider
all (βj , Λj) that agree with (βi, Λi) for all u ∈ Xi and satisfy that βj(v) = k if
v ∈ {s, t} and βj(v) ∈ {o,∞} otherwise. The sub-solution’s cost val(βi, Λi) is
the minimum of val(βj, Λj) over all these (βj , Λj).

Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have Xi =
Xj = Xj′ . Let (βj , Λj) and (βj′ , Λj′) be rows of tabj and tabj′ , respectively. When
we combine these solutions, their connected components may get merged into
larger components, and we need to ensure that we do not create any cycles that
do not contain s and t. For this purpose, we construct an auxiliary graphHi with
vertex set Xi and edge set EHi = {uv|βj(v) = (u, c)} ∪ {uv | βj′ (v) = (u, c)} to
help us detect cases where such a cycle would be created. The algorithm combines
the sub-solutions (βj , Λj) and (βj′ , Λj′) if both have the same activation-value
function (Λj(u) = Λj′(u) for all u ∈ Xi) and the union does not satisfy any of
the following conditions (where the roles of j and j′ can be exchanged):

C1. Hi contains a cycle (which may also consist of just one pair of parallel edges).
C2. There is a vertex v ∈ Xi with βj(v) = o and βj′(v) �= 0.
C3. There is a vertex v ∈ Xi with βj(v) = ∞ and βj′(v) �= ∞.
C4. There is a vertex v ∈ Xi with βj(v) = βj′(v) ∈ {s, t}.
C5. There is a vertex v ∈ Xi ∩ {s, t} with βj(v) = k′ and βj′ (v) = k′′ and

k′ + k′′ /∈ {0, 1, . . . , k}.

We compute the state function βi of the combination of βj and βj′ . Consider
any v ∈ Xi:

– If βj(v) = βj′ (v) = σ ∈ {0,∞}, then βi(v) = σ.
– If βj(v) = σ ∈ {o, s, t, k} and βj′ (v) = 0, then βi(v) = σ.
– If βj(v) = s and βj′ (v) = t, then βi(v) = o.
– If v ∈ {s, t} and βj(v) = k

′ and βj′ (v) = k′′ for any k′ + k′′ ∈ {0, 1, . . . , k},
then βi(v) = k

′ + k′′.
– If βj(v) = (x, c) and βj′ (v) = (y, c) for any x, y ∈ Xi, then βi(v) = o.
– If βj(v) = 0 and βj′ (v) = (x, c) and the maximal path in Hi that starts

at v ends at u with βj(u) = 0 and βj′(u) = (y, c) (or vice versa, i.e., the
path ends at u with βj(u) = (y, c) and βj′(u) = 0) for any x, y ∈ Xi, then
βi(v) = (u, c) and βi(u) = (v, c).

Minimum Activation Cost Node-Disjoint Paths 71

– If βj(v) = s and βj′(v) = (x, c) and the maximal path in Hi that starts at v
ends at u with βj(u) = (y, c) and βj′(u) = t (or vice versa) for any x, y ∈ Xi,
then βi(v) = βi(u) = o.

– If βj(v) = σ ∈ {s, t} and βj′(v) = (x, c) and the maximal path in Hi that
starts at v ends at u with βj(u) = (y, c) and βj′(u) = 0 (or vice versa) for
any x, y ∈ Xi, then βi(v) = o and βi(u) = σ.

The value of the combined solution val(βi, Λi) is calculated as the minimum
summation value over all pairs of sub-solutions that can be combined to produce
(βi, Λi) minus the activation cost of Xi.

Extracting the solution at the root. The algorithm checks all the solutions
(βr, Λr) of the root bag Xr such that vertices in {s, t} ∩ Xr are occupied and
all other vertices have state value o or ∞. In this case (βr, Λr) is a feasible
solution. The output of the algorithm is the solution of minimum cost value
among all the feasible solutions obtained at the root. For each row (βi, Λi) of
bag Xi, we store the rows of Xi’s children that were used in the calculation of
val(βi, Λi). Computing the optimum solution is possible by traversing top-down
in the decomposition tree to the leaves (traceback).

3.2 Analysis

Let an instance of the problem be given by an activation network G = (V,E)
with bounded treewidth tw and terminals s, t ∈ V . Let POPT represent an
optimal solution for this instance. We use C(P i) to denote the activation cost
of the induced solution P i of P in a partial graph G+

i .

Lemma 1. The algorithm runs in O(tw((5 + tw)|D|)2tw+2|V |3) time.

Proof. The running-time of the algorithm depends on the size of the tables and
the combination of tables during the bottom-up traversal. Each vertex w ∈
Xi has 5 + (|Xi| − 1) possible state values from {0, s, t, o,∞} ∪ ((Xi \ {w}) ×
{c}) if w /∈ {s, t} and k + 1 possible state values if w ∈ Xi ∩ {s, t}. If |Xi ∩
{s, t}| ≤ 1, the table tabi in a processed bag Xi contains no more than O(k(5 +
tw)tw+1|D|tw+1) rows corresponding to the possible state functions and the |D|
possible activation values for each vertex of Xi. Assume that {s, t} ⊆ Xi and
βi(s) = ks, βi(t) = kt and cq = {v ∈ Xi : βi(v) = q} such that ks, kt ∈ {0, . . . , k}
and q ∈ {s, t}. Since every path in the partial solution starting at s leads to
t or to a vertex in Xi then ks − cs = kt − ct. Hence, there is at most one kt
when leaving the other values fixed. Therefore, the table tabi in a processed
bag Xi contains no more than O(k(5 + tw)tw+1|D|tw+1) rows. Considering all
possible row combinations for two tables for a join node and noting that k ≤ |V |,
we see that the computation of the state functions needs O(tw) time for each

combination and O(tw((5 + tw)|D|)2tw+2|V |3) time overall. ��

Lemma 2. For any processed bag Xi, let POPT
i be the induced solution of POPT

in G+
i and (βOPT

i , ΛOPT
i) be the corresponding state function and activation

values, then val(βOPT
i , ΛOPT

i) ≤ C(POPT
i).

72 H.M. Alqahtani and T. Erlebach

Lemma 3. For any processed bag Xi, any solution (βi, Λi) where val(βi, Λi) =
ci <∞ corresponds to a partial solution P i with the following properties:

– The state function of P i in Xi is βi.
– The activation values of P i in Xi are Λi.
– The total activation cost in X+

i is ci.
– P i contains the terminal s if s ∈ X+

i , and the terminal t if t ∈ X+
i .

Due to space restrictions, the proofs of Lemma 2 and Lemma 3 (which use
induction over the tree-decomposition) are deferred to the full version.

We say that (βi, Λi) is a feasible solution at the root node i iff (βi, Λi) is
a partial solution with βi(v) = k for v ∈ {s, t} ∩ Xi and βi(v) ∈ {o,∞} for
all v ∈ Xi \ {s, t}. That means the partial solution in G+

i consists of k node-
disjoint paths between s and t. The algorithm outputs the solution of minimum
activation cost among all feasible solutions obtained at the root. From the above
lemmas and the extracting part in the algorithm, we get the following theorem.

Theorem 2. The st-MANDP problem can be solved optimally in O(tw (5 +
tw)2tw+2 |D|2tw+2 |V |3) time for graphs with treewidth bounded by tw.

This algorithm can be used for the variant of the st-MANDP problem in
graphs of bounded treewidth where s and t are assigned specified activation
values d ∈ D and d′ ∈ D, respectively, by setting Λ(s) = d and Λ(t) = d′. We
recall the following theorem from [2]:

Theorem 3 ([2]). If there is a ρ-approximation algorithm for the st-MA2NDP
problem where s and t are assigned specified activation values, then there is a
ρ-approximation algorithm for the st-MA2EDP problem.

Corollary 1. There exists a polynomial-time algorithm that optimally solves the
st-MA2EDP problem for graphs of bounded treewidth.

4 Minimum Activation Cost Node-Disjoint Paths
between k Pairs of Terminals

Consider an instance of the problem given by an activation network G = (V,E)
and k disjoint pairs of terminals (s1, t1), . . . , (sk, tk). The goal of MANDP is to
find activation values {xv : v ∈ V } of minimum total cost

∑
v∈V xv such that the

activated set of edges contains k node disjoint paths P = P1, . . . , Pk in G where
Pa is a path connecting sa and ta for all a ∈ {1, . . . , k}. Define S = {sa|1 ≤
a ≤ k} ∪ {ta|1 ≤ a ≤ k}. Let Na = (sa, ta), for 1 ≤ a ≤ k. In this section we
modify the linear-time algorithm proposed in [12] that solves the NDP problem
on graphs of bounded treewidth to solve the problem in the activation network
case. We assume that k is arbitrary. As for the st-MANDP algorithm in Section
3, the algorithm stores all computed sub-solutions for each node i of the nice
tree-decomposition in a table tabi. For every node i, we define Oi = {Na|sa ∈ X+

i

and ta /∈ X+
i or sa /∈ X+

i and ta ∈ X+
i } and Qi = {Na|sa ∈ X+

i and ta ∈ X+
i }.

Minimum Activation Cost Node-Disjoint Paths 73

Let P i be any subgraph of the partial graph G+
i . If P i is a partial solution, the

algorithm characterizes P i by an activation function Λi : Xi → D and a state
function βi : Xi → {0, 1,∞}∪Oi ∪Qi ∪ (Xi × {c, d}). Here, we say that P i is a
partial solution if it contains all v ∈ X+

i ∩ S and any connected component C
of P i satisfies one of the following conditions:

1. C is a simple path Pa connecting sa and ta (and not containing any other
vertex in S).

2. C is an isolated vertex v ∈ Xi.
3. C is a simple path having both end-vertices v, w ∈ Xi and not containing

any vertices of S.
4. C is a simple path that connects a source sa ∈ X+

i with a vertex s′a ∈ Xi.
If Na ∈ Qi, there is another (possibly empty) path C′ that connects the
terminal ta ∈ X+

i with a vertex t′a ∈ Xi. (The roles of sa and ta can be
exchanged.)

State Function. The algorithm characterizes P i by an activation-value function
Λi : Xi → D and a state function βi : Xi → {0, 1,∞}∪ Oi ∪Qi ∪ (Xi × {c, d}).
Given a partial solution P i, the state function βi is defined as follows:

– For any v ∈ Xi, we set βi(v) = 0 iff v ∈ P i and v has degree zero in P i.
– For any v ∈ Xi, we set βi(v) = ∞ iff v /∈ P i.
– For any v ∈ Xi, we set βi(v) = 1 iff v is either an inner vertex of a path in

P i or v ∈ S and P i contains v together with an incident edge. We call v an
occupied vertex.

– For any v ∈ Xi, we set βi(v) = Na iff there is a path sa, . . . , v (or a path
ta, . . . , v) in P i, v has degree 1 in Pi, and either Na ∈ Oi or we have that
Na ∈ Qi and ta (or sa) is in Xi and has degree 0 in Pi.

– For any pair u, v ∈ Xi, we set βi(u) = (v, d) and βi(v) = (u, d) iff there are
two paths sa, . . . , u and ta, . . . , v in P i for any Na ∈ Qi and u, v have degree
1. We say that sa and ta are a disconnected pair.

– For any pair u, v ∈ Xi, we set βi(u) = (v, c) and βi(v) = (u, c) iff u and v
are connected with a path u, . . . , v that is a maximal connected component
of P i that does not contain any vertices from S and u, v have degree 1.

4.1 Processing the Tree Decomposition

As for the st-MANDP algorithm in Section 3, each tabi of Xi stores multiple
rows and each row represents a unique combination of a state function βi and an
activation function Λi (each vertex ofXi has a state and is assigned an activation
value). The cost value val(βi, Λi) of the represented sub-solution is also stored
in tabi.

Leaf. Let i ∈ I be a leaf, Xi = {u, v} and (u, v) ∈ Ei, where Ei is the set of
edges associated with i. We distinguish the following cases and define val(βi, Λi)
for each case. Let (βi, Λi) be any row of tabi. If none of the following cases
applies, val(βi, Λi) = +∞. The sub-solution’s cost is val(βi, Λi) =

∑
v∈Xi

Λi(v)
if one of the following cases applies:

74 H.M. Alqahtani and T. Erlebach

– βi(w) ∈ {0,∞} for all w ∈ Xi and βi(w) = 0 for w ∈ S. Intuitively, the
sub-solution has no edges.

– βi(u) = βi(v) = 1 and u, v ∈ Na for any Na ∈ Qi and fuv(Λi(u), Λi(v)) = 1.
Intuitively, the sub-solution is a path with one edge containing sa and ta for
some Na ∈ Qi.

– βi(u) = Na, βi(v) = 1 and u /∈ S and v ∈ Na for any Na ∈ Oi and fuv(Λi(u)
, Λi(v)) = 1. Intuitively, the sub-solution is a path with one edge and one
endpoint equal to sa or ta for any Na ∈ Oi. (The roles of u and v can be
exchanged.)

– βi(u) = (v, c), βi(v) = (u, c) and u, v /∈ S and fuv(Λi(u), Λi(v)) = 1. Intu-
itively, the sub-solution is a path with one edge not containing any vertices
of S.

Introduce and Forget nodes are processed in a similar way to Section 3.1.
Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have

Xi = Xj = Xj′ . Let (βj , Λj) and (βj′ , Λj′) be rows of tabj and tabj′ , respectively.
We consider an auxiliary graph Hi with vertex set Xi and edge set EHi =
{uv|βj(v) = (u, c)} ∪ {uv | βj′(v) = (u, c)} to help computing the state function
βi of the combination of βj and βj′ . The algorithm combines the sub-solutions
(βj , Λj) and (βj′ , Λj′) if both have the same activation-value function (Λj(u) =
Λj′(u) for all u ∈ Xi) and the union does not satisfy the following (the roles of
j and j′ could be exchanged):

C1. Hi contains a cycle.
C2. There is a vertex v ∈ Xi with βj(v) = 1 and βj′ (v) �= 0.
C3. There is a vertex v ∈ Xi with βj(v) = ∞ and βj′(v) �= ∞.
C4. There is a vertex v ∈ Xi with βj(v) = Na and βj′(v) = Nb and a �= b.
C5. There is a vertex v ∈ Xi such that βj(v) = Na and βj′(v) = (u, d) for any

u ∈ Xi.
C6. There is a vertex v ∈ Xi with βj(v) = (u, d) and βj′(v) = (w, d) for any

u,w ∈ Xi.

We compute the state function βi of the combination of βj and βj′ . Consider
v ∈ Xi:

– If βj(v) = βj′ (v) = σ ∈ {0,∞}, then βi(v) = σ.
– If βj(v) = 1 and βj′(v) = 0, then βi(v) = 1.
– If βj(v) = Na and βj′(v) = 0, we distinguish two cases: If there is another

vertex u ∈ Xi with βj(u) = 0 and βj′(u) = Na, then βi(u) = (v, d) and
βi(v) = (u, d). Otherwise, βi(v) = Na.

– If βj(v) = Na and βj′(v) = Na, then βi(v) = 1.
– If βj(v) = (x, c) and βj′ (v) = (y, c) for any x, y ∈ Xi, then βi(v) = 1.
– If βj(v) = (u, d) and βj′(v) = 0 and βj(u) = (v, d) and βj′ (u) = 0 for any
u ∈ Xi, then βi(u) = (v, d) and βi(v) = (u, d).

– If βj(v) = 0 and βj′(v) = (x, c) and the maximal path in Hi that starts at v
ends at u with βj(u) = 0 and βj′(u) = (y, c) or βj(u) = (y, c) and βj′(u) = 0
for any x, y ∈ Xi, then βi(v) = (u, c) and βi(u) = (v, c).

Minimum Activation Cost Node-Disjoint Paths 75

– If βj(v) = Na and βj′ (v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (y, c) and βj′(u) = Na for any x, y ∈ Xi and
a ∈ {1, . . . , k}, then βi(v) = βi(u) = 1.

– If βj(v) = (u, d) and βj′ (v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (v, d) and βj′(u) = (y, c) for any x, y ∈ Xi, then
βi(v) = βi(u) = 1.

– If βj(v) = Na and βj′ (v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (y, c) and βj′ (u) = 0 for any x, y ∈ Xi and
a ∈ {1, . . . , k}, then βi(v) = 1 and βi(u) = Na.

– If βj(v) = (u, d) and βj′ (v) = (x, c) and the maximal path in Hi that starts
at v ends at w with βj(w) = (y, c) and βj′(u) = 0 for any x, y ∈ Xi, then
βi(v) = 1 and βi(u) = (w, d) and βi(w) = (u, d).

– If βj(v) = (u, d) and βj′(v) = (x, c) and βj(u) = (v, d) and βj′(u) = (y, c)
the maximal path in Hi that starts at v ends at w with βj(w) = (z, c) and
βj′(w) = 0 and the maximal path in Hi that starts at u ends at q with
βj(q) = (z′, c) and βj′(q) = 0 for any x, y, z, z′ ∈ Xi, then βi(v) = βi(u) = 1,
βi(q) = (w, d) and βi(w) = (q, d).

The value of the combined solution is the minimum summation value over all
pairs of sub-solutions that can be combined to produce (βi, Λi), minus the acti-
vation cost of Xi.

Extracting the solution at the root can be done similarly as in Section 3.1.
This completes the description of the MANDP algorithm. In this algorithm,

each vertex w ∈ Xi has 3 + 2(|Xi| − 1) + |Xi| possible state values from the
set {0, 1,∞} ∪ ((Xi \ {w}) × {c, d}) ∪ {Na | Na ∈ Oi} ∪ {Na | Na ∈ Qi,Na ∩
Xi �= ∅}. (Note that the union of the latter two sets has cardinality at most
|Xi| if a feasible solution exists.) Then, the table tabi contains no more than
O((4+3tw)tw+1|D|tw+1) rows corresponding to the possible state functions and
the |D| possible activation values for each vertex of Xi. Each table has O((4 +
3tw)tw+1|D|tw+1) rows and the combination of a join node requires O(tw(4 +
3tw)2tw+2 |D|2tw+2) time. The proofs of the running time and correctness of the
MANDP algorithm are similar to the proofs of the running time and correctness
of the st-MANDP algorithm. Due to space restrictions, the analysis is omitted
from this paper, and we close this section with the following theorem.

Theorem 4. The MANDP problem for graphs with bounded treewidth tw can
be solved optimally in O(tw(4 + 3tw)2tw+2|D|2tw+2|V |) time.

5 Conclusion

We have presented a polynomial-time algorithm that optimally solves the st-
MANDP problem for the case of graphs with bounded treewidth. We also showed
that the linear-time algorithm for the NDP problem for graphs of bounded
treewidth that has been presented in [12] can be modified to obtain a linear-
time algorithm for the problem in activation networks. One open problem is
to obtain a faster or even linear-time algorithm for the st-MANDP problem

76 H.M. Alqahtani and T. Erlebach

in graphs of bounded treewidth. It would also be interesting to investigate the
st-MAEDP problem for graphs of bounded treewidth.

Acknowledgements. We would like to thank the anonymous reviewers for
their thorough and helpful comments on an earlier version of this paper. Their
comments helped making the paper clearer and improving the analysis of the
running time of the algorithm in Section 3.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms and
Applications. Prentice Hall, New Jersey (1993)

2. Alqahtani, H.M., Erlebach, T.: Approximation Algorithms for Disjoint st-Paths
with Minimum Activation Cost. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013.
LNCS, vol. 7878, pp. 1–12. Springer, Heidelberg (2013)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: ACM STOC 1993, pp. 226–234 (1993)

4. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science 10(2), 111–121 (1980)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

6. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization
for connectivity problems. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS,
vol. 3509, pp. 349–361. Springer, Heidelberg (2005)

7. Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer,
Heidelberg (2007)

8. Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)

9. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM J. Com-
put. 39(7), 3001–3022 (2010)

10. Panigrahi, D.: Survivable network design problems in wireless networks. In: 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1014–1027. SIAM
(2011)

11. Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem.
J. Comb. Theory, Ser. B 63, 65–110 (1995)

12. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bound tree-width. Technical Report 396, Dept. Mathematics, Technische Univer-
sität Berlin (1994)

13. Srinivas, A., Modiano, E.: Finding Minimum Energy Disjoint Paths in Wireless
Ad-Hoc Networks. Wireless Networks 11(4), 401–417 (2005)

Tight Bounds for the Advice Complexity

of the Online Minimum Steiner Tree Problem�

Kfir Barhum

Department of Computer Science, ETH Zurich, Switzerland
barhumk@inf.ethz.ch

Abstract. In this work, we study the advice complexity of the online
minimum Steiner tree problem (ST). Given a (known) graph G = (V,E)
endowed with a weight function on the edges, a set of N terminals are
revealed in a step-wise manner. The algorithm maintains a sub-graph
of chosen edges, and at each stage, chooses more edges from G to its
solution such that the terminals revealed so far are connected in it. In
the standard online setting this problem was studied and a tight bound
of O(log(N)) on its competitive ratio is known. Here, we study the power
of non-uniform advice and fully characterize it. As a first result we show
that using q · log(|V |) advice bits, where 0 ≤ q ≤ N − 1, it is possible
to obtain an algorithm with a competitive ratio of O(log(N/q). We then
show a matching lower bound for all values of q, and thus settle the
question.

Keywords: Online algorithms, advice complexity, minimum Steiner tree.

1 Introduction

Online algorithms are a realistic model for making decisions under uncertainty.
As opposed to classical computational problems, in the online setting the full
input to the problem is not known in advance, but is revealed in a step-wise man-
ner, and after each step the algorithm has to commit to a part of its solution.
The competitive analysis of an algorithm, as introduced first in [1], measures the
worst-case performance of the algorithm compared with the optimal offline solu-
tion to the respective optimal offline (classical) computational problem. We refer
to [2] for a detailed introduction and survey of many classical online problems.

In recent years, motivated, among others, by the fact that for some problems
(e.g. Knapsack [3]) no deterministic algorithm can admit any competitive ratio,
the natural question, “how much information about the future is needed in
order to produce a competitive solution?”, was posed by Dobrev et al. [4] and
Böckenhauer et al. [5], and independently by Emek et al. [6]. In this work we use
the framework of Hromkovic et al. [7], that unifies the models and allows posing
the question in its full generality: “What is the exact power of advice bits for
some specific online problem?”.

� This work was partially supported by SNF grant 200021141089.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 77–88, 2014.
c© Springer International Publishing Switzerland 2014

78 K. Barhum

In online computation with advice, the algorithm’s machine has access to a
special infinite advice string φ, produced by an oracle that has access to the
entire input. The general goal is to try to characterize the dependence of the
achievable competitive ratio to the maximal number of advice bits read from
the advice tape.

In this work, we focus on the advice complexity of the online version of the
well-studied minimum Steiner tree problem. In the offline setting, an instance
I to ST is a graph G = (V,E) endowed with a weight function on the edges
w : E → R+ and a set T ⊆ V of vertices called terminals. A subgraph σ of G is
a solution to the instance if every pair of terminals is connected in it. The cost
of a solution σ, denoted cost(σ), is the sum of the weights of the edges in it, and
a solution is optimal if there exists no other solution with smaller cost.

Following previous work of Imase and Waxman [8], we consider the following
natural online version of the minimum Steiner tree problem. Given a (known)
weighted graphG, the terminals appear in a step-wise manner, and the algorithm
maintains a subset of the edges as its solution. Upon receiving a new terminal, the
algorithm extends the current solution so that the new terminal is connected to
the old ones. The entire graph is known in advance, and only the specific subset
of terminal vertices (and an ordering on it) is part of the instance.

More formally, given a ground graph G with a weight function w, an instance
to ST(G,w) is an ordered list of vertices called terminals [v1, v2, . . . , vN], where
vi ∈ V . At time step i, the algorithm receives terminal vi and extends its current
solution by choosing additional edges from G. The augmented solution computed
by the algorithm by the end of step i is a solution to the offline problem on G
with {v1, . . . , vi}. As in the offline case, the cost of the solution is the total weight
of edges chosen by the algorithm. An instance for ST(G,w) with N vertices is
encoded canonically as a binary string of length N · �log(|V |)�.

An online algorithm with advice for ST(G,w) is strictly c-competitive using b
advice bits if, for every instance, there exists an advice string φ such that the
total weight of edges chosen by the algorithm during its computation with φ
is at most c times the weight of the edges of an optimal solution to the offline
problem, and at most b bits are read from φ. In general, c = c(·) and b = b(·)
are function of some parameter of the input, typically the input length.

1.1 Our Contribution

We obtain a complete and exact characterization of the power of advice bits for
the online Steiner tree problem.

In Section 2, we first give a variant to the greedy algorithm of [9] (without
advice), which is O(log(N))-competitive on an input with N terminals, and then
show that our modified algorithm, which we call terminal-greedy algorithm, is
O(log(Nq))-competitive, utilizing an advice of size q · log(|V |). Informally, the
advice we employ is a description of the q most expensive terminals. Namely,
the q terminals for which the terminal-greedy algorithm added the largest total
weight of edges during its execution without advice.

Advice Complexity of the Online Minimum Steiner Tree Problem 79

In Section 3, we complement our algorithm with a matching lower bound, for
the full range of advice bits.

We revisit the construction of [8], that shows a matching lower bound of
Ω(log(N)) for the competitive ratio in the standard online setting (without
advice). Inspired by their construction, we introduce Diamond graphs and study
their properties. The construction they use can be viewed as a degenerated
diamond graph. Our analysis takes a new approach using probabilistic arguments
and requires a more general class of graphs in order to handle algorithms that
use advice.

For every q s.t. 0 ≤ q ≤ N − 1 and an online algorithm taking advice of size
q · log(|V |), we construct a different instance distribution on a suitable Diamond
graph. We then employ the mechanism developed earlier in order to show that
for this graph there exists an instance for which the algorithm is Ω(log(Nq))-
competitive. Our lower bound here holds already for the unweighted case, where
w(e) = 1 for every e ∈ E.

We observe (details are omitted in this extended abstract) that a partial
result of a matching lower bound for some values of advice size q log(|V |) can be
obtained using the original construction presented in [8], albeit using a different
analysis. We emphasize that our new construction is essential for the proof of
a matching lower bound for the full range 0 ≤ q ≤ N − 1 of online algorithms
using q · log(|V |) advice bits.

1.2 Related Work

Imase and Waxman [8] were the first to study the Steiner Tree problem in the
online setting and showed a tight bound of Θ(log(N)) for its competitive-ratio.
Alon and Azar [9] show that almost the same lower bound holds also for the
planar case, where the vertices are points in the Euclidean plane. Berman and
Coulston [10] and Awerbuch et al. [11] study a generalized version of the problem
and related problems. More recently, Garg et al. [12] considered a stochastic
version of the online problem.

1.3 Some Notation

For two understood objects a and b, (i.e., instances, paths, etc.) we denote their
concatenation by a ◦ b. All logarithms are to base 2. For a non-empty set S we
denote by x

r← S choosing an element x uniformly at random from S. For a

positive natural number n, we denote [n]
def
= {1, . . . , n}. For a graph G = (V,E)

and two vertices s, t ∈ V , we denote by s� t a simple path from s to t in G.

2 The Terminal-Greedy Algorithm

In this section, we present an O(log(Nq))-competitive algorithm that utilizes

q′ def
= q · log(|V |) advice bits, for any q ∈ [N − 1].

80 K. Barhum

Observe that an advice of size (N − 1) log(|V |) is always sufficient in order
to obtain an optimal solution, since the algorithm is required to make its first
decision only upon receiving the second vertex. Therefore, one could canonically
encode the rest of the input using (N − 1) log(|V |) bits.

Recall that the online greedy algorithm that connects the current termi-
nal vi using the shortest weighted path to a vertex from the current solution
is O(log(N))-competitive. Our algorithm is obtained by a modification of the
greedy algorithm. Whereas the greedy algorithm connects the next vertex to the
current solution by using the shortest path to any vertex of the current solution,
the terminal-greedy algorithm connects a new vertex using a shortest path to one
of the terminals of the current input, ignoring possible shorter paths connecting
to some non-terminal vertices already chosen by the solution.

The following lemma, whose proof is omitted in this extend abstract, was
used in the proof of [9] for the standard greedy algorithm and still holds for our
terminal-greedy algorithm.

Lemma 1. Let OptVal denote the value of the optimal solution to an instance.
Let k ∈ N. The number of steps in which the terminal-greedy algorithm (without
advice) adds edges of total weight more than 2 ·OptVal/k is at most k − 1.

The terminal-greedy algorithm utilizes its advice as a list of q vertices from the
instance. Intuitively, the vertices given as advice are the q most expensive ones
for the input when given in an online fashion (without advice). The challenge is
to show that no further costs are incurred by the algorithm using this approach.

Next, we describe the terminal-greedy algorithm with advice of size q·log(|V |):1
When the algorithm receives its first terminal vertex v1 from the instance it com-
putes the optimal (offline) Steiner Tree for the terminal set that consists of the
q vertices given as advice along with v1. Then, it sets the computed tree for this
terminal set (which consists of q + 1 vertices) as the current solution.

For i ≥ 2, upon receiving a terminal vi, the algorithm proceeds as follows: If
vi has already appeared in the advice, it does nothing. Otherwise, the algorithm
computes the shortest path (in G) from vi to all the terminals that have previ-
ously appeared as part of the instance (v1, . . . , vi−1) and connects vi using the
shortest path among those i− 1 paths (and to the lexicographically first in case
that there is more than one).

Theorem 1. Let 1 ≤ q ≤ N −1. The terminal-greedy algorithm with q · log(|V |)
advice bits is O(log(Nq))-competitive.

Proof. Using induction one shows that, in every step, the chosen subgraph is a
solution to the current instance. The rest of the proof is concerned with showing
the bound on the cost of the algorithm.

1 Fomally, following the model of Hromkovic et al. [7] the advice string is infinite, and
therefore another 2 log(|V |) advice bits are given at the beginning of the input, en-
coding the value q. In our setting this can be ignored, incurring an additive constant
imprecision of at most 1.

Advice Complexity of the Online Minimum Steiner Tree Problem 81

We show that, for every q > 0, there exists a set of size q such that, for every
instance with N terminals with optimal (offline) solution of value OptVal, the
solution computed by the algorithm has cost at most O(OptVal · log(Nq)).

For any vi ∈ {v1, . . . , vN} we denote by c(vi) the cost incurred when adding
vertex vi according to the terminal-greedy algorithm (without advice). That is,
c(vi) is the sum of the weights of all the edges chosen at step i in order to
connect vi to the solution. Let us sort the vertices of the instance according to
their costs. That is, let [v′1, v′2, . . . , v′N] be the sorted permutation of [v1, . . . , vN],
where c(v′1) ≥ c(v′2) ≥ · · · ≥ c(v′N).

We claim that the terminal-greedy algorithmwith advice [v′1, . . . , v
′
q] is log(

N
q)-

competitive. Indeed, the tree computed by the algorithm after v1 is received has
cost at most OptVal, as the optimal tree is one possible solution to it. Now, when-
ever a vertex vi is received, it behaves exactly

2 as the greedy-terminal algorithm
without advice would, and therefore its cost for this vertex is c(vi).

By Lemma 1, we know that for every i ∈ [n] it holds that c(v′i) ≤ (2 ·OptVal)/i
as otherwise, since the vi’s are sorted, we get i vertices that each incurs a cost of
more than (2 ·OptVal)/i. Since c(v1) = c(v′n) = 0, the total cost of the algorithm
is bounded by

OptVal+
N−1∑
i=q+1

c(v′i) ≤ OptVal+ 2 · OptVal
N−1∑
i=q+1

1

i

= OptVal

(
1 + 2(

N−1∑
i=1

1

i
−

q∑
i=1

1

i
)

)

< OptVal

(
1 +

2

log(e)
· log(N − 1

q
) +

1

q

)
,

where in the last inequality we used the fact that
∑k

i=1
1
i = ln(k)+γ+ 1

2k ±o(1k),
where γ ≈ 0.5772 is the Euler-Mascheroni constant. Finally, recall that a subset
of the vertices of size q can be described using q ·log(|V |) bits. The bound follows.

��

3 A Matching Lower Bound

In this section we show a lower bound matching the competitive ratio guarantee
of the algorithm presented in Section 2. As mentioned, our construction holds
already for the unweighted case where w(e) = 1, thus we omit w from our
notation.

3.1 Edge-Efficient Algorithms

It will be useful for us to analyze the performance of algorithms that enjoy a
canonical structure and have some guarantees on their behavior. We identify such

2 Note that in general this does not hold for the ’standard’ greedy-algorithm.

82 K. Barhum

a class of algorithms next. An online algorithm A for ST is edge-efficient if, for
every instance I, when removing any edge from the solution A(I), the resulting
graph is not a solution. That is, removing any edge from A(I) disconnects two
terminals v, v′ ∈ I.

The next lemma shows that edge-efficient algorithms are as powerful as general
algorithms and therefore we can focus our analysis on them. The proof of the
following lemma is omitted in this extend abstract.

Lemma 2. For every deterministic online algorithm A for ST there exists an
edge-efficient algorithm A′ such that, for every instance I, we have cost(A′(I)) ≤
cost(A(I)).

3.2 Diamond Graphs and Our Instance Distribution

For vertices s and t and a list of natural numbers [�1, �2, . . . , �n], we define the
diamond graph of level n on vertices s and t, denoted Dn[�1, . . . , �n](s, t), recur-
sively as follows:

1. The graph D0[](s, t) (of level n = 0 with an empty list) consists of the
vertices s and t and the single edge (s, t).

2. GivenG(s′, t′) def
= Dn[�1, . . . , �n](s

′, t′), a diamond graph of level n on vertices
s′, t′, the graph Dn+1[z, �1, �2, . . . , �n](s, t) is constructed as follows: We start
with the vertices: s, t and m1, . . . ,mz. Next, we construct the following 2z
copies of G(s′, t′): G(s,m1), . . . , G(s,mz) and G(m1, t), . . . , G(mz, t), where
G(x, y) is a copy of the graph G(s′, t′), where the vertices s′ and t′ are
identified with x and y. Finally, the resulting graph is the union of the 2z
diamond graphs G(s,m1), . . . , G(s,mz), G(m1, t), . . . , G(mz , t).

We call the parameter �i the width of level i of the graph. and the vertices
m1, . . . ,m�1 the middle vertices of Dn[�1, . . . , �n](s, t). Note that the graphs in
the union are almost disjoint, that is, any two of them share at most one vertex
(and no edges).

For a fixed n ∈ N our instance distribution generates simultaneously an in-
stance I that contains N + 1 = 2n + 1 terminals, and a path P from s to t
of length N = 2n, which is an optimal solution to it.3 The first two vertices
are always s and t, and vertices along the path are chosen level by level, where
choosing the vertices of level i+1 can be thought of as a refinement of the path
along the vertices of level i. The idea is that the algorithm has to connect all the
level-i vertices before level-(i + 1) vertices are revealed. Formally, the instance
of ST(Dn[�1, . . . , �n](s, t)) is generated according to Process 1.

The following propositions follow by simple induction and the definitions of
Dn[�1, . . . , �n](s, t), GenerateInstance and GeneratePath.

Proposition 1. The graph Dn[�1, . . . , �n](s, t) contains 2n ·
∏n

i=1 �i edges.

3 For simplicity of presentation, we use an instance of N + 1 instead of N terminals.

Advice Complexity of the Online Minimum Steiner Tree Problem 83

s

t

D0[]

s

t

D1[3]

s

t

D2[2, 2]

s

t

Dn+1[2, �1, . . . , �n]

m1 m2 m3 m1 m2 m1 m2

Dn[�1, . . . , �n] Dn[�1, . . . , �n]

Dn[�1, . . . , �n] Dn[�1, . . . , �n]

Fig. 1. Diamond Graphs

Process 1. GenerateInstance

Input: A graph Dn[�1, . . . , �n](s, t)
Output: An instance I of ST(Dn[�1, . . . , �n](s, t))
1: I ← [s] � Every instance starts with the vertex s
2: I ← I ◦ [t] � followed by the vertex t.
3: P ← GeneratePath(Dn[�1, . . . , �n](s, t))
4:
5: procedure GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v))

6: if k = 0 then
7: return e = (u, v)
8: else
9: Choose x

r← {m1, . . . ,m�′1} � m1, . . . ,m�′1 are the middle vertices of

10: I ← I ◦ [x] � Dk[�
′
1, . . . , �

′
k](u, v)

11: P1 ← GeneratePath(Dk−1[�
′
2, . . . , �

′
k](u, x))

12: P2 ← GeneratePath(Dk−1[�
′
2, . . . , �

′
k](x, v))

13: return P1 ◦ P2

14: end if
15: end procedure

84 K. Barhum

Proposition 2. Let n ≥ 1. A simple path s� t on Dn[�1, . . . , �n](s, t) is of the
form s� x� t for some x ∈ {m1, . . . ,m�1} and contains exactly 2n edges.

Proposition 3. The path P computed during the execution of
GenerateInstance(Dn[�1, . . . , �n](s, t)) is a solution to the generated instance
that contains exactly 2n edges.

Proposition 4. During the run of GeneratePath(Dk[�
′
1, . . . , �

′
k](u, v)), when

the algorithm adds a vertex x as the next vertex of the instance I (Line 10), both
u and v have already appeared in I and no other vertex from Dk[�

′
1, . . . , �

′
k](u, v)

is contained in I.

Lemma 3. Consider an execution of GenerateInstance(Dn[�1, . . . , �n](s, t)),
and let A be an edge-efficient algorithm. The number of edges added to the so-
lution by A during every call to GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) is at least

Wk
def
=

∑k
i=1

(
2k

2i

∑2i−1

j=1 Xi,j

)
, where the Xi,j’s are independent Bernoulli ran-

dom variables with Pr[Xi,j = 0] = 1/�′i = 1− Pr[Xi,j = 1].

Before proving the lemma, we prove the following proposition on the struc-
ture of the current solution restricted to the subgraph Dk[�

′
1, . . . , �

′
k](u, v) when

GeneratePath(u, v) is called.

Proposition 5. Let k ∈ {1, . . . , n} and let A be an edge-efficient algorithm.
Consider an execution of GeneratePath(Dn[�1, . . . , �n](s, t)). Whenever a call
GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) is made, either (1) the current solution

chosen by A restricted to the subgraph Dk[�
′
1, . . . , �

′
k](u, v) contains no edges, or,

(2) Dk[�
′
1, . . . , �

′
k](u, v) contains a simple path of the form u� y � v for some

y ∈ {m1, . . . ,m�′1}, wherem1, . . . ,m�′1 are the middle vertices Dk[�
′
1, . . . , �

′
k](u, v),

and no other edges.

Proof. By Proposition 4, we know that the vertices u and v have already ap-
peared in the instance, and therefore they are connected in the current solution,
and, in particular, by some simple path u� v. Consider the first edge (u, z) of
this path. If z is contained in Dk[�

′
1, . . . , �

′
k](u, v), then, since the only way to

reach a vertex outside of Dk[�
′
1, . . . , �

′
k](u, v) is through the vertices u and v, the

entire path is contained in Dk[�
′
1, . . . , �

′
k](u, v). Conversely, if z is not contained

in Dk[�
′
1, . . . , �

′
k](u, v), by the same argument, it follows that the path u � v

does not contain any inner vertex of Dk[�
′
1, . . . , �

′
k](u, v).

We argue that in both cases no other edges of the current solution are incident
to Dk[�

′
1, . . . , �

′
k](u, v). Assume the contrary, and let e ∈ Dk[�

′
1, . . . , �

′
k](u, v) be

such an edge (not in u� v in the first case and any edge in Dk[�
′
1, . . . , �

′
k](u, v)

in the second case).
Observe that, since e is an internal edge of Dk[�

′
1, . . . , �

′
k](u, v) not on the path

u� v and since by Proposition 4 at this point no other internal vertex is chosen
to the current instance, the vertices of the current instance remain connected
after removing e. This contradicts the edge-efficiency property of the current
solution chosen by A. ��

Advice Complexity of the Online Minimum Steiner Tree Problem 85

Proof (of Lemma 3). We use induction on k, the parameter of the diamond
subgraph. For k = 0, the claim holds trivially since W0 = 0 and at least zero
edges are added. Let k > 0, and assume that the claim holds for all k′ < k.
Let GeneratePath(Dk[�

′
1, . . . , �

′
k](u, v)) be a call made during the execution of

GenerateInstance(Dn[�1, . . . , �n](s, t)). By Proposition 5, the solution chosen
limited to Dk[�

′
1, . . . , �

′
k](u, v) either (1) has no edges, or, (2) has exactly one

simple path between u and v, which by Proposition 2 has the form u� y � v,
for y ∈ {m1, . . . ,m�′1}. Without loss of generality, we assume that the path is
of the form u � m1 � v. In the first case, after lines 9 and 10, the algorithm
connects the vertex x to the graph, which must be via the vertex u or v, in which

case 2k

2 edges are added. In the second case, with probability 1− 1/�′1 the vertex
x is chosen from m2, . . . ,m�′ , in which case as before, it must be connected using

a path from u or v, which adds 2k

2 edges.
We conclude that the number of edges added to the solution due to the

choice of the vertex x is at least 2k

2 X1,1, where X1,1 is distributed according
to Pr[X1,1 = 0] = 1/�′1 = 1− Pr[X1,1 = 1].

Additionally, using the inductive hypothesis, the algorithm adds W ′
k−1 =∑k−1

i=1

(
2k−1

2i

∑2i−1

j=1 X
′
i,j

)
andW ′′

k−1 =
∑k−1

i=1

(
2k−1

2i

∑2i−1

j=1 X
′′
i,j

)
edges during the

executions of GeneratePath(Dk−1[�
′
2, . . . , �

′
k](s, x)) and

GeneratePath(Dk−1[�
′
2, . . . , �

′
k](x, t)), respectively, where X ′

i,j and X ′′
i,j are

Bernoulli random variables distributed according to Pr[X ′
i,j = 0] = Pr[X ′′

i,j =
0] = 1/�′i+1 = 1− Pr[X ′′

i,j = 1] = 1− Pr[X ′
i,j = 1].

Moreover, since the random choices of GeneratePath are independent, we

have that the Bernoulli random variables are independent. Setting Xi+1,j
def
=

X ′
i,j and Xi+1,2i−1+j

def
= X ′′

i,j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2i−1}, we
obtain that during the execution of GeneratePath the algorithm adds at least
2k

2 X1,1 + W ′
k−1 + W ′′

k−1 =
∑k

i=1

(
2k

2i

∑2i−1

j=1 Xi,j

)
edges to the solution. The

lemma is proved. ��

Corollary 1. Any deterministic algorithm A for ST, when given an instance
generated by GeneratePath(Dn[�1, . . . , �n](s, t)), outputs a solution that con-
tains at least

log(N)∑
i=1

⎛⎝N
2i

2i−1∑
j=1

Xi,j

⎞⎠
edges, where the Xi,j’s are as in Lemma 3.

Proof. By Proposition 2, we may assume that A is an edge-efficient algorithm.
The corollary follows by Lemma 3. ��

We refer to an edge added due to some Xi,j = 1 as an edge of level i and
say that in this case the algorithm made a wrong choice on Xi,j . Indeed, in this
case it was possible to connect some vertices u and v through a middle vertex
m such that the algorithm would not have had to add edges due to Xi,j .

86 K. Barhum

3.3 Deriving the Lower Bound

In this section, we show that for every algorithm with advice size q · log(|V |) the
terminal-greedy algorithm is best possible.

The input distribution we use is a diamond graph with parameters that de-
pend on the advice length of the specific algorithm it seeks to fail. Consider an
algorithm taking N · 2−j(N) · log(|V |) advice bits, where log(N) ≥ j(N) ≥ 0.

We can assume that log(N) ≥ j(N) > 10 and, furthermore, that j(N) is an
even integer number. The first assumption is trivial to satisfy, since every algo-
rithm is at most strictly 1-competitive and so for a constant j(N) the asymptotic
bound already holds. The second assumption incurs an additive term of 2 (recall
that the bound we show is logarithmic). Therefore, both assumptions are made
without loss of generality.

Set j′(N)
def
= j(N)

2 and consider Dn[�1, . . . , �n](s, t), the diamond graph with
log(N) levels, where the first log(N) − j′(N) levels are of width 2 and the
last j′(N) levels are of width N2. That is, �1 = · · · = �log(N)−j′(N) = 2 and
�log(N)−j′(N)+1 = · · · = �log(N) = N

2. For the rest of this section we refer to this
graph as G.

We can show that for every online algorithm with q · log(|V |) advice bits there
exists an input on which it does not perform better than Ω(log(Nq)) compared
to an optimal offline solution:

Theorem 2. Let A be an online algorithm for ST taking q′ def
= q · log(|V |) advice

bits, where q
def
= N · 2−j(N) and log(N) ≥ j(N) ≥ 0. Then A has a competitive

ratio of at least Ω(log(Nq)).

We present an overview of the proof. Recall that for a fixed advice string
φ ∈ {0, 1}q′, the algorithmA “hard-wired” with φ (denoted Aφ) is a deterministic
online algorithm and therefore Corollary 1 establishes that on a random instance
of GenerateInstance(Dn[�1, . . . , �n](s, t)) it chooses at least Wn edges.

We show that, a solution for an instance chosen by GenerateInstance

contains, with very high probability, roughly N · log(Nq) edges, and then use

the union bound to show that there exists an instance that makes all of the 2q
′

algorithms choose this number of edges.
Using the machinery developed for general diamond graphs and the properties

of GenerateInstance we show that, by our choice of j′(N), it holds that
log(|V |) is not too large, and for each of the last j′(N) levels of the graph,
a fixed deterministic algorithm chooses a linear (in N) number of edges with
probability roughly 2−q′ = 2−q·log(|V |).

Finally, we use the probabilistic method and show that there exists an instance
on G, such that every Aφ chooses many edges on every level τ of the last j′(N)
levels in G.

Proof. Using Proposition 1 we have that the number of edges in G is 2n ·
2(n−j′(N)) · (N2)j

′(N) < 4n · (N2)j
′(N). Since the number of vertices in a graph is

at most twice the number of its edges, we obtain that |V |, the number of vertices

Advice Complexity of the Online Minimum Steiner Tree Problem 87

in G, is at most 2 · 4n · (N2)j
′(N), and therefore log(|V |) < 4 · log(N) · j′(N).

Therefore, we can bound the advice size by

q′ = 2n−j(N) ·log(|V |) < 2n−j(N) ·4·log(N)·j′(N) = 4·2n−2·j′(N) ·n·j′(N) . (1)

By Lemma 3 and Corollary 1, for every level τ , where n− j′(N) < τ ≤ n, the
probability that an edge-efficient deterministic algorithm is correct on at least
2τ−1

4 of its choices for level τ (i.e., at least this number of X ′
τ,js are 0) can be

computed as

Pr

[
∃S ⊂

[
2τ−1

]
: |S| = 2τ−1

4
∧ ∀p ∈ S : Xτ,p = 0

]
<

(
2τ−1

2τ−1

4

)
·
(

1

N2

) 2τ−1

4

≤
(
2τ−1

) 2τ−1

4 ·
(

1

N2

) 2τ−1

4

=

(
2τ−1

22n

) 2τ−1

4

≤
(

1

2n

) 2τ−1

4

= 2
−
(

n·2τ−1

4

)

≤ 2
−
(

n·2n−j′(N)

4

)

.

Next we apply the union bound twice: The probability p that there exists a
level n− j′(N) < τ ≤ n for which one of the 2q

′
deterministic algorithms makes

more than 2τ−1

4 correct choices can be bounded as follows:

p < 2q
′ · j′(N) · 2

−
(

n·2n−j′(N)

4

)

(2)

< 2

(
4·2(n−2·j′(N))·n·j′(N)

)
· 2log(j

′(N)) · 2
−
(

n·2n−j′(N)

4

)

(3)

< 2

(
5·2(n−2·j′(N))·n·j′(N)

)
· 2

−
(

n·2n−j′(N)

4

)

(4)

= 2

((
n·2n−j′(N)

)(
5·2−j′(N)·j′(N)− 1

4

))
< 1 (5)

In turn, observe that this implies that there exists a fixed instance I ′ such
that the algorithm A, for every choice of advice of length q′, and for every level τ

in the range, makes at least 3·2τ−1

4 incorrect choices, each of which results in an

addition of N
2τ edges by the algorithm. Therefore, for this instance, the algorithm

chooses a solution that contains at least

log(N)∑
τ=log(N)−j′(N)+1

N

2τ
· 3 · 2τ−1

4
=

3

8
·N · j′(N) ∈ Ω(N · j(N)) = Ω

(
N · log(N

q
)

)

88 K. Barhum

edges.
On the other hand, recall that, by Proposition 3, since I ′ is just one of the

possible instances generated by GenerateInstance, there exists a solution
that consists of N edges. The lower bound of Ω(log(Nq)) on the competitive
ratio follows. ��

Acknowledgments. We would like to thank Juraj Hromkovič for suggesting
this research direction and Hans-Joachim Böckenhauer for his very helpful com-
ments and suggestions regarding the presentation of this work. We thank the
anonymous reviewers for their helpful comments.

References

1. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

2. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press (1998)

3. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

4. Dobrev, S., Královič, R., Pardubská, D.: How much information about the fu-
ture is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

6. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

7. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

8. Imase, M., Waxman, B.M.: Dynamic steiner tree problem. SIAM J. Discrete
Math. 4(3), 369–384 (1991)

9. Alon, N., Azar, Y.: On-line steiner trees in the euclidean plane. In: Symposium on
Computational Geometry, pp. 337–343 (1992)

10. Berman, P., Coulston, C.: On-line algorithms for steiner tree problems (extended
abstract). In: Leighton, F.T., Shor, P.W. (eds.) STOC, pp. 344–353. ACM (1997)

11. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized steiner problem. Theor.
Comput. Sci. 324(2-3), 313–324 (2004)

12. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online
combinatorial optimization problems. In: Teng, S.H. (ed.) SODA, pp. 942–951.
SIAM (2008)

On the Power of Advice and Randomization
for the Disjoint Path Allocation Problem�

Kfir Barhum1, Hans-Joachim Böckenhauer1, Michal Forišek2, Heidi Gebauer1,
Juraj Hromkovič1, Sacha Krug1, Jasmin Smula1, and Björn Steffen1

1 Department of Computer Science, ETH Zurich, Switzerland
{kfir.barhum,hjb,gebauerh,juraj.hromkovic,

sacha.krug,jasmin.smula,bjoern.steffen}@inf.ethz.ch
2 Department of Computer Science, Comenius University, Bratislava, Slovakia

forisek@dcs.fmph.uniba.sk

Abstract. In the disjoint path allocation problem, we consider a path
of L+1 vertices, representing the nodes in a communication network. Re-
quests for an unbounded-time communication between pairs of vertices
arrive in an online fashion and a central authority has to decide which
of these calls to admit. The constraint is that each edge in the path can
serve only one call and the goal is to admit as many calls as possible.

Advice complexity is a recently introduced method for a fine-grained
analysis of the hardness of online problems. We consider the advice com-
plexity of disjoint path allocation, measured in the length L of the path.
We show that asking for a bit of advice for every edge is necessary to be
optimal and give online algorithms with advice achieving a constant com-
petitive ratio using much less advice. Furthermore, we consider the case
of using less than log log L advice bits, where we prove almost matching
lower and upper bounds on the competitive ratio.

In the latter case, we moreover show that randomness is as powerful as
advice by designing a barely random online algorithm achieving almost
the same competitive ratio.

1 Introduction

Many important practical computational problems are best formulated in an
online scenario, where the input arrives piecewise over time and an online al-
gorithm has to irrevocably compute a part of the output for any given part of
the input. One prominent example for such an online problem is call admission
in communication networks, where a central authority has to admit or reject
requests for communication between certain pairs of nodes in the network.

We consider a special case of the call admission problem in this paper, called
the disjoint path allocation problem. Here, the communication network is simply
modeled by a path of length L, where the L+1 vertices correspond to the nodes
of the network which might want to communicate with each other using the
� This work was partially supported by SNF grant 200021-141089 and by VEGA grant

V-12-031-00.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 89–101, 2014.
© Springer International Publishing Switzerland 2014

90 K. Barhum et al.

links modeled by the edges of the path. We assume that a call between two
vertices is issued at some point in time, but is of unbounded duration. Moreover,
we assume that any link of the path is only capable of serving one call. Thus,
admitting a call between two nodes on the path prevents any node in between
from participating in any communication. The goal is to admit as many calls as
possible. This problem is well-studied, for an overview, see Section 13.5 in [4].

Classically, the hardness of online problems is measured using the competi-
tive analysis introduced by Sleator and Tarjan [22] where the cost of the solution
computed by an online algorithm is compared to the cost of an optimal (offline)
algorithm that knows the complete input beforehand. Obviously, the offline algo-
rithm has a big advantage by knowing the complete input. Thus, this way of mea-
suring the hardness of online problems can be considered quite rough. Recently,
advice complexity has been introduced and successfully used as a means for a
more fine-grained complexity analysis of various online problems [8, 12, 14, 17].
The idea here is to measure how much information about the not yet revealed
parts of the input is necessary and sufficient to be optimal or to reach a specific
competitive ratio.

In the model of advice complexity, an online algorithm gets advice about the
upcoming instance on an advice tape that has been prepared in advance by a
clairvoyant and computationally unlimited oracle. The advice complexity is then
the number of bits the algorithm reads from this advice tape. A number of online
problems have already been analyzed within this model, such as paging [8], buffer
management [13], job shop scheduling [8,19], the k-server problem [7], online set
cover [18], string guessing [5], metrical tasks systems [14], graph exploration [11],
independent set [10], knapsack [6], bin packing [9], and graph coloring [2,3,15,21].

For a detailed introduction to the advice complexity of online problems, see [8,
17]. There is also an interesting relationship between advice complexity and
randomized algorithms as discussed in [7, 14, 19].

The disjoint path allocation problem was among the first problems that were
investigated using the model of advice complexity, but most upper and lower
bounds were measured depending on the number of communication requests [8].
In contrast, most classical results in the competitive analysis of the disjoint path
allocation problem were derived with respect to the size of the communication
network, i. e., the length of the path. In this paper, we adopt this convention
and analyze the advice complexity of the disjoint path allocation problem with
respect to the path length. Our results can be summarized as follows. First, we
prove that L − 1 advice bits are both necessary and sufficient to compute an
optimal solution. While the upper bound is rather straightforward, we introduce
a new technique to prove the lower bound which might be of independent interest.
Second, we analyze the competitive ratio achievable by using a constant number
of advice bits, or any advice of size b ≤ log log L, respectively. Here, we are
able to prove an upper bound of

((
2b + 1

)
·
(

L
1

2b+1 + 2
)

− 4
)

and an almost
matching lower bound. Then, we design several online algorithms with advice to
achieve a constant competitive ratio. Some of our algorithms use the technique
“Classify and Randomly Select” as introduced by Awerbuch et al. [1]. These

Advice and Randomization for the Disjoint Path Allocation Problem 91

upper bounds are complemented by a result of Gebauer et al. [16], who show
that for every (not necessarily integer) constant c there is a δ = δ(c) such that
any c-competitive algorithm needs at least δL advice bits. We note that their
result can also be generalized for slowly growing functions c = c(L). In the last
part, we prove that any number b ≤ log log L of advice bits can be replaced by
the same number of random bits while achieving (almost) the same competitive
ratio in expectation. Thus, in some sense, a small number of random bits is as
powerful as a small number of advice bits for this problem.

Due to space restrictions, some proofs have been omitted.

2 Preliminaries and Related Work

Let us first formally define the framework we are using. Consider an input se-
quence I = (x1, . . . , xn) of some maximization problem U with cost function
cost(·). Let us denote by Opt an (offline) algorithm that outputs an optimal
solution on every input I. We emphasize that Opt has access to the entire input
sequence in advance and is computationally unbounded. Let c ≥ 1.

Definition 1 (Online Algorithm). An online algorithm A computes the out-
put sequence A(I) = (y1, . . . , yn), where yi = f(x1, . . . , xi), for some function f
and 1 ≤ i ≤ n. An algorithm A is c-competitive if there is a constant α such that
cost(A(I)) ≥ cost(Opt(I))/c − α. We call c the competitive ratio of A. If α = 0,
then A is strictly c-competitive. We call A optimal if it is strictly 1-competitive.

Definition 2 (Online Algorithm with Advice). An online algorithm A with
advice computes the output sequence Aφ(I) = (y1, . . . , yn), where φ is an infinite
bit string called the advice and yi = f(φ, x1, . . . , xi), for 1 ≤ i ≤ n. The al-
gorithm A is c-competitive with advice complexity s(n) if there is a constant α
such that, for every n and every input sequence I of length at most n, there is an
advice φ such that cost(Aφ(I)) ≥ cost(Opt(I))/c − α holds and at most the first
s(n) bits of φ are accessed during the computation of Aφ on I. The definitions
of c-competitiveness and optimality are analogous to those in Definition 1.

At times, when the input sequence I is clear from the context, we just write
Opt and cost(Opt). For a given sequence σ, we denote by [σ]k the prefix of σ of
length k and by log x the binary logarithm of x.

The disjoint path allocation problem is the following maximization problem.
Given is a path and a sequence of requests, each of them being a subpath (given
by two vertices of the path). The goal is to admit as many requests as possible,
such that no two admitted requests share a common edge. We consider the online
version of the problem, where the requests arrive sequentially, and the decision
whether to admit a given request or not must be made before the next request
arrives. Once the decision is made, it cannot be revoked later.

More formally, we define the disjoint path allocation problem as follows:

Definition 3. The disjoint path allocation problem (DPA), is the following
maximization problem on a path P = (v0, . . . , vL). In the first time step, the

92 K. Barhum et al.

number L is revealed. In every successive time step t, for 2 ≤ t ≤ n + 1, a
request is asked, represented by a subpath of P . The goal is to admit as many
pairwise edge-disjoint requests as possible. An online algorithm has to decide
immediately whether to admit a request.

We write [i, j] to denote the request for the subpath from vi to vj and we call i
the start point and j the end point of the request. The length of [i, j] is j − i.

We do not want to restrict ourselves to strict competitiveness for this problem.
To see why, consider the following instance. An adversary Adv may first request
the path P itself. If an algorithm A admits this request, then Adv requests all
subpaths of P of length 1 and A achieves a competitive ratio of L. If A does not
admit the first request, then Adv sends no more requests and A is not competitive
at all. Thus, no deterministic algorithm can achieve a better strict competitive
ratio than L. We avoid such pathological instances by setting α := 1, as the
algorithm is then free to reject the first request and still be competitive [20].
Note that, when computing the competitive ratio, this allows us to assume that
any algorithm admits at least one request.

Also note that L is not a parameter of the problem, but is communicated as
the first request instead. This avoids another pitfall: If an online algorithm A
were designed for some specific constant L, it would always be 1-competitive
when admitting at least one request, because for α :=

(
L+1

2
)
, we get

cost(A(I)) ≥ cost(Opt(I))
1

−
(

L + 1
2

)
,

as every subpath is, without loss of generality, requested at most once and there-
fore, there can be at most

(
L+1

2
)

many requests in total.

The disjoint path allocation problem can be analyzed with respect to two
different parameters: the number n of requested subpaths and the length L of
the path. For the parameter n, the randomized setting was analyzed in [4] and
the advice complexity in [8].

For L, only a lower bound on the advice complexity for optimality has previ-
ously been shown.

Theorem 1 (Komm [20]). Every optimal online algorithm for DPA needs to
read at least L/2 advice bits. ��

We analyze DPA with respect to the parameter L. We establish upper and
lower bounds for optimality and c-competitiveness.

3 A Technique to Prove Lower Bounds

We start by describing a generic technique to prove lower bounds on the advice
complexity of online problems when solving them optimally. This technique has
already been implicitly used by us and other authors for various lower bounds.

Advice and Randomization for the Disjoint Path Allocation Problem 93

Our goal is however, to formalize this technique in an abstract way, such that it
can be more generally used. The technique is based on a set of special instances
such that no online algorithm can distinguish their prefixes of a certain length.
Yet, an optimal online algorithm would need to behave differently on these in-
stances, even before there is a distinction between them. Thus, the online algo-
rithm is required to read advice in order to solve these instances optimally, as
there is no other way to distinguish them.

The idea is to partition a set of instances into subsets, such that all input
sequences of a given subset start with the same prefix of a given length for various
prefix lengths. These partitions can be structured in a hierarchy of partitions,
depending on the respective prefix length. Thus, we can describe the relationship
between these instance sets with a partition tree.

Definition 4 (partition tree). Consider some online problem U and a set I
of input sequences of U . We define a partition tree of I, denoted by T (I), as a
labeled rooted tree that satisfies the following properties:

1. Each vertex v of T (I) is labeled by an instance set Iv ⊆ I and by a natural
number kv, such that any two input sequences I1, I2 ∈ Iv have a common
prefix of length at least kv, i. e., [I1]kv

= [I2]kv
.

2. For every internal vertex v, the instance sets of its children form a partition
of Iv. Note that, for each child w, it holds that kw ≥ kv.

3. For the root v of T (I), we have Iv = I.

Next we want to use a constructed partition tree to prove that an optimal
online algorithm is required to read a certain number of advice bits. Here, the
first property of a partition tree is crucial. This implies that no online algorithm
can distinguish two given input sequences if it only sees their common prefix.
Thus, an optimal online algorithm with advice has to use a different advice
string for each set of the partition tree, as the following lemma shows.

Lemma 1. Let I be a set of input sequences of some online problem U and
let T (I) be a partition tree of I. Consider any two vertices v1 and v2 of T (I),
neither an ancestor of the other, with lowest common ancestor v and any two
input sequences I1 ∈ Iv1 and I2 ∈ Iv2 . Let OPT (I1) and OPT(I2) be the set of
optimal output sequences for I1 and I2, respectively.

If, for all π1 ∈ OPT(I1) and all π2 ∈ OPT(I2), [π1]kv
�= [π2]kv

, then any
optimal online algorithm needs a different advice for each of the two input se-
quences I1 and I2.

This leads to the following theorem that we can use to prove lower bounds.

Theorem 2. Let I be a subset of the request sequences of some online prob-
lem U , and let T (I) be a partition tree of I satisfying the prerequisite of Lemma 1.

Then, any optimal online algorithm for U requires at least log m advice bits,
where m is the number of leaves of T (I). ��

As there can be a lot of different optimal answer sequences associated with
each leaf of the partition tree, it might be tedious to prove that the prerequi-
site of Lemma 1 is satisfied. Therefore, we usually construct a set I of input

94 K. Barhum et al.

sequences and an associated partition tree with the property that (i) there is ex-
actly one input sequence associated with each leaf of the partition tree, (ii) each
of these input sequences has exactly one optimal output sequence, and (iii) the
optimal output sequence for an input sequence is not optimal for all other input
sequences.

4 Bounds for Achieving Optimality

Using the techniques from Section 3, we improve the known lower bound from
Theorem 1 by a factor of 2. This new bound is tight.

Theorem 3. To solve DPA optimally, L − 1 advice bits are necessary and suf-
ficient.

Proof. For the upper bound, consider an online algorithm A that reads L − 1
advice bits to learn whether a request that starts at the corresponding vertex
should be admitted. Let b1 . . . bL−1 denote the advice bits, and let b0 := 1. Then,
A admits a request [i, j] if and only if bi = 1 and bk = 0, for i < k < j.

For the lower bound, we construct a set I of input sequences for which there
is a partition tree T (I) that satisfies the prerequisite of Lemma 1. Also we show
that each input sequence has a unique optimal output sequence. Then, we only
need to show that T (I) has the desired number of leaves.

The requests of a particular input sequence are asked over a series of L phases,
from phase L down to 1. In each phase p, all requests of length p are asked from
the leftmost request to the rightmost one, except for some requests, such that
each input instance is different. More specifically, for each input sequence, an
associated bit string b0 . . . bL with b0 = 1, bL = 1 and b1 . . . bL−1 ∈ {0, 1}L−1

represents the optimal solution for this input sequence as described for the upper
bound. If a request [i, j] in phase (j − i) is designated to be admitted in the
optimal solution, that is, bi = 1, bj = 1 and bk = 0, for i < k < j, then, in
subsequent phases, no requests that overlap [i, j] are requested. An example of
such an input sequence is shown in Figure 1.

Now, we show that each input sequence has a unique optimal output sequence.
Let Opt(I) be a optimal output sequence for a input sequence I. Assume that
there is another output sequence Opt′(I) that differs at least by one answer. Two
cases are possible. Opt′(I) refuses a request that is intended to be admitted. Then,
by construction of the input sequences, no later requests overlap the subpath of
the refused request. Thus Opt′(I) admits one request less and is therefore not
optimal. In the other case, Opt′(I) admits a request [i, j] that is not intended to
be in the solution. Then Opt′(I) misses at least two requests, because in the bit
string corresponding to I at least one bit is set to 1 between the bits bi and bj .

Lastly, we need to prove that the output sequences for two input sequences
are already different before the corresponding input sequences differ. Let I and
I ′ be two different input sequences and let p be the phase in which I and I ′ first
differ. Because the requests in phase p of the two input sequences are different,
there must be a request in the previous phase that should be admitted in one

Advice and Randomization for the Disjoint Path Allocation Problem 95

phase 1

phase 2

phase 3

phase 4

phase 5

1 0 1 1 0 1

Fig. 1. Example of an input sequence represented by the bit string 101101. The unique
optimal solution is highlighted in gray.

input sequence, but not in the other. Otherwise, the two input sequences would
be the same, as the requests in phase p are dependent on whether some requests
should be admitted in the previous phase. Hence, an optimal output sequence
for I cannot also be optimal for I ′, and thus the prerequisite for Lemma 2 is
given.

The L − 1 bit strings define 2L−1 different input sequences, each belonging
to a different leaf of T (I). We have 2L−1 leaves and thus, from Lemma 1 and
Theorem 2, it follows that an optimal online algorithm needs at least log(2L−1) =
L − 1 advice bits to be optimal for a given input sequence. ��

5 Bounds for Small Advice

Our first approach for an upper bound is to divide incoming requests into classes
according to their lengths and accept only requests from one class, based on the
advice. For this, we need the following simple fact about the greedy algorithm
that admits every possible request.

Lemma 2. If the length of all requests is at least t and at most s, where t ≤ s,
then the greedy algorithm is ((s − 2)/t
 + 2)-competitive.

Theorem 4. There is a
((

2b + 1
)

·
(

L
1

2b+1 + 2
)

− 4
)

-competitive algorithm
that uses at most b advice bits.

Proof Sketch. We divide the set of all possible requests into 2b + 1 classes.
Class C1 contains all requests of length at most L

1
2b+1 , and class Ci, for 2 ≤

i ≤ 2b + 1, contains all requests of length at least L
i−1
2b+1 + 1 and at most L

i

2b+1 .
The given advice is the index j ∈ {1, . . . , 2b} of the class Cj that contains the

most requests that can be accepted by a greedy algorithm, ignoring class C2b+1.
The algorithm reads j and greedily admits the requests in Cj . ��

96 K. Barhum et al.

Corollary 1. 2
√

L-competitiveness can be achieved without advice, one advice
bit is sufficient to be

(
3 3

√
L + 2

)
-competitive, and �log log (L/2) advice bits are

sufficient to be (4 log L − 4)-competitive. ��

We complement Theorem 4 with an almost matching lower bound.

Theorem 5. Any algorithm that uses at most b advice bits cannot achieve a
competitive ratio better than

(
2b + 1

)
L1/(2b+1) − 2b−1 (

2b + 1
)

− 3 · 2b.

6 Upper Bounds for c-Competitiveness

In this section, we present several complementary upper bounds on the advice
complexity to achieve c-competitiveness. The first algorithm that we present
divides the path into segments and treats those segments separately.

Theorem 6. There is a c-competitive online algorithm A, for c = 2
√

k with
k ∈ N+, that uses at most

⌈⌈
4L/c2⌉

log 3
⌉

advice bits.

Proof Sketch. We divide the path into N := �(L + 1)/k consecutive vertex-
disjoint subpaths (or segments) of length k − 1, i. e., every segment contains k
vertices and k − 1 edges (except maybe the last one), and there is a separating
edge between any two consecutive segments.

Let Opt be an arbitrary, but fixed optimal solution. For every segment Si,
1 ≤ i ≤ N , A reads a number xi ∈ {0, 1, 2} from the advice tape with the
following meaning. If xi = 0, then no request in Opt starts in Si. (We then call
Si empty.) If xi = 1, then at least one and at most 	

√
k
 requests in Opt start

in Si. If xi = 2, then more than 	
√

k
 requests in Opt start in Si. This needs at
most �N log 3 advice bits, and A reads the entire advice after the first request.1

Let r be an incoming request starting in segment Si that can still be admitted,
and let Sj be the first non-empty segment to the right of Si, i. e., xi+1 = xi+2 =
· · · = xj−1 = 0 and xj �= 0. Furthermore, let Sl be the segment in which r ends.
A inspects xi and xj and behaves as follows. (i) If xi = 1 and xj = 1, then A
admits r if l ≤ j. (ii) If xi = 1 and xj = 2, then A admits r if l < j. (iii) If xi = 2,
then A admits r if l < j and r contains at most 	

√
k
 edges in segment Si.

If there is no segment Sj , i. e., if Si+1 = Si+2 = · · · = SN = 0, then A admits
r if xi = 1, or if r has length of at most �

√
k and xi = 2. ��

The following result provides a better upper bound for sufficiently large c.

Theorem 7. There is a c-competitive algorithm A, for c ∈ N+, that uses at
most �2(L − 1)/c advice bits.

Proof Sketch. Consider the encoding of some fixed optimal solution Opt as used
in the proof of Theorem 3, i. e., a bitstring B of length L − 1 with a 1 at every
position where a request starts that is admitted in Opt. The oracle divides the
1 A then knows L and k and thus also how many advice bits to read.

Advice and Randomization for the Disjoint Path Allocation Problem 97

subpath (v1, . . . , vL−1) into consecutive vertex-disjoint segments Si. The edge
starting in segment Si and ending in Si+1 is numbered among the edges of Si.
Then, the oracle writes a shorter bitstring d1 . . . db of length b := �(L − 1)/(c/2)
on the tape, where di is the bitwise OR of all bits of B corresponding to vertices
in segment Si.

A segment with corresponding advice bit 1 is called 1-segment. Then, A admits
any satisfiable request in a 1-segment that has its end point in either this segment
or the next 1-segment to the right. ��

Now we generalize the approach from Theorem 4 by applying it to edge-
disjoint segments of the path.

Theorem 8. There is a c-competitive algorithm, for c = 4 log k with k ∈ N≥2,
that uses at most

⌈
L

2c/4 ·
(

c
2 + �log c + 0.33

)⌉
advice bits.

We already know how to construct a bit string B of length L − 1 that serves
as advice to be optimal. Below, we show that approximate knowledge of B can
still be used to guarantee a good competitive ratio. More precisely, we prove
that we can get arbitrarily close to optimality using less than L − 1 advice bits.

Theorem 9. For any c = k/(k − 1) with k ∈ N≥2, there is a c-competitive
algorithm that uses �log(c/(c − 1)) + L − 1 − 		(c − 1)(L − 2)/c
 · (2 − log 3)

advice bits.

Proof Sketch. Let B = b1 . . . bL−1 be the bit string corresponding to some fixed
optimal solution computed by an optimal online algorithm Opt as described in
the proof of Theorem 3. Our advice string is a shorter sequence created from B
by taking some pairs of consecutive bits and adding them (producing a number
between 0 and 2). For instance, instead of the sequence (0, 1, 0, 0, 1, 0, 1, 1) we
might use the sequence (0, 1, 0+0, 1, 0, 1+1) = (0, 1, 0, 1, 0, 2). If there are p > 0
pairs of bits and the online algorithm knows their offsets, we need L − 1 − 2p +
�p log 3 ≤ L − 1 bits to store the resulting sequence.

Given such an advice sequence, an online algorithm A may behave as follows.
First, it reconstructs the sequence B. This is only ambiguous if the sum of some
two consecutive bits is 1. In that case, we assume that the bits are 0 + 1 (and
not 1 + 0). Given the reconstructed sequence, we simulate Opt.

Let q be the number of pairs of bits we reconstructed incorrectly. We can easily
see that A constructs a solution with at least cost(Opt) − q accepted requests:
The worst case is that we lose one accepted request per such pair.

We now consider k different strategies of creating the pairs of bits. For each
i, 1 ≤ i ≤ k, we consider the strategy where the added pairs of bits are bi+ak +
bi+ak+1, for all a ∈ N≥0, 0 ≤ a ≤

⌈
L−2

k − 1
⌉
. Hence, in each strategy, the number

of such added pairs is p ≥
⌊

L−2
k

⌋
.

A detailed analysis of the strategies yields the theorem. ��

Corollary 2. Fewer than 0.8L bits are sufficient to be 2-competitive. Fewer than
0.87L bits are sufficient to be 3/2-competitive. ��

98 K. Barhum et al.

It is important to observe that indeed all four of the upper bounds established
above are necessary, as they complement each other. In other words, each of
them covers a particular range of c. More precisely, for 1 ≤ c ≤ 3, Theorem 9
provides the best upper bound. (Note that the theorem actually only applies to
competitive ratios in the range 1 ≤ c ≤ 2, but the upper bound for 2 trivially
propagates to all larger values.) In the range 3 ≤ c ≤ 2

√
3, Theorem 7 is the

best choice, and for c ≥ 2
√

3, Theorem 6 is even better. For c ≥ 64, however,
they are all outperformed by the algorithm from Theorem 8.

7 On the Power of Random Bits

We continue the study of the exact power of randomness in online algorithms
(focusing on DPA) and show a trade-off between the number of random bits
available to the online algorithm and its competitive ratio.

Recall that an O(log(L))-competitive algorithm for DPA can be implemented
using �log log(L) random bits, and this matches the lower bound that can be
obtained by any randomized online algorithm (Theorems 13.7 and 13.8 in [4]).

In this section, we obtain an online algorithm that uses only b random bits
and enjoys a competitive ratio of (L

1
2b · 2b+1) for any b ∈ {0, . . . , �log log(L)}.

Indeed, for b = 0, we obtain the greedy algorithm, and for b = �log log(L), we
obtain the randomized algorithm from [4].

In this section, we identify the edge (vt, vt+1) with its right vertex and call it
edge t + 1. That is, a request [i, j] contains the edges {i + 1, . . . , j}. Requests
intersect if they contain a mutual edge. A set of requests covers a request if every
edge in the request is contained by some request from the set.

It will be useful to think of an edge t as the bit-string of length log(L + 1)
that denotes its binary expansion. For ease of presentation, for the rest of this
section, we assume that L = 2� − 1 for some integer �, but our results here hold
for any L (just think of the natural embedding of the path to the first L vertices
in a path of length L′ − 1, where L′ is the smallest power of 2 larger than L).

We partition the edges into � levels, where an edge e belongs to level λ(e),
where λ : E → N is given by λ(e) := max { t : 2t divides e }. Alternatively, λ(e)
is the largest t such that, in the binary representation of e, the t right-most bits
of e are zero. That is, the edge 10�−1 is the only edge of level � − 1, the edges
10�−2 and 110�−2 are the only edges of level � − 2, and in general, there are
exactly 2�−j−1 edges of level j.

It will be useful to consider a coarser partition to blocks of B levels. To
this end, for every B ∈ N+, we define the B-block of an edge λB : E → N by
λB(e) :=

⌊
λ(e)

B

⌋
. It is immediate that λB(e) = i if and only if λ(e) ∈ {iB, iB +

1, . . . , (i + 1)B − 1}. We extend λ (resp., λB) to any request r by setting λ(r) =
maxe∈r λ(e) (resp., λB(r) = maxe∈r λB(e)). We call a request a level-t (resp.,
B-block i) request if λ(r) = t (resp., λB(r) = i).

Let Opt be an optimal solution for a DPA instance with value cost(Opt). We
denote by ot the number of requests in Opt for which λ(r) = t. Similarly, we set

Advice and Randomization for the Disjoint Path Allocation Problem 99

o′
i :=

∑B−1
j=0 oiB+j , the number of requests in Opt for which λB(r) = i. It holds

that cost(Opt) =
∑��/B�−1

i=0 o′
i =

∑�−1
t=0 ot. We make use of the following.

Proposition 1. If a request contains two different edges of level t, then it con-
tains an edge of level at least t + 1.

Proposition 1 asserts that every request has exactly one edge of maximal level.
We call this edge the level-edge of the request. Additionally, for any edge e, any
solution to a DPA instance contains at most one request with e as its level edge
(this is true for any edge, and in particular for the level edges).

Proposition 2. Let r be a level-t request. Then, for any t′ ≥ t, any solution of
a DPA instance contains at most one level-t′ request that intersects with r.

We now present and analyze the i-th B-block greedy algorithm. The algorithm
B-Block-Greedyi takes all the requests offered from B-block i as long as they
do not intersect with requests already chosen to the current solution.

Proposition 3. For any instance of DPA, B-Block-Greedyi chooses at least
2−B · o′

i requests.

Let B ∈ {1, . . . , �}. The (randomized) B-Block-Greedy algorithm chooses
uniformly at random a block i ← {0, . . . , ��/B − 1}, and behaves according to
B-Block-Greedyi. The worst-case expected cost of this algorithm is

E
i←{0,...,��/B�−1}

[
cost(B-Block-Greedyi)

]
≥

��/B�−1∑
i=0

2−B

��/B · o′
i

= 2−B

��/B

�−1∑
t=0

ot = 2−B

��/B · cost(Opt).

Put differently, we obtain a (��/B · 2B)-competitive algorithm. Note that
choosing a random B-block out of the ��/B possible blocks is the only random
choice of the algorithm and can be done using �log(��/B) random bits.2

So far our analysis was made in terms of the block size B. Next, we present
our main theorem for this section, which delineates explicitly the competitive
ratio obtained as a function of the number of available random bits b.

Theorem 10. The randomized B-Block-Greedy algorithm that uses b random
bits is (L

1
2b · 2b+1)-competitive.

Acknowledgments. The authors would like to thank Maria Paola Bianchi,
Daniel Graf, and Dennis Komm for valuable discussions.
2 In fact, in general, an implementation that uses only �log(��/B�)� bits obtains a

(
⌈
�/B) · 2B+1⌉-competitive ratio (that is, it incurs an additional factor of 2). How-

ever, whenever ��/B� is a power of two, we can save this factor while still using
�log(��/B�)� random bits.

100 K. Barhum et al.

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of SODA 1994, pp. 312–320. ACM/SIAM (1994)

2. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

3. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the
advice complexity of the online L(2,1)-coloring problem on paths and cycles. In:
Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer,
Heidelberg (2013)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

5. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Electronic Colloquium on Computational Complexity (ECCC), TR12-
162 (2012)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

8. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

9. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice.
Technical report, arXiv:1212.4016

10. Dobrev, S., Královič, R., Královič, R.: Independent set with advice: the impact
of graph knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS,
vol. 7846, pp. 2–15. Springer, Heidelberg (2013)

11. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

12. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO Theoretical Informatics and Applications 43(3), 585–613
(2009)

13. Dorrigiv, R., He, M., Zeh, N.: On the advice complexity of buffer management.
In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp.
136–145. Springer, Heidelberg (2012)

14. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg
(2009)

15. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

16. Gebauer, H., Královič, R., Královič, R.: On lower bounds for the advice complexity
of the disjoint path allocation problem. Technical report (in preparation)

Advice and Randomization for the Disjoint Path Allocation Problem 101

17. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

18. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover
problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)

19. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theo-
retical Informatics and Applications (RAIRO) 45(2), 249–267 (2011)

20. Komm, D.: Advice and Randomization in Online Computation. PhD Thesis, ETH
Zurich (2012)

21. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring prob-
lem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357.
Springer, Heidelberg (2013)

22. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Goal-Based Establishment of an Information Security
Management System Compliant to ISO 27001�

Kristian Beckers

Paluno, - The Ruhr Institute for Software Technology -, University of Duisburg-Essen, Germany
{firstname.lastname}@paluno.uni-due.de

Abstract. It is increasingly difficult for customers to understand complex sys-
tems like clouds and to trust them with regard to security. As a result, numerous
companies achieved a security certification according to the ISO 27001 standard.
However, assembling an Information Security Management System (ISMS) ac-
cording to the ISO 27001 standard is difficult, because the standard provides only
sparse support for system development and documentation.

Security requirements engineering methods have been used to elicit and anal-
yse security requirements for building software. In this paper, we propose a goal-
based security requirements engineering method for creating an ISMS compliant
to ISO 27001. We illustrate our method via a smart grid example.

Keywords: security standards, requirements engineering, SI*.

1 Introduction

The increasing complexity of software systems and the surrounding environment is
challenging to analyse with regard to security. Security standards, e.g. the ISO 27001
standards, offer a way to attain this goal. The ISO 27001 standard defines how to es-
tablish an information security management system (ISMS). This is a concern for the
security needs of an organisation. Several relevant companies have taken this approach
like Amazon1. However, the sparse descriptions in it makes the establishment of an ISO
27001 compliant ISMS difficult. For example, the standard contains a description of the
scope and boundaries of the ISMS. The standard states only to consider ”characteristics
of the business, the organisation, its location, assets and technology” [1, p. 4].

Re-using well established methods security requirements engineering (SRE) meth-
ods, e.g., SI* [2] for establishing an ISMS according to the ISO 27001 is a possible
solution. We provided a mapping from the ISO 27001 standards demands to the capa-
bilities of SRE methods in a previous work [3].

This work is inspired by this mapping and shows how to use SI* for establishing
an ISO 27001 ISMS. Our approach provides a structured refinement of the IT system’s
and stakeholders’ information to assess the threats for a particular system. Our method

� This research was partially supported by the EU project Network of Excellence on Engineering
Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy
ICT, Grant No. 256980). We thank Jorge Cuéller for his valuable feedback on our work.

1 http://aws.amazon.com/security/

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 102–113, 2014.
c© Springer International Publishing Switzerland 2014

http://aws.amazon.com/security/

Goal-Based Establishment of an Information Security Management System Compliant 103

uses this information for risk assessment and security control selection according to the
ISO 27001 standard. We also provide the required documentation of an ISMS for cer-
tification. We illustrate our approach by the example of a smart grid providing scalable
energy infrastructure to consumers. We consider in particular the security of the smart
metering gateway, the interface between the energy grid and the customer.

2 ISO 27001

The ISO 27001 standard is structured according to the “Plan-Do-Check-Act” (PDCA)
model, the so-called ISO 27001 process [1]. In the Plan phase an ISMS is established,
in the Do phase the ISMS is implemented and operated, in the Check phase the ISMS is
monitored and reviewed, and in the Act phase the ISMS is maintained and improved. In
the Plan phase, the scope and boundaries of the ISMS, its interested parties, environ-
ment, assets, and all the technology involved are defined. In this phase, also the ISMS
policies, risk assessments, evaluations, and controls are defined. Controls in the ISO
27001 are measures to modify risk.

3 SI*

We use the SI* modeling language [2] for creating a refined ISMS scope definition,
because SI* provides the means to model social dependencies between actors including
security and trust relations. In SI* roles are abstractions of sets of actors, which are
active entities that have goals. A goal is a state of affairs that the actor desires and that
the system-to-be should possibly help to fulfill. Softgoals are similar, but have no clear
criteria for stating if they are fulfilled or not. A resource is a physical or informational
entity. Goals and resources can be refined using AND decompositions, these have the
word AND under a half circle. A means-end is an arrow that points towards a goal that
provides the means to achieve a goal or the resources needed or produced by a goal.

Own relations denote that an actor owns a resource, or can decide if a goal is achieved.
This relation is labeled with an O. Provide relations denote that an actor has the ability
to achieve a goal or furnish a resource. This relation is labeled with a P. The own and
provide relations are part of the so-called Eco Model.

SI* supports various trust relations, which are modelled as edges labeled with an
abbreviation of the kind of trust relation it represents. Execution dependency De and
permission delegation Dp allow the transfer of objectives and entitlements from an ac-
tor to another. Execution dependency De means that one actor appoints another actor
to achieve a goal or furnish a resource. Permission delegation Dp indicates that an ac-
tor authorises another actor to achieve a goal or deliver a resource. Trust is a relation
representing the expectations that an actor (the trustor) has in regards to the behav-
ior of another actor (the trustee). A goal or a resource is part of a trust relation (the
trustum). Trust of execution Te models the trustor’s expectations regarding the ability
and dependability of the trustee in fulfilling a goal or delivering a resource. Trusting in
execution Tp means that the trustor is certain that the trustee accomplishes the trustum.
Trust of permission models the trustor’s expectations that the trustee does not abuse
a goal or a resource. Trusting in permission means that the trustor is certain that the

104 K. Beckers

trustee does not misuse the (possible) received permission for accomplishing an aim
different from the one for which the permission has been granted. Distrust execution Se
models the explicit doubts about the behaviour of the trustor from the trustee about the
abuse of a goal or a resource.

4 A Method for Goal-Based ISMS Establishment

We propose a method for creating an ISMS compliant to the ISO 27001 standard, which
consists of the following steps:

Step 1: Get Management Commitment - The precondition for building an ISMS
is that the management commits to it. Thus, we dedicated the first step of our method
to elicit the management commitment of the project and the provision of adequate re-
sources to do so. We create SI* diagrams that state the concerned roles and actors of an
ISMS. The management commitment for an ISMS shall be granted for these roles and
actors. The management commitment has to be gathered repeatedly when the ISMS is
further described. However, starting from the initial definition of concerned stakehold-
ers a management commitment should be given in written form. Without this commit-
ment, insufficient resources will result in an insufficient ISMS.

Step 2: ISMS Scope Definition - We define the scope of the ISMS using the SI* di-
agrams created in the previous step. Although, we could have used other goal modeling
notations, SI* provides the means to model trust into a goal model, which is essential
for our asset identification and threat analysis. In addition, SI* is scalable, since it is
possible to have multiple diagrams/views of the same model.

Step 3: Identify Assets - The entire ISMS scope description is the input for the as-
set identification. We identify all items of value of stakeholders by analyzing various
relations in the SI* model. These range from resource, goal, stakeholder relations to the
trust relations in the SI* model. These also help to clearly define the need for protection
of the identified assets. In addition, a high level risk assessment of the assets is con-
ducted. This step results in a list of assets, the stakeholders that own them, and initial
risk levels for assets as an output.

Step 4: Analyze Threats - We conduct a threat analysis via modeling attackers to
these threats in the SI* model. Attackers have to be of a specific type, which con-
tains assumptions about the capabilities and motivations of the attacker. These attackers
present threats to assets. The threats lead to the elicitation of security requirements. We
use misuse cases [4] to map the threats to security requirements.

Step 5: Conduct Risk Assessment and Control Selection - The reasoning about
controls starts with the risk assessment for each asset. For each asset the decision has
to be made if the risk to that asset demands the inclusion of one or more controls of the
ISO 270001 standard or if the risk levels are sufficient. For each asset we propose to
compile a list that states why a list of each of the controls in the normative ANNEX A
of the ISO 27001 should or should not be applied to the asset.

Step 6: Design ISMS Specification - The final step of our method concerns the ISO
27001 specification, an implementable description of the ISMS. We consider the ISO
27001 documentation demands and use the information elicited and documented in the
previous steps of our method. This information is mapped to the required document
types for certification.

Goal-Based Establishment of an Information Security Management System Compliant 105

5 Application of Our Method to a Smart Grid Scenario

We illustrate the benefits of our framework on a case study of a Smart Grid system.
The case study was provided by the industrial partners of the EU project NESSoS2. A
smart grid is a commodity network that intelligently manages the behavior and actions
of its participants. The commodity consists of electricity, gas, water, or heat that is dis-
tributed via a grid (or network). The benefit of this network is envisioned to be a more
economic, sustainable, and secure supply of commodities. Smart metering systems me-
ter the consumption or production of energy and forward the data to external entities.
This data can be used for billing and steering the energy production.

Step 1: Get Management Commitment - The ISO 27001 standard demands docu-
mentation of management commitment for the establishment of an ISMS. The demands
are described in Sect. 5 of the standard. Sect. 5.1 Management Commitment concerns
proof that the management shall provide for establishing an ISMS including objectives,
plans, responsibilities and accepting risks. Section 5.2 Resource Management concerns
the provision of resources for establishing the ISMS and the training of the members of
the organization for security awareness and competence.

The management commitment for implementing an ISMS according to the ISO
27001 standard is of utmost importance, because without the commitment of sufficient
staff and resources the ISMS implementation is doomed to fail. In addition, the publicly
available sources of examples of ISMS implementations, e.g., the ISMS toolkit, define
this also as the first step when implementing an ISMS3.

The management commitment should be based upon a high level description of the
part of an organization for which the management commits resources to build an ISMS.
We propose to use SI* diagrams for this purpose, because these define stakeholders and
operations for which an ISMS shall be established. A refined description using static
and behavioral description is done during the ISMS scope refinement (see below). We
propose to mark the ISMS scope in the diagram. and use a scenario-based elicitation
of stakeholders. The management commitment for establishing an ISMS for the scope
has to be presented in writing and in relation to a specific person, who is responsible
for providing the required resources. The management commitment should relate to the
use case diagram, e.g., let the management commitment state that the service provider
can provide services in a secure environment.

Step 2: ISMS Scope Definition - After acquiring the management commitment, we
have to provide a more detailed scope definition. Section 4 of the ISO 27001 standard
describes the ISMS and in particular in Sect. 4.2 - Establishing and managing the ISMS
- states the scope definition. Section 4.2.1 a demands to “Define the scope and bound-
aries of the ISMS in terms of the characteristics of the business, the organization, its
location, assets and technology, and including details of and justification for any exclu-
sions from the scope ”[1, p.4]. In Sect. 4.2.1 d, which concerns risk identification, the
scope definition is used to identify assets. Section 4.2.3 demands a management review
of the ISMS that also includes to check for possible changes in the scope of the ISMS.
Section 4.3 lists the documentation demands of the standard and Sect. 4.3.1 d requires a

2 http://www.nessos-project.eu/
3 http://www.iso27001security.com/html/iso27k_toolkit.html

http://www.nessos-project.eu/
http://www.iso27001security.com/html/iso27k_toolkit.html

106 K. Beckers

Fig. 1. Smart Grid SI* Diagram with Resources

documentation of the scope of the ISMS. The ISMS scope definition of the ISO 27001
standard is a vital step for its successful implementation, because all subsequent steps
use it as an input.

We excluded the Energy Market from the scope of the ISMS and show the goals
of the roles the ISMS is concerned with and their subgoals. These goals are shown in
Fig. 1. Figure 1 presents a refined SI* diagram of our smart grid scenario. The Energy
Provider owns Power Plants and has the goal to Earn Money. The goal is decomposed
into the subgoals to Provide Energy on demand and to Bill for Energy sales. In order to
be able to bill for energy consumption, the Energy Provider has to acquire Energy Data
that states the actual consumption of energy in the grid. Energy that is not consumed
by a Consumer is an economic loss. Possible causes are loss of energy during trans-
fer or just energy that fades in the grid, because of lack of energy storing capabilities.
The Energy Provider has a delegation permission relation with the Network Provider
for collecting the Energy Data. The Energy Provider trusts the Network Provider, be-
cause of long lasting partnership. Hence, both parties have a trust permission relation
regarding the Energy Data.

The Network Provider also aims to Earn Money and this goal is decomposed into
the goals Charge for Grid Usage and Provide Electric Grid. The Provide Electric Grid
requires Electric Powerlines, which are owned and provided by the Network Provider.
The Energy Data are an outcome of the realization of the goal Provide Electric Grid.
The Energy Data are a means to achieve the goal Charge for Grid Usage.

The Service Provider also wants to Earn Money and does this via the subgoals
Provide Services and Charge for Service Usage. The Provide Services goal leads to

Goal-Based Establishment of an Information Security Management System Compliant 107

Services, which are owned by the Service Provider. The Charge for Service Usage re-
quires the subgoal Monitor Service Usage, which results in Service Monitoring Data.
This data is collected from the Consumer. This is the reason why the Service Provider
has an execution dependency relation with the Consumer. In addition, the Consumer
is not familiar with the business practices of the Service Provider, which results in a
distrust execution relation between these stakeholders.

The Consumer wants to Buy Energy and in addition Use Services and Use CLS,
which are Controllable Local Systems (CLS). These are electronic components that use
the Smart Metering Gateway. An example for a CLS is a controllable air conditioning.
CLS devices are owned by the Consumer. The Consumer owns User Data. This data
results from fulfilling the goal Use CLS. The Use Services goal produces Service Moni-
toring Data that the Energy Distributer generates for billing purposes. The Buy Energy
goal also results in Metering Data about energy consumption. The Metering Data is
shared with the Energy Distributer using a delegation permission. The Consumer trusts
the Energy Distributer to use this data only for billing purposes. The Consumer has
also the goal to Earn Money via the subgoal Sell Energy. The Consumer uses an EPS
for this purpose, which is an Energy Producing System. The Customer owns the EPS,
which can be for example solar panels.

The Energy Distributer aims to Earn Money by the goal Sell Energy to Consumers.
The Energy Distributer wants to Buy Energy, which can be sold to Consumers. The
Energy Manager provides the energy from the grid, so that the Energy Distributer’s
customers can receive it. The goal Bill Consumer requires Metering Data that state the
amount of energy used by Consumers. The Energy Manager owns Power Line Con-
nections that are connected with the energy grid. These allow the Energy Manager to
Distribute Energy throughout the grid.

The SI* model is an adequate description of an ISMS scope, because the SI* models
describe the “characteristics of the business and the the organization” by analyzing and
documenting goals, agents/roles including their relations. The standard also demands
a documentation of the “technology” involved. These are included in the models via
resources and its relations with goals and agents/roles.

The standard further demands the definition of “location”. We propose to attach tem-
plates to the Si* model. The location template, shown in Tab. 1, lists the location of all
Si* resources and agents/roles. Goals are not listed here, because these do not have
physical locations. Moreover, the standard demands “details of and justification for any
exclusions from the scope”. We propose to use a scope exclusion template for that pur-
pose that lists all resources and agents/roles that are excluded from the scope. We al-
ready excluded the Service Provider and Energy Manager from the scope of the ISMS.
The template in Tab. 2 states the reasoning behind these decisions. We consider assets,
which are also part of the scope of an ISMS, in the following part of our method.

Table 1. Instantiated Template for Locations of ISMS Elements

Si* Element Location

power plant Hannover, Germany
.

108 K. Beckers

Table 2. Instantiated Template for Locations of ISMS Elements

Si* Element Reason for Scope Exclusion

Energy Manager The Energy Manager has already an ISO 27001 compliant ISMS in place.
Service Provider The Service Provider offers software of different kinds to the Consumer. It is assumed

that the Service Provider certifies all services compliant to the Common Criteria [5].
.

Step 3: Identify Assets - The design goal of the ISO 27001 ISMS is to protect assets
with adequate security controls and this is stated already on page 1 of the standard. Sec-
tion 4.2.1 a of the standard demands the definition of assets. Section 4.2.1 b concerns
the definition of ISMS security policies and it demands that the policy shall consider as-
sets. Section 4.2.1 d that concerns risk identification uses the scope definition to identify
assets, to analyse threats to assets, and to analyse the impacts of losses to these assets.
Section 4.2.1 e concerns risk analysis, which also clearly define to analyse assets and
to conduct a vulnerability analysis regarding assets in light of the controls currently
implemented. Thus, identification and analysis of assets is a vital part of establishing
an ISO 27001 compliant ISMS. An asset is defined in the standard as “anything that
has value to the organisation“ [1, p. 2]. We propose the following steps for identifying
assets, which concern resources in our SI* model. Thus, the following step aims to find
resources and if the resources have a value for the asset owner, they are assets.

Investigate the Eco Model Relations. The relations of the Eco Model: request, own,
and provide that consider a resource at one end reveal possible assets and in case of
the own relation, also the asset owner.

Investigate Goal Relations. Means-end relations between a goal and a resource have
to be investigated. In addition, for each goal we have to check if not a resource is
missing that might be an asset.

Iterate over all Resources. In order not to miss any assets, an iteration of all resources
in the model is done and a check is conducted if this is an asset.

For an accurate description of assets the following information has to be elicited for
each asset.

State the Asset Owner. Check if the own relation of the Eco Model is set on an asset.
If this is the case, the agent or role on that relation is the asset owner. If this relation
is not set, it has to be included into the model.

Define the Need of Protection. We want to state the need for protection of an asset.
This information can help to assess an initial risk level for an asset and serves
as an input of the threat analysis. At this stage only the trust relations in the SI*
model are considered. Any assets (resources) that have an execution dependency or
permission delegation relation have an interaction with another agent or role. These
can require a need of protection, which has to be described. The trust relations trust
of execution or trusting in execution result in a limited need for protection, while a
distrust relation requires a significant protection.

Assess Initial Risk. The description of assets and their need for protection entries shall
be analysed by domain experts and initial risk values shall be assigned. These val-
ues are meant to categorise assets by risk level. We propose to limit the possible

Goal-Based Establishment of an Information Security Management System Compliant 109

labels to low (1), medium (2), and high (3) as proposed by the NIST 800-30 [6]
standard for risk management. These values are later in the process refined in order
to assess if an asset has an acceptable risk level in light of its threats or if additional
controls are needed. We illustrate the resulting asset list in Tab. 3.

Table 3. Asset List

Asset Asset Owner Need for Protection Risk
Level

Power Plant Energy Provider The power plant produces the energy sold and
consumed in the smart grid. Its availability is of
utmost importance.

3

.

Step 4: Analyze Threats - The ISO 27001 standard concerns threat analysis in sev-
eral sections for determining the risks to assets. Section 4.2.1 d demands a threat anal-
ysis for assets for the purpose of identifying risks and the vulnerabilities that might be
exploited by those threats. Section 4.2.1 e concerns risk analysis and evaluation and
demands to determine likelihoods and consequences for threats.

The ISO 27001 standard demands threat analysis in order to determine and analyse
risks to assets. In particular, the standard mentions the importance of physical and net-
work threat analysis. We consider four basic kinds of attackers for our threat analysis
as proposed in [7]. These are software attackers that target software systems, network
attackers that are reading or manipulating network traffic, physical attackers that are
targeting hardware installations, and social engineering attackers that manipulate roles
or agents. A study of the SANS Institute from 20064 revealed four fundamental moti-
vations of social engineering attackers: Financial gain, self-interest, revenge, external
pressure. We believe these motivations are generic enough to serve all types of IT at-
tackers. We also added the motivation curiosity, which we identified in discussions with
the industrial partners of the NESSoS project. We explain all of these motivations in the
following: We model attacker motivations as soft goals of attackers, depicted in Fig. 2.
The assumptions about each attacker are annotated using UML notes. The refined goals
of attackers from their soft goals are threats. This refinement is modeled with means-
end relationships, because the threats are a means to act upon the attacker’s motivation.
We use the means-end relationship to model relations between threats and resources, as
well. The reason is that the exploit of a resource fulfills a threat. For simplicity’s sake,
we show only the elements of the SI* model necessary for the threat analysis in Fig. 2.

We consider two different Network Attackers in our analysis. One Network Attacker
has the soft goal External Pressure. Hence, the Network Attacker has the capabilities to
attack the network, but no motivation for doing so. We assume the attacker is pressured
by a criminal organisation to Access and Manipulate Network Traffic. The resources this
goal targets are the Security Module, the Smart Meter, and the Gateway to the Grid, be-
cause all of these are connected via a network and we assume the Network Attacker

4 http://www.sans.org/reading room/whitepapers/engineering/
social-engineering-means-violate-computer-system 529

http://www.sans.org/reading_room/whitepapers/engineering/social-engineering-means-violate-computer-system_529
http://www.sans.org/reading_room/whitepapers/engineering/social-engineering-means-violate-computer-system_529

110 K. Beckers

Fig. 2. SI* Diagram concerning goal-based Threat Analysis

can gain access to all networks. The Network Attacker is pressured to Read Data and
ModifyData. User Data is owned by the customer and threatened by the Network At-
tacker, as well. These threats are a means to achieve the goals of the Network Attacker.
A second Network Attacker acts out of Curiosity and gains access to the Smart Meter.
The Social Engineering Attacker has the soft goal to get Financial Gain from attacking
the Smart Metering Gateway. The attacker wants to Conduct Online Banking Fraud
and for this purpose Access the Smart Grid Billing Information. The attacker aims to
Gain Passwords of the Consumer. After the attacker has acquired the Passwords of the
Consumer, the attacker can Gain User Information. The Physical Attacker is motivated
by Revenge against the Customer and wants to Destroy Equipment. The attacker targets
the Power Line Connections and the Smart Metering Gateway. The Software Attacker is
motivated by Self Interest and wants to Exploit Software in order to hide data about his
or her energy consumption. For simplicity’s sake we do not show all possible attackers
and their motivations. However, we show exemplary the exclusion of one attacker. The
Physical Attacker with the motivation Financial Gain is not considered, because the
effort and skill required to steal a Smart Metering Gateway is not worth the insignifi-
cant monetary value for it. In particular, because the Energy Manager has equipped the
gateway with IDs and the Energy Manager can block the access of stolen gateways to
the smart grid. We use the elicited threats as inputs for misuse cases [4]. These are tex-
tual representations of attacker’s actions for threat identification. We use them to derive
security requirements and check for missing threats. We propose a table as introduced
by Deng et al. [8] that lists misuse cases and their corresponding security requirement.

Goal-Based Establishment of an Information Security Management System Compliant 111

Table 4. From Misuse Cases to Security Requirements

Misuse Case Security Requirement

1. The confidentiality of the Consumer’s Passwords
might be compromised by a Social Engineering

Attacker.

Ensure that the confidentiality of the Passwords is not
compromised by a social engineering attack.

2. The availability and integrity of the Smart Metering
Gateway can be compromised by a Software Attacker.

The Smart Metering Gateway has to be protected
against Software Attackers that aim to execute exploits.

.

In contrast to the work of Deng et al., we do not consider solutions in this step. We
discuss these during the selection of ISO 27001 security controls in the following. We
illustrate several misuse cases in Tab. 4.

Step 5: Conduct Risk Assessment and Control Selection - Risk management is
mentioned in numerous sections of the ISO 27001 standard. In the method risk is used
to assess if an asset requires an additional control or not. We use the risk management
technique proposed by Asnar et al. [9] for goal-based requirements engineering. For
simplicity’s sake, we do not explain it in detail in this work.

For each of the assets that has an unacceptable risk level controls have to be selected
to reduce that risk. We use the resulting security requirements of the threat analysis
as guidance for selecting controls. The numbering of the controls starts with A.5 and
ends with A.15. The reason for not starting the numbering with A.1 is that the control
numbering shall align with the controls listed in the ISO/IEC 17799:2005 standard. This
standard provides guidelines on how to implement the controls, but it is not normative.

For the requirement 2 from Tab. 4 we choose adequate controls. The control A.10
Communications and operations management contains the sub control A.10.4 Protec-
tion against malicious and mobile code. Further sub controls are A.10.4.1 Controls
against malicious code, which is described as “Detection, prevention, and recovery
controls to protect against malicious code and appropriate user awareness procedures
shall be implemented. ”[1, p. 19]. In addition, another relevant sub control is A.10.4.2
Controls against mobile code: “Where the use of mobile code is authorized, the con-
figuration shall ensure that the authorized mobile code operates according to a clearly
defined security policy, and unauthorized mobile code shall be prevented from exe-
cuting.” [1, p. 19]. The selection of these controls is followed by selecting concrete
measures. For example, we have to conduct penetration testing in order to find existing
vulnerabilities in the software of the Smart Metering Gateway and fix these. For each
asset, we have to iterate over all controls in the Appendix A of the ISO 27001 standard
and state if a control is required or not for that asset. The resulting document is the
so-called Statement of Applicability.

Step 6: Design ISMS Specification - The ISO 27001 standard demands a docu-
mentation of the ISMS. The standard demands several documents for each part of the
ISMS, but the standard states no demands for the form or medium. Hence, we developed
a mapping (see Tab. 5) of the generated artifacts from our method to the documentation
demands.

112 K. Beckers

Table 5. Support of our Method for ISO 27001 Documentation Demands

ISO 27001 Documentation Requirement Artifacts of our Methods

ISMS policies and objectives Misuse cases and Security Requirements
Scope and boundaries of the ISMS SI* diagrams
Procedures and controls Documentation of selected security controls and their im-

plementation
The risk assessment methodology Description of the method by Asnar et al. [9]
Risk assessment report Results of asset identification and threat analysis including

SI* models
Risk treatment plan Risk Assessment and Control Selection
Information security procedures Control Documentation of resulting security processes
Control and protection of records Documentation of selected measures to control documents
Statement of Applicability Reasoning about Controls

6 Discussion and Related Work

The procedure presented in this chapter was developed based on discussions with prac-
titioners from security and especially ISO 27001 projects. Parts of our method was
discussed with security consultants. The security consultants mentioned that this struc-
tured procedure

– Helps to describe the attackers’ abilities in more detail,
– Supports the identification of all threats on the given assets,
– Supports the identification and classification of assets.
– Increases the use of models instead of texts in standards, which eases the effort of

understanding the system documentation,
– Provides the means for abstraction of a complex system and structured reasoning

for security based upon this abstraction.

One issue that needs further investigation is that of scalability, both in terms of the
effort needed by the requirements engineer in order to enter all information about the
organization and the threat analysis proposed. We will use the method for different
scenarios to investigate if the method scales for complex goal models.

To the best of our knowledge no approach exist to use a goal-based security require-
ments engineering approach for ISO 27001 complaint ISMS establishment.

Mellado et al. [10] created the Security Requirements Engineering Process (SREP).
SREP is an iterative and incremental security requirements engineering process. In ad-
dition, SREP is asset-based, risk driven, and follows the structure of the Common Crite-
ria [11]. The work differs from ours, because the authors do not support the ISO 27001
standard.

7 Conclusion

We have presented a structured method to establish an Information Security Manage-
ment System (ISMS) according to the ISO 27001 standard, which builds upon the se-
curity requirements engineering method SI*. Our method provides the means to elicit

Goal-Based Establishment of an Information Security Management System Compliant 113

the context of an ISMS consider management commitment, threat and risk analysis, as
well as security requirements-based control selection.

Our method offers the following main benefits:

– A structured method for describing the context, analyzing threats and risks, formu-
lating security requirements, and selecting ISO 27001 controls,

– Re-using SRE methods to support the development of an ISO 27001 ISMS,
– Support for generating consistent ISMS documentation compliant to ISO 27001
– Re-using the structured techniques of SRE methods for analyzing complex systems

and eliciting security requirements, to support the refinement of sparsely described
sections of the ISO 27001 standard.

References

1. ISO/IEC: Information technology - Security techniques - Information security management
systems - Requirements. ISO/IEC 27001, International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC) (2005)

2. Massacci, F., Mylopoulos, J., Zannone, N.: Security requirements engineering: The SI* mod-
eling language and the secure tropos methodology. In: Ras, Z.W., Tsay, L.-S. (eds.) Advances
in Intelligent Information Systems. SCI, vol. 265, pp. 147–174. Springer, Heidelberg (2010)

3. Beckers, K., Faßbender, S., Heisel, M., Küster, J.-C., Schmidt, H.: Supporting the Develop-
ment and Documentation of ISO 27001 Information Security Management Systems through
Security Requirements Engineering Approaches. In: Barthe, G., Livshits, B., Scandariato, R.
(eds.) ESSoS 2012. LNCS, vol. 7159, pp. 14–21. Springer, Heidelberg (2012)

4. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse cases for
security threat identification. Inf. Softw. Technol. 51, 916–932 (2009)

5. ISO and IEC: Common Criteria for Information Technology Security Evaluation. ISO/IEC
15408, International Organization for Standardization (ISO) and International Electrotechni-
cal Commission (IEC) (2009)

6. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information technol-
ogy systems. NIST Special Publication 800-30, National Institute of Standards and Technol-
ogy (NIST) (2002)

7. Beckers, K., Côté, I., Hatebur, D., Faßbender, S., Heisel, M.: Common Criteria CompliAnt
Software Development (CC-CASD). In: Proceedings 28th Symposium on Applied Comput-
ing, pp. 937–943. ACM (2013)

8. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analy-
sis framework: supporting the elicitation and fulfillment of privacy requirements. Requir.
Eng. 16, 3–32 (2011)

9. Asnar, Y., Giorgini, P., Massacci, F., Zannone, N.: From trust to dependability through risk
analysis. In: Proceedings of ARES, pp. 19–26 (2007)

10. Mellado, D., Fernandez-Medina, E., Piattini, M.: A comparison of the common criteria with
proposals of information systems security requirements. In: ARES, pp. 654–661 (April 2006)

11. Mellado, D., Fernández-Medina, E., Piattini, M.: Applying a security requirements engi-
neering process. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 192–206. Springer, Heidelberg (2006)

ProofBook: An Online Social Network

Based on Proof-of-Work and Friend-Propagation

Sebastian Biedermann1, Nikolaos P. Karvelas1, Stefan Katzenbeisser1,
Thorsten Strufe2, and Andreas Peter3

1 Security Engineering Group
Technische Universtität Darmstadt

{biedermann,karvelas,katzenbeisser}@seceng.informatik.tu-darmstadt.de
2 P2P Networking Group

Technische Universtität Darmstadt
strufe@cs.tu-darmstadt.de

3 Distributed and Embedded Security Group
University of Twente
a.peter@utwente.nl

Abstract. Online Social Networks (OSNs) enjoy high popularity, but
their centralized architectures lead to intransparency and mistrust in the
providers who can be the single point of failure. A solution is to adapt
the OSN functionality to an underlying and fully distributed peer-to-peer
(P2P) substrate. Several approaches in the field of OSNs based on P2P
architectures have been proposed, but they share substantial P2P weak-
nesses and they suffer from low availability and privacy problems. In this
work, we propose a distributed OSN which combines an underlying P2P
architecture with friend-based data propagation and a Proof-of-Work
(PoW) concept. ProofBook provides availability of user data, stability of
the underlying network architecture and privacy improvements while it
does not limit simple data sharing based on social relations.

Keywords: Online Social Network, Peer-to-Peer, Proof-of-Work.

1 Introduction

Popular Online Social Networks (OSNs) use a centralized design which some-
times leads to intransparent providers that can be the single point of failure. In
order to solve this problem, current research aims at either content confidential-
ity through encryption of posts, or at privacy through the removal of centralized
data storage control by introducing an underlying peer-to-peer (P2P) substrate.
However, P2P architectures lead to new problems which can have a strong im-
pact on design principles of these OSNs. Availability and freshness of the users’
published content, is a very important property of any successful OSN. User
data has to be stored on the devices of other users alternating between an online
and offline status. In order to increase user data availability within the OSN,
the user data has to be stored on a great number of other users, which finally

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 114–125, 2014.
c© Springer International Publishing Switzerland 2014

ProofBook: An Online Social Network Based on Proof-of-Work 115

results in the fact that each OSN participant has to provide a lot of storage.
In general, OSNs which use other unknown P2P participants to store the users’
sensitive data do not enjoy great popularity even if the stored data is encrypted.
Furthermore, P2P substrates suffer from stability and security problems like
Denial-of-Service (DoS) attacks (in which large amounts of requests are sent),
Eclipse attacks [15], systematic content pollution (by introducing large amounts
of fake data) or misuse for collusive piracy, many of which are exacerbated by
the possibility to create a number of different zero-cost identities in the system
(sybils).

In this paper, we assume an attacker model in which malicious users can per-
form DoS attacks, for example in the form of message flooding, and propose a
fully distributed OSN architecture which nevertheless ensures privacy of each
participant. We focus on the mitigation of these DoS attacks and propose a new
OSN architecture, based on an underlying P2P substrate and an incentivised
Proof-of-Work (PoW) concept which we call ProofBook. ProofBook has a de-
centralized architecture which nevertheless can ensure availability of published
content, can increase anonymity and privacy of each user and can prevent ma-
nipulations and insider attacks of malicious participants as well as can mitigate
DoS attacks. We can summarize the contributions of ProofBook as follows:

– Availability: User data is continuously available and as up-to-date as possible.
This is realized with an update-on-request concept in which each user stores
only the data of friends.

– Stability: Systematic content pollution, which is a major problem in P2P
substrates, is mitigated in ProofBook by design, due to the implemented
PoW concept which operates like a stamp used to pay for delivery of requests.

– Privacy: Friend relationships among ProofBook users are private and can
neither be manipulated nor is any private user data revealed. This is enforced
with the help of cryptographic techniques and hiding sources of delivered
requests.

2 Related Work

2.1 Consolidations of P2P Substrates and OSNs

In general, data sharing performance in P2P networks can be increased based
on social information about the participants. Chen Hua et al. [10] proposed
“Maze”, a hybrid P2P architecture which benefits from social information to
help peers discover each other. Pouwelse et al. [13] proposed “Tribler” which
is a consolidation of an underlying P2P architecture and social network data
in order to increase usability. Graffi et al. [9] investigated security problems in
P2P-based social networks. They proposed a P2P based social network with
fine-grained user- and group-based access control to shared content.

In order to avoid the centralized architectures of OSNs, different OSN archi-
tectures based on an underlying P2P substrate have been proposed. The most
popular architecture is Diaspora [5] which is an OSN based on a network of

116 S. Biedermann et al.

independent servers that are maintained by users who allow other users to store
their data. Buchegger et al. [6] introduced PeerSoN, a distributed OSN based on
a two-tiered P2P architecture which consists of peers communicating with each
other and a separate look-up service. Cutillo et al. [7] proposed Safebook which
exploits real-life trust relationships and maps these social links to a decentral-
ized P2P network. Based on this, security mechanisms are implemented, while
data integrity and availability are provided. In summary, these consolidations
can achieve availability, but they often lack privacy.

2.2 Proof-of-Work Based Architectures

A lot of work has been done in the field of incentivised P2P substrates based on
certain proofs for more accountability or e-cash ([3],[4]). Proof-of-Work (PoW)
schemes are variants of cost-functions which are difficult to produce but triv-
ial to verify. The degree of difficulty can vary depending on factors like the
amount of participants. A PoW can be used to verify the existence of remote
hardware resources that are controlled by a remote client. In particular, PoW
approaches are used to combat spam mail, to mitigate DoS attacks or to control
access to a shared resource [8]. Back [1] proposed “Hashcash” which is a PoW-
based architecture that throttles systematic abuse of remote network resources.
Bitcoin [12] is an electronic currency system based on a P2P substrate which
prevents double spending of digital cash by adding a transaction with a PoW
into a globally distributed chain of participants. The PoW is to find a hash for a
given content which has a previously defined amount of initial zeros. This hash
is calculated over data that includes the history of transactions. Since the cur-
rently most efficient way to find a valid hash are brute forcing techniques, the
difficulty exponentially increases with the increasing amount of required initial
zeros. Different hashes are created by changing an included nonce.

3 Overview of the Key Scheme

The architecture of ProofBook combines an underlying P2P substrate with a pro-
tocol that makes use of a PoW concept and incentivised cooperation to mitigate
misuse. ProofBook provides standard OSN operations, integrates an incentive
for participants without disrupting the utilization of the OSN and propagates
new user data with the help of the user’s friends.

3.1 User Registration and Friendships

ProofBook does not have a database which stores account information about
users. Joining ProofBook and accordingly the underlying P2P substrate can be
achieved by receiving the IP address of a participating peer from a secondary
channel (for example via a web site). New friendships can be established by
directly exchanging initial information. More precisely, each user U is associated
with a public and private key pair (kp, ks) that will be used for signing certain

ProofBook: An Online Social Network Based on Proof-of-Work 117

information like U ’s data container. Additionally, U creates a symmetric “friend-
key” kf . The latter is distributed among U ’s group of friends and enables them
to reply on requests which target U ’s data. Based on different “friend-keys”,
U can also maintain different group of friends (close friends, colleagues, etc).
A friend relationship to U is established by retrieving U ’s public key kp and
subsequently U ’s data container which also includes the symmetric friend-key
kf . Obtaining U ’s public key enables a friend to identify oneself as member of
U ’s group of friends. We do not treat the exchange of this data further, as this
can be done with standard cryptographic techniques using a secondary channel.

3.2 User Data Propagation and Availability

The data of each ProofBook user U is saved in a container structure which can
include up-to-date status information, personal information and pictures. U ’s
data container is identified by U ’s ID and a signature on the content under
U ’s secret key ks to verify U as the owner. The data container’s structure is
illustrated in Figure 1. U ’s data container also includes the IDs of U ’s current
friends. This way, a friend of U can contact other friends of U even if they have
no established friendship themselves. A ProofBook container is separated into
a redundant array of 8 data blocks (block-level striping with double distributed
parity). This offers the opportunity to restore the whole data of U ’s container
even if 2 sub-containers are not available while the storage efficiency is still 75%.
Furthermore, each sub-container includes a timestamp (last-modified). The key
scheme of ProofBook is based on a simple fact which can guarantee availability
of U ’s data even if U is offline: If U has retrieved and viewed the data container
from an arbitrary friend once, U can locally save this data forever and this event
cannot be undone. Based on this, users directly save all data containers of their
friends locally and ProofBook benefits from this approach, because users can
not only request the friend’s data from the target friend itself, but also from
other friends of this friend who have a locally stored the data containers of their
friends as well. In addition, there is no need to encrypt a container’s data since
it is only stored on users who are allowed to access this data anyway.

Fig. 1. A container which is published by U and can be requested by friends of U

118 S. Biedermann et al.

ProofBook users can perform update requests when viewing the content of
a friend’s data container. If a newer data container of this friend is currently
available, it can be requested and used to replace the locally saved one. The
updated data container is again available for update-requests of other friends
of this friend. The functionality of ProofBook is based on the simple update
requests which are delivered by the underlying P2P substrate and which can be
answered by friends of the target friend or the target friend himself. The content
of a ProofBook update request can be seen in Figure 2.

Fig. 2. A ProofBook update request

A ProofBook request includes a target user ID which can be the ID of the
target friend or the ID of a friend of this friend, retrieved from the target friend’s
data container. Furthermore, there is the ID of the friend whose data container is
requested, a timestamp and a hash (SHA256) which actually represents a PoW
that is calculated over the content of the request and that needs to have a previ-
ously defined amount of initial zeros. A valid hash can be found by changing the
nonce which is included in the content. Additionally, the request includes the
encrypted source IP address of the requesting user which can only be decrypted
by users who have the target friend’s friend key kf . The request is anonymous
since there is no plain information about its source, only about the target. To
mitigate DoS attacks, systematic content pollution and to limit users obtaining
multiple identities in parallel, the requests are only forwarded by the underly-
ing P2P substrate if the PoW, which was calculated by the source user, can
be verified by the delivering peers. Otherwise, the requests are dropped. The
request cannot be changed by peers without redoing the PoW and successful
modifications are not possible since the friend key kf is not available to arbi-
trary delivering peers. To ensure the freshness of the PoW, the peers use the
timestamp and a synchronized clock (for example retrieved from a fixed clock
server). New data of U is propagated stepwise among the group of U ’s friends
based on these update requests.

Figure 3 shows the initial steps of a request sent by a user Alice to retrieve
a new data container of her friend Bob. In an update procedure, Alice sends
multiple requests targeting Bob as well as Bob’s friends. If the PoW of the request

ProofBook: An Online Social Network Based on Proof-of-Work 119

Fig. 3. Alice performs an update request which is forwarded to retrieve timestamps of
Bob’s currently available data containers

can be verified by the peers which are on the route, they forward the request to
the target user. Receivers decrypt Alice’s source IP address using Bob’s friend
key kf and directly reply with a request for a hash over Bob’s public key to verify
that Alice is a friend of Bob. If Alice replies with a valid hash, the receiver sends
the timestamp of Bob’s stored data container. Alice chooses the most up-to-date
data container and directly downloads all sub-containers from the chosen target.
This target can be Bob himself (if Bob is currently online). Alice verifies the
signature of each sub-container of Bob’s container with the help of Bob’s public
key kp. The reply procedure uses directly established connections and the P2P
substrate is only used in the update request delivering procedure (one-way).

3.3 The ProofBook Payment Scheme

In Bitcoin [12], the amount of initial zeros of the required hashes which is used
as degree of difficulty for the PoW is dynamically arranged. In ProofBook, there
are only three different static levels Li, i ∈ {1, 2, 3} implemented. They enforce
three degrees of difficulty on two different points.

First, since the update requests from a specific source are usually delivered
on equal paths in the underlying P2P substrate within same periods of time,
Li depends on the amount of requests a peer has already delivered to the same
target. A peer will only deliver a specific amount of requests to a target peer
with the initial PoW difficulty L1 within a fixed implemented time slot. If more
requests have to be delivered within the same time slot, the difficulty to send a
request to the same target becomes harder (L2) and finally very hard (L3). The
increasing difficulty levels do not depend on the sources of the requests, rather
on the target. Sending update requests to a specific target gets more expensive,

120 S. Biedermann et al.

the more requests are sent to the same target within the same time slot. This
way, several attacks based on huge amount of requests can be mitigated.

Second, the last peer on the path to an arbitrary target obtains information
about the target’s hardware device, retrieved from the client once enrolled in
the P2P substrate. If the target device is a desktop computer, the peer delivers
every request, if it is a notebook only with L2 or higher and if it is smartphone
only with L3.

This way, there is another load balance, which enforces more load on devices
having better performance than others because they are cheaper to request.

Fig. 4. Utilization of different example PoW levels Li comparable to amounts of re-
quired stamps in the real world

Figure 4 illustrates the utilization of Li at the two different points in Proof-
Book. Like a stamp which is used to send a letter in the physical world, these
values are used to pay different prices for the update requests to a specific tar-
get. The PoW acts as a buffer and reduces the amount of requests which can
be delivered to the same target within a time slot depending on the amount of
requests and the target’s device.

It shall be noted that a botnet owner could compute the PoWs which he could
use for continuous high amounts of requests to a single target in order to make it
also costly for others to reach this user. However, the underlying P2P substrate is
dynamic and uses different paths for the requests, depending on the entry point
of the sender. That way, an attacker would require a high degree of knowledge
about the current internal topology as well as many user IDs of users who are
not necessarily connected with each other to mount such an attack successfully.

In order to implement an incentive for the replier of an update request, who
finally sends the data container to the requesting user, we use a stepwise strategy
in a commitment scheme. For each sub-container Bob sends to Alice, Bob receives
a PoW-token from Alice (L1) which he can use to decrease PoWs of own requests
at a later point in time (Figure 5). If it so happens that Alice or Bob skips during
the container transfer, Bob has at least retrieved some usable tokens and Alice
can restore the data container even if up to two of the eight sub-containers are

ProofBook: An Online Social Network Based on Proof-of-Work 121

Fig. 5. For each verified received sub-container, Alice sends a PoW token to Bob

missing using the redundant structure of the containers. Bob can use the PoW-
tokens in later requests to decrease his required PoW. This can be reached by
extending an update request (Figure 6) with these tokens and calculating the
PoW over the request and the extending tokens (max 8). The tokens can be used
within a period of time in the future, defined by their timestamps. Furthermore,
they can only be used in requests targeting the data container of the same user
who Alice has requested and with whom Bob is a friend as well.

Fig. 6. An update request extended with previously earned PoW-tokens

Delivering peers only accept two different extended update requests, either
with at least 6 or 8 additional PoW tokens targeting the same requested user
ID. 6 tokens can decrease one level of PoW (e.g. from L2 to L1) and 8 tokens
can decrease two levels (from L3 to L1). With this strategy, ProofBook actually
gives an incentive for Bob to send that much sub-containers which Alice needs
since Bob can perform these extended requests faster.

4 Evaluation

In the evaluation, we investigated two questions: First, how much time is required
for an update request, since delays are caused by the PoW calculations and
verifications. Second, in which periods of time data containers are propagated
among a group of friends based on the update-on-request approach with the help
of friends.

122 S. Biedermann et al.

4.1 ProofBook Update Request Timings

First, we evaluated how much time the PoW computations require in our setup
(Intel(R) Core(TM) i7 M620 with 2.67Ghz). We calculated PoWs for random
update requests depending on different levels (amount of required initial zeros).
Since the calculations become exponentially more difficult, the required time
becomes quickly very large (Figure 7).

Fig. 7. Timings required to find a PoW with different targets (1024 test-runs)

A PoW with at target of 16 requires around 0.5 second on average having
a standard deviation of 0.5 second. We implemented these timings as well as
their deviations in a ProofBook simulation based on the discrete event-based
P2P network simulation engine Oversim [2] which is based on Omnet++ [16].
For the test-runs, we used a Pastry [14] P2P substrate. The expected amount
of forwarding peers in a Pastry overlay substrate is O(logN) where N is the
number of participating peers. We investigated how much time a ProofBook
update request requires including the PoW calculations and the “on-the-way”
verifications.

Finally, we compared the results to other test-runs with normal request in
the same Pastry P2P substrate. We used a P2P overlay with 1000 peers each of
them running the ProofBook application on top of the Pastry P2P substrate and
a ProofBook update request message size of 256 Bytes. A random ProofBook
user is continuously chosen and sends an update request to another random
ProofBook user. We have chosen two levels L1 with a target of 17 and L2 with
a target of 19. Results of these test-runs can be seen in Table 1.

Table 1. Mean of delivered requests/s between random users (1000 participants)

PoW Li (target) L0 (0) L1 (17) L2 (19)

Delivered requests/s 0.99301 0.35602 0.24580

ProofBook: An Online Social Network Based on Proof-of-Work 123

The amount of involved peers lead to an average hop count of 2.51 ± 0.03
peers for a one-way delivered request. Table 1 shows the requests in comparison
to requests without any PoWs in the same P2P Pastry substrate. With L1, an
update request can reach the target only every three seconds in average and with
L2 an update request can reach the target only every four seconds in average.
The PoW scheme successfully limits the amount of delivered requests.

4.2 User Data Container Propagation

We executed other test-runs to investigate how fast a randomly chosen updated
data container of an arbitrary user U propagates within U ’s group of friends.
Since the network protocols are negligible in this case, we developed a ProofBook
data container propagation simulation in Java. For a realistic scenario, we first
needed to determine several values:

First, based on [11], we assume a power law probability distribution (Zipf’s
law) for the amount of friends each user has. We use a maximum of 500 and
an α of 0.5 which leads to a numerical mean of 341 friends which is consistent
with a recent Facebook study1, where the median of the users’ friends was found
to be 342. Second, in reality, OSN users are continuously interested in up-to-
date data of just a few of their “best” friends and in the data of most of their
other friends only sporadically. We subdivide each user’s friends into three equal
subgroups. A random friend from the first subgroup (best-friends) is requested
with a probability of p = 0.5, from the second subgroup with p = 0.35 and
from the third subgroup with p = 0.15. Third, a user is not continuously online.
Because of the increasing number of involved mobile online devices, we assumed
a probability Pon of 33% for U to be online in any time slot of 6 minutes which
leads to an average online time for a user of 7 hours a day.

In the test-runs, we monitored a randomly chosen user Um who updated his
data and we monitored all of Um’s friends. In a time slot (6 minutes), each
friend Fi of Um can perform an amount of Rn update request. Requests of Fi
are only performed if Fi is online as well as replies are only sent if the target is
online. Fi’s chosen targets depend on Fi’s “best-friends” subgroups. After each
slot, all friends of Um have adapted their online status. In multiple test-runs,
we monitored the time which is required to distribute Um’s new data container
among at least 33% of Um’s friends. This is feasible in our scenario since we also
assume that not more than 33% of Um’s friends belong to Um’s best friends.
Table 2 shows results. In average, Um’s new data container was distributed
in 11.91 hours if Um’s friends request their friends for updates every minute
depending on their best-friend subgroups. In order to improve the container
propagation, we enforced additional requests of Um’s friends in each time slot.
Multiple update requests are feasible since the most requests do not finally lead
to the transfer of a data container. If we assume that the clients of Um’s friends
additionally perform a request to one of their friends (randomly chosen) every
minute (+ random6), the container of Um is distributed within 5.47 hours. If we

1 http://blog.stephenwolfram.com/2013/04/

http://blog.stephenwolfram.com/2013/04/

124 S. Biedermann et al.

Table 2. Time required to propagate an arbitrary user’s data container within 33% of
this user’s friends (100 test-runs)

Rn within time slot mean [h] std [h]

6 11.91 5.86

6 + random6 5.47 2.67

6 + random24 2.45 2.15

increase the number of enforced requests to one request every 15s (+ random24),
Um’s container is distributed in 2.45 hours.

5 Conclusion

To the best of our knowledge, ProofBook is the first OSN architecture which is
based on a combination of two approaches: First, a Proof-of-Work (PoW) ar-
chitecture is implemented which mitigates certain network attacks like Denial-
of-Service as well as allows preferring users with better network performance
in data transfers. In order to combine OSN mentality and the PoW, incentives
are introduced and up-to-date data containers can be only retrieved unhindered
if the users follow the underlying protocol. Second, ProofBook benefits from a
friend-based data propagation approach which is based on the ability of friends
of a user replying to update requests targeting the data container of this user.
The privacy level is enhanced since the users’ data is only stored on the users’
friends rather than on unknown peers. The sources of requests are anonymous
and can only be decrypted by the target group of friends. In an evaluation, we
showed that the PoW scheme helps to limit the amount of requests that can
be successfully performed and accordingly mitigates certain attacks. We showed
that the friend-based data propagation scheme is feasible under realistic condi-
tions. An implementation and a user-interface are crucial for the success of any
OSN and required to perform further evaluations of the proposed architecture.
This as well as a more large-scaled evaluation belong to our future work.

Acknowledgments. Thorsten Strufe is partially supported by MSIP (Ministry
of Science, ICT & Future Planning), Korea in the ICT R&D Program 2013.
Andreas Peter is supported by the THeCS project as part of the Dutch national
program COMMIT.

References

1. Back, A.: Hashcash: A denial of service counter-measure (2002)
2. Baumgart, I., Heep, B., Krause, S.: OverSim: A flexible overlay network simulation

framework. In: Proceedings of 10th IEEE Global Internet Symposium (GI 2007) in
conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, pp. 79–84 (2007)

ProofBook: An Online Social Network Based on Proof-of-Work 125

3. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of the 3rd International
Workshop on Economics of Networked Systems, NetEcon 2008, pp. 85–90. ACM,
New York (2008)

4. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.,
Rachlin, E.: Making p2p accountable without losing privacy. In: Proceedings of
the 2007 ACM Workshop on Privacy in Electronic Society, WPES 2007, pp.
31–40. ACM, New York (2007)

5. Bielenberg, A., Helm, L., Gentilucci, A., Stefanescu, D., Zhang, H.: The growth
of diaspora - a decentralized online social network in the wild. In: 2012 IEEE
Conference on Computer Communications Workshops (INFOCOMWKSHPS), pp.
13–18 (2012)

6. Buchegger, S., Schiöberg, D., Vu, L.-H., Datta, A.: Peerson: P2p social networking:
early experiences and insights. In: Proceedings of the Second ACM EuroSys Work-
shop on Social Network Systems, SNS 2009, pp. 46–52. ACM, New York (2009)

7. Cutillo, L.A., Molva, R., Strufe, T.: Safebook: a privacy preserving online social
network leveraging on real-life trust. IEEE Communications Magazine 47(12) (De-
cember 2009), Consumer Communications and Networking Series

8. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

9. Graffi, K., Mukherjee, P., Menges, B., Hartung, D., Kovacevic, A., Steinmetz, R.:
Practical security in p2p-based social networks. In: IEEE 34th Conference on Local
Computer Networks, LCN 2009, pp. 269–272 (October 2009)

10. Hua, C., Mao, Y., Jinqiang, H., Haiqing, D., Xiaoming, L.: Maze: a social peer-to-
peer network. In: IEEE International Conference on E-Commerce Technology for
Dynamic E-Business, pp. 290–293 (September 2004)

11. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 29–42. ACM,
New York (2007)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
13. Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,

D.H.J., Reinders, M.J.T., Steen, M.R.V., Sips, H.J.: TRIBLER: a social-based
peer-to-peer system. Concurrency and Computation: Practice and Experience 20,
127–138 (2008)

14. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems (2001)

15. Singh, A., Castro, M., Druschel, P., Rowstron, A.I.T.: Defending against eclipse
attacks on overlay networks. In: SIGOPS European Workshop (2004)

16. Varga, A.: Using the omnet++ discrete event simulation system in education. IEEE
Transactions on Education 42(4), 11 (1999)

Platform Independent Software Development

Monitoring: Design of an Architecture

Mária Bieliková, Ivan Polášek, Michal Barla, Eduard Kuric,
Karol Rástočný, Jozef Tvarožek, and Peter Lacko

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology

Ilkovičova 2, 842 16 Bratislava, Slovakia
{name.surname}@stuba.sk

http://perconik.fiit.stuba.sk

Abstract. Many of software engineering tools and systems are focused
to monitoring source code quality and optimizing software development.
Many of them use similar source code metrics to solve different kinds
of problems. This inspired us to propose an environment for platform
independent code monitoring, which supports employment of multiple
software development monitoring tools and sharing of information among
them to reduce redundant calculations. In this paper we present design of
an architecture of the environment, whose main contribution is employ-
ing (acquiring, generating and processing) information tags - descriptive
metadata that indirectly refer source code artifacts, project documen-
tations and developers activity via document models and user models.
Information tags represent novel concept unifying traditional content
based software metrics with recently developed activity-based metrics.
We also describe prototype realization of the environment within project
PerConIK (Personalized Conveying Information and Knowledge), which
proves feasibility and usability of the proposed environment.

Keywords: Information tag, Source code, Software development, De-
veloper’s expertise, Interaction data, Software metrics.

1 Introduction

Source code quality and optimization of software development process fall within
long-term problems of software engineering. Many of proposed methods that
aim to solve these problems utilize source code metrics (e.g., LLOC, CLOC) [7],
watch activities of developers and process of the development [6] and visual-
ize results in different views that simplifies identification of problematic source
code and communication with stakeholders [5]. These methods have different
strengths and weaknesses related to particular problems. Thus by combining
several methods in one environment we can achieve a more robust solution.
Even more, we can move from a separate execution of distinct methods into an
“orchestration”, where particular methods take advantage of and reuse shared
“knowledge” base about source codes, project documentations and developers.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 126–137, 2014.
c© Springer International Publishing Switzerland 2014

http://perconik.fiit.stuba.sk

Platform Independent Software Development Monitoring 127

Current trends of information and knowledge modelling utilize ontologies for
sharing and storing information [20]. Ontologies (either lightweight or heavy-
weight) are also often used in web information services that describe webpage
artifacts, which are in some aspects similar to software source code artifacts.
This description of webpage artifacts is provided via semantic annotations that
can refer to concepts of external ontologies [1] or they can directly contain frag-
ments of an ontology in form of bags of triples [18]. These semantic annotations
can be put directly into web pages as HTML tag attributes, practically visible
only to machines and not distracting user in any way. Such approach however
cannot be used for source codes, as they would quickly become unclear, hard to
read and understand for a programmer.

Another approach is to store metadata in external files with proper references
to described resources. This approach suffers by granularity issues – metadata
can often refer only the whole file [15], what is insufficient for source codes, or
they straightly refer line numbers of annotated source code artifacts [10] what
significantly decreases maintainability of metadata (after each source code file
modification, all references have to be updated to current line numbers).

In this paper we introduce design of an architecture of a novel environment for
code monitoring which employs information tags as descriptive metadata over
document model and user model. This way we contribute to solving a problem
of computational redundancy and increase cooperation among services and tools
for software development support.

2 Architecture Overview

The proposed environment has to be able process data created by developers
directly as well as indirectly (by observing and logging their actions) and to
provide added value in real-time. For this reason we divide processing data to
multiple partial processes that are sub-processes of two main processes – data
acquisition and added value provision.

2.1 Data Acquisition

Decomposition of data processing into multiple processes gives us a possibility
to break complex problems of processing big data to several smaller and less
complex problems that can be distributed over multiple machines and processed
in real time. This can be especially notable in the process of data acquisition,
which needs to cope with stream of events about modifications in source code,
projects documentations and learning materials and also activities of developers
and team leaders. Thus we decompose data acquisition to four horizontal layers
– data source, data, metadata and metadata processing based on granularity of
the data and to three vertical layers - tags, documents and logs about activities
based on the character of the data (see Fig. 1).

Data acquisition starts in data source – users’ working environments. Data
from working environments are collected via a set of pre-installed tools that

128 M. Bieliková et al.

Working
Environment

User
Annotations Documents Logs

Document
Model

Information
Tags

User
Model

Tagger

Data Source

Data

Metadata

Metadata Processing

Fig. 1. Horizontal layers of data acquisition view. All elements are independent soft-
ware systems with SOAP a REST-based interfaces that make stored objects accessible
via URI identifiers and queries.

monitor activities of developers in their integrated development environments,
web browsers and office tools and collect contextual (possibly including also bio-
metrics) information. The collected data are stored into repositories at the data
layer, from which they are processed into document models and user models. All
modifications in models are streamed as events to the tagger, a component which
processes them and creates information tags - descriptive metadata assigned to
the objects from document models and user models (we discuss “information
tags” and motivation for creating them in the section 3.3).

2.2 Added Value Provision

Processing the acquired data to metadata in formats of models and information
tags unburdens individual methods/services from recurrent preprocessing of raw
data and redundant calculations. This does not only save computation resources,
but it also saves data traffic as they do not have to access whole raw data but
they only query for necessary metadata. Sources of queried data depend on
roles of end users – consumers of methods and services. In our environment we
differentiate two main roles of users - developers and team leaders (see Fig. 2).

Developers work directly with software project documents (e.g., source code,
documentations). The most of documents used by developers are stored in de-
veloper’ machines in needed versions or they are synchronized with documents
repositories by specialized tools (e.g., IDE, office tools). Therefore services of
the environment will do redundant processing if they load and work directly

Platform Independent Software Development Monitoring 129

Developer

Working
Environment

User
Annotations Documents

Document
Model

Information
Tags

User
Model

Team Leader

Working
Environment

Developer
Oriented
Services

Management
Oriented
Services

Fig. 2. Enriching users’ working environment with added value provided by the code
monitoring environment

with these documents. It is more efficient to perform calculations and processing
over document models and information tags and then send results to developers’
machines, where they can be merged back into the documents.

Management oriented services work similarly to developer oriented services.
Both work only with metadata without necessity of an access to the whole raw
data. Difference is in metadata stored in models that are processed by man-
agement oriented services. These services do not need to work with document
models. Managers do not need to read documentations or source code, they need
information about their teams (e.g., skills of developers). Therefore management
oriented services query the user model and information tags and present results
through specialized tools or web applications.

3 Vertical Layers

3.1 Documents

During software development, developers write and analyze source code, create
and study different kinds of texts (e.g., specifications, API, tutorials), or use
Q&A sites and community forums for finding/providing solutions (e.g., code
examples). It is rich information space which includes resources in a natural
language as well as a “spiderweb” of software artifacts. Whether it is a file/text
in a natural language or a programming language or it is a resource located on
the Web or in a local repository, everything is a document.

We classify documents into three classes: source code, web pages and project
documentation. Although, this classification seems to be straightforward, note
that there are also different relationships among the documents. For example, a
code snippet can be copied from a web page into local code or documentation.
The relationship information between documents (source, target) is captured in
user activity logs and stored in information tags.

130 M. Bieliková et al.

3.2 Logs

We have developed several agents (tools) that collect and process (existing) doc-
uments and user activities. They allow us to capture, track, analyze and evaluate
different events. We focus on monitoring developers’ work in IDE, their activities
in a web browser and events of an operating system. To capture coding/working
activities we use supporting tools/plug-ins (e.g., plug-ins for Microsoft Visual
Studio IDE, Eclipse IDE and Firefox).

In an IDE we capture activities such as open/add/edit file (associated with a
solution/project), check-in, debug, copy/paste, code focus and selection, built-
in find, code refactoring, and stream of edits. In a web browser we capture
activities such as search on the Web (keywords, target URLs), find on a page,
entering URLs, manipulation with tabs, content selection, creating and using
bookmarks. For monitoring other activities we use OS Monitor. It allows us
to capture and monitor running applications, utilization of hardware resources,
biometric information (keyboard, mouse) and performed activities in office tools
(e.g., Microsoft Office Word, Microsoft Office OneNote).

Each agent collects activities, transforms them to logs and sends the logs
to the Local Logging Service (LLS). The task of LLS is to gather the logs. A
delivered log from an agent to LLS can be set so-called “flag milestone”. It means
that LLS sets up a package of the gathered logs and sends the package to the
Server Logging Service (SLS) that stores the logs into a database (see Fig. 3).

Server
Logging
Service

Local
Logging
Service

IDE Plugin

Browser
Plugin

OS Monitor

Fig. 3. Dataflow of collected logs

3.3 Information Tags

Information tag is a descriptive metadata with a semantic relation to a tagged
content. It is an extension to the common concept of a tag as a simple keyword or
phrase assigned to an artifact. Information tag adds additional value (semantics)
to the software artifact itself. For example, information tags can be product
of monitoring signals of explicit and implicit feedback generated by developers
working on source code. Information tag is defined by a triple of [11]:

– Type - defines a type and a meaning of the information tag;
– Anchoring - identifies a tagged information artifact;
– Body - represents a structured information, a structure of which corresponds

to the type of the information tag.

Platform Independent Software Development Monitoring 131

We distinguish information tags according their source: user created and ma-
chine generated information tags. User created information tags are created by
users via specialized tools integrated into their working environment (e.g., in
a form of a plug-in for IDE). They are directly readable for users. This makes
user created information tags easily understandable and usable, what gives the
environment advantage of naturally collecting users’ knowledge about tagged
objects (e.g., ratings of classes). In this manner user created information tags
generally have a clear meaning for our users (e.g., provide review feedback at-
tached to a source code). They can also be utilized to train or evaluate methods
for enhancement of software development (e.g., automatic identification of un-
reliable or risky source code).

Machine generated information tags are an analogy of user created informa-
tion tags for programme services. It is a tag which contains structured machine-
readable information which has a meaning with its interconnection with a tagged
content and/or its context (e.g., environment, history). For example, if the in-
formation tag ”Edited 23 times” is defined, its information has meaning for us
only if we look up at tagged method in a source code file, which has been edited.
This way information tags represent form of lightweight semantics, in which any
service can store and share its information related to objects (or any part of an
object) of an information space (e.g., source code fragments). As a result, infor-
mation tags decrease redundancy of data processing when some services need
common partial results and also allow employing data mining techniques.

Not all source code annotations created by a user (user annotations in Fig. 1)
can be considered as information tags, i.e. a descriptive metadata expressed in
defined structure. The diversity of machine generated and user created infor-
mation tags is in the logical level, in which user created information tags are
always metadata straightly understandable to users. In the realization of the en-
vironment (see following section) we implement common model, repository and
maintaining services for user created and machine generated information tags.

4 Case Study: Code Monitoring in Software House
Environment

To evaluate feasibility of the proposed environment we have developed its proto-
type realization within the research project PerConIK (Personalized Conveying
of Information and Knowledge). The project is focused on support of enter-
prise applications development in a software company by considering a software
system as a web of information artifacts [3]. We experiment also with the devel-
opment of students’ team projects in master study programmes in Information
Systems and Software Engineering at the slovak University of Technology in
Bratislava. Project leader is a medium size software company so that all moni-
toring is realized in accordance with defined company policies.

In this section we describe core parts of the realized environment (e.g., infor-
mation tags management) and several methods/services with partial results.

132 M. Bieliková et al.

4.1 Infrastructure and Metadata Management

Information Tags Repository. The main innovation in architecture of the
presented environment lies in employing information tags. To utilize advantages
of information tags we proposed information tags repository which respects fol-
lowing requirements [4]:

– The repository has to be scalable - it has to have good read and modify
performance despite of nontrivial number of stored information tags.

– The repository has to be able to store information tags in a freeform model
which can be easily extended with new information tag types.

– Due to semantic meaning of information tags, inference has to be supported.

To fulfill these requirements we combine advantages of RDF and document
stores. RDF has advantage in possibility of freeform data modeling and inference
possibilities but it is at the expense of time complexity in the case when whole
information has to be loaded (multiple SPARQL queries have to be processed
while each query can take several seconds [14]). On the other side, document
stores have good access to whole objects but they do not support inference [19].

Our repository is based on MongoDB1 database which stores information
tags in the object model based on Open Annotation Data Model2. We utilized
standardized Open Annotation Data Model for its prevalence in annotation sys-
tems and straight analogy between information tags and annotations (both have
a type, a body and an anchoring). We solved problem of missing support for
inference in MongoDB by proposition of MapReduce-based SPARQL query pro-
cessing algorithm [4]. We also performed several usability evaluations with our
prototype realization. Executed test cases proved that proposed information tag
repository provide enough performance for use cases of the environment and
also that proposed SPARQL query processing algorithm reached almost same
time as processing SPARQL queries as native horizontally scalable RDF storage
BigData3. Our results are in detail described in [4].

Information Tags Maintenance. Information tags are linked with problem
of their maintenance. This is especially visible in the case of information tags
anchored to source code. Source code files are continuously modified, deleted
and created. It leads to several problems of information tags maintenance:

– Generating missing information tags - newly written source code files or their
parts have to be tagged with information tags that describe new source code.

– Repairing affected information tags - each modification in a source code file
can affect validity of information tags at two levels - validity of body and
anchoring of information tags. In addition, information tags’ bodies can be
affected by time - information that are stored in them can become obsolete.

1 http://www.mongodb.org
2 http://openannotation.org/spec/core/
3 http://www.systap.com/bigdata.htm

http://www.mongodb.org
http://openannotation.org/spec/core/
http://www.systap.com/bigdata.htm

Platform Independent Software Development Monitoring 133

– Removing invalid information tags - unrepairable information tags or infor-
mation tags those targets are missing (have been deleted) have to be deleted
from the information tags repository.

The first step of information tags maintenance is repairing invalidated infor-
mation tag anchoring. This has to be done because we have to be able locate right
source code artifacts where information tags have to be anchored before provid-
ing necessary maintenance of affected information tags. To solve this problem
we do not employ any special process or service. We made a decision to design a
robust location descriptor suitable for source code with algorithms for its build-
ing and interpreting [12]. It give us possibility to recalculate positions in real
time (during editing code) without necessity to load previous versions of code.

Remaining maintenance tasks are provided by tagger. Tagger is a rule-based
service which collects streams of events about modifications in user and docu-
ment models and in case of fulfillment of a rule’s condition it performs actions
described in the rule. The tagger’s core is based on linked stream data process-
ing [9]. We employ C-SPARQL engine [2], which processes RDF graphs of events
from models updating services. Employment of linked stream data [16] increases
inference possibilities over events and decreases memory complexity of rule ex-
ecution (incremental events processing). In addition tagger uses inferred results
of fulfilled C-SPARQL query-based conditions in simple rules’ actions.

Presentation of Tags. Information tags are primarily designed for services,
but some of them can have direct added value for developers too. E.g., a service,
which watches developers’ activity, can automatically assign information tags
with authorship to source code artifacts. Such information tags can be important
for a developer that has to refactor older source code.

In addition some information tags and especially user generated information
tags could not be maintained automatically. In these cases developers have to
manually maintain invalidated information tags. For these reasons we imple-
mented the plug-in for Microsoft Visual Studio 2012 for visualizing information
tags (see Fig 4). Small graphic symbols (on the left side) pointed to concrete
tags in the source code: green triangles for single tags and two halftriangles with
connector for the pair tags in relation. On the right-hand side of the editor we
can display the labels with the content of the tag: authors of the particular
source code (after the keyword by), users of the source code (after the keyword
used by), ranking (green stars are positive ranking and red stars are negative),
topics, patterns or antipatterns. On the bottom of the editor we built filters and
also we can activate infotip on the information tag label which completes whole
information (here in the figure for example only the number of commits, the
author of the tag (generated tag by the tagger), creation time, etc.).

4.2 Infrastructure Usage Possibilities

The information tags allow us to design and develop wide range of meth-
ods/services focused, e.g., to automatically evaluate developers’ expertise, to

134 M. Bieliková et al.

Fig. 4. Visualization of information tags in Microsoft Visual Studio 2012

discover a degree of developers’ productivity and effectiveness, to reveal devel-
opers’ practices and habits or to establish quality of created code.

Modeling Developer’s Karma. One possible employment of proposed infras-
tructure for software development monitoring is to model developer’s expertise
(karma). It is valuable in real (internal) environment of a software company, but
also in academic environment. Determining a developer’s expertise [13] in a soft-
ware company allows for example managers and team leaders to look for special-
ists with desired abilities, form working teams or compare candidates for certain
positions. In academic environment, automatic establishment of students’ exper-
tise allows a teacher to evaluate students’ knowledge and know-how. Based on
it, e.g., the teacher can adapt and modify his teaching practices. On the contrary
of a software company, where software is created by professionals, in academic
environment, students learn how to design and develop software. Therefore, the
establishment of developer’s expertise requires different approaches.

One possible scenario we work on is to establish automatically developer’s
karma based on monitoring his working activities during coding in IDE, ana-
lyzing and evaluating the (resultant) code he creates and commits to a local
repository. To establish the overall developer’s karma for a software project we
investigate information tags on software artifacts (components), which the de-
veloper creates. We take into account developer’s “karma elements” as:

– degree of authorship – the developer’s code contributions and the way how
the contributions were created to a component;

Platform Independent Software Development Monitoring 135

– authorship duration and stability – the developer’s know-how persistency
about a component;

– technological know-how – the level of how the developer knows the used
technologies (libraries), i.e., broadly/effectively, this includes also estimating
quality of developed source code;

– degree of productiveness - a degree of difference between the real generated
and finally used code lines in a component;

– component importance - a degree of importance of a component in the soft-
ware project.

We established these particular developer’s karma elements (metrics) based on
our observation of developers’ activities (logs). The overall developer’s karma is
calculated as a linear combination of these karma elements. Each karma element
is calculated based on information tags generated while the developer works on
source code or by off-line analyses of source code (those indicating quality of code
developed by the developer). By applying the metrics we are able to observe and
evaluate different indicators. For example, we can sight the developer who often
copies and pastes source code from an external source (Web). Contributions of
such developer can be relative to the software project, moreover, it can reveal
a reason of his frequent mistakes or low productivity in comparison with other
developers.

Search in Source Code Based on Reputation Ranking. Code search en-
gines help developers to find and reuse software components. To support search-
driven development it is not sufficient to implement a “mere” full text search
over a base of code, human factors have to be taken into account as well. Repu-
tation ranking can be a plausible way to rank code results using social factors.
Trustability of code (developer’s/author’s reputability) is a big issue for reusing
code (software components). When a developer reuses code from an external
source he has to trust the work of external developers that are unknown to him.
It can be supported by using an externalized model of each developer’s expertise
of a particular code (software component).

In search-driven development we apply our model and approach for automatic
establishing developer’s karma. It allows developers to rank code results not only
based on relevance but also authors’ reputation of the results. We exploited our
know-how in implementing a search engine which in addition to relevance of
code (software component) establishes its importance [8].

5 Conclusions and Future Work

We have introduced an approach to code monitoring in software projects based
on information tags as descriptive metadata that provide a unifying element for
reasoning on source code and developer activities represented by document and
user models.

136 M. Bieliková et al.

Information tags provide a basis for reasoning useful information to devel-
opers and managers similarly as metadata do for the applications on the Web.
Examples are identification of bad practices, evaluation of source code quality
based on an estimation of the current user state followed his activity, recommen-
dation of good programming practices and tricks/ snippets used by colleagues.
They also serve as an input for reasoning on properties of software artifacts such
as similarity with code smells, estimation of developer skill and proficiency [3].
Information tags are stored in the information tags repository which is designed
with great emphasis on scalability and the ability to store information tags in
a freeform model which can be easily extended with new information tag types.
Information tags are linked with a problem of their maintenance. We have in-
troduced solutions for repairing and removing invalid information tags.

Our approach allows to design and develop wide range of methods/services,
e.g. an automatic evaluation of developers’ expertise, an establishment of quality
of created code or an identification of duplicated code [17]. Although, in this
paper we present an approach for modeling developer’s karma, in our research
we also use and apply the proposed approach in modeling developer’s emotion
and investigation of the influence of the detected emotion on the quality of
created code and recommendation of software artifacts to a developer during
working in IDE.

In future work, our primary goal is to finish the implementation of our core
services and to perform their final evaluation. Next we plan to deploy the imple-
mented prototype in a software company and at the University in the subject
called “Team project” where students develop relatively large software systems.
We also plan to propose and realize additional supporting services, e.g., a ser-
vice for establishment of code quality based on context - i.e. developer‘s position
(work, home) or weather. Our final aim is to improve development efficiency and
software quality during its evolution.

Acknowledgments. This contribution is the partial result of the Research &
Development Operational Programme for the project Research of methods for
acquisition, analysis and personalized conveying of information and knowledge,
ITMS 26240220039, co-funded by the ERDF and the project No. APVV-0233-10.

References

1. Araujo, S., Houben, G.J., Schwabe, D.: Linkator: Enriching web pages by automat-
ically adding dereferenceable semantic annotations. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 355–369. Springer,
Heidelberg (2010)

2. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for c-sparql queries. In: Proc. of the 13th Int. Conf. on Extending Database Tech.,
pp. 441–452. ACM, New York (2010)

3. Bieliková, M., Návrat, P., Chudá, D., Polášek, I., Barla, M., Tvarožek, J., Tvarožek,
M.: Webification of software development: General outline and the case of enter-
prise application development. In: Proc. of 3rd World Conf. on Inf. Tech (WCIT
2012), pp. 1157–1162. University of Barcelon, Barcelona (2013)

Platform Independent Software Development Monitoring 137

4. Bieliková, M., Rástočný, K.: Lightweight semantics over web information systems
content employing knowledge tags. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 327–336.
Springer, Heidelberg (2012)

5. Bohnet, J., Döllner, J.: Monitoring code quality and development activity by soft-
ware maps. In: Proc. of the 2nd Workshop on Managing Technical Debt, pp. 9–16.
ACM, New York (2011)

6. Fritz, T., Murphy, G.C., Hill, E.: Does a programmer’s activity indicate knowledge
of code? In: Proc. of the the 6th Joint Meeting of the European Soft. Eng. Conf. and
the ACM SIGSOFT Symposium on The Foundations of Soft. Eng., pp. 341–350.
ACM, New York (2007)

7. Kothapalli, C., Ganesh, S.G., Singh, H.K., Radhika, D.V., Rajaram, T., Ravikanth,
K., Gupta, S., Rao, K.: Continual monitoring of code quality. In: Proc. of the 4th
India Software Eng. Conf., pp. 175–184. ACM, New York (2011)

8. Kuric, E., Bieliková, M.: Search in source code based on identifying popular frag-
ments. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H.
(eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 408–419. Springer, Heidelberg (2013)

9. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data processing.
In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp.
245–289. Springer, Heidelberg (2012)

10. Priest, R., Plimmer, B.: Rca: experiences with an ide annotation tool. In: Proc. of
the 7th ACM SIGCHI New Zealand Chapter’s Int. Conf. on HCI: Design Centered
HCI, pp. 53–60. ACM, New York (2006)

11. Rástočný, K., Bieliková, M.: Maintenance of human and machine metadata over
the web content. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Workshops 2012.
LNCS, vol. 7703, pp. 216–220. Springer, Heidelberg (2012)

12. Rástočný, K., Bieliková, M.: Metadata anchoring for source code: Robust location
descriptor definition, building and interpreting. In: Decker, H., Lhotská, L., Link,
S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 372–379.
Springer, Heidelberg (2013)

13. Robbes, R., Röthlisberger, D.: Using developer interaction data to compare ex-
pertise metrics. In: Proc. of the 10th Working Conf. on Mining Soft, pp. 297–300.
IEEE Press, Piscataway (2013)

14. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: Meersman, R., Tari, Z. (eds.) OTM-WS
2007, Part II. LNCS, vol. 4806, pp. 1105–1114. Springer, Heidelberg (2007)

15. Schandl, B., King, R.: The semdav project: metadata management for unstructured
content. In: Proc. of the 1st Int. Workshop on Context. Attention Metadata: Coll.,
Managing and Exploiting of Rich Usage Inf., pp. 27–32. ACM, New York (2006)

16. Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: Proc. of the
2nd Int. Workshop on Sem. Sensor Net., SSN 2009. CEUR-WS, Washington (2009)

17. Súkeńık, J., Lacko, P.: Search in code duplicates. In: Proc. of the WIKT 2012,
STU, Bratislava, pp. 189–192 (2012) (in Slovak)

18. Tallis, M.: Semantic word processing for content authors. In: Proc. of the 2nd Int.
Conf. on Knowledge Capture, Sanibel (2003)

19. Tiwari, S.: Professional NoSQL. John Wiley & Sons, Inc., Indianapolis (2011)
20. Woitsch, R., Hrgovcic, V.: Modeling knowledge: an open models approach. In:

Proc. of the 11th Int. Conf. on Knowledge Management and Knowledge Tech., pp.
20:1–20:8. ACM, New York (2011)

Towards Unlocking the Full Potential

of Multileaf Collimators�

Guillaume Blin1, Paul Morel1, Romeo Rizzi2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,paul.morel,vialette}@univ-mlv.fr

2 Department of Computer Science - University of Verona, Italy
romeo.rizzi@univr.it

Abstract. A central problem in the delivery of intensity-modulated ra-
diation therapy (IMRT) using a multileaf collimator (MLC) relies on
finding a series of leaves configurations that can be shaped with the
MLC to properly deliver a given treatment. In this paper, we analyse,
from an algorithmic point of view, the impact of using dual-layer MLCs
and Rotating Collimators for this purpose.

1 Radiation Therapy Planning

Radiation therapy is one of the most commonly used cancer treatments and has
been shown to be effective. The radiation treatment poses a tuning problem: the
radiation needs to be effective enough to kill the tumor while sparing healthy
tissues and organs close to the tumor – so-called organs at risk. Towards this goal,
the design of a radiation treatment has to be specifically customized for each
patient. Once both tumor and organs at risk have been delineated, the radiation
oncologist will prescribe minimal, maximal and mean irradiation quantity for
each of them. The amount of radiation is measured in gray (Gy). For example,
typical dose for a tumor ranges from 60 Gy to 80 Gy (a minimal dose that the
treatment should achieve), whereas healthy organs should not receive more than
a given threshold of radiation – for example, 20 Gy for lungs, 50 Gy for bones
or 12 Gy for eye lenses. Usually, the overall treatment dose is fractionated – e.g.
1.8 to 2 Gy per day, five days a week for an adult.

Each fraction is delivered by a linear accelerator (linac) using a cone beam
that rotates around the patient; achieving a concentric irradiation converging
in the tumor site. In the so-called ”Step-And-Shoot” technique, the treatment
design specifies some specific angles where the linac successively stops to ir-
radiate the patient. For each of these angles, a specific intensity distribution
across the radiation beam (later on referred to as intensity matrix) is computed
(for instance, with the multicriteria approach to radiation therapy planning of
Hamacher and Küfer [7]) in order to achieve the desired overall dosage of the

� Work partially supported by ANR project BIRDS JCJC SIMI 2-2010.
Some supplementary materials are available on a companion website
(http://igm.univ-mlv.fr/~gblin/MOD).

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 138–149, 2014.
c© Springer International Publishing Switzerland 2014

http://igm.univ-mlv.fr/~gblin/MOD

Towards Unlocking the Full Potential of Multileaf Collimators 139

fraction. An illustration is provided in Figure 1a. The radiation generated by
the accelerator is uniform. Therefore, in order to achieve the varying intensity,
this radiation needs to be modulated. For this purpose, each intensity matrix
is delivered through a multileaf collimator (MLC). An MLC is a device com-
posed of parallel pairs (referred to as rows) of facing tungsten strips (referred
to as leaves) that can block the radiation by moving towards each other from
left and right (see Figure 1c). However, radiation can pass through the open
gap between the leaves endpoint. Each intensity matrix is realized by a sequence
of MLC configurations (i.e. specific leaves positions for each row of the MLC)
each of which is maintained for a certain amount of time (corresponding to the
intensity). In the static case, the radiation is switched off while the collimator
leaves are moving. The so-called gantry denotes the whole device including the
linac and the MLC.

Fig. 1. a) IMRT with some intensity matrices – shown in grayscale coded grids with 5
intensities (the lighter the color the higher the radiation intensity). b) A realization of
IM2 with i1 = 0, i2 = 1, i3 = 2, i4 = 3, i5 = 4. c) MLC illustration from Varian.

From an algorithmic point of view, the corresponding problem is a matrix
decomposition problem where each intensity matrix is given as a positive inte-
ger matrix that has to be decomposed into a weighted sum of binary matrices
(each binary matrix denotes an MLC configuration and the weight represents
the associated intensity). These binary matrices are consecutive ones matrices
(the 1s occur consecutively as a single block in each row) since MLC leaves are
moving from left and right sides of the device at each row. For example, the
intensity matrix IM2 of Figure 1b can be decomposed into three configurations.

140 G. Blin et al.

Of course, there are many ways of decomposing a given intensity matrix. It is
desirable to select the decomposition that can be delivered the most efficiently.
The two main efficiency criteria that play a role are the total beam-on time, i.e.,
the total amount of time that the patient is being irradiated, and the total setup
time, i.e., the total amount of time that is spent shaping the apertures. The
former metric is proportional to the sum of intensities used in the decomposi-
tion, while the latter is (approximately) proportional to the number of matrices
used in the decomposition. Although closely related, these two efficiency criteria
are not equivalent. The intensity matrix IM2 decomposition shows a decompo-
sition using only 3 apertures with a beam-on time of 6. However, the minimum
beam-on time for this intensity matrix is 5, which can be realized by 5 apertures.
Actually, it turns out that, while minimizing the total beam-on time is solvable
in linear time [1] , minimizing the total setup time is NP-hard for matrices with
at least two rows [5]. This NP-Hardness result was strengthen by Baatar et. al
[2] who proved that it is even strongly NP-hard, even for matrices with a sin-
gle row. Technology is running very fast and different MLC settings have been
indeed proposed during the last decade. In this paper, we focus on algorith-
mic aspects of two technological variants: Intensity Modulated Radiation using
Rotating Collimator and Multi-Layer Multileaf Collimator.

Rotating Collimator. Remember that the gantry is rotating around the patient
to deliver the radiation. We consider here MLC rotations together with gantry
rotations. Indeed, whereas most studies consider the problem of finding the most
efficient collimator angle for each linac angle [3,15,17], some recent contributions
tackle the use of collimator rotation in the decomposition of a given intensity
matrix (i.e. for a given fixed linac angle) [4,6,12,13,16,18,19,22]. The practical
efficiency of this latter technique was stated in [23]. From a Consecutive 1 Prop-
erty (C1P) point of view, rotating collimator allows each intensity matrix to
be decomposed in both row C1P or column C1P configurations. For example,
decomposing the following intensity matrix with only row C1P configurations
requires at least 8 of them whereas only 6 configurations are needed if rotation
is allowed (the last two configurations are column C1P).

⎡⎢⎣1 4 2 5
1 3 3 2
1 3 5 5
6 4 6 0

⎤⎥⎦ =

⎡⎢⎣0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 0

⎤⎥⎦ +

⎡⎢⎣0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 0

⎤⎥⎦ +

⎡⎢⎣0 1 1 1
1 1 1 0
0 1 1 1
1 1 1 0

⎤⎥⎦ +

⎡⎢⎣1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

⎤⎥⎦ + � +

⎡⎢⎣0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

⎤⎥⎦ +

⎡⎢⎣0 1 0 0
0 1 0 0
0 1 0 1
1 0 1 0

⎤⎥⎦
Multi-Layer Multileaf Collimator. Using multiple layers of leaves has been origi-
nally patented by [25] in 1997 and has been intensively studied since 2003. Most
studies consider two orthogonal layers, referred in the literature as the dual-MLC
[8,9,10,11,14]. Topolnjak et al. investigated the use of three layers placed every
60 degrees [20,21]. The state-of-the-art is presented in [24] which claims the ef-
ficiency of the gear. For example, decomposing the following intensity matrix
with only C1P matrices (even allowing MLC rotations) requires a linear number

Towards Unlocking the Full Potential of Multileaf Collimators 141

of configurations whereas only 2 are needed when using a dual-MLC (↑ and →

represent resp. vertical and horizontal blocking leaves).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 . . . 0
0 1 0 1 0 . . . 1
1 0 1 0 1 . . . 0
0 1 0 1 0 . . . 1
1 0 1 0 1 . . . 0
...
...
...
...
...
. . .

...
0 1 0 1 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ↑ 1 ↑ 1 . . . ↑

← + ← + ← . . . +

1 ↑ 1 ↑ 1 . . . ↑

← + ← + ← . . . +

1 ↑ 1 ↑ 1 . . . ↑

...
...
...
...
...
. . .

...
← + ← + ← . . . +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ → + → + . . . →

↑ 1 ↑ 1 ↑ . . . 1
+ → + → + . . . →

↑ 1 ↑ 1 ↑ . . . 1
+ → + → + . . . →

...
...
...
...
...
. . .

...
↑ 1 ↑ 1 ↑ . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To the best of our knowledge, all these contributions mentioned the complex-

ity increase of the problem when considering rotation or multiple layers with-
out being able to state it formally. In this contribution, we prove formally the
algorithmic hardness of the corresponding problems. More precisely, we study
the Matrix Orthogonal Decomposition (MOD) problem introduced in [6] which
consider the decomposition problem of an intensity matrix using a unique 90◦

rotation and the Dual-MLC Decomposition (DMD) problem which consider two
orthogonal layers of MLCs. We prove that both problems are still NP-hard when
minimizing total-setup time. Finally we prove that MOD becomes NP-hard even
when minimizing the total beam-on time but is approximable.

2 Dual-MLC Decomposition Minimizing Total
Setup-Time

In order to prove the hardness of the problem, we will use the construction of
Baatar et. al [2] as a gadget. Therefore, let us first present briefly a slightly mod-
ified version of their proof. As a reminder, they originally proved the hardness of
total setup-time decomposition even for matrices with a single row by a reduc-
tion from the NP-complete 3-Partition problem where one has to partition 3Q
positive numbers – say S = (b1, b2, . . . , b3Q) – (allowing duplicates) into Q triples
– say {T1, T2, . . . , TQ}, such that each triple has the same sum. Considering that
all 3Q numbers sum to N , then every triple should have a sum of B = N

Q (we

may assume that B
4 < bi <

B
2 for every bi ∈ S).

From any instance S of the 3-Partition problem, one can construct in poly-
nomial time an integer vector A = x1 x2 . . . x3Q yQ yQ−1 . . . y1 z0 such that

xi =
∑i

j=1 bj , yi = i · B and z0 = b1
1 and asks for a decomposition with at

most 3Q MLC configurations. As a reminder, any solution of the problem is a
set of C1P vectors (i.e. configurations) provided with corresponding intensity.
Therefore, for each configuration, we will denote by left (resp. right) endpoint
the first (resp. last) position of a 1 in the corresponding vector. First, notice
that since {xi|1 ≤ i ≤ 3Q} is a set of 3Q different values, any decomposition
of A will need at least 3Q configurations and thus 3Q corresponding intensities

1 We added z0 to the original construction for ease of proof demonstration.

142 G. Blin et al.

(among which one is b1 due to x1) each having their left endpoint disjointly in
one of {xi|1 ≤ i ≤ 3Q} positions. Moreover, the configuration with the intensity
b1 is defined as a totally open configuration (i.e. a vector of 4Q+1 1′s). Indeed,
among the at most Q · B radiation doses that can go through x3Q, exactly B
of them are needed for irradiating y1. To respect the consecutiveness of the 1′s,
whatever left endpoints of the configurations used, the corresponding configura-
tions will contribute exactly B to each of {yi|2 ≤ i ≤ Q}. Repeating this last
argument over {yi|2 ≤ i ≤ Q}, one can prove that each yi is the right end-
point of some configurations, whose overall contribution sums to B. Moreover,
by construction, z0 needs b1 irradiation doses that has to be included into the
B needed by y1. Consequently, since one of the configurations contributed b1 to
all positions of A, x2 now only needs an extra b2 contribution which should be
delivered at once. Repeating this argument over {xi|3 ≤ i ≤ 3Q}, one can prove
that the set of configuration intensities is indeed {bi|1 ≤ i ≤ 3Q}. Since, for any
1 ≤ i ≤ 3Q, B

4 < bi <
B
2 , any yi will need to be the right endpoint of exactly 3

configurations to get an overall irradiation summing to B (recall that there are
at most 3Q configurations). Provided with these properties, one can easily prove
that (⇐) given a solution to the 3-Partition problem such that, w.l.o.g., b1 ∈ T1,
for all 2 ≤ i ≤ 3Q, irradiating the interval [xi, yq] with intensity bi if bi ∈ Tq
and irradiating the full vector with b1 leads to a valid decomposition of exactly
3Q configurations. Moreover, (⇒) considering any solution of the decomposition
problem, defining the triples {Ti|1 ≤ i ≤ Q} such that bj ∈ Tq ⇔ there exists a
configuration of intensity bi with resp. left and right endpoints xi and yq leads
to a solution to 3-Partition.

Back to our original problem, we will use a slightly similar reduction using
A as a gadget. We, thus now consider the decomposition of a matrix. For ease,
in the rest of the paper, [x]k will denote a sequence of k copies of element x.
The reduction is again from the 3-Partition problem. From any instance S, one
can construct in polynomial time a matrix M = (R1, R2, . . . R6Q+3) (illustrated
in Figure 2 in the companion website) composed of 6Q + 3 rows, where for
all 1 ≤ i ≤ 3Q, Ri = R6Q+4−i = [x3Q+1−i]

4Q+1, R3Q+1 = R3Q+3 = [0]4Q+1

and R3Q+2 is the vector A designed in the previous proof and ask again for a
decomposition with at most 3Q Dual-MLC configurations. Roughly, the vector
A is vertically surrounded by two opposed sorted heaps of vectors (increasing,
when going away from A) filled with the {xi|1 ≤ i ≤ 3Q} values defined in
the previous proof and two null rows. The correctness of the proof relies on
proving that, whereas one may use the vertical leaves to make a different set of
configurations for realizing the peculiar row A, this would not lead to a valid
solution. Indeed, the rows R3Q+1 and R3Q+3 ensures that if a vertical leaf was
used to tune the irradiation configuration used for A – say the one in column j
– then the corresponding intensity could not be used for any element of column
j except in A. Since, by construction, yet again exactly 3Q configurations are
required, there will exist at least one row in the end with a non null value on the
column j. This property, ensures that if the vertical leaves are used, this is not to
disturb the configurations plan of rowR3Q+2. Provided with these properties, one

Towards Unlocking the Full Potential of Multileaf Collimators 143

can easily prove that (⇐) given a solution to the 3-Partition problem such that,
w.l.o.g., b1 ∈ T1, for all 2 ≤ j ≤ 3Q, irradiating the interval R3Q+2[xj , yq] and
fully the rows R3Q−j and R6Q+3−j with intensity bj if bj ∈ Tq and irradiating
the full rows R3Q, R3Q+2 and R3Q+4 with b1 leads to a valid decomposition
of exactly 3Q configurations. Moreover, (⇒) considering any solution of the
decomposition problem, defining the triples {Ti|1 ≤ i ≤ Q} such that bj ∈ Tq ⇔
there exists a configuration of intensity bj with resp. left and right endpoints in
xj and yq in row R3Q+2 leads to a solution to 3-Partitioning.

Theorem 1. The Dual-MLC Decomposition problem is NP-hard when minimiz-
ing the total setup time.

3 Matrix Orthogonal Decomposition

This section is devoted to proving a stronger result for the MOD problem: min-
imizing the total setup time is NP-hard even if the intensity matrix is binary.
This result shows that the problem is also NP-hard when one wants to minimize
the beam-on time (whereas it is polynomial when rotation is not changed dur-
ing decomposition). Fortunately, we will also prove that the problem is however
approximable in this later case. For ease of presentation, we will first give a con-
struction using a positive integer matrix and show afterwards how to make it
binary. In order to prove the hardness of the problem, we define a reduction from
the NP-complete 3-Hitting Set problem: given a collection C = {C1, . . . , Cm} of
m subsets of size at most three of a finite set S = {x1, . . . xn} of n elements and
a positive integer k, the problem asks for a subset S′ ⊆ S with |S′| ≤ k such
that S′ contains at least one element from each Ci’s.

From any instance (C, k) of the 3-Hitting Set problem, one can construct in
polynomial time a square matrix M composed of two rows and columns inde-
pendent submatrices – a submatrix of 2n+ 9 columns and 2n+ 8 rows referred
to as MDHV , defined below, is placed top-right of M whereas another subma-
trix of 3n + 2 columns and m + 4 rows named M3HS , and defined later on, is
placed bottom-left; the rest of the matrix M is filled with 0’s in order to ob-
tain a square matrix – and one can ask for a decomposition with at most n+ 3
MLC configurations. The submatrixMDHV is designed in such a way that it will
ensure that any solution to the decomposition problem will use only one verti-
cal configuration and (n+ 2) horizontal ones. Indeed, since, by construction, a)
there are (n + 4) horizontal blocks of single 1′s in the first row, and b) all the
2(n+ 2) last columns are each composed of (n+ 4) vertical blocks of single 1′s,
any solution (i.e. not inducing more than (n + 3) configurations) has to have
at least one horizontal and one vertical configurations. Moreover, any solution
has to use exactly one vertical configuration. Indeed, suppose, aiming at a con-
tradiction, that a given solution uses more – say k′ vertical configurations, then
at most k′ 1′s from each column can be irradiated by those k′ configurations.
Unfortunately, since k′ ≤ (n + 2), at least two 1′s per column (except the five
leftmost ones) will subsist. In order for the solution to be feasible, one would
then have to irradiate the remaining 1′s with a unique horizontal configuration.

144 G. Blin et al.

To do so, the remaining 1′s should be placed in order not to have more than one
1 per row; a contradiction since we have at least 2 × (2n + 4) 1′s and at most
2n+ 8 rows. We just proved that the submatrix MDHV will force any solution
to use exactly one vertical configuration and (n+ 2) horizontal ones, each with
an intensity of 1.

M =

[
0 MDHV

M3HS 0

]
withMDHV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 1 0 . . . 1 0

0

0 0 1 0 1 . . . 0 1
0 1 0 1 0 . . . 1 0
...
...
...
...
... . . .

...
...

0 1 0 1 0 . . . 1 0
0 0 1 0 1 . . . 0 1
0 1 0 1 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

M3HS=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CTRLV
U{ (n+3) 0 1 1 0 1 1 0 . . . 1 1 0

GATE{ 0 0 0 0 0 0 0 0 . . . 0 0 0

CTRLV
D{ (n+2) 0 0 0 1 0 0 1 . . . 0 0 1

CTRLmax{ (n+2-k) 0 0 1 1 1 1 1 . . . 1 1 1
C1{ c1 0 0 1 x1

1 0 1 x2
1 . . . 0 1 xn

1

C2{ c2 0 0 1 x1
2 0 1 x2

2 . . . 0 1 xn
2

...
...

Cm{ cm 0 0 1 x1
m 0 1 x2

m . . . 0 1 xn
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

C

{ { {

x1 x2 . . . xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us now describe the submatrix M3HS which is totally independent of
MDHV but which will inherit the repartition of the vertical and horizontal con-
figurations that we just showed. M3HS is defined as pictured above and where
xji = 2 if xj ∈ Ci; x

j
i = 1 otherwise and ci = 0 if |Ci| = 3; ci = 1 otherwise. The

submatrixM3HS is designed to encode the 3-Hitting Set instance. Roughly, each
subset Ci of C is encoded by a row whereas each element xi of S is encoded by
a column2. Let us now prove some interesting properties of this construction.

Let us have a look at the constraints of the unique vertical configuration. Since
CTRLV

U [0] is set to (n+3) – that is both the maximal number of configurations
and intensity, the first column of the vertical configuration will have to irradiate
this last and so does the corresponding row (i.e. (2n + 9)th of M) of all the
horizontal configurations. It has many consequences: a) all the 1′s of CTRLV

U will
have to be irradiated during the vertical configuration (inducing that no other 1′s
in the corresponding columns can be irradiated during the vertical configuration
– namely columns in {3j − 1, 3j|1 ≤ j ≤ n}) and b) CTRLV

D[0], CTRL
max[0]

and any Ci[0] will all only be irradiated by horizontal configurations3. Since

2 Due to space consideration, we will not include a full illustration of a construction
but one may build one from our companion website.

3 For ease, in the above description of M3HS matrix, all the cells which will not have
a contribution from the vertical configuration have been put in gray.

Towards Unlocking the Full Potential of Multileaf Collimators 145

CTRLV
D[0] is set to (n+2), all the horizontal configurations for this specific row

CTRLV
D will need to be dedicated to CTRLV

D[0]. This implies, in turn, that all
remaining 1′s of CTRLV

D – that is {CTRLV
D[i]|i = 2 + 3j, 1 ≤ j ≤ n} – would

have to be vertically irradiated. On the whole, except for the set of bottom leaves
for the columns {i = 2 + 3j|1 ≤ j ≤ n}, we know exactly what is the endpoint
position of each leave (top and bottom) of the vertical configuration inM3HS : a)
for all i ∈ {0, 3j, 3j− 1|1 ≤ j ≤ n} the ith top leave (resp. bottom one) precisely
blocks all the rows preceding (resp. succeeding) CTRLV

U , b) column 1 is totally
blocked and c) for all i ∈ {3j + 1|1 ≤ j ≤ n} the ith top leave precisely blocks
all the rows preceding CTRLV

D.
Now, notice that any Ci needs at least (n+ 3) configurations to be realized.

This implies that any Ci should be irradiated at least in one of its column by the
vertical configuration. By construction, this irradiation can only occur in (xji)

′s
positions (i.e. {3j + 1|1 ≤ j ≤ n}) moreover set to 2 (otherwise it will not help
decreasing the total irradiation needed to realize Ci) – later referred to as target
positions. The CTRLmax row is designed to ensure that at least n−k cells among
{CTRLmax[3j+1]|1 ≤ j ≤ n} will be blocked by bottom leaves. In other words,
at least n−k bottom leaves will block all the succeeding rows of CTRLmax. Thus,
at most k bottom leaves would be able to allow vertical irradiation contribution
for the target positions. As we just prove, the only differences between both
solutions to the decomposition problem is the position of bottom leaves endpoints
for positions in {3j + 1|1 ≤ j ≤ n}; we will thus characterize any such solution
as a set of n positions in [2n + 13, 2n +m + 14] (corresponding to all possible
solutions – 2n+m+ 14 being a leave not used at all).

Provided with these properties, one can easily prove that (⇐) given a solution
(S′ ⊆ S) to 3-Hitting Set problem, for each 1 ≤ i ≤ n, if xi ∈ S′, P [i] =
2n +m + 14; P [i] = 2n + 13 otherwise. We claim that P corresponds to valid
positions for the bottom leaves in {3j + 1|1 ≤ j ≤ n}. Since S′ is a hitting set
of size at most k, we can ensure that at least one element of each subset in C
belongs to S′. This guarantees that all C′

is rows and CTRLmax are realized.
Moreover, (⇒) considering any solution to the decomposition problem, one can
define the hitting set S′ such that xj ∈ S′ ⇔ the position of the (3j + 1)th

bottom leaf is strictly greater than 2n+ 13.
Let us now try to transform the construction in order to obtain a binary matrix

with the same property. First, one can encode the x′is using two columns rather
than one as follows. Insert a column just before each actual column representing
an xi, fill it with 0′s except on the CTRLV

U row which has to be set to 1 and the
C′

js rows where the corresponding columns have to be set to 0 1 if xi ∈ Cj ; 1 1

otherwise4. This update is clearly not changing the original proof. The tricky
part stands in the replacement of CTRLV

U [0]. Indeed, one wants that it still
requires all the horizontal configurations and the vertical one. To do so, one
can design a submatrix of 2(n + 4) rows defined as follows: a) each odd row is
filled with 0′s and b) the ith even row is defined as [0]i−1 1 0[1 0]n+2[0]n+3−i.

4 Due to space consideration, please consider checking the construction on our com-
panion website.

146 G. Blin et al.

Roughly, the block representing (n + 3) (i.e. [1 0]n+3) is shifted right of one
position every new even row. This ensures that no one under the position of
this gadget will be able to have a vertical contribution and that in any of the
corresponding rows, all the remaining 1′s will need to be irradiated vertically.
We just showed that the properties of the original gadget are preserved. Both
CTRLV

D[0] and CTRL
max[0] can be easily replaced by resp. [0 1]n+2[0]3n+7 and

[0 1]n+2−k[0]3n+7. Again, the properties of the original gadgets are preserved.
This concludes the proof of the following theorem.

Theorem 2. The Matrix Orthogonal Decomposition problem is NP-hard when
minimizing either the total setup or the total beam-on time.

Now, let us prove that there exists an algorithm based on linear programming
and rounding techniques that produces an approximate solution for minimiz-
ing the total beam-on time. First, recall that for horizontal configurations, rows
can be dealt with separately. It is also the case for vertical configurations and
columns. Indeed, an intensity matrix is realized by a sequence of MLC configu-
rations each of which is maintained for a certain amount of time (corresponding
to the intensity). Since the problem is to minimize the sum of intensities and
not the number of configurations, one can always consider that configurations
can be changed every unit of time. This implies that any row (column) can be
processed independently of the others and that the overall beam-on time will be
deduced by the (most) expensive row (column). The problem can be phrased,
as an Integer Linear Programming, as defined in Figure 2.

minimize H + V

subject to ∀1 ≤ k ≤ m,
∑
i≤j

Hk
ij ≤ H (1)

∀1 ≤ k ≤ m,
∑
i≤j

V k
ij ≤ V (2)

∀k, k′ ∈ {1, . . .m}2,
∑

i≤k′≤j

Hk
ij +

∑
i′≤k≤j′

V k′
i′j′ = M [k][k′] (3)

∀i, j, k, Hk
ij ≥ 0, V k

ij ≥ 0

1 ≤ i ≤ j ≤ m, 1 ≤ i′ ≤ j′ ≤ m,H ≥ 0, V ≥ 0.

Fig. 2. Integer Linear Program minimizing the total beam-on time for MOD

For any row of the intensity matrix M , let Hk
ij be a variable indicating the

amount of time the following horizontal configuration is maintained: considering
the kth pair of leaves, the left one’s endpoint is at position i−1 and the right one’s
endpoint is at position j+1 (therefore irradiating any position between i and j in

Towards Unlocking the Full Potential of Multileaf Collimators 147

row k). Similarly, for any column of the intensity matrix M , let V k
ij be a variable

indicating the amount of time the following vertical configuration is maintained:
considering the kth pair of leaves, the left one’s endpoint is at position i− 1 and
the right one’s endpoint is at position j + 1 (therefore irradiating any position
between i and j in column k). Finally, variables H and V are respectively hori-
zontal and vertical costs of a solution computed respectively as maxk

∑
i≤j H

k
ij

and maxk
∑

i≤j V
k
ij (which is encoded by constraints (1) and (2)). Constraint (3)

ensures that the desired intensity matrix is realized. Indeed,
∑

i≤k′≤j H
k
ij (resp.∑

i′≤k≤j′ V
k′
i′j′) represents the overall contribution of all the horizontal (resp. ver-

tical) configurations contributing to the entryM [k][k′]. There are about 2m3+2
variables, 2n inequalities and n2 equalities. Our linear programming problem
can be rewritten with only inequalities. Indeed, each equality constraint may be
removed, by solving it for variable Hk

0k′ and substituting this solution into the
corresponding form of constraint (1) (i.e. for the corresponding k).

Of course Integer Linear Programming is NP-hard. Therefore, we relax the
integrality constraint, that is, allowing all variables to take a non-integral but still
positive value. We end-up with a fractional linear program that can be solved in
polynomial time. Notice that the solution provided by this linear program cannot
be greater than the optimal integer one, since we only allow more solutions to
become feasible. We apply a rounding of the fractional solution to obtain an
integral feasible solution not too far from optimal.

Assume that fL : {V,H,Hk
ij , V

k
ij |1 ≤ i ≤ j ≤ m, 1 ≤ k ≤ m} → R is an

optimal fractional solution of the relaxed version of our problem. If one slightly
modifies the values of Hk

ij
′s then due to constraint (3) the values of V k′

i′j′
′s will

need to be modified accordingly and with a comparable amount. The basic idea
is to provide an integral rounding of the horizontal configurations and compute
polynomially the corresponding vertical configurations while guaranteeing that
the corresponding solution is a good approximation of the optimal one.

Let us present the rounding technique for a single row – say the kth. Consider-
ing all the corresponding variables {Hk

ij |1 ≤ i ≤ j ≤ m}, one can represent each

non-null variable Hk
ij by an interval [i, j] over the real line on [1,m] weighted by

Hk
ij (illustrated in Figure 3 in companion website). Let us transform this set of

intervals I into a set I ′, where given any pair of intervals either one is included
into the other or they are disjoint. To do so, we process I with the following
algorithm. While there exists two intervals [i, j] and [k, l] with respective weights
w1 and w2 such that i < k < j < l (i.e. crossing) remove [i, j] and [k, l] from I
and add [i, k − 1], [k, j] and [j + 1, l] with respective weights w1, w1 + w2 and
w2. Now that all intervals are nested or independent, while there exists three
intervals [x, y], [i, j] and [k, l] with respective weights w1, w2 and w3 such that
x ≤ i < j ≤ k < l ≤ y, if j < k then remove [x, y] from I and add [x, j] and
[j, y] both weighted by w1; otherwise (j = k) remove [i, j] and [k, l] from I and
if w2 < w3 then add [i, l] and [k, l] with respective weights w2 and w3 − w2;
otherwise add [i, l] and [i, j] with respective weights w3 and w2 − w3. Moreover
given two copies of an interval [i, j] with respective weights w1 and w2, remove
them and add an interval [i, j] with weight w1 + w2.

148 G. Blin et al.

We end up with a set of independent subsets of nested intervals (later referred
to as a stack). Note that there are at most m such stacks. We will proceed to
the rounding of each stack separately. We will do so while ensuring that the sum
of the original weights is smaller than the sum of the rounded ones with a gap of
at most 1. This will induce that for a given row of the horizontal configuration,
we manage to get an integral solution with an at most m extra cost. For ease,
considering the stack as increasingly sorted by interval size and let wi and w′

i

denote respectively the original and rounded weights of the ith interval of the
stack. The rounding algorithm proceeds as follows: start from the wider interval
and round up w1

5. Then consider iteratively each remaining interval – say the
jth, round it down if possible – that is if wj!+

∑j−1
i=1 w

′
i ≥

∑j
i=1 wi – round it

up otherwise.
Applying the rounding to each row of the horizontal configurations leads to

an integral solution for the horizontal configurations that we can subtract for
the original intensity matrix. Then, we compute in polynomial time the vertical
configurations on the resulting matrix. We claim that the overall solution is at
most 2m from the optimal solution. Indeed, in the resulting matrix, each cell is
at most greater by one than the fractional matrix. This means that the sum of
the elements in any column is at most greater by m than the fractional matrix.
Thus we loose at most m with the rounding of the horizontal configurations plus
at mostm for adjusting the vertical configurations, for a total of a 2m additional
cost.

Acknowledgement. We wish to thank members of the Radiotherapy Group
of Institut Bergonié (Bordeaux, France) and of the Dpt of Radiation Oncology
(University of Iowa, USA) – especially Guy Kantor, Christina Zacharatou, Xi-
aodong Wu, Dongxu Wang and Ryan T. Flynn – for their valuable technical
feedback on Radiotherapy.

References

1. Ahuja, R., Hamacher, H.: A network flow algorithm to minimize beam-on time
for unconstrained multileaf collimator problems in cancer radiation therapy. Net-
works 45(1), 36–41 (2005)

2. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of
integer matrices and multileaf collimator sequencing. Discrete Applied Mathemat-
ics 152(1-3), 6–34 (2005)

3. Beavis, A., Ganney, P., Whitton, V., Xing, L.: Optimisation of MLC orientation
to improve accuracy in the static field delivery of IMRT. In: Proceedings of 22nd
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, vol. 4, pp. 3086–3089 (2000)

4. Broderick, M., Leech, M., Coffey, M.: Direct aperture optimization as a means of
reducing the complexity of Intensity Modulated Radiation Therapy plans. Radia-
tion Oncology 4, 8 (2009)

5 One cannot do differently since there exists at least one position not covered by
another interval.

Towards Unlocking the Full Potential of Multileaf Collimators 149

5. Burkard, R.: Open problem session, Oberwolfach Conference on Combinatorial
Optimization, November 24-29 (2002)

6. Dou, X., Wu, X., Bayouth, J.E., Buatti, J.M.: The Matrix Orthogonal Decomposi-
tion Problem in Intensity-Modulated Radiation Therapy. In: Chen, D.Z., Lee, D.T.
(eds.) COCOON 2006. LNCS, vol. 4112, pp. 156–165. Springer, Heidelberg (2006)

7. Hamacher, H.W., Küfer, K.-H.: Inverse radiation therapy planning - a multiple
objective optimization approach. Discrete Applied Mathematics 118(1-2), 145–161
(2002)

8. Hughes, J.: US Patent 6,600,810: Multiple layer multileaf collimator design to im-
prove resolution and reduce leakage (2003)

9. Jarray, F., Picouleau, C.: Minimum decomposition into convex binary matrices.
Discrete Applied Mathematics 160(7-8), 1164–1175 (2012)

10. Liu, Y., Shi, C., Lin, B., Ha, C.: Delivery of four-dimensional radiotherapy with
TrackBeam for moving target using a dual-layer MLC: dynamic phantoms study.
Journal of Applied Clinical Medical Physics 10(2), 1–21 (2009)

11. Liu, Y., Shi, C., Tynan, P., Papanikolaou, N.: Dosimetric characteristics of dual-
layer multileaf collimation for small-field and intensity-modulated radiation ther-
apy applications. Journal of Applied Clinical Medical Physics 9(2), 2709 (2008)

12. Milette, M.: Direct optimization of 3D dose distributions using collimator rotation.
PhD thesis, University of British Columbia (2008)

13. Milette, M., Rolles, M., Otto, K.: TU-C-224A-06: Exploiting the Full Potential
of MLC Based Aperture Optimization Through Collimator Rotation. Medical
Physics 33(6), 2191 (2006)

14. Oh, S., Jung, W., Suh, T.: SU-FF-T-28: A New Concept of Multileaf Collimator
(dual-Layer MLC). Medical Physics 34(6), 2407 (2007)

15. Otto, K.: Intensity modulation of therapeutic photon beams using a rotating mul-
tileaf collimator. PhD thesis, University of British Columbia (2003)

16. Otto, K.: US Patent 6,907,105: Methods and apparatus for planning and delivering
intensity modulated radiation fields with a rotating multileaf collimator (2005)

17. Otto, K., Clark, B.: Enhancement of IMRT delivery through MLC rotation. Physics
in Medicine and Biology 47(22), 3997–4017 (2002)

18. Otto, K., Milette, M., Schmuland, M.: SU-FF-T-104: Rotating Aperture Optimiza-
tion - Planning and Delivery Characteristics. Medical Physics 32(6), 1973 (2005)

19. Schmuland, M.: Dose verification of rotating collimator intensity modulated radi-
ation thearpy. PhD thesis, University of British Columbia (2006)

20. Topolnjak, R., van der Heide, U., Lagendijk, J.: IMRT sequencing for a six-bank
multi-leaf system. Physics in Medicine and Biology 50(9), 2015–2031 (2005)

21. Topolnjak, R., van der Heide, U., Raaymakers, B., Kotte, A., Welleweerd, J.,
Lagendijk, J.: A six-bank multi-leaf system for high precision shaping of large
fields. Physics in Medicine and Biology 49(12), 2645–2656 (2004)

22. Wang, D., Hill, R., Lam, S.: US Patent 7,015,490: Method and apparatus for opti-
mization of collimator angles in intensity modulated radiation therapy treatment
(2006)

23. Webb, S.: Does the option to rotate the Elekta Beam Modulator MLC during
VMAT IMRT delivery confer advantage? - a study of ‘parked gaps’. Physics in
Medicine and Biology 55(11), N303–N319 (2010)

24. Webb, S.: A 4-bank multileaf collimator provides a decomposition advantage for
delivering intensity-modulated beams by step-and-shoot. Physica Medica 28(1),
1–6 (2012)

25. Yao, J.: US Patent 5,591,983: Multiple layer multileaf collimator (1997)

Parameterized Complexity of the Sparsest

k-Subgraph Problem in Chordal Graphs�

Marin Bougeret, Nicolas Bousquet, Rodolphe Giroudeau, and Rémi Watrigant

LIRMM, Université Montpellier 2, France

Abstract. In this paper we study the Sparsest k-Subgraph problem
which consists in finding a subset of k vertices in a graph which induces
the minimum number of edges. The Sparsest k-Subgraph problem is
a natural generalization of the Independent Set problem, and thus
is NP-hard (and even W [1]-hard) in general graphs. In this paper we
investigate the parameterized complexity of both Sparsest k-Subgraph
and Densest k-Subgraph in chordal graphs. We first provide simple
proofs thatDensest k-Subgraph in chordal graphs is FPT and does not
admit a polynomial kernel unlessNP ⊆ coNP/poly (both parameterized
by k). More involved proofs will ensure the same behavior for Sparsest
k-Subgraph in the same graph class.

1 Introduction

Presentation of the Problem. Given a simple undirected graph G = (V,E) and
an integer k, the Sparsest k-Subgraph problem asks to find k vertices in G
inducing the minimum number of edges. The decision version asks if there ex-
ists a k-subgraph inducing at most C edges. As a generalization of the classical
independent set problem (for C = 0), Sparsest k-Subgraph is NP-hard
in general graphs, as well as W [1]-hard when parameterized by k (as indepen-
dent set is W [1]-hard [11]). In addition, there is an obvious XP algorithm for
Sparsest k-Subgraph when parameterized by k, as all subsets of size k can
be enumerated in O(nk) time, where n is the number of vertices in the graph.

Related Problems. Several problems closely related to Sparsest k-Subgraph
have been extensively studied in the past decades. Among them, one can men-
tion the maximization version of Sparsest k-Subgraph, namely the Densest

k-Subgraph, for which several results have been obtained in general or re-
stricted graphs. In [9], the authors showed that Densest k-Subgraph remains
NP-hard in bipartite, comparability and chordal graphs, and is polynomial-time
solvable in trees, cographs, and split graphs. The complexity status of Dens-

est k-Subgraph in interval graphs, proper interval graphs and planar graphs
is left as an open problem, and is still not answered yet. More recently, [6] im-
proved some of these results by showing that both Densest k-Subgraph and
Sparsest k-Subgraph are polynomial-time solvable in bounded clique-width

� This work has been funded by grant ANR 2010 BLAN 021902.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014

Parameterized Complexity of the Sparsest k-Subgraph Problem 151

graphs, and [3] developed exact algorithms for Sparsest k-Subgraph, Dens-

est k-Subgraph and other similar problems in general graphs parameterized
by k and the maximum degree Δ of the graph. During the past two decades,
a large amount of work has been dedicated to the approximability of Densest

k-Subgraph in general graphs. So far, the best approximation ratio is O(nδ)
for some δ < 1/3 [10], while the only negative result is due to Khot [15] rul-
ing out a PTAS under some complexity assumptions. Still concerning Densest

k-Subgraph but in restricted graph classes, [17] developed a PTAS in inter-
val graphs, and [8,16] developed constant approximation algorithms in chordal
graphs. In [18], we recently proved that Sparsest k-Subgraph remains NP-
hard in chordal graphs and admits a 2-appoximation algorithm. We can also
mention the dual version of Sparsest k-Subgraph, namely the maximum

partial vertex cover problem, for which we are looking for k vertices in
the input graph which cover the maximum number of edges. Very recently [1]
and [14] independently proved the NP-hardness of maximum partial vertex

cover in bipartite graphs, which directly transfers to Sparsest k-Subgraph
(since finding k vertices covering the maximum number of edges is equivalent to
find (n− k) vertices inducing the minimum number of edges).

More generally, Sparsest k-Subgraph, Densest k-Subgraph and max-

imum partial vertex cover fall into the family of cardinality constrained
optimization problems introduced by Cai [7]. In its survey, the author proved
that these three problems are W [1]-hard in regular graphs, and gives an XP
algorithm for general graphs with a better running time than the trivial algo-
rithm.

As mentioned previously, Sparsest k-Subgraph andDensest k-Subgraph
are natural generalizations of k-independent set and k-clique, and are thus
important both from a theoretical and practical point of view. Our motiva-
tion is to study their computational (parameterized) complexity in graph classes
where they remains NP-hard whereas k-independent set and k-clique are
polynomial-time solvable, such as the well-known class of perfect graphs and
some of its subclasses. To that end, we study their parameterized complexity in
the class of chordal graphs, an important subclass of perfect graphs which arises
in many practical situations [13]. More precisely, we prove that both Sparsest

k-Subgraph and Densest k-Subgraph in chordal graphs are fixed-parameter
tractable and do not admit a polynomial kernel under some classical complexity
assumptions. As we will see, the results are quite easy to obtain for Densest

k-Subgraph, but require some efforts for Sparsest k-Subgraph.

Organization of the Paper. The paper is organized as follows: in the following
section (Section 2), we recall the classical definitions of parameterized complex-
ity and chordal graphs. Our two main results, namely the FPT algorithm and
kernel lower bound for Sparsest k-Subgraph in chordal graphs, are presented
respectively in Sections 4 and 5. Before all these, we study as an appetizer the
parameterized complexity of Densest k-Subgraph in chordal graphs in Sec-
tion 3. Due to space restrictions, some proofs and figures were omitted. They
can be found in the long version of the paper available in [5].

152 M. Bougeret et al.

2 Parameterized Algorithms, Chordal Graphs

Parameterized Algorithms. An interesting way to tackle NP-hard problems is
parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N,
where the second component is called the parameter of the instance. A fixed-
parameter tractable (FPT for short) problem is a problem for which there exists
an algorithm which, given (x, k) ∈ Σ∗ × N, decides whether (x, k) ∈ Q in time
f(k)|x|O(1) for some computable function f . Such an algorithm becomes efficient
with an hopefully small parameter. A kernel is a polynomial algorithm which,
given (x, k) ∈ Σ∗ × N, outputs an instance (x′, k′) such that (x, k) ∈ Q ⇔
(x′, k′) ∈ Q and |x′|+k′ ≤ f(k) for some computable function f . The existence of
a kernel is equivalent to the existence of an FPT-algorithm. Nevertheless one can
ask the function f to be a polynomial. If so, then the kernel is called a polynomial
kernel. If a problem admits a polynomial kernel, then it roughly means that we
can, in polynomial time, compress the initial instance into an instance of size
poly(k) which contains all the hardness of the instance. In order to rule out
polynomial kernels, we will use the recent technique of cross-composition [2].

Roughly speaking, a cross-composition is a polynomial reduction from t in-
stances of a (non-parameterized) problem A to a single instance of a parameter-
ized problem B such that the constructed instance is positive iff one of the input
instances is positive. In addition, the parameter of the constructed instance must
be of size polynomial in the maximum size of the input instances and the loga-
rithm of t. It is known that if A is NP-hard and A cross-composes into B, then
B cannot admit a polynomial kernel under some complexity assumptions. For a
stronger background concerning the parameterized complexity in general and to
cross-compositions in particular, we refer the reader respectively to [11,2].

Chordal Graphs. A graph G = (V,E) is a chordal graph if it does not contain an
induced cycle of length at least four. As said previously, chordal graphs form an
important subclass of perfect graphs. One can also equivalently define chordal
graphs in terms of a special tree decomposition. Indeed, it is known [12] that a
graph G = (V,E) is a chordal graph if and only if one can find a tree T = (X , A)
with X ⊆ 2V such that for all v ∈ V , the set of nodes of T containing v, that
is Xv = {X ∈ X : v ∈ X}, induces a (connected) tree, and such that for all
u, v ∈ V we have {u, v} ∈ E if and only if Xu ∩ Xv �= ∅. Moreover, given a
chordal graph, this corresponding tree can be found in polynomial time. From
this definition, it is clear that each X ∈ X induces a clique in G.

3 Appetizer: Parameterized Complexity of Densest
k-Subgraph in Chordal Graphs

Let us discuss the parameterized status of Densest k-Subgraph in chordal
graphs. First, it is well-known that computing a maximal clique in chordal graphs
can be done in polynomial time. Hence, if the input graph contains a clique of
size k or more, we can immediately output it. Otherwise, we use another classical

Parameterized Complexity of the Sparsest k-Subgraph Problem 153

property of chordal graphs stating that their tree-width equals the size of their
maximal clique minus one. Thus, the tree-width of the input graph is bounded by
(k−1). Finally, using a classical dynamic programming on a tree decomposition,
such as the one described in [4], we can compute an optimal solution in FPT
time.

On the negative side, we can easily cross-compose Densest k-Subgraph in
chordal graphs into itself, by taking the disjoint union of t chordal graphs, and
adding sufficiently enough universal vertices to each connected component. Due
to space restrictions, this construction cannot be formally defined and proved
here. To summarize, we have the following result:

Theorem 1. Densest k-Subgraph in chordal graphs is FPT and does not
admit a polynomial kernel unless NP ⊆ coNP/poly, both parameterized by k.

4 FPT Algorithm for Sparsest k-Subgraph in Chordal
Graphs

Definitions and Notations. Let G = (V,E) be a chordal graph and T =
(X , A) be its corresponding tree decomposition as defined in Section 2. Recall
that for each X ∈ X , X induces a clique in G.

We denote respectively by L and I the set of leaves and internal nodes of
T (we have X = L ∪ I). In the following we suppose that T is rooted at an
arbitrary node Xr. Let X ∈ X , we denote by pred(X) the unique predecessor
of X in T (by convention pred(Xr) = ∅), and by succ(X) the set of successors
of X in T . For a vertex v ∈ V (resp. a node X ∈ X), we denote by d(v) (resp.
d(X)) its degree in G (resp. in T). For a set of vertices U ⊆ V (resp. set of nodes
A ⊆ X), we denote by G[U] (resp. T [A]) the subgraph of G induced by U (resp.
the subforest of T induced by A). We say that a vertex v ∈ V is a lonely1 vertex
(resp. almost lonely vertex) if |Xv| = 1 (resp. |Xv| = 2), i.e. if it appears in only
one (resp. two) nodes of T . For x ∈ V , N(x) denotes the neighborhood of x.

First Observations. A maximum independent set can be computed in poly-
nomial time in chordal graphs (since chordal graphs are perfect). Hence, we first
determine if there exists an independent set of size k. In this case, we return
this set which is naturally an optimal solution. Thus, we assume in the following
that the graph G does not contain an independent set of size k.

Notice that we can assume that for every leaf L of the tree we do not have
L ⊆ pred(L) (otherwise we can contract the two nodes). Therefore, for each leaf
L of the tree, there is a vertex x ∈ L such that x /∈ pred(L), i.e. x is a lonely
vertex. Since there is no independent set of size k in G, and since lonely vertices
of leaves are pairwise non adjacent, we have the following:

1 Notice that every lonely vertex is a so-called ”simplicial vertex” (a vertex whose
neighborhood is a clique). However, if a node of the tree is contained in another node,
a simplicial vertex may not be a lonely one. Since we do not make any supposition
on the tree T (we will in particular duplicate nodes during the algorithm), we will
prefer the term ”lonely”.

154 M. Bougeret et al.

Observation 1. We can assume that |L| < k.

Let us now state a simple property verified by optimal solutions. Let S be a set
of k vertices. Assume that there are vertices x ∈ S and y ∈ V \ S such that
Xy � Xx. Then it means that N(y) ⊆ N(x), Thus, if we replace x by y in the
solution, the number of edges in the solution cannot increase. A set S is closed
under inclusion if there is no vertex x in S such that there exists y ∈ V \S such
that Xy � Xx. So there always exists an optimal solution closed under inclusion.

Idea of the Algorithm. Our goal is to find an optimal solution closed un-
der inclusion. First note that any optimal solution closed under inclusion must
contain a lonely vertex per leaf of T . Indeed, as each leaf L is not included in
pred(L), there exists a lonely vertex x in L. Thus, either the solution intersects
L, and since it is closed by inclusion it contains a lonely vertex, or we can take a
vertex of the solution and replace it by x, which does not create any additional
edge (since no vertex of N(x) = L \ {x} was in the solution).

Our method can be summarized as follows. First, we take a lonely vertex in
each leaf and guess a binary flag w(L) ∈ {0, 1} for each leaf L which indicates
whether another vertex of L has to (with value 1) or does not have to (with
value 0) be taken in the solution. The width of such a branching is bounded
according to Observation 1. Then, given a leaf L with w(L) = 1, we first try to
add to the solution the “most interesting” vertex of the leaf (for example a lonely
vertex). When this is not possible (the neighborhood of the vertices of L can be
incomparable if these vertices appear on incomparable subtrees), we apply some
branching rules that re-structure the tree and create new “interesting vertices”.

Terminology for the Algorithm. The algorithm is a branching algorithm
composed of pre-processing rules (which do not require branching) and branching
rules. When a rule is applied, we assume that previous rules cannot be applied.

During the algorithm, a partial solution S (initialized to ∅) will be constructed,
and the input graph G = (V,E) together with k, T (and thus X , L and I) will
be modified. To avoid heavy notation we will keep these variables to denote the
current input, and denote by G0 the original graph, and by N0 the neighborhood
function of G0.

In the following, taking a vertex v ∈ V in the solution means that v is added
to S, and v is removed both from the graph G and the tree T (removing each of
its occurrences). Deleting a vertex means removing the vertex from G and from
T . If a leaf of T becomes empty after taking or deleting a vertex, then simply
remove the leaf.

Let F ∈ I be a leaf of T [I] (i.e. a node of T of which all successors are leaves).
The node F is a bad father if there exists a vertex u which appears in at least
two leaves of succ(F). So a node is a bad father if the leaves attached to it are
not vertex disjoint. We denote by #BF the number of bad fathers of the tree.
Finally, we denote by #AL (for ”almost leaf”) the number of internal nodes of
T such that at least one successor is a leaf. Notice that #AL,#BF ≤ |L|.

Parameterized Complexity of the Sparsest k-Subgraph Problem 155

In addition, as said previously, we will put “flags” on some leaves L∗ ⊆ L
by introducing a boolean function w : L∗ → {0, 1}, which indicates whether
it intersects the solution (value 1) or not (value 0). At the beginning of the
algorithm we have L∗ = ∅. For a solution S ⊆ V0, we say that S respects the
flags w if for all L ∈ L∗, w(L) = 0 iff S∩L = ∅. During the algorithm we will use
the term ”guessing” the value w(L) of L ∈ L. By this, we mean that we try the
two possible choices (consistent with the previous ones), creating at most two
distinct executions of the algorithm. Notice that L∗ will be implicitly updated
(i.e. L belongs to L∗ in the next executions if we have guessed w(L)).
We also add a function g : L∗ → 2S . Roughly speaking, we will modify g during
the algorithm such that g remembers the neighbors of the remaining vertices V
in the partial solution S already constructed. Notice that we introduced g only
for the analysis, and more precisely for maintaining our invariants (see bellow).

Correctness and Time Complexity. As usually in a branching algorithm,
we bound the time complexity by bounding both the depth and the maximum
degree of the search tree. More precisely, we will show that:

– Each rule can be applied in FPT time.
– The branching degree of each branching rule is a function of k.
– Any branching rule strictly decreases (k,#AL,#BF) using the lexicographic

order, whose initial value only depends on the initial value of k (by Obser-
vation 1).

– Any pre-processing rule does not increase (k,#AL,#BF) and decreases
|V |+ |I|.

Thus, the number of branching steps of the search tree is a function of k only,
whereas the number of steps between two branchings is polynomial in n (recall
that |X | is polynomial in n), which leads to an FPT running time.

Recall that S denotes the partial current solution. Concerning the correctness
of the algorithm, we will say that a rule is safe if it preserves all the following
invariants:

1. The tree T is still a tree decomposition (as defined in 2) of G, which is an
induced subgraph of G0.

2. If a vertex of the partial solution is adjacent to a ”surviving” vertex v ∈ V ,
then v must appear in a leaf where a flag is defined, i.e.:
N0(S) ∩ V ⊆

⋃
L∈L∗ L.

3. The neighborhood of a surviving vertex u in the partial solution is defined
by the union of g(L) for each L in which u appears, i.e. g : L∗ → 2S is such
that ∀u ∈ V we have N0(u) ∩ S =

⋃
L∈Xu∩L∗ g(L).

In particular, this invariant implies that if there are u, v ∈ V such that
Xu ∩ L∗ ⊆ Xv ∩ L∗ (i.e. v appears in at least as many labelled leaves as u),
then we must have N0(u) ∩ S ⊆ N0(v) ∩ S (i.e. v is adjacent to at least as
many vertices of the solution as u).

4. If there is an optimal solution (closed under inclusion) S∗ ⊆ V such that
S ⊆ S∗, and S∗ respects the flags w, then one of the branching will output
an optimal solution.

156 M. Bougeret et al.

Reduction Rules. Notice that each of the following rules defines a new value
for variables k, T , S, w and g. However, for the sake of readability we will not
mention variables that are not modified. Due to space restrictions, all safeness
proofs were omitted.

Pre-Processing Rule 1: useless duplicated node.
If there exists X ∈ X such that X /∈ L∗ and X ⊆ pred(X), then contract X

and pred(X) (i.e. delete X , and connect every Y ∈ succ(X) to pred(X)).

Pre-Processing Rule 2: removing a (almost) lonely vertex.
If there exists L ∈ L∗ such that w(L) = 0, then if L contains a lonely vertex v,
delete v. Otherwise, if L contains an almost lonely vertex v, then delete v.

Branching Rule 1: taking a lonely vertex.
If there exists L ∈ L∗ such that w(L) = 1 and L contains a lonely vertex v,

then take v in the solution and decrease k by one. In addition, add v into g(L),
and if L does not become empty, then guess a new value w(L).

Remark 1. At this point, since Pre-Processing Rule 1 does not apply, it is clear
that every leaf L ∈ L\L∗ contains a lonely vertex. The following branching rule
aims to process these leaves.

Branching Rule 2: processing leaves with no flag.
If there exists L ∈ L \ L∗, then take a lonely vertex v ∈ L in the solution and

decrease k by one. In addition, add v into g(L), and if L does not become empty,
guess a value w(L).

Remark 2. At this point, notice that L∗ = L, i.e. a flag has been assigned to
each leaf. Indeed, suppose that there exists L ∈ L \ L∗. If L contains a lonely
vertex, then Branching Rule 1 must apply. Otherwise, Pre-Processing Rule 1
must apply. In addition, there is no lonely vertex in the leaves, as otherwise
Branching Rule 1 or Pre-Processing Rule 2 would apply.

Branching Rule 3: partitioning leaves of a bad father.
If there exists a bad father F ∈ X , let L′ be the set of leaves in succ(F) and
C =

⋃
L∈L′ L be the set of vertices contained these leaves. Partition C into the

equivalence classes C1, ..., Ct of the following equivalence relation: two vertices
u, v ∈ C are equivalent if Xu ∩ L′ = Xv ∩ L′ (i.e. u and v appear in the same
subset of leaves of F). For all i ∈ {1, ..., t}, let Li ⊆ L′ denote the subset of leaves
in which vertices of Ci were before the partitioning. Then, replace the leaves of F
by C1, ..., Ct, and for all i ∈ {1, ..., t}, guess w(Ci) and set g(Ci) =

⋃
L∈Li g(L).

Let us give the intuition of Branching Rule 3. This rule ensures that the set
of leaves attached to a same node are vertex disjoint and that the partition was
made in such a way that two vertices in the same leaf after the application of
the rule were in the same subset of leaves before it. Notice that the remaining
Branching Rules can create bad fathers, but decrease k.

Parameterized Complexity of the Sparsest k-Subgraph Problem 157

Branching Rule 4: taking a lonely vertex in a father.
If there exists L ∈ L such that pred(L) contains a lonely vertex v, then take v
in the solution, delete k by one, and create a new leaf N adjacent to pred(L) and
containing vertices of L\{v}. Finally, guess a value for w(N) and set g(N) = {v}.

Branching Rule 5: taking an almost lonely vertex in a leaf.
If there exists L ∈ L such that w(L) = 1 and L contains an almost lonely

vertex v (thus contained in L and pred(L)), then take v in the solution, decrease
k by one, and create a new leaf N adjacent to pred(L) and containing vertices
of pred(L) \ {v}. If L does not become empty, then guess a new value w(L).
Finally, guess a value w(N), add v into g(L), and set g(N) = {v}.

End of the Algorithm.

Lemma 1. If no rule can be applied then either G is empty or k = 0.

According to the introduction and all the safeness lemmas, the size of the
search tree is a function of k. Then, let us remark that all rules can be applied
in FPT time. This is clear for Pre-Processing Rules 1 and 2, as well as for
Branching Rules 1, 2, 4 and 5. Concerning Branching Rule 3, which consists in
partitioning a subset of leaves, it runs in FPT time as long as |L| is a function
of k. This is obviously the case at the beginning of the algorithm (since |L| < k),
and the number of leaves only increase by one in Branching Rule 4 and 5, and
by a function of the previous number of leaves in Branching Rule 3. Since the
branching rules are applied at most f(k) times, we get the desired result.

Theorem 2. There is an FPT algorithm for Sparsest k-Subgraph in chordal
graphs, parameterized by k.

However, the running time of the algorithm may be a tower of 2 of height
k, since Branching Rule 3 may create 2t new leaves, where t is the number of
previous leaves of the node F . Nevertheless, we can slightly modify the algorithm
in order to obtain a O∗(2k

2

) running time2. Indeed, after the application of this
rule, all leaves L such that w(L) = 0 can be gathered into one leaf, since all
these vertices are not in the solution. And since all leaves are vertex disjoint, the
number of leaves L such that w(L) = 1 is at most k (since one vertex of each
leaf is in the solution). Hence, the number of leaves of F after the application of
Branching Rule 3 can actually be bounded by k+1. Then, as said previously, the
only other branching rules which increase the number of leaves are Branching
Rules 4 and 5, which both add at most one leaf when they are applied. However,
since these branching rules are decreasing k, the maximum number of leaves of a
node F before the application of Branching Rule 3 is 2k. Hence, this rule (which

upper bounds the running time of the algorithm) runs in time O∗(2O(2k2)) (we
have at most 22k leaves and we choose at most k leaves such that w(L) = 1).
For sake of readability, the presented algorithm does not contain this slight
modification.
2 The O∗(.) notation avoids polynomial terms.

158 M. Bougeret et al.

5 Kernel Lower Bound of Sparsest k-Subgraph in
Chordal Graphs

Intuition of the Proof. The following kernel lower bound is obtained using a
cross-composition. It is an extension of our previous work [18], showing the
NP-hardness of Sparsest k-Subgraph in chordal graphs. Let us first give
the intuition of this result, and then explain the modification we apply which
leads to the kernel lower bound. We then explicit the whole construction of the
cross-composition and give a formal proof of the result.

The NP-hardness proof is a reduction from the classical k-clique problem in
general graphs and roughly works as follows. Given an input instanceG = (V,E),
k ∈ N of k-clique, we first build a clique A representing the vertices of G. We
also represent each edge ej = {u, v} ∈ E by a gadget Fj , and connect the
representative vertices of u and v in A to some vertices of Fj (see the left of
Figure 1). The reduction will force the solution to take in A the representatives
of (n− k) vertices of G (corresponding to the complement of a solution S of size
k in G), and also to take the same number of vertices among each gadget. The
key idea is that the cost of a gadget Fj increases by one if it is adjacent to one
of the selected vertices of A. Thus, since the goal is to minimize the cost, we will
try to maximize the number of gadgets adjacent to the representatives of S (i.e.
vertices we did not pick in A), the maximum being reached when S is a clique
in G.

To adapt this reduction into a cross-composition, we add an instance selec-
tor composed of 2 log t gadgets adjacent to A (where t is the number of input
instances of the cross-composition) which encodes the binary representation of
each instance index. These gadgets have the same structure as the Fj . For tech-
nical reasons, this instance selector has to be duplicated many times, as well as
the clique A which we must duplicate t times in order to encode the vertex set of
each instance. The right of Figure 1 represents the construction in a simplified
way. Let us now define formally the gadgets and state their properties.

Definition of a Gadget. Let T ∈ N (we will set the value of T later). The vertex
set of each gadget is composed of three sets of T vertices X,Y and Z, with
X = {x1, ..., xT }, Y = {y1, ..., yT } and Z = {z1, ..., zT }. The set X induces an
independent set, the set Z induces a clique, and there is a (T − 1)-clique on
{y2, ..., yT }. In addition, for all i ∈ {1, ..., T }, we connect yi to all vertices of Z
and to xi. The left of Figure 1 summarizes the construction.
In the following cross-composition, we will force the solution to take 2T vertices
among each gadget F . It is easy to see that the sparsest 2T -subgraph of F is
composed of the sets X and Z, which induces

(
T
2

)
edges. In addition, if we forbid

the set Z to be in the solution (if the gadget is adjacent to some picked vertices
of A), then the remaining 2T vertices (namely X and Y) induce (

(
T
2

)
+1) edges.

Theorem 3. Sparsest k-Subgraph does not admit a polynomial kernel in
chordal graphs unless NP ⊆ coNP/poly (parameterized by k).

Parameterized Complexity of the Sparsest k-Subgraph Problem 159

X1

Y1

Z1

gadget F1 for e1 = {u, v} ∈ Ei

T

n

n Ai

X1

Y1

Z1

Xm

Ym

Zm

Zα1
1

Fα1
1

Fβ1
1

clique on
tn2 vertices A1 At

k n− k

(
k
2

)
gadgets m−

(
k
2

)
gadgets

T

bin. representation
of i : 1 1 0

2Mq
gadgets

T

F1 Fm

Yα1
1

Xα1
1

ZβM
q

YβM
q

XβM
qFαM

j
FβM

j

Fα1
q

Fβ1
q

Ai
u Ai

v

Ai

Fig. 1. Schema of the cross-composition (right) and a detailed gadget (left). Grey
rectangles represent vertices of the solution, supposing that Gi contains a clique of size
k. Notice that gadgets of the bottom have been drawn in the reverse direction (e.g.
Xβ1

1
is below Yβ1

1
). Edges of the clique A have not been drawn for sake of clarity.

Proof. Let (G1, k1), ..., (Gt, kt) be a sequence of t instances of k-clique, with
Gi = (Vi, Ei) for all i ∈ {1, ..., t}. W.l.o.g. we suppose that t = 2q for some
q ∈ N, and define T = n(n− k) and M = n6.

Our polynomial equivalence relation is the following: for 1 ≤ i, j ≤ t, (Gi, ki)
is equivalent to (Gj , kj) if |Vi| = |Vj | = n, |Ei| = |Ej | = m and ki = kj = k. One
can verify that this relation is a polynomial equivalence relation. In what follows
we suppose that all instances of the sequence are in the same equivalence class.
The output instance G′ = (V ′, E′), k′, C′ is defined as follows (see Figure 1):

– For each i ∈ {1, ..., t} we construct a clique Ai on n2 vertices, where Ai is
composed of n subcliques Ai

1, ..., A
i
n. We also add all possible edges between

all cliques (Ai)i=1..n. Hence, A =
⋃t

i=1A
i is a clique of size tn2.

– Since all instances have the same number of edges, we construct m gad-
gets (Fj)j=1..m, where each Fj is composed of Xj, Yj and Zj as described
previously. For all i ∈ {1, ..., t}, if there is an edge ej = {u, v} ∈ Ei, then
we connect all vertices of Zj to all vertices of Ai

u and Ai
v. Let us define

F =
⋃m

j=1 Fj the subgraph of all gadgets of the ”edge selector”.

– We add 2qM gadgets (Fαh
j
)h=1..M
j=1..q and (Fβh

j
)h=1..M
j=1..q , where all gadgets are

isomorphic to the edge gadgets, and thus composed of Xαh
j
, Yαh

j
and Zαh

j

160 M. Bougeret et al.

(resp. Xβh
j
, Yβh

j
and Zβh

j
) for all h ∈ {1, ...,M} and all j ∈ {1, ..., q}. Let

i ∈ {1, ..., t}, and consider its binary representation b ∈ {0, 1}q. For all
j ∈ {1, ..., q}, if the jth bit of b equals 0, then connect all vertices of Ai to

all vertices of
⋃M

h=1 Zαh
j
. Otherwise, connect all vertices of Ai to all vertices

of
⋃M

h=1Zβh
j
. Let us define B =

⋃M
h=1

⋃q
j=1(Fαh

j
∪ Fβh

j
) the subgraph of all

gadgets of the ”instance selector”.

– We set k′ = T+2Tm+4TqM and C′ =
(
T
2

)
+
(
T
2

)
(m+2Mq)+(m−

(
k
2

)
)+Mq.

It is clear that G′, k′ and C′ can be constructed in time polynomial in∑t
i=1 |Gi| + ki. Then, one can verify that G′ is a chordal graph. Indeed, it

is known [13] that a graph is chordal if and only if one can repeatedly find a
simplicial vertex (a vertex whose neighborhood is a clique) and delete it from the
graph until it becomes empty. Such an ordering is called a simplicial elimination
order. It is easily seen that for each gadget, X,Y and then Z is a simplicial
elimination order (each gadget is only adjacent to the clique A via its set Z).
Finally it remains the clique A which can be eliminated.

In addition, notice that the parameter k′ is a polynomial in n, k and log t
only and thus respect the definition of a cross-composition. We finally prove
that there exists i ∈ {1, ..., t} such that Gi contains a clique K of size k if and
only if G′ contains a set K ′ of k′ vertices inducing C′ edges or less.

Lemma 2. If there exists i ∈ {1, ..., t} such that Gi contains a k-clique, then
G′ contains k′ vertices inducing at most C′ edges.

Proof. Suppose that K ⊆ Vi is a clique of size k in Gi. W.l.o.g. suppose that
K = {v1, ..., vk}, and that {{u, v}, u, v ∈ K} = {e1, ..., e(k2)}. Let b ∈ {0, 1}q be

the binary representation of i. We build K ′ as follows (see Figure 1).

– For all j ∈ {1, ...,
(
k
2

)
}, K ′ contains Xj and Zj (2T vertices inducing

(
T
2

)
edges for each gadget Fj).

– For all j ∈ {
(
k
2

)
+ 1, ...,m}, K ′ contains Xj and Yj . (2T vertices inducing

(
(
T
2

)
+ 1) edges for each gadget Fj).

– For all u /∈ {1, ..., k}, K ′ contains Ai
u (T vertices inducing

(
T
2

)
edges).

– For all h ∈ {1, ...,M}, and all j ∈ {1, ..., q}, K ′ contains Xαh
j
and Xβh

j
.

Moreover, if the jth bit of b equals 1, thenK ′ contains Yβh
j
and Zαh

j
, otherwise

K ′ contains Zβj
j
and Yαh

j
(4T vertices inducing (2

(
T
2

)
+1) edges for each pair

of gadgets Fαh
j
and Fβh

j
).

One can easily verify that K ′ is a set of k′ vertices inducing C′ edges. ��

The following lemma, which proof has been omitted, terminates the proof.

Lemma 3. If G′ contains k′ vertices inducing at most C′ edges, then ∃i ∈
{1, ..., t} such that Gi contains a k-clique.

Parameterized Complexity of the Sparsest k-Subgraph Problem 161

References

1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Discrete Applied Mathematics (in press, 2013)

2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique
for kernelization lower bounds. In: STACS, pp. 423–434 (2011)

3. Bonnet, É., Escoffier, B., Paschos, V.T., Tourniaire, É.: Multi-parameter complex-
ity analysis for constrained size graph problems: Using greediness for parameter-
ization. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 66–77.
Springer, Heidelberg (2013)

4. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and
approximation algorithms for densest k-subgraph. In: Ghosh, S.K., Tokuyama, T.
(eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg (2013)

5. Bousquet, N., Bougeret, M., Giroudeau, R., Watrigant, R.: Parameterized com-
plexity of the sparsest k-subgraph problem in chordal graphs. Technical Report
RR-13033, LIRMM (2013)

6. Broersma, H., Golovach, P.A., Patel, V.: Tight complexity bounds for FPT sub-
graph problems parameterized by clique-width. In: Marx, D., Rossmanith, P. (eds.)
IPEC 2011. LNCS, vol. 7112, pp. 207–218. Springer, Heidelberg (2012)

7. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Computer Journal 51(1), 102–121 (2008)

8. Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersection
graphs. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534, pp.
83–93. Springer, Heidelberg (2011)

9. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Applied Mathematics 9(1), 27–39 (1984)

10. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal

graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)
13. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press,

New York (1980)
14. Joret, G., Vetta, A.: Reducing the rank of a matroid. CoRR, abs/1211.4853 (2012)
15. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite

clique. SIAM Journal of Computing 36, 1025–1071 (2004)
16. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for

the densest k-subgraph problem on chordal graphs. Information Processing Let-
ters 108(1), 29–32 (2008)

17. Nonner, T.: PTAS for densest k-subgraph in interval graphs. In: Dehne, F.,
Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 631–641. Springer,
Heidelberg (2011)

18. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the sparsest k-
subgraph in chordal graphs. To Appear in WAOA 2013 (2013)

Error-Pruning in Interface Automata�

Ferenc Bujtor and Walter Vogler

Inst. f. Informatik, Universität Augsburg

Abstract. De Alfaro and Henzinger introduced interface automata to
model and study behavioural types. These come with alternating sim-
ulation as refinement and with a specific parallel composition: if one
component receives an unexpected input, this is regarded as an error
and the resp. error states are removed with a special pruning operation.
In this paper, we return to the foundations of interface automata and
study how refinement and parallel composition should be defined best.
We take as basic requirement that an implementation must be error-
free, if the specification is. For three variants of error-free, we consider
the coarsest precongruence for parallel composition respecting the basic
requirement. We find that pruning proves to be relevant in all cases; we
also point out an error in an early paper by de Alfaro and Henzinger.

1 Introduction

Interface automata as introduced by de Alfaro and Henzinger e.g. in [5] are an
abstract description of the communication behaviour of a system or component
in terms of input and output actions. Based on this behavioural type, one can
study whether two systems are compatible if put in parallel, and one can define
a refinement for specifications. Essential for such a setting is that the refinement
relation is a precongruence for parallel composition.

A basic intuition here is that outputs are under the control of the respective
system: if one component in a composition provides an output for another, the
latter must synchronize by performing the same action as input; if this is not
possible, the whole system might malfunction – such a catastrophic error state
has to be avoided. In contrast to the I/O-automata of [10], interface automata
are not input enabled. Instead, a missing input in a state corresponds to the
requirement that an environment must not send this input to this state.

There are two essential design decisions in the approach of [5] that we will
scrutinize in this paper. First, the approach is optimistic: an error state is not
a problem, if it cannot be reached in a helpful environment. This is reflected in
the details of parallel composition, where from a standard product automaton
all states are removed that can reach an error state just by local, i.e. output
and internal actions (often called pruning). Although this definition has some
intuitive justification, its details appear somewhat arbitrary. This is also the
case for the second decision to take some alternating simulation as refinement

� This research was supported by DFG-project VO 615/12-1.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 162–173, 2014.
c© Springer International Publishing Switzerland 2014

Error-Pruning in Interface Automata 163

relation. Actually, the same authors used a slightly different relation for a slightly
larger class of automata in the earlier [4]; no argument is given for the change.

Here, we will work out to what degree these design decisions can be justified
from some more basic and, hopefully, more agreeable ideas. We model com-
ponents as labelled transition systems (LTSs) with disjoint input and output
actions and an internal action τ , quite like the interface automata of [5]. So as
not to exclude any possibilities prematurely, our LTS have explicit error states.
For these Error-IO-Transition Systems (EIO), we consider a standard parallel
composition where additionally error states occur as described above; error states
are also inherited from the components.

An undisputable requirement for a refinement relation " is that an error-free
specification should only be refined by an error-free system. This can be under-
stood as a basic refinement relation, which is parametric in the exact meaning
of error-free: in the optimistic view, error-free means that no error state can be
reached by locally controlled actions only; in the pessimistic view (cf. e.g. [1]),
a system is error-free only if no error state is reachable at all.

For modular reasoning, which is at the heart of the approach under study, "
must be a precongruence: if a component of a parallel composition is replaced
by a refinement, the composition itself gets refined, i.e. S1 " S2 implies S1 |
S " S2 | S. Since the basic relations fail to be precongruences in each case,
we will characterize (or at least approximate) the resp. coarsest precongruence
that is contained in the basic relation. Such a fully abstract precongruence is
optimal for preserving error-freeness, since it does not distinguish components
for no semantic reason.

In the optimistic case, the precongruence can be characterized as (compo-
nentwise) inclusion for a pair of trace sets; the definition of one of these uses
pruning on traces. With this chacterisation we can prove that, essentially, each
EIO is equivalent w.r.t the precongruence to one without error states, where
the latter can be obtained by pruning the former as in [5]. Thus, we can work
with EIO without error states, i.e. with interface automata and with the parallel
composition of [5], but our pruning is proven to be correct.

While this justifies the first design decision in [5], our precongruence shows
that alternating simulation is unnecessarily strict. This is not really new. A
setting with input and outputs where unexpected inputs lead to errors has been
studied long before [5] for speed-independent (thus asynchronous) circuits by Dill
in [6]. The difference is that Dill does not start from an operational model as we
do (in particular, there is no parallel composition for LTS), but on a semantic
level with pairs of trace sets; he requires these pairs to be input enabled. On this
semantic level, he also uses pruning; a normalized form of his pairs coincides
with our pairs. Essentially, the full abstraction result can also be found in [3],
though for a slightly different parallel composition and only for a congruence.
Since that paper starts from a declarative approach, our presentation and proofs
are more direct, and they prepare the reader for the other sections.

In [3], EIO (called Logic IOLTS there) are seen as an alternative framework
to interface automata, and an error state is actually added to normalize an EIO.

164 F. Bujtor and W. Vogler

We see error states only as a tool to study interface automata and would prefer
to remove them in the end; with this view, we discovered a subtle point about
pruning. Interface automata in [5] are deterministic w.r.t. input actions. Since we
do not require this here, our pruning is a bit different from the one in [5]. In fact,
the interface automata in [4] are also not input deterministic, but pruning used
there is the same as the one in [5]. As a consequence, Theorem 1 of [4] claiming
associativity for parallel composition is wrong; in our setting, it is easily proven.

It might seem that we have actually prescribed pruning in our optimistic
approach since we consider only locally reachable errors as relevant and prun-
ing removes exactly those states that can reach an error locally. To fortify the
justification of pruning, we turn to a ‘hyper-optimistic’ approach next, where
only internally reachable errors are relevant. With this more generous notion of
error-free we obtain a slightly stricter precongruence and characterize it. The
characterization is again based on pruning; the new idea is to extend traces with
a set of outputs removed during pruning. This is an interesting precongruence
but, compared to our first one, it looks unnecessarily complicated.

Finally, in the pessimistic approach every reachable error is relevant as ad-
vocated e.g. in [1]. Here, we describe a precongruence contained in the resp.
basic relation, which is based on three trace sets and again employs pruning.
We sketch how one might get the fully abstract precongruence, but this will be
technically so involved as to make it unattractive. Even without characterising
this precongruence, we can show that it is stricter than the optimistic one.

The next section will explain some basic notions. Sections 3 to 5 describe in
turn our results for the optimistic, hyper-optimistic and pessimistic approach.
Finally, in Section 6, we conclude with a comparison and give arguments as to
why we will prefer the optimistic variant in the future. Due to lack of space,
proofs and most examples had to be omitted.

2 Definitions and Notation

First we define our scenario. In interface automata, internal actions have different
names. These sets of names must be disjoint for two automata to be composable;
hence, standard α-conversion is not fully supported. To improve our EIOs have
just one internal, unobservable actions τ , and they have a separate set of error
states; such states can be created in a parallel composition.

Definition 1. An Error-IO-Transition-System (EIO) is defined as a tuple S =
(Q, I,O, δ, q0, E), with Q: a set of states, I, O: disjoint sets of (visible) input and
output actions, δ ⊆ Q × (I ∪ O ∪ {τ}) × Q: a transition relation, q0 ∈ Q: an
initial state, E ⊆ Q: a set of error states. The actions of S are Σ := I ∪O, and
its signature is Sig(S) = (I, O). We call S closed, if Σ = ∅.

We write Q1, I1, δ1 etc. for components of the EIO S1 and Q2, I2, δ2 etc. for S2
and so on. We extend this for semantics and e.g. write ET1 for ET (S1) as defined

later on. We also write q
a−→ p for (q, a, p) ∈ δ and q

a−→ for ∃p : (q, a, p) ∈ δ.
Extending this to sequences w ∈ (Σ ∪ {τ})∗, we write q

w−→ p, (q
w−→) whenever

Error-Pruning in Interface Automata 165

q
a1−→ a2−→ · · · an−−→ p (called a run), (q

a1−→ a2−→ · · · an−−→) with w = a1 · · · an.
Furthermore, w|B denotes the action sequence obtained from w by deleting all

actions not in B ⊆ Σ. We write q
w⇒ p for w ∈ Σ∗ if ∃w′ ∈ (Σ ∪ {τ})∗ : w′|Σ =

w ∧ q w′
−→ p, and q

w⇒ if some p with q
w⇒ p exists. The basic language of S is

L(S) = {w ∈ Σ∗ | q0 w⇒}, and it consists of the traces of S.
In a parallel composition, all common actions are synchronized and then hid-

den. Two EIOs can only be composed, if their input and output actions fit
together, i.e. the EIOs have neither common inputs nor common outputs. A
state of the composition is an error state if one component is in an error state
(inherited error) or if one component sends an output to the other one, which is
not ready to receive it (new error).

Definition 2. Two EIOs S1, S2 are composable if I1 ∩ I2 = ∅ = O1 ∩ O2.
The parallel composition is defined for two composable EIOs as S1 | S2 =
(Q, I,O, δ, q0, E), where Q = Q1 × Q2, I = (I1\O2) ∪ (I2\O1), O =

(
(O1\I2) ∪

(O2\I1)
)
, and q0 = (q01, q02). Furthermore, with Synch(S1, S2) = (I1 ∩ O2) ∪

(I2 ∩O1) being the set of synchronized actions, we define

δ = {
(
(q1, q2), α, (p1, q2)

)
| (q1, α, p1) ∈ δ1, α ∈ (Σ1 ∪ {τ})\Synch(S1, S2)}∪

{
(
(q1, q2), α, (q1, p2)

)
| (q2, α, p2) ∈ δ2, α ∈ (Σ2 ∪ {τ})\Synch(S1, S2)}∪

{
(
(q1, q2), τ, (p1, p2)

)
| (q1, α, p1) ∈ δ1, (q2, α, p2) ∈ δ2, α ∈ Synch(S1, S2)}

E =(Q1 × E2) ∪ (E1 ×Q2) ‘inherited errors’

∪{(q1, q2) | ∃a ∈ O1 ∩ I2 : q1
a−→ ∧q2 � a−→}

∪{(q1, q2) | ∃a ∈ I1 ∩O2 : q1 � a−→ ∧q2 a−→} ‘new errors’

We introduce S12 as shorthand for S1 | S2 and similarly for its components and
semantics. We call an EIO S a partner of an EIO S′ if their parallel composition
is closed, i.e. if they have dual signatures Sig(S′) = (I, O) and Sig(S) = (O, I).
For our results we also define | on traces.

Definition 3. Given two composable EIOs S1, S2, w1 ∈ Σ∗
1 , w2 ∈ Σ∗

2 ,W1 ⊆ Σ∗
1

and W2 ⊆ Σ∗
2 , we define w1 | w2 = {w|Σ12 | w|Σ1 = w1 ∧ w|Σ2 = w2} and

W1 |W2 =
⋃
{w1 | w2 | w1 ∈ W1 ∧ w2 ∈ W2}.

We will base our semantics on traces that can lead to error states. In this
context, we will use a pruning function, which removes all output actions from
the end of a trace. We also define a function for arbitrary continuation of traces;
for trace sets, this generalizes to describing the continuation or suffix closure.

Definition 4. For an EIO S, we define:
– prune : Σ∗ → Σ∗, w �→ u, where w = uv, (u = ε ∨ u ∈ Σ∗ · I) and v ∈ O∗

– cont : Σ∗ → P(Σ∗), w �→ {wu | u ∈ Σ∗}
– cont : P(Σ∗) → P(Σ∗), L �→

⋃
w∈L cont(w)

3 Optimistic Approach: Local Errors

We are now ready to consider some basic refinement relations. We will use vari-
ations of the notation ‘Impl "B Spec’ to denote that Impl in some basic sense
is an implementation of, i.e. refines, the specification Spec.

166 F. Bujtor and W. Vogler

3.1 Precongruence for Local Errors

In this section, we start with a variant based on local (i.e. internal and output)
actions. We consider the following requirement: An implementation can only
have an error state reachable by local actions if the specification has one as well.
This is an optimistic view: It only considers processes to be dangerous, if they
can run into an error on their own, i.e. using only local actions. Formally:

Definition 5. An error is locally reachable in an EIO S, if ∃w ∈ O∗ : q0
w⇒ q ∈

E. For EIOs Impl and Spec with the same signature, we write Impl "B
locSpec,

whenever an error is locally reachable in Impl only if an error is locally reachable
in Spec.

By "c
loc, we denote the fully abstract precongruence with respect to "B

loc and
|, i.e. the coarsest precongruence with respect to | that is contained in "B

loc.

In order to characterize this coarsest precongruence, we will need several trace
sets. Naturally, we are interested in those traces that can reach an error state,
the so-called strict error traces. If an EIO can perform a trace w such that input
a is not possible in the state reached, and the environment allows this state to
be reached by providing the necessary inputs and then performs a as an output,
a new error state arises in the composition. Thus, we are also interested in the
sequence wa and call it a missing-input trace.

Definition 6. We define the following trace sets for an EIO S:
– strict error traces : StT (S) = {w ∈ Σ∗ | q0 w⇒ q ∈ E}
– pruned error traces : PrT (S) = {prune(w) | w ∈ StT (S)}
– missing-input traces : MIT (S) = {wa ∈ Σ∗ | q0

w⇒ q ∧ a ∈ I ∧ q � a−→}

The characterization we are looking for will be provided by the following local
error semantics; the intuitions are as follows. Errors arise in a composition be-
cause a component cannot accept some input after a trace or because it performs
a strict error trace; in the latter case, the error is already unavoidable if the error
state can be reached by local actions only. Hence, we consider the trace sets PrT
and MIT in the definition of ET below. But as already explained above, the
other component must take part in such problematic behaviour, hence we are
also interested in the basic language of a component.

If along an action sequence an error can occur, it does not matter whether the
sequence can be performed at all, and if so, whether it leads to an error state.
Thus, we want to obliterate this information about such a trace; for this purpose,
we close the set of problematic traces under continuation, and we also include
this extended set in the language; this technique of flooding is well known e.g.
in the context of failures semantics [2].

It will turn out that we can characterize "c
loc as componentwise set inclusion

for pairs (ET (S), EL(S)), denoted by "loc.

Definition 7. Let S be an EIO.
– The set of error traces of S is ET (S) = cont(PrT (S)) ∪ cont(MIT (S));
– the flooded language of S is EL(S) = L(S) ∪ET (S).

Error-Pruning in Interface Automata 167

For two EIOs Impl and Spec with the same signature, we write Impl "loc

Spec if ET (Impl) ⊆ ET (Spec) and EL(Impl) ⊆ EL(Spec) Impl and Spec are
local-error equivalent, Impl =loc Spec, if Impl "locSpec and Spec "loc Impl.

Our first result shows that the local error semantics is compositional.

Theorem 8. For two composable EIOs S1, S2 and S12 = S1 | S2 we have:

– ET12 = cont
(
prune

((
ET1 | EL2

)
∪
(
EL1 | ET2

)))
– EL12 =

(
EL1 | EL2

)
∪ ET12

Hence, "loc is a precongruence; to show that it is the coarsest one, we have
constructed an environment for each relevant trace w of Impl that reveals that
w is also an appropriate trace of Spec.

Theorem 9. For EIOs Impl and Spec with the same signature, Impl "c
loc

Spec⇔ Impl "locSpec.

3.2 Comparison to Interface Automata

We will show now that, up to local-error equivalence, we can essentially work
with EIOs without error states. Such EIOs are the same as the interface automata
of [5], if they additionally are input-deterministic: if q

a−→ q′ and q a−→ q′′ for some
a ∈ I, then q′ = q′′. The only difference is that, in a setting with EIOs without
error states, we do not have EIOs anymore that are an error initially.

Theorem 10. Let S be an EIO, and obtain prune(S) from S by removing the
illegal states in illegal(S) = {q ∈ Q | an error state is reachable from q by local

actions}, their in- and out-going transitions and all transitions q
a−→ q′ where

q
a−→ q′′ with q′′ ∈ illegal(S) for some a ∈ I. If q0 �∈ illegal(S), prune(S) is an

EIO and local-error equivalent to S.

The resp. pruning in the definition of parallel composition in [5] only removes
transitions from legal to illegal states. (Since then the illegal states are unreach-

able, they can be removed as well.) The additional removal of transitions q
a−→ q′

as described in the theorem is obviously redundant in case of input determinism.
According to Theorem 10, we could work with EIOs without error states;

whenever we put such EIOs in parallel, we have to normalize the result taking
prune(S1 | S2) as parallel composition. To ensure well-definedness, we call EIOs
S1 and S2 compatible, if the initial state of S1 | S2 is not illegal, and we only
apply the new parallel composition to compatible S1 and S2. For this, we have:

Proposition 11. If Spec and Spec′ are compatible EIOs and Impl "loc Spec,
then also Impl and Spec′ are compatible.

In our setting, we have proved pruning as introduced in [5] correct also on
the level of transition systems. But the refinement relation in [5] is somewhat
arbitrarily too strict, as we will show below. To the best of our knowledge, alter-
nating simulation for refinement has first been considered for modal transition
systems [8]; see [9] for a comparison to the setting of interface automata.

168 F. Bujtor and W. Vogler

Since the refinement relation of [5] is a precongruence, one might believe that
it should imply "locdue to our coarsest precongruence result. This is not really so
obvious: we have considered parallel components that are not interface automata
(since they violate input determinism), and this could have forced us to be too
strict w.r.t alternating simulation. But actually, this is not the case:

Definition 12. For EIOs S1 and S2 with the same signature, an alternating
simulation relation from S1 to S2 is some R ⊆ Q1 ×Q2 with (q01, q02) ∈ R such
that for all (q1, q2) ∈ R we have:

1. If q2
a−→ q′2 and a ∈ I1, then q1 a−→ q′1 and (q′1, q

′
2) ∈ R.

2. If q1
a−→ q′1 and a ∈ O1, then q2

ε⇒ a−→ q′2 and (q′1, q′2) ∈ R.

3. If q1
τ−→ q′1, then q2

ε⇒ q′2 and (q′1, q
′
2) ∈ R.

Thus, implementation S1 must match a prescribed input immediately, while
an output or τ is allowed for S1 if S2 can match it using internal steps.

Proposition 13. If there exists some alternating simulation relation for inter-
face automata S1 and S2, then S1 "locS2. This implication is strict.

Next is associativity for parallel composition. As mentioned in the introduc-
tion, Theorem 1 of [4] claiming this associativity is wrong there. We have an
example, where S1 and S2 | S3 are compatible, but S1 | S2 and S3 are not, i.e.
their composition is undefined. The reason is that pruning in [4] does not remove

the transitions q
a−→ q′ mentioned in Theorem 10; with this removal, associativity

would be correct. This problem disappears in later work on interface automata,
where the automata are required to be input deterministic.

This demonstrates the danger when one develops an unorthodox definition,
like pruning in |, justified with informal intuitive arguments only. In the present
paper, pruning on EIOs is proven correct in Theorem 10, and this proof would
fail with some incorrect definition of pruning. In our setting with error states
associativity is easy, because the two systems are easily seen to be isomorphic.
Hence, associativity holds for any sensible equivalence on EIOs.

Theorem 14. For pairwise composable EIOs S1, S2 and S3, S1 | (S2 | S3) and
(S1 | S2) | S3 are isomorphic and in particular local-error equivalent.

According to this theorem, also other equivalences in this paper make | as-
sociative, and commutativity is obvious. In this context, it is useful to mention
the following general result; see e.g. [11, Sec. 3.2] for similar considerations.

Theorem 15. Let "B be a preorder on some set E such that operation | is
commutative and associative for the related equivalence =B, and there exists
Nil ∈ E with S | Nil =B S for all S ∈ E. Let preorder " satisfy for all Impl
and Spec in E: Impl " Spec ⇔ U | Impl "B U | Spec for all composable U .
Then " is "c, the fully abstract precongruence for "B and |.

This theorem tells us that, for proving that "loc is fully abstract, it suffices to
consider parallel compositions with two components instead of arbitrary ones.

Error-Pruning in Interface Automata 169

For the present setting, we have adapted this to a partial composition to prove
Theorem 26. From the observation that only partners as defined after Definition 2
are used in the proof of Theorem 9, we get an even simpler characterization.

Corollary 16. For EIOs Impl and Spec, we have Impl "loc Spec if and only
if U | Impl "B

locU | Spec for all partners U .

This result is relevant for the following reason: when a (possibly composed)
system is finally put to use, it is composed in parallel with a user, resulting in a
closed system. In other words, a user is a partner U and U | Impl "B

locU | Spec
means that the user is as happy with Impl as she was with Spec. For some
people, a relation with such a characterization is of foremost interest (see e.g.[7]
where a “happy” partner is called a strategy), even though it is not necessarily
a precongruence. The corollary will be essential for proving below that the third
precongruence "c

act is strictly finer than "loc.

4 Hyper-Optimistic Approach: Internal Errors

To obtain an even better justification for pruning, we now will focus on errors
reached by internal actions only. The view that only such errors count is even
more optimistic than our first one, since errors reachable by output actions are
no longer considered dangerous. The new idea for the resulting semantics is that
each error trace is annotated with a set of output actions; traces are pruned
again and, then, the set contains the output actions that are needed to reach an
error state; the intuition is: if the system performs the trace while synchronizing
with another one on the given output actions, then an error state can be reached
internally afterwards. If some action o of these actions is not synchronized, the
error state is only reached by performing the still visible o.

Our base relation is now defined as:

Definition 17. An error is internally reachable in S, if ε ∈ StT (S). For EIOs
Impl and Spec with the same signature, we write Impl "B

int Spec whenever an
error is internally reachable in Impl only if an error is internally reachable in
Spec; "c

int denotes the fully abstract precongruence with respect to "B
int and |.

Definition 18. Given an EIO S, we define out : Σ∗ → P(O) such that out(w)
consists of all output actions in w. An error pair over a signature (I, O) is a pair
(w,X) ∈ (I ∪O)∗ ×P(O) with out(w) ⊆ X .

Given two composable EIOs S1, S2, we define for an error pair (w,X) over
(I1, O1) and v ∈ Σ∗

2 : (w,X) | v = {(z, Y) | z ∈ w | v, Y = (X ∪ out(v)) ∩Σ12}
It is easy to see that this set consist of error pairs over the signatures of

S12 = S1 | S2. On error pairs over some (I, O), we define:
– prune(w,X) := (prune(w), X) (an error pair again)
– cont(w,X) := {(v, Y) | v ∈ cont(w), X ⊆ Y } (consisting of error pairs)

Definition 19. We define the following sets of error pairs for an EIO S:
– strict error pairs: StP (S) = {(w,X) | w ∈ StT (S), out(w) = X}

170 F. Bujtor and W. Vogler

– pruned error pairs : PrP (S) = {prune(w,X) | (w,X) ∈ StP (S)}
– missing-input pairs : MIP (S) = {(w,X) | w ∈MIT (S), out(w) = X}

It is easy to see that these sets indeed consist of error pairs over (I, O), and
that they are an enhanced version of similar sets defined in the previous section.
It will turn out that we can characterize "c

int as componentwise set inclusion
for pairs (EP (S), EPL(S)), where the latter is the basic language of S flooded
with a set of traces derived from EP (S).

Definition 20. Let S be an EIO.
– the set of error pairs of S is EP (S) = cont(PrP (S)) ∪ cont(MIP (S));
– the set of error pair traces of S is EPT (S) = {w | (w, out(w)) ∈ EP (S)};
– the flooded language, or error pair language, is EPL(S) = L(S) ∪ EPT (S).
For two EIOs Impl and Spec with the same signature, we write:
Impl "int Spec if EP (Impl) ⊆ EP (Spec) and EPL(Impl) ⊆ EPL(Spec).

For the characterization result, it is again crucial that the internal error se-
mantics is compositional. This implies that "int is a precongruence, and it is
indeed the coarsest one:

Theorem 21. a) For two composable EIOs S1, S2 and S12 = S1 | S2 we have:

– EP12 = cont
(
prune

((
EP1 | EPL2

)
∪
(
EPL1 | EP2

)))
– EPL12 =

(
EPL1 | EPL2

)
∪ EPT12

b) For two systems Impl and Spec with the same signature, we have Impl "c
int

Spec⇔ Impl "int Spec.

Thus, we have characterized the fully abstract precongruence for "B
int and |.

From a more general perspective, two points are notable: Although outputs do
not play a special role for "B

int, pruning of outputs on traces is again essential
for our characterization. Since the concept of error-freeness underlying "B

int is
more liberal than the one for "B

loc, it is maybe surprising that the resulting
precongruence is strictly finer.

Proposition 22. The internal precongruence "int is strictly finer than the local
precongruence "loc, i.e. for all EIOs Impl and Spec with the same signature,
Impl "int Spec implies Impl "locSpec, but not the other way round.

5 Pessimistic Approach: Reachable Errors

Now we turn to the pessimistic approach, which has already been discussed in
the literature e.g. in [1], and consider only those systems error-free that do not
have any reachable error states.

Definition 23. An error is reachable in an EIO S, if ∃w ∈ Σ∗ : w ∈ StT (S).
For EIOs Impl and Spec with the same signature, we write Impl "B

act Spec,
whenever an error is reachable in Impl only if an error is reachable in Spec. We
denote the fully abstract precongruence with respect to "B

act and | by "c
act.

Error-Pruning in Interface Automata 171

·
P: x?

· · ·
Q: i?;x!

i? x!
·

R: i!
A pessimistic person might argue

that systems with an error should just
not be used at all (such a view is pre-
sumably taken in [1]), and that it does
not make sense to distinguish between
erroneous systems, as we will do with "c

act. This has the severe disadvantage that
parallel composition is not associative. Consider P , Q and R and their inputs and
outputs as shown above; in figures, i? (i!) indicates that i is an input (output),
and a box denotes an error state. P | Q has a reachable error, so (P | Q) | R
is not considered – in contrast to P | (Q | R), since Q | R and P | (Q | R) are
error-free and consist just of the initial state.

Our local error semantics does not suffice for "c
act, since it does not differ-

entiate between a missing input and an input leading to an error state. But we
can adapt it to get a precongruence for the pessimistic approach, albeit not the
coarsest one. CPT deals with the real errors and is based on pruning of outputs
again; MIC additionally considers the missing-input traces, this time without
closing under continuation; another subtle point is that both, MIC and L, are
flooded with CPT .

Definition 24. Let S be an EIO.
– The set of continued pruned traces of S is CPT (S) = cont(prune(StT (S)));
– the set of flooded missing-input traces of S is MIC(S) =MIT (S)∪CPT (S);
– the CPT-flooded language of S is LCP (S) = L(S) ∪CPT (S).
For two EIOs Impl and Spec with the same signature, we write Impl "act

Spec if and only if CPT (Impl) ⊆ CPT (Spec), MIC(Impl) ⊆MIC(Spec) and
LCP (Impl) ⊆ LCP (Spec).

Theorem 25. For two composable EIOs S1, S2 and S12 = S1 | S2, we define
Γ1 := Σ∗

1 (I1 ∩ O2) and Γ ′
1 = Σ∗

1 (I1 \ O2) for the sets of traces of S1 ending on
synchronizing inputs, on non-synchronizing resp. Γ2 and Γ ′

2 are defined analo-
gously. Then we have:
– CPT12 = cont

(
prune

(
((MIC1 ∩ Γ1) | LCP2) ∪ (LCP1 | (MIC2 ∩ Γ2)) ∪

(CPT1 | LCP2) ∪ (LCP1 | CPT2)
))

– MIC12 =
⋃
{(w1 | w2)a | w1a ∈MIC1 ∩ Γ ′

1, w2 ∈ LCP2}∪⋃
{(w1 | w2)a | w1 ∈ LCP1, w2a ∈MIC2 ∩ Γ ′

2} ∪ CPT12
– LCP12 = (LCP1 | LCP2) ∪ CPT12
Thus, "act is a precongruence, and it refines "B

act.

But "act is not fully abstract regarding | and "B
act. We have P �"act Q for

the two EIOs P and Q with I = {a, b} and O = ∅ shown below, because
ba ∈ CPT (P) \CPT (Q). To show that P "c

act Q, it suffices to prove that there
is no U with P | U �"B

act Q | U , cf. Theorem 15. If U is not error free, then both
P | U and Q | U have an error: both, P and Q, have no output actions, hence
cannot prevent U to perform a run ending with an error state. So assume that
U is error-free.

172 F. Bujtor and W. Vogler

P

P ·

·a?

b?

b? a?

Q ·

· ·a?

b?

b? �a?If a, b /∈ OU , then P and Q can
reach an error by performing ab
autonomously. If a ∈ OU and b /∈
OU , U might never perform a and
neither P | U nor Q | U can reach
an error. If a is performed, then b can be performed autonomously by P or Q
resp., leading to an error. The case that only b ∈ OU is analogous. Let a, b ∈
OU ; if U can perform neither one a followed by b nor vice versa, all errors are
prevented; otherwise, an error occurs in both P | U and Q | U – where P | U
has an inherited and Q | U a new error if U performs b before a.

Thus, to characterize"c
act, it seems that some missing-input traces (like ba for

Q) have to be added to CPT . This appears to be the case if the missing-input
trace and some error trace are the same when projecting the missing action
away. An extended example (omitted) shows that adding one trace can lead to
the addition of another, additions need to be done iteratively.

Hopefully, these considerations have convinced the reader that a characteri-
zation of the coarsest refinement will be overly complicated and not really worth
the effort to work it out in detail. Even though we do not have a characterization
of "c

act, we can compare it it to the local precongruence "loc using Corollary 16;
in contrast to the previous section, we have made the notion of error-freeness
much stricter, but it turns out that again this leads to a finer precongruence.

Theorem 26. The coarsest pessimistic precongruence "c
act is strictly finer than

the local precongruence "loc , i.e. "c
act�"loc. Hence, this also applies for "act.

6 Conclusion

To study the foundations of interface automata, we have chosen a variant with
explicit error states and a standard parallel composition extended according to
the characteristic idea: an output that is not expected by the recipient creates an
error. To determine an appropriate refinement relation, we started from the basic
idea that an error-free specification can only have error-free implementations and
then considered the coarsest precongruence respecting this basic requirement.We
have done this for three variants of error-freeness and characterized or at least
approximated the precongruence with an essentially trace-style semantics.

For the optimistic view, where errors only count if they are reached locally,
the simulation-style refinement of [5] is unnecessarily strict semantically, but
the pruning integrated into the parallel composition of [5] is justified. Then, we
looked at a hyper-optimistic version (only internally reachable errors count) and
a pessimistic version (all reachable errors count). Surprisingly, both variants lead
to a stricter precongruence, and both the semantics are also based on the same
idea of pruning outputs (justifying it further). Since they are more complicated,
one might prefer the local variant for its simplicity.

More intuitively, we believe that it also is based on the right concept. At the
heart of interface automata is the idea that each system controls its outputs
and internal actions, so a locally reachable error can indeed not be prevented

Error-Pruning in Interface Automata 173

by the environment. The hyper-optimistic view is less intuitive, but at least it
served to show that output pruning does not rely so much on the idea that only
locally reachable errors count. Also the characterising semantics is based on an
idea that might be useful elsewhere. The pessimistic view has the plausibility
of controlling the worst case; but comparing a state where input i is missing
with a state where it leads to an error state, we see that both just formulate
the same requirement for the environment: the environment must take this state
into account and avoid producing i – there is no difference at all. Put another
way, input transitions are only taken if the input is provided; for the two states
mentioned, nothing bad will happen without this.

A final argument concerns the approach we described at the end of Section 3.2;
assume we call Impl better than Spec if each user (partner) U encounters an
error with Impl only if the same can happen with Spec. The three variants for
what it means to encounter an error agree for closed systems like Impl | U and
Spec | U . Hence, there is only one meaning for “better-than”, and this is the
precongruence "loc of the first variant due to Corollary 16. It is conceptually
easy to decide "loc for finite-state EIOs with automata-theoretic methods.

Interface automata have been extended and studied in various ways. In the
future, we will consider how these extensions work mainly on the basis of the
trace-based view we developed for the first variant.

References

1. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibil-
ity, refinement, and the MIO workbench. In: TACAS 2010. LNCS, vol. 6015, pp.
175–189. Springer, Heidelberg (2010)

2. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

3. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specification
theory for component behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 148–168. Springer, Heidelberg (2012)

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp.
109–120. ACM (2001)

5. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of
Software IntensiveSystems.NATOScienceSeries,vol. 195,pp.1–148.Springer (2005)

6. Dill, D.: Trace Theory for Automatic Hierarchical Verification of Speed-
Independent circuits. MIT Press, Cambridge (1989)

7. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services
with operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC
II. LNCS, vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

8. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

9. Larsen, K.G., Nyman, U., W ¸asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

10. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
11. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.

LNCS, vol. 625. Springer, Heidelberg (1992)

Aspect-Driven Design of Information Systems

Karel Cemus and Tomas Cerny

Department of Computer Science and Engineering,
Czech Technical University, Charles square 13, 121 35 Prague 2, CZ

{cemuskar,tomas.cerny}@fel.cvut.cz

Abstract. Contemporary enterprise web applications deal with a large
stack of different kinds of concerns involving business rules, security
policies, cross-cutting configuration, etc. At the same time, increasing
demands on user interface complexity make designers to consider the
above concerns in the presentation. To locate a concern knowledge, we
try to identify an appropriate system component with the concern defini-
tion. Unfortunately, this is not always possible, since there exist concerns
cross-cutting multiple components. Thus to capture the entire knowledge
we need to locate multiple components. In addition to it, often, we must
restate the knowledge in the user interface because of technological in-
compatibility between the knowledge source and the user interface lan-
guage. Such design suffers from tangled and hard to read code, due to
the cross-cutting concerns and also from restated information and du-
plicated knowledge. This leads to a product that is hard to maintain,
a small change becomes expensive, error-prone and tedious due to the
necessity of manual changes in multiple locations.

This paper introduces a novel approach based on independent, de-
scription of all orthogonal concerns in information systems and their
dynamic automated weaving according to the current user’s context.
Such approach avoids information restatement, speeds up development
and simplifies maintenance efforts due to application of automated pro-
gramming and runtime weaving of all concerns, and thus distributes the
knowledge through the entire system.

Keywords: Aspect-oriented design, Business logic, Model-driven devel-
opment, Reduced maintenance and development efforts.

1 Introduction

Contemporary design of information systems face multiple challenges caused by
inability of present-day technologies to encapsulate business logic and implement
self-maintainable user interfaces. It is a common practice [1] to capture business
rules and security policy tangled through all layers of the application. This is
mostly notable in the presentation layer, which results with its source code barely
maintainable. Such design then exhibits issues with consistency. For example, a
minor change to the application data model, e.g. a field type, or its constraint,
requires manual change propagation into multiple other locations. This becomes

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 174–186, 2014.
c© Springer International Publishing Switzerland 2014

Aspect-Driven Design of Information Systems 175

very tedious and error-prone especially for presentations built with languages
without type safety. A model change then requires the developer to issue a
text search for its references in the presentation and to adjust the code. In [10]
authors discuss that information restatement in the presentation is the source
of increased maintenance. Although, information restatement is not the only
problem involved in extensive maintenance. Application design becomes hard to
maintain when it exhibits cross-cutting concerns [2], such as business rules or
security concerns.

In this paper we introduce a novel aspect-driven approach to deal with the
above mentioned issues. The fundamental idea of the concept lies in the sepa-
ration of application business rules from the application code base. Instead an
aspect-language is used to capture these rules, which allows us to encapsulate
all application rules to a central location. Next, it allows us to automatically
enforce application business rules or to generate context-aware user interfaces.
As a consequence, a data model change directly propagates to the rest of the
system which enforces its integrity. Such approach leads to efficient maintenance
of the entire system business logic and application user interface (UI).

The main benefit of the presented approach is prevented information restate-
ment achieved by having a single location for definition of each system knowl-
edge. Such knowledge can be automatically distributed to other parts of the
system at runtime. This reduces system element coupling, supports reuse and
rule enforcement at the same time. Furthermore, such separation of concerns
allows us to reuse system elements and transform them to automated UIs pre-
sentation of data elements.

This paper is organized as follows: In section 2 we provide the background
of the contemporary approaches. The related work is discussed in section 3.
Description of our approach is provided in section 4. Next, a case study and its
evaluation in section 5. We end the paper with conclusion and future work.

2 Background

Existing development approaches often use the three-layered architecture mod-
el [5], which divides the functionality into three encapsulated components. The
lowest layer is responsible for data persistence and accessing third-party ser-
vices. The middle one encapsulates business logic, which exposes through public
interfaces to the top, presentation layer. The top layer deals with UI, provides
access to the functionality and different views on data, communicates to user
and processes his responses.

Despite clear definition of responsibilities for each layer, there exists a certain
group of problems that cannot be simply encapsulated in any of these layers.
Furthermore, it must be noted that contemporary development approaches such
as Object-oriented design does not provide effective mechanisms to encapsulate
these problems [11,14]. This group of problems is in literature called cross-cutting
concerns [13] due to their characteristics - they cut across the whole application
and have to be considered at multiple places in all these layers, we can look at

176 K. Cemus and T. Cerny

them as on layers orthogonal to this linear architecture. For example, consider
logging, exception management, security, etc.

Business logic, also a cross-cutting concern [1], must be considered at mul-
tiple places such as in the UI (rendering and input validation phases), or as
an input validation policy of business operations or as a data model integrity
check [2]. Based on our research that involved inspection of a large information
system ACM-ICPC, we found out that there exists three categories of high-
level rules: contextless, contextual and cross-cutting rules. The contextless rules
are understood as validation rules, which have to be satisfied always and ev-
erywhere otherwise it would break data consistency or integrity. For example:
‘Username must be at least 6 characters long’. The second group consists of con-
textual rules. These rules are considered within given context, such as: Student’s
GPA must be higher than 3.8, when he applies for a scholarship. The last group
are rules that apply under given conditions nearly everywhere. These rules are
often parametrized by application state or user’s profile. For example, consider
a rule: ‘System is not locked for editing’. Such rule has a vast area of impact,
because there may exist a deadline date after which no changes are allowed.

Listing 1. Scenario: User registration

preconditions:
- username is not empty
- password has at least 6 characters
- email address is valid

successful path: ...

Next, consider a business operation described as a single use-case or a user
scenario. For example, consider the implementation in Listing 2, which is a com-
mon example of the contemporary approach in development. This operation
defines multiple pre-conditions that determine position of the operation in an
application domain. It means, the operation can only be performed when all the
pre-conditions are satisfied. From another perspective this is nothing else than a
few business rules. Thus we can look at it from the perspective of a business con-
text of a given operation. The context then compounds multiple business rules.
With clearly defined application contexts every operation can address one.

Listing 2. Standard scenario implementation

void register (User user) {
// Check for violation of any rule. The validation is vastly duplicated
// across whole application code. It can be reduced but not avoided .
if (isEmpty (user.username)) { ... }
if (! isStrongPassword(user.password)) { ... }
if (! isEmail (user.email)) { ... }
// user is valid , register him

}

The role of business rules in an application is complex, because there are
many locations where they have to be considered. For example, every form in
the UI has to include a proper validation that is determined by the field data
type and business policy. During a page rendering phase, every UI element has to
determine whether it should apply and if so then how, which bases on the user
context, the application state, security policy and the business rules that are
usually parametrized by user’s profile. Unfortunately, contemporary technolo-

Aspect-Driven Design of Information Systems 177

Fig. 1. Facets considered in user interface

gies does not think of business rules as about a crucial part of the application,
which requires a special support, so they do not implement mechanisms provid-
ing efficient business policy handling. In consequence, the only business policy
implementation in Java EE available by now [4] builds on high information re-
statement and source code duplication, as is shown in Listing 2.

User interface is the most difficult and complex part of every software ap-
plication. Its quality decides about products attractiveness, usability and mar-
ketability, because even the best functionality without user friendly interface is
nearly worthless. In conclusion, UI development is crucial and important part
of software life-cycle. Its source code comprises up to 48% of total application
code [10], thus any inefficiency in UI development can cause significant issues.

Unfortunately, UI implementation is highly difficult task because there have
to be considered multiple concerns. Final UI appearance is affected by the data
model presentation, application state, current user’s profile, target device lay-
out, security policy, input validation, localization, etc [2]. In deeper analysis we
find out that all these concerns can be seen as mutually orthogonal domains,
which have to be serialized into renderable linear source code, as is illustrated
on Fig. 1. Such code involves for each field more than just a style of presentation
and visibility status, but for example also the whole page must be structured
into some layout derived from target device. Unfortunately, all these parameters
depend on multiple variables from orthogonal domains.

When we think about this background carefully, we realise that each of this
mentioned concerns can be described completely in its own, nearly independent,
way. For each facet can be defined e.g. set of layout templates, set of security
rules, localization files, component templates, etc. so we can look at it as on
building multidimensional space where each request gain multiple values from
distinct domains. It is just like placing the single point into multidimensional
space. The only thing connecting all these distinct planes is the current context,
which parametrizes all of them and is brought by a request.

In the light of this domain decomposition we can see that we face to the new
problem: linearisation. We need to figure out how to seamlessly, automatically
and efficiently integrate all these given heterogeneous descriptions of all distinct

178 K. Cemus and T. Cerny

domains and construct the renderable linear source code parameterizable with
the current user’s and application’s context.

Contemporary technologies focus on performance, short syntax, powerful iso-
lated components (e.g.: graphical components, caching, injection providers etc.)
but only a few of them actually realise the importance of knowledge caught in-
side of application source code and such tools bring only partial solutions which
cover only simple scenarios. In consequence, there are no tools nor ways how to
efficiently deal with knowledge representation and integration which forces devel-
opers into manual linearisation of heterogeneous distinct domains as described
above. Such output suffers from high information restatement and multiple dif-
ferent policies tangled together and through the whole application. In result, such
code is difficult to maintain and any change means localization and modification
of multiple places, which is tedious, expensive and error-prone.

3 Related Work

This paper addresses multiple issues related to business policy management,
application design and source code generation to provide efficient way how to deal
with knowledge representation without unnecessary information restatement.

Importance and complexity of business rules discuss authors in [1]. Together
with analysis of three-tiered information systems they introduce couple solutions
how to reduce maintenance effort of business rules in the middle layer. The
proposed solutions proceed from design patterns [5][7], but still their solution
suffers from some code duplication.

Standardized Java EE development [4] brings up usage of Chain of Responsi-
bility [7] design pattern inserting external processors before business operation
invocation. Such approach would allow e.g. input validation invocation before
the operation calls, but due to detached connection to the method, it is not
invoked during intra-class operation calls. Besides that, there is no good design
support for target method inspection and invocation flow modification. In con-
clusion, this method is not suitable for application to the whole system, rather
only to the business layer.

Inconvenience of manual code duplication and information restatement is dis-
cussed in [12][3]. Model driven architecture (MDA) brings up the idea of system
modelling in a graphical language, such as UML. Such model represents the
knowledge and main source of information as well as a convenient input for
tools generating source code. Although MDA generates source code, the whole
process is run just once, because its output must be extended with another code
snippets. That makes the model updates complicated as the modified code gets
lost upon subsequent model to code transformations. Furthermore, the whole
concept is derived form object oriented paradigm, which suffers from inability to
reflect cross-cutting concerns, thus also this approach preserves code duplication
and information restatement.

A technique of automatic programming is also based on reality modelling
and following source code generation, but with two significant differences. The

Aspect-Driven Design of Information Systems 179

first one is a language. While the MDA usually uses UML and OCL for model
and knowledge representation, automatic programming uses domain specific lan-
guages [6], which are efficient in target domain description. For example, they
involve templates and special mark-up derivatives. Another difference is in the
way of code generation. While the MDA uses static generation, that runs usu-
ally once or only a few times, the automatic programming uses dynamic source
code generation executed on each project compilation or even at runtime. Such
improvement brings more dynamics into models, because on any change in the
domain description the target source code can be automatically updated. With
a smart and powerful generator and suitable domain description we are able to
completely avoid manual code duplication and achieve simply and neatly modi-
fiable application implementation. The whole concept is introduced in [9].

Object oriented paradigm (OOP) dominates to systems design and brings mul-
tiple efficient principles. But there is no silver bullet and it has limitations, such
as dealing with the cross-cutting concerns. The OOP is unable to encapsulate
it into single component [14], which results in vast code duplication and tan-
gling, which is tedious, inefficient, error-prone and complicates the maintenance.
The aspect oriented programming (AOP) introduced in [11] presents an alter-
native concept focused on realisation of cross-cutting concerns. This paradigm
comes with a new terminology. It considers two types of components, besides the
OOP (or general) components, there are also components that are understood
as a single cross-cutting concern, called aspects. They comprises of pointcuts
and advices. A pointcut is an expression addressing all locations in the OOP
components where and when the aspect should apply. Such spots addressed by
pointcuts are called join-points. In [14] authors differentiate between static join-
points, characterised as locations in the program’s source code, and dynamic
join-points, defined as points in the execution of a program that consider run-
time context. When the aspect’s pointcut applies, it uses an advice, the extension
of the functionality invoked when the execution-flow reaches the addressed join-
points, or a composition rules [14]. In general, the goal of advising is modification,
integration or an extension of the wrapped functionality. Aspects are weaved to
the OOP components through a simple compiler or an integration tool called
aspect weaver. Aspects are often described by domain specific languages and
typical instances of them are security managers, cache providers and exception
handlers. Both paradigms are usable together as a multiparadigmatic design.

When we are looking for existing and verified solution efficiently dealing with
business rules we have to look at rule-driven production systems [8], which rep-
resents target domain by huge set of business rules comprised of preconditions
and actions. Each rule represents description of some situation or event and also
contains a properly defined reaction to do when it occurs. Strong advantage of
these systems is knowledge stored outside the compiled source code and usage
of domain specific languages, which allows delegation of rules design and man-
agement to domain experts and frees developers. The comparison of knowledge
represented inside of production systems to business policy of information sys-
tems must conclude that the business policy is light version, subset, of production

180 K. Cemus and T. Cerny

systems. This awareness opens many possibilities like usage of production system
engine and kind of knowledge representation in new context.

4 Aspect Approach

Each software system consists of a static and a dynamic part. As the static part
we perceive the data model, its fields and their types, which is immutable and
stable concern. From the data model we derive the UI elements for data visu-
alization. Set of business rules such as validation, integrity constrains, context
verification policy etc. is also stable and usually immutable, so we involve it into
the static part. Processing of this concerns can be done once, for example at the
compile time. On the other hand, the output of each request differs in the ex-
act composition of UI, in validation rules, presented data and available actions.
All these dynamic aspects depend on a position of user’s context in a multidi-
mensional space. Efficient and proper processing needs runtime evaluation and
integration of all those concerns, including preprocessed the static ones.

Considering the example from section 2 and conclusion from previous para-
graph we are looking for a way allowing us to statically integrate business rules
into the whole system and generate a proper UI structure based on the data
model. In addition, all these parts must consider concerns such as target de-
vice, security, etc. and weave them together at runtime on each request. The
AOP, which is designed to handle cross-cutting concerns and weave heteroge-
neous sources, together with a technique of automatic programming seems to be
a convenient way to process all descriptions of distinct domains and weave them
into a resulting source code.

4.1 Transformation into Terms of AOP

Application of AOP requires transformation of the domain into a new termi-
nology. The AOP comes with multiple terms which we must define in examined
domains: join-point, pointcut, advice, aspect language and finally aspect weaver.

UI concerns involve both static and dynamic parts of the system. For example,
we can think of a UI form/table as of data visualization. Such form must reflect
the data structure and provide presentation for each its field, although we must
consider also dynamic information such as security, selected layout, conditional
rendering, etc., which may influence the resulting presentation.

In the visualization we use a data structure as the base component used for
AOP composition. To visualize the data in the UI we use its static structure as
a source for static join-points. Among them we consider entity and field names,
their data types, and field annotations with their parameters. Considered join-
points also include dynamic join-points to integrate dynamic aspects. In order
to keep our approach general it is possible to pass to the weaving context a
runtime information such as user access rights, geo-location, local context for
presentation, device screen size, etc. All dynamic join-points are used in the vi-
sualization. The goal of this process is composition similar to Hyper/J aspect

Aspect-Driven Design of Information Systems 181

oriented system. The first level aspect is field presentation, for this we use pre-
sentation rules. Its pointcuts can query the visualized data and context for given
properties such as whether a given visualized field is a string with given length
restriction or whether it is ‘Friday’ and the end user is ‘administrator’ with
small screen size. Pointcuts can address all join-points, logical combination and
use arithmetical operations. The advice provides an integration template that
uses the target presentation language and composition rules to integrate second-
level aspects, such as validation, business rules, internationalization, etc. These
aspects use pointcuts identical with the first-level and their advice define a com-
position rules. After all data fields are processed by first and second level aspects
the result is decorated by a layout template providing a third-level aspect the
layout. The aspect weaver is attached to the presentation language as a special
component. Designer then uses this component to visualize data at the page and
defines the aspect integration through the weaver configuration and the integra-
tion templates. Dynamic join-points can be passed to the weaver through the
special component, or by a system context. The life-cycle then looks as follows.
A page renderer processes the view code, once it reaches a special component it
calls its custom handler that integrates the weaving. It takes the data instance
passed to the component and gets its static join-points, it may pass the dynamic
join-points to the weaver at this point. Next, the weaver walks through the data
structure and for each field applies presentation rules. Based on field properties
and the context it selects a composition template that defines the presentation
and extends it with other aspects. The result of this transformation is decorated
by layout. The generated target code is compiled and embedded to the page.

Business rules as a unit must be considered on multiple types of locations, e.g.
input validation in business operations, input validation in UI or access restric-
tion to data and operations based on context and security policy. In all these
locations it is necessary to apply these rules. In terminology of AOP, such places
are join-points. Although business rules can be defined as a standalone unit de-
scribing single domain, in each context they apply a bit differently. For example,
in business layer they are evaluated against given context and input values, but
in the UI they must be decomposed and transformed into a client-side validation.
In consequence, rule transformation must be handled in multiple ways based on
target context. Each way then applies on a subset of join-points which is selected
through the pointcut and the concrete rule transformation is performed by the
advice extending target locations. Kind of transformation differs per target con-
text, because for input validation in business layer we demand input and context
evaluation against business policy, while for client-side validation in the UI we
require rules decomposition and transformation into e.g. a scripting language. As
mentioned earlier, verified solution for business rules representation are domain
specific languages used in a core of rule-driven systems, which stand here for the
aspect language. Finally, as an aspect weaver can be considered any processor
enhancing target join-points with new functionality. In a single system can be
recognized multiple weavers, because the UI is usually described by different lan-
guage than the business layer, thus weavers must support composition into these

182 K. Cemus and T. Cerny

output languages. While for executable code would be enough to automatically
prepend invocation of input validation mechanism, for the UI described using a
mark-up language must be the source code completely recreated and completed
with new checkers, validators and converters.

Appearance of the UI differs per request based on the current context, evalua-
tion of business rules and many other disjunct concerns. Basically, the resulting
UI becomes variable and dynamic, and the final product must be composed
from components on each request. Applying component preparation and final
integration using automated programming and complex aspect weavers for all
the domains, we can achieve the desired appearance and behaviour because the
runtime weaving relieves us from the duty of manual information restatement.

4.2 Implementation

Based on the informal specification we implemented an aspect oriented frame-
work for automatic integration of business rules and dynamic constructing of
context-aware user interfaces. Each independent concern is described in the most
convenient, domain specific language to give us the best possible performance
and effortless maintenance. Usage of a core of rule-driven system brings us an
efficient way of business policy representation as is shown in Listing 3 and List-
ing 4. Furthermore, its engine is designed on high evaluation performance.

Listing 3. Simple entity constraint

rule "[Team] Standard validation"
when Team(

!isEmpty (name),
coach != null ,
members .size() == 3,
members not contains coach

) then
end

Listing 4. Security check rule

global Set<String> security
rule "[Security] Admin"

when eval(security .contains (
SecurityRole.ADMIN

))
Person () || ... || Contest ()

then
end

One of significant issues we faced was operational context addressing. As is
noted in section 2, each operation and action stands in its specific business
context in an application domain. Three-layered system architecture recognizes
multiple types of entry points, e.g. actions on controllers in the UI, web service
actions and operations on services in the business layer. Each of these actions
may stand in different context, so it is crucial to match them to contexts with
this granularity. We decided for application of meta-instructions such as Java
annotations. This construct opens efficient way to matching an operation to
its context externally defined as a set of rules and groups of rules. Afterwards,
inspection of method signatures allows extraction of their context address as
is illustrated by Listing 5 and Listing 6. Efficient definition of business context
opens the way to application of AOP to enhance chosen spots by application of
additional instructions, such as input validation.

The data visualization becomes trivial. Listing 7 presents a component that
takes a data instance (an data object) as a parameter, in our case user, and
visualizes it on the page. This produces an UI form or a table depending on
the component properties. The weaving process considers each data field and

Aspect-Driven Design of Information Systems 183

Listing 5. Descriptive business context

@Validate @StandardValidation
@RequiredRules("Password is strong ")
void register (User user) {

// user is valid , register him
}

Listing 6. External bussines context

@Validate
@BusinessContext("user/register ")
void register (User user) {

// user is valid , register him
}

applies all three levels of aspects (presentation, field extension and layout). A
presentation rule example with a pointcut and an advise is shown in Listing 9, it
shows presentation of String-typed field and advices to composition templates.
An example composition template with shorten version of the pointcut/advise is
shown in Listing 8. This template shows the representation an extension of its
properties by considered aspects and supplying the data context to the template.
The layout integration through a layout template is shown in Listing 10.

Listing 7. Aspect-driven UI

<af:ui instance ="#{user}"
renderPassword="false"
layout="#{device.layout }"/>

<!-- context -aware action -->
<h:button value="Ban user"
rendered ="#{g:ctx(bean ,’ban’,user)}"
/>

Listing 8. Composition template

<x:inputText id="#{prefix }$ field$"
label="#{text[‘$entity $.$field $‘]}"

edit="#{empty edit$field$
? edit : edit$field $}"

validate ="$businessRules.toJS()$"
size="$size$" req="$required $"

value="#{instance .$field $}" ../>

Listing 9. Presentation rules

<type>String </type>
<default tag="textTag .xhtml"/>
<cond expr="${email==true}"

tag="emailTag .xhtml"/>
<cond expr="${link==true}"

tag="linkTag .xhtml"/>
<cond expr="${maxLength >255}"

tag="textAreaTg.xhtml"/>

Listing 10. Two column layout template

<table class="two-column-layout ">
<af:iteration -part>

<tr>
<td>$af:next $</td>
<td>$af:next $</td>

</tr>
</af:iteration -part>

</table >

5 Case Study

Frameworks designed with respect to the informal specification described in pre-
vious section was applied in an experimental application. The goal is to receive
preliminary statistics on efficiency in comparison to the common approach. In
the measurement we focused on SLOC (Source Lines Of Code) and maintenance
effort. Besides that we wanted to evaluate the amount of remaining restated
information to lay down our future work.

For the application domain we choose inspiration in the ACM-ICPC pro-
gramming contest, for which we designed a light registration system. As an
implementation platform was chosen Java EE with the support of Spring frame-
work and JavaServer Faces for the presentation layer. The main goal of this de-
signed system was handling of state-flow of team applications to local contests.
To design a real application we considered four security roles: member, coach,
manager and administrator; the system’s domain model is captured on Fig. 2.
To illustrate the power of approach in automatic transformation we designed
32 business rules including all kinds of conditions, from simple constraints to
complex time-conditioned cross-cutting rules, such as ‘Applications are opened’.

184 K. Cemus and T. Cerny

application

belongsTo

membercoach

*

*

*

* *

*

*

1

1

0..1

1

1registeredTo

Fig. 2. Data model of registration system to programming contest

To gain preliminary evaluation of this approach we manually developed the
same system with the same coding standards and technologies, but without
the application of proposed solution. The final comparison of SLOC is covered
in Table 1. The results clearly point out reduction of the amount of source
code in business and presentation layers, but in return of increased amount of
meta-instructions. Such results were expected, because due to the automated
programming there is dynamically generated significant amount of code at run-
time, which comes out of the weaving of multiple disjunct domains, where some
of them are connected via business rules addresses in meta-instructions. We must
consider that our application is rather lite, thus the code statistics would become
considerably better with the growing size of the project as the reuse of various
aspects is supported.

Table 1. Efficiency of compared approaches to system design

SLOC \Approach Common Novel Layer

Java model 201 217 persistent

Java service 203 147 business

Java annotation 13 36 business

Java UI 490 414 presentation

Java annotation 48 116 presentation

UI XML 912 574 presentation

As our implementations are in alpha versions, there is still some kind of infor-
mation restatement. But, instead of knowledge restatement it is duplication of
knowledge addresses e.g. due to weak support of addressing of external context.
Nevertheless, there is no knowledge restatement. Each piece of information such
as layout, condition and security is captured only once in the source code and
referenced from multiple places. That significantly reduces maintenance efforts,
because every change of any aspect requires only a single place modification.

6 Conclusion

In this paper we introduced a novel aspect-oriented approach to deal with in-
formation system development, while avoiding information restatement, code

Aspect-Driven Design of Information Systems 185

duplication and problems related to cross-cutting concerns. The fundamental
idea is to divide system concerns, describe them separately and let them com-
pose together through an aspect weaver. Our focus in this approach considered
application business logic domain and user interface data visualization, which
both represent cross-cutting concerns. For both approaches we designed and im-
plemented an aspect weaver and evaluated our approach in a case study. Our
approach reduces development and maintenance efforts, it supports component
reuse and improves system readability, since each system concern gathers its
knowledge at a single location. Furthermore, our approach reduces manual mis-
takes and inconsistencies among system layers, it enforces change propagation to
all coupled components and eliminated tedious work related change propagation.

In future work we aim to improve our framework and minimize remaining code
duplication then conduct a study on a production level system. Next, we plan
to evaluate performance and apply this approach to the domain of adaptive
UIs. Besides that we plan to integrate our solution into web services and to
persistence layer to prevent knowledge duplication in database queries.

Acknowledgments. This research was supported by the Grant Agency of the
Czech Technical University in Prague, grant No. SGS12/147/OHK3/2T/13.

References

1. Cerny, T., Donahoo, M.J.: How to reduce costs of business logic maintenance.
In: 2011 IEEE International Conference on Computer Science and Automation
Engineering (CSAE), vol. 1, pp. 77–82. IEEE (2011)

2. Cerny, T., Donahoo, M.J., Song, E.: Towards effective adaptive user interfaces
design. In: Proceedings of the 2013 Research in Applied Computation Symposium
(RACS 2013) (October 2013)

3. Cerny, T., Song, E.: Model-driven rich form generation. International Information
Institute(Tokyo). Information 15(7), 2695–2714 (2012)

4. Chinnici, R., Shannon, B.: JSR 316: JavaTM Platform, Enterprise Edition
(Java EE) Specification, v6 (2009)

5. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Long-
man Publishing Co., Inc. (2002)

6. Fowler, M.: Domain-specific languages. Pearson Education (2010)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction and
reuse of object-oriented design. Springer (2001)

8. Hayes-Roth, F.: Rule-based systems. Communications of the ACM 28(9), 921–932
(1985)

9. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
Wiley. com (2008)

10. Kennard, R., Steele, R.: Application of software mining to automatic user interface
generation (2008)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Springer (1997)

186 K. Cemus and T. Cerny

12. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained, the model driven archi-
tecture: Practice and promise. Addison-Wesley Professional (2003)

13. Laddad, R.: Aspectj in action: enterprise AOP with spring applications. Manning
Publications Co (2009)

14. Stoerzer, M., Hanenberg, S.: A classification of pointcut language constructs. In:
Workshop on Software-engineering Properties of Languages and Aspect Technolo-
gies (SPLAT) Held in Conjunction with AOSD (2005)

Exact Algorithms to Clique-Colour Graphs

Manfred Cochefert and Dieter Kratsch

Laboratoire d’Informatique Théorique et Appliquée, Université de Lorraine, 57045
Metz Cedex 01, France

{manfred.cochefert,dieter.kratsch}@univ-lorraine.fr

Abstract. The clique-chromatic number of a graph G = (V,E) denoted
by χc(G) is the smallest integer k such that there exists a partition of
the vertex set of G into k subsets with the property that no maximal
clique of G is contained in any of the subsets. Such a partition is called a
k-clique-colouring of G. Recently Marx proved that deciding whether a
graph admits a k-clique-colouring is Σp

2 -complete for every fixed k ≥ 2.
Our main results are an O∗(2n) time inclusion-exclusion algorithm to
compute χc(G) exactly, and a branching algorithm to decide whether a
graph of bounded clique-size admits a 2-clique-colouring which runs in
time O∗(λn) for some λ < 2.

1 Introduction

A k-clique-colouring of an undirected graph G = (V,E) is a partition of the
vertex set V of size k, i.e. k colour classes, such that no maximal clique is
monochromatic, in other words, every maximal clique of G contains two vertices
of different colour with respect to the partition. The clique-chromatic number
χc(G) of an undirected graph G = (V,E) is the smallest integer k such that the
graph has a k-clique-colouring. The clique-colouring problem was introduced by
Duffus, Sands, Sauer and Woodrow in 1991, and can be seen as a special case of
the hypergraph colouring problem since it is equivalent to colouring the clique
hypergraph of G in which the hyperedges are the maximal cliques of G [6]. It
is easy to see that every graph without isolated vertices admits an n-clique-
colouring, and thus every such graph admits an optimal clique-colouring and a
well-defined clique-chromatic number.
Previous Work. The complexity of the clique-colouring problem is well-studied.
In 2011 Marx proved that deciding whether a graph admits a k-clique-colouring
is Σp

2 -complete for every fixed k ≥ 2, and if the input is the clique hypergraph,
i.e. the graph is given by a list of all of its maximal cliques, then the prob-
lem is NP-complete [13]. In 2004 Bacsó et al. showed that it is coNP-complete
to decide whether a given vertex colouring is indeed a 2-clique-colouring [1].
The clique-colouring problem has been studied on various graph classes. In 2002
Kratochvíl and Tuza showed that it is NP-complete to decide whether a per-
fect graph has a 2-clique-colouring [10]. The clique chromatic number of perfect
graphs and its subclasses has also been studied from a graph-theoretic point of
view. The main motivation of this research is the long standing open conjec-
ture that the clique-chromatic number of any perfect graph is at most three.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 187–198, 2014.
c© Springer International Publishing Switzerland 2014

188 M. Cochefert and D. Kratsch

Currently, it is not even known whether there is a constant upper bound for
the clique-chromatic number of perfect graphs. Defossez provides a collection
of 2-clique-colourable graph classes [5], among them in particular strongly per-
fect graphs. Consequently all graphs in the following graph classes are 2-clique-
colourable: bipartite graphs, comparability graphs, chordal graphs, cobipartite
graphs, cocomparability graphs, see e.g. [2].
Kratochvíl and Tuza showed that the clique-chromatic number can be found in
polynomial time for planar graphs [10]. They also proved that it can be decided
in polynomial time whether a planar graph admits a 2-clique-colouring, and
combined this with a result of Mohar and Škrekovski stating that every planar
graph admits a 3-clique-colouring [14]. Recently, Klein and Morgana showed
that there exists a polynomial time algorithm to compute the clique-chromatic
number of graphs which contain few P4’s [9].
Our Results. Algorithms solving clique-colouring problems exactly are the main
results presented in this paper. The first one is anO∗(2n) time inclusion-exclusion
algorithm solving theΣp

2 -complete problem asking to compute χc(G) (Section 3).
The second one is a branching algorithm solving the NP-complete problem, ask-
ing to decide whether a graph of bounded clique-size admits a 2-clique-colouring
(Section 5), in time faster than 2n. The main structural tools of our algorithms
are (minimal) transversals and (maximal) obliques of hypergraphs. Up to our
knowledge, no non-trivial exact algorithm to compute the clique-chromatic num-
ber or to decide 2-clique-colourability was known prior to our work.
Due to space restrictions various proofs had to be omitted.

2 Preliminaries

Throughout this paper we denote by G = (V,E) an undirected graph without
isolated vertices, where V is the set of vertices, and E is the set of edges of G.
We adopt the notation n = |V | and m = |E|. For every X ⊆ V , we denote by
G[X] = (X,EX) the subgraph of G induced by X . A subset X ⊆ V is a clique
of G iff for all x, y ∈ X {x, y} ∈ E. X is a maximal clique of G iff X is a clique
and for all v ∈ V \X the set X ∪ {v} is not a clique. We denote by ω(G) the
maximum size of a clique in G.

Using the notation of Berge’s book [3], a hypergraph H = {X1, . . . , Xq} is a
set of subsets of a finite ground set that we usually denoted by V . Each Xi ⊆ V
is a hyperedge of H. The rank r(H) of H is the maximum size of its hyperedges.
We denote by Hc(G) the clique hypergraph of a graph G = (V,E), that is for
all X ⊆ V it holds X ∈ Hc(G) iff X is a maximal clique of G.

Let k be a positive integer. A k-partition of the vertex set of G, also called
a partition of size k, can be viewed as a function ϕ : V −→ {1, . . . , k}. For
all i ∈ {1, . . . , k}, we define Vi = {x ∈ V / ϕ(x) = i}. Such a function ϕ is
called a k-colouring of G, and the sets Vi are its colour classes. We also denote
a k-partition of V by (V1, . . . , Vk).

A k-clique-colouring ofG is a k-colouring of G such that there is no monochro-
matic maximal clique in G. Hence (V1, . . . , Vk) is a k-clique-colouring of G iff for

Exact Algorithms to Clique-Colour Graphs 189

all X ∈ Hc(G) there exist x, y ∈ X such that ϕ(x) �= ϕ(y), which is equivalent
to the property that no hyperedge of Hc(G) is a subset of any colour class Vi of
the k-colouring.

A subset of vertices X ⊆ V hits a hyperedge C of a hypergraph iff X ∩C �= ∅.
A subset T ⊆ V of vertices is a transversal of a hypergraph H iff T hits every
hyperedge, that is for all X ∈ H it holds that X ∩ T �= ∅. T is a minimal
transversal of a hypergraph H iff it is a transversal of H and every proper subset
of T is not a transversal of H. The set of all minimal transversals of a hypergraph
H is denoted by Tr(H) and forms a hypergraph on the same vertex set as H.

Let F ⊆ 2V . We denote by F↓ the down-closure of F , and by F↑ the up-
closure of F , which are defined as follows: F↓ = {X ⊆ V / ∃ Y ∈ F , X ⊆ Y }
and F↑ = {X ⊆ V / ∃ Y ∈ F , Y ⊆ X}.

3 Computing the Clique-Chromatic Number Exactly

Inclusion-exclusion is a powerful tool for designing exact exponential algorithms,
and one chapter of the book "Exact Exponential Algorithms" [7] is dedicated
to inclusion-exclusion algorithms. Björklund, Husfeldt and Koivisto [4] used
inclusion-exclusion to design an O∗(2n) time 1 algorithm computing the number
of (unordered) k-partitions of a family F of subsets of an n-vertex ground set
S. In their algorithm the family F of subsets of S is explicitely given and part
of the input. We use their algorithm in the following setting where the family
F is not explicitely given and not part of the input. Hence computing F in a
preprocessing step is an essential part of the algorithm.

Theorem 1. Given a graph G = (V,E) and a positive integer k as an input,
there is an inclusion-exclusion algorithm to decide whether there is a k-partition
(V1, V2, . . . , Vk) of V such that all colour classes Vi belong to a (implicitly given)
family F of subsets of V . The running time of the algorithm is t(n) + O∗(2n),
where t(n) is the time to enumerate all elements of F .

Consider the well-known chromatic number problem. A graph G = (V,E) has
chromatic number at most k iff there is a k-partition of the set S = V where the
family F ⊆ 2S of all possible colour classes in such a k-partition of V is the family
of all independent sets of G. Note that this particular family F can easily be
computed in time O∗(2n). In fact, in many applications one has t(n) = O∗(2n).
The following lemma characterizes the family F needed in an inclusion-exclusion
algorithm to compute a k-clique-colouring of a graph G.

Lemma 1. (V1, . . . , Vk) is a k-clique-colouring of G if and only if (V1, . . . , Vk)
is a k-partition of G and, for all 1 ≤ i ≤ k, Vi = V \Vi is a transversal of Hc(G).

Proof. Let (V1, . . . , Vk) be a k-clique-colouring. Assume that the complement
of some color class Vi is not a transversal of Hc(G), 1 ≤ i ≤ k. This implies
1 We use the O∗ notation: f(n) = O∗(g(n)) if f(n) = O(g(n)p(n)) for some polyno-

mial p(n).

190 M. Cochefert and D. Kratsch

that its complement V \Vi = Vi contains a maximal clique, and thus (V1, . . . , Vk)
is not a k-clique-colouring, a contradiction. Conversely, let (V1, . . . , Vk) be a k-
partition of G such that each Vi is a transversal of Hc(G). Suppose there exists
a monochromatic maximal clique C ∈ Hc(G), that is C ⊆ Vi for some 1 ≤ i ≤ k.
Then C ∩ Vi = ∅, and thus Vi is not a transversal, a contradiction. ��

By Theorem 1 and Lemma 1, it is sufficient to apply the inclusion-exclusion
algorithm to input G and k, where the family F consists of all complements
of tranversals of the clique hypergraph Hc(G). It turns out that the bottleneck
is the enumeration of all complements of transversals of the clique hypergraph.
Our early efforts to design an algorithm to enumerate all transversals of a clique
hypergraph established an algorithm of running time O(2.4423n).
In order to enumerate the family of transversals faster, the key idea was to
use obliques, which are subsets of the vertices of a hypergraph that are not a
transversal. This allows us to establish an O∗(2n) algorithm to enumerate all
transversals of a clique hypergraph; one of the main results of this section.

Definition 1. A subset of vertices O ⊆ V is an oblique of a hypergraph H if it
is not a transversal of H. Hence O ⊆ V is an oblique of H if there is an X ∈ H
such that O ∩X = ∅. An oblique O ⊆ V is a maximal oblique of H if it is not
properly contained in any other oblique of H.

For the rest of the paper, we will denote by Tc and Oc, respectively, the fam-
ily of all transversals and the family of all obliques, respectively, of the clique
hypergraph Hc(G). We will sometimes use the notation T and O when speak-
ing of general hypergraphs H. The definition directly implies various properties.
Clearly each subset of vertices X ⊆ V in a hypergraph is either an oblique or a
transversal. Thus (T ,O) is a partition of the family of all subsets of the vertices
P(V) of a hypergraph. We list a few easy-to-prove properties of obliques and
transversals which are fundamental for our work:

Property 1. O ⊆ V is an oblique of a hypergraph H iff O is a subset of the
complement of a hyperedge X of H.

Property 2. O ⊆ V is an oblique of an hypergraph H iff for all X ⊆ O the set
X is an oblique.

Property 3. T ⊆ V is a transversal of an hypergraph H iff for all X such that
T ⊆ X the set X is a transversal.

In the following we study the recognition and enumeration of obliques and maxi-
mal obliques, respectively, of a clique hypergraph Hc(G). They are needed to es-
tablish our inclusion-exclusion algorithm to compute the clique-chromatic num-
ber of a graph G in time O∗(2n).

Lemma 2. There exists an algorithm taking as an input a graph G = (V,E) and
a subset X ⊆ V which decides in time O(n|X |) whether X is properly contained
in a clique of G.

Exact Algorithms to Clique-Colour Graphs 191

It is known that all maximal cliques of a graph can be enumerated in time
O∗(3n/3). To see this one may combine the combinatorial bound of Moon and
Moser [15], saying that any graph on n vertices has at most 3n/3 maximal
cliques, with a polynomial delay algorithm to enumerate all maximal cliques
by Tsukiyama et al. [16].

Lemma 3. There exists an O∗(3(n−|X|)/3) algorithm which decides for a given
graph G = (V,E) and a subset X ⊆ V whether X is an oblique of the clique
hypergraph Hc(G).

When used in a direct fashion, Lemma 3 gives an O∗(2.4423n) time algorithm
to enumerate all elements of Oc for a given graph G = (V,E). Indeed, this
enumeration algorithm uses Lemma 3 to verify for every subset X ⊆ V whether
X is an oblique. Doing this for every subset of vertices of size i, from i = 1
up to n, the running time of the algorithm is bounded by

∑n
i=0

(
n
i

)
3(n−i)/3 =

(1 + 31/3)n = O∗(2.4423n).
Now we show how to improve the running time of the enumeration of all obliques
of Hc(G) by using the family of all maximal obliques of Hc(G). It is worth
mentioning that, while the maximal obliques of a hypergraph are relatively easy
to enumerate, the same is not true for its minimal transversals.

Theorem 2. The maximal obliques of the clique hypergraph Hc(G) are exactly
the complements of the maximal cliques of G.

Proof. "⇐" Let C be a maximal clique of G and thus C ∈ Hc(G). Let X ⊆ V
be the complement of the maximal clique C. Hence X ∩ C = ∅. By property 1,
X is an oblique of Hc(G). We claim that X hits every maximal clique of Hc(G)
but C. To show this by contradiction, assume that there is a C” ∈ Hc(G) such
that X ∩ C” = ∅. Hence C” ⊆ X . Since X = C, and C” �= C, we have that
C” ⊆ C, and thus C” is not a maximal clique of G, a contradiction.
"⇒" Let O ⊆ V be a maximal oblique of Hc(G). By definition, there exists
a C ∈ Hc(G) such that O ⊆ C. We claim that O = C and prove this by
contradiction. Thus, assume that O is properly contained in C, thus there is a
Y ⊆ C such that O ∪ Y = C and Y �= ∅. By our construction and the definition
of an oblique, O ∪ Y ⊆ C implies that O ∪ Y is an oblique. Thus O is not a
maximal oblique, a contradiction. ��

Corollary 1. There exists an O(n2 − n|X |) time algorithm which decides for a
given graph G = (V,E) and a set X ⊆ V whether X is a maximal oblique of the
clique hypergraph Hc(G).

Corollary 1 provides an easy algorithm of running time O∗(2n) to compute the
family of all maximal obliques of a clique hypergraph. This can be improved by
using another immediate consequence of Theorem 2.

Corollary 2. The family of maximal obliques of Hc(G) can be enumerated in
time O∗(3n/3).

192 M. Cochefert and D. Kratsch

The following lemma is crucial for our algorithms and of independent interest.

Lemma 4. There are algorithms taking as input a family F ⊆ 2V and enu-
merate the down-closure F↓ in time O∗(|F↓|), and the up-closure F↑ in time
O∗(|F↑|), respectively.

Proof. Both algorithms are based on the same idea which is to generate the cor-
responding closure level by level: in decreasing size of the sets when computing
the elements of the down-closure F↓, and in increasing size of the sets when com-
puting the elements of the up-closure F↑. There are various ways to implement
this approach depending on the choice of the data structures. We give one that
simplifies the description and runs within the claimed time.
Any family G ⊆ 2V of vertices can be encoded into a subset of the integer set
{0, . . . , 2n−1}. We use a data structure D to store integer subsets F ∈ 2V in this
way. Also we make sure that no key already stored in D is again inserted, i.e. D
contains only unique keys. We use a red-black tree as data structure D, see [12].
Red-black trees support operations searching a key and inserting a key in time
O(log p), where p is the number of stored keys. Whenever a key is supposed to
be inserted into D, we first do a search operation, and only if search fails the key
will be inserted. Hence such a modified insert can be done in time O(p · log p),
and guarantees that there are no multiple keys in D. Furthermore we use a queue
Q to store subsets of D of size i, 1 ≤ i ≤ n. We initialize D by passing through
the list of F such that D contains exactly the keys of elements of F . Initially Q
is empty.
Now both algorithms are easy to present. To compute the down-closure F↓, we
loop for i from n to 1. In round i we pass through D and store in Q all elements
of size i. Then for all X ∈ Q and all x ∈ X , we insert each X\{x} into D. At the
end of round i, Q is emptied. To compute the up-closure F↑, we loop for i from
0 to n− 1. We pass through D and store in Q all elements of size i. Then for all
X ∈ Q, we insert each X ∪ {x} with x ∈ V \X into D. At the end of round i we
empty Q.
Consequently, at termination of both algorithms, the keys of the data structure
D encode the elements of the corresponding closure F↓ and F↑. Any traversal
on D can now be used to enumerate these closures in time O(|F↓|) or O(|F↑|).
The correctness of the algorithms can easily be shown by induction on the size
of the subsets of vertices (in the corresponding order).
Due to similarity of the algorithms, we show how to analyze the running time of
the algorithm to compute F↓ only. Clearly D can be initialized in time O(|F| ·
log |F|). Since F ⊆ F↓, this first step takes time O(|F↓| · log |F↓|). Then at each
round i of the loop, the construction of Q takes time O(|D|). Finally note that
for any 1 ≤ i ≤ n, we try to insert a subset X ∈ F↓ of size i − 1 into D no
more than n − (i − 1) ≤ n times. Since for any 1 ≤ i ≤ n, we have |D| ≤ |F↓|,
all operations on Q take in total time O(n · |F↓|), and the (modified) inserting
operations into D take in total time O(n · |F↓| · log |F↓|). Summarizing, the
algorithm has an overall running time of O(n · |F↓| · log |F↓|). Finally, |F↓| ≤ 2n

implies log |F↓| ≤ n. Consequently the algorithm runs in time O∗(|F↓|). ��

Exact Algorithms to Clique-Colour Graphs 193

Trivially Lemma 4 implies that both algorithms run in time O∗(2n).

Lemma 5. There exists an algorithm which, given a hypergraph H, computes
the family O of all obliques of H in time O∗(2n+t(n)), where t(n) is the running
time of an algorithm to enumerate all maximal obliques of H. Furthermore, the
family of all obliques of a clique hypergraph Hc(G) can be enumerated in time
O∗(2n).

Proof. Using property 2, we have that the family of obliques of any hypergraph H
is the down-closure of the family of all maximal obliques of H. By our assumption
there is an algorithm to enumerate all maximal obliques of H in time t(n). Then
by Lemma 4, the family of all obliques of H can be computed in time O∗(2n),
which implies overall running time O∗(2n + t(n)).
In the special case of a clique hypergraph Hc(G), we have that t(n) = O∗(3n/3)
due to Corollary 2, and thus we can conclude that there is a O∗(2n) time algo-
rithm to enumerate the family of obliques of the clique hypergraph. ��

Now we are ready to present our inclusion-exclusion algorithm to compute the
clique-chromatic number of a graph.

Theorem 3. There is an algorithm to compute the clique-chromatic number of
a given graph G = (V,E) in time O∗(2n).

Proof. The algorithm starts by building the family F of possible colour classes
for any clique-partition of V . By Lemma 1, F is the family of complements
of transversals of the clique-hypergraph Hc(G). Since the complement of the
family of all obliques Oc of Hc(G) is the family of all tranversals Tc of Hc(G),
i.e. 2V \Oc = Tc, we obtain F = {X/X ∈ Tc} = {X/X ∈ Oc}. By Lemma 5, the
family of all obliques of a clique hypergraph Hc(G) can be enumerated in time
O∗(2n), and thus F can be enumerated in time O∗(2n).
Finally, once F has been enumerated, by Theorem 1, an inclusion-exclusion
algorithm can count, for fixed k, the number the partitions of size k in which
every colour class belongs to F in time O∗(2n). Running this algorithm for k = 1
up to n, we find the smallest k for which the number of k-clique colourings is
not zero, and thus G has a k-clique-colouring and its clique-chromatic number
is k. To analyse the running time, observe that the family F of possible colour
classes can be constructed in time O∗(2n), and the inclusion-exclusion algorithm
for given F also runs in time O∗(2n). ��

Our algorithm to compute the clique-chromatic number of a graph has the same
running time as the best known algorithm to compute the chromatic number of
a graph. To improve upon this one, completely new ideas seem to be needed.

4 Minimal Transversals

The notion of transversals has been studied extensively in Berge’s book on hy-
pergraphs [3]. It is worth mentioning that in his book Berge even presents an

194 M. Cochefert and D. Kratsch

algorithm to enumerate all minimal transversals of a given hypergraph (though
without time analysis). In this section, we are interested in the recognition of
transversals and minimal transversals, and the enumeration of all transversals
of a hypergraph, when its family of minimal transversals is given. Those auxil-
iary results will be needed to build up our branching algorithms in Section 5.
The three algorithms are quite similar to algorithms described in the previous
section, and thus we only state the corresponding lemmas.

Lemma 6. There is an O∗(3(n−|X|)/3) time algorithm to decide for input X ⊆
V and G = (V,E) whether X is a transversal of the clique hypergraph Hc(G).

Lemma 7. There is an O∗(3(n−|X|)/3) time algorithm to decide for given X ⊆
V and G = (V,E) whether X is a minimal transversal of Hc(G).

Lemma 8. There is an algorithm to enumerate the family F of all transversals
of a clique hypergraph Hc(G) in time O∗(2n + t(n)), where t(n) is the time to
enumerate all minimal transversals of Hc(G).

5 2-Clique Colourability of Graphs of Bounded Clique
Size

In 2006 Défossez proved that it is NP-hard to decide whether a K4-free per-
fect graph admits a 2-clique-colouring [5]. In this section, we present an exact
algorithm to compute a 2-clique-colouring, if there is one, assuming that the
maximal cliques of the input graph G have bounded size, i.e., ω(G) ≤ c for some
positive constant c. We show how this problem on clique hypergraphs can be
transformed into the problem to enumerate all minimal transversals of a hyper-
graph of bounded rank c. This leads to a running time better than those of the
previously established O∗(2n) time inclusion-exclusion algorithm of Section 3.
More precisely, for every c ≥ 2, there exists a constant λc such that all minimal
transversals of a hypergraph whose hyperedges have size bounded by c can be
enumerated in time O∗((λc)n), where λc < 2.
While the algorithm of Section 3 used inclusion-exclusion, the main algorithm
design technique of this section is branching. Branching algorithms are one of the
main tools to design fast exact exponential algorithms [7]. A problem is solved
by recursively decomposing it into subproblems of smaller sizes. This is done by
applying certain branching and reduction rules. The execution of a branching
algorithm can be illustrated by a search tree. Analysing the running time of a
branching algorithm can be done by determining the maximum number of nodes
in a search tree.
To do this, let t(n) be an upper bound for the running time of the algorithm when
applied to an instance of size n. Consider any branching rule. Let n−c1, . . . , n−cb
be the sizes of the instances in the subproblems of the branching rule, where for
all 1 ≤ i ≤ b, ci ∈ R∗

+. Then the running time satisfyies t(n) ≤
∑b

i=1 t(n − ci).

Exact Algorithms to Clique-Colour Graphs 195

All basic solutions of the corresponding homogeneous linear recurrence are of
the form λn, where λ is a complex number. The value of λ we are interested
in is the unique positive real root of the polynomial λn −

∑b
i=1 λ

n−ci . One
can use Newton’s method to compute λ. It is common to denote this value by
τ(c1, . . . , cb), while (c1, . . . , cb) is the corresponding branching vector.
Several properties of branching vectors and branching numbers are mentioned in
[7,11]. Let us mention the following rules that will be useful in the time analysis
of our branching algorithms. Branching vectors satisfy the permutation rule, that
is for any permutation π of the integer set {1, . . . , k}, we have τ(c1, . . . , ck) =
τ(cπ(1), . . . , cπ(k)). Branching vectors satisfy the extension rule, that is for every
ck+1 > 0, τ(c1, . . . , ck) < τ(c1, . . . , ck, ck+1). Finally they satisfy the substitution
rule, that is if α = τ(c1, . . . , ck) and α = τ(c′1, . . . , c

′
k′), then for every k satisfying

1 ≤ i ≤ k it holds α = τ(c1, . . . , ci−1, ci + c
′
1, . . . , ci + c

′
k′ , ci+1, . . . , ck).

The following lemma of independent interest is crucial for our work.

Lemma 9. Every graph G = (V,E) admits an optimal clique-colouring such
that at least one colour class is the complement of a minimal transversal of the
clique hypergraph Hc(G).

Proof. Let G = (V,E) be a graph and k = χc(G) its clique-chromatic number.
Let (V1, . . . , Vk) be an optimal clique-colouring of G. By Lemma 1, the comple-
ment of each colour class Vi is a transversal of Hc(G). Let us assume that none
of the colour classes Vi is the complement of a minimal transversal. The idea is
to transform the first colour class into the complement of a minimal transversal.
Since we assumed that V1 is a transversal which is not minimal, there exists an
X1 ⊂ V1 such that X1 is a minimal transversal of Hc(G). We set V ′

1 = X1, and
for all i ≥ 2, we set V ′

i = Vi\V ′
1 . During this operation, for all i ≥ 2, we have

not increased the size of Vi, and thus we have not decreased the size of their
complement which were already transversals. Thus for all i ≥ 2, the complement
of V ′

i is a transversal. By the construction of V ′
1 , and by Lemma 1, we obtain

that (V ′
1 , V

′
2 , . . . , V

′
k) is a clique-colouring of G. ��

The previous lemma is optimal in the sense that there are graphs not having any
clique-colouring of minimal size in which two colour classes are the complement
of a minimal transversal of the clique hypergraph.
Since a hypergraph of rank 2 is equivalent to a graph, enumerating all minimal
transversals of a given hypergraph of rank 2 is equivalent to enumerating all min-
imal vertex covers of a graph, and all minimal vertex covers can be enumerated
in time O∗(3n/3); which indeed is optimal.
In his master thesis [8], Gaspers showed that for every fixed integer c ≥ 3 there
is a branching algorithm to compute a minimum transversal of a hypergraph
of rank c in time O∗((αc)n), where αc = τ(1, 2, . . . , c) < 2. See also Table 1
for some values of αc. His approach can be extended to the enumeration of all
minimal transversals.

Theorem 4. Let c ≥ 3. There is an algorithm to enumerate all minimal transver-
sals of a hypergraph of rank c in time O∗((αc)n), where αc = τ(1, 2, 3, . . . , c) < 2.

196 M. Cochefert and D. Kratsch

Table 1. The constants αc of Theorem 4 and α′
c of Theorem 5 for c = 3, . . . , 10

c 3 4 5 6 7 8 9 10

αc 1.8393 1.9276 1.9660 1.9836 1.9920 1.9961 1.9981 1.9991

α′
c 1.7693 1.8994 1.9536 1.9779 1.9893 1.9947 1.9974 1.9987

Theorem 5. Let c ≥ 3. There is a O∗((α′c)
n) time branching algorithm to enu-

merate all partitions of V into one minimal transversal and one transversal of
a given hypergraph of rank c, where α′c = τ(2, 2, 3, 3, 4, 4, . . . , c− 1, c− 1, c, c).

Proof. Let H = {X1, . . . , Xq} be the input hypergraph, where |Xi| ≤ c for
every hyperedge Xi of H. The algorithm enumerates all partitions of V into two
colour classes (V1, V2) such that the first colour class is a minimal transversal of
H and the second colour class is a transversal of H. An instance of our branching
algorithm, which describes a subproblem and is associated to a node of the search
tree, consists of a triplet (T,W,R). T ⊆ V is a partial transversal of H, W ⊆ V
is the set of those vertices that might still be added to T to built the colour class
V1, and thus T ∩W = ∅. R = {Y1, . . . , Yq′} is the hypergraph consisting of those
hyperedges of H which are not hit by T . Since hyperedges of R might contain
vertices not belonging to W , it holds that W ⊆ ∪q′

i=1Yi.
During the execution of the branching algorithm and the construction of the
corresponding search tree, each leaf of the search tree will be marked either
GOOD or BAD. A solution of the problem (to be enumerated) will be a couple
(T, V \T) associated to a leaf which is not marked BAD. The algorithm uses two
basic procedures to create a subproblem, either ADD (add) a subset Z ⊆ W to
the partial transversal T , or RMV (remove) Z from the current W -set which is
equivalent to adding Z ⊆W to T . Note that each procedure reduces the size of
the W -set of the instance.
ADD(Z) : W ←W\Z, R ← R\ ∪q′

i=1 {Yi | Z ∩ Yi �= ∅} and T ← T ∪ Z.
RMV(Z) : W ←W\Z.
Now we describe our branching algorithm by listing its reduction and branching
rules in the order they are to be applied. This means that a rule can only be
applied if all previous ones fail to be applicable. Note that the first three rules
are reduction rules and only rules R5.4 and R5.5 are branching rules. If the
algorithm stops there will be a leaf in the search tree (to be marked either GOOD
or BAD). Otherwise the algorithm branches into subproblems according to the
rule applied; in the search tree this creates children of the current node.
R5.1: if R = ∅, then STOP (GOOD).
R5.2: if ∃ Yi ∈ R such that Yi ∩W = ∅, then STOP (BAD).
R5.3: if ∃ Yi ∈ R such that Yi ∩W = {x} then ADD({x}).
R5.4: if ∃ Yi ∈ R such that Yi\W �= ∅ then let Wi = {c1, . . . , cp} = Yi ∩W .
The idea is that in all the obtained subproblems the new partial transversal T
needs to hit Wi. To obtain the first subproblem c1 is added to T . To obtain the
second subproblem c1 is removed fromW (and thus added to T) and c2 is added
to T . In the third subproblem c1 and c2 are removed from W and c3 is added

Exact Algorithms to Clique-Colour Graphs 197

to T . In this manner p subproblems are constructed, the p-th one is obtained
by removing c1, c2, . . . , cp−1 from W and adding cp to T . Furthermore for each
subproblem R is updated by removing all hyperedges hit by the new set T .
R5.5: Let C = {c1, . . . , cp} ∈ R. Note that rule R5.4 did not apply, and thus
C ⊆ W which implies C ∩ T = ∅ and C ∩ T = ∅ in the current instance. The
branching rule guarantees that in every generated subproblem C is hit by both,
partial transversal T and its complement T . This means to add at least one W -
vertex to T , and to remove at least one vertex from W ; the latter is equivalent
to adding a vertex to T . First we keep all subproblems from rule R5.4 except
the very first one. Finally we replace this subproblem by the following one. The
first one adds c1 to T and removes c2 from W . The second adds c1, c2 to T and
removes c3 from W . The p-th one adds c1, c2 . . . , cp to T and removes cp+1 from
W . In this manner we have replaced the first subproblem of rule R5.4 by p− 1
new subproblems. ��

Lemma 10. The algorithm of Theorem 5 is correct and has a branching number
α′c = τ(2, 2, 3, 3, 4, 4, . . . , c− 1, c− 1, c, c) satisfying α′c < αc < 2.

One may show that αc = τ(1, 2, . . . , c) = τ(2, 3, . . . , c+1, 2, 3, . . . , c) = τ(2, 2, 3, 3,
. . . , c − 1, c − 1, c, c, c + 1) > τ(2, 2, 3, 3, . . . , c − 1, c − 1, c, c) = α′c using the
abovementioned substitution, permutation, and extension rules for branching
numbers. To evaluate the improvement we refer to some values of the branching
numbers αc and α′c given in Table 1.

Theorem 6. There is an algorithm to decide 2-clique-colourability of graphs of
maximum clique size ω(G) ≤ c in time O∗((λc)n), where λc ≤ α′c < 2.

Proof. Let G = (V,E) be a graph such that ω(G) ≤ c. Consequently, every
hyperedge of Hc(G) has size at most c, and the number of maximal cliques of G is
at most

(
n
c

)
= O(nc). The polynomial delay algorithm to enumerate all maximal

cliques in [16] when applied to the graph G is indeed an algorithm to enumerate
all maximal cliques of G of running time polynomial in the number of vertices of
G. By Lemma 1, G admits a 2-clique-colouring (V1, V2) iff V1 = V2 and V2 = V1
are transversals of the clique hypergraph Hc(G), that is both V1 and V2 must
be transversals of Hc(G). Moreover by Lemma 9, it is sufficient to enumerate all
minimal transversals X of Hc(G) as class V1. Using the observations above, one
can use either the algorithm from Theorem 4, running in time O∗(αnc), αc < 2, or
the algorithm from Theorem 5, running in time O∗((α′c)n), where α′c < αc < 2,
to establish an algorithm deciding 2-clique-colourability. ��

6 Conclusions

The main structural tools of our algorithms are the (minimal) transversals and
(maximal) obliques of the clique hypergraph Hc(G). Enumerating all (minimal)
transversals and all (maximal) obliques of a clique hypergraph are important
procedures of our main algorithms. Our main results are algorithms solving

198 M. Cochefert and D. Kratsch

clique-colouring problems exactly. The first one is an O∗(2n) time inclusion-
exclusion algorithm to compute the clique-chromatic number of a graph. The
second one is a branching algorithm deciding for an input graph G of clique size
at most c whether G is 2-clique-colourable in time O∗((λc)n) where λc < 2, and
computing a 2-clique-colouring of G, if there is one.
It is natural to ask whether there is a O∗(αn) time algorithm with α < 2 to com-
pute the clique chromatic number of a graph or to decide its 2-clique colorability.
Let us mention a question strongly related to our work. Is there an algorithm
to compute the family of all minimal transversals of a clique hypergraph Hc(G)
in time O∗(αn) for some α < 2? Note that if G is the disjoint union of K3’s;
then its clique hypergraph has 3n/3 minimal transversals. Finally, what is the
maximum number of minimal transversals in a clique hypergraph on n vertices?

References

1. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebö, A.: Coloring the max-
imal cliques of graphs. SIAM Journal on Discrete Mathematics 17(3), 361–376
(2004)

2. Berge, C., Duchet, P.: Strongly perfect graphs. Annals of Discrete Mathematics 21,
57–61 (1984)

3. Berge, C.: Hypergraphs: combinatorics of finite sets. North holland (1984)
4. Björklund, A., Husfeldt, T., Koivisto, M.: Set Partitioning via Inclusion-Exclusion.

SIAM J. Comput. 39(2), 546–563 (2009)
5. Défossez, D.: Clique-coloring some classes of odd-hole-free graphs. Journal of Graph

Theory 53(3), 233–249 (2006)
6. Duffus, D., Sands, B., Sauer, N., Woodrow, R.: Two-colouring all two-element

maximal antichains. Journal of Combinatorial Theory, Series A 57(1), 109–116
(1991)

7. Fomin, F.V., Kratsch, D.: Exact exponential algorithms. Springer (2011)
8. Gaspers, S.: Algorithmes exponentiels. Master’s thesis, Université de Metz (June

2005)
9. Klein, S., Morgana, A.: On clique-colouring of graphs with few P4’s. Journal of the

Brazilian Computer Society 18(2), 113–119 (2012)
10. Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of

graphs. Journal of Algorithms 45(1), 40–54 (2002)
11. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.

Comput. Sci. 223(1-2), 1–72 (1999)
12. Leiserson, C.E., Rivest, R.L., Stein, C., Cormen, T.H.: Introduction to algorithms.

The MIT press (2001)
13. Marx, D.: Complexity of clique coloring and related problems. Theoretical Com-

puter Science 412(29), 3487–3500 (2011)
14. Mohar, B., Skrekovski, R.: The Grötzsch theorem for the hypergraph of maximal

cliques. The Electronic Journal of Combinatorics 6(R26), 2 (1999)
15. Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3(1),

23–28 (1965)
16. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating

all the maximal independent sets. SIAM Journal on Computing 6(3), 505–517
(1977)

Supporting Non-functional Requirements
in Services Software Development Process:

An MDD Approach

Valeria de Castro1, Martin A. Musicante2, Umberto Souza da Costa2,
Plácido A. de Souza Neto3, and Genoveva Vargas-Solar4

1 Universidad Rey Juan Carlos – Móstoles, Spain
Valeria.deCastro@urjc.es

2 Federal University of Rio Grande do Norte (UFRN) – Natal-RN, Brazil
{mam,umberto}@dimap.ufrn.br

3 Federal Technological Institute of Rio Grande do Norte (IFRN) – Natal-RN, Brazil
placido.neto@ifrn.edu.br

4 French Council of Scientific Research (CNRS) – Grenoble, France
Genoveva.Vargas-Solar@imag.fr

Abstract. This paper presents the πSOD-M method, an extension to
the Service-Oriented Development Method (SOD-M) to support the de-
velopment of services software by considering their functional and non-
functional requirements. Specifically, πSOD-M proposes: (i) meta-models
for representing non-functional requirements at different abstraction lev-
els; (ii) model-to-model transformation rules, useful to semi-automatically
refine Platform Independent Models into Platform Specific Models; and
(iii) rules to transform Platform Specific Models into concrete imple-
mentations. In order to illustrate our proposal, the paper also describes
how to apply the methodology to develop a proof of concept.

Keywords: MDD, Service Oriented Applications, Non-functional
Properties.

1 Introduction

Model Driven Development (MDD) [12] is a top-down approach proposed by
the Object Management Group (OMG)1 for designing and developing software
systems. MDD provides a set of guidelines for structuring specifications by using
models to specify software systems at different levels of abstraction or viewpoints :
- Computation Independent Models (CIM): this viewpoint represents the software
system at its highest level of abstraction. It focusses on the system environment
and on business and requirement specifications. At this level, the structure of
the system and its processing details are still unknown or undetermined.
- Platform Independent Models (PIM): this viewpoint focusses on the system
functionality, hiding the details of any particular platform.
1 http://www.omg.org/mda

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 199–210, 2014.
c© Springer International Publishing Switzerland 2014

200 V. de Castro et al.

- Platform Specific Models (PSM): this viewpoint focusses on the functionality, in
the context of a particular implementation platform. Models at this level combine
the platform-independent view with specific aspects of the target platform in
order to implement the system.

Besides the notion of models at each level of abstraction, MDD requires model
transformations between levels. These transformations may be automatic or
semi-automatic and implement the refinement process between levels.

MDD has been applied for developing service-oriented applications. In Service-
Oriented Computing [20], pre-existing services are combined to produce applica-
tions and provide the business logic. The selection of services is usually guided by
the functional requirements of the application being developed. Some method-
ologies and techniques have been proposed to help the software developer in
the specification of functional requirements of the business logic, such as the
Service-Oriented Development Method (SOD-M) [9].

Ideally, non-functional requirements such as security, reliability, and efficiency
would be considered along with all the stages of the software development. The
adoption of non-functional specifications from the early states of development
can help the developer to produce applications that are capable of dealing with
the application context. Non-functional properties of service-oriented applica-
tions have been addressed in academic works and standards. Dealing with these
kind of properties involves the use of specific technologies at different layers of
the SOC architecture, for instance during the description of service APIs (such as
WSDL[8] or REST [13]) or to express service coordinations (like WS-BPEL [1]).

Protocols and models implementing non-functional properties assume the ex-
istence of a global control of the artefacts implementing the application. They
also assume that each service exports its interface. So, the challenge of support-
ing non-functional properties is related to (i) the specification of the business
rules of the application; and (ii) dealing with the technical characteristics of the
infrastructure where the application is going to be executed.

This paper presents πSOD-M, a methodology for supporting the develop-
ment of service-oriented applications by taking into account both functional and
non-functional requirements. This methodology aims to: (i) improve the devel-
opment process by providing an abstract view of the application and ensuring its
conformance to the business requirements; (ii) reduce the programming effort
through the semi-automatic generation of models for the application, to pro-
duce concrete implementations from high-abstraction models. Accordingly, the
remainder of the paper is organized as follows: Section 2 gives an overview of the
SOD-M approach; Section 3 presents πSOD-M, the methodology that we pro-
pose to extend SOD-M; Section 4 shows the development of a proof of concept;
Section 5 describes related works; and Section 6 concludes the paper.

2 SOD-M

The Service-Oriented Development Method (SOD-M) [9] adopts the MDD ap-
proach to build service-based applications. SOD-M considers two points of view:

Supporting Non-functional Requirements 201

(i) business, focusing on the characteristics and requirements of the organiza-
tion; and (ii) system requirements, focusing on features and processes to be im-
plemented in order to build service-based applications in accordance to the busi-
ness requirements. In this way, SOD-M simplifies the design of service-oriented
applications, as well as their implementation using current technologies.

SOD-M provides a framework with models and standards to express function-
alities of applications at a high-level of abstraction. The SOD-M meta-models
are organized into three levels: CIM (Computational Independent Models), PIM
(Platform Independent Models) and PSM (Platform Specific Models). Two mod-
els are defined at the CIM level: value model and BPMN model. The PIM level
models the entire structure of the application, as the PSM level provides trans-
formations towards more specific platforms. The PIM-level models are: use case,
extended use case, service process and service composition. The PSM-level mod-
els are: web service interface, extended composition service and business logic.

At the CIM level, the value model describes a business scenario as a set of
values and activities shared by business actors. The BPMN model describes a
business process and the corresponding environment. At the PIM level, the use
case model represents a business service, as the extended use case model contains
behavioral descriptions of features to be implemented. The service process model
describes a set of activities to be performed in order to implement a business
service. Finally, the service composition model represents the complete flow of a
business system. This model is an extension of the service process model.

The SOD-M approach includes transformations between models: CIM-to-
PIM, PIM-to-PIM and PIM-to-PSM transformations. Given an abstract model
at the CIM level, it is possible to apply transformations for generating a model
of the PSM level. In this context, it is necessary to follow the process activities
described by the methodology. These three SOD-M levels have no support for de-
scribing non-functional requirements. The following section introduces πSOD-M,
the extension that we propose for supporting these requirements.

3 πSOD-M

πSOD-M provides an environment for building service compositions by consid-
ering their non-functional requirements. πSOD-M proposes the generation of a
set of models at different abstraction levels, as well as transformations between
these models. πSOD-M includes non-functional specifications through four meta-
models that extend the SOD-M meta-models at the PIM and PSM levels (see
Figure 1): π-UseCase, π-ServiceProcess, π-ServiceComposition and π-PEWS.

The π-UseCase meta-model describes functional and non-functional require-
ments. Non-functional requirements are defined as constraints over processing
steps and data. The π-ServiceProcess meta-model defines the concept of ser-
vice contract to represent restrictions over data and actions that must be per-
formed upon certain conditions. The π-ServiceProcess meta-model gathers the
constraints described in the π-UseCase model into contracts that are associ-
ated with services. The π-ServiceComposition meta-model provides the concept

202 V. de Castro et al.

Fig. 1. πSOD-M

of Policy [11] which put together contracts with similar non-functional require-
ments. For instance, security and privacy restrictions may be grouped into a
security policy. π-ServiceComposition models can be refined into PSMs. Poli-
cies are associated to service operations and combine constraints and reactive
recovery actions. Constraints are restrictions that must be verified during the
execution of the application. Failure to verify some constraint will trigger an
exceptional behavior to execute the corresponding recovery action. An example
of policy is the requirement of authentication for executing some of the system
functions. The action associated to this policy may perform the authentication
of the user. At the PSM level we have lower-level models that can be auto-
matically translated into actual computer programs. The π-PEWS meta-model
is the PSM adopted in this work (see Figure 1). π-PEWS models are textual
descriptions of service compositions that can be translated into PEWS [3] code.

Thus, πSOD-M proposes a development process based on the definition of
models (instances of the meta-models) and transformations between models.
There are two kinds of transformations: model-to-model transformations, used
to refine the specification during the software process; and model-to-text trans-
formations, used to generate code in the last step of the software process. Notice
that other composition languages, such as BPEL [1], can be used as target of
the proposed software process. Another target language can be supported by
defining the corresponding PIM-to-PSM and PSM-to-text transformations.

Supporting Non-functional Requirements 203

πSOD-M environment is built on the top of Eclipse. We also used the Eclipse
Modelling Framework (EMF) to define, edit and handle (meta)-models. To au-
tomate the transformation models we use ATL [15] and Acceleo.

In the next section we develop an example, in order to illustrate our proposal.
The example will show the actual notation used for models.

4 Proof of Concept: Tracking Crimes

Consider a tracking crime application where civilians and police share informa-
tion about criminality in given zones of a city. Civilian users signal crimes using
Twitter. Police officers can notify crimes, as well as update information about
solving cases. Some of these information are confidential while other can be
shared to the community of users using this application. Users can track crimes
in given zones. Crime information stored by the system may be visualized on a
map. Some users have different access rights than others. For example, police
officers have more access rights than civilians.

In order to provide these functionalities, the application uses pre-existing ser-
vices to provide, store and visualize information. The business process defines the
logic of the application and is specified in terms of tasks. Tasks can be performed
by people or computers.

The business process and requirements specifications presented in Figure 2
are instances of the Computation-Independent models of Figure 1. The business
process is represented as a graph while requirements are given as text boxes.

Fig. 2. Business process for the tracking crime example

In our example, crime processing can start with one of two tasks: (i) notify a
crime, or (ii) track a crime. Notified crimes are stored in a database. Tracked
crimes are visualized on a map. The used can ask for detailed information. The
application is built upon four services: Twitter and an ad-hoc police service, for
notifying crimes; Amazon, used as persistence service; and Google Maps, for lo-
cating and displaying crimes on a map.

204 V. de Castro et al.

Non-functional requirements are specified by rules and conditions to be ver-
ified during the execution of tasks. In our example we have the following non-
functional requirements:

– Twitter requires authentication and allows three login failures before block-
ing.

– Crime notification needs privileged access.
– Civilian users can only track crimes for which they have clearance: civilian

population cannot track all the crimes notified by the police.
– If Google Maps is unavailable, the results are delivered as text.
– Querying about crimes without having proper clearance yields an empty

map.
– Access rights to detailed information depends on user clearance and zone

assignment for police officers.
– The application maintains a detailed log.

The idea about these requirements is to leave the application logic expressed by
functional requirements as independent as possible from exceptional situations
(like the unavailability of a service) and from conditions under which services are
called (for instance, through an authentication protocol). These requirements can
be weaved as activities and branches of the composition or implemented apart.
The second option is better because it makes the maintenance and evolution of
applications easier. For instance, the services called by the application are not
hard coded (Twitter and Google Maps in the example), neither the actions to
deal with exceptions (replacing another map service or doing nothing).

All the system restrictions are modelled as constraints in this example. πSOD-
M provides three types of constraints: value, business and exceptions behaviour
constraints. Each use case (model) can be associated to one or more constraints2.

π-UseCase model: our example has five use cases which represent the functions
(tasks) and constraints of the system (Figure 3). We do not detail the functional
part of the specification, due to lack of space. The constraints defined are:

– The Notify crime task requires that the user is logged in. This is an example
of a value constraint, where the value associated to the condition depends
on the semantics of the application. In this case, it represents the maximum
number of allowed login attempts;

– The Store crimes task requires the verification of the user’s clearance (also a
value constraint).

– In order to perform the Track crimes task, the contact list of the requesting
user must include the user that notified the crime. This is an example of
business constraint. Additionally the requesting user must be logged in.

– For the View crimes’ map task, the specification defines that if the service
Google Maps is not available, the result is presented as text. This is an
example of exceptional behaviour constraint. The availability of the Google
Maps service is verified by a business constraint.

2 For a more comprehensive account of πSOD-M the reader can refer to [23].

Supporting Non-functional Requirements 205

Fig. 3. π-UseCase Model

– The Show crimes’ details task is specified to have three constraints: A value
constraint is defined to verify the user’s clearance level; a business constraint
is used to ensure that the user’s clearance is valid for the geographic zone of
the crime; another value constraint defines that the log is to be maintained.

A model-to-model transformation is defined to refine the π-UseCase model
into the corresponding π-ServiceProcess model, a more detailed representation.
This (semi-automatic) transformation is supported by a tool (described in [23]).

π-ServiceProcess model: in this model task nodes of the π-UseCase model are
better detailed, by refining the control and data flows, and its constraints are
transformed into contracts (pre- and post-conditions). The π-ServiceProcess
model describes the activities of the application and defines contracts for each
activity or parts of the application (Figure 4). The main transformations are:

– Tasks of the previous model are transformed into actions ;
– Actions are grouped into activities (in accordance to the business logic).
– Constraints of the π-UseCase model are transformed into assertions.

π-ServiceComposition model: this model refines the previous model by using
the activities to produce the workflow of the application. The model serves to
identify those entities that collaborate with the service process by providing
services to execute actions. This model identifies the services and functions that
correspond to each action in the business process.

In the case of our crime tracking example, the model produced from the π-
ServiceProcess model of Figure 4 is given in Figures 5a and 5b. Figure 5a shows
how the crime application interacts with its business collaborators (external ser-
vices and entities). The interaction occurs by means of function calls (denoted
by dotted lines in the figure). Figure 5b shows the definition of three policies,
which define rules for service execution. In our case we have policies for Security,
Performance and Persistence.

206 V. de Castro et al.

Fig. 4. π-ServiceProcess Model

π-PEWS Model: this model is produced by a model-to-text transformation that
takes a π-ServiceComposition model and generates π-PEWS specification code.
This code is a service composition program that can be compiled into an exe-
cutable composition. π-PEWS models are expressed in a variant of the PEWS
composition language. The π-PEWS program generated from the model in Fig-
ure 5 is partially presented in Figure 6. The figure shows a simplified program
code, produced in accordance to the following guidelines:

– Namespaces, identifying the addresses of external services are produced from
the Business Collaborators of the higher-level model. We define four of them,
corresponding to the Police, Twitter, Google Map and Amazon partners.

– Specific operations exported by each business collaborator are identified as
an operation of the program (to each operation is given an alias).

– The workflow in Figure 5a is translated into the text at line 11.
– Contracts are defined in π-PEWS as having pre-conditions (requires), post-

conditions (ensures) and actions (OnFailureDo) to be executed whenever a
condition is not verified. Contracts are generated from Policies (Figure 5b).

5 Related Work

Over the last years, a number of approaches have been proposed for the de-
velopment of web services. These approaches range from the proposal of new
languages for web service descriptions [1,21] to techniques to support phases of
the development cycle of this kind of software [6]. In general, these approaches
concentrate on specific problems, like supporting transactions or QoS, in order to
improve the security and reliability of service-based applications. Some proposals
address service composition: workflow definition [25,18] or semantic equivalence
between services [3].

Works dealing with non-functional properties in service-oriented development
can be organized in two main groups: those working on the modelling of par-
ticular non-functional properties or QoS attributes and those proposing archi-
tectures or frameworks to manage and validate QoS attributes in web service

Supporting Non-functional Requirements 207

(a) π-ServiceComposition Model.

(b) π-ServiceComposition Policies.

Fig. 5. Service Composition and Policies

composition processes. The first group considers specific non-functional concerns
(e.g., security) which is modelled and then associated to functional models of
the application. The work of Chollet et al. [7] defines a proposal to associate
non-functional quality properties (security properties) to functional activities in
a web service composition model. Schmeling et al. [22] present an approach and
also a toolset for specifying and implementing non-functional concerns in web
service compositions. Non-functional concerns are modelled and then related
to a service composition represented in a BPMN diagram. Ovaska et al. [19]
present an approach to support quality management at design time. Quality
requirements are modelled in a first phase and then represented in an architec-
tural model where quality requirements are associated to some components of
the model. We propose to model functional and non-functional properties at the
same time during the software process. We claim what this approach simplifies

208 V. de Castro et al.

//Namespaces specify service URI
1 namespace twitter = www.twitter.com/service.wsdl
2 namespace googlemaps = maps.googleapis.com/maps/api/service
3 namespace amazondynamodb = rds.amazonaws.com/doc/2010-07-28/AmazonRDSv4.wsdl
4 namespace police = www.police.fr/service.wsdl
//Operations
5 alias publishTwitter = portType/publishTwitter in twitter
6 alias searchCrime = portType/searchCrime in amazondynamodb
7 alias showMap = portType/showMap in googlemaps
//Services
8 service notifyCrime = publishCrime . publishTwitter
9 service trackCrime= searchCrime . verifyService
10 Service visualizeCrime = showMap . getCrimeDetail
//Path
11 (notifyCrime.storeiCrime) || (trackCrime.visualizeCrime.getCrimeDetail)
//Contracts
12 defContract notifyCrimeContract{ isAppliedTo: notifyCrime
13 requires: userId == ?? && passw == ?? && req(notifyCrime) < 3
14 (OnFailureDo: NOT(action_publish(crime));
15 ensures: publishTwitter(crime) == true (OnFailureDo: skip); }

Fig. 6. π-PEWS code for the crime tracking example (partial, simplified)

the web service development task. Non-functional properties are represented in
our work as constraints and policies but more general quality model such as the
proposed by [14,17] could be taken in consideration in further works.

The second group of works dealing with non-functional requirements for ser-
vices propose specific architectures or frameworks to manage and validate QoS
attributes in service composition processes [26,4,16]. Our proposal is similar to
these, but focusses on more general non-functional properties.

Despite the variety of techniques proposed, there is not yet a consensus on a
software methodology for web services. Some methodologies address the service-
based development towards a standard or a new way to develop reliable applica-
tions. SOD-M and SOMF [5] are MDD approaches for web services; S-Cube [20]
is focused on the representation of business processes and service-based develop-
ment; SOMA [2] is a methodology for SOA solutions; DEVISE [10] is a methodol-
ogy for building service-based infrastructure for collaborative enterprises. Other
proposals include the WIED model [24], that acts as a bridge between busi-
ness modelling and design models on one hand, and traditional approaches for
software engineering applied to SOC on the other hand.

6 Conclusions

This paper presented the πSOD-M software method for specifying and design-
ing service-based applications in the presence of non-functional constraints. Our
proposal enhances the SOD-M method with constraints, policies and contracts
to consider non-functional constraints of applications. We implemented the pro-
posed meta-models on the Eclipse platform and we illustrated the approach by
developing a simple application.
πSOD-M is being used in an academic environment. So far, the preliminary

results indicate that πSOD-M approach is useful for the development of complex

Supporting Non-functional Requirements 209

web service applications. We are now working on the definition of a PSM-level
meta-model to generate BPEL programs (instead of π-PEWS) in order to be
able to generate code for the de-facto service coordination standard.

Acknowledgements. This research is partly supported by the National In-
stitute of Science and Technology for Software Engineering (INES3), funded
by CNPq (Brazil), grants 573964/2008-4 and 305619/2012-8; CAPES/Ude-
laR (Brazil/Uruguay) grant 021/ 2010; CAPES/STIC-AmSud (Brazil) grant
020/2010); MASAI project (TIN-2011-22617) financed by the Spanish Ministry
of Science and Innovation and the Spanish Network on Service Science (TIN2011-
15497-E) financed by the Spanish Ministry of Competitiveness and Economy.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeranwarana, S.: Business
Process Execution Language for Web Services (2003), http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/

2. Arsanjani, A.: SOMA: Service-Oriented Modeling and Architecture. Tech-
nical report, IBM (2004), http://www.ibm.com/developerworks/library/
ws-soa-design1

3. Ba, C., Halfeld-Ferrari, M., Musicante, M.A.: Composing Web Services with
PEWS: A Trace-Theoretical Approach. In: ECOWS 2006, pp. 65–74 (2006)

4. Babamir, S.M., Karimi, S., Shishechi, M.R.: A Broker-Based Architecture for
Quality-Driven Web Services Composition. In: Proc. CiSE 2010 (2010)

5. Bell, M.: Service-Oriented Modeling (SOA): Service Analysis, Design, and Archi-
tecture. John Wiley (2008)

6. Börger, E., Cisternino, A. (eds.): Advances in Software Engineering. LNCS,
vol. 5316. Springer, Heidelberg (2008)

7. Chollet, S., Lalanda, P.: An Extensible Abstract Service Orchestration Framework.
In: Proc. ICWS 2009, pp. 831–838. IEEE (2009)

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. Technical report, World Wide Web Consortium
(2001), http://www.w3.org/TR/wsdl

9. de Castro, V., Marcos, E., Wieringa, R.: Towards a service-oriented MDA-based
approach to the alignment of business processes with IT systems: From the business
model to a web service composition model. IJCIS 18(2) (2009)

10. Dhyanesh, N., Vineel, G.C., Raghavan, S.V.: DEVISE: A Methodology for Building
Web Services Based Infrastructure for Collaborative Enterprises. In: Proc. WETIC
2003. IEEE Computer Society, USA (2003)

11. Espinosa-Oviedo, J.A., Vargas-Solar, G., Zechinelli-Martini, J.L., Collet, C.: Policy
driven services coordination for building social networks based applications. In:
Proc. of SCC 2011, Work-in-Progress Track. IEEE, USA (2011)

12. Favre, L.: A Rigorous Framework for Model Driven Development. In: Advanced
Topics in Database Research, vol. 5, ch. I, USA, pp. 1–27 (2006)

3 www.ines.org.br

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/ws-soa-design1
http://www.ibm.com/developerworks/library/ws-soa-design1
http://www.w3.org/TR/wsdl
www.ines.org.br

210 V. de Castro et al.

13. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine (2000)

14. Goeb, A., Lochmann, K.: A software quality model for soa. In: Proc. WoSQ 2011,
pp. 18–25. ACM (2011)

15. Group, A.: ATL: Atlas Transformation Language. Technical report, ATLAS Group,
LINA & INRIA (February 2006)

16. Karunamurthy, R., Khendek, F., Glitho, R.H.: A novel architecture for Web service
composition. J. of Network and Computer Applications 35(2), 787–802 (2012)

17. Klas, M., Heidrich, J., Munch, J., Trendowicz, A.: Cqml scheme: A classification
scheme for comprehensive quality model landscapes. In: SEAA 2009, pp. 243–250
(2009)

18. Musicante, M.A., Potrich, E.: Expressing workflow patterns for web services: The
case of pews. J.UCS 12(7), 903–921 (2006)

19. Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge based
quality-driven architecture design and evaluation. Information & Software Tech-
nology 52(6), 577–601 (2010)

20. Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A. (eds.): Service Research Chal-
lenges and Solutions for the Future Internet. LNCS, vol. 6500. Springer, Heidelberg
(2010)

21. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. In: Proc. IEEE International Conference on Web Services,
ICWS 2004. IEEE Computer Society, Washington, DC (2004)

22. Schmeling, B., Charfi, A., Mezini, M.: Composing Non-functional Concerns in Com-
posite Web Services. In: Proc. ICWS 2011, pp. 331–338 (July 2011)

23. Souza Neto, P.A.: A methodology for building service-oriented applications
in the presence of non-functional properties. PhD thesis, Federal Univer-
sity of Rio Grande do Norte (2012), http://www3.ifrn.edu.br/~placidoneto/
thesisPlacidoASNeto.pdf

24. Tongrungrojana, R., Lowe, D.: WIED: A Web Modelling Language for Modelling
Architectural-Level Information Flows. J. Digit. Inf. 5(2) (2004)

25. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

26. Xiao, H., Chan, B., Zou, Y., Benayon, J.W., O’Farrell, B., Litani, E., Hawkins,
J.: A Framework for Verifying SLA Compliance in Composed Services. In: ICWS
(2008)

http://www3.ifrn.edu.br/$\sim $placidoneto/thesisPlacidoASNeto.pdf
http://www3.ifrn.edu.br/$\sim $placidoneto/thesisPlacidoASNeto.pdf

Safety Contracts for Timed Reactive
Components in SysML

Iulia Dragomir, Iulian Ober, and Christian Percebois

Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

{iulia.dragomir,iulian.ober,christian.percebois}@irit.fr

Abstract. A variety of system design and architecture description lan-
guages, such as SysML, UML or AADL, allows the decomposition of
complex system designs into communicating timed components. In this
paper we consider the contract-based specification of such components.
A contract is a pair formed of an assumption, which is an abstraction of
the component’s environment, and a guarantee, which is an abstraction
of the component’s behavior given that the environment behaves accord-
ing to the assumption. Thus, a contract concentrates on a specific aspect
of the component’s functionality and on a subset of its interface, which
makes it relatively simpler to specify. Contracts may be used as an aid for
hierarchical decomposition during design or for verification of properties
of composites. This paper defines contracts for components formalized
as a variant of timed input/output automata, introduces compositional
results allowing to reason with contracts and shows how contracts can
be used in a high-level modeling language (SysML) for specification and
verification, based on an example extracted from a real-life system.

1 Motivation and Approach

The development of safety critical real-time embedded systems is a complex and
costly process, and the early validation of design models is of paramount impor-
tance for satisfying qualification requirements, reducing overall costs and increas-
ing quality. Design models are validated using a variety of techniques, including
design reviews [24], simulation and model-checking [19, 25]. In all these activities
system requirements play a central role; for this reason processes-oriented stan-
dards such as the DO-178C [22] emphasize the necessity to model requirements
at various levels of abstraction and ensure their traceability from high-level down
to detailed design and coding.

Since the vast majority of systems are designed with a component-based ap-
proach, the mapping of requirements is often difficult: a requirement is in general
satisfied by the collaboration of a set of components and each component is in-
volved in satisfying several requirements. A way to tackle this problem is to have
partial and abstract component specifications which concentrate on specifying
how a particular component collaborates in realizing a particular requirement;
such a specification is called a contract. A contract is defined as a pair formed
of an assumption, which is an abstraction of the component’s environment, and
a guarantee, which is an abstraction of the component’s behavior given that the
environment behaves according to the assumption.

The justification for using contracts is therefore manyfold: support for re-
quirement specification and decomposition, mapping and tracing requirements

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 211–222, 2014.
c© Springer International Publishing Switzerland 2014

212 I. Dragomir, I. Ober, and C. Percebois

to components and even for model reviews. Last but not least, contracts can sup-
port formal verification of properties through model-checking. Given the right
composability properties, they can be used to restructure the verification of a
property by splitting it in two steps: (1) verify that each component satisfies
its contract and (2) verify that the network of contracts correctly assembles
and satisfies the property. Thus, one only needs to reason on abstractions when
verifying a property, which potentially induces an important reduction of the
combinatorial explosion problem.

Our interest in contracts is driven by potential applications in system engineer-
ing using SysML [23], in particular in the verification of complex industrial-scale
designs for which we have reached the limits of our tools [16]. In SysML one can
describe various types of communicating timed reactive components; for most
of these, their semantics can be given in a variant of Timed Input/Output Au-
tomata (TIOA) [21]. For this reason, in this paper we concentrate on defining
a contract theory for TIOA. This contract theory is applied on a SysML case
study extracted from real-life.

2 A Meta-theory for Contract-Based Reasoning

Our contract theory is an instance of the meta-theory proposed in [27] and later
detailed in [26], which formalizes the relations that come into play in a contract
theory and the properties that these relations have to satisfy in order to sup-
port reasoning with contracts. The term meta-theory refers to the fact that the
formalism used for component specification is not fixed, nor the exact nature of
certain relations defined on specifications (conformance, refinement under con-
text). In order to obtain a concrete contract theory for a particular specification
formalism one has to define these relations such that certain properties, pre-
required by the meta-theory, are satisfied. In return, this meta-theory provides
a ready-to-use contract-based methodology.

The purpose of this methodology is to support reasoning with contracts in a
system obtained by hierarchical composition of components. At any level of the
hierarchy, n componentsK1, ...,Kn are combined to form a composite component
K1 ‖ ... ‖ Kn, where ‖ denotes the parallel composition operator. Then verifying
that the composite satisfies a global property ϕ runs down to checking that the
contracts implemented by K1, ...,Kn combine together correctly to ensure ϕ.
This avoids the need to directly model-check the composite to establish ϕ and,
so, alleviates the combinatorial explosion of the state space. The contracts being
specified by more abstract automata, one can assume that their composition will
be reduced.

The reasoning proceeds as follows: for each component Ki, a contract Ci is
given which consists of an abstraction Ai of the behavior of Ki’s environment,
and an abstraction Gi that describes the expected behavior of Ki given that
the environment acts as Ai. Fig. 1 presents three components K1, K2 and K3

and a corresponding set of contracts C1, respectively C2 and C3. Step 1 of the
reasoning consists in verifying that each component is a correct implementation
of the contract, i.e. the component satisfies its contract. The satisfaction relation
is directly derived from a more general one named refinement under context. The
purpose of the latter is to model that a component Ki is a correct refinement of
the specificationKj in the given environmentEk. Thus, a component implements

Safety Contracts for Timed Reactive Components in SysML 213

Fig. 1. Contract-based reasoning for a three-component subsystem ([26])

a contract if and only if refinement under context holds between the component
Ki and the guarantee Gi in the environment Ai.

Step 2 of the reasoning consists in defining a contract C = (A,G) for the
composition K1 ‖ ... ‖ Kn and proving that the set of contracts {C1, C2, ..., Cn}
implies C. To do so, the meta-theory introduces a hierarchy relation between con-
tracts, called dominance: a set of contracts {C1, C2, ..., Cn} dominates a contract
C if and only if the composition of any valid implementations of C1, C2, ..., Cn is
an implementation of C. In a multi-level hierarchy, the second step can be applied
recursively up to a top-level contract, i.e. a contract for the whole (sub)system.

Finally, in the third step one has to prove that the top contract C = (A,G)
implies the specification ϕ. This is done by verifying that A ‖ G $ ϕ, where
$ is a conformance relation. This step is sufficient for proving that the whole
system satisfies ϕ if and only if either the assumption A is empty as it is the
case when the property is defined for the entire closed modeled system or A is
a correct abstraction of the environment E with which S communicates given
that S behaves like G, i.e. E satisfies the “mirror” contract C−1 = (G,A).

The reasoning strategy presented here assumes that the system designer de-
fines all the contracts necessary for verifying a particular requirement ϕ. How
these contracts are produced is an interesting question but it is outside the scope
of this paper.

The theoretical contribution of this paper is the instantiation of this meta-
theory for a variant of Timed Input/Output Automata [21], by choosing the
appropriate refinement relations and proving that they satisfy certain properties
needed for the meta-theory to be applied. Concretely, the difficulties of the theo-
retical work consisted in defining the conformance and refinement under context
relations such that one can reason in a contract framework only by handling

214 I. Dragomir, I. Ober, and C. Percebois

assumptions and guarantees once satisfaction has been proven. The refinement
relation has to satisfy the compositionality property and the soundness of circu-
lar reasoning, detailed in §4. Compositionality allows for incremental design by
incorporating parts of the environment into the component under study while
refinement under context holds at every step. Circular reasoning allows for inde-
pendent implementability by breaking the dependency between the component
and the environment.

The practical contribution of this paper is the application of the contract
framework to a case study modeled in SysML, which can be found in §5. Due to
space limitations we skip the syntactic details of how contracts are expressed in
SysML and we concentrate on describing the example, the property of interest
and the contracts involved in proving it. The relatively complex SysML language
aspects are detailed in [17].

3 Timed Input/Output Automata

Many mathematical formalisms have been proposed in the literature for modeling
communicating timed reactive components. We choose to build our framework
on a variant of Timed Input/Output Automata of [21] since it is one of the
most general formalisms, thoroughly defined and for which several interesting
compositional results are already available.

A timed input/output automaton (or component) defines a set of internal
variables of arbitrary types and clocks and a set of input actions I, output actions
O, visible actions V and internal actions H . We denote by E = I ∪ O ∪ V the
set of external actions that also gives the interface of the component and by
A = E ∪H the set of actions. The state space of an automaton is described by
the set of possible valuations of the set of variables. The state evolves either by
discrete transitions or by trajectories. A discrete transition instantly changes the
state and is labeled with an action from the mentioned sets. Trajectories change
the state continuously during a time interval.

The behavior of a TIOA is described by an execution fragment which is a
finite or infinite sequence alternating trajectories and discrete transitions. The
visible behavior of a TIOA is given by a trace, which is a projection of an ex-
ecution fragment on external actions and in which, from trajectories, only the
information about the elapsed time is kept, while information about the variable
valuations is abstracted away. For full definitions of all these notions, the reader
is referred to the long version of this paper [18] and to [21].

The difference between the TIOA of [21] and our variant is that in addition to
inputs and outputs, we allow for another type of visible actions; this is because,
in [21], when composing two automata, an output of one matched by an input of
the other becomes an output of the composite, which does not correspond to our
needs when using TIOA for defining the semantics of usual modeling languages
like SysML. Indeed, the matching between an input and an output results in a
visible action in SysML that is not further involved in any synchronizations.

Moreover, in the following we will limit our attention to trajectories that are
constant functions for discrete variables, and linear functions with derivative
equal to 1 for clocks, while [21] allows more general functions to be used as
trajectories. This restriction makes the model expressiveness equivalent to that
of Alur-Dill timed automata [1], and will be important later on as it opens
the possibility to automatically verify simulation relations between automata

Safety Contracts for Timed Reactive Components in SysML 215

(simulation is undecidable for the TIOA of [21]). However, this hypothesis is not
needed for proving the compositional results in §4.

The parallel composition operator for TIOA is based on binary synchroniza-
tion of corresponding inputs and outputs and on the interleaved execution of
other actions, like in [21]. The only difference is related to the interface of the
composite timed input/output automata: the input and output sets of the com-
posite are given by those actions not matched between components, while all
matched input-output pairs become visible actions. Two automata can be com-
posed if and only if they do not share variables and internal and visible actions.
Two automata that can be composed are called compatible components. As in
[21], we use timed trace inclusion as the refinement relation between components.

Definition 1 (Comparable components). Two components K1 and K2 are
comparable if they have the same external interface, i.e. EK1 = EK2 .

Definition 2 (Conformance). Let K1 and K2 be two comparable components.
K1 conforms to K2, denoted K1 $ K2, if tracesK1 ⊆ tracesK2 .

The conformance relation is used in the third step for verifying the satisfaction
of the system’s properties by the top contract: A ‖ G $ ϕ, where A ‖ G and ϕ
have the same interface. It can be easily shown that conformance is a preorder.
The following useful compositional result (theorem 8.5 of [21]) can be easily
extended to our variant of TIOA:

Theorem 1. Let K1 and K2 be two comparable components with K1 $ K2 and
E a component compatible with both K1 and K2. Then K1 ‖ E $ K2 ‖ E.

4 Contracts for Timed Input/Output Automata

In this section we formalize contracts for TIOA and the relations described in §2
and we list the properties that we proved upon these and that make contract-
based reasoning possible.

Definition 3 (Environment). Let K be a component. An environment E for
the component K is a timed input/output automaton compatible with K for which
the following hold: IE ⊆ OK and OE ⊆ IK .

Definition 4 (Closed/open component). A component K is closed if IK =
OK = ∅. A component is open if it not closed.

Closed components result from the composition of components with comple-
mentary interfaces.

Definition 5 (Contract). A contract for a component K is a pair (A,G) of
TIOA such that IA = OG and IG = OA (i.e. the composition pair A ‖ G defines
a closed component) and IG ⊆ IK and OG ⊆ OK (i.e. the interface of G is a
subset of that of K). A is called the assumption over the environment of the
component and G is called the guarantee. The interface of a contract is that of
its guarantee.

The first step of the verification, as presented in §2, is to prove that the
modeled components are an implementation of the given contracts. For this,
we firstly define the refinement under context preorder relation which, in our
framework, is further based on conformance. The complete formal definition of
refinement under context can be found in [18].

216 I. Dragomir, I. Ober, and C. Percebois

Definition 6 (Refinement under context). Let K1 and K2 be two compo-
nents such that IK2 ⊆ IK1 ∪ VK1 , OK2 ⊆ OK1 ∪ VK1 and VK2 ⊆ VK1 . Let E be
an environment for K1 compatible with both K1 and K2. We say that K1 refines
K2 in the context of E, denoted K1 "E K2, if

K1 ‖ E ‖ E′ $ K2 ‖ E ‖ K ′ ‖ E′

where

– E′ is a TIOA defined such that the composition K1 ‖ E ‖ E′ is closed. E′
consumes all outputs of K1 not matched by E and may emit all inputs of K1

not appearing as outputs of E.
– K ′ is a TIOA defined similarly to E′ such that the composition of K2 ‖ E ‖
K ′ ‖ E′ is closed and comparable to K1 ‖ E ‖ E′.

Since we want to take into account interface refinement between components
and conformance imposes comparability, we have to compose each member of
the conformance relation obtained from refinement under context with an addi-
tional timed input/output automaton E′, respectively K ′, such that they both
define closed comparable systems. Both automata are uniquely defined by their
interfaces and can be automatically computed.

Furthermore, the particular inclusion relations between the interfaces of K1

andK2 in the previous definition are due to the fact that both K1 andK2 can be
components obtained from compositions, e.g.,K1 = K ′

1 ‖ K3 andK2 = K ′
2 ‖ K3,

where IK′
2
⊆ IK′

1
, OK′

2
⊆ OK′

1
and VK′

2
⊆ VK′

1
. This happens in particular when

K ′
2 is a contract guarantee for K ′

1. Then, by composition, actions of K3 may be
matched by actions of K ′

1 but have no input/output correspondent in K ′
2.

Theorem 2. Given a set K of comparable components and a fixed environment
E for their interface, refinement under context "E is a preorder over K.

We derive the satisfaction relation from refinement under context.

Definition 7 (Contract satisfaction). A component K satisfies (implements)
a contract C = (A,G), denoted K |= C, if and only if K "A G.

We have introduced the notions and relations in order to verify that a compo-
nent is a correct implementation of a contract. The second step of the contract-
based verification methodology relies on the notion of dominance, introduced
informally in §2, which is formally defined in [26] as follows:

Definition 8 (Contract dominance). Let C be a contract with the interface
P and {Ci}ni=1 a set of contracts with the interface {Pi}ni=1 and P ⊆

⋃n
i=1 Pi.

Then {Ci}ni=1 dominates C if and only if for any set of components {Ki}ni=1
such that ∀i, Ki |= Ci, we have (K1 ‖ K2 ‖ · · · ‖ Kn) |= C.

In order to ease dominance verification by discarding components from now
on and to be able to apply the meta-theory, we prove that the following compo-
sitional results hold in our framework.

Theorem 3 (Compositionality). Let K1 and K2 be two components and E
an environment compatible with both K1 and K2 such that E = E1 ‖ E2. Then
K1 "E1‖E2

K2 ⇔ K1 ‖ E1 "E2 K2 ‖ E1.

Safety Contracts for Timed Reactive Components in SysML 217

Theorem 4 (Soundness of circular reasoning). Let K be a component, E
its environment and C = (A,G) the contract for K such that K and G are
compatible with each of E and A. If (1) tracesG is closed under limits, (2)
tracesG is closed under time-extension, (3) K "A G and (4) E "G A then
K "E G.

The definitions of closure under limits and closure under time-extension for a
set of traces are those given in [21]. Closure under limits informally means that
any infinite sequence whose finite prefixes are traces of G is also a trace of G,
while closure under time-extension denotes that any finite trace can be extended
with time passage to infinity. By making these hypotheses on G, G can only
express safety properties on K and cannot impose stronger constraints on time
passage than K. The proofs of all theorems presented here can be found in [18].

Then based on theorems 2, 3 and 4, the following theorem also proved in [18]
which is a variant of theorem 2.3.5 from [26] holds:

Theorem 5 (Sufficient condition for dominance). {Ci}ni=1 dominates C
if, ∀i, tracesAi , tracesGi , tracesA and traceG are closed under limits and under
time-extension and{

G1 ‖ ... ‖ Gn "A G
A ‖ G1 ‖ ... ‖ Gi−1 ‖ Gi+1 ‖ ... ‖ Gn "Gi Ai, ∀i

The above theorem specifies the proof obligations that have to be satisfied by
a system of contracts in order to be able to infer dominance in the second step
of the verification methodology presented in §2.

5 Application to a SysML Model: the ATV Solar Wing
Generation System Case Study

The contract-based reasoning method previously described is partially supported
by the OMEGA-IFx Toolset [7] for SysML models. The details of the SysML lan-
guage extended with contracts are left aside for space reasons and can be found
in [17]. In the following we present a case study extracted from the industrial-
grade system model of the Automated Transfer Vehicle (ATV) and we show how
contracts can be used for property verification. This case study consists of the
Solar Wing Generation System (SGS) [16] responsible for the deployment and
management of the solar wings of the vehicle. The SysML model used in the
following, provided by Astrium Space Transportation, was obtained by reverse
engineering the actual SGS system for the purpose of this study.

The ATV system model illustrated in Fig. 2 summarizes the three main com-
ponents involved in the case study and the bidirectional communications between
them: the mission and vehicle management (MVM) part that initiates the two
functionalities of the SGS (wing deployment and rotation), the SOFTWARE
part of the SGS that based on commands received from the MVM executes the
corresponding procedures and the HARDWARE part that consists of the four
wings. We focus here on the wing deployment mode on which we want to verify
the following property ϕ: after 10 minutes from system start-up, all four wings
are deployed.

The system explicitly models the redundancy of the hardware equipments
which aims to ensure fault tolerance. There are 56 possible failures (14 per wing)

218 I. Dragomir, I. Ober, and C. Percebois

BL_ATV
«block,root»

MVM1

SGS1

HARDWARE1

WING11

WING41

WING31

WING21
SOFTWARE1

C1
«block,contract»

C2
«block,contract»

C3
«block,contract»

C4
«block,contract»

C
«block,contract»

phi
«block,observer»

Fig. 2. Architecture of the SGS system including contracts (simplified view)

grouped in 3 classes depending on their target (thermal knives, hold-down and
release system and solar array driving group). The following hypothesis is made:
throughout any execution of the system, at most one hardware fault may occur
(1-fault tolerance). We are interested in verifying ϕ by taking into consideration
this hypothesis. But applying model-checking directly on the system leads to
combinatorial explosion and the verification does not finish. To give an idea
about the complexity of the model at runtime, the system contains 96 objects
that communicate through 661 port instances and 504 connectors. In [16] we
have shown the motivation for using contracts and we have sketched a proof
that remained to be formalized and verified. In the following we complete this
case study by proving the property ϕ with formalized contract-based reasoning.

Since the property ϕ is expressed with respect to the behavior of the four wings
that are contained in the HARDWARE block, with regard to the methodology
of Fig. 1, the subsystem S can be identified in our case study with HARDWARE
and the components Ki are represented by WINGi, i = 1, 4. The environment of
the subsystem is given by the parts with which it communicates: bidirectional
communication is directly established between SOFTWARE and HARDWARE,
while SOFTWARE depends on the behavior of MVM. So, the environment E
of Fig. 1 is represented here by the composition of MVM and SOFTWARE.

The first step of the methodology consists in defining a contract Ci = (Ai, Gi)
for each WINGi, and next proving that WINGi satisfies Ci, i = 1, 4. This step
checks the validity of the dependency relations between the wings and their cor-
responding contracts. In order to model a contract, first we need to identify the
environment of the component to which the contract is associated and to build
an abstraction from the point of view of the component. Thus, for WINGi the
environment is given by the environment of the subsystem HARDWARE and all
WINGj with j �= i. We propose the following abstraction WAj for WINGj : the
wing has a not deployed status for at most 400 seconds and a deployed status
after 130 seconds, while all other received requests are consumed. The assump-
tion Ai is then given by the parallel composition of MVM, SOFTWARE and
WAj with j �= i. This abstraction of the environment is sufficient to drastically
reduce the state space of the verification model, since the exponential explosion
in the original model is mainly due to the parallelism of the hardware pieces

Safety Contracts for Timed Reactive Components in SysML 219

which are abstracted to the three leaf parts WAj. We want to guarantee that
even if WINGi exhibits a failure it ends up being deployed after 400 seconds.

Contract Ci = (Ai, Gi) where

– Ai = MVM ‖ SOFTWARE ‖ (‖j =iWAj).
– Gi: the wing answers to requests about its status with not deployed from

startup up to 400 seconds or with deployed after 130 seconds and ignores
all other requests. Between 130 and 400 seconds it can answer either, non-
deterministically.

Since Ai is partially given by the concrete environment (MVM ‖ SOFTWARE)
and Ci has to define a closed system, we have to manually model the behav-
ior of Gi for all received requests. This constraint imposes to add as consuming
transitions in every state all requests corresponding to wing deployment process.
Furthermore, one can remark that this guarantee is stronger than the projection
of the property ϕ on WINGi. The abstraction WAj can also be subject to one
failure since this case was not excluded from its behavior. Then the fault toler-
ance property that we verify via contracts is stronger than the initial hypothesis:
we guarantee that the system is 4-fault tolerant if faults occur in separate wings.

The second step consists in defining a global contract C = (A,G) for HARD-
WARE and to prove that the contract is dominated by {C1, C2, C3, C4} repre-
sented in Fig. 2 by the dependency relation between contracts. We use as as-
sumption A the concrete environment of HARDWARE. The guarantee G is the
composition of the four Gi. All Ai, Gi, A and G as defined satisfy the conditions
for applying theorem 5.

Contract C = (A, G) where

– A = MVM ‖ SOFTWARE
– G : for each wing status interrogation it answers as not deployed for at

most 400 seconds and as deployed after at least 130 seconds, while all other
requests are ignored.

The last step consists in verifying that the composition A ‖ G conforms to ϕ,
illustrated by the dependency between the contract and the property. Verifying
that the environment satisfies the“mirror”contract is trivial since the assumption
A is the environment itself.

The proofs of all three steps have been automatically verified within the
OMEGA-IFx Toolset which translates SysML models in communicating timed
automata [7]. Since trace inclusion is undecidable, we use a stronger simulation
relation whose satisfaction implies trace inclusion. So, verifying simulation is
sufficient (albeit not necessary) in order to prove the satisfaction of the confor-
mance relation. A variant of this verification algorithm is implemented in the
IFx Toolset.

For each step of the verification methodology we have manually modeled the
contracts: assumptions as blocks that we had to connect via ports with the other
components and guarantees as independent components. The first step gave 4
possible configurations with one concrete wing and 3 abstract ones that were
each verified with respect to all 14 possible failures. The average time in seconds
needed for the verification of the satisfaction relation for each contract with
respect to each class of failures is presented in Table 1. Even though the system
model looks symmetrical, some hardware pieces not represented here do not
have a symmetrical behavior and due to their interconnections with the wings

220 I. Dragomir, I. Ober, and C. Percebois

Table 1. Average verification time for each contract Ci per induced failure group

Average verification time (s)
Type of induced failure Wing 1 Wing 2 Wing 3 Wing 4

Thermal knife 13993 6869 18842 11412
Hold-down and release system 12672 6516 16578 9980

Solar array driving group 11527 5432 13548 6807

the state space of system’s abstraction for WING1 and WING3 is larger than
the one ofWING2 andWING4. For the second step, only one model is created
on which we verified all 5 proof obligations given by theorem 5: the automatic
validation of the global guaranteeG and the automatic validation of assumptions
Ai. Modeling the assumptions Ai that play the role of guarantees for dominance
verification shows the symmetry of the MVM and SOFTWARE behavior. This
means that only one verification is in fact sufficient for proving all 4 relations,
verification that was realized in 9 seconds. The verification of the guarantee G
needed 1 second. Finally, the same model was used for verifying ϕ that took 1
second.

6 Related Work

Contract-based specification and reasoning for communicating components has
been subject to intensive research recently. As mentioned in the beginning, our
contract theory for TIOA is an instance of the meta-theory of [26], which has
previously been applied for a number of other components formalisms: Labeled
Transition Systems (with priorities) [26], Modal Transition Systems [27], BIP
framework [2, 26] and Heterogeneous Rich Components [5]. To the best of our
knowledge, this is the first documented application of this meta-theory to Timed
Input/Output Automata.

Contract meta-theories have also been built on specification theories. The aim
of a specification theory is to provide a complete algebra with powerful opera-
tors for logical compositions of specifications and for synthesis of missing compo-
nents (quotient), the main goal being to provide substitutability results allowing
for compositional verification.Themeta-theory of [3] falls under this category.The
main differences with respect to [26] concern (1) the definition of contracts that
do not support signature refinement (a partial solution for this problem has been
proposed in [4]) and (2) the method for reasoning with contracts which relies on a
contract composition operator that is partially defined. However, the meta-theory
of [4] does not alleviate this problem. None of these two meta-theories supports
circular arguments nor defines a methodology for reasoning with contracts. More-
over, the meta-theories do not provide means to formalize requirements and to
verify their satisfaction. Other approaches for reasoning with contracts have been
developed for interface theories [11, 12] and for logical specifications [10]. A com-
plete comparison between (meta-)theories is available in [18].

Only the meta-theory of [3] has been instantiated for a variant of TIOA in [14,
15, 12] which is implemented in the ECDAR tool [13]. However, several aspects
of this specification theory make it unsuitable for representing the semantics of
timed components described in SysML or UML. The synchronization between
an input of one component and an output of another component becomes an

Safety Contracts for Timed Reactive Components in SysML 221

output of the composite, which equates to considering outputs as broadcasts
and which is not consistent with the UML/SysML semantics. Moreover, the
formalism forbids non-determinism due to the timed game semantics [6] and
does not handle silent transitions, which is problematic for representing the
semantics of complex components performing internal computation steps.

In addition, contracts in UML/SysML have until now been explored for the
specification of composition compatibility of components via interfaces [28] and
for the verification of pre/post conditions of operations as presented by [20]. Re-
cent work covers the use of pre/post condition contracts for modeling transfor-
mation of models [9] and for modeling the execution semantics of UML elements
[8]. To the best of our knowledge, our work is the first on using assume/guarantee
behavioral contracts for the verification of UML/SysML model requirements.

7 Conclusions

We have presented a contract framework for Timed Input/Output Automata and
results which allow contract-based reasoning for verifying timed safety properties
of systems of TIOA components. We have illustrated the method on a case
study extracted from an industrial-scale system model and we have showed how
contract-based reasoning can alleviate the problem of combinatorial explosion
for the verification of large systems.

The present work is a step further towards introducing contracts in SysML
and providing a full solution to that problem. In [17] we defined a suitable
syntax for contracts in SysML and a set of well-formedness rules that system
models must satisfy for reasoning with contracts. For the moment, some steps of
the method applied on SysML remain manual like modeling individual systems
for each contract satisfaction relation or for each dominance proof obligation.
Future work includes: (1) formalizing the semantic mapping between SysML
components and contracts and their TIOA counterparts and (2) providing means
for automatic verification by automated generation of proof obligations.

References

[1] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

[2] Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM 2006, pp. 3–12 (2006)

[3] Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., W ↪asowski, A.: Moving from Specifications to Contracts in Component-Based
Design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012)

[4] Bauer, S., Hennicker, R., Legay, A.: Component Interfaces with Contracts on
Ports. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp.
19–35. Springer, Heidelberg (2013)

[5] Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A
contract-based formalism for the specification of heterogeneous systems. In: FDL
2008. Forum on, pp. 142–147. IEEE (2008)

[6] Bourke, T., David, A., Larsen, K.G., Legay, A., Lime, D., Nyman, U., W ↪asowski,
A.: New Results on Timed Specifications. In: Mossakowski, T., Kreowski, H.-J.
(eds.) WADT 2010. LNCS, vol. 7137, pp. 175–192. Springer, Heidelberg (2012)

[7] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

222 I. Dragomir, I. Ober, and C. Percebois

[8] Cariou, E., Ballagny, C., Feugas, A., Barbier, F.: Contracts for model execu-
tion verification. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.)
ECMFA 2011. LNCS, vol. 6698, pp. 3–18. Springer, Heidelberg (2011)

[9] Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification
of model transformations. ECEASST 24 (2009)

[10] Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-Guarantee Reasoning for Safe
Component Behaviours. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 92–109. Springer, Heidelberg (2013)

[11] Chilton, C., Kwiatkowska, M., Wang, X.: Revisiting Timed Specification Theories:
A Linear-Time Perspective. In: Jurdziński, M., Ničković, D. (eds.) FORMATS
2012. LNCS, vol. 7595, pp. 75–90. Springer, Heidelberg (2012)

[12] David, A., Guldstrand Larsen, K.G., Legay, A., Møller, M.H., Nyman, U., Ravn,
A.P., Skou, A., Wasowski, A.: Compositional verification of real-time systems using
ECDAR. STTT 14(6), 703–720 (2012)

[13] David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: ECDAR: An En-
vironment for Compositional Design and Analysis of Real Time Systems. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370.
Springer, Heidelberg (2010)

[14] David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: Methodologies
for Specification of Real-Time Systems Using Timed I/O Automata. In: de Boer,
F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS,
vol. 6286, pp. 290–310. Springer, Heidelberg (2010)

[15] David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC 2010, pp.
91–100. ACM (2010)

[16] Dragomir, I., Ober, I., Lesens, D.: A case study in formal system engineering with
SysML. In: ICECCS 2012, pp. 189–198. IEEE Computer Society (2012)

[17] Dragomir, I., Ober, I., Percebois, C.: Integrating verifiable Assume/Guarantee
contracts in UML/SysML. In: ACES-MB 2013. CEUR Workshop Proceedings
(2013)

[18] Dragomir, I., Ober, I., Percebois, C.: Safety Contracts for Timed
Reactive Components in SysML. Technical report, IRIT (2013),
http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf

[19] Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel
Programs Using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

[20] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun.
ACM 12(10), 576–580 (1969)

[21] Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata, 2nd edn. Morgan & Claypool Publishers (2010)

[22] RTCA Inc. Software Considerations in Airborne Systems and Equipment Certifi-
cation. Document RTCA/DO-178C (2011)

[23] OMG. Object Management Group – Systems Modeling Language (SysML), v1.1
(2008), http://www.omg.org/spec/SysML/1.1

[24] Parnas, D., Weiss, D.: Active Design Reviews: Principles and Practices. In: ICSE
1985. IEEE Computer Society (1985)

[25] Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

[26] Quinton, S.: Design, vérification et implémentation de systèmes à composants.
PhD thesis, Université de Grenoble (2011)

[27] Quinton, S., Graf, S.: Contract-Based Verification of Hierarchical Systems of Com-
ponents. In: SEFM 2008, pp. 377–381 (2008)

[28] Weis, T., Becker, C., Geihs, K., Plouzeau, N.: A UML Meta-model for Con-
tract Aware Components. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS,
vol. 2185, pp. 442–456. Springer, Heidelberg (2001)

http://www.irit.fr/~Iulian.Ober/docs/TR-Contracts.pdf
http://www.omg.org/spec/SysML/1.1

Graph Clustering with Surprise:

Complexity and Exact Solutions�

Tobias Fleck, Andrea Kappes, and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. Clustering graphs based on a comparison of the number of
links within clusters and the expected value of this quantity in a random
graph has gained a lot of attention and popularity in the last decade.
Recently, Aldecoa and Maŕın proposed a related, but slightly different
approach leading to the quality measure surprise, and reported good be-
havior in the context of synthetic and real world benchmarks. We show
that the problem of finding a clustering with optimum surprise is NP-
hard. Moreover, a bicriterial view on the problem permits to compute
optimum solutions for small instances by solving a small number of inte-
ger linear programs, and leads to a polynomial time algorithm on trees.

1 Introduction

Graph clustering, i.e., the partitioning of the entities of a network into densely
connected groups, has received growing attention in the literature of the last
decade, with applications ranging from the analysis of social networks to recom-
mendation systems and bioinformatics [8]. Mathematical formulations thereof
abound; for an extensive overview on different approaches see for example the
reviews of Fortunato [8] and Schaeffer [16].

One line of research that recently gained a lot of popularity is based on null
models, the most prominent objective function in this context being the modu-
larity of a clustering [13]. Roughly speaking, the idea behind this approach is to
compare the number of edges within the same cluster to its expected value in a
random graph that inherits some properties of the graph given as input.

In a wider sense, the measure called surprise that has recently been suggested
as an alternative to modularity is also based on a null model, although, com-
pared to modularity and its modifications [8], it uses a different tradeoff between
the observed and expected number of edges within clusters. Surprise is used as
a quality function in the tools UVCLUSTER and Jerarca to analyze protein
interaction data [5,1]. The authors’ main arguments for using surprise instead of
modularity is that it exhibits better behavior with respect to synthetic bench-
marks and, empirically, it does not suffer to the same extent from the resolution
limit of modularity [9], i.e. the tendency to merge small natural communities
into larger ones [2,3,4]. However, these results are hard to assess, since a meta-
heuristic is used instead of directly optimizing the measure. It chooses among a

� This work was partially supported by the DFG under grant WA 654/19-1.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 223–234, 2014.
c© Springer International Publishing Switzerland 2014

224 T. Fleck, A. Kappes, and D. Wagner

set of clusterings produced by general clustering algorithms the one that is best
with respect to surprise.

In this work, we take first steps towards a theoretical analysis of surprise. We
show that the problem of finding a clustering with optimal surprise is NP-hard
in general and polynomially solvable on trees. Moreover, we formulate surprise
as a bicriterial problem, which allows to find provably optimal solutions for small
instances by solving a small number of integer linear programs.

Notation.All graphs considered are unweighted, undirected and simple, i.e. they
do not contain loops or parallel edges. A clustering ζ of a graph G = (V,E) is
a partitioning of V . Let n := |V | and m := |E| denote the number of vertices
and edges of G, respectively. If C is a cluster in ζ, ie(C) denotes the number of
intracluster edges in C, i.e., the number of edges having both endpoints in C.
Similarly, ip(C) :=

(|C|
2

)
is the number of vertex pairs in C. Furthermore, let

p :=
(
n
2

)
be the number of vertex pairs in G, ip(ζ) :=

∑
C∈ζ ip(C) be the total

number of intracluster vertex pairs and ie(ζ) :=
∑

C∈ζ ie(C) the total number
of intracluster edges. If the clustering is clear from the context, we will some-
times omit ζ and just write ip and ie. To ease notation, we will allow binomial
coefficients

(
n
k

)
for all n and k ∈ N. If k > n,

(
n
k

)
= 0 by definition.

2 Definition and Basic Properties

Let ζ be a clustering of a graph G = (V,E) with ie intracluster edges. Among
all graphs labeled with vertex set V and exactly m edges, we draw a graph G
uniformly at random. The surprise S(ζ) of this clustering is then the probability
that G has at least ie intracluster edges with respect to ζ. The lower this prob-
ability, the more surprising it is to observe that many intracluster edges within
G, and hence, the better the clustering. The above process corresponds to an
urn model with ip(ζ) white and p − ip(ζ) black balls from which we draw m
balls without replacement. The probability to draw at least ie white balls then
follows a hypergeometric distribution, which leads to the following definition1;
the lower S(ζ), the better the clustering:

S(ζ) :=

m∑
i=ie

(
ip
i

)
·
(
p−ip
m−i

)(
p
m

)
Basic Properties. For a fixed graph, the value of S only depends on two
variables, ip and ie. To ease notation, we will use the term S(ip, ie) for the value
of a clustering with ip intracluster pairs and ie intracluster edges. The urn model
view yields some simple properties that lead to a better understanding of how
surprise behaves, and that are heavily used in the NP-hardness proof.

Lemma 1. Let ie, ip, p and m be given by a clustering, i.e. 0 ≤ ie ≤ ip ≤ p,
ie ≤ m and m− ie ≤ p− ip. Then, the following statements hold:

1 This is the definition used in the original version [5]; later on, it was replaced by
maximizing − log10 S(ζ), which is equivalent with respect to optimum solutions.

Graph Clustering with Surprise: Complexity and Exact Solutions 225

(i) S(ip, ie + 1) < S(ip, ie).
(ii) If ie > 0, then S(ip − 1, ie) < S(ip, ie)
(iii) If p− ip > m− ie, then S(ip + 1, ie + 1) < S(ip, ie).

Proof. Statement (i) is obvious. Similarly, statement (ii) is not hard to see if we
recall that S(ip − 1, ie) corresponds to the probability to draw at least ie white
balls after replacing one white ball with a black one.

For statement (iii), we show that the number k1 of m-element subsets of the
set of all balls containing at least ie white balls is larger than the number k2
of m-element subsets containing at least ie + 1 white balls after painting one
black ball b white. Any subset A that contributes to k2 also contributes to k1,
as at most one ball in A got painted white. On the other hand, every m-element
subset not containing b that contains exactly ie white balls contributes to k1, but
not to k2. As there are at least ie white balls, and p− ip > m− ie implies that
there are at least m− ie + 1 black balls, there is at least one subset with these
properties. Hence k1 > k2, which is equivalent to S(ip+1, ie+1) < S(ip, ie). ��

In other words, the value of surprise improves the more edges and the less
vertex pairs within clusters exist. Moreover, part (iii) shows that if we increase
the number of intracluster edges such that the number of intracluster non-edges,
i.e., vertex pairs within clusters that are not linked by an edge, does not increase,
this leads to a clustering with strictly smaller surprise. This immediately yields
some basic properties of optimal clusterings with respect to surprise. Part (i)
of the following proposition is interesting as it shows that optimal clusterings
always fulfill the assumptions of Lemma 1(ii)-(iii).

Proposition 2. Let G = (V,E) be a graph that has at least one edge and that is
not a clique and ζ be an optimal clustering of G with respect to surprise. Then,

(i) ie(ζ) > 0 and p− ip(ζ) > m− ie(ζ)
(ii) 1 < |ζ| < |V |
(iii) ζ contains at least as many intracluster edges as any clustering ζ′ of G into

cliques.
(iv) Any cluster in ζ induces a connected subgraph.

Proof. (i): If ie(ζ) = 0 or p − ip(ζ) = m − ie(ζ), it can be easily seen that
S(ζ) = 1. On the other hand, let us consider a clustering ζ′ where each cluster
contains one vertex, except for one cluster that contains two vertices linked by
an edge e. As m < p, there is at least one labeled graph on V with m edges that
does not contain e.

(ii): If |ζ| = 1, p − ip(ζ) = 0 = m − ie(ζ) and if |ζ| = |V |, ie(ζ) = 0. The
statement now follows from (i).

(iii): Let us assume that ie(ζ) < ie(ζ
′). Lemma 1(ii) can be used to show that

S(ζ) = S
(
ip(ζ), ie(ζ)

)
≥ S

(
ie(ζ), ie(ζ)

)
and from Lemma 1(iii), it follows that

S
(
ie(ζ), ie(ζ)

)
> S

(
ie(ζ

′), ie(ζ′)
)
= S(ζ′).

(iv): Follows from Lemma 1(ii) and the fact that splitting a disconnected
cluster into its connected components decreases the number of intracluster pairs
and does not affect the number of intracluster edges. ��

226 T. Fleck, A. Kappes, and D. Wagner

Bicriterial View. From Lemma 1, it follows that an optimal solution with
respect to surprise is pareto optimal with respect to (maximizing) ie and (mini-
mizing) ip. Interestingly, this also holds for a simplification of modularity whose
null model does not take vertex degrees into account and that was briefly con-
sidered by Reichardt and Bornholdt [15,14], although the tradeoff between the
two objectives is different. Hence, an optimal clustering can be found by solving
the following optimization problem for all 0 ≤ k ≤ m and choosing the solution
that optimizes surprise.

Problem 3 (minIP). Given a graph G and an integer k > 0, find a clustering ζ
with ie(ζ) = k, if there exists one, such that ip(ζ) is minimal.

Unfortunately, the decision variant of minIP is NP-complete even on bipartite
graphs, as it is equivalent to the unweighted Minimum Average Contamination
problem [12]. However, the formulation of minIP does not involve binomial co-
efficients and is thus in some aspects easier to handle. For example, in contrast
to surprise, it can be easily cast into an integer linear program. We will use this
in Sect. 4 to compute optimal solutions for small instances.

One might guess from the NP-completeness of minIP that surprise mini-
mization is also NP-complete. However, there is no immediate reduction from
minIP to the decision variant of surprise optimization, as the number of intra-
cluster edges in an optimal clustering with respect to surprise is not fixed. In
the following section, we will therefore give a proof for the hardness of finding a
clustering with optimal surprise.

3 Complexity

We show NP-completeness of the corresponding decision problem:

Problem 4 (Surprise Decision (SD)). Given a graph G and a parameter k >
0, decide whether there exists a clustering ζ of G with S(ζ) ≤ k.
As S can be clearly evaluated in polynomial time, SD is in NP . To show NP-
completeness, we use a reduction from Exact Cover by 3-Sets [10]:

Problem 5 (Exact Cover by 3Sets (X3S)). Given a set X of elements and a
collection M of 3-element subsets of X , decide whether there is a subcollection
R of M such that each element in X is contained in exactly one member of R.

x1
x2
x3

x|X |
x|X |−1

x|X |−2

S1

S|S|

S2

VM

VX

r2

r2

r2

r2

Fig. 1. Illustration for reduction

Let I = (X ,M) be an instance of X3S. The
reduction is based on the idea of implanting
large disjoint cliques in the transformed in-
stance that correspond to the subsets in M.
The size of these cliques is polynomial in |M|,
but large enough to ensure that they can nei-
ther be split nor merged in a clustering with
low surprise. Hence, each of these cliques in-
duces a cluster. The transformed instance fur-
ther contains a vertex for each element in X

Graph Clustering with Surprise: Complexity and Exact Solutions 227

that is linked with the cliques corresponding to the subsets it is contained in.
The idea is to show that in a clustering ζ with low surprise, each of these vertices
is contained in a cluster induced by exactly one subset, and each cluster contains
either three “element vertices” or none, which induces an exact cover of X .

In the following, we will assume without loss of generality2 that each element
of X belongs to at least one set in M, hence |X | ≤ 3|M|. We construct an
instance I ′ = (G, k) of SD in the following way. Let r := 3|M|. First, we map
each setM in M to an r2-clique C(M) in G. Furthermore, we introduce an |X |-
clique to G, where each of the vertices v(x) in it is associated with an element x
in X . We link v(x) with each vertex in C(M), if and only if x is contained inM .
Let VX be the set containing all vertices corresponding to elements in X , and
VM the set of vertices corresponding to subsets. Fig. 1 illustrates the reduction,
clearly, it is polynomial. In the proof, we will frequently use the notion for large
r, statement A(r) holds. Formally, this is an abbreviation for the statement that
there exists a constant c > 0 such that for all r ≥ c, A(r) is true. Consequently,
the reduction only works for instances that are larger than the maximum of all
these constants, which suffices to show that SD is NP-complete3.

Lemma 6. Let ζ be an optimal clustering of G with respect to S. Then, ie(ζ) ≥
|M| ·

(
r2

2

)
.

Proof. Follows from Proposition 2(iii) and the fact that the clustering whose
clusters are the cliques in VM and the singletons in VX is a clustering into

cliques with |M| ·
(
r2

2

)
intracluster edges. ��

Next, we give an upper bound on the number of intracluster non edges, i.e., vertex
pairs within clusters that are not linked by an edge, in an optimal clustering of
G. Its (rather technical) proof makes use of the asymptotic behavior of binomial
coefficients and can be found in our technical report [7].

Lemma 7. Let ζ be an optimal clustering of G with respect to surprise. Then,

for large r, ip(ζ)− ie(ζ) ≤ r4

2 .

This can now be used to show that an optimal clustering of G is a clustering
into cliques. We start by showing that the cliques in VM cannot be split by an
optimal clustering.

Lemma 8. Let r be large and ζ be an optimal clustering of G with respect to S.
Then, the cliques C(M) in VM are not split by ζ.

Proof. Assume that there is at least one clique that is split by ζ. ζ induces a
partition of each clique that it splits. We call the subsets of this partition the
parts of the clique.

Claim 1: Every clique C(M) contains a part with at least r2 − 6 vertices.

2 Otherwise, the instance is trivially non-solvable.
3 Smaller instances have constant size and can therefore be trivially solved by a brute-
force algorithm.

228 T. Fleck, A. Kappes, and D. Wagner

B
CA

B
CA

before transformation after transformation

Fig. 2. Illustration for proof of Lemma 8

Proof of Claim 1: Assume that there is a cliqueK where each part has at most
r2 − 7 vertices. We can now greedily group the parts in two roughly equal sized
regions, such that the smaller region contains at least 7 vertices and the larger
region at least r2/2 vertices. Let us look at the clustering we get by removing
the vertices in K from their clusters and cluster them together. The vertices in
K have in total 3r2 edges to vertices outside K and we gain at least 7/2 · r2
new intracluster edges between the regions. Hence, the number of intracluster
edges increases and the number of intracluster non-edges can only decrease. By
Lemma 1(iii) and Lemma 1(i), it can be seen that this operation leads to a
clustering with better surprise, which contradicts the optimality of ζ.

Let us now call the parts with size at least r2 − 6 large parts and the other
parts small parts.

Claim 2: No two large parts are clustered together.
Proof of Claim 2: Assume that there is a cluster that contains more than

one large part. This cluster induces at least (r2 − 6)2 intracluster non-edges. For
large r, this is larger than r4/2 and Lemma 7 tells us that ζ was not optimal.

A simple counting argument now yields the following corollary.
Corollary: There must exist a large part B contained in a split clique whose

cluster contains at most |B|+ 6 vertices in VM.
Let B as in the corollary and A be the set of the vertices that are in the same

clique as B but not in B and C be the set of vertices that are in the same cluster
as B but not in B. Fig. 2 illustrates this case. We consider the clustering that
we get by removing the vertices in A and B from their cluster and cluster them
together. The number of vertices in A and C, respectively, is at most 6, and
each of these vertices has at most 3 neighbors in VX . Hence, we lose at most 36
intracluster edges by this operation. On the other hand, we gain at least r2 − 6
intracluster edges between A and B, thus, for large r, the number of intracluster
edges increases. Again, the number of intracluster non-edges can only decrease
and by Lemma 1(iii) and Lemma 1(i), we get that this operation leads to a
clustering with better surprise, which contradicts the optimality of ζ. ��

Lemma 9. Let r be large and ζ be an optimal clustering of G with respect to S.
Then, no two of the cliques in VM are contained in the same cluster.

Proof. A cluster that contains two cliques in VM induces at least r4 intracluster
non-edges. The statement now follows from Lemma 7. ��

Graph Clustering with Surprise: Complexity and Exact Solutions 229

Lemma 10. Let r be large and ζ an optimal clustering of G with respect to S.
Then, each v(x) in VX shares a cluster with a clique C(M) such that x ∈M .

Proof. From Lemma 8 and Lemma 9 we know that ζ clusters the vertices in VM
according to the cliques we constructed. Assume that there is a vertex v(x) in
VX that is not contained in any of the clusters induced by the sets containing
x. Since each element in X is contained in at least one set in M, there exists a
clique K in VM that contains r2 neighbors of v(x). As v(x) has at most |X | − 1
neighbors in its own cluster, removing it from its cluster and moving it to the
cluster of K increases the number of intracluster edges. On the other hand, x is
linked with all vertices in its new cluster and thus, the number of intracluster
non-edges cannot increase. Hence, this operation leads to a clustering with better
surprise, which contradicts the optimality of ζ. ��

Theorem 11. For large r, I = (X ,M) has a solution if and only if there exists

a clustering ζ of G with S(ζ) ≤ k :=
(
p
m

)−1 ·
(
(|M|·r2+|X|

2)−|M|·(r22)−|X |·r2−|X |
(3|M|−|X |)·r2+(|X|

2)−|X |

)
.

Proof. ⇒: Let R be a solution of I. R induces a clustering of G in the following
way: For each M ∈ M \ R we introduce a cluster CM = C(M) and for each
M ′ ∈ R a cluster CM ′ = C(M ′)∪{v(x) | x ∈M ′}. As R is an exact cover, this is a

partition ζ of the vertex set. It is p =
(|M|·r2+|X |

2

)
,m = |M|·

(
r2

2

)
+3·|M|·r2+

(|X
2

)
and ip(ζ) = ie(ζ) = |M|·

(
r2

2

)
+|X |·r2+|X |. It can be easily verified that S(ζ) = k.

⇐: Let ζ be an optimal clustering of G with respect to surprise and assume
that S(ζ) ≤ k. From Lemma 8, Lemma 9 and Lemma 10, we know that, for
large r, we have one cluster for each set M in M that contains C(M) and each
vertex v(x) in VX shares a cluster with a clique C(M) such that x ∈ M . In

particular, all clusters in ζ are cliques and hence
(ip(ζ)
ie(ζ)

)
= 1. It follows that(

p
m

)
· k ≥

(
p
m

)
· S(ζ) =

(p−ie(ζ)
m−ie(ζ)

)
. This term is strictly decreasing with ie(ζ) and

the above bound is tight for ie(ζ) = |M| ·
(·r2

2

)
+ |X | · r2 + |X | := t. Hence, ζ

contains at least t intracluster edges. The number of intracluster edges within

VM is exactly |M| ·
(
r2

2

)
and the number of intracluster edges linking VM with

VX is exactly |X | · r2. The only quantity we do not know is the number of
intracluster edges within VX , which we denote by ie(VX). As ie(ζ) ≥ t, it follows
that ie(VX) ≥ |X |. Thus, every vertex in VX has in average two neighbors in VX
that are in the same cluster. On the other hand, vertices in VX can only share a
cluster if they are “assigned” to the same clique C(M). As the sets in M only
contain three elements, vertices in VX can only have at most two neighbors in
VX in their cluster. It follows that ζ partitions VX into triangles. Hence, the set
of subsets R corresponding to cliques C(M) whose clusters contain vertices in
VX form an exact cover of X . ��

We now have a reduction from X3S to SD that works for all instances that
are larger than a constant c > 0. Hence, we get the following corollary.

Corollary 12. Surprise Decision is NP-complete.

230 T. Fleck, A. Kappes, and D. Wagner

To show that an optimal clustering with respect to surprise can be found in
polynomial time if G is a tree, we consider the following problem MACP [12]:

Problem 13 (MACP). Given a graph G = (V,E) together with a weight function
w : V → Q≥0 on V and a parameter k. Find a clustering ζ of G such that

m− ie(ζ) = k and
∑

C∈ζ

(∑
v∈C w(v)

)2
is minimal.

For the special case that w(v) equals the degree of v and G is a tree, Dinh
and Thai give a dynamic program that solves MACP for all 0 ≤ k ≤ m simul-
taneously [6]. This yields an O(n5) algorithm for modularity maximization in
(unweighted) trees. In the context of surprise, we are interested in the special
case that w(v) = 1 for all v ∈ V . The following conversion shows that this is
equivalent to minIP with respect to optimal solutions:

ip(C) =
∑
C∈C

|C| (|C| − 1)

2
=

1

2

∑
C∈C

|C|2 − 1

2
|V |︸ ︷︷ ︸

=const.

(1)

The dynamic program of Dinh and Thai has a straightforward generalization
to general vertex weights, which is polynomial in the case that each vertex has
weight 1. For completeness, our technical report [7] contains a description of the
dynamic program in this special case, together with a runtime analysis.

Theorem 14. Let T = (V,E) with n := |V | be an unweighted tree. Then, a
surprise optimal clustering of T can be calculated in O(n5) time.

4 Exact Solutions

In this section, we give an integer linear program for minIP and discuss some
variants of how to use this to get optimal clusterings with respect to surprise.

Linear Program for minIP. The following ILP is very similar to a number
of linear programs used for other objectives in the context of graph clustering
and partitioning, in particular, to one used for modularity maximization [6]. It
uses a set of

(
n
2

)
binary variables Xuv corresponding to vertex pairs, with the

interpretation that Xuv = 1 iff u and v are in the same cluster. Let Sep(u, v) be
a minimum u-v vertex separator in G if {u, v} /∈ E or in G′ = (V,E \ {u, v}),
otherwise. The objective is to

minimize
∑

{u,v}∈(V2)
Xuv (2)

such that

Xuv ∈ {0, 1}, {u, v} ∈
(
V

2

)
(3)

Xuw + Xwv − Xuv ≤ 1, {u, v} ∈
(
V

2

)
, w ∈ Sep(u, v) (4)∑

{u,v}∈E

Xuv = k (5)

Graph Clustering with Surprise: Complexity and Exact Solutions 231

Dinh and Thai consider the symmetric and reflexive relation induced by X and
show that Constraint (4) suffices to enforce transitivity in the context of mod-
ularity maximization [6]. Their proof solely relies on the following argument.
For an assignment of the variables Xuv that does not violate any constraints,
let us consider the graph G′ induced by the vertex pairs {u, v} with Xuv = 1.
Now assume that there exists a connected component in G′ that can be parti-
tioned into two subsets A and B such that there are no edges in the original
graph G between them. Setting Xab := 0 for all a ∈ A, b ∈ B never violates
any constraints and strictly improves the objective function. It can be verified
that this argument also works in our scenario. Hence, a solution of the above
ILP induces an equivalence relation and therefore a partition of the vertex set.
As Sep(u, v) is not larger than the minimum of the degrees of u and v, we have
O(nm) constraints over O(n2) variables.

Variants. We tested several variants of the approach described in Sect. 1 to
decrease the number of ILPs we have to solve.

– Exact(E): Solve m times the above ILP and choose among the resulting
clusterings the one optimizing surprise.

– Relaxed(R): We relax Constraint (5), more specifically we replace it by∑
{u,v}∈E

Xuv ≥ k (6)

Lemma 1(i) tells us that the surprise of the resulting clustering is at least
as good as the surprise of any clustering with exactly k intracluster edges.
Moreover, by Lemma 1(ii), if ip is the value of a solution to the modified
ILP, S(ip, k

′) is a valid lower bound for the surprise of any clustering with
k′ ≥ k intracluster edges. In order to profit from this, we consider all possible
values for the number of intracluster edges in increasing order and only solve
an ILP if the lower bound is better than the best solution found so far.

– Gap(G): Similarly to the relaxed variant, we replace Constraint (5) by (6)
and modify (2) to

minimize
∑

{u,v}∈(V2)
Xuv −

∑
{u,v}∈E

Xuv (7)

By Lemma 1(ii), if g is the objective value and ie the number of intracluster
edges in a solution to the modified ILP, S(k′ + g, k′) is a valid lower bound
for the surprise of any clustering with k′ ≥ k intracluster edges. Moreover,
by Lemma 1(iii), we know that S(ie+ g, ie) is not larger than the surprise of
any clustering with exactly k intracluster edges. Again, we consider all k in
increasing order and try to prune ILP computations with the lower bound.

Case Study. Table 1 shows an overview of running times and the number of
solved ILPs of the different strategies on some small instances. karate(n =

232 T. Fleck, A. Kappes, and D. Wagner

Table 1. Number of linear programs solved and running times in seconds of successive
ILP approach, different strategies.

karate lesmis grid6 dolphins

variant ILP t(s) ILP t(s) ILP t(s) ILP t(s)

Exact 79 51 255 1192 61 470 160 494
Relaxed 49 21 176 282 42 449 107 163
Gap 39 15 112 205 37 401 91 147

34,m = 78), dolphins(n = 62,m = 159) and lesmis(n = 77,m = 254) are real
world networks from the website of the 10th DIMACS implementation Chal-
lenge4 that have been previously used to evaluate and compare clusterings,
whereas grid6(n = 36,m = 60) is a 2 dimensional grid graph. We used the
C++-interface of gurobi5.1 [11] and computed the surprise of the resulting
clusterings with the help of the GNU Multiple Precision Arithmetic Library, in
order to guarantee optimality. The tests were executed on one core of an AMD
Opteron Processor 2218. The machine is clocked at 2.1 GHz and has 16 GB of
RAM. Running times are averaged over 5 runs.

It can be seen that the gap variant, and, to a smaller extent, the relaxed
variant, are able to prune a large percentage of ILP computations and thus lead
to less overall running time. These running times can be slightly improved by
using some heuristic modifications described and evaluated in [7].

Properties of Optimal Clusterings. Fig. 3 illustrates optimal clusterings
with respect to surprise and modularity on the test instances, Table 2 sum-
marizes some of their properties. We also included one slightly larger graph,
football(n = 115,m = 613), as it has a known, well-motivated ground truth
clustering and has been evaluated in [2]. The surprise based clusterings contain
significantly more and smaller clusters than the modularity based ones, being
refinements of the latter in the case of karate and lesmis. Another striking
observation is that the surprise based clusterings contain far more singletons,
i.e. clusters containing only one vertex with usually low degree; this can be ex-
plained by the fact that surprise does not take vertex degrees into account and
hence, merging low degree vertices into larger clusters causes larger penalties. It
reconstructs the ground-truth clustering of the football graph quite well. This
confirms the observations of Aldecoa and Maŕın based on heuristically found
clusterings [2]; in fact, we can show that for karate, this clustering was already
optimal.

5 Conclusion

We showed that the problem of finding a clustering of a graph that is optimal
with respect to the measure surprise is NP-hard. The observation that surprise

4 http://www.cc.gatech.edu/dimacs10/

http://www.cc.gatech.edu/dimacs10/

Graph Clustering with Surprise: Complexity and Exact Solutions 233

(a) karate (b) dolphins (c) grid6

(d) lesmis (e) football

Fig. 3. Optimal clusterings with respect to surprise(colors) and, for (a) to (d), mod-
ularity(grouping). The grouping in (e) represents the ground-truth clustering, i.e. the
mapping of teams to conferences.

Table 2. Properties of optimal clusterings with respect to surprise. S′ denotes the
surprise as defined by Aldecoa and Maŕın [2], i.e. S′(ζ) = − log10 S(ζ). So denotes the
clustering with optimum surprise, Sh the heuristically found clusterings from [2], if this
information was available, and Mo the modularity optimal clustering.

instance ie ip S(So) S′(So) S
′(Sh) |So| |Sh| |Mo|

karate 29 30 2,02 · 10−26 25.69 25.69 19 19 4
grid6 36 54 2,90 · 10−29 28.54 - 9 - 4
dolphins 87 121 9,93 · 10−77 76.00 - 22 - 5
lesmis 165 179 1,54 · 10−184 183.81 - 33 - 6
football 399 458 5,65 · 10−407 406,25 - 15 15 10

234 T. Fleck, A. Kappes, and D. Wagner

is pareto optimal with respect to (maximizing) the number of edges and (min-
imizing) the number of vertex pairs within clusters yields a (polynomial time)
dynamic program on trees. Furthermore, it helps to find exact solutions in small,
general graphs via a sequence of ILP computations. The latter can be used to
gain insights into the behavior of surprise, independent of any artifacts stemming
from a particular heuristic. Moreover, optimal solutions are helpful to assess and
validate the outcome of heuristics.

References

1. Aldecoa, R., Maŕın, I.: Jerarca: Efficient Analysis of Complex Networks Using
Hierarchical Clustering. PLoS ONE 5, e11585 (2010)

2. Aldecoa, R., Maŕın, I.: Deciphering Network Community Structure by Surprise.
PLoS ONE 6, e24195 (2011)

3. Aldecoa, R., Maŕın, I.: Exploring the limits of community detection strategies in
complex networks. Nature Scientific Reports 3, 2216 (2013)

4. Aldecoa, R., Maŕın, I.: Surprise maximization reveals the community structure of
complex networks. Nature Scientific Reports 3, 1060 (2013)

5. Arnau, V., Mars, S., Maŕın, I.: Iterative Cluster Analysis of Protein Interaction
Data. Bioinformatics 21(3), 364–378 (2005)

6. Dinh, T.N., Thai, M.T.: Towards Optimal Community Detection: From Trees to
General Weighted Networks. Internet Mathematics (accepted pending revision)

7. Fleck, T., Kappes, A., Wagner, D.: Graph Clustering with Surprise: Complexity
and Exact Solutions. ArXiv e-prints (October 2013)

8. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

9. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceed-
ings of the National Academy of Science of the United States of America 104(1),
36–41 (2007)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

11. I. Gurobi Optimization. Gurobi optimizer reference manual (2013)
12. Li, A., Tang, L.: The Complexity and Approximability of Minimum Contamination

Problems. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
298–307. Springer, Heidelberg (2011)

13. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(026113), 1–16 (2004)

14. Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Complex
Networks with a Potts Model. Physical Review Letters 93(21), 218701 (2004)

15. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection. Phys-
ical Review E 74(016110), 1–16 (2006)

16. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)

On Lower Bounds for the Time and the Bit

Complexity of Some Probabilistic Distributed
Graph Algorithms

(Extended Abstract)

Allyx Fontaine, Yves Métivier, John Michael Robson, and Akka Zemmari

Université de Bordeaux - LaBRI UMR CNRS 5800
351 cours de la Libération, 33405 Talence, France
{fontaine,metivier,robson,zemmari}@labri.fr

Abstract. This paper concerns probabilistic distributed graph algo-
rithms to solve classical graph problems such as colouring, maximal
matching or maximal independent set. We consider anonymous networks
(no unique identifiers are available) where vertices communicate by sin-
gle bit messages. We present a general framework, based on coverings,
for proving lower bounds for the bit complexity and thus the execution
time to solve these problems. In this way we obtain new proofs of some
well known results and some new ones.

1 Introduction

The Problems. For many problems on graphs, lower bounds on the bit com-
plexity and on the execution time of a probabilistic distributed algorithm can
be obtained in a simple way by considering disconnected graphs. These results
may be considered unsatisfactory since we are normally interested in connected
graphs and networks. In this paper we present a general framework, based on
coverings, for proving such results for (dis)connected graphs and apply it to
problems such as colouring, maximal matching, maximal independent set (MIS
for short), or some generalisations such as the following. The MIS problem or
the colouring problem may be generalised to a distance k for any positive integer
k. More precisely, let G = (V,E) be a graph and let k be a positive integer; a
k-independent set is a subset M of V such that the distance between any two
vertices of M is at least k + 1. If M is maximal for this property M is said to
be a maximal k-independent set (k-MIS for short). A distance-k colouring of G
is a colouring of vertices of G such that any two different vertices connected by
a path of at most k edges have different colours. The distributed complexity of
problems given above is of fundamental interest for the study and analysis of dis-
tributed algorithms. Usually, the topology of a distributed system is modelled
by a graph and paradigms of distributed systems are represented by classical
problems in graph theory cited above. Each solution to one of these problems is
a building block for many distributed algorithms: symmetry breaking, topology
control, routing, resource allocation or network synchronisation.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 235–245, 2014.
c© Springer International Publishing Switzerland 2014

236 A. Fontaine et al.

Network, Time Complexity, Bit Complexity, Network Knowledge. (A
general presentation may be found in [Tel00]). We consider the standard mes-
sage passing model for distributed computing. The communication model con-
sists of a point-to-point communication network described by a connected graph
G = (V,E), where the vertices V represent network processes and the edges
E represent bidirectional communication channels. Processes communicate by
message passing: a process sends a message to another by depositing the mes-
sage in the corresponding channel. The state of each process, with respect to
a distributed algorithm, is represented by a label λ(v) associated to the corre-
sponding vertex v ∈ V . We denote by G = (G, λ) such a labelled graph. We
assume the system is fully synchronous, namely, all processes start at the same
time and time proceeds in synchronised rounds.

A round (cycle) of each process is composed of the following three steps.
Firstly, it sends messages to (some) neighbours ; secondly, it receives messages
from (some) neighbours ; thirdly, it performs some local computation. As usual
the time complexity is the number of rounds needed until every node has com-
pleted its computation. By definition, in a bit round each vertex can send/receive
at most 1 bit from each of its neighbours. The bit complexity of algorithm A is
the number of bit rounds to complete algorithm A (see [KOSS06]).

The network G = (V,E) is anonymous: unique identities are not available
to distinguish the processes. We do not assume any global knowledge of the
network, not even its size or an upper bound on its size. The processes do not
require any position or distance information. Each process knows from which
channel it receives or to which it sends a message, thus one supposes that the
network is represented by a connected graph with a port numbering function
defined as follows (where IG(u) denotes the set of vertices of G adjacent to
u): given a graph G = (V,E), a port numbering function δ is a set of local
functions {δu | u ∈ V } such that for each vertex u ∈ V , δu is a bijection between
IG(u) and the set of natural numbers between 1 and degG(u).

The network is anonymous; thus two processes with the same degree are
identical. Note that we consider only reliable systems: no fault can occur on
processes or communication links.

A probabilistic algorithm is an algorithm which makes some random choices
based on some given probability distributions. A distributed probabilistic al-
gorithm is a collection of local probabilistic algorithms. Since the network is
anonymous, if two processes have the same degree then their local probabilistic
algorithms are identical and have the same probability distribution. We assume
that choices of vertices are independent. A Las Vegas algorithm is a probabilistic
algorithm which terminates with a positive probability (in general 1) and always
produces a correct result. In this paper, results on graphs having n vertices are
expressed with high probability (w.h.p. for short), meaning with probability
1− o(n−1).
Our Contribution. The main contributions of this work are general construc-
tions, based on coverings, which present in a unified way proofs of lower bounds
for the time complexity and the bit complexity of some graph problems. Some

On Lower Bounds for the Time and the Bit Complexity 237

of these lower bounds are already known, others are new. More precisely, thanks
to coverings we build infinite families of disconnected or connected graphs with
some port numberings, such that for each graph K having n vertices in those
families, any Las Vegas distributed algorithm which uses messages of one bit
cannot break some symmetries inside K after c

√
logn or after c logn rounds

(for a certain constant c) with high probability. (i.e., some vertices remain in
the same state for at least c logn rounds w.h.p.). From these constructions and
results we deduce that:

– solving problems such as MIS1, colouring1, maximal matching1, 2-MIS or
distance-2 colouring takes Ω(log n) rounds w.h.p. for an infinite family of
disconnected graphs;

– solving the MIS problem or the maximal matching problem takes Ω(
√
logn)

rounds w.h.p. for an infinite family of rings;
– solving problems like MIS1, colouring1, maximal matching, 2-MIS or

distance-2 colouring takes Ω(log n) rounds w.h.p. for an infinite family of
connected graphs.

We deduce also that the maximal matching (resp. colouring, resp. MIS) Las Vegas
distributed algorithm presented in [II86] (resp. [MRSDZ10], resp. [MRSDZ11]) is
optimal (time and bit) modulo multiplicative constants. More precisely, the bit
complexity of solutions presented in these papers isO(log n) w.h.p. for anonymous
graphs having n vertices. These results can be summarised by:

Theorem 1.1. The bit complexity of the MIS problem, the colouring problem,
the maximal matching problem and the distance-2 colouring problem is Θ(log n)
w.h.p. for anonymous graphs with n vertices.

If we consider the particular case of rings, we prove [FMRZar] that: O(
√
logn)

rounds are sufficient w.h.p. to compute a MIS or a maximal matching in a ring
with n vertices. Thus, the bit complexity of the MIS problem or the maximal
matching problem is Θ(

√
logn) w.h.p. for anonymous rings with n vertices.

Related Work. Bit complexity is considered as a finer measure of communica-
tion complexity and it has been studied for breaking and achieving symmetry or
for colouring in [BMW94, KOSS06, DMR08]. Dinitz et al. explain in [DMR08]
that it may be viewed as a natural extension of communication complexity (in-
troduced by Yao [Yao79]) to the analysis of tasks in a distributed setting. An
introduction to this area can be found in Kushilevitz and Nisan [KN99].

Kothapalli et al. consider the family of anonymous rings and show in [KOSS06]
that if only one bit can be sent along each edge in a round, then every Las Vegas
distributed vertex colouring algorithm (in which every node has the same initial
state and initially only knows its own edges) needs Ω(logn) rounds with high
probability to colour the ring of size n with any finite number of colours. With
the same assumptions, as is explained in [MRSDZ10], from this result we also
deduce that every distributed algorithm that computes a MIS needs, in general,
Ω(log n) rounds with high probability.

1 Already known result ([KOSS06],[MRSDZ10]).

238 A. Fontaine et al.

2 Preliminaries

We will consider digraphs with multiple arcs and self-loops. A digraph D =
(V (D), A(D), sD, tD) is defined by a set V (D) of vertices, a set A(D) of arcs
and by two maps sD and tD that assign to each arc two elements of V (D): a
source and a target.

A symmetric digraph D is a digraph endowed with a symmetry, that is, an
involution Sym : A(D) → A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)).
In a symmetric digraph D, the degree of a vertex v is degD(v) = |{a | s(a) =
v}| = |{a | t(a) = v}|.

A homomorphism between two digraphs maps vertices to vertices, arcs to
arcs while preserving the incidence relation. More precisely, a homomorphism γ
between the digraph D and the digraph D′ is a mapping γ : V (D) ∪ A(D) →
V (D′)∪A(D′) such that for each arc a ∈ A(D), γ(s(a)) = s(γ(a)) and γ(t(a)) =
t(γ(a)). A homomorphism γ : D → D′ is an isomorphism if γ is bijective.

Throughout the paper, we will consider digraphs where the vertices and the
arcs are labelled with labels from a recursive label set L. A digraph D labelled
over L will be denoted by (D,λ), where λ : V (D) ∪ A(D) → L is the labelling
function . A mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) is a homomorphism
from (D,λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which
preserves the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D)∪A(D).
Labelled graphs or digraphs will be designated by bold letters such as D,D′, . . .

Let (G, λ) be a labelled graph with the port numbering δ. We will denote by
(Dir(G), δ′) the symmetric labelled digraph (Dir(G), (λ, δ′)) constructed in the
following way. The vertices of Dir(G) are the vertices ofG and they have the same
labels in G and in Dir(G). Each edge {u, v} of G is replaced in (Dir(G), δ′) by
two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) =
s(a(v,u)) = v, δ′(a(u,v)) = (δu(v), δv(u)) and δ′(a(v,u)) = (δv(u), δu(v)). These
arcs correspond for each vertex to input ports and output ports. By extension,
the labelling δ′ of arcs is called a port numbering. (see Figure 1). Note that this
digraph does not contain loops or multiple arcs. The object we use for our study
is (Dir(G), (λ, δ′)) and some results are stated with symmetric labelled digraphs.

Given a labelled graph G = (G, λ) with a port numbering δ, let D =
(Dir(G), δ′) be the corresponding labelled digraph (Dir(G), (λ, δ′)). Let A be
a synchronous distributed algorithm. We speak indifferently of an execution of
A on (G, δ) or on D. The state of each process is represented by the label λ(v)
of the corresponding vertex v. Let D′ = (Dir(G′), δ′) be the labelled digraph
obtained by the application of a step of A to D. We recall that the system
is synchronous, thus each vertex of D has a new state computed by a tran-
sition function which depends on the state of the vertex and the messages it
has received. This transition is denoted by: (Dir(G), δ′) =⇒

A
(Dir(G′), δ′) or

(G, δ) =⇒
A

(G′, δ).

Let v be a vertex of G.We denote by (v, λ(v)) =⇒
A

(v, λ′(v)) the transition

associated to the vertex v of G.

On Lower Bounds for the Time and the Bit Complexity 239

Let r be a non-negative integer. A sequence (Di)0≤i≤r of labelled digraphs is
called an A-execution (or an execution when A is clear from the context) of
length r if Di+1 is obtained from Di in one step of a run of A; this is denoted by
DiADi+1 for every 0 ≤ i < r. An execution of length 1 is a step . Furthermore
if A is a probabilistic synchronous distributed algorithm and if the execution of
this step has probability p, then it will be denoted by: G =⇒

p
G′.

Let A be a probabilistic synchronous distributed algorithm. Let G be a
graph. Let δ be a port numbering of G. Let λ be a labelling of G. We have:
(G, δ) =⇒

p
(G′, δ) (with G′ = (G, λ′)) if and only if p equals the product

over V (G) of the probabilities of the transitions (v, λ(v)) =⇒
A

(v, λ′(v)).

2.1 Coverings and Synchronous Distributed Algorithms

1 1
(G1, δ1)

(1, 1)

(1, 1)

(Dir(G1), δ
′
1)

(1, 1)

ϕ1 ϕ2

(D1, δ
′′
1)

v1 v2 v3

v6 v5 v4

2 2 3 2

3 22 2

1

1

1

1

1

1

(G2, δ2)

v1 v2 v3

v6 v5 v4

(2, 2)

(2, 2)

(3, 2)

(2, 3)
(1, 1)(1, 1)

(3, 2)

(2, 3)

(1, 1) (1, 1)

(2, 2)

(2, 2)
(1, 1)(1, 1)

(Dir(G2), δ
′
2)

w1 w2 w3(2, 2)

(2, 2) (3, 2)

(2, 3)

(1, 1)

(1, 1)

(1, 1)
(D2, δ

′′
2)

Fig. 1. The digraph Dir(G1) (resp. Dir(G2)) is a symmetric covering via ϕ1 (resp.
ϕ2) of D1 (resp. D2) where: ϕ1 maps the vertices of Dir(G1) on the unique vertex of
D1 and ϕ2(v1) = ϕ2(v6) = w1, ϕ2(v2) = ϕ2(v5) = w2, and ϕ2(v3) = ϕ2(v4) = w3.
The number of sheets of these two coverings is 2. In grey, the port numbering δ′′1 (resp.
δ′′2) of D1 (resp. D2) induces via ϕ−1

1 (resp. ϕ−2
2) the port numbering δ′1 (resp. δ′2) of

Dir(G1) (resp. Dir(G2)) and thus the port numbering δ1 (resp. δ2) of G1 (resp. G2).

Definitions and principal properties of coverings are presented in [BV02]. A
labelled digraph D is a covering of a labelled digraph D′ via ϕ if ϕ is a homo-
morphism from D to D′ such that for each arc a′ ∈ A(D′) and for each vertex
v ∈ ϕ−1(t(a′)) (resp. v ∈ ϕ−1(s(a′))), there exists a unique arc a ∈ A(D) such
that t(a) = v (resp. s(a) = v) and ϕ(a) = a′.

240 A. Fontaine et al.

The fibre over a vertex v′ (resp. an arc a′) of D′ is defined as the set ϕ−1(v′)
of vertices of D (resp. the set ϕ−1(a′) of arcs of D). An interesting property
satisfied by coverings is that all the fibres of a given digraph have the same
cardinality, that is called the number of sheets of the covering.

A symmetric labelled digraph D is a symmetric covering of a symmetric
labelled digraph D′ via ϕ if D is a covering of D′ via ϕ and if for each arc
a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). The homomorphism ϕ is a symmetric
covering projection from D to D′. Two examples are given in the parts in
black of Figure 1.

Let D be a symmetric covering of D′ via the homomorphism ϕ. Any port
numbering on D′ induces naturally via ϕ−1 a port numbering on D. Conversely,
a port numbering on D induces a port numbering on D′ via ϕ. (It is illustrated
in grey in Figure 1).

Remark 2.1. Let D be a symmetric labelled covering of D′ via ϕ. Let δ′ be a
port numbering of D′ and let δ be the port numbering of D induced by ϕ−1.
Let A be a synchronous distributed algorithm. We consider the execution of one
round of A on (D′, δ′). This round can be lifted to (D, δ) via ϕ−1 in the following
way:

1. “send messages to (some) neighbours of v′ ∈ V (D′)” becomes “send messages
to (some) neighbours of each vertex of ϕ−1(v′) ⊆ V (D)” (the same messages
are sent from v′ and from each vertex w of ϕ−1(v′) through the same port
numbers to (some) neighbours of v′ and w);

2. “receive messages from (some) neighbours of v′ ∈ V (D′)” becomes “each
vertex of ϕ−1(v′) ⊆ V (D) receives messages from (some) its neighbours”
(for each vertex w of ϕ−1(v′) the same messages are received from (some)
neighbours of v′ and of w through the same port numbers);

3. “perform some local computation on v′ ∈ V (D′)” becomes “perform some
local computation on ϕ−1(v′) ⊆ V (D)” (the same local computations are
perform on v′ and on each vertex of ϕ−1(v′), as a consequence the vertex v′

and the vertices of ϕ−1(v′) are in same state).

Finally, we obtain the following classical lemma (see [Ang80, CM07]):

Lemma 2.2. Let D be a symmetric labelled covering of D′ via ϕ. Let δ′ be a
port numbering of D′ and let δ be the port numbering of D induced by ϕ−1.
Then any execution of a distributed algorithm A on (D′, δ′) can be lifted to an
execution on (D, δ), such that at the end of the execution, for any v ∈ V (D), v
is in the same state as ϕ(v).

As a direct consequence we have. An execution of a Las Vegas distributed
algorithm A on a triangle induces, via the natural morphism, an execution on
an hexagon. Hence, the following impossibility result holds:

Proposition 2.3. Let k be a positive integer such that k ≥ 3. There is no Las
Vegas distributed algorithm for solving the distance-k colouring problem or the
k-MIS problem.

On Lower Bounds for the Time and the Bit Complexity 241

We are interested, in particular, in some problems like the computation of an
MIS, colouring vertices or the computation of a maximal matching. In each case
we have to break some symmetries inside a labelled graph. To break symmetries
inside a labelled graph it suffices to distinguish a vertex. This is precisely the aim
of an election algorithm. A distributed algorithm solves the election problem if it
always terminates and in the final configuration, exactly one process is marked
as elected and all the other processes are non-elected. Moreover, it is required
that once a process becomes elected or non-elected then it remains in such a state
until the end of the execution of the algorithm. The election problem is closely
related to coverings. Indeed, a symmetric labelled digraph D is symmetric
covering prime if there does not exist any symmetric labelled digraph D′ not
isomorphic to D such that D is a symmetric covering of D′. We have [CM07]:

Theorem 2.4. Given a connected graph G, there exists an election algorithm
for G if and only if Dir(G) is symmetric covering prime.

We study some graph problems which need to break some initial symmetries;
these symmetries are precisely encoded by some non-covering-prime digraphs
and correspond to vertices inside a fibre. Thus in the sequel we consider non-
covering-prime digraphs.

3 Obtaining Lower Bounds by Considering Disconnected
Graphs

Proposition 3.1. Let G be a graph having nG vertices. Assume Dir(G) is not
symmetric covering prime. Let δ1 be a port numbering of G. Let (K, δ) be the
graph K with the port numbering δ formed by α copies of (G, δ1) and let n = αnG.
Then, there exists a constant c > 0 such that, for any Las Vegas distributed
algorithm A that uses messages of 1 bit, there is at least one copy of (G, δ1) such
that for each fibre all its vertices are in the same state for at least c logn rounds
w.h.p.

The idea of the proof of Proposition 3.1 is based on the assumption that Dir(G)
is not covering prime. Then it is a covering of a non-isomorphic graph, say D′.
Any execution of the Las Vegas algorithm A on D′ induces an execution of A
on Dir(G). We consider the execution having the highest probability. We show
that, w.h.p., there exists a constant c such that there is a fibre in one of the
copies of Dir(G) in which all vertices are in the same state for at least c log n
rounds.

Corollary 3.2. For every Las Vegas distributed algorithm A there is an infi-
nite family F of disconnected graphs such that A has a bit complexity Ω(log n)
w.h.p. on F to solve either: the colouring problem, the MIS problem, the maximal
matching problem, the 2-MIS problem, the distance-2 colouring problem.

The idea of the proof is based on the choice of G. Take G, for each problem
respectively as a: 1. single edge, 2. single edge, 3. triangle, 4. single edge, 5.
single edge.

242 A. Fontaine et al.

4 Obtaining Lower Bounds of the Form Ω(
√
logn) for

Connected Graphs

The previous definition of coverings for digraphs becomes in the case of graphs:
a graph G is a covering of a graph H via the homomorphism ϕ if ϕ is a homo-
morphism from G onto H such that for every vertex v of V the restriction of ϕ to
neighbours of v is a bijection between neighbours of v and neighbours of ϕ(v).
The construction we give now has been presented by Reidemeister [Rei32] to
describe all coverings of a given graph. We present briefly a precise description
given by Bodlaender in [Bod89]. Let G be a graph. Consider a spanning tree
(and more generally a spanning graph) ST of G. Make α copies of ST . For every
edge in G that is not an edge of ST , there are α copies of both its endpoints.
We connect on a one-to-one basis every copy of the first endpoint to a unique
copy of the second endpoint (see Figures 2 and 3). This construction builds a
covering of G. Furthermore, given a spanning tree ST of G, each covering of G
can be obtained in this way from ST . The number of copies is the number of
sheets of the covering.

2

1

1

2

21

(T, δ) T e: the truncated triangle

2

1

1

2

Fig. 2. A triangle T with a port number-
ing δ and the associated truncated trian-
gle

2

1

1

2

2

1

1

2

2 1 2 11 2

2

1

1

2

Fig. 3. Reidemeister’s construction with 3
copies of the truncated triangle T e. We ob-
tain R(T, e, 3) and the port numbering in-
duced by δ: a covering of the triangle (T, δ)
with 3 sheets.

In the sequel, we use a particular case of this construction. Let G be a con-
nected graph. Let e be an edge of G. Let Ge be the subgraph of G obtained by
deleting the edge e. We denote by R(G, e, α) the graph constructed as: make α
copies of Ge denoted Ge

i , 1 ≤ i ≤ α ; for each i such that 1 ≤ i ≤ α and i + 1
computed modulo α, connect the first endpoint of e in Ge

i to the second endpoint
of e in Ge

i+1 (see Figures 2 and 3). This construction is extended in a natural
way to graphs with a port numbering. From this construction, by considering a
sequence of consecutive copies and analysing what is produced in the middle in
such a sequence, we can state the following lower bound:

Proposition 4.1. Let G be a non-covering-prime graph having nG vertices and
at least one cycle. Let δ be a port numbering on G. Let e be an edge of G such
that Ge, the graph obtained by deleting the edge e, is connected. Let α be a non-
negative integer. Let n = αnG. Let δ

′ be the port numbering induced by δ on
R(G, e, α). Then there exists a constant c > 0 such that, for any Las Vegas
distributed algorithm A that uses messages of 1 bit, there is at least one copy of

On Lower Bounds for the Time and the Bit Complexity 243

Ge of R(G, e, α) such that for each fibre all its vertices are in the same state for
at least c

√
logn rounds w.h.p.

By applying Proposition 4.1 to the triangle (G = T) as is explained by Figures
2 and 3, we obtain:

Corollary 4.2. For every Las Vegas distributed algorithm A there is an infinite
family of rings R such that A has a bit complexity Ω(

√
logn) w.h.p. on R to

compute a MIS or a maximal matching.

5 Obtaining Lower Bounds of the Form Ω(logn)
for Connected Graphs

Let G = (V,E) be a graph such that D = Dir(G) is not covering prime. Let D′

be a symmetric digraph such that D is a covering of D′ via the homomorphism
ϕ and D is not isomorphic to D′. Let F be a fibre of D, and let w be the
corresponding vertex of D′, i.e., F = ϕ−1(w). Let b be the size of the fibre
F = {f1, . . . , fb}. As D is not isomorphic to D′ the size b of F is greater than or
equal to 2. We can note also that F is a subset of the set of vertices of G. Let α
be a positive integer. We denote by H the graph formed by α copies of G. Let
u be a vertex which does not belong to H. Now we define the graph K obtained
from H by adding a new vertex, the vertex u, and by adding an edge between u
and all vertices of all copies of the fibre F. Let n be the number of vertices of K,
we have: n = αnG+1.We consider a port numbering of D′; it induces via ϕ−1 a
port numbering on D thus on G and on H. Let d be the degree of any vertex of
the fibre F . We assign to any port corresponding to u incident to any vertex of
any copy of the fibre F the number d+ 1. The numbers of the ports incident to
u are chosen randomly, uniformly among the permutations of [1, α · b]. Let A be
a Las Vegas distributed algorithm. The aim of this section is to prove that if A
halts on K w.h.p. in a time less than c logn, it has a high probability of giving
incorrect output. It follows from this that there exists some port numbering for
which the algorithm does not compute a correct result in time less than or equal
to c logn w.h.p. Let D′

w′ be the graph obtained by adding a new vertex, denoted
w′, to the graph D′ and by adding an edge between w′ and w (the image of
the fibre F by ϕ). Let DF be the graph we obtain by adding b new vertices
f ′i , 1 ≤ i ≤ b, to D and by adding an edge between fi and f ′i (1 ≤ i ≤ b).
In the same manner we define GF . It is easy to verify that DF is a covering
of D′

w′ via the morphism γ defined by: the restriction of γ to D is equal to ϕ
and γ(f ′i) = w′ (for 1 ≤ i ≤ b). An execution (D′

w′ i)0≤i≤� of A on D′
w′ (with

D′
w′0 = D′

w′) induces an execution (DF i)0≤i≤� of A on DF (with DF 0 = DF)
via γ. It induces also an execution on GF . For this kind of execution, vertices of
DF , thus of GF , which belong to the same fibre are in the same state at each
step. Let Df and Gf be the graphs obtained from DF and GF by fusing vertices
f ′1,...f

′
b into the same vertex, denoted f. Thus in Df and Gf there is an edge

between vertices f1,...,fb and f. Now we consider an execution of A on Df (thus
on Gf); if we assume that this execution is induced by an execution of A on D′

w′

244 A. Fontaine et al.

for vertices different from f and the vertex f sends the same bit to every vertex
of F then vertices of a given fibre of Df (thus of Gf) are in the same state after
each step of the execution. Finally, steps occur as if the execution is induced by
a covering relation. By definition, an execution on Df thus on Gf which satisfies
this property is called uniform and, by extension, Df is uniform. By choosing a
constant c1 > 0 depending on G, we show that after r rounds of A, there is a
uniform set of copies of G in K, denoted Ur of size ncr1. Choosing a suitable c
such that the random variable |Uc log n| = Ω(n1/2) gives the following result:

Proposition 5.1. Let A be a Las Vegas distributed algorithm that produces at
each round on each port the bit 1 or the bit 0. Let G be a connected graph having
nG vertices. Assume Dir(G) is not symmetric covering prime. Let α be a non-
negative integer. Let K be the connected graph defined above (a vertex added to α
copies of G) and with the associated port numbering. Let n = αnG. There exists
a constant c > 0 such that for at least c logn rounds of execution of Algorithm
A on K, with high probability, there is a copy of G in K for which the execution
is uniform.

Corollary 5.2. For every Las Vegas distributed algorithm A there is an infinite
family C of connected graphs such that A has a bit complexity Ω(logn) w.h.p. on
C to solve either: the colouring problem, the MIS problem, the maximal matching
problem, the 2-MIS problem or the distance-2 colouring problem.

References

[Ang80] Angluin, D.: Local and global properties in networks of processors. In:
Proceedings of the 12th Symposium on Theory of Computing, pp. 82–93
(1980)

[BMW94] Bodlaender, H.L., Moran, S., Warmuth, M.K.: The distributed bit com-
plexity of the ring: from the anonymous case to the non-anonymous case.
Information and Computation 114(2), 34–50 (1994)

[Bod89] Bodlaender, H.-L.: The classification of coverings of processor networks.
J. Parallel Distrib. Comput. 6, 166–182 (1989)

[BV02] Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)
[CM07] Chalopin, J., Métivier, Y.: An efficient message passing election algorithm

based on Mazurkiewicz’s algorithm. Fundam. Inform. 80(1-3), 221–246
(2007)

[DMR08] Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and
achieving symmetry in chains and rings. Journal of the ACM 55(1) (2008)

[FMRZar] Fontaine, A., Métivier, Y., Robson, J.M., Zemmari, A.: The bit complexity
of the MIS problem and of the maximal matching problem in anonymous
rings. Information and Computation (to appear)

[II86] Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for
maximal matching. Information Processing Letters 22, 77–80 (1986)

[KN99] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge Uni-
versity Press (1999)

[KOSS06] Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed
coloring in O(

√
log n) bit rounds. In: Proceedings of the 20th International

Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes
Island, Greece, April 25-29. IEEE (2006)

On Lower Bounds for the Time and the Bit Complexity 245

[MRSDZ10] Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: About
randomised distributed graph colouring and graph partition algorithms.
Information and Computation 208(11), 1296–1304 (2010)

[MRSDZ11] Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: An
optimal bit complexity randomized distributed MIS algorithm. Dis-
tributed Computing 23(5-6), 331–340 (2011)

[Rei32] Reidemeister, K.: Einführung in die Kombinatorische Topologie. Vieweg,
Brunswick (1932)

[Tel00] Tel, G.: Introduction to distributed algorithms. Cambridge University
Press (2000)

[Yao79] Yao, A.C.: Some complexity questions related to distributed computing.
In: Proceedings of the 11th ACM Symposium on Theory of Computing
(STOC), pp. 209–213. ACM Press (1979)

Active Learning of Recursive Functions
by Ultrametric Algorithms�

Rūsiņš Freivalds1 and Thomas Zeugmann2

1 Institute of Mathematics and Computer Science, University of Latvia
Raiņa bulvāris 29, Riga, LV-1459, Latvia

Rusins.Freivalds@mii.lu.lv
2 Division of Computer Science, Hokkaido University

N-14, W-9, Sapporo 060-0814, Japan
thomas@ist.hokudai.ac.jp

Abstract. We study active learning of classes of recursive functions by
asking value queries about the target function f , where f is from the
target class. That is, the query is a natural number x, and the answer
to the query is f(x). The complexity measure in this paper is the worst-
case number of queries asked. We prove that for some classes of recursive
functions ultrametric active learning algorithms can achieve the learning
goal by asking significantly fewer queries than deterministic, probabilis-
tic, and even nondeterministic active learning algorithms. This is the first
ever example of a problem where ultrametric algorithms have advantages
over nondeterministic algorithms.

1 Introduction

Inductive inference has been studied intensively. Gold [12] defined learning in the
limit. The learner is a deterministic algorithm called inductive inference machine
(abbr. IIM), and the objects to be learned are recursive functions. The informa-
tion source are growing initial segments (x0, f(x0)), . . . , (xn, f(xn)) of ordered
pairs of the graph of the target function f . It is assumed that every pair (x, f(x))
appears eventually. As a hypothesis space one can choose any Gödel numbering
ϕ0, ϕ1, ϕ2, . . . of the set of all partial recursive functions over the natural num-
bers N = {0, 1, 2, . . .} (cf. [27]). If an i ∈ N is such that ϕi = f then we call i a
ϕ-program of f . An IIM, on input an initial segment (x0, f(x0)), . . . , (xn, f(xn)),
has to output a natural number in which is interpreted as ϕ-program. An IIM
learns f if the sequence (in)n∈N of all computed ϕ-programs converges to a
program i such that ϕi = f .

Every IIM M learns some set of recursive functions which is denoted by
EX(M). The family of all such sets, over the universe of effective algorithms
viewed as IIMs, serves as a characterization of the learning power inherent in
� The research was supported by Grant No. 09.1570 from the Latvian Council of

Science and the Invitation Fellowship for Research in Japan S12052 by Japan Society
for the Promotion of Science.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 246–257, 2014.
c© Springer International Publishing Switzerland 2014

Active Learning of Recursive Functions by Ultrametric Algorithms 247

the Gold model. This family is denoted by EX (short for explanatory) and it is
defined by EX = {U | ∃M(U ⊆ EX(M)}. Many studies of inductive inference
set-theoretically compare the family EX with families that arise from considering
other models (cf., e.g., [30]). One such model is finite learning, where the IIM
either requests a new input and outputs nothing, or it outputs a program i, and
stops. Again we require that program i is correct for f , i.e., ϕi = f .

The models described so far are models of passive learning, since the IIM
has no influence on the order in which examples are presented. In contrast, the
learning model considered in the present paper is an active one. This model goes
back to Angluin [3] and is called query learning. In the query learning model the
learner has access to a teacher that truthfully answers queries of a prespecified
type. In this paper we only consider value queries. That is, the query is a natural
number x, and the answer to the query is f(x). A query learner is an algorithmic
device that, depending on the answers already received, either computes a new
value query or it returns a hypothesis i and stops. As above, the hypothesis is
interpreted with respect to a fixed Gödel numbering ϕ and it is required that
the hypothesis returned satisfies ϕi = f . So active learning is finite learning.

As in the Gold [12] model, we are interested in active learners that can infer
whole classes of recursive functions. The complexity measure is then the worst-
case number of queries asked to identify all the functions from the target class U .
We refer to any query learner as query inference machine (abbr. QIM).

Automata theory and complexity theory have considered several natural gen-
eralizations of deterministic algorithms, namely, nondeterministic and proba-
bilistic algorithms. In many cases these generalized algorithms allow for compu-
tations having a complexity that is strictly less than their deterministic coun-
terpart. Such generalized algorithms attracted considerable attention in learn-
ing theory, too. Many papers studied learnability by nondeterministic algo-
rithms [1, 5, 11, 29] and probabilistic algorithms [14, 17, 21, 22, 25, 26].

Definition 1. We say that a nondeterministic QIM learns a function f if

(1) there is at least one computation path such that the QIM produces a correct
result on f , i.e., program j such that ϕj = f ;

(2) at no computation path the QIM produces an incorrect result on f .

Definition 2. We say that a probabilistic QIM learns a function f with a prob-
ability p if

(1) the sum of all probabilities of all leaves which produce a correct result on f ,
i.e., a number j such that ϕj = f , is no less than p;

(2) at no computation path the QIM produces an incorrect result on f .

Recently, Freivalds [7] introduced a new type of indeterministic algorithms called
ultrametric algorithms. An extensive research on ultrametric algorithms of var-
ious kinds is performed by him and his co-authors (cf. [4, 15]). So, ultrametric
algorithms are a very new concept and their potential still has to be explored.
This is the first paper showing a problem where ultrametric algorithms have
advantages over nondeterministic algorithms. Ultrametric algorithms are very

248 R. Freivalds and T. Zeugmann

similar to probabilistic algorithms but while probabilistic algorithms use real
numbers r with 0 ≤ r ≤ 1 as parameters, ultrametric algorithms use p-adic
numbers as parameters. The usage of p-adic numbers as amplitudes and the
ability to perform measurements to transform amplitudes into real numbers are
inspired by quantum computations and allow for algorithms not possible in clas-
sical computations. Slightly simplifying the description of the definitions, one
can say that ultrametric algorithms are the same as probabilistic algorithms,
only the interpretation of the probabilities is different.

The choice of p-adic numbers instead of real numbers is not quite arbitrary.
Ostrowski [24] proved that any non-trivial absolute value on the rational num-
bers Q is equivalent to either the usual real absolute value or a p-adic absolute
value. This result shows that using p-adic numbers was not merely one of many
possibilities to generalize the definition of deterministic algorithms but rather
the only remaining possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [28],
chemistry [19] and molecular biology [6, 16] have introduced p-adic numbers to
describe measures of indeterminism. Indeed, research on indeterminism in nature
has a long history. Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called probability. Quantum
physics introduced a description in terms of complex numbers called amplitude of
probabilities and later in terms of probabilistic combinations of amplitudes most
conveniently described by density matrices. Using p-adic numbers to describe
indeterminism allows to explore some aspects of indeterminism but, of course,
does not exhaust all the aspects of it.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We are used to
rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of rational
and irrational numbers, respectively. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered, while p-adic numbers cannot be linearly
ordered. This is why valuations and norms of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [23]). Quantum ampli-
tudes are complex numbers which also cannot be linearly ordered. The counter-
part of valuation for quantum algorithms is measurement translating a complex
number a+ bi into a real number a2 + b2. Norms of p-adic numbers are rational
numbers. We continue with a short description of p-adic numbers.

2 p-adic Numbers and Ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p − 1 is
called a p-adic digit. A p-adic integer is by definition a sequence (ai)i∈N of p-adic
digits. We write this conventionally as · · ·ai · · ·a2a1a0, i.e., the ai are written
from left to right.

Active Learning of Recursive Functions by Ultrametric Algorithms 249

If n is a natural number, and n = ak−1ak−2 · · · a1a0 is its p-adic representation,
i.e., n =

∑k−1
i=0 aip

i, where each ai is a p-adic digit, then we identify n with the p-
adic integer (ai), where ai = 0 for all i ≥ k. This means that the natural numbers
can be identified with the p-adic integers (ai)i∈N for which all but finitely many
digits are 0. In particular, the number 0 is the p-adic integer all of whose digits
are 0, and 1 is the p-adic integer all of whose digits are 0 except the right-most
digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p is represented as

· · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “p-adic” point but
only a finite number of digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers.
They are related to the notion of absolute value of numbers. If X is a nonempty
set, a distance, or metric, onX is a function d fromX×X to the nonnegative real
numbers such that for all (x, y) ∈ X ×X the following conditions are satisfied.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X .

A set X together with a metric d is called a metric space. The same set X
can give rise to many different metric spaces. If X is a linear space over the real
numbers then the norm of an element x ∈ X is its distance from 0, i.e., for all
x, y ∈ X and α any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(2) ‖α · y‖ = |α| · ‖y‖,
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Note that every norm induces a metric d, i.e., d(x, y) = ‖x− y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However,
there are other norms as well. A norm is called ultrametric if Requirement (3)
can be replaced by the stronger statement: ‖x+y‖ ≤ max{‖x‖, ‖y‖}. Otherwise,
the norm is called Archimedean.

Definition 3. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a,
be the highest power of p which divides a, i.e., the greatest number m ∈ N such
that a ≡ 0 (mod pm). For any rational number x = a/b we define ordp x =df

ordp a− ordp b. Additionally, ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1

ord3 x = +2

ord5 x = −2

ord7 x = +1

ord11 x = −1

ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

Definition 4. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any ra-
tional number x, we define its p-norm as p−ordp x, and we set ‖0‖p =df 0.

250 R. Freivalds and T. Zeugmann

For example, with x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1 we obtain:

‖x‖2 = 2

‖x‖3 = 1/9

‖x‖5 = 25

‖x‖7 = 1/7

‖x‖11 = 11

‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .
Rational numbers are p-adic integers for all prime numbers p. Since the defi-

nitions given above are all we need, we finish our exposition of p-adic numbers
here. For a more detailed description of p-adic numbers we refer to [13, 18].

We continue with ultrametric algorithms. In the following, p always denotes
a prime number. Ultrametric algorithms are described by finite directed acyclic
graphs (abbr. DAG), where exactly one node is marked as root. As usual, the
root does not have any incoming edge. Furthermore, every node having outdegree
zero is said to be a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-
adic number which we call amplitude. We require that the sum of all amplitudes
that correspond to v is 1. In order to determine the total amplitude along a
computation path, we need the following definition.

Definition 5. The total amplitude of the root is defined to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let
β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek
of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of v�, � ∈ {1, . . . , k}, is defined as follows.

(1) If the indegree of v� is one, then its total amplitude is αβ�.
(2) If the indegree of v� is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total
amplitudes of the predecessors of v� and let β�, δ2, . . . , δm be the amplitudes
of the incoming edges The total amplitude of the node v� is then defined to
be αβ� + γ2δ2 + · · ·+ δmγm.

Note that the total amplitude is a p-adic integer.
We refer the reader to the proof of Theorem 7 for an example.
It remains to define what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is specified by performing a
so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to ‖β‖p.
We refer to ‖β‖p as the p-probability of the corresponding computation path.

Definition 6. We say that a p-ultrametric algorithm produces a result m with
a p-probability q if the sum of the p-probabilities of all leaves which correctly
produce the result m is no less than q.

Definition 7. We say that a p-ultrametric QIM learns a function f with a p-
probability q if

(1) the sum of the p-probabilities of all leaves which produce a correct result
on f , i.e., a number j such that ϕj = f , is no less than q;

(2) at no computation path the QIM produces an incorrect result on f .

Active Learning of Recursive Functions by Ultrametric Algorithms 251

3 Results

As explained in the Introduction we are interested in the number of queries a
QIM has to ask in the worst-case in order to infer all recursive functions from
a prespecified class U . The hypothesis space will always be a Gödel number-
ing ϕ (cf. [27]). This is no restriction of generality since all natural programming
languages provide Gödel numberings of recursive functions.

The complexity of learning recursive functions has been an important topic
for several decades [2, 8, 10, 30]. In this paper we compare the query complexity
of deterministic, nondeterministic, probabilistic, and ultrametric QIMs.

Our results are somewhat unexpected. Usually, for various classes of problems,
nondeterministic algorithms provide the smallest complexity, deterministic algo-
rithms provide the largest complexity and probabilistic algorithms provide some
medium complexity. In [4, 7, 15] ultrametric algorithms also gave medium com-
plexity sometimes better and sometimes worse than probabilistic algorithms.
Our results in this paper show that, for learning recursive functions from value
queries, there are classes U of recursive functions such that ultrametric QIMs
have a much smaller complexity than even nondeterministic QIMs.
To show these results we use a combinatorial 0

1 5

43
6

2

Fig. 1. The Fano Plane

structure called the Fano plane. It is one of
finite geometries (see [20]). The Fano plane
consists of seven points 0, 1, 2, 3, 4, 5, 6 and
seven lines (0, 1, 3), (1, 2, 4), (2, 3, 5),(3, 4, 6),
(4, 5, 0), (5, 6, 1), (6, 0, 2). For any two points
i, j with i �= j, in this geometry there is
exactly one line that contains these points
(cf. Figure 1). For any two different lines in
this geometry there is exactly one point con-
tained in these two lines. In our construc-
tion the points 0, 1, 2, 3, 4, 5, 6 are interpreted as colored in two colors RED and
BLUE, respectively.

Lemma 1 ([20]). For an arbitrary coloring of the Fano plane there is at least
one line the 3 points of which are colored by the same color.

Lemma 2 ([20]). For any coloring of the Fano plane there cannot exist two
lines colored in opposite colors.

Proof. Any two lines intersect at some point. ��

To simplify notation, in the following we use P and R to denote the set of all
partial recursive functions and of all recursive functions of one variable over N,
respectively. Let ϕ be a Gödel numbering of P . We consider the following class
U7 of recursive functions. Each function f ∈ U7 is such that f ∈ R and:

(1) every f(x) where 0 ≤ x ≤ 6 equals either 2s or 3t, where s, t ∈ N, s, t ≥ 1,
(2) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 2s and f(x2) = 2t, then f(x1) = f(x2),

252 R. Freivalds and T. Zeugmann

(3) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 3s and f(x2) = 3t, then f(x1) = f(x2),
(4) there is a line (i, j, k) in the Fano plane such that f(i) = f(j) = f(k) = 2s

and ϕs = f or there exists a line (i, j, k) in the Fano plane such that f(i) =
f(j) = f(k) = 3t and ϕt = f .

Comment. In our construction of the class U7 the points 0, 1, 2, 3, 4, 5, 6 can
be interpreted as colored in two colors. Some points f(i) are such that f(i) = 2s

(these points are described below as RED) while some other points j are such
that f(j) = 3t (these points are described below as BLUE). The properties of
the Fano plane ensure that for every such coloring in two colors there exists a
line such that the three points on this line are colored in the same color, and
there cannot exist two lines colored in opposite colors.

Definition 8. A partial coloring C of a Fano plane is an assignment of colors
RED, BLUE, NONE to the points of the Fano plane.

A partial coloring C2 is an extension of a partial coloring C1 if every point
colored RED or BLUE in C1 is colored in the same color in C2.

A partial coloring C of a Fano plane is called complete if every point is colored
RED or BLUE.

Lemma 3. Given any partial coloring C of the points in the Fano plane assign-
ing colors RED and BLUE to some but not all points such that no line contains
three points in the same color, there exists

(1) a complete extension of the given coloring C such that it contains a line with
three RED points, and

(2) a complete extension of the given coloring C such that it contains a line with
three BLUE points.

Proof. Color all the not colored points RED for the first function, and BLUE
for the second function. ��

Lemma 4. Given any partial coloring C of points in the Fano plane assigning
colors RED and BLUE to some but not all points such that no line contains 3
points in the same color, there exist numbers k∗, �∗ ∈ N and

(1) a function fRED ∈ U7 defined as f(x) = 2�∗ for all x colored RED in C
such that fRED contains a line with three RED points, and all the points
0, 1, 2, 3, 4, 5, 6 are colored RED or BLUE,

(2) a function fBLUE ∈ U7 defined as f(x) = 3k∗ for all x colored BLUE in C
such that fBLUE contains a line with three BLUE points, and all the points
0, 1, 2, 3, 4, 5, 6 are colored RED or BLUE.

Proof. The assertions of the lemma can be shown by using the fixed point the-
orem [27] and by using Lemma 3. ��

Theorem 1. There is a deterministic QIM M that learns the class U7 with 7
queries.

Active Learning of Recursive Functions by Ultrametric Algorithms 253

Proof. The desired QIM M queries the points 0, 1, . . . , 6. After having received
f(0), f(1), f(2), . . . , f(6), it checks at which line all points have the same color,
and outputs the ϕ-program corresponding to this line. Note that by Lemmata 1
and 2 there is precisely one such line. By the definition of the class U7 one can
directly output a correct ϕ-program for the target function f . ��

Theorem 2. There exists no deterministic QIM learning U7 with 6 queries.

Proof. The proof is by contradiction. Using Smullyan’s double fixed point theo-
rem [27] one can construct two functions f and f̃ such that both are in U7 but
at least one of them is not correctly learned by the QIM M . ��

Theorem 3. There is a nondeterministic QIM M learning U7 with 3 queries.

Proof. The QIMM starts with a nondeterministic branching of the computation
into 7 possibilities corresponding to the 7 lines in the Fano plane. In each case,
all 3 points i, j, k are queried. If f(i), f(j), f(k) are not of the same color then the
computation path is aborted. If they are of the same color, e.g., f(i) = 2si , f(j) =
2sj , f(k) = 2sk then the definition of the class U7 ensures that si = sj = sk and
the QIMM outputs si which is a correct program computing the function f . ��

Theorem 4. There is no nondeterministic QIM learning U7 with 2 queries.

Proof. By Lemma 4, there are two distinct functions in the class U7 with the
same values queried by the nondeterministic algorithm. The output is not correct
for at least one of them. ��

Theorem 5. There is a probabilistic QIM M learning U7 with probability 1
7

with 3 queries.

Proof. The algorithm starts with branching its computation into 7 possibilities
corresponding to the 7 lines in Fano plane. Each branch is reached with proba-
bility 1/7. In each branch, all 3 points i, j, k are queried. If f(i), f(j), f(k) are
not of the same color then the computation path is aborted. If they are of the
same color, e.g., f(i) = f(j) = f(k) = 2s, then s is output. By definition of the
class U7 the result is a correct program computing the function f . ��

Theorem 6. There is a probabilistic QIM M learning U7 with probability 4
7

with 6 queries.

Theorem 7. For every prime number p, there is a p-ultrametric QIM M learn-
ing U7 with p-probability 1 with 2 queries.

Proof. The desired QIM M branches its computation path into 7 branches at
the root, where each branch corresponds to exactly one line of the Fano plane.
We assign to each edge the amplitude 1/7. At the second level, each of these
branches is branched into 3 subbranches each of which is assigned the amplitude
1/3. So far we have at level three 21 nodes denoted by v1, . . . , v21 (cf. Figure 2).
For each of these nodes we formulate two queries. Let v be such that its father

254 R. Freivalds and T. Zeugmann

�1 �2 �3 �4 �5 �6 �7

1/7 1/7 1/7 1/7 1/7 1/7

1/31/31/3

1/31/3

1/31/3

1/3

1/31/3

1/3

1/31/3

1/3

1/31/31/3

1/31/3

1/3 1/3

1/7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

Fig. 2. The first three levels of the DAG representing the computation of the QIM M

node corresponds to the line containing the point i, j, k of the Fano plane, where
we order these points such that i < j < k. If v is the leftmost node then we
query (i, j), if v is the middle node then we query (j, k) and if v is the rightmost
node then we query (i, k). Every triple of nodes having the same father share
a register, say rijk . Initially, the register contains the value ↑ which stands for
“no output.” The node activated when reached in the computation path sends
the following value to rijk . After having received the answer to its queries, e.g.,
f(i) = 2s and f(j) = 3t then it writes 0 in rijk , and if the values coincide, e.g.,
f(i) = 3t and f(j) = 3t, then it writes t in rijk .

Looking at any triple of nodes having a common father at the third level, we
note that the following 8 cases may occur as answer. We use again the corre-
sponding colors, where R and B are shortcuts for RED and BLUE, respectively.

(i, j) (j, k) (i, k) (i, j) (j, k) (i, k)

(B,B) (B,R) (B,R) (R,R) (R,B) (R,B)
(B,B) (B,B) (B,B) (R,R) (R,R) (R,R)
(B,R) (R,R) (B,R) (R,B) (B,B) (R,B)
(B,R) (R,B) (B,B) (R,B) (B,R) (R,R)

Thus, we need for each node at the third level 8 outgoing edges as the table
above shows. If the edge corresponds to a pair (R,R) or (B,B) then we assign
the amplitude 1/2 and otherwise the amplitude −1/4. Note that sum of these
amplitudes is again 1.

Finally, we join each triple as shown in table above into one node, e.g., the
edges corresponding to (B,B), (B,R), and (B,R) are joined. If the total am-
plitude of such a node at the third level is different from zero, then the node
produces as output the value stored in register rijk . Figure 3 shows the part of
the DAG for the queries performed for the first line of the Fano plane, i.e., for
the line (0, 1, 3). So this part starts at the nodes v1, v2 and v3 shown in Figure 2.
For the sake of readability, we show the queries asked at each node, i.e., (0, 1) at
node v1, (1, 3) at node v2, and (0, 3) at node v3. A dashed (blue) edge denotes
the case that both answers to the queries asked at the corresponding vertex re-
turned a value of f indicating that the related nodes of the first line of the Fano
plane are blue. This result is then propagated along the dashed (blue) edges.
Analogously, a dotted (red) edge indicates that both answers corresponded to
a red node of the first line of the Fano plane. If the answers returned function

Active Learning of Recursive Functions by Ultrametric Algorithms 255

values indicating that the colors of the queried nodes of the first line of the Fano
plane have different colors then the edge is drawn in black. Dashed (blue) and
dotted (red) edges have the amplitude 1/2 and the black edges have the the
amplitude −1/4.

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

(0, 1) (1, 3) (0, 3)

Fig. 3. The part of the DAG representing the computation of the QIM M for the line
(0, 1, 3) starting at the nodes of the third level

It remains to show that the QIM M has the desired properties. By construc-
tion, at every computation path exactly two queries are asked.

Next, by Definition 5 it is obvious that the total amplitude of each node at
the second level is 1/21. Next, we consider any node at the third level. If a triple
(B,B), (B,B), and (B,B) is joined then the total amplitude is

1

21
· 1
2
+

1

21
· 1
2
+

1

21
· 1
2
=

1

2 · 7 .

The same holds for (R,R), (R,R), and (R,R) (cf. Definition 5). Figure 3 shows
the corresponding leaves in a squared pattern and lined pattern, respectively.

If a triple has a different form than considered above, e.g., (B,B), (B,R), and
(B,R) then, again by Definition 5, we have for the total amplitude

1

21
· 1
2
− 1

21
· 1
4
− 1

21
· 1
4
= 0 .

One easily verifies that all remaining total amplitudes are also 0. Finally, we
perform the measurement. Clearly, for each leaf which has a total amplitude 0
the measurement results in ‖0‖p = 0. For the remaining leaves we obtain ‖ 1

2·7‖p
which is 1 for every prime p such that p /∈ {2, 7}. If p = 2 then we have ‖ 1

2·7‖2 = 2
and for p = 7 we get ‖ 1

2·7‖7 = 7.
By Lemma 1 there must be at least one line such that all nodes have the same

color, and by Lemma 2 it is not possible to have a line colored in RED and a
line colored in BLUE simultaneously. So at least one node has p-probability at
least 1, and the result output is correct by the definition of the class U7.

If there are several lines colored in the same color then distinct but correct
results may be produced, since any two lines share exactly one point. Thus, the
resulting p-probability is always no less than 1. ��

The idea of this paper can be extended to obtain even more spectacular ad-
vantages of ultrametric algorithms over nondeterministic ones. It is proved that

256 R. Freivalds and T. Zeugmann

there exist finite projective geometries with n2+n+1 points and n2+n+1 lines
such that any two lines have exactly one common point and any two points lie
on a common line. This allows us to construct a class Um of recursive functions
similar to the class U7 above, where m =df q

2 + q + 1 for any prime power q.
The counterpart of Lemma 1 does not hold but this demands only an additional
requirement for the function in the class to have a line colored in one color. Due
to the lack of space, we have to omit these results here, but refer the interested
reader to [9].

4 Conclusions

In this paper we have studied active learning of classes of recursive functions
from value queries. We compared the query complexity of deterministic, nonde-
terministic, probabilistic, and ultrametric QIM and showed the somehow unex-
pected result that p-ultrametric QIM can learn classes of recursive function with
significantly fewer queries than nondeterministic, probabilistic QIM can do.

References

[1] Ambainis, A., Aps̄ıtis, K., Freivalds, R., Smith, C.H.: Hierarchies of probabilistic
and team FIN -learning. Theoret. Comput. Sci. 261(1), 91–117 (2001)

[2] Ambainis, A., Smotrovs, J.: Enumerable classes of total recursive functions: Com-
plexity of inductive inference. In: Arikawa, S., Jantke, K.P. (eds.) AII and ALT
1994. LNCS (LNAI), vol. 872, pp. 10–25. Springer, Heidelberg (1994)

[3] Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)
[4] Balodis, K., Beriņa, A., C̄ıpola, K., Dimitrijevs, M., Iraids, J., Jēriņs, K., Kacs, V.,

Kalējs, J., Krilšauks, R., Lukstiņš, K., Raumanis, R., Scegulnaja, I., Somova, N.,
Vanaga, A., Freivalds, R.: On the state complexity of ultrametric finite automata
(unpublished manuscript 2013)

[5] Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using non determin-
istic finite automata. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891,
pp. 39–50. Springer, Heidelberg (2000)

[6] Dragovich, B., Dragovich, A.Y.: A p-adic model of DNA sequence and genetic
code. p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)

[7] Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.)
Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)

[8] Freivalds, R., Bārzdiņš, J., Podnieks, K.: Inductive inference of recursive functions:
Complexity bounds. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science.
LNCS, vol. 502, pp. 111–155. Springer, Heidelberg (1991)

[9] Freivalds, R., Zeugmann, T.: Active learning of classes of recursive functions by ul-
trametric algorithms. Tech. Rep. TCS-TR-A-13-68, Division of Computer Science,
Hokkaido University (2013)

[10] Freivalds, R., Kinber, E., Smith, C.H.: On the impact of forgetting on learning
machines. J. ACM 42(6), 1146–1168 (1995)

[11] García, P., de Parga, M.V., Álvarez, G.I., Ruiz, J.: Learning regular languages
using nondeterministic finite automata. In: Ibarra, O.H., Ravikumar, B. (eds.)
CIAA 2008. LNCS, vol. 5148, pp. 92–101. Springer, Heidelberg (2008)

Active Learning of Recursive Functions by Ultrametric Algorithms 257

[12] Gold, E.M.: Language identification in the limit. Inform. Control 10(5), 447–474
(1967)

[13] Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), 2nd edn. Springer,
Berlin (1983)

[14] Greitāne, I.: Probabilistic inductive inference of indices in enumerable classes of
total recursive functions. In: Jantke, K.P. (ed.) AII 1989. LNCS (LNAI), vol. 397,
pp. 277–287. Springer, Heidelberg (1989)

[15] Jēriņš, K., Balodis, K., Krišlauks, R., C̄ıpola, K., Freivalds, R.: Ultrametric query
algorithms (unpublished manuscript 2012)

[16] Khrennikov, A.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Sys-
tems and Biological Models. Kluwer Academic Publishers (1997)

[17] Kinber, E., Zeugmann, T.: One-sided error probabilistic inductive inference and
reliable frequency identification. Inform. Comput. 92(2), 253–284 (1991)

[18] Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn.
Springer, Berlin (1984)

[19] Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: American Insti-
tute of Physics Conference Proceedings of the 2nd International Conference on
p-Adic Mathematical Physics, Belgrade, Serbia and Montenegro, September 15-
21, vol. 826, pp. 121–128 (2006)

[20] Meserve, B.E.: Fundamental Concepts of Geometry. Dover Publications, New York
(1983)

[21] Meyer, L.: Probabilistic language learning under monotonicity constraint. Theoret.
Comput. Sci. 185(1), 81–128 (1997)

[22] Meyer, L.: Aspects of complexity of probabilistic learning under monotonicity
constraints. Theoret. Comput. Sci. 268(2), 275–322 (2001)

[23] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

[24] Ostrowski, A.: Über einige Lösungen der Funktionalgleichung ϕ(x) ·ϕ(y) = ϕ(xy).
Acta Mathematica 41(1), 271–284 (1916)

[25] Pitt, L.: Probabilistic inductive inference. J. ACM 36(2), 383–433 (1989)
[26] Pitt, L., Smith, C.H.: Probability and plurality for aggregations of learning ma-

chines. Inform. Comput. 77(1), 77–92 (1988)
[27] Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability.

McGraw-Hill (1967); reprinted. MIT Press (1987)
[28] Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-Adic Analysis and Mathematical

Physics. World Scientific, Singapore (1994)
[29] Wu, Y.-C., Lee, Y.-S., Yang, J.-C., Yen, S.-J.: An integrated deterministic and

nondeterministic inference algorithm for sequential labeling. In: Cheng, P.-J., Kan,
M.-Y., Lam, W., Nakov, P. (eds.) AIRS 2010. LNCS, vol. 6458, pp. 221–230.
Springer, Heidelberg (2010)

[30] Zeugmann, T., Zilles, S.: Learning recursive functions: A survey. Theoret. Comput.
Sci. 397(1-3), 4–56 (2008)

Efficient Error-Correcting Codes
for Sliding Windows

Ran Gelles1, Rafail Ostrovsky1,2,�, and Alan Roytman1

1 Department of Computer Science, University of California, Los Angeles
2 Department of Mathematics, University of California, Los Angeles

{gelles,rafail,alanr}@cs.ucla.edu

Abstract. We consider the task of transmitting a data stream in the
sliding window model, where communication takes place over an adver-
sarial noisy channel with noise rate up to 1. For any noise level c < 1 we
design an efficient encoding scheme, such that for any window in which
the noise level does not exceed c, the receiving end decodes at least a
(1−c−ε)-prefix of the window, for any small ε > 0. Decoding more than
a (1−c)-prefix of the window is shown to be impossible in the worst case,
which makes our scheme optimal in this sense. Our scheme runs in poly-
logarithmic time per element in the size of the window, causes constant
communication overhead, and succeeds with overwhelming probability.

1 Introduction

As data continues to grow in size for many real world applications, streaming
algorithms play an increasingly important role. Big data applications, ranging
from sensor networks [9] to analyzing DNA sequences [5], demand streaming
algorithms in order to deal with the tremendous amount of information being
generated in a very short period of time. For certain applications, it is useful to
only maintain statistics about recent data (rather than the entire stream). For
instance, we may be interested in analyzing stock market transactions within
the last hour, or monitoring and analyzing packets entering a network to detect
suspicious activity, or identifying patterns in genomic sequences. This model
is known as the sliding windows model, in which we care about a fixed-length
window of time (say, 1 hour), which “slides” forward as time moves on (e.g., the
last one hour, etc.).

While in the standard sliding window model, the aim is to maintain some
statistics of an input stream (usually, using only polylogarithmic memory), our
� Research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276;

CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA
Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is also based upon
work supported by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed are
those of the authors and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 258–268, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Error-Correcting Codes for Sliding Windows 259

focus is applications in which the stream is generated in one place and then
communicated to another place, as is the case for sensor networks, for instance.
Inevitably, such applications are particularly vulnerable to data corruption while
transmitting symbols: sensors are often placed in harsh environments connected
to a base unit by a wireless channel which is susceptible to various kinds of
errors (a weak signal, noise from other nearby transmitters, physical blockage
of the transmitting medium, or even physical damage to the sensor). A natural
question arises, how can we handle this constant stream of corrupted data while
still being able to make sense of the information?

Our paper precisely aims to answer this question. We study encoding schemes
for transmitting data streams in the sliding windows setting. We aim to design
encoding schemes that can tolerate a high amount of errors while keeping the
added redundancy low. Informally, we mainly consider noise rates above 1/2,
while adding only a constant overhead.1 Another requirement of our scheme is
to be efficient, that is, the encoding and decoding time (per element) must be
at most polylogarithmic in the window size N .2

Before we describe our result in more details, let us explain why simple so-
lutions for this task fail to work. Assume that an encoding scheme is meant to
protect against a burst of noise of length n. A straightforward solution would
be to cut the stream into chunks of size N = (2 + ε)n and encode each chunk
using some standard error-correcting code that can deal with a fraction of errors
of almost 1/2 (e.g., a Shannon error-correcting code [12] with good distance).
This solution has three downsides. First, if the noise within one block is even
slightly more than n, there are some messages for which the entire block will be
incorrectly decoded. Second, the receiving side will be able to decode a block
only after receiving the block entirely, which implies a delay of 2n. Last, and
maybe the most important downside, is that the rate of errors in one window
using this solution cannot exceed 1/2. We can replace the Shannon code with
a code that resists a fraction of noise arbitrarily close to 1, such as the code of
Micali, Peikert, Sudan, and Wilson [8], however this code uses an alphabet size
that grows with the block size, and the obtained scheme would have a super-
constant overhead. No codes over a constant-size alphabet are known to resist
more than 1/2 fraction of errors.

Contributions and Techniques. We provide a family of constant-rate encod-
ing schemes in the sliding window model such that for any c < 1, if the rate of
noise in the last window is less than c, the decoding of a (1 − c)-prefix of the
window succeeds with overwhelming probability. Our scheme has polylogarith-
mic time complexity per element and linear space complexity. Formally,

1 Loosely speaking, the overhead of a scheme is the amount of data communicated in
one window divided by the amount of input data in that window, as a function of
the windows size N .

2 A similar polylogarithmic bound on the memory consumption would also be desired.
However, at least for the sender, we show that the memory consumption must be at
least linear in the window size, Ω(N).

260 R. Gelles, R. Ostrovsky, and A. Roytman

Theorem 1. For any c < 1 and any ε > 0, there exists an efficient encod-
ing/decoding scheme for streams in the sliding window model with the following
properties.

For any window W of size N , if the fraction of errors within W is less than c,
then except with negligible probability N−ω(1), the decoder correctly decodes a
prefix of W of size at least (1 − c − ε)N . The decoding takes poly(log N) time
per element and the encoding takes O(1) amortized time.

Clearly, for a noise rate c, there is no hope of decoding more than a (1 − c)-
prefix of the window (e.g., consider decoding at time N when the channel was
“blocked,” i.e. fully corrupted, starting at time (1 − c)N), and our protocol is
optimal in this aspect. Although a suffix of the current window may not be
decoded, the data is not lost and will be decoded eventually as the window slides
(if the noise rate is below c). Moreover, the delay of our scheme is (c+ε)N , since
we only guarantee that the receiver correctly decodes the first (1 − c − ε)N
symbols in each window, even though N symbols have already been received.
Given that our goal is to decode as large a prefix as possible, and that we cannot
hope to decode more than a (1− c)-prefix of the window, any scheme must incur
a delay of at least cN , and hence the delay of our scheme is near-optimal.

To provide some intuition and insight into the techniques we use, we begin
with the work of Franklin, Gelles, Ostrovsky, and Schulman for encoding streams
in the unbounded model [1]. Roughly speaking, their scheme works as follows. At
any particular time n (i.e., the length of the stream seen so far), the stream is split
into blocks of size log n, each of which is encoded using an online coding scheme
called a tree-code [10,11]. At each time step, a constant number of blocks are
chosen uniformly at random and the next symbol is sent (in each chosen block)
according to the encoding determined by the tree code (it is assumed that the
sender and receiver have access to a shared random string, so the receiver knows
which random blocks are chosen by the sender). This encoding is concatenated
with a weak message-authentication code, that detects a large fraction of errors
and effectively makes the scheme resistant to higher noise rates. We observe that
tree codes have several shortcomings. First, decoding a codeword using a tree
code takes exponential time in the block size. Second, tree codes (with constant
rate) are known to exist, but take exponential time to construct (though efficient
relaxations exist, see [2]). These shortcomings imply that any efficient scheme is
restricted to using tree codes on words of at most logarithmic length, and thus
obtain at least a polynomially small failure probability.

Our scheme takes inspiration from the ideas in [1]. We also divide our win-
dow into blocks of equal size, however we consider only blocks that are in the
window. The key observation is that we no longer need the “online” property
of tree-codes. This is because, in the sliding window model, we care only about
a fixed window size N , and the blocks within this window are well defined in
advance. Hence, the blocks do not increase in size when more elements arrive,
as in the unbounded case [1]. To completely avoid the need for an “online” cod-
ing, our scheme waits until an entire block arrives and then encodes it using an

Efficient Error-Correcting Codes for Sliding Windows 261

error-correcting block code.3 This allows us to replace the tree-code with a very
efficient block code, e.g., the almost-optimal linear-time code of Guruswami and
Indyk [3], and improve upon the efficiency in [1] to constant amortized time for
the sender and polylogarithmic time for the receiver per time step. Moreover, we
are not bound to logarithmic block size anymore, and by using polylogarithmic
block size we reduce the failure probability from polynomially small as in [1] to
negligible4, while keeping the scheme time-efficient.

The resulting scheme is very similar to, and can be seen as an extension of
the “code scrambling” method suggested by Lipton [7]. Lipton’s scheme encodes
a single message by chopping the message into blocks, with encoding and decod-
ing being done per block. Then, the scheme permutes the entire message and
adds a random mask to the permuted string, using some shared randomness.
The scheme has a negligible failure probability for any random, computationally
bounded channel with error probability p < 1/2. In contrast, our scheme works
in the sliding window model and potentially encodes an infinite message. This
requires a more clever “scrambling” technique than simply permuting the entire
message. The random mask performed in [7] is replaced with an error-detection
code, which increases the resilience of our scheme. We analyze our scheme against
an unbounded adversary and show that it can handle a corruption rate that is
arbitrarily close to 1 while guaranteeing a constant rate and a negligible failure
probability.

While our scheme resists fully adversarial channels, it requires a large amount
of shared-randomness. We can reduce the amount of shared randomness via
standard techniques (same as in [7]), under the assumption of a computationally
bounded channel. In this case a short random key is assumed to be shared
between the parties from which randomness is expanded as needed via a pseudo-
random generator.

Other Related Work. Coding schemes that assume the parties pre-share some
randomness first appeared in [13], and were greatly analyzed since. The main
advantage of such codes is that they can deal with adversarial noise, rather than
random noise. Langberg [6] showed codes that approach Shannon’s bound and
require only O(log n) randomness for a block size of n, as well as an Ω(log n)
lower bound on the amount of necessary randomness. The construction of Lang-
berg also implies an efficient code with O(n log n) randomness. This result was
improved to n+o(n) randomness by Smith [14]. Explicit constructions with o(n)
randomness are not yet known (see [14]).

2 Preliminaries

For a number n we denote by [n] the set {1, 2, . . . , 	n
}, and for a finite set Σ
we denote by Σ≤n the set ∪n

k=1Σk. Throughout the paper, log() denotes the
3 For a block size B, this incurs an additional delay of O(B), but since our goal is to

decode a (1 − c − ε)-prefix of the window, we already have an inherent delay of cN
in any case (clearly, B will be sub-linear in N).

4 See Section 2 for a formal definition of a negligible function.

262 R. Gelles, R. Ostrovsky, and A. Roytman

binary logarithm (base 2). A data stream S is a (potentially infinite) sequence
of elements (a0, a1, a2 . . .) where element at ∈ {1, . . . , u} arrives at time t. In the
sliding window model we consider at each time t ≥ N the last N elements of
the stream, i.e. the window W = {at−(N−1), . . . , at}. These elements are called
active, whereas elements that arrived prior to the current window {ai | 0 ≤ i <
t − (N − 1)} are expired. For t < N , the window consists of all the elements
received so far, {a0, . . . , at}. Finally, we say that a function f(N) is negligible if
for any constant c > 0, f(N) < 1

Nc for sufficiently large N .

Shared Randomness Model. We assume the following model known as the shared-
randomness model. The legitimate users (the sender and the receiver) have access
to a random string Rand of unbounded length, which is unknown to the adversary.
Protocols in this model are thus probabilistic, and are required to succeed with
high probability over the choice of Rand. We assume that all the randomness
comes from Rand and that for a fixed Rand the protocols are deterministic.

Error-detection Codes: The Blueberry Code. The Blueberry-Code (BC) is a ran-
domized error-detection code introduced by Franklin, Gelles, Ostrovsky, and
Schulman [1], in which each symbol is independently embedded into a larger
symbol space via a random mapping. Since the mapping is random and unknown
to the adversary, each corruption is detected with some constant probability.

Definition 2. For i ≥ 1 let BCi : ΣI → ΣO be a random and independent
mapping. The Blueberry code maps a string x ∈ Σ∗

I into a string BC(x) ∈ Σ∗
O

of the same length where BC(x) = BC1(x1)BC2(x2) · · ·BCn(xn).

Conditioned on the fact that the legitimate users use a message space ΣI ⊂ ΣO,
each corruption can independently be detected with probability 1 − q, where
q = |ΣI |−1

|ΣO|−1 (hence, q is the probability that it remains undetected). The users
are assumed to be sharing the random mappings BCis at the start of the protocol.

Linear-time Error-correcting Codes. We will use error-correcting codes which
are very efficient (i.e., linear-time in the block size for encoding and decoding).
Such codes were initially (explicitly) constructed by Spielman [16] (see also [15]).
Specifically, we use a linear-time error-correcting code with almost optimal rate
given by Guruswami and Indyk [3]:

Lemma 3 ([3]). For every rate 0 < r < 1, and all sufficiently small δ > 0,
there exists an explicit family of error-correcting codes ECC : Σrn → Σn,
ECC−1 : Σn → Σrn over an alphabet of size |Σ| = Oε,r(1) that can be encoded
and (uniquely) decoded in time linear in n from a fraction e of errors and d of
erasures provided that 2e + d ≤ (1 − r − δ).

Communication and Noise Model. Our communication model consists of a chan-
nel ch : Σ → Σ subject to corruptions made by an adversary (or by the channel
itself). For all of our applications we assume that, at any given time slot (i.e.,

Efficient Error-Correcting Codes for Sliding Windows 263

for any arriving element of the stream), a constant number R of channel instan-
tiations are allowed. We say that R is the blowup or overhead of our scheme.

The noise model is such that any symbol σ sent through the channel can turn
into another symbol σ̃ ∈ Σ. It is not allowed to insert or delete symbols. We
assume the noise is adversarial, that is, the noise is made by an all-powerful
entity that is bounded only in the amount of noise it is allowed to introduce (the
adversarial noise model subsumes the common noise models of random-error and
burst-error). We say that the corruption rate in the window is c, if the fraction
of corrupted transmissions over the last N time steps is at most c.

3 A Polylogarithmic Sliding Window Coding Scheme

We consider the problem of streaming authentication in the sliding windows
model. In this setting, we have a fixed window size N (assumed to be known
in advance). At each time step, one element expires from this window and one
element arrives.

The idea is the following. The sender maintains blocks of size s of elements
from the current window, which means there are N

s blocks in the window. All
the blocks have the same amount of active elements, except the last block which
may only be partially full, and the first one which may have several elements that
have already expired. When all the elements of the first block have expired we
remove it and re-number the indices; additionally, when the last block becomes
full we introduce a new (empty) block to hold the arriving elements.

When the sender has received an entire block5 from the stream, the block is
encoded using a linear-time error-correcting code [3]. At each time step, one of
the N

s blocks is chosen uniformly at random and the next (unsent) symbol of
the encoded string is communicated over the channel after being encoded via
an error-detection code (this gives us better rate, and maximizes the amount of
decoded information). The protocol is described in Algorithm 1.

We now continue to analyze the properties of Algorithm 1, and show how to
fix its parameters so it will satisfy the conditions of Theorem 1.

Proposition 4. Suppose that the rate of corruptions in the window, for a given
time t, is at most c < 1. Fix a small enough ε > 0. Denote by TOTALk the
number of total transmissions for Bk up to time t; by CORRUPTk the number of
transmissions in Bk up to time t which are corrupted; and by ERRk the number
of errors in Bk up to time t (i.e., corrupted transmissions that were not identified
by the error-detection code BC). Then, for any k ∈ [(1 − c − ε)N

s] the following
holds.

1. (c + ε)Rs ≤ E[TOTALk] ≤ Rs.
2. E[CORRUPTk] ≤ cRs.
3. E[ERRk] ≤ cqRs.
5 We assume only complete blocks, that is, the scheme skips the last block until it

contains exactly s elements. This causes an additional delay of s time slots.

264 R. Gelles, R. Ostrovsky, and A. Roytman

Let the parameters of the protocol c, ε < 1 be fixed. Let s, R ∈ N be such that
s < N . Assume an online (symbol-wise) error-detection code BC with failure
probability q per corrupted symbol. Assume a linear-time error-correction
code ECC() : Σs → Σs/r with a rate r < 1 to be fixed later.

Sender: Maintain blocks Bk of size at most s for 1 ≤ k ≤ � N
s

� + 1; any arriving
element is appended to the last non-empty block.6 If all elements in the first
block expire, add a new (empty) block and remove B1. Reindex the blocks so
that the first block in the window is B1 and the last is B� N

s
�+1.

Maintain a counter countk for each block (initialized to 0 when the block is
added).
foreach time step t do

for j = 1, . . . , R do
Choose k ∈ [N

s
] uniformly at random.

countk ← countk + 1.
Send the next symbol of BC ◦ ECC(Bk) which has not yet been sent
according to countk (send ⊥, if all the symbols were communicated).

end
end

Receiver: The receiver maintains the same partition of the stream into blocks
(with consistent indexing).
foreach time step t do

for j = 1, . . . , R do
Assume the sender, at iteration (t, j), sent a symbol from Bk. Let xk

denote the string obtained by concatenating all the symbols received so
far that belong to the same Bk (preserving their order of arrival).
Let B′

k = ECC−1 ◦ BC−1(xk).
end

end
Output B′

k for any k ∈ [N
s

].
Algorithm 1. Sliding window error-correcting scheme

Proof.

1. Define TOTALk to be the number of times bucket Bk is chosen up to time t
(here, we mean the same bucket of data, regardless of the fact that its index
k is changed over time). Since the number of elements which appear in the
window after Bk is at least N −ks and at most N −(k −1)s, and because Bk

is chosen with probability exactly s
N , we have that E[TOTALk] = Θ(R(N −

ks)· s
N). Specifically, for any k, R(N −ks) s

N ≤ E[TOTALk] ≤ R(N −ks+s) s
N .

The result follows since k ≤ (1 − c − ε)N
s .

6 For the very first elements of the stream, we artificially create a window of size N
with, say, all 0’s (as if the scheme had already been running for N time steps) and
similarly divide it up into blocks. This is done to keep notation consistent.

Efficient Error-Correcting Codes for Sliding Windows 265

2. CORRUPTk is the amount of corrupted transmissions in Bk up to time t.
The number of corrupted transmissions in the window is at most cRN ,
and since each transmission has probability s/N of belonging to Bk, we
get E[CORRUPTk] ≤ RcN · s

N = cRs.
3. We use an error-detection code in which any change is caught with probabil-

ity 1 − q but makes an error with probability q. Assuming that the rate of
corruptions in the window is at most c, we have E[ERRk] ≤ cRN ·q· s

N = cqRs.
��

Proposition 5. Suppose the current window’s corruption rate is at most c for
some constant c > 0, and let ε > 0 be any sufficiently small constant. Suppose we
divide up the stream into blocks of size s. Then there exist constants R, q, r, δ =
Oc,ε(1) such that, except with probability N2−Ω(s), Bk is correctly decoded by the
receiver for every k ∈ [(1 − c − ε)N

s].

Proof. We consider the worst-case scenario in which the adversary corrupts a
c-fraction of the transmissions, and moreover all corruptions occur in the last
cRN transmissions (as this simultaneously maximizes the expected number of
corruptions in each block Bk with k ∈ [(1 − c − ε)N

s], since the expected number
of corruptions of such blocks grows with time as long as the block remains in
the window).

For a specific k, the probability of incorrectly decoding block Bk is bounded
by Pr[2ERRk + DELk > (1 − r − δ) s

r]. Here, r and δ are the two parameters
of the error-correction scheme specified in Lemma 3. Namely, 1

r is the overhead
incurred due to encoding each block of size s and δ is a parameter which trades
off error tolerance against alphabet size.

By Proposition 4, we know E[ERRk] = cqRs. Hence, using Chernoff bounds
we know that for any ξ > 0, we have Pr[ERRk ≥ (1 + ξ)E[ERRk]] ≤ e− ξ2

3 cqRs.
Deletions in block Bk come from two sources. The first source, denoted by D1

k,
stems from choosing block Bk less than s/r times (i.e., TOTALk is small). The
second source, denoted by D2

k, comes from the BC code detecting corruptions
(note that DELk = D1

k + D2
k).

Note that D1
k = max (s/r − TOTALk, 0), and in order to make it small

with high probability, we can require E[TOTALk] > s/r. Using Proposition 4,
E[TOTALk] ≥ (c + ε)Rs, thus by choosing R = (1+ξ)

r(c+ε) for some ξ > 0, and
applying Chernoff bounds, we get that

Pr
[
TOTALk ≤ s

r

]
≤ Pr

[
TOTALk <

(
1 − ξ

1 + ξ

)
E[TOTALk]

]
< e− ξ2s

2(1+ξ)r .

Hence, except with exponentially small probability, we know TOTALk ≥ s
r , which

implies that D1
k = 0. Next, observe that ERRk + D2

k = CORRUPTk and that by
Proposition 4 and by applying the Chernoff bound we know that for any ξ > 0,
Pr[CORRUPTk > (1 + ξ)cRs] < e− ξ2

3 cRs.
Putting these bounds together, we know that for any constant ξ > 0,

2ERRk + DELk = ERRk + CORRUPTk ≤ (1 + ξ)cqRs + (1 + ξ)cRs (1)

266 R. Gelles, R. Ostrovsky, and A. Roytman

(except with probability exponentially small in s). As long as this term is smaller
than (1−r−δ) s

r , then by Lemma 3 block Bk will be decoded correctly. Recalling
that we set R = (1+ξ)

r(c+ε) and substituting into the right-hand side of Eq. (1), we
get the following constraint on r:

r ≤ 1 − δ − c

c + ε
(1 + ξ)2(1 + q). (2)

Hence, for any constant rate 0 < r < 1 − c
c+ε , we can always choose sufficiently

small constants δ, q, ξ = Oc,ε(1) so that the constraint in Eq. (2) is satisfied.
So far we have only argued that we can decode one block Bk correctly except

with probability exponentially small in s. We simply apply the union bound to
get that, except with probability N2−Ω(s), every block Bk for k ∈ [(1 − c − ε)N

s]
can be decoded correctly. ��

Hence, with very high probability, we are able to guarantee that the entire prefix
of the window can be decoded correctly at each time step. We now seek to analyze
the efficiency of our scheme.

Proposition 6. For any time t, the time complexity of Algorithm 1 is O(1)
(amortized) for the sender, and O(s) for the receiver.

Proof. Omitted. ��

Finally, we set s = ω(log N) and obtain Theorem 1 immediately from Propo-
sition 5 and Proposition 6.

Memory Consumption. We now consider the memory requirements of the sender
and receiver. We focus on the space required for the “work” memory, which we
consider to be any memory required to perform computation that is separate
from the space for input, output, and randomness bits.

It is easy to see that, in our scheme, both the sender and receiver take linear
space O(N). For the sender, we obtain a matching Ω(N) lower bound: consider
the case that the channel is completely “jammed” between time 0 and cN (each
symbol is replaced with a random symbol), and then no more errors happen until
time N . Since the noise rate in the first window is c, we expect the decoder to
correctly output elements a1, . . . , a(1−c)N at time N . Since no information passed
through the channel until time cN , at that time, the sender must possess (at
least) the information a1, . . . , acN , thus his memory is lower bounded by cN =
Ω(N).

As for the decoder, technically, the size of the output memory must be Ω(N)
in order to decode a prefix of the window. However, if we wish to obtain a lower
bound on the decoder’s “work” memory, we note the following. In order for the
decoder to guarantee at most a negligible probability of failure, the decoder’s
“work” memory must be ω(log N). Otherwise, the decoder can save at most
O(log N) transmissions, where a proportion c of them is corrupt in expectation.
Regardless of the coding used for these elements, it would fail with non-negligible
probability. Closing the memory-gap for the decoder is left for further research.

Efficient Error-Correcting Codes for Sliding Windows 267

Effective Window. Since the decoder is able to decode a (1 − c − ε)-prefix of the
current window, we can think of him as effectively decoding, at each time t a
sliding window of size N ′, where N ′ = (1 − c − ε)N , whose start point is the
same as the real window. The effective window ends cN time steps before the
real window of the stream, which is precisely why the delay of our scheme is cN .

4 Conclusions and Open Questions

We have shown an efficient (polylogarithmic-time) coding scheme for data
streams in the sliding window model. Somewhat surprisingly, while solving a
problem in the sliding window model is usually a more difficult task than in
the unbounded model, the case of communicating a stream in the sliding win-
dow model is simpler than the unbounded case. This allows us to improve on
the methods built for the unbounded case [1] and achieve a more simple and
efficient scheme for sliding windows.

While standard error-correcting schemes can resist a noise rate of at most 1/2
(in one window), our scheme allows any error rate less than one at the cost of
requiring the parties to pre-share some randomness before running the scheme.
Our scheme is also advantageous in terms of delay.

While we aimed at achieving a constant-rate scheme, we have not analyzed
the minimal possible rate as a function of the noise (R is clearly lower bounded
by 1/(1 − c)). Achieving an efficient scheme with optimal rate remains as an
open question.

Finally, we mention that we can obtain a scheme that assumes no shared
randomness, if we restrict the error rate up to 1/2, and assume an additive
(a.k.a. oblivious) adversary. Here, the channel fixes an error string to be added
to the transmitted codeword, without seeing the transmitted codeword (though
it can depend on the message and the coding scheme). This is done by employing
the techniques of Guruswami and Smith [4]. Although this construction is some-
what technically involved, there are no novel techniques. We omit the details
due to lack of space. Since the error rate is bounded by 1/2, the only advantage
this scheme has over the naïve approach described in Section 1, is reducing the
delay.

References

1. Franklin, M., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for stream-
ing authentication and interactive communication. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 258–276. Springer, Heidelberg
(2013)

2. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive com-
munication. In: FOCS 2011, pp. 768–777 (2011)

3. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Trans. on Information Theory 51(10), 3393–3400 (2005)

4. Guruswami, V., Smith, A.: Codes for computationally simple channels: Explicit
constructions with optimal rate. In: FOCS 2010, pp. 723–732 (2010)

268 R. Gelles, R. Ostrovsky, and A. Roytman

5. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Large-scale DNA se-
quence analysis in the cloud: a stream-based approach. In: Alexander, M., et al.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 467–476. Springer, Heidelberg
(2012)

6. Langberg, M.: Private codes or succinct random codes that are (almost) perfect.
In: FOCS 2004, pp. 325–334. IEEE Computer Society, Washington, DC (2004)

7. Lipton, R.: A new approach to information theory. In: Enjalbert, P., Mayr,
E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 699–708. Springer,
Heidelberg (1994)

8. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005)

9. Munir, S., Lin, S., Hoque, E., Nirjon, S., Stankovic, J., Whitehouse, K.: Addressing
burstiness for reliable communication and latency bound generation in wireless
sensor networks. In: IPSN 2010, pp. 303–314 (2010)

10. Schulman, L.J.: Deterministic coding for interactive communication. In: STOC
1993, pp. 747–756 (1993)

11. Schulman, L.J.: Coding for interactive communication. IEEE Transactions on In-
formation Theory 42(6), 1745–1756 (1996)

12. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mo-
bile Computing and Communications Review 5(1), 3–55 (2001), originally appeared
in Bell System Tech. J. 27, 379–423, 623–656 (1948)

13. Shannon, C.E.: A note on a partial ordering for communication channels. Informa-
tion and Control 1(4), 390–397 (1958)

14. Smith, A.: Scrambling adversarial errors using few random bits, optimal informa-
tion reconciliation, and better private codes. In: SODA 2007, pp. 395–404 (2007)

15. Spielman, D.: Computationally efficient error-correcting codes and holographic
proofs. Ph.D. thesis, Massachusetts Institute of Technology (1995)

16. Spielman, D.: Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory 42(6), 1723–1731 (1996)

Integrating UML Composite Structures

and fUML

Alessandro Gerlinger Romero1,�, Klaus Schneider2,
and Mauŕıcio Gonçalves Vieira Ferreira3

1 Brazilian National Institute for Space Research, São Paulo, Brazil
romgerale@yahoo.com.br

2 Department of Computer Science, University of Kaiserslautern, Germany
schneider@cs.uni-kl.de

3 Brazilian National Institute for Space Research, São Paulo, Brazil
mauricio@ccs.inpe.br

Abstract. To cope with the complexity of large systems, one usually
makes use of hierarchical structures in their models. To detect and to
remove design errors as soon as possible, these models must be ana-
lyzed in early stages of the development process. For example, UML
models can be analyzed through simulation using the semantics of a
foundational subset for executable UML models (fUML). However, the
composite structures used to describe the hierarchy of systems in UML
is not covered by fUML. In this paper, we therefore propose a com-
plementary meta-model for fUML covering parts of UML’s composite
structures, and elaborate the rules previously defined in the literature
for static semantics. These rules are described in an axiomatic way us-
ing first-order logic so that a large set of tools can be used for analysis.
Our preliminary evaluation provides results about the applicability of
the meta-model and the soundness of the rules.

Keywords: composite structures, static semantics, formal analysis.

1 Introduction

The modeling of today’s systems requires to cope with their enormous com-
plexity, which has at least two factors: disorder, and variety [12]. For the first
factor, hierarchical structures are frequently used, while analysis is one of the
techniques used to deal with the variety [12]. Models based on the Unified Mod-
eling language (UML) use composite structures [7] to describe the structure of
the systems in a hierarchical way. Furthermore, these models can be analyzed
by simulation using the semantics of a foundational subset for executable UML
models (fUML) [8].

UML composite structure is a fundamental technique to describe systems
of systems with boundaries and connections between them [5]. This notion is

� This work was supported by the Brazilian Coordination for Enhancement of Higher
Education Personnel (CAPES).

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 269–280, 2014.
c© Springer International Publishing Switzerland 2014

270 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

well suited for the definition of the components, which should have an explicit
separation between internal elements, ports (a connection point) describing the
provided features, and ports describing the required features of the environment
[2]. However, fUML excluded the UML composite structures arguing that they
are moderately used, and a straightforward translation is possible from them
into the foundational subset ([8];pp. 20)([10]; pp.19). Moreover, the literature
[2,4,5,6] recognizes the large number of ambiguities that emerges from a use of
the composite structures without a thorough static semantics (context-sensitive
constraints [8]). Although there are indications of how to deal with the integra-
tion of fUML and UML composite structures (see Section 2), the static semantics
of composite structures (using fUML) still remains an open issue.

In fact, precise semantics for composite structures based on fUML is a request
for proposal (RFP) from Object Management Group (OMG; [10]), which solic-
its specifications containing precise semantics for UML composite structures to
enable execution and reduce ambiguities[10].

In this paper, we propose a complementary meta-model for fUML covering
parts of UML composite structures, and elaborate the rules defined in the liter-
ature [2,4] for static semantics. These rules are described using axioms in first-
order logic, what is in accordance with the RFP, which states: new axioms shall
have explicit relationship with fUML base semantics ([10]; pp.22). The current
research paper is not intended to satisfy all requirements from the RFP [10],
and the major contributions of this work are: (1) integration of UML composite
structure and fUML; and, (2) the static semantic rules. The latter is formally
defined in first-order logic allowing advanced analysis and can be applied in
any context where the assumptions and constraints described in Section 4 are
fulfilled.

The remainder of this paper is organized as follows: in Section 2, we consider
related work; in Section 3, the necessary background is presented; in Section 4,
we define the CompositeStructure4fUML meta-model, explore the semantics,
and declare the static semantics rules; in Section 5, we explore an example and
discuss the results. Finally, conclusions are shared in the last section.

2 Related Works

Bock [1] described UML composite structures diagrams and their informal se-
mantics. Equally important, it is stated in that paper that the goal of composite
structures is to describe usages of classes (instances) and associations (links)
in a given context, instead of associating classes globally. Similarly, Oliver and
Luukkala [6] defined that the state space admitted by a composite structure is
smaller than or equal to the state space admitted by classes and their associa-
tions.

Cuccuru et. al. [2] presented an evaluation of semantics for composite struc-
tures to support the request propagation across ports. Ober and Dragomir [4]
refined the evaluation from [2] proposing that ports should be uni-directional
because the bi-directionality raises typing problems.

Integrating UML Composite Structures and fUML 271

Ober et. al. [5] discussed the gap between the expressiveness of UML and the
requirements of the engineers. It is stated that the hierarchical decomposition,
enabled by composite structures, proved to be a central technique for system
modeling. Also, it recognized that ports are used to define simple connection
points, where an incoming request is dispatched to a concrete handler. Never-
theless, UML defines a large number of options for port behavior modification.

Action language for foundational UML (Alf; [9]; see Section 3) has an infor-
mative annex defining a semantic integration with composite structure because
“executable behaviors will often be nested in some way within a component” ([9];
pp. 365). This annex states that associations should be used by internal elements
to access required services on ports, and it does not need associations to support
provided services, which is an issue considering the concept of structure.

In conclusion, to the best of our knowledge, we have not found related work
about the integration of composite structures and fUML on the previous static
semantics rules studied in the literature [2,4,5]. Therefore, we elaborate the pre-
vious works covering issues that emerge from the integration.

3 UML Composite Structures and fUML

UML Composite Structures are “a composition of interconnected elements,
representing run-time instances collaborating over communication links to
achieve some common objective” ([7]; pp. 167). The main concepts in a com-
posite structure are: internal elements, ports, and connectors. Internal elements
are classifiers owned by an encapsulated classifier that can play a role in connec-
tions. Ports define the boundaries for a given classifier; they are defined to act as
a connection point (at boundary) between the encapsulated classifier, its internal
elements, and environment. Connectors are used to connect internal elements,
and ports; a delegation connector is used to connect a port to internal elements,
whereas an assembly connector is used to connect internal elements. In addition,
connectors can be typed by an association, which provides the semantic channel.

fUML is a selection from a part of actions defined in UML (to model behav-
ior), and part of expressiveness of classes (to model structure). The specification
defines four elements for the language: (1) abstract syntax; (2) model library;
(3) execution model; and, (4) base semantics [8]. It does not define a concrete
syntax, so the only notation available for defining user models is the graphical
notation provided by UML, namely activity diagrams, and class diagrams [8].

The abstract syntax is a subset of UML with complementary constraints. The
model library defines primitive types and primitive functions. The execution
model is an interpreter written in fUML (circular definition), which is defined
using core elements from fUML that together form the base UML (bUML).
Base semantics breaks the circular definition of fUML providing a set of axioms
and inference rules that constrains the allowable execution of fUML models.
Base semantics covers elements in bUML, and is defined using Common Logic
Interchange Format (CLIF; [3]).

272 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

Alf is defined by providing a textual concrete syntax for fUML [9]. It is an
action language that includes primitive types, primitive actions, and control flow
mechanisms. Further, the execution semantics of Alf is given by mapping the Alf
abstract syntax to the abstract syntax of fUML.

4 Metamodel - CompositeStructure4fUML

The integration of UML composite structures and fUML can be achieved through
two techniques: (1) Translational or (2) Extensional. Focusing on the abstract
syntax, Fig. 1 shows the relationship between these techniques and meta-models.

Fig. 1. Techniques to integrate UML Composite Structures and fUML

In the translational technique, the complementary meta-elements are trans-
lated into the fUML foundational elements. Therefore, there is no change of the
fUML abstract syntax, and consequently, no change of the semantics. Moreover,
this technique is constrained by the expressiveness of fUML. In contrast, a third
meta-model (ExtendedfUML) is defined in the extensional technique by merging
the models in it. As a result, the fUML abstract syntax is extended, therefore,
its semantics must be reviewed.

Taken CompositeStructure4fUML into account, it can be used with these two
techniques because its semantics is constrained by expressiveness of fUML. The
constraints, requirements and assumptions for CompositeStructure4fUML are
the following:

Constraint 1: One active object cannot access data that is managed by another
active object (shared data between processes are forbidden). The reason for
this constraint is that shared data can easily make systems inconsistent, and
pose challenges to composability.

Constraint 2: The communication between objects cannot be bi-directional.
The reason for this constraint is that the communication is best understood
when the channel is uni-directional. This simplifies the static, and behavioral
analyses, and there is no expressivity loss because a bi-directional channel
can be replaced by two uni-directional channels [4].

Integrating UML Composite Structures and fUML 273

Requirement 1: The semantics of CompositeStructure4fUML must be defined
by fUML. As a result, a translation from CompositeStructure4fUML to
fUML is not needed for simulation purposes.

Requirement 2: A translation from a UML surface (constrained by 1 and 2)
to the CompositeStructure4fUML must be able to automatically generate
predictable behaviors for ports and others elements needed for the semantics.

Assumption 1: Active objects (processes) are solely objects that can exchange
messages asynchronously through signals because of the use of fUML [8].

Assumption 2: Connectors have two end points because connectors with more
than two end points are rarely used (“A connector has two end points”; pp.
258; [5]; pp. 420; [4]) and introduce unnecessary complexity in the static
semantics.

These constraints, requirements and assumptions lead to the definition of the
abstract syntax, the semantics, and formal rules for static semantics.

4.1 Abstract Syntax

The abstract syntax for CompositeStructure4fUML is presented in Fig. 2, where
meta-elements (classes, attributes, and relationships) from UML are included
in the CompositeStructure4fUML through copy (as fUML [8]). The included
elements are marked with part of their qualified name (CompositeStructures).
The following attributes and associations are removed during the definition:

– From Port
– isService - rationale: the goal of the ports is to establish connections be-
tween internal elements and the environment;
– redefinedPort - rationale: port’s redefinitions add significant complexity
and are rarely used by engineers [5];

– From Connector
– contract - rationale: the valid interaction patterns are defined by the fea-
tures of the internal elements or connected ports;
– redefinedConnector - rationale: connector’s redefinitions add significant
complexity and are rarely used by engineers [5].

Ports (from UML) are changed to compute the required and provided features
based on abstract classes instead of interfaces (excluded from [8]). Further, re-
quired and provided features are mutually exclusive, which means: a port defines
provided features through the abstract classes realized by its type1, and the at-
tribute is Conjugated equals to false; or, a port declares required features through
the abstract classes1 realized by its type, and the attribute is Conjugated equals
to true (recall “Constraint 2”). If more than one independently defined feature
have to be exposed by a given port, an abstract class that specializes all desired
features must be defined1.

1 Features defined by abstract classes without receptions and operations are not con-
sidered.

274 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

Fig. 2. Abstract syntax for CompositeStructure4fUML

Embedded Abstract Syntax. The CompositeStructure4fUML’s abstract syn-
tax is formally available through a technique called embedding, where relations
in the abstract syntax are directly embedded in first-order logic [13]. This is in
accordance with the base semantics of fUML [8]. However, the base semantics
does not formalize the static semantics rules because it considers that a given
model is compliant with all constraints imposed by UML and fUML [8]. As the
static semantic rules for CompositeStructure4fUML are not part of fUML or
UML, they can be defined using CLIF through the embedding technique.

Table. 1 shows a part of the abstract syntax representation in CLIF. These
relations are embedded in CLIF using unary and binary relations. Instances
of elements (individuals) use unary relations, e.g. a connector called Connec-
tor1 is declared using (cbuml:Connector Connector1). Attribute definitions are
achieved using binary relations, e.g. to describe that the class Class1 has a con-
nector called Connector1, the predicate (cbuml:ownedConnector Class1 Connec-
tor1) is used. In fact, the meta-elements in Fig. 2 given in gray are embedded in
CLIF. The prefix “buml:” is used to indicate relations that are defined in base
semantics [8] while “cbuml:” is used to indicate relations defined by Compos-
iteStructure4fUML. The prefix “form:” is used to indicate relations introduced
for the formalization.

In summary, CLIF offers the logic syntax, the static semantics rules provide a
set of inference rules and axioms that together with user axioms (describing com-

Integrating UML Composite Structures and fUML 275

Table 1. Part of the embedded abstract syntax for CompositeStructure4fUML

Set Set operations CLIF representation Meta-elements
and relations

T Type
F Feature
C C ⊆ T Classifier
CL CL ⊆ C (buml:Class cl) Class
P P ⊆ F (buml:Property p) Property
CO CO ⊆ F (cbuml:Connector co) Connector
G G = C
 C (buml:general c c) general
OWA OWA = CL
 P (buml:ownedAttribute cl p) ownedAttribute
PT PT = P
 T (buml:type p t) type
CLAB CLAB ⊆ CL (cbuml:isAbstract cl form:true) isAbstract
OWCO OWCO = CL
 CO (cbuml:ownedConnector cl co) ownedConnector

posite structures) form a mathematical theory, which can be used for analysis.
In this paper, the goal is to check if all axioms are consistent.

4.2 Semantics and Formal Rules

The constraints considered to define CompositeStructure4fUML are stated ex-
plicitly if they are not covered by fUML or UML. They are used to reject a
model that is not compliant with them. “Constraint 1” is not covered because
fUML allows the use of operation calls and value accesses between any active
objects. Thus, the following rule is defined:

Rule Constraint 1. It is not allowed to define receptions, and public
operations or public values in same class.

Although all the rules are available [11], only one formalized rule is presented
due to lack of space. The following excerpt shows the formalized version of the
above constraint:

(cl-text Constraint1

(forall (c)

(if

(buml:Class c)

(not (and (exists (r)

(form:owned-reception-general c r))

(or

(exists(a)

(form:owned-attribute-general-visible c a))

(exists(o)

(form:owned-operation-general-visible c o))

))))))

276 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

“Constraint 2” is covered by the definition of required and provided features
for ports (subsection 4.1) and its derivatives are discussed below.

“Requirement 1” leads to the necessity of providing semantics for channels
(connectors in abstract syntax) using the elements in fUML. Furthermore, Alf
[9] suggests that associations should be used to integrate fUML and composite
structures. Thus, associations are the mechanism used to provide semantics for
connectors.

“Requirement 2” demands rules that enables automatic behavior generation
according to the defined semantics as well as generation of the associations de-
fined in the previous paragraph. These rules are grouped as follows: (1) rules
for the constraints and the assumptions, (2) rules about ports, (3) rules about
connectors, (4) rules about type compatibility, and (5) rules about associations.
Groups 1, 2, 3, and 4 are designed to evaluate models in a UML surface (reject-
ing it in case of failure), whereas the group 5 is defined to check the results from
a given translation into CompositeStructure4fUML. Group 1 is defined by the
constraint presented above. In the following, the semantics considered for the
groups 2, 3 and 4 are briefly presented. Afterwards, the rules for each of these
groups are presented and explained, and, finally, the rules for the fifth group are
listed. In the following, brackets are used to indicate values of the attributes.

The evaluation of semantics starts reviewing the concept of uni-directionality,
which is applied to signals perfectly, while is not applicable for operations that
have return values. Indeed, signals can be copied and sent to multiple targets,
whereas operation calls cannot, because the definition of how to deal with mul-
tiple returns is not straightforward. Therefore, connectors that have at least one
end as a port (isBehavior=false, and owning classifier (isActive=false)) must
have multiplicity equals to one in the both ends. The reason is to allow a straight-
forward generation from the port’s behavior. This semantics allows multiplicity
greater than one for active objects or ports (isBehavior=true), and allows multi-
cast for active objects. The behavior that should be generated for port (isBehav-
ior=false) is: (a) active ports implement a classifier behavior that concurrently
awaits for all signals, and for each signal received, a copy is dispatched for all the
associations that connector matches the feature from the signal; (b) for passive
classes, all operations are implemented with a synchronous call to the other end
that satisfies the feature. Ports (isBehavior=false) are transformed in concrete
classes accessed through associations. Public values are not supported in ports.
Accordingly, ports (isBehavior=true) are innocuous because behaviors and as-
sociations are defined and pointed to the owning classifier.

Ports. The concept of required and provided features as well as the related
use of the attribute isConjugated are defined above, so it remains to discuss the
definition of the attribute isBehavior, which is defined by UML ([7]; pp. 186) as
a mark specifying if the requests arriving at this port should be sent to classifier
owning the port, or to internal elements. Under this semantics, and considering
the previous definitions, the following set of rules is defined:

Rule Port 1: All ports (isBehavior=true) must have an abstract class as type;

Integrating UML Composite Structures and fUML 277

– Rule Port 1.1. All ports (isBehavior=true) cannot have assembly con-
nectors to its internal elements;

– Rule Port 1.2. All ports (isBehavior=true, isConjugated=false), a pro-
vided feature, the owning classifier must specialize the port’s type.

– Rule Port 1.3. All ports (isBehavior=true, isConjugated=true), a re-
quired feature, at least, one assembly connector must reach the Port
coming from external elements;

Rule Port 2: All ports (isBehavior=false) must have a concrete class as type;
– Rule Port 2.1. Port (isBehavior=false) must be a specialization from just

one abstract class;
– Rule Port 2.2. Port (isBehavior=false), at least, one delegation connector

must reach it coming from internal elements.
Rule Port 3: All ports in active classes must contain, at least, one reception;
Rule Port 4: All ports in passive classes must contain, at least, one public

operation and no public values.

The last two rules for ports are consequences of “Constraint 1”.

Connectors. Considering the elements that can be linked by connectors, it is
not possible to connect DataTypes because such a connection would mean a
constraint stating that the value would be always equal to the other end of the
connection. For that reason, the following rule is defined:

Rule Connector 1. Connectors cannot be connected to a property whose
type is a kind of DataType;

Due to “Constraint 1”, the connectors relating passive classes and active classes
are not allowed (and vice-versa), which generates the Rule Connector 2.

Rule Connector 2. Connectors are not allowed to establish relationships
between classes with different value for the attribute isActive;

The semantics defined restricts the multiplicity of connectors in passive classes,
which generates the rule below.

Rule Connector 3. Connectors relating one or more ports (isBe-
havior=false) from an owning classifier (isActive=false) must have
multiplicity one as lower and upper in the both connector ends;

The rest of the rules in this group covers how connectors can link two ports.

Rule Connector 4. Assembly connectors between two ports must be
defined using complement values for the attribute isConjugated;

Rule Connector 5. Delegation connectors between two ports must be
defined using the same value for the attribute isConjugated.

Connectors and Type Compatibility. The definition of type compatibility
depends on the coverability and predictability of each port:

Definition 1 (Coverability and Predicability). Coverability is satisfied by
a port p if p can communicate with the features in the other ends from its con-
nectors. Predicability is satisfied by a port p, if it is possible to automatically

278 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

generate a predictable behavior to dispatch all requests that can come to p eval-
uating its properties, its connectors, and the other ends.

For the following theorem, we make use of the definitions below:

– P , the set of ports;
– PFp, the set of features for a given port p ∈ P ;
– OEApi, i ∈ N, p ∈ P , set of features for each other connector endi owned

by assembly connectors connected to p, when the other end(oe) is a port
(oe ∈ P);

– OEAWIpi, i ∈ N, p ∈ P , set of features for each other connector endi owned
by assembly connectors connected to p, when the other end(oe) is not a port
(oe /∈ P);

– UOEAWIp = ∪iOEAWIpi;
– UOEAp = (∪iOEApi) ∪ UOEAWIp;
– OEDpi, i ∈ N, p ∈ P , set of features for each other connector endi owned

by delegation connectors connected to p, when the other end(oe) is a port
(oe ∈ P);

– OEDWIpi, i ∈ N, p ∈ P , set of features for each other connector endi owned
by delegation connectors connected to p, when the other end(oe) is not a
port (oe /∈ P);

– UOEDWIp = ∪iOEDWIpi;
– UOEDp = (∪iOEDpi) ∪ UOEDWIp;
Based on these, we can prove the following rules that express the intuition

that assembly and delegation have a counterpart effect:

Theorem 1. Coverability and Predictability for a given p ∈ P
– Rule Type 1. Coverability is satisfied if p(isConjugated=false) then (PFp ⊇
UOEAWIp and PFp ⊆ UOEDp).

– Rule Type 2. Coverability is satisfied if p (isConjugated=true) then (PFp ⊆
UOEAp and PFp ⊇ UOEDWIp).

– Rule Type 3. Predicability is satisfied if p (isConjugated=false) then (OEDp

is pairwise disjoint or type of p(isActive=true)).
– Rule Type 4. Predicability is satisfied if p (isConjugated=true) then (OEAp

is pairwise disjoint or type of p(isActive=true)).

Connectors and Associations. The rules related with associations are defined
to verify if the translation process from the UML surface to CompositeStruc-
ture4fUML generates a model that is compliant with the defined semantics, i.e.,
(1) the type of the connector end is a subtype (or the same type) of the asso-
ciation end, (2) the lower from the connector end is greater or equal than the
association end, (3) the upper from the connector end is less or equal to the
association end, (4) navigability is compliant with the ports involved, and (5)
a port (isBehavior=true) cannot be used by the association (in this case, the
association should have as end the owner of the port).

These rules state that the translation should generate associations that must
cover all possible connections between the classes described by the composite
structures assuring that fUML semantics can handle the channels.

Integrating UML Composite Structures and fUML 279

5 Evaluation and Discussion

Fig. 3 shows one of the models used to evaluate the meta-model, and the trans-
lated axioms. It is a component for a player that can be used to define PingPong
systems with two or more players. This model is defined considering the rules
defined by CompositeStructure4fUML, and it satisfies the static semantics rules
without translations. In this case, the internal behavior defined by the classifier
behavior from the class Arm remains untouched when the system of players are
mounted. However, the behavioral definition from the ports can change, e.g. the
topology from players changed so the behavior from ports must be reviewed.
This is the goal of the rules to guarantee that under the above semantics, port’s
behavior generation can be performed, and the resulting behavior is predictable.

Fig. 3. Example of an analyzed Model (user-defined diagrams and translated axioms)

The formalized version of the model (user axioms) is generated using a
MOF2Text (M2T) transformation with some degree of Object Constraint Lan-
guage (OCL) embedded. There are some situations where the transformation
M2T does preprocessing, e.g. counting the connectors end, and comparing num-
bers for multiplicity check.

These models provide empirical evidence indicating that the rules are sound.
Besides, the techniques used to define the rules allow the use of advanced formal
analysis of their completeness and soundness, as well as their redundancy.

The set of rules expresses the definition from composite structures that show
classes and associations in context [1], and it is in accordance with fUML [8]. One
of the benefits of these rules is supporting the evaluation of multiple scenarios
described by composite structures [6].

The current work extends [2] exploring how to handle requests in behavioral
ports for passive objects, and the impacts on the structure of the owning classi-
fier. Concerning the work [4], the rules “Type 1, 2, 3, and 4” are less restrictive
for connectors: it is not mandatory that all provided features should be used by
some other end (Rule 8; [4]; pp. 427). Besides, ports for active objects use copies
to distribute signals to possible multiple ports requiring the same feature, what
is not considered a source of ambiguity in the semantics defined above.

280 A.G. Romero, K. Schneider, and M.G. Vieira Ferreira

6 Conclusion

We have presented a meta-model for the integration of composite structure,
a fundamental technique to handle complexity, and fUML, namely Compos-
iteStructure4fUML. This meta-model enables analysis through simulation (exe-
cution) without compromising the structure. Moreover, we have presented formal
modular rules for static semantics, which can be applied in any context where
the given constraints and assumptions hold.

References

1. Bock, C.: UML 2 Composition Model. Journal of Object Technology 3(10), 47–73
(2004)

2. Cuccuru, A., Gérard, S., Radermacher, A.: Meaningful composite structures. In:
Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 828–842. Springer, Heidelberg (2008)

3. International Organization for Standardization (ISO): Information technology -
Common Logic (CL): a framework for a family of logic-based languages (2007)

4. Ober, I., Dragomir, I.: Unambiguos UML Composite Structures: The OMEGA2
Experience. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 418–430. Springer,
Heidelberg (2011)

5. Ober, I., Ober, I., Dragomir, I., Aboussoror, E.: UML/SysML semantic tunings.
Journal Innovations in Systems and Software Engineering, 257–264 (2011)

6. Oliver, I., Luukkala, V.: On UMLs Composite Structure Diagram. In: 5thWorkshop
on System Analysis and Modelling, SAM (2006)

7. Object Management Group (OMG): Unified Modeling Language Superstructure:
Version: 2.4.1. USA: OMG, 2011 (2011), http://www.omg.org/spec/UML/2.4.1/
(access: April 14, 2013)

8. Object Management Group (OMG): Semantics of a Foundational Subset for
Executable UML Models: Version 1.1 RTF Beta. USA: OMG, 2012 (2012),
http://www.omg.org/spec/FUML/ (access: April 24, 2013)

9. Object Management Group (OMG): Concrete Syntax for UML Action Language
(Action Language for Foundational UML - ALF): Version: 1.0.1 - Beta. USA: OMG,
2013 (2013), http://www.omg.org/spec/ALF/ (access: April 27, 2013)

10. Object Management Group (OMG): Precise Semantics of UML Composite Struc-
tures - Request For Proposal - OMG Document: ad/2011-12-07. USA: OMG,
2013 (2013), http://www.omg.org/cgi-bin/doc?ad/11-12-07/ (access: August
25, 2013)

11. Romero, A., Schneider, K., Ferreira, M.G.V.: Support files (2013),
http://es.cs.uni-kl.de/people/romero/sofsem2014.zip (access: October
14, 2013)

12. Warfield, J.N., Staley, M.M.: Structural thinking: Organizing complexity through
disciplined activity. Journal Systems Research 13, 47–67 (1996)

13. World Wide Web Consortium (W3C): An Axiomatic Semantics for RDF,
RDF-S, and DAML+OIL (March 2001). W3C Note December 18, 2001,
http://www.w3.org/TR/daml+oil-axioms (access: June 23, 2013)

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/ALF/
http://www.omg.org/cgi-bin/doc?ad/11-12-07/
http://es.cs.uni-kl.de/people/romero/sofsem2014.zip
http://www.w3.org/TR/daml+oil-axioms

Deciding the Value 1 Problem for �-acyclic Partially
Observable Markov Decision Processes�

Hugo Gimbert1 and Youssouf Oualhadj2,3

1 LaBRI, CNRS, France
2 Aix-Marseille Université, CNRS, LIF, Marseille, France

3 Université de Mons, Belgium

Abstract. The value 1 problem is a natural decision problem in algorithmic
game theory. For partially observable Markov decision processes with reachabil-
ity objective, this problem is defined as follows: are there observational strategies
that achieve the reachability objective with probability arbitrarily close to 1? This
problem was shown undecidable recently. Our contribution is to introduce a class
of partially observable Markov decision processes, namely �-acyclic partially ob-
servable Markov decision processes, for which the value 1 problem is decidable.
Our algorithm is based on the construction of a two-player perfect information
game, called the knowledge game, abstracting the behaviour of a �-acyclic par-
tially observable Markov decision process M such that the first player has a
winning strategy in the knowledge game if and only if the value of M is 1.

1 Introduction

Partially Observable Markov Decision Processes (POMDP for short). Markov de-
cision processes (MDPs) are well established tool for modelling systems that mix both
probabilistic and nondeterministic behaviours. The nondeterminism models the choices
of the system supervisor (the controller) and the probabilities describe the environment
behaviour. When the system offers full information, it is rather easy for the controller to
make the best choice, this follows from the fact that fully observable MDPs enjoy good
algorithmic properties. For instance ω-regular objectives such as parity objective can
be solved in polynomial time [10,8], as well as quantitative objectives such as average
and discounted reward criterions [11,17]. Moreover, optimal strategies always exist for
any tail winning condition [5,14]. Unfortunately, the assumption that a real life system
offers a full observability is not realistic. Indeed, an everyday system cannot be made
fully monitored because it is either too large (e.g. information system), or implementing
full monitoring is too costly (e.g. subway system), or even not possible (e.g. electronic
components of an embedded system). That is why partially observable Markov deci-
sion processes are a better suited theoretical tool for modelling real life system. In a
POMDP, the state space is partitioned and the decision maker cannot observe the states
themselves but only the partition they belong to also called the observation. Therefore,
two executions that cary the same observations and the same actions are undistinguish-
able for the controller and hence its choice after both execution is going to be the same.

� This work has been supported by the ANR project ECSPER (JC09 472677) and the ARC
project Game Theory for the Automatic Synthesis of Computer Systems.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 281–292, 2014.
c© Springer International Publishing Switzerland 2014

282 H. Gimbert and Y. Oualhadj

In other words the strategies for the controller are mappings from sequences of obser-
vation and actions to actions.

Value 1 Problem. This problem is relevant for controller synthesis: given a discrete
event system whose evolution is influenced by both random events and controllable ac-
tions, it is natural to look for controllers as efficient as possible, i.e. to compute strategies
which guarantee a probability to win as high as possible. As opposed to the almost-sure
problem where the controller is asked to find a strategy that ensures the win with prob-
ability exactly 1. There are toy examples in which an almost-sure controller does not
exist but still there exists controllers arbitrarily efficient, and the system can be con-
sidered as safe. Moreover, in fully observable setting, the value 1 and the almost-sure
winning coincide, this is actually the case for any tail winning condition for simple
stochastic games. This property makes the study of fully observable models way easier
and leads in most cases to decidability. But as we will see later, almost-sure winning
and the value 1 problem do not coincide for POMDPs. Actually, the former problem is
decidable [3,7] while the latter is not.

Related Work. The value one problem has been left open by Bertoni since the
1970’s [1,2]. Recently, we showed that this problem is undecidable for probabilistic
automata [15], this result extends to POMDP because they subsume probabilistic au-
tomata. Since then, much efforts were put into identifying nontrivial decidable families
of probabilistic automata for the value 1 problem. For instance, �-acyclic automata [15],
structurally simple automata [9], and leaktight automata [12]. The common point be-
tween those subclasses is the use of two crucial notions. The first one is the iteration
of actions, this operation introduced in [15] for probabilistic automata and inspired
by automata-theoretic works, describes the long term effects of a given behaviour. The
second one is the limit-reachability. Broadly speaking, limit-reachability, formalises the
desired behaviour of a probabilistic automaton that has value 1. Therefore, the technical
effort in the previously cited papers consists in relating the operation of iteration with
the limit-reachability in a complete and consistent manner. Even though the consistency
can be obtained rather easily, the completeness requires restrictions on the model con-
sidered. This is not surprising since the general case is not decidable. In this work, we
consider POMDP, and identify a subclass for which the value 1 problem is decidable.

Contribution and Result. We extend the decidability result of [15] to the case of
POMDPs. We define a class of POMDPs called �-acyclic POMDPs and we show that
the value 1 problem is decidable for this class.

The techniques we use are new compared to [15]. While in [15] the value 1 problem
for �-acyclic automata is reduced to a reachability problem in a graph, in the present
paper, the value 1 problem for POMDPs is reduced to the computation of a winner in a
two-player game: the two-player game is won by the first player if and only if the value
of the POMDP is 1. While for �-acyclic probabilistic automata the value 1 problem can
be decided in PSPACE, the algorithm for the value 1 problem for �-acyclic POMDP
runs in exponential time. This algorithm is fixed-parameter tractable (FPT) when the
parameter is the number of states per observation.

Deciding the Value 1 Problem for �-acyclic POMDP 283

Even though the class may seem contrived, as the results on probabilistic automata
show, this class is useful from a theoretical point of view in the sense that it allows
the definition of appropriate formal tools. The main technical challenge was to extend
both the notions of iteration and limit-reachability; While in a probabilistic automaton
the behaviour of the controller can be described by a finite word, because there is no
feed back that the controller could use to change its behaviour. This is not anymore
true for a POMDP. The behaviour of the controller is described by a (possibly infi-
nite) tree, in this case the choice of the next action actually depends on the sequence
of observations received. Generalisation from words to trees is in general a nontrivial
step and leads to both algorithmic blowups and technical issues. In our case, the effect
of generalisation is mostly notable in the definition of limit-reachability. As one can
see in Definition 2 limit-reachability expresses two level of uncertainty as opposed to
probabilistic automata where one level is sufficient. The notion of limit-reachability is
carefully chosen so that it is transitive in the sense of Lemma 2 and can be algorithmi-
cally used thanks to Lemma 3. We believe that this definition can be kept unchanged
for handling further more general decidable families of POMDPs.

Outline of the Paper. in Section 2 we introduce POMDPs and related notations. In
Section 3 we introduce the class of �-acyclic POMDPs and state the decidability of the
value 1 problem for �-acyclic POMDPS which is our main theorem, namely Theorem 2.
In Section 4 we define the knowledge game and prove the main result.

See [16] for a full version of the paper.

2 Notations

Given S a finite set, let Δ(S) denote the set of distributions over S, that is the set of
functions δ : S → [0, 1] such that

∑
s∈S δ(s) = 1. For a distribution δ ∈ Δ(S), the

support of δ denoted Supp(δ) is the set of states s ∈ S such that δ(s) > 0. We denote
by δQ the uniform distribution over a finite set Q.

2.1 Partially Observable Markov Decision Process

�

1

3

2

4

b

c

a, 1
4

a, 3
4

a, 3
4

a, 1
4

a

a

b

c

1

3

4

3

O

2

4

aa

a

O′

Fig. 1. Partially observable Markov de-
cision process

Intuitively, to play in a POMDP, the controller
receives an observation according to the initial
distribution then it chooses an action then it re-
ceives another observation and chooses another
action and so on. The goal of the controller is
to maximize the probability to reach the set of
target states T . A POMDP is a tuple M =
(S, A, O, p, δ0) where S is a finite set of states,
A is a finite set of actions, O is a partition of S
called the observations, p : S × A → Δ(S) is a
transition function, and δ0 is an initial distribution
in Δ(S).

284 H. Gimbert and Y. Oualhadj

We assume that for every state s ∈ S and every action a ∈ A the function p(s, a) is
defined, i.e. every action can be played from every state. When the partition described
by O ∈ O is a singleton {s}, we refer to state s as observable. An infinite play in a
POMDP is an infinite word in (OA)ω , and a finite play is a finite word in O(AO)∗. We
denote by Plays the set of finite plays.

Consider the POMDP M depicted in Fig 1. The initial distribution is at random
between states 1 and 3, the play is winning if it reaches �, and the observations are
O = {O, O′, {�}} where O = {1, 3} and O′ = {2, 4}. State � is observable. The
missing transitions lead to a sink and are omitted for the sake of clarity. A possible play
in M is ρ = OaOaO′(aO)ω .

2.2 Strategies and Measure

To play the controller chooses the next action to apply in function of the initial dis-
tribution, the sequence of actions played, and the sequence of observations received
along the play. Such strategies are said to be observational. Formally, an observational
strategy for the controller is a function σ : Plays → A.

Notice that we consider only pure strategies, this is actually enough since in POMDPs
randomized strategies are not more powerful than the pure ones [13,6].

Once an initial distribution δ0 and a strategy σ are fixed, this defines uniquely a
probability measure Pσ

δ0
on S(AS)ω as the probability measure of infinite trajectories

of the Markov chain whose transition probabilities are fixed by δ0, σ and p : S × A →
Δ(S). Using the natural projection π : S(AS)ω → O(AO)ω we extend the probability
measure Pσ

δ0
to O(AO)ω .

We define the random variables Sn, An, and On with values in S, A, and O respec-
tively that maps an infinite play w = s0a1s1a2s2 · · · to respectively the n-th state Sn,
the n-th action An, and the n-th observation On ∈ O such that Sn ∈ On.

2.3 Outcome and Knowledge

Let Q ⊆ S be a subset and a be a letter, we define Acc(Q, a) as the set of states s ∈ S
such that there exists q ∈ Q and p(q, a)(s) > 0.

The outcome of an action a given a subset of states Q is the collection Q·a of subsets
of states that the controller may believe it is in after it has played action a in one of the
states of Q and it has received its observation. Formally,

Q · a = {Acc(Q, a) ∩ O | O ∈ O} .

For a collection of subsets R ⊆ 2S we write: R · a =
⋃

R∈R R · a.
Let w = O0a1O1 · · · anOn ∈ Plays be finite play. The knowledge of the controller

after w has occurred is defined inductively as follows:{
K(δ0, O0) = Supp(δ0) ∩ O0 ,

K(δ0, w) = Acc(K(δ0, O0 · · · an−1On−1), an) ∩ On .

It is a an elementary exercise to show that for every strategy σ, the following holds:

Pσ
δ0(∀n ∈ N, Sn ∈ K(δ0, w)) = 1 . (1)

Deciding the Value 1 Problem for �-acyclic POMDP 285

2.4 Value 1 Problem

In the sequel we will concentrate on reachability objectives, hence when referring to
the value of a POMDP it is implied that the objective is a reachability objective.

Definition 1 (Value). Let M be a POMDP, δ0 ∈ Δ(S) be an initial distribution, and
T ⊆ S be a subset of target states. Then, the value of δ0 in M is:

ValM(δ0) = sup
σ

Pσ
δ0(∃n ∈ N, Sn ∈ T) .

The value 1 problem consists in deciding whether ValM(δ0) = 1 for given M and δ0.

Example 1. The value of the POMDP of Fig 1 is 1 when the initial distribution is uni-
form over the set {1, 3}. Remember that missing edges (for example action c in state 1)
go to a losing sink ⊥, hence the goal of the controller is to determine whether the play
is in the upper or the lower part of the game and to play b or c accordingly. Consider
the strategy that plays long sequences of a2 then compares the frequencies of observing
O and O′; If O′ was observed more than O then with high probability the initial state
is 1 and by playing b state � is reached. Otherwise, with high probability the play is
in 3 and by playing c again the play is winning. Note that the controller can make the
correct guess with arbitrarily high probability by playing longer sequences of a2, but it
cannot win with probability 1 since it always has to take a risk when choosing between
actions b and c. This example shows that the strategies ensuring the value 1 can be quite
elaborated: the choice not only depends on the time and the sequence of observations
observed, but also depends on the empirical frequency of the observations received.

The value 1 problem is undecidable in general, our goal is to extend the result of [15]
and show that the value 1 problem is decidable for �-acyclic POMDP. The idea is to
abstract limit behaviours of finite plays using a finite two-player reachability game on
a graph, so that limit-reachability in the POMDP in the sense of Definition 2 coincides
with winning the reachability game on the finite graph.

The definition of limit reachability relies on the random variable that gives the prob-
ability to be in a set of states T ⊆ S at step n ∈ N given the observations received
along the n − 1 previous steps:

φn(δ, σ, T) = Pσ
δ (Sn ∈ T | O0A1 · · · AnOn) .

Definition 2 (Limit-reachability). Let Q ⊆ S be a subset of states and T be a
nonempty collection of subsets of states. We say that T is limit-reachable from Q if
for every ε > 0 there exists a strategy σ such that:

Pσ
δQ

(∃n ∈ N, ∃T ∈ T , φn(δQ, σ, T) ≥ 1 − ε) ≥ 1 − ε ,

where δQ is the uniform distribution on Q.

The intuition behind this definition is that when T is limit-reachable from Q, then if
the play starts from a state randomly chosen in Q the controller has strategies so that
with probability arbitrarily close to 1 it will know someday according to its observations
that the play is in one of the sets T ∈ T and which set T it is.

286 H. Gimbert and Y. Oualhadj

The following lemma shows that the definition of limit-reachability is robust to a
change of initial distribution as long as the support of the initial distribution is the same.

Lemma 1. Let δ ∈ Δ(S) be a distribution, Q ⊆ S its support, R be a nonempty
collection of subsets of states. Assume that for every ε > 0 there exists σ such that:

Pσ
δ (∃n ∈ N, ∃R ∈ R, φn(δ, σ, R) ≥ 1 − ε) ≥ 1 − ε ,

then R is limit-reachable from δQ.

The above lemma implies that the decision of the value 1 problem depends only on the
support of the initial distribution.

We say that T is observable if it is formed by sets taken from the partition O, i.e.

T =
⋃

O∈O
O∩T �=∅

O .

Limit-reachability enjoys two nice properties. First the value 1 problem can be
rephrased using limit-reachability, second limit-reachability is transitive.

Proposition 1. Assume that T is observable, then ValM(δ0) = 1 if and only if 2T \ ∅
is limit-reachable from Supp(δ0).

Proposition 1 does not hold in the case where the set of target states is not observable.
However there is a computable linear time transformation from a POMDP M to a
POMDP M′ with a larger set of states whose set of target states is observable and such
that a distribution has value 1 in M if and only if it has value 1 in M′. Therefore, our
decidability result holds whether the target states are observable or not.

The proof of Proposition 1 and the above construction are available in the full version
of the paper [16].

Limit-reachability is a transitive relation in the following sense.

Lemma 2 (Limit-reachability is transitive). Let Q be a subset of states and R be a
nonempty collection of subsets. Assume that R is limit-reachable from Q. Let T be a
nonempty collection of subsets of states such that T is limit-reachable from every subset
R ∈ R. Then T is limit-reachable from Q.

See [16] for a detailed proof.

3 The �-acyclic Partially Observable Markov Decision Processes

In this section we associate with every POMDP M a two-player zero-sum game on a
graph GM. The construction of the graph is based on a classical subset construction [4]
extended with an iteration operation.

Deciding the Value 1 Problem for �-acyclic POMDP 287

3.1 Iteration of Actions

Definition 3 (Stability). Let Q ⊆ S be a subset of states and a ∈ A be an action, then
Q is a-stable if Q ⊆ Acc(Q, a).

Definition 4 (a-recurrence). Let Q ⊆ S be a subset of states and a ∈ A be an action
such that Q is a-stable. We denote by M[Q, a] the Markov chain with states Q and
probabilities induced by a: the probability to go from a state s ∈ Q to a state t ∈ Q is
p(s, a)(t). A state s is said to be a-recurrent if it is recurrent in M[S, a].

The key notion in the definition of �-acyclic POMDPs is iteration of actions. Intu-
itively, if the controller knows that the play is in Q then either someday it will receive
an observation which informs him that the play is no more in Q or it will have more and
more certainty that the play is trapped in the set of recurrent states of a stable subset of
Q. Formally,

Definition 5 (Iteration). Let Q be a subset of states, a be an action such that Q ∈ Q ·a
and R be the largest a-stable subset of Q. We define

Q · a =

{
{{a-recurrent states of R}} ∪ (Q · a \ {Q}) if R is not empty

Q · a \ {Q} otherwise .

If Q · a = {Q} then Q is said to be a-stable, equivalently Q is a-stable and all states
of Q are a-recurrent.

We will denote by a the iteration of a and by A the set
{

a | a ∈ A
}

.
The action of letters and iterated letters is related to limit-reachability:

Proposition 2. Let Q ⊆ S and a ∈ A. Assume Q ⊆ O for some O ∈ O. Then Q · a is
limit-reachable from Q. Moreover if Q ∈ Q · a, then Q · a is also limit-reachable from
Q.

Proof. Let ε > 0 and σ be the strategy that plays only a’s. Since Q ⊆ O, Pσ
δQ

(O0 =
0) = 1. By definition of the knowledge K(δQ, O0) = Q thus by definition of Q · a,

Pσ
δQ

(K(δQ, O0aO1) ∈ Q · a) = 1 ,

and according to (1), Pσ
δQ

(S1 ∈ K(δQ, O0aO1) | O0A1O1) = 1 thus

Pσ
δQ

(φ1(δQ, σ, K(δQ, O0aO1) = 1) = 1 ,

and altogether we get

Pσ
δQ

(∃T ∈ Q · a, φ1(δQ, σ, T) = 1) = 1 ,

which proves that Q · a is limit-reachable from Q.
Assume that Q ∈ Q · a. By definition of limit-reachability, to prove that Q · a is

limit-reachable from Q, it is enough to show for every ε > 0,

Pσ
δQ

(
∃n ∈ N, ∃T ∈ Q · a, φn(δQ, σ, T) ≥ 1 − ε

)
≥ 1 − ε . (2)

288 H. Gimbert and Y. Oualhadj

Let R the (possibly empty) largest a-stable subset of Q, and R′ the set of a-recurrent
states in R. Let Stayn(O) be the event

Stayn(O) = {∀k ≤ n, Ok = O} .

The strategy σ plays only a’s thus Pσ
δQ

coincides with the probability measure of the
Markov chain M[S, a]. Almost-surely the play will stay trapped in the set of a-recurrent
states. Thus by definition of R′,

(R′ = ∅) =⇒
(
Pσ

δQ
(Stayn(O)) −−−−→

n→∞ 0
)

(3)

(R′ �= ∅) =⇒ Pσ
δQ

(Sn ∈ R′ | Stayn(O)) −−−−→
n→∞ 1 . (4)

Now we complete the proof of (2). According to (4) if R′ �= ∅ there exists N ∈ N
such that Pσ

δQ

(
SN ∈ R′ | StayN (O)

)
≥ 1 − ε, thus

(R′ �= ∅) =⇒ Pσ
δQ

(
φN (δQ, σ, R′) ≥ 1 − ε | StayN (O)

)
= 1 . (5)

On the other hand if the play is in Stayn(O) and not in Stayn+1(O) it means the
controller receives for the first time at step n + 1 an observation On+1 which is not
O. Since Q ⊆ O it means the play has left Q thus K(δQ, O0aO1 · · · On) = Q and
K(δQ, O0aO1 · · · OnaOn+1) = K(δQ, QaOn+1) ∈ Q ·a\{Q}, thus for every n ∈ N,

Pσ
δQ

(
∃T ∈ Q · a \ {Q}, φn(δQ, σ, T) = 1 | Stayn(O) ∧ ¬Stayn+1(O)

)
= 1. (6)

Taking (5) and (6) together with the definition of Q · a proves (2). ��

3.2 �-acyclic POMDP

The construction of the knowledge graph is based on a classical subset construction (see
e.g. [4]) extended with the iteration operation.

Definition 6 (Knowledge graph). Let M be a POMDP, the knowledge graph GM of
M is the labelled graph obtained as follows:

– The states are the nonempty subsets of the observations:
⋃

O∈O 2O \ ∅.
– The triple (Q, a, T) is an edge if T ∈ Q · a and the triple (Q, a, T) is an edge if

Q ∈ Q · a and T ∈ Q · a.

Example 2. In Fig 2(a) is depicted a POMDP where the initial distribution is at random
between states s and q. The states �, ⊥, t are observable and O = {s, q}. In Fig 2(b) is
the knowledge graph associated to it.

Definition 7 (�-acyclic POMDP). Let M be a POMDP and GM the associated knowl-
edge graph. M is �-acyclic if the only cycles in GM are self loops.

This condition may seem very restrictive, nevertheless, it does not forbid cycles in
the transition graph see e.g. [15] for an example. Of course one can check whether a
POMDP is �-acyclic or not in exponential time. The main result of the paper is:

Theorem 1. The value 1 problem is decidable for �-acyclic POMDPs. The complexity
is polynomial in the size of the knowledge graph, thus exponential in the number of
states of the POMDP and fix-parameter tractable with parameter maxO∈O |O|.

Deciding the Value 1 Problem for �-acyclic POMDP 289

s q

t

⊥

�
a

a, 1
2a, 1

2

b

c

c

b

b, c

a, b, c

a, b, c

s q

a

a,a, 1
2

b

b, c

O

(a) A �-acyclic POMDP

{s, q}

{t}{s}

{�}{⊥}

a

a, a�
a�

bcb c

b, c b, c

a, b, c

a�, b�, c�
a, b, c

a�, b�, c�

(b) The knowledge graph

Fig. 2. A POMDP and its knowledge graph

4 Deciding the Value 1

In this section we show that given a POMDP M and its knowledge graph GM there
exists a two-player (verifier and falsifier) perfect information game played on GM where
verifier wins if and only if ValM = 1.

4.1 The Knowledge Game

We first explain how to construct the game and how it is played. Let M be a POMDP
and GM be the knowledge graph associated to M. Starting from a vertex Q, the knowl-
edge game is played on GM as follows:

– Verifier either chooses an action a ∈ A or if Q ∈ Q · a she can also choose an
action a ∈ A ,

– falsifier chooses a successor R ∈ Q · a and R ∈ Q · a in the second case,
– the play continues from the new state R.

Verifier wins if the game reaches a subset R ⊆ T of target states.

Definition 8 (�-reachability). A nonempty collection of subsets R is �-reachable from
a subset Q if there exists a strategy for verifier to reach one of the subsets R ∈ R
against any strategy of falsifier in the knowledge game.

Example 3. In the POMDP of Fig 2, assume that the initial distribution δ0 is at random
between state s and q. The value of the initial distribution is 1 because the controller
can use the following strategy. Play long sequences of a and if the only observation
received is O, with probability arbitrarily close to 1 the play is in state s otherwise with
high probability the play would have moved to state q. On the other hand, verifier has a

290 H. Gimbert and Y. Oualhadj

strategy to win from {s, q} in the knowledge game. This strategy consists in choosing
action a from the initial state, then playing action c if falsifier’s choice is {t} and action
b if falsifier’s choice is {s}.

4.2 Proof of Theorem 1

The proof of Theorem 1 is split into Proposition 3 and Proposition 4. The first proposi-
tion shows that if verifier has a winning strategy in the knowledge game GM, then the
value of the POMDP M is 1. Proposition 3 holds whether the POMDP is �-acyclic or
not.

Proposition 3. Let M be a POMDP with initial distribution δ0 and let Q = Supp(δ0).
Assume that for every observation O ∈ O such that O ∩ Q �= ∅, verifier has a winning
strategy in GM from O ∩ Q. Then ValM(δ0) = 1.

Proof. Let σM be the winning strategy of the verifier and T = 2T \ ∅. The proof is by
induction on the maximal number of steps before a play consistent with σM reaches T
starting from Q ∩ O for all observations O such that Q ∩ O �= ∅.

If this length is 0 then Supp(δ0) ⊆ T thus ValM(δ0) = 1.
Otherwise for every observation O such that Q ∩ O �= ∅, let aO = σM(Q ∩ O).

Then by induction hypothesis, from every R ∈ Supp(Q ∩ O) · aO, ValM(δR) = 1.
Given ε > 0, for every R ∈ Supp((Q ∩ O) · aO) let σR a be strategy in the POMDP
to reach T from δR with probability at least 1 − ε. Let σ be the strategy in the POMDP
that receives the first observation O, plays aO, receives the second observation O1 then
switches to σK(δ0,O0aOO1).

By choice of σR, for every state r ∈ R, the strategy σR guarantees to reach T from
δ{r} with probability at least 1 − |R| · ε thus σ guarantees to reach T from δ0 with
probability at least 1 − |Q| · ε. Since this holds for every ε, ValM(δ0) = 1. ��

While it is not too difficult to prove that if verifier wins GM then ValM = 1, the
converse is much harder to establish, and holds only for �-acyclic POMDPs.

Proposition 4. Let M be a �-acyclic POMDP and δ0 be an initial distribution and
denote Q = Supp(δ0). Assume that ValM(δ0) = 1 then for every observation O ∈ O
such that O ∩ Q �= ∅, verifier has a winning strategy in GM from O ∩ Q.

Lemma 3. Let Q be a subset such that Q ⊆ O for some observation O ∈ O. Assume
that a nonempty collection of subsets of states T is limit-reachable from Q, then either
Q ∈ T or there exists a nonempty collection of subsets of states R such that:

i) Q �∈ R,
ii) R is �-reachable from Q,

iii) T is limit-reachable from every subset in R.

Proof. If Q ⊆ T for some T ∈ T , then there is nothing to prove. Assume the contrary.
Since T is limit-reachable from Q, for every n ∈ N there exists a strategy σn such that:

Pσn

δQ

(
∃m ∈ N, ∃T ∈ T , φm(δQ, σn, T) ≥ 1 − 1

n

)
≥ 1 − 1

n
. (7)

Deciding the Value 1 Problem for �-acyclic POMDP 291

Let πn = Oan
1 Oan

2 O · · · the unique play consistent with the strategy σn such that

the observation received all along πn is O and let πm
n = Oa

(n)
1 O · · · a

(n)
m O. Let AQ ={

a ∈ A | (Q ∈ Q · a) ∧ (Q · a = {Q})
}

and let dn = min
{

k | σn(πk
n) �∈ AQ

}
with

values in N ∪ {∞} and denote (un)n∈N the sequence of words in A∗ such that: un =
a

(n)
1 · · · a

(n)
dn−1.

We need the following preliminary result: there exists η > 0 such that for every
n ≥ 0

Pσn

δQ
(∀m < dn, ∀T ∈ T , φm(δQ, σn, T) ≤ 1 − η) = 1 . (8)

As a consequence of (8), it is not possible that for infinitely many n, dn = ∞
otherwise (8) would contradict (7). We assume wlog (simply extract the corresponding
subsequence from (σn)n) that dn < ∞ for every n thus all words un and plays πdn

n

are finite Since A is finite we also assume wlog that σn(πdn
n) is constant equal to some

action a ∈ A\AQ. Since a �∈ AQ then either Q �∈ Q ·a or Q ∈ Q ·a and Q ·a �= {Q}.
In the first case let R = Q · a and in the second case let R = Q · a.

We show that R satisfies the constraints of the lemma.
i) holds because a �∈ AQ and by definition of AQ, ii) holds because either R = Q ·a

or R = Q · a hence playing a or a is a winning strategy for Verifier.
The proof of iii) is fairly technical and is omitted due to pages restriction, see [16]

for a complete proof. ��

Proof (Proposition 4). Let M be a �-acyclic POMDP and δ0 be an initial distribu-
tion. Assume that Val(δ0) = 1 then by Proposition 1 we know that T = 2T \ ∅ is
limit-reachable from Supp(δ0), using the sequence of strategies (σn)n∈N. Thanks to
Lemma 3, we construct a winning strategy for verifier from Supp(δ0): when the current
vertex Q is not in T , compute R given by Lemma 3 and play a strategy to reach one
of the vertices R ∈ R. Because of condition i) of Lemma 3, a play consistent with this
strategy will not reach twice in a row the same vertex until the play reaches some vertes
T ∈ T . Since M is �-acyclic, the only loops in GM are self loops and as a consequence
the play will necessarilly end up in T . ��

Proposition 3 and Proposition 4 lead the following theorem:

Theorem 2. Given a �-acyclic POMDP M and an initial distribution δ0. Verifier has
a winning strategy in the knowledge game GM if and only if ValM(δ0) = 1.

Theorem 1 follows directly from Theorem 2 and from the fact that the winner of a
perfect information reachability game can be computed in quadratic time.

5 Conclusion

We have identified the class of �-acyclic POMDP and shown that for this class the value
1 problem is decidable. As a future research, we aim at identifying larger decidable
classes such that the answer to the value 1 problem depends quantitatively on the transi-
tion probabilities as opposed to �-acyclic POMDPs. This would imply an improvement
in the definition of the iteration operation.

292 H. Gimbert and Y. Oualhadj

References

1. Bertoni, A.: The solution of problems relative to probabilistic automata in the frame of the
formal languages theory. In: Siefkes, D. (ed.) GI 1974. LNCS, vol. 26, pp. 107–112. Springer,
Heidelberg (1975)

2. Bertoni, A., Mauri, G., Torelli, M.: Some recursive unsolvable problems relating to isolated
cutpoints in probabilistic automata. In: Proceedings of the Fourth Colloquium on Automata,
Languages and Programming, pp. 87–94. Springer, London (1977)

3. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic
games with signals. In: LICS, pp. 319–328 (2009)

4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-regular games
of incomplete information. LMCS 3(3) (2007)

5. Chatterjee, K.: Concurrent games with tail objectives. Theor. Comput. Sci. 388(1-3),
181–198 (2007)

6. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Hliněný,
P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 246–257. Springer, Heidelberg
(2010)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-observable
markov decision processes. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 258–269. Springer, Heidelberg (2010)

8. Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity games. In:
SODA, pp. 121–130 (2004)

9. Chatterjee, K., Tracol, M.: Decidable problems for probabilistic automata on infinite words.
In: LICS, pp. 185–194 (2012)

10. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

11. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc., Orlando
(1970)

12. Fijalkow, N., Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for probabilistic leak-
tight automata. In: LICS, pp. 295–304 (2012)

13. Gimbert, H.: Randomized Strategies are Useless in Markov Decision Processes. Tech-
nical report, Laboratoire Bordelais de Recherche en Informatique - LaBRI (July 2009),
http://hal.archives-ouvertes.fr/hal-00403463

14. Gimbert, H., Horn, F.: Solving simple stochastic tail games. In: SODA, pp. 847–862 (2010)
15. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and undecidable

problems. In: ICALP (2), pp. 527–538 (2010)
16. Gimbert, H., Oualhadj, Y.: Deciding the Value 1 Problem for #-acyclic Partially Observable

Markov Decision Processes. Technical report, Laboratoire Bordelais de Recherche en Infor-
matique - LaBRI, Laboratoire d’Informatique Fondamentale de Marseille - LIF (July 2013),
http://hal.archives-ouvertes.fr/hal-00743137

17. Putterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, New York (1994)

http://hal.archives-ouvertes.fr/hal-00403463
http://hal.archives-ouvertes.fr/hal-00743137

Bidimensionality of Geometric

Intersection Graphs

Alexander Grigoriev1, Athanassios Koutsonas2,

and Dimitrios M. Thilikos2,3,
�

1 School of Business and Economics Department of Quantitative Economics,
Maastricht University

2 Department of Mathematics, National and Kapodistrian University of Athens
3 AlGCo Project-Team, CNRS, LIRMM

Abstract. Let B be a finite collection of geometric (not necessarily con-
vex) bodies in the plane. Clearly, this class of geometric objects naturally
generalizes the class of disks, lines, ellipsoids, and even convex polygons.
We consider geometric intersection graphs GB where each body of the
collection B is represented by a vertex, and two vertices of GB are adja-
cent if the intersection of the corresponding bodies is non-empty. For such
graph classes and under natural restrictions on their maximum degree or
subgraph exclusion, we prove that the relation between their treewidth
and the maximum size of a grid minor is linear. These combinatorial
results vastly extend the applicability of all the meta-algorithmic results
of the bidimensionality theory to geometrically defined graph classes.

Keywords: geometric intersection graphs, grid exlusion theorem, bidi-
mensionality.

1 Introduction

Parameterized complexity treats problems as subsets of Σ∗ × N, for some al-
phabet Σ. An instance of a parameterized problem is a pair (I, k) where I is
the main part of the problem description and k is a, typically small, parameter.
A parameterized problem Π is called fixed parameter tractable, if it admits an
FPT-algorithm, namely one that runs in f(k) · nO(1) time, where n = |I|. A
central issue in parameterized complexity is to find which parameterized prob-
lems admit FPT-algorithms and, when this is the case, to reduce as much as
possible the contribution of the function f(·), i.e., their parametric dependance.
FPT-algorithms where f(k) = 2o(k) are called sub-exponential parameterized al-

gorithms. It is known that such an algorithm where f(k) = 2o(
√
k) is unlikely to

� The work of the last author is co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: “Thales. Investing in knowledge society” through the
European Social Fund.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 293–305, 2014.
c© Springer International Publishing Switzerland 2014

294 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

exist for several problems on graphs, even when restricted to sparse graph classes

such as planar graphs [2]. Therefore, a parametric dependance f(k) = 2O(
√
k) is

the best we may expect and this is what we may aim for.
A kernelization algorithm for a parameterized problem Π is one that, in poly-

nomial time, can replace any instance (I, k) with a new equivalent one whose
size depends exclusively on the parameter k. If such an algorithm exists and the
size of the new instance is linear in k, then we say that Π admits a linear kernel.
While the existence of an FTP-algorithm implies the existence of a kernel it is a
challenge to find for which problems such a kernel can be polynomial [1].

Bidimensionality Theory. This theory was initially introduced in [4] as a
general framework for designing parameterized algorithms with sub-exponential
parametric dependance. Moreover, it also provided meta-algorithmic results in
approximation algorithms [5,8] and kernelization [10] (for a survey on bidimen-
sionality, see [3]). To present the consequences and the motivation of our results
let us first give some brief description of the meta-algorithmic consequences of
Bidimensionality theory. For this, we need first some definitions.

A graph invariant is a function pmapping graphs to non-negative integers. For
an graph invariant p, we denote as Πp the associated parameterized problem,
that has as input a pair (G, k), where G is a graph and k is a non-negative
integer, and asks whether p(G) ≤ k (or, alternatively whether p(G) ≥ k). We
also define the graph invariant bg such that given a graph G,

bg(G) = max{k | G contains the (k × k)-grid as a minor}.
Definition 1. Given a graph invariant p we say that Πp is minor-bidimensional
if the following conditions hold:

– p is closed under taking of minors, i.e., for every graph G, if H is a minor
of G, then p(H) ≤ p(G).

– If Lk is the (k × k)-grid, then p(Lk) = Ω(k2).

The main consequences of bidimensionality theory for minor closed invariants
are summarized by the following: Suppose that p is a graph invariant such that
Πp is a minor bidimensional problem. Let also G be a graph class that satisfies
the following property (for a definition of treewidth, tw(G), see Section 2)

∀G∈G tw(G) = O(bg(G)) (1)

and let ΠG
p be the restriction of Πp to the graphs in G, i.e., the problem occurring

if we alter all YES-instance of ΠG
p whose graph is not in G to NO-instances. Then

the following hold

1. if p(G) can be computed in 2O(tw(G)) ·nO(1) steps, then ΠG
p can be solved by

a sub-exponential parameterized algorithm that runs in 2O(
√
k) ·nO(1) steps.

2. if p satisfies some separability property (see [5,8,10] for the precise definition)
and Πp = {(G, k) | ∃S ⊆ V (G) : |S| ≥ k and (G,S) |= ψ} where ψ is a
sentence in Counting Monadic Second Order logic, then Πp admits a linear
kernel, i.e., there exists a polynomial algorithm reducing each instance (G, k)
of Πp to an equivalence instance (G′, k′) where |V (G′)| = O(k) and k′ ≤ k.

Bidimensionality of Geometric Intersection Graphs 295

3. If p satisfies some separability property and is reducible (in the sense this is
defined in [8]), then there is an EPTAS for computing p(G) on the graphs
in G.

According to the current state of the art all above meta-algorithmic results hold
when G excludes graphs with some fixed graph H as a minor. This is due to the
combinatorial result of Demaine and Hajiaghayi in [6], who proved (1) for every
graph G excluding some fixed graph H as a minor. While such graphs are of a
topological nature it remained an interesting question whether the applicability
of the above theory can be extended for geometrically (rather than topologically)
restricted graphs classes.

Our Results. Clearly, any extension of the applicability of bidimensionality
theory on some class G requires a proof that it satisfies property (1). Recently,
a first step to extend meta-algorithmic results for graph classes that are not
topologically restricted was done in [9], where the bidimensionality condition
was used to derive sub-exponential algorithms for H-free unit-disk intersection
graphs and H-free map graphs, where a graph class is H-free if none of its graphs
contains H as a subgraph. However, no meta-algorithmic results were known so
far for more generic classes of geometric intersection graphs, for instance for in-
tersection graphs of polygons. In this paper we vastly extend the combinatorial
results of [9] to more general families of geometric intersection graphs. In partic-
ular, we prove that property (1) holds for several classes of geometric intersection
graphs and open a new direction of the applicability of bidimensionality theory.
Let B be a collection of geometrical objects. We denote by GB the corresponding
intersection graph (for the precise definition, see Section 3). Our results are the
following.

1. Let B be a set of (not necessarily straight) lines in the plane such that for
each C1, C2 ∈ B with C1 �= C2, the set C1 ∩ C2 is a finite set of points and
at most two lines intersect in the same point. Assume also that each line is
intersected at most ξ times. Then tw(GB) = O(ξ · bg(GB)).

2. Let B be a set of ρ-convex bodies (where any two of their points can be
joined by a polysegment of at most ρ − 1 bends that is entirely inside the
body) such that for each B1, B2 ∈ B, if B1 ∩ B2 �= ∅, then the set B1 ∩ B2

has non-empty interior. Let GB be the intersection graph of B and let Δ be
the maximum degree of GB. Then tw(GB) = O(ρ2 ·Δ3 · bg(GB)).

3. Let H be a graph on h vertices, and let B be a collection of convex bodies in
the plane such that for each B1, B2 ∈ B, if B1∩B2 �= ∅, then the set B1∩B2

has non-empty interior. If the intersection graph GB of B is α-fat and does
not contain H as a subgraph, then tw(GB) = O(α6 · h3 · bg(GB)). (Given
a real number α, we call the intersection graph of a collection of convex
bodies α-fat, if the ratio between the minimum and the maximum radius of
a circle where all bodies of the collection can be inscribed, and circumscribed
respectively, is upper bounded by α.)

296 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

Notice that for H-subgraph free unit-disk intersection graphs treated in [9] is a
very special case of the third result (unit-disk graphs are 1-convex and 1-fat).

The paper is organized as follows: In Section 2, we give some basic definitions
and results. In Section 3 we prove the main technical results that are used in
Section 4 for the derivation of its implications in a variety of geometric graph
classes. Section 5 discusses extensions and conclusions of this work. The omitted
proofs are deferred to the complete version of the paper.

2 Definitions and Preliminaries

All graphs in this paper are undirected and may have loops or multiple edges.
If a graph has no multiple edges or loops we call it simple. Given a graph G, we
denote by V (G) its vertex set and by E(G) its edge set. Let x be a vertex or an
edge of a graph G and likewise for y; their distance in G, denoted by distG(x, y)
is the smallest length of a path in G that contains them both. We call part of
a path any sequence of adjacent edges in a given path. For any set of vertices
S ⊆ V (G), we denote by G[S] the subgraph of G induced by the vertices from
S.

Graph Embeddings. We use the term graph embedding to denote a drawing
of a graph G in the plane, where each vertex is associated to a distinct point of
the plane and each edge to a simple open Jordan curve, such that its endpoints
are the two points of the plane associated with the endvertices of this edge. To
simplify the presentation, when not necessary, we do not distinguish between
a vertex of G and the point in the plane representing the vertex; likewise for
an edge of G. Roughly speaking, we often do not distinguish between G and
its embedding. Two edges of an embedding of a graph in the plane cross, if
they share a non-vertex point of the plane. We use the term plane graph for an
embedding of a graph without crossings. A graph is planar if it admits a plane
embedding.

Geometric Bodies, Lines and Polysegments. We call a set of points in the
plane a 2-dimensional geometric body, or simply a 2-dimensional body, if it is
homeomorphic to the closed disk {(x, y)| x2 + y2 ≤ 1}. Also a line is a subset
of the plane that is homeomorphic to the interval [0, 1]. A polysegment C is a
line that is the union of a sequence of straight lines p1p2, p2p3, · · · , pk−1pk in the
plane, where p1 and pk are the endpoints of C. We say that a polysegment C
contains a point pi and joins the endpoints p1, pk, and we refer to the rest points
p2, p3, · · · , pk−1 as bend points of C. The length of a polysegment is defined as
equal to the number of straight lines it contains (i.e., one more than the number
of its bend points). Throughout the paper we assume that a polysegment is not
self-crossing.

Minors and Distance Minors. Given two simple graphs H and G, we write
H � G and call H a minor of G, if H can be obtained from a subgraph of G
by edge contractions (the contraction of an edge e = {x, y} in a graph G is the

Bidimensionality of Geometric Intersection Graphs 297

operation of replacing x and y by a new vertex xe that is made adjacent with
all the neighbors of x and y in G that are different from x and y). Moreover, we
say that H is a contraction of G, if H can be obtained from G by contracting
edges.

Let G be a simple graph. We denote as G� the graph obtained from G by
adding a loop on each of its vertices. We also say that a subset F of E(G�) is
solid, if for every v1, v2 ∈

⋃
e∈F e there is a walk in G� from v1 to v2 consisting

of edges in F and where each second edge is a loop. We define the relation �φ

between two graphs as follows.
Let H and G be simple graphs. Then we write H �φ G, if there is a function

φ : E(G�) → V (H) ∪ E(H) ∪ {�}, such that

(1) for every vertex v ∈ V (H), φ−1(v) is a non-empty solid set,
(2) for every two distinct vertices v1, v2 ∈ V (H), an edge in φ−1(v1) does not

share a common endpoint with an edge in φ−1(v2).
(3) for every edge e = {v1, v2} ∈ E(H) and every edge e′ in φ−1(e), e′ is not a

loop and shares its one endpoint with an edge in φ−1(v1) and the other with
an edge in φ−1(v2).

(4) for every e ∈ E(H), |φ−1(e)| = 1.

The following lemma reveals the equivalence between the relation defined
previously and the minor relation.

Lemma 1. If G and H are graphs, then H �φ G if and only if H is a minor
of G.

Given the existence of a function φ as in the definition above, we say H is
a φ-generated minor of G. Moreover, H is a distance minor of G if H is a
φ-generated minor of G and the following additional condition holds:

(5) for every e1, e2 ∈ E(G) \ φ−1(�), distH(φ(e1), φ(e2)) ≤ distG(e1, e2).

Contractions and c-Contractions. If the definition of the relation �φ is mod-
ified by omitting condition (4) and demanding that φ−1(�) = ∅, then we deal
with the contraction relation and we say that H is a φ-generated contraction of
G. (Note, that condition (4) is not a requirement of the equivalence to the minor
relation – see also the proof of Lemma 1.) Let c be a non negative integer. We
say that H is a c-contraction of G if H is a φ-generated contraction of G and
for all v ∈ V (H), G[φ−1(v)] is a graph of at most c edges.

In this paper we use the alternative, more complicated, definitions of minors
and contractions as they are necessary for the proofs of our results.

Tree-Decompositions and Treewidth. A tree-decomposition of a graph G, is
a pair (T,X), where T is a tree and X = {Xt : t ∈ V (T)} is a family of subsets
of V (G), called bags, such that the following three properties are satisfied:

(1)
⋃

t∈V (T)Xt = V (G),

(2) for every edge e ∈ E(G) there exists t ∈ V (T) such that Xt contains both
ends of e, and

298 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

(3) ∀v ∈ V (G), the set Tv = {t ∈ V (T) | v ∈ Xt} induces a tree in T .

The width of a tree-decomposition is the cardinality of the maximum size
bag minus 1 and the treewidth of a graph G is the minimum width of a tree-
decomposition ofG. We denote the treewidth ofG by tw(G). We say that a graph
H is a partial triangulation of a plane graph G if G is a spanning subgraph of
H and H is plane. The following result follows from [12].

Proposition 1. Let r be an integer. Then, any planar graph with treewidth at
least 4.5 · r contains a partial triangulation of the (r × r)-grid as a contraction.

Lemma 2. Let G be a planar graph and k an integer. If tw(G) ≥ 18 · k then G
contains a (k × k)-grid as a distance minor.

3 Bidimensionality of Line Intersection Graphs

Let B = {B1, . . . , Bk} be a collection of lines in the plane. The intersection graph
GB of B, is a graph whose vertex set is B, and that has an edge {Bi, Bj} (for
i �= j) if and only if Bi and Bj intersect, namely Bi ∩Bj �= ∅.

The following theorem states our main technical result.

Theorem 1. Let B be a set of lines in the plane such that for each C1, C2 ∈ B
with C1 �= C2, the set C1 ∩ C2 is a finite set of points and at most two lines
intersect in the same point. Let also GB be the intersection graph of B and let
ξ = maxC∈B |C ∩

⋃
C′∈B\C C

′|. Then tw(GB) = O(ξ · bg(GB)).

For related results on intersection graphs of collections of lines (also called string
graphs), see [11]. To prove Theorem 1 we will need a series of lemmata.

Lemma 3. Let G be a graph and let H be a c-contraction of G. Then tw(G) ≤
(c+ 1) · (tw(H) + 1)− 1.

Lemma 4. Let G be a graph and let V1, . . . , Vr be a partition of the vertices of
G, such that for each i ∈ {1, . . . , r}, G[Vi] is a connected graph, and for each
i ∈ {1, . . . , r − 1} there exist an edge of G with one endpoint in Vi and one
endpoint in Vi+1. Let also s ∈ V1 and t ∈ Vr. Then G has a path from s to t
with a part P of length at least β − α+ 2, where 1 ≤ α < β ≤ r, so that P does
not contain any edge in G[Vi] for i ∈ {1, . . . , α− 1} ∪ {β + 1, . . . , r}.

Lemma 5. Let A, B, and C be graphs such that B is a ψ1-generated contraction
of A and C is a ψ2-generated minor of A for some functions ψ1 : E(A�) →
V (B) ∪ E(B) and ψ2 : E(A�) → V (C) ∪ E(C) ∪ {�}. If

∀e∈E(C) |ψ−1
2 (e) ∩ ψ−1

1 (E(B))| = 1 (2)

then C is also a minor of B.

Bidimensionality of Geometric Intersection Graphs 299

Uver
i,j

φ(V (Ghor
i,j))

(α(1), α(2))

Uhor
i,j

Fig. 1. An example of the proof of Lemma 6 for c = 5, k = 21, and k′ = 3

Lemma 6. Let G be a connected graph and let H be a c-contraction of G. If G
contains a (k× k)-grid as a distance minor, then H contains a (k′, k′)-grid as a
minor, where k′ = k−1

2(c+1)!+ 1.

Proof. We assume that c is an odd number and equivalently prove the lemma
for k′ = k−1

2c !+ 1.
Let H be a σ-generated contraction of G for some σ : E(G�) → V (H)∪E(H)

such that G[σ−1(v)] is a graph of at most c edges for all v ∈ V (H). Suppose
also that G contains a (k × k)-grid Lk as a distance minor via a function φ :
E(G�) → V (Lk) ∪ E(Lk) ∪ {�}.

We assume that V (Lk) = {1, . . . , k}2 where each (i, j) corresponds to its grid
coordinates. Our target is to prove that the (k′ × k′) grid Lk′ is a minor of H .
We define α : {1, . . . , k′} → {1, . . . , k} such that α(i) = 2(i−1)c+1. Notice that
this definition is possible as 2(k′ − 1)c+ 1 ≤ k. For each (i, j) ∈ {1, . . . , k′}2, we
define a horizontal and a vertical set of vertices in V (Lk),

300 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

Uhor
i,j =

⋃
r∈{α(i)+(c+1)/2,...,α(i+1)−(c+1)/2}

(r, α(j)), (3)

Uver
i,j =

⋃
r∈{α(j)+(c+1)/2,...,α(j+1)−(c+1)/2}

(α(i), r) (4)

and let U be the collection of all sets Uhor
i,j or Uver

i,j defined in (3) and (4). For
every horizontal (resp. vertical) U ∈ U , we denote by E(U) ⊆ E(Lk) the set
containing all horizontal (resp. vertical) edges of Lk with an endpoint in U . We
will prove the following claim:

(∗) Let U1 and U2 be two different sets of U and let e1, e2 be two edges of G such
that φ(ei) ∈ E(Ui) ∪ Ui, for i = {1, 2}. Then, there are no disjoint paths of
length at most c from the endpoints of e1 to the endpoints of e2 in G.

Since Lk is a distance minor of G, it suffices to show that there is no cycle
in Lk, that contains φ(e1) and φ(e2) together with two paths between them of
length at most c. Let us suppose that such a cycle exists. Notice that by the
definition of U , if two vertices x, y of V (Lk) belong to two different sets of U ,
then distLk

(x, y) ≥ c+1. This implies that φ(ei) must be an edge viui of Lk with
only one endpoint, say ui, in Ui, for i = {1, 2}, or else we are done. Likewise, it
holds that distLk

(u1, u2) ≥ c+ 1 and hence one path of length at most c of the
cycle must be from v1 to u2, the other from v2 to u1. It follows, that the edges
v1u1 and v2u2 cannot be both vertical nor horizontal, and all vertices of the two
disjoint paths lie inside the square part of the grid these two edges define. This
contradicts the planarity of the grid, which completes the proof of the claim.

For every i, j ∈ {1, . . . , k′}2 we choose arbitrarily a vertex vi,j from the graph
G[φ−1(α(i), α(j))]. This selection creates a collection of k′ × k′ vertices of G.

For each pair {(i, j), (i+ 1, j)} where (i, j) ∈ {1, . . . , k′ − 1} × {1, . . . , k′}, we
observe that the graph

Ghor
i,j = G[

⋃
i′∈{α(i),...,α(i+1)}

φ−1(i′, α(j))]

is connected, and for every i′ ∈ {α(i), . . . , α(i + 1)} the sets φ−1(i′, α(j)) form
a partition of V (Ghor

i,j) and there is an edge of G between φ−1(i′, α(j)) and

φ−1(i′ + 1, α(j)). From Lemma 4, Ghor
i,j contains a path P hor

i,j from vi,j to vi+1,j

with a part of length at least c + 1 in φ−1(E(Uhor
i,j)) ∪ φ−1(Uhor

i,j). Clearly, one

of the edges in this part of the path, say ehori,j , is an edge of σ−1(E(H)). We

denote by
→
P i,j (resp.

←
P i+1,y) the part of P hor

i,j starting from vi,y (resp. vi+1,y)

and containing only one endpoint of ehori,j .
Working in the same way as before but following the “vertical” instead of

“horizontal” direction, for each pair {(i, j), (i, j+1)} where (i, j) ∈ {1, . . . , k′}×
{1, . . . , k′ − 1}, we define the graph

Gver
i,j = G[

⋃
j′∈{α(j),...,α(j+1)}

φ−1(α(i), j′)]

Bidimensionality of Geometric Intersection Graphs 301

and we find the path P ver
i,j in it starting from vi,j finishing in vi,j+1 and containing

an edge everi,j of σ−1(E(H)) that belongs in φ−1(E(Uver
i,j))∪φ−1(Uver

i,j). As before,
P ver
i,j is decomposed to a path ↓Pi,j (containing vi,j), the edge e

ver
i,j , and the path

↑Pi,j+1 (containing vi,j+1). Let, finally, E
∗ be the set containing each ehorx,y and

each everx,y.
From Lemma 5, to prove that Lk′ is a minor of H , it is enough to define

a function τ : E(G�) → V (Lk′) ∪ E(Lk′) ∪ {�} certifying that Lk′ is a minor
of G in a way that ∀f ∈ E(Lk′) |τ−1(f) ∩ σ−1(E(H)| = 1. For this, for every
(x, y) ∈ {1, . . . , k′} we define Ex,y as the union of the edges and the loops of

the vertices of every path that exists in the set {
←
P x,y,

→
P x,y, ↓Px,y, ↑Px,y} and for

each e ∈ Ex,y we set τ(e) = (x, y). Notice that for every (x, y) ∈ {1, . . . , k′}2,
G[τ−1(x, y)] is the union of a set of paths of G having a vertex in common,
thus it induces a connected subgraph of G. Let now e be an edge of Lk′ . In case
e = {(x, y), (x + 1, y)} (resp. e = {(x, y), (x, y + 1)}), then, by its definition,
the edge ehorx,y (reps. everx,y) connects an endpoint v1 of an edge in τ−1(x, y) (resp.
τ−1(x, y)) with an endpoint v2 of an edge in τ−1(x+ 1, y) (resp. τ−1(x, y + 1)).
In any case, we set τ(v1v2) = e. It follows that τ(E

∗) = E(Lk′). For all edges of
G� whose image has not been defined so far, we set τ(e) = �. It is now easy to
verify that τ is a well-defined function and that Lk′ is a τ -generated minor of G.

Next we prove that ∀f ∈ E(Lk′) |τ−1(f) ∩ σ−1(E(H)| = 1. For this, first of
all notice that, by the definition of τ , all edges in τ−1(E(Lk′)) = E∗ are edges
of σ−1(E(H)). Therefore, it suffices to prove that for each e ∈ E(H), σ−1(e)
contains no more than one edge from E∗. Suppose in contrary that e1, e2 ∈
σ−1(e) ∩ E∗ and e1 �= e2. As σ(e1) = σ(e2) = e, it follows that each ei has an
endpoint wi in σ

−1(w) and an endpoint zi in σ
−1(z), where wz = e. Since each

subgraph G[σ−1(w)] and G[σ−1(z)] is connected, has at most c edges and both
are disjoint, there are two disjoint paths of length at most c in G from w1 to w2

and from z1 to z2, a contradiction to (∗) as e1, e2 ∈ E∗. ��

Lemma 7. Let H1 and H2 be two graphs. Consider a graph G such that H1

is a c1-contraction of G and H2 is a c2-contraction of G. If H1 is planar then
tw(H2) = O(c1 · c2 · bg(H2)) = 36 · (c1 + 1) · (c2 + 1) · [bg(H2)− 1] +O(c1).

Proof. Let H1, H2 be two contractions of G generated by some σi : E(G�) →
V (Hi) ∪ E(Hi), i = 1, 2 respectively. Let r = tw(H2). As G contains H2 as a
contraction, it follows that tw(G) ≥ r. By Lemma 3, tw(H1) ≥ (r + 1)/(c1 +
1) − 1. Since H1 is planar, by Lemma 2, H1 contains Lr′ as a distance minor,
where r′ = 1

18 · (r+1
c1+1 − 1)!. As H1 is a contraction of G, then also G contains

Lr′ as a distance minor. By Lemma 6, H2 contains as a minor an (r′′, r′′)-grid,
where r′′ = r′−1

2(c2+1)!+ 1, as claimed. ��

Proof of Theorem 1. Given a planar drawing of the lines of B, consider any
crossing p, that is a point of the plane that belongs to more than one line. By
the assumptions, p belongs to exactly two lines, say L1, L2 and there is an open
disc D of the plane containing p, but no lines other than L1 and L2 and no other
point that belongs to more than one line. In addition, w.l.o.g. we can always

302 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

assume that p is not an endpoint of L1 or L2; or else we can stretch inside D
the line that ends in p without further altering the setting.

Then, let G1 be the embedding in the plane of a simple graph, in which
all endpoints of lines in B are vertices of G1 and every line L ∈ B is an edge
of G1 joining the two vertices, which are endpoints of L. Note that G1 is not
necessarily plane – in fact, any crossing of two lines in B is as well a crossing of
the corresponding edges of G1.

For every crossing p of two lines L1, L2 in B and hence of the corresponding
edges e1, e2 of G1, we can consider as above an open disc D of the plane in a
way, so that D∩e = ∅ for any edge e ∈ E(G1)\{e1, e2}, the only point in D that
belongs to both edges is p, no vertex of G1 lies in D and all considered discs are
pairwise disjoint. Then, we subdivide e1 and e2 by adding two new vertices x, y
in D \ {p} and we join x and y with a new edge f that lies entirely in the disc
D and meets L1 and L2 only at its endpoints. We denote as M the set of these
new edges. Notice that we can contract the edge f inside the disc D so that
the resulting vertex is the point p, leaving the embedding of the graph outside
D untouched. By doing so for every edge in M , we obtain a planar embedding
of a graph. Let H be this graph and let G be the graph before contracting the
edges inM , i.e., G/M = H . Clearly, H is an 1-contraction of G. Moreover, if we
contract all edges of G that are not in M , we obtain the intersection graph GB.
Since every edge of G1 was subdivided into at most ξ + 1 edges of G, the graph
GB is a (ξ + 1)-contraction of G and the result follows from Lemma 7. ��

4 Modeling Body Intersections by Intersection of
Polysegments

Let B = {B1, . . . , Bk} be a collection of 2-dimensional geometric bodies in the
plane. We assume that if two bodies do intersect each other, then every connected
component of the intersection has a non-empty interior. Our goal is to associate
each geometric body B ∈ B with a polysegment C such that the resulting set
B′ of polysegments conveys all necessary information regarding the disposition
of the bodies in the plane and their intersections.

For every body Bi let us pick a point of the sphere pi that lies in Bi and for
every body Bj intersecting Bi (i �= j) in B, a point pij that lies in Bi ∩ Bj .
We can assume without loss of generality, that these points are pairwise distinct
and that any three of them are not co-linear. We stress that since B is finite this
assumption is safe, because we can always consider an open disc Dp of small
radius around any given point p of the sphere, such that if p lies in a body B
then we can replace B with the possibly expanded body B′ = B ∪ Dp without
altering the intersection graph of B. Let now Pi be the set of all points that
contain the index i in the assigned subscript.

A geometric body B of the sphere is ρ-convex, if for any two points of B there
exists a polysegment of length ρ that lies entirely inside B and its endpoints
are the given two points. Notice, that the definition of a ρ-convex body natu-
rally extends the standard definition of a convex body, which under this new
perspective is also called 1-convex.

Bidimensionality of Geometric Intersection Graphs 303

Lemma 8. For any collection of ρ-convex bodies B on the sphere, there exists
a collection of polysegments B′ and a bijection φ : B → B′, such that two
bodies in B intersect if and only if the corresponding polysegments in B′ intersect.
Moreover, each polysegment C ∈ B′ is crossed by the polysegments from B′ \C at
most ξ = O(ρ2 ·Δ3) times, where Δ is the maximum degree in the intersection
graph GB of B.

Straightforwardly applying Theorem 1 to the sets of polysegments constructed
in Lemma 8, results to the following theorem for ρ-convex geometric bodies.

Theorem 2. Let B be a set of ρ-convex bodies such that for each B1, B2 ∈ B,
if B1 ∩ B2 �= ∅, then the set B1 ∩ B2 has non-empty interior. Let GB be the
intersection graph of B and let Δ be the maximum degree of GB. Then tw(GB) =
O(ρ2 ·Δ3 · bg(GB)).

Given a positive real number α, we define the class of α-fat convex intersection
graphs as the class containing an intersection graphGB of a collection B of convex
bodies, if the ratio between the minimum and the maximum radius of a circle
where all objects in B can be inscribed, and circumscribed respectively, is upper
bounded by α. The following lemma describes the manner in which the convex
bodies of such a collection are being modeled by polysegments.

Lemma 9. Let H be a graph on h vertices and let B be a collection of convex
bodies on the sphere. If the intersection graph of B is α-fat and does not contain
graph H as a subgraph, then there exists a collection of polysegments B′ and
a bijection φ : B → B′ such that two bodies in B intersect if and only if the
corresponding polysegments in B′ intersect. Moreover, each polysegment C ∈ B′

is crossed by the polysegments from B′ \ C at most ξ = O(α6 · h3) times.

Again, by straightforwardly applying Theorem 1 to the sets of polysegments
constructed in Lemma 9, we derive an improved theorem for H-free α-fat convex
intersection graphs of geometric bodies.

Theorem 3. Let H be a graph on h vertices, and let B be a collection of convex
bodies on the sphere such that for each B1, B2 ∈ B, if B1 ∩B2 �= ∅, then the set
B1 ∩B2 has non-empty interior. If the intersection graph GB of B is α-fat and
does not contain H as a subgraph, then tw(GB) = O(α6 · h3 · bg(GB)).

5 Conclusions and Further Research

We believe that the applicability of our combinatorial results is even wider than
what is explained in the previous section. The main combinatorial engine of
this paper is Lemma 7 that essentially induces an edit-distance notion between
graphs under contractibility. This is materialized by the following definition.

Definition 2. Let G1 and G2 be graphs. We define the contraction-edit distance
between G1 and G2, denoted by cdist(G1, G2), as the minimum c for which there

304 A. Grigoriev, A. Koutsonas, and D.M. Thilikos

exists a graph that contains both G1 and G2 as c-contractions. Given a graph G
we define Bc(G) = {H | cdist(G,H) ≤ c}. Finally, given a graph class G, we
define Bc(G) =

⋃
G∈G Bc(G). We refer to the class Bc(G) as the c-contraction

extension of the class G.
A direct consequence of Lemma 7 is the following:

Corollary 1. Let P be the class of planar graphs, then for every fixed constant
c, Bc(P) satisfies (1).

Actually, Corollary 1 can be extended much further than planar graphs. For
this, the only we need analogues of Lemma 2 for more general graph classes.
Using the main result of [7], it follows that Lemma 2 is qualitatively correct for
every graph class that excludes an apex graph as a minor (an apex graph is a
graph that can become planar after the removal of a vertex). By plugging this
more general version of Lemma 2 to the proofs of the previous section we obtain
the following.

Theorem 4. Let H be an apex-minor free graph and let GH be the class of
graphs excluding H as a minor. Then, for every fixed constant c, the class Bc(GH)
satisfies (1).

All the algorithmic applications of this paper follow by the fact that all geo-
metric intersection graph classes considered in this paper are subsets of Bc(P)
for some choice of c. Clearly, Theorem 4 offers a much more wide framework for
this, including graphs of bounded genus (including intersection graphs of lines or
polygons on surfaces), graphs excluding a single-crossing graph, and K3,r-minor
free graphs. We believe that Theorem 4, that is the most general combinatorial
extension of our results may have applications to more general combinatorial ob-
jects than just intersection graph classes. We leave this question open for further
research.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)

2. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. System Sci. 67(4), 789–807 (2003)

3. Demaine, E., Hajiaghayi, M.: The bidimensionality theory and its algorithmic ap-
plications. The Computer Journal 51(3), 292–302 (2007)

4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
Journal of the ACM 52(6), 866–893 (2005)

5. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 590–601. (electronic). ACM, New York (2005)

6. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28(1), 19–36 (2008)

7. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction obstructions for
treewidth. J. Comb. Theory, Ser. B 101(5), 302–314 (2011)

Bidimensionality of Geometric Intersection Graphs 305

8. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EP-
TAS. In: 22nd ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp.
748–759. ACM-SIAM, San Francisco, California (2011)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs.
In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012),
pp. 1563–1575 (2012)

10. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pp. 503–510 (2010)

11. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. CoRR,
abs/1302.7228 (2013)

12. Gu, Q.-P., Tamaki, H.: Improved bounds on the planar branchwidth with respect
to the largest grid minor size. Algorithmica 64(3), 416–453 (2012)

Attack against a Pairing Based Anonymous
Authentication Protocol

Lucjan Hanzlik and Kamil Kluczniak

Faculty of Fundamental Problems of Technology,
Wrocław University of Technology

{firstname.secondname}@pwr.wroc.pl

Abstract. Anonymous authentication protocols aim to provide means to anony-
mously prove membership in a group. Moreover, the membership should not be
transferable i.e. a subgroup of members should not be able to help an outsider to
gain access on behalf of a group. In this note we present two attacks on a recently
published protocol of this kind (ICUIMC ’11 Proceedings of the 5th International
Conference on Ubiquitous Information Management and Communication, article
no. 32) and thereby we show that it failed the security targets for an anonymous
authentication protocol.

Keywords: anonymous authentication, attack, pairing.

1 Introduction

With the growth of technology many new kinds of information systems were created.
There exist systems which can be accessed by anyone and there exist systems which
require the user to authenticate before granting access. There are many ways of authen-
tication such as login and password, asymmetric keys etc. One thing all those methods
have in common is that the system always knows which user is trying to gain access.
This is very convenient when the user accesses his account in the system. However,
there are systems which only verify the users membership in the system e.g. access
to buildings, company resources. Obviously, in such cases, some privacy issues arise
when using those standard authentication methods. Some users do not want the system
to know, how many times and when they accessed it. This issue inspired cryptographers
to create anonymous authentication protocols. The idea is simple. We consider a set of
users (called provers), a group manager and verifiers which verify the membership of
users to a particular group (system), created by the group manager. So, a group manager
is responsible for generating the system parameters, publishing a group verification key
and issuing secret keys. Each prover, having a secret key, may use it to create a proof
for a verifier such that he is certain that the prover is a member of a group which has
access to the system. In addition, a verifier should not be able to tell if two attempts to
access the system were made using the same keys (ie the same prover).

The notion of anonymous authentication protocols, or sometimes called group iden-
tification protocols were first proposed in [1]. Since that time, researchers have studied
the problem of authenticating as member of a group. There are many approaches to

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 306–314, 2014.
c© Springer International Publishing Switzerland 2014

Attack against a Pairing Based Anonymous Authentication Protocol 307

achieve this goals. One of it is using a group signature scheme. In adversity to anony-
mous authentication schemes, a signer can anonymously sign a message on behalf of
the group. The problem of anonymously sign messages were first suggested by Chaum
and van Heyst [2]. By now, group signatures come by a very rich literature, [3,4,5,6,7]
to name only a few, and already cover many interesting problems.

To construct an authentication scheme from any group signature scheme it suffices,
that a prover signs a challenge from a verifier. Another approach is to design a „clean”
authentication scheme. Such schemes appeared in the literature in [8,9,10,11,12]. Un-
fortunately, in all of these schemes the execution time is linear dependent by the number
of group members. This property make these schemes highly impractical, especially for
large groups, or if the proving algorithm has to be implemented on devices with lim-
ited resources (e.g. smart cards). An interesting scheme was proposed in [13] which
execution time and message size is independent of the size of the group. However, the
schemes introduced [13] are in a bit different notion than group signatures or group
authentication schemes, namely it introduces ad hoc anonymous identification. An ad
hoc anonymous identification allows to create new groups in an ad hoc formation in the
sense of ring signatures. The main contribution of [13] was introducing constant size
ring and group signatures supporting efficient identity escrow capabilities. The main
practical problem in [13] is that, when a new user joins a group any group member has
to update their secret keys.

An anonymous authentication protocol have to fulfill some basic requirements. Such
schemes must provide soundness (or unforgeability in case of group signatures),
anonymity and correctness. Roughly speaking, by soundness we mean that the veri-
fier rejects with overwhelming probability when the prover is not a legitimate group
member. By anonymity we mean that no information about the users identity is re-
vealed to the verifier besides that the prover is a group member. To be more specific,
suppose we have two executions of an anonymous authentication protocol, then deter-
mining whether the executions were produced by a single prover or two distinct provers
should be hard. Correctness of an anonymous authentication scheme guaranties that, if a
prover is a member of the group, then a verifier accepts with overwhelming probability.
Other desired features include revocation of a single user, and identity escrow. An very
important property of anonymous authentication protocols is that only a group manager
should be able to add new users to a group. So, we require untransferability of mem-
bership. Practically, this means that a coalition of users (possibly malicious) should not
be able to create secret keys for a new group member. In some articles like [11] this
is called „resilience” or „k-resilience” were k is a threshold number of corrupted users
for which a scheme stays still resilient (i.e. more than k legitimate users are needed to
create a new group member).

Contribution: In this paper we examine the recent work from [14]. The proposed pro-
tocol has the execution time and message size independent of the size of the group.
Moreover, unlike the scheme from [13], group members do not have to update their
keys when a new user joins the group. However, we encountered some design flaws
which allows to perform attacks against the protocol. The first one is a collusion attack
in which two cooperating group members, using their secret keys, are able to com-
pute the group manager’s secret keys. The second attack is against anonymity, where a

308 L. Hanzlik and K. Kluczniak

verifier (or an eavesdropper) can easily determine whether two transcripts were pro-
duced by the same prover or by distinct provers.

Organization of the Paper: First, we give a full description of the protocol from [14]
in section 2. In section 3 we describe a collusion attack against this scheme. Then, we
show how to link two protocol executions of the protocol i.e. we describe an attack
against anonymity. Finally, we give some conclusions and design suggestions.

2 Protocol Description

Designations: We denote asGM the group manager who’s role is to issue secret keys to
group members and public group verification keys. In the original protocol description
in [14] the role of GM is denoted as TTP (Trusted Third Party). However, we want
to stay consistent with other work in this field. We assume also that H is a secure hash
function and || means concatenation of bit strings. The scheme from [14] describes also
a certificate authority denoted as CA. The role of the certificate authority is to issue
certificates on user public keys in order to verify the relevance of a user by the GM .
Suppose thatG is a point on an elliptic curve, then byRx(G) we denote the x coordinate
of that point and by Ry(G) the y coordinate.

Bilinear maps: Let G1, G2 be cyclic groups of prime order q and let e : G1×G1 → G2

be a function with the following properties:

– (bilinearity) For all P ∈ G1, Q ∈ G1 and a, b, c ∈ Zq , we have

e(P a + P b, Qc) = e(P,Q)a·ce(P,Q)b·c

and

e(P a, Qb +Qc) = e(P,Q)a·be(P,Q)a·c,

– (non-degeneracy) For all P,Q ∈ G1, P �= Q we have e(P,Q) �= 1,
– (computability) e can be efficiently computed.

2.1 Setup

The GM chooses a group generator G ∈ G1. Then GM chooses two secret keys
s, kGM ∈ Zq at random, and computes sG, YGM = kGMG. The values G, sG
and YGM are public, while s and kGM are GM ’s secrets. We will denote H0 =
H((Rx(YGM ||Ry(YGM))). The value H0 don’t has to be published since any party
in the system can compute it by itself.

Each user has a private key kU and a corresponding public key YU = kUG. User
public key YU are bounded to a unique identifier IDU with a certificate from CA. We
denote the certificate as certCA(YU , IDU).

Attack against a Pairing Based Anonymous Authentication Protocol 309

2.2 Registration

First, a userU establishes a secure communication channel with theGM . After this step
U sends his certificate certCA(YU , IDU) to the GM . The GM verifies the certificate
and extracts the users public key and identifier. Then it performs the following steps:

1. Selects ωU,1 ∈ Zq randomly,
2. Computes AU := ωU,1G− YU = ωU,1G− kUG,
3. Computes ωU,2 := sωU,1,
4. Computes γU,1 := H0ωU,1 +Rx(AU)kGM ,
5. Computes γU,2 := H0ωU,2 + kGM = H0sωU,1 + kGM ,
6. Stores γU,1, γU,2, AU , YU , ωU,1, ωU,2 and IDU in GM ’s internal database,
7. Sends values AU , γU,1 and γU,2 to user U .

User U can then verify the validity of these values by checking whether the equa-
tions:

γU,1G = H0ωU,1G+Rx(AU)YGM = H0(AU + YU) +Rx(AU)YGM

and
γU,2G = H0sωU,1G+ YGM = H0(sAU + sYU) + YGM

hold.
Note that the user is able to compute sAU by himself. He computes γU,2G =

H0sωU,1G + YGM = H0sAU + H0sYU + YGM . Since H0sYU = kuH0(sG) and
sG is public, we have that sAU = H−1

0 (γU,2G)− YGM −H0sYU .

2.3 Computing of Membership Proof

A verifier sends a random nonceNs and the user U chooses five random values x, t, t1,
x1 and ψ ∈ Zq . Then U computes the following values:

t1G, t2G,
zG, x2 := x · x−1

1 ,
L := xG, sL := x(sG),
L1 := x1G, L2 := x2G,
sL1 := x1(sG), sL2 := x2(sG),
T := ψG, z := t ·Rx(AU),
B := t(AU + T), t2 := t · t−1,
B1 := t1(AU + T), B2 := t2(AU + T),
stT := tψ(sG), sB := tsAU + stT,
sB1 := t1sAU + st1T, sB2 := t2sAU + st2T.

Let M be a message or set of instructions, which user U will send to the verifier.
We define D = (M,L, sL, L1, sL1, L2, sL2, zG, t1G, t2G,B,B1, B2, sB, sB1, sB2).
and the hash of D is computed as:

H(D) := H(H(M)||H(L)||H(sL)||H(L1)||H(sL1)||H(L2)
||H(sL2)||H(zG)||H(t1G)||H(t2G)||H(B)||H(B1)
||H(B2)||H(sB)||H(sB1)||H(sB2)||H(Ns))

310 L. Hanzlik and K. Kluczniak

User U computes the last five values λ1, λ2,1, λ2,2, λ3,1, λ3,2 as follows:

λ1 := γU,1t+H0(ψt− kU t+ xH(D)),
λ2,1 := γU,2t1 +H(D),
λ2,2 := γU,2t2 +H0x2H(D),
λ3,1 := t1(ψ − kU) + x,
λ3,2 := t2(ψ − kU) + x.

Finally U sends the values λ1, λ2,1, λ2,2, λ3,1, λ3,2, L, sL, L1, sL1, L2, sL2, zG,
t1G, t2G, B, B1, B2, sB, sB1, sB2 along with the messageM to the verifier.

2.4 Verification of the Proof

The verifier, holding the values sent by a user U , performs the following steps:

– Computes zYGM := λ1G−H0(B +H(D)L).
– Computes t1YGM and t2YGM as follows:

t1YGM := λ2,1G+ λ3,1sG−H0(sB1 +H(D)L1)− sL
t2YGM := λ2,2G+ λ3,2sG−H0(sB2 +H(D)L2)− sL

– For j = {1, 2} checks whether the discrete logarithm of tjG equals the discrete
logarithm of tjYGM with respect to G:

e(t1YGM , G)
?
= e(YGM , t1G) e(t2YGM , G)

?
= e(YGM , t2G)

– Similarly, verifies the relation between the computed value zYGM and zG sent by
the user.

e(zYGM , G)
?
= e(YGM , zG)

– Then, he verifies whether the discrete logarithm of L is the multiplication of the
discrete logarithms of L1 and L2 with respect to G.

e(L1, L2)
?
= e(L,G)

– Checks the relations:

e(sB,G)
?
= e(B, sG) e(sB1, G)

?
= e(B1, sG)

e(sB1, t2G)
?
= e(sB,G) e(sB2, t1G)

?
= e(sB,G)

e(sL,G)
?
= e(sG,L) e(sL,G)

?
= e(sG,L)

e(sL1, G)
?
= e(sG,L1) e(sL2, G)

?
= e(sG,L2)

– He accepts only if every of the above equations hold and having λ3,1 and λ3,2 the
verifier checks whether the following equations hold

λ3,1sG
?
= sB1 + sL λ3,1sG

?
= L1

λ3,2sG
?
= sB2 + sL λ3,2sG

?
= L2

Attack against a Pairing Based Anonymous Authentication Protocol 311

3 The Flaws and Attacks

In this section we give details about the flaws we found in the design of the examined
protocol. We argue, that those flaws are so significant, that the protocol should never
be implemented since it do not fulfill the basic security requirements for anonymous
authentication schemes namely anonymity and untransferability of group membership.

3.1 Collusion Attack

We investigate the case when two users cooperate. Although, the authors of [14] assume
that only one user can become malicious. This is a very strong assumption and may be
impractical in real world. Note that the below attack also works if one user registers
twice, possible under different identifiers.

Let U1 and U2 be two users registered by theGM . Each of them obtains three values
fromGM . Suppose U1 received:

γU1,1 = H0 · ωU1,1 +Rx(AU1) · kGM ,
γU1,2 = H0 · s · ωU1,1 + kGM

and AU1 .

Note thatH0 is a publicly known value, thus we got two equations with three unknown
variables ωU1,1, s and kGM . This gives us an indefinite system of linear equations.
However, if another user registers into the GM , we get two additional equations

γU2,1 = H0 · ωU2,1 +Rx(AU2) · kGM ,
γU2,2 = H0 · s · ωU2,1 + kGM ,

but only one new unknown variable, namely ωU2,1. Note that AU2 is given to the user
U2 in the registration phase.

So, if these two users collude, then they have enough information to compute the
GM ’s secrets s and kGM , since we get a definitive system of four linear equations
where there are four unknown variables s, kGM , ωU1,1 and ωU2,1.

Computing the private keys of GM obviously corrupts the system totally. Two co-
operating users having these keys can create new identities at will, so even tracking
these „false” identities is highly impractical because of the possible number of identi-
ties which can be created.

3.2 Attack against Anonymity

In this section we explore the possibility to break the anonymity of the scheme presented
in [14]. We will show that there exists an algorithm A that given two transcripts of a
protocol execution can distinguish if they were produced by the same prover. The idea
behind algorithm A is presented in the proof of lemma 1.

Lemma 1. Let

T1 = (λ1, λ2,1, λ2,2, λ3,1, λ3,2, L, sL, sL1, L2, sL2, t1G,
t2G, zG,B, sB,B1, sB1, B2, sB2, Ns, H(D))

T2 = (λ′1, λ
′
2,1, λ

′
2,2, λ

′
3,1, λ

′
3,2, L

′, sL′, sL′
1, L

′
2, sL

′
2, t

′
1G,

t′2G, z
′G,B′, sB′, B′

1, sB
′
1, B

′
2, sB

′
2, N

′
s, H(D′))

312 L. Hanzlik and K. Kluczniak

be two transcripts of executions of the protocol from [14]. There exists an PPT algo-
rithm A that on input:

(H0, G, sG, (λ2,1, sL, t1G,H(D)), (λ′2,1, sL
′, t′1G,H(D′)))

outputs, with overwhelming probability, 1 if T1 and T2 are transcript of communication
between a verifier and the same prover and 0 otherwise.

Proof. We will show the construction of algorithm A. First, it computes:

λ2,1 · sG−H0 ·H(D) · sL =
= γU,2t1sG+H0x1H(D)sG−H0H(D)sx1G
= γU,2t1sG

and

λ′2,1 · sG−H0 ·H(D′) · sL′ =
= γU ′,2t

′
1sG+H0x

′
1H(D′)sG−H0H(D′)sx′1G

= γU ′,2t
′
1sG.

Note that A can compute those values using only the received input. Finally, the algo-
rithm outputs 1 if

e(γU,2t1sG, t
′
1G)

?
= e(γU ′,2t

′
1sG, t1G)

and 0 otherwise. By the bilinearity of the pairing function e this final verification is
equal to:

e(G,G)γU,2t1st
′
1

?
= e(G,G)γU′,2t

′
1st1

Note that this equation is only valid if γU,2
?
= γU ′,2, which implies that U = U ′.

Now, since by lemma 1 there exists such algorithm A, so each verifier can run A
and break the anonymity of any prover in the system. Note that a prover sends the
required, by algorithm A, data while sending the membership proof. In addition, imag-
ine that there is an adversary that eavesdrops on the secure communication between
provers and a verifier, using for example a man-in-the-middle attack. Such an adversary
is therefore able to run algorithm A, since it eavesdrops all necessary input data. There-
fore, such attack cannot only be run by an active adversary in form of the verifier, but
also by a passive adversary which eavesdrops on the communication between provers
and verifiers.

4 Final Comments

4.1 Design Suggestions

The easiest way to secure the scheme against a collusion attack is to store the secret
keys is secure memory (e.g. a Hardware Security Module) and assume that users can-
not access these keys and the authentication algorithm is also executed in a separated
environment. These however, are very strong assumptions which in practice costs addi-
tional infrastructure.

Attack against a Pairing Based Anonymous Authentication Protocol 313

If a secret key issuance procedure, issues keys or part of keys which are linear equa-
tions, then one has to take into account the number of unknown variables issued to new
users. Basically, for each new equation introduced to the system, in order to keep the lin-
ear system indefinite, a new unknown variable has to be introduced as well. There are
security assumption which cover this problem e.g. one-more Diffe-Hellman assump-
tions, [15] for instance. The idea behind such type of assumptions is the following:
even if the adversary is given l distributions of a given type, he is unable to produce
a l + 1 distribution. Note that this simulates the collusion of l users who are trying to
create a new user.

The protection of user identity is a more complex task. Especially, when we use
pairing friendly groups in the system. The use of pairings allows to create new and
interesting protocols which overcome some design problems difficult to solve without
them. However we must remember that in some cases (e.g. type 1 pairing) the Deci-
sional Diffe-Hellman is easy in the underlying group. The authors of [14] used a type 1
pairing and we exploited the symmetry of e (i.e. e(P,Q) = e(Q,P) for all P,Q ∈ G1)
to perform a cross attack against anonymity. We encourage them to look at type 3 pair-
ing functions and the XDH (External Diffe-Hellman) assumption (see [16]). In such a
scenario the pairing function e takes arguments not from one group G1 but from two
different groups G1 and G2. Thus, pairing of type 3 is asymmetric. In addition, if we
assume that the XDH assumption holds (it is suspected that it holds for certain MNT
curves [17]) we may use the assumption that the DDH problem is intractable in G1.

4.2 Conclusion

We have shown flaws in the design of the scheme from [14] and we presented attacks
exploiting them. It follows that the proposed scheme should not be implemented since it
do not fulfill the security requirements for anonymous authentication protocols. We also
described some design suggestions which may help the authors of [14] to fix the flaws
in their construction and maybe produce a secure version of the proposed anonymous
authentication protocol.

Acknowledgments. This work was done as part of the Ventures/2012- 9/4 project
financed by the Foundation for Polish Science.

References

1. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula closure of
SZK. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
SFCS 1994, pp. 454–465. IEEE Computer Society, Washington, DC (1994)

2. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

3. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group sig-
natures without random oracles. Cryptology ePrint Archive, Report 2005/385 (2005),
http://eprint.iacr.org/

http://eprint.iacr.org/

314 L. Hanzlik and K. Kluczniak

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal defini-
tions, simplified requirements, and a construction based on general assumptions. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)

7. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)

8. Handley, B.: Resource-efficient anonymous group identification. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 295–312. Springer, Heidelberg (2001)

9. Jaulmes, É., Poupard, G.: On the security of homage group authentication protocol. In: Syver-
son, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 106–116. Springer, Heidelberg (2002)

10. De Santis, A., Di Crescenzo, G., Persiano, G.: Communication-efficient anonymous group
identification. In: Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security, CCS 1998, pp. 73–82. ACM, New York (1998)

11. Boneh, D., Franklin, M.: Anonymous authentication with subset queries (extended abstract).
In: Proceedings of the 6th ACM Conference on Computer and Communications Security,
CCS 1999, pp. 113–119. ACM, New York (1999)

12. Schechter, S., Parnell, T., Hartemink, A.: Anonymous authentication of membership in dy-
namic groups. In: Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 184–195. Springer,
Heidelberg (1999)

13. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626.
Springer, Heidelberg (2004)

14. Jalal, S., King, B.: A pairing based cryptographic anonymous authentication scheme. In:
Proceedings of the 5th International Conference on Ubiquitous Information Management
and Communication, ICUIMC 2011, pp. 32:1–32:8. ACM, New York (2011)

15. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in
bilinear groups. J. Cryptology 21, 149–177 (2008)

16. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via
keyword-searchable encryption. IACR Cryptology ePrint Archive 2005, 417 (2005)

17. Scott, M., Barreto, P.S.L.M.: Generating more mnt elliptic curves. Des. Codes Cryptogra-
phy 38(2), 209–217 (2006)

Finding Disjoint Paths in Split Graphs�

Pinar Heggernes1, Pim van ’t Hof1, Erik Jan van Leeuwen2, and Reza Saei1

1 Department of Informatics, University of Bergen, Norway
{pinar.heggernes,pim.vanthof,reza.saeidinvar}@ii.uib.no

2 MPI für Informatik, Saarbrücken, Germany
erikjan@mpi-inf.mpg.de

Abstract. The well-known Disjoint Paths problem takes as input a
graph G and a set of k pairs of terminals in G, and the task is to decide
whether there exists a collection of k pairwise vertex-disjoint paths in G
such that the vertices in each terminal pair are connected to each other
by one of the paths. This problem is known to NP-complete, even when
restricted to planar graphs or interval graphs. Moreover, although the
problem is fixed-parameter tractable when parameterized by k due to a
celebrated result by Robertson and Seymour, it is known not to admit
a polynomial kernel unless NP ⊆ coNP/poly. We prove that Disjoint

Paths remains NP-complete on split graphs, and show that the problem
admits a kernel with O(k2) vertices when restricted to this graph class.
We furthermore prove that, on split graphs, the edge-disjoint variant of
the problem is also NP-complete and admits a kernel with O(k3) vertices.
To the best of our knowledge, our kernelization results are the first non-
trivial kernelization results for these problems on graph classes.

1 Introduction

Finding vertex-disjoint or edge-disjoint paths with specified endpoints is one of
the most studied classical and fundamental problems in algorithmic graph theory
and combinatorial optimization, with many applications in such areas as VLSI
layout, transportation networks, and network reliability; see, for example, the
surveys by Frank [9] and by Vygen [24]. An instance of the Vertex-Disjoint

Paths problem consists of a graph G with n vertices and m edges, and a set
X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices in G, called the terminals. The
question is whether there exists a collection P = {P1, . . . , Pk} of k pairwise
vertex-disjoint paths in G such that Pi connects si to ti for every i ∈ {1, . . . , k}.
The Edge-Disjoint Paths problem is defined analagously, but here the task
is to decide whether there exist k pairwise edge-disjoint paths instead of vertex-
disjoint paths.

The Vertex-Disjoint Paths problem was shown to be NP-complete by
Karp [13], one year before Even et al. [8] proved that the same holds for Edge-
Disjoint Paths. A celebrated result by Robertson and Seymour [22], obtained

� This research is supported by the Research Council of Norway.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 315–326, 2014.
c© Springer International Publishing Switzerland 2014

316 P. Heggernes et al.

as part of their groundbreaking graph minors theory, states that the Vertex-

Disjoint Paths problem can be solved in O(n3) time for every fixed k. This im-
plies that Edge-Disjoint Paths can be solved in O(m3) time for every fixed k.
As a recent development, an O(n2)-time algorithm for each of the problems,
for every fixed k, was obtained by Kawarabayashi, Kobayashi and Reed [14].
The above results show that both problems are fixed-parameter tractable when
parameterized by the number of terminal pairs. On the negative side, Bodlaen-
der, Thomassé and Yeo [3] showed that, under the same parameterization, the
Vertex-Disjoint Paths problem does not admit a polynomial kernel, i.e., an
equivalent instance whose size is bounded by a polynomial in k, unless NP ⊆
coNP/poly.

Due to their evident importance, both problems have been intensively studied
on graph classes. A trivial reduction from Edge-Disjoint Paths to Vertex-

Disjoint Paths implies that the latter problem is NP-complete on line graphs.
It is known that both problems remain NP-complete when restricted to planar
graphs [16,17]. On the positive side, Vertex-Disjoint Paths can be solved in
linear time for every fixed k on planar graphs [21], or more generally, on graphs
of bounded genus [7,15]. Interestingly, Vertex-Disjoint Paths is polynomial-
time solvable on graphs of bounded treewidth [20], while Edge-Disjoint Paths

is NP-complete on series-parallel graphs [19], and hence on graphs of treewidth
at most 2. Gurski and Wanke [11] proved that Vertex-Disjoint Paths is NP-
complete on graphs of clique-width at most 6, but can be solved in linear time on
graphs of clique-width at most 2. Natarayan and Sprague [18] proved the NP-
completeness of Vertex-Disjoint Paths on interval graphs, and hence also
on all superclasses of interval graphs such as circular-arc graphs and chordal
graphs. On chordal graphs, Vertex-Disjoint Paths is linear-time solvable for
each fixed k [12].

Given the fact that theVertex-Disjoint Paths problem is unlikely to admit
a polynomial kernel on general graphs, and the amount of known results for both
problems on graph classes, it is surprising that no kernelization result has been
known on either problem when restricted to graph classes. Interestingly, even
the classical complexity status of both problems has been open on split graphs,
i.e., graphs whose vertex set can be partitioned into a clique and an independent
set, which form a well-studied graph class and a famous subclass of chordal
graphs [4,10].

We present the first non-trivial kernelization results for Vertex-Disjoint

Paths and Edge Disjoint Paths on graph classes, by showing that the prob-
lems admit kernels with O(k2) and O(k3) vertices, respectively, on split graphs.
To complement these results, we prove that both problems remain NP-complete
on this graph class. In this extended abstract, the proofs of results marked with
a star are omitted due to page restrictions.

2 Preliminaries

All the graphs considered in this paper are finite, simple and undirected. We
refer to the monograph by Diestel [5] for graph terminology and notation not

Finding Disjoint Paths in Split Graphs 317

defined below. Let G be a graph. For any vertex v in G, we write NG(v) to
denote the neighborhood of v, and dG(v) = |NG(v)| to denote the degree of v.
A split graph is a graph whose vertex set can be partitioned into a clique C and
an independent set I, either of which may be empty; such a partition (C, I) is
called a split partition. Note that, in general, a split graph can have more than
one split partition.

In any instance of Vertex-Disjoint Paths or Edge-Disjoint Paths, we
allow different terminals to coincide. For this reason, by slight abuse of termi-
nology, we define two paths to be vertex-disjoint if neither path contains an
inner vertex of the other. This implies that in any solution P for an instance
of Vertex-Disjoint Paths, a terminal might be an endpoint of several paths
in P , but none of the paths in P contains a terminal as an inner vertex. Note
that edge-disjoint paths are allowed to share vertices by definition. Hence, in any
solution P for an instance of Edge-Disjoint Paths, terminals may appear as
inner vertices of paths in P .

Let (G,X) be an instance of the Vertex-Disjoint Paths problem, where
X = {(s1, t1), . . . , (sk, tk)}. A solution P = {P1, . . . , Pk} for the instance (G,X)
is minimum if there is no solution Q = {Q1, . . . , Qk} for (G,X) such that∑k

i=1 |E(Qi)| <
∑k

i=1 |E(Pi)|. Note that every path in a minimum solution
for (G,X) is an induced path in G.

For any problem Π, two instances I1, I2 of Π are equivalent if I1 is a yes-
instance of Π if and only if I2 is a yes-instance of Π.

A parameterized problem is a subset Q ⊆ Σ∗ × N for some finite alphabet
Σ, where the second part of the input is called the parameter. A parameterized
problem Q ⊆ Σ∗ × N is said to be fixed-parameter tractable if for each pair
(x, k) ∈ Σ∗ × N it can be decided in time f(k) |x|O(1) whether (x, k) ∈ Q, for
some function f that only depends on k; here, |x| denotes the length of input
x. We say that a parameterized problem Q has a kernel if there is an algorithm
that transforms each instance (x, k) in time (|x|+k)O(1) into an instance (x′, k′),
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and |x′| + k′ ≤ g(k) for some
function g. Here, g is typically an exponential function of k. If g is a polynomial
or a linear function of k, then we say that the problem has a polynomial kernel or
a linear kernel, respectively. We refer the interested reader to the monograph by
Downey and Fellows [6] for more background on parameterized complexity. It is
known that a parameterized problem is fixed-parameter tractable if and only if
it is decidable and has a kernel, and several fixed-parameter tractable problems
are known to have polynomial or even linear kernels. Recently, methods have
been developed for proving non-existence of polynomial kernels, under some
complexity theoretical assumptions [1,2,3].

In the NP-completeness proofs in Section 3, we will reduce from a restricted
variant of the Satisfiability (SAT) problem. In order to define this variant,
we need to introduce some terminology. Let x be a variable and c a clause of a
Boolean formula ϕ in conjunctive normal form (CNF). We say that x appears in
c if either x or ¬x is a literal of c. If x is a literal of clause c, then we say that x
appears positively in c. Similarly, if ¬x is a literal of c, then x appears negatively

318 P. Heggernes et al.

in c. Given a Boolean formula ϕ, we say that a variable x appears positively
(respectively negatively) if there is a clause c in ϕ in which x appears positively
(respectively negatively). The following result, which we will use to prove that
Vertex-Disjoint Paths is NP-complete on split graphs, is due to Tovey [23].

Theorem 1 ([23]). The SAT problem is NP-complete when restricted to CNF
formulas satisfying the following three conditions:

– every clause contains two or three literals;
– every variable appears in two or three clauses;
– every variable appears at least once positively and at least once negatively.

3 Finding Disjoint Paths in Split Graphs Is NP-Hard

Lynch [17] gave a polynomial-time reduction from SAT to Vertex-Disjoint

Paths, thereby proving the latter problem to be NP-complete in general.
By modifying his reduction, he then strengthened his result and proved that
Vertex-Disjoint Paths remains NP-complete when restricted to planar
graphs. In this section, we first show that the reduction of Lynch can also be
modified to prove thatVertex-Disjoint Paths is NP-complete on split graphs.
We then prove that the Edge-Disjoint Paths problem is NP-complete on split
graphs as well, using a reduction from the Edge-Disjoint Paths problem on
general graphs.

We first describe the reduction from SAT to Vertex-Disjoint Paths due to
Lynch [17]. Let ϕ = c1∨c2∨ . . .∨cm be a CNF formula, and let v1, . . . , vn be the
variables that appear in ϕ. We assume that every variable appears at least once
positively and at least once negatively; if this is not the case, then we can trivially
reduce the instance to an equivalent instance that satisfies this property. Given
the formula ϕ, we create an instance (Gϕ,Xϕ) of Vertex-Disjoint Paths as
follows.

The vertex set of the graph Gϕ consists of three types of vertices: variable
vertices, clause vertices, and literal vertices. For each variable vi in ϕ, we create
two variable vertices vi and wi; we call (vi, wi) a variable pair. For each clause
cj , we add two clause vertices cj and dj and call (cj , dj) a clause pair. For each
clause cj , we also add a literal vertex for each literal that appears in cj as follows.
If cj contains a literal vi, that is, if variable vi appears positively in clause cj ,
then we add a vertex �+i,j to the graph, and we make this vertex adjacent to

vertices cj and dj . Similarly, if cj contains a literal ¬vi, then we add a vertex �−i,j
and make it adjacent to both cj and dj . This way, we create |cj | paths of length
exactly 2 between each clause pair (cj , dj), where |cj | is the number of literals
in clause cj .

For each i ∈ {1, . . . , n}, we add edges to the graph in order to create ex-
actly two vertex-disjoint paths between the variable pair (vi, wi) as follows. Let
cj1 , cj2 , . . . , cjp be the clauses in which vi appears positively, where j1 < j2 <
· · · < jp. Similarly, let ck1 , ck2 , . . . , ckq be the clauses in which vi appears neg-
atively, where k1 < k2 < · · · < kp. Note that p ≥ 1 and q ≥ 1 due to the

Finding Disjoint Paths in Split Graphs 319

assumption that every variable appears at least once positively and at least
once negatively. We now add the edges vi�

+
i,j1

and �+i,jpwi, as well as the edges

�+i,j1�
+
i,j2
, �+i,j2�

+
i,j3
, . . . , �+i,jp−1

�+i,jp . Let L
+
i = vi�

+
i,j1
�+i,j2 · · · �

+
i,jp−1

�+i,jpwi denote
the path between vi and wi that is created this way. Similarly, we add exactly
those edges needed to create the path L−

i = vi�
−
i,k1
�−i,k2

· · · �−i,jq−1
�−i,jqwi. This

completes the construction of the graph Gϕ.
Let Xϕ be the set consisting of all the variable pairs and all the clause pairs in

Gϕ, i.e., Xϕ = {(vi, wi) | 1 ≤ i ≤ n} ∪ {(cj , dj) | 1 ≤ j ≤ m}. The pair (Gϕ,Xϕ)
is the instance of Vertex-Disjoint Paths corresponding to the instance ϕ of
SAT.

Theorem 2 ([17]). Let ϕ be a CNF formula. Then ϕ is satisfiable if and only
if (Gϕ,Xϕ) is a yes-instance of the Vertex-Disjoint Paths problem.

We are now ready to prove our first result.

Theorem 3. The Vertex-Disjoint Paths problem is NP-complete on split
graphs.

Proof. We reduce from the NP-complete variant of SAT defined in Theorem 1.
Let ϕ = c1 ∨ c2 ∨ . . . ∨ cm be a CNF formula that satisfies the three conditions
mentioned in Theorem 1, and let v1, . . . , vn be the variables that appear in ϕ. Let
(Gϕ,Xϕ) be the instance of Vertex-Disjoint Paths constructed from ϕ in the
way described at the beginning of this section. Now let G be the graph obtained
from Gϕ by adding an edge between each pair of distinct literal vertices, i.e., by
adding all the edges needed to make the literal vertices form a clique. The graph
G clearly is a split graph.

We will show that (G,Xϕ) is a yes-instance ofVertex-Disjoint Paths if and
only if (Gϕ,Xϕ) is a yes-instance of Vertex-Disjoint Paths. Since (Gϕ,Xϕ)
is a yes-instance of Vertex-Disjoint Paths if and only if the formula ϕ is
satisfiable due to Theorem 2, this suffices to prove the theorem.

If (Gϕ,Xϕ) is a yes-instance of Vertex-Disjoint Paths, then so is (G,Xϕ)
due to the fact that G is a supergraph of Gϕ. Hence it remains to prove the
reverse direction. Suppose (G,Xϕ) is a yes-instance ofVertex-Disjoint Paths.
Let P = {P1, . . . , Pn, Q1, . . . , Qm} be a minimum solution, where each path Pi
connects the two terminal vertices in the variable pair (vi, wi), and each path Qj

connects the terminals in the clause pair (cj , dj). We will show that all the paths
in P exist also in the graph Gϕ, implying that P is a solution for the instance
(Gϕ,Xϕ).

The assumption that P is a minimum solution implies that every path in P
is an induced path in G. By the construction of G, this implies that all the inner
vertices of every path in P are literal vertices. Moreover, since the literal vertices
form a clique in G, every path in P has at most two inner vertices.

Let j ∈ {1, . . . ,m}. Since NG(cj) = NG(dj), the vertices cj and dj are non-
adjacent, and Qj is an induced path between cj and dj , the path Qj must have
length 2, and its only inner vertex is a literal vertex. Recall that we only added

320 P. Heggernes et al.

edges between distinct literal vertices when constructing the graph G from Gϕ.
Hence the path Qj exists in Gϕ.

Now let i ∈ {1, . . . , n}. We consider the path Pi between vi and wi. As we
observed earlier, the path Pi contains at most two inner vertices, and all inner
vertices of Pi are literal vertices. If Pi has exactly one inner vertex, then Pi exists
in Gϕ for the same reason as why the path Qj from the previous paragraph exists
in Gϕ. Suppose Pi has two inner vertices. Recall the two vertex-disjoint paths L

+
i

and L−
i between vi and wi, respectively, that were defined just above Theorem 2.

Since vi appears in at most three different clauses, at least once positively and
at least once negatively, one of these paths has length 2, while the other path
has length 2 or 3. Without loss of generality, suppose L+

i has length 2, and let
� denote the only inner vertex of L+

i . Note that both vi and wi are adjacent to
�. Since Pi is an induced path from vi to wi with exactly two inner vertices, Pi
cannot contain the vertex �. From the construction of G, it is then clear that
both inner vertices of Pi must lie on the path L−

i . This implies that L−
i must

have length 3, and that Pi = L
−
i . We conclude that the path Pi exists in Gϕ. ��

We now prove the analogue of Theorem 3 for Edge-Disjoint Paths.

Theorem 4. TheEdge-DisjointPathsproblem isNP-complete on split graphs.

Proof. We reduce from Edge-Disjoint Paths on general graphs, which is well-
known to be NP-complete [16]. Let (G,X) be an instance of Edge-Disjoint

Paths, where X = {(s1, t1), . . . , (sk, tk)}. Let G′ be the graph obtained from
G by adding, for every i ∈ {1, . . . , k}, two new vertices s′i and t′i as well as
two edges s′isi and t′iti. Let X ′ = {(s′1, t′1), . . . , (s′k, t′k)}. Clearly, (G,X) is a
yes-instance of Edge-Disjoint Paths if and only if (G′,X ′) is a yes-instance
of Edge-Disjoint Paths. From G′, we create a split graph G′′ as follows. For
every pair of vertices u, v ∈ V (G) such that uv /∈ E(G), we add to G′ the
edge uv as well as two new terminals suv, tuv. Let G

′′ be the resulting graph,
let Q = {(suv, tuv) | u, v ∈ V (G), uv /∈ E(G)} be the terminal pairs that were
added to G′ to create G′′, and let X ′′ = X ′ ∪ Q. We claim that (G′′,X ′′) and
(G′,X ′) are equivalent instances of Edge-Disjoint Paths.

Since G′′ is a supergraph of G′, it is clear that (G′′,X ′′) is a yes-instance
of Edge-Disjoint Paths if (G′,X ′) is. For the reverse direction, suppose that
(G′′,X ′′) is a yes-instance. For every pair (suv, tuv) ∈ Q, let Puv be unique path
of length 3 in G′′ between suv and tuv, and let P ′ be the set consisting of these
paths. It can be shown that there is a solution P for (G′′,X ′′) such that P ′ ⊆ P .
Note that the paths in P ′ contain all the edges that were added between non-
adjacent vertices in G′ in the construction of G′′. This implies that for every
(s, t) ∈ X ′, the path in P connecting s to t contains only edges that already
existed in G′. Hence P \ P ′ is a solution for the instance (G′,X ′). ��

4 Two Polynomial Kernels

In this section, we present polynomial kernels for Vertex-Disjoint Paths

and Edge-Disjoint Paths on split graphs, parameterized by the number of
terminal pairs.

Finding Disjoint Paths in Split Graphs 321

Before we present the kernels, we introduce some additional terminology. Let
(G,X , k) be an instance of either the Vertex-Disjoint Paths problem or the
Edge-Disjoint Paths problem, where X = {(s1, t1), . . . , (sk, tk)}. Every vertex
in the set {s1, . . . , sk, t1, . . . , tk} is called a terminal. If si = v (resp. ti = v) for
some v ∈ V (G), then we say that si (resp. ti) is a terminal on v; note that,
in general, there can be more than one terminal on v. A vertex v ∈ V (G) is a
terminal vertex if there is at least one terminal on v, and v is a non-terminal
vertex otherwise. Given a path P in G and a vertex v ∈ V (G), we say that P
visits v if v ∈ V (P).

4.1 Polynomial Kernel for Vertex-Disjoint Paths on Split Graphs

Our kernelization algorithm for Vertex-Disjoint Paths on split graphs con-
sists of four reduction rules. In each of the rules below, we let (G,X , k) denote
the instance of Vertex-Disjoint Paths on which the rule is applied, where we
fix a split partition (C, I) of G. The instance that is obtained after the applica-
tion of the rule on (G,X , k) is denoted by (G′,X ′, k′). We say that a reduction
rule is safe if (G,X , k) is a yes-instance of Vertex-Disjoint Paths if and only
if (G′,X ′, k′) is a yes-instance of this problem. A reduction rule is only applied
if none of the previous rules can be applied, i.e., for every i ∈ {2, 3, 4}, Rule i is
applied only if Rule j cannot be applied for any j ∈ {1, . . . , i− 1}.

Rule 1. If there exists a terminal vertex v ∈ V (G) such that v = si = ti for
some terminal pair (si, ti) ∈ X , then we set X ′ = X \ {(si, ti)} and k′ = k − 1.
If v becomes a non-terminal vertex, then we set G′ = G − v; otherwise, we set
G′ = G.

Rule 2. If there exists a non-terminal vertex v ∈ I, then we set G′ = G − v,
X ′ = X , and k′ = k.

Lemma 1. Both Rule 1 and Rule 2 are safe.

Proof. Rule 1 is safe since there is no need to find a path between si and ti, and
we make sure that v cannot serve as an inner vertex of another path. To see why
Rule 2 is safe, suppose there exists a non-terminal vertex v ∈ I. It is clear that
if (G′,X ′, k′) is a yes-instance of Vertex-Disjoint Paths, then (G,X , k) is
also a yes-instance of Vertex-Disjoint Paths, as G is a supergraph of G′. For
the reverse direction, suppose (G,X , k) is a yes-instance of Vertex-Disjoint

Paths, and let P be a minimum solution for this instance. Since all the paths
in P are induced and v is not a terminal vertex, v is not visited by any of the
paths in P . Hence P is also a solution for the instance (G′,X ′, k′). ��

Rule 3. If there exists a terminal vertex v ∈ I with dG(v) ≥ 2k−p, where p ≥ 1
is the number of terminals on v, then we set G′ to be the graph obtained from
G by deleting all edges incident with v, adding p new vertices {x1, . . . , xp} to C,
and making these new vertices adjacent to v, to each other, and to all the other
vertices in C. We also set X ′ = X and k′ = k.

322 P. Heggernes et al.

Lemma 2. Rule 3 is safe.

Proof. Suppose there exists a terminal vertex v ∈ I with dG(v) ≥ 2k− p, where
p ≥ 1 is the number of terminals on v. Let X = {x1, . . . , xp} be the set of
vertices that were added to C during the execution of the rule. Hence, after the
execution of the rule, X ⊆ C. Let Y = {y1, . . . , yp} be the set of terminals on v.

First suppose (G,X , k) is a yes-instance of Vertex-Disjoint Paths, and
let P = {P1, . . . , Pk} be an arbitrary solution for this instance. We construct a
solution P ′ = {P ′

1, . . . , P
′
k} for (G′,X ′, k′) as follows. Let i ∈ {1, . . . , k}. First

suppose that neither of the terminals in the pair (si, ti) belongs to the set Y .
Since the paths in P are pairwise vertex-disjoint and v is a terminal vertex, the
path Pi does not contain an edge incident with v. Hence Pi exists in G′, and
we set P ′

i = Pi. Now suppose v ∈ {si, ti}. The assumption that Rule 1 cannot
be applied implies that si �= ti. Suppose, without loss of generality, that v = si.
Then si ∈ Y , so si = yr for some r ∈ {1, . . . , p}. Let vw be the first edge of the
path Pi in G. We define P ′

i to be the path in G′ obtained from Pi by deleting
the edge vw and adding the vertex xr as well as the edges vxr and xrw. Let
P ′ = {P ′

1, . . . , P
′
k} denote the collection of paths in G′ obtained this way. Since

the paths in P are pairwise vertex-disjoint in G, and every vertex in {x1, . . . , xp}
is visited by exactly one path in P ′, it holds that the paths in P ′ are pairwise
vertex-disjoint in G′. Hence P ′ is a solution for the instance (G′,X ′, k′).

For the reverse direction, suppose (G′,X ′, k′) is a yes-instance of Vertex-

Disjoint Paths, and let Q = {Q1, . . . , Qk} be a minimum solution. Then each
of the paths in Q is an induced path in G′. Let Q∗ ⊆ Q be the set of paths in
Q that visit a vertex in the set X = {x1, . . . , xp}. Since there are p terminals
on v, and v has exactly p neighbors in G′ (namely, the vertices of X), every path
in Q∗ has v as one of its endpoints and |Q∗| = p. Moreover, as no vertex in X
is a terminal vertex, and the only neighbors of a vertex xi ∈ X are v and the
vertices of C \ {xi}, every path in Q∗ visits exactly one vertex of C \X . Finally,
we observe that each of the k − p paths in Q \ Q∗ visits at most two vertices
of C and none of X , as C is a clique and every vertex in X is a non-terminal
vertex that is already visited by some path in Q∗. Recall that dG(v) ≥ 2k − p.
Therefore, at least p vertices of NG(v), say z1, . . . , zp, are not visited by any path
in Q.

Armed with the above observations, we construct a solution P = (P1, . . . , Pk)
for (G,X , k) as follows. For every path Qi ∈ Q\Q∗, we define Pi = Qi. Now let
Qi ∈ Q∗. The path Qi visits v, one vertex x� ∈ X , and one vertex z ∈ C \X .
If z ∈ NG(v), then we define Pi to be the path in G whose single edge is vz.
If z /∈ NG(v), then we define Pi to be the path obtained from Qi by replacing
the vertex x� by z�. It is easy to verify that P is a solution for the instance
(G,X , k). ��

Rule 4. If there exists a non-terminal vertex v ∈ C that has no neighbors in I,
then we set G′ = G− v, X ′ = X , and k′ = k.

Lemma 3. (�) Rule 4 is safe.

Finding Disjoint Paths in Split Graphs 323

We now prove that the above four reduction rules yield a quadratic vertex
kernel for Vertex-Disjoint Paths on split graphs.

Theorem 5. The Vertex-Disjoint Paths problem on split graphs has a ker-
nel with at most 4k2 vertices, where k is the number of terminal pairs.

Proof. We describe a kernelization algorithm for Vertex-Disjoint Paths on
split graphs. Let (G,X , k) be an instance of Vertex-Disjoint Paths, where G
is a split graph. We fix a split partition (C, I) of G. We then exhaustively apply
the four reduction rules, making sure that whenever we apply Rule i for some
i ∈ {2, 3, 4}, Rule j is not applicable for any j ∈ {1, . . . , i−1}. Let (G′,X ′, k′) be
the resulting instance on which none of the reduction rules can be applied. From
the description of the reduction rules it is clear that G′ is a split graph, and
that X ′ = X and k′ ≤ k. By Lemmas 1, 2 and 3, (G′,X ′, k′) is a yes-instance
of Vertex-Disjoint Paths if and only if (G,X , k) is a yes-instance. Hence,
the algorithm indeed reduces any instance of Vertex-Disjoint Paths to an
equivalent instance.

We now determine an upper bound on the number of vertices in G′. Let
(C′, I ′) be the unique partition of V (G′) into a clique C′ and an independent
set I ′ such that I ′ = V (G′) ∩ I, i.e., the independent set I ′ contains exactly
those vertices of I that were not deleted during any application of the reduction
rules. Since Rule 2 cannot be applied, every vertex in I ′ is a terminal vertex, so
|I ′| ≤ 2k. Similarly, since Rules 3 and 4 cannot be applied, every vertex in I ′

has degree at most 2k − 2 and every vertex in C′ has at least one neighbor in
I ′, implying that |C′| ≤ 2k(2k − 2). This shows that |V (G′)| ≤ 4k2 − 2k ≤ 4k2.

It remains to argue that the above algorithm runs in polynomial time. Rule 1
is applied at most k times. Rules 2 and 3 together are applied at most |I| times
in total, as each vertex in I is considered only once. Since every vertex xi that
is created in an application of Rule 2 has exactly one neighbor in I, Rule 4
is never applied on such a vertex. Consequently, Rule 4 is applied at most |C|
times. This means that the algorithm executes all the reduction rules no more
than k + |I|+ |C| = k + |V (G)| times in total. Since each of the reduction rules
can trivially be executed in polynomial time, the overall running time of the
kernelization algorithm is polynomial. ��

4.2 Polynomial Kernel for Edge-Disjoint Paths on Split Graphs

In this section, we present a kernel with O(k3) vertices for the Edge-Disjoint

Paths problem on split graphs. We need the following two structural lemmas.

Lemma 4. (�) Let (G,X , k) be an instance of Edge-Disjoint Paths such
that G is a complete graph. If |V (G)| ≥ 2k, then (G,X , k) is a yes-instance.

Lemma 5. Let (G,X , k) be an instance of Edge-Disjoint Paths such that G
is a split graph with split partition (C, I), X = {(s1, t1), . . . , (sk, tk)} and si �= ti
for every i ∈ {1, . . . , k}. If the degree of every terminal vertex is at least the
number of terminals on it and |C| ≥ 2k, then (G,X , k) is a yes-instance.

324 P. Heggernes et al.

Proof. The proof of this lemma consists of two steps: project to C, and route
within C. In the first step, we project the terminals to C. Consider any terminal
vertex x ∈ I. For each terminal on x, we project it to a neighbor of x in such a
way that no two terminals on x are projected to the same vertex; if the terminal
is si, denote this neighbor by s

′
i, and if the terminal is ti, denote this neighbor by

t′i. Since the degree of every terminal vertex is at least the number of terminals
on it, this is indeed possible. For any terminal si that is on a terminal vertex
in C, let s′i = si, and for any terminal ti that is on a terminal vertex in C, let
t′i = ti. Let X ′ = {(s′i, t′i) | i = 1, . . . , k}, and let G′ = G[V (G) \ I].

Since G′ is a complete graph and |V (G′)| = |C| ≥ 2k, there exists a solution
P ′ = (P ′

1, . . . , P
′
k) for the instance (G

′,X ′, k) due to Lemma 4. We now show that
we can extend the paths in P ′ to obtain a solution P for the instance (G,X , k).
For every i ∈ {1, . . . , k}, we extend the path P ′

i using the edges sis
′
i (if si �= s′i)

and tit
′
i (if ti �= t′i); let the resulting path be Pi. Since for every terminal vertex

x ∈ I, no two terminals on x were projected to the same neighbor of x, the paths
in P are pairwise edge-disjoint. We conclude that (G,X , k) is a yes-instance. ��

Our kernelization algorithm for Edge-Disjoint Paths on split graphs con-
sists of two reduction rules. In each of the two reduction rules below, we let
(G,X , k) denote the instance on which the rule is applied, where we fix a split
partition (C, I) of G, and assume that X = {(si, ti) | i = 1, . . . , k}. The instance
that is obtained after the application of a rule is denoted by (G′,X ′, k′). A re-
duction rule is safe if (G,X , k) is a yes-instance of Edge-Disjoint Paths if and
only if (G′,X ′, k′) is a yes-instance of this problem. Reduction Rule B is only
applied if Rule A cannot be applied on the same instance.

Rule A. If si = ti for some terminal pair (si, ti) ∈ X , then we set G′ = G,
X ′ = X \ {(si, ti)}, and k′ = k − 1.

Rule A is trivially safe. Suppose now that (G,X , k) is an instance on which
Rule A cannot be applied, that is, si �= ti for every i ∈ {1, . . . , k}. Let (C, I)
be an arbitrary split partition of G. If |C| ≥ 2k, then Lemma 5 ensures that
(G,X , k) is a yes-instance, so our kernelization algorithm will output a trivial
yes-instance. If |C| ≤ 2k − 1, then we still need to upper bound the size of I by
a polynomial in k in order to obtain a polynomial kernel. This is exactly what
the second reduction rule will achieve. Before we describe the rule, we need to
define an auxiliary graph.

Let T be the set of all terminal vertices in G. We construct an auxiliary
bipartite graph H = (I \ T,A, F), where I \ T and A are the two sides of the
bipartition and F is the set of edges. Here, the set A is defined as follows: for
each pair v, w of vertices of C, we add vertices avw1 , . . . , a

vw
4k+1. The set F is then

constructed by, for each x ∈ I \ T , adding an edge from x to all avw1 , . . . , a
vw
4k+1

if and only if x is adjacent to both v and w in G.
Using the graphH , we can now define our second rule. Here, given a matching

M of H , we say that x ∈ I is covered by M if x is an endpoint of an edge in M .

Rule B. Let M be any maximal matching of H, and let R be the set of vertices
of I \ T that are not covered by M . We set G′ = G−R, X ′ = X , and k′ = k.

Finding Disjoint Paths in Split Graphs 325

Lemma 6. Rule B is safe.

Proof. It is clear that if (G′,X ′, k′) is a yes-instance of Edge-Disjoint Paths,
then (G,X , k) is also a yes-instance of Edge-Disjoint Paths, as G is a super-
graph of G′. For the reverse direction, suppose that (G,X , k) is a yes-instance of
Edge-Disjoint Paths. Note that there exists a solution for (G,X , k) such that
no path in the solution visits a vertex more than once. Among all such solutions,
let P = (P1, . . . , Pk) be one for which the total number of visits by all paths
combined to vertices from R is minimized. We claim that no path in P visits a
vertex in R.

For contradiction, suppose that some path Pj ∈ P visits some vertex r ∈ R.
Since r �∈ T , there are two vertices v, w ∈ C such that the edges vr and wr appear
consecutively in the path Pj . As r ∈ R, it is not covered by the maximal matching
M used in Rule B. Since r is adjacent to all the vertices in {avw1 , . . . , avw4k+1} and
M is a maximal matching, M covers all the vertices in {avw1 , . . . , avw4k+1}, and
consequently at least 4k + 1 vertices of I \ T that are adjacent to both v and
w. Let Z denote this set of vertices. Note that all vertices in Z are adjacent to
both v and w by the construction of H . By the choice of P , no path of P visits
a vertex twice. Hence, there are at most 4k edges of

⋃k
i=1 E(Pi) incident with v

or w in G. Therefore, there exists a vertex z ∈ Z such that
⋃k

i=1 E(Pi) contains
neither the edge vz nor the edge wz. Let P ′

j be the path obtained from Pj by
replacing r with z and shortcutting it if necessary (i.e., if z ∈ V (Pj)). Then,
P ′ = (P1, . . . , Pj−1, P

′
j , Pj+1, . . . , Pk) is a solution for (G,X , k) where each path

visits each vertex at most once, and where the total number of visits by all paths
combined to vertices from R is at least one smaller than P , contradicting the
choice of P . Therefore, no path of P visits a vertex of R. Hence, P is also a
solution for (G′,X ′, k′), and thus it is a yes-instance. ��

Rules A and B, together with Lemmas 4 and 5, yield the following result.

Theorem 6. (�) The Edge-Disjoint Paths problem on split graphs has a
kernel with at most 8k3 vertices, where k is the number of terminal pairs.

5 Conclusion

It would be interesting to investigate whether or not Vertex-Disjoint Paths

or Edge-Disjoint Paths admits a linear kernel on split graphs. Another inter-
esting open question is whether either problem admits a polynomial kernel on
chordal graphs, a well-known superclass of split graphs.

Bodlaender et al. [3] asked whether or not Vertex-Disjoint Paths admits
a polynomial kernel when restricted to planar graphs. What about the Edge-

Disjoint Paths problem on planar graphs?

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comp. Syst. Sci. 75(8), 423–434 (2009)

326 P. Heggernes et al.

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.M. (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 629–638. IEEE Computer Society (2009)

3. Bodlaender, H.L., Thomasse, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comp. Sci. 412(35), 4570–4578 (2011)

4. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

5. Diestel, R.: Graph Theory, Electronic edn. Springer (2005)
6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-

puter Science. Springer (1999)
7. Dvorak, Z., Král’, D., Thomas, R.: Three-coloring triangle-free planar graphs in

linear time. In: Mathieu, C. (ed.) SODA 2009, pp. 1176–1182. ACM-SIAM (2009)
8. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity

flow problems. SIAM J. Comp. 5, 691–703 (1976)
9. Frank, A.: Packing paths, circuits, and cuts – a survey. In: Korte, B., Lovász,

L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout, pp. 47–100.
Springer, Berlin (1990)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of
Disc. Math. 57 (2004)

11. Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs.
Theor. Comput. Sci. 359, 188–199 (2006)

12. Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul,
C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg
(2010)

13. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68
(1975)

14. Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in
quadratic time. J. Comb. Theory B 102, 424–435 (2012)

15. Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in
planar graphs and bounded genus graphs. In: Mathieu, C. (ed.) SODA 2009, pp.
1146–1155. ACM-SIAM (2009)

16. Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum
area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)

17. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
ACM SIGDA Newsletter 5(3), 31–36 (1975)

18. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J.
Comp. 3, 256–270 (1996)

19. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete
for series-parallel graphs. Discrete Applied Math. 115, 177–186 (2001)

20. Reed, B.A.: Tree width and tangles: A new connectivity measure and some appli-
cations. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge
University Press (1997)

21. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in
planar graphs in linear time. In: Contemp. Math., vol. 147, pp. 295–301. Amer.
Math. Soc., Providence (1993)

22. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J.
Comb. Theory B 63(1), 65–110 (1995)

23. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied
Math. 8, 85–89 (1984)

24. Vygen, J.: Disjoint paths. Technical report 94816, Research Institute for Discrete
Mathematics, University of Bonn (1998)

A New Asymptotic Approximation Algorithm
for 3-Dimensional Strip Packing�

Klaus Jansen and Lars Prädel

Universität Kiel, Institut für Informatik, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{kj,lap}@informatik.uni-kiel.de

Abstract. We study the 3-dimensional Strip Packing problem: Given a list of n
boxes b1, . . . , bn of the width wi ≤ 1, depth di ≤ 1 and an arbitrary length �i.
The objective is to pack all boxes into a strip of the width and depth 1 and infinite
length, so that the packing length is minimized. The boxes may not overlap or be
rotated. We present an improvement of the current best asymptotic approximation
ratio of 1.692 by Bansal et al. [2] with an asymptotic 3/2 + ε-approximation for
any ε > 0.

Keywords: Strip Packing, Packing Boxes, Approximation Algorithms.

1 Introduction

We study the 3-dimensional Strip Packing problem: Given a list of n boxes b1, . . . , bn
of the width wi ≤ 1, depth di ≤ 1 and an arbitrary length �i. The objective is to pack
all boxes into a strip of the width and depth 1 and infinite length, so that the packing
length is minimized. The boxes may not overlap or be rotated.

3-dimensional Strip Packing is known to be NP-hard as it is the 2-dimensional
counterpart. Thus, unless P = NP , there will be no polynomial time approximation
algorithm that computes a packing with the optimal packing length. Therefore, we study
approximation algorithms that have polynomial running time. An asymptotic approx-
imation algorithm A for a minimization problem X with approximation ratio α and
additive constant β is a polynomial-time algorithm, that computes for any instance I of
the problemX a solution with A(I) ≤ α ·OPT(I) + β, where OPT(I) is the optimal
value of the instance and A(I) is the value of the output. If β = 0, we call α also abso-
lute approximation ratio. A family of asymptotic approximation algorithms with ratio
1 + ε, for any ε > 0 is called an APTAS .

Known results 3-dimensional Strip Packing is a generalization of the 2-dimensional
Bin Packing Problem: Given is a list of rectangles r1, . . . , rn of the widths wi and the
heights hi and an infinite set of 2-dimensional unit-squares, called bins. The objec-
tive is to pack all rectangles axis-parallel and non-overlapping into the bins in order
to minimize the bins used. Rotations of the rectangles are not allowed. This problem

� Research supported by German Research Foundation (DFG) project JA612/12-2, “Approxi-
mation algorithms for two- and three-dimensional packing problems and related scheduling
problems”.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 327–338, 2014.
c© Springer International Publishing Switzerland 2014

328 K. Jansen and L. Prädel

is a special case of the 3-dimensional Strip Packing problem, where the lengths of all
boxes are 1. Thus, the lower bounds for 2-dimensional Bin Packing hold also for our
problem. In the non-asymptotic setting, there is no approximation algorithm strictly
better than 2, otherwise the problem Partition can be solved in polynomial time. In
the asymptotic setting it is proven that there is no APTAS for this problem, unless
P = NP by Bansal et al. [1]. This lower bound was further improved by Chlebík &
Chlebíková [3] to the value 1 + 1/2196. On the positive side there is an asymptotic
3.25 [9], 2.89 [10], and 2.67 [11] approximation for our problem. More recently an
asymptotic 2-approximation was given by Jansen and Solis-Oba [6] that was improved
by Bansal et al. [2] to an asymptotic 1.692-approximation.

New results We present a significant improvement of the current best asymptotic ap-
proximation ratio:

Theorem 1. For any ε > 0 and any instance I of the 3-dimensional Strip Packing
problem that fits into a strip of length OPT3D(I), we produce a packing of the length
A(I) such that

A(I) ≤ (3/2 + ε) ·OPT3D(I) + ε+ f(ε, �max),

where �max is the length of the largest box in I and f(ε, �max) is a function in ε and
�max. The running time is polynomial in the input length.

Techniques In our work, we use a new result of the 2-dimensional Bin Packing Problem.
In [5,12], there is the following result given:

Theorem 2. For any ε > 0, there is an approximation algorithm A which produces a
packing of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT2D(I) + 69,

where OPT2D(I) is the optimal number of bins. The running time of A is polynomial
in n.

There it is proven, that it is possible to round/enlarge some rectangles, so that there
are only a constant number of different types and an optimal packing of the enlarged
rectangles fit into roughly (3/2 + ε) · OPT2D(I) bins. Since there are only a constant
number of different types of rectangles, a solution of them can be computed by solving
an (Integer) Linear Program. In our work we present a non-trivial method to use these
results for the 3-dimensional Strip Packing problem. Therefore, we adopt also some
techniques from [6] to transform an instance of the 3-dimensional Strip Packing prob-
lem to an instance of the 2-dimensional Bin Packing problem. The main difficulty is to
obtain a solution of our problem from the solution of the 2-dimensional Bin Packing
problem.

2 2-Dimensional Bin Packing

As mentioned above, we use the results of the work [5,12] of the 2-dimensional Bin
Packing problem. Thus, we give here a brief overview over the results obtained in this
work.

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing 329

2.1 Modifying Packings

We assume that we have an optimal solution in OPT2D bins of an arbitrary instance
of the 2-dimensional Bin Packing problem given. We denote by a(X), w(X) and h(X)
the total area, width and height of a setX of rectangles. In the first step we find a value
δ and divide the instance into big, wide, long, small and medium rectangles. We use
therefore the following result given in [5,12], where ε′ is in dependency of the precision
of the algorithm specified later. A formal proof is given in the full version.

Lemma 1. We find a value δ, so that ε′2
2/ε′

< δ ≤ ε′ and 1/δ is a multiple of 24 holds
and all rectangles ri of the width wi ∈ [δ4, δ) or the height hi ∈ [δ4, δ] have a total
area of at most ε′ ·OPT2D.

The value 1/δ has to be a multiple of 24 for technical reasons, which we will not discuss
further. A rectangle is big when the width wi ≥ δ and height hi ≥ δ holds, it is wide
when the width wi ≥ δ and the height hi < δ4 holds, when the width wi < δ

4 and the
height hi ≥ δ holds it is long, when the width wi < δ

4 and height hi < δ4 holds it
is small. If none of these conditions holds, i.e. at least one side is within [δ4, δ) it is a
medium rectangle. These medium rectangles are packed separately.

Our optimal solution can be transformed so that the widths and the heights of the big
rectangles are rounded up to at most 2/δ4 different types of rectangles (cf. Figure 1(a)).
We denote the types by B1, . . . , B2/δ4 . The wide rectangles are cut in the height. The
widths of the resulting slices of the wide rectangles are rounded up to at most 4/δ2

values. The set of the slices of the wide rectangles of the different widths are denoted
byW1, . . . ,W4/δ2 . Vice versa, the long rectangles are cut in the width and the heights
of the resulting slices are rounded up to at most 4/δ2 different values. The sets of these
slices of different heights are denoted by L1, . . . , L4/δ2 . The slices are packed into
wide and long containers. There are at most 6/δ3 wide and long containers in each
bin. The wide containers have at most 4/δ2 different widths and the containers of one
certain width have at most 1/δ4 different heights. Thus, there are at most 4/δ6 different
types. The same holds vice versa for the long containers. We denote the sets of wide
containers of the different widths by CW1, . . . , CW4/δ2 , each set CWi is separated
in sets CWi,1, . . . , CWi,1/δ4 of containers of different heights. The sets for the long
containers of the different heights are denoted by CL1, . . . , CL4/δ2 and each set CLi

is also separated into sets CLi,1, . . . , CLi,1/δ4 of different widths. The small rectangles
are cut in the width and height and are packed into the wide and long containers. The
total number of bins without the medium rectangles is increased with these steps to at
most (3/2 + 22δ)OPT2D + 53 bins.

2.2 2-Dimensional Bin Packing Algorithm

After showing the above described modification steps of any optimal solution, it is pos-
sible to compute a solution with only a small increased number of bins. Therefore, all
necessary values are guessed via an enumeration step. It is possible to find the value
OPT2D, the widths and the heights of the different types of big rectangles and long and
wide containers, the different widths of the wide rectangles and the different heights

330 K. Jansen and L. Prädel

2/δ4different types
of big rectangles

wide rectangles are packed fractional in
wide containers; there are 4/δ2 different widths

4/δ6different types
of wide containers

long rectangles are packed fractional in
long containers; there are 4/δ2 different heights

small rectangles are packed fractional
in long and wide containers

4/δ6different types of long containers

(a) Packing in one bin

δ4

W2
cut rectangles have
height at mostδ4

h(W1)

W1

h(W2)

(b) Greedy assignment of wide rectangles.
Grey rectangles are packed separately.

Fig. 1. Structure of a packing in one bin and assignment of wide rectangles

of the long rectangles in polynomial time in the input length. Note that it is not be-
forehand clear to which values a rectangle is rounded, i.e. to which set it belongs. We
only know that it is possible to enlarge/round it to one of the types. Thus, we have to
assign each big, wide and long rectangle to one of the sets. The cardinality of the sets
of big rectangles and containers are also guessed via an enumeration step. Whereas we
guess approximately with an error of δ4 the total heights of each set of wide rectangles
h(Wi) and the total width of each set of long rectangles w(Li). Since there are only
fractions of these rectangles in these sets, it is not possible to enumerate the cardinality
of them. In the following we assume that we are in the iteration of the right guess of
all above described values. The big rectangles are assigned via a network flow algo-
rithm to the sets. The wide rectangles are sorted by their widths and greedily assigned
to one of these groups, beginning with the widest group, so that the total heights h(Wi)
of each set is strictly exceeded (cf. Figure 1(b)). With the right approximate guess of
the total heights of each group, we can ensure that all rectangles are assigned to one
group. While removing the rectangles of the total height at most 3δ4, we secure that the
total height of the wide rectangles is below h(Wi) and thus they fit fractionally into the
containers. We denote the set of rectangles that are rounded to the ith width byWi. We
need 1 additional bin for the removed rectangles of all sets. We do the analogous steps
for assigning the long rectangles to the groups. At this moment, the big, long and wide
rectangles are assigned to one group and are rounded. The wide rectangles are packed
into the wide containers via a linear program, that is similar to the linear program in
[7]. We pack the wide rectangles fractionally into the containers of a certain width.
Here C

(�)
j represents a configuration of wide rectangles that fit into a wide container of

the set CW�. The configurations are all possible multi-sets of wide rectangles that have
a total width of at most the width of the container. There is only a bounded number q
of possible configurations. a(i,C(�)

j) represents the number of wide rectangles in the

set Wi that are in configuration C
(�)
j . The variable x(�)j gives the total height of one

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing 331

configuration in the container. LP (1) :

q(�)∑
j=1

x
(�)
j = h(CW�) � ∈ {1, . . . , 4/δ2}

t∑
�=1

q(�)∑
j=1

a(i,C
(�)
j) · x(�)j ≥ h(Wi) i ∈ {1, . . . , 4/δ2}

x
(�)
j ≥ 0 j ∈ {1, . . . , q(�)}, � ∈ {1, . . . , 4/δ2}

The first line secures, that the total height of the containers of a certain width is not
exceeded by the configurations, while the second line secures, that there is enough area
to occupy all wide rectangles. Since we have at most 2·4/δ2 conditions, a basic solution
has also at most 8/δ2 non-zero variables, i.e. there are only 8/δ2 different configurations
in the solution. This and the fact that there is a bounded number of containers allows
us to generate a non-fractional packing of the wide rectangles into the containers. The
same is done with the long rectangles that are packed in the long containers. The small
rectangles are packed with Next-Fit-Decreasing-Height by Coffman et al. [4] in the
remaining gaps, by losing only a small amount of additional bins.

Finally, the big rectangles and wide and long containers are packed with an Integer
Linear Program ILP (1):

min

q∑
k=1

xk

s.t.

q∑
k=1

b(i, Ck) · xk ≥ nbi i ∈ {1, . . . , 2/δ4}

q∑
k=1

w(i, j, Ck) · xk ≥ nwi,j i ∈ {1, . . . , 4/δ2}, j ∈ {1, . . . , 4/δ6}

q∑
k=1

�(i, j, Ck) · xk ≥ n�i,j i ∈ {1, . . . , 4/δ2}, j ∈ {1, . . . , 4/δ6}

xk ∈ N k ∈ {1, . . . , q}

Therefore, we build also configurations Ck of rectangles that fit into one sole bin.
Since we have a constant number of rectangles/containers in one bin and only a constant
number of different types, the number of configurations q is also only a constant. nbi
represents the total number of big rectangles in the setBi, and b(i, Ck) gives the number
of big rectangles in the set Bi that are in configuration Ck. The analogous values for
the containers are represented by nwi,j and w(i, j, Ck) for the wide containers of type
CWi,j and n�i,j and �(i, j, Ck) for the long containers of the type CLi,j . This Integer
Linear Program computes a value of at most (3/2 + 22δ)OPT2D + 53 bins.

332 K. Jansen and L. Prädel

3 3-Dimensional Strip Packing

After giving the overview of the 2-dimensional Bin Packing algorithm we start with
the presentation of our 3-dimensional Strip Packing algorithm. We start also with an
optimal solution of an arbitrary given instance and show how to modify this. Some of
the techniques used here are also used in [6]. Afterwards, we present our algorithm.
We denote by vol(X) the total volume of a set X of boxes. Furthermore, we call the
rectangle of the width wi and height di of a box bi by the base of bi.

3.1 Modifying Packings

We first modify an optimal solution of an instance for our problem that fits into a strip
of the length OPT3D. We scale the lengths of the whole instance by the value OPT3D,
the total length of the optimal packing is thus 1. Afterwards, we extend the lengths
of the boxes to the next multiple of ε′/n for a given ε′ > 0. This enlarges the strip
by at most ε′, since each box is enlarged by at most ε′/n and there are at most n
boxes on top of each other. The length of the strip is 1 + ε′. Furthermore, this allows
us to place the boxes on z-coordinates that are multiples of ε′/n. A formal proof of
this fact is already given in [6]. In the next step, we cut the strip horizontally on each
z-coordinate that is a multiple of ε′/n. Each slice of length ε′/n of the packing is
treated as one 2-dimensional bin. Note that each box intersects a slice of the solution
completely, or not at all. Each slice of a box bi is a copy of its base, i.e. a rectangle of
the width wi and height di. It follows that we obtain from the optimal solution of the 3-
dimensional Strip Packing problem a solution of a 2-dimensional Bin Packing instance
in (1 + ε′) · n/ε′ = n/ε′ + n bins. We denote by OPT2D ≤ n/ε′ + n the minimal
number of bins used in an optimal packing of this 2-dimensional Bin Packing instance.

We use the modification steps of the 2-dimensional Bin Packing as described above.
The medium rectangles/boxes are discarded. Thus we have a packing into one strip of
the total length:

((3/2 + 22δ)OPT2D + 53) · ε′/n ≤ (3/2 + 22δ) · (n/ε′ + n) + 53) · ε′/n
≤ (3/2 + 22δ) · (1 + ε′) + 53ε′/n
≤ 3/2 + 22δ + 3/2ε′ + 22δε′ + 53ε′

After rescaling the lengths of the boxes by OPT3D , we obtain a packing length of
(3/2 + 22δ + 3/2ε′ + 22δε′ + 53ε′)OPT3D.

3.2 Algorithm

In the first step we set ε′ as the largest value so that 1/ε′ is a multiple of 24 and ε′ ≤
min{ε/236, 1/48} holds. Thus, ε′ ≥ ε/260.

For dual approximation we approximately guess the optimal length LOPT3D
so that

OPT3D ≤ LOPT3D < OPT3D + ε′ holds. To do this we use a naïve approach. It holds
OPT3D ∈ [�max, n·�max]. Thus, we test less than n·�max/ε

′ values with binary search.
This takes time at most O(log(n · �max/ε

′)) and is thus polynomial in the encoding
length of the input. In the following we assume that we are in the iteration where we

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing 333

9 · ε′/n

Fig. 2. Transform a box into rectangles

found the correct value LOPT3D
. We scale the lengths of the boxes in the input by the

value LOPT3D . An optimal packing fits now into a strip of length 1.
Our algorithm rounds afterwards the lengths of the boxes to the next multiple of

ε′/n and we cut each box at each multiple of ε′/n. Each slice of a box bi is treated
as a 2-dimensional rectangle of the width wi and the height di. There are now at most
n · n/ε′ = n2/ε′ rectangles that fit in an optimal packing into at most OPT2D ≤
(1 + ε′) · n/ε′ bins.

Gap-Creation and Medium Boxes. We find a value δ with Lemma 1, and partition the
instance into big, wide, long, small and medium rectangles. We also guess all necessary
values that are needed to run the 2-dimensional Bin Packing algorithm. We assume that
we are in the iteration, where all values are guessed correctly (cf. also Algorithm 1).

The medium rectangles are divided into two setsMwδ andMhδ of rectangles of the
width within [δ4, δ) and the remaining rectangles of the height within [δ4, δ). The total
area a(Mwδ ∪Mhδ) is bounded by ε′OPT2D ≤ ε′(n/ε′ + n) = n + ε′n. Thus, the
total volume of the corresponding 3-dimensional (medium, scaled) boxes is bounded by
ε′/n·(n+ε′n) = ε′(1+ε′). After rescaling byLOPT3D

, the total volume is increased to
vol(Mwδ∪Mhδ) ≤ LOPT3Dε

′(1+ε′) ≤ (OPT3D+ε′)ε′(1+ε′) ≤ 2ε′(OPT3D+ε′).
We pack the medium boxes into a strip S0 with the following Lemma. Furthermore, we
assign the wide and long rectangles non-fractional to the groups W1, . . . ,W4/δ2 and
L1, . . . , L4/δ2 , so that all slices of one box belong to one group. This is done similarly
as assigning the wide and long rectangles in the 2-dimensional Bin Packing algorithm
(cf. Figure 1(b)). Therefore, we have to pack some wide and long boxes that cannot be
assigned into S0. The proof of the following Lemma is given in the full version.

Lemma 2. We need a strip S0 of the total length 6ε′OPT3D + ε′ + 6�max to

1. pack the medium boxes and
2. assign the wide and long rectangles into the groups W1, . . . ,W4/δ2 and
L1, . . . , L4/δ2 so that all slices of one box belong to one group.

Packing the Containers and Big-Slices In the end of the 2-dimensional Bin Packing
algorithm, an Integer Linear Programs (ILP (1)) is solved to pack the 2-dimensional

334 K. Jansen and L. Prädel

containers and the slices of the big boxes into the bins. In our case it is an advantage
to use the relaxation of the Integer Linear Program, since the basic solution consists
of at most m ≤ 2/δ4 + 4/δ6 + 4/δ6 ≤ 9/δ6 configurations. W.l.o.g. we denote these
non-zero configurations by C1, . . . , Cm. We treat each 2-dimensional object in the non-
zero configurations as 3-dimensional object of length ε′/n and pack the objects of each
configurationCk on top of each other. Thus, we obtain at mostm 3-dimensional strips.
The length of the strip Sk, for k ∈ {1, . . . ,m} is the value of the configuration xk
multiplied with ε′/n. The total length of these strips is at most ε′/n · ((3/2 + 24δ) ·
OPT2D+53) ≤ ε′/n ·((3/2+24δ)·(1+ε′)·n/ε′+53) ≤ (3/2+24δ)·(1+ε′)+53ε′.

After rescaling the boxes by the lengthLOPT3D
we obtain the following total packing

length:

L ≤ LOPT3D ((3/2 + 24δ) · (1 + ε′) + 53ε′)
≤ (OPT3D + ε′)((3/2 + 24δ) · (1 + ε′) + 53ε′)

≤ (3/2 + 24δ) · (OPT3D + ε′ + ε′OPT3D + ε′2) + 53ε′OPT3D + 53ε′2

= (3/2 + 24δ + 3/2ε′ + 24δε′ + 53ε′)OPT3D + (3/2 + 24δ) · (ε′ + ε′2) + 53ε′2

≤ (3/2 + 80ε′)OPT3D + 6ε′,

since δ ≤ ε′ ≤ 1/48. It is left to pack the big boxes into the strip at the places of their
placeholders and to pack the wide, long and small boxes into the containers. Remember
that we assume that we have guessed all values correctly, so there is a fractional packing
of the big boxes into the strips. We show in the full version how to use a result by Lenstra
et al. [8] for scheduling jobs on unrelated machines to pack the big boxes into the strips.

3.3 3-Dimensional Containers

We describe in this section how to pack the wide and long boxes into the corresponding
containers. We will focus on the wide boxes, since the steps for the long boxes are
analogous.

Packing the Wide and Long Boxes into the Containers We remain in the 2-dimensional
representation to pack the slices into the 2-dimensional containers. We use the linear
program LP (1) to select at most 8/δ2 configurations in the containers so that all wide
slices are fractionally covered.

Afterwards, we transform the slices of the containers to 3-dimensional objects by
adding lengths of the value ε′/n · LOPT3D

. We keep the configurations of the lin-
ear program, that forms slots in the 3-dimensional containers (cf. Figure 3). Each 3-
dimensional container is divided into slots and possibly an empty space on the right
side for the small boxes. If a 3-dimensional container consists of different configura-
tions, we split the entire strip at this length. This increases the number of strips by less
than 8/δ2. By doing the analogous steps for the long slices, the number of strips grows
to at most m ≤ m + 16/δ2 = 9/δ6 + 16/δ2 strips. At this moment there is only one
configuration in each strip and each container. Furthermore, all wide boxes fit fraction-
ally (cut in the depth and length) into the 3-dimensional slots inside the wide containers.
We increase all strips by the length �max. The total length of allm strips is

L ≤ L+m · �max ≤ (3/2 + 80ε′)OPT3D + 6ε′ + (9/δ6 + 16/δ2) · �max.

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing 335

Fig. 3. Configurations of the linear program build slots in the wide container

We pack the wide boxes into the 3-dimensional wide containers, therefore we focus
one 3-dimensional wide container C of the width wC , depth dC and length �C . We
increased the length by �max, thus the length is �C + �max. Since all wide boxes fit frac-
tionally into the slots inside the wide containers (when all values are guessed correctly)
it holds that the total volume of the wide boxes is at most the total volume of these slots.
The same holds with the long boxes and the slots in the long containers. All small boxes
fit also fractionally into the wide and long containers in the remaining gaps. Thus, if we
find a packing of the boxes that occupies the total volume of the containers, then we
know that all boxes are packed. We prove that we either occupy the total volume of one
container, or we are running out of boxes. Therefore, we have to extend the side-lengths
of each container. We already increased the length of each container by �max. Now we
extend also the depth by δ4 (cf. Figure 4) and the width by δ4. The side-lengths of C is
now wC + δ4, dC + δ4 and �C + �max.

Fig. 4. Next-Fit heuristic

The left side of the container is parted by the slots of the linear program LP (1). We
focus one of these slots S of the width wS , depth dS = dC + δ4 and length �C + �max.
In this slot we pack only boxes bi of the (rounded) width wi = wS . We sort the boxes

336 K. Jansen and L. Prädel

by their lengths and pack them with a Next-Fit heuristic into the slots. When the next
box does not fit into the slot we form a new level on top of the first box and continue
to pack the boxes until the length of the container is exceeded. Each box has a depth of
at most δ4, thus we exceed the depth dC in each level (cf. Figure 4). It follows that the
area covered by the bases of the boxes is at least a := wS · dC in each level. With the
following Lemma 3 we cover a total volume ofwS ·dC ·(�C+�max−�max) = wS ·dC ·�C .

Lemma 3. Given a target region X of the width wX , depth dX and length �X and
k levels L1, . . . ,Lk, where the bases of the boxes in each level covers a total area of
at least a. Let w.l.o.g. bi be the largest box in level Li and bi′ be the smallest box. If
�i′ ≥ �i+1 for all i ∈ {1, . . . , k− 1}, then we are able to pack boxes intoX with a total
volume of at least a · (�X − �max).

Proof. We pack the levels on top of each other until the next level does not fit into the
target region. Let �k+1 := �X −

∑k
i=1 �i be the length on top of the uppermost target

region. It holds �i′ ≥ �i+1 for all i ∈ {1, . . . , k}. Furthermore, we have vol(Li) ≥ a·�i′ .
Thus,

∑k
i=1 vol(Li) ≥

∑k
i=1 a ·�i′ ≥

∑k
i=1 a ·�i+1 = a · (

∑k+1
i=2 �i) ≥ a · (�X − �max)

��

We do this with all slots in all configurations. Since the total volume of the boxes
of one width w is at most the total volume of all slots of the same width w, we are
able to pack all boxes. It happens for each slot of one specified width exactly once that
the boxes running out and that there is some free space in the slot that we have to use
for the small boxes. In this case, we change the order of the slots and exchange this
slot with the rightmost slot. If there are several slots in one strip where this happens,
then we sort the slots by non-increasing packing lengths (cf. Figure 4). Each time when
this happens, we split the entire strip into two strips. The length of the lower part is
extended by the length �max, so that the cut boxes still fit in the lower strip. There are
2δ2 different widths of wide and 2/δ2 different depths of long boxes. Therefore, the
number of strips increases to m ≤ m + 4δ2 ≤ 9/δ6 + 20δ2. The total length of all
strips is increased to

L ≤ L+ 4/δ2 · �max ≤ (3/2 + 80ε′)OPT3D + 6ε′ + (9/δ6 + 20/δ2) · �max.

The advantage is, that we have containers with some slots and some cubic free space
at the right side. In this free space we pack the small boxes with the 2-dimensional
Next-Fit-Decreasing-Height algorithm [4]. We describe in the full version how to pack
the small boxes into the remaining free space and how to remove the extensions of the
boxes with the following Lemma:

Lemma 4. We are able to remove the extensions of the containers and to pack the

intersecting boxes into a strip Sm+1 of the length 48δL ≤ 152ε′OPT3D + 6ε′ +
(9/δ6 + 20/δ2) · �max.

A New Asymptotic Approximation Algorithm for 3-Dimensional Strip Packing 337

3.4 Summary

To summarize our results, we state the entire algorithm in Algorithm 1.

Algorithm 1. Algorithm for 3-dimensional Strip Packing

1: Set ε′ := min{ε/236, 1/48}, so that 1/ε′ is a multiple of 24
2: Find LOPT3D , so that OPT3D ≤ LOPT3D < OPT3D + ε′ holds with binary

search for each guess do
3: Scale length of boxes by 1/LOPT3D

and round them to next multiple of ε′/n
4: Split boxes at multiple of ε′/n and obtain instance for 2-dim. Bin Packing
5: \\begin 2-dim. Bin Packing algorithm
6: Find OPT2D for each guess do
7: Compute δ and partition the rectangles
8: Find widths and heights and number of 2/δ4 different types of big rect-

angles;
widths and approx. total height of 4/δ2 different types of wide rectangles;
heights and approx. total width of 4/δ2 different types of long rectangles;
widths and heights and number of 4/δ6 different types of long and wide
containers for each guess do

9: Greedy assignment of wide and long rectangles to different types
10: Solve LP (1) to find fractional packing of wide rectangles in wide

containers and long rectangles in long containers
11: Solve relaxation of ILP (1) to find fractional packing of big rectan-

gles and wide and long containers
12: \\end 2-dim. Bin Packing algorithm
13: Add lengths of value ε′LOPT3D/n to 2-dim. bins and build strip for

each configuration in the basic solution of relaxation of ILP (1)
14: Extend each strip by �max

15: Pack big boxes into strip with result by Lenstra et al. [8]
16: Pack wide, long and small boxes into extended 3-dimensional con-

tainers and remove the extensions
17: Pack medium boxes with use of Steinbergs algorithm [13]

We have packed the boxes into the strips S0, . . . , Sm+1. We simply stack them on
top of each other and obtain one strip of the total length:

4ε′OPT3D + ε′ + 6�max + L+ 48δL

≤ (3/2 + 84ε′)OPT3D + 7ε′ + (6/δ6 + 20/δ2 + 6) · �max + 48δL

≤ (3/2 + 236ε′)OPT3D + 13ε′ + (15/δ6 + 40/δ2 + 6) · �max

≤ (3/2 + 236ε′)OPT3D + 13ε′ + (16/δ6) · �max

≤ (3/2 + ε)OPT3D + ε+ 16/ε′12/ε
′
�max

≤ (3/2 + ε)OPT3D + ε+ 4160/ε3120/ε�max.

338 K. Jansen and L. Prädel

By stacking the strips on top of each other it follows Theorem 1 with f(ε, �max) =
4160/ε3120/ε�max.

4 Conclusion

We presented an asymptotic 3/2+ε-approximation for the 3-dimensional Strip Packing
problem. This is a significant improvement over the previous best known asymptotic
approximation ratio of 1.692 by Bansal et al. [2]. It is of interest, if it is possible to
improve our new upper bound or to show that the lower bound of 1+1/2196 by Chlebík
& Chlebíková [3] can be lifted.

References

1. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimen-
sions: Inapproximability results and approximation schemes. Mathematics of Operations Re-
search 31(1), 31–49 (2006)

2. Bansal, N., Han, X., Iwama, K., Sviridenko, M., Zhang, G.: A harmonic algorithm for the 3d
strip packing problem. SIAM Journal on Computing 42(2), 579–592 (2013)

3. Chlebík, M., Chlebíková, J.: Inapproximability results for orthogonal rectangle packing prob-
lems with rotations. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS,
vol. 3998, pp. 199–210. Springer, Heidelberg (2006)

4. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-
oriented two-dimensional packing algorithms. SIAM Journal on Computing 9(4), 808–826
(1980)

5. Jansen, K., Prädel, L.: New approximability results for two-dimensional bin packing. In:
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2013), pp. 919–936 (2013)

6. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3d-strip packing. In:
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA 2006), pp. 143–152. ACM Press (2006)

7. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem.
Mathematics of Operations Research 25(4), 645–656 (2000)

8. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming 46, 259–271 (1990)

9. Li, K., Cheng, K.-H.: On three-dimensional packing. SIAM Journal on Computing 19(5),
847–867 (1990)

10. Li, K., Cheng, K.-H.: Heuristic algorithms for on-line packing in three dimensions. Journal
of Algorithms 13(4), 589–605 (1992)

11. Miyazawa, F.K., Wakabayashi, Y.: An algorithm for the three-dimensional packing problem
with asymptotic performance analysis. Algorithmica 18(1), 122–144 (1997)

12. Prädel, L.: Approximation Algorithms for Geometric Packing Problems. PhD the-
sis, University of Kiel (2012), http://eldiss.uni-kiel.de/macau/receive/
dissertation_diss_00010802

13. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing 26(2), 401–409 (1997)

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00010802
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00010802

A Stronger Square Conjecture on Binary Words

Nataša Jonoska1, Florin Manea2, and Shinnosuke Seki3,4

1 Department of Mathematics and Statistics, University of South Florida, 4202 East
Fowler Avenue, Tampa, FL 33620, USA

jonoska@math.usf.edu
2 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

flm@informatik.uni-kiel.de
3 Helsinki Institute for Information Technology (HIIT)

4 Department of Information and Computer Science, Aalto University,
P. O. Box 15400, FI-00076, Aalto, Finland

shinnosuke.seki@aalto.fi

Abstract. We propose a stronger conjecture regarding the number of
distinct squares in a binary word. Fraenkel and Simpson conjectured in
1998 that the number of distinct squares in a word is upper bounded by
the length of the word. Here, we conjecture that in the case of a word
of length n over the alphabet {a, b}, the number of distinct squares is
upper bounded by 2k−1

2k+2
n, where k is the least of the number of a’s and

the number of b’s. We support the conjecture by showing its validity for
several classes of binary words. We also prove that the bound is tight.

1 Conjectures

Let Σ be an alphabet and Σ∗ be the set of all words over Σ. Let w ∈ Σ∗. By |w|,
we denote its length. For a letter a ∈ Σ, we denote the number of occurrences
of a’s in w by |w|a. In this paper, n exclusively denotes the length of a word in
which squares are to be counted.

Let Sq(w) = {uu | w = xuuy for some x, y ∈ Σ∗ with w �= xy} be the set of
all squares occurring in w. Its size, denoted by #Sq(w), has been conjectured to
be bounded from above by the length of w [1].

That is to say, #Sq(w) ≤ n for any word w of length n; a slightly stronger
conjecture is #Sq(w) ≤ n − |Σ|, given in [2]. Notable upper bounds shown so
far are #Sq(w) ≤ 2n [1], further improved by Ilie to #Sq(w) ≤ 2n − logn [3],
this being the best bound known so far.

An infinite word, over the binary alphabet Σ2 = {a, b}, whose finite factors
have a relatively large number of distinct squares compared to their length was
given by Fraenkel and Simpson [1]:

wfs = a
1ba2ba3ba2ba3ba4ba3ba4ba5ba4ba5ba6b · · · . (1)

None of its factors of length n with k letters b contain more than 2k−1
2k+2n dis-

tinct squares (Corollary 2). In fact, we propose (Conjecture 1) that this upper
bound holds not only for the factors of wfs but for all binary words. A computer

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 339–350, 2014.
c© Springer International Publishing Switzerland 2014

340 N. Jonoska, F. Manea, and S. Seki

program verified the conjecture for all binary words of length less than 30, as
well as for randomly generated binary words of length up to 500 without any
counterexample found. Due to this, we propose, as our first contribution, the
following stronger conjecture regarding the number of squares.

Conjecture 1. Let k ≥ 2. For any binary word w ∈ Σ+
2 of length n with k b’s

where k ≤ n
2 !,

#Sq(w) ≤ 2k − 1

2k + 2
n.

The bound is defined here as a function of the number of b’s. However, Conjec-
ture 1 gives an upper bound on number of squares more generally by redefining
k as min{|w|a, |w|b}, as the number of distinct squares in a binary word is in-
variant under the isomorphism swapping the letters a and b. Another conjecture
proposed in [2] states that for a binary word w we have #Sq(w) ≤ n − 2. Our
conjecture is, however, stronger, because 2k−1

2k+2n ≤ n− 2 whenever 2 ≥ k ≤ n
2 !.

Conjecture 1 doesn’t consider words with at most one b because they are
square sparse. It is clear that Sq(an) = {(a)2, (aa)2, . . . , (a�n/2�)2}, and hence,
#Sq(an) = n/2!. The sole b in a word cannot be a part of any square, so its
presence cannot increase the number of squares. Thus, the upper bound n/2!
holds canonically for any binary word with at most one b.

Note that our conjecture not only strengthens the conjecture that #Sq(w) ≤
n, but its dependency on the number of b’s suggests that a possible proof might
be obtained by induction on this number. We show here that it holds when at
most nine b’s are present in the word.

Parenthesizing the sequence of positive integers representing the powers of
a’s in the word wfs, in a convenient manner gives the sequence (1, 2, 3), (2, 3, 4),
(3, 4, 5), This reveals the structure of wfs as catenation of simpler words
aibai+1bai+2b, i = 1, 2, As another contribution, we propose a structurally
simpler infinite word, whose coefficients just increment:

wjms = a
1ba2ba3ba4ba5ba6b · · · , (2)

and prove that it is quite rich with respect to the number of squares its factors
contain. Indeed, we show that its factors achieve the upper bound in Conjecture 1
asymptotically.

The word wjms points out that a word does not necessarily need a complicated
structure in order to have many squares. Thus, we further prove that for any word
w of length n with k letters b, whose coefficient sequence is sorted (incrementing
or decrementing), Conjecture 1 holds (see Theorem 2). This result follows by
induction on the number of b’s on the word.

As an important technical tool, our analysis is not based on combinatorial
properties that the word itself has, but rather on the combinatorial properties of
the sequence of powers of the letters a (called here “coefficient sequence”). This
allows us to define more general classes of words for which the conjecture holds
(e.g., Theorem 3).

A Stronger Square Conjecture on Binary Words 341

2 Preliminaries

Let Σ be an alphabet; for this section this alphabet can even be infinite (for
instance, the set of positive integers). For words u, v ∈ Σ∗, v is a prefix (suffix)
of u if u = vy (resp. u = xv) for some word y ∈ Σ∗ (resp. x ∈ Σ∗). If u �= v, v is
called a proper prefix (resp. proper suffix). The prefix and proper prefix relations
are denoted by v ≤p u and v <p u, respectively. The suffix and proper suffix
relations, ≥s and >s, are defined analogously. If u = xvy, then v is a factor of
u. A factor that is not a prefix or suffix is said to be proper.

Three square lemmas concern the occurrence of two squares at the same lo-
cation in the word, with another square there, or “nearby” (see, e.g., [4,5,3,6]).
We give an analogous lemma, not on squares, but on words of the form uau
as Lemma 2, which plays an important part in our inductive analysis. Its proof
is a modification of the proof of Theorem 1 in [5], but based on the variant of
synchronization lemma below.

Lemma 1. Let x, y ∈ Σ∗ and a ∈ Σ be such that xay is primitive of length at
least 2. If (xay)2 = z1yxz2 for some z1, z2 ∈ Σ∗, then z1 = xa and z2 = ay.

xp

u a u

w c
w1

v
b

v

w3

w2

Fig. 1. Three words uau, vbv, wcw starting at the same position

Lemma 2. For words u, v, w ∈ Σ∗ and letters a, b, c ∈ Σ, if u ≤p wcw <p

vbv <p uau holds, then the word cwcwc occurs as a factor on vbv.

Proof. Note that the prefix relations imply |w| ≥ 1 (hence, |v| ≥ 2 and |u| ≥ 3).
As illustrated in Fig. 1, we denote the second occurrence of w in wcw by w1, the
prefix w of the second v by w2, and the prefix w of the second u by w3.

Let v = wcxp for some primitive word x and p ≥ 0. If p = 0, then w = bi and
v = bic for some i ≥ 1. Note that |ua| < |vbv| < |ua| + |v| and v = bic <p u.
These mean that the rightmost letter c of the second v is on the prefix bi of the
second u, and hence, b = c. Now we have w = ci and vbv = c2i+3 = cwcwc.

The case of p being positive is considered below. Note that w2 certainly over-
laps with w3, while it does not overlap with w1 if and only if u = wcw = vb
holds. We handle the non-overlapping subcase first. In this subcase, u = vb im-
plies v = aj and u = ajb for some j ≥ 2. With u = wcw, they give c = a and

342 N. Jonoska, F. Manea, and S. Seki

w is a power of a, and hence, a = b = c. Thus, all of wcw, vbv, uau are a power
of a. Now we examine the other case when w1 and w2 overlap. Let xpb = ys for
some primitive word y and s ≥ 1. The overlap gives w = yqy′ for some q ≥ s,
where y′ is a proper prefix of y such that y = y′y′′ for some y′′ ∈ Σ+. If |y| = 1,
then w = aq, v = aqcap, and p < s ≤ q. Since w3 is a proper factor of v, we
can conclude that c = a. If |y| ≥ 2, on the other hand, we can apply Lemma 1
to the overlap between w2 and w3, which is of length at least |y| − 1, and ob-
tain that the overlap is yry′ for some s ≤ r ≤ q. The remaining suffix of w3,
which is y′′yq−r−1y′, and (w2)−1v = cysb−1 begin at the same position. Then
we have y′′y′ = cyb−1, and this means b = c because y′′y′ is a conjugate of y.
Now synchronization gives us y′′ = c and y′ = yc−1. Then w = yq+1c−1, and
hence, wcw = y2(q+1)c−1. We also have v = wbxp = yq+1+sc−1, and this gives
vbv = y2(s−1)yc−1cy2(q+1)c−1cyc−1 = y2(s−1)yc−1cwcwc yc−1. ��

The results of this section will not be applied for binary words, in which we
count squares, but rather for their coefficient sequences, which are words over
integer alphabets. These two lemmas enable us to develop a series of technical
tools, which are important to our analysis, e.g., Lemmas 6 and 7.

3 Counting Squares

In this section we show that the bound in Conjecture 1 is tight and factors of
wjms with k b’s achieve it. Throughout the paper, we denote the binary word
with k b’s (and at least k a’s) in which we count squares by wk = ai0bai1b · · · baik ,
where i0, . . . , ik ≥ 0, and assume that it is of length n. We represent wk simply
as 〈i0, . . . , ik〉 called the coefficient sequence of wk. We define the coefficient set
of wk to be the multiset I(wk) = {i0, i1, . . . , ik}. The cardinality of I(wk) is
considered to be k+1 and is denoted |I(wk)|. The argument wk is omitted from
I(wk) when it is understood in the context. For j ≤ k+1, by I[j] we denote the
j-th smallest element of I. Since its maximum element I[k+1] is often referred to,
it is more convenient to denote it by I[max]. More generally, by I[max−(j− 1)]
we mean the j-th largest element of I.

Squares in wk that are free from b can be counted simply by checking the
largest coefficient in I(wk) as:

#(Sq(wk) ∩ a+) =
⌊
I(wk)[max]

2

⌋
. (3)

In counting squares including b’s, we first classify them with respect to the
equivalence relation “cyclic shift of a’s”, and then do counting per class. For
instance, x = a3baba3bab and ababa3baba2 are members of the same equivalence
class because cyclically shifting the first two a’s transforms the former into the
latter. The class of x contains other two words a2baba3baba and baba3baba3. In
contrast, aba3baba3b does not belong to the same class as x because one has to
shift a b in order to obtain this word from x.

In general, a binary square uu with 2m b’s (m b’s per u) has a coefficient
sequence 〈i0, i1, . . . , i2m〉 (i0, . . . , i2m ≥ 0) such that i0+ i2m = im and ij = im+j

A Stronger Square Conjecture on Binary Words 343

for 1 ≤ j ≤ m−1. Let c = im. The first property lets i2m = c−i0 and by replacing
the sequences i1, . . . , im−1 and im+1, . . . , i2m−1 by μ, the square can be written
as 〈i0, μ, c, μ, c − i0〉. The squares that result from applying cyclic shift of a’s
to uu are those written as 〈c, μ, c, μ, 0〉, 〈c − 1, μ, c, μ, 1〉, 〈c − 2, μ, c, μ, 2〉, . . . ,
〈0, μ, c, μ, c〉, and they compose one equivalence class. We denote the equivalence
class with 〈μ, c, μ〉. Its cardinality is c+ 1.

By #Sq〈μ,c,μ〉(w), we denote the number of squares in the class 〈μ, c, μ〉 that
occur in a binary word w. Clearly, #Sq〈μ,c,μ〉(w) ≤ c + 1. When the equality
holds, we say that the class 〈μ, c, μ〉 is saturated in w.

Example 1. The class 〈1, 3, 1〉 consists of the squares a3baba3bab, a2baba3baba,
ababa3baba2, and baba3baba3. It is not saturated in a2baba3baba3 as the first
square is missing, while it is saturated in a3baba3baba3 or in a2baba3baba3bab.

Now, we count the squares in the class 〈μ, c, μ〉 of the word wk. First of all, the
coefficient sequence 〈i0, . . . , ik〉 of wk must contain the class identifier 〈μ, c, μ〉 as
its proper factor in order for such a square to occur in wk. When 〈μ, c, μ〉 occurs
exactly once, that is, there are unique coefficients �, r ≥ 0 such that 〈�, μ, c, μ, r〉
is a factor of the coefficient sequence, the count is

#Sq〈μ,c,μ〉(wk) =

{
min{�, c}+min{c, r} − c+ 1 if �+ r ≥ c
0 otherwise

≤ min{�, c, r}+ 1 (4)

where 4 follows from min{i, k}+min{k, j} − k ≤ min{i, j, k} for i, j, k ≥ 0.
It must be noted that (4) does not depend on μ.
We verify Conjecture 1 for a word w2 = ai0bai1bai2 . The sole class whose

square can occur in w2 is 〈i1〉. Using (4), squares in this class are counted in
wk as #Sq〈i1〉 ≤ min{i0, i1, i2} + 1 = I(w2)[max−2] + 1. Summing this and (3)
gives

#Sq(w2) ≤
I(w2)[max]

2
+ I(w2)[max−2] + 1

≤ I(w2)[max]

2
+

1

2
(n− 2− I(w2)[max]) + 1 =

1

2
n.

Proposition 1. #Sq(w2) ≤ 1
2n for any binary word w2 of length n with 2 b’s.

Double-counting is a significant issue. When the coefficient sequence of a word
wk includes the factor 〈μ, c, μ〉 exactly twice as 〈u〉 = 〈�1, μ, c, μ, r1〉 and 〈v〉 =
〈�2, μ, c, μ, r2〉, we have

#Sq〈μ,c,μ〉(wk) = #Sq〈μ,c,μ〉(u) + #Sq〈μ,c,μ〉(v)

−max
{
min{�1, �2, c}+min{c, r1, r2} − c+ 1, 0

}
. (5)

The subtracted term accounts for double-counting. It is 0 (i.e., u does not
share any square in the class 〈μ, c, μ〉 with v) if and only if min{�1, �2} +
min{r1, r2} < c.

344 N. Jonoska, F. Manea, and S. Seki

Before proceeding, we note that Lemmas 1 and 2 deal with words of the form
μcμ, so, by extension, with generative classes 〈μ, c, μ〉. The two lemmas offer a
better understanding of the combinatorial properties of such generative classes,
and provide the fundamentals needed to use them in our proofs.

The tightness of the bound 2k−1
2k+2n for k ≥ 2 follows by considering the factors

of wjms, defined in (2) . We parameterize by m the largest factor of wjms with k
b’s as wjms,k(m) = ambam+1b · · · bam+k. As the coefficients of such a factor are
pairwise distinct, squares in any class 〈μ, c, μ〉 with μ being nonempty do not
occur in the factor. In fact, the classes whose squares are capable of occurring
are 〈m+1〉, 〈m+2〉, . . . , 〈m+ k− 1〉 (not being a proper factor, neither 〈m〉 nor
〈m+ k〉 can find its square in wjms,k). Moreover, wjms,k(m) contains all but one
squares of each class. Due to (3) and (4), we have

#Sq(wjms,k(m)) =

⌊
m+ k

2

⌋
+

k−1∑
i=1

(m+ i) =

⌊
m+ k

2

⌋
+

(k − 1)(2m+ k)

2
.

Removing the floor function gives two formulae sandwiching #Sq(wjms,k(m))

and dividing them by |wjms,k(m)| = m(2k+2)+k(k+3)
2 yields

m(2k − 1) + k2 − 2

m(2k + 2) + k(k + 3)
≤ #Sq(wjms,k(m))

|wjms,k(m)| ≤ m(2k − 1) + k2

m(2k + 2) + k(k + 3)
.

The sandwiching functions are monotonically-increasing in m for k ≥ 2 and their
limit as m approaches infinity is (2k − 1)/(2k + 2).

4 Towards the Inductive Proof

The main aim of this section is to propose an inductive approach to Conjecture 1.
The next inequality is of principal significance for this purpose.

Lemma 3. The inequality

#Sq(wk) ≤
⌊
I(wk)[max]

2

⌋
+

|I(wk)|−2∑
j=1

(I(wk)[j] + 1) (6)

implies #Sq(wk) ≤ 2k−1
2k+2n.

Proof. The inequality (6) is expanded as:

#Sq(wk) ≤
⌊
I[max]

2

⌋
+

⌊
k − 1

k
(n− I[max])

⌋
≤

⌊
k − 1

k
n− k − 2

2k

⌈
n− k
k + 1

⌉⌋
=

⌊
2k − 1

2k + 2
n+

k − 2

2k + 2

⌋
=

⌈
2k − 1

2k + 2
n+

k − 1

2k + 2

⌉
− 1,

where the first inequality follows from the fact that each term in the sum in
(6) is at most (n − I[max])/k!. The second inequality is due to I[max] ≥
�(n− k)/(k + 1)�, and at the end, we employ a standard conversion of floors to
ceilings. Since #Sq(wk) is an integer, this implies #Sq(wk) ≤ 2k−1

2k+2n. ��

A Stronger Square Conjecture on Binary Words 345

Lemma 4. Let I = {i0, i1, . . . , ik−1} and J = I ∪ {ik} be multisets. Then∑|I|−2
j=1 I[j] + min{J [max−2], ik} =

∑|J|−2
�=1 J [�].

With the case of k = 2 as the basis (Proposition 1), induction proceeds as:
choose an operation that yields wk from another word w′ with less b’s. Use the
induction hypothesis that w′ satisfies (6) to prove that the operation does not
create too many squares, and conclude that (6) holds for wk.

One such operation is catenation. Catenating baik to the end of wk−1 =
ai0b · · · baik−1 yields wk. By saying that the catenation creates a square, we mean
that the square does not occur in wk−1 but occurs in wk. Let 〈μ, c, μ〉 be a class
of squares. In order for the catenation to create a square in this class, 〈μ, c, μ〉
must be a proper suffix of the coefficient sequence 〈i0, . . . , ik−1〉 of wk−1. When
〈i0, . . . , ik−1〉 contains a proper suffix 〈μ, c, μ〉 which creates new squares we
say that the class 〈μ, c, μ〉 is generative for the catenation. Observe that any
saturated class in wk−1 cannot be generative.

4.1 Induction Based on Catenation with Single Generative Class

We further show how induction would work by verification of Conjecture 1
for words whose all coefficients, but the leftmost and rightmost, are pairwise-
distinct. Proposition 1 allows us to only consider the induction step (k ≥ 3).
Let wk−1 = ai0b · · · baik−1 , and we assume (6) holds for it as an induction hy-
pothesis. The catenation of baik to wk−1 yields wk = wk−1ba

ik . The pairwise-
distinctiveness of the coefficient sequence makes 〈ik−1〉 the sole generative class
for the catenation, and min{ik−2, ik−1, ik} + 1 squares are thus created due to
(4). With min{ik−2, ik−1, ik} ≤ I(wk)[max−2], Lemma 4 verifies (6) for wk as
follows:

#Sq(wk) ≤
⌊
max{I(wk−1)[max], ik}

2

⌋

+

|I(wk−1)|−2∑
j=1

(I(wk−1)[j] + 1) + (min{I(wk)[max−2], ik}+ 1)

≤ I(wk)[max]

2
+

|I(wk)|−2∑
j=1

(I(wk)[j] + 1).

Theorem 1. For k ≥ 2, let wk = ai0bai1b · · · baik−1baik be a binary word of
length n with k b’s. If i1, . . . , ik−1 are pairwise-distinct, then #Sq(wk) ≤ 2k−1

2k+2n.

Corollary 1. For any factor wk of wjms with k b’s, #Sq(wk) ≤ 2k−1
2k+2n, where

n is the length of wk.

Before proceeding to the analysis of multiple generative classes, let us in-
troduce and examine a class of words for which the bound can be verified
inductively based on catenation with single generative class. A word wk =
ai0bai1b · · · baik−1baik is an ascending (descending) slope if i0 ≤ i1 ≤ · · · ≤ ik

346 N. Jonoska, F. Manea, and S. Seki

c2

�1c1 c1
�2 ik

μ2 μ2

μ1 μ1μ1 μ1

Fig. 2. Two classes 〈μ2, c2, μ2〉, 〈μ1, c1, μ1〉, which occur as suffixes, and hence, can be
generative for the catenation of baik at the end

(resp. i0 ≥ i1 ≥ · · · ≥ ik) holds. This notion is generalized as: wk is a padded
slope if its factor ai1b · · · baik−1 is a slope.

Theorem 2. For k ≥ 2, if a binary word wk of length n with k b’s is a padded
slope, then #Sq(wk) ≤ 2k−1

2k+2n.

Proof. Let wk = ai0bai1b · · · baik−1baik . As induction hypothesis, assume that
wk−1 = ai0b · · · baik−1 fulfills inequality (6). Invariance of the number of squares
under reversal allows us to proceed with the assumption that wk is ascending.

Let 〈μ, c, μ〉 be a generative class for the catenation of baik to wk−1. Let im
be such that m ≥ 1 and im−1 < im = · · · = ik−1. Due to the ascending property,
〈im, . . . , ik−1〉 ≥s 〈μ, c, μ〉 must hold. Let d = im = · · · = ik−1. The sole class
that can be generative for the catenation is 〈d�(k−m)/2�, d, d�(k−m)/2�〉 because
for any j < (k−m)/2!, the class 〈dj , d, dj〉 has been already saturated in wk−1.
At most min{i�, d, ik}+ 1 squares in this class can be created due to (4), where
� = k − 2 (k −m)/2! − 2. This is clearly at most min{I(wk)[max−2], ik} + 1.
Lemma 4 now concludes that the inequality (6) holds for wk. ��

Remark. We note that the proofs of Theorems 1 and 2 can be adjusted such
that whenever the catenation of baik to wk−1 yields a single generative class, the
Conjecture 1 holds.

4.2 Induction Based on Catenation with Multiple Generative
Classes

However, catenation may involve more than one generative class. For instance,
in extending the prefix a1ba2ba3ba2 of wfs (see (1)) by ba3, squares in the two
classes 〈2〉 and 〈2, 3, 2〉 are created.

We begin with examining catenation with two generative classes. Consider two
generative classes 〈μ1, c1, μ1〉, 〈μ2, c2, μ2〉 for the catenation of baik to wk−1 =
ai0bai1b · · · baik−1 , which yields wk = wk−1ba

ik . From (4), we get that the cate-
nation creates at most min{I(wk)[max−3], ik} + min{I(wk)[max−2], ik} + 2
squares in these classes. When 〈μ2〉 ≥s 〈μ1, c1, μ1〉, the number turns out to be
bounded by min{I(wk)[max−2], ik}+ 1, as shown in the next lemma.

Lemma 5. Let 〈μ1, c1, μ1〉, 〈μ2, c2, μ2〉 be generative classes for the catenation
of baik to wk−1 to yield wk = wk−1ba

ik . If 〈μ2〉 ≥s 〈μ1, c1, μ1〉, then the number
of squares in the classes created by the catenation is at most min{c1, ik} + 1 ≤
min{I(wk)[max−2], ik}+ 1. Moreover, if 〈μ2〉 >s 〈μ1, c1, μ1〉, then c2 < c1.

A Stronger Square Conjecture on Binary Words 347

Proof. Let wk−1 = ai0b · · · baik−1 , and we have 〈i0, . . . , ik−1〉 ≥s 〈�2, μ2, c2, μ2〉
and 〈c2, μ2〉 ≥s 〈�1, μ1, c1, μ1〉 for some �1, �2. The catenation creates at most1

min{�2, c2}+min{c2, ik} − c2 + 1 (7)

squares in the class 〈μ2, c2, μ2〉 due to (4).
We first consider the case when 〈μ1, c1, μ1〉 is a proper suffix of 〈μ2〉. In count-

ing the number of distinct squares to be created in the class 〈μ1, c1, μ1〉, we
should take into account the factor 〈�1, μ1, c1, μ1, c2〉 of wk−1. In order for the
class to be generative, we have c2 < min{c1, ik}. Then at most min{c1, ik} − c2
squares in the class are created, and the subtraction term “−c2” cancels (7).
As a result, the catenation creates at most min{c1, ik}+ 1 squares in these two
classes. Moreover, this is upper bounded by min{I(wk)[max−2], ik} + 1 since
I(wk) contains two c1’s.

Next we consider the case of 〈c2, μ2〉 = 〈�1, μ1, c1, μ1〉 (see Fig. 2), that is,
c2 = �1 and 〈μ2〉 = 〈μ1, c1, μ1〉. It creates at most the following number of
distinct squares in the class 〈μ1, c1, μ1〉:

min{c2, c1}+min{c1, ik} − c1 + 1

−max
{
min{�2, c2, c1}+min{c1, c2, ik} − c1 + 1, 0

}
. (8)

The subtraction term, due to (5), takes into account that 〈�2, μ1, c1, μ1, c2〉 al-
ready appears in 〈i0, . . . , ik−1〉. The number of distinct squares in these classes
created by the catenation is given as the sum (7) + (8). The last subtraction
term in (8) is 0 if and only if min{�2, c2}+min{c2, ik} < c1. Then,

(7) + (8) = (min{�2, c2}+min{c2, ik}+ 1− c1)
+min{c1, ik}+ (min{c2, c1} − c1) + 1 ≤ min{c1, ik}+ 1.

If the term is positive, on the other hand, then we obtain

(7) + (8) = (min{�2, c2}+min{c2, c1} −min{�2, c2, c1} − c2)
+(min{c2, ik}+min{c1, ik} −min{c2, c1, ik}) + 1 ≤ ik + 1.

Now we prove that the sum is at most c1 + 1, and it suffices to do so un-
der the condition c1 < ik. Then the sum is (min{�2, c2} + min{c2, ik} − c2 −
min{�2, c2, c1}) + c1 + 1. If min{�2, c2, c1} = min{�2, c2}, then the terms inside
the parentheses amount to 0 and hence the sum is at most c1+1. This condition
must hold because if min{�2, c2, c1} = c1, then the class 〈μ1, c1, μ1〉 would have
been already saturated in wk−1 so that it could not be generative. ��

Now we develop the previous argument for arbitrary number of genera-
tive classes: 〈μm, cm, μm〉, . . . , 〈μ2, c2, μ2〉, 〈μ1, c1, μ1〉 with m ≥ 3 such that
〈μm, cm, μm〉 >s · · · >s 〈μ1, c1, μ1〉. Interestingly, no matter how many genera-
tive classes are involved, catenation creates at most (min{I(wk)[max−3], ik} +
1)+ (min{I(wk)[max−2], ik}+1) squares. The next lemma enables us to divide
the classes into two groups so that the classes in one group are responsible for
the first term and those in the other are for the second term.
1 Here we say “at most” because wk−1 may contain some squares in this class already.

348 N. Jonoska, F. Manea, and S. Seki

Lemma 6. Let 〈μ1, c1, μ1〉, 〈μ2, c2, μ2〉, 〈μ3, c3, μ3〉 be three generative classes of
the catenation of baik to wk−1 to yield wk = wk−1ba

ik such that 〈μ3, c3, μ3〉 >s

〈μ2, c2, μ2〉 >s 〈μ1, c1, μ1〉. Then 〈μ3〉 >s 〈μ1, c1, μ1〉 and c3 < c1 hold, and
the number of squares in the classes 〈μ3, c3, μ3〉 and 〈μ1, c1, μ1〉 created by the
catenation is at most min{c1, ik}+ 1 ≤ min{I(wk)[max−2], ik}+ 1.

Proof. If 〈μ3〉 >s 〈μ1, c1, μ1〉 did not hold, then, by Lemma 2, 〈c1, μ1, c1, μ1, c1〉
would be a factor of the coefficient sequence of wk−1, that is, the class 〈μ1, c1, μ1〉
would be saturated in wk−1, a contradiction. Thus, 〈μ3〉 >s 〈μ1, c1, μ1〉 must
hold. The other two results derive from this due to Lemma 5. ��

Consider the catenation of baik to wk−1 from the right, and let 〈μi� , ci� , μi�〉,
. . . , 〈μi1 , ci1 , μi1〉 be its generative classes with im > · · · > i1. We say that they
form a (length-halving) chain if for any 1 < j ≤ �, 〈μij 〉 ≥s 〈μij−1 , cij−1 , μij−1〉.
Lemmas 5 and 6 imply:

Lemma 7. For any � ≥ 1, if the catenation of baik to wk−1 involves �
generative classes 〈μi� , ci� , μi�〉, . . . , 〈μi1 , ci1 , μi1〉 that satisfy 〈μi� , ci� , μi�〉 >s

· · · >s 〈μi1 , ci1 , μi1〉 and also form a chain, then the catenation creates at most
min{ci1 , ik}+ 1 squares in these classes.

Lemma 6 enables us to divide the classes into (at most) two groups so as
for the classes in each group to form a chain. The index-parity-based divi-
sion: . . . , 〈μ4, c4, μ4〉, 〈μ2, c2, μ2〉 and . . . , 〈μ3, c3, μ3〉, 〈μ1, c1, μ1〉 is such a divi-
sion. With Lemma 7, now we complete the proof that the catenation cannot
create more than min{I(wk)[max−3], ik}+min{I(wk)[max−2], ik}+2 squares.

4.3 Towards an Inductive Proof for General Words

Any word can be factorized into slopes. Given a word, a proper factor 〈i�, i�+1,
. . . , ir−1, ir〉 (l > 0 and r < k) of its coefficient sequence is called a (local)
minimum (maximum) if i� > i�+1 = i�+2 = · · · = ir−1 < ir (resp. i� < i�+1 =
· · · = ir−1 > ir). Minima and maxima are collectively called extrema. It must
be noted that by definition extrema are a proper factor so that the leftmost or
rightmost coefficient of the given word cannot be a part of them. For m ≥ 0, we
say that a word is an m-extrema word if it contains at most m extrema. By Em,
we denote the class of all m-extrema words.

We identify two minima 〈i�1 , i�1+1, . . . , ir1−1, ir1〉, 〈i�2 , i�2+1, . . . , ir2−1, ir2〉 if
r1 − �1 = r2 − �2 and i�1+j = i�2+j for any 0 ≤ j ≤ r1 − �1; otherwise, we say
they are distinct.

Although μi is a subsequence of integers, we consider it a word where each
integer is a symbol. This notation is applied in the following lemma.

Lemma 8. If a catenation involves two generative classes 〈μ1, c1, μ1〉, 〈μ2, c2, μ2〉
in different chains, and all minima of the resulting word are pairwise-distinct,
then one of the following holds:

1. c1 > c2, μ2 = cm2 c1c
j
2, and μ1 = cj2 for some j ≥ 1 and m < j;

A Stronger Square Conjecture on Binary Words 349

2. c1 < c2, μ2 = c2j+m+1
1 c2c

j+m
1 , and μ1 = cj1c2c

j+m
1 for some j ≥ 1 and

m ≥ 0;
3. c1 �= c2, μ2 = djc1c2d

j, and μ1 = c2d
j for some j ≥ 0 and coefficient d with

d ≤ c1 and d < c2.

Theorem 3. If all minima of a word wk of length n with k b’s are pairwise-
distinct, then #Sq(wk) ≤ 2k−1

2k+2n.

Proof. Let wk = ai0b · · · baik and consider the catenation of baik to wk−1 =
ai0b · · · baik−1 to yield wk. Assume two generative classes 〈μ1, c1, μ1〉, 〈μ2, c2, μ2〉
are involved in it, and moreover, they are in different chains. To them, Lemma 8
is applicable to represent these classes in three ways. Proofs for all these repre-
sentations take the same strategy: spotting an coefficient ij such that catenating
baij creates so small number of squares that offsets the number of squares to be
created by the catenation of baik . Therefore, in the following, we just examine
the first representation.

We have that 〈�, μ2, c2, μ2〉 is a suffix of the coefficient sequence 〈i0, . . . , ik−1〉
of wk−1 and μ2 = cm2 c1c

j
2 for some coefficients �, c1, c2 with c1 > c2 and j ≥

1,m ≥ 0 with j > m. The right μ2 is actually the sequence 〈ik−j , . . . , ik−j+m−1,
ik−j+m, . . . , ik−1〉. Consider the successive catenations of baik−j+m , . . . , baik−1

to wk−j+m−1 = ai0b · · · baik−j+m−1 . If � �= c2, then the first catenation creates
max{c2− �, 0} squares in the class 〈cm2 , c1, cm2 〉, which is its sole generative class.
The catenation of ik creates at most min{c2, ik}+min{�, c2, ik}+2 squares. As a
result, they introduce two additive terms. Moreover, due to � �= c2, each of other
catenations involves just one chain. If � = c2, then 〈cm2 , c1, cm2 〉 is not generative
any more, but instead the class 〈cj2c1cm2 , c2, c

j
2c1c

m
2 〉 can be. If it is not, then no

square is created, and this offsets one term brought by the catenation of baik .
Otherwise, 〈i0, . . . , ik−1〉 ≥s 〈�′, cj2c1cm2 , c2, c

j
2c1c

m
2 〉 for some �′ ≥ 0. The catena-

tion of ik creates at most min{�′, c2}+min{c2, ik} − c2 + 1 squares in the class
〈μ2, c2, μ2〉 and c2+min{c1, ik}−c1+1−(min{�′, c2}+min{c2, ik}−c1+1), where
the subtraction term is to avoid the double-counting (note 〈�′, μ1, c1, μ1, c2〉 is in
〈i0, . . . , ik−1〉). Thus, it creates at most min{c1, ik}+ 1 squares. ��

As its corollary, we can verify the bound 2k−1
2k+2n for the word (1) by Fraenkel

and Simpson, or more precisely, for its factors with k b’s, since all of their minima
are pairwise-distinct.

Corollary 2. For any factor wfs,k of wfs with k b’s, #Sq(wfs,k) ≤ 2k−1
2k+2 |wfs,k|.

Maxima-pairwise-distinct variants of Lemma 8 and Theorem 3 hold. As for
the variant of the lemma, all inequalities must be inverted. From them, the next
result holds.

Corollary 3. For any word wk ∈ E3 with k b’s, #Sq(wk) ≤ 2k−1
2k+2 |wk|.

Corollary 4. For any k ≤ 6 and word wk with k b’s, #Sq(wk) ≤ 2k−1
2k+2 |wk|.

Proof. It suffices to observe that, for any k ≥ 3, words with k b’s can contain at
most k − 3 extrema. Then this immediately follows from Corollary 3. ��

350 N. Jonoska, F. Manea, and S. Seki

The more classes are involved, the more strictly the structure of wk−1, to
which we catenate baik , is restricted. In fact, we can easily show that for k ≤ 9,
either the catenation involves just one chain or all minima (or maxima) of the
resulting word are pairwise-distinct.

Proposition 2. For any k ≤ 9 and word wk with k b’s, #Sq(wk) ≤ 2k−1
2k+2 |wk|.

5 Conclusions

Our results are partial steps in showing Conjecture 1. However, we identified
several ways to approach this conjecture. For instance, one may follow the tech-
nique in which we examine a word as a sequence of slopes, and try to identify
how the number of squares increases when the words have non pairwise distinct
minima (maxima). Nevertheless, it may be the case that a direct inductive proof
with respect to the number of b’s would validate the conjecture; using the gen-
erative classes with respect to catenation we only analyzed the cases when this
number is at most 9, but it is our hope that our method can be generalized.

Finally, we discussed only the case of binary words. It seems unlikely that the
tools we developed could be used directly to obtain upper bounds on the number
of squares in words over larger alphabets.

Acknowledgement. We gratefully acknowledge helpful discussions with Flo-
rence Linez, Robert Mercaş, and Mike Müller. Mike Müller kindly implemented a
computer program for the experimental verification of Conjecture 1. The research
was partially supported by the NSF grants No. DMS-0900671 and CCF-1117254
and the NIH grant R01 GM109459-01 to N. J., by the DFG grant 596676 to
F. M., and by the HIIT Pump Priming Project Grant 902184/T30606 and the
Academy of Finland, Postdoctoral Researcher Grant 13266670/T30606 to S. S.

References

1. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? Journal of
Combinatorial Theory, Series A 82, 112–120 (1998)

2. Deza, A., Franek, F., Jiang, M.: A d-step approach for distinct squares in strings. In:
Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 77–89. Springer,
Heidelberg (2011)

3. Ilie, L.: A note on the number of squares in a word. Theoretical Computer Sci-
ence 380, 373–376 (2007)

4. Fan, K., Puglisi, S.J., Smyth, W.F., Turpin, A.: A new periodicity lemma. SIAM
Journal of Discrete Mathematics 20(3), 656–668 (2005)

5. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares.
Journal of Combinatorial Theory, Series A 112(1), 163–164 (2005)

6. Kopylova, E., Smyth, W.F.: The three squares lemma revisited. Journal of Discrete
Algorithms 11, 3–14 (2012)

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 351–362, 2014.
© Springer International Publishing Switzerland 2014

DSL Based Platform for Business Process Management

Audris Kalnins, Lelde Lace, Elina Kalnina, and Agris Sostaks

Institute of Mathematics and Computer Science, University of Latvia
{Audris.Kalnnins,Lelde.Lace,Elina.Kalnina,

Agris.Sostaks}@lumii.lv

Abstract. Currently nearly all commercial and open source BPMS are based on
BPMN as a process notation. In contrast, the paper proposes to build a BPMS
based on a domain specific language (DSL) as a process notation – DSBPMS.
In such a DSBPMS a specific business process support could be created by
business analysts. A platform for creating such DSBPMS with feasible efforts is
described. This platform contains a Configurator for easy creation of graphical
editors for the chosen DSL and a simple mapping language for transforming
processes in this DSL to a language directly executable by the execution engine
of this platform. The engine includes also all typical execution support func-
tions so no other tools are required.

Keywords: Business process management systems, Domain specific languages.

1 Introduction

Currently nearly all commercial and open source Business Process Management Sys-
tems (BPMS) are based on BPMN [1] as a process notation. The main rationale is the
standardization and potential model exchange, nevertheless the process notation is
only a part of a complete system definition, data model and form definitions are im-
portant as well. These BPMS aspects are not covered by BPMN, each BPMS offers
its own solution there. Taking into account the complexity of the full BPMN 2.0 lan-
guage it is clear that standardization does not outweigh the enhanced efforts of using
BPMN for every simple process definition [2].

With the advance of domain specific languages (DSLs) in all domains of modeling
and development, it is worth to revitalize also the use of DSLs for BPMS. The given
paper proposes a DSL-based solution for BPMS – for domains where really a domain
specific notation provides a significant gain in development speed. Since the whole
development becomes domain specific, we can call the approach DSBPMS.

Using the DSBPMS approach it is possible to create a process definition language
based on concepts and notations typical for the given domain. Then domain experts
can not only read the process definitions but also create and modify them. Typical
examples of such domains are insurance, healthcare, logistics etc. For example, the
insurance domain could contain actions: Client Action, Broker Action, Employee
Action; start event kinds: Claim Received, Risk Level Reached and domain elements
used by actions: Claim, Risk etc. Similarly, processes in a healthcare institution
should be based on terms understandable by doctors and healthcare personnel.

352 A. Kalnins et al.

 The approach is applicable also to domains where simple and flexible business
processes dominate, such as internal document processing in various government
institutions, for example education. There BPMN with its intricate control structures
would make the notation unnecessary complicated. A simple process language based
on UML activity basics would be much more suitable (see Section 4).

In this paper we propose the platform named GraDe3, by means of which the im-
plementation of a DSBPMS even for quite a narrow domain would become feasible in
the sense of efforts needed and would pay off shortly. In addition, processes in such a
DSL could be easily modified to meet the goal of agile process management.

In this approach the first step is to choose a relevant domain and define an ade-
quate process specification DSL for this domain. The platform is then used to create
an advanced graphical editor set ready for building a complete process definition on
the basis of the chosen domain specific process language. In addition to the editor for
the process language the editor set contains editors for data model and form defini-
tions. The next step supported by the platform is the creation of a transformation in a
simple domain specific mapping language from the chosen process DSL to the lan-
guage directly supported by the execution engine. In addition, this transformation
defines the semantics of the created DSL in a simple and precise way. The platform
contains a complete runtime support for the developed DSBPMS including user man-
agement, process execution monitoring etc., thus no other tools are required to build
and execute a specific business process support in this DSBPMS. It should be noted
that all steps in this development – the DSL definition, the editors for creating a con-
crete process management system, the transformation of the system definition to its
runtime form and even the execution – are completely model-driven, with the corres-
ponding metamodels precisely defined.

2 Related Work

There are a lot of tools, frequently named also Business Process Management Suites
[3], available for the development of business process support systems. They are pro-
vided by software industry heavyweights such as IBM [4], Oracle [5], SAP [6] and
others, and smaller vendors such as BizAgi [7]. In addition, a large number of open
source solutions are also available – BonitaSoft [8], ProcessMaker [9] et al. Nearly all
of the BPMSs use BPMN as a process modeling notation, only some use custom
process languages (e.g., ProcessMaker [9]). The Gartner report 2010 on commercial
BPMS [3] considers BPMN support as one of the key features in its tool evaluation.
None of the popular BPMSs are based on the idea of a DSL for a process definition.
Most of the suites mentioned here are very complicated to use, with a large number of
service features included – they are intended to be applied in large companies with
complicated business processes and with high runtime performance in mind.

One of suites most oriented to building simple systems is BizAgi [7]. Process mod-
eling there is based on a relatively large subset of BPMN. A sort of simple E-R model
is used for data modeling, there is a relatively advanced form editor and an expression
language for specifying guard conditions on flows, display lists for data selection
controls etc. The main difference is that the process language is fixed to BPMN, while

 DSL Based Platform for Business Process Management 353

our approach is based on a DSL having a notation adapted to the chosen kind of
processes and concepts.

The open source BPMS, one of the most usable between them being BonitaSoft
[8], are also nearly all based on BPMN. In addition, they typically require at least
some development in an OOP language (mostly Java, including BonitaSoft).

There are very few approaches explicitly using a DSL for BPMS. One of such is
the approach based on Karlsruhe’s Integrated Information Management (KIM) [10],
however there only a choice from existing standard process languages (BPMN, UML
activity, Petri nets) is offered as a process DSL. The approach closest to ours is
DSLs4BPM [11], there new graphical DSLs can be defined using the Eclipse frame-
work, however the possible diagram structure must remain very constrained and close
to the very specific PICTURE language [12] used as the base.

3 Languages and Platform for DSBPMS

3.1 General Principles of the Approach

The goal of the approach is to enable the building of a DSBPMS based on a DSL for
process design with as little effort as possible. Here we want to briefly explain how
the building of a DSBPMS and its usage would look like from the viewpoint of the
involved stakeholders and what steps are to be done. The first step would be the
choice of an appropriate domain and the conceptual design of a process DSL for this
domain, with special emphasis on finding the typical kinds of custom actions. Cer-
tainly, a modeling expert is required for this task. The next task is to formalize the
graphical syntax of the DSL and create a graphical editor for it using the Graphical
language definition environment of the platform. A DSL developer with some skills
in graphical editor building is required here. The process editor is coupled with two
predefined graphical editors in the platform – for building a data model and screen
forms. The next task in DSBPMS definition is to map the defined process DSL to the
language directly executed by the runtime engine of the platform (the Base language,
see the next section). Thus both a very simple “compiler” in the DSBPMS is built and
the precise execution semantics of the DSL is defined. The skills required for this task
are similar to the previous one. In some cases the execution engine has to be extended
by custom libraries built using an OOP language. Now the DSBPMS is completely
built and ready for use. In order to build an executable system for a business process
using this DSBPMS, the process must be precisely defined in the given DSL (typical-
ly, by several related process diagrams), this task is best performed by business ana-
lysts who now all the process details. Then the process definition must be extended by
the data model, form definitions for user actions in the process and expressions show-
ing how form elements and constraints in the process are linked to the data model.
This step (to be performed by a system analyst) requires some IT skills though expli-
cit programming is not required here. After applying the mapping the system is ready
to use. Fig 1 shows an overview of all these activities.

354 A. Kalnins et al.

Fig. 1. Overview of the approach

3.2 Language Components for Building a Process DSL

Base Language. The proposed platform includes a process Execution engine which
directly executes a simple (but functionally complete) process language, named the
Base language in the approach. The rationale for the selection of the Base language,
on the one hand, has been the simplicity of its implementation, but on the other hand,
the ease of mapping the elements of a simple process definition DSL to it.

The process execution features of the Base language are chosen as a very basic
subset of the UML 2.x Activity notation [13]. It includes the most used kinds of ac-
tions – general Action and CallProcessAction. Some more kinds of actions are not
exactly from the UML standard, but are included because most of BPM languages
(including BPMN) contain them. There are two such general subcases of action –
UserAction and SystemAction. The most used kind of UserAction is ShowFormAc-
tion, and SystemAction also has several predefined sub-kinds – SendMailAction,
DataAssignmentAction, CallServiceAction and a generic pattern-based AsignAllUse-
rActions. One more important kind of elements is Custom action – CustomUserAc-
tion and CustomSystemAction. Custom actions are not directly implemented by the
engine – their implementation must be supplied by the developer defining the DSL.
Control structures include Start and End nodes, Decision and Merge nodes and Fork
and Join Nodes, all flow control is performed explicitly by these nodes (only one flow
can enter/exit an action). Only control flow edges are used, possibly with guard condi-
tions. One more aspect is Roles and Users – each UserAction in a process has one or
more Roles specified who can perform this action. The assignment of a specific user
to this action is done at runtime according to the Roles.

Selection of a DSL for Process Notation. The Base language is used as a foundation
for defining a specific DSL for the process notation in the given DSBPMS. It should
be noted that the simplest DSL to be built is that directly coinciding with the Base
language, but normally the DSL is modified to fit the chosen domain in the best way.
Typically the modified elements can be directly mapped to the Base language ele-
ments or their groups. One of the goals of such mappings is to introduce derived nota-
tions for typical language constructs in the DSL. Completely new action kinds can be
introduced in the DSL by mapping them to appropriate Custom actions to be imple-
mented by the language developer.

The semantics of the defined DSL is precisely defined by its mapping to the Base
language.

 DSL Based Platform for Business Process Management 355

Data Modeling Language. Besides the process component of the DSL, each specific
process management system built via the DSBPMS contains the persistent data mod-
el. The data model consists of the fixed part used directly by the execution engine and
a specific data model for a given system. This specific model is to be built within a
simple fixed subset of UML class diagrams. The data model is interpreted as a typical
ORM image of a data base schema defining the persistent data for the given system.
The fixed system runtime data can also be referenced in this custom model (using the
<<system>> stereotype). Data models of existing partner systems the given system
has to communicate with can be referenced as well, by the <<external>> stereotype
(see a data model example in Fig. 4). It should be noted that BPMN based BPMSs
(except BizAgi) typically use persistent process variables to model data (as required
by the BPMN standard) which is less natural in practice (the real data are persisted in
databases anyway).

Form Definition Language. Each ShowFormAction uses a specific form to be de-
fined in a simple Form definition language. Forms in this language can contain all
basic kinds of controls (textboxes, read-only fields, listboxes, checkboxes, tables as
nested forms etc.). This language is also fixed in the platform. Typically one form is
used in several actions, but with small modifications – some elements hidden, some
made read-only etc. To support this situation in a simple way, a form with maximum
details (a “main” form) can be defined and a “clone” of this form with small modifi-
cations can be easily specified for a user action. The logical structure of the form is
uniquely defined by the form definition language but its style can be customized.

Expression Language. Both the process sublanguage and Form sublanguage use one
fixed common element – a textual Expression language relying on the defined data
model. Expressions in this language are used for binding form elements to data
classes, defining the selection lists for listboxes etc. Another use of expression lan-
guage is for guard conditions on control flows exiting a decision. The expression
language is reused, e.g., for explicit assignment of values to process data element
properties in DataAssignmentActions. Yet another use of expressions is to define
parameter values for actions. Namely the last feature contributes a lot to the easy
extension of functionality of the DSL. The expression language is OCL-like, howev-
er with some syntax simplification taken from OO languages, in order to support easy
navigation inside the data model. Each process definition in the supported DSLs must
have a base class chosen from the data model (denoted by the self keyword), this sig-
nificantly simplifies specifying the expressions linking form and data elements. All
the navigation in the Expression language is specified by using the “.” symbol.

3.3 Platform Components

The proposed GraDe3 platform provides support both for the development of a
DSBPMS and for its usage for building specific process management systems. Some
initial ideas of such platform and mappings from the defined DSL to the execution

356 A. Kalnins et al.

language have been presented in [14]. In this paper the main emphasis will be on the
DSBPMS development aspects.

Graphical Language Definition Environment. The graphical definition environ-
ment is based on the Transformation Based Graphical Tool Building Platform GrTP
[15], which in turn is based on the TDA [16] platform. The GrTP component directly
used for defining a DSL is the Configurator [17]. The definition of a diagram graphi-
cal syntax (diagram type) – its node types, edge types, their styles and their related
text elements (compartments) – is also a simple diagram itself to be built in the Con-
figurator. For compartments the relevant property dialogs can also be easily defined.
Thus a completely specified graphical editor is obtained for the given diagram type.

The result of a language definition is a set of graphical editors based on TDA plat-
form which includes the editor for the defined process DSL and the predefined editors
for the data model definition and form definition. These editors constitute a workplace
for developing a specific system in this DSBPMS. The generated process editor pro-
vides two views – the Business view with all data related details hidden (to be used by
business analysts) and the Detailed view with all expressions visible.

Transformation/Mapping Definition Environment. A system model in the defined
DSL must be converted to a model in the Base language before it can be executed.
Therefore the DSL definition environment has one more component – a tool for defin-
ing a transformation (mapping) from the DSL to the Base language. In addition, this
transformation defines the precise semantics of the DSL – in fact it is a very simple
“compiler”. Only the process sublanguage has to be mapped, the data and form sub-
languages are predefined. The transformation definition is the second task for the
DSL developer (see Fig. 1). We treat the DSL definition in the Configurator as a DSL
metamodel, with element types corresponding to classes and compartment types to
their attributes. Now a classical model transformation language could be applied. Fig.
2 shows a fragment of such a metamodel for the example DSL of this paper.

However, in most cases the transformation is so straightforward, that a simple do-
main specific mapping language provided in the platform is the best solution. Typical-
ly a class instance together with its direct environment in the source model (the DSL)
fully determines which transformation rule is to be applied. This means that the
source pattern is very simple – a class (node) instance with its attributes and incom-
ing/outgoing edges. The corresponding target pattern normally consists of one class
(node) instance in the Base language, with edges connected in a way isomorphic to
the source model. In some cases an additional node instance must be added before or
after the direct map target, with an edge connecting them in an obvious way (and
external edges reconnected accordingly). Other elements of the source model can be
transformed in a fixed way. An edge in the source maps to a target edge in the
simplest way, with attributes, if any, copied. Only the predefined guard “else” is au-
tomatically substituted by a relevant not-based expression. A source process is
mapped one-to-one to a target process and all node/edge mapping is localized inside a
process.

 DSL Based Platform for Business Process Management 357

Fig. 2. Metamodel of the example DSL (fragment)

The mapping rules in the platform are defined in a tabular way, with three elements
defining a mapping: the class to be mapped, the filter condition and the target class in
the Base language (instance of which is to be created). If additional before/after in-
stances must be created, their classes are specified as well. The filter condition must
be specified as a Lua/lQuery expression [18]. We remind that Lua is a functional lan-
guage having a collection (map) of arbitrary objects as the main data type. lQuery
adds powerful expressions for filtering such collections or creating derived collections
via navigating the model.

For the most typical cases predefined functions are offered, namely, the function
outLine returning the collection of outgoing edges of a node and inLine returning that
of incoming edges. The size function can be applied to a collection. The function attr
(<attribute_name>) returns the value of the given attribute for the node (class). Ex-
pressions can be used to set the target class attributes.

The simplest mappings are for DSL elements coinciding with the Base language
elements, there only the mapped class and the target class must be specified.

The two non-trivial mappings for the DSL used in this paper are described now. A
simpler one using only a filter condition is that for inserting an explicit Merge node in
the target when more than one flow enters an action in the source model:

MappedClass: Action, FilterCondition: inLine.size > 1
TargetClass: - , TargetClassBefore: Merge

The Action class is an abstract superclass therefore this rule is combined with the
rule defined for each specific action class, the target class being defined in that rule.

Another more complicated mapping is used for processing the specific
AssignUserAction action by mapping it to a CustomSystemAction based on the im-
plemented function AssignActionUser with two parameters – a string (the action
name) and a User class instance to be assigned. This mapping creates three class in-
stances in the target model – a CustomSystemAction instance (having the chosen im-
plementation) and two Parameter instances linked to the action:

MappedClass: AssignUserAction
TargetClass: CustomSystemAction (function=„AssignUser”)
 Parameter (name=”action”,valueExpr=attr(„actionName”))
 Parameter (name=„user”,valueExpr=attr(„userExpr”))

Since only one association links the used target model classes in the metamodel
there is no need to specify it explicitly here.

358 A. Kalnins et al.

The same mapping language facilities, especially the filter conditions and prede-
fined functions, can be used for checking the consistency of a model in the DSL, thus
a syntax checker can be easily created and only valid models need to be mapped.

Process Execution Engine. The process execution engine directly executes the Base
language, with all form- and data-related actions included. It is based on the runtime
metamodel implemented via a database. The engine maintains the state of all active
process instances by means of tokens in a way inspired by UML activity semantics. It
involves maintaining user action lists assigned to a user and automatic invoking of
system actions. When an action is complete the tokens are moved, taking into account
the control nodes. Due to the subset chosen, this token management is quite
straightforward. All the execution is logged, in order to provide data for process
monitoring.

The user management is provided via the administrator portal where users can be
registered and linked to roles and process execution monitored. Regular users access
the system via the user portal. There they can start a new process instance when their
roles permit this. In another tab a user sees the user tasks assigned to him and ready to
execute; when a task is selected the corresponding form opens.

The current version of Engine is implemented in MS.NET, with forms using the
ASP.NET and data access based on Entity framework. A very valuable component of
the engine is the Expression language interpreter which evaluates any valid expres-
sion over the defined data model including also the system runtime data.

4 Example – A DSL for Internal Document Processing

The example represents a simplified business trip management system in a university.
Such a system should be built for the University of Latvia, but since the requirements
are not finalized yet, some similar systems with available descriptions from universi-
ties in USA [19, 20] are used as a prototype for the example. The provided diagrams
describe the initial part the business trip process – preparing the trip request and ap-
proving it, the whole process description would contain two more diagrams of a simi-
lar size. Though the basic path of a document in this system is quite straightforward, it
contains some subtle moments related to who can actually perform the given action.
In such institutions it is typical that an administrator can delegate its approval rights to
another employee. The delegation rules are defined via the specific AssignUserAction
included in the DSL. This is an aspect not so easily definable within the BPMN 2.0.

4.1 Description of the Example DSL

The process language of the proposed DSL reuses many of the Base language ele-
ments. However, there are some simplifications of the control structure and a new
specific action is added in this DSL. The chosen DSL is well adjusted for internal
document management systems; certainly, the language is slightly simplified in order
to a have a complete description in the paper.

 DSL Based Platform for Business Process Management 359

The given DSL contains the following actions – ShowFormAction, CallProcessAc-
tion, DataAssignmentAction, SendMailAction and two kinds of user assignment ac-
tion – the pattern-based AssignAllUserActions taken from the Base language and one
specific for this DSL – AssignUserAction. Except for the last kind, the actions are
one-to-one with the Base language. The specific AssignUserAction assigns at runtime
a user to the selected UserAction (by its name) in the given process instance on the
basis of an expression (which must return an instance of the type User). It is defined
by mapping it to the CustomSystemAction, a specific implementation of which is
provided for this DSL (see the description of this mapping in section 3.3). According
to the parameter mechanism of the Base language, both the relevant action name and
the user expression are evaluated at runtime by the engine and passed as parameters to
the function implementing this kind of CustomSystemAction.

The following control nodes are included in the DSL: Start, End and Decision. For
simplicity we omit the concurrent flow management (Fork and Join), concurrent ac-
tions are not so frequent in internal document processing. The Merge node is substi-
tuted by the possibility to have more than one flow entering an action – certainly, all
such situations are mapped to explicit Merge nodes. The mapping inserting the Merge
node where required is also provided in 3.3. Thus there are only two non-trivial map-
pings to the Base language for this DSL, the other ones are one-to-one.

Fig. 3. Main process – University Travel System

4.2 The Example in Brief

In totality the example contains four process diagrams, one data model diagram and 5
“main” form diagrams in this system. The main process (marked as an entry point to the
whole system) is the University Travel System (see Fig. 3). This process is shown in the
Business view – with all data related expressions hidden. Only instances of this process
can be directly created by authorized users of the system. The Role of a user who can
start a new instance of this process is Employee. The base data class for this process is
Travel (see the data model in Fig. 4), this class will be denoted by self in all expressions
related to this process and a new instance of this class will be created at the process
start. The first action to be executed in the main process is the DataAssignmentAction
Initialize Travel. The main process invokes two subprocesses – Travel Request creation
and Travel Report processing. According to the rules of University, not always the tra-
vel request has to be created before the travel (it depends on the unit where the em-
ployee works). The employee can also choose to create the request manually using the
form in the ShowFormAction Choose Request creation manually.

All the expressions in the example are based on its data model, therefore we now
briefly describe this model (Fig. 4). The classes without stereotypes are those built
for the Travel System. The classes with the stereotype <<external>> are for some

360 A. Kalnins et al.

existing systems – here it is the Human Resources system. Classes with the stereotype
<<system>> are those for the workflow engine runtime (only one of them is shown).
We assume here that the system links each User instance (via the user-emp associa-
tion) to the relevant Employee instance. Classes with the <<codifier>> stereotype
represent instance sets for selection. Note that all classes used for the Travel System
should be somehow linked to its root – the Travel class.

Fig. 4. Data model (the fragment used in expressions)

The process to be described in the most detailed way is the Travel Request creation
(see Fig. 5) – it is shown in the Detailed view with all data expressions visible. In fact,
the process is slightly simplified, but all used action kinds are still present. The base
data class for this process is TravelRequest. The CallProcessAction (here the one in
the main process in Fig. 3) invoking the process can specify the path in the model
from the base class of the caller to the base class of the callee (here it is self.request).

The first action in the process is the pattern based user assignment. The pattern is
“ToStarter” – the user starting the main process instance would be assigned to all
actions where the filter is true – here to actions where the specified role is Employee
(it was the starter role). The next action is the DataAssignmentAction Initialize Re-
quest. Two attributes of the newly created TravelRequest instance are set by means of
built-in functions. The link to default approver (the approver link) is set by a more
complicated expresssion (self.travel.traveler.unit.defaultApprover). The action Assign
Approver assigns a user for the action Approve Request, by checking whether a
delegate is currently set for the default approver – the setting of a delegate is done in
another system (Human Resources). The SendMailAction Notify Traveler on Final
status uses the keyword me for the To expression – it specifies the starter user of the
whole process. The other parameter for this action is the message text. An essential
ShowFormAction here is Create Travel Request.
To complete the example, the forms must be defined and bound to the data model.
Then the defined mapping to the Base language must be run and the Travel system is
ready to use. It should be reminded that no low-level programming is needed for
building such a system. The example confirms the usability of the approach and the
suitability of the chosen DSL for internal document processing systems.

 DSL Based Platform for Business Process Management 361

Fig. 5. Process diagram Travel request creation

5 Conclusions and Future Work

A new approach to building BPMS has been proposed in the paper. Instead of using
the standard BPMN notation for business process behavior description the usage of a
DSL best suited for the given process domain is recommended, thus yielding a
DSBPMS for the domain. The goal of the approach is to simplify the development of
a specific business process support system in such a DSBPMS so that the process
development could be performed by domain experts. Certainly, all this makes sense
only when the development of the DSBPMS itself can be done with relatively little
effort. Therefore a new GraDe3 platform is proposed in the paper. The key compo-
nents of this platform are the Configurator for easy definition of a graphical editor for
the chosen DSL and a new simple mapping language for defining a transformation, by
means of which process descriptions in the DSL are transformed to the language di-
rectly executable by the execution engine of the platform. An example of such a DSL
is given containing two typical use cases – a domain specific control structure simpli-
fication and adding a new domain specific action kind.

The implementation of the GraDe3 platform prototype is nearly complete. The
DSBPMS based on the example DSL for this paper has been built and several process
examples implemented in it. Another DSL for study process management is being
built and evaluated on the bachelor study management at the University of Latvia.
The experiments confirm the usability of the approach for building DSLs by language
designers and user-friendliness of these DSLs for business analysts. One of the key
factors enabling the usability of DSLs is the included domain specific actions.

The close integration of DSL definition, transformation definition and process ex-
ecution engine in the platform permits to add new features for process management.
A process execution monitoring based on diagrams in the original DSL notation will
be provided, as well as various queries on execution status based on such diagrams.

362 A. Kalnins et al.

References

1. BPMN 2.0 specification, http://www.bpmn.org/
2. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of

the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M.
(eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

3. Sinur, J., Hill, J.: Magic Quadrant for Business Process Management Suites. In:
Gartner RAS Core Research Note G00205212 (2010),
http://www.gartner.com/id=1453527

4. IBM Business Process Manager, v 8.5, http://www-03.ibm.com/
software/products/us/en/business-process-manager-family

5. Oracle Business Process Management Suite 11g, http://www.oracle.com/
us/technologies/bpm/suite/overview/inex.html

6. SAP NetWeaver BPM, http://scn.sap.com/community/bpm
7. Bizagi BPM suite 10.1, http://www.bizagi.com/index.php
8. BonitaSoft - Bonita Open Solution, Open Source BPM, http://www.bonitasoft.com
9. ProcessMaker Workflow management and BPM,

http://www.processmaker.com
10. Freudenstein, P.: Web Engineering for Workflow-based Applications: Models,

Systems and Methodologies. KIT Scientific Publishing, Karlsruhe (2009)
11. Heitkötter, H.: A Framework for Creating Domain-specific Process Modeling

Languages. In: Proceedings of the ICSOFT 2012, pp. 127–136 (2012)
12. Becker, J., Pfeiffer, D., Räckers, M.: Domain specific process modelling in public

administrations–the PICTURE-approach. In: Wimmer, M.A., Scholl, J.,
Grönlund, Å. (eds.) EGOV 2007. LNCS, vol. 4656, pp. 68–79. Springer,
Heidelberg (2007)

13. UML specification v.2.4.1, http://www.omg.org/spec/UML
14. Lace, L., Liepiņš, R., Rencis, E.: Architecture and Language for Semantic Reduc-

tion of Domain-Specific Models in BPMS. In: Aseeva, N., Babkin, E., Kozyrev,
O. (eds.) BIR 2012. LNBIP, vol. 128, pp. 70–84. Springer, Heidelberg (2012)

15. Barzdins, J., Zarins, A., Cerans, K., Rencis, E., et al.: GrTP: Transformation
Based Graphical Tool Building Platform. In: Proc. of MDDAUI 2007 Workshop
of MODELS 2007, Nashville, Tennessee, USA, CEUR Workshop Proceedings,
vol. 297 (2007), http://ceur-ws.org

16. Kozlovics, S., Barzdins, J.: The Transformation-Driven Architecture for interac-
tive systems. In: Automatic Control and Computer Sciences, vol. 47(1/2013), pp.
28–37. Allerton Press, Inc (2013)

17. Sprogis, A.: The Configurator in DSL Tool Building. In: Scientific Papers,
vol. 756, pp. 173–192. University of Latvia (2010)

18. Liepiņš, R.: Library for model querying: IQuery. In: Proceedings of the 12th Work-
shop on OCL and Textual Modelling (OCL 2012), pp. 31–36. ACM, New York
(2012)

19. Welcome to e-Expense Travel & Business Expense System. A User Guide, Tufts
University, http://finance.tufts.edu/accpay/files/eExpenseGuide.
pdf

20. The Ohio State University, eTravel ASSIST, https://assist-erp.osu.edu/
assistTravel/index.htm

Bounded Occurrence Edit Distance:

A New Metric for String Similarity Joins
with Edit Distance Constraints

Tomoki Komatsu, Ryosuke Okuta, Kazuyuki Narisawa, and Ayumi Shinohara

Graduate School of Information Science, Tohoku University, Japan
{tomoki komatsu@shino.,ryousuke okuta@shino.,

narisawa@,ayumi@}ecei.tohoku.ac.jp

Abstract. Given two sets of strings and a similarity function on strings,
similarity joins attempt to find all similar pairs of strings from each re-
spective set. In this paper, we focus on similarity joins with respect to the
edit distance, and propose a new metric called the bounded occurrence
edit distance and a filter based on the metric. Using the filter, we can
reduce the total time required to solve similarity joins because the metric
can be computed faster than the edit distance by bitwise operations. We
demonstrate the effectiveness of the filter through experiments.

Keywords: Edit distance, Similarity join problem, Similarity search,
Data integration.

1 Introduction

Given two sets of strings and a similarity function, similarity join problems
attempt to find all pairs of strings from each set such that each pair’s similarity
value satisfies a given criterion. This problem has attracted significant research
attention recently because it has a variety of applications. Query reinforcement
for Web search [7], coalition detection [4], typographical error checking, and data
integration are typical applications.

In this study, we focus on similarity joins with respect to edit distance, or edit
similarity join. The edit distance between two strings is the minimum number
of edit operations (insertion, deletion, and substitution) required to transform
one string into the other. Edit similarity join returns all pairs of strings whose
edit distance is less than or equal to a given threshold. As is well known, edit
distance can be calculated easily by dynamic programming in quadratic time [8].
However, calculating the edit distance for all pairs of strings from each set still
incurs high cost.

Various approaches have been proposed to reduce the cost of similarity joins.
These approaches generate candidate pairs by filtering the string pair from each
given set and validate candidate pairs by calculating the edit distance. Gravano et
al. [3] proposed a filter that uses a q-gram. Bayardo et al. [1] proposed an inverted
index approach. Xiao et al. [11] focused on the lower bounds of edit distance as

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 363–374, 2014.
c© Springer International Publishing Switzerland 2014

364 T. Komatsu et al.

obtained by analysing the locations and contents of mismatching q-grams. Narita
et al. [5] proposed a filter by the hash-join approach. Wang et al. [9] used a trie
structure to efficiently find similar string pairs. These approaches substantially
reduced candidate sizes, but the filtering cost is large.

In this paper, we propose a new distance metric called the bounded occurrence
edit distance (BOED for short). This metric focuses on character occurrence. The
L1 distance, which is used in the existing algorithm [11], also focuses on character
occurrence but cannot be calculated efficiently. The proposed distance metric can
be calculated efficiently by bit operations without an array. We derive several
theorems on relations between the standard edit distance and BOED. In order to
reduce the cost of the edit similarity join, we propose new filtering methods based
on BOED. Because these bit-based filters are simple, they can be combined with
other algorithms easily and effectively. We present some experiments to verify
that our filters eliminate many fault candidate pairs very efficiently. We also
analyze several techniques that improve performance in these experiments.

2 Preliminaries

Let N be the set of all non-negative integers. Let Σ be a finite set of symbols,
called an alphabet. An element of Σ∗ is called a string. The length of string s
is denoted by |s|. ε denotes the empty string. The i-th character of string s is
denoted by s[i] for 0 ≤ i < |s|. Let occ(s, c) be the number of occurrences of
symbol c ∈ Σ in string s, and difflen(x, y) =

∣∣ |x| − |y|
∣∣ for strings x, y ∈ Σ∗.

Definition 1. For two strings x, y ∈ Σ∗, the edit distance between x and y, de-
noted by ED(x, y), is the minimum cost of edit operations (insertions, deletions,
and substitutions) required to change x into y.

Definition 2. Given two string sets X and Y , and threshold τ for edit distance,
an edit similarity join returns all string pairs (x, y) in X×Y with ED(x, y) ≤ τ .

Existing approaches use a distance defined by the total sum of the differences
between the number of characters in two strings, which is called the L1 distance.

Definition 3 ([11,2,6]). For two strings x, y ∈ Σ∗, the L1 distance between x
and y is defined by

L1 (x, y) =
∑
c∈Σ

∣∣occ(x, c)− occ(y, c)
∣∣.

3 Bit-Vector-Based Join

We propose several filters in order to reduce the number of calculations for the
edit distance, based on several weak edit distances. Given two strings x, y ∈ Σ∗

and threshold τ , these filters give several sufficient conditions for ED(x, y) > τ ,

Bounded Occurrence Edit Distance 365

Algorithm 1. algorithm to solve similarity joins with filter

Input: two sets X,Y of strings, and threshold τ
Output: set S of string pairs
S ← ∅;1

foreach x ∈ X do2

foreach y ∈ Y do3

if Filter(x, y, τ) =false then4

if ED(x, y) ≤ τ then5

S ← S ∪ (x, y);6

return S;7

and these filters can be computed significantly faster than the original edit dis-
tance. Therefore, we have to only compute ED(x, y) for a small fraction of pairs
(x, y) that pass the filters. Algorithm 1 shows the pseudo-code for edit simi-
larity join with a filter. Function Filter(x, y, τ) returns false if it has confidence
that ED(x, y) > τ . Existing filters such as ED-Join [11] and Trie Join [9] are
enough precise to reduce candidate pairs substantially. ED-Join uses q-gram ap-
proach and Trie Join uses trie structure to filter the candidate pairs. However,
these filters are costly because many operations related to q-gram are required
and constructing trie structure needs calculation cost. Thus, we propose a new
metric which can be calculated efficiently and applied to similarity joins filter
easily. This metric can be calculated by bit operations efficiently. We begin by
introducing an (unbounded) occurrence edit distance, which does not use special
bit operations.

3.1 Occurrence Edit Distance

In this section, we define the occurrence edit distance, which can be computed
at lower cost than the edit distance, and propose a filter using this distance.
First, we define a distance by using L1 distance, which is called the occurrence
edit distance. This distance can be applied to similarity joins filter.

Definition 4. For two strings x, y ∈ Σ∗, the occurrence edit distance (OED for
short) between x and y is defined as

OED(x, y) =
L1 (x, y) + difflen(x, y)

2
.

For instance, OED(AABC, ABBCCC) = ((1 + 1 + 2) + 2)/2 = 3.

Lemma 1. For any strings x ∈ Σ∗ and y = y1y
′
1y2y

′
2 · · · yny′n satisfying that

|y1y2 · · · yn| = |x| and yi, y′i ∈ Σ∗ for 1 ≤ i ≤ n, let z = y1y2 · · · yn and z′ =
y′1y′2 · · · y′n. Then L1 (x, y) ≤ L1 (x, z) + L1 (ε, z

′) holds.

Proof. We prove it by showing Lc
1 (x, y) ≤ Lc

1 (x, z) + Lc
1 (ε, z

′) for each c ∈
Σ, where we define Lc

1 (x, y) =
∣∣occ(x, c) − occ(y, c)

∣∣. At first, Lc
1 (ε, z

′) =

366 T. Komatsu et al.

occ(z′, c) = occ(y, c) − occ(z, c), because occ(ε, c) = 0. If occ(x, c) ≤ occ(y, c),
then Lc

1 (x, z)+Lc
1 (ε, z

′)−Lc
1 (x, y) =

∣∣occ(x, c)−occ(z, c)
∣∣+(occ(y, c)−occ(z, c))−

(occ(y, c) − occ(x, c)) =
∣∣occ(x, c) − occ(z, c)

∣∣ + (occ(x, c) − occ(z, c)) ≥ 0. Oth-
erwise, occ(z, c) ≤ occ(y, c) ≤ occ(x, c) and Lc

1 (x, z) + Lc
1 (ε, z

′) − Lc
1 (x, y) =

(occ(x, c)−occ(z, c))+(occ(y, c)−occ(z, c))−(occ(x, c)−occ(y, c)) = 2(occ(y, c)−
occ(z, c)) ≥ 0. ��
The next theorem shows the inequality between the edit distance and the OED.

Theorem 1. For any x, y ∈ Σ∗, ED(x, y) ≥ OED(x, y).

Proof. Let S(x) = {s ∈ Σ∗ | L1 (x, s) = 0}. We prove the theorem by showing
that ED(x, y) ≥ min

s∈S(x)
ED(s, y) ≥ OED(x, y). The left inequality immediately

holds because L1 (x, x) = 0, so x ∈ S(x). Next, we show that the right inequality
also holds. Let x′ ∈ S(x) be a string satisfying ED(x′, y) = min

s∈S(x)
ED(s, y). It

is obtained from x by transpositions so that the longest common subsequence
between it and y is maximised.

For any two distinct characters a, b ∈ Σ, we have ED(a, b) = L1 (a, b)/2
because L1 (a, b) = 2 and ED(ε, b) = L1 (ε, b) = difflen(ε, b) = 1. This implies
that ED(s, t) = L1 (s, t)/2 and ED(ε, t) = L1 (ε, t) = difflen(ε, t) for any s, t ∈
Σn.

Now we assume |x′| ≤ |y| without loss of generality. There exists a string y′

of length |x| such that y′ is a subsequence of y and can be transformed from x′

with substitution operations only. This implies that y can be transformed from
y′ by insertion operations only. Let y′′ be the string deleted from y′ to create y.
Hence,

min
s∈S(x)

ED(s, y) = ED(x′, y)

= ED(x′, y′) + ED(y′, y) = ED(x′, y′) + ED(ε, y′′)

≥ L1 (x
′, y)− L1 (ε, y

′′)
2

+ L1 (ε, y
′′) (by Lemma 1)

=
L1 (x

′, y) + L1 (ε, y
′′)

2
=

L1 (x
′, y) + difflen(x′, y)

2

=
L1 (x, y) + difflen(x, y)

2
. ��

The above theorem ensures that any pair (x, y) satisfying OED(x, y) > τ also
satisfies ED(x, y) > τ . Algorithm 2 shows the pseudo-code of the OED filter.
The filter can be computed in O(|x| + |y| + |Σ|) time and O(|Σ|) space, most
of which is required for computation of the L1 distance. This computation is
significantly faster than the computation of the original edit distance ED(x, y),
which requires O(|x| |y|) time and space.

3.2 Bounded Occurrence Edit Distance

In this section, we propose a new metric which can be calculated efficiently by
bitwise operations. For that purpose, we place a restriction on the L1 distance,

Bounded Occurrence Edit Distance 367

Algorithm 2. OED filter

Input: two strings x, y ∈ Σ∗ and threshold τ
Output: a boolean value that indicates whether (x, y) can be removed from the

candidates
if difflen(x, y) > τ then return true;1

d ← L1 (x, y);2

if (d+ difflen(x, y))/2 > τ then return true;3

return false;4

Table 1. Examples of occurrence bit vectors for Σ = {A, B, C, D} (bits are arranged
from right to left)

(a) Occurrence Bit Vector

ai A B C D

f(ai) 2 1 2 1

b
pos(ai) 4 3 1 0

l 2 1 1 2 1 1

OBV (AACC; f) 1 1 0 1 1 0

OBV (AACCCC; f) 1 1 0 1 1 0

OBV (ACCCD; f) 0 1 0 1 1 1

OBV (ABBCCCD; f) 0 1 1 1 1 1

(b) Freq-OBV

A(ai) B,D A C

g(ai) 1 2 3

b
pos′(ai) 5 3 0

l 1 2 1 3 2 1

Freq -OBV (AACC; g) 0 1 1 0 1 1

Freq -OBV (AACCCC; g) 0 1 1 1 1 1

Freq -OBV (ACCCD; g) 1 0 1 1 1 1

Freq -OBV (ABBCCCD; g) 1 0 1 1 1 1

which is the bound of counting characters in the bit width. We explain the
bounded L1 distance before the bounded occurrence edit distance.

Let f : Σ → N be a mapping for the character-counting bounds.

Definition 5. A bound function for Σ is a mapping f : Σ → N. For two strings
x, y ∈ Σ∗, the bounded L1 distance between x and y is defined by

BL1(x, y; f) =
∑
c∈Σ

|min{occ(x, c), f(c)} −min{occ(y, c), f(c)}| .

In order to compute BL1(x, y; f) efficiently, we introduce a bit-vector represen-
tation of counters.

Let pos : Σ → N be a mapping called a position function for Σ, which
indicates the position of the right-most bit associated with each character.

Definition 6. Let f be a bound function for Σ = {a1, a2, · · ·ak}, and pos be a
position function for Σ. For string s ∈ Σ∗, OBV (s; f) is a bit vector b of length∑k

i=1 f(ai), consisting of

b[pos(ai) + l] =

{
1 l ≤ occ(s, ai)
0 otherwise

, for 1 ≤ i ≤ k and 1 ≤ l ≤ f(ai).

Table 1(a) presents examples of OBV for Σ = {A, B, C, D} with f(A) = 2,
f(B) = 1, f(C) = 2, f(D) = 1, pos(A) = 4, pos(B) = 3, pos(C) = 1, and pos(D) =
0. The bits corresponding to b[pos(A) + 1], b[pos(A) + 2], b[pos(C) + 1], and

368 T. Komatsu et al.

Algorithm 3. Compute OBV (s; f)

Input: string s
Output: OBV (s; f) as an integer
b ← 0;1

for i = 1 to |s| do2

mask ← ((1 � f(s[i])) − 1) � pos(s[i]);3

b ← b | (((b � 1) | (1 � pos(s[i]))) & mask);4

return b;5

b[pos(C) + 2] are 1 in OBV (AACC; f) because AACC contains two A’s and two C’s.
It does not have a sufficient number of bits to record occurrences of C more than
twice, because f(C) = 2. Therefore, OBV (AACC; f) is equal to OBV (AACCCC; f).

Algorithm 3 shows the pseudo-code for constructing OBV (s; f) as an integer.
Unary counters are efficiently implemented using bit operations. We can com-
pute OBV (s; f) in O(|s|) time and O(1) space. Now, we are ready to calculate
bounded L1 distance by bit operations. Given x, y ∈ Σ∗ and bound function f ,
we can calculate BL1(x, y; f) by

BL1(x, y; f) = bitcount(OBV (x; f)⊕OBV (y; f)),

where ⊕ denotes the XOR operation, and bitcount(w) is a function that returns
the number of bits that are 1 in w. Using an XOR operation and bitcount func-
tion computed by either a special instruction in the target machine or a smart
combination of bit operations (e.g., [10]), we can keep the costs of the calcula-
tion for BL1(x, y; f) low. For example, in Table 1(a), BL1(AACC, ABBCCCD; f) =
bitcount(110110⊕ 011111) = bitcount(101001) = 3.

Definition 7. Let f be a bound function for Σ. For two strings x, y ∈ Σ∗, the
bounded occurrence edit distance between x and y is defined by

BOED(x, y; f) =
BL1(x, y; f) + difflen(x, y)

2
.

We show some lemmas for bounded occurrence edit distance.

Lemma 2. Let f and g be bound functions satisfying that f(c) ≥ g(c) for any
c ∈ Σ. Then, BOED(x, y; f) ≥ BOED(x, y; g) for any x, y ∈ Σ∗.

Proof. Because BOED(x, y; f) − BOED(x, y; g) =
(BL1(x, y; f)− BL1(x, y; g))/2, we only have to prove that BL1(x, y; f) ≥
BL1(x, y; g). We assume that occ(x, c) ≥ occ(y, c) without loss of gen-
erality. Let occ(x, c; f) = min{occ(x, c), f(c)} and docc(x, y, c; f) =
|occ(x, c; f)− occ(y, c; f)|. Then

Bounded Occurrence Edit Distance 369

doccf (x, y, c)− doccg(x, y, c)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 (f(c) ≥ g(c) ≥ occ(x, c) ≥ occ(y, c))
occ(x, c)− g(c) (f(c) ≥ occ(x, c) ≥ g(c) ≥ occ(y, c))
occ(x, c)− occ(y, c) (f(c) ≥ occ(x, c) ≥ occ(y, c) ≥ g(c))
f(c)− g(c) (occ(x, c) ≥ f(c) ≥ g(c) ≥ occ(y, c))
f(c)− occ(y, c) (occ(x, c) ≥ f(c) ≥ occ(y, c) ≥ g(c))
0 (occ(x, c) ≥ occ(y, c) ≥ f(c) ≥ g(c))

.

Hence, we can obtain BL1(x, y; f) ≥ BL1(x, y; g) because BL1(x, y; f) is the
summation of docc(x, y, c; f) for all c. ��

The following lemma shows the relation between OED and the bounded oc-
currence edit distance.

Lemma 3. Let f be any bound function for Σ. Then, OED(x, y) ≥
BOED(x, y; f) for any x, y ∈ Σ∗.

Proof. OED(x, y) = BOED(x, y; f) if f(c) ≥ max{occ(x, c), occ(y, c)} for any
c ∈ Σ. By Lemma 2, we have OED(x, y) ≥ BOED(x, y; f). ��

By Lemma 3 and Theorem 1, we obtain the following theorem.

Theorem 2. Let f be any bound function for Σ. Then, ED(x, y) ≥
BOED(x, y; f) for any x, y ∈ Σ∗.

We can construct a new filter based on Theorem 2 by changing line 2 in
Algorithm 2 to d ← bitcount(OBV (x; f) ⊕ OBV (y; f)). Lemma 2 shows that
assigning more bits to frequent characters improves the performance of the filter.

3.3 Frequency-Based Bounded Occurrence Edit Distance

Lemma 2 shows that assigning more bits to frequent characters would improve
the performance of filters. Thus, assigning bits to characters which seldom occur
is wasteful. We consider assigning the same bits to multiple (infrequent) char-
acters, so that we can assign more bits to frequent characters. We realize this
extension by simply setting pos(c1) = pos(c2) = · · · = pos(ck), where c1, c2, . . . ck
are the characters that share the same bits.

Now, we propose an effective bit assignment method depending on character
frequency in Algorithm 4. The integer width represents the number of bits,
and C[c] denotes the frequency of character c ∈ Σ in the dataset. The function
round returns the nearest integral value to a given value (Line 4). This algorithm
first assigns some bits according to character frequencies (Lines 4-4). Next, the
remaining bits are assigned to the characters that are not assigned yet (Lines 4-
4). These characters share the same bits.

370 T. Komatsu et al.

Algorithm 4. Bit Assignment

Input: integer width and mapping C from characters to integers
Output: a pair of mappings of the bound function and the position function
total ← ∑

c∈Σ C[c];1

rest ← width;2

f, pos ← empty mapping from characters to integers;3

foreach c ∈ Σ do4

n ← min (rest, round (width ∗ C[c]/total));5

f [c] ← n;6

pos[c] ← width− rest;7

rest ← rest− n;8

foreach c ∈ Σ do9

if C[c] > 0 and f [c] = 0 then10

f [c] ← rest;11

pos[c] ← width− rest;12

return (f, pos);13

Definition 8. Let f be a bound function for Σ = {a1, a2, · · ·ak}. Let pos be
a position function for Σ, and A(a) = {x ∈ Σ | pos(a) = pos(x)}. For string
s ∈ Σ∗, Freq-OBV (s; f) is a bit vector b consisting of

b[pos(ai) + l] =

{
1 l ≤

∑
x∈A(ai)

occ(s, x)

0 otherwise
, for 1 ≤ i ≤ k and 1 ≤ l ≤ f(ai).

We can use Freq-OBV instead of OBV in the bounded L1 distance. Freq-
OBV is superior to OBV, as we will see in experiments. For example, in Table 1,
BOED(AACC, ACCCD; g) = (3 + 1)/2 = 2 and BOED(AACC, ACCCD; f) = (2 +
1)/2 = 1.5, because BL1(AACC, ACCCD; g) = 3 and BL1(AACC, ACCCD; f) = 2,
respectively.

4 Performance Evaluation

In this section, we present comparison experiments conducted on proposed filters
using both artificial data and real-world data. All experiments address self join,
which attempts to find all string pairs (x, y) ∈ S × S satisfying ED(x, y) ≤ τ
for given a string set S and threshold τ . We conduct all experiments on a PC
with an Intel(R) Xeon(R) CPU X5660 @ 2.80 GHz and 48 GB of RAM. All
algorithms are implemented in C++ and compiled using GCC 4.4.7. We use
POPCNT in SSE4.2 to count the number of bits that are 1 in given bit vector.

4.1 Experiments on Artificial Data

First, we conduct several experiments using artificial data. For our performance
evaluation, uniform random data is unsuitable because our proposals mostly

Bounded Occurrence Edit Distance 371

1 2 3 4
0.1

1

10

100

Edit-Distance Threshold τ

T
ot

al
 T

im
e

[s
]

 Naive
 OED filter
 BOED filter (32-bit)
 BOED filter (64-bit)

Fig. 1. Total running time required to
solve self join on artificial data

1 2 3 4
104

105

106

107

108

Edit-Distance Threshold τ

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs OED filter
 BOED filter (32-bit)
 BOED filter (64-bit)

Fig. 2. Number of candidate pairs that
passed the filters on artificial data

target various documents written in natural languages. Therefore, in these ex-
periments, we generate artificial data according to the Zipfian distribution.
This distribution connects a character frequency freq and its ranking k by

freq(k) = 1/k∑|Σ|
i=1 1/i

. Let |Σ| = 32, and let S be a set of 10,000 strings of length

20 over Σ generated from this distribution. In this experiment, we compare
proposed filters with respect to running time.

Comparisons of Filters. We evaluate our three filters, (OED filter, 32-bit
BOED filter, and 64-bit BOED filter), and compare them with a naive method.

– Naive: Computes the edit distance for all pairs without any filters.
– OED Filter: This is shown as Algorithm 2 (no special bit operations).
– BOED Filter (32-bit): This uses 32 bits for OBV and f(c) = 1 for any

character c ∈ Σ.
– BOED Filter (64-bit): This uses 64 bits for OBV and f(c) = 2 for any

character c ∈ Σ.

Fig. 1 shows the relation between threshold τ and the total running time.
The total running time includes the time required to filter queries and validate
candidate pairs by calculating the edit distance. Fig. 2 shows the relation be-
tween threshold τ and the number of pairs that the filter passed, which must be
validated by calculating the edit distance. In this figure, we omitted the result
of the naive method because it was 108 constantly. The total time of OED filter
in Fig. 1 is almost independent of the threshold τ . The reason is that the cost
of OED filter is much higher than that of validation by calculating the edit dis-
tance. Fig. 2 shows that OED filter is more precise than other filters. However,
BOED filter is superior to OED filter in Fig. 1 because the BOED filter is cal-
culated more efficiently than OED. BOED filter (64-bit) outperformes BOED
filter (32-bit) because 64-bit version is more precise than 32-bit version. These
results clearly show that the proposed metric can be applied to similarity joins
filter effectively.

372 T. Komatsu et al.

1 2 3 4
0.1

1

10

100

Edit-Distance Threshold τ

T
ot

al
 T

im
e

[s
]

 OED filter
 BOED filter (32-bit)
 BOED filter (64-bit)
 Freq-BOED filter (32-bit)
 Freq-BOED filter (64-bit)

Fig. 3. Total running time required to
solve self join on real-world data

1 2 3 4
104

105

106

107

108

Edit-Distance Threshold τ

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs OED filter
 BOED filter (32-bit)
 BOED filter (64-bit)
 Freq-BOED filter (32-bit)
 Freq-BOED filter (64-bit)

Fig. 4. Number of candidate pairs that
passed the filters on real-world data

Comparisons of Bit Assignment Methods. Lemma 2 implies that the num-
ber of pairs filtered depends on the bound function, that is, bit assignments. We
experimentally investigate the relation between performance and bit assignment
methods. Added to BOED filter (32-bit) and BOED filter (64-bit), we
examine Freq-BOED filter (32-bit) and Freq-BOED filter (64-bit).

Fig. 3 shows the total running time for each assignment, and Fig. 4 shows the
number of pairs that the filter passed. When the given string is too long relative
to the number of bits, OBV is occupied almost entirely by 1-bits and loses its
ability to keep track of character occurrence.

4.2 Experiments on Real-World Data

Next, we experimentally demonstrate the performance of our filter on real-world
data. We use three datasets 1: English Dict, DBLP Author, and AOL Query
Log. The distributions of words included in each dataset are plotted in Fig. 5.

We use the following algorithms in this experiment.

– Ed-Join-l Only: This was proposed in [11] and is a method with a filter
based on a q-gram. This experiment uses the most time efficient q for each
dataset, i.e. q = 2 for an English Dict, q = 3 for DBLP Author, and q = 4
for AOL Query Log.

– Ed-Join-l + OED Filter: After Ed-Join-l, we run the OED filter.
– Ed-Join-l + Freq-BOED Filter (64-bit): After Ed-Join-l, we run the

Freq BOED filter (64-bit).

Calculating filters for all candidates in similarity joins still requires huge time
although our proposed filter can run fast. Hence, we use Ed-Join-l algorithm as
a preprocess in order to reduce candidates.

The results are shown in Figs. 6 and 7 and demonstrate that our proposed
filters are effective for real-world data. These results show that proposed metric
can be combined with other algorithms effectively.

1 http://dbgroup.cs.tsinghua.edu.cn/wangjn/projects/triejoin/

http://dbgroup.cs.tsinghua.edu.cn/wangjn/projects/triejoin/

Bounded Occurrence Edit Distance 373

10 20 30

1

2

3[×104]

String Length

N
o.

 o
f

St
ri

ng
s

(a) English Dict

10 20 30 40

2

4

6

8[×104]

String Length

N
o.

 o
f

St
ri

ng
s

(b) DBLP Author

100 200 300 400 500

2

4

6

8[×104]

String Length

N
o.

 o
f

St
ri

ng
s

(c) AOL Query Log

Fig. 5. Distributions of string length for each dataset

1 2 3
10-1

100

101

102

103

Edit-Distance Threshold τ

T
ot

al
 T

im
e

[s
]

 Ed-Join-l (2-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)

(a) English Dict

1 2 3
100

101

102

103

Edit-Distance Threshold τ

T
ot

al
 T

im
e

[s
]

 Ed-Join-l (3-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)

(b) DBLP Author

1 2 3
100

101

102

103

Edit-Distance Threshold τ

T
ot

al
 T

im
e

[s
]

 Ed-Join-l (4-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)

(c) AOL Query Log

Fig. 6. Running time required to solve self join for each algorithm

1 2 3
104

105

106

107

108

109

1010

1011

Edit-Distance Threshold τ

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs Ed-Join-l (2-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)
 Real Result

(a) English Dict

1 2 3
104

105

106

107

108

109

1010

1011

Edit-Distance Threshold τ

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs Ed-Join-l (3-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)
 Real Result

(b) DBLP Author

1 2 3
104

105

106

107

108

109

1010

1011

Edit-Distance Threshold τ

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs Ed-Join-l (4-gram)
 Ed-Join-l + OED filter
 Ed-Join-l + Freq-BOED filter (64-bit)
 Real Result

(c) AOL Query Log

Fig. 7. Number of candidate pairs verified by calculating edit distance

5 Conclusion and Future Work

We proposed new distance metrics which can be applied to filtering for the
edit similarity join. These metrics can be calculated rapidly by bit operations.
We proved several theorems on the standard edit distance and these metrics to
perform bit-based filtering. Bit-based filtering can be combined easily with other
algorithms. In our experiments, we combined our technique with Ed-Join-l [11]
and demonstrated the efficiency of our approach. We also showed that assigning
bits depending on character frequencies improves performance.

Our future work includes dealing with longer strings. The efficiency of our
approach degrades with increasing string length because OBV uses a limited
number of bits. When a given string becomes too long, OBV is occupied almost
entirely by 1-bits and loses its ability to keep track of the character occurrence.

374 T. Komatsu et al.

It seems that we can deal with this problem with a q-gram approach or better
bit assignment.

Acknowledgements. This work was partially supported by KAKENHI Grant
Numbers 23300051, 23220001, 24106010, and 25240003.

References

1. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Proc.
of WWW, pp. 131–140 (2007)

2. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007)

3. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,
Srivastava, D.: Approximate string joins in a database (almost) for free. In: Proc.
of VLDB, pp. 491–500 (2001)

4. Metwally, A., Agrawal, D., El Abbadi, A.: Detectives: detecting coalition hit in-
flation attacks in advertising networks streams. In: Proc. of WWW, pp. 241–250
(2007)

5. Narita, K., Nakadai, S., Araki, T.: Landmark-join: hash-join based string similarity
joins with edit distance constraints. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2012. LNCS, vol. 7448, pp. 180–191. Springer, Heidelberg (2012)

6. Ohad, L., Ely, P.: Approximate pattern matching with the l1, l2 and l; metrics.
Algorithmica 60(2), 335–348 (2011)

7. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the simi-
larity of short text snippets. In: Proc. of WWW, pp. 377–386 (2006)

8. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.
ACM 21(1), 168–173 (1974)

9. Wang, J., Feng, J., Li, G.: Trie-join: efficient trie-based string similarity joins with
edit-distance constraints. Proceedings of the VLDB Endowment 3(1-2), 1219–1230
(2010)

10. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.
(2002)

11. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity
joins with edit distance constraints. Proceedings of the VLDB Endowment 1(1),
933–944 (2008)

Deterministic Verification of Integer Matrix

Multiplication in Quadratic Time�

Ivan Korec1 and Jǐŕı Wiedermann2

1 Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 814 73 Bratislava, Slovakia

2 Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

Abstract. Let A, B and C be n × n matrices of integer numbers. We
show that there is a deterministic algorithm of quadratic time com-
plexity (w.r.t. the number of arithmetical operations) verifying whether
AB = C. For the integer matrices this result improves upon the best
known result by Freivalds from 1977 that only holds for a randomized
(Monte Carlo) algorithm. As a consequence, we design a quadratic time
nondeterministic integer and rational matrix multiplication algorithm
whose time complexity cannot be further improved. This indicates that
any technique for proving a super-quadratic lower bound for determin-
istic matrix multiplication must exploit methods which would not work
for the non-deterministic case.

1 Introduction

Matrix multiplication admittedly belongs among the most studied problems in
computer science. There are at least two main reasons for this. First, it is the
immense practical importance of the problem. Second, it is a deep algorithmic
beauty of the problem. The run after efficient matrix multiplication algorithms
began in 1968 when Volker Strassen discovered an algorithm for matrix multi-
plication of complexity O(n2.807) [12] (in terms of the number of arithmetical
operations). This has been a significant improvement over the classical algorithm
of complexity O(n3). The search for more efficient algorithms continued steadily
through a series of incremental improvements and the recent champion in ma-
trix multiplication is the algorithm of Vasilevska Williams from 2011 achieving
the performance of O(n2.3727) arithmetical operations [13]. Unfortunately, in or-
der to overcome the influence of the constant hidden in the Big O notation,
in practice the asymptotically fast multiplication algorithms appear to be an
improvement over the classical O(n3) solution only for very large matrices.

Suppose that we have implemented an asymptotically fast matrix multiplica-
tion algorithm and we want to verify the correctness of its implementation. The

� This research was partially supported by RVO 67985807 and the GA ČR grant
No. P202/10/1333. The paper is based on the joint research of both authors which
started shortly before the untimely death of Ivan Korec in 1998.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 375–382, 2014.
c© Springer International Publishing Switzerland 2014

376 I. Korec and J. Wiedermann

most direct approach would be to execute the fast algorithm on some concrete
instances of matrices and to verify the correctness of the result. In our case, given
three n × n matrices A, B, and C of real numbers, we want to verify whether
AB = C. Obviously, it does not make sense to exploit the classical O(n3) algo-
rithm for such a purpose since the verification would last longer than the original
computation and for sufficiently large matrices might even be infeasible. Is there
a faster way to do the verification?

In 1977 Rusins Freivalds designed a randomized algorithm with a bounded
error probability for verifying matrix multiplication in quadratic randomized
time [5], [6]. Since then his algorithm has become a standard textbook example
illustrating the power of randomized computations over the deterministic ones
(cf. [3],[9]). In order to verify whether AB = C for any three matrices A, B and
C of real numbers of size n×n, Freivalds’ algorithm chooses a specific (column)
vector x of length n and compares the product ABx with the product Cx.
Both products can be computed using O(n2) arithmetical operations (the former
product thanks to the associativity of the matrix products: (AB)x = A(Bx)).
The entries of vector x are uniformly chosen from the set {0, 1}. It can be shown
that if AB �= C, then the Freivalds algorithm returns a wrong answer with the
probability at most 1/2 (cf. [3]). The probability of error can be reduced to 1/2k

by performing k independent iterations of the algorithm.
In our paper we propose an alternative algorithm of quadratic time complexity

for verification of matrix multiplication. Our approach differs from Freivalds’
solution in several aspects.

First, unlike the Freivalds algorithm which makes use of randomization, for
the case of integer matrices our algorithm is a truly deterministic algorithm.
Thus, our verification algorithm always returns a correct answer — there is no
margin for an error. Second, our algorithm is faster (albeit not asymptotically)
since there is no need to iterate the verification process in order to decrease the
error margin — a single run of the algorithm is enough to obtain a definitive and
correct answer. Last but not least, the deterministic verification opens the possi-
bility for designing a non-deterministic algorithm for matrix multiplication (that
is, not merely for the verification of the matrix multiplication) still in quadratic
time. This is the first known matrix multiplication algorithm whose performance
is linear in the number of inputs. Of course, this algorithm is mainly of academic
interest since the underlying computation exploits a non–deterministic machine
model which is not realistic. Nevertheless, this result is of a methodological value
because it shows that any technique for proving a super–quadratic lower bound
for deterministic matrix multiplication must exploit methods which would not
work for the non–deterministic case.

The structure of the paper is as follows. In Section 2 we introduce the main
ideas leading first to the proposal of probabilistic and then also to the determinis-
tic verification algorithm for matrix multiplication of quadratic time complexity.
Based on the previous results in Section 3 we present our final result — a non-
deterministic algorithm for matrix multiplication in quadratic time. Section 4
contains conclusions.

Deterministic Verification of Matrix Multiplication in Quadratic Time 377

Before continuing we briefly describe the computational model used in the se-
quel on which our algorithms are implemented. It will be the Blum-Shub-Smale
machine, or BSS machine [2]. This model has been designed in order to capture
(idealized, i.e., exact) computations over the real numbers. Essentially, a BSS
machine is a random access machine with registers that can store arbitrary real
numbers, can compute rational functions over reals at unit cost and can com-
pare the reals using “≥” operator. A non-deterministic variant of the BSS model
has the instruction for guessing and storing an arbitrary real number. Since the
use of such an instruction produces an uncountable number of guesses there is
an uncountable number of computational paths following each nondeterministic
guessing instruction. The set of all guesses done along a particular computa-
tional path in a computation on a given input is called a witness for that input.
A witness is used to pin down a computational path that satisfies the required
input-output relation. A witness then enters into this relation as the third pa-
rameter. More formally, a computation of a nondeterministic BSS machine will
be described by the so-called input-output function Φ from a subset of the input
space and the witness space to the output space. An element of the input space
x is given to the machine at the beginning of its computation, the witness w
is guessed during the computation on input x, and the output z = Φ(x,w) is
printed at the end of the computation. For more details, cf. [2].

2 A Simple Probabilistic Verification Algorithm

Our algorithm has a similar structure like the original Freivalds’ algorithm. Thus,
in order to verify, whether AB = C for any three matrices A, B and C of
real numbers of size n × n, we choose a specific (column) vector x of length n
and compare the product A(Bx) with the product Cx. Both products can be
computed using O(n2) arithmetical operations. However, whereas Freivalds has
made use of vector x with entries uniformly chosen from {0, 1} (or {−1, 1}), we
will make use of a vector x of form x = (1, r, r2, . . . , rn−1)T (here operator T
denotes the transposition of a row vector into a column vector), for any real
number r appropriately chosen. The details are given in the sequel.

Lemma 1. If D �= 0 is a real matrix of size n× n then there are at most n− 1
real numbers r such that

D

⎛⎜⎜⎜⎜⎝
1
r
r2

. . .
rn−1

⎞⎟⎟⎟⎟⎠ = 0 (∗)

Proof: Since D �= 0 at least one row of D is non-zero. Corresponding to this
row in the resulting matrix-vector product (∗) there is one algebraic equation
in indeterminate r of degree less than n. This equation has at most n − 1 real
roots.

378 I. Korec and J. Wiedermann

�

Based on the previous lemma we first design a probabilistic algorithm for
verifying the product of two matrices of quadratic time complexity.

To verify AB = C, we pick a “random” real number r, create vector x =
(1, r, r2, . . . , rn−1)T and compute Y = {yi,j} = A(Bx) −Cx.

If Y = 0 then AB = C with probability 1 (because there are at most n− 1
“bad” numbers r causing (AB−C)x = 0 even if AB �= C).

If Y �= 0 then AB �= C “for sure”.
This leads to the following probabilistic algorithm for verification of matrix

multiplication:

Probabilistic verification of matrix multiplication:

1. Input matrices A, B and C;
2. Pick randomly a real number r and compute vector x =

(1, r, r2, . . . , rn−1)T ;
3. If A(Bx) = Cx then output Prob(AB = C) = 1 else output AB �=

C;

The required computation can be done using O(n2) operations +, −, × and
n comparisons (with zero). The latter number can be diminished to 1 by first
computing the norm ||Y|| = y21 , . . . , y2n of Y and comparing it to zero.

Now the following proposition is obvious:

Proposition 1. Let A, B, C, r, and x be as before, let Y = AB−C �= 0. Then
the previous algorithm returns a wrong answer if and only if Yx = 0, i.e., if and
only if Pi(r) =

∑n
j=1 yi,jr

j−1 = 0 for i = 1, 2, . . . , n.

Thus, we get a wrong answer only in an extremely unlikely case that we
randomly select r which turns out to be a root of all polynomials Pi(r) = 0 for
i = 1, 2, . . . , n.

Remark: Incidentally, the previous verification algorithm is formally similar to
that proposed in [8]. However, the similarity is superficial. Namely, a single run of
our algorithm with a randomly chosen real number leads to a correct verification
with probability one. On the other hand, a single run of the algorithm from
[8] delivers a correct answer with probability greater than 1/2. Although the
reliability of the latter algorithm can be increased iteratively it will never achieve
a correct answer with probability 1. The correctness and complexity analysis of
both algorithms are different.

3 A Deterministic Algorithm for Verification of Integer
Matrices Product

In order to turn the previous probabilistic algorithm into a purely deterministic
one we must show that without the necessity of computing Y we can determin-
istically find number r for which not all polynomials Pi(r) defined in Proposition

Deterministic Verification of Matrix Multiplication in Quadratic Time 379

1 are zeroed. Such r can be found for the case of integer matrices. Therefore, in
the sequel we will only consider matrices with integer entries.

For determining r we can make use of any of the known theorems giving an
upper bound on the magnitude of roots of a polynomial. Probably the simplest
of such theorems is due to Cauchy [4] — the so–called Cauchy’s bound (for a
proof, cf. the textbook [7], p. 82) :

Theorem 1. Let P (x) = akx
k + ak−1x

k−1 + . . . + a1x + a0 be a polynomial
with real coefficients. If x is a root of P (x) = 0 then |x| < 1 + A/|ak|, with
A = maxk−1

i=0 {|ai|}.

It is seen that in order to upper-bound the magnitude of the roots we have
to know coefficient ak and the maximum of the absolute value of all coefficients
in a polynomial. In our case, k = n in the previous theorem and if Y = {yi,j},
then yi,j =

∑n
j=1 ai,jbj,i − ci,j and Pi(r) =

∑n
j=1 yi,jr

j−1 = 0 for i = 1, 2, . . . , n.
Let cmax = max{|ai,j|, |bi,j |, |ci,j |}. Then the maximal coefficient in any poly-

nomial — the value of A— can be upper-bounded by nc2max+cmax. Further, for
any i, the absolute value of the leading coefficient in front of the highest power
of r in Pi(r) can be lower-bounded by 1 since we deal with integer matrices.
(Note that it is here where we had to restrict ourselves to the integer matrices
since for the real valued matrices a lower bound on |ak| cannot be found without
computing yi,j .)

From Cauchy’s bound it follows then that for any polynomial Pi(r) the abso-
lute value of its roots are upper-bounded by α = nc2max + cmax + 1.

Thus, choosing any r ≥ α in the previous proposition will guarantee that
Pi(r) �= 0 and hence Yx = 0 can only hold for Y = 0. The deterministic
algorithm for matrix multiplication verification follows easily:

A deterministic verification of matrix multiplication for integer
matrices:

1. Input matrices A, B and C, C �= 0;
2. Compute α and set r := α;
3. Compute vector x = (1, r, r2, . . . , rn−1)T ;
4. If A(Bx) = Cx then output YES else output NO;

From the definition of α it is seen that it can be computed in O(n2) op-
erations since the entries of all matrices must be inspected. Vector x can be
computed in time O(n) and hence the entire deterministic verification algorithm
is of quadratic time complexity.

The previous algorithm can be seen as a derandomized version of Freivald’s
algorithm for the verification of the product of integer matrices.

380 I. Korec and J. Wiedermann

4 The Non-deterministic Algorithm for Integer Matrix
Multiplication in Quadratic Time

The lastly considered deterministic algorithm for matrix multiplication verifica-
tion can be turned into a non-deterministic algorithm for matrix multiplication
working in quadratic time as follows. The idea is that the algorithm guesses
matrix C, deterministically computes number r (using Theorem 1) and veri-
fies, whether AB = C similarly as in Proposition 1. The guessing space can
be bounded since the size of entries in (so-far unknown) matrix C depends on
entries in matrices A and B. If emax = max{|ai,j|, |bi,j |} than the absolute value
of any entry in C cannot be greater than β = ne2max. This means that it is
enough to guess matrices C with entries of size, in absolute value, at most β.

The resulting algorithm to be implemented on a non-deterministic BSS ma-
chine works as follows:

A non-deterministic integer matrix multiplication algorithm:

1. Input matrices A and B;
2. Guess the witness —matrixC �= 0 with the absolute values of entries

bounded by β;
3. Compute r := β + emax;
4. Compute vector x = (1, r, r2, . . . , rn−1)T ;
5. Deterministically verify A(Bx) = Cx;
6. Output C.

It is clear that the time complexity of this algorithm is O(n2). Its correctness
follows from the fact that after Step 2, there exist infinitely many computational
paths (one for each guess of C) in the computation, but with the help of witness
C the verification in Step 5 selects exactly one of them satisfying A(Bx) = Cx
which is equivalent to verifying AB = C thanks to Theorem 1. Note that the
seemingly similar idea of guessingC and its subsequent verification à la Freivalds
cannot work since through the error margin of the respective algorithm, however
small, matrices C can come through for which AB �= C. Thus, getting rid of
probabilistic features of a verification algorithm for matrix multiplication turns
out to be a crucial ingredient for the success of our nondeterministic algorithm.

Note that the previous algorithm can be generalized to the case of matrices
of rational numbers given as numerator and denominator pairs. The idea is to
transform all entries in matrices to the common denominator and to extract it,
as a scalar, in front of matrices. By this we get the integer matrices and can
proceed accordingly. The transformation of entries to a common denominator
can be straightforwardly done using O(n2) arithmetical operations. If dmax is
the maximal absolute value of some denominator in A or B then the size of the
common denominator would be of order dnmax. This, however, does not play any
role in our BSS model that computes with the unit cost measure independently
of the size of arguments of arithmetical operations.

Deterministic Verification of Matrix Multiplication in Quadratic Time 381

Theorem 2. For a BSS computer there exists a non-deterministic integer or
rational matrix multiplication algorithm of quadratic time complexity.

Since any algorithm for multiplying two n×n matrices has to process all 2n2

entries, Ω(n2) is an asymptotic lower bound of the number of operations needed
for matrix multiplication. For bounded coefficient arithmetic circuits over the
real or complex numbers Raz [11] proved a lower bound of order Ω(n2 logn).
This bound does not apply to our case since we are using a different model
than Raz — namely the BSS model where computations with arbitrary large
reals and equality tests are allowed. The result from the last theorem indicates
that any technique for proving a super-quadratic lower bound for deterministic
matrix multiplication on a BSS machine must exploit methods which would not
work for the non-deterministic case.

5 Conclusions

The presented results bring a further shift in our understanding of matrix mul-
tiplication algorithms.

The Freivald’s idea of replacing direct checking of matrix–matrix product by
checking the matrix product with a randomly chosen vector is a great one. During
its more than thirty years long history the Freivalds’ algorithm has gained a firm
place among both practical and theoretically important algorithms. It has also
served as a source of inspiration for using similar ideas in other contexts of
algebra and in checking approximate computations over the reals (cf. [1]).

The present paper comes with yet an other variation of the initial Freivalds’
idea. There have been efforts to diminish the amount of randomness in the algo-
rithm (cf. [8],[10]). For the case of integer matrices we have succeeded in getting
rid of randomized steps entirely in the algorithm for no extra cost (still assuming
a unit cost of operation), but at the expense of computing with large numbers.
On the BSS model this has no effect on complexity but on more realistic mod-
els of computations (like on uniform cost RAMs or Turing machines) the use of
numbers whose size substantially exceeds the size of the matrix elements presents
a bottleneck in practical considerations. On the other hand, the entirely deter-
ministic algorithm for matrix multiplication verification has enabled the design
of a nondeterministic algorithm for integer matrix multiplication in quadratic
time. This seems to be the first known algorithm for such a task achieving this
theoretically best possible performance. Whether there exists a nondeterministic
algorithm for real matrices multiplication of quadratic time complexity on a BSS
machine remains an open problem.

Although the results are not of immediate practical value they contain a clear
methodological message. First, the results strengthen the hope that on the BSS
machines also deterministic matrix multiplication of quadratic time complexity
algorithms might exist (as many computer scientists in this field believe), and
second, any effort for proving super–quadratic lower bounds for this task for
the BSS machines must avoid considerations of non-deterministic algorithms.

382 I. Korec and J. Wiedermann

It would be a great surprise if on a BSS machine matrices could be multiplied
faster nondeterministically than deterministically.

Acknowledgment. The authors wish to thank to the anonymous reviewers for
their comments on the previous draft of the paper.

References

1. Ar, S., Blum, M., Codenotti, B., Gemmel, P.: Checking approximate computations
over the reals. In: Proc. 25th ACM STOC, pp. 786–795 (1993)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation, 452
p. Springer (1998)

3. Brassard, G., Bratley, P.: Fundamentals of Algorithmics, 524 p. Prentice Hall,
Englewood Cliffs (1996)

4. Cauchy, A.L.: Exercises de Mathematique, Oeuvres (2), vol. 9, 122 p. (1829)
5. Freivalds, R.: Probabilistic machines can use less running time. In: Proceedings of

the IFIP Congress 1977 Information Processing, pp. 839–842 (1977)
6. Freivalds, R.: Fast Probabilistic Algorithms. In: Bečvář, J. (ed.) Proc. Mathe-

matical Foundations of Computer Science MFCS 1979. LNCS, vol. 74, pp. 57–69.
Springer (1979)

7. Householder, A.: The Numerical Treatment of a Single Nonlinear Equation.
McGraw-Hill, New York (1970)

8. Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products
using O(n2) time and log2 n+O(1) random bits. Inf. Process. Lett. 45(2), 107–110
(1993)

9. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

10. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and ap-
plications. SIAM J. Comput. 22(4), 838–856 (1993)

11. Raz, R.: On the complexity of matrix product. In: Proc. of the 34th Annual ACM
Symposium on Theory of Computing. ACM Press (2002)

12. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
13. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.

ACM STOC, 887–898 (2012)

Comparison of Genetic Algorithms for Trading
Strategies

Petr Kroha1 and Matthias Friedrich2

1 Czech Technical University in Prague,
Faculty of Information Technology, Department of Software Engineering,

Thakurova 9, 160 00 Praha 6, Czech Republic
kroha@informatik.tu-chemnitz.de

2 Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany
matthias_friedrich@ymail.com

Abstract. In this contribution, we describe and compare two genetic systems
which create trading strategies. The first system is based on the idea that the
connection weight matrix of a neural network represents the genotype of an indi-
vidual and can be changed by genetic algorithm. The second system uses genetic
programming to derive trading strategies. As input data in our experiments, we
used technical indicators of NASDAQ stocks. As output, the algorithms generate
trading strategies, i.e. buy, hold, and sell signals. Our hypothesis that strategies
obtained by genetic programming bring better results than buy-and-hold strategy
has been proven as statistically significant. We discuss our results and compare
them to our previous experiments with fuzzy technology, fractal approach, and
with simple technical indicator strategy.

Keywords: Genetic algorithms, neurogenetic approach, neuroevolutionary sys-
tem, genetic programming, neural network, investment, forecast, trading, finan-
cial modeling, technical analysis.

1 Introduction

Analyzing financial markets is a very interesting and popular field. Especially, fore-
casting is a hot topic. However, the question is how successfully and reliable a market
behavior can be predicted. There is no consensus in the expert community because two
main, contradictory, competing hypotheses on market processes have been formulated.

Efficient market hypothesis [6], [11] states that markets are efficient in the sense
that current stock prices reflect completely all currently known information that could
anticipate future market, i.e. there is no information hidden that could be used to predict
future market development.

Later, inefficient market hypothesis [15] was formulated because some anomalies
in market development have been found that cannot be explained as being caused by
efficient markets. More or less, market trading need buyers and sellers at the same time.
So, a consensus would stop trading.

Compared to systems in physics, reflexivity of markets and investors is a very impor-
tant factor. It states that investors influence the market by changing their biases, mind,

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 383–394, 2014.
c© Springer International Publishing Switzerland 2014

384 P. Kroha and M. Friedrich

interest, and trading rules. Similarly, market changes influence behavior of investors. It
will be investigated by crowd psychology.

Market processes are driven by events and by trends. Events happen and are repre-
sented by news. Predictable events have usually no influence on stock prices because
investors presume them and prices adapt to them before. Unpredictable events cause
big changes in stock prices but they are unpredictable like earthquake. Trends are given
by investor’s behavior. The chance to predict trends seems to be slightly better than to
predict earthquake. So, the effort to forecast markets is more or less the effort to predict
investors’ behavior. It can bring good results in time periods when trends are dominating
and only expected events happen. We did not investigate possibilities of short term pre-
diction, e.g. for day trading, because the influence of noise is stronger than in the case
of long term prediction. Because of that we compare the performance of our prototypes
with buy-and-hold method that will be used as a standard in such investigations.

Genetic algorithms can be used in many ways to optimize systems. The important
parts of the algorithms are: how to specify what will be coded as genotype, and how the
fitness will be calculated.

The first possibility of using genetic algorithms is that neural network (Fig. 1) con-
nection weights can be optimized by a genetic algorithm instead of the commonly used
back propagation method. Elements of the weight matrix describing the neural network
topology are coded as real values and mapped into genotype. Such a system will be
called neurogenetic or neuroevolutionary system. We implemented such system as our
prototype A - Section 3.1.

The second possibility how to use genetic algorithms in financial application is that
system parameters (e.g. open and close stock value, technical indicators) are coded
as tree leaves (operands), and operators working with them (e.g. or, and, if, less-or-
equal) are coded as tree nodes (Fig. 2). This method will be called genetic programming
(GP). We start using a random placement of operators and operands into a tree that will
represent the genotype (in our prototype B). As published in [1], we used the swapping
of subtrees from both parents for the crossover. The following mutation selects a subtree
of a parent and replaces it by a randomly created tree - Section 3.2.

All genetic algorithms follow the same procedure. After a initial population of geno-
types is constructed, the fitness of each individual is calculated. For the recombination
operation, two parents are selected according to their fitness (in our prototypes with the
linear ranking method), and their genotypes are crossed. The new created individual
is subsequently modified by the mutation operation. This process will continue until
the new population is created, which is consistently followed by applying the fitness
calculation and the genetic operations.

In this paper, we describe the trading system A based on neurogenetic approach and
the genetic programming trading system B. Our original contribution is that we com-
pounded methods of [2], [9], and [14] for the neurogenetic approach in our prototype
A, and also improved the genetic programming method (tree swapping) presented in
[1] in our prototype B. We added technical indicators as tree nodes and we modified
the probability of the creation of tree nodes. We specified our own fitness functions for
both prototypes. Both methods are described in detail in Section 3.

Comparison of Genetic Algorithms for Trading Strategies 385

Additionally, we successfully tested statistical significance of the hypothesis that the
genetic programming prototype B brings better results than buy-and-hold strategy used
in comparisons as a standard. Further, we compared all achieved results, and results
obtained using fuzzy and fractal technology that we used in our previous works [8].

The rest of the paper is organized as follows. In Section 2, we discuss related work.
In Section 3, we introduce the developed prototypes. Fitness function is described in
Section 4. Then, we present data used in Section 5. The following section 6 describes
the implementation, experiments, and results. Statistical significance proving is given
in Section 7. The comparison of genetic with fuzzy and fractal methods is mentioned in
Section 8. In the last section, we conclude our work.

2 Related Work

There are many interesting works investigating similar problems as our research.
In [9], a neural network having one hidden-layer has been used. It was trained using

back propagation to find a local optimum. Compared to this work, we did not use back
propagation in the prototype A.

In [2], a multi-layer network was used. Genetic algorithm mutation changes weights
but also the topology of a cycle-free neural network. It was used for day traders, and
after a planned day profit was reached, the system generated a sell signal. Compared to
this work, we did not optimize the topology, but we used recombination of individuals
and applied the moving window technique in the prototype A. Our output was not day
trader oriented.

The authors of [14] suppose that there is no optimum of buy and sell signals, and
because of that supervised learning (e.g. back propagation) cannot be used. To optimize
weights, only genetic algorithm was applied using the moving window technique.

In [5], back propagation is replaced by simulated annealing, the input vector repre-
sents 5 technical indicators. The output is a stock value predicted for the next day, i.e.
buy-, hold-, and sell signals are not generated.

Fuzzy technology instead of genetic algorithm to optimize network topology is used
in [10].

In [7], authors focus on optimization of technical indicator parameters but differently
to our approach they do not use tree swapping.

A method to evaluate individuals which were proposed to be applied in automated
trading is described in [12]. Instead, we used our own fitness function described below.

It is very difficult to compare the methods mentioned above because of the large va-
riety of approaches, parameters, and used data. So, we compared tests of our prototypes
running on the same data.

3 Our Prototypes

3.1 Our Neurogenetic Prototype A

Our goal was to investigate how a trading strategy in terms of buy, sell, and hold signals
can be represented and generated from output values of a neurogenetic system. Fur-
thermore we wanted to prospect whether using a neurogenetic system can bring better

386 P. Kroha and M. Friedrich

Fig. 1. Instance of a neural network as an individuum of genetic algorithm

results than genetic programming, fuzzy and fractal technology that we investigated in
our previous work [8].

For the basis of our prototype A we used ideas from [2], [9], and [14] in a specific
composition with some additional improvements.

The important aspect of genetic optimization is how to map the problem into the
genotype. In this case, the input vector is represented by system parameters. They are
combined using an activation function and weight parameters which are stored in a
matrix correspondingly to the network topology. The output vector is finally decoded
into buy, hold and sell signals. To recombine genotype of two parents (i.e. their ma-
trices) the 2D-recombination method will be used. For the mutation, we developed the
noise-layer-mutation, which added small randomly created values to each element of
the matrix of a specific layer using the gaussian distribution N (0, 1).

The weight optimization was implemented using a genetic algorithm in periods with
moving window technique. We abstained from the back propagation algorithm because
we agree with the assumption in [14] saying that buy and sell decisions for middle and
long term trading strategy cannot be predicted using supervised learning algorithms.

3.2 Our Prototype B Based on Genetic Programming

Our genetic programming prototype B is an improved algorithm based on the method
published in [1]. As described in Section 1, the trading rule is represented by a tree
using system parameters as leaves and operators as tree nodes Fig. 2.

Our main improvement is that we used different selection probabilities for different
kinds of nodes. This means, when creating a random tree (e.g. for initial population or
mutation), the selection probability is not uniform distributed over nodes in one cate-
gory, as given in Table 1. The effect is that system values like technical indicators have a
higher probability of occurrence within the tree, and therefore they influence the trading
strategy more than fixed parameters. Furthermore, it reduced the number of combina-
tions that have semantically only very limited or improbable occurrence but cause a tree
explosion. The probabilities we used are our estimations based on our experience with
description of many strategies.

Comparison of Genetic Algorithms for Trading Strategies 387

Fig. 2. An instance of a tree in genetic programming

Table 1. Probabilities of rule application

Parameter Value P

Boolean
Basic functions if-then-else, and, or, not 12.5 % each

Enhanced functions <,> 25.0 % each

Numeric

Basic functions +, -, *, : , norm 2.0 % each
Close value price 30 %

Enhanced function number, average, maximum, minimum, lag 4.0 % each
Indicators ROC, MACD, SO, TCI 10 % each

4 Fitness Function

Fitness function evaluates behavior of phenotype, i.e. behavior of the individual that
was generated from genotype. Next generation individuals will be constructed from two
individuals that have usually a high fitness function value, since all common selection
methods (i.e. linear ranking) are fitness-oriented.

In our applications, individuals represent trading strategies. An important factor of
the fitness function is the money earned by each strategymstrat. An individual obtains
a start money amount minit and uses it following its strategy st during n days. The
moneymstrat of an individual, i.e. of each strategy, achieved in a period is calculated
using close stock value xt and the market position post of day t corresponding to the
trading strategy:

mstrat = minit ·
i∏

t=i−n+1

(
xt
xt−1

)post

, post =

⎧⎨⎩
1 , if st−1 ⇔ buy
0 , if st−1 ⇔ sell

post−1 , if st−1 ⇔ hold
(1)

The calculation of the fitness function in our neurogenetic system contained several
components as described below:

– profit of each strategy fstrat is calculated in relation to the profit of the buy-and-
hold strategy (mbah denotes money obtained by the buy-and-hold strategy)

fstrat = mstrat −mbah = mstrat −
(
minit ·

xi
xi−n+1

)
(2)

388 P. Kroha and M. Friedrich

– absolute value of profit - fstrat−abs - indicates the profit or loss of money caused
by the strategy, i.e. it represents the rule that we want not only to be better as the
buy-and-hold strategy, but we do not want to loose money

fstrat−abs = mstrat −minit (3)

– penalty function - fstrat−pen - penalizes individuals that do not change position and
simply follow buy-and-hold strategy during ñ coherent days, using an adjustment
factor α

fstrat−pen = α ·minit ·
(
ñ

n

)3

(4)

– absolute relation between profit and loss - fstrat−pl - respects the risk β resulted
from the using of the trading strategy

fstrat−pl = β · p + (1− β) · l (5)

The average profit p is given by positive return during a period of days running
consecutively

p =
1

i∑
t=i−n+1

pt

·
i∑

t=i−n+1

(
xt
xt−1

·mt−1

)
· pt, pt =

{
1 , if xt > xt−1

0 , otherwise
(6)

The average loss l is calculated similarly:

l =
1
i∑

t=i−n+1

lt

·
i∑

t=i−n+1

(
xt
xt−1

·mt−1

)
· lt, lt =

{
1 , if xt < xt−1

0 , otherwise
(7)

The components described above are combined in the fitness value F :

Fstrat = (1− γ) · fstrat−bah + γ · fstrat−abs + fstrat−pen + fstrat−pl (8)

The parameter γ represents the weight of fbah and fabs. In our preliminary study,
we found that γ = 0.6 was the most suitable value. Other authors construct different
fitness functions.

5 Data Used

In the first part of our experiments called preliminary study, we tried to specify suitable
parameters and their values that could be used as fixed during the optimization problem.
Since we used connection weights to be optimized in our neurogenetic prototype A,

Comparison of Genetic Algorithms for Trading Strategies 389

there are many methods which could be applied for the genetic algorithm. Because of
the complexity, it is practically impossible to optimize all the parameters.

During the preliminary study we evaluated different parameter combinations for the
neurogenetic system, i.e. we altered the topology, recombination and mutation methods.
Starting with the configuration given in Table 3, we picked the parameters in succession
and evaluated different values and methods. The description of all experiments and
evaluations of our preliminary study is out of scope of this paper. Of course, we know
that the parameter combination we fixed does not guarantee the global optimum but
computational complexity of other approach were immense. The final configuration
used for the test is given in Table 4.

Table 2. Input vector variables of our neural network

Position Variable Position Variable Position Variable

1 closet 14 MACDt(20, 40) 27 SOt(40)
2 SMAt(5) 15 ROCt(20) 28 TCIt(40, 80)
3 EMAt(5) 16 SOt(20) 29 BBt(40, 2.0)
4 MACDt(10, 20) 17 TCIt(20, 40) 30 RAV It(10, 100)
5 ROCt(10) 18 BBt(20, 2.0) 31 RSIt(14)
6 SOt(10) 19 RAV It(6, 60) 32 SMAt(50)
7 TCIt(10, 20) 20 RSIt(9) 33 EMAt(50)
8 BBt(10, 2.0) 21 hight 34 SMAt(100)
9 RAV It(3, 30) 22 lowt 35 EMAt(100)

10 RSIt(3) 23 SMAt(20) 36 SMAt(200)
11 opent 24 EMAt(20) 37 EMAt(200)
12 SMAt(10) 25 MACDt(40, 80)
13 EMAt(10) 26 ROCt(40)

As 37 input values, we used technical indicators (SMA means Simple Moving Av-
erage, EMA means Exponential Moving Average etc. - all acronyms are given in [13])
and stock values (open, high, low, close) as given in Table 2.

Both prototypes have been tested at stocks of companies listed in NASDAQ-100 in
June 2009. As time period for the evaluation we considered the 01.01.2003 start and
the 01.10.2009 as end point. A test case is represented by the values of a time series
of a stock in one year, which we used as test period. The training and selection period
contained the values of 12 respectively 6 months directly before start of the test period.
Since some companies do not have stock values in the whole periods, there were 621
test cases.

6 Experiments and Results

To run our experiments with prototype A, we used an Apple Mac Pro 4,1 with two Intel
Xeon E5520 processors, 4 cores / 8 threads each, clock rate 2,26 GHz. The experiments
of our prototype B have been executed on a computer with processor Intel Core 2 Duo
E6300, clock rate 1,86 GHz.

390 P. Kroha and M. Friedrich

Table 3. The configuration of the neurogenetic system in the preliminary study

Category Parameter Value

Topology

Input-layer 37
Hidden-layer 1 20
Hidden-layer 2 8
Output-layer 1

Activation function

Function type Logistic Function
Parameter α 2
Parameter β 3
Parameter γ 3

Threshold parameters
Activation potential θ 1.0

Buy signal tbuy 0.66
Sell signal tsell −0.66

Population
Initialization Gaussian distribution

Number of generations 100

Selection

Selection method Linear ranking
Elitism 0

Minimum 0.5
Maximum 1.5

Crossover
Recombination method Layer-crossover

Probability pc 0.8

Mutation
Mutation method Noise-layer
Probability pm 0.2

Distance 0.1

Capital
Seed money 10000 $

Transaction costs Relative: 0.25 %
Fitness measurement Computation strategy of fitness See section 4

Moving windows
Number of windows 6

Number of overlapping days 30

Population size
Training period 1000
Selection period 50

Test period 1

Experiments were very time consuming. Each algorithm execution took about 27
minutes and 18 seconds, i.e. the tests would need altogether approximately 282 hours
and 38 minutes. Since we could parallelize our prototype A, we only needed 156 hours
49 minutes for the evaluation.

Both methods achieved better results than the strategy buy-and-hold. In the case of
genetic programming, the prototype B makes 2.72 % a higher profit towards the buy-
and-hold strategy.

Compared to buy-and-hold strategy, the strategies of the neurogenetic prototype A
earned in average 91.82 % more during the training period, but only 0.65 % more during
the test period. It achieved in 99.19 % better results as buy-and-hold strategy during the
training period, but only 44.28 % during the test period. It seems to be overfitted.

The strategies generated by the genetic programming system (prototype B) earned in
average only 55.20 % more than buy-and-hold strategy in training period, but 2.72 %

Comparison of Genetic Algorithms for Trading Strategies 391

Table 4. The configuration of the final tests

Parameter Neurogenetic system Genetic programming

Attributes of
Individuals

Input-layer: 37
Hidden-layer: 19 Non-uniform distribution,

see Table 1Output-layer: 1
Tangens hyperbolicus Maximum tree depth: 7

tbuy = 0.5; tsell = −0.33; θ = 0.0

Population
Initialization: Gaussian distribution

Generations: 75
Generations: 150

Selection

Linear ranking
Minimum: 0.5
Maximum: 1.5

Individuals for elitism: 0

Crossover
2D-recombination Tree swapping

pc = 0.9 pc = 0.7

Mutation
Noise-layer Tree switching
pm = 0.7 pm = 0.7

Distance: 0.1 (Gaussian distribution)

Capital
Seed money: 10.000 $

Transaction costs: 10 $ for each transaction
Fitness measurement See section 4

Moving windows
Number of windows: 2

–
Number of overlapping days: 75

Population size
Training period: 100 Training period: 50
Selection period: 50 Selection period: 20

Test period: 1 Test period: 1

more during the test period. During the training period, it was better in 90.82 % of
cases; during the test period, it was better in 44.61 % of cases.

If we consider only stocks that provide a better performance using the generated
strategies compared to buy-and-hold strategy then strategies generated by prototype A
(neurogenetic) give 26.98 % and strategies generated by prototype B (genetic program-
ming) give 28.73 % more earning during the test period. The results are summarized in
Table 5.

7 Statistical Hypothesis Testing

Because of the results described above, we used statistical hypothesis testing (Z-test
because the sample size is large and the population variance known) and proved both
prototypes using the following hypotheses with the parameters α = 5 % and μ0 = 1.0
which leads to the parameter Φ(z1−α) = 1.6449.

H0 = the expected earning of the generated strategy is equal or less compared to the earning
of the buy-and-hold strategy

H1 = the expected earning of the generated strategy is greater compared to the earning of
the buy-and-hold strategy

392 P. Kroha and M. Friedrich

Table 5. Results of neurogenetic and genetic programming system compared to buy-and-hold
strategy

Neurogenetic system Genetic programming

Average (Training) 1.9182 1.5520
Average (Test) 1.0065 1.0272

Number of better cases (Training) 616 564
Number of worse cases (Training) 5 57

Number of better cases (Test) 275 277
Number of worse cases (Test) 346 344

Average of better cases(Training) 1.9392 1.6160
Average of better cases (Test) 1.2698 1.2873

For the neurogenetic system we obtained z = 0.4728 < Φ(z1−α). It means that the
hypothesisH0 can neither be rejected nor accepted.

In contrast, we obtained z = 1.9910 > Φ(z1−α) for the genetic programming. This
means that the hypothesisH0 can be rejected. Therefore we can state that the strategies
generated by genetic programming method earns more than the strategy buy-and-hold.

8 Comparison to Fuzzy and Fractal Technology

In our previous work [8], we investigated how fuzzy technology, fractal technology,
and using of technical indicators can be used to generate trading strategies. Now, we
used the same time series to prove the generated strategies as in [8], which allows the
comparison of all five methods. The results obtained are shown sorted in Table 6. We
can see that the system based on genetic programming implemented in prototype B
brings the best results.

Table 6. Comparison of neurogenetic and genetic programming systems to results of fuzzy tech-
nology, fractal technology, and simple application of technical indicators

Average Standard deviation

Genetic programming 1.1149 0.8872
Neurogenetic system 0.9851 0.6954

Fractal analysis 0.9664 0.7247
Fuzzy control 0.8392 0.3566

Technical indicators 0.6473 0.3118

The small difference between Table 5 and Table 6 occurred because we investigated
only 82 stocks of NASDAQ-100 in our previous work but all 100 stocks in this work.

There is a question concerning the size of data necessary for the training and selec-
tion process. To use our results in practice with several stocks, the time consumed by
the execution must be reduced. A modest trader in Middle Europe respects the stock
exchange in New York closing at 22:30 (CET) and Frankfurt stock exchange opening at

Comparison of Genetic Algorithms for Trading Strategies 393

Fig. 3. Buy and Sell Signals for the DAX generated by genetic programming, separated in train-
ing, selection and test periods

9:00 (CET) the next day. There are 10.5 hours available to compute the most promising
trading strategy for the next day influenced by the last data.

In subsequent experiments, we investigated a time series of one stock only and re-
duced the training, selection, and test to 1 month each and used 150 generations. The
process running in 2 threads took 2 minutes only and gave signals shown in Fig. 3.

9 Conclusion

We implemented, improved, and tested two prototypes of methods based on genetic
algorithms that generate trading strategies. In difference to other works, we took trans-
action costs into account (Table 4).

We expected that the neurogenetic prototype A based on genetic optimization of
neural network weights brings the best results. However, we found that the method of
genetic programming generates a better trading strategy, and that it brings more profit
than the buy-and-hold strategy which is usually used for comparison. We proved sta-
tistical significance of this result. As we mentioned above, the optimization process is
very time consuming when large data is used. We recognized that prior behavior of
markets has a limited information content relative to current trading behavior. The dif-
ference between performance of trading decisions during a training period and during
a test period is very big (Table 5).

In common, complex system like markets are influenced by very many parameters
which can be further investigated.

394 P. Kroha and M. Friedrich

Practically, trading practices used by investment banks and funds are secret, of
course. However, they are not always successful. Some of them go bankrupt, e.g. the
largest bankruptcy in U.S. history - Lehman Brothers loss 600 bilions in assets in 2008.

There is never a real consensus in finance - everybody tries to outsmart everybody
else. This is why there are still buyers and sellers - a real consensus would stop trading.
Obviously, markets differ from physical systems. It is known that using insider infor-
mation or pretending investments are commonly used strategies, and we cannot model
them. Because of such practices and because of the chaotic component given by events
our market modeling possibilities remain limited.

References

1. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules. Journal of
Financial Economics 51, 245–271 (1999)

2. Azzini, A., Tettamanzi, A.: Evolving Neural Networks for Static Single-Position Automated
Trading. Journal of Artificial Evolution and Applications, 1–17 (2008)

3. Brabazon, A., O’Neill, M.: Biological Inspired Algorithms for Financial Modelling. Springer
(2006)

4. Brabazon, A., O’Neill, M., Dempsey, I.: An Introduction to Evolutionary Computation in
Finance. IEEE Computational Intelligence Magazine, 42–55 (2008)

5. El-Henawy, I.M., Kamal, A.H., Abdelbary, H.A., Abas, A.R.: Predicting Stock Index Using
Neural Network Combined with Evolutionary Computation Methods. In: The 7th Interna-
tional Conference on Informatics and Systems (INFOS), pp. 1–6 (2010)

6. Fama, E.: Efficient capital markets: A review of theory and empirical work. Journal of Fi-
nance 25, 383–417 (1970)

7. Kapoor, V., Dey, S., Khurana, A.P.: Genetic Algorithm: An Application to Technical Trading
System Design. International Journal of Computer Applications 36(5) (2011)

8. Kroha, P., Lauschke, M.: Using Fuzzy and Fractal Methods for Analyzing Market Time Se-
ries. In: Proceedings of the International Conference on Fuzzy Computation and International
Conference on Neural Computation ICFC 2010 and ICNC 2010, pp. 85–92 (2010)

9. Kwon, Y.-K., Moon, B.-R.: A Hybrid Neurogenetic Approach for Stock Forecasting. IEEE
Transactions on Neural Networks 18, 851–864 (2007)

10. Li, R., Xiong, Z.: A Modified Genetic Fuzzy Neural Network with Application to Financial
Distress Analysis. In: International Conference on Computational Intelligence for Modeling,
Control and Automation and International Conference on Intelligent Agents, Web Technolo-
gies and Internet Commerce (2006)

11. Malkiel, B.: A Random Walk Down Wall Street. W.W. Norton, New York (1996)
12. Matsui, K., Sato, H.: Neighborhood Evaluation in Acquiring Stock Trading Strategy Using

Genetic Algorithms. International Journal of Computer Information Systems and Industrial
Management Applications 4, 366–373 (2012)

13. Murphy, J.J.: Technical Analysis of the Financial Markets. Prentice Hall (1999)
14. Skabar, A., Cloete, I.: Neural networks, Financial Trading and the Efficient Markets Hy-

pothesis. In: Proceedings of the Twenty-Fifth Australasian Conference on Computer Science
ACSC 2002, vol. 4, pp. 241–249 (2002)

15. Shleifer, A.: Inefficient Markets – An Introduction to Behavioral Finance. Oxford University
Press (2000)

Probabilistic Admissible Encoding on Elliptic Curves
- Towards PACE with Generalized Integrated Mapping�

Łukasz Krzywiecki, Przemysław Kubiak��, and Mirosław Kutyłowski

Wrocław University of Technology, Institute of Mathematics and Computer Science

Abstract. We consider admissible encodings on an elliptic curve, that is, the
hash functions that map bitstrings to points of the curve. We extend the frame-
work of admissible encodings, known from CRYPTO 2010 paper, to some class
of non-deterministic mapping algorithms. Using Siguna Müller’s probabilistic
square root algorithm we show a mapping that works efficiently for any finite
field Fq of characteristic greater than 3, and that is immune to timing attacks.
Thereby we remove limitations of the mappings analyzed in the CRYPTO 2010
paper. Consequently, we remove limitations of a so called PACE Integrated Map-
ping protocol, which has recently been standardized by ICAO, and is used to
protect contactless identity documents against unauthorized access.

Keywords: indifferentiability, admissible encoding, non-deterministic square root
algorithm, finite field, elliptic curve.

1 Introduction

Many cryptographic protocols use efficient algebraic structures, such as elliptic curves,
but at the same time operate on ordinary objects such as binary strings. In such a case
we frequently need a mapping that converts the binary strings to points of the algebraic
structure. This problem has profound practical implications, since an inefficient map-
ping may outweigh computational advantages of using the target algebraic structure.

The above issue is very important for smart card protocols, and in particular for
electronic identity documents (e-ID), which are issued on a large scale. In fact, the
problem concerned in this paper emerged while constructing authentication protocols
for e-ID. Note that efficiency and security issues are critical for the issuer of e-IDs –
less efficient protocols require more expensive smart cards on which the e-ID could be
implemented, while a security flaw might cause exchange of identity documents with
enormous organizational costs.

For the rest of the paper we focus on one fundamental issue for contactless e-IDs,
namely preventing activation of an e-ID via the contactless interface without consent
of the document owner. This problem is solved by cryptographic protocols based on a

� The paper has been supported by the Polish Ministry of Science and Higher Education: dur-
ing the initial stage (i.e., numerical experiments) by project O R00 0015 07, later by project
N N206 369 839; the third author is supported by the Foundation for Polish Science, “Mistrz”
Programme.

�� Corresponding author: przemyslaw.kubiak@pwr.wroc.pl

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 395–406, 2014.
c© Springer International Publishing Switzerland 2014

przemyslaw.kubiak@pwr.wroc.pl

396 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

secret (password) shared by the document owner and the e-ID card. There are many
password-based authentication protocols, however we focus on a standardized solution
called PACE (Password Authenticated Connection Establishment) introduced by the
German federal authority BSI ([7]). The aim of PACE is to establish a secure channel
between a contactless smart card and a reader based on a password memorized by the
owner or engraved on a surface of the card. Due to PACE, an active but non-invasive
adversary can only guess the password and try it in an interaction with the card. A PACE
execution for a password π consists of three stages:

1. So called domain parameters and the result of encryption of a nonce s are sent from
the smart card to the reader. The domain parameters consist of a definition of an
elliptic curve over a finite field Fq, point G of prime order belonging to the curve,
and the co-factor �, i.e., the integer such that (ordG) · � equals the number of points
on the curve. The encryption of the nonce is performed with a key derived from the
password π stored inside the card. On the other hand, the reader learns the password
π via another channel (e.g., the owner of the card enters it manually) and decrypts
the message s.

2. Secondly, with help of the nonce s (and some other data exchanged between the
reader and the card) a point Ĝ is calculated locally both on the side of the reader
and on the side of the card.

3. Ĝ is used as a base point in the Elliptic Curve Diffie-Hellman key agreement proto-
col (ECDH). The resulting key is used to generate session keys needed to establish
a secure channel between the reader and the card.

The second step is called mapping, since it maps the nonce s to the elliptic curve indi-
cated in the domain parameters of the smart card. The mapping implemented on Ger-
man e-ID documents is called the Generic Mapping. The Generic Mapping includes
a separate execution of ECDH, therefore two ECDH executions are included in this
variant of PACE.

In [11], [9] another mapping for PACE is proposed – the so called Integrated Map-
ping is more efficient than the Generic Mapping both in terms of communication and
computational costs. The resulting variant of PACE is denoted as PACE IM.

The main building block of the Integrated Mapping is an algorithm that encodes a bit
string as a point of the curve. Two encoding algorithms were proposed: the simplified
Shallue-Woestijne-Ulas (SWU) algorithm or Icart’s encoding (see [5]). Both encoding
algorithms work in timeO((log2 q)

3), where Fq is the field over which the elliptic curve
has been defined.1

The SWU simplified algorithm works for any field Fq with char(Fq) > 3, however,
it is used by PACE IM only for q ≡ 3 mod 4. The condition q ≡ 3 mod 4 arises from
focusing on deterministic square root algorithms in finite fields. Icart’s encoding method
is also deterministic and works for any field Fq , where char(Fq) > 3 and q ≡ 2 mod 3.

The choice of deterministic encoding algorithms is a consequence of utilizing the
notion of indifferentiability in the proof of quality of the encoding (cf. [6] and the full
version [5]). Proving the security of hash based cryptosystems in the Random Oracle

1 PACE uses only prime fields Fq . but encoding algorithms work also for extension fields.

Probabilistic Admissible Encoding on Elliptic Curves 397

Model (ROM) requires that a hash function is modeled as an ideal functionality acces-
sible by all parties. However real designs impose that hashes do not have a monolithic
construction, but are rather iteratively built from some smaller blocks. Indifferentiabil-
ity property for deterministic algorithms guarantees that such a compound construction
can replace the monolithic ROM model in cryptosystems with security scenarios related
to a single, stateful adversary (for multi-stage protocols and resource-restriction models
see [15], [10]). However, indifferentiability assumes that the algorithm implementing
function f is deterministic. Therefore the security of PACE IM was analyzed only for
deterministic encoding functions.

Our Contribution. We extend the framework of indifferentiable hashing given in [6],
[5] to some class of non-deterministic algorithms. The extended framework justifies the
use of certain probabilistic algorithms in the simplified SWU method. The resulting
encoding protocol works for any field Fq with char(Fq) > 3, has expected running time
O((log2 q)

3) (like the deterministic simplified SWU method and Icart’s encoding) and
enjoys small variance. In particular, our generalization allows to use the NIST P-224
curve in the probabilistic variant of PACE IM (the standardization report [11] excludes
this curve).

Note that removing constraints imposed by the mapping algorithm on the fields Fq

of characteristic greater than 3 gives more flexibility in other applications (an example
could be the signature scheme [4]) and leaves more room for future designs. More-
over, having replaced specialized Integrated Mappings with a single general standard
we could reduce deployment costs.

Timing attacks. Apart from the high quality randomness ensured by the mapping cal-
culated in the second step of PACE, the protocol must protect confidentiality of the
password π. In particular, execution time of the protocol must not depend on the value
of π. This condition is satisfied by both versions of PACE and our extension meets this
condition as well.

Notation. The following notation is used in the rest of the paper.

Definition 1 (parity operator parityV() : Fq → {0, 1}). Let Fq be a finite field
of characteristic p > 2. Let V = {v0, v1, . . . , vd−1} be a base of the vector space Fq

defined over the field Fp. Accordingly, d is the extension degree [Fq : Fp]. Let a ∈ Fq,
and let a =

∑d−1
i=0 aivi be the representation of a in base V with ai ∈ Fp for i =

0, . . . , d− 1. Define parityV(a) as the parity of a0.

Definition 2 (mapping m̃V : Zq → Fq). Let Fq be a finite field of characteristic p > 2,
let V be a base from Def. 1. We define the mapping m̃V as follows: for any t ∈ Zq

represent t as a nonnegative integer written in base p, that is t = (td−1 . . . t1t0)p,
where each ti belongs to the set {0, 1, . . . , p− 1}. Then m̃V(t) =

∑d−1
i=0 tivi.

It is easy to see that m̃V() is a one-to-one mapping.
For a ∈ Fq, let η(a) denote the quadratic character of a, i.e., η(a) = 0 for a = 0,

η(a) = 1 if a = b2 for some b ∈ F∗
q , and η(a) = −1 otherwise. Recall that η(a) can be

398 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

calculated in time O
(
(log q)2

)
(cf. [2]). By νp(n) we denote the greatest exponent α

such that pα divides n. By ⊕ we denote exclusive or. The expression x←$ X denotes
the random choice of an element x from the setX with uniform probability distribution.
[k]G denotes the multiplication of an elementG of some additive group by the scalar k.

2 Siguna Müller’s Square Root Algorithm

We recall the square root algorithm from [13] constructed for finite fields Fq with odd
characteristic and based on Lucas sequences (cf. [1, Annex I.1.3]). Its expected running
time isO((log2 q)

3). An alternative to [13] may be Peralta’s algorithm (see [2, Sect. 3])
with the same expected running time. However, Peralta’s algorithm works only for q ≡
1 mod 4.

The square root algorithm from [13] uses elements of the Lucas sequence Vk(P̃ , 1),
whereV0(P̃ , Q̃) = 2, V1(P̃ , Q̃) = P̃ , V2n(P̃ , Q̃) = (Vn(P̃ , Q̃))

2−2Q̃n, V2n+1(P̃ , Q̃) =
Vn+1(P̃ , Q̃) · Vn(P̃ , Q̃) − P̃ · Q̃n. These formulas constitute a base for a left-to-right
binary algorithm [14] and allow to compute Vk(P̃ , 1) at a cost of at most 2 · log2 k!
multiplications and squarings in Fq.

The base V being the input of Algorithm 1 is usually defined as a polynomial or as
a normal basis. Recall that V and the modular polynomial defining the field Fq both
determine arithmetic in the field.

Algorithm 1. SM_sqrt – Siguna Müller’s square root algorithm from [13]
Input: definition of Fq and basis V , value Q being a square in F∗

q , parity_bit ∈ {0, 1}
Output: ã ∈ F∗

q such that ã2 = Q in Fq and that parityV(ã) = parity_bit,
1: δ ← −1 for q ≡ 1 mod 4, and δ ← 1 for q ≡ 3 mod 4
2: repeat
3: r ←$ F∗

q

4: P ← Q · r2 − 4
5: until η(P) = δ
6: P ← P + 2
7: a[0] ← V(q+δ)/4(P, 1)
8: a[0] ← a[0] · r−1 {now we have (a[0])2 = Q}
9: a[1] ← −a[0] {only one of the elements a[0], a[1] ∈ F∗

q has the required parity_bit}
10: return a[parityV(a[0]) ⊕ parity_bit]

With help of the reasoning from Sect. 2 of [3] one may show that both for q ≡
1 mod 4 and q ≡ 3 mod 4, the probability that for a single choice of r ∈ F∗

q (i.e., for
a single iteration of the loop) the condition in line 5 of Algorithm 1 is not satisfied is
equal to 1

2 + 1
q−1 .

Note that randomization by r completely equalizes the chances of all squares Q to
reach line 6 of the algorithm in some given number of iterations of the repeat. . . until
loop. Timing attacks at this place are therefore mitigated.

Since complexity of the computation of the quadratic character η(P) may be bounded
by O

(
(log2 q)

2
)
, it is easy to see that with an overwhelming probability the algorithm

Probabilistic Admissible Encoding on Elliptic Curves 399

will return the required square root in time O
(
(log2 q)

3
)
. Thus we have some level

of uncertainty that the main loop of Algorithm 1 will take no more than log2 q itera-
tions. However, the probability that the loop takes more iterations than log2 q equals
(12 + 1

q−1)
log2 q . Note that some small level of uncertainty turned out to be acceptable

in the case of the Miller-Rabin primality test deployed on smart cards.
To summarize, the number of iterations of the repeat. . . until loop of Algorithm 1

is described by a random variable Xloop having geometric distribution with parameter
p̂ = 1

2 − 1
q−1 . Hence E[Xloop] = 1/p̂ and Var[Xloop] = (1− p̂)/(p̂)2.

3 Probabilistic Variant of the Simplified SWU Method

Let n be a non-square in the field Fq . If the mapping is to be utilized for establishing
a secure channel between two parties, then both parties should use the same n. The
simplest way to achieve this is to define the basepoint G included in the set of domain
parameters in such a way that the x-coordinate of G is a non-square in Fq .

Henceforth we assume that Fq is a field of characteristic greater than 3. Let V be a
base from Def. 1, and let m̃V() be the mapping defined by Def. 2 . By Algorithm 2 –
a probabilistic variant of the simplified SWU algorithm — we define a mapping f :
Z2q → Ea,b(Fq), where Ea,b(Fq) is an elliptic curve defined by equation y2 = x3 +
ax+ b for a, b, x, y ∈ Fq .

Algorithm 2. Encoding f : Z2q → Ea,b(Fq)

Input: a, b, n,Fq,V , and argument t ∈ Z2q to be mapped on Ea,b(Fq)
Output: deterministic result of the mapping in non-deterministic time
1: parity ← t mod 2
2: t′ ← t mod q {from the Chinese Remainder Theorem (CRT) the pair (parity, t′)

uniquely represents t ∈ Z2q}
3: S ← n · (m̃V(t′))2

4: X2 ← −b
a
(1 + 1

S2+S
)

5: X3 ← S ·X2

6: rndbit ←$ {0, 1} {we shall save some computations from time to time}
7: h ← (

(X2+rndbit)
2 + a

) ·X2+rndbit + b
8: if η(h) = 1 then
9: return (X2+rndbit, SM_sqrt(Fq,V, h, parity))

10: else
11: h ← (

(X3−rndbit)
2 + a

) ·X3−rndbit + b
12: return (X3−rndbit, SM_sqrt(Fq,V, h, parity))
13: end if

Note that the random choice made in line 6 of Algorithm 2 is independent of the in-
put. Moreover, the execution time of the main loop of Algorithm 1 is independent from
that choice (recall the randomization by r in the main loop of Algorithm 1). Conse-
quently, for fixed parameters a, b, n,Fq,V the execution time of the whole Algorithm 2
is described by a random variable Y1 + Y2 that is independent of Algorithm’s 2 input
argument t: the random variable Y1 describes the execution time of the code included in

400 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

the listing of Algorithm 2, excluding SM_sqrt subroutine, whereas the random variable
Y2 describes the execution time of the SM_sqrt subroutine. Y1 is independent from Y2.

Tests. Our tests confirm that Algorithm 2 is pretty efficient. E.g., for the NIST P-224
curve, during 105 calls of Algorithm 2, we measured that for the number of multipli-
cations, squaring and Jacobi symbol computations: a sample mean equals ≈135.503,
≈226.503, ≈3.002 correspondingly, square root of a sample variance equals ≈1.506,
≈1.506, ≈1.424 respectively, The worst case measured during these 105 calls equals
155, 246, 22 correspondingly. There are exactly 3 inversions computed during each call
of the Algorithm 2.

4 Indifferentiability for a Non-deterministic Case

The “indifferentiability” notion was introduced in [12] and used also in [8]. In both
papers only deterministic algorithms are concerned.

To formally justify Algorithm 2 we introduce the following notion of a Time-oblivious
Turing machine:

Definition 3 (Time-oblivious Turing machine). Let C be a non-deterministic Turing
machine that computes a function. For each input Q, belonging to the domain DC of
allowable arguments, the time when C delivers the result is unknown a priori, but is
described by the random variable XQ. Let FXQ denote the probability distribution
ofXQ.

The machine C is called a time-oblivious if for any Q,Q′ ∈ DC the probability
distributions FXQ , FXQ′ are exactly the same, (thus we have a single distribution FX),
and the expected value E[XQ] is finite for eachQ.

Note thatXQ takes only non-negative values, so E[XQ] <∞ implies that the prob-
ability of the event that C will not deliver the result in finite time for an argument from
DC equals 0. We denote the event by C =⊥.

An example of a time-oblivious Turing machine is a Turing machine implement-
ing directly the simplified SWU method. More generally, we may consider a Turing
machine C′ implementing a function, and possessing a single, distinguished state S
such that starting in S the machine might take one of two sequences of actions: the first
sequence is deterministic and terminates the execution, the second one is also determin-
istic but terminates in the state S (hence we have a loop). The choice of the sequence
is made by tossing a coin that might be asymmetric but the same coin is used for all
arguments and all iterations of the loop. We assume that state S is the only possibil-
ity allowing the machine C′ to enter the infinite loop. However, we do not exclude the
possibility that before the state S is reached for the first time machine C′ makes some
other random choices independent of the input. However, since C′ implements a func-
tion none of the random choices (including those made at state S) influences the final
output.

Now we recall the definition of a random oracle and indifferentiability from Sect. 2.2
of [5]. According to [5], an ideal primitive is an algorithmic entity which receives in-
puts from one of the parties and delivers its output immediately to the querrying party.

Probabilistic Admissible Encoding on Elliptic Curves 401

A random oracle into a finite set S is an ideal primitive which provides a random output
in S for each new querry; identical input queries are given the same answer.

Let DR1,R2 denote a Turing machine D that uses two different oracles R1 and R2.
During its execution DR1,R2 can state queries to R1 and R2 and get immediately an
answer.

Definition 4 (indifferentiability [12], [8], [5]). A Turing machine C with oracle ac-
cess to an ideal primitive h is said to be (tD, tS , qD, ε)-indifferentiable from an ideal
primitive H if there exists a simulator S with oracle access to H and running in time
at most tS , such that for any distinguisher D running in time at most tD and making at
most qD queries, it holds that:∣∣∣Pr [DCh,h = 1

]
− Pr

[
DH,SH

= 1
]∣∣∣ < ε.

Ch is said to be indifferentiable from H , if ε is a negligible function of the security
parameter k, for polynomially bounded qD, tD and tS .

Let us explain the above definition. One can try to emulate the primitive H with a
Turing machine C using another primitive h as a subroutine. Intuitively, the machineC
transforms the results of primitive h so that the final results mimic the primitive H . If
we try to distinguish the results of H and Ch, then we not only have to show that the
results of Ch are as good as the results of H (i.e., might have been obtained by H). A
more difficult part is to convince an observer that a result given by H might have been
obtained by Ch. For this purpose we need a simulator S: it provides “an output of h”
that would be used by C to provide the same result as obtained by H . The machine
DR1,R2 is supposed to output 1 if (R1, R2) = (Ch, h) and 0 if (R1, R2) = (H,SH),
hence Def. 4 means that D is unable to distinguish between these two cases.

Note that if the construction Ch is indifferentiable from an ideal primitive H , then
Ch can replaceH in a cryptosystem with security scenarios related to a single stateful
adversary, and the resulting cryptosystem is almost as secure as before.

Recall that the ideal primitive is an algorithmic entity which receives inputs from one
of the parties and delivers its output immediately to the querying party. Moreover, the
simulator S might include some probabilistic algorithm, like e.g., the sampling algo-
rithm from the proof of Theorem 3 in [5], yielding non-constant execution time. These
remarks suggest that time does not matter for the distinguisher D, otherwise D could
distinguish SH from h simply by time measurements. Indeed, it is not necessary that
an observer cannot say whether he is observing H or Ch (in the real world we will
always observeCh). The point is that the set of results should have essentially the same
properties no matter where it comes from and that the execution time for Ch must not
leak any additional side channel information. However, the last condition is satisfied
automatically if Ch is a deterministic or a time-oblivious Turing machine. Therefore
we generalize Def. 4 in the following way:

Definition 5 (indifferentiability for a non-deterministic case). A non-deterministic
Turing machine C̃ with oracle access to an ideal primitive h is (tC̃ , tD, tS , qD, ε, εC̃)-
indifferentiable from an ideal primitive H , if there exists a simulator S with oracle
access to H and running in time at most tS , such that for any distinguisher D running
in time at most tD and making at most qD queries, the following conditions hold:

402 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

– C̃h is a time-oblivious Turing machine,
– the probability that in time tC̃ the machine C̃h will not return an answer to the

query is less than εC̃ ,
– for all events C̃h �=⊥∣∣∣Pr [DC̃h,h = 1

]
− Pr

[
DH,SH

= 1
]∣∣∣ < ε ,

C̃h is said to be indifferentiable fromH , if C̃h is (tC̃ , tD, tS , qD, ε, εC̃)-indifferentiable
from an ideal primitiveH , for ε, εC̃ being negligible functions of the security parameter
k, and polynomially bounded tC̃ , tD, tS , qD .

Note that the constraints on tS , tD are exactly the same in Def. 4 and 5 . As we shall
see imposing additional constraints on tS is unnecessary when extending the notion of
admissible encoding to the case we investigate (in fact, almost the same simulator as the
one defined in [5] could be used – the only difference lies in inversion of the mapping
f , which must now take parity into account). On the other hand, imposing additional
constraints on tD would weaken the property defined by Def. 5 .

5 Probabilistic Admissible and Weak Encodings

Below we extend the notions of admissible encoding and weak encoding to some non-
deterministic cases. Both notions are known from [6], [5] and we recall them below.
But first we recall definition of statistically indistinguishable distributions.

Definition 6 (statistically indistinguishable distributions). Let X and Y be two ran-
dom variables over a set S. The distributions of X and Y are ε-statistically indis-
tinguishable if:

∑
s∈S |Pr[X = s]− Pr[Y = s]| ≤ ε. The distributions X and Y are

statistically indistinguishable, if ε is a negligible function of the security parameter.

Definition 7 (admissible encoding from [5]). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time.
2. Regular: for s uniformly distributed in S, the distribution of F (s) is ε-statistically

indistinguishable from the uniform distribution in R.
3. samplable: There is an efficient randomized algorithm I such that for any r ∈ R,

I(r) induces a distribution that is ε-statistically indistinguishable from the uniform
distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of the security parameter.

Definition 8 (admissible probabilistic encoding). A function F : S → R between
finite sets is an (ε, tF , εF)-admissible probabilistic encoding, if

1. F can be implemented on some time-oblivious Turing machine C such that proba-
bility that C will not return the result in time tF is smaller than εF ;

2. properties 2. and 3. from Def. 7 hold for F .

Probabilistic Admissible Encoding on Elliptic Curves 403

F is an admissible encoding if ε, εF are negligible functions of the security parameter
k, for polynomially bounded tF .

By analogy to [6], [5], we define the function H̃ : {0, 1}∗ → R as H̃(m) :=
F (h(m)), whereF : S → R is an admissible probabilistic encoding, and h : {0, 1}∗ →
S is a function whose output is seen as an output of a random oracle. To justify the latter
condition consider the following thought experiment: we have two black-boxes, each
containing the same implementation of hash function h. That is, each box include the
same code for h and is built from the same hardware components. For each argumentm
each black-box actually calculates the value h(m), but in one of the black-boxes at the
very end of the computations the value h(m) is replaced by a value returned by some
random oracle assigned to the given black-box. If after a series of queries an external
observer not knowing the code for h cannot indicate the black-box returning the values
of h, then we say that the output of h might be seen as the output of a random oracle.

Theorem 1 (Theorem 1 from [5]). Let F : S → R be an ε-admissible encoding.
The constructionH(m) := F (h(m)) is (tD, tS , qD, ε′)-indifferentiable from a random
oracle, in the random oracle model for h : {0, 1}∗ → S, with ε′ = 4qD · ε and
tS = 2qD · tI , where tI is the maximum running time of F ’s sampling algorithm.

Theorem 2 (analogous to Theorem 1 from [5]). Let F : S → R be an (ε, tF , εF)-
admissible probabilistic encoding, let maximum running time of h : {0, 1}∗ → S be
th, where th is bounded by a polynomial in the security parameter. The construction
H̃(m) := F (h(m)) is (tF + th, tD, tS , qD, ε

′, εF)-indifferentiable from a random or-
acle, in the random oracle model for the output of h : {0, 1}∗ → S, with ε′ = 4qD · ε
and tS = 2qD · tI , where tI is the maximum running time of F ’s sampling algorithm.

Proof (Sketch). Since h is implemented on some deterministic Turing machine h̃ run-
ning in time th which is not affected even if h̃ includes a call to some random ora-
cle, then this Turing machine may be incorporated into time-oblivious Turing machine
C implementing function F . In this way the time-oblivious Turing machine C̃h from
Def. 5 is constructed, and from assumptions on the function F we get that the proba-
bility that in time tF + th the machine C̃h will not return an answer to the query is less
than εF (note that h̃ is called once and output of h̃ constitutes input to F). The rest of
the proof follows the proof of Theorem 1 from [5]. ��

5.1 Weak Probabilistic Encoding

Definition 9 (weak encoding from [5]). A function f : S → R between finite sets is
said to be an α-weak encoding if it satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time.
2. α-bounded: for s uniformly distributed in S, the distribution of f(s) is α-bounded

in R, i.e., the inequality Prs[f(s) = r] ≤ α/|R| holds for any r ∈ R.
3. Samplable: there is an efficient randomized algorithm If such that If (r) induces

the uniform distribution in f−1(r) for any r ∈ R. Additionally If (r) returnsNr =
|f−1{r}| for r ∈ R.

404 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

f is a weak encoding if α is a polynomial function of the security parameter.

Definition 10 (weak probabilistic encoding). A function f : S → R between finite
sets is said to be (α, tf , εf)-weak probabilistic encoding if

1. f can be implemented on some time-oblivious Turing machine C such that the
probability that C will not return the result in time tf is smaller than εf .

2. Properties 2. and 3. from Def. 9 hold for f .

The function f is a weak probabilistic encoding if α and tf are polynomial functions of
the security parameter, and εf is a negligible function of the security parameter.

Note that properties 2 and 3 enumerated in Def. 10 concern conditions for the function
f . Therefore they do not refer to the event C =⊥ concerning an implementation of f
(recall that the event C =⊥ is independent from the input of f). The event C =⊥ is
implicitly served by the first property enumerated in Def. 10.

Proposition 1. f is an (α, c · (log2 q)3, (12 + 1
q−1)

log2 q)-weak probabilistic encoding
with some constant c and α = 8N/(2q), where N is the elliptic curve order.

Proof (Sketch). It is easy to see that the encoding f defined by Algorithm 2 satisfies
Lemma 6 [5]. Namely, the y-coordinate of the resulting point uniquely determines
t mod 2, and the x-coordinate has preimage size at most 8 elements m̃(t′) from Fq

and all the elements can be found in polynomial time. The proof for the x-coordinate
follows exactly the proof of Lemma 6 [5]. Note that inversion of the mapping m̃() from
Def. 2 is easily computable, hence given an element t̃ from Fq it is easy to find t ∈ Zq

such that m̃(t) = t̃. All in all, from the CRT we conclude that for the mapping f the
pre-image of any point P ∈ Ea,b(Fq) contains at most 8 elements from Z2q , and the
pre-image can be computed in polynomial time. We assume that the constant c is cho-
sen so that probability that the time-oblivious Turing machine C from Def. 10 will not
return the result in time c · (log2 q)3 is strictly smaller than (12 + 1

q−1)
log2 q, so the first

condition from Def. 10 is also satisfied. ��
Note that by Hasse Theorem α ≤ 8(

√
q+1)2

2q . Hence α < 8 for q ≥ 7. The same
value α = 8N/(2q) applies, if we multiply the result (x, y) of the encoding f by a
co-factor �: let the order N of the group Ea,b(Fq) satisfy the condition N = � · N ′,
where N ′ is prime and gcd(�,N ′) = 1. The integer � is called the co-factor (of N ′).
Hence Ea,b(Fq) has only one cyclic subgroup of orderN ′. Let G be a generator of this
subgroup. If we take the result (x, y) of the encoding f and multiply by the co-factor �,
then we obtain an element of group the 〈G〉. Consequently, we have a map f ′ = [�] ◦ f
such that f ′ : Z2q → 〈G〉. Now we will find all pre-images of a given P ∈ 〈G〉 with
respect to the map f ′. For each element P ∈ 〈G〉 it is easy to obtain the unique element
P ′ ∈ 〈G〉 being the inverse of P with respect to the scalar multiplication with [�] in
〈G〉. Namely, to obtain P ′ it suffices to multiply P by the scalar �−1 mod ordG. Since
gcd(�,N ′) = 1, we have Ea,b(Fq) = 〈G〉 ×H where H is the subgroup of Ea,b(Fq)
of order �. To obtain all candidates in Ea,b(Fq) for the pre-image of P with respect to
the scalar multiplication with [�], we must collect all results of point addition P ′ + P ′′,
where P ′′ ∈ H . There are � such results. For each of them there are at most 8 elements
in Z2q being its preimage with respect to f . Altogether, for each ofN ′ elements of 〈G〉
we have preimage of size at most 8 · �, hence α = (8 · �) ·N ′/(2q) = 8N/(2q).

Probabilistic Admissible Encoding on Elliptic Curves 405

5.2 The Resulting Admissible Probabilistic Encoding

Theorem 3 (Theorem 3 from [5], weak → admissible encoding). Let G be cyclic
additive group of orderN , and letG be a generator of G. Let f : S → G be an α-weak
encoding. Then the function F : S × ZN → G with F (s, x) := f(s) + [x]G is an
ε-admissible encoding into G, with ε = (1− 1/α)t for any t being a polynomial in the
security parameter k, and with ε = 2−k for t = α · k.

The above theorem can be generalized as follows:

Theorem 4 (weak probabilistic → admissible probabilistic encoding). Let G be an
additive cyclic group of order N , and let G be a generator of G. Let f : S → G be
an (α, tf , εf)-weak probabilistic encoding. Then the function F : S × ZN → G with
F (s, x) := f(s)+ [x]G is an (ε, tf + tx, εf)-admissible probabilistic encoding into G,
where tx is the maximum running time of the scalar multiplication [x]G together with
addition of resulting elements (i.e. elements f(s), [x]G), and ε = (1− 1/α)t for any t
polynomially bounded in the security parameter k, and with ε = 2−k for t = α · k.

Proof (Sketch). The deterministic Turing machine implementing the scalar multipli-
cation [x]G and the addition of the resulting elements may be incorporated into the
time-oblivious Turing machine C implementing f . In this way execution time of the
time-oblivious Turing machine grows at most by tx (if G is a subgroup of some elliptic
curve defined over a field Fq, then time tx of scalar multiplication [x]G together with
two points addition f(s) + [x]G can be bounded by c′ · (log2 q)3 for some constant c′).
The rest of the proof follows exactly the proof of Theorem 3 from [5]. ��

Consequently, in order to obtain an Admissible Probabilistic Encoding we should
apply Theorem 4 to the encoding f ′ = [�]◦f , that is, to the composition of the encoding
f defined by Algorithm 2 and the scalar multiplication by the co-factor �.

We also obtain an extension of the result from [5]: Let h1 : {0, 1}∗ → Z2q and
h2 : {0, 1}∗ → ZN be two hash functions of running time bounded by polynomial in
the security parameter. Then the functionH : {0, 1}∗ → G defined by:

H(m) := f ′(h1(m)) + [h2(m)]G

is (according to Def. 5) indifferentiable from a random oracle in the random oracle
model for outputs generated by h1 and h2.

6 Conclusions

Security analysis of PACE IM utilizes admissible encodings (cf. [9]). By extending the
framework from [5] we have shown that the Admissible Probabilistic Encoding defined
in Subsect. 5.2 preserves the level of security of its predecessor. Thus Algorithm 1 may
be used in PACE IM in place of the currently used simplified SWU mapping.

Note that complexity of evaluation of V(q+δ)/4(P, 1) in Algorithm 1 is compara-
ble with the cost of the worst case exponentiation in field Fq via square and multiply.
Moreover, the running time of the Algorithm 1 has small variation. Consequently, the
difference between the running time of Algorithm 2 and the simplified SWU mapping

406 Ł. Krzywiecki, P. Kubiak, and M. Kutyłowski

will be negligible (or even unnoticeable) for the owner of a smart card. At the expense
of a small decrease of efficiency we have gained more flexibility in choice of a field
for a definition of the elliptic curve, hence we have more freedom in other applications
like e.g., BLS signatures [4]. What is more, a standardized, general mapping procedure
decreases deployment costs of the infrastructure supporting the protocols, especially in
reference to the Common Criteria certification process.

Acknowledgements. We would like to thank Bart Preneel for many helpful comments.

References

1. Accredited Standards Committee X9, Inc., Financial Industry Standards: ANS X9.62-2005,
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA). American National Standard for Financial Services (2005)

2. Bach, E.: A note on square roots in finite fields. IEEE Transactions on Information The-
ory 36(6), 1494–1498 (1990)

3. Bernstein, D.J.: Faster square roots in annoying finite fields. Note: to be incorporated into
author’s High-speed cryptography book (November 2001)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol-
ogy 17(4), 297–319 (2004)

5. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indiffer-
entiable hashing into ordinary elliptic curves. Cryptology ePrint Archive, Report 2009/340
(2009)

6. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indif-
ferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

7. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents 2.11. Tech-
nische Richtlinie TR-03110-3 (2013)

8. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to con-
struct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448.
Springer, Heidelberg (2005)

9. Coron, J.-S., Gouget, A., Icart, T., Paillier, P.: Supplemental Access Control (PACE v2):
Security analysis of PACE Integrated Mapping. In: Naccache, D. (ed.) Quisquater Festschrift.
LNCS, vol. 6805, pp. 207–232. Springer, Heidelberg (2012)

10. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 664–683. Springer,
Heidelberg (2013)

11. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organization: Supple-
mental access control for machine readable travel documents. Technical Report (2011) ver-
sion 1.02 (March 2008)

12. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

13. Müller, S.: On the computation of square roots in finite fields. Des. Codes Cryptogra-
phy 31(3), 301–312 (2004)

14. Postl, H.: Fast evaluation of Dickson polynomials. Contrib. to General Algebra 6, 223–225
(1988)

15. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the
indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 487–506. Springer, Heidelberg (2011)

An Algebraic Framework for Modeling

of Reactive Rule-Based Intelligent Agents

Katerina Ksystra, Petros Stefaneas, and Panayiotis Frangos

National Technical University of Athens
Iroon Polytexneiou 9, 15780 Zografou, Athens, Greece

katksy@central.ntua.gr, petros@math.ntua.gr, pfrangos@central.ntua.gr

Abstract. As the use of intelligent agents in critical domains increases,
the need for verifying their behavior becomes stronger. Reactive rules
are the main reasoning formalism for intelligent agents. For this reason,
we propose the use of the OTS/CafeOBJ method for the specification of
reactive rules, which will permit the verification of safety properties for
reactive rule-based intelligent agents.

Keywords: intelligent agents, reactive rules, CafeOBJ, Observational
Transition Systems, rule-based system.

1 Introduction

Intelligent agents are a new paradigm for developing software applications. An
intelligent agent is defined either as anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors
[1], or as a software that carries out some set of operations and acts on behalf of
a user [2], or finally as a computational process that implements the autonomous
functionality of an application [3]. Agent-based systems usually consist of many
agents that communicate with each other and are known as multi-agent systems.

The use of rule-based systems as the main reasoning model of agents that
are part of a multi-agent system has been proposed in early attempts. In this
approach each agent includes a rule engine and is able to perform rule-based
inference [4]. Thus, an intelligent agent is called rule-based, if its behavior and
its knowledge are expressed by means of rules.

The task of verifying the behavior of rule-based agents is difficult because
rules can interact during execution and this interaction can cause undesirable
results [5]. For example, one rule may trigger another rule and cause a chain
of rule triggerings. Also, changes to the rule base (add, remove, change rules)
can introduce errors in the behavior of the system if the effects of the changes
are not examined beforehand. Thus, using rules in critical systems implies that
the system’s behavior must be extensively analyzed. Formal methods provide
powerful means for analyzing system’s behavior and can prove really helpful
for preventing design errors at an early stage of development. In this paper, we
address the problem of formally analyzing reactive rule-based agents as follows:

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 407–418, 2014.
c© Springer International Publishing Switzerland 2014

408 K. Ksystra, P. Stefaneas, and P. Frangos

– We present an algebraic framework for formally expressing Production and
Event-Condition-Action rules (Section 3).

– We use the OTS/CafeOBJ method for the specification of reactive rule-based
intelligent agents and the verification of their behavior (Section 3).

– We apply the framework to a supply chain management system and prove
security properties in order to demonstrate its effectiveness (Section 4).

The proposed framework offers the ability to formally specify an intelligent
agent whose behavior is expressed in terms of reactive rules, to verify its behav-
ior and thus ensure its correctness. This work is in continuation of [6], where
Observational Transition System (OTS) semantics were provided for reactive
rules.

1.1 Related Work

A lot of research concerning analysis of rule-based systems exists in the area of
active databases. For example, in [7] authors present an overview of processing
rules in production systems, deductive and active databases. A larger survey on
the different approaches of reaction rules can be found in [18]. Most of the ap-
proaches addressing formal analysis of such systems however deal with checking
properties such as termination, confluence and completeness. One such attempt
to verify rule-based systems can be found in [8], where authors use Petri-nets
to analyze various types of structure errors such as inconsistency, incomplete-
ness, redundancy and circularity of rules. Also, ECA-LP [15] which is based on
a labeled transaction logic semantics, supports state based knowledge updates
including a test case based verification and validation for transactional updates.

Few papers targeting the verification of the behavior of active rule-based sys-
tems/agents exist. More precisely, in [9] authors describe a reasoning framework
for Ambient Intelligence that uses the Event Calculus formalism for reasoning
about actions and causality. Also, an approach to verify the behavior of Event-
Condition-Action rules is presented in [5] where a tool that transforms such rules
to timed automata is developed. Then the Uppaal tool is used to prove desired
properties for a rule-based application. This last work is the closest to ours with
the difference that in [5] authors use model checking, while our approach uses
theorem proving techniques.

Our framework focuses on verifying the behavior of rule-based agents, rather
than proving correctness properties or handling problems with negations, mainly
for two reasons; first, the verification of such properties has been studied in many
other approaches [8] and second the OTS/CafeOBJ method does not study prop-
erties about the transitions of the system but analyzes their effects in the sys-
tem’s behavior. We believe that our framework has the following advantages over
existing approaches; it can be used for the verification of complex systems due to
the simplicity of the CafeOBJ language and its natural affinity for abstraction.
Also, it has the ability to specify systems with infinite states (in contrast with
approaches that use model-checking techniques) and it allows the reusability not
only of the specification code but also of the proofs [17].

An Algebraic Framework for Modeling 409

2 Observational Transition Systems and CafeOBJ

An Observational Transition System (OTS) is a transition system written in
terms of equations [10]. Assuming that there exists a universal state space Y
and that each data type we need to use, including their equivalence relationship,
has been declared in advance, an OTS S is defined as the triplet S = 〈O, I, T 〉
where:

1. O is a finite set of observers. Each o ∈ O is a function o : Y → D, where
D is a data type that may differ from observer to observer. Given an OTS
S and two states u1, u2 ∈ Y the equivalence u1=su2 between them with
respect to S is defined as; ∀o ∈ O, o(u1)=o(u2) i.e. two states are considered
behaviorally equivalent if all the observers return for these states the same
data values.

2. I is the set of initial states, such that I ⊆ Y .
3. T is a set of conditional transitions. Each τ ∈ T is a function τ : Y → Y and

preserves the equivalence between two states; if u1=su2 then τ(u1)=sτ(u2).
For each u ∈ Y , τ(u) is called the successor state of u wrt τ . The condition
c-τ is called the effective condition of τ . Also, for each u ∈ Y , c-τ(u) = false
⇒ u=sτ(u). Finally, observers and transitions may be parameterized by data
type values.

Observational transition systems can be described as behavioral specifica-
tions in CafeOBJ, an algebraic specification language and processor [11],[21].
In a CafeOBJ module we can declare sorts, operators, variables and equations.
There exists two kinds of sorts; a visible sort denotes an abstract data type and a
hidden sort denotes the state space of an abstract machine. Two kinds of behav-
ioral operators can be applied to hidden sorts: action and observation operators.
An observation operator can only be used to observe the inside of an abstract
machine while an action operator can change its state. Finally, CafeOBJ system
rewrites a given term by regarding equations as left-to-right rewrite rules.

CafeOBJ is used to specify OTSs [10]. The universal state space Y of an
OTS is denoted in CafeOBJ by a hidden sort and an observer by an observation
operator. Any initial state in I is denoted by a constant and a transition by
an action operator. The transitions are defined by describing what the value,
returned by each observer in the successor state, becomes when the transitions
are applied in an arbitrary state u. Finally, for expressing the effective conditions,
conditional equations are used.

3 An Algebraic Framework for Reactive Rules

The proposed framework aims to enhance reactive rules with verification capabil-
ities. More precisely, it supports Event Condition Action and Production rules.
This will allow proving desired safety properties about intelligent agents/systems
whose behavior is expressed in terms of such rules. Because we are interested
in proving application specific properties, additional characteristics (observers

410 K. Ksystra, P. Stefaneas, and P. Frangos

and/or transitions) about the specific system will be required in order to specify
its behavior. These characteristics will differ from application to application and
thus the specification cannot become fully automated. This framework however
will serve as the basis for specifying and verifying reactive rule based systems
and most importantly for capturing the semantics of their rules.

3.1 Production Rules in CafeOBJ

A Production rule is a statement of rule programming logic, which specifies the
execution of an action in case its conditions are satisfied, i.e. production rules
react to states changes. Their essential syntax is if Condition do Action. Some
usual predefined actions supported by Rule Markup languages are: add, retract,
update knowledge and generic actions with external effects [12].

A Production rule can be naturally expressed in our framework if we map the
action of the rule to a transition which has as effective condition the condition of
the rule. Also, since most of the actions correspond to changes of the knowledge
base in order to describe their effects we need an observer that will observe the
knowledge base (KB) at any given time. Thus, the observer knowledge : Y →
SetofBool which returns the set of boolean elements that belong to the knowl-
edge base is needed. For expressing the functionalities of the KB, the following
operators are required; /in which returns true if an element belongs to the
knowledge base, | which denotes that an element is added to the KB and /
which denotes that an element is removed from the KB. Formally, the definition
of a set of Production rules as an OTS is presented below.

Definition 1. Assume the universal state space Y and the following set of Pro-
duction rules; {if Ci do Ai, i = 1, . . . , n ∈ IN}, where without harm of generality
we also assume that the conditions of the rules are disjoint. We define an OTS
S = 〈O, I, T 〉 from this set of rules as follows:

- O = {O′ ∪ knowledge}
- T = {Ai}
- I = the set of initial states, such that I ⊆ Y

In the above definition, O′ denotes the rest of the system’s observers. Tran-
sitions are the actions of the rules, Ai : Y D1 . . . Dl → Y . They can be generic
actions (with external changes) or the usual predefined actions assert : Y Bool →
Y (add a fact to KB), retract : Y Bool → Y (remove a fact from KB), update :
Y Bool Bool → Y (remove/add a fact) [20]. Facts are denoted by boolean-sorted
CafeOBJ terms. Formally, the actions of Production rules are defined as transi-
tions through the following steps;

1. The effective condition of an action Ai is defined as; eq c-Ai(u,d1,...,dn)

= Ci(d1,...,dn) /in knowledge(u).
2. If Ai is an assert action its effect on the knowledge observer is defined as;

knowledge(assert(u,ki(d1,...,dn))) = ki(d1,..,dn)|knowledge(u)

if c-assert(u,ki(d1,...,dn)).

An Algebraic Framework for Modeling 411

3. If Ai is a retract action its effect on the knowledge observer is defined as;
knowledge(retract(u,ki(d1,..,dn))) = knowledge(u)/ki(d1,..,dn)

if c-retract(u,ki(d1,..,dn)).
4. If Ai is an update action its effect on the knowledge observer is defined

as; knowledge(update(ki(d1,..,dn),kj(d1,..,dn))) = (knowledge(u)

/ki(d1,..,dn))|kj(d1,..,dn) if c-update(ki(d1,..,dn),kj(d1,...

,dn)).
5. If Ai is a generic action, we define; knowledge(ai(u,d1,...,dn)) = ai(d1

,...,dn)|knowledge(u) if c-ai(u,d1,...,dn) and
oi(ai(u,d1,...,dn)) = vi if c-ai(u,d1,..,dn).

Step 1 declares that an action ai can be successfully applied if the condition
of the rule holds, i.e. belongs to the knowledge base1. Step 2 states that when
a transition assert(u, ki(d1, . . . , dn)) is applied successfully in an arbitrary state
u, ki is added to the knowledge base. Where ki is the fact being asserted. In
step 3 it is stated that when the transition retract(u, ki(d1, . . . , dn)) is applied
successfully in an arbitrary state u, ki is removed from the knowledge base. When
the transition update(u, ki(d1, . . . , dn), kj(d1, . . . , dn)) is applied successfully in
an arbitrary state u, ki is removed and kj is added, as step 4 defines. Finally,
step 5 states that when we have the application of a generic action we add to our
KB the information that this action occurred. But generic actions may have side
effects and in order to describe them we may have to use additional observers
oi ∈ O and define how their values change when the action is applied successfully.

3.2 Event Condition Action Rules in CafeOBJ

In contrast to Production rules, Event Condition Action (ECA) rules define an
explicit event part which is separated from the conditions and actions of the rule.
Their essential syntax is; on Event if Condition do Action. The ECA paradigm
states that a rule autonomously reacts to actively or passively detected simple or
complex events by evaluating a condition or a set of conditions and by executing
a reaction whenever the event happens and the condition(s) is true [13].

In order to express ECA rules in our framework we need an observer that will
remember the occurred events. For this reason, in each event we assign a natural
number and when an event is detected its number is stored in the observer event-
memory : Y → Nat. Using event-memory we can map events to transitions.
The actions of ECA rules are assert, retract, update, or generic actions and are
mapped to transitions, as before. However, their semantics differs as the actions
of ECA rules can be applied only if their triggering event has been detected first.
Formally, the definition of a set of ECA rules as an OTS is presented below.

Definition 2. Assume the universal state space Y and a finite set of ECA rules
{on Ei if Ci do Ai, i = 1, . . . , n ∈ IN}, where without harm of generality we

1 If we have negation-as-failure in the condition of the rule, i.e. if the condition cannot
be proved, this is expressed in our framework as; if ci /∈ knowledge(u), since this
basically means that there is no information (in our knowledge base) about the
condition.

412 K. Ksystra, P. Stefaneas, and P. Frangos

also assume that for i �= j; Ei, Ai, Ci �= Ej , Aj , Cj , respectively. The OTS S =
〈O, I, T 〉 modeling these rules is defined as:

- O = {O′ ∪ knowledge, event−memory}
- T = {Ei, Ai}
- I = the set of initial states such that I ⊆ Y

Here, O′ is the same as in definition 1. Transitions are the events, Ei :
Y D1 . . . Dn → Y and the actions, Ai : Y D1 . . . Dn → Y . Formally, the rule
on Ei if Ci do Ai is defined in CafeOBJ terms through the following steps:

1. The effective condition of an event Ei is denoted as c-ei(u, d1, . . . , dn) and
states the conditions under which the system is able to detect the event.

2. The effects of the application of the event Ei in an arbitrary system state u
is the following;

knowledge(Ei(u,d1,...,dn)) = ei(d1,...,dn)|knowledge(u) if

c-ei(u,d1,...,dn) and event-memory(u) = null .

event-memory(Ei(u,d1,...,dn)) = i if c-ei(u,d1,...,dn) and

event-memory(u) = null .

3. The effective condition of the action Ai, is defined as; eq c-Ai(u,d1,..,dn)

= Ci(d1,...,dn) /in knowledge(u) and ei(d1,...,dn) /in

knowledge(u).
4. The effects of the action Ai, if it is an assert action, is described through the

following equations;

knowledge(assert(u,ki(d1,..,dn))) = ki(d1,..,dn)|knowledge(u)

/ei(d1,...,dn) if c-assert(u,ki(d1,...,dn)) .

event-memory((u,ki(d1,...,dn))) = null if

c-assert(u,ki(d1,...,dn)) .

The effects of the rest of the actions are defined in a similar way. Step 2 states
that when the transition/event Ei is applied, the name of the occurred event (ei)
is added to the knowledge base as a fact if in the previous state the detection
conditions of the event were true and event-memory was null (denoting that
no events had occurred). Also, when the event is applied, event-memory stores
the identification number of the event (here i). Step 3 declares that the action
will be applied successfully, if the condition of the rule belongs to the KB and
the triggering event of the action has been detected. In step 4 it is stated that
when the action assert(u, ki(d1, . . . , dn)) is applied, the fact ki is added to the
knowledge base and its triggering event is consumed, i.e. its name is removed
from the knowledge observer. Also, event-memory becomes null.

We must mention here that as we will see in the following section, sometimes
the names of the events are not removed from the observer event-memory if
they are required for the detection of complex events. Also, if many rules (either
Production or ECA) can be executed at the same time, a selection function is

An Algebraic Framework for Modeling 413

used from the inference engine of the system such as those presented in [14], [15].
It is quite straightforward to include this characteristic in our framework but is
out of the scope of this paper.

One of the challenges we met while expressing these rules into our framework
was the difference between events and actions, i.e. while events can occur at
anytime and can be straightforwardly mapped to transitions, actions must be
executed after the detection of their triggering events. To capture this difference
we used the observer event-memory. Initially it returns the value null (meaning
that no events have been detected) denoting that any event can occur, but when
an event is detected then the only applicable transition in the system is the
action of the detected event.

3.3 Complex Events Definition

Sometimes ECA rules react to the detection of complex events. Complex events
are created by primitive event(s) and event operator(s). A typical set of event
operators for defining complex events include the following; Xor (Mutually Ex-
clusive), Disjunction (Or), Conjunction (And), Any, Concurrent (Parallel), Se-
quence (Ordered), Aperiodic, Periodic. In [14] definitions of such operators are
presented in more details. In this section we will present how the basic event
operators can be expressed in our framework.

Assume primitive events Ai and Bj defined as transitions with effective con-
ditions c-Ai and c-Bj respectively. Complex event Xor(Ai,Bj) means that ei-
ther event Ai happens or Bj, but not both. The application of the complex
event/transition ek : xor(u,Ai,Bj) to an arbitrary system state is defined as:

knowledge(xor(u,Ai,Bj)) = xor(Ai,Bj)|knowledge(u) if

Ai /in knowledge(u) xor Bj /in knowledge(u) .

event-memory(xor(u,Ai,Bj)) = k if Ai /in knowledge(u) xor

Bj /in knowledge(u) .

The above equations state that the complex event is detected (its occurrence is
added to the KB) if its detection conditions are fulfilled, i.e. if we have detected
either the primitive event Ai or event Bj. Also, the observer event-memory
stores the id number k of the event (where xor is a built-in operator) if the same
conditions hold. Disjunction(Ai,Bj) means that either event Ai happens or Bj
(or both). In a similar way, the application of the event disjunction(u,Ai,Bj)
is defined as; knowledge(disjunction(u,Ai,Bj)) = disjunction(Ai,Bj)|

knowledge(u) if Ai /in knowledge(u) or Bj /in knowledge(u).
Conjunction(Ai,Bj) means that both events Ai and Bj occur in any order.

The application of the event conjunction(u,Ai,Bj) is defined as; knowledge
(conjuction(u,Ai,Bj)) = conjuction(Ai,Bj)|knowledge(u) if Ai /in

knowledge(u) and Bj /in knowledge(u).
Sequence(Ai,Bj) corresponds to the ordered execution of events Ai and

Bj. The application of sequence(u,Ai,Bj) is defined as; knowledge(Bj(u))=
sequence(Ai,Bj)|knowledge(u) if Ai /in knowledge(u) and event-

414 K. Ksystra, P. Stefaneas, and P. Frangos

memory(u) = i. This complex event is detected (its occurrence is added to KB)
during the occurrence of event Bj, which can occur if in the previous state Ai
had occurred, i.e. event-memory had stored i (and not if the memory is equal
to null). By using the observer event-memory and declaring which event had oc-
curred before we can avoid the unintended semantics these operators can have,
which are caused because the events, in the active database sense, are treated as
if they occur at an atomic instant. This problem is discussed in [15], [19] where
also a solution is proposed by defining an interval-based effect semantics in terms
of an interval-based event calculus formalization. The alternative interval-based
semantics could be implemented in our framework by extending the definition
of an event with the time of its occurrence and introducing the notions of event
and time intervals. The rest event operators (Concurrent, Aperiodic and Peri-
odic), which are used less often, cannot be straightforwardly expressed in our
framework and an extension is required in order to include them as well.

4 Case Study: A Supply Chain Management System

To demonstrate the expressiveness of our framework we applied it to an indus-
trial case study that uses Event Condition Action rules to control the activities of
its agents. These activities are inter-enterprise business processes and thus their
verification is an important task. In [16] authors present an integrated workflow-
supported supply chain management system that was developed so that Nanjing
Jin Cheng Motorcycle Corporation in China and its suppliers could handle better
their inner processes. The proposed system consists of a set of business function
agents whose tasks are to deal with outsourcing, production planning, sales, cus-
tomer service, inventory, and so on. Each agent is an autonomic and independent
entity. ECA rules are used to control the execution sequence of agents’ activities.
These rules are presented in table 1. A more detailed description of the system
is presented in appendix A.

Table 1. ECA rules controlling the activities of the manufacturer

R1 On end(sales) R5 On end(ManufacturePlan)
Do st(charge) if isMaterialsEnough

R2 On end(sales) and end(charge) Do st(Manufacture)
if payment >= totalprice R6 On end(ManufacturePlan)
Do st(QueryInventory) if not isMaterialsEnough

R3 On end(queryinventory) Do st(Outsource)
if IsGoodsEnough R7 On end(Outsource)
Do st(DeliverGoods) if ArrivedMaterials

R4 On end(queryinventory) Do st(Manufacture)
if not IsGoodsEnough R8 On end(Manufacture)
Do st(ManufacturePlan) Do st(DeliverGoods)

An Algebraic Framework for Modeling 415

4.1 Formal Specification and Verification of the System

Rules R1-R8 were expressed in our framework according to the previous defini-
tions. For example, the first rule was defined in CafeOBJ using the transitions
endsales and stcharge. The first transition represents the event part of the
rule and the second the action. The definition of the transition endsales can be
seen below:

-- endsales

op c-endsales : Sys department customer Nat -> Bool

eq c-endsales(S,Sales,C,N) = (order(S,Sales,C) = N)

and (event-memory(S) = null) .

ceq knowledge(endsales(S,Sales,C,N)) = (endsales|knowledge(S))

if c-endsales(S,Sales,C,N) .

ceq event-memory(endsales(S,Sales,C,N)) = 1

if c-endsales(S,Sales,C,N) .

The effective condition c-endsales denotes that the event endsales can be
detected when the sales department receives an order from a customer and if no
other event had been detected in the previous state. The observer order returns
the cost of the order a department receives from a customer. When the event
is successfully detected its name enters the knowledge base and event-memory
stores its identification number. The transition stcharge is defined as follows:

-- stcharge

op c-stcharge : Sys Nat customer -> Bool

eq c-stcharge(S,N,C1) = (endsales /in knowledge(S)) and

(event-memory(S) = 1) .

ceq event-memory(stcharge(S,N,C1)) = null if c-stcharge(S,N,C1) .

eq knowledge(stcharge(S,N,C1)) = knowledge(S) .

ceq payment(stcharge(S,N,C1),C2) = pending if c-stcharge(S,N,C1)

and (C1 = C2) .

The effective condition c-stcharge denotes that the action stcharge will occur
if endsales belongs to the KB and event memory contains the id number of the
event. After the execution of the action, the observer event-memory becomes
null, knowledge base stays the same (because the occurrence of endsales event
is needed for the detection of the complex event end(sales) and end(charge) of
R2) and the payment of the customer is pending until a receipt is received.
The sixth rule was defined in CafeOBJ using the transitions stoutsource and
endmanufactureplan. The definition of the transition endmanufactureplan is
presented below;

-- endmanufactureplan

op c-endmanufactureplan : Sys bill inventory -> Bool

eq c-endmanufactureplan(S,B,I) = (materials(S,B,I) = computed)

and (event-memory(S) = null) .

416 K. Ksystra, P. Stefaneas, and P. Frangos

ceq knowledge(endmanufactureplan(S,B,I)) = (endmanufactureplan|

knowledge(S)) if c-endmanufactureplan(S,B,I) .

ceq event-memory(endmanufactureplan(S,B,I)) = 5 if

c-endmanufactureplan (S,B,I) .

The effective condition c-endmanufactureplan denotes that the event can be
detected when it is computed if there are enough materials to produce goods for
the order and if event-memory is null. When the event is detected the name of
the event enters the knowledge base and the observer event-memory stores the
number of the event, i.e. 5. The transition stoutsource is defined as follows;

-- stoutsource

op c-stoutsource : Sys bill inventory agent -> Bool

eq c-stoutsource(S,B,I,A) = endmanufactureplan /in knowledge(S)

and (event-memory(S) = 5) and (materials(S,B,I) < enough) .

ceq knowledge(stoutsource(S,B,I,A)) = (knowledge(S)/

endmanufactureplan) if c-stoutsource(S,B,I,A) .

ceq event-memory(stoutsource(S,B,I,A)) = null if

c-stoutsource(S,B,I,A) .

ceq list(stoutsource(S,B,I,A),A) = true if

c-stoutsource(S,B,I,A) .

The effective condition c-stoutsource declares that the action can be suc-
cessfully applied if the event endmanufactureplan has been detected and the
condition of the action holds, i.e. the materials are not enough. When the action
occurs, the observer event-memory becomes null, the occurrence of the event is
removed from the knowledge base and a list is sent to the outsourcing agent.

In a similar way we expressed all the rules in our framework. We also de-
fined the transitions whose occurrence makes the detection conditions of the
events true. For example, in order to detect the event endmanufacture, the
products for the order must have been produced. Thus, we defined the transi-
tion produceproducts. When this transition is successfully applied, the value of
the observer products becomes ”produced”, indicating that the event endmanu-
facture can be detected; ceq products(produceproducts(S)) = produced if

c-produceproducts(S) .

In the above case study, the events may seem as simple propositional repre-
sentations, or similar in format, but in the context of the whole specification
they fully express the functionalities of the system (appendix A). In order to
specify this manufacturer agent, 18 transitions (12 that correspond to events
and actions and 6 external transitions) and 14 observers were needed.

The most important feature of the proposed framework is the ability to ver-
ify the behavior of reactive rule-based intelligent agents using the proof score
methodology [10,17]. The type of properties that can be proved with the frame-
work are safety properties, that hold in any reachable state of the system (called
invariant properties), and liveness properties, which denote that something will
eventually happen. For the supply chain system of the previous section, we

An Algebraic Framework for Modeling 417

proved that the process of delivering the goods to the customer must not be ac-
tivated if the payment of the customer does not cover the total cost of the order.
This is an invariant property, important for the purpose of the system. Invariant
1, is defined in CafeOBJ terms as; eq inv1(S,C) = not(not(payment(S,C)

>= cost(S,C)) and (delivered(S,C) = true)). Following the CafeOBJ/
OTS method [10,17] we successfully verified invariant 1 and two more invariants
that were needed to conclude the proof (for more details see appendix B). The full
specification, the proofs and the appendices can be found at http://cafeobjntua.
wordpress.com.

5 Conclusions and Future Work

We believe that due to the fact that reactive rule-based intelligent agents are
increasingly used in critical systems, there is a strong need for ensuring their
intended behavior. This task is difficult because rules interact during execution
and thus can have complex and unpredictable behavior. For this reason we have
presented a framework for formally specifying reactive rules with the help of
the OTS/CafeOBJ method. This framework can express complex systems while
capturing the semantics of the underlying reactive rules, and can be used for
the verification of safety properties reactive rule-based agents should meet. In
order to demonstrate its effectiveness, we have applied it to a case study of a
manufacturer business agent. In the future, we intend to develop a tool that
will automatically translate a set of reactive rules, written in a Rule Markup
language, to CafeOBJ and that will support online verification. Finally, this
framework could be extended for modeling operational reactive systems that
need to define an optimized proof-theoretic and operational semantics.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational
Program ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS

References

1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 1st edn. Prentice
Hall (1995)

2. Gilbert, D.: Intelligent Agents: The Right Information at the Right Time. IBM
Intelligent Agent White Paper

3. FIPA (Foundation for Intelligent Physical Agents), www.fipa.org

www.fipa.org

418 K. Ksystra, P. Stefaneas, and P. Frangos

4. Badica, C., Braubach, L., Paschke, A.: Rule-based Distributed and Agent Sys-
tems. In: 5th International Conference on Rule-Based Reasoning, Programming,
and Applications, RuleML 2011, pp. 3–28. Springer (2011)

5. Ericsson, A., Berndtsson, M., Pettersson, P.: Verification of an industrial rule-based
manufacturing system using REX. In: 1st International Workshop on Complex
Event Processing for Future Internet, iCEP-FIS (2008)

6. Ksystra, K., Triantafyllou, N., Stefaneas, P.: On the Algebraic Semantics of Reac-
tive Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp.
136–150. Springer, Heidelberg (2012)

7. Vlahavas, I., Bassiliades, N.: Parallel, object-oriented, and active knowledge base
systems. Kluwer Academic Publishers, Norwell (1998)

8. Xudong, H., Chu, C., Yang, H., Yang, S.J.H.: A New Approach to Verify Rule-
Based Systems Using Petri Nets. Information and Software Technology 45(10),
663–669 (2003)

9. Patkos, T., Chrysakis, I., Bikakis, A., Plexousakis, D., Antoniou, G.: A Reason-
ing Framework for Ambient Intelligence. In: Konstantopoulos, S., Perantonis, S.,
Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS (LNAI),
vol. 6040, pp. 213–222. Springer, Heidelberg (2010)

10. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

11. Diaconescu, R., Futatsugi, K.: CafeOBJ report: the language, proof techniques,
and methodologies for object-oriented algebraic specification. AMAST series in
computing. World Scientific, Singapore (1998)

12. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:
Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

13. Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal
interval-based KR Event/Action Logics and Transactional Update Logics. ECA-
RuleML Proposal for RuleML Reaction Rules Technical Goup (2005)

14. Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In: Giurca, A.,
Gasevic, D., Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches, pp. 215–252. IGI
Publishing (2009)

15. Paschke, A.: ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action
Logic Programming Language. In: Int. Conf. on Rules and Rule Markup Languages
for the Semantic Web, Athens, Georgia, USA (2006)

16. Liua, J., Zhangb, J., Hub, J.: A case study of an inter-enterprise workflow-
supported supply chain management system. Information and Management 42,
441–454 (2005)

17. Futatsugi, K., Goguen, J.A., Ogata, K.: Verifying Design with Proof Scores. Veri-
fied Software: Theories, Tools, Experiments 4171, 277–290 (2005)

18. Paschke, A., Kozlenkov, A.: Rule-Based Event Processing and Reaction Rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

19. Teymourian, K., Paschke, A.: Semantic Rule-Based Complex Event Processing. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
82–92. Springer, Heidelberg (2009)

20. Reaction RuleML, http://ruleml.org/reaction
21. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical Foundations and

Methodologies. Computing and Informatics 22, 257–283 (2003)

http://ruleml.org/reaction

Parameterized Prefix Distance

between Regular Languages

Martin Kutrib, Katja Meckel, and Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,meckel,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. We investigate the parameterized prefix distance between
regular languages. The prefix distance between words is extended to lan-
guages in such a way that the distances of all words up to length n to the
mutual other language are summed up. Tight upper bounds for the dis-
tance between unary as well as non-unary regular languages are derived.
It is shown that there are pairs of languages having a constant, degree k
polynomial, and exponential distance. Moreover, for every constant and
every polynomial, languages over a binary alphabet are constructed that
have exactly that distance. From the density and census functions of
regular languages the orders of possible distances between languages are
derived and are shown to be decidable.

1 Introduction

Finite state devices are used in several applications and implementations in soft-
ware engineering, programming languages and other practical areas in computer
science. They are one of the first and most intensely investigated computational
models. Due to several applications and implementations of transducers in the-
oretical and practical areas of computer science, their fault-tolerance or even
usability in the presence of failures is a natural question of crucial importance.
The applications are widely spread. For example, finite state transducers are cur-
rently used for compiler constructions [1], language and speech processing [7],
and even for the design of controllability systems in aircraft design [9]. Much of
the underlying theory has originated from linguistics. In natural language and
speech processing transducers with more than one hundred million states may be
used [8]. All of the components involved may be subject to failure. However, not
all faults necessarily incapacitate the automaton entirely. In several applications
small aberrations are tolerable. From this point of view the questions of what
are tolerable aberrations arise immediately. We consider the distance between
the languages accepted by the original and the faulty machine as measure for
this purpose. So, even in the case of transducers we regard the accepting part of
the computation only.

Inspired by these considerations, here we start to investigate the parameter-
ized prefix distance between regular languages. In [4] several notions of distances

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 419–430, 2014.
c© Springer International Publishing Switzerland 2014

420 M. Kutrib, K. Meckel, and M. Wendlandt

have been extended from distances between strings to distances between lan-
guages (see also [6]). To this end, a relative distance between a language L1 and
a language L2 is defined to be the supremum of the minimal distances of all words
from L1 to L2. The distance between L1 and L2 is defined as the maximum of
their mutual relative distances. Since here we are interested in computations of
faulty finite state devices that are still tolerable, we stick with the prefix distance
and consider a parameterized extension. For words w1 and w2 the prefix distance
sums up the number of all letters of w1 and w2 that do not belong to a common
prefix of these words. One can suppose that on the common prefixes the com-
putations of both machines are the same until a faulty component comes into
play and the computations diverge. The parameterized prefix distance between
languages sums up the distances of all words up to length n from one language
to their closest words from the other language, and vice versa.

Since the distance between identical words should always be 0, for the dis-
tances between languages, the number of words in their symmetric difference
plays a crucial role. In this connection we utilize the density and census func-
tions that count the number of words in a language. The study of densities of
regular languages has a long history (see, for example, [3,5,10,11,12,13]). Re-
stricted to the number of unary words in a binary language the census function
has been shown to be log-space many-one complete for #L in [2].

In particular, in the present paper tight upper bounds for the parameterized
prefix distance between unary as well as non-unary regular languages are de-
rived. It is shown that there are pairs of languages having a constant, degree k
polynomial, and exponential distance. Moreover, for every constant and every
polynomial, languages over a binary alphabet are constructed that have exactly
that distance. From practical as well as theoretical point of view, it is impor-
tant to decide this order. Here, the orders of possible distances between regular
languages are derived and are shown to be decidable.

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ, and N for the
set {0, 1, 2, . . .} of non-negative integers. The empty word is denoted by λ and
the reversal of a word w by wR. For the length of w we write |w| and for the
number of occurrences of a symbol a in w we use the notation |w|a. We use ⊆ for
inclusions and ⊂ for strict inclusions, and write 2S for the powerset of a set S.

In general, a distance over Σ∗ is a function d : Σ∗ × Σ∗ → N ∪ {∞} sat-
isfying, for all x, y, z ∈ Σ∗, the conditions d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y).

For example, words w1 and w2 over Σ∗ can be compared by summing up the
number of all letters of w1 and w2 that do not belong to a common prefix of
these words. This so-called prefix distance dpref : Σ

∗ × Σ∗ → N between words
is defined to be dpref(w1, w2) = |w1|+ |w2|−2max{ |v| | w1, w2 ∈ vΣ∗ }. Clearly,
dpref(w1, w2) = 0 if and only if w1 = w2, and dpref(w1, w2) = |w1| + |w2| if and
only if the first letters of w1 and w2 are different. Moreover, the prefix distance
between two words can be large if their length difference is large.

Parameterized Prefix Distance between Regular Languages 421

Distances over Σ are extended to distances between a word and a language by
taking the minimum of the distances between the word and the words belonging
to the language. For the prefix distance we obtain pref-d : Σ∗ × 2Σ

∗ → N∪ {∞}
which is defined to be

pref-d(w,L) =

{
min{ dpref(w,w′) | w′ ∈ L } if L �= ∅
∞ otherwise

.

Clearly, pref-d(w,L) = 0 if w ∈ L.
The next step is to extend the distance between a word and a language to a

distance between two languages L1, L2 ⊆ Σ∗. This can be done by taking the
maximum of the suprema of the distances of all words from L1 to L2 and vice
versa. However, here we are interested in a parameterized definition, where the
distance additionally depends on the length of the words. So, the parameterized
prefix distance between languages pref-D : N× 2Σ

∗ × 2Σ
∗ → N∪ {∞} is defined

by

pref-D(n, L1, L2) =
∑

w∈L1,
0≤|w|≤n

pref-d(w,L2) +
∑

w∈L2,
0≤|w|≤n

pref-d(w,L1).

In general, one cannot expect to obtain a convenient description of the pa-
rameterized prefix distance for all n. So, in the following, if not stated otherwise,
it is understood that pref-D(n, L1, L2) = f(n) means pref-D(n, L1, L2) = f(n),
for all n greater than some constant n0.

The following technical proposition is a useful tool for the analysis and con-
struction of regular languages having a certain distance.

Proposition 1. Let L1, L2 ⊆ Σ∗ be two languages so that L1 ⊆ L2.

1. For a word v ∈ L2 \ L1, let L
′
1 = L1 ∪ {v} and L′

2 = L2 \ {v}. Then

pref-D(n, L1, L2) > pref-D(n, L′
1, L2) and

pref-D(n, L1, L2) > pref-D(n, L1, L
′
2).

2. For a word v ∈ Σ∗ \ L2, let L
′
2 = L2 ∪ {v}. Then

pref-D(n, L1, L2) < pref-D(n, L1, L
′
2).

3. For a word v ∈ L1, let L
′
1 = L1 \ {v}. Then

pref-D(n, L1, L2) < pref-D(n, L′
1, L2).

Example 2. We consider the two regular languages L1 = {a, b}∗{ab, ba}{a, b}∗,
that is, the language of all words over {a, b} containing the factor ab or ba,
and L2 = {a, b}∗b{a, b}∗b{a, b}∗, that is, the language of all words over {a, b}
containing at least two symbols b.

In order to compute their parameterized prefix distance, first the distances of
all words from L1 to L2 are determined. All words of L1 that belong to L2 are of
the forms {a, b}∗{ab, ba}{a, b}∗b{a, b}∗ or {a, b}∗b{a, b}∗{ab, ba}{a, b}∗. So, we

422 M. Kutrib, K. Meckel, and M. Wendlandt

only have to compute the prefix distances of words w from a∗{ab, ba}a∗ to L2,
which is 1 since wb ∈ L2 and pref-d(w,L2) = |w| + |wb| − 2|w|.

Second, all words w from L2 that are not included in L1 are of the form b2b∗.
Their prefix distance to L1 is also always 1, since wa ∈ L1.

Together, the prefix distance between L1 and L2 is

pref-D(n, L1, L2) =
∑

w∈a∗ba∗,
2≤|w|≤n

pref-d(w,L2) +
∑

w∈b2b∗,
2≤|w|≤n

pref-d(w,L1).

These sums can be reformulated by summing up over the sizes of the words and
multiplying by their prefix distance to the languages they are not contained in.
So, we obtain

pref-D(n, L1, L2) =

n∑
i=2

|{w ∈ a∗ba∗ | |w| = i}| · 1 +
n∑

i=2

∣∣{w ∈ b2b∗ | |w| = i}
∣∣ · 1.

The set {w ∈ a∗ba∗ | |w| = i } of the first sum contains i words. The set
{w ∈ b2b∗ | |w| = i } of the third sum has a size of 1. Therefore, the result is

pref-D(n, L1, L2) =

n∑
i=2

i+

n∑
i=2

1 =
(n+ 1)n

2
− 1 + n− 1 =

n2

2
+

3

2
n− 2.

��

3 Upper and Lower Bounds for the Prefix Distance

We turn to investigate the range of possible parameterized distances between
regular languages. We are interested in upper bounds and whether these upper
bounds are tight, that is, whether there are witness languages showing that the
upper bound is, in fact, the best possible.

To determine the upper bound of the prefix distance between two languages
L1, L2 ⊆ Σ∗ we consider some word w ∈ L1 and the shortest word s ∈ L2. In
any case we have pref-d(w,L2) ≤ |w|+ |s| and, thus, the word w contributes in
a maximal way to the distance if it does not have a common prefix with s. In
this case, we have pref-d(w,L2) = |w| + |s|. This observation leads to a general
upper bound as follows.

Proposition 3. Let L1, L2 ⊆ Σ∗ be two non-empty languages, m1 = min{ |w| |
w ∈ L1 } and m2 = min{ |w| | w ∈ L2 } be the lengths of the shortest words of L1

and L2, respectively, m = min{m1,m2}, and M = max{m1,m2}. Then

pref-D(n, L1, L2) ≤
n∑

i=m

|Σ|i · (i +M).

The next lemma identifies properties that are necessary for two languages to
match the upper bound.

Parameterized Prefix Distance between Regular Languages 423

Lemma 4. Let L1, L2 be languages with

m = min{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }} and

M = max{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}.

Then the upper bound of Proposition 3 is met only if (i) each word w ∈ L1 ∪L2

contributes |w| + M to the prefix distance, (ii) L1 ∩ L2 = ∅ if m ≥ 1, and
L1 ∩ L2 ⊆ {λ} if m = 0, and (iii) L1 ∪ L2 = {w ∈ Σ∗ | |w| ≥ m }.

Proof. We assume m ≥ 1 and L1 ∩L2 �= ∅, or m = 0 and L1 ∩L2 is not a subset
of {λ}. In both cases there exists at least one word w of length greater than
or equal to max{1,m} that does not contribute to pref-D(|w|, L1, L2). So there
must be a word in L1 ∪ L2 that contributes more than |w| +M to the prefix
distance. However, this is a contradiction to the choice ofM to be the maximum
of the sizes of the shortest words. So, (ii) is a necessary condition.

If L1 ∪ L2 �= {w ∈ Σ∗ | |w| ≥ m }, then there is a word not in L1 ∪ L2

whose length is at least max{1,m}. This word can be added to both lan-
guages L1 and L2 without affecting pref-D(n, L1, L2). Since in this case the
intersection L1 ∩ L2 contains a non-empty word, we have a contradiction to (ii).
This shows (iii).

At last we assume that there exists a word w ∈ L1 ∪ L2 that contributes less
than |w|+M to pref-D(|w|, L1, L2). Then there must be a word in L1 ∪L2 that
contributes more than |w| +M to the prefix distance. The same contradiction
as for (ii) shows case (i). ��

Lemma 4 particularly shows that the upper bound cannot be reached if m <
M . Let in this case w with |w| =M be a shortest word in its language, say L2.
Then pref-d(w,L1) ≤ |w| + m < |w| + M . So, condition (i) of the lemma is
violated. Next we turn to show that the upper bound of Proposition 3 is the
best possible, in the sense that there are worst case languages for which it is
matched. These languages necessarily satisfy the conditions of Lemma 4.

Proposition 5. For any M = m ≥ 0, there are binary regular languages

L1, L2 ⊆ {a, b}∗ so that pref-D(n, L1, L2) =
n∑

i=m

|Σ|i · (i + M), where m is

the minimum and M is the maximum of the lengths of the shortest words in L1

and L2.

Proof. For any m ≥ 1, we use the disjoint regular witness languages L1 =
a{a, b}m−1{a, b}∗ and L2 = b{a, b}m−1{a, b}∗. In particular, no two words of L1

and L2 have a common prefix.
Let w ∈ L1 be some word. Its prefix distance to L2 is |w|+m. Similarly, the

prefix distance of every word w ∈ L2 to the language L1 is |w|+m. So we have

pref-D(n, L1, L2) =
∑

w∈L1\L2,
m≤|w|≤n

|w| +m+
∑

w∈L2\L1,
m≤|w|≤n

|w|+m.

424 M. Kutrib, K. Meckel, and M. Wendlandt

Since L1 ∪ L2 = {w ∈ Σ∗ | |w| ≥ m } and L1 ∩ L2 = ∅ this in turn is

pref-D(n, L1, L2) =

n∑
i=m

|Σ|i · (i+m).

If m = 0, then the empty word belongs to both languages. In this case we set
L1 = {λ} ∪ a{a, b}∗ and L2 = {λ} ∪ b{a, b}∗ and obtain

pref-D(n, L1, L2) =
n∑

i=1

|Σ|i · i =
n∑

i=0

|Σ|i · (i+ 0) =
n∑

i=m

|Σ|i · (i+m).

��
So far, we considered languages over alphabets with at least two letters. For

unary languages the situation changes significantly. An immediate observation
is, that every two words have a distance to each other which is given by their
length difference only.

Proposition 6. Let L1 ⊆ {a}∗ and L2 ⊆ {a}∗ be two non-empty unary lan-

guages. Then pref-D(n, L1, L2) ≤ n(n+1)
2 + 1.

As for the general case, the upper bound for the parameterized prefix dis-
tance of unary regular languages is tight. However, the witness languages of the
following proof are the only ones whose distance meets the upper bound.

Proposition 7. There are unary regular languages L1, L2 ⊆ {a}∗ so that their

prefix distance is pref-D(n, L1, L2) =
n(n+1)

2 + 1.

Proof. Let L1 = aa∗ and L2 = {λ}. These languages are unary, regular, and
disjoint. Therefore, the prefix distance of each word in w ∈ L1 to L2 is |w|.
For the only word λ in L2 its distance to L1 is dpref(λ, a) = 1. So we have

pref-D(n, L1, L2) = 1 +
∑n

i=1 i =
n(n+1)

2 + 1. ��

4 Distances Below the Upper Bound

So far, we have explored the upper and lower bounds for parameterized prefix
distances. Here we are interested in the question which functions are possible
to obtain by considering the prefix distance of two regular languages. The next
proposition gives an example for regular languages whose parameterized prefix
distance is superpolynomial.

Proposition 8. There are regular languages L1 and L2 even over a binary al-
phabet so that pref-D(n, L1, L2) ∈ Θ(n2n).
Proof. Here we can use the witness languages L1 and L2 from the case m = 0
in the proof of Proposition 5. There,

pref-D(n, L1, L2) =

n∑
i=1

|Σ|i · i =
n∑

i=1

2i · i.

has been shown. This sum is equal to n2n+2 − (n+ 1)2n+1 + 2 ∈ Θ(n2n). ��

Parameterized Prefix Distance between Regular Languages 425

Next we give evidence that, for any constant c ≥ 1, there are regular languages
having parameterized prefix distance c.

Proposition 9. Let c ≥ 1 be an integer. Then there are unary regular lan-
guages L1 and L2 so that pref-D(n, L1, L2) = c, for all n ≥ c.
Proof. We use the languages L1 = {λ} and L2 = {λ, ac} as witnesses. Since
λ ∈ L1 ∩ L2 the empty word in L1 and L2 does not contribute to the distance
between L1 and L2. Clearly, pref-d(a

c, L1) = c and, thus, pref-D(n, L1, L2) = c,
for all n ≥ c. ��

Now we turn to the main part of this section. Given an arbitrary polyno-
mial p with integer coefficients whose leading coefficient is positive, we show
how to construct two regular languages over a binary alphabet having exactly
the parameterized prefix distance p. Clearly, a negative leading coefficient does
not make sense since it would yield a negative distance.

Theorem 10. Let p(n) = xk · nk + xk−1 · nk−1 + · · · + x0 be a polynomial of
degree k ≥ 0 with integer coefficients xi, 0 ≤ i ≤ k, and xk ≥ 1. Then two regular
languages L1 and L2 over the alphabet {a, b} can effectively be constructed so that
pref-D(n, L1, L2) = p(n), for all n ≥ n0, where n0 is some constant.

Proof. Proposition 9 already shows the special case k = 0. Therefore, we assume
k ≥ 1. The basic idea of the construction is to start with two languages whose
distance is already a polynomial of degree k, but its coefficients may be incorrect.
Subsequently, the coefficients are corrected one after the other, from xk to x0.
When coefficient xi is corrected, the coefficients xk to xi+1 are not affected while
the coefficients xi−1 to x0 may be changed.

In general, language L1 will always be a subset of L2. In this way, the words
from L1 never contribute to the distance.

For the corrections of the coefficients a set of equally long prefixes is used. So,
we define P ⊆ {a, b}l, for some constant l, with P = {p0, p1, . . . , pm}. Assume
for a moment that l ≥ k is large enough to perform the following constructions.
Later we will give evidence that it always can be chosen appropriately.

We consider auxiliary languages

Lr,−1 = { pr } and Lr,−1,b = Lr,−1 ∪ Lr,−1b,

Lr,s = { prv | v ∈ {a, b}∗, |v|b = s } and Lr,s,b = Lr,s ∪ Lr,sb

for s ≥ 0 and pr ∈ P . Clearly, there are
(
n−|pr|

s

)
=

(
n−l
s

)
∈ Θ(ns) many

words of length n in the languages Lr,s. Considering the distance between Lr,−1

and Lr,−1,b we obtain pref-D(n, Lr,−1, Lr,−1,b) = 1. For the distance between Lr,s

and Lr,s,b, all words from Lr,sb contribute 1 while the words from Lr,s contribute
nothing. For s ≥ 1, we obtain

pref-D(n, Lr,s−1, Lr,s−1,b) =

n∑
i=1

(
i− l
s− 1

)
=

(
n− l+ 1

s

)
=

(n− l + 1) · (n− l) · (n− l − 1) · · · (n− l − s+ 2)

s!

426 M. Kutrib, K. Meckel, and M. Wendlandt

which gives us a term of the form ns+ys−1·ns−1+ys−2n
s−2+ys−3n

s−3+···+y0

s! , where
a rough and simple estimation yields |yi| ≤ 3s · ls, 0 ≤ i ≤ s− 1.

We start the construction by using the union of auxiliary languages with xk ·k!
many different prefixes, that is,

L1 =

xk·k!−1⋃
i=0

Li,k−1 and L2 =

xk·k!−1⋃
i=0

Li,k−1,b.

So, we start with a distance of the form

xkn
k + zk−1n

k−1 + zk−2n
k−2 + zk−3n

k−3 + · · ·+ z0,

where xk is already the correct coefficient and |zi| ≤ xk · 3k · lk, 0 ≤ i ≤ k − 1.
Next we correct the remaining coefficients. Let xmax = max{ xi | 0 ≤ i ≤ k }.

Concluding inductively, we assume that currently

pref-D(n, L1, L2) = xkn
k+xk−1n

k−1+ · · ·+xk−i+1n
k−i+1+zk−in

k−i+ · · ·+z0,

where the coefficients xk, xk−1, . . . , xk−i+1 are already correct and, moreover,
|zk−i|, |zk−i−1|, . . . , |z0| ≤ 3i−1 · xmax · (3k · lk)i.

In order to obtain the correct coefficient xk−i, we set d = zk−i − xk−i and
distinguish the two cases, where d is negative or positive. Clearly, if d = 0 the
coefficient xk−i is already correct and nothing has to be done.

If d < 0, the distance has to be increased. To this end, the auxiliary languages
Lj,k−i−1 and Lj,k−i−1,b are used. We add their unions with |d| · (k − i)! many
new different prefixes to L1 and L2, that is,

|d|·(k−i)!−1⋃
j=0

Lj,k−i−1 is added to L1 and

|d|·(k−i)!−1⋃
j=0

Lj,k−i−1,b is added to L2.

Since all the prefixes pj are new and L1 ⊆ L2, again all words from L2 con-
tribute 1 to the distance while the words in L1 contribute nothing. In particular,
we have added |d|nk−i + z′k−i−1n

k−i−1 + z′k−i−2n
k−i−2 + · · · + z′0 words up to

length n to L2, where |z′k−i−1|, |z′k−i−2|, . . . , |z′0| ≤ |d| · 3k−i · lk−i ≤ |d| · 3k · lk.
This implies

pref-D(n, L1, L2) = xkn
k+xk−1n

k−1+ · · ·+xk−in
k−i+zk−i−1n

k−i−1+ · · ·+z0,

where xk, xk−1, . . . , xk−i are already correct and |zk−i−1|, |zk−i−2|, . . . , |z0| are
at most

3i−1 · xmax · (3k · lk)i + |d| · 3k · lk
= 3i−1 · xmax · (3k · lk)i + (3i−1 · xmax · (3k · lk)i + xmax) · 3k · lk
= 3i−1 · xmax · (3k · lk)i + 3i−1 · xmax · (3k · lk)i · 3k · lk + xmax · 3k · lk
≤ 3i · xmax · (3k · lk)i+1.

This concludes the first case.

Parameterized Prefix Distance between Regular Languages 427

If d > 0, the distance has to be decreased. To this end, words from L2 are
added to L1 so that they do not contribute to the distance anymore. Let p̃ be
one of the xk · k! prefixes used at the beginning of the induction to establish a
polynomial distance of degree k. Moreover, we may assume that p̃ has not been
used for the current purpose before.

Then, for r, t ≥ 0 and s ≥ r, another auxiliary language is defined as L̃p̃,r,s,t =

{ p̃ubrv | uv ∈ {a, b}∗, |u| = t, |uv|b = s − r }. Here, we set L̃p̃,r,r−1,t = { p̃br }.
In these languages the position of the block br is fixed, so that the union⋃d·(k−i)!−1

j=0 L̃p̃,i,k−1,j contains dnk−i + z′k−i−1n
k−i−1 + z′k−i−2n

k−i−2 + · · · + z′0
words up to length n, for n ≥ d·(k−i)!+ l+i, where |z′k−i−1|, |z′k−i−2|, . . . , |z′0| ≤
d · 3k−i · (l + i)k−i ≤ d · 3k · lk. Now all these words are concatenated with a
symbol b and are added to L1. Since all words do belong to L2 as well, we obtain

pref-D(n, L1, L2) = xkn
k+xk−1n

k−1+ · · ·+xk−in
k−i+zk−i−1n

k−i−1+ · · ·+z0,

where the coefficients xk, . . . , xk−i are already correct and analogously to the first
case |zk−i−1|, |zk−i−2|, . . . , |z0| are at most 3i · xmax · (3k · lk)i+1. This concludes
the second case.

The construction is concluded by the observation that choosing n0 > l + k is
sufficient for the auxiliary languages applied in the initial step and the correction
steps in the first case. For the corrections in the second case

d · (k − i)! + l + i ≤ 3k+1 · xmax · (3k2 · lk2

) · k! ≤ n0

is sufficient.
Finally, it has to be shown that the prefix length l always can be chosen

appropriately. In the first step, xk · k! many prefixes are used. For the correction
steps, no additional prefix is used in the second case, and |d| · (k− i)! prefixes in
the first case. The latter is less than

(3i−1 · xmax · (3k · lk)i + xmax) · (k − i)! ≤ 3k · xmax · 3k2 · lk2 · k!.

Therefore, altogether less than 3k · xmax · 3k2 · lk2 · (k + 1)! many prefixes are
necessary. On the other hand, there are 2l prefixes of length l. So it is sufficient
to choose l large enough so that 2l ≥ 3k ·xmax · 3k2 · lk2 · (k+1)! which is always
possible since k and xmax are constants and on the right-hand side there is only
a polynomial in l. ��

5 Decidability of the Order of the Distances

From a practical as well as from a theoretical point of view, it is interesting to
decide the order of magnitude of the distance between regular languages. In the
definition of the distances, the number of words in the symmetric difference of
the languages plays a crucial role. Summing up the distance of each of these
words gives the distance of two languages. So, the question arises of how many
words up to a certain length are in a given language. The function that counts

428 M. Kutrib, K. Meckel, and M. Wendlandt

the number of words of a fixed length n is called the density function (see,
for example, [12,13] and the references therein). The function that counts the
number of words up to a given length n is called census function. Clearly, both are
closely related. So, first we deduce some decidability results for census functions
from results on density functions shown in [12]. From these we derive the orders
of possible distances between regular languages and show that the orders are
decidable.

More formally, let L be a language over some alphabet Σ. Then its density
function �L : N → N is defined as �L(n) = |L∩Σn| = |{w ∈ L | |w| = n }| and its
census function censL : N → N as censL(n) =

∑n
i=0 �L(i) = |{w ∈ L | |w| ≤ n }|.

The regular languages often are given in terms of minimal deterministic finite
automata (DFA). For simplicity, in the following we write censA for censL(A),
where A is a DFA.

Proposition 11. Let A be a minimal DFA. Then it is decidable whether censA
is ultimately constant.

Proof. The function censA is ultimately constant if and only if A accepts a finite
language. The finiteness of a regular language is decidable by checking whether
each accepting path of A is acyclic. ��

In [12] the following gaps for the density of regular languages have been shown:
(i) For any k ≥ 0, there is no regular language whose density is in ω(nk)∩o(nk+1),
and (ii) there is no regular language whose density is in ω(n�) for all � ≥ 0, and
in 2o(n). So, there is no density function of order Θ(

√
n), Θ(n log(n)), or Θ(2

√
n).

But note, the density of, say, the regular language Rk = {w ∈ {a, b}∗ | |w|a =
k + 1 and |w| is even } is �Rk

(n) ∈ Θ(nk+1) if n is even, and �Rk
(n) = 0 if n is

odd. So, it is neither in O(nk) nor in Ω(nk+1).
In the following, we say that the density is polynomial if the function map-

ping n to max{ �(i) | 0 ≤ i ≤ n } is of order Θ(nk), for some k ≥ 1. It is
exponential, if it is neither constant nor polynomial. In the latter case it has to
be of the form 2Ω(n).

Since the density function of every regular language is either bounded by a
constant, polynomial, or exponential, the next corollary follows.

Corollary 12. The census function of every regular language is either ulti-
mately constant, polynomial, or exponential.

Proof. By definition we obtain the census function cens(n) by summing up the
densities up to n. Summing up polynomials of degree k ≥ 0 gives a polynomial
at most of degree k + 1. Similarly, summing up exponential functions of the
form 2Ω(n) gives again an exponential function of that form. ��

Though not explicitly stated, from the results in [12] it follows that it is
decidable whether the density function of a regular language has an upper bound
that is constant, polynomial, or exponential.

Moreover, the results in [12] imply a decision procedure for the question
whether the census function of a regular language is polynomial or exponen-
tial, and for the former cases, whether it is of a certain degree.

Parameterized Prefix Distance between Regular Languages 429

Theorem 13. Let A be a DFA. Then it is decidable whether censA is exponential
or a polynomial. If it is a polynomial, the degree can be computed.

Proof. If L(A) is a unary language, then censA is either ultimately constant or
linear. By Theorem 11 we can decide whether it is ultimately constant. If not
by the results in [12] it can be decided whether �A is exponential or polynomial,
where in the latter case the degree of the polynomial is computable. From the
orders of the density we can derive the order of censA. ��

Now we turn to the classes of parameterized prefix distances between regu-
lar languages. As mentioned before, for their computation the words in their
symmetric difference are central, since only these contribute to the distance.

Let L1 and L2 be two languages. By L1 ⊕ L2 we denote their symmetric
difference. Let us recall briefly the observation 1 ≤ pref-d(w,L1) ≤ |w|+ |s|, for
w /∈ L1 and s being a shortest word in L1.

Theorem 14. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized prefix distance pref-D(n, L1, L2) is ultimately con-
stant.

Proof. The family of regular languages is effectively closed under symmetric
difference. So, a representation, say a DFA A, accepting L1 ⊕ L2 can effectively
be constructed from DFA accepting L1 and L2. Clearly, if L1⊕L2 is finite, then
pref-D(n, L1, L2) is ultimately constant. Conversely, if L1 ⊕ L2 is infinite, then
pref-D(n, L1, L2) cannot be bounded by a constant, since all the infinitely many
words in the symmetric difference contribute at least 1 to the distance. Now the
theorem follows from the decidability of finiteness of regular languages. ��

Theorem 15. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized prefix distance pref-D(n, L1, L2) is exponential.

Proof. As in the proof of Theorem 14 we may assume without loss of generality
that a DFA A accepting L1 ⊕L2 can effectively be constructed from L1 and L2.
Moreover, one can decide whether pref-D(n, L1, L2) is ultimately constant. So,
assume that it is not.

Any word |w| in the symmetric difference contributes at least 1 and at most
|w| + |s| to the distance, where s is the shortest word in the language w does
not belong to. Therefore, we know censA(n) ≤ pref-D(n, L1, L2) ≤ (c + n) ·
censA(n), where c is the maximum of the lengths of the shortest words in L1

and L2. Since censA can only be ultimately constant, polynomial, or exponential,
pref-D(n, L1, L2) is exponential if and only if censA is exponential. Now the
theorem follows from the possibility to decide whether censA is exponential. ��

Theorem 16. Let L1 and L2 be two regular languages and k ≥ 1 be a constant.
Then it is decidable whether the parameterized prefix distance pref-D(n, L1, L2)
belongs to Ω(nk) ∩O(nk+1).

Proof. It is decidable whether pref-D(n, L1, L2) is ultimately constant or expo-
nential. If it is neither of these, both census functions censL1\L2

and censL2\L1

430 M. Kutrib, K. Meckel, and M. Wendlandt

are ultimately constant or polynomial. Theorem 13 shows that the degree k
of the polynomial can be computed. With the fact, that each word |w| con-
tributes at least 1 and at most |w| + |s| to the distance, where s is the shortest
word in the language to which w does not belong, we derive pref-D(n, L1, L2) ∈
Ω(nk) ∩O(nk+1). ��

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Àlvarez, C., Jenner, B.: A very hard log space counting class. In: Structure in
Complexity Theory Conference, pp. 154–168. IEEE Computer Society (1990)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science. Springer (1988)

4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theoret. Comput. Sci. 286, 117–138 (2002)

5. Eilenberg, S.: Automata, Languages, and Machines. Academic Press (1974)
6. Kruskal, J.B.: An overview of sequence comparison. In: Time Warps, String Edits,

and Macromolecules: The Theory and Practice of Sequence Comparison, pp. 1–44.
Addison-Wesley (1983)

7. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23, 269–311 (1997)

8. Mohri, M.: On the use of sequential transducers in natural language processing.
In: Finite-State Language Processing, pp. 355–381. MIT Press (1997)

9. Nerode, A., Kohn, W.: Models for hybrid systems: Automata, topologies, controlla-
bility, observability. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.)
HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993)

10. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and monographs in computer science. Springer (1978)

11. Schützenberger, M.P.: Finite counting automata. Inform. Control 5, 91–107 (1962)
12. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with

polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS,
vol. 629, pp. 494–503. Springer, Heidelberg (1992)

13. Yu, S.: Regular languages. In: Handbook of Formal Languages, vol. 1, ch. 2, pp.
41–110. Springer, Berlin (1997)

Ordered Restarting Automata

for Picture Languages�

Frantǐsek Mráz1 and Friedrich Otto2

1 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 25 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. We introduce a two-dimensional variant of the restarting
automaton with window size three-by-three for processing rectangular
pictures. In each rewrite step such an automaton can only replace the
symbol in the middle position of its window by a symbol that is smaller
with respect to a fixed ordering on the tape alphabet. When restricted
to one-dimensional inputs (that is, words) the deterministic variant of
these ordered restarting automata only accepts regular languages, while
the nondeterministic one can accept some languages that are not even
context-free. We then concentrate on the deterministic two-dimensional
ordered restarting automaton, showing that it is quite expressive as it
can simulate the deterministic sgraffito automaton, and we present some
closure and non-closure properties for the class of picture languages ac-
cepted by these automata.

Keywords: restarting automaton, ordered rewriting, picture language.

1 Introduction

The restarting automaton was introduced in [5] as a formal device to model the
linguistic technique of analysis by reduction. Since then many variants and exten-
sions of the basic model have been introduced and studied (for an overview, see,
e.g., [8]), and several classical families of formal languages, like the regular lan-
guages, the deterministic context-free languages, and the context-free languages,
have been characterized by certain types of restarting automata. Recently, the
restarting automaton has even been extended to a model that processes two-
dimensional inputs, that is, rectangular pictures [9]. This model, called restarting
tiling automaton, is a stateless device with a two-by-two window. In each cycle
it scans the current picture based on a given scanning strategy until, at some
place, it performs a rewrite step in which it rewrites a single symbol from the
current content of its window by a symbol with smaller weight and restarts. If

� The first author was supported by the Grant Agency of the Czech Republic under
the project P103/10/0783.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 431–442, 2014.
c© Springer International Publishing Switzerland 2014

432 F. Mráz and F. Otto

no rewrite operation can be performed, then the automaton halts after scanning
the current picture completely. It is said to accept if at that point the current
picture satisfies certain local conditions at each position. In this it is similar to
a tiling automaton (see, e.g., [3]).

Here we introduce and study a type of two-dimensional restarting automaton,
the so-called deterministic 2-dimensional 3-way ordered restarting automaton (or
det-2D-3W-ORWW-automaton, for short) that works more in the spirit of the
restarting automata as introduced in [5]. Such an automaton has a window of
size 3-by-3, and it scans a given rectangular input picture starting at the top left
corner. Based on the current state and the content of its window, it can change
its state and move either to the right, down, or up, but not to the left. That’s
why it is called a 3-way automaton. It keeps on moving until it either halts,
accepting or rejecting, or until it performs a rewrite step, in which it replaces
the symbol in the middle of its window by a symbol that is strictly smaller with
respect to a given ordering on its tape alphabet. After performing such a rewrite,
the automaton restarts immediately, that is, it jumps back to the top left corner,
and its internal state is reset to the initial state.

When restricted to one-dimensional inputs (that is, words), then this device
just accepts the regular languages. For two-dimensional inputs, however, it is
quite powerful, as it can simulate the deterministic sgraffito automaton of [10],
which in turn is known to be more expressive than the four-way alternating au-
tomaton [7] and the deterministic four-way one-marker automaton of Blum and
Hewitt [1], and which accepts the sudoku-deterministically recognizable picture
languages of Borchert and Reinhardt [2] (see [11] and [12]).

This paper is structured as follows. In Section 2 we introduce the ordered
restarting automaton (ORWW-automaton) for processing words and establish
its main properties. In Section 3 we restate the some basic notions on picture
languages, we define the two-dimensional extension of the ORWW-automaton,
the det-2D-3W-ORWW-automaton, and we illustrate its definition by a detailed
example. In the next section we show that this automaton can simulate the de-
terministic sgraffito automaton, and we prove that the class of picture languages
accepted by our devices is incomparable to the class of picture languages that
are accepted by nondeterministic sgraffito automata. In the concluding section
we present a few closure and non-closure properties, and we conclude with a
number of open problems for future research.

2 Ordered Restarting Automaton for Words

An ordered restarting automaton, an ORWW-automaton for short, is a one-tape
machine that is described by an 8-tuple M = (Q,Σ, Γ,-,., q0, δ, >), where Q
is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ, the symbols -,. �∈ Γ serve as markers for the left and right border
of the work space, respectively, q0 ∈ Q is the initial state,

δ : Q× (((Γ ∪ {-}) · Γ · (Γ ∪ {.})) ∪ {-.}) → 2(Q×{MVR})∪Γ∪{Accept}

Ordered Restarting Automata 433

is the transition relation, where 2S denotes the powerset of the set S, and > is a
partial ordering on Γ . The transition relation describes three different types of
transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈ Q,
a1 ∈ Γ ∪ {-} and a2, a3 ∈ Γ . If M is in state q and sees the word a1a2a3
in its read/write window, then this move-right step causes M to shift the
read/write window one position to the right and to enter state q′. Observe
that no move-right step is possible, if the content of the read/write window
ends with the symbol ..

(2) A rewrite step has the form b ∈ δ(q, a1a2a3), where q ∈ Q, a1 ∈ Γ ∪ {-},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {.} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its read/write window by the symbol b and to
restart, that is, M moves its read/write window to the left end of the tape,
so that it contains the left delimiter - and the first two letters of the current
tape content, and to reenter the initial state q0.

(3) An accept step has the form Accept ∈ δ(q, a1a2a3), where q ∈ Q, a1 ∈ Γ∪{-},
a2 ∈ Γ , and a3 ∈ Γ ∪ {.}. It causes M to halt and accept. In addition, we
allow an accept step of the form Accept ∈ δ(q0,-.).

If δ(q, u) = ∅ for some q ∈ Q and u ∈ ((Γ ∪ {-}) · Γ · (Γ ∪ {.}))∪ {-.}, then
M necessarily halts, when it is in state q seeing u in its read/write window, and
we say that M rejects in this situation. Further, the letters in Γ �Σ are called
auxiliary symbols.

A configuration ofM is a word αqβ, where q ∈ Q and |β| ≥ 3, and either α = λ
(the empty word) and β ∈ {-}·Γ+ ·{.} or α ∈ {-}·Γ ∗ and β ∈ Γ ·Γ+ ·{.}; here
q ∈ Q represents the current state, αβ is the current content of the tape, and it
is understood that the read/write window contains the first three symbols of β.
In addition, we admit the configuration q0-.. A restarting configuration has the
form q0 -w .; if w ∈ Σ∗, then q0 -w . is an initial configuration. Further, we
use Accept to denote the accepting configurations, which are those configurations
that M reaches by executing an Accept instruction. A configuration of the form
αqβ such that δ(q, β1) = ∅, where β1 is the current content of the read/write
window, is a rejecting configuration. A halting configuration is either an accepting
or a rejecting configuration.

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (q, u), and thus, there can
be more than one computation for an input word. If this is not the case, the
automaton is deterministic. By det-ORWW we denote the deterministic ordered
restarting automata.

We observe that any computation of an ordered restarting automatonM con-
sists of certain phases. A phase, called a cycle, starts in a restarting configuration,
the head moves along the tape performing MVR operations until a rewrite op-
eration is performed and thus a new restarting configuration is reached. If no
further rewrite operation is performed, any computation necessarily finishes in
a halting configuration – such a phase is called a tail. By -c

M we denote the
execution of a complete cycle, and -c∗

M is the reflexive transitive closure of -c
M .

434 F. Mráz and F. Otto

An input w ∈ Σ∗ is accepted by M , if there exists a computation of M
which starts with the initial configuration q0-w., and which finally ends with
executing an Accept instruction. The language consisting of all words that are
accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
n · (|Γ | − 1) many cycles. Thus, M can be simulated by a nondeterministic
single-tape Turing machine in time O(n2).

The following example illustrates the way in which an ORWW-automaton
works. To simplify the presentation we use meta-instructions (see, e.g., [8]) to
describe the behaviour of this ORWW-automaton. A meta-instruction of the
form (E, u → v) means that when the current tape contains u preceded by a
word from the regular language E, then M can rewrite u into v and restart.
A meta-instruction of the form (E,Accept) means that if the tape content is a
word from the regular language E, then M can accept it without restart.

Example 1. LetM be the nondeterministic ORWW-automaton on Σ = {a, b,#}
and Γ = {a, a1, a2, b, b1, b2,#} that is given by the following meta-instructions
using the linear ordering # > a > b > a1 > b1 > a2 > b2, where c, d, e ∈ {a, b}:

(1) (λ,-cd→-c1d),
(2) (λ,-c1d→-c2d),
(3) (- ·{a2, b2}∗, c2de→ c2d1e),
(4) (- ·{a2, b2}∗, c2d1e→ c2d2e),
(5) (- ·{a2, b2}∗, c2d# → c2d1#),
(6) (- ·{a2, b2}∗, c2d1# → c2d2#),
(7) (- ·{a2, b2}∗ · d1 · {a, b}+ ·# · {a, b}∗, cd.→ cd1.),
(8) (- ·{a2, b2}∗ · d2 · {a, b}+ ·# · {a, b}∗, cd1.→ cd2.),
(9) (- ·{a2, b2}∗ · d1 · {a, b}+ ·# · {a, b}∗, cde2 → cd1e2),
(10) (- ·{a2, b2}∗ · d2 · {a, b}+ ·# · {a, b}∗, cd1e2 → cd2e2),
(11) (- ·{a2, b2}∗ · d1 · {a, b}∗,#de2 → #d1e2),
(12) (- ·{a2, b2}∗ · d2 · {a, b}∗,#d1e2 → #d2e2),
(13) (- ·{a2, b2}+ ·# · {a2, b2}+· .,Accept).

Then M accepts the following language L on Σ:

L = {w#u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subsequence of wR },

which is context-free, but not regular.

Actually, the construction of Example 1 can easily be changed to obtain an
ORWW-automaton for the language

L′
copy = {w#u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subsequence of w },

which is not even context-free. However, while nondeterministic ORWW-auto-
mata are quite expressive, it turns out that their deterministic variants are fairly
weak.

Ordered Restarting Automata 435

Theorem 2. REG = L(det-ORWW) � L(ORWW).

Proof. Obviously each regular language is accepted by a det-ORWW-automaton.
Conversely, let M = (Q,Σ, Γ,-,., q0, δ, >) be a det-ORWW-automaton, and let
L = L(M). A one-tape Turing machine T can simulate M as follows.

When simulating the first sweep to the right, T stores in each tape field the
current letter together with the letter from the previous field and the state in
which the read/write window ofM reaches the position in which the letter under
consideration is in the middle of the read/write window. When M rewrites the
letter at position i by some smaller letter, then T does the same. In the next
step, T moves one position to the left, and from the information stored at that
position and from the letter written at position i, it can now determine the
operation that M will perform in the next cycle at position i− 1. Observe that,
since M is deterministic, it must perform MVR-steps until this very position.
If M executes another MVR-step at position i − 1, then so does T , and it will
then store the state in which M reaches position i together with the symbol at
position i − 1 and the current symbol at position i. If, however, M performs a
rewrite step at position i−1, then T simulates this rewrite and moves to position
i− 2. It should be clear that in this way T correctly simulates the computation
of M , that is, we see that L(T) = L(M) holds.

At each position M performs at most γ := |Γ | − 1 many rewrite steps. We
claim that T visits every tape field at most 2γ+1 many times. In fact, consider
tape position i such that 1 ≤ i ≤ n = |w|, where w is the given input. At some
point T visits this position for the first time. After each rewrite step executed at
position i, T moves left, and hence, it may return to position i again. Thus, it
enters position i at most γ + 1 times from the left. Further, each time a rewrite
step is executed at position i + 1, T moves to position i from the right. Thus,
position i is entered at most γ times from the right. Together this means that
T moves to the tape field at position i at most 2γ + 1 many times. Now Hennie
has shown in [4] that a Turing machine that visits each of its tape fields at most
a constant number of times can only accept a regular language. It follows that
the language L(M) = L(T) is regular.

Finally, Example 1 shows that REG is properly contained in L(ORWW). �
However, it remains open at this point whether every context-free language

is accepted by some ORWW-automaton.

3 Picture Languages

Here we use the common notation and terms on pictures and picture languages
(see, e.g., [3]). Let Σ be a finite alphabet, and let P ∈ Σ∗,∗ be a picture over Σ,
that is, P is a two-dimensional array of symbols from Σ. If P is of size m × n,
then we write P ∈ Σm,n, row(P) = m denotes the number of rows of P , and
col(P) = n denotes the number of columns of P . Further, P (i, j) denotes the
symbol at row i and in column j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We introduce
a set of five special markers (sentinels) S = {-,.,/,⊥,#}, and we assume that

436 F. Mráz and F. Otto

Σ ∩ S = ∅ for any alphabet Σ considered. In order to enable an automaton to
detect the border of P easily, we define the boundary picture P̂ over Σ ∪ S of
size (m+ 2)× (n+ 2). It is illustrated by the following schema:

P

#

#

#

#

-

-...
.

....

⊥ ⊥ ⊥ ⊥. . .

/ / / /. . .

We now extend the det-ORWW-automaton to a model that processes two-
dimensional input. This automaton will have a read/write window of size 3× 3,

which it can move across a given bordered picture P̂ while changing its state. It
uses the set H = {R,D,U} of possible window movements, where R denotes a
step to the right, D denotes a step down, and U denotes a step up. Observe that
we do not allow a movement to the left.

Definition 3. A deterministic two-dimensional three-way ordered RWW-auto-
maton, a det-2D-3W-ORWW-automaton for short, is given through a 7-tuple
M = (Q,Σ, Γ,S, q0, δ, >), where

– Q is a finite set of states containing the initial state q0,
– Σ is a finite input alphabet, Γ is a finite tape alphabet containing Σ such

that Γ ∩ S = ∅, and > is a partial ordering on Γ , and
– δ : Q× (Γ ∪ S)3,3 → (Q× H) ∪ Γ ∪ {Accept} is the transition function that

satisfies the following four restrictions for all q ∈ Q and all C ∈ (Γ ∪ S)3,3:
1. if C(1, 2) = /, then δ(q, C) �= (q′,U) for all q′ ∈ Q,
2. if C(2, 3) =., then δ(q, C) �= (q′,R) for all q′ ∈ Q,
3. if C(3, 2) = ⊥, then δ(q, C) �= (q′,D) for all q′ ∈ Q,
4. if δ(q, C) = b ∈ Γ , then C(2, 2) > b with respect to the ordering >.

In addition, we admit the possible transition δ(

(
#
#

)
) = Accept, which

means that M may accept the empty picture.

Given a picture P ∈ Σm,n as input, M begins its computation in state q0
with its read/write window reading the subpicture of size 3 × 3 of P̂ at the

upper left corner. Thus, M sees the subpicture

⎛⎝# / /
- P (1, 1) P (1, 2)
- P (2, 1) P (2, 2)

⎞⎠. Applying

its transition function, M now moves through P̂ until it reaches a state q and a
position such that

– either δ(p, C) is undefined, where C denotes the current content of the
read/write window, or

– δ(p, C) = Accept, or
– δ(p, C) = b for some letter b ∈ Γ such that C(2, 2) > b.

Ordered Restarting Automata 437

In the first case, M gets stuck, and so the current computation ends without
accepting, in the second case, M halts and accepts, and in the third case, M
replaces the symbol C(2, 2) by the symbol b, moves its read/write window back
to the upper left corner, and reenters its initial state q0. This latter step is
therefore called a combined rewrite/restart step.

In principle it could happen thatM does not terminate on some input picture,
as it may get stuck on a column, just moving up and down. To avoid this, we
require explicitly that M halts on all input pictures! This could be realized by
either providing a simple pattern, e.g., up∗ − down∗ − up∗ − down∗, such that
on each column, the sequence of up and down movements must fit this pattern,
or one could use an external counter that, for each column entered in the course
of a computation, counts the number of uninterrupted up and down movements,
making sure that the computation fails as soon as more than (m·|Q|)- many such
steps are encountered on a column of height m. Actually, for all our examples
termination follows easily from the fact that within a column, our automata are
just looking for a specific occurrence of some symbol, and if that is not found,
then the computation fails anyway.

A picture P ∈ Σ∗,∗ is accepted by M , if the computation of M on input P
ends with an Accept instruction. By L(M) we denote the picture language that
consists of all pictures over Σ that M accepts.

When restricted to one-row pictures P ∈ Σ1,∗, then the det-2D-3W-ORWW-
automaton coincides with the det-ORWW-automaton. Thus, Theorem 2 implies
that the det-2D-3W-ORWW-automaton only accepts regular word languages.

Example 4. Let Σ = {0, 1}, and let Lperm ⊆ Σ∗,∗ be the picture language

Lperm = {P ∈ Σ∗,∗ | row(P) = col(P) ≥ 1,
each row and column contains exactly one symbol 1 }.

We describe a det-2D-3W-ORWW-automatonMperm that accepts this language.
Obviously, Mperm can easily check whether each column of the given input pic-
ture P contains exactly one occurrence of the symbol 1 by traversing P column
by column from left to right. However, the task of checking that each row con-
tains a unique occurrence of the symbol 1 is much more difficult for Mperm, as
it cannot perform any move-left steps. Thus, it must use its ability to perform
rewrite operations for making this check. As Mperm is reset to the initial state
and the initial position after each rewrite step, it cannot remember which rows it
has checked already. Thus, it must also use the rewrite operations to keep track
of these rows.

Let Γ = Σ ∪{0′, 1′}, and let 1 > 0 > 1′ > 0′ be the ordering on Γ to be used.
The automaton Mperm proceeds as follows:

1. Mperm moves down the first column until it finds a row the first symbol of
which belongs to Σ. If no such row is found, then Mperm checks whether
each column contains a unique occurrence of the symbol 1′, by traversing all
columns from left to right. In the affirmative, it halts and accepts, and in
the negative, it just halts without accepting.

438 F. Mráz and F. Otto

2. If the first symbol in the current row is from Σ, then Mperm moves across
this row from left to right. If all symbols in this row are from Σ, then Mperm

checks that there is a unique occurrence of the symbol 1 in this row. In the
negative, it just halts without accepting, and in the affirmative, it rewrites
the last symbol 0 or 1 in that row into 0′ or 1′, respectively. If, however,
Mperm enounters a symbol a′ ∈ Γ � Σ in the current row, then it rewrites
the previous symbol from Σ also into its primed variant.

Obviously, Mperm rewrites the symbols in each row from right to left into their
primed variants, provided each row contains a unique occurrence of the symbol 1.
Thereafter,Mperm checks that also each column contains a unique occurrence of
the symbol 1. In the affirmative, the given input P is a square that belongs to
the language Lperm. Hence, we see that L(Mperm) = Lperm.

Given an input picture P over Σ of size m × n, a det-2D-3W-ORWW-
automaton M = (Q,Σ, Γ,S, q0, δ, >) can execute at most m · n · (|Γ | − 1) many
cycles, as in each cycle it rewrites one of the m · n many symbols of the current
picture by a symbol that is strictly smaller. As each cycle takes at mostm ·n · |Q|
many steps without getting into an infinite loop, we see that for accepting P ,
M executes at most m2 ·n2 · (|Γ | − 1) · |Q| many steps. Thus, a two-dimensional
Turing machine can simulateM in time O(m2 ·n2). A multi-tape Turing machine
that stores P column by column needs m steps to simulate a single move-right
step of M . However, during each cycle M can execute at most n− 1 such steps.
As P is of sizem·n, we obtain the following upper bound for the time complexity.

Theorem 5. L(det-2D-3W-ORWW) ⊆ DTIME((size(P))2).

4 Simulating Sgraffito Automata

Now the question arises about the expressive power of det-2D-3W-ORWW-
automata. As a first step towards answering this question, we compare the det-
2D-3W-ORWW-automaton to the deterministic sgaffito automaton of [10].

Definition 6. A two-dimensional sgraffito automaton (2SA) is given by a 7-
tuple A = (Q,Σ, Γ, δ, q0, QF , μ), where Σ is an input alphabet and Γ is a working
alphabet such that Σ ⊆ Γ , Q is a set of states containing the initial state q0 and
the set QF of final states, μ : Γ → N is a weight function, and

δ : (Q �QF)× (Γ ∪ S) → 2Q×(Γ∪S)×H

is a transition relation, where H = {R,L,D,U,Z} is the set of possible head
movements (the first four elements denote directions (right, left, down, up), while
Z represents no movement), such that the following two properties are satisfied:

1. A is bounded, that is, whenever it scans a symbol from S, then it immediately
moves to the nearest field of P without changing this symbol,

2. A is weight-reducing, that is, for all q, q′ ∈ Q, d ∈ H, and a, a′ ∈ Γ , if
(q′, a′, d) ∈ δ(q, a), then μ(a′) < μ(a).

Ordered Restarting Automata 439

Finally, A is deterministic (a 2DSA), if |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Γ ∪S.

The notions of configuration and computation are defined as usual. In the
initial configuration on input P , the tape contains P̂ , A is in state q0, and its
head scans the top-left corner of P (or the bottom right corner of P̂ when P is
empty). The automaton A accepts P iff there is a computation of A on input P
that finishes in a state from QF .

In [10] some closure and non-closure properties are shown for the language
classes L(2SA) and L(2DSA), and it is proved in [10,11,12] that determinis-
tic sgraffito automata can simulate the 4-way alternating automata of Kari and
Moore [7], the deterministic 4-way one-marker automata of Blum and Hewitt [1],
and that they accept the sudoku-deterministically recognizable picture languages
of Borchert and Reinhardt [2], but that they are strictly weaker than the two-
dimensional deterministic forgetting automata of Jǐrička and Král [6]. Also the
two-dimensional language L! = {�n,n! | n ∈ N }, which is not an element of
the class REC of recognizable picture languages [3], is accepted by a determin-
istic sgraffito automaton [12]. Here we show that each deterministic sgraffito
automaton can be simulated by a det-2D-3W-ORWW-automaton.

Theorem 7. L(2DSA) ⊆ L(det-2D-3W-ORWW).

Proof. Let A = (Q,Σ, Γ, δ, q0, QF , μ) be a 2DSA accepting L ⊆ Σ∗,∗. We define
a det-2D-3W-ORWW-automatonM = (Q′, Σ,Ω,S, q′0, δ′, >) by taking Ω = Γ ∪
Γ ′ ∪ { a(1)q , a

(2)
q | a ∈ Γ, q ∈ Q }, where Γ ′ = { a′ | a ∈ Γ } is a marked copy of Γ ,

and by letting > be any ordering on Ω that satisfies the following conditions:

1. for all a ∈ Γ and all q ∈ Q, a > a′ > a(1)q > a
(2)
q , and

2. for all a, b ∈ Γ and all q ∈ Q, if μ(a) > μ(b), then a(2)q > b.

These conditions imply that, for all a, b ∈ Γ , if μ(a) > μ(b), then a > b. Thus,
as each rewrite step of A is weight-reducing with respect to μ, it is also ordered
with respect to >. It remains to describe the transition function δ′ of M .

Let P ∈ Σm,n be the given input picture. If m = n = 0 or m = n = 1, then
M can accept immediately, if P ∈ L. Thus, we assume in what follows that at
least one of m,n is larger than 1. In this case, M proceeds as follows:

1. In state q′0, if the current content at tape field (2, 2) (which contains the

top-left corner of P) is a symbol a ∈ Σ, then M rewrites a into a
(2)
q0 . Now

the tape of M contains an encoding of the initial configuration of A, where
the actual state is encoded together with the current content in the field that
is currently visited by the head of A.

2. In state q′0, if the current content of tape field (2, 2) is not a symbol from Σ,
thenM knows that it is already within the simulation of a computation of A.
Accordingly, M proceeds to step 3.

3. M scans its tape column by column, from left to right, until it detects a tape

field that contains a symbol of the form c
(1)
p or a

(2)
q .

(a) If it detects a symbol a
(2)
q , then it realizes that A has been scanning the

symbol a while being in state q. If q ∈ QF , that is, q is a final state of A,

440 F. Mráz and F. Otto

then M halts and accepts. Otherwise, assume that δ(q, a) = (p, b, d). Then
M determines the direction d in which the head of A would move, and it

checks whether the tape field reached by d contains a symbol of the form c
(1)
p .

If not, then M rewrites the current content of that field, which is either c or

c′ for some c ∈ Γ , by the symbol c
(1)
p ; otherwise, M rewrites the symbol a

(2)
q

by the symbol b which would be produced by A at that position. Actually,
if this happens to be the initial position (2, 2), then instead of b, the symbol
b′ will be written there (see step 2).

(b) If it detects a symbol c
(1)
p , then it checks whether there is a neighboring

tape field that contains a symbol of the form a
(2)
q . If so, then it rewrites the

symbol a
(2)
q by the symbol b (or b′, see above), which would be produced by

A at that position. Otherwise, M just replaces c
(1)
p by the symbol c

(2)
p .

Thus, for simulating a single step of A, the det-2D-3W-ORWW-automaton M
executes three cycles. In the first cycle it searches for the current position of

the head of A by looking for a symbol of the form a
(2)
q , it determines the next

step δ(q, a) = (p, b, d) of A from the content of that field, and it encodes the
information about this step into the tape field that A will reach next by replacing

the content c or c′ of that field by the symbol c
(1)
p . In the second cycle,M replaces

the symbol a
(2)
q by the symbol b (or b′) that A would write there, and in the third

cycle it replaces the symbol c
(1)
p by the symbol c

(2)
p . Observe how the exponents

(1) and (2) are used to distinguish between the tape field that will be the next
position of the head of A and the tape field that is the current position of the
head of A. From this description it should be rather clear that L(M) = L. �

To show that the above inclusion is proper, we consider another example.

Example 8. Let L1col be the following picture language over Σ = {a, b}:

L1col = {P ∈ Σ2n,1 | n ≥ 1, P (1, 1) . . . P (n, 1) = (P (n+ 1, 1) . . . P (2n, 1))R },

that is, L1col consists of all pictures with a single column of even length such that
the content of this column read from top to bottom is a palindrome. Using the
strategy of Example 1, and noting the fact that a det-2D-2W-ORWW-automaton
can freely move up and down a column, it can be shown that this language is
accepted by some det-2D-2W-ORWW-automaton.

According to [10] the class L(2SA) is closed under the operation of rotation.
This operation turns the language L1col into the word language Lpal of palin-
dromes of even length, which is a non-regular language. As sgraffito automata
only accept regular word languages, it follows that L1col is not accepted by any
sgraffito automaton. Thus, we obtain the following.

Corollary 9. L(2DSA) � L(det-2D-3W-ORWW).

From Theorem 2 and Example 8 we also obtain the following negative result.

Corollary 10. L(det-2D-3W-ORWW) is not closed under rotation.

Ordered Restarting Automata 441

From Example 8 we know that det-2D-3W-ORWW-automata accept some
languages that are not even accepted by non-deterministic sgraffito automata.
Is there a picture language that is accepted by a 2SA, but not by any det-2D-
3W-ORWW-automaton? Before we try to answer this question we establish an
easy closure property for L(det-2D-3W-ORWW).

Proposition 11. L(det-2D-3W-ORWW) is closed under complement.

Proof. LetM be a det-2D-3W-ORWW-automaton on Σ that accepts a language
L ⊆ Σ∗,∗. As M halts on all inputs, we obtain a det-2D-3W-ORWW-automaton
for the language Lc = Σ∗,∗ �L simply by interchanging Accept transitions with
undefined transitions. �

Let Σ = {0, 1}, and let Ldub denote the language of duplicates that consists
of all pictures P �P , where P is any quadratic picture over Σ and �denotes the
operation of column concatenation (see [3]). For example,

1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
1 1 1 0 1 1 1 0

is an element of Ldub. It is shown in [10] that Ldub �∈ L(2SA), while its comple-
ment (Ldub)

c is accepted by a sgraffito automaton. Concerning this language we
have the following negative result (proof omitted).

Proposition 12. Ldub �∈ L(det-2D-3W-ORWW).

As L(det-2D-3W-ORWW) is closed under complement, Proposition 12 implies
that (Ldub)

c ∈ L(2SA) � L(det-2D-3W-ORWW). Together with the fact that
L1col ∈ L(det-2D-3W-ORWW)�L(2SA), this yields the following incomparability
results.

Corollary 13. The class of picture languages L(det-2D-3W-ORWW) is incom-
parable to the classes L(2SA) and REC with respect to inclusion.

Concerning the incomparability to the class REC of recognizable picture lan-
guages, it is known L1col �∈ REC, while (Ldub)

c ∈ REC [3,7].

5 Concluding Remarks

We have introduced a class of two-dimensional restarting automata, the det-
2D-3W-ORWW-automata. These automata are a direct generalization of the
(ordered) restarting automata from words to pictures, and conceptually they
are much closer to the underlying ideas of restarting automata as the tiling
restarting automata of [9]. However, it can be shown that each deterministic
tiling restarting automaton that reads its input pictures column by column,
from left to right, can be simulated by a det-2D-3W-ORWW-automaton. Here

442 F. Mráz and F. Otto

we have seen that the det-2D-3W-ORWW-automata are even more expressive
than deterministic sgraffito automata, although they still only accept regular
word languages. In addition, we have seen above that the class of picture lan-
guages L(det-2D-3W-ORWW) is closed under complement, but not under the
operation of rotation. In addition, it can be shown that this class is closed under
union and intersection, but unfortunately it is neither closed under projection
nor under horizontal product. However, it is still open whether it is closed under
vertical product. We used the explicit requirement that our automata halt on
all input pictures. Is there a way to transform a det-2D-3W-ORWW-automaton
that does not halt for all input pictures into an equivalent one that does?

References

1. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proc. IEEE Com-
puter Society, SWAT 1967, Washington, DC, USA, pp. 155–160 (1967)

2. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recog-
nizable picture languages. In: Loos, R., Fazekas, S., Martin-Vide, C. (eds.) LATA
2007, Preproc. Report 35/07. Research Group on Mathematical Linguistics, pp.
175–186. Universitat Rovira i Virgili, Tarragona (2007)

3. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
New York (1997)

4. Hennie, F.: One-tape, off-line Turing machine computations. Inform. Contr. 8,
553–578 (1965)

5. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

6. Jǐrička, P., Král, J.: Deterministic forgetting planar automata are more powerful
than non-deterministic finite-state planar automata. In: Rozenberg, G., Thomas,
W. (eds.) DLT 1999, pp. 71–80. World Scientific, Singapore (2000)

7. Kari, J., Moore, C.: New results on alternating and non-deterministic two-
dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

8. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.
Springer, Berlin (2006)

9. Pr̊uša, D., Mráz, F.: Restarting tiling automata. In: Moreira, N., Reis, R. (eds.)
CIAA 2012. LNCS, vol. 7381, pp. 289–300. Springer, Heidelberg (2012)

10. Pr̊uša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra,
O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)

11. Pr̊uša, D., Mráz, F., Otto, F.: Comparing two-dimensional one-marker automata
to sgraffito automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 268–279. Springer, Heidelberg (2013)

12. Pr̊uša, D., Mráz, F., Otto, F.: New results on deterministic sgraffito automata. In:
Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 409–419. Springer,
Heidelberg (2013)

Unary NFAs with Limited Nondeterminism

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{alex,ksalomaa,akl}@cs.queensu.ca

Abstract. We consider unary finite automata employing limited nonde-
terminism. We show that for a unary regular language, a minimal finite
tree width nondeterministic finite automaton (NFA) can always be found
in Chrobak normal form. A similar property holds with respect to other
measures of nondeterminism. The latter observation is used to establish
relationships between classes of unary regular languages recognized by
NFAs of given size where the nondeterminism is limited in various ways.
Finally, we show that the branching measure of a unary NFA is always
either bounded by a constant or has an exponential growth rate.

Keywords: finite automata, limited nondeterminism, state complexity,
unary regular languages.

1 Introduction

The descriptional complexity of finite automata has been studied for over half
a century, and there has been particularly much work done over the last two
decades. Good general surveys on the topic include [8,9] and as examples of
early papers on state complexity of finite automata we mention [17,18,19].

Motivated by the well known exponential trade-off in the NFA (nondeter-
ministic finite automaton) to DFA (deterministic finite automaton) conversion,
the literature has considered various ways of quantifying the amount of non-
determinism in finite automata. The degree of ambiguity of an NFA refers to
the number of accepting computations on a given input [15,23]. The guessing
measure, roughly, counts the number of advice bits used by an accepting com-
putation on a given input [7,11]. The branching of an NFA is the product of the
degrees of nondeterministic choices on the best accepting computation [7,14] and
the trace of an NFA is the corresponding worst-case measure [21]. The tree width
measure [20] counts the total number of computation paths corresponding to a
given input. This measure is called leaf size in [10,11], see also [1]. The reader is
referred to [6] for more information and references on NFAs employing limited
nondeterminism.

With a few exceptions, little is known about the interrelationships of the dif-
ferent nondeterminism measures from a descriptional complexity point of view.
Directly based on the definitions it follows that the branching and guessing
measure are exponentially related [7] and some further results can be found in
[10,11,21]. The size trade-off between NFAs of finite branching and DFAs with
multiple initial states has been considered in [13,22].

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 443–454, 2014.
c© Springer International Publishing Switzerland 2014

444 A. Palioudakis, K. Salomaa, and S.G. Akl

In this paper we study the interrelationships of the different nondeterminism
measures for the special case of unary NFAs. We show that for a given k ∈ N
and a unary regular language, a minimal NFA with tree width k or trace k can
always be found in Chrobak normal form. An analogous result for unary NFAs
with finite ambiguity is known from [12]. The above normal form result is used
to show that the state complexity classes defined by bounded tree width and by
bounded trace, respectively, coincide in the case of unary regular languages and
a similar correspondence, with certain limitations, holds for state complexity
classes of unary regular languages defined by bounded ambiguity. The situation
is different for the branching measure. In contrast with the measures of tree
width, trace and ambiguity, it remains open whether unary NFAs with finite
branching could have a normal form with a simple nice structure.

In the literature it is known that the growth rate of the degree of ambigu-
ity and of tree width can be either constant, polynomial or exponential and
that the growth rate of the trace measure is always either constant or expo-
nential [16,11,21]. As our main result in Section 4, we show that the branching
function of a unary NFA is either constant or grows exponentially, and in the
latter case give a lower bound for the exponential growth rate that depends only
on the number of states. It remains open whether for an NFA defined over an
arbitrary alphabet that has unbounded branching, the branching growth rate is
always exponential.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [24,25] and descriptional complexity [6,9]. Here we just fix some
notation needed in the following.

The set of strings, or words, over a finite alphabet Σ is Σ∗, the length of
w ∈ Σ∗ is |w| and ε is the empty string. The set of positive integers is denoted
by N. The cardinality of a finite set S is #S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is
the transition function, q0 is the initial state and F ⊆ Q is the set of accepting
states. The function δ is extended in the usual way as a function Q×Σ∗ → 2Q

and the language recognized by A, L(A), consists of strings w ∈ Σ∗ such that
δ(q0, w) ∩ F �= ∅. An NFA A is called deterministic finite automaton (DFA)
if for every state q of A and letter a of the input alphabet of A, the transition
function goes to at most one state, i.e. #δ(q, a) ≤ 1. Unless otherwise mentioned,
we assume that any state q of an NFA A is reachable from the start state and
some computation originating from q reaches a final state. The size of A is the
number of states of A, i.e. size(A) = #Q.

A special case of an NFA A = (Q,Σ, δ, q0, F) is when the alphabet Σ has a
unique letter. In this case we call the NFA A unary and we omit the alphabet of
its tuple notation. Similarly, the transition function δ of an unary NFA has one
argument, i.e. δ : Q → 2Q. For a unary NFA A = (Q, δ, q0, F) over an alphabet

Limited Nondeterminism 445

Σ = {a} we say that the numberm is accepted by the NFA A instead of the word
am, when am ∈ L(A). To avoid confusion between operations on numbers and
strings we use the symbols +,×,∪, · for the operations addition, multiplication,
union, and concatenation respectively.

Every unary regular language L has a period and a preperiod. The period and
preperiod of a regular language L are natural numbers m and n0, respectively,
where for all n > n0 we have n ∈ L if and only if n+m ∈ L.

The minimal size of a DFA (respectively, an NFA) recognizing a regular lan-
guage is called the state complexity (respectively, the nondeterministic state
complexity) of L and denoted sc(L) (respectively, nsc(L)). Note that we allow
DFAs to be incomplete and, consequently, the deterministic state complexity of
L may differ by one from a definition using complete DFAs.

A computation of an NFA A from a state s1 to a state s2 is a sequence
of transitions (qi, ai, pi), 1 ≤ i ≤ k, where qi+1 = pi, i = 1, . . . , k − 1, and
s1 = q1, s2 = pk. The underlying word of a computation (q1, a1, q2) (q2, a2, q3)
· · · (qm, am, qm+1) is a1a2 · · ·am. For x ∈ Σ∗, compA(x) denotes the set of all
computation of A with underlying word x, starting from the initial state of A.
We call a computation of A accepting if it starts from the initial state and it
finishes at a final state. For x ∈ Σ∗, acc compA(x) denotes the set of all accepting
computations of A with underlying word x.

We say that the computations C and C′ on word w are equivalent if C and
C′ begin in the same state and they both end in the same state.

The branching of a transition (q, a, p) of an NFA A, denoted by βA((q, a, p)), is
the number #δ(q, a) and the branching of a computation C, denoted by βA(C),
is the product of the branching of each transition in C. The branching of a
word x ∈ L(A) is the minimum branching among all accepting computations by
reading the word x, the branching of a word x is given by the formula βA(x) =
min{βA(C) | C ∈ acc compA(x)}. The branching of an NFA A, denoted by
β(A), is the maximum branching of A on any string, assuming this quantity is
bounded. More details on the branching measure can be found in [7].

We have also considered a worst-case variant of the above measure, so called
trace [21]. The trace of an NFA A on a string x is the maximum branching among
all computations reading the word x (accepting or not). The trace of a word x
is given by the formula τA(x) = max{βA(C) | C ∈ compA(y), y is a prefix of x}
(the prefixes of the word x are in the given formula to emphasize that we include
also computation reading only an initial part of the word x). The trace of an
NFA A, denoted by τ(A), is the maximum trace of A on any string, assuming
this quantity is bounded.

The computation tree of an NFA A on string w is defined in the natural way
and denoted as TA,w. The tree width of A on w, twA(w), is the number of leaves
of TA,w and the tree width of A, tw(A) (if it is finite) is the maximum tree
width of A on any string w. The formal definitions associated with computation
trees and tree width of an NFA can be found in [20,21].1 The ambiguity of A

1 Note that the tree width of an NFA is unrelated to the notion of tree width as used
in graph theory [2].

446 A. Palioudakis, K. Salomaa, and S.G. Akl

on w, ambA(w), is the number of accepting leaves of TA,w and the ambiguity
of A, amb(A) (if it is finite) is the maximum ambiguity of A on any string
w. Ambiguity is a well studied measure of nondeterminism, more details on
ambiguity in NFAs can be found in [6].

Next we want to consider questions that involve the state complexity of classes
of NFAs of limited nondeterminism. To formalize such question we have to define
the following notation, where sNFA is the set of all NFAs, α is a measure of
nondeterminism, and c a constant.

nscα≤c(L) = min
A∈sNFA

{size(A) | L = L(A) and α(A) ≤ c}

Now the numbers nscβ≤k(L) and nscτ≤k(L) have a meaning. The number
nscβ≤k(L) is the size of a smallest NFA A such that L = L(A) and β(A) ≤ k. The
number nscτ≤k(L) is the smallest number of states required from an automaton
B such that τ(B) ≤ k. It is easy to see that nscβ≤k(L) ≤ nscτ≤k(L) by the
definitions of the measures branching and trace.

Let us remind to the reader the Chrobak normal form [3]. A unary NFA A
is in Chrobak normal form if initially the states of A form a ‘tail’ and later, at
the end of the tail, are followed nondeterministically by disjoint deterministic
cycles. Note, that the only state with nondeterministic choices is the last state
of the tail. Formally, the NFA M = (Q, δ, q0, F) is in Chrobak normal form if it
has the following properties:

(i) Q = {q0, . . . , qt−1} ∪ C1 ∪ · · · ∪ Ck, where Ci = {pi,0, pi,1, . . . , pi,yi−1} for
i ∈ {1, . . . , k},

(ii) δ = {(qi, qi+1) | 0 ≤ i ≤ t − 2} ∪ {(qt−1, pi,0) | 1 ≤ i ≤ k} ∪ {(pi,j , pi,j+1) |
1 ≤ i ≤ k, 1 ≤ j ≤ yi − 2} ∪ {(pi,yi−1 , pi,0) | 1 ≤ i ≤ k}.

We will use also a more relaxed normal form for unary NFAs which we call
a semi-Chrobak normal form. A semi-Chrobak normal form NFA consists of a
tail and a finite number of disjoint cycles. The only nondeterministic transitions
are from the last state of the tail to the cycles, however, as opposed to the usual
Chrobak normal form now there may be more than one transition from the last
state of the tail to the same cycle. An example of a unary NFA in semi-Chrobak
normal can be found in Figure 1.

3 Finite Tree Width and Chrobak Normal Form

For an NFA A in Chrobak normal form it is easy to determine the various
nondeterminism measures of A.

Lemma 3.1. Let A be a Chrobak normal form NFA with k cycles. Then β(A) =
τ(A) = tw(A) = k.

Furthermore, if A is a minimal NFA for L(A) and m ≥ k, then

size(A) = nscβ≤m(L(A)) = nscτ≤m(L(A)) = nsctw≤m(L(A)) = nsc(L(A)).

Limited Nondeterminism 447

Fig. 1. Two unary NFAs in Chrobak normal form and semi-Chrobak normal form
respectively

Proof. The first claim follows directly from the definition of Chrobak normal
form. If A is minimal, size(A) = nsc(L(A)) and the chain of equalities follows
because for any m ≥ k and ϕ ∈ {β, τ, tw}, nsc(L(A)) ≤ nscϕ≤m(L(A)) ≤
size(A). ��

The semi-Chrobak normal form is a less restrictive variant of the Chrobak
normal form. Lemma 3.2 shows that a semi-Chrobak NFA can be transformed
to a Chrobak normal form NFA of the same size.

Lemma 3.2. Every semi-Chrobak normal form NFA has an equivalent Chrobak
normal form NFA of same size.

Proof outline. A semi-Chrobak normal form NFA A with tail T and cycles
C1, . . . , Ck can be transformed to a Chrobak normal form NFA B with the
same tail T and cycles C1, . . . , Ck. The NFA B has only one transition from the
last state of T to each cycle Ci and to compensate for the omitted transitions
we add new final states to the cycles. ��

Chrobak showed in [3] that every unary NFA can be transformed into an
equivalent NFA in Chrobak normal form with losing in efficiency in terms of the
number of states. In the following lemma we show that we can transform any
NFA with finite tree width into an NFA in Chrobak normal form without losing
in efficiency.

Theorem 3.1. Let A be a unary n-state NFA with tree width k. Then there
exists an equivalent Chrobak normal form NFA B with at most n states and tree
width k.

Proof outline. Since the NFA A has finite tree width, we can divide its states
into two groups. The states of the first group are the ones belonging in a cycle
of A and the second group has the rest. The first group can have only disjoint
cycles and its states can have only deterministic choices. We can replace the

448 A. Palioudakis, K. Salomaa, and S.G. Akl

states of the second group with a chain (the number of the new states is at most
as the number of states in the second group). The tail of the NFA B is made
from the new states and its cycles are the cycles of the NFA A. ��

Theorem 3.1 speaks about NFAs with finite tree width, not only minimal
automata. Sometimes we may use the minimality of an automaton so we want
to emphazise that it also holds for minimal automata. We do that with the
following corollary.

Corollary 3.1. For any unary regular language, a state minimal finite tree
width NFA is in Chrobak normal form.

Moreover, Theorem 3.1 suggests a better comparison between NFA with fi-
nite tree width and a deterministic finite automaton with multiple initial states
(MDFA) [5]. Recall that in [22] we have seen that the size of an MDFA can be
exponentially larger than the size of a finite tree width NFA as a function of the
degree of its tree width. In the next corollary we show that this is not the case
for unary languages.

Corollary 3.2. Let B be an n-state unary NFA with tree width k ≥ 2. Then,
there is an MDFA B′ equivalent with B such that it has at most k×n−5×(k−1)
states.

Corollary 3.2 gives an upper bound on the size of MDFAs in terms of the size
of equivalent NFAs with finite tree width. The size of an MDFA can be linearly
more than the size of an equivalent finite tree width NFA. However, note that
the limited state complexity of a regular language L for finite tree width k is at
most the limited state complexity of MDFAs having k initial states plus one. We
can not do better than this, since there are languages that make these quantities
equal. Such a language is L = (p1)

∗ ∪ . . . ∪ (pk)
∗, where the numbers pj are

prime, for 1 ≤ j ≤ k.
In [21] we have seen that every NFA has finite tree width if and only if it has

finite trace. In that paper we have also seen that the trace of an NFA can be as
small as its tree width, but the trace can also be exponentially larger than the
tree width. In the next corollary, we show that these two measures are equivalent
for unary minimal NFAs. Its proof comes from Theorem 3.1 and Lemma 3.1.

Corollary 3.3. For every unary regular language L and every natural number
k, we have the following equality,

nscτ≤k(L) = nsctw≤k(L)

Moreover, there is an NFA A with tree width k and trace k such that L = L(A)
and size(A) = nscτ≤k(L) = nsctw≤k(L).

Corollary 3.3 compares minimal NFAs with finite tree width and NFAs with
finite trace. The corollary says that the size of a minimal NFA with tree width
k is the same as the size of a minimal NFA with trace k, and vice versa. The
question here is whether this is true comparing NFAs with finite branching with

Limited Nondeterminism 449

NFAs with finite trace or finite tree width. This question seems more difficult
since the branching and tree width measures are not comparable, in general.
For example take the automaton A of Figure 2, then, for all m ∈ N, we have
that twA(m) = m + 1 and βA(m) = 2. For the automaton B of the same
figure, for all m ∈ N, we have twB(m) = m + 1 and βB(m) = 2m. Both NFAs
A and B are minimal for the language L = {i ∈ N | i ≥ 1}. However, from
Corollary 3.3 we have that for bounded branching and bounded tree width we
can show an inequality between nsctw≤k(L) and nscβ≤k(L). Since for any NFA
A, β(A) ≤ τ(A), as a consequence of Corollary 3.3 we have Corollary 3.4.

Fig. 2. The NFA A is on the left, the NFA B is on the right

Corollary 3.4. For every unary regular language L and every natural number
k, we have that nscβ≤k(L) ≤ nsctw≤k(L)

In contrast to Corollary 3.3, the inequality for a unary language L,
nscβ≤k(L) ≤ nsctw≤k(L) of Corollary 3.4 cannot be replaced by an equality.
Let A be the unary NFA depicted in Figure 3. On any accepted input, the NFA
A needs to go through the first cycle at most two times and, hence, βA = 4. On
the other hand, it is easy to verify that any NFA with finite tree width for the
language L(A) needs at least 6 states.

Fig. 3. A unary NFA recognizing the language 2∗ · 3+

Another consequence of Theorem 3.1 is a connection between finite tree width
NFAs and finite ambiguous NFAs. Recall in [20] we have seen that the limited
state complexity of finite tree width NFAs can be exponentially larger than the
size of unambiguous equivalent NFAs. The next theorem, from [12], is a similar
with Theorem 3.1 for finite ambiguity.

450 A. Palioudakis, K. Salomaa, and S.G. Akl

Theorem 3.2 ([12]). Let A be a unary n-state NFA with ambiguity k. There is
an equivalent Chrobak normal form NFA B with at most n states and ambiguity
k.

As a result of Theorem 3.1 and Theorem 3.2 we have the following corollary.

Corollary 3.5. Let A be a unary NFA with n states, for every k ≥ n
2 we have

nscamb≤k(L(A)) = nsctw≤k(L(A)).

Our final result for this section shows that there is a strict hierarchy for the
state complexity of NFA with finite tree width and respectively with finite trace.

Lemma 3.3. For any k ∈ N there exists a unary regular language L such that

nscτ≤k+1(L) < nscτ≤k(L) and nsctw≤k+1(L) < nsctw≤k(L).

4 Growth Rate of the Branching Measure

In this section we study the growth rate of the branching function for unary
automata. We show that the β-function of a unary NFA is either bounded by a
constant or grows exponentially.

Before we show our result on the growth rate of the β-function, we will give
two lemmas which we are going to use in the proof of the main theorem of
this section. The first lemma shows that every computation going through a
deterministic cycle S can be transformed into an equivalent computation that
repeats cycles outside of S at most a fixed number of times.

Lemma 4.1. Let A be a unary NFA and consider a computation C of A that
contains a deterministic cycle S of length k. Then the computation C has an
equivalent computation C′ containing the deterministic cycle S, such that every
state of A appearing in C′ and not in S appears at most k times.

Proof. Let A = (Q,Σ, q0, F) be a unary NFA and a computation C containing
a deterministic cycle S of length k.

Consider a state q appearing in C but not in the cycle S. Let us assume that
the state q appears at least k + 1 times in the computation C, notice here that
since cycle S is deterministic if the computation C enter the cycle S then it stays
inside the cycle S.

Let di be the length of the computation until i-th occurrence of the state q
in the computation C, for i = 1, . . . , k + 1. Two of the di numbers must be in
same congruence class modulo k. Then, the steps of the computation C between
these two occurrences of q can be shifted into the cycle S.

Continuing similar for all the states of A appearing in the computation C
but not in the cycle S, we end up with a computation C′, equivalent with the
computation C, such that every state before the cycle S appears at most k times.

��

Limited Nondeterminism 451

In [3] Chrobak showed that for every unary NFA A with n states, there is a
unary NFA A′ in Chrobak normal form with n states participating in cycles and
O(n2) states in its tail. For our purposes, we need a more accurate estimation
on the size of the tail, which is due to Gawrychowski in [4].

Lemma 4.2 ([4]). For each unary NFA A with n states, there is a unary NFA
A′ in Chrobak normal form with at most n states participating in cycles and with
a tail with at most n× (n− 1)states.

Now we are ready to give the main result of this section.

Theorem 4.1. Let A be a unary NFA with n states. Then either for every
natural number m, βA(m) ≤ nn×(n−1), or for every natural number m > n ×
(n− 1),

βA(m) ≥ 2
� m

e
√

n×logn
�

Proof. Let A = (Q, δ, q0, F) be a unary NFA with n states. Let the sets SN
and SD be

SD = {i ∈ N | i is accepted by a path that enters a deterministic cycle}
SN = {i ∈ N | i is accepted by a path that does not enter a deterministic cycle}

We have that L(A) = SD ∪ SN , note here that the sets SD and SN do not need
to be disjoint.

Let us have now the NFA D = (Q, δ, q0, F
′) which is exactly like the NFA

A except the final states. The final states of D are the final states of A which
are in a deterministic cycle. Since, if a computation enters a deterministic cyclic
cannot exit this cycle, we have that L(D) = SD. Similarly, we define the NFA
N = (Q, δ, q0, F/F

′) which we get by the NFA A by changing the final states
appearing in deterministic cycles to non-final states. The NFA N recognizes the
language SN .

Since the unary languages SN and SD are regular, they both have a period
and a preperiod. From Lemma 4.2 there are unary NFAs N ′ and D′ in Chrobak
normal form, respectively equivalent to the NFAs N and D, with tails of size at
most n × (n − 1). Then, the number n× (n − 1) is a preperiod for both of the
sets SD and SN .

Now we are interested in the relationship between SD and SN after their
preperiod n × (n − 1). To simplify things, we denote S(k) = {x ∈ S | x > k}.
Then, we are interested in the sets S

(n×(n−1))
N and S

(n×(n−1))
D . Here we can have

two cases, in the first case we have S
(n×(n−1))
N ⊆ S(n×(n−1))

D , and in the second

case we have S
(n×(n−1))
N \ S(n×(n−1))

D �= ∅.
In the former case, where S

(n×(n−1))
N ⊆ S

(n×(n−1))
D , we have that for every

number k in L(A) greater than n × (n − 1) there is a computation Ck which
enters a deterministic cycle and accepts k. In this case we argue that for every
m ∈ N, we have βA(m) ≤ nn×(n−1). For every computation C with length at
most n × (n − 1) the maximum branching that C can have is nn×(n−1). For

452 A. Palioudakis, K. Salomaa, and S.G. Akl

any other accepting computation C with length greater than n × (n − 1) there
is an equivalent computation C′ which enters in a deterministic cycle. From
Lemma 4.1, we can safely assume that the computation C′ enters a deterministic

cycle and the number of states before this cycle is at most (n)2

4 , which implies

that the branching of C′ is at most nn×(n−1).

The latter case is a bit more complicated. In this case we have that S
(n×(n−1))
N \

S
(n×(n−1))
D �= ∅ which means that there is an accepting computation C which

does not enter a deterministic cycle and there is not an equivalent computation
with C such that enters a deterministic cycle. In the rest of this proof we will
argue that since the computation C exists, there are infinitely many such com-
putations and additionally the distance between two consecutive computations
is at most e

√
n×log n.

From Lemma 4.2 both of the NFAs N ′ and D′, which are in Chrobak normal
form, have disjoint cycles with the sum of sizes at most n. Consider the least
common multiple of the sizes of the cycles of the NFAs N ′ and D′ combined,
denote this least common multiple by z. Then the number z is a period for
both of the languages SD and SN (which implies also the same for the language
L(A)). To justify this, consider that there is an accepting computation C1 which
has finished in a final state q inside of one of these cycles, call it S1, in one of
these NFAs (same argument applies to all the cycles of N ′ and D′). From the
definition of the number z the size of the cycle S1 divides z, then by continuing
the computation C1 after it has reached state q for z more steps, we end up
again at the state q. This is true for all final states that are in any cycle of these
NFAs. Vice versa, if there is an accepting computation C2 greater in length than
n×(n−1)+z, then it finishes at a final state p which appears in one of these cycles,
call it S2. Considering the computation C′

2 which follows computation C2 and
stops exactly z steps before. The computation C2 is greater that n×(n−1) which
implies that the computation C′

2 finishes also in the same cycle S2. Since the size
of S2 divides z the computation C′

2 finishes at the state p as the computation

C2. From the Landau’s function we know that z is at most e
√
n×logn.

Since the number z is a period for the sets SN and SD and there is a number

i in S
(n×(n−1))
N \ S(n×(n−1))

D �= ∅, we have that for every integer m, such that
i+m× z > n× (n− 1), the number i+m× z is in SN but not in SD. Since we

know that z ≤ e
√
n×logn we get that for every e

√
n×logn consecutive values (or

even more frequently) we have an integer in SN \ SD. The computation on such
an integer has at least one nondeterministic step (i.e. the transition function has
a choice of at least 2) for every n steps of the computation. We know that the β
function is monotone, but we do not know if there are numbers in SD between
two consecutive numbers in SN \ SD. Hence, we have that for every number
m > n× (n− 1) the function βA(m) is at least as the function

f(m) =

{
2

m
n if m ≡ 0 mod �e

√
n×logn�,

f(m− 1) otherwise .

Limited Nondeterminism 453

It is easy to see that for every value m the function f(m) is at least 2
� m

e
√

n×logn
�
,

which implies that the branching βA(m) for every number m ≥ n× (n− 1) is at

least 2
� m

e
√

n×logn
�
. ��

In Theorem 4.1 the values, given as a function of the number of states, are
not intended to be the best possible. With a more careful analysis, especially
the constant upper bound for βA(m) in the first case, nn×(n−1), could be sig-
nificantly improved. It is somewhat less clear whether, in the second case, the
factor e

√
n×logn in the exponent can be improved.

5 Conclusion and Open Problems

We have seen that for a unary regular languages, a minimal finite tree width
NFA can always be found in Chrobak normal form. It remains open whether
there is a similar simple structure for a minimal finite branching unary NFA.

We also studied the growth rate of branching for unary NFAs. We have seen
that the branching function of unary NFAs is either bounded by a constant or
grows exponentially. The characterization of possible growth rates of the branch-
ing function of an NFA defined over an arbitrary alphabet remains open. Here
techniques used for our result dealing with the unary case seem not directly
applicable.

References

1. Björklund, H., Martens, W.: The tractability frontier for nfa minimization. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer,
Heidelberg (2008)

2. Bondy, J., Murty, U.: Graph theory. Graduate texts in mathematics, vol. 244.
Springer (2008)

3. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986)

4. Gawrychowski, P.: Chrobak normal form revisited, with applications. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 142–153. Springer, Heidelberg (2011)

5. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. Syst. Sci. 9(1),
1–19 (1974)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

7. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inf. Comput. 86(2), 179–194 (1990)

8. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4),
563–580 (2009)

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata - a survey. Inf. Comput. 209(3), 456–470 (2011)

454 A. Palioudakis, K. Salomaa, and S.G. Akl

10. Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of
nondeterminism in finite automata. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

11. Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002)

12. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
nfa’s over a unary alphabet. In: Biswas, S., Nori, K.V. (eds.) FSTTCS 1991. LNCS,
vol. 560, pp. 152–171. Springer, Heidelberg (1991)

13. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. Journal of Automata, Languages and Combinatorics 5(3), 269–278
(2000)

14. Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata.
Acta Inf. 13, 199–204 (1980)

15. Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35(7),
595–624 (1998)

16. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

17. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kiber-
netiki 9, 328–335 (1963)

18. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

19. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

20. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeter-
minism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 252–265. Springer, Heidelberg (2012)

21. Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of non-
determinism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013.
LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)

22. Palioudakis, A., Salomaa, K., Akl, S.G.: Finite nondeterminism vs. dfas with mul-
tiple initial states. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031,
pp. 229–240. Springer, Heidelberg (2013)

23. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)

24. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press (2008)

25. Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, pp. 41–110.
Springer (1998)

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 455–465, 2014.
© Springer International Publishing Switzerland 2014

Recommending for Disloyal Customers with Low
Consumption Rate

Ladislav Peska and Peter Vojtas

Faculty of Mathematics and Physics
Charles University in Prague

Malostranske namesti 25, Prague, Czech Republic
{Peska,vojtas}@ksi.mff.cuni.cz

Abstract. In this paper, we focus on small or medium-sized e-commerce
portals. Due to high competition, users of these portals are not too loyal and e.g.
refuse to register or provide any/enough explicit feedback. Furthermore,
products such as tours, cars or furniture have very low average consumption
rate preventing us from tracking unregistered user between two consecutive
purchases. Recommending on such domains proves to be very challenging, yet
interesting research task. For this task, we propose a model coupling various
implicit feedbacks and object attributes in matrix factorization. We report on
promising results of our initial off-line experiments on travel agency dataset.
Our experiments corroborate benefits of using object attributes; however we are
yet to decide about usefulness of some implicit feedback data.

Keywords: Recommender systems, implicit feedback, content-based attributes,
e-commerce, matrix factorization.

1 Introduction

Recommending on the web is both an important commercial application and popular
research topic. The amount of data on the web grows continuously and it is nearly
impossible to process it directly by a human. The keyword search engines were
adopted to fight information overload but despite their undoubted successes, they
have certain limitations. Recommender systems can complement onsite search
engines especially when user does not know exactly what he/she wants.

1.1 Our Motivation

Recently, a lot of attention was attracted by the NetFlix prize1 aiming to predict future
user rating based on previously rated objects. Our scenario is however substantially
different.

First, we want to recommend on e-commerce applications, where users are
generally less willing to provide explicit feedback (besides they are usually not

1 http://www.netflixprize.com/

456 L. Peska and P. Vojtas

capable to provide relevant feedback for products, they did not buy or test yet). The
vast majority of e-shops do not force users to register at all, which makes it difficult to
track them. Combination of unregistered user and low consumption rate on particular
product domains (tours, cars, furniture, specialized sport goods etc.) prevents us in
many cases from effectively tracking consecutive purchases of the user.2

Given the described preconditions, the vast majority of users appear to be new
users exacerbating the cold start problem. We cannot hope for tens of ratings as in
multimedia portals, but rather need to cope with a few visited pages.

On the other hand, we can monitor additional data to improve our prospects. It is
possible to record various types of implicit feedback (page-views, time on page,
mouse usage, scrolling etc.) or track user behavior on category pages. Objects of the
e-shops also contain vast number of content-based attributes..

1.2 Main Contribution

The main contributions of this paper are:
• Identifying challenging domain for recommender systems.
• Proposed recommending methods based on matrix factorization

incorporated with implicit feedback and object attributes.
• Off-line experiments on travel agency dataset.
• Travel agency dataset for further experiments.

The rest of the paper is organized as follows: review of some related work is in
section 2. In section 3 we describe travel agency dataset and in section 4 methods
how to incorporate it into matrix factorization. Section 5 contains results of our off-
line experiment on a travel agency dataset. Finally section 6 concludes our paper and
points to our future work.

2 Related Work

The area of recommender systems has been extensively studied recently and it is out
of scope of this paper to provide more elaborated overview. We suggest Konstan and
Riedl [6] paper as a good starting point.

Implicit user feedback did not draw too much attention during early research on
recommender systems, but grows on importance recently mainly in commercial area.
A well known attempt to categorize various types of implicit feedback was proposed
by Kelly and Teevan [5]. The list of feedback types presented in this study is due to
the age of the survey not exhaustive any more (e.g. commencement of social networks
and related activities), however it still presents a good starting point.

2 Unregistered users are usually tracked by cookies stored within the browser. The cookie

however may be lost for various reasons e.g. flushing data stored in browser, switching
browsers or updating hardware. For a fixed user, the average distance between two
consecutive purchases of e.g. a tour is approximately one year.

 Recommending for Disloyal Customers with Low Consumption Rate 457

An approach to categorize methods for collecting implicit feedback was made by
Gauch et al. [3]. Authors however didn’t mention one important method: tracking
user directly by a subprogram, e.g. a JavaScript code, deployed on the current
website. Such approach needs cooperation from the site owners and it is possible to
track only within cooperating sites, but data are received about vast majority of the
users and it is possible to monitor more different information than e.g. by analyzing
weblog files. Such user-tracking is also well suited to form a knowledge base for site-
wide recommender systems.

Although there is quite large variety in implicit feedback types, publicly available
datasets e.g. Last.fm3 usually provides only very limited (if any) implicit feedback. As
result, many research papers consider only binary implicit feedback and only one or a
few types of feedback [4], [10].

Our feedback collecting method is based on JavaScript tracking of multiple
feedback types on a single site. We have tested usefulness of various implicit
feedback types in an on-line experiment in our previous work [11] and described
method for learning user preferences from implicit feedback in [12].

Matrix factorization techniques [8] are currently main-stream algorithm to learn
user preferences gaining their popularity during NetFlix prize. We use content-
boosted matrix factorization as proposed in Forbes and Zhu [2] as one of the
preference learning methods. Content-based and hybrid recommender systems may
benefit from using additional data sources such as LOD,4 however not too much
research was made in this area yet. One of the exception is work of Ostuni et al. [10]
proposing graph based recommender system combining LOD knowledge and implicit
feedback, or our own work on incorporating LOD directly as object attributes [13].

Interesting phenomenon is also development of user preferences over time.
However no general conclusion was yet achieved: e.g. Xia et al.[14] uses time decay
in item-to-item recommender systems, however e.g. Koren [7] argues that classical
time-windows or instance-decay methods loses too much signal.

Among papers concerning recommending for e-commerce we would like to
mention Linden et al. [9] describing Item-to-item collaborative filtering or from more
recent work Belluf et al. [1] measuring business impact of recommender systems
deployment in an on-line experiment.

3 Datasets

We have collected usage data from one of the major Czech travel agencies. Data were
collected from December 2012 to April 2013. Travel agency is typical e-commerce
enterprise, where customers buy products only once in a while (most typically once a
year). The site does not force users to register and so we can track unique users only
with cookies stored in the browser. User typically browses or searches through several

3 http://lastfm.com, dataset available from http://ir.ii.uam.es/hetrec2011/

datasets.html
4 Linked Open Data, http://linkeddata.org/

458 L. Peska and P. Vojtas

categories, compares few objects (possibly on more websites) and eventually buys a
single object. Buying more than one object at the time is very rare.

Our main objective while collecting dataset was to capture various possibly
interesting data and thereafter decide about their usefulness in the experiments.

3.1 Implicit Feedback Data

In our previous work [11], only the user behavior on objects was monitored. Certain
actions user committed was stored into database table to serve as implicit feedback.
The table is in form of:

ImpFeedback(UID, OID, PageView, Mouse, Scroll, Time)
UID and OID are unique user and object identifiers and Table 1 contains full

description of implicit feedbacks. Note that UID is based on cookie stored by
browser, so we cannot e.g. distinguish between two persons using the same computer.
Table contains approx. 39 000 records with 0.09% density of UID× OID matrix.

Table 1. Description of the considered implicit feedbacks for user visiting an object

Factor Description
PageView Count(OnLoad() event on object page)
Mouse Count(OnMouseOver() events on object page)
Scroll Count(OnScroll() events on object page)
Time Sum(time spent on object page)

3.2 Click Stream Data

However pages showing detail of an object represents less than 50% of visited pages.
The rest consists mostly from various category pages accessed either via site menu or
attributes search. The depth and broadness of category tree depends on the current
user interface and nature of the objects of the domain. The travel agency website used
in the experiments allows user to more or less freely combine values/intervals of
several attributes (not all attributes of objects), where some predefined combinations
are accessible via site menu and others can be derived through binary search. In order
to determine importance of category pages for computing user preference, we have
collected dataset containing user’s click-stream throughout the website. The table is in
form of:

ClickStream(UID, PageID, SessionNo, Timestamp)
PageID serves as unique identifier of visited page. There is unique mapping from

OID to PageID. ClickStream table contains approx. 121900 records and matrix
UID×PageID has density of 0.17%.

3.3 Content Based Attributes

Finally each object and category page can be assigned with several content-based
attributes. The information value of content-based attributes varies in different

 Recommending for Disloyal Customers with Low Consumption Rate 459

domains from very informative like e.g. laptops and computers to almost valueless
like secondhand bookshops [13]. The travel agency dataset can be classified
somewhere in between as there are some informative attributes, but a lot of important
information is accessible only through textual description leaving some space for
employing textual data mining techniques in the future. Table 2 contains list of
available attributes for travel agency domain. In order to handle attributes properly in
the experiments, they were transferred into the Boolean vector (Integer values e.g
price was discretized equipotently into 10 intervals). The resulting Attributes matrix
contains 2300 objects (and categories) with 925 features each.

Table 2. Description of content-based attributes and their cardinality per tour

Attribute Description

TourType Type of the tour (e.g. sightseeing)
Country Destination country of the tour (e.g. Spain) [1..n]
Destination More specific destination (e.g. Costa Brava) [0..n]
AccomodationType Quality of the accommodation (e.g. 3*);
Accommodation Specific accommodation for the tour [0..n]
Board Type of board (e.g. breakfast, half-board)
Transport Type of transport (coach, air…)
Price Base price per person; integer
AdditionalInfo IDs of information linked to the tour (e.g. about visited places,

destination country etc.) [0..n]

4 Algorithms

Matrix factorization techniques are currently leading methods for learning user
preferences, so we decided to adopt and slightly adjust them to suit our needs. We
skip more elaborated introduction to the matrix factorization as it is quite well known
technique and suggest Koren et al. [8] for more elaborated introduction.

Given the list of users },...,{ 1 nuuU = and objects },...,{ 1 mooO = , we can form the

user-object rating matrix [] mnuor ×=R . With lack of explicit feedback, user-object

rating uor in our case carries only Boolean information whether user u visited object

o. For a given number of latent factors f, matrix factorization aims to decompose

original R matrix into UOT, where U is fn × matrix of user latent factors (T
iμ stands

for latent factors vector for particular user iu) and OT
 is mf × matrix of object latent

factors (iσ is vector of latent factors for particular object io).

 []

 mf

fn

T

T

T

×

×

×

=≈ 212

1

σσμ
μ

UOR
(1)

460 L. Peska and P. Vojtas

Unknown rating for user i and object j is predicted as j
T
iijr σμ=ˆ . Our target is to

learn matrixes U and O minimizing errors on known ratings. Regularization penalty is
added to prevent overfitting. The optimization equation is defined as follows:

)(
222

min OUUOR
OU,

++− λT (2)

This equation can be solved e.g. by Stochastic Gradient Descent (SGD) technique
iterating for each object and user vectors:

))((

))((

jij
T
i

ojKi
ijjj

ijj
T
i

uiKj
ijii

r

r

σλμσμησσ

μλσσμημμ

−−+=

−−+=

∈

∈
 (3)

Where η is learning rate, uiK set of all objects rated by user iu and ojK set of all

users, who rates object jo . The described method represents baseline algorithm. We

now present three extensions to this method. Those extensions are independent of
each other and can be combined freely.

4.1 Category Extension

Category extension expands list of objects to include also category pages covered in
ClickStream dataset (see section 3.2). The rest of the algorithm remains the same.
This allows us to better track movement of the user over the website and thus his/her
preferences (note that both objects and categories may share some content attributes
and thus we can infer their similarity).

Categories however cannot form full-bodied objects. One problem is that
categories usually do not carry all features of the regular objects (e.g. there are some
object attributes not available for binary search); however this is strongly domain
dependent. The other problem is that categories cannot be effectively recommended,
except maybe some very simple cases, as it would be impossible to derive any
explanation for such recommendations (e.g. recommending category of Family
Holidays in Spain in 2*hotels with half-board etc.). So the category objects may only
aid us in inferring user preferences, not in fulfilling them.

4.2 Implicit Feedback Extension

Implicit feedback (ImpF in experiments) extension involves deeper studying of user
activity within the object and thus better estimating how much it is preferred. User
activity is stored in ImpFeedback dataset (currently page views, time on page, mouse

moves and scrolling events are monitored). Improved user-to-object rating +
uor

replaces original Boolean uor where applicable.

The algorithm for computing +
uor was presented in our previous work [12]. It

works in two steps, where various methods can be used in both steps. At first, it

 Recommending for Disloyal Customers with Low Consumption Rate 461

considers each feedback type (page views, time on page etc.) separately resulting into
the vector of so called local preferences – real numbers from [0, 1] interval
representing inferred user preference based on a single feedback type. In the second

step, those values are aggregated together into a single value (+
uor).

In our previous work [12], we experimented with various procedures in both steps
of the algorithm, but used rather simple recommending methods to test it. In our
current work we focused more on usability of such information in up-to-date
recommending methods and so used standard procedures here. We leave more
detailed study of combination of both factors to our future work.

With the absence of any explicit feedback, we have adopted business-like approach
and stated that buying an object represents full user preference. Preference based on
other types of feedback is defined through its similarity with the purchasing behavior.
Details of this approach and argumentation supporting it can be found in [12], in our
current research was used weighted average to combine local preferences and
discretized intervals of feedback type values in local preferences computation.

4.3 Attributes Extension

Attributes extension involves using content-based attributes of objects (and
categories). We adopt approach of Forbes and Zhu [2] to deal with object attributes
and implement their algorithm as PHP library. Their content boosted matrix
factorization method is based on the assumption that each object’s latent factors
vector is a function of its attributes. Having fm×O matrix of object latent factors,

am×A matrix of object attributes and fa×B matrix of latent factors for each attribute,

the constraint can be formulated as:
ABO = (4)

Under the constraint (4), we can reformulate both matrix factorization problem (1),
its optimization equation (2) and gradient descend equations (3):

 []

 maaf

T

fn

T

T

TTT aa

××

×

××

==≈ 212

1

BAUBUOR μ
μ

(1a)

))((

))((

),(
BB

BB

λμμησσ

μλμημμ

−−+=

−−+=

∈

∈

T
ijj

TT
i

Kji
ijjj

ij
T

j
TT

i

uiKj
ijii

aar

aar

 (3a)

5 Experiments

In order to determine usefulness of additional data, we have examined each of their
combination in an off-line experiment. We set the off-line evaluation as close to the

462 L. Peska and P. Vojtas

real setting as possible, because we intent to deploy the recommender system into the
full operation in the future.

5.1 Experimental Settings

We first needed to set experiment goals and success metrics. As the datasets contains
only implicit feedback, we cannot rely on user rating and related error metrics e.g.
RMSE or MAE (no need to mention, that those metrics do not reflect well real-world
success metrics anyway). Precision / Recall methods are also problematical as the
nature of observed implicit feedback is only positive5 and absence of any feedback
also cannot be automatically interpreted as negative feedback (user might not be
aware of the object). As result, for arbitrary fixed user, we only have some evidence
of positive preference for the minority of objects and know nothing about the rest.

Typical usage of recommender systems in e-commerce is to present a list of top-k
objects to the user. We let recommending methods to rank objects and denote as
success if the algorithm manages to rank well enough those objects, we have some
evidence of their positive preference.

As we lack any explicit feedback, we need to infer positive preference from the
implicit data. For the purpose of this rather early work we consider that every object
the user has visited is positively preferred by him/her. It is possible to use more
selective meanings of positive preference e.g. to consider only purchased objects as
positively preferred. Such assumption will however lead to insufficient amount of
data in the test set so we leave the problem of finer grained preference to the future
work and bigger experimental datasets.

Recommending method evaluation was carried out as follows: For each user,
his/her click stream was divided into two halves according to its timestamp – earlier
data serving as train set and following as test set. Note that only users with at least
two visited objects qualify for the experiment. There are other ways to divide
train/test set e.g. to apply cross-validation, but we rather took advantage of possibility
to use and compare stream or time-aware algorithms on the same dataset in future.
The resulting train set contains 32480 records from 2956 users (13124 concerning
objects and 19356 category pages). The test set contains 12749 records (objects only,
as we intent to recommend only objects to the user).

All learning methods were initialized and trained with the same train set, 10 latent
factors and maximal 50 iterations.

Then, for arbitrary fixed user, we let each method to rate all objects, sort them
according to the rating and look up positions of objects from the test set. In
production recommender system, we should take into account also other metrics like
diversity, novelty or serendipity and probably want to pre-select the list of candidate
objects, but for purpose of our experiment, we will focus on rating only.

We adopt normalized distributed cumulative gain (nDCG) as our main success
metric. The premise of nDCG is that relevant documents appeared low in the

5 Although some experiments and/or models of negative implicit feedback can be found in the

literature, They are yet to be more extensively tested and eventually accepted.

 Recommending for Disloyal Customers with Low Consumption Rate 463

recommended list should be penalized (logarithmical penalty applied) as they are less
likely to attract user attention. This fits well for the recommending scenario, where
lower-ranked objects are presented on less desirable positions. It is also possible to
restrict DCG to sum only up to top-kth position as only top-k objects are shown to the
user. However there is no justification to set any particular top-k and the list of
eligible objects for recommendation could be pre-filtered (e.g. keep only objects from
certain category if user is browsing the category). As result objects on lower ranks can
keep some value too.

The results of Presence@top-k metric are also presented as it has more intuitive
meaning. Presence@top-k for arbitrary fixed user is defined as quantity of preferred
objects (objects from test set) within the top-k best objects list according to the
prediction of current recommending method for current user. Presence@top-k is then
summed over all users. Presence@top-k can quite well depict twists in methods
performance over various top-k sizes.

5.2 Results

Figure 1 displays results of recommending methods in nDCG aggregated by the train
set size and Figure 2 shows distribution of Presence@top-k up to top-100. Although
smaller top-k would be used in the real deployment, the list of objects eligible for
recommendation would be probably pre-filtered too, leaving some influence also to
objects beyond typical top-k boundary.

Fig. 1. Average nDCG aggregated by train set sizes per user. Legend shows average nDCG per
all users and train set sizes

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

2 4 6 8 10 12 14 16

av
er

ag
e

nD
CG

Train set size per user

Average nDCG aggregated by train set sizes

464 L. Peska and P. Vojtas

From the three aspects taken into account (data from categories, additional implicit
feedback and objects attributes), using attributes of the objects have proven to be the
most crucial. All methods with Attributes performed significantly better in terms of
average nDCG than methods without Attributes (p-value < 10-6, TukeyHSD test6).
The price for this improvement is time complexity rising with the number of
attributes.

Using additional data from category pages also improves recommendation, but
only if accompanied with object attributes (p-value < 10-6). This is quite easy to
justify as only object attributes can sufficiently describe similarity between categories
and corresponding objects.

The results are rather inconclusive about usage of other implicit feedback data. If
used without Attributes, they improved recommendations significantly (p-value <
3.1*10-5), however using it together with Attributes did not improve results much
further.

Fig. 2. Presence@top-k development for increasing top-k sizes

6 Conclusions and Future Work

In this paper, we were interested in the area of recommending for disloyal customers
on e-commerce portals with low consumption rate. Our main task was to identify
which data should be collected and how to use them to provide users with useful
recommendations. We have identified three main extensions to common datasets:
browsing history of categories, various implicit feedback types and content-based
attributes of objects. We have adjusted contemporary matrix factorization techniques
to handle such data and compare them in off-line experiment.

6 Tukey Honest Significant Differences, http://stat.ethz.ch/R-manual/R-patched/

library/stats/html/TukeyHSD.html

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 10 20 30 40 50 60 70 80 90 100

Pr
es

en
ce

@
to

p-
K

Presence @ Top-K for increasing top-k sizes

Category, Attributes, ImpF Category, Attributes
Attributes Attributes, ImpF
ImpF Category, ImpF
Category baseline

 Recommending for Disloyal Customers with Low Consumption Rate 465

Both category browsing history and object attributes have proven to be worthy
enhancement to the recommendation algorithms, however the results are not very
conclusive about usage of more various implicit feedback features.

Future work involves e.g. experimenting with other recommendation methods or
parameters of current ones. We would like to also consider other approaches to
enhance matrix factorization with implicit feedback and object attributes and last but
not least employing time-aware recommending algorithms. If experiments on other
domains corroborate our ideas, our long-term goal is to deploy the system on real e-
commerce portal and continue with on-line experimentation.

Acknowledgments. This work was supported by the grant SVV-2013-267312, P46
and GAUK-126313.

References

1. Belluf, T., Xavier, L., Giglio, R.: Case study on the business value impact of personalized
recommendations on a large online retailer. In: RecSys 2012, pp. 277–280. ACM (2012)

2. Forbes, P., Zhu, M.: Content-boosted matrix factorization for recommender systems:
experiments with recipe recommendation. In: RecSys 2011, pp. 261–264. ACM (2011)

3. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized
Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web
2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

4. Jawaheer, G., Szomszor, M., Kostkova, P.: Comparison of implicit and explicit feedback
from an online music recommendation service. In: HetRec 2010, pp. 47–51. ACM (2010)

5. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography.
SIGIR Forum 37, 18–28 (2003)

6. Konstan, J., Riedl, J.: Recommender systems: from algorithms to user experience.
UMUAI 22, 101–123 (2012)

7. Koren, Y.: Collaborative filtering with temporal dynamics. In: ACM SIGKDD 2009, pp.
447–456. ACM (2009)

8. Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender
Systems. Computer 42, 30–37 (2009)

9. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item
collaborative filtering. IEEE Internet Computing 7, 76–80 (2003)

10. Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from
implicit feedback leveraging linked open data. In: RecSys 2013, pp. 85–92. ACM (2013)

11. Peska, L., Vojtas, P.: Evaluating Various Implicit Factors in E-commerce. In: RUE
(RecSys) 2012. CEUR, vol. 910, pp. 51–55.

12. Peska, L., Vojtas, P.: Negative Implicit feedback in E-commerce Recommender Systems.
In: Proc. of WIMS 2013, pp. 45:1-45:4. ACM (2013)

13. Peska, L., Vojtas, P.: Enhancing Recommender System with Linked Open Data. In:
Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.)
FQAS 2013. LNCS (LNAI), vol. 8132, pp. 483–494. Springer, Heidelberg (2013)

14. Xia, C., Jiang, X., Liu, S., Luo, Z., Yu, Z.: Dynamic item-based recommendation
algorithm with time decay. In: ICNC 2010, pp. 242–247. IEEE (2010)

Security Constraints in Modeling of Access

Control Rules for Dynamic Information Systems

Aneta Poniszewska-Maranda

Institute of Information Technology, Lodz University of Technology, Poland
anetap@ics.p.lodz.pl

Abstract. Rapid development of new technologies brings with it a need
for the new security solutions. Identifying, defining and implementing of
security constraints is an important part of the process of modeling and
developing of application/information systems and its administration.

The paper presents the issue of security constraints of information sys-
tem from the point of view of Usage Role-based Access Control approach
- it deals with the classification of constraints and their implementa-
tion in the process of modeling the access rules for dynamic information
systems.

1 Introduction

The main idea of access control is to restrict and protect an access to some re-
source and ensure that only those allowed to use it can access it [10]. Resource
can be any element of the system, like a file, folder, database or printer. Apart
from controlling an access to a resource it also deals with how and when the
resource can be used [11]. As an example, operating system controls access to
the files and a certain user may have access to edit a given file, but only during
working hours. The aim of access control is to prevent any unwanted or unde-
sired access to resources. What is more, if properly managed, access control also
promotes proper information sharing across users and applications [12].

Many models of access control are currently available and present in infor-
mation systems, each having their advantages and disadvantages. The problem
analyzed in the presented paper is how the approach of Usage Role-based Ac-
cess Control [9], in particularly the security constraints of this approach, can
deal with the issue of the logical security. Identifying, defining and implement-
ing of security constraints is a very important part of the process of modeling
and developing of an application or information systems and their later admin-
istration. Security constraints can be defined as an information assigned to the
elements of a system that specifies some additional conditions to be fulfilled by
these elements or elements related to them in order to ensure compliance with
the security rules and ensure the global coherence of security schema.

In general the security constraints can be divided into two groups: the appli-
cation constraints that are identified and defined at level of application’s devel-
opment by its developer and the organization constraints (i.e. global constraints)

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 466–477, 2014.
c© Springer International Publishing Switzerland 2014

Security Constraints in Modeling of Access Control Rules 467

that are determined at level of system exploitation by the global security ad-
ministrator. Security constraints are very important during the specification and
definition of access control rules for the users of application/information system
and also during the execution of these rules. Moreover, security constraints play
an important role in ensuring the global coherence of all elements of security
schema (both at application and organization level) at the moment of attaching
a new application with new elements, i.e. roles, functions and permissions, to
the existing system.

The presented paper analysis the concept of security constraints and their
impact on designing and execution of access control rules in the framework of
dynamic information systems. The constraints are presented from the point of
view of Usage Role-based Access Control approach [9], that introduces some
improvements to the logical security of information systems. The paper is com-
posed as follows: section 2 gives the outline of approach based on role concept
and usage concept in aspect of access control (Usage Role Based Access Control,
URBAC) and section 3 presents the concept of security constraints in URBAC
approach - the classification of constraints with examples and the methods of
their implementation.

2 Access Control Based on Role Concept and Usage
Concept

It is very hard to design an access control model that is perfect and applicable
to many types of systems and differing needs. Due to this, each of the traditional
access control models or their extensions has some limitations. With rapid de-
velopment of new systems and applications the needs for control of data are
constantly changing with the new problems needing to be solved.

Mandatory Access Control (MAC) provides very strict and rigid control. It
highly limits the user’s possible actions and doesn’t consider any dynamic alter-
ations of underlying policies [13]. The main downfall of this model is difficulty to
implement in the real-world applications and systems, which have to be rewrit-
ten in order to adhere to the model’s labelling concept. Discretionary Access
Control (DAC), unlike MAC gives more freedom to the users. It is left to their
discretion to specify the access rules for files they are owners of. The main prob-
lem arising in this model is no protection from the copy operation. If a user
can read another user’s file, there is nothing stopping him from copying that
file to a file that he owns and can freely share its contents [11]. Role-based Ac-
cess Control (RBAC) provides a structure of access control tailored to the needs
of enterprises. However it also creates a challenge between easy administration
and strong security [12]. The role engineering may also pose a challenge as an
access control may not always be compatible with organization’s structure [1].
Usage Control concept [3,4,5] was introduced as an answer to the limitations of
the above concepts. As all of them focused on the authorizations done before
an access, this concept introduced a possibility to check them also during an
access. It is a very abstract model, that does not provide a clear structure like

468 A. Poniszewska-Maranda

RBAC model and does not deal with who defines and modifies the rights that
the subjects posses.

These disadvantages and the needs of present information systems caused the
creation of unified approach that can encompass the use of traditional access con-
trol models and allow to define the dynamic rules of access control. Two access
control concepts are chosen in our studies to develop the new approach for dy-
namic information systems: role concept [6] and usage concept [3,5]. The first one
allows to represent the whole system organization in the complete, precise way
while the second one allows to describe the usage control with authorizations,
obligations, conditions, continuity (ongoing control) and mutability attributes.

2.1 Approach of Usage Role-Based Access Control

Usage Role-based Access Control (URBAC) [9,16] is based on role concept from
extended Role-Based Access Control [6] and usage concept from Usage Control
[5]. It uses a complete and precise way to represent the entire system organization
with the use of roles and functions. URBAC also incorporates the control of
usage in data access with authorizations, obligations and conditions that can be
applied both before and during an access (Fig. 1).

PermissionFunction

**
Role

**

Constraints

Group User

Subject

Session

SubjectAttributes

ObjectAttributes

Object

*

1

Method

*

1Condition

Authorization
Obligation

* *
*

*
1..*

*

*

1..*

1..**

1

*
*

*

*
*

*

1..*

1..*

*

*

RoleHierarchy FunctionHierarchy

SubjectGroup

Fig. 1. Meta-model of URBAC approach

Subject can represent users and groups of users, that share the same rights
as well as obligations and responsibilities. Session is the interval of time during
which a user is actively logged into the system and may execute the actions in
it that require the appropriate rights. User is logged in to the system in a single
session, during which the roles can be activated.

A Role can be regarded as a reflection of position or job title in an orga-
nization, that holds with it the authority as well as responsibilities. It allows
to accomplish certain tasks connected with processes in an organization. Users
are assigned to them based on their competencies and qualifications. Therefore,
role is associated with subjects, where user or group of users can take on dif-
ferent roles, but one role can also be shared among users. This association also

Security Constraints in Modeling of Access Control Rules 469

contains Subject Attributes, like identity or credits, which are additional subject
properties that can be considered in usage decision.

As each role specifies a possibility to perform specific tasks, it consists of many
functions, which users may apply. Like with roles, function hierarchy can be
defined with inheritance relations between specific functions. Function in turn,
can be split to more atomic elements which are operations that are performed on
objects. Those are granted by permissions. We therefore can view the functions
as sets or sequences of permissions, that grant them right to perform the specified
methods on a specified objects.

In the model when permissions are assigned to objects, the specification of
security constraints is necessary. Those constraints are first of all authorizations,
conditions and obligations. Constraint determines that some permission is valid
only for a part of the object instances. We can denote a permission as a function:
p(o, m, Cst) where o represents an object, m a method that can be executed on
the object and Cst is a set of constraints that determine this permission. Taking
into consideration a concept of authorization (A), obligation (B) and condition
(C), the set of constraints can take the following form Cst = {A, B, C} and
the permission can be presented as a function p(o, m, {A, B, C}). According
to this, the permission is given to all instances of the object class except the
contrary specification.

Objects are entities that can be accessed by users. They have a direct rela-
tionship with permissions that can be further described with the use of Object
Attributes. Those represent additional object attributes specific to the relation,
like for instance the security labels or ownerships. Attributes of both subjects
and objects can be mutable, which means they can be updated by the system
as consequences of subject usage on objects. Attributes can also be immutable
and cannot be changed by the system, but only at administrator’s discretion.

The constraints can be defined for each main element of the model pre-
sented above (i.e user, group, subject, session, role, function, permission, object
and method), and also for the relationships among the elements. The concept
of constraints was described widely in the literature [1,2,6,7,8,14,15] and it is
presented in the following section.

2.2 Creation Process of Security Profiles for Users of Information
System

Design and realization process of security schema for an information system can
be divided into two stages [9,16]: conception stage (realized at local application
level by application/system developer who knows its specification that should
be realized) and deployment stage (realized at global level of information system
by security administrator who knows the general security rules and constraints
that should be taken into consideration at the whole company level).

Conception Stage. The realization process of information system or a sim-
ple application is provoked by a client’s requests. Basing on client’s needs and

470 A. Poniszewska-Maranda

requirements the application/system developer creates the logical model of ap-
plication/system and next the project of this system that will be the base for its
implementation. The responsibilities of application developer based on URBAC
are as follows:

– definition of permissions - identification of methods,
– definition of object attributes associated to objects according with access

control rules,
– assignment of elements: permissions to functions and functions to roles,
– definition of security constraints assigned to application’s elements, i.e. au-

thorizations, obligations and conditions on the permissions and standard
constraints on roles, functions and their relationships.

Deployment Stage. The security administrator defines the administration
rules and company constraints according to the global security policy and appli-
cation/system rules received from the developer. He should also check if these
new security constraints remain in agreement with the security constraints de-
fined for the elements of existing information system in order to guarantee the
global coherence of the new system. The duties of security administrator are as
follows:

– definition of users’ rights basing on their responsibilities and their business
functions in an organization - assignment of users to roles of information
system,

– organize the users in groups and definition of access control rights for the
groups of users that realize for example the same business functions - assign-
ment of groups to the roles of information system,

– definition of subject attributes associated to certain users or groups of users
that allows to determine the dynamic aspects of security constraints,

– definition of security constraints for the relationships between users and roles
or group of users and roles.

Example for URBAC Approach. The concept used to illustrate URBAC
approach is an online store. It allows to represent the access control in an ex-
tensive way. It also deals with an access to digital objects, which is a large part
of Usage Control, that is a part of URBAC. There are different types of roles
available for the users - Regular, Premium and Seller and a special role of the
Administrator, who has access to all the application models and data to define
the new elements of the access control in accordance with URBAC model directly
without the need to modify the application’s code.

Each role consists of a collection of functions. Therefore the administrator is
able to assign different functions to various roles. Examples of the main available
functions are: buy an ebook, download an ebook, edit an ebook, register, remove
an ebook, upgrade an account, sell an ebook, get credits, give feedback, feature
an ebook. For instance the function to edit an ebook is assigned only to the role
Seller, while the function Buy an Ebook is assigned to all the roles available in the

Security Constraints in Modeling of Access Control Rules 471

application. To perform a function a user has to make a sequence of activities.
Some permissions are assigned to each of these activities.

When a permission is evaluated it consists of authorizations, obligations and
conditions. All three have to be satisfied to give a user access and let him proceed
to next step in the function. Examples of authorizations for the purchase of
the ebook permission, that the administrator can define, presented in form of
questions, can be as follows:

– Does a user own the ebook object?
– Does the user have enough credits to purchase the ebook?
– Has the user already bought the item?
– Does the user have any downloads of the ebook left?

Obligations for instance, can consider if the user has agreed to the terms of
service and the copyright agreement. If he has not agreed his activities in the
application will be limited. Conditions, in turn, can focus on allowing the users
to execute the functions only during the business hours and setting a limit on
the number of ebooks that can be featured in the store.

3 Security Constraints for URBAC Approach

The security administration process of an information system is a complex task.
Many security constraints have to be specified in order to correctly define the
security strategy of the system. The application developer is able in a relatively
easy way to define the constraints that should be associated with this application.
The security administrator from the other hand knows the global security policy
and it is able to fix the constraints at global level.

The security constraints can be specified with the use of development tools
that we chosen according to the specification of URBAC approach and creation
process of security profiles:

1. Object Constraint Language, OCL [17,18] at level of application developer -
is a part of UML and is used to define and specify the constraints formulated
in model created during the analysis and design of information system.

2. Role-based Constraint Language, RCL [14,15] at level of security administra-
tor - created to define and specify the constraints of RBAC model and we
appropriately modified and extend it to meet the needs of URBAC model -
Usage and Role Constraint Language (uRCL) [16].

3.1 Classification of Security Constraints of URBAC Model

Classification of security constraints for URBAC approach reflects the life-cycle
of an application, which in the simplest form, is divided into two stages: analysis-
development, realized by application developer and exploitation-maintenance,
realized by security administrator, to guarantee the global coherence of system
security schema. Therefore, the basic classification of security constraints distin-
guishes two groups of constraints:

472 A. Poniszewska-Maranda

– constraints from developer point of view - constraints at application level,
determined in order to create a complex application with its access control
rules and

– constraints from security administrator point of view - constraints at orga-
nization level, defined for global security of an organization.

The second classification level of security constraints represents the limitations
associated with the URBAC approach:

– constraints for permission - limit the set of objects available for a method,
including the authorization, obligations and conditions,

– separation of duty, SOD, constraints - represents the concept of mutually
exclusive roles, mutually exclusive functions and mutually exclusive permis-
sions [1,14,15],

– prerequisite constraints - based on the concept of prerequisite roles, prereq-
uisite functions and prerequisite permissions,

– cardinality constraints - numerical limitations defined for classes in role-
based system and numerical limitations for application elements,

– session constraints, that can be expressed by obligations,
– role hierarchy constraints and function hierarchy constraints.

The third classification level includes two categories of constraints:

– static constraints, that are constant and apply before the access to data in
a system,

– dynamic constraints, that can be changeable during the system working and
appear during the session activation by a system user.

General classification of constraints, based on above division and on scope of
duties and responsibilities assigned to application/system developer and security
administrator is presented in figure 2.

Fig. 2. Classification of security constraints based on URBAC approach

Security Constraints in Modeling of Access Control Rules 473

3.2 Constraints from Developer Point of View in URBAC Approach

Three main types of security constraints are distinguished at level of applica-
tion/system developer: constraints for permission, including the authorization,
obligations and conditions, prerequisite constraints and cardinality constraints.

Security constraints for permissions are:

1. Pre-authorizations or in other words static authorizations - limit the set of
objects on which a user can execute the method, regardless of this user; based
on the subject attributes and object attributes. For example ”permission of
reading the document files with .sec extension is accessible only for role
Manager (in OCL):
context F ile read()
pre : Set (Objects) → select(obj | obj.oclIsT ypeOf (File)) and
obj.getName() = ∗.sec and actor.type =Manager

2. Ongoing-authorizations, i.e. dynamic authorizations - limit the set of objects
accessible during the session (during the access realization); more based on
subject attributes and object attributes that can change during a session
that provoke the changes in the constraints. For example ”permission of
downloading the e-book files from the Internet shop server to read them by
a user is dependent on current state of his account (state of account has to
be at least equal to the value of requested document)”:
context F ile read()
pre : Set (Objects) → select(obj | obj.oclIsT ypeOf (eBookF ile)) and
user (si) .account.meter >= obj.value
where user (si) returns a set of users (i.e. one user) of session si.

3. Pre-obligations, i.e. static obligations use the history of previous activities
in order to check whether certain action have been taken; they can use the
subject attributes or object attributes. E.g. ”user has to accept the terms of
service and copyright agreement before the access to certain digital data”:
context Data get()
pre : Set (Objects) → select(obj | obj.oclIsT ypeOf (Data)) and
user.actor.accept(ServiceCopyrightAgreement) = true

4. Ongoing-obligations, i.e. dynamic obligations - have to be fulfill continuously
or periodically during the given right are used; they can use the subject
attributes or object attributes. For example ”user has to agree to make the
log information available the provider before reading an e-book file”:

context F ile read()
Set (Objects) → select(obj | obj.oclIsT ypeOf (eBookF ile)) and
user (si) .accept(LogsToProvider) = true

5. Pre-conditions, i.e. static conditions represent the features of an application
or a system that are used to take the decision about the usage; a condition
is evaluated before usage. For example ”permission of read the data from
the server files only during the working hours, from 8.00 am to 6.00 pm”:
context F ile read()
pre : Set (Objects) → select(obj | obj.oclIsT ypeOf (ServerF ile)) and

474 A. Poniszewska-Maranda

actor.timePeriodAccess >= 8.00am and
actor.timePeriodAccess <= 6.00pm

6. Ongoing-conditions, i.e. dynamic conditions - represent the current state or
status of a system or environment during a user session; condition has to be
fulfilled during a usage. For example ”permission of reading the document
with important data only one by the user during his current session”:
context F ileImportant read()
pre : Set (Objects) → select(obj | obj.oclIsT ypeOf (File)) and
user (si) .timeAccess <= 1

The other two types of security constraints at developer level are:

1. Prerequisite constraints, that are based on prerequisite concept that in the
case of URBAC approach signifies:

– permission p1 (m1, o1) can be assigned to function f if this function has
already permission p2 (m2, o2) assigned before:
context Function inv :
self.method→ includes (m1) and Set (Objects) →
select(obj | obj.oclIsT ypeOf (o1)) implies
self.method→ includes (m2) and Set (Objects) →
select(obj | obj.oclIsT ypeOf (o2))

– function f1 can be assigned to role r if this role has already function f2
assigned before:
context Role inv :
self.useCase→ includes (f1) implies self.useCase→ includes (f2)
For example ”function of downloading the document files from server
needs the function of logging to this server”:
context Role inv :
self.useCase→ includes (′perform file transfer′) implies
self.useCase→ includes (′login′).

2. Cardinality constraints - numerical limitation concerning the application el-
ements. For example ”function of downloading a file containing the confi-
dential information can be assigned only to one certain role”:
context Function inv :
self.permission.method→ includes (′get()′) and self.permission.object→
includes (′InfoConfidential′) implies self.actor→ size = 1.

3.3 Constraints from Security Administrator Point of View in
URBAC Approach

The security constraints at level of security administrator first of all concern
directly the users and roles of a system. The basic task of these constraints is to
guarantee the security rules for the whole organization and in consequence the
preserving of coherence of global security schema.

The basic security constraints at level of exploiting an application or a whole
system are the separation of duty (SOD) constraints, that are based on the

Security Constraints in Modeling of Access Control Rules 475

concept of mutually exclusive roles [1,14,15]. It has as a purpose to split the
tasks of each users and privileges assigned to them, needed to implement a task
or a set of related tasks. SOD constraints can concern different concepts and
therefore we can define: constraints on conflicting users (CU), constraints on
conflicting roles (CR), constraints on conflicting functions (CF), constraints on
conflicting permissions (CP).

The basic division of SOD constraints divides them into two groups:

1. Static SOD - constraints defined in static way prior to the execution of
certain actions by the user in the system. For example ”constraints that any
user cannot be assigned to two conflicting roles - conflicting roles cannot
have common users” with the use of uRCL:

|roles (OE (U)) ∩OE (CR)| ≤ 1

where (OE (X)) signifies the choice of one element from a set X .
2. Dynamic SOD - constraints that respect the roles activated by a user during

the session; based on the actions that cannot be executed simultaneously.
For example ”there are not the users with two conflicting roles - conflicting
roles can have common users but they cannot activate simultaneously the
conflicting roles”:

|roles (OE (S)) ∩OE (CR)| ≤ 1

The other types of constraints that are defined at level of security adminis-
trator are:

1. Prerequisite constraints - based on concept of prerequisite roles. For exam-
ple ”a user can be assigned to role r1 only when he has role r2 assigned
previously”:

r1 ∈ roles (OE (U)) ⇒ r2 ∈ roles (OE (U))

E.g. ”a user can be assigned to role Premium User only when he was pre-
viously assigned to role Regular User (it guarantees that only the users
assigned to role Regular User could be assigned to role Premium User)”:

′Premium User′ ∈ roles (OE (U)) ⇒ ′Regular User′ ∈ roles (OE (U))

2. Cardinality constraints - numerical restrictions defined for the classes in a
system based on role. For example ”number of users assigned to the role is
limited”, e.g. ”there is exists only one person who can be assigned to role
Managing Director”:

|user (′Managing Director′)| = 1

3. Session constraints, that have to be expressed by the obligations. For exam-
ple ”a users that can be a member of two roles r1, r2 cannot to activate
them at the same time during one session”:

roles (OE (U)) = {r1, r2} ∧ |sessions (r1) ∩ sessions (r2)| = ∅

476 A. Poniszewska-Maranda

4. Role hierarchy constraints. For example ”a user cannot be assigned to child
roles that inherit the parent roles that are in conflict”:

|roles� (OE (U)) ∩OE (CR)| ≤ 1

3.4 Implementation of Security Constraints in URBAC Model

Definition and implementation of security constraints of URBAC model can be
realized both in OCL (Object Constraint Language) - for constraints from level
of application/system developer and in extended uRCL - for constraints from
level of security administrator. OCL gives the possibility to define the invariants
for model’s classes, the invariants for stereotypes and pre-conditions or post-
conditions for operations. OCL expressions can be used in different situations:

– for attributes or operations of the classes in class diagram,
– a condition can be attached to a message to specify a situation in which it

may be sent to the specified object in interaction diagram (i.e. sequence or
communication diagram),

– a message can have the attributes, which values can be specified with the
use of OCL expressions in interaction diagram.

Security constraints can be defined in different UML diagrams. The class
diagram and sequence diagram were chosen to specify the constraints of URBAC
model. The constraints in class diagram are presented the most often in form of
invariants and in sequence diagram - in form of pre-conditions.

Implementation of URBAC model is based on role engineering process, which
needs the definition of appropriate functions, permissions and security con-
straints [9]. Definition of set of roles for an information system is realized with
the use of UML diagrams and the result is presented in widely known format,
e.g. in XML format [9]. In connection with this, the implementation of security
constraints of URBAC approach consists in generating of XML files contain-
ing the set of constraints, provided in form legible and understandable both for
developer and for security administrator. The constraints defined in OCL by
application/system developer are next translated to uRCL for security adminis-
trator who defines also the global security constraints with the use of uRCL.

4 Conclusion

Usage Role-based Access Control introduces a new approach to the logical secu-
rity of information systems. It is flexible model that can be tailored to various
needs. It allows to support the security of dynamic information systems thanks
to the concepts of mutability and continuity where the dynamic changes of secu-
rity policy can be transformed into the changes of values of subject attributes or
object attributes. The presented approach gives the possibilities to specify not
only the permissions but also the prohibitions and duties in framework of infor-
mation systems and the security rules dependent on the application context. It
is possible thanks to different types of security constraints, presented in paper.

Security Constraints in Modeling of Access Control Rules 477

The possibility of defining the constraints both at developer level and admin-
istrator level allows to assure the global coherence of security schema for the
whole information system, containing many components (i.e. applications) and
supporting many users in their activities. Developer and administrator define
the constraints with the use of two different tools, according to the specification
of the whole process of modeling, creation and exploitation of information sys-
tem and its security schema but the concepts of these tools can be transformed
between these two levels to assure the global coherence.

References

1. Ferraiolo, D., Sandhu, R.S., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Role-Based Access control. ACM TISSEC (2001)

2. Park, J., Zhang, X., Sandhu, R.: Attribute Mutability in Usage Control. In: 18th
IFIP WG 11.3 Working Conference on Data and Applications Security (2004)

3. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2), 81–99 (2010)

4. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9) (2006)

5. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Policy
Specification of Usage Control. ACM TISSEC 8(4), 351–387 (2005)

6. Poniszewska-Maranda, A.: Conception Approach of Access Control in Hetero-
geneous Information Systems using UML. Journal of Telecommunication Sys-
tems 45(2-3), 177–190 (2010)

7. Strembeck, M., Neumann, G.: An Integrated Approach to Engineer and Enforce
Context Constraints in RBAC Environments. ACM TISSEC 7(3) (2004)

8. Bertino, E., Ferrari, E., Atluri, V.: The Specification and Enforcement of Autho-
rization Constraints in Workflow Management Systems. ACM TISSEC 2(1)

9. Poniszewska-Maranda, A.: Modeling and design of role engineering in development
of access control for dynamic information systems. Bulletin of the Polish Academy
of Sciences, Technical Science 61(3) (2013)

10. Kim, D., Solomon, M.: Fundamentals of Information Systems Security. Jones &
Bartlett Learning (2012)

11. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd
edn. Artech House (2007)

12. Hu, V.C., Ferraiolo, D.F., Kuhn, D.R.: Assessment of Access Control Systems.
Interagency Report 7316, NIST (2006)

13. Stewart, J.M., Chapple, M., Gibson, D.: CISSP: Certified Information Systems
Security Professional Study Guide, 6th edn. John Wiley & Sons (2012)

14. Ahn, G.-J.: The RCL 2000 language for specifying role-based authorization con-
straints, Ph.D. thesis, George Mason University, USA (1999)

15. Ahn, G.-J., Sandhu, R.S.: Role-based authorization constraints specification. ACM
Trans. on Information and Systems Security 3(4), 207–226 (2000)

16. Poniszewska-Maranda, A.: Logical security models and their implementations in
information systems (in Polish). EXIT (2013)

17. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User
Guide. Addison Wesley (1998)

18. OMG, OMG Unified Modeling Language Specification (2011)

A New Plane-Sweep Algorithm

for the K-Closest-Pairs Query

George Roumelis1,�, Michael Vassilakopoulos2,�, Antonio Corral3,�,��,
and Yannis Manolopoulos1,�

1 Dept. of Informatics, Aristotle University, GR-54124 Thessaloniki, Greece
{groumeli,manolopo}@csd.auth.gr

2 Dept. of Computer Science and Biomedical Informatics,
University of Thessaly, 2-4 Papasiopoulou st., 35100 Lamia, Greece

mvasilako@dib.uth.gr
3 Dept. of Informatics, University of Almeria, 04120 Almeria, Spain

acorral@ual.es

Abstract. One of the most representative and studied Distance-Based
Queries in Spatial Databases is the K-Closest-Pairs Query (KCPQ).
This query involves two spatial data sets and a distance function to mea-
sure the degree of closeness, along with a given number K of elements
of the result. The output is a set of pairs of objects (with one object ele-
ment from each set), with the K lowest distances. In this paper, we study
the problem of processing KCPQs between RAM-based point sets, using
Plane-Sweep (PS) algorithms. We utilize two improvements that can be
applied to a PS algorithm and propose a new algorithm that minimizes
the number of distance computations, in comparison to the classic PS
algorithm. By extensive experimentation, using real and synthetic data
sets, we highlight the most efficient improvement and show that the new
PS algorithm outperforms the classic one, in most cases.

Keywords: Spatial Query Processing, Plane-Sweep, Closest-Pair Query,
Algorithms.

1 Introduction

Spatial database is a database that offers spatial data types (for example, types
for points, line segments, regions, etc.), a query language with spatial predicates,
spatial indexing techniques and efficient processing of spatial queries [11]. It has
grown in importance in several fields of application such as urban planning,
resource management, transportation planning, etc. Together with them come
various types of complex queries that need to be answered efficiently. While

� Work funded by the GENCENG project (SYNERGASIA 2011 action, supported
by the European Regional Development Fund and Greek National Funds); project
number 11SYN 8 1213.

�� Supported by the Junta Andalucia research project [TIC-06114].

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 478–490, 2014.
c© Springer International Publishing Switzerland 2014

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 479

queries involving a single data set have been studied extensively in the litera-
ture, Distance Join Queries (DJQs) on spatial data like K-Closest-Pairs Query
(KCPQ) has not been paid similar attention. For this reason, in this work we
will improve this kind of DJQ for spatial data (points) in terms of execution
time using the plane-sweep (PS) technique.

One of the most important techniques in the computational geometry field
is the PS algorithm, which is a type of algorithm that uses a conceptual sweep
line to solve various problems in the Euclidean plane, E2, [10]. The name of PS
is derived from the idea of sweeping the plane from left to right with a vertical
line (front) stopping at every transaction point of a geometric configuration to
update the front. All processing is done with respect to this moving front, without
any backtracking, with a look-ahead on only one point each time [6]. The PS
technique has been successfully applied in spatial query processing, mainly for
intersection joins [8]. In the context of DJQs, the PS technique has been used
to restrict all possible combinations of pairs of points from the two data sets.

In the context of computational geometry, in [6], the PS algorithm is applied
to find the closest pair in a set of points, in an elegant way. Two improvements
when a new pair can be formed are proposed. The first one examines only can-
didates which may form a new closest pair with the fixed point p on the sweep
line that lie in a half-circle centered at this point, with radius δ (the current dis-
tance threshold). The second one, since the use of a half-circle in a PS algorithm
is complex, examines only candidates within a boundary rectangle (a rectangle
with width δ in X-axis and, height 2 * δ in Y-axis (p+ δ and p− δ from p)). A
critical observation made in [6] is that, as the sweep line passes through a fixed
point, there is at most a constant number of points that need to be checked.
But this property does not hold in the KCPQ, which is essentially a general-
ization of the Bichromatic Closest-Pair problem and the number of points with
monochromatic color in this problem cannot be bounded (Section 5.1 of [13]).
Moreover, the algorithm of [6] uses an array and a balanced binary tree (e.g.
AVL-tree) to sort on both axes, while we will use one array for each data set,
sorting on one axis (e.g. X). Finally, our proposed PS algorithm can be easily
adapted to distance-based join query processing on disk resident data.

The contributions of this paper consist in the following:

1. We enhance the classic PS algorithm for KCPQ with two improvements
(sliding window and sliding semi-circle), which were proposed in [6] for
the closest-pair problem over one data set, and here have been adapted to
KCPQ, where two data sets are involved.

2. We improve processing of the classic PS algorithm for KCPQ, with a new
algorithm called Reverse Run Plane-Sweep, RRPS or RR PS, that minimizes
Euclidean and sweeping axis distance computations.

3. We present results of an extensive experimentation, that compares the per-
formance of the different algorithms and algorithmic improvements.

The paper is organized as follows. In Section 2, we review the related literature
and motivate the research reported here. In Section 3, we describe the classic
PS for KCPQ. In Section 4, a new PS algorithm for KCPQ is presented. In

480 G. Roumelis et al.

Section 5, a comparative performance study is reported. Finally, in Section 6,
conclusions on the contribution of this paper and future work are summarized.

2 Related Work and Motivation

There are numerous papers that study processing of join queries, and recently, an
exhaustive analysis of techniques for spatial join taking into account a filter-and-
refinement approach appeared in [8]. We can classify the spatial join methods
depending on whether the sets of objects involved are indexed or not, but in all
cases the PS technique plays an important role for reducing the CPU cost [8].

The KCPQ discovers the K pairs of data elements formed from two data sets
that have the K smallest distances between them. The KCPQ is a combination
of spatial join and nearest neighbor queries. Like a spatial join query, all pairs
of objects are candidates for the result. Like a nearest neighbor query, proximity
forms the basis for the final ordering. If both data sets are indexed by R-trees,
the concept of synchronous tree traversal and Depth-First (DF) or Best-First
(BF) traversal order can be combined for the query processing [3,4,7,12]. In [7],
incremental and non-recursive algorithms based on BF traversal using R-trees
and additional priority queues for DJQs are presented. In [12], additional tech-
niques as sorting and application of PS during the expansion of node pairs, and
the use of the estimation of the distance of the K-th closest pair to suspend un-
necessary computations of MBR distances are included to improve [7]. In [3,4]
non-incremental recursive (DF) and non-recursive (BF) algorithms are presented
for solving the KCPQ, when the data sets are indexed by R*-trees. The main
issue of the non-incremental variant is to separate the treatment of the terminal
candidates (the elements of the leaf nodes) from the rest of the candidates (in-
ternal nodes) in the index data structures. In [4] the PS technique is also applied
to limit the number of MBRs and points that must be paired up, thus reducing
the number of distance computations. Finally, in [9] the PS technique has been
used to answer the K Distance Join Query, another way to call to KCPQ, in
order to find exactly K nearest pairs in non-incremental fashion, where R*-tree
and Quadtree-like index structures are compared.

Recently, in [13] the PS technique is used to obtain the α-Distance for spa-
tial query processing for fuzzy objects. Essentially, the computation of the α-
Distance is to find the closest pair of qualified points of two fuzzy objects. The
main property of this variant of the PS method is the use of two sweep lines to
facility the search for the particular types of spatial queries with fuzzy objects,
that has been presented in such research work.

Finally, the main motivation of this work is to improve the classic PS algo-
rithm proposed in [4,12] for KCPQs, in order to reduce the number of distance
computations, making the query processing faster in terms of execution time.

3 Plane-Sweep in K-Closest-Pairs Query Processing

A common approach to performing spatial joins when both data sets are stored
on disk is to partition the data until it is of a size that can be processed using

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 481

internal memory PS algorithm [8]. The classic PS algorithm for KCPQ sweeps
a scan line (sweepline) that is vertical to one of the axes through two sorted (in
relation to this axis) arrays of the two data sets. In general terms, this algorithm
is an adaptation of the PS algorithm for intersection of MBRs presented in [2],
considering two sets of points and a distance threshold δ (the distance of the K-
th closest pair found so far) in the sweeping axis [4,12]. This classic PS algorithm
can be considered a greedy variant of the algorithm for the closest-pair problem
described in [10,6]. It is a greedy algorithm, because it always makes the choice
that looks best at the moment. It also combines PS and nested loop techniques.
Compared to the naive nested loop algorithm, except in unlikely situations, the
sweepline limits the number of points that must be tested against one another
[11].

In general, if we assume that the two point sets are P and Q, the classic PS
algorithm consists of the following steps [4,12]:

1. Sorting the entries of the two point sets, based on the coordinates of one of
the axes in increasing or decreasing order. The axis for the sweepline can be
established based on sweeping axis criteria (e.g. X-axis) and the order can
be fixed by sweeping direction criteria (e.g. forward sweep (increasing order)
or backward sweep (decreasing order)); both criteria are presented in [12].

2. After that, two pointers are maintained initially pointing to the first entry for
processing of each sorted set of points. Assuming that X -axis is the sweeping
axis and the order is increasing (from left to right, i.e forward sweep), let
pivot be the point with the smallest X-value pointed by one of these two
pointers, e.g. P , then the pivot is initialized to this point, ppivot ∈ P .

3. Afterwards, the pivot must be paired up with the points stored in the other
set of points (qj ∈ Q) from left to right, satisfying dx = qj .x− ppivot.x ≤ δ,
processing all points as candidate pairs where the pivot is fixed. After all
possible pairs of entries that contain pivot have been paired up (i.e., the
forward lookup stops when qj .x − ppivot.x > δ is verified), the pointer to
the set of the pivot is increased to the next entry, pivot is updated with the
point of the next smallest X-value pointed by one of the two pointers, and
the process is repeated until one of the set of points is fully processed.

Highlight that the PS technique applies the distance function over the sweep-
ing axis (in this case, the X-axis) because in the PS technique, the sweep is
only over one axis (the best axis according to the criteria suggested in [12]).
Moreover, the search is only restricted to the closest points with respect to the
pivot according to the current distance threshold (δ). No duplicated pairs are
obtained, since the points are always checked over sorted sets. Note that this
kind of processing is called forward sweep, since it scans from left to right (or
from right to left, backward sweep) the sorted sets in order to obtain pairs of
points that will have a distance smaller than or equal to δ.

Clearly, the application of this technique can be viewed as a sliding strip on
the sweeping axis with a width equal to the δ value starting from the pivot (i.e.,
[0, δ] in the X-axis), where we only choose all possible pairs of points that can
be formed using the pivot and the other points from the remainder entries of

482 G. Roumelis et al.

δ=2.24

2

4

6

8

2 4 6 8 10 12 140

pivot

δ=2.24

δ=2.24
y

x

y

x

δ=3.16

δ=3.16

δ=3.16

2

4

6

8

2 4 6 8 10 12 140

pivot

Fig. 1. Classic (left) and RR (right) PS algorithms, using sliding window or semi-circle

the other set of points that fall into the current strip. See in Figure 11 left, the
strip in light grey color.

According to the ideas proposed in [6] to improve the PS applied to the closest-
pair problem over one set of points, here we will propose two improvements of
the previous classic PS algorithm over two data sets to reduce the number of
point-point distance computations on KCPQ algorithms.

1. An intuitive way to save the number of point-point distance computations
is to bound the other axis (not only the sweeping axis) by δ as is illustrated
in Figure 1 left. In this case, the search space is now restricted to the closest
points inside the window with width δ and a height 2 ∗ δ (i.e., [0, δ] in the
X-axis and [−δ, δ] in the Y-axis, from the pivot). Clearly, the application
of this technique can be viewed as a sliding window on the sweeping axis
with a width equal to δ and height equal to 2 ∗ δ starting from the pivot.
And we only choose all possible pairs of points that can be formed using the
pivot point and the remainder points of the other data set that fall into the
current window. See in Figure 1 left, the window in dark grey color.

2. If we try to reduce even more the search space, we can only select those
points inside the semi-circle (or half-circle) centered in the pivot with radius
δ (remember that the equation of all points t = (t.x, t.y) ∈ E2 that fall inside
the circle, centered in the point ppivot = (ppivot.x, ppivot.y) ∈ P and radius
δ is (t.x − ppivot.x)2 + (t.y − ppivot.y)2 ≤ δ2). And the application of this
new improvement can be viewed as a sliding semi-circle with radius δ along
the sweeping axis and centered on the pivot point, choosing only the points
that fall inside the current semi-circle. See in Figure 1 left, the semi-circle
centered at pivot.

4 Reverse Run Plane-Sweep Algorithm for KCPQs

The Reverse Run Plane-Sweep (RRPS, or RR PS) algorithm is based on two
concepts. First, every point that is used as a reference point (pivot) forms a run

1 In both parts of Figure 1, a dotted arrow points to a point not included in the
KCPQ result (paired with pivot), due to large dx; a thin arrow points to a point
not included in the result, due to large distance to pivot; a thick arrow points to a
point included in the KCPQ result (paired with pivot); the value of K is 3.

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 483

with other subsequent points of the same set. A run is a continuous sequence
of points of the same set that doesn’t contain any point from the other set. For
each set, we keep a left limit, which is updated (moved to the right) every time
that the algorithm concludes that it is only necessary to compare with points
of this set that reside on the right of this limit. Each point of the active run
(reference point) is compared with each point of the other set (current point)
that is on the left of the first point of the active run, until the left limit of the
other set is reached. Second, the reference points (and their runs) are processed
in ascending X-order (the sets are X-sorted before the application of the RRPS
algorithm). Each point of the active run is compared with the points of the other
set (current points) in the opposite order (descending X-order).

A max binary heap (keyed by pair distances and calledMaxKHeap) that keeps
the K closest point pairs found so far is utilized. For each point of the active run
being compared with a current point, there are 2 cases. Case 1: If the distance
between this pair of points d is smaller than the distance of δ, then the pair
will be inserted in the heap (rule 1). In case the heap is not full (it contains
less than K pairs), the pair will be inserted in the heap, regardless of the pair
distance. Case 2: If the distance between this pair of points in the sweeping axis
dx is larger than or equal to δ, then there is no need to calculate the distance
of the pair (rule 2). The left limit of the other set must be updated at the index
value of the point being compared (a comparison with a point of the other set
having an index value smaller than, or equal to the updated left limit will have
X-distance larger than dx and is unnecessary).

Moreover, if the rightmost current point has an index value equal to the left
limit of its set, then all the points of the active run will have larger dx from all
the current points of the other set and the relevant pairs need not participate in
computations (the algorithm advances to the start of the next run - rule 3). The
RRPS algorithm is depicted in Algorithm 1. The following example illustrates
its operation. Let’s consider the points of the right part of Figure 1 (depicting
a snapshot of the RRPS operation), presented, in commonly sorted X-order, in
Table 1. To simplify the algorithm operation (the stopping conditions), a sentinel
point with X-coordinate equal to ∞ is added to each set (line 2). In case the
two point sets overlap in X-dimension, initialization sets i (j) equal to 0, since
the first run of P (Q) set starts at P [0] (Q[0]). Moreover, initialization sets the
left limit leftp (leftq) equal to -1 (line 5), since the first P (Q) point to be used
in comparisons is P [leftp+1] (Q[leftq+1]).

Table 1. The points of Figure 1 in X-sorted order

i 0 1 2 3 4 5 6 7
P [i] (1,1) (2,6) (3,3) (5,1) (8,4) (9,7) (10,1) (∞,−)
j 0 1 2 3 4
Q[j] (4,2) (5,4) (15,4) (16,3) (∞,−)

484 G. Roumelis et al.

Algorithm 1. Reverse Run Plane-Sweep

Input: P [0..N − 1], Q[0..M − 1]: X-sorted arrays of points. K: positive int
Output: MaxKHeap: binary Max Heap storing the K closest pairs between P and Q

// Initialization
1: i ← 0 j ← 0 continue ← TRUE
2: P [N].x ← ∞ Q[M].x ← ∞ // sentinel points for simpler stoping conditions
3: if P [N − 1].x ≤ Q[0].x then i ← N // the sets do not overlap

4: if Q[M − 1].x ≤ P [0].x then j ← M // the sets do not overlap

5: leftp ← −1 leftq ← −1 // comparisons start at P [leftp+ 1], Q[leftq+ 1]
// Main Algorithm. P [i] (Q[j]): start of next P -run (Q-run)

6: while continue do
7: if P [i].x < Q[j].x then // the active run is from the P set
8: while P [i].x < Q[j].x do // while active run unfinished. P [i]: ref point
9: if j − 1 = leftq then // Q[j − 1]: last cur point - rule 3
10: advance i to next P -run and break while l.8
11: for k = j − 1 downto leftq+ 1 do // Q[k]: cur point
12: if MaxKHeap is not full then
13: calculate distance d b/t ref point (P [i]) and cur point (Q[k])
14: insert (ref point, cur point) with key d into MaxKHeap
15: else
16: calculate x-distance dx b/t ref point (P [i]) and cur point (Q[k])
17: if dx ≥ key of MaxKHeap root then // dx ≥ δ - rule 2
18: leftq ← k and break for l.11

19: calculate distance d b/t ref point (P [i]) and cur point (Q[k])
20: if d < key of MaxKHeap root then // d < δ - rule 1
21: insert (ref point, cur point) with key d into MaxKHeap

22: increment i // update ref point P [i]

23: else if j < M then // the active run is from the (unfinished) Q set
24: P [N].x ← Q[M − 1].x + 1 // P [N] should be < Q[M], since ...

// ... else l.23 handles equal X-values b/t P and Q points
25: while Q[j].x ≤ P [i].x do // while active run unfinished. Q[j]: ref point
26: if i− 1 = leftp then // P [i− 1]: last cur point - rule 3
27: advance j to the next Q-run start and break while l.25

28: for k = i− 1 downto leftp+ 1 do // P [k]: cur point
29: if MaxKHeap is not full then
30: calculate distance d b/t ref point (Q[j]) and cur point (P [k])
31: insert (ref point, cur point) with key d into MaxKHeap
32: else
33: calculate x-distance dx b/t ref point (Q[j]) and cur point (P [k])
34: if dx ≥ key of MaxKHeap root then // dx ≥ δ - rule 2
35: leftp ← k and break for l.28

36: calculate distance d b/t ref point (Q[j]) and cur point (P [k])
37: if d < key of MaxKHeap root then // d < δ - rule 1
38: insert (ref point, cur point) with key d into MaxKHeap

39: increment j // update ref point Q[j]

40: P [N].x ← Q[N].x // revert the P sentinel at the maximum real X-value
41: else continue ← FALSE // the points of both sets have been processed

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 485

Since P [0].x < Q[0].x (line 7), the active run is from the P set and consists of
P [0], P [1] and P [2] (P [2] is the last point of P before Q[j]). Each of the points
of the active run should be compared with each of the current points of Q in
reverseX-order which form the sequence Q[j−1], . . . , Q[leftq+1]. However, since
j − 1 =leftq (line 9), i is advanced to 3 (P [3] is the start of the next P run) and
processing of the active run is broken (rule 3).

During the next iteration of the “while” loop at line 6, P [3].x > Q[0].x. Thus
the active run is from the Q set (line 232) and consists of Q[0] and Q[1] (Q[1]
is the last point of Q before P [i]) and each of these points will be compared
with each of the current points of P in reverse X-order which form the sequence
P [i − 1], . . . , P [leftp+1] (P [2], . . . , P [0]). The pairs (P [2], Q[0]), (P [1], Q[0]) and
(P [0], Q[0]) are inserted in the non-full heap (K = 3). The pair (P [2], Q[1]) is
inserted in the heap, replacing (P [1], Q[0]), since its distance is smaller than δ
(rule 1). The pair (P [1], Q[1]) is not inserted in the heap, due to its distance.
The pair (P [0], Q[1]) is not inserted in the heap, due to dx ≥ δ (rule 2). leftp
is advanced to 0 (only comparisons with P points after P [0] are necessary) and
“for” loop at line 28 is broken. The active run ends with i = 3 and j = 2.

During the next iteration of the while loop at line 6, the active run consists of
P [3], P [4], P [5] and P [6]. Each of these points will be compared with Q[1] and
Q[0]. The pair (P [3], Q[1]) is inserted in the heap, replacing (P [0], Q[0]) since its
distance is smaller than δ (rule 1). Next, the pair (P [3], Q[0]) is inserted in the
heap, replacing (P [3], Q[1]), since its distance is smaller than δ (rule 1). The pair
(P [4], Q[1]) is not inserted in the heap, due to dx ≥ δ (rule 2). leftq is advanced
to 1 (only comparisons with Q points after Q[1] are necessary) and “for” loop
at line 28 is broken (so the comparison of P [4] with Q[0] is avoided). During the
next iteration of the “while” loop at line 8, j − 1 = leftq (line 9), meaning that
the rest of the P run will be skipped, saving comparisons (rule 3). The active
run ends with i = 7 and j = 2.

During the next iteration of the while loop at line 6, the active run consists
of Q[2] and Q[3]. Each of these points will be compared with each point of the
sequence P [6], . . . , P [1]. The pair (P [6], Q[2]) is not inserted in the heap, due to
dx ≥ δ (rule 2). leftp is advanced to 6 (only comparisons with P points after
P [0] are necessary) and “for” loop at line 28 is broken (so the comparisons of
Q[2] with P [5], . . . , P [1] are avoided).

During the next iteration of the “while” loop at line 25, i− 1 is equal to leftp
(line 26), meaning that the rest of the Q run (in fact, only point Q[3]) will be
skipped, saving comparisons (rule 3). The active run ends with i = 7 and j = 3.

During the next iteration of the while loop at line 6, since P [i = 7] = Q[j =
3] = ∞ and j =M , processing of the two sets is completed.

2 Note that the extra check “j < M” at line 23 guarantees that we have not reached
the sentinel of the Q set and is necessary, since the “else” part of the main loop
(Lines 23-39) handles the case of equal X-values between points and, at the time of
this check, both sentinels equal ∞. At line 24, only for the duration of this “else”
part, we set the P sentinel to a value between the last Q point and the Q sentinel
(to terminate the loop at line 24 when the last run belongs to the Q set).

486 G. Roumelis et al.

Note that the classic PS algorithm always processes pairs from left to right,
even when the distance of the pivot point to its closest point of the other set
is large (this is likely, since, runs of the two sets are in general interleaved).
On the contrary, RRPS processes pairs of points in opposite X-orders, starting
from pairs consisting of points that are the closest possible, avoiding further
processing of pairs that is guaranteed not to be part of the result and substituting
distance computations by simpler dx computations, when possible. This way, δ
is expected to be updated more fastly and the processing cost of RRPS to be
lower. In the specific example described previously, the classic PS algorithm
would perform 9 distance computations, 15 dx computations, 8 heap insertions
and would examine 18 pairs. RRPS performed 7 distance computations, 7 dx
computations, 6 heap insertions and examined 10 pairs.

5 Experimentation

In order to evaluate the behavior of the proposed algorithms, we have used 6
real spatial data sets of North America, representing cultural landmarks (NAcl
with 9203 points) and populated places (NApp with 24493 points), roads (NArd
with 569120 line-segments) and railroads (NArr with 191637 line-segments). To
create sets of points, we have transformed the MBRs of line-segments from NArd
and NArr into points by taking the center of each MBR (i.e., |NArd| = 569120
points, |NArr| = 191637 points). Moreover, in order to get the double amount
of points from NArr and NArd, we chose the two points with min and max
coordinates of the MBR of each line-segment (i.e., |NArdD| = 1138240 points,
|NArrD| = 383274 points). The data of these 6 files were normalized in the range
[0, 1] and the files were combined in pairs, excluding the combinations of NArr
with NArrD and NArd with NArdD (since these data sets are correlated, due
to the way D versions were created), we made 13 combinations of input sets.
We have also created synthetic clustered data sets of 125000, 250000, 500000
and 1000000 points, with 125 clusters in each data set (uniformly distributed in
the range [0− 1]), where for a set having N points, N/125 points were gathered
around the center of each cluster, according to Gaussian distribution. We made
4 combinations of synthetic data sets by combining two separate instances of
data sets, for each of the above 4 cardinalities. For each of these 17 (=13+4)
combinations of data sets, we executed the classic PS algorithm and the RRPS
algorithm, using a sliding strip, a sliding window and a sliding semi-circle, for
K equal to 1, 10, 100, 1000 and 10000. This sums up to 510 experiments (17
combinations × 2 algorithms × 3 variations × 5 K values). All experiments were
performed on a PC with Intel Core 2 Duo, 2.2 GHz CPU with 4 GB of RAM
and several GBs of secondary storage, with Ubuntu Linux v. 14.04, using the
GNU C/C++ compiler (gcc). The performance measurements were:

1. The response time (total query execution time) of processing the KCPQ,
not counting reading from disk files to main memory and sorting.

2. The number of Euclidean distance computations (dist).
3. The number of X-axis distance computations (dx).

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 487

5.1 Performance Comparison of PS Algorithms for KCPQs

In the following, out of the large amount of results obtained from experimen-
tation, some representative results are presented. In the upper (lower) part of
Table 2, the execution time in milliseconds of the classic (RRPS) algorithm, for
two real and two synthetic data set combinations, for the sliding strip, window
and semi-circle variations and for all K values are depicted. First, it is observed
that among the algorithmic variations, the sliding semi-circle is constantly the
most efficient one in both algorithms. Second, it is observed that the RRPS
algorithm outperforms the classic one in all cases for the NApp-NArdD com-
bination, for K > 1 for the 250KC-250KC combination, for K = 1 / sliding
strip and for K > 1 / sliding window or semi-circle for the 1000KC-1000KC
combination and for K > 100 for the NArr-NArd combination. In Figure 2,

Table 2. Execution times of the classic (above) and RR (below) PS algorithms

PS NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K Strip Window sCircle Strip Window sCircle Strip Window sCircle Strip Window sCircle

1 7.7 7.4 7.5 9.0 8.3 7.6 21.5 15.5 12.1 133.2 87.6 67.9
10 9.4 8.7 8.2 19.9 16.4 12.5 45.1 31.2 21.9 255.8 165.8 119.0
100 15.2 13.1 10.5 39.8 32.3 20.9 121.4 81.2 53.4 740.5 464.5 322.5
1000 34.3 28.1 19.6 98.1 76.9 46.1 329.2 221.0 140.9 2193.3 1378.3 936.7
10000 131.6 109.7 77.9 300.0 241.4 145.8 806.2 570.0 349.6 5353.3 3561.7 2281.1

RRPS NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K Strip Window sCircle Strip Window sCircle Strip Window sCircle Strip Window sCircle

1 5.8 5.7 5.4 9.0 8.5 7.7 21.0 15.8 12.3 127.3 85.8 67.4
10 7.5 7.1 6.2 19.6 16.7 12.6 40.1 28.6 20.3 219.3 147.1 105.6
100 13.0 11.2 8.2 39.2 32.2 21.1 96.3 66.7 43.5 537.0 355.6 238.1
1000 30.4 24.8 15.5 94.7 74.2 44.2 247.6 172.0 106.4 1457.5 970.0 625.4
10000 108.9 88.5 56.2 276.1 214.6 124.8 667.5 475.5 288.5 3848.3 2615.0 1632.5

the relative performance of the two algorithms is depicted for the NApp-NArdD
(upper-left diagram), NArr-NArd (upper-right diagram), 250KC-250KC (lower-
left diagram) and 1000KC-1000KC (lower-right diagram) combinations, for all
K values and all algorithmic variations. The percentages depicted express the
fraction of the difference of the execution time of the classic minus the execution
time of the RRPS algorithm, over the execution time of the classic algorithm
(called gain). In other words, they express how much time is saved (positive val-
ues) or wasted (negative values) when the RRPS replaces the classic algorithm.
These two figures were created by the same data that are depicted in Table 2
and they visualize the above conclusions about the relative performance of the
two algorithms. Note that the variation of gain values depends on the distribu-
tions of the data sets and the value of K, both of which affect the number of
computations each algorithm performs and how fast it approaches a good δ.

In Table 3 we summarize the results of relative performance for all the 255
(=510/2) cases of experimental comparisons performed. A “−” expresses gain
≤ −1.5% (the classic algorithm is more efficient), a “×” expresses −1.5% < gain

488 G. Roumelis et al.

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%

1 10 100 1000 10000

R
e

la
ti

v
e

 e
x

e
c

u
ti

o
n

 t
im

e

K

Relative Performance NApp-NArdD

S

W

SC

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 10 100 1000 10000

R
e

la
ti

v
e

 e
x

e
c

u
ti

o
n

 t
im

e

K

Relative Performance NArr-NArd

S

W

SC

-5%

0%

5%

10%

15%

20%

25%

1 10 100 1000 10000

R
e

la
ti

v
e

 e
x

e
c

u
ti

o
n

 t
im

e

K

Relative Performance 250KC-250KC

S

W

SC

0%

5%

10%

15%

20%

25%

30%

35%

1 10 100 1000 10000
R

e
la

ti
v

e
 e

x
e

c
u

ti
o

n
 t

im
e

K

Relative Performance 1000KC-1000KC

S

W

SC

Fig. 2. Relative performance of the classic and RR PS algorithms

< 1.5% (the two algorithms are almost equal) and a “+” expresses gain ≥ 1.5%
(the RRPS algorithm is more efficient). Moreover, in each row the minimum and
maximum gain is shown. The RRPS algorithm is more efficient in 217 (or in 85%
of the) cases (in fact, gain≥ 5% in 76% of the cases), the two algorithms are equal
in 22 cases, while the classic algorithm is more efficient in 16 cases. Moreover, in
all experiments the sliding semi-circle was the most efficient variation for both
algorithms.

Table 3. Summary of the relative performance of the classic and RR PS algorithms

Algorithmic variant: Sliding Strip Sliding Window Sliding Semi-Circle gain %
Set combinations K: 100 101 102 103 104 100 101 102 103 104 100 101 102 103 104 min max
NAcl−NApp + × + + + − × + + + − × + + + -4.4 39.6
NArr−NArd × × × + + − − × + + × × × + + -2.0 14.4
NArrD−NArd − − × + + − − × + + − − − + + -9.9 11.3
NArrD−NArdD + + × + + − × × + + − × × + + -2.6 10.6
All other (9/13) real
data combinations

+ + + + + + + + + + + + + + + 3.5 36.4

125KC−125KC × + + + + − + + + + × + + + + -2.5 19.8
250KC−250KC + + + + + − + + + + − + + + + -1.8 24.8
500KC−500KC + + + + + × + + + + × + + + + -0.5 29.7
1000KC−1000KC + + + + + + + + + + × + + + + 0.7 33.5

In Table 4, the relative gains in dist and dx computations of using the RRPS al-
gorithm instead of the classic algorithm, utilizing only (due to space limitations)
the semi-circle variant in both algorithms, for the same data set combinations
and K values of Table 2, are depicted. It is obvious that the use of the RRPS
algorithm saves both dist and dx computations. The percentages of gain varies

A New Plane-Sweep Algorithm for the K-Closest-Pairs Query 489

significantly. Studying the rest of the results of the 510 experiments performed,
we reach the same conclusion: the use of the RRPS algorithm always saves dist
and dx computations, but the percentage of gain varies significantly and depends
on the data sets combination, the algorithmic variation and K. Moreover, there
is no linear or other obvious relation of these percentages to the execution time
gain of using the RRPS algorithm instead of the classic algorithm. We plan to
investigate this relation futher in future work.

Table 4. Relative gain in dist and dx computations of RRPS (semi-circle variant)

NApp-NArdD NArr-NArd 250KC-250KC 1000KC-1000KC
K dist dx dist dx dist dx dist dx

1 80.5% 86.1% 91.6% 47.0% 36.4% 16.7% 38.2% 12.9%
10 56.3% 67.1% 83.2% 18.9% 33.7% 19.0% 38.4% 19.9%
100 37.9% 36.9% 75.7% 7.6% 37.8% 23.8% 40.3% 29.6%
1000 41.2% 16.9% 59.7% 3.0% 38.2% 25.4% 33.3% 34.0%
10000 47.2% 7.0% 52.5% 1.9% 25.6% 16.4% 26.6% 28.0%

6 Conclusions and Future Work

In this paper, we studied the problem of answering theKCPQ between two point
sets that reside on RAM, using PS algorithms. We utilized two improvements
(sliding window and sliding semi-circle) and proposed a new algorithm (RRPS)
that minimizes the number of dist and dx computations, in comparison to the
classic PS algorithm. By extensive experimentation using real and synthetic data
sets, we concluded that the semi-circle improvement is the most efficient one,
while the RRPS algorithm outperformes the classic one in 76% (85%) of the
cases with a performance gain ≥ 5% (1.5%) and may approach 40%.

In future work, we plan to extend the RRPS algorithm for finding closest pairs
between non point data sets, like MBR sets that are stored in nodes of two trees
and are combined during processing of distance join queries.

The development of the RRPS algorithm is the first step in developing a PS
algorithm for the K-Closest-Pairs query for data sets that cannot be completely
transferred to RAM, due to their large cardinalities. For such cases, the PS
algorithm should utilize the available RAM and process the data sets in parts,
minimizing not only distance computations but disk accesses too.

References

1. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: SIGMOD Conference,
pp. 322–331 (1990)

2. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient Processing of Spatial Joins Using
R-trees. In: SIGMOD Conference, pp. 237–246 (1993)

3. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair
Queries in Spatial Databases. In: SIGMOD Conference, pp. 189–200 (2000)

490 G. Roumelis et al.

4. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for Processing K-Closest-Pair Queries in Spatial Databases. Data & Knowledge
Engineering 49(1), 67–104 (2004)

5. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In:
SIGMOD Conference, pp. 47–57 (1984)

6. Hinrichs, K., Nievergelt, J., Schorn, P.: Plane-Sweep Solves the Closest Pair Prob-
lem Elegantly. Information Processing Letters 26(5), 255–261 (1988)

7. Hjaltason, G.R., Samet, H.: Incremental Distance Join Algorithms for Spatial
Databases. In: SIGMOD Conference, pp. 237–248 (1998)

8. Jacox, E.H., Samet, H.: Spatial Join Techniques. TODS 32(1), article 7, 1–44 (2007)
9. Kim, Y.J., Patel, J.: Performance Comparison of the R*-tree and the Quadtree for

kNN and Distance Join Queries. IEEE TKDE 22(7), 1014–1027 (2010)
10. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.

Springer (1985)
11. Rigaux, P., Scholl, M., Voisard, A.: Introduction to Spatial Databases: Applications

to GIS. Morgan Kaufmann (2000)
12. Shin, H., Moon, B., Lee, S.: Adaptive and Incremental Processing for Distance Join

Queries. IEEE TKDE 15(6), 1561–1578 (2003)
13. Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects.

VLDB Journal 21, 729–751 (2012)

Mastering Erosion of Software Architecture

in Automotive Software Product Lines

Arthur Strasser1, Benjamin Cool1, Christoph Gernert1, Christoph Knieke1,
Marco Körner1, Dirk Niebuhr1, Henrik Peters1, Andreas Rausch1,

Oliver Brox2, Stefanie Jauns-Seyfried2, Hanno Jelden2, Stefan Klie2,
and Michael Krämer2

1 TU Clausthal, Department of Computer Science, Software Systems Engineering
Julius-Albert-Straße 4, D-38678 Clausthal-Zellerfeld, Germany

2 Volkswagen AG, Powertrain Electronics
P.O. 16870, D-38436 Wolfsburg, Germany

Abstract. Most automobile manufacturers maintain many vehicle types
to keep a successful position on the market. Through the further devel-
opment all vehicle types gain a diverse amount of new functionality. Ad-
ditional features have to be supported by the car’s software. For time effi-
cient accomplishment, usually the existing electronic control unit (ECU)
code is extended.

In the majority of cases this evolutionary development process is ac-
companied by a constant decay of the software architecture. This effect
known as software erosion leads to an increasing deviation from the re-
quirements specifications. To counteract the erosion it is necessary to
continuously restore the architecture in respect of the specification.

Automobile manufacturers cope with the erosion of their ECU soft-
ware with varying degree of success. Successfully we applied a method-
ical and structured approach of architecture restoration in the specific
case of the brake servo unit (BSU). Software product lines from existing
BSU variants were extracted by explicit projection of the architecture
variability and decomposition of the original architecture. After initial
application, this approach was capable to restore the BSU architecture
recurrently.

Keywords: Architecture design, Reuse, Engineering methodologies,
Model driven development, Software product lines, Software erosion, Au-
tomotive.

1 Introduction

In the automotive sector, global markets have to be served, in which different
requirements for the vehicle exist, e.g. country and culturally specific. Thus,
specific adjusted variants of the vehicle types have to be developed and produced.
Due to high cost pressure, variants and vehicle types can not be developed
independently. Instead, potential synergies have to be exploited.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 491–502, 2014.
c© Springer International Publishing Switzerland 2014

492 A. Strasser et al.

Time

Degree of
degeneration

Pr
od

uc
t

de
sc

rip
tio

n
Ar

ch
ite

ct
ur

e

Applying methodology for
architecture regeneration

Fig. 1. Degeneration of the architecture based on iterative software development

As a result, components are built in multiple vehicle variants with different
configurations. Hence, this approach also applies for the corresponding software
modules.

The context, e.g. the available sensors and actuators, in which the software
module is used, may differ between vehicle variants. Consequently, software mod-
ules have to be able to deal with this variability. For this, product line approaches
have proven to be successful in the past.

As shown in Fig. 1, a product line is designed initially and developed over
time. It makes no difference whether the product line is explicitly planned or
exists only implicitly in the minds of the participants. This product line with its
variance regarding the available sensors, actuators and software features provides
the basis for the development of an appropriate architecture.

Over the lifetime of the product line new variation points and variants are
added. For logical reasons functioning systems are not developed from scratch,
but the current state of their architecture and implementation is consequently
developed evolutionarily. Since the implementation of new features has to be as
flawless, cost-effective and timely as possible, this type of development is often
applied in cases where the risks for faults and an explosion of costs and time are
the lowest. Apparently that is not always the ideal place in regard to the quality
of the resulting software, thus it leads to the erosion of the originally planned
architecture.

At some point structural difference between the product line and the archi-
tecture size reaches a level that it will be increasingly difficult to integrate new
features into the system with the required quality, cost and time. Using an ex-
ample from practice we show how a fundamental procedure may be designed to
optain a renewed architecture in a methodical and strutured fashion, starting
from a degenerated architecture.

[8] shows an approach to extract a product line from a user documentation.
Our approach has a similar objective, but assumes bahavior models.

Mastering Erosion of SW Architecture in Automotive SPL 493

This paper is organized as follows: Section 2 gives an overview of the state of
research and introduces our approach. The application example is introduced in
Section 3. It outlines the main steps for the extraction of product lines from the
existing variants of the brake servo unit. Section 4 summarizes the results of the
proposed approach and provides an outlook on further work.

2 Background

In the iterative development process new software product variants of high qual-
ity are developed on existing software artifacts. Initial design concepts serve
reuse and further development of product variants in each cycle of development.
If the requirements specification no longer corresponds to the architecture and
the implemented software products, the consistency between those artifacts must
be restored.

The aim of our approach is the approximation between the architecture and
the specification to minimize the so-called software erosion. In Fig. 2 this step
is shown as activity for the architecture regeneration. Then the result artifacts
can be reused and further developed in the phase of long-term evolution.

2.1 Erosion

The challenge in the development of software architecture is to minimize the
effort for implementation of design changes, particularly if the architecture yet
has been further developed. The fundamental problem is that all design deci-
sions based on the requirements during the domain analysis are only implicitly
included in the evolving architecture. If this information is not available while
changing the existing architecture (knowledge vaporization), these changes can
violate initial design decisions. This effect is called erosion and conclusively leads
to architecture degeneration [10,2].

The implemented architecture is based on the requirements specification, re-
sulting in a component-based architecture description [11]. This software archi-
tecture description provides the basis for the reuse of existing software compo-
nents and their iterative development through the implementation of new ECU
software functions.

The software components realize requirements specified by the stakeholders
depending on the vehicle model. The resulting artifacts are the interfaces and
the behavior model which are managed with tool support [11]. Implemented
variances which arise from the vehicle model, functional specifications and the
installed hardware are also specified in the result artifacts. By querying a con-
dition of the behavior model e.g. the presence of a vehicle-specific sensor can
be specified. The interfaces can be parameterized in this manner as well. This
increases the complexity of the software component.

This approach for the software component implementing complicates com-
ponent reuse and development for new and existing vehicle models. New de-
pendencies arise by the specification of variances through conditions in several

494 A. Strasser et al.

functionally distinct parts of the behavior model. If this kind of variant specifica-
tion is implemented repeatedly, the behavioral model parts, originally specified
as independent, can be difficult to identify. If the conditions also depend upon
each other, the distinction between a valid and invalid variance gets complicated
without initial design knowledge. This design freedom does not have to be doc-
umented explicitly [13]. The risk of architectural erosion increases. In order to
ensure maintainability and extensibility, it is pursued to keep this risk in the
long term to a manageable level.

2.2 Model Based Development of Automotive Software

There are several requirements in developing software architecture of powertrain
systems. Higher reuse and extensibility reduce time-to-market during the lifetime
of vehicles software and ECU generations. Separation of concerns is the necessary
design concept to fulfill these requirements. It is handled by the well-known
OSEK abstraction layers that are also applied in the AUTOSAR standard.

The models are used to separate the development of hardware related software
services from customer related software functionality (basic and application soft-
ware). Moreover it defines the architecture on a higher level of abstraction with
standardized interfaces which is suitable for independent development of auto-
motive software. However requirements and concepts for individual developed
software architectures of the applications layer needs to be identified to explore
design options [12]. Otherwise it is hardly possible to specify the applications’
concerns of functionality. Further the specification of the applications’ respon-
sibility is needed to identify reusable development artifacts. The exploration
step is challenging due to complex couplings between software functions like in
powertrain systems where a specific sensor or actuator is controlled by a set of

<<activity>>
architecture regeneration

product variant
requirements
architecture and
behavior model

feature model
use case model
regenerated architecture

<<activity>>
long term evolutionnew product line

requirements

Fig. 2. Required activities for mastering erosion in software product line

Mastering Erosion of SW Architecture in Automotive SPL 495

frequently interacting functions [3] and due to the lack of separation between
functional and architecture model during model based development [12].

In the automotive domain software architects and engineers of different disci-
plines model software with Matlab/Simulink or Ascet. Design decision are imme-
diately implemented in a graphical language as behavior models [12]. The benefit
of behavior models is the possibility of early integration which satisfies flexibility
at design time [1,11]. But the implementation does not clearly specify the con-
cern which is realized by a behavior model. However for further development an
architect must consider the couplings to system interfaces (sensors, actuators)
and the remaining distributed deployed applications in the application layer.
Otherwise modularity of the affected application can suffer after completion of
modifications.

Our approach consists of two essential steps that are called architecture regen-
eration and long term evolution to address the shortcomings. The first step aims
to extract architectural significant concerns that led to design decisions in the
eroded model artefacts. All extracted concerns are specified in the appropriate
artefacts:

– feature model: To specify corresponding vehicle variants. Associations to
variation points within the use case model and template architecture docu-
ment the affect of a configured variant in the model.

– use case model: To specify functionality-concerns as use cases of the appli-
cation which represent functional requirements.

– template architecture: To specify the components as resulting elements of the
appropriate design decisions. The template architecture provides a reusable
application design for an appropriate configuration in the feature model.

Associations between the resulting artefacts are used to track applied design
decisions in the template architecture. These tracks are considered for further
development in a long term as illustrated in Fig. 2.

2.3 Software Product Line Extraction

The aim of Software Product Line Extraction is to identify all the valid points
of variation and the associated functional requirements of component diagrams.
The correspoding steps variant analyses and requirements documentation are
illustrated in Fig. 3 The diagrams represent the behavior models and their in-
terfaces. For the variability extraction the requirements specification of the ap-
plication and the specified vehicle variants (products that reuse the application)
are analysed. This step is necessary to identify requirements that match the
applications’ functionality and the dependencies to the systems’ architecture as
described in section 2.2. In the setting of powertrain systems a functionality can
be specified, for example, as the calculation of the injected fuel quantity [3]. It
can be documented in our approach as a use case model.

In order to obtain the variability in identified product line requirements, we
apply the use case modelling technique [7]. These application requirements are

496 A. Strasser et al.

coupled with the characteristic vehicle variants that are common to all or a
part of systems’ applications by points of variation. In [4] variability of a system
characteristic is described in a feature model as variable features that can be
mapped to use cases. Feature Oriented analysis is a feasible approach for a
software product line (SPL) in complex systems [5].

Our approach exploits the associated variation points between both models. A
variation point is not only used to describe variability but also the applications
extensibility. For example the powertrain system configuration is modified by
adding sensors or subsystems. The modifications are specified in the feature
model as features using existing or new variation points. Due to the mapping of
features to use cases, associated use case variation points are influenced. These
points must be taken into account for further development. Thereby valid points
for applications’ changes can be tracked.

The Product Line UML-based Software Engineering (PLUS) approach per-
mits variability analysis based on use case scenarios and the specification of
variable properties in a feature model [6]. To carry out the variability analysis,
we use the PLUS approach to describe the variability models in a consistent
syntax. By applying the software product line approach new software products
are developed from reusable development artefacts. An alternative to SPL would
be an concept, where for each product the whole set of functions is available for
reuse [9]. Because of the limited amount of ECU memory this concept is not an
option.

The use cases of the product line core are central components of the product
line and thus present in every derived product. Optional use cases describe tasks
that do not have to be carried out by all products. These may or may not have
to be carried out by a particular product. On the other hand alternative use
cases mutually exclude each other, if they are located within the same group.
This means that two alternative use cases cannot simultaneously be part of a
derived product. After the identification of all core and variable use cases these
are grouped into features. Commonly reused scenarios are each assigned to a fea-
ture. This assignment may be stated in a table. In conclusion the dependencies
between the features in the variability model are specified according to PLUS.
Thereby the root node always groups all applications defined as the core scenar-
ios. All remaining features, such as the use cases, carry the attributes optional
or alternative and can also exhibit dependency relationships defined through
PLUS. A validly selected feature set characterizes the set of requirements (use
cases) of a particular software product.

The resulting artefacts contains the coarse architecture based on the use
case and variability model providing the starting point for the product line re-
engineering.

2.4 Software Architecture Re-engineering

Based on the result artifacts of the product line extraction, the architecture
components are designed in the next step. This is illustrated as product line
re-engineering in Fig. 3. Initial design decisions of the behavior and interface

Mastering Erosion of SW Architecture in Automotive SPL 497

Fig. 3. Procedure of the architecture regeneration approach

model must be extracted with the aid of the result artefacts of the product line
extraction. The goal is the fulfillment of the architecture quality requirements,
such as modularity and reusability of components. In particular, the quality
should be maintained on subsequent architectural changes.

A key component of the approach is the design of reusable software artefacts
by the selection of features in the variability model. All valid variants and their
requirements can be derived from features. The use cases are associated with
the respective features. In this way the variability does not need to be explicitly
described by the architecture.

Based on the existing architecture and variability model the coarse architec-
ture is refined. For each use case, software components are described, taking into
account eroded architectural elements. The variants were detected in the step
of product line extraction. Based on the features and use cases, components are
designed which are either reusable for each product or only in certain products.
The extend and include relationships in the use case model characterize variation
points for further development. This is relevant during the component design.

This approach allows further development of the product line. Dependencies
between the variants are recorded in the extraction phase. A new vehicle vari-
ant can be introduced as a new feature of a variation. Existing features and
their variation points provide their associated use cases that represent a part of
the functional application requirements. Significant requirements to determine
design decisions are carried out in the seperation of the use cases.

Each use case is associated to components that implement a set of require-
ments. The introduction of a variation point within a use case is significant to
all components that are associated with that point. The components must be
implemented as reusable application artefacts. For example differenten types of
brake-force calculations are used depending on the vehicles’ ECU configuation.
The calculated value does not vary but the type of calculation is specified as
parameterizable. A certain functionality (e.g. brake-force calculation) can be

498 A. Strasser et al.

Sensor 1

Diagnosis of
Sensor 1Diagnosis of

Sensor 2
Sensor 2

Sensor
independent

diagnosis

Sensor
selection

Pressure model

ControllingSensor
selection

Fig. 4. Component diagram including the sensors and actors of the BSU

implemented by varying component sets that must be reusable according to the
variation points. Thereby the design significant requirements can be carried out
by tracking the asscociated variation points of each component.

In the re-engineering step seperatable concerns are derived from use case
and feature models to redesign cohesion lowering elements. All decisions about
allowed seperations are made by considering the extracted variability. In this
way, the modularization during component design is supported in the long term
evolution step. New variation points must be recorded in the use case, feature
model and must be associated with the architecture. The subsequent architecture
design can be verified against the re-engineered result artefacts.

After the design, the components are connected according to their interfaces.
The connection depends on the mapped features and the variability model, re-
sulting in a product line architecture.

3 Experimental Details

The purpose of the brake servo unit (BSU) in cars is to assist the driver by
boosting his brake force. To achieve this, a vacuum (for example from the intake
manifold) is used to generate a pressure difference within the BSU. The pressure
difference results in an additional force inside the braking system.

The softwares’ objective is to guarantee a sufficiently high pressure difference
in order to achieve the required boost. Initially, only one sensor was available for
pressure measurement. The development of the controller fulfilling requirements
(e.g. by adjusting the engine speed) was model-based using behavior models.

Over time, new systems were added in cars, to which the BSU software had to
be adapted. This concerned, for example, new sensors available after the intro-
duction of electronic stability control systems (ESC), as well as new actuators
(e.g. an electrical vacuum pump). In addition cross effects of new functions such
as Start-Stop caused disturbances which the existing controllers could not han-
dle.

As shown in Fig. 4 the continuous erosion of the software architecture led to
wider component interfaces and a reduction of the components’ cohesion.

We were able to identify two major variation points within the BSU software:
sensors and methods for vacuum generation. After examination of the models,

Mastering Erosion of SW Architecture in Automotive SPL 499

we found two versions of the variation point “methods for vacuum generation”,
specifically “Subsystem x” (intake manifold evacuation), and “vacuum-pump
evacuation”.

The calculation of the pressure model, selection of the sensor signal and pres-
sure controller are located in the core of the BSU software. The use cases “sensor
1” and “sensor n” capture data from different sensors and extend the core use
case “Choose sensor value”. Each pressure control method is encapsulated in a
separate use case. They extend the core use case “Control pressure difference”.

For a more detailed description of the use cases, templates are used to docu-
ment the variability adequately.

We were able to decompose the function into smaller components with higher
cohesion with respect to these use cases (Fig. 6) and the feature model (Fig. 5)
and developed an architecture template model (Fig. 7) to describe the possible
connections of the components. This model can be used to derive an architecture
for every configuration.

4 Results and Discussion

Originally there was a general variant of the software, which evacuated the vac-
uum chamber of the BSU through the intake manifold. Later on a variant of
BSU software was added, that featured an electric vacuum pump for the evac-
uation. The software variance was constituted by the presence or absence of
a mechanical vacuum pump. When implementing the variability into software
the developers chose the simplest and fastest way: Since the mechanical vacuum
pump was installed only in diesel vehicles, the variance was realized by a query
whether there is a gasoline or diesel engine. This query was already used in other
vehicle functions.

This solution established itself over time, but was insufficient with the in-
troduction of hybrid vehicles, as they may have both a gasoline engine and an
electric vacuum pump. Therefore, the developers extended the initial ”gasoline

<<common feature>>
BSU-Kernel

<<optional feature>>
Subsystem x

Requires

<<zero-or-more-of-
feature group>>

Methods for vacuum
generation

Requires

<<optional feature>>
Vacuum pump

evacuation

<<optional feature>>
Sensor 1

<<zero-or-more-of-
feature group>>

Sensors

<<optional feature>>
Sensor n

Fig. 5. Resulting feature model after the architecture regeneration activity

500 A. Strasser et al.

BSU

<<kernel>> BSU

<<kernel>>
Compute modelled
pressure difference

<<kernel>>
Choose sensor value

<<kernel>>
Control pressure

difference

<<extend>>

<<optional>> Detect
sensor 1

<<optional>> Detect
sensor n

Sensor 1

Sensor n

<<extend>>

<<extend>>

<<optional>>
Control pressure difference

through subsystem x

Subsystem x

<<optional>>
Control pressure difference

through subsystem y

Subsystem y

<<optional>>
Control pressure difference

through elec. pump

Electrical pump

<<extend>>

<<extend>>

<<extend>>

Fig. 6. Use case diagram of the BSU. Sensors and subsystems are displayed as UML
actors.

or diesel engine” query by another query, whether it is a hybrid vehicle. While
this was purposeful to allow quick implementation of the BSU software for hy-
brid vehicles, it no longer corresponded to the original motivation whether a
vacuum pump is available. Multiple implementations of such quick solutions in
both actuator and sensor variance, led to a difficult to overlooking, hardly main-
tainable and extensible BSU software system. An extensive analysis and de novo
establishment of a product line within the BSU software, an architecture regen-
eration was required. In the extraction phase we specified two use case groups
and two variation points that match the systems’ functionality. One use case
group considers requirements which must be fulfilled by all ECU configurations
(uses core BSU control application) and another group that must only be real-
ized by some ECU configurations. The variation points that extend (modify) a
certain functionality at a defined point of bahavior are associated with two fea-
tures of the feature model. The two feature-groups group another features that

Sensor 1 Diagnosis of
Sensor 1

Sensor 2 Diagnosis of
Sensor 2

Sensor
independent

diagnosis

Sensor
selection

Pressure model

Controlling

Fig. 7. Resulting domain specific template model of the BSU software

Mastering Erosion of SW Architecture in Automotive SPL 501

represent different variants of evacuation methods and sensors. The group is as-
sociated with a variation point within the use case “control pressure difference”.
Every grouped feature can be independently selected for a valid ECU configura-
tion. Thereby we documented the extensibility requirements as variation points
within the two use cases.

The extracted product line requirements include significant design constraints
that must be considered by the architect. All components that are associated
with the kernel use cases realize the functionality BSU pressure control. All
components that are associated with extended use cases interact with the BSU
pressure control through generic interfaces. Moreover a certain extended use
case (e.g. sensor 1) is associated with components that realize the appropriate
sensor concern. These design decision can be tracked and verified against further
modifications to obtain a modular design. This enables the interconnect of all
components according to feature selection. We call the final design “template
architecture”.

A design decision that would cause additional dependencies between compo-
nents which are associated to different variation points of the BSU, violate the
modularity. Our approach establishes a relation between the variability models
(functionality model) and the template architecture (architecture model) by ap-
plying the extraction phase. In the BSU real world example all use cases are
one-to-one mapped to variation point features. The verification of components
that are affected by a more complex variability is still under research of our
working group.

5 Conclusion

We proposed an approach to support effectively avoiding erosion of software
architecture by a product line which is enhanced iteratively. By continuously
applying the long term evolution step, a strong cohesion of the software compo-
nents is achieved improving maintainability and extensibility of the software.

One important advantage of the template architecture is modularity. Evolu-
tion can be done on every single component without considering further BSU
component dependencies. New functional requirements must be realized with re-
spect to the existing use case model, variability model and template architecture,
following our two staged methodology. This minimizes the risk to violate the re-
quirements specification by making future design modifications. In addition, the
effort for software configuration in certain hardware environments is decreased.
By realizing variability on the level of software architecture, readability of all
model components is improved.

Initially the BSU software was developed ECU independent. The correspond-
ing behavior model does not include any memory or processor specific data types
but was configurable by parameters depending on used actuator- and sensor-
hardware. We recommend to focus on those features in automotive software
architectures when applying our methodology.

Our approach was demonstrated by a real-world case study of a brake servo
unit. The results of the case study are relevant for future automotive systems,

502 A. Strasser et al.

too. The case study shows how the methodology is used to design modular and
reusable software components, characterizing the variability of the system (ECU)
configuration.

The BSU software based on the extracted product lines has already been par-
tially implemented. Experiences concerning extendability of the software could
be gained. Future work can refer to elaborating an integrated tool-chain sup-
porting the modeling languages used in our approach adequately.

References

1. Andrews, D., Bate, I., Nolte, T., Otero-Perez, C., Petters, S.M.: Impact of embed-
ded systems evolution on rtos use and design. In: 1st International Workshop Op-
erating System Platforms for Embedded Real-Time Applications, OSPERT 2005
(2005)

2. Bosch, J.: Software architecture: The next step. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer,
Heidelberg (2004)

3. Claraz, D., Kuntz, S., Margull, U., Niemetz, M., Wirrer, G.: Deterministic execu-
tion sequence in component based multi-contributor powertrain control systems.
In: Embedded Real Time Software and Systems Conference (2012)

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Ad-
dison Wesley (2001)

5. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wäsowski, A.: Cool
features and tough decisions: a comparison of variability modeling approaches.
In: Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS 2012, pp. 173–182. ACM, New York (2012)

6. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley Professional (2004)

7. Jacobson, I., Griss, M., Jonsson, P.: Software reuse: architecture, process and orga-
nization for business success. ACM Press/Addison-Wesley Publishing Co. (1997)

8. John, I., Dörr, J.: Elicitation of requirements from user documentation. In: Ninth
International Workshop on Requirements Engineering: Foundation for Software
Quality, REFSQ 2003, Klagenfurt/Velden (2003)

9. Krueger, C.W.: Introduction to the emerging practice software product line devel-
opment. Methods & Tools 14, 3–15 (2006)

10. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

11. Pretschner, A., Broy, M., Krüger, I.H., Stauner, T.: Software engineering for au-
tomotive systems: A roadmap. In: Future of Software Engineering, FOSE 2007
(2007)

12. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automo-
tive applications. Computer 40(10), 42–51 (2007)

13. Weber, M., Weisbrod, J.: DaimlerChrysler-Research: Requirements engineering in
automotive development: Experiences and challenges. In: Proceedings of the IEEE
Joint International Conference on Requirements Engineering 2002 (2002)

Shortest Unique Substrings Queries in Optimal

Time

Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. We present an optimal, linear time algorithm for the short-
est unique substring problem, thus improving the algorithm by Pei et
al. (ICDE 2013). Our implementation is simple and based on suffix ar-
rays. Computational experiments show that our algorithm is much more
efficient in practice, compared to that of Pei et al.

1 Introduction

The shortest unique substring problem was proposed by Pei et al. [4]. Given a
string S and position p, the problem is to find a shortest unique substring (SUS)
of S that contains position p, that is, a substring that only occurs once in S,
and whose occurrence contains position p. They also consider a version of the
problem where S may be preprocessed, and SUS queries for arbitrary positions
may be answered efficiently.

For the first version of the problem, Pei et al. [4] presented an algorithm that
computes the SUS for any given position p in O(n) time and space, where n
is the length of string S. For the second version, they present an O(hn) time
and O(n) space preprocessing algorithm which allows queries to be answered in
constant time, where h is a value depending on S. However, h is only bounded
by O(n), and in the worst case, this results in O(n2) time pre-processing.

The contributions of this paper is as follows: First, we give optimal time so-
lutions for both problems and show that S can be preprocessed in O(n) time so
that a SUS for any query position can be answered in O(1) time. This consider-
ably improves the theoretical worst case running time compared to Pei et al. [4],
allowing us to output a SUS for all positions in the string in O(n) total time.
Second, we consider the general problem of computing all SUSs that contain a
given position. Although there can be multiple shortest substrings that contain
a given query position, Pei et al. [4] only considered the problem of answering
a single SUS that contains a position. We show that the same linear time pre-
processing above also allows us to return all SUSs that contain a given query
position in O(k) time, where k is the size of the output. Finally, we implement
our algorithm and show through computational experiments that our implemen-
tation is much more practical and scalable compared to an implemention of the
algorithm by Pei et al. [4] made available by the authors.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 503–513, 2014.
c© Springer International Publishing Switzerland 2014

504 K. Tsuruta et al.

2 Preliminaries

2.1 Strings

Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length
0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
A prefix (resp. substring, suffix) x of w is called a proper prefix (resp. substring,
suffix) of w if x �= w. The i-th character of a string w is denoted by w[i], where
1 ≤ i ≤ |w|. For any integers i ≤ j, let [i..j] denote an interval, i.e. the set of
integers {i, . . . , j}, and let |[i..j]| = j − i + 1 denote the length of the interval.
For convenience, let [i..j] denote the empty set when i > j. For a string w
and interval [i..j] where 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j] denote the
substring of w that begins at position i and ends at position j. For convenience,
let w[i..j] = ε when i > j. For any string w and S, we call a position p an
occurrence of w in S, if S[p..p+ |w| − 1] = w.

Given two distinct positions i, j (i < j), we say that i is to the left and j the
right. Two distinct intervals are nested, if one is a subset of the other. For two
non-nested intervals [i..j] and [i′..j′], we say that [i..j] is to the left and [i′..j′]
is to the right, if i < j. Since, for any interval [i..j] (1 ≤ i ≤ j ≤ |S|) there is a
corresponding substring S[i..j] of S, we abuse the language and will many times
call an interval a substring.

2.2 Unique Substrings

We say that a substring w of S is unique, if there is exactly one occurence of w
in S. When w is unique, the interval [i..i+ |w|−1] such that S[i..i+ |w|−1] = w
is called a unique interval of S. We say that a unique substring w of S contains
position p, if w = S[i..i+ |w|−1] and p ∈ [i..i+ |w|−1]. It is easy to see that any
string that contains a substring that is unique, is also unique, and any interval
that contains a sub-interval that is unique, is also unique.

Definition 1 (Shortest Unique Substring). A substring w is a shortest
unique substring (SUS) of S that contains position p, if w = S[i..j] is unique in
S, i ≤ p ≤ j, and no other substring w′ = S[i′..j′] such that i′ ≤ p ≤ j′ and
j′ − i′ < j − i is unique in S.

Note that there can be more than one SUS that contains position p as shown
in the following example. Let SUSS(p) denote the set of intervals corresponding
to SUSs of S that contains position p. Note that SUSS(p) �= ∅ for any position
1 ≤ p ≤ |S|.

Example 1 (SUS). Let S = aabaabcababbaabdbab. Then, SUSS(2) = {[1..4],
[2..5]}, SUSS(4) = {[1..4], [2..5], [4..7]}, SUSS(9) = {[7..9]}, SUSS(10) = {[10..
12] }. (See Fig. 1)

In this paper, we focus on the following problems.

Shortest Unique Substrings Queries in Optimal Time 505

SUS(9) SUS(10)

MUS

SUS(4)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 a a b a a b c a b a b b a a b d b a bS

meaningless MUS

Fig. 1. Example of a string and its SUSs (see Definition 1) and MUSs (see Definition 2).
Although all 6 MUSs are depicted, SUS(p) is depicted only for positions 4, 9 and 10.
MUSS = {[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. SUSS(4) = {[1..4], [2..5], [4..7]},
SUSS(9) = {[7..9]}, SUSS(10) = {[10..12]}. The MUS [8..11] is meaningless since no
SUS contains it, while the others are meaningful (see Definition 7).

Problem 1 (SUS query). Given string S of length n, compute for all positions
p (1 ≤ p ≤ n), a shortest unique substring that contains position p.

Problem 2 (All SUS query). Given string S of length n, compute for all positions
p (1 ≤ p ≤ n), all shortest unique substrings that contain position p.

Problem 1 was first considered by Pei et al. [4]. They first gave a simple O(n)
time algorithm for computing an SUS for a single p. However, this would result
in O(n2) time for computing a SUS for each p. Thus, they further showed an
improved algorithm which pre-process S in O(hn) time, and allows queries for
any p in O(1) time, where h is a parameter that depends on S. This results in an
O(hn) time solution for computing the SUS for all positions 1 ≤ p ≤ n. Although
Pei et al. [4] gave empirical evidence that h is not very large in practice, they
were not able to give a good theoretical bound on h, mentioning that h can be
as large as O(n), resulting in O(n2) time worst case pre-processing time.

In this paper, we give optimal time solutions for both problems, and show
that S can be preprocessed in O(n) time so that the queries can be answered in
O(k) time, for any query position p, where k is the size of the output. Noting
that k is O(1) for Problem 1, this results in an O(n), i.e. a truly linear time
solution for computing the SUS for all positions 1 ≤ p ≤ n.

Like the algorithm by Pei et al. [4], our algorithm finds SUSs, based on the
concept of Minimal Unique Substrings defined below.

Definition 2 (Minimal Unique Substring). A substring w of S is a minimal
unique substring (MUS) if w is unique in S, and no proper substring of w is
unique in S.

Let MUSS denote the set of intervals corresponding to MUSs of string S.
Notice that by definition, MUSs of S can overlap with each other, but cannot
be nested. This implies that there can exist at most one MUS starting at a
given position in S. Also, since there must exist at least one MUS, we have
0 < |MUSS | ≤ |S|.

Example 2 (MUS). Let S = aabaabcababbaabdbab, the same string as in Ex-
ample 1. MUSS = {[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. (See Fig. 1)

506 K. Tsuruta et al.

2.3 Data Structures

We utilize the following data structures and algorithms. While the main data
structure used by Pei et al. [4] was the suffix tree [5], we use the suffix array [3],
which is theoretically almost equivalent to the suffix tree, but more time and
space efficient in practice.

Definition 3 (Suffix Array [3]). The suffix array SA of a string S of length
n is a permutation of integers {1, . . . , n}, such that SA[i] = j represents the ith
lexicographically smallest suffix S[j..n] of S.

Theorem 1 ([1]). Assuming an integer alphabet, the suffix array of a string S
of length n can be constructed in O(n) time.

Definition 4 (Rank array). The rank array SA−1 of a string S of length n,
is a permutation of integers {1, . . . , n}, such that SA−1 [SA[i]] = i.

Given SA, SA−1 can be computed in O(n) time by a simple loop over SA.

Definition 5 (LCP array). The longest common prefix (lcp) array LCP of
a string S of length n, is an array of integers where LCP [1] = 0 and LCP [i]
for 1 < i ≤ n holds the length of the longest common prefix between suffix
S[SA[i− 1]..n] and S[SA[i]..n], where SA is the suffix array of S.

Theorem 2 ([2]). Given string S of length n and its suffix array SA, the lcp
array LCP of S can be computed in O(n) time.

3 Algorithm

3.1 Finding All MUSs

Here, we describe how to find all MUSs of a string S in linear time, using the
suffix and lcp arrays of S.

Lemma 1. All MUSs of a string S of length n can be found in O(n) time and
space.

Proof. Let SA and LCP respectively be the suffix array and lcp array of S. For
any suffix S[j..n] where SA[i] = j (or SA−1 [j] = i), the shortest prefix of S[j..n]
that is unique is given by S[j..j + �j] where

�j =

{
max{LCP [i],LCP [i+ 1]} 1 ≤ i < n
LCP [i] i = n.

The definition of �j implies that S[j..j + �j − 1] is not unique. Thus, S[j..j + �j]
is the only candidate for a MUS starting at position j, and is a MUS if and
only if S[j + 1..j + �j] is not unique. Since the definition of �j+1 implies that
S[j+1..j+�j+1] is not unique, S[j..j+�j] is a MUS if and only if j+�j ≤ j+�j+1.
Once SA, SA−1 , and LCP are computed in O(n) time, this can be checked in
O(1) time for each j. Therefore, the lemma follows since �j for all 1 ≤ j ≤ n can
be computed in a total of O(n) time. ��

Shortest Unique Substrings Queries in Optimal Time 507

3.2 SUSs from MUSs

Next, we consider the relation between MUSs and SUSs.

Definition 6. For an interval [i..j] and position p, let cover ([i..j], p) denote the
smallest interval that contains [i..j] and p, i.e. cover ([i..j], p) = [min(i, p)..max(j,
p)]. We say that cover ([i..j], p) is derived from interval [i..j] and position p.

We first show that any SUSS(p) is derived from an element in MUSS . The
following Lemma is essentially the same as Theorem 2 in [4], but the statement
has been reworded for our purposes.

Lemma 2. For any position p and interval [i..j] ∈ SUSS(p), there exists exactly
one sub-interval [i′..j′] ∈ MUSS of [i..j] such that [i..j] = cover ([i′..j′], p).

Proof. Since [i..j] is unique, it must contain at least one minimal unique sub-
interval. Let [i′..j′] be any MUS contained in the SUS [i..j]. Since i ≤ p ≤ j,
cover ([i′..j′], p) is unique, contains position p, and is a sub-interval of [i..j]. Thus,
[i..j] = cover([i′..j′], p) must hold, since otherwise, cover ([i′..j′], p) would be an
interval shorter than [i..j] containing position p, contradicting the assumption
that [i..j] is an SUS.

Next we show that there is exactly one MUS contained in a SUS. Suppose
there are two distinct minimal unique sub-intervals [i1..j1] and [i2..j2] of [i..j].
From the above arguments, [i..j] = cover ([i1..j1], p) = cover ([i2..j2], p) must
hold. Since MUSs cannot be nested, both must be proper sub-intervals of [i..j],
and we assume without loss of generality that i ≤ i1 < i2 and j1 < j2 ≤ j.
However, if i ≤ p < j, then cover([i1..j1], p) �= [i..j] since max{p, j1} < j, and
if i < p ≤ j, then cover([i2..j2], p) �= [i..j] since min{p, i2} > i. Thus, there can
only be one MUS that is contained in a given SUS. ��

For the purpose of describing our algorithm, we define a generalization of
SUSs with respect to a subset of MUSs, namely, MUSs that begin at or before
a certain position. Let MUSk

S = {[i..j] ∈ MUSS | i ≤ k}. We define SUSk
S(p)

to be the subset of intervals which are shortest, of the intervals that can be
derived from intervals in MUSk

S and position p, i.e., [i..j] ∈ SUSk
S(p) if [i..j] =

cover ([i′..j′], p) for some [i′..j′] ∈ MUSk
S , and |[i..j]| ≤ |cover([i′′..j′′], p)| for any

[i′′..j′′] ∈ MUSk. Let lmSUSk
S(p) denote the leftmost interval of SUSk

S(p), and
lmMUSk

S(p) the interval in MUSk that derives lmSUSk
S(p).

Note thatMUSS = MUSn
S , and SUSS(p) = SUSn

S(p). Also note that although

for any k < k′, MUSk
S ⊆ MUSk′

S , it is not necessarily the case that SUSk
S(p) ⊆

SUSk′
S (p).

Next, we define the concept of meaningful and meaningless MUSs, which is
the main difference of our algorithm with [4].

Definition 7 (Meaningful Minimal Unique Substring). We say that an
interval [i..j] ∈ MUSk

S is meaningful with respect to MUSk
S, if, for some position

p, cover ([i..j], p) ∈ SUSk
S(p). Otherwise, we say that a minimal unique substring

is meaningless with respect to MUS k
S.

508 K. Tsuruta et al.

Example 3 (Meaningful MUS). Let S = aabaabcababbaabdbab, the same string
as in Example 1. Then, the set of MUSs {[1..4], [2..5], [7..7], [11..12], [16..16]} are
meaningful, since they respectively derive SUSs corresponding to positions 4, 9
and 10. However, MUS [8..11] is meaningless, it does not derive any SUS. (See
Fig. 1)

Observation 1. For any k < k′, if an interval [i..j] ∈ MUSk
S is meaningless

with respect to MUSk
S, then it is meaningless with respect to MUSk′

S .

Let MMUSk
S denote the set of all meaningful MUSs with respect to MUSk

S .
We first show that if we have an array MMUSS = MMUSn

S of meaningful MUSs
with respect to MUSS , in order of their occurrence, and for each position p
we hold an index L[p] such that MMUSS [L[p]] = lmMUSn

S(p), we can answer
SUSS(p) in O(|SUSS(p)|) time.

To prove this, we give a more specific characterization of which MUSs can
derive elements of SUSS(p). Let MUSS(p) denote the set of MUSs that contain
position p, i.e.,

MUSS(p) = {S[i..j] ∈ MUSS | i ≤ p ≤ j}.

MUSS(p) can be empty. For any position p, let predS(p) = [i..j] represent the
rightmost MUS that occurs before position p if one exists, that is, [i..j] ∈ MUSS ,
j < p, and there exists no [i′..j′] ∈ MUSS such that j < j′ < p. Similarly, let
succS(p) = [i..j] represent the leftmost MUS that occurs after position p if one
exists, that is, [i..j] ∈ MUSS , i > p, and there exists no [i′..j′] ∈ MUSS such
that p < i′ < i. We say that the set {predS(p), succS(p)}∪MUSS(p) is the MUSs
in the neighborhood of position p.

The following lemma shows that |cover ([i..j], p)| for MUSs [i..j] in the neigh-
borhood of position p which are meaningful with respect to MUSk

S and are to the
right of lmMUSk

S(p) (including lmMUSk
S(p)), form a monotonically increasing

sequence.

Lemma 3. Consider any position p and integer k, and let [i..j] = lmMUSk
S(p).

Any two distinct intervals [i1..j1], [i2..j2] ∈ {{predS(p), succS(p)}∪MUSS(p)}∩
MMUSk

S such that i ≤ i1 < i2, satisfy |cover ([i1..j1], p)| ≤ |cover ([i2..j2], p)|.

Proof. Suppose to the contrary that |cover ([i1..j1], p)| > |cover ([i2..j2], p)|. Since
cover ([i..j], p) ∈ SUSk

S(p), it holds that |cover ([i..j], p)| ≤ |cover ([i2..j2], p)| <
|cover ([i1..j1], p)|. For all positions i ≤ p′ < p, it holds that |cover ([i..j], p′)| ≤
|cover ([i..j], p)| < |cover([i1..j1], p)|. Since [i..j] = lmMUSk

s (p) and i < i1, it
holds that [i1..j1] �= preds(p) and p′ < p ≤ j1. Since p′ < p ≤ j1, it holds that
|cover ([i1..j1], p)| ≤ |cover ([i1..j1], p′)|. Similarly, for all positions p < p′ < j2,
it holds that |cover ([i2..j2], p′)| = |cover ([i2..j2], p)| < |cover([i1..j1], p)|. Since
|cover ([i1..j1], p)| > |cover ([i2..j2], p)|, it holds that [i1..j1] �= succs(p) and i1 ≤
p < p′. It holds that |cover ([i1..j1], p)| ≤ |cover ([i1..j1], p′)|.

Also, for any position p′ < i, |cover ([i..j], p)| < |cover ([i1..j1], p)|, and for any
position p′ > j2, |cover ([i2..j2], p)| < |cover([i1..j1], p)|. This implies that [i1..j1]

Shortest Unique Substrings Queries in Optimal Time 509

cannot be meaningful for all positions 1 ≤ p′ ≤ n, and must be meaningless with
respect to MUSk

S , contradicting the assumption that [i1..j1] ∈ MMUSk
S . Thus,

it must be that |cover ([i1..j1], p)| ≤ |cover ([i2..j2], p)|. ��
The next lemma shows that intervals in SUSk

S(p) are the shortest ones derived
from MUSs in the neighborhood of position p which are meaningful with respect
to MUSk

S .

Lemma 4. Consider position p, integer k, interval [i..j] ∈ MUSk
S, and let Y =

{{predS(p), succS(p)}∪MUSS(p)}∩MMUSk
S. If cover ([i..j], p) ∈ SUSk

S(p), then
[i..j] ∈ Y and |cover([i..j], p)| ≤ |cover ([i′..j′], p)| for all intervals [i′..j′] ∈ Y .
Proof. Assume cover ([i..j], p) ∈ SUSk

S(p) holds. Since Y ⊆ MUSk
S and by the

defintion of SUSk
S(p), |cover ([i..j], p)| ≤ |cover ([i′..j′], p)| holds for all [i′..j′] ∈ Y .

It is easy to see that [i..j] cannot be to the left of predS(p), since then,
|cover ([i..j], p)| > |cover(predS(p), p)| and [i..j] could not be in SUSk

S(p). Sim-
ilarly, [i..j] cannot be to the right of succS(p), since then, |cover ([i..j], p)| >
|cover (succS(p), p)| and again, [i..j] could not be in SUSk

S(p).
Finally, by the definition of meaningful, [i..j] ∈ MMUSk

S . ��

Algorithm 1. SUSS(p) from L and MMUSS .

Input: position p, MMUSS , L
Output: SUSS(p)

1 t ← L[p];
2 l ← |cover (MMUSS [t], p)| ; // length of SUS

3 while |cover (MMUSS[t], p)| = l do
4 output cover(MMUSS[t], p);
5 t ← t+ 1;

6 end

Theorem 3. Given an array MMUSS of all meaningful MUSs with respect to
MUSS in order of occurrence, and an array L of size n, where, for each po-
sition 1 ≤ p ≤ n, MMUSS [L[p]] = lmMUSn

S(p), we can compute SUSS(p) in
O(|SUSS(p)|) time.

Proof. The pseudo code of the algorithm is shown in Algorithm 1. By defini-
tion of MMUSS and L, it is clear that the first output is lmSUSn

S(p), i.e., the
leftmost SUS that contains position p. From Lemma 2 and by the definition of
a meaningful interval, it is easy to see that all MUSs that derive elements in
SUSS(p) must be in MMUSS .

It remains to prove that each element in SUSS(p) is derived from MUSs
in a contiguous range in MMUSS . This can be seen from Lemmas 3 and 4,
which claim that all MUSs in SUSS(p) are in the neighborhood of position p
that are meaningful with respect to MUSS , and for all such meaningful MUSs
[i..j] to the right of lmMUSn

S(p) (including lmMUSn
S(p)), cover([i..j], p) forms a

monotonically increasing sequence. ��

510 K. Tsuruta et al.

Algorithm 2. Create array MMUSS of meaningful MUSs and an array of
pointers L to lmMUS for each position of string S

Input: LCP and RANK array for string S.
Output: MMUS [1..|MMUS .size()|]: array of meaningful MUSs; L[1..n]: index

in MMUS of leftmost SUS for each position.
1 for p ← 1 to n do
2 � ← MMUS .size();

// lmMUS for position p wrt MUSp−1
S is either the same as p− 1,

or the next one.

3 if p = 1 then
4 L[1] ← 1; // Core MUS of position 1 is leftmost MUS.

5 else if L[p− 1] < � and
|cover (MMUS [L[p − 1] + 1], p)| < |cover (MMUS [L[p− 1]], p)| then

6 L[p] ← L[p− 1] + 1;

7 else
8 L[p] ← L[p− 1];

// update MMUS and L to values wrt MUSp
S

9 if exists MUS: newMUS = [p, e] for some e ≥ p. then // O(1) time using

LCP and RANK array

10 if � > 0 then
// j: rightmost position that doesn’t need update

11 j ← max{i ≤ p | |cover(MMUS [L[i]], i)| ≤ |cover (newMUS , i)|};
12 if j = p then // No updates for L. Remove meaningless MUSs

from MMUS
13 MMUS ← MMUS [1..k] where

k = max{k′ ≤ � | |cover (MMUS [k′], p)| ≤ |cover (newMUS , p)|};
14 else // remove meaningless MUSs after the one pointed by j

and newMUS
15 MMUS ← MMUS [1..k] where k = max{k′ ≤ � |

|cover (MMUS [k′], j)| ≤ |cover (MMUS [L[j]], j)|};
16 for j + 1 ≤ i ≤ p do L[i] ← k + 1; // update L to new MUS

17 MMUS .push back(newMUS);

Next we show that MMUSS and L can be constructed in linear time, by
incrementally updating MMUSk

S and L. Let Lk denote an array of indices where
MMUSk

S [L
k[p]] = lmMUSk

S(p).

Lemma 5. Lp−1[p] is either the MUS [i..j] pointed to by Lp−1[p − 1], or the
next MUS [i′..j′] in MMUS p−1

S , i.e., the one pointed to by Lp−1[p− 1] + 1.

Proof. By definition, [i..j] = lmMUSp−1
S (p − 1). Let [i′′..j′′] be an arbitary in-

terval in MMUS p−1
S to the right of [i..j]. Then, [i′′..j′′] ∈ MUS p−1

S (p − 1) ∩
MUS p−1

S (p), since we have that i < i′′ ≤ p − 1, and if j < j′′ < p, then
|cover ([i..j], p − 1)| = |[i..p − 1]| > |[i′′..p − 1]| = |cover ([i′′..j′′], p − 1)|

Shortest Unique Substrings Queries in Optimal Time 511

contradicting the definition of [i..j]. Thus, we have that |cover ([i′′..j′′], p− 1)| =
|cover ([i′′..j′′], p)|, and from Lemma 3, these values are monotonically increasing.
Therefore, the first one, which is [i′..j′] = MMUS p−1

S [Lp−1[p− 1] + 1], gives the

smallest value. Note that [ip..jp] = lmMUS p−1
S (p) cannot be to the left of [i..j]; If

p ≤ jp, then since ip < i < p ≤ jp < j and from the definition of [ip..jp], we have
|cover ([ip..jp], p−1)| = |cover([ip..jp], p)| ≤ |cover ([i..j], p)| = |cover([i..j], p−1)|
which contradicts the definition of [i..j] If jp ≤ p− 1, then cover([ip..jp], p− 1)+
1 = cover ([ip..jp], p) ≤ cover([i..j], p) ≤ cover ([i..j], p− 1)+ 1, again contradict-

ing the definition of [i..j]. Thus, lmMUS p−1
S (p) must be either [i..j] or [i′..j′]. ��

Theorem 4. MMUSS and L can be constructed in linear time.

Proof. The pseudo code of the algorithm is shown in Algorithm 2. The algorithm
computes MMUSS and L for increasing positions. For each value of p, we assume
that MMUS p−1

S and Lp−1[1..p− 1] are correctly computed, and we update them
to correct values of MMUS p

S and Lp[1..p].

Lines 3-8 in Algorithm 2 compute Lp−1[p] from Lp−1[p− 1], and MMUS p−1
S .

The correctness can be seen from Lemma 5. The calculation for updating L can
be done in constant time for each position.

Next, we show how to compute MMUS p
S and Lp[1..p] given MMUS p−1

S and
Lp−1[1..p]. The existence of an MUS starting at position p can be checked in
constant time with Lemma 1. If there exists no such MUS, then, sinceMUS p−1

S =

MUS p
S , MMUS p

S = MMUS p−1
S and Lp[p] = Lp−1[p], and no update is required.

If there does exist [p..e] ∈ MUSS for some e ≥ p, we check previous positions
i ≤ p to see if Lp−1[i] needs to be updated to Lp[i]. Such positions i satisfy
|cover (MMUS p−1

S [Lp−1[i]], i)| > |cover ([p..e], i)|, and if for some position j this
does not hold, then it is easy to see that it does not hold for all j′ ≤ j. Let j
be the rightmost position such that the condition does not hold, i.e., Lp−1[1..j]
does not need to be updated.

If j = p, this means that no values in Lp−1[1..p] need to be updated,
and Lp[p] = Lp−1[p]. Concerning updating MMUS p−1

S , we can easily see that
cover ([p..e], n) ∈ SUSp

S(n), and thus [p..e] will be the last element in MMUS p
S .

However, MUSs in MMUS p−1
S may become meaningless with respect to MUS p

S ,
because of the addition of [p..e]. These are the ones to the right of [i′..j′] =
MMUS p−1

S [Lp[p]]. They can be found and removed in line 13, whose correctness
can be seen from Lemma 3.

If j < p, MUSs in MMUS p−1
S [L[j] + 1..�] such that |cover(MMUSS [k

′], j)| >
|cover (MMUSS [j], j)|, i.e., those that do not derive an interval in SUSp

S(j) be-
come meaningless with respect to MUSp

S , so are removed in line 15. The cor-
rectness can also be seen from Lemma 3.

Although there may be more than a constant number of positions and MUSs
that need to be updated with the addition of [p..e], the cost can be amortized.
Such operations correspond to lines 11, 13, 15, and 16 of Algorithm 2.

The time required for lines 11 and 16 is linear in the number of updates
required for L. We show that L[p] for each p is updated only a constant number of
times. Lp−1[p] is first determined at lines 3-8, with respect to MUSp−1

S , pointing

512 K. Tsuruta et al.

to predS(p) or the leftmost shortest element in MUSS(p) ∩ MUS p−1
S . It can be

seen from Lemma 4 that for all p′ ≥ p, Lp′
[p] can only point to predS(p), the

leftmost shortest element inMUSS(p) (= MUSS(p)∩MUS p′
S), or succS(p). There

are only two possibly remaining MUSs that will be added toMUSS(p)∩MUS p−1
S

and update L[p]; an MUS inMUSS(p) beginning at position p, or succS(p). Thus,
the total time for this is linear in the number of positions.

The time required for lines 13 and 15, is linear in the number of intervals added
or deleted from MMUS . Since each interval in MMUS is added or removed at
most once, the total time for this update is linear in the total number of MUSs
in S, which is O(n). Thus, the total time of the algorithm is O(n). ��

From Theorems 3 and 4, we obtain the following main theorem.

Theorem 5. A string S of length n can be preprocessed in O(n) time and space
so that shortest unique substring queries can be answered in O(k) time, where k
is the number of shortest substrings returned. Notably, outputting a single SUS
can be done in O(1) time.

4 Computational Experiments

We implemented our algorithm using the C++ language. All computational
experiments were conducted on a MacPro (Early 2008) with two 3.2GHz Quad
Core Xeon processors and 18GB Memory (DDR2 FB-DIMM 800MHz). We use
libdivsufsort (http://code.google.com/p/libdivsufsort/) for construction
of the suffix array.

Table 1. Comparison of Computation Time

english
(|Σ| =239)

dna
(|Σ| =16)

dblp.xml
(|Σ| =97)

protein
(|Σ| =27)

n (MB) time (sec) time (sec) time (sec) time (sec)

TSUS RSUS TSUS RSUS TSUS RSUS TSUS RSUS

10 4.21 122.31 4.79 18.63 3.42 14.34 4.01 28.28

20 9.16 324.58 10.54 40.46 7.44 29.98 9.04 66.74

30 14.13 445.84 16.45 61.80 11.43 46.51 14.57 108.00

40 20.14 500.19 23.06 84.75 16.17 62.76 21.68 151.85

50 25.62 580.00 29.31 107.34 20.35 78.73 28.90 197.99

60 31.20 667.16 36.08 131.38 24.62 95.55 35.61 242.55

70 38.26 N/A 43.90 N/A 30.14 728.71 43.96 N/A

80 44.00 N/A 50.83 N/A 34.67 N/A 51.01 N/A

90 50.37 N/A 57.88 N/A 39.03 N/A 58.13 N/A

100 56.71 N/A 65.17 N/A 43.30 N/A 64.22 N/A

We used data taken from the Pizza & Chile corpus (http://pizzachili.dcc.
uchile.cl/texts.html), namely, english texts, DNA sequences, XML, and pro-
tein sequences. We compared our algorithm with the implementation RSUS of [4]

http://code.google.com/p/libdivsufsort/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html

Shortest Unique Substrings Queries in Optimal Time 513

available at https://bitbucket.org/wush_iis/rsus. RSUS is actually a com-
bination of an interface for the R language (http://www.r-project.org) and
core routines written in C++. For comparison in our experiments, we modified
the RSUS C++ routines to be called from a C++ program so that all programs
utilize only the C++ language.

The results of experiments for the 4 data are shown in Table 1. We take a
prefix of length n for each data, and measure the running times of RSUS [4], and
TSUS (the implementation of the algorithm in this paper). The entries marked
N/A for RSUS was when the time exceeded 1 hour, at which time the execution
of the program was stopped. The cause for the sudden increase in running times
for RSUS was due to the fact that RSUS consumed all of the available physical
memory. The results show that our algorithm is much faster (as fast as 20 times)
in preprocessing time compared to RSUS.

References

1. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

2. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.
(ed.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

3. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

4. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: Proc.
ICDE, pp. 937–948 (2013)

5. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann. Symp.
on Switching and Automata Theory, pp. 1–11. Institute of Electrical Electronics
Engineers, New York (1973)

https://bitbucket.org/wush_iis/rsus
http://www.r-project.org

Oracle Pushdown Automata, Nondeterministic

Reducibilities, and the Hierarchy over the
Family of Context-Free Languages

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. We implement various oracle mechanisms on nondetermin-
istic pushdown automata, which naturally induce nondeterministic re-
ducibilities among formal languages in a theory of context-free languages.
In particular, we examine a notion of nondeterministic many-one CFL-
reducibility and carry out ground work of formulating a coherent frame-
work for further expositions. Another more powerful reducibility—Turing
CFL-reducibility—is also discussed in comparison. The Turing CFL-
reducibility, in particular, makes it possible to induce a useful hierarchy
(the CFL hierarchy) built over the family CFL of context-free languages.
For each level of this hierarchy, basic structural properties are proven and
three alternative characterizations are presented. We also show that the
CFL hierarchy enjoys an upward collapse property. The first and second
levels of the hierarchy are proven to be different. We argue that the CFL
hierarchy coincides with a hierarchy over CFL built by applications of
many-one CFL-reductions. Our goal is to provide a solid foundation for
structural-complexity analyses in automata theory.

Keywords: regular language, context-free language, pushdown automa-
ton, oracle, many-one reducibility, Turing reducibility, CFL hierarchy,
polynomial hierarchy, Dyck language.

1 Backgrounds and Main Themes

A fundamental notion of reducibility has long played an essential role in the
development of a theory of NP-completeness. In the 1970s, various forms of
polynomial-time reducibility emerged, most of which were based on models of
multi-tape oracle Turing machine, and they provided a technical means to study
relativizations of associated families of languages. Most typical reducibilities in
use today in computational complexity theory include many-one, truth-table,
and Turing reducibilities obtained by imposing appropriate restrictions on the
functionality of oracle mechanism of underlying Turing machines. Away from
standard complexity-theoretical subjects, we will shift our attention to a theory
of formal languages and automata. Within this theory, we wish to lay out a
framework for a future extensive study on structural complexity issues by pro-
viding a solid foundation for various notions of reducibility and their associated
relativizations.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 514–525, 2014.
c© Springer International Publishing Switzerland 2014

Reducibilities and Hierarchies over CFL 515

Among many languages, we are particularly interested in context-free lan-
guages, which are characterized by context-free grammars or one-way nondeter-
ministic pushdown automata (or npda’s, hereafter). The context-free languages
are inherently nondeterministic. In light of the fact that the notion of nondeter-
minism appears naturally in real life, this notion has become a key to many fields
of computer science. The family CFL of context-free languages has proven to be
a fascinating subject, simply because the languages in CFL behave quite differ-
ently from the languages in the corresponding nondeterministic polynomial-time
class NP. For instance, whereas NP is closed under any Boolean operation (pos-
sibly) except for complementation, CFL is not even closed under intersection.
This non-closure property is caused by the lack of flexibility in a use of its mem-
ory storage on an underlying model of npda. On the contrary, a restricted use
of memory helps us prove a separation between the first and the second levels of
the Boolean hierarchy {CFLk | k ≥ 1} built over CFL by applying alternatingly
two operations of intersection and union to CFL [13]. Moreover, we can prove
that a family of languages CFL(k) composed of intersections of k context-free
languages truly forms an infinite hierarchy [7]. Such an architectural constraint
sometimes becomes a crucial issue in certain applications of pushdown automata.

A most simple type of well-known reduction is probably many-one reduction
and, by adopting the existing formulation of this reducibility, we intend to bring
a notion of nondeterministic many-one reducibility into context-free languages
under the name of many-one CFL-reducibility. We write CFLA

m to denote the
family of languages that are many-one CFL-reducible to oracle A. Notice that
Reinhardt [8] earlier considered many-one reductions that are induced by non-
deterministic finite automata (or nfa’s), which use no memory space. We wish
to build a hierarchy of language families over CFL using our new reducibility
by immediate analogy with constructing the polynomial(-time) hierarchy over
NP. For this purpose, we choose npda’s rather than nfa’s. Owing mostly to a
unique architecture of npda’s, our reducibility exhibits quite distinctive features;
for instance, this reducibility in general does not admit a transitivity property.
(For this reason, our reducibility might have been called a “quasi-reducibility”
if the transitive property is a prerequisite for a reducibility notion.) As a con-
sequence, the family CFL is not closed under the many-one CFL-reducibility
(namely, CFLCFL

m �= CFL). This non-closure property allures us to study the
family CFLCFL

m[k] whose elements are obtained by the k-fold application of many-
one CFL-reductions to languages in CFL. As shown in Section 3.1, the language
family CFLCFL

m[k] turns out to coincide with CFLCFL(k)
m .

We further discuss another more powerful reducibility in use—Turing CFL-
reducibility based on npda’s. This reducibility introduces a hierarchy analo-
gous to the polynomial hierarchy: the hierarchy {ΔCFL

k , ΣCFL
k , ΠCFL

k | k ≥ 1}
built over CFL, which we succinctly call the CFL hierarchy, and this hierar-
chy turns out to be quite useful in classifying the computational complexity
of formal languages. As quick examples, two languages Dup2 = {xx | x ∈
{0, 1}∗} and Dup3 = {xxx | x ∈ {0, 1}∗}, which are known to be outside of
CFL, fall into the second level ΣCFL

2 of the CFL hierarchy. A simple matching

516 T. Yamakami

language Match = {x#w | ∃u, v [w = uxv] } is also in ΣCFL
2 . Two more lan-

guages Sq = {0n1n2 | n ≥ 1} and Prim = {0n | n is a prime number }
belong to ΣCFL

2 and ΠCFL
2 , respectively. A slightly more complex language

MulPrim = {0mn | m and n are prime numbers } is a member of ΣCFL
3 . The

first and second levels of the CFL hierarchy are easily proven to be different. Re-
garding the aforementioned language families CFL(k) and CFLk, we can show
later that the families CFL(ω) =

⋃
k≥1 CFL(k) and BHCFL =

⋃
k≥1 CFLk

belong to ΣCFL
2 ∩ ΠCFL

2 of the CFL hierarchy. In Section 4.1, we show that

CFLCFL(ω)
m is located within ΣCFL

3 . Despite obvious similarities between their
definitions, the CFL hierarchy and the polynomial hierarchy are quite different
in nature. Because of npda’s architectural restrictions, “standard” techniques of
simulating a two-way Turing machine, in general, do not apply; hence, we need
to develop new simulation techniques for npda’s.

In this paper, we employ three simulation techniques to obtain some of the
aforementioned results. The first technique is of guessing and verifying a stack
history to eliminate a use of stack, where a stack history roughly means a series of
consecutive stack operations made by an underlying npda. The second technique
is applied to the case of simulating two or more tape heads by a single tape
head. To adjust the different head speeds, we intentionally insert extra dummy
symbols to generate a single query word so that an oracle can eliminate them
when it accesses the query word. The last technique is to generate a string
that encodes a computation path generated by a nondeterministic machine. All
the techniques are explained in details in Sections 3.1–3.2. Those simulation
techniques actually make it possible to obtain three alternative characterizations
of the CFL hierarchy in Section 4.2.

Topics excluded from this extended abstract are found in its full version avail-
able at arXiv:1303.1717.

2 Preparation

Given a finite set A, the notation |A| expresses the number of elements in A.
Let N be the set of all natural numbers (i.e., nonnegative integers) and set
N+ = N−{0}. For any number n ∈ N+, [n] denotes the integer set {1, 2, . . . , n}.
The term “polynomial” always means a polynomial on N with coefficients of
nonnegative integers. In particular, a linear polynomial is of the form ax + b
with a, b ∈ N. The notation A−B for two sets A and B indicates the difference
{x | x ∈ A, x �∈ B} and P(A) denotes the power set of A. The Kleene closure Σ∗

of Σ is the infinite union
⋃

k∈N
Σk. Similarly, the notation Σ≤k is used to mean⋃k

i=1Σ
i. Given a language A over Σ, its complement is Σ∗ − A, which is also

denoted by A. We use the following three class operations between two language
families C1 and C2: C1 ∧ C2 = {A ∩B | A ∈ C1, B ∈ C2}, C1 ∨ C2 = {A ∪B | A ∈
C1, B ∈ C2}, and C1 − C2 = {A − B | A ∈ C1, B ∈ C2}, where A and B must be
defined over the same alphabet. For a use of track notation [xy], see [9].

As our basic computation models, we use the following types of finite-state
machines: one-way deterministic finite automaton (or dfa, in short) with λ-moves

Reducibilities and Hierarchies over CFL 517

and one-way nondeterministic pushdown automaton (or npda) with λ-moves,
where a λ-move (or a λ-transition) is a transition of the machine’s configurations
in which a target tape head stays still. Whenever we refer to a write-only tape,
we always assume that (i) initially, all cells of the tape are blank, (ii) a tape
head starts at the so-called start cell, (iii) the tape head steps forward whenever
it writes down any non-blank symbol, and (iv) the tape head can stay still only
in a blank cell. Therefore, all cells through which the tape head passes during
a computation must contain no blank symbols. An output (or outcome) along a
computation path is a string produced on the output tape after the computation
path is terminated. We call an output string valid (or legitimate) if it is produced
along a certain accepting computation path. When we refer to the machine’s
outputs, we normally disregard any invalid strings left on the output tape on
a rejecting computation path. REG, CFL, and DCFL stand for the families
of all regular languages, of all context-free languages, and of all deterministic
context-free languages, respectively.

3 Natural Reducibilities

A typical way of comparing the computational complexity of two formal lan-
guages is various forms of resource-bounded reducibility. Such reducibility is also
regarded as a relativization of its underlying language family. We refer the reader
to [2] for basics of computational complexity theory.

3.1 Many-One Reductions by Npda’s

Our exposition begins with an introduction of an appropriate form of nondeter-
ministic many-one reducibility whose reductions are operated by npda’s.

Our “reduction machine” is essentially a restricted version of “pushdown
transducer” or “algebraic transduction” (see, e.g., [1]). Here, we define this
notion in a style of “oracle machine.” An m-reduction npda M is a standard
npda equipped with an extra query tape on which the machine writes a string
surrounded by blank cells starting at the designated start cell for the purpose
of making a query to a given oracle. We treat this query tape as an output
tape, and thus the query-tape head must move to a next blank cell when-
ever it writes a non-blank symbol. Formally, an m-reduction npda is a tuple
(Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qacc, Qrej), where Θ is a query alphabet and δ is of
the form: δ : (Q − Qhalt) × (Σ̌ ∪ {λ}) × Γ → P(Q × Γ ∗ × (Θ ∪ {λ})), where
Qhalt = Qacc∪Qrej and Σ̌ = Σ∪{|c, $}. There are two types of λ-moves. Assum-
ing (p, τ, ξ) ∈ δ(q, σ, γ), if σ = λ, then the input-tape head stays still (or makes
a λ-move); in contrast, if τ = λ, then the query-tape head stays still (or makes
a λ-move). Since repetitions of λ-moves potentially produce extremely long out-
put strings, we should require the following termination condition for M . Recall
that, as a consequence of Greibach’s normal form theorem, all context-free lan-
guages can be recognized by λ-free npda’s (i.e., npda’s with no λ-moves) whose
computation paths have length O(n), always ending in certain halting states,

518 T. Yamakami

where n is its input size. The runtime of O(n) is truly significant for languages
in CFL. Likewise, we assume that, for any m-reduction npda, all computation
paths should terminate (reaching halting inner states) within O(n) time.

A language L over alphabet Σ is many-one CFL-reducible to another
language A over alphabet Θ if there exists an m-reduction npda M =
(Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qacc, Qrej) such that, for every input x ∈ Σ∗, (1)
along each computation path p ∈ ACCM (x), M produces a valid query string
yp ∈ Θ∗ on the query tape and (2) x is a member of L iff there is a computa-
tion path p ∈ ACCM (x) satisfying yp ∈ A. For simplicity, we also say that M
reduces (or m-reduces) L to A. With the use of this new reducibility, we make
the notation CFLA

m (or CFLm(A)) express the family of all languages L that
are many-one CFL-reducible to A, where the language A is customarily called
an oracle. Given an oracle npda M and an oracle A, the notation L(M,A) (or
L(MA)) denotes the set of strings accepted by M relative to A. For a class C of
oracles, CFLC

m (or CFLm(C)) denotes the union
⋃

A∈C CFL
A
m.

Likewise, we define the relativized language family NFAA
m (or NFAm(A)) using

“nfa’s” as m-reduction machines instead of “npda’s.” To be more precise, an m-
reduction nfa M for NFAA

m is a tuple (Q,Σ, {|c, $}, Θ, δ, q0, Qacc, Qrej), where δ
is a map from (Q−Qhalt)× (Σ̌ ∪ {λ}) to P(Q× (Θ ∪ {λ})). We also impose an
O(n) time-bound on all computation paths of M .

Making an analogy with “oracle Turing machine” that functions as a mecha-
nism of reducing a language to another given target language A, we want to use
the term “oracle npda” to mean an npda that is equipped with an extra write-
only output tape (called a query tape) besides a read-only input tape. As noted
before, we explicitly demand every oracle npda to terminate on all computation
paths within O(n) steps.

We will use an informal term of “guessing” when we refer to a nondeterministic
choice (or a series of nondeterministic choices). For example, when we say that
an npda M guesses a string z, we actually mean that M makes a series of
nondeterministic choices that cause to produce z.

Example 1. As the first concrete example, setting Σ = {0, 1}, let us consider
the language Dup2 = {xx | x ∈ Σ∗}. This language is known to be non-
context-free; however, it can be many-one CFL-reducible to CFL by the fol-
lowing M and A. An m-reduction (or oracle) npda M nondeterministically pro-
duces a query word xR!y (with a special symbol !) from each input of the form
xy using a stack appropriately More formally, a transition function δ of this
oracle npda M is given as follows: δ(q0, |c, Z0) = {(q0, Z0, λ)}, δ(q0, $, Z0) =
{(qacc, Z0, !)}, δ(q0, σ, Z0) = {(q1, σZ0, λ)}, δ(q1, σ, τ) = {(q1, στ, λ), (q2, στ, λ)},
δ(q2, λ, τ) = {(q2, λ, τ)}, δ(q2, λ, Z0) = {(q3, Z0, !)}, δ(q3, λ, Z0) = {(q3, Z0, σ)},
and δ(q3, $, Z0) = {(qacc, Z0, λ)}, where σ, τ ∈ Σ. A CFL-oracle A is defined as
{xR!x | x ∈ Σ∗}; that is, the oracle A checks whether x = y from the input xR!y
using its own stack. In other words, Dup2 belongs to CFLA

m, which is included
in CFLCFL

m . Similarly, the non-context-free language Dup3 = {xxx | x ∈ Σ∗}
also falls into CFLCFL

m . For this case, we design an m-reduction npda to produce
xR!y!yR!z from each input xyz and make a CFL-oracle check whether x = y = z

Reducibilities and Hierarchies over CFL 519

by using its stack twice. Another language Match = {x#w | ∃u, v [w = uxv] },
where # is a separator not in x and w, also belongs to CFLCFL

m . These examples
prove that CFLCFL

m �= CFL.

Example 2. The language Sq = {0n1n2 | n ≥ 1} belongs to CFLCFL
m . To see this

fact, let us consider the following oracle npda N and oracle A. Given any input
w, N first checks if w is of the form 0i1j. Simultaneously, N nondeterministically
selects (j1, j2, . . . , jk) satisfying (i) j = j1+ j2+ · · ·+ jk and (ii) j1 = j2, j3 = j4,
. . ., and N produces on its query tape a string w′ of the form 0i!1j1!1j2! · · · !1jk .
The desired oracle A receives w′ and checks if the following two conditions are
all met: (i’) j2 = j3, j4 = j5, . . . and (ii’) i = k by first pushing 0i into a stack
and then counting the number of !. Clearly, A belongs to CFL. Therefore, Sq is
in CFLA

m, which is included in CFLCFL
m . A similar idea proves that the language

Comp = {0n | n is a composite number } belongs to CFLCFL
m . In symmetry,

Prim = {0n | n is a prime number } is a member of co-(CFLCFL
m), where co-C

denotes the complement of language family C, namely, co-C = {A | A ∈ C}.
A Dyck language L over alphabet Σ = {σ1, σ2, . . . , σd} ∪ {σ′1, σ′2, . . . , σ′d} is a

language generated by a deterministic context-free grammar whose production
set is {S → λ|SS|σiSσ′i : i ∈ [d]}, where S is a start symbol. For convenience,
denote by DY CK the family of all Dyck languages.

Lemma 1. CFLCFL
m = CFLDCFL

m = CFLDYCK
m .

Proof Sketch. We first claim that (1) CFL = NFADYCK
m and (2) CFLA

m =
CFLm(NFAA

m) for any oracleA. The first claim (1) can be seen as a different form
of Chomsky-Schützenberger theorem. To show (1), we employ a simple but useful
technique of guessing a correct stack history (namely, a series of popped and
pushed symbols along a halting computation path) and verifying its correctness.
With an appropriate encoding method, we can claim that a stack history is
correct iff its encoding belongs to a ceratin fixed Dyck language. Whenever an
oracle npda tries to either push down symbols into its stack or pop up a symbol
from the stack, instead of using an actual stack, we write down an encoded
series of those symbols on a write-only query tape and then ask an oracle to
verify that the series indeed encodes a correct stack history. We skip (2) due
to the page limit. By combining the claims (1)–(2), it follows that CFLCFL

m =
CFLm(NFADYCK

m) ⊆ CFLDYCK
m . �

Given each number k ∈ N+, the k-conjunctive closure of CFL, denoted
CFL(k) in [12], is defined recursively as follows: CFL(1) = CFL and CFL(k+1) =
CFL(k) ∧CFL. These language families truly form an infinite hierarchy [7]. For
convenience, we set CFL(ω) =

⋃
k∈N+ CFL(k). Hereafter, we will explore basic

properties of CFLCFL(k)
m .

The lack of the transitivity property of the many-one CFL-reducibility ne-
cessitates an introduction of a helpful abbreviation of a k-fold application of
the reductions. For any given oracle A, we recursively set CFLA

m[1] = CFLA
m

and CFLA
m[k+1] = CFLm(CFLA

m[k]) for each index k ∈ N+. Given any language

family C, the notation CFLC
m[k] denotes the union

⋃
A∈C CFL

A
m[k].

520 T. Yamakami

Theorem 1. For every index k ∈ N+, CFLCFL(k)
m = CFLCFL

m[k].

Proof Sketch. When k = 1, it holds that CFLCFL
m[1] = CFLCFL

m = CFLCFL(1)
m .

Next, we will show that, for every index k ≥ 2, CFLCFL
m[k] ⊆ CFLCFL(k)

m holds. We
are focused on the most important case of k = 2. This case follows from the claim

that CFL
CFL(r)
m[2] ⊆ CFLCFL(r)∧CFL

m for every index r ∈ N+. Let L ∈ CFLB
m and

B ∈ CFLA
m for a certain set A ∈ CFL(r). Let M1 and M2 be two oracle npda’s

witnessing L ∈ CFLB
m and B ∈ CFLA

m, respectively. Consider the following oracle
npda N . Given input x, N simulates M1 on x in the following way. Whenever
M1 tries to write a symbol, say, b on a query tape, N simulates, using an actual
stack, several steps (including all consecutive λ-moves) of M2 that can be made
during reading b. By simulating M2, N aims at producing an encoded stack
history y of M2 (on the upper track of a tape) and a query word z (on the lower
track). Since the tape heads of M2 on both input and query tapes may move
in different speeds, we need to adjust their speeds by inserting a series of fresh
symbol, say, ! between symbols of the stack history and the query word. For
this purpose, it is useful to introduce a terminology to describe strings obtained
by inserting !. Assuming that ! �∈ Σ, a !-extension of a given string x over Σ is
a string x̃ over Σ ∪ {!} satisfying that x is obtained directly from x̃ simply by
removing all occurrences of ! in x̃. For instance, if x = 01101, then x̃ may be
01!1!01 or 011!!01!. N actually produces [yz̃] on the query tape. An appropriate

oracle in CFL(r)∧CFL can check its correctness. Thus, L ∈ CFLCFL(r)∧CFL
m . �

An immediate consequence is that CFLCFL(ω)
m =

⋃
k∈N+ CFLCFL

m[k].

3.2 Turing Reducibility by Npda’s

We define a notion ofTuring CFL-reducibility using a model of npda with a write-
only query tape and three extra inner states qquery , qno, and qyes that represent
a query signal and two possible oracle answers, respectively. More specifically,
when an oracle npda enters qquery , it triggers a query, by which a query word is
automatically transferred to an oracle, a query tape becomes blank, and its tape
head instantly returns to the start cell. When the oracle returns its answer, either
0 (no) or 1 (yes), it automatically sets the oracle npda’s inner state to qno or qyes,
respectively. Such a machine is called a T-reduction npda (or just an oracle npda
as before) and it is used to reduce a language to another language. To be more
precise, an oracle npda is a tuple (Q,Σ, {|c, $}, Θ, Γ, δ, q0, Z0, Qoracle, Qacc, Qrej),
where Qoracle = {qquery , qyes, qno}, Θ is a query alphabet and δ has the form:
δ : (Q−Qhalt∪{qquery})×(Σ̌∪{λ})×Γ → P((Q−{qyes, qno})×Γ ∗×(Θ∪{λ})).

Unlike many-one CFL-reductions, a T-reduction npda’s computation depends
on a series of oracle answers. Since such an oracle npda, in general, cannot
implement an internal clock to control its running time, certain oracle answers
may lead to an extremely long computation, and thus the machine may recognize
even “infeasible” languages. To avoid such a pitfall, we need to demand that, no
matter what oracle is provided, its underlying oracle npda M must halt on all
computation paths within O(n) time, where n refers to input size.

Reducibilities and Hierarchies over CFL 521

Similarly to CFLA
m and CFLC

m, we introduce two new notations CFLA
T and

CFLC
T . An associated deterministic version is denoted DCFLC

T . A simple rela-
tionship between the Turing and many-one CFL-reducibilities is exemplified in
Proposition 1. To describe the proposition, we need a notion of the Boolean
hierarchy over CFL, which was introduced in [13] by setting CFL1 = CFL,
CFL2k = CFL2k−1 ∧ co-CFL, and CFL2k+1 = CFL2k ∨ CFL. For simplicity,
we denote by BHCFL the union

⋃
k∈N+ CFLk. Notice that CFL �= CFL2 holds

because co-CFL ⊆ CFL2 and co-CFL � CFL.

Proposition 1. CFLCFL
T = CFLCFL2

m = NFACFL2
m .

Proof Sketch. We wish to demonstrate that (1) CFLCFL
T ⊆ CFLCFL2

m , (2)
CFLCFL2

m ⊆ NFACFL2
m , and (3) NFACFL2

m ⊆ CFLCFL
T . If all are proven, then

the proposition immediately follows. We will show only (1) and (3).
(1) We start with an arbitrary language L in CFLA

T relative to a certain
language A in CFL. Take a T -reduction npda M reducing L to A, and let MA

be an npda recognizing A. Hereafter, we will build a new m-reduction npda N1

to show that L ∈ CFLCFL2
m . On input x, the machine N1 tries to simulate M

on x by running the following procedure. Along each computation path, before
M begins producing the ith query word on a query tape, N1 guesses its oracle
answer bi (either 0 or 1) and writes it down onto its query tape. WhileM writes
the ith query word yi, N1 appends yi! to bi. WhenM halts, N1 produces a query
word w of the form b1y1!b2y2! · · · !bkyk!, where k ∈ N. Let L2 be a collection of
those w’s such that, for every index i ∈ [k], if bi = 1 then yi ∈ A. Similarly, let
L3 be a collection of those w’s such that, for every index i ∈ [k], if bi = 0 then
yi ∈ A. It is not difficult to verify that N1 m-reduces L to L2 ∩ L3.

Next, we want to claim that L2 and L3 are in CFL. This claim leads to a
conclusion that L is included in CFLL2∩L3

m ⊆ CFLm(CFL∧co-CFL) = CFLCFL2
m .

Obviously, L2 is in CFL. To see that L3 ∈ CFL, let w = b1y1!b2y2! · · · !bkyk!. If
w ∈ L3, then there exists an index i ∈ [k] such that bi = 0 and yi ∈ A. This last
property can be checked by running MA sequentially on each yi and emptying
its stack after each run of MA. Thus, L3 is in CFL.

(3) Choose an oracle A in CFL2 and consider an arbitrary language L in
CFLA

m. Furthermore, take two languages A1, A2 ∈ CFL for which A = A1 ∩A2.
Let M be an oracle nfa that recognizes L relative to A. Notice that M has no
stack. We will define another oracle npda N as follows. On input x, N first
marks 0 on its query tape and start simulating M on x. Whenever M tries
to write a symbol σ on its query tape, N writes it down on a query tape and
simultaneously copies it into a stack. After M halts with a query word, say, w,
N makes the first query with the query word 0w. If its oracle answer is 0, then N
rejects the input. Subsequently, N writes 1 on the query tape (provided that the
tape automatically becomes blank), pops the stored string wR from the stack,
and copies it to the query tape. After making the second query with 1wR, if its
oracle answer equals 1, then N rejects the input. When N has not entered any
rejecting state, then N finally accepts the input. The corresponding oracle B is
defined as {0w | w ∈ A1} ∪ {1wR | w ∈ A2}. It is easy to see that x ∈ L if

522 T. Yamakami

and only if N accepts x relative to B. Since CFL is known to be closed under
reversal, {1wR | w ∈ A2} is context-free, and thus B is a member of CFL. We
then conclude that L ∈ CFLB

T ⊆ CFLCFL
T . �

4 The CFL Hierarchy

4.1 Reducibility and a Hierarchy

Applying Turing CFL-reductions to CFL level by level, we can build a useful
hierarchy, called the CFL hierarchy, whose kth level consists of three language
families ΔCFL

k , ΣCFL
k , and ΠCFL

k . To be more precise, for each level k ≥ 1, we set
ΔCFL

1 = DCFL, ΣCFL
1 = CFL, ΔCFL

k+1 = DCFLT (Σ
CFL
k), ΠCFL

k = co-ΣCFL
k , and

ΣCFL
k+1 = CFLT (Σ

CFL
k). Additionally, we set CFLH =

⋃
k∈N+ ΣCFL

k . The CFL
hierarchy can be used to categorize the complexity of typical non-context-free
languages discussed in most introductory textbooks. We will review a few typical
examples that fall into the CFL hierarchy.

Example 3. In Example 1, we have seen the languagesDup2 = {xx | x ∈ {0, 1}∗}
and Dup3 = {xxx | x ∈ {0, 1}}, which are both in CFLCFL

m . Note that,
since CFLA

m ⊆ CFLA
T for any oracle A, every language in CFLCFL

m belongs to
CFLCFL

T = ΣCFL
2 . Therefore, Dup2 and Dup3 are in ΣCFL

2 . In addition, as

shown in Example 2, the language Sq = {0n1n2 | n ≥ 1} is in CFLCFL
m while

Prim = {0n | n is a prime number } is in co-(CFLCFL
m). Therefore, we conclude

that Sq is in ΣCFL
2 and Prim is in ΠCFL

2 . A similar but more involved example
is the languageMulPrim = {0mn | m and n are prime numbers }. It is possible
to show that MulPrim belongs to CFLm(co-(CFLco-CFL

m)), which equals ΣCFL
3 .

Lemma 2. Let k be any integer satisfying k ≥ 1.

1. CFLT (Σ
CFL
k) = CFLT (Π

CFL
k) and DCFLT (Σ

CFL
k) = DCFLT (Π

CFL
k).

2. ΣCFL
k ∪ΠCFL

k ⊆ ΔCFL
k+1 ⊆ ΣCFL

k+1 ∩ΠCFL
k+1 .

3. CFLH ⊆ DSPACE(O(n)).

Hereafter, we will explore fundamental properties of our new hierarchy. Our
starting point is a closure property under length-nondecreasing substitution,
where a substitution s : Σ → P(Θ∗) is called length nondecreasing if s(σ) �= Ø
and λ �∈ s(σ) for every symbol σ ∈ Σ. We expand s as follows. Define
s(σ1σ2 · · ·σn) = {x1x2 · · ·xn | ∀i ∈ [n](xi ∈ s(σi))} for σ1, σ2, . . . , σn ∈ Σ
and let s(L) =

⋃
x∈L s(x) for language L ⊆ Σ∗. A homomorphism h : Σ → Θ∗

is called λ-free if h(σ) �= λ for every σ ∈ Σ. Note that the condition of length
nondecreasing is necessary because every recursively enumerable language can
be a homomorphic image of a certain language in CFL2 (⊆ ΣCFL

2) [3].

Lemma 3. 1. (substitution property) Let k ∈ N+ and let s be any length-
nondecreasing substitution on alphabet Σ satisfying s(σ) ∈ ΣCFL

k for each
symbol σ ∈ Σ. For any language A over Σ, if L is in ΣCFL

k , then s(L) is
also in ΣCFL

k .

Reducibilities and Hierarchies over CFL 523

2. For each index k ∈ N+, the family ΣCFL
k is closed under the following opera-

tions: concatenation, union, reversal, Kleene closure, λ-free homomorphism,
and inverse homomorphism.

We will show that the second level of the CFL hierarchy contains BHCFL.

Proposition 2. BHCFL ⊆ ΣCFL
2 ∩ΠCFL

2 .

Proof Sketch. We will show that BHCFL ⊆ ΣCFL
2 . Obviously, CFL1 ⊆ ΣCFL

2

holds. It is therefore enough to show that CFLk ⊆ ΣCFL
2 for every index k ≥ 2.

We first claim that, for every index k ≥ 1, CFL2k =
∨

i∈[k] CFL2 (= CFL2 ∨
CFL2 ∨ · · · ∨CFL2 with k repetitions of CFL2) and CFL2k+1 = (

∨
i∈[k] CFL2)∨

CFL. This can be shown using an idea of [13, Claim 4]. Next, we claim that
CFL2k,CFL2k+1 ⊆ ΣCFL

2 for all indices k ≥ 1. The proof of this claim proceeds
by induction on k ≥ 1. Furthermore, we will prove that BHCFL ⊆ ΠCFL

2 . It is
possible to prove by induction on k ∈ N+ that co-CFLk ⊆ CFLk+1. From this
inclusion, we obtain co-BHCFL ⊆ BHCFL. By symmetry, BHCFL ⊆ co-BHCFL
holds. Thus, we conclude that BHCFL = co-BHCFL. �

Let us turn our attention to CFL(ω). A direct analysis of each language family
CFL(k) shows that CFL(ω) is included in BHCFL.

Proposition 3. 1. CFL(ω) ⊆ BHCFL (thus, CFL(ω) ⊆ ΣCFL
2 ∩ΠCFL

2).

2. CFLCFL(ω)
m ⊆ ΣCFL

3 .

Proof Sketch. A key to the proof of the first part of this proposition is the
following claim: for every index k ≥ 1, CFL(k) ⊆ CFL2k+1 holds. The first part

then implies that CFLCFL(ω)
m is included in CFLBHCFL

m . Since BHCFL ⊆ ΣCFL
2 ∩

ΠCFL
2 by Proposition 2, it follows that CFLBHCFL

m is included in CFLm(ΠCFL
2),

which is obviously a subclass of CFLT (Π
CFL
2) = ΣCFL

3 . �

4.2 Structural Properties

We will further explore structural properties that characterize the CFL hierarchy.
Moreover, we will present three alternative characterizations (Theorem 2 and
Proposition 4) of the hierarchy. Let us consider a situation in which Boolean
operations are applied to languages in the CFL hierarchy. In the following lemma,
the third statement needs an extra attention. As we have seen, it holds that
CFL ∧ CFL = CFL(2) �= CFL. Therefore, the equality ΣCFL

k ∧ ΣCFL
k = ΣCFL

k

does not hold in the first level (i.e., k = 1). Surprisingly, it is possible to prove
that this equality actually holds for any level more than 1.

Lemma 4. Let k ≥ 1.

1. ΣCFL
k ∨ΣCFL

k = ΣCFL
k and ΠCFL

k ∧ΠCFL
k = ΠCFL

k .

2. ΣCFL
k ∧ΠCFL

k ⊆ ΣCFL
k+1 ∩ΠCFL

k+1 and ΣCFL
k ∨ΠCFL

k ⊆ ΣCFL
k+1 ∩ΠCFL

k+1 .

3. ΣCFL
k ∧ΣCFL

k = ΣCFL
k and ΠCFL

k ∨ΠCFL
k = ΠCFL

k for all levels k ≥ 2.

524 T. Yamakami

Lemma 4(3) is not quite trivial and its proof follows from Theorem 2, in which
we give two new characterizations of ΣCFL

k in terms of many-one reducibilities.
For our purpose, we introduce two extra many-one hierarchies. The many-one
CFL hierarchy consists of language families ΣCFL

m,k and ΠCFL
m,k (k ∈ N+) defined

as follows: ΣCFL
m,1 = CFL, ΠCFL

m,k = co-ΣCFL
m,k , and ΣCFL

m,k+1 = CFLm(ΠCFL
m,k) for

any k ≥ 1, where the subscript “m” stands for “many-one.” A relativized many-
one NFA hierarchy, which was essentially formulated in [8], is defined as follows

relative to oracle A: ΣNFA,A
m,1 = NFAA

m, ΠNFA,A
m,k = co-ΣNFA,A

m,k , and ΣNFA,A
m,k+1 =

NFAm(ΠNFA,A
m,k) for every index k ≥ 1. Given a language family C, ΣNFA,C

m,k (or

ΣNFA
m,k (C)) denotes the union

⋃
A∈C Σ

NFA,A
m,k .

Theorem 2. ΣCFL
k = ΣCFL

m,k = ΣNFA
m,k (DY CK) for every index k ≥ 1.

Proof Sketch. The first step toward the proof is to prove two key claims. (1) For
every index k ≥ 1, it holds that ΣCFL

k+1 ⊆ CFLm(ΣCFL
k ∧ΠCFL

k) ⊆ NFAm(ΣCFL
k ∧

ΠCFL
k). (2) For any two indices k ≥ 1 and e ≥ k−1, it holds that NFAm(ΣCFL

m,k ∧
ΠCFL

m,e) ⊆ CFLm(ΠCFL
m,e).

In the second step, we use induction on k ≥ 1 to prove the theorem. Since
Lemma 1 handles the base case k = 1, it is sufficient to assume that k ≥ 2.
The second equality of the theorem is shown as follows. If k = 1, then the
claim is exactly the same as CFL = NFADY CK

m . In the case of k ≥ 2, assume
that L ∈ CFLA

m for a certain language A in ΠCFL
m,k−1. A proof similar to that

of CFL = NFADYCK
m demonstrates the existence of a certain Dyck language D

satisfying that CFLA
m = NFAB

m, where B is of the form {[ỹz̃] | y ∈ D, z ∈ A} and
ỹ and z̃ are !-extensions of y and z, respectively. The definition places B into
the language family DCFL∧ΠCFL

m,k−1, which equals ΠCFL
m,k−1 because of k ≥ 2. By

our induction hypothesis, ΠCFL
m,k−1 = ΠNFA

m,k−1(DY CK) holds. It thus follows that

NFAB
m ⊆ NFAm(ΠNFA

m,k−1(DY CK)) = ΣNFA
m,k (DY CK), and therefore we obtain

L ∈ CFLA
m ⊆ NFAA

m ⊆ ΣNFA
m,k (DY CK).

Next, we will establish the first equality given in the theorem. Clearly,
ΣCFL

m,k ⊆ ΣCFL
k holds since CFLA

m ⊆ CFLA
T for any oracle A. Now, we target the

opposite containment. By (1), it follows that ΣCFL
k ⊆ NFAm(ΣCFL

k−1 ∧ ΠCFL
k−1).

Since ΣCFL
k−1 = ΣCFL

m,k−1, we obtain ΣCFL
k ⊆ NFAm(ΣCFL

m,k−1 ∧ΠCFL
m,k−1). Note that

(2) implies the inclusion NFAm(ΣCFL
m,k−1 ∧ ΠCFL

m,k−1) ⊆ CFLm(ΠCFL
m,k−1) = Σ

CFL
m,k .

In conclusion, ΣCFL
k ⊆ ΣCFL

m,k holds. �

An upward collapse property holds for the CFL hierarchy except for the first
level. Similar to the notation CFLe expressing the eth level of the Boolean hier-
archy over CFL, a new notation ΣCFL

k,e is introduced to denote the eth level of

the Boolean hierarchy over ΣCFL
k . Additionally, we set BHΣCFL

k =
⋃

e∈N+ ΣCFL
k,e .

Lemma 5. (upward collapse properties) Let k be any integer at least 2.

1. ΣCFL
k = ΣCFL

k+1 iff CFLH = ΣCFL
k .

2. ΣCFL
k = ΠCFL

k iff BHΣCFL
k = ΣCFL

k .

Reducibilities and Hierarchies over CFL 525

3. ΣCFL
k = ΠCFL

k implies ΣCFL
k = ΣCFL

k+1 .

From Lemma 5, if the Boolean hierarchy over ΣCFL
k collapses to ΣCFL

k , then
the entire CFL hierarchy collapses. It is not clear, however, that a much weaker
assumption likeΣCFL

k,e = ΣCFL
k,e+1 suffices to draw the collapse of the CFL hierarchy

(for instance, ΣCFL
k+1 = ΣCFL

k+2).

Theorem 2 also gives a logical characterization of ΣCFL
k . For convenience, we

define a function Ext as Ext(x̃) = x for any !-extension x̃ of string x.

Proposition 4. Let k ≥ 1. For any language L ∈ ΣCFL
k over alphabet Σ, there

exists another language A ∈ DCFL and a linear polynomial p with p(n) ≥ n for
all n ∈ N that satisfy the following equivalence relation: for any number n ∈ N
and any string x ∈ Σn, x ∈ L if and only if

∃x̃(|x̃| ≤ p(n))∃y1(|y1| ≤ p(n))∀y2(|y2| ≤ p(n))
· · ·Qkyk(|yk| ≤ p(n)) [x = Ext(x̃) ∧ [x̃, y1, y2, . . . , yk]

T ∈ A],
where Qk is ∃ (∀, resp.) if k is odd (even, resp.) and x̃ is a !-extension of x.

Recall that the first and second levels of the CFL hierarchy are different. It is
possible to prove that the rest of the hierarchy is infinite unless the polynomial
hierarchy over NP collapses.

References

1. Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart
(1979)

2. Du, D., Ko., K.: Theory of Computational Complexity. John Willey & Sons (2000)
3. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack languages. J. ACM 14,

389–418 (1967)
4. Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2, 304–310

(1973)
5. Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Com-

put. 208, 982–995 (2010)
6. Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial-time reducibilities.

Theor. Comput. Sci. 1, 103–123 (1975)
7. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-

guages. Math. Systems Theory 7, 185–192 (1973)
8. Reinhardt, K.: Hierarchies over the context-free languages. In: Dassow, J., Kelemen,

J. (eds.) IMYCS 1990. LNCS, vol. 464, pp. 214–224. Springer, Heidelberg (1990)
9. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing

machines. Theor. Comput. Sci. 411, 22–43 (2010)
10. Yamakami, T.: Swapping lemmas for regular and context-free languages. Available

at arXiv:0808.4122 (2008)
11. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and

finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2010)
12. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theor.

Comput. Sci. 412, 6432–6450 (2011)
13. Yamakami, T., Kato, Y.: The dissecting power of regular languages. Inf. Pross.

Lett. 113, 116–122 (2013)
14. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Inf.

Control 10, 189–208 (1967)

Author Index

Akl, Selim G. 443
Alam, Md. Jawaherul 52
Alchimowicz, Bartosz 40
Alqahtani, Hasna Mohsen 65

Bannai, Hideo 503
Barhum, Kfir 77, 89
Barla, Michal 126
Beckers, Kristian 102
Biedermann, Sebastian 114
Bieliková, Mária 126
Biro, Miklos 1
Blin, Guillaume 138
Böckenhauer, Hans-Joachim 89
Bougeret, Marin 150
Bousquet, Nicolas 150
Brox, Oliver 491
Bujtor, Ferenc 162

Cemus, Karel 174
Cerny, Tomas 174
Cochefert, Manfred 187
Cool, Benjamin 491
Corral, Antonio 478

da Costa, Umberto Souza 199
de Castro, Valeria 199
de Souza Neto, Plácido A. 199
Dragomir, Iulia 211

Erlebach, Thomas 65

Fleck, Tobias 223
Fontaine, Allyx 235
Forǐsek, Michal 89
Frangos, Panayiotis 407
Freivalds, Rūsiņš 246
Friedrich, Matthias 383

Gebauer, Heidi 89
Gelles, Ran 258
Gerlinger Romero, Alessandro 269
Gernert, Christoph 491
Gimbert, Hugo 281
Giroudeau, Rodolphe 150

Gonçalves Vieira Ferreira, Mauŕıcio 269
Grigoriev, Alexander 293

Hanzlik, Lucjan 306
Heggernes, Pinar 315
Hromkovič, Juraj 89

Inenaga, Shunsuke 503

Janin, David 7
Jansen, Klaus 327
Jauns-Seyfried, Stefanie 491
Jelden, Hanno 491
Jonoska, Nataša 339
Jurkiewicz, Jakub 40

Kalnina, Elina 351
Kalnins, Audris 351
Kappes, Andrea 223
Karvelas, Nikolaos P. 114
Katzenbeisser, Stefan 114
Kaufmann, Michael 52
Klie, Stefan 491
Kluczniak, Kamil 306
Knieke, Christoph 491
Kobourov, Stephen G. 52
Komatsu, Tomoki 363
Kopczyńska, Sylwia 40
Korec, Ivan 375
Körner, Marco 491
Koutsonas, Athanassios 293
Královič, Rastislav 21
Krämer, Michael 491
Kratsch, Dieter 187
Kroha, Petr 383
Krug, Sacha 89
Krzywiecki, �Lukasz 395
Ksystra, Katerina 407
Kubiak, Przemys�law 395
Kuric, Eduard 126
Kutrib, Martin 419
Kuty�lowski, Miros�law 395

Lace, Lelde 351
Lacko, Peter 126

528 Author Index

Manea, Florin 339
Manolopoulos, Yannis 478
Matas, Jǐŕı 30
Mchedlidze, Tamara 52
Meckel, Katja 419
Métivier, Yves 235
Mishkin, Dmytro 30
Morel, Paul 138
Mráz, Frantǐsek 431
Musicante, Martin A. 199

Narisawa, Kazuyuki 363
Nawrocki, Jerzy 40
Niebuhr, Dirk 491

Ober, Iulian 211
Ochodek, Miros�law 40
Okuta, Ryosuke 363
Ostrovsky, Rafail 258
Otto, Friedrich 431
Oualhadj, Youssouf 281

Palioudakis, Alexandros 443
Percebois, Christian 211
Peska, Ladislav 455
Peter, Andreas 114
Peters, Henrik 491
Polášek, Ivan 126
Poniszewska-Maranda, Aneta 466
Prädel, Lars 327

Rástočný, Karol 126
Rausch, Andreas 491
Rizzi, Romeo 138
Robson, John Michael 235

Roumelis, George 478
Roytman, Alan 258

Saei, Reza 315
Salomaa, Kai 443
Schneider, Klaus 269
Seki, Shinnosuke 339
Shinohara, Ayumi 363
Smula, Jasmin 89
Sostaks, Agris 351
Stefaneas, Petros 407
Steffen, Björn 89
Strasser, Arthur 491
Strufe, Thorsten 114

Takeda, Masayuki 503
Thilikos, Dimitrios M. 293
Tsuruta, Kazuya 503
Tvarožek, Jozef 126

van Leeuwen, Erik Jan 315
van ’t Hof, Pim 315
Vargas-Solar, Genoveva 199
Vassilakopoulos, Michael 478
Vialette, Stéphane 138
Vogler, Walter 162
Vojtas, Peter 455

Wagner, Dorothea 223
Watrigant, Rémi 150
Wendlandt, Matthias 419
Wiedermann, Jǐŕı 375

Yamakami, Tomoyuki 514

Zemmari, Akka 235
Zeugmann, Thomas 246

	Preface
	Organization
	Invited Talks
	Table of Contents
	Invited Papers
	Open Services for Software Process ComplianceEngineering
	1 Introduction
	2 Growing Expectations Regarding Safety-Critical Systems
	3 Traceability, Interoperability, OSLC
	4 Conclusion
	References

	Towards a Higher-Dimensional String Theoryfor the Modeling of Computerized Systems
	1 Introduction
	2 From Partial Observations to Inverse Semigroups
	3 On Languages of Higher-Dimensional Strings
	4 Conclusion
	References

	Advice Complexity:Quantitative Approach to A-Priori Information
	1 Introduction
	2 Online Computing
	3 Distributed Computing
	4 Conclusion
	References

	Matching of Images of Non-planar Objectswith View Synthesis
	1 Introduction
	2 Tested Matchers
	3 Experiments
	3.1 Evaluation Protocol
	3.2 Results

	4 Conclusion
	References

	Agile Requirements Engineering: A ResearchPerspective
	1 Introduction
	2 Written vs. Oral Communication
	3 Elicitation of Non-functional Requirements
	4 Automatic Effort Estimation Based on Use Cases
	5 User Manual Generation
	6 Conclusions
	References

	Contributed Papers
	Fitting Planar Graphs on Planar Maps
	1 Introduction
	1.1 RelatedWork
	1.2 Our Contributions

	2 Preliminaries
	3 Fitting on a Rectangular Map
	3.1 Fitting Is NP-Hard

	4 Sufficient Conditions for Fitting
	5 Fitting Graphs on Rectilinear Maps
	6 Conclusion and Future Work
	References

	Minimum Activation Cost Node-Disjoint Pathsin Graphs with Bounded Treewidth
	1 Introduction
	2 Preliminaries
	3 Minimum Activation Cost
	3 Minimum Activation Cost k Node-Disjoint st-Paths
	3.1 Processing the Tree Decomposition
	3.2 Analysis

	4 Minimum Activation Cost Node-Disjoint Pathsbetween k Pairs of Terminals
	4.1 Processing the Tree Decomposition

	5 Conclusion
	References

	Tight Bounds for the Advice Complexityof the Online Minimum Steiner Tree Problem
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Some Notation

	2 The Terminal-Greedy Algorithm
	3 A Matching Lower Bound
	3.1 Edge-Efficient Algorithms
	3.2 Diamond Graphs and Our Instance Distribution
	3.3 Deriving the Lower Bound

	References

	On the Power of Advice and Randomizationfor the Disjoint Path Allocation Problem
	1 Introduction
	2 Preliminaries and Related Work
	3 A Technique to Prove Lower Bounds
	4 Bounds for Achieving Optimality
	5 Bounds for Small Advice
	6 Upper Bounds for c-Competitiveness
	7 On the Power of Random Bits
	References

	Goal-Based Establishment of an Information SecurityManagement System Compliant to ISO 27001
	1 Introduction
	2 ISO 27001
	3 SI*
	4 A Method for Goal-Based ISMS Establishment
	5 Application of Our Method to a Smart Grid Scenario
	6 Discussion and Related Work
	7 Conclusion
	References

	ProofBook: An Online Social NetworkBased on Proof-of-Work and Friend-Propagation
	1 Introduction
	2 Related Work
	2.1 Consolidations of P2P Substrates and OSNs
	2.2 Proof-of-Work Based Architectures

	3 Overview of the Key Scheme
	3.1 User Registration and Friendships
	3.2 User Data Propagation and Availability
	3.3 The ProofBook Payment Scheme

	4 Evaluation
	4.1 ProofBook Update Request Timings
	4.2 User Data Container Propagation

	5 Conclusion
	References

	Platform Independent Software DevelopmentMonitoring: Design of an Architecture
	1 Introduction
	2 Architecture Overview
	2.1 Data Acquisition
	2.2 Added Value Provision

	3 Vertical Layers
	3.1 Documents
	3.2 Logs
	3.3 Information Tags

	4 Case Study: Code Monitoring in Software House Environment
	4.1 Infrastructure and Metadata Management
	4.2 Infrastructure Usage Possibilities

	5 Conclusions and Future Work
	References

	Towards Unlocking the Full Potentialof Multileaf Collimators
	1 Radiation Therapy Planning
	2 Dual-MLC Decomposition Minimizing Total Setup-Time
	3 Matrix Orthogonal Decomposition
	References

	Parameterized Complexity of the Sparsestk-Subgraph Problem in Chordal Graphs
	1 Introduction
	2 Parameterized Algorithms, Chordal Graphs
	3 Appetizer: Parameterized Complexity of Densest
	3 Appetizer: Parameterized Complexity of Densestk-Subgraph in Chordal Graphs
	4 FPT Algorithm for Sparsest k-Subgraph in ChordalGraphs
	5 Kernel Lower Bound of Sparsest
	5 Kernel Lower Bound of Sparsest k-Subgraph inChordal Graphs
	References

	Error-Pruning in Interface Automata
	1 Introduction
	2 Definitions and Notation
	3 Optimistic Approach: Local Errors
	3.1 Precongruence for Local Errors
	3.2 Comparison to Interface Automata

	4 Hyper-Optimistic Approach: Internal Errors
	5 Pessimistic Approach: Reachable Errors
	6 Conclusion
	References

	Aspect-Driven Design of Information Systems
	1 Introduction
	2 Background
	3 Related Work
	4 Aspect Approach
	4.1 Transformation into Terms of AOP
	4.2 Implementation

	5 Case Study
	6 Conclusion
	References

	Exact Algorithms to Clique-Colour Graphs
	1 Introduction
	2 Preliminaries
	3 Computing the Clique-Chromatic Number Exactly
	4 Minimal Transversals
	5 2-Clique Colourability of Graphs of Bounded Clique Size
	6 Conclusions
	References

	Supporting Non-functional Requirements in Services Software Development Process:An MDD Approach
	1 Introduction
	2 SOD-M
	3 πSOD-M
	4 Proof of Concept:
	5 Related Work
	6 Conclusions
	References

	Safety Contracts for Timed ReactiveComponents in SysML
	1 Motivation and Approach
	2 A Meta-theory for Contract-Based Reasoning
	3 Timed Input/Output Automata
	4 Contracts for Timed Input/Output Automata
	5 Application to a SysML Model: the ATV Solar Wing Generation System Case Study
	6 Related Work
	7 Conclusions
	References

	Graph Clustering with Surprise:Complexity and Exact Solutions
	1 Introduction
	2 Definition and Basic Properties
	3 Complexity
	4 Exact Solutions
	5 Conclusion
	References

	On Lower Bounds for the Time and the Bit Complexity of Some Probabilistic DistributedGraph Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Coverings and Synchronous Distributed Algorithms

	3 Obtaining Lower Bounds by Considering Disconnected Graphs
	4 Obtaining Lower Bounds of the Form Ω(√log n) forConnected Graphs
	5 Obtaining Lower Bounds of the Form Ω(log n)for Connected Graphs
	References

	Active Learning of Recursive Functionsby Ultrametric Algorithms
	1 Introduction
	2 p-adic Numbers and Ultrametric Algorithms
	3 Results
	4 Conclusions
	References

	Efficient Error-Correcting Codesfor Sliding Windows
	1 Introduction
	2 Preliminaries
	3 A Polylogarithmic Sliding Window Coding Scheme
	4 Conclusions and Open Questions
	References

	Integrating UML Composite Structuresand fUML
	1 Introduction
	2 Related Works
	3 UML Composite Structures and fUML
	4 Metamodel - CompositeStructure4fUML
	4.1 Abstract Syntax
	4.2 Semantics and Formal Rules

	5 Evaluation and Discussion
	6 Conclusion
	References

	Deciding the Value 1 Problem for �-acyclic PartiallyObservable Markov Decision Processes
	1 Introduction
	2 Notations
	2.1 Partially Observable Markov Decision Process
	2.2 Strategies and Measure
	2.3 Outcome and Knowledge
	2.4 Value 1 Problem

	3 The� -acyclic Partially Observable Markov Decision Processes
	3.1 Iteration of Actions
	3.2 �-acyclic POMDP

	4 Deciding the Value 1
	4.1 The Knowledge Game
	4.2 Proof of Theorem 1

	5 Conclusion
	References

	Bidimensionality of GeometricIntersection Graphs
	1 Introduction
	2 Definitions and Preliminaries
	3 Bidimensionality of Line Intersection Graphs
	4 Modeling Body Intersections by Intersection of Polysegments
	5 Conclusions and Further Research
	References

	Attack against a Pairing Based AnonymousAuthentication Protocol
	1 Introduction
	2 Protocol Description
	2.1 Setup
	2.2 Registration
	2.3 Computing of Membership Proof
	2.4 Verification of the Proof

	3 The Flaws and Attacks
	3.1 Collusion Attack
	3.2 Attack against Anonymity

	4 Final Comments
	4.1 Design Suggestions
	4.2 Conclusion

	References

	Finding Disjoint Paths in Split Graphs
	1 Introduction
	2 Preliminaries
	3 Finding Disjoint Paths in Split Graphs Is NP-Hard
	4 Two Polynomial Kernels
	4.1 Polynomial Kernel for Vertex-Disjoint Paths on Split Graphs
	4.2 Polynomial Kernel for Edge-Disjoint Paths on Split Graphs

	5 Conclusion
	References

	A New Asymptotic Approximation Algorithmfor 3-Dimensional Strip Packing
	1 Introduction
	2 2-Dimensional Bin Packing
	2.1 Modifying Packings
	2.2 2-Dimensional Bin Packing Algorithm

	3 3-Dimensional Strip Packing
	3.1 Modifying Packings
	3.2 Algorithm
	3.3 3-Dimensional Containers
	3.4 Summary

	4 Conclusion
	References

	A Stronger Square Conjecture on Binary Words
	1 Conjectures
	2 Preliminaries
	3 Counting Squares
	4 Towards the Inductive Proof
	4.1 Induction Based on Catenation with Single Generative Class
	4.2 Induction Based on Catenation with Multiple Generative
	4.3 Towards an Inductive Proof for General Words

	5 Conclusions
	References

	DSL Based Platform for Business Process Management
	1 Introduction
	2 Related Work
	3 Languages and Platform for DSBPMS
	3.1 General Principles of the Approach
	3.2 Language Components for Building a Process DSL
	3.3 Platform Components

	4 Example – A DSL for Internal Document Processing
	4.1 Description of the Example DSL
	4.2 The Example in Brief

	5 Conclusions and Future Work
	References

	Bounded Occurrence Edit Distance: A New Metric for String Similarity Joinswith Edit Distance Constraints
	1 Introduction
	2 Preliminaries
	3 Bit-Vector-BasedJoin
	3.1 Occurrence Edit Distance
	3.2 Bounded Occurrence Edit Distance
	3.3 Frequency-Based Bounded Occurrence Edit Distance

	4 Performance Evaluation
	4.1 Experiments on Artificial Data
	4.2 Experiments on Real-World Data

	5 Conclusion and Future Work
	References

	Deterministic Verification of Integer MatrixMultiplication in Quadratic Time
	1 Introduction
	2 A Simple Probabilistic Verification Algorithm
	3 A Deterministic Algorithm for Verification of Integer Matrices Product
	4 The Non-deterministic Algorithm for Integer Matrix Multiplication in Quadratic Time
	5 Conclusions
	References

	Comparison of Genetic Algorithms for TradingStrategies
	1 Introduction
	2 Related Work
	3 Our Prototypes
	3.1 Our Neurogenetic Prototype A
	3.2 Our Prototype B Based on Genetic Programming

	4 Fitness Function
	5 DataUsed
	6 Experiments and Results
	7 Statistical Hypothesis Testing
	8 Comparison to Fuzzy and Fractal Technology
	9 Conclusion
	References

	Probabilistic Admissible Encoding on Elliptic Curves- Towards PACE with Generalized Integrated Mapping
	1 Introduction
	2 Siguna Müller’s Square Root Algorithm
	3 Probabilistic Variant of the Simplified SWU Method
	4 Indifferentiability for a Non-deterministic Case
	5 Probabilistic Admissible and Weak Encodings
	5.1 Weak Probabilistic Encoding
	5.2 The Resulting Admissible Probabilistic Encoding

	6 Conclusions
	References

	An Algebraic Framework for Modelingof Reactive Rule-Based Intelligent Agents
	1 Introduction
	1.1 Related Work

	2 Observational Transition Systems and CafeOBJ
	3 An Algebraic Framework for Reactive Rules
	3.1 Production Rules in CafeOBJ
	3.2 Event Condition Action Rules in CafeOBJ
	3.3 Complex Events Definition

	4 Case Study: A Supply Chain Management System
	4.1 Formal Specification and Verification of the System

	5 Conclusions and Future Work
	References

	Parameterized Prefix Distancebetween Regular Languages
	1 Introduction
	2 Preliminaries
	3 Upper and Lower Bounds for the Prefix Distance
	4 Distances Below the Upper Bound
	5 Decidability of the Order of the Distances
	References

	Ordered Restarting Automatafor Picture Languages
	1 Introduction
	2 Ordered Restarting Automaton for Words
	3 Picture Languages
	4 Simulating Sgraffito Automata
	5 Concluding Remarks
	References

	Unary NFAs with Limited Nondeterminism
	1 Introduction
	2 Preliminaries
	3 Finite Tree Width and Chrobak Normal Form
	4 Growth Rate of the Branching Measure
	5 Conclusion and Open Problems
	References

	Recommending for Disloyal Customers with LowConsumption Rate
	1 Introduction
	1.1 Our Motivation
	1.2 Main Contribution

	2 Related Work
	3 Datasets
	3.1 Implicit Feedback Data
	3.2 Click Stream Data
	3.3 Content Based Attributes

	4 Algorithms
	4.1 Category Extension
	4.2 Implicit Feedback Extension
	4.3 Attributes Extension

	5 Experiments
	5.1 Experimental Settings
	5.2 Results

	6 Conclusions and Future Work
	References

	Security Constraints in Modeling of AccessControl Rules for Dynamic Information Systems
	1 Introduction
	2 Access Control Based on Role Concept and Usage Concept
	2.1 Approach of Usage Role-Based Access Control
	2.2 Creation Process of Security Profiles for Users of Information System

	3 Security Constraints for URBAC Approach
	3.1 Classification of Security Constraints of URBAC Model
	3.2 Constraints from Developer Point of View in URBAC Approach
	3.3 Constraints from Security Administrator Point of View in
	3.4 Implementation of Security Constraints in URBAC Model

	4 Conclusion
	References

	A New Plane-Sweep Algorithmfor the K-Closest-Pairs Query
	1 Introduction
	2 Related Work and Motivation
	3 Plane-Sweep in
	Closest-Pairs Query Processing
	4 Reverse Run Plane-Sweep Algorithm for
	5 Experimentation
	5.1 Performance Comparison of PS Algorithms for KCPQs

	6 Conclusions and Future Work
	References

	Mastering Erosion of Software Architecturein Automotive Software Product Lines
	1 Introduction
	2 Background
	2.1 Erosion
	2.2 Model Based Development of Automotive Software
	2.3 Software Product Line Extraction
	2.4 Software Architecture Re-engineering

	3 Experimental Details
	4 Results and Discussion
	5 Conclusion
	References

	Shortest Unique Substrings Queries in OptimalTime
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Unique Substrings
	2.3 Data Structures

	3 Algorithm
	3.1 Finding All MUSs
	3.2 SUSs from MUSs

	4 Computational Experiments
	References

	Oracle Pushdown Automata, Nondeterministic Reducibilities, and the Hierarchy over theFamily of Context-Free Languages
	1 Backgrounds and Main Themes
	2 Preparation
	3 Natural Reducibilities
	3.1 Many-One Reductions by Npda’s
	3.2 Turing Reducibility by Npda’s

	4 The CFL Hierarchy
	4.1 Reducibility and a Hierarchy
	4.2 Structural Properties

	References

	Author Index

