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Preface

Owing to the increase in the scale and sophistication of cyber crimes conducted
through the communication networks, it is imperative for the research com-
munity to ensure the protection of data disseminated through these networks.
Online information assets are further threatened because of the increasing trend
toward adoption of cloud computing and virtualization. Stakeholders need to be
aware of the potential threats to the information assets and critical infrastructure
and how to mitigate and eliminate these threats.

In past nine years, SecureComm has emerged as a leading international forum
that covers all aspects of information and communications security with partic-
ular emphasis on security in communication and networking. SecureComm also
serves as a venue for learning about the emerging trends in security and privacy
research, giving participants the opportunity to network with experts in the field.
The strategic objectives of SecureComm are to provide a common platform for
security and privacy experts in academia, industry, and government as well as
practitioners, standards developers, and policy makers to engage in discussions
on the common goals in order to explore important research directions in the
field. This year SecureComm was held in Australia for the first time. This co-
incided with one of the 15 recently announced Australian government Strategic
Research Priorities in Cyber Security, securing Australia’s place in a changing
world.

For SecureComm 2013, 70 high-quality papers were submitted from over 15
countries. Unfortunately, the acceptance rate set for this conference did not allow
us to accept all papers with relevant merits. In this respect, special thanks to the
Technical Program Committee members for handling of the challenging task and
selecting 21 outstanding papers with a significant contribution to the field to be
included in the proceedings. The 21 accepted papers can be broadly classified
under the following themes:

– Security and privacy in mobile, sensor, and ad hoc networks
– Malware, botnets, and distributed denial of service
– Security for emerging technologies: VoIP, peer-to-peer, and cloud computing
– Encryption and key management
– Security in software and machine learning
– Network and system security model
– Security and privacy in pervasive and ubiquitous computing

In addition to the papers presented at the conference, we also had following four
exciting keynote speakers:

– Mike Holm, Operations Manager, AusCERT (Computer Emergency Re-
sponse Team in Australia)
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– James Turner, Chair, AISA (Australian Information Security Association)
Advocacy Group

– Mark Goudie, Regional Manager – Investigations, Dell SecureWorks
– Jiankun Hu, Professor and Research Director Cyber Security Lab, Australian

Defence Force Academy

Finally, we are very grateful to the NSW government for their sponsorship, as
well as the European Alliance for Innovation (EAI) and the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering (ICST)
for allowing SecureComm 2013 to be held in Australia. We also thank the local
Organizing Committee and its many members and volunteers for their support. A
special thank goes to Erica Polini, EAI Conference Manager, and Elisa Mendini,
EAI Venue Manager and Conference Coordinator, for their utmost profession-
alism in managing the administrative aspects of the conference. Last but not
least, our gratitude goes to the Steering Committee members, in particular to
Peng Liu, for his continuous supervision to make SecureComm a very successful
event.

September 2013 Tanveer Zia
Albert Zomaya

Vijay Varadharajan
Morley Mao
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Anomaly Detection in Beacon-Enabled

IEEE 802.15.4 Wireless Sensor Networks

Eirini Karapistoli and Anastasios A. Economides

Department of Information Systems,
University of Macedonia

Egnatia 156, Thessaloniki, Greece
{ikarapis,economid}@uom.gr

Abstract. During the past decade, wireless sensor networks (WSNs)
have evolved as an important wireless networking technology attracting
the attention of the scientific community. With WSNs being envisioned
to support applications requiring little to no human attendance, how-
ever, these networks also lured the attention of various sophisticated
attackers. Today, the number of attacks to which WSNs are susceptible
is constantly increasing. Although many anomaly detection algorithms
have been developed since then to defend against them, not all of them
are tailored to the IEEE 802.15.4 standard, a dominant communication
standard for low power and low data rate WSNs. This paper proposes a
novel anomaly detection algorithm aimed at securing the beacon-enabled
mode of the IEEE 802.15.4 MAC protocol. The performance of the pro-
posed algorithm in identifying intrusions using a rule-based detection
technique is studied via simulations.

Keywords: Wireless Sensor Networks, Beacon-enabled IEEE 802.15.4
MAC, Rule-based Anomaly Detection.

1 Introduction

WSNs raise the interest of different business domains, including that of security
[1]. Their ability to monitor and control physical environments and large scale
critical infrastructures make them a promising candidate. WSNs can be relatively
easily deployed in a large geographical span, and can provide with fault diagnosis,
intrusion detection and monitoring services in a cost-efficient manner since they
do not require additional infrastructure. While the distributed nature of a WSN
increases the survivability of the network in critical situations (it is much less
likely that the network will be affected in its entirety by failures or attacks),
defensive mechanisms that could protect and guarantee the normal operation of
the WSN in the presence of adversaries are still needed.

Currently, research on providing security solutions for WSNs has mainly fo-
cused in key management [2], [3], secure authentication and routing [4], secure
localization and data aggregation [5], [6], and recently, in intrusion detection [7].

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 1–18, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



2 E. Karapistoli and A.A. Economides

Within the limited scope of this paper, we restrain our focus on the latter ap-
proach in an attempt to defend against strong inside attackers that have pen-
etrated the first perimeter of defense. An Intrusion Detection System (IDS)
monitors the events occurring in the network and analyzes them to detect signs
of intrusion [8]. Various signature-based and anomaly-based IDS architectures
have been proposed for flat and hierarchical WSNs [9], [10], [11]. However, to the
best of our knowledge, none of them is applicable to IEEE 802.15.4-compliant
WSNs.

The IEEE 802.15.4-2011 standard [12] is a dominant communication stan-
dard developed to provide low-power and highly reliable wireless connectivity
among inexpensive, battery-powered devices. While emphasis has been given on
improving the performance of the 802.15.4 MAC protocol [13], limited work has
been contacted on securing its beacon-enabled mode. As identified in [14], [15],
this mode is vulnerable to a number of attacks. Some of the attacks (i.e., ra-
dio jamming and link layer jamming) are common to all MAC layer definitions.
Others like the back-off manipulation and the attacks against the acknowledge-
ment mechanism may also occur in IEEE 802.11 wireless networks due to some
common properties in the MAC layer implementations [16]. However, several
attacks including the Personal Area Network (PAN) identifier conflict attack,
and the Guaranteed Time Slot (GTS) attack are only applicable to the 802.15.4
MAC layer mechanisms defined by the standard. Therefore, the latter category of
attacks requires novel, anomaly-based intrusion detection algorithms to defend
against them.

Accordingly, this work contributes to the area of anomaly detection for IEEE
802.15.4-compliant wireless sensor networks. We propose a distributed anomaly
detection algorithm for securing the beacon-enabled mode of the IEEE 802.15.4
MAC protocol. Vulnerabilities of the underlying MAC are exposed and dealt
with using a rule-based detection approach. Our algorithm differentiates from
existing works in that it does not rely on the existence of special types of nodes,
i.e. monitor nodes or watchdogs, to perform the anomaly detection task. Fi-
nally, the proposed algorithm does not require expensive communication be-
tween the sensor nodes, since anomaly detection and revocation are performed
distributively.

The remainder of the paper is organized as follows: in Section 2, existing work
on securing the beacon-enabled mode of the 802.15.4 MAC is outlined. In Sec-
tion 3, we review several features of the underlying MAC protocol and analyze
its vulnerabilities in order to provide a better understanding of the proposed
algorithm. In Section 4, we provide a detailed description of our anomaly detec-
tion algorithm. Section 5 illustrates the obtained simulation results, followed by
detailed reports. Finally, conclusions are given in Section 6.

2 Related Work

Several defensive methods have been proposed for securing the beacon-enabled
mode of the IEEE 802.15.4 MAC protocol. The standard itself encompasses
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built-in security features to provide data secrecy and data authenticity. However,
as Sastry et al. [17] pointed out, these security features have vulnerabilities
related to the initial vector (IV) management, key management, and integrity
protection. To address these issues, Alim et al. introduced EAP-Sens [18], a link
layer secure protocol implementation for 802.15.4 sensor networks in beacon-
enabled mode. While effective in its design, as with any authentication protocol,
EAP-Sens is vulnerable to insider attacks launched by compromised (malicious)
nodes.

Sokullu et al. [14], [19] were the first to analyze insider attacks targeting
the beacon-enabled mode of the IEEE 802.15.4 MAC protocol. The authors
used ns2 simulations to demonstrate DoS-like GTS attacks whose main goal
was to create collisions at the GTS slots and deny the guaranteed communica-
tion. While effective, the major drawback of their work is that it lacks a clear
description of how to defend against such attacks. Amini et al. [20] proposed a
Received Signal Strength Indicator (RSSI)-based solution to detect Sybil attacks
in IEEE 802.15.4 beacon-enabled clusters. The coordinator is tasked with detect-
ing anomalies inside its cluster based on deviations in the tuple (disc number,
device ID) it assigned to its cluster members. However, this method does not
consider the case of compromised coordinators. Moreover, if a malicious node
is close enough to a legitimate node, its RSSI may be confused with the RSSI
of the legitimate node, thus enabling the malicious node to escape detection.
Recently, Jung et al. [15] performed an in-depth study of the vulnerable prop-
erties of the beacon-enabled mode of the IEEE 802.15.4 standard. The authors
implemented on real devices four potential insider attacks associated with those
vulnerabilities, and presented mechanisms to defend against them. While the
authors provide a good framework to analyzing IEEE 802.15.4 MAC layer at-
tacks, no implementation or testing exists relative to the defensive mechanisms
they propose in their paper.

Overall, a concrete framework for securing IEEE 802.15.4-compliant sensor
networks against insider attacks is still missing. Our approach to the problem
is to use rule-based anomaly detection. As analyzed in [11], rule-based anomaly
detection is attractive because its methodology is flexible and resource-friendly
and benefits from the absence of an explicit training procedure. In rule-based
detection, the anomaly detector uses predefined rules to classify data points
as anomalies or normalities. While monitoring the network, these rules are se-
lected appropriately and applied to the monitored data. If the rules defining an
anomalous condition are satisfied, an anomaly is declared. Da Silva et al. [21]
where among the first to propose a rule-based distributed ADS for WSNs. While
the authors provide a good framework to rule-based detection, the defined rules
are not applicable to attacks targeting beacon-enabled WSNs. This is also the
case for other similar rule-based anomaly detection systems (ADS) proposed for
WSNs [22], [23].

Therefore, in this paper, we attempt to move towards that direction propos-
ing a specific modular rule-based ADS architecture tailored to IEEE 802.15.4-
compliant wireless sensor networks operating under the beacon-enabled mode.
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3 Preliminaries

3.1 The IEEE 802.15.4 MAC

The MAC sublayer of the standard provides services such as beacon generation
and synchronization, PAN association and disassociation, GTS management,
and channel access among others [12]. It also provides support for star and peer-
to-peer network topologies. Peer-to-peer topologies allow more complex network
formations to be implemented, such as mesh and cluster tree topologies that are
better suited for security-oriented applications. When lines of communication
exceed the implementation-specific personal operating space (POS), an 802.15.4
network can be a self-configuring, multi-hop network. Two different device types
can participate in an IEEE 802.15.4 network; a full-function device (FFD) and
a reduced-function device (RFD). An FFD device can operate in three modes
serving as a PAN coordinator, a coordinator, or a device. An RFD device instead,
only connects to a cluster tree network as a leaf device at the end of a branch
(see Fig.1).

The IEEE 802.15.4 MAC operates in two modes, the beacon-enabled mode
and the nonbeacon-enabled mode. In the beaconless mode, coordinators do not
emit regular beacons. Moreover, channel access is managed through the unslotted
version of the CSMA-CA algorithm. In beacon-enabled PANs, which can assume
only a star or tree topology, all non-leaf nodes periodically transmit beacon
frames. In this mode, a PAN coordinator relies on a superframe (SF) structure
to enable transmission and reception of message that consists of a beacon, an
active period, and an inactive period. While starting a PAN, coordinator sets
its macPANId and the length of both active and inactive periods, defined by
the macBeaconOrder, BO=[0,15), and the macSuperframeOrder, SO=[0,BO),
respectively. The active period consists of 16 equal sized time slots and contains
a contention access period (CAP), which uses slotted CSMA/CA for channel
access, and a contention free period (CFP), which consists of guaranteed time
slots (GTS) that are allocated on demand to nodes for a contention-free access
to the channel. Member nodes can switch over to sleep mode during the inactive
period to save battery.

3.2 Attacking the IEEE 802.15.4 MAC

The beacon-enabled mode of the IEEE 802.15.4 MAC protocol is vulnerable to a
number of internal and external attacks several of which are common to all wire-
less MAC layer definitions. Therefore, in this paper we concentrate on attacks
that target peculiar mechanisms of the underlying MAC, namely its PANID con-
flict resolution procedure, the GTS allocation and deallocation mechanisms and
the data transmissions during the CAP and CFP portions of the superframe.

PANId Conflict Attack. According to the IEEE 802.15.4 standard [12], the
PAN identifier conflict resolution procedure is executed when more than one PAN
coordinators with the same PANId operate in the same POS. If such a conflict
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Fig. 1. An IEEE 802.15.4 cluster tree network. (Source: [12]).

occurs, a member device that receives beacons from both PAN coordinators,
can notify its PAN coordinator to perform the conflict resolution procedure. An
adversary device can take advantage of this vulnerability and frequently send
fake PANId conflict notification commands to the coordinator and oblige the
latter to perform the conflict resolution procedure. Such an attack may prevent
or greatly delay communication between devices and the PAN coordinator.

GTS Attack. According to [12], a GTS slot is the portion of the superframe
that provides contention free communication between a device that reserved the
slot and a coordinator. The GTS allocation mechanism is executed as follows.
First, the device has to receive the beacon frame to identify the superframe
boundaries. A GTS allocation request is sent in the CAP portion of the super-
frame to the coordinator. The request includes the required length and direction
(uplink or downlink) of the GTS slot. The coordinator may send an ACK packet
to confirm the successful reception of the GTS request. If GTS slots are available,
the coordinator assigns them to the requesting device using the beacon frame.
Once assigned, the data transmission takes place in the GTS slots of the follow-
ing superframes. Similarly, a deallocation request results to the deallocation of
a GST slot.

As it can be seen, the GTS management scheme does not verify the ID of each
device that requests GTS allocation or deallocation. Therefore, an inside attacker
can easily compromise this procedure by either impersonating existing legitimate
nodes’ IDs or creating new IDs for devices that do not exist (i.e., implement a
Sybil attack at the MAC layer [24]). Let us examine the possible attack scenarios
separately. In the first attack scenario, a malicious node that is in the POS of
the PAN coordinator first obtains the IDs of existing legitimate nodes in the
PAN by either overhearing the list of pending addresses in the beacon frame or
the GTS allocation requests that are sent during the CAP. Accordingly, when
a legitimate node requests GTS allocation to transmit data in the CFP portion
of the next superframes, the malicious node can cancel this transmission by
sending a GTS deallocation request using the spoofed ID immediately after the
GTS allocation request as shown in Fig 2. Since the PAN coordinator receives
the deallocation request while processing the GTS allocation from the legitimate
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node, it ignores the GTS allocation coming first and does not assign any GTS
to the legitimate node. As a result, the legitimate node is not assigned any GTS
and cannot transmit its sensed data.

In the previous attack, a malicious node impersonates a legitimate node to
cause the PAN coordinator to deallocate the requested GTSs. In this attack,
a malicious node sends GTS requests from multiple fake IDs (up to 7) to com-
pletely allocate the CFP period. To perform this attack, a malicious node contin-
uously monitors the available GTS slots with the intent of completely occupying
them. Then, the attacker sends GTS allocation requests to fill up all the avail-
able GTSs in the superframe (see Fig. 3 for an explanation). By occupying the
available GTSs and not allowing legitimate nodes to reserve GTSs the malicious
node performs an exhaustion and unfairness type of attack. The malicious node
does not necessarily need to send data at the assigned time slots. However, oc-
casionally it may need to do so in order to prevent the PAN coordinator from
dropping the assigned GTSs.

False Data Injection. In this attack, the malicious node first identifies which
legitimate node has not requested GTS allocation by looking at the GTS descrip-
tors of the beacon frames. Then, it chooses the legitimate node’s ID that does
not have any GTS allocation request and sends a GTS allocation request using
that ID. After it confirms that a GTS is allocated by the PAN coordinator, the
malicious node uses the spoofed ID and sends false data to the PAN coordinator
during the CFP. The legitimate node at the same time sends its sensed data
during the CAP. After checking the node’s ID, the PAN coordinator regards the
false data as time-sensitive ones and ignores the data sent from the legitimate
node during the CAP.

Beacon

CAP

Inactive 

Period

CFP

time

CAP

Inactive 

Period

CFP

GTS allocation request from a legitimate node

GTS deallocation request from a malicious node
Blocked transmission. No GTS slot was 

allocated to the legitimate node.

Fig. 2. A malicious node launching a GTS deallocation attack

Beacon

CAP

Inactive

Period

CFP

time

CAP

Inactive

Period

CFP

GTS deallocation requests from legitimate nodes

GTS allocation requests from a malicious node

Data from a malicious node. All GTSs taken by the

malicious node. No GTSs left for legitimate nodes.

Fig. 3. A malicious node stealing all 7 GTSs of the CFP period
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DoS-like Attacks. In this attack, the attacker has the ability to create col-
lisions by jamming the beacons or specific GTS slots, which are broadcast in
nature. In order to jam the beacons the malicious node must align to the su-
perframe boundary and produce a collision by sending data at the start of the
beacon. In the second case, it may intercept the beacons and learn in which GTS
slots legitimate nodes send data. Then, it can corrupt the guaranteed commu-
nication between this device and the coordinator by jamming one or multiple
GTSs.

Selective Forwarding and Black Hole Attacks. The communication flow
in IEEE 802.15.4 beacon-enabled PANs, allows a captured (compromised) coor-
dinator to perform a selective forwarding attack. In this attack, the malicious
nodes refuses to forward all or a subset of the messages it receives from its child
devices and simply drops them. If the attacker drops all the packets, the attack
is then called black hole.

4 Anomaly Detection in 802.15.4-Based WSNs

This section highlights our anomaly detection framework, stating assumptions,
and describing the proposed algorithm.

4.1 Assumptions of the Model

A number of assumptions are made concerning the framework in which the wire-
less sensor nodes operate. First, we consider a cluster tree 802.15.4 network in
which most devices are FFDs. We assume that there is no pre-existing distributed
trust model or peer-to-peer trust model, and hence no node can be fully trusted.
Sensor nodes comprising the WSN remain stationary all the time. Once the clus-
ters are formed and nodes are assigned short addresses, they maintain the same
members, except for cases where nodes are blacklisted, die, or when new nodes
join the network. Each node shall maintain a data structure that facilitates the
storage of direct observations of all its parent-child nodes. Moreover, since sen-
sor nodes are “weak” devices, we assume that an adversary can completely take
over nodes and extract their cryptographic keys or load malicious software to
launch an insider attack. Accordingly, and in order to limit the complexity of
our model, we do not implement any cryptographic security mechanism, even
though the MAC sublayer of the standard provides hooks that can be harnessed
by upper layers to achieve authentication, message integrity, confidentiality and
replay protection [17]. Next, we describe our anomaly detection algorithm in
detail.

4.2 Detailed Algorithm Description

The core of the proposed algorithm relies on the periodic normal/guarding oper-
ation of the nodes comprising the WSN. To implement the aforementioned dual
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behavior, nodes inside the network adopt a periodic operation. Each node es-
tablishes the periods of normal/guarding operation during the cluster formation
and guarding initialization phases. After the clusters are formed and guards are
assigned, the monitor node collects statistics for its peers, which are used during
the anomaly detection and node revocation phase to detect signs of intrusion.
The different phases of our algorithm are analyzed below.

Phase 1: Cluster Formation. In the proposed algorithm, sensor nodes follow
the association procedure defined by the standard in order to gradually connect
and form a multicluster network structure. Before starting a PAN, the first
action a device needs to perform is to initiate an active or passive scan in order
to locate other PANs within its POS. Once a new PAN is established, the PAN
coordinator is ready to accept requests from other devices to join the PAN. In
the process of joining a PAN, the device requesting association will perform a
passive scan to determine which PANs in its POS are allowing association. A
device should attempt to associate only with a PAN through a coordinator that is
currently allowing association (i.e., a coordinator whose macAssociationPermit
is set to TRUE). In order to impose topological restrictions on the formation
of the network, the macAssociationPermit is set to FALSE when the number
of nodes joining a particular PAN exceeds the parameter Nu. If the original
candidate device is not able to join the network at that coordinator, it will
search for another parent device or it will become the PAN coordinator of a
new PAN adjacent to the first one by selecting a suitable PAN identifier (see
Fig. 1). Every device follows this association procedure and gradually connects
to a PAN.

After the clusters are formed, each node starts operating in one of the avail-
able two modes; the normal mode in which it collects and forwards application-
specific sensor measurements to the base station (BS), and the guarding mode
in which it promiscuously listens to its peers’ transmissions in order to detect
signs of intrusion. During the normal mode, nodes may exchange data in the
active portion of the superframe. Three types of data transfer transactions are
allowed in the IEEE 802.15.4 MAC. The first one is the direct transmission in
which a device sends data to a coordinator. The second data transfer model is
the indirect transmission in which a coordinator sends data to a device, and the
third transaction is the peer-to-peer data transfer (see Fig. 4 for an explanation).
Within our algorithm, nodes are allowed to perform direct transmissions in both
the CAP and CFP portions of the superframe resembling a sink-based reporting
scheme that is typical in WSNs. Each device shall transmit a data frame follow-
ing the successful application of the slotted version of the CSMA-CA algorithm.
The transmission procedure, which includes the acknowledgement mechanism,
begins with a randomly selected back-off time. Any transmission procedure can
be repeated (attempted), if it can be completed within the same portion of
the superframe. The remaining data, if any, will be deferred to the next active
portion of the superframe.
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Fig. 4. Periodic normal/guarding operation of the nodes inside a PAN

Phase 2: Guarding Initialization. After completion of phase I, nodes peri-
odically enter the guarding phase by enabling the macPromiscuousMode of the
standard for a time equal to a superframe duration, SD. Time SD determines
the active portion of the superframe in symbols, and relates to the macSuper-
frameOrder, 0≤SO≤BO≤14, as follows:

SD = aBaseSuperframeDuration ∗ 2SOsymbols (1)

where aBaseSuperframeDuration=960, and BO is the interval at which the co-
ordinator shall transmit its beacon frames. During this time, also called the
guarding interval, each node gathers traffic-related attributes for all its parent
and child nodes (if any) by promiscuously listening to the packets transmit-
ted over the shared communication channel (see Fig. 4). As it can be seen, a
functional difference between the first PAN coordinator and the rest PAN co-
ordinators is that the latter alternatively acts as an associated device (during
the active period of the superframe of the first PAN coordinator) and as the
coordinator (guard) of a set of surrounding FFDs or RFDs.

So, a node in the guarding mode is in charge of monitoring its parent-child
nodes by turning the promiscuous listening mode on or equivalently by setting
the macPromiscuousMode to TRUE. When in promiscuous mode, the MAC
sublayer shall pass all frames correctly received to the next higher layer for
further processing. Note that each guarding period is a unique guarding round
for collecting traffic-related attributes. These attributes may then be used by
the ADS system running on each sensor node to detect signs of intrusions. At
this point we should also state that the guarding periods of the nodes inside
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a PAN are not synchronized. Each cluster member enters the guarding mode
sequentially and in accordance to its allocated macShortAddress. This is because
we want to distribute the role of the guard among the cluster members and enable
the detection and revocation to be fully distributed.

As apparent, the guarding periods are bounded by the beacons the PAN
coordinators sent. Child devices associated with them use these beacons to syn-
chronize their guarding periods. A guarding period is actually considered active
following the transmission of the beacon frame. The beacon frames contain essen-
tial parameters of the PAN, such as the CoordPANId, the macBeaconOrder, the
macBSN, and the StartTime at which the beacon frame was received. A node
that receives a beacon frame stores its information locally and consequently
learns the consecutive moments during which it will enter in the guarding mode.
The reception of the beacon frame also confirms that the coordinator is still
alive and operational, and that the device has not been orphaned. As apparent,
keeping the correct timing for broadcasting/receiving these frames is the highest
priority task for every node. Whatever a node is doing, i.e. is engaged in other
transmit or receive operations, it will be interrupted for the accurate, on-time
transmission/reception of the beacon frame. In order to acquire beacon synchro-
nization and to maintain their periodicity, nodes need to set the TrackBeacon
parameter to TRUE. This will enable a node to switch on its radio slightly before
the expected broadcast of the beacon in order to receive it.

Phase 3: Anomaly Detection and Node Revocation. Our network-based
ADS detects anomalies based on the packets that it monitors. Hence, following
the data acquisition, anomaly detection and revocation come next. As already
revealed, each node activates its ADS functionality when the MAC sublayer is in
the so-called promiscuous (receive all) mode. During this guarding mode, each
node keeps track of the transactions of all its parent-child nodes and stores the
collected packet in a data structure. Since we follow a rule-based approach to
anomaly detection, each data structure is evaluated according to the sequence
of rules defined in Table 1. A packet is discarded after being tested against all
rules without failing any of them. On the opposite case, an alarm will be raised
if a violation of these rules occurs.

Indeed, an alarm indicates that a node is an intruder and needs to be revoked.
Revocation is initiated following a process similar to the disassociation mecha-
nism defined by the standard. Since nodes enter the guarding mode periodically,
every node can independently verify intrusion instances and take revocation on
the intruder. Note that revocation can be lazy, in that a node does not need to
verify the intruder unless the latter is its parent or its child. In this way, attacks
are detected and revoked in a fully distributed manner.

The MAC sublayer of the 802.15.4 standard allows us to implement the node
revocation functionality easily since it defines procedures on how a device can
disassociate from a PAN. The disassociation procedure may be initiated either
from the PAN coordinator or from an associated device. Following the comple-
tion of a guarding period and the declaration of an anomaly, the coordinator
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may send a disassociate notification command to instruct a device to leave the
PAN (malicious associated device case) or an associated device may request dis-
association from the coordinator (malicious coordinator case). Let us examine
these two cases separately.

When a coordinator wants one of its associated devices to leave the PAN,
it sends a disassociation notification command to the malicious device. Because
the disassociation command contains an acknowledgment request, the associated
device shall confirm its receipt by sending an ACK frame. Even if the ACK
is not received, the coordinator should consider the device disassociated. The
next higher layer of a coordinator should disassociate a device by removing
all references to that device. The device will soon conclude that it has been
orphaned and will attempt to join other PANs within its POS. If no PANs exist
in its POS, the revocation of the node would be global. In the opposite case, a
similar procedure will be followed to revoke this node from the rest of the PANs
it will attempt to associate with in the future.

In the second case, an associated device may send a disassociate notification
command to notify the malicious coordinator of its intent to leave the PAN.
Again, this command contains an ACK request. However, even if the ACK is
not received, the device should consider itself disassociated. The orphaned device
will in turn have to perform an active or passive scan in order to join other
PANs that exist in its POS, or initiate a new PAN in case the active or passive
scans fail. Since gradually all nodes associated with the malicious coordinator
will independently verify the intrusion and leave its PAN, new clusters will be
formed and the malicious coordinator will be completely revoked.

5 Performance Evaluation

5.1 Simulation Environment

In order to implement the proposed algorithm, we extended the capabilities of the
existing IEEE 802.15.4 model developed in the OMNeT++ simulator [25]. This
model was adapted from a version for ns-2 by Chen and Dressler. The model,
which is described in more details in [26], implements the IEEE 802.15.4-2006
protocol stack. It also consists of two protocol-independent modules supporting
energy measurement and mobility in the simulations. Our extension to the model
targeted only the MAC sublayer (the PHY layer remained intact). Besides adding
C++ code for the anomaly detection engine, modifications were made to the
beacon-enabled mode of the model in order to support 802.15.4 cluster-tree
topologies similar to [27]. In order to prevent overlapping, the emission of beacons
is governed by an offset time. The offset for each PAN coordinator is set in a
special StartTime parameter in the omnetpp.ini file. The particular value of the
offset, which is null for the first PAN coordinator, for any other PAN coordinator
is proportional to its CoordPANId.

We simulated a 802.15.4 cluster-tree network configured with our ADS. 20
nodes were placed uniformly at random in a rectangular playground of 100 x
100m2 (the first PAN coordinator (host[0]) was placed on the upper-left corner
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of the network). Each node has a communication range (POS) of 20m and oper-
ates under the 2.4 GHz PHY. We set the maximum number of octets added by
the MAC sublayer to the PSDU without security equal to aMaxMPDUUnsecure-
dOverhead, 25 octets. This leads to a DATA PPDU length of 31 bytes, a beacon
PPDU length of 17 bytes and an ACK PPDU length of 11 bytes. Regarding the
transceiver characteristics, we use those of the IEEE 802.15.4-compliant CC2420
Chipcon radio [28], where each sensor consumes as high as 19.7 mA, 17.4 mA
and 20 μA, in receive, transmit and sleep modes respectively.

We simulated a security-oriented application supporting sink-based reporting,
that is to say, traffic flowing from the devices to the BS (typical case of a sensor
network). Since nodes perform upstream transmissions this fact guarantees that
the packet will reach the BS. In this scenario, only leaf node were generating traf-
fic. The traffic load was set equal to 2 packets per second. During the simulation,
randomly selected intelligent adversaries include themselves in the network by
replicating legitimate (captured) nodes. The malicious nodes selectively launch
one of the attacks identified in Section 3.2. All the presented results were aver-
aged over 10 simulation runs. Each run lasts for 20 minutes, which gives as an
overall simulation time of 10 hours.

5.2 Simulation Results

In this section, we evaluate the performance of the proposed anomaly detection
algorithm through simulations. Comparison of our algorithm with existing rule-
based anomaly detection schemes would not be appropriate, as they are not
tailored to the IEEE 802.15.4 standard. Two metrics were used to evaluate the
effectiveness of our algorithm. These are the percentage reduction in network
lifetime, which is used to examine the extent by which our ADS degrades the
network lifetime when being implemented in common sensor nodes, and the
detection accuracy defined as the ratio of the detected attacks to the total number
of detected and undetected attacks.

Energy Consumption. Fig. 5a illustrates the percentage reduction in network
lifetime as a function of the percentage increase in the number of compromised
nodes. To simulate the described scenario, we chose at random a number of
network nodes and we programmed them to selectively launch one of the attacks
depicted in Table 1. With regard to selective forwarding attacks (launched only
by non-leaf nodes), the attacker was dropping packets with a probability pd =
30%. When pd = 100%, the attacker was executing a black hole attack. We set
the threshold value for the percentage of packets being dropped over the guarding
interval, SD, to be t = 20%. Above this threshold, an alarm was generated and
node revocation was initiated. For all other types of attack, the counter-criterion
rules of Table 1 are evaluated in succession and, if violated, an alarm is raised.

As the three curves show in Fig. 5a, the percentage reduction in network
lifetime increases smoothly as the percentage of malicious nodes increases. This is
because more energy-consuming intrusion detection functions are being executed
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Fig. 5. a) Percentage reduction in network lifetime, and b) Detection accuracy of Se-
lective forwarding attacks

following the introduction, identification and revocation of an increasing number
of adversaries. Overall, the network lifetime decreases by as high as 14.8%. The
relatively small decrease in network lifetime is achieved because the energy-
consuming role of the guard is rotated among the network nodes, a fact that
uniformly distributes the energy dissipation among the nodes. As expected, the
percentage reduction in network lifetime is low when the network contains no
malicious nodes. The obtained curves also indicate the trade off between the
value of the macSuperframeOrder, SO={3,4,5} and the energy cost. According
to Eq. (1), bigger SO values extend the guarding interval, SD, or equivalently the
time window the monitor node is hearing in the promiscuous mode. As such, the
longer a monitor node stays in the ’receive all’ mode, the higher is the associated
energy cost.

Detection Accuracy. The rest of the figures evaluate the effectiveness of our
algorithm against the attacks depicted in Table 1. In each attack scenario, there
was always one single type of attacker, which was varied in each simulation.

One interesting aspect these figures present is that the variation of the value
of the SO does not impact the detection efficiency of our algorithm. Only the
selective forwarding attacks and PANId conflict attacks, which are assessed over
a time window SD, are affected by the value of SO. Indeed, as shown in Fig. 5b,
smaller SO values result in lower detection levels. This happens because small
SO values, result in small guarding intervals SD. Recall that the interval SD
relates to the time window that a monitor node has in order to gather packets
and analyze them for signs of intrusion. Since less packets are being collected as
a result of the smaller SD interval, this affects the decision making process of
anomaly detection and produces less accurate intrusion detection results. One
aspect that is common in all types of attack is that if there is a high fraction of
compromised nodes inside the network (50 percent or more), the detection levels
achieved by our anomaly detection algorithm tend to drop below 90 percent,
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Fig. 6. Detection accuracy of a) PANId conflict attacks, and b) GTS attacks

which is considered low for an effective ADS. We can thus say that our ADS
works acceptable when having 45% or less of compromised nodes inside the
WSN.

As already revealed, Fig. 5b shows results on the detection accuracy of se-
lective forwarding attacks. In this type of attack, since packets are dropped
probabilistically, there might be the case that during the guarding interval of
some nodes, the dropped packets are less than t = 20%, and no alert is pro-
duced by those nodes. Then, the detection rule over that time window will not
be satisfied, and would produce no alarm. This is less probable to happen if the
value of SO gets bigger or if the nodes launch black hole attacks (the results on
black hole attacks are not presented here due to space restrictions). In this case,
the probability that during an SD interval the dropped packets are less than t,
resulting in a false negative, is close to zero, and hence the accuracy in detecting
that kind of attack is close to 100%.

Fig. 6a illustrates the detection accuracy of PANId conflict attacks. In PANId
conflict attacks, detection was always close to 100% due to the rule being applied
to detect this kind of attack. Another factor that keeps the detection levels high
is that these attacks are not mistaken with any other kind of attack or with
occasional network failures, and as such, a small number of false negatives is
only generated. However, an increase in the number of misdetections is obtained
when half, or more, of the nodes behave maliciously. In this case, the minority
vote rule being applied does not prevail any more.

According to Fig. 6b, the detection of GTS attacks ranges between 99% and
80%. In this scenario, since the SO does not impact the detection levels, only
results for SO=4 are depicted. The two curves indicate that the detection of
GTS allocation attacks is less successful. This happens because this type of
attack may be confused with the DoS-like GTS attacks, and as such, it may
generate a higher number of false negatives.

Fig. 7a on the other hand, shows that false data injection attacks, similar to
PANId conflict attacks, are detected with very high accuracy. Again, this attack
is not mistaken with any other kind of attack or network failure, generating few
false negatives.
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Fig. 7. Detection accuracy of a) False data injection attacks, and b) DoS-like attacks

Fig. 7b illustrates the obtained results on the detection accuracy of DoS-like
attacks. While the DoS-like beacon attacks are detected with an accuracy always
above 95%, the detection effectiveness drops in the case of DoS-like GTS attacks.
This happens because in this type of attack there is no internal mechanism (sim-
ilar to the lost synchronization) to notify the coordinator and assist the decision
making process of anomaly detection. Moreover, these type of attacks may be
confused with the GTS allocation attacks when jamming occurs in multiple GTS
slots, a fact that may further increase the number of false negatives.

6 Conclusions and Future Work

In this paper, we presented a distributed anomaly detection algorithm for secur-
ing IEEE 802.15.4-compliant WSNs operating in the beacon-enabled mode. The
proposed algorithm exploits the peculiar characteristics of the standard in order
to incarnate the concept of periodic guarding for anomaly detection purposes.
The OMNeT++ simulator has been used to implement our algorithm and to
collect various results aiming at assessing its performance. The results showed
that our approach maintains the energy consumption overhead at very low lev-
els, while at the same time, it achieves high detection accuracy for all types of
identified attacks. In the future, we intend to examine the proposed algorithm
in larger networks operating under more hostile conditions.
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Abstract. Two-tiered sensor networks have been widely adopted since they 
offer good scalability, efficient power usage and storage saving. Storage nodes, 
responsible for storing data from nearby sensors and answering queries from the 
sink, however, are attractive to attackers. A compromised storage node would 
leak sensitive data to attackers and return forged or incomplete query results to 
the sink. In this paper, we propose SVTQ, a Secure and Verifiable Top-k Query 
protocol that preserves both data confidentiality and integrity of query results. 
To preserve data confidentiality, we propose prime aggregation whereby 
storage nodes can process top-k queries precisely without knowing actual data 
values. To preserve integrity of query results, we further propose a novel 
scheme called differential chain that allows the sink to verify any forged or 
incomplete result. Both theoretical analysis and experimental results on the real-
world data set confirm the effectiveness and efficiency of SVTQ protocol. 

Keywords: Two-tiered sensor networks, Data confidentiality, Prime 
aggregation, Integrity, Differential chain. 

1 Introduction 

1.1 Motivation 

Two-tiered sensor networks have been widely adopted since they offer good 
scalability, efficient power usage and storage saving. In this paper, we focus on a two-
tiered sensor network as illustrated in Fig. 1, where resource-rich storage nodes act as 
an intermediate tier between sensor nodes and the sink. The storage nodes store data 
from their nearby sensors and process queries from the sink.  

Compared with traditional sensor networks, two-tiered sensor networks have three 
major advantages. First, sensors periodically submit their collected data to their 
nearby storage node in one hop instead of sending them to the sink via multiple hops, 
which saves power for energy-limited sensors. Second, storage nodes store sensor 
collected data for future retrieval and data analysis, which saves storage space for 
memory-constrained sensors. Third, when issuing a query, instead of flushing the 
whole sensor network, the sink only needs to communicate with storage nodes, and 
storage nodes only need to process queries over the data stored on them locally, which 
makes the query more efficient. Two-tiered sensor networks were first introduced by  
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Fig. 1. Architecture of two-tiered sensor networks 

Sylvia Ratnasamy [13], and then have been widely adopted for various applications 
[5], [15], [17], [20]. Several commercial products of storage nodes, such as RISE [14] 
and StarGate [19], have been available and widely used. 

However, the central role of storage nodes in this tiered framework makes them 
attractive to attackers when the network is deployed in a hostile environment. A 
compromised storage node poses great threats to the network. First, a compromised 
storage node would leak sensitive information collected from sensors to attackers. 
Second, a compromised storage node would also return forged or incomplete query 
results to the sink. It is especially dangerous when the query results are used to make 
critical decision such as military actions. Therefore, a secure and verifiable query 
protocol for two-tiered sensor networks is imperative.  

As a typical query type in two-tiered sensor networks, top-k query asks for data 
items whose numerical attributes are among the k highest of all data items [21], which 
is important for monitoring extreme conditions. Therefore, this paper aims to design a 
secure and verifiable top-k query protocol for two-tiered sensor networks. For data 
confidentiality, the proposed query protocol should enable storage nodes to process 
queries correctly without knowing actual data values, so that compromising a storage 
node will not lead to the leakage of sensitive data. For integrity of query results, the 
query protocol should allow the sink to verify whether the storage nodes has injected 
forged data into or omitted some qualified data items from query results. 

1.2 Technical Challenges 

There are two key challenges in designing a secure and verifiable top-k query protocol 
for two-tiered sensor networks. First, to prevent a compromised storage node from 
disclosing sensitive data to attackers, each sensed data should be encrypted before 
being sent to storage nodes, hence, the storage nodes need to process queries over 
encrypted data items without knowing their actual data values. Second, upon 
receiving a query result from a storage node, the sink needs to verify whether the 
query results indeed contain the top-k data items and do not contain any forged data. 

1.3 Limitations of Prior Arts 

Although important, only in recent years has secure top-k query in two-tiered sensor 
networks become a focus of research. Zhang & Shi firstly propose schemes for 
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verifiable top-k query in their recently seminal work [21]. By exploiting crosscheck 
approach, the integrity of query results can be well preserved. Nevertheless, data 
confidentiality is not taken into consideration. A subsequent solution to secure top-k 
query was presented by Liao and Li [11], which covers both data confidentiality and 
integrity of query results. All the schemes proposed in [11] are based on the system 
model where each sensor submits only one sensed data to storage node each time. 
However, it is a more general case in real-world applications where each sensor has 
multiple sensed data per submission, as adopted in prior arts [3], [16], [18], [21]. 
Liao’s scheme for data confidentiality preservation would be unworkable when 
performed on this general system model. In addition, Liao’s scheme does not enable 
storage nodes to obtain precise query results while ensuring data confidentiality. Up 
to now, no research effort was conducted on both confidentiality and integrity 
preserving top-k query in the general system model of two-tiered sensor networks. 

1.4 Our Approach and Major Contributions 

In this paper, we propose SVTQ, a secure and verifiable top-k query protocol for two-
tiered sensor networks. To preserve data confidentiality, we propose a novel scheme 
called prime aggregation whereby storage nodes can process queries correctly without 
knowing actual data values. To preserve integrity of query results, we propose a 
differential chain, a novel scheme which enables the sink to verify the authenticity 
and completeness of query results. The major contributions of this paper are listed as 
follows: 

(1) To the best of our knowledge, this paper is the first that considers both data 
confidentiality and integrity issues when processing top-k queries in the general 
system model of two-tiered sensor networks.   

(2) We propose a novel data confidentiality preserving scheme which can precisely 
obtain top-k query results without disclosing any sensitive information to storage 
nodes.  

(3) We introduce a data storage scheme which allows the sink to verify any forged 
or incomplete query result.  

(4) We evaluate our solutions on a real-world data set, and the results show that 
SVTQ achieves confidentiality and integrity goals efficiently. 

The rest of this paper is organized as follows. In Section 2, we give a brief review 
of the related work. Section 3 describes the system model and the threat model. In 
section 4 and 5, we give a detailed description of our data confidentiality and integrity 
preserving scheme respectively. In Section 6, we discuss the security and performance 
of our proposed schemes. We present our performance evaluation and experimental 
results in section 7 and conclude this paper in section 8. 
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2 Related Work 

2.1 Secure Range Query in Two-Tiered Sensor Networks 

Secure range query in two-tiered sensor networks has attracted much attention in 
recent years [3], [16], [18]. To preserve data confidentiality, Sheng & Li [16] and Shi 
et al. [18] adopt the bucket partitioning scheme first introduced by Hacigumus et al. 
[8]. The basic idea of bucket partitioning is to divide the domain of data value into 
multiple buckets, after collecting data items from environment, each sensor firstly 
distributes the collected data into a corresponding bucket, encrypts data items in each 
bucket, and then sends each encrypted data along with its bucket ID to the closest 
storage node. When the sink wants to execute a range query, it first converts the query 
into a smallest set of bucket IDs and then sends the set to the storage node. Once 
receiving the queried set of bucket IDs, the storage node first finds all the encrypted 
data items that fall into these buckets, and then reports them to the sink as the query 
result. However, as pointed out in [9], the bucket partitioning scheme allows a 
compromised storage node to make a reasonable estimation on both sensed data and 
queries. To address this problem, Chen & Liu proposed SafeQ [3], a prefix based 
scheme to encode both data and queries such that the aforementioned estimation can 
be avoided. In SafeQ, after collecting n data items from the environment, each sensor 
firstly converts the n data items into n + 1 ranges, and then employs prefixes to 
represent these ranges before sending them to storage node.  However, suffering 
from the inherent drawback of prefix membership verification technique, SafeQ 
usually needs a series of prefixes to represent a range, which is unfavourable for 
resource-limited sensors. 

To preserve integrity of query results, Sheng & Li [16] proposed an encoding 
technique where each sensor generates a distinct encoding number for the bucket that 
has no data item, these encoding numbers are used by the sink to verify the integrity 
of query results. However, this technique will introduce extra communication 
overheads by sending the encoding number for these empty buckets. To address this 
problem, Shi et al. [18] proposed a spatiotemporal crosscheck approach. In their 
scheme, each sensor uses a bit map to represent which buckets have data, and then 
broadcasts its bit map to nearby sensors. Each sensor attaches the bit maps received 
from others to its own data and then encrypts them together. The sink verifies the 
integrity of query result from a sensor by examining the bit maps from its nearby 
sensors. However, this scheme would be efficient only in the event detection 
scenarios since data broadcast would introduce considerable communication 
overheads.  With respect to this problem, Chen & Liu [3] proposed a technique called 
neighborhood chain, by concatenating the neighboring data items, the sink can detect 
the integrity of query results efficiently.   

2.2 Secure Top-k Query in Two-Tiered Sensor Networks 

Secure top-k query in two-tiered sensor networks has been recently studied [11], [21]. 
Zhang & Shi firstly proposed three schemes for verifiable top-k query in their recent 
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work [21]. All their schemes share the same basic idea that each data item is attached 
with a Message Authentic Code (MAC) such that injecting forged data can be easily 
detected. Specially, in their later two schemes, sensors exchange data information by 
broadcasting their highest data score to others. Each sensor embeds the received 
information into its own data and then sends these new data items along with MACs 
to its closest storage node. The sink then verifies the authenticity and completeness of 
query results by examining the MACs and the information extracted from each data. 
By using this crosscheck approach, the integrity of query results can be well 
preserved. However, as we aforementioned, the broadcast mechanism would 
introduce considerable communication overheads for energy-constrained sensors. 
Furthermore, data confidentiality is not taken into consideration in [21].  

A subsequent solution to secure top-k query in two-tiered sensor network was 
proposed by Liao and Li [11], which covers both data confidentiality and integrity of 
query results. By using the revised order-preserving symmetric encryption (OPSE) 
proposed by Boldyreva et al. [1], the storage nodes can process top-k query as 
efficient as for the unencrypted data items. However, the simply use of OPSE would 
incur order-relation and distance-relation privacy leakage. To overcome this problem, 
Liao et al. further propose a secret perturbation scheme. The basic idea of secret 
perturbation is to randomly select some sensors, and then perturb the data of these 
sensors by adding a secret data to the original one before encrypting them with OPSE. 
However, this scheme would lead to imprecise query results, which means the query 
results would contain data items that do not satisfy the query. What’s more, all the 
schemes proposed in [11] are based on the system model where each sensor submits 
one sensed data to storage node each time. This means that the top-k queries would be 
performed on the data set where each sensor only has one data. However, it is a more 
general case in real-world applications where each sensor has multiple data items per 
submission, as assumed in [3], [16], [18], [21]. The data confidentiality preserving 
scheme proposed in [11] would be unworkable when performed on this general 
system model. In contrast, this paper aims at designing a top-k query protocol in the 
general system model as adopted in prior arts [3], [16], [18], [21], which preserves 
both data confidentiality and integrity of query results. 

3 Models and Problem Statement 

3.1 System Model  

We assume a similar system model as in [3], [16], [18], [21]. The architecture of this 
two-tiered sensor network is shown in Fig. 1. Specifically, each storage node is in 
charge of a cell composed of many sensors, storage nodes are often resource-rich in 
the aspects of energy, storage and computation while sensors are usually resource-
constrained in every regard. Sensors collect data from the environment and 
periodically submit their collected data to storage nodes. Storage nodes store data 
received from their nearby sensors and process queries from the sink. Without loss of 
generality, we assume that all sensors and storage nodes are loosely synchronized. We 
divide time into fixed time intervals, and every n intervals form an epoch. Each sensor 
sends its data to the storage node at the end of each epoch as follows.  
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             Si → Storage Node： i, t, { , , … , , } 

where i is the sensor ID and t is the sequence number of the epoch during which n 
data items { ,1, … , , } are collected. Similarly, we consider the following query 
mode. 

Sink → Storage Node:  Q = (A, t, k) 

where A denotes the ID set of queried sensors, t is the queried time epoch and k 
denotes the number of data items the sink asks the storage node to return. To sum up, 
Q = (A, t, k) denotes that the sink asks for the k highest data items generated in a 
queried set A during epoch t.  

3.2 Threat Model and Security Goals 

Similar with prior arts, we assume that storage nodes are vulnerable to be 
compromised while sensors and the sink are always trustworthy. Due to the important 
role of storage nodes in two-tiered sensor networks, compromising a storage node will 
lead to great damage to the system. First, once a storage node is compromised, the 
large quantity of confidential data stored on the storage node will be leaked to the 
attackers. Second, after receiving a query from the sink, the compromised storage 
node can also be manipulated to return forged or incomplete query results to the sink. 
Therefore, this paper aims to achieve the following security goals. 

Data Confidentiality preservation: To enable storage nodes to process queries 
correctly over encrypted data without knowing actual data values, so that 
compromising a storage node will not lead to the leakage of any sensitive data. 

Integrity preservation: To enable the sink to verify the authenticity and 
completeness of query results. The authenticity check is to detect forged data items in 
query results while the completeness check is to make sure that no qualifying data 
items are maliciously omitted by compromised storage nodes. Thus, any misbehavior 
of a compromised storage node can be detected by the sink. 

4 Confidentiality Preservation for Sensed Data 

In order to preserve data confidentiality, it seems that the simplest way is to encrypt 
data before sending them to the storage node. But a subsequent challenge is how to 
process a query over encrypted data without revealing plaintext data. 

4.1 Prefix Membership Verification 

Prefix membership verification was first introduced in [4] and later formalized in 
[12]. The basic idea of this technique is to convert the question of whether a number 
is in a range to another question of whether two sets share a prefix. Given a number x 
whose binary format is b1b2…bw, where w is the bit length of number x. The prefix 
family of number x is defined as F(x) = {b1b2…bw, b1b2…bw-1*, …,b1* … *, * … *}. 
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For example, the prefix family of number 11 is F(11) = {1011, 101*, 10**, 1***, 
****}. Similarly, a range can be converted into a minimum set of prefixes which we 
call the range prefix of this range. We use R[d1, d2] to denote the range prefix of range 
[d1, d2]. For example, R[10, 15] = {101*, 11**}. Given a number x and a range [d1, 
d2], if F(x)  R[d1, d2] ≠ , we can draw the conclusion that x ∈ [d1, d2] according to 
the theory proposed in [12].  

Inspired by works [4] and [12], we propose to make use of the prefix membership 
verification technique to meet the data confidentiality preserving goal. However, there 
are still two challenges need to be overcome before we can apply this technique to our 
problem. First, the aforementioned method is just used to determine whether a 
number belongs to a range, how to make comparison between two encrypted data is 
still a difficult question. Second, given a number d1 and a range [d2, d3], where d1, d2, 
and d3 are numbers with w bits. We need w + 1 prefixes to denote the prefix family of 
d1 and 2w-2 prefixes to denote the range prefix of this range in the worst case [7]. 
This is heavy-laden for resource-constrained sensors if so many prefixes need to be 
submitted for each sensing data for the sake of data comparison. Thus, how to reduce 
these massive overheads remains another question. 

4.2 Prime Aggregation 

To meet aforementioned challenges, we propose prime aggregation, a novel scheme 
which enables the comparison between two encrypted data items while fewer 
additional overheads are introduced. The basic idea of prime aggregation is to 
aggregate multiple prefixes in a prefix set into a single number with the aid of primes, 
which can be done in two steps. First, map each prefix in prefix set to a unique prime. 
Second, perform multiplication on the primes obtained from each prefix set. 

For simplicity, the Prime aggregation result from prefix Family will be denoted by 
PF, while the Prime aggregation result from Range prefix will be denoted by PR. 
Then we have the following theorem. 

Theorem 4.1: Given a number x and a range [y, z], x ∈ [y, z] if and only if the 
following inequality holds: 

gcd (PF(x), PR([y, z])) ≠ 1 .                       (1) 

Proof: Let fi and rj be the prefix in the prefix family and range prefix respectively, 
while the total number of prefixes in the prefix family and range prefix are denoted by 
V and M respectively. Then we have 
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Then                        h lpf pr=  

i.e.          x ∈ [y, z] gcd ( ( ), ([ , ])) 1h lPF x PR y z pf pr= = ≠ . 

The inversion of this expression can be proved similarly, thus 

[ ],x y z∈ ⇔ gcd ( ( ), ([ , ])) 1PF x PR y z ≠ . 
Next, we introduce the detailed process for applying prime aggregation to our 

scheme.  
Before distributing all sensors to their working sites, a sequence of prime numbers 

will be pre-generated and stored in all sensors. For convenience of mapping, each 
prefix in prefix set would be firstly numericalized before mapped to a corresponding 
prime.  

 

Fig. 2. Data submission for a sensor node 

The basic idea of prefix numericalization is to convert a prefix into a corresponding 
number. Given a prefix b1b2 ··· bh * ··· *of w bits, we first insert 1 between bh and the 
symbol * to separate b1b2 ··· bh and * ··· *, and then replace each * with 0. Note that if 
there is no symbol * in the prefix, we will add 1 at the end of this prefix. For example, 
prefix {1***} will be converted into {11000} = 24 while {1110} will be converted 
into {11101} = 29 after numeralization. The detailed process of prefix numeralization 
falls out of scope of this paper. A formal definition of this process can be found in [2].  

For mapping each prefix to a unique prime, we introduce a pseudorandom function 
in our scheme. The pseudorandom number generated by the pseudorandom function 
acts as a medium for mapping each prefix to a unique prime. Specifically, at the 
beginning of each epoch, a list of pseudorandom numbers will be generated using a 
pseudorandom function shared by all sensors. Note that the seed for this 
pseudorandom function varies with epoch changing, i.e., seedt = hash (seedt-1). When 
mapping each prefix to a prime, each sensor firstly finds the corresponding 
pseudorandom number according to the value of each numericalized prefix, e.g., if the 
value of a numericalized prefix is 12, the sensor finds the 12th pseudorandom number 
in the pseudorandom number list. Then the value of this pseudorandom number will 
be used as the address for indexing the prime stored on each sensor.  

For the second step of prime aggregation, we perform multiplication to the 
obtained primes. Note that each large number is regarded as a string in our scheme, 
and we adopt the large number multiplication algorithms proposed in [6] to perform 
multiplication. Thus, the product of primes can be any length and the overflow can be 
avoided. 

[1, ]h n∈

, ,( ) ,
i ti h kd
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4.3 Data Submission 

Let , , … , ,  be the data items collected by sensor Si during epoch t, where each 
data item belongs to range (dmin, dmax). Here dmin and dmax , known to both sensors and 
the sink, denote the public lower and upper bounds of sensor collected data. Fig. 2 
illustrates the information sent to storage node by sensor Si at the end of epoch t. 

Upon collecting n data items, sensor node Si performs the following steps: 
(1) Sort the n data items in descending order, i.e., ,  > ,  > … > , . For 

simplicity, we assume that all data items are different from each other. 
(2) Compute the prefix family F( , ) and the range prefix R([ , , ]) for each 

data item, where h ∈ [1, n] , and then numericalize them.  
(3) Perform prime aggregation to the numericalized prefixes. We use ,  to 

represent the aggregation result of ,  while ,  to denote that of range 
[ , , dmax]. 

(4) Encrypt each data with the secret key ki,t, shared between each sensor and the 
sink, i.e., compute , , , …, , , , where ki,t is generated using an 

embedded hash function, i.e., ki,t = hash (ki,t-1).  
(5) Send the encrypted data items along with the prime aggregation results to 

storage node, i.e., send ,1 , , ,1, ,1], ···, , , , , , , ]} to 

its closest storage node. 

 

Fig. 3. An example of data comparison using prime aggregation 

4.4 Query Processing  

After receiving a query Q = (A, t, k) from the sink, the storage node finds the largest k 
data items of queried set A based on theorem 4.1. 

Given two encrypted data items , ,  of sensor Si and , ,  of sensor Sj, 

where i, j ∈ A and h, l ∈ [1, n]. Storage nodes compare these two encrypted data 
items by checking whether the following expression holds. 

gcd ( , , , ) ≠ 1 

× ××××
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If the above expression holds, then 

, ∈  [ , , ] 

Namely ,  > ,  . 
By doing this, storage nodes can make comparison between two numbers without 

knowing their actual values. Thus the top-k results can be precisely obtained.  
As an illustrative example, shown in Fig. 3, when given two encrypted data 12 ,  and 10 , , storage nodes compare these two data items by verifying 

whether gcd (PF(12), PR([10, 15])) ≠ 1. Here, we assume the public upper bound of 
data is 15. 

 
Algorithm 1. diff_C (d[], dmax, dmin) 
1. sort (d) by descending order; n = d.size 
2. if   n = 1 then 
3.     D[1]  (dmax – d[1])  d[1]  (d[1] – dmin); return(D) 
4. else if  n = 2 then 
5.     D[1]  (dmax – d[1])  d[1]  (d[1] – d[2]) 
6.     D[2]  d[2]  (d[2] – dmin); return(D) 
7. else 
8.     for  i = 2: n-1 
9.       D[i]  d[i]  (d[i]-d[i + 1]) 
10.    end for 
11.    D[1]  (dmax – d[1])  d[1]  (d[1] – d[2]) 
12.    D[n]  d[n]  (d[n] – dmin); return (D) 
13. end if 

5 Integrity Preservation for Query Results 

In this section, we propose differential chain, a novel data storage scheme that enables 
the sink to verify any forged or incomplete query result. 

5.1 Differential Chain 

The basic idea of differential chain is to embed the difference of two adjacent data 
items into the prior one, hence, data items are linked with each other just like a chain. 
The procedure for transforming the list of sensed data to a differential chain is shown 
in Algorithm 1. Here, “  ” denotes the concatenation of data items.  

After collecting n data items at the end of each epoch, sensor Si firstly converts 
these sensed data into a corresponding differential chain, and then sends the encrypted 
differential chain of , ,  , , , , …, , , , instead of , , , , , , …, , , , to its closest storage node.  
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For simplicity, we assume that all data items are different from each other. In fact, 
when come to the case in which some sensed data are the same, we can adjust our 
scheme by further embedding the sequence number of the sensed data into its 
predecessor. Hence, the embedded information for each data item will be unique. 

5.2 Query Response 

Note that if sensor Si has  data items satisfying a top-k query, they must be the first 
 data items since data items are ordered before being sent to storage node. Then:  
If  = 0, the storage node need to respond a VI (Verification Information) for 

sensor Si for the final verification.  
Storage → Sink : VIi = { i, , , } 

If 0, we call sensor Si a qualified sensor, thus the satisfied QR (Query Result) 
of sensor Si would be: 

Storage → Sink : QRi = { i, , , , …, , , }. 

After receiving a query result from storage node, the sink first decrypts QRi for 
each qualified sensor using the secret key shared between each sensor and the sink, 
then obtains the final top-k result by extracting the embedded information from each 
data item. Finally, the sink verifies the authenticity and completeness of the query 
result by checking whether the differential chain of each sensor is complete or not. 
Only when the query result has passed the verification, will the result be received. 

6 Analysis 

6.1 Data Confidentiality Analysis 

If a storage node is compromised, it wouldn’t disclose any sensed data to attackers 
since each data is encrypted using a secret key only known by sensor itself and the 
sink. The only choice left for an attacker to obtain data information is the two 
aggregation results attached to each data item. However, by mapping each prefix to a 
unique prime randomly, attackers can only obtain the exact mapping relationship 
between prefixes and primes with probability !, where w is the bit length of each 

sensed data. Furthermore, the seed for the pseudorandom function varies with epoch 
changing, this means the mapping relationship between prefixes and primes will also 
change with epoch changing, which makes the inference even more difficult. 
Therefore, even if storage nodes are compromised, confidentiality of the collected 
data would be preserved. 

6.2 Integrity Analysis 

Theorem 6.1: Our scheme can enable the sink to detect any forged or incomplete top-
k query result. 

Proof: Consider a sensor Si who has  data items satisfying the query, i.e., QRi = 
{  , , , , …, , , }. Since data items in QRi are constructed into a chain, 
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inserting forged data into or omitting qualified data from QRi can be easily detected. 
An alternative way for a compromised storage node is to replace some qualified data 
of one sensor, say ,  of Si, with some unqualified data of another sensor, say ,  of Sj, i.e., QRi = {  ,  , , , …, , , } and QRj = 

{  ,  , , , …,  , , , , , }. However, after extracting the 

embedded information from each data, the sink will know the existence of ,  with 
the difference extracted from , . Since there is still a data larger than one of the 
data in query result, i.e., ,  > , , the query result will be deemed as 

untrustworthy and discarded. Thus, any forged or incomplete query result can be 
detected. 

6.3 Performance Analysis 

In this paper, we use the following performance metrics to analyze and evaluate our 
proposed schemes. 

Ctra-Transmission Consumption: the extra communication costs during a data 
submission for each sensor. The cost for transmitting actual data items, sensor ID and 
the epoch number will not be considered since it is inevitable for any scheme. 

Cspa-Space Consumption: the space costs for a storage node to store the extra 
information received from the whole cell within an epoch.  

Cq-Query Consumption: the extra communication costs for a storage node to 
respond a query. The cost for sending the satisfied k data items and the qualified node 
IDs will not be considered similarly. 

We assume that each cell contains N sensors and each sensor Si collects n data 
items during an epoch as we aforementioned, where i ∈ [1, N]. Recall that in our 
scheme, each data item is accompanied with two prime aggregation results when 
being submitted to storage node. These prime aggregation results contribute to the 
extra transmission consumption of our scheme. Specifically, let lfi,h and lri,h be the bit 
length of the aggregation results of ,  and ,  respectively, then we can derive 
the extra transmission consumption Ctra for sensor Si. 

( ), ,
1

n

tra i h i h
h

C lf lr
=

= + .                               (1) 

Similarly, we can derive the extra space consumption Cspa for a storage node. 

( ), ,
1 1

N n

spa i h i h
i h

C lf lr
= =

= + .                             (2)

 
Note that in our scheme, except for the satisfied top-k query result, the storage node 

is asked to return the largest data item of each unqualified sensors for the sake of final 
integrity verification, which contributes to the additional query consumption of our 
scheme. Let  and  be the bit length of the encrypted node ID and the encrypted 
data respectively, and  be the number of unqualified sensors, then we have 

( )q u id dC l lδ= + .                                (3) 
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7 Performance Evaluation 

7.1 Evaluation Methodology 

To compare SVTQ with the state-of-the-art presented by Zhang & Shi [21] which we 
call Z&S scheme, we implemented both schemes and performed side-by-side 
comparison on a large real data set from Intel Lab [10], which is collected from 54 
sensors during one month. For easy division, we selected data from 45 sensors in our 
experiments and evenly divided these 45 sensors into 3 cells. Specially, for Z&S 
scheme, each cell is further divided into 3 subcells. 
 

 
     (a) Ctra vs. epoch size                          (b) Cq vs. epoch size 

 
                 (c) Cspa vs. epoch size                                 (d) Cq vs. k 

Fig. 4. Additional communication and space consumption 

7.2 Evaluation Setup   

We adopted DES cipher in SVTQ as the encryption algorithm to encrypt sensor 
collected data. Since each block size in DES is 64 bits, there is enough space to 
embed the difference between two adjacent sensed data before we encrypted each data 
item. For the implementation of Z&S scheme, we adopted MD5 with 16-bit keys for 
massage authentication code (MAC) as mentioned in their scheme. We experimented 
on different size of epochs ranging from 10 minutes to 80 minutes. We also generated 
8 different queries ranging from top-10 to top-80 to verify the impact of parameter k 
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on the communication cost of both schemes. We performed 1,000 times for each top-k 
query and took the average value as our final experimental results.  

7.3 Result Analysis and Summary  

Through our side-by-side comparison, we can see that SVTQ outperforms Z&S 
scheme in terms of power and space consumption while preserving the data 
confidentiality.   

Fig. 4. (a) shows that as epoch size increases, both the transmission consumption of 
SVTQ and Z&S scheme grow up. This is clear since larger epoch means more data 
items are collected within an epoch, hence more additional information is needed to 
be submitted. 

Fig. 4. (b) illustrates the additional query costs for a storage node to respond a 
query. As we can see from the figure, the Cq of our scheme remains unchanged with 
the variation of epoch size. This is of no surprise since the additional query 
consumption of our scheme is independent of epoch size and mainly caused by the 
unqualified sensors. While for Z&S scheme, the Cq is inversely proportional to epoch 
size. This is because the larger epoch size, the fewer IDs are attached to each data 
item as mentioned in [21]. 

Fig. 4. (c) demonstrates the extra space consumption on a storage node during an 
epoch. We can learn from the figure that the space consumption in both schemes 
grows up with the increase of epoch size. The reason is obvious since larger epoch 
size means more data items are collected by sensors within an epoch, and therefore 
more additional information is needed to be stored.  

Fig. 4. (d) shows the impact of parameter k on the additional costs for a storage 
node to respond a query. We can see that the Cq of SVTQ decreases with the growth 
of k while Z&S scheme is on the contrary. This is because larger k implies more 
qualified sensors but fewer unqualified ones, and therefore less additional information 
is needed to be responded in SVTQ. While for Z&S scheme, larger k means more 
additional MACs and redundant IDs returned with each qualified data item, hence, the 
extra query costs of Z&S scheme grow up when parameter k increases. 

8 Conclusions 

In this paper, we propose SVTQ, a novel and efficient query protocol for processing 
top-k query in two-tiered sensor networks. SVTQ can precisely process top-k queries 
while preserving data confidentiality. SVTQ also enables the sink to detect any forged 
or incomplete query result efficiently. Experiments on the real-world data set show 
that SVTQ significantly outperforms the state-of-the-art in terms of both 
communication and storage consumption while preserving data confidentiality. 
 
Acknowledgements. This work is supported in part by the National Natural Science 
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Technology Support Projects of China (Project No. 2012BAH09B02). 
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Abstract. In this paper we present CamTalk, a novel bidirectional
communications framework using front-facing cameras and displays of
smartphones. In the CamTalk framework, two smartphones exchange in-
formation via barcodes: information is encoded into barcodes that are
displayed on the screen of the origin device, and those barcodes are cap-
tured by the front-facing camera of the destination device and decoded;
Both devices can send and receive barcodes at the same time. The general
design of data transmission enables CamTalk to support a wide range
of applications. More importantly, CamTalk’s communications channels
are short-range, highly directional, fully observational, and immune to
electromagnetic interference, which makes CamTalk very appealing for
secure communications and bootstrapping security applications. We have
implemented CamTalk on the Android platform and conducted exten-
sive experiments to evaluate its performance on both Android smart-
phones and tablets. Our experimental results demonstrate the efficacy of
CamTalk in short-range wireless communications.

Keywords: bidirectional light communications, mobile application,
secure communication, key exchange.

1 Introduction

With the popularity of camera equipped smartphones, a nonconventional com-
munications channel through display and camera becomes more accessible to
smartphone users. It is already common for a smartphone user to obtain in-
formation through the phone’s camera. For example, we can use a smartphone
to easily scan a barcode (e.g., a UPC code [8] or QR code [7]) printed on an
item sold in a grocery store or on an ad wallpaper and then read the informa-
tion encoded by the barcode. The visual data channel for this type of uses has
been leveraged to create new schemes of data streaming from a screen (e.g.,
LCD) to a smartphone [10,9,5] and to design new mechanisms of authentication
[11,18]. However, information flows through the visual channels in those schemes
and mechanisms are all unidirectional, which seriously limits the functions of
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those applications. For example, the mutual authentication protocol proposed
in [18] has to introduce a second channel due to the visual channel being one
way.

In this paper, we present CamTalk, a novel bidirectional communications
framework using front-facing cameras and displays of smartphones. Similar to
previous camera phone based schemes, CamTalk also employs barcode for in-
formation transmission. Information is encoded into barcodes that are displayed
on the screen of the sending smartphone, and those barcodes are captured by
the front-facing camera of the receiving smartphone and then decoded. How-
ever, by using front-facing cameras and displays, in the CamTalk framework,
the smartphone that is receiving information can simultaneously send its data
by rendering the corresponding barcodes on its display, and those barcodes can
also be captured by the other party that is doing sending at the same time. To
our best knowledge, CamTalk is the first bidirectional camera-based communi-
cations scheme for smartphones (and tablets).

Thanks to the communications medium, i.e., visible light, communications
through CamTalk are short-range, highly directional, fully observational, and
immune to electromagnetic interference. These properties make CamTalk an ap-
pealing choice for secure communications and mutual authentication between
two smartphones in close proximity. CamTalk can further bootstrap other secu-
rity applications. Diffie-Hellman key exchange, a basic building block for secure
communications, can be easily implemented based on CamTalk to securely share
a secret between two smartphones without prior knowledge of each other. The
shared secret can be used not only for the CamTalk communications, but also
for other communications such as those through Bluetooth and Wi-Fi.

We have implemented a fully functional prototype of CamTalk on the Android
platform. Our prototype adopts ZXing library [20], a popular open source bar-
code processing library, for handling low-level barcode encoding and decoding.
We choose QR code as the underlying barcode technique as a recent study shows
that QR code has the best decoding performance among the barcodes supported
by ZXing library [19]. We have conducted extensive experiments to evaluate the
impacts of different factors on communications of CamTalk and measure its per-
formance on both Android smartphones and tablets. Our experimental results
demonstrate the efficacy of CamTalk in short-range wireless communications.

The rest of this paper is organized as follows: Section 2 briefly describes the
background and related work. Section 3 presents the structure of CamTalk frame-
work and the design of communications mechanisms, especially the two trans-
port modes. Sections 4 and 5 detail the implementation of the prototype and
its evaluation using Android smartphones and tablets, respectively. Section 6
discusses the applications of CamTalk in security. Section 7 concludes this paper
and discusses future work.
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2 Background and Related Work

2.1 Visible Light Communication

Recently, visible light communication (VLC) has received strong interest as an
alternative wireless communication channel. Generally speaking, VLC refers to
wireless information transmission (usually in a short range) using visible light
through free space. A number of studies on VLC have been conducted, e.g., high-
speed (gigabit rate) VLC using light emitting diodes (LEDs) [16] and VLC based
indoor positioning [17]. Compared to radio frequency (RF) based wireless com-
munications technologies, VLC has the following advantages: using unlicensed
spectrum, being immune to electromagnetic interference, and having no interfer-
ence with RF systems. More importantly, the communications medium, visible
light, can also be used for illumination, display, decoration, etc. Besides using
LEDs and photodiodes, researchers have also leveraged liquid crystal displays
(LCDs) and digital cameras for visible light communications [15,6]. Existing sys-
tems based on the LCD-camera pair require high-end digital cameras and large
and high resolution LCD screens and involve high computational overhead, which
is relatively difficult for smartphones.

2.2 Barcode Techniques

A barcode is an optical machine-readable representation of information. There
are two types of barcodes: one-dimensional (1D) barcodes and two-dimensional
(2D) barcodes. 1D barcodes are usually made up of parallel lines (bars) with
various widths and spacings representing specific patterns. Universal Product
Code (UPC) [8] is a very popular 1D barcode. 2D barcodes encode data in rect-
angles, dots, hexagons and other geometric patterns in two dimensions. Popular
2D barcodes include QR code [7], Data Matrix code, MaxiCode, etc. The main
differences between 1D and 2D barcodes lie in the amount of encoded data and
the error correction they provide. In the past, reading of barcodes required spe-
cial optical scanners called barcode readers. Nowadays, more devices including
camera equipped mobile phones support barcode scanning and information in-
terpretation [13].

Quick Response code (QR code) [7] is a popular 2D barcode. All major
smartphone platforms including Android, iOS, Blackberry, and Windows Phone
support QR code scanning either natively or through third-party applications.
ZXing project [20] provides an open source cross-platform barcode scanning li-
brary, which fully supports QR code encoding and decoding. Compared to other
2D barcodes, QR code has more features including large capacity, small print-
out size, and high speed scan. Scheuermann et al. evaluated barcode decoding
performance using ZXing library and reported that QR code delivers the best
results [19]. The amount of data that can be stored in a QR code symbol de-
pends on the data type (mode), version (indicating the overall dimensions of the
symbol), and error correction level.

Traditionally, barcodes use only black and white for information encoding.
With the popularity of the camera based barcode scanning techniques that are
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capable of detecting colors, more colors are used to develop new types of bar-
codes with higher information capacity. High Capacity Color Barcode (HCCB)
[14] is such a colored 2D barcode that employs clusters of colored triangles for en-
coding data. Langlotz and Bimber proposed another type of colored 2D barcode
called 4D barcodes, which essentially are time-multiplexing colored 2D barcodes.
Liu et al. proposed a video barcode scheme called VCode in [10] and analyzed
its data transmission capacity in [9]. Hao et al. presented another 2D barcode
scheme for data streaming on smartphones, called COBRA, in [5]. Both VCode
and COBRA rely on specially designed colored 2D barcodes and use those bar-
codes to achieve high-speed data streaming between a screen and a smartphone.
CamTalk is distinct from VCode and COBRA schemes in that data communi-
cations in CamTalk are bidirectional while in those schemes are unidirectional.
In addition, CamTalk can adopt VCode and COBRA barcode techniques as its
communications building block.

2.3 Mobile Visual Channel

Mobile visual channel has been applied to security applications. McCure et al.
proposed an authentication scheme called Seeing-is-Believing (SiB) [11], which
leverages the visual channel between a 2D barcode and a camera phone for au-
thentication and demonstrative identification of devices. The visual channel of
SiB is unidirectional. Therefore, operations requiring bidirectional communica-
tions such as Diffie-Hellman key exchange have to be decomposed into multiple
unidirectional operations and direction switches must be coordinated manually.

Sexena et al. proposed a secure device pairing protocol, VIC (Visual authen-
tication based on Integrity Checking), based on a visual channel [18]. Similar
to SiB, the visual channel in [18] is also unidirectional. To achieve mutual au-
thentication in secure device pairing, another insecure channel, e.g., Bluetooth,
is introduced in VIC.

SiB and VIC are two special authentication schemes built on top of a unidi-
rectional mobile visual channel. Compared to them, the bidirectional commu-
nications capability makes CamTalk support Diffie-Hellman key exchange and
mutual authentication in an easier and automatic manner. Moreover, CamTalk
supports more general communications such as file transfer.

3 System Design

CamTalk is designed as a wireless communication framework for smart mobile
devices (e.g., smartphones and smart tablets) that enables bidirectional commu-
nications between two devices solely through display-camera links. As an analogy
of face-to-face talk between two persons, CamTalk aims to achieve a face-to-face
“talk” between two mobile devices. Thus, CamTalk merely requires mobile de-
vices with a front-facing camera and a display of reasonable resolution, which
are ubiquitous for today’s smartphones and smart tablets. CamTalk is designed
for short-range communications. Depending upon the display size and camera
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Fig. 1. The architecture of CamTalk framework

capability, the distance between two communicating devices can vary, e.g., from
around ten centimeters to fifty centimeters in our experiments. Given the strong
directional communication medium, fully observational communication process,
and being entirely free from radio frequency interference, CamTalk provides a
unique and advantageous channel for secure communications between two mobile
devices.

Figure 1 depicts the architecture of CamTalk. The CamTalk framework
relies on reliable single barcode image transfer provided by the underlying bar-
code encoding/decoding service, which is further supported by barcode scan-
ning through front-facing camera and barcode rendering through device display.
Making an analogy between CamTalk and a normal networking stack, CamTalk
comprises the transport layer and part of the application layer. Based on the ser-
vice of single barcode image transfer, the message transport layer of CamTalk
realizes bidirectional reliable message transfer between two mobile devices, in
either synchronous or asynchronous mode, and provides it as a service to the
upper application layer. To demonstrate the efficacy and facilitate application
development of CamTalk, two directly applicable applications, file transfer and
Diffie-Hellman key exchange, are also incorporated into CamTalk. The design of
CamTalk eases the development of other applications based on visible light com-
munications, e.g., achieving secure file transfer through an encrypted channel by
leveraging the existing file transfer and key exchange applications or building it
directly on top of the message transport layer.

CamTalk framework is orthogonal to the underlying barcode technique, as il-
lustrated in Figure 1. In other words, the design of CamTalk is generic, applicable
to a variety of barcodes, and different implementations of CamTalk may use dif-
ferent barcodes that best suit the application requirements and given conditions
(e.g., hardware capabilities, environment constraints, etc) for information trans-
mission. In our prototype, we adopt QR code as the barcode encoding/decoding
mechanism given its popularity and ubiquitous support on smart mobile devices.

For bidirectional communications, eachCamTalk device is capable of both send-
ing and receiving information, that is, encoding and rendering a barcode and scan-
ning and decoding a barcode image. Figure 2 shows the data flow in CamTalk and
those modules involved in data sending and receiving. The message to be
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Fig. 2. Data flow in CamTalk

Fig. 3. Two message transport modes of CamTalk

transferredmay be too large to be conveyed by a barcode image. Therefore, a large
message will be split by the frame composing module into multiple smaller seg-
ments that can fit into a barcode image (also called frame). Then, each segment is
encoded into a barcode by the image encoding module and copied into the screen
buffer for rendering.When a picture is taken by the camera, the content in the cam-
era buffer will be examined by the image decoding module. If the content contains
a recognizable barcode and that barcode image can be successfully decoded, the
decoded data will be validated and merged if necessary by the data verifying mod-
ule. In practice, data sending and receiving can be carried out simultaneously by
CamTalk.

A message can be transported in different fashions. To explore the display-
camera channel capacity and provide flexibility, CamTalk incorporates two trans-
port modes: synchronous mode and batch mode, which are illustrated in Figure
3. Alternation between sending and receiving is enforced for communications in
the synchronous mode, in other words, frame i + 1 cannot be sent out before
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the frame i from the other party is successfully received. On the other hand,
multiple frames can be sent out in a batch without waiting for the reception
of the corresponding frames from the other party. For better presentation, we
only show ideal scenarios of communications in the two modes in Figure 3. For
example, duplicate or out-of-order frame transmissions that are possible in the
Batch mode are not shown in the diagrams. In the diagrams, the party initiat-
ing the communication is called initiator and the other party is called responder.
The initiator and responder are no difference in functionality and their roles are
solely dependent on which initiates the communication.

There are two types of frames–control frame and data frame–in the communi-
cation. Control frames include (1) syn (for synchronization) and fin (for finish)
frames sent at the beginning and ending of communications in either mode, re-
spectively, and (2) status frames, which are used to notify the other party what
frames are missing in the current batch, in the batch mode (not shown in the
Batch Mode diagram in Figure 3). Each frame has a header and payload. To re-
duce overhead, a frame header has a sequence number and an acknowledgment
number, each taking two bytes. The choice of small sequence number space is
based on that CamTalk is intended for transferring a relatively small amount of
data as an alternative to RF channels. The payload for syn frames contains the
size of the whole message (in bytes), the capacity in a data frame (in bytes), and
some other meta information. The payload for fin frames contains the SHA-
256 hash value of the message for verifying data integrity. The exchange of syn
frames before actual data transmission also has a practical consideration–to en-
sure the establishment of communication channels. If the display-camera links
are not set up appropriately, syn frames will not be exchanged, i.e., the content
in the screen will not change. A user usually needs to adjust the distance and
positions of two CamTalk devices before communications and the visual changes
of barcodes notify her of the establishment of the links.

4 Implementation

We have implemented a prototype system of CamTalk that runs on the Android
platforms (API level ≥ 15) and works for both smartphones and tablets. Our
implementation uses ZXing [20] (version 2.1) for underlying barcode encoding
and decoding. The cross-platform compatibility of ZXing will ease the porting of
our prototype to other mobile platforms such as iOS for iPhone. The prototype
consists of around 2,300 lines of Java code (excluding ZXing library).

Our prototype is implemented as a standalone application (refer to as
“CamTalk” in the remaining of the section for simplicity), supporting general
information exchanges and also providing file transfer and Diffie-Hellmen key
exchange functions. Thanks to the Android framework, CamTalk can also be
invoked by other applications for information exchange through camera-display
links, similar to how a barcode scanner application is invoked by another appli-
cation such as Amazon mobile app on an Android smartphone.

Figure 4 (in Section 5.1) shows the communication interface of CamTalk on
a Motorola Atrix 4G smartphone. The phone screen is split into two parts: The
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top half (in portrait/vertical orientation) is for communication by displaying the
barcode in an ImageView instance. The bottom half shows the view captured
by the front-facing camera using a SurfaceView instance. The rationale for dis-
playing a barcode at the top half (or the half closer to the front-facing camera)
is that most of smartphones and smart tables place their front-facing cameras
at the top. Thus, it is relatively easier to capture a barcode at the top than at
the bottom of the display when two phones are placed face to face for communi-
cation. The bottom camera view is primarily to help a user adjust the distance
between and/or positions of the two devices for better communication quality.

The prototype of CamTalk follows modular and layered implementation prac-
tice. The display and capture of single barcode forms the basic building block
of communication, similar to the transfer of an Ethernet frame between two
LAN nodes. We implement the single barcade transfer function based on ZXing.
Two transport modes–synchronous mode and batch transfer mode–are imple-
mented as two modules in parallel on top of single barcode transfer service. The
upper level application can decide which transport mode to use for a specific
information transfer task.

The CamTalk prototype is a multi-threaded application, which employs mul-
tiple threads to speed up data processing and offload computation from the
main thread (also called UI thread), following Android programming guide. The
communications between threads are through messages (and handlers) and each
module (encoding, decoding, transport) is developed in an event (or message)
driven manner. The main thread is responsible for UI rendering and message
dispatch. Two work threads are used by ZXing for encoding and decoding re-
spectively. Transport module itself is implemented as a separate thread, handling
message segmentation/assembly.

5 Evaluation

In this section, we describe how we evaluate the CamTalk prototype. We use
three types of mobile devices all with both front-facing camera and display, and
their hardware parameters related to our evaluation are listed in Table 1. From
the table, we can see that the front-facing cameras have rather low resolutions
and their positions vary. The Android platform versions on Atrix 4G, Nexus S,
and Nexus 7 are 4.1.2, 4.1.1, and 4.2.2, respectively. As Android 2.3.6 is the latest
version officially supported for Atrix 4G, we install a customized cyanogenmod
version on our Atrix 4G phones for meeting the API level requirement of our
prototype. Most of our experiments are carried out between two devices of the
same type, that is, Atrix phones or Nexus 7 tablets. We also test the CamTalk
between two different phones and between one phone and one tablet, and those
devices are held in hand. Our experiments confirm that CamTalk can be used
between two different devices in practice.

Since bidirectional communications through visible light between smart mo-
bile devices have not been reported yet, our evaluation mainly focuses on the
communication performance of CamTalk. We categorize the factors that can af-
fect the communication performance into two categories: external and internal.
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Table 1. The smart mobile devices used in the experiments

Device (type) Motorola Atrix 4G Google Nexus 7 Google Nexus S
(phone) (tablet) (phone)

Release Time (in the U.S.) Feb. 2011 July 2012 Dec. 2010

CPU
1 GHz ARM A9 1.2 GHz ARM A9 1 GHz ARM A8
(dual-core) (quad-core) (single-core)

Front-facing Camera
0.3 Megapixels 1.2 Megapixels 0.3 Megapixels
(top left) (top middle) (top right)

Display Size 4.0 inch 7.0 inch 4.0 inch

Display Resolution 540 × 960 1280 × 800 480 × 800

(a) (b)

Fig. 4. The experiment testbed. These two pictures are for demonstration purpose,
therefore not taken in a real experiment. The light was turned off for better display of
phone screen in Figure (a). The phone in Figure (b) was rotated around both Y-axis
and Z-axis.

The external category consists of those factors that are not CamTalk specific, in-
cluding distance, rotations, lighting, etc. The factors in the internal category are
related to the CamTalk design, including barcode image size, barcode capacity
(i.e., number of bytes encoded in a barcode), barcode error correction level, etc.
Note that we only study those factors that are not implementation specific. In
the following, we first describe how CamTalk is affected by the external factors
and then detail the impact made by the internal factors. After that, we present
the experiment results of CamTalk’s throughput with the two transport modes
described in Section 3.

To conduct the experiments in CamTalk evaluation, we make a simple testbed
as shown in Figure 4. Figure 4 (a) shows the scenario of CamTalk communication
between two Atrix phones when they are aligned face to face, and Figure 4 (b)
illustrates the rotation of device. Without further notice, all the experiments in
the following are conducted on the testbed.

5.1 Impact of External Factors

As CamTalk employs visible light as its communication medium, many external
factors can affect CamTalk, including ambient light, screen brightness, screen
reflection, distance, rotations, etc. Among them, we have quantitatively studied
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the impact of distance and rotations on the communication, as those two factors
can be easily controlled by a user and their effects can be instantly observed.

We use the decoding rate, the percentage of successfully decoded barcodes, as
the metric to measure the impact of distance and rotations. As the barcode image
size can affect decoding, we measure the decoding rate with two different sizes
of barcode image: medium size and large size. The medium and large sizes are
relative to the device display dimension; therefore, the dimension of a medium-
sized or large barcode may vary on different devices. The length of a medium-
sized QR code is 65% of the half of the longer side of the display and that of a
large QR code is 90%. Both medium-sized and large barcodes contain the same
amount of payload (32 bytes) in the experiments.

Ambient Light and Screen Brightness We observe that dark or very bright
ambient lighting conditions can significantlydegradeandevendisable theCamTalk
communications.When the ambient light is too bright, e.g., the phone screen under
direct light of a fluorescent tube, the screen reflection will become very strong and
therefore sharply worsen the quality of images taken by a front-facing camera.We
conduct all the experiments in an indoor environment with illuminance of 400 to
500 lux, measured by Mastech Light Meter LX1010B.

With this ambient lighting, we find that it is easier to successfully decode a
barcode image when the screen brightness is relatively low (e.g., half full bright-
ness or less). The better decoding rate with lower brightness is attributed to the
reduced screen reflection. When two phones or tablets are placed face to face
in close proximity (tens of centimeters), high screen brightness will cause strong
screen reflection. The impact of screen brightness on the communication perfor-
mance is negligible when the brightness is relatively low (between 30 lux and
160 lux ). The device screen brightness in the following experiments is between
40 lux and 80 lux, measured by the same light meter.
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Fig. 5. The impact of distance
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Distance. We measure the impact of distance on both smartphones and tablets.
The two devices, one as sender and the other as receiver, are aligned face to face
without shifting or rotation in the experiments, as illustrated in Figure 4 (a).
We measure the decoding rate with different distances and show them in Figure
5. Apparently, the larger the barcode image, the longer the distance allowed
for communication. The practical communication distance for Atrix smartphone
ranges approximately from 11cm to 22cm, while that for Nexus 7 tablet is from
15cm up to 50cm. The ideal distances for Atrix and Nexus 7 are 12-14cm and
17cm-33cm respectively, where a barcode image (either medium-sized or large)
can always be decoded successfully.

The effective communication distance of CamTalk can vary in practical use
but should not significantly deviate from the measured range under similar condi-
tions. The short-range and observational communication properties of CamTalk
offer high security assurance.

Fig. 6. Illustration of rotations around X-, Y-, and Z-axis. θ represents the rotation
degree.

Rotations. Devices may be rotated in different manners and those rotations
have different impacts on the decoding rate. We measure the impact of rota-
tion around X-, Y-, and Z-axis respectively. Figure 6 illustrates how a device
is rotated around X-, Y-, and Z-axis with a certain degree. Note that both the
sending device and receiving device are rotated with the same degree in the ex-
periments for rotations around X-axis, as depicted in Figure 6 (a), while in the
experiments for rotations around Y- and Z-axis, only the sending device is ro-
tated and the receiving device stays fixed. Without further notice, both devices
in the following experiments are aligned initially. Figure 7 shows the pictures
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(a) (b) (c)

Fig. 7. The snapshots of rotations around (a) X-axis, (b) Y-axis, and Z-axis

Table 2. The impact of rotations around X-axis

Device Size & Distance 0◦ 5◦ 10◦ 15◦

Atrix 4G phone
medium, 20cm 48% 94% 100% 100%
large, 22cm 64% 86% 90% 100%

Nexus 7 tablet
medium, 37cm 80% 92% 94% 98%
large, 50cm 76% 90% 92% 100%

Table 3. The impact of rotations around Y-axis

Device Size & Distance 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

Atrix 4G phone
medium, 13cm 100% 98% 94% 0% 0% 0% 0% 0% 0%
large, 15cm 100% 95% 94% 80% 0% 0% 0% 0% 0%

Nexus 7 tablet
medium, 21cm 100% 100% 100% 94% 90% 0% 0% 0% 0%
large, 30cm 100% 100% 100% 100% 100% 100% 90% 84% 0%

taken at the receiving phone when the sending phone is rotated 15◦, 20◦, and
20◦ around X-, Y-, and Z-axis, respectively.

Because the front-facing camera is at the top of the device in the portrait
orientation, when Atrix phones or Nexus 7 tablets are tilted forward (device
bottom fixed) towards each other in a small degree, the distance between the
barcode and the camera is shortened. Thanks to the tolerance of QR code to
the perspective distortion brought by the rotation, shortened distance increases
the possibility of barcode image being successfully decoded. Table 2 shows the
impact of X rotation on the decoding rate when two devices are placed in such
a distance that only partial barcodes can be decoded without rotation. Clearly,
small scale rotations around X-axis help decoding.

Tables 3 and 4 show the average decoding rates when the sending device is
rotated a certain degree around Y- and Z-axis, respectively. We can see that those
rotations affect the decoding rate negatively. Due to this reason, the devices are
placed in an ideal distance for each experiment. When the sending device is
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Table 4. The impact of rotations around Z-axis

Device Size & Distance 5◦ 10◦ 15◦ 20◦ 25◦ 30◦

Atrix 4G phone
medium, 13cm 100% 100% 96% 90% 0% 0%
large, 15cm 100% 98% 94% 94% 0% 0%

Nexus 7 tablet
medium, 21cm 100% 100% 96% 94% 82% 0%
large, 30cm 100% 100% 98% 94% 74% 0%

rotated beyond a certain degree, the barcode image is either moved out of the
camera view partially or entirely or distorted too much so that image decoding
will fail.

5.2 Impact of Internal Factors

The internal factors we mainly consider include QR code error correction level,
QR code data capacity, and QR code image size. We use encoding time and
decoding time as the metrics for measuring the impact of each of those factors
on CamTalk performance.

We first consider the QR code error correction level and its impact on encoding
and decoding. QR code uses Reed-Solomon error correction algorithm with four
levels: low (L), medium (M), quartile (Q), and high (Q). The higher the level, the
more errors can be corrected. We measure the times of encoding and decoding at
each of these four levels and find no significant difference among them. Therefore,
we use error correction level M in the rest of experiments.
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Fig. 8. Average encoding time

Barcode data capacity and image size are two major internal factors that
affect the encoding and decoding performance. Barcode capacity refers to the
amount of data, including both header and payload, carried by each data frame
(excluding the error correction bits). Figures 8 and 9 display how the average
encoding time and decoding time vary with different capacity and image size,
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Fig. 9. Average decoding time

respectively. In those experiments, two devices are well aligned and in an ap-
propriate distance. Intuitively, larger image size with more pixels will take more
time for encoding and decoding, which is confirmed by our experiment results.
The increase of encoding time is more evident than that of decoding time, which
is true for both phone and tablet.

To study the impact of barcode capacity, we measure the average encoding
and decoding times with different capacity but same image size. Constrained
by the camera capability (e.g., resolution), the maximum capacity for different
barcode image size varies. For example, a medium-sized QR code on the Atrix
phone cannot contain 128-byte data, which simply cannot be decoded at the
receiving phone. We note that 96 bytes and 128 bytes are not the maximum
capacities on the phone for medium-sized and large barcodes respectively. The
focus here is to show how encoding/decoding time varies with different barcode
capacity instead of finding the maximum barcode capacity. In general, we can
see that larger barcode capacity, i.e., denser barcode image, will render encod-
ing and decoding to become longer. There exist a few points where processing
time actually becomes slightly smaller in Figures 8 and 9. Those dips may be
attributed to the dynamics of the running environment, e.g., OS scheduling and
Java memory management.

5.3 Throughput

We implement the file transfer function in the prototype and use it to measure
the throughput in each of the two transport modes. The throughput is obtained
by dividing the size of file over the duration from sending the first data frame
to sending the fin frame (indicating that all data frames have been received).
Note that we only measure unidirectional file transfers to simplify the exper-
iments, while CamTalk supports bidirectional information transmission. Thus,
the effective throughputs should be the double of those results.



CamTalk: A Bidirectional Light Communications Framework 49

16 32 64 96 128
0

200

400

600

800

1000

1200

Barcode Capacity (bytes)

T
hr

ou
gh

pu
t (

bp
s)

 

 

medium image size
large image size

1632 64 128 256
0

200

400

600

800

1000

1200

1400

1600

Barcode Capacity (bytes)

T
hr

ou
gh

pu
t (

bp
s)

 

 

medium image size
large image size

(a) Atrix 4G phone (b) Nexus 7 tablet

Fig. 10. Average throughput in the synchronous mode
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Fig. 11. Average throughput in the batch mode on Nexus 7 tablet

Figure 10 presents the relationship between throughput and barcode capacity
(size) in the synchronous mode. Interestingly, a linear relation between through-
put and barcode capacity exhibits, and appears insensitive to the size of barcode,
which applies to both the phone and the tablet. As doubling the barcode capacity
halves the number of barcodes to be sent, that is, reducing the overall transmis-
sion time approximately to the half of the original, throughput is mainly affected
by barcode capacity in the synchronous mode.

As multiple barcodes are sent in a batch in the batch mode, intuitively, the
throughput in the batch mode should be higher than that in the synchronous
mode. We compare the throughputs of 4 barcodes/batch and 8 barcodes/batch
in the batch mode and the corresponding throughput in the synchronous mode
on the tablet and show them in Figure 11. We can see that sending multiple
barcodes in a batch does improve the throughput. However, the improvement
becomes very small when doubling the number of barcodes from 4 to 8. There is
even a slight performance degradation when doubling the number for large bar-
code capacities. The limitation of improvement can be attributed to the hard-
ware capacity. When too many barcodes are sent consecutively, the throughput is
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limited by the computing capacity, the majority of which is occupied by encod-
ing, decoding, rendering, etc.

6 Discussions

Diffie-Hellman (D-H) key exchange [3] allows two parties without prior knowl-
edge of each other to establish a shared secret key over an insecure communica-
tions channel. The importance of D-H key exchange to secure communications
is beyond question. However, the D-H key exchange (in the original description)
is vulnerable to the man-in-the-middle (MITM) attack even when the two com-
munication parties are in proximity, e.g., two wireless devices communicating
through Bluetooth. CamTalk, given its short-range, highly directional, and fully
observational communications characteristics, can use D-H protocol for key ex-
change without worrying about MITM attacks. Once the shared key is securely
exchanged through CamTalk, it can be used as the session key to encrypt the
communications through either the display-camera links or RF wireless chan-
nels including Bluetooth and Wi-Fi. Therefore, CamTalk can not only provide
a self-contained secure communications channel, but also service other commu-
nications channels. For example, we can use CamTalk to assist in pairing two
smartphones with Bluetooth before using Bluetooth for normal communications.

We have implemented D-H key exchange on top of synchronous mode in the
prototype. Since the Andorid SDK includes the popular Bouncy Castle Crypto
suite, which provides easy-to-use and lightweight cryptography APIs, our D-H
implementation and cryptographic operations such as encryption and decryption
are based on Bouncy Castle. The generation of D-H parameters can be compu-
tationally expensive. To minimize resource consumption and reduce the time of
key pair generation, we use the pre-generated safe 1024-bit prime modulus for
D-H as suggested in [1] on the devices of CamTalk. Each device independently
generates a large random number as its private key and then exchange the pub-
lic key. Combining the other party’s public key and its private key, a shared
secret key can be derived. Thanks to the layered implementation of CamTalk,
the public keys can be easily transferred as normal messages in both directions.
The overhead of D-H key exchange mainly lies in computing the public keys
and shared secret key. However, compared to the communication latency, com-
putational overhead of D-H key exchange is minor. A D-H key exchange can be
completed within 10 seconds using Atrix phones with barcode capacity being 64
bytes in the synchronous mode.

Offering a unique bidirectional communications channel, CamTalk can be ex-
tended beyond communications between mobile devices. For example, we envi-
sion that CamTalk may be applied to the communications between a smartphone
and a PC or laptop equipped with a camera. Such extensions can catalyze new
applications that leverage CamTalk for secure communications and authentica-
tion. Today, smartphones have become a popular choice of the second factor
in a two-factor authentication (TFA) system. In conventional phone-based TFA
systems, e.g., Mobile-OTP [12] and Google 2-step verification [4], the authen-
tication process requires a user to manually enter a one-time password (OTP)
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received by the smartphone on a PC to authenticate her identity. However, this
manual input process may create usability issues and the OTP is usually short
for easy type. Using CamTalk, we can replace manual typing by putting the
smartphone in front of the PC camera and complete the authentication in an
automatic manner. Without typing, longer OTPs can be employed to enhance
the security. Bluetooth is a popular choice for the communications between a PC
and a smartphone in many phone-based TFA systems, e.g., PhoneAuth proposed
by Czeskis et al. [2]. However, Bluetooth is vulnerable to the RF interference
and subjected to MITM and jamming attacks. CamTalk is free of those concerns
and can replace Bluetooth as the communications channel. We note that this
replacement cannot be achieved by previous visual channel based approaches
(e.g., [11,18]) as those channels are unidirectional.

7 Conclusion

We have presented CamTalk, a novel bidirectional communications framework
leveraging display-camera links on smart mobile devices, and discussed its appli-
cation to secure communications in this paper. We have described the design and
implementation of CamTalk in detail and conducted extensive experiments to
evaluate its performance and understand the factors affecting its performance.
Our experiments show the throughput of CamTalk can reach 3Kbps using a
Nexus 7 tablet, which provides a reasonable user experience for transferring a
small amount of sensitive data in a fairly secure manner.

The relatively low throughput is mainly attributed to the low capacity of front-
facing cameras (less than 2 megapixels and no auto focus) and the underlying
barcode technique, i.e., QR code, which is not designed for high-throughput data
transfer. We plan to replace the QR code with other barcodes designed for data
streaming such as COBRA [5] and assess the performance change of CamTalk.

Our future work also includes a usability study of CamTalk. We have tested
practical uses such as file transfer using CamTalk on both smartphones and
tablets by holding those devices in close proximity, in which placing two devices
in an appropriate position takes several seconds. We want to know the experience
of an average user in using CamTalk and improve CamTalk based on the feedback
in the future.
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Abstract. Current research on future botnets mainly focuses on how to design a 
resilient downlink command and control (C&C) channel. However, the uplink 
data channel, which is generally vulnerable, inefficient even absent, has 
attracted little attention. In fact, most of current botnets (even large-scale and 
well-known) contain either a resilient (maybe also efficient) unidirectional 
downlink C&C channel or a vulnerable bidirectional communication channel, 
making the botnets either hard to monitor or easy to be taken down. To address 
the above problem and equip a botnet with resilient and efficient bidirectional 
communication capability, in this paper, we propose a communication channel 
division scheme and then establish a Botnet Triple-Channel Model (BTM). In a 
nutshell, BTM divides a traditional communication channel into three 
independent sub-channels, denoting as Command Download Channel (CDC), 
Registration Channel (RC) and Data Upload Channel (DUC), respectively. To 
illuminate the feasibility, we implement a BTM based botnet prototype named 
RoemBot, which exploits URL Flux for CDC, Domain Flux for RC and Cloud 
Flux for DUC. We also evaluate the resilience and efficiency of RoemBot. In 
the end, we attempt to make a conclusion that resilient and efficient 
bidirectional communication design represents a main direction of future 
botnets. 

Keywords: Botnet, C&C, BTM, URL Flux, Domain Flux, Cloud Flux. 

1 Introduction 

A botnet refers to a group of compromised computers that are remotely controlled by 
botmasters via C&C channels. Botnets are the main cause of many Internet attacks 
such as DDoS, Email spam, seeding malware, and the recent BitCoin Mining [1, 2, 
28] etc. As botnet-based attacks become popular and dangerous, researchers have 
studied how to detect, track, measure and mitigate them. Besides, some researchers 
focus on possible design of future botnets in order to fight against them [3-9]. 
However, current research on future botnets only focuses on how to design a resilient 
and efficient downlink (from botmasters to bots, generally used to deliver commands 
and new executables) C&C channel. However, the uplink (from bots to botmasters, 
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generally used to monitor botnets and collect data) data channel, which is generally 
vulnerable, inefficient even absent in most of current botnets, has attracted little 
attention. In this paper, we mainly focus on the problem and discuss the model, 
feasibility and methodology of designing a resilient and efficient bidirectional 
communication botnet which supports both a resilient downlink C&C channel and an 
efficient uplink data channel. This kind of advanced botnet will no doubt be very 
attractive for botmasters, thus we should promote the development of more efficient 
countermeasures in advance. 

1.1 Weaknesses of Current Botnets 

The first generation botnets have a static centralized topology. The earliest well-
known botnets, such as SDbot, Rbot and Agobot, mainly use the IRC protocol. In 
order to be stealthier, botmasters begin to adopt HTTP protocol, such as Bobax, 
Rustock, Clickbot and Coreflood. Due to the static centralized topology and the 
hardcoded C&C servers, both IRC and HTTP based botnets surfer from the single-
point-of-failure problem. That is, once the domain name and IP address are located by 
defenders, the whole botnet could be shut down easily. For example, the well-known 
Rustock and Coreflood botnets have been taken down on Mar. 2011 and Apr. 2011, 
respectively [19]. 

The second generation botnets turn to adopt a decentralized topology, such as 
Slapper, Nugache, Storm [22], Waledac [20], Kelihos [16], Zeus [15] and ZeroAccess 
[21]. It’s generally admitted that the essential driving force of the botnet evolution 
from centralized to decentralized structure is to eliminate the single-point-of-failure 
problem. At first glance, P2P botnets seem to be more resilient to takedown attempts 
than centralized botnets, because they have no single-point-of-failure. However, 
previous work has shown that P2P-based botnets are not really secure [10, 11, 22]. 
For structured P2P botnets which employ distributed hash table (DHT), such as 
Storm, are vulnerable to Index Poisoning and Sybil attack [11] inevitably; for 
unstructured P2P botnets which use custom P2P protocols, such as Waledac, Miner 
[1, 2], Zeus and ZeroAccess, are vulnerable to crawling and sensor injecting  
inescapably [10]. For example, the well-known Waledac and Kelihos botnets have 
been taken down on Feb. 2010 and Sep. 2011, respectively [19]. Another significant 
problem is that P2P botnets have no uplink data channel, so it is difficult for a P2P 
botnet to monitor the botnet and collect information from bots. To build a temporal 
uplink data channel, temporal central servers are indispensible. 

Based on the above analysis, we can see that a resilient and efficient bidirectional 
communication botnet is more desirable than a P2P botnet. Therefore, the third 
generation botnets, such as Conficker [23] and Torpig, begin to adopt a dynamic 
centralized topology named Domain Flux. However, Domain Flux is significantly 
limited by the performance of C&C servers, making uploading massive files by large-
scale botnets very hard. Furthermore, if the authentication mechanism is not strong 
enough, the botnet will suffer from sinkhole attack. For example, the well-known 
Torpig [24] and Kraken [27] botnets have been sinkholed by defenders on Jan. 2009 
and Apr. 2008, respectively. 
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To the best of our knowledge, most of current botnets (even large-scale and well-
known) contains either a resilient (perhaps also efficient) unidirectional downlink 
C&C channel or a vulnerable bidirectional communication channel, making the 
botnets either hard to monitor or easy to be taken down. How to construct a resilient 
and efficient bidirectional communication botnet poses a great challenge to this day. 

1.2 Intrinsic Cause Analysis 

The internal cause of the above problems can partly explained by the fact that current 
botnets always rely on only one C&C protocol to accomplish all tasks, however, it is 
impossible for any existing C&C protocol to satisfy all requirements solely. For 
example, the relatively resilient P2P and URL Flux [5] protocols are limited by 
monitorability; the recoverable Domain Flux protocol is limited by robustness and 
efficiency. In a word, each C&C protocol has its particular advantages as well as 
corresponding limitations. Although Conficker employs both Domain Flux and P2P 
protocols, it only use its P2P components as backup channels in case the Domain Flux 
being ineffective. The proposed Botnet Triple-Channel Model aims at solving the 
problem to some degree. 

1.3 Proposed Bidirectional Communication Botnet 

Considering the above problems encountered by current botnets, the design of an 
advanced botnet, from our understanding, should satisfy four basic security properties 
denoting as Resilience, Openness, Efficiency and Monitorability, respectively. We 
believe that the four basic security properties are indispensible for constructing a 
practical advanced botnet. 

Definition 1. Resilience denotes the robustness of a botnet when the crucial nodes of 
its infrastructure are attacked; and the recoverability of a botnet in case of being 
“shut down” temporally. 

Definition 2. Openness is the risk level of a botnet faced in case the DNS/IP of C&C 
servers, the hard-coded symmetric/public keys and the hard-coded algorithms are 
exposed. If the risk level is low, we say the botnet has openness. 

Definition 3. Efficiency is the performance of a botnet when managing large-scale 
botnets (Downlink Performance), accepting massive files in parallel and continuously 
(Uplink Performance), and storing massive files uploaded by large-scale botnets 
(Storage Performance). 

Definition 4. Monitorability is the capability of a botnet to accept the initial One-
time Registration (see definition 7) and the subsequent Persistent Status Report (see 
definition 8). 

From the perspective of security properties requirement, the proposed bidirectional 
communication botnet should satisfy all the security properties shown in Table.1 (in 
Section 2).  
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In summary, our contributions are: 

 We analyze the weaknesses of current botnets and the possible intrinsic cause, 
and then propose a Botnet Triple-Channel Model.  

 We implement a BTM based botnet prototype, which is proved to satisfy the four 
basic security properties – Resilience, Openness, Efficiency and Monitorability.  

 We propose an open and efficient Data Upload Channel design named Cloud 
Flux, which is generally absent in most of current botnets. 

 We find that BTM based botnets make takedown efforts more challenging, which 
should be given more consideration in advance. 

1.4 Paper Organization 

The remainder of this paper is structured as follows. Section 2 gives an overview of 
BTM. In Section 3, we introduce the implementation of RoemBot based on BTM. 
Section 4 provides an analysis of the resilience and efficiency of RoemBot. In Section 
5, we discuss how to defend against RoemBot. Finally, we outline related work in 
Section 6 and summarize our work in Section 7. 

2 Botnet Triple-Channel Model 

To construct an “Ideal Botnet” which could satisfy all the four basic security 
properties, we proposed a Botnet Triple-Channel Model (BTM).  

Architecture. BTM (shown in Fig.1) divides a traditional C&C channel into three 
independent sub-channels, denoting as Command Download Channel (CDC), 
Registration Channel (RC) and Data Upload Channel (DUC), respectively. That is, 
BTM includes three independent but cooperative C&C sub-channels.  

(5) Upload Information 
(Document,Credential…)

BotMaster

(1) Publish Commands 

Bots

(3) Register

Registration
Channel (RC)

(4) Download
Registration
Informaion

Data Upload 
Channel (DUC)

Database

Admin
Interface

(6) Locate&Download
Information

(BotID,Key,OS…)Step-Stone
Network

(2) Locate&Verify
CommandsCommand Download 

Channel(CDC)

 

Fig. 1. Botnet Triple-Channel Model 
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Security Properties Requirement. Each sub-channel, determined by its functionality 
and characteristic, requires particular properties (summarized in Table.1) and is only 
responsible for particular tasks. 

Command Download Channel (CDC). CDC is only responsible for commands 
distribution. CDC must be resilient and open to defend against coordinated 
countermeasures, and must have excellent downlink performance to support large-
scale management. However, the uplink channel could be absent. Thus, a resilient, 
open and efficient unidirectional C&C protocol is suitable for CDC. 

Definition 5. RI denotes Registration Information. RI=<BotID, SymmetricKey, 
HostInfo>, where BotID is used to identify a bot uniquely and is generated randomly 
based on host information when a bot compromises a new victim; SymmetricKey is 
used to encrypt all kinds of uploading data such as SI (see definition 6) and stolen 
files. Since the hardcoded key can in all cases be found through reverse engineering, 
each bot should generate an individualized and different symmetric key. In this way, 
investigating one or more bots will not impact the confidentiality of the whole botnet; 
HostInfo includes basic information describing a victim such as internal IP address, 
operation system and version, CPU/Memory, installed Antivirus software, and system 
language etc. Note that BotID and SymmetricKey must keep unchanged in the whole 
lifespan of a bot, and RI must be encrypted by the hardcoded public key of bots. 

Definition 6. SI denotes Status Information. General SI includes command received, 
command execution finished, download finished, upload finished, victim environment 
changed etc. Note that SI must be encrypted by the individualized SymmetricKey (see 
Definition 5) to ensure confidentiality; thus detecting and then investigating one or 
more bots will not impact other bots. 

Definition 7. One-time Registration (a.k.a. Call-Home) means a bot must report its 
individualized RI after initial execution. One-time Registration makes a botmaster 
could monitor the membership, population size, and geographical distribution of a 
botnet. 

Definition 8. Persistent Status Report means a bot should report its SI persistently or 
on-demand according to the received commands.  Persistent Status Report makes a 
botmaster could monitor the active size and activities of botnets in time. 

Registration Channel (RC). RC is only responsible for RI and SI collection. RC 
must be recoverable and open to defend against the physical control and sinkhole 
attack, and must have uplink channel to accept the incoming RI and SI during one-
time registration and persistent status report, respectively. Since the registration 
servers must be lightweight and easy to deploy, the robustness and efficiency is not 
necessary. Since the RI and SI could be downloaded and removed by botmasters in 
time, the excellent storage performance is not indispensable. Thus, a recoverable, 
open and monitoring bidirectional communication protocol is suitable for RC. 
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Table 1. The Security Properties Requirement of the Divided Sub-Channels 

RO=Robustness, RE=Recoverability, D/I=DNS/IP, K=Key, AL= Algorithm, DP=Downlink Performance, 

UP=Uplink Performance, SP=Storage Performance, OR= One-time Registration, PSR= Persistent Status 

Report 

 

Sub-
channel\ 
Property 

Resilience Openness Efficiency Monitorability 
RO RE D/I K AL DP UP SP OR PSR 

CDC √ √ √ √ √ √     

RC  √ √ √ √    √ √ 

DUC   √ √ √ √ √ √   

Data Upload Channel (DUC). DUC is only responsible for transferring stolen data 
to botmasters. DUC must have excellent uplink performance to enable massive data 
uploading in parallel by large-scale botnets, have excellent downlink performance for 
botmasters to download the massive files, have huge storage performance to store the 
uploaded data for some time. However, DUC itself is not necessary to be very 
resilient because the DUC related resources (i.e., the address of the given cloud 
services) could be dynamically delivered to bots via CDC, hence providing a 
recoverable capability indirectly; DUC need not Monitorability, because the 
uploading status could be sent to botmasters using SI via RC. Another important thing 
we have to considerate is that DUC must ensure the uploaded data can and can only 
be located and decrypted by botmasters who own the RI of each bot. Thus, an open 
and efficient bidirectional communication protocol is suitable for DUC. 

3 RoemBot: A BTM-Based Botnet 

To explain the proposed BTM in more detail, we implement a prototype named 
RoemBot (a Resilient, Open, Efficient and Monitoring bot). We analyze and evaluate 
the resilience and efficiency of RoemBot emphatically in section 4. 

3.1 Overview of RoemBot 

The architecture of RoemBot is shown in Fig.2. RoemBot exploits URL Flux [5] for 
CDC, Domain Flux for RC and a new protocol (named Cloud Flux for convenience) 
for DUC. The C&C procedures of RoemBot are explained as below. 
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Fig. 2. Architecture and Implementation of RoemBot 

Phase 1: A botmaster encrypts and signs the commands, and then publishes them to 
reliable Web 2.0 servers (i.e., Twitter). 

Phase 2: The bots try to locate the authentic commands using URL Flux protocol. 

Phase 3: The bots begin to locate the authentic registration servers using Domain 
Generation Algorithm (DGA) [14], depending on the Seed value such as current 
date/time and Twitter trends obtained from commands. Note that the Seed value must 
be distributed via commands to defend against sinkhole attack (see Section 4.3). 

Phase 4: The botmaster downloads the encrypted RI and SI, and then decrypt them 
using the corresponding private key and SymmetricKey, respectively. 

Phase 5: Based on the URL of Cloud-based File Hosting Services (CFHS) obtained 
from commands, the bots begin to upload the collected data to CFHS. And then 
normalizes the long URL to shorten URL which could be predicted by the botmaster 
who owns the RI of each bot. 

Phase 6: The botmaster locates each file uploaded by each bot and then downloads 
the files one by one. Note that the files can and can only be identified and decrypted 
by the botmaster who owns the RI of each bot. 

3.2 URL Flux Protocol for CDC 

Protocol Selection. According to the requirement of CDC (Table.1) and the security 
properties of each C&C protocol (Table.2), we can see that URL Flux is suitable for 
CDC. The architecture of URL Flux is described in Fig.3. More detail about URL 
Flux is introduced in [5]. 
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Fig. 3. URL Flux based CDC of RoemBot 

3.3 Domain Flux Protocol for RC 

This registration procedure is very crucial for botmasters to monitor the botnet and 
locate the uploaded stolen files. 

Protocol Selection. According to the requirement of RC (Table.1) and the security 
properties of each C&C protocol (Table.2), we can see that Domain Flux is suitable 
for RC. The registration procedure is described in Fig.4. 

Upload RI&SIBotMaster

Upload Signed <ServIP,Port,
StartTime,ExpireTime>

Bots
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Admin
Interface
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Network

Download&Verify
Signed File 
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Fig. 4. Registration Procedure of RoemBot 

Phase 1: Botmasters upload a certification to the registration server. The certification 
must include but not limited to Server IP Address, Server Port, Start Time and Expire 
Time. In this way, it is impossible for defenders to forge registration servers. After 
this, botmasters publish the randomly generated DGA seed, making bots could locate 
the registration servers using Domain Flux protocol. 

Phase 2: Bots retrieve commands via CDC, subtract the seed and then calculate the 
domain names of registration servers using the hard-coded DGA which is shared with 
botmaster.  

Phase 3: Bots upload RI and SI to the authentic registration servers, encrypted by the 
hard-coded public key and the generated SymmetricKey, respectively. 

Phase 4: Botmasters download and decrypt the RI and SI, and then remove them, 
eliminating the risk of computer forensics or other kinds of data leakage. 
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3.4 Cloud Flux for DUC 

Motivation. Although it seems a simple task to construct a DUC which could satisfy 
all of the requirements of DUC listed in Table.1, it is not the case. In fact, even well-
known botnets such as Conficker, Mariposa, Torpig, Coreflood, Waledac, and 
Kelihos botnets are all ineffective in the aspect of retrieving the collected data from 
bots. Let us take Torpig as an example, which is mainly designed to harvest sensitive 
information from its victims. Stone-Gross took control of the Torpig botnet and 
observed more than 180 thousand infections and recorded almost 70 GB of data that 
the bots collected [24]. How to construct an open DUC with good downlink 
performance, uplink performance, and storage performance poses a great challenge to 
this day. 

Cloud Flux Designing. To address the above difficulties, we propose a new protocol 
named Cloud Flux for convenience. We attempt to employ Cloud-based File Hosting 
Services (CFHS) and URL Shortening Services (USS) to build a qualified DUC. More 
specifically, CFHS provide an efficient way to upload and store files anonymously, 
which could also be exploited by bots. However, the cloud servers usually return a 
random URL pointing to the uploaded file. It happens that USS could solve the 
problem by mapping a given URL to a customized shorten URL. In a word, we could 
combine the two services together to establish an open and effective DUC. To 
describe the idea in detail, we outline the complete working procedure in Fig.5. 

 

Fig. 5. Cloud Flux based DUC of RoemBot 

Phase 1: A bot collects interesting contents such as credentials and sensitive files on 
the victim, encrypts (RC4) them using its SymmetricKey and stores the ciphertext into 
a file. After that, the bot uploads the file to a randomly selected CFHS which is 
obtained from the received commands. This phase can be descripted more formally as 
below: 
Bot_Upload = Bot.Encrypt (File, Key)  CFHS 

Phase 2: The cloud server returns a random URL representing the downloading URL 
of the uploaded file (i.e., http://www.sendspace.com/file/rz3ivc) to the bot.  
CFHS_Response = CFHS.Response (Full URL) bots 
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Phase 3: The bot visits a randomly selected shorten URL server which is obtained 
from the received commands, submits the above full URL and a desired customized 
shorten URL based on its BotID (already generated in the procedure of registration 
and reported to botmasters via RC) and current date. For example, if the BotID is 
abcd1234, the current date is 20130508, then the desired shorten URL is 
“http://tinyurl.com/abcd123420130508”.  
Bot_Request = Bot.Request (Full URL, Desired Shorten URL) USS 

Phase 4: If successful, the desired shorten URL will be returned; otherwise, if the 
desired shorten URL is occupied (a low probability event), the bot has to queue the 
file to the next day. 
USS_Response = USS.Response (Desired Customized Shorten URL, RetCode) bots 

Phase 5: The botmaster owns all BotID thanks to the registration procedure, so he can 
enumerate each BotID one by one (we prefer to wait for an “upload finished” SI 
report for efficiency consideration, otherwise, enumerating the whole botnet 
population is very inefficient) and then generates the possible destination URL by 
combing the BotID with current date.  
Botmaster_Request =  Botmaster. Request ( http:// USS Domain /  
BotID#CurrentDate) USS, where ‘#’ denotes conjunction of two strings. 

Phase 6: If the shorten URL does exist, the corresponding full URL will be returned. 
USS_Response = USS.Response ( Full URL)  Botmaster 

Phase 7: The botmaster downloads the destination files automatically (using an 
automated crawler program) based on the returned full URL. 
Botmaster_Download = Botmaster.Download (Full URL)  LocalStorage 

Here, Cloud Flux, which starts from Bot_Upload and ends with 
Botmaster_Download, finishes its complete work.  

Cloud Flux Experiment. We have evaluated the novel methodology using 
SendSpace [12] and TinyURL [13], the results show that it can work completely 
automatically in a quite efficient way. 

4 RoemBot Resilience and Efficiency Study 

4.1 Security Properties of Current C&C Protocols 

Although the C&C protocols of botnets have evolved from centralized to 
decentralized topology and from static to dynamic addressing, to the best of our 
knowledge, there is no publicly reported botnets that could satisfy all of the four basic 
security properties. The summary of current C&C protocols as well as the proposed 
Cloud Flux is shown in Tab.2. In comparison, we also exhibit the security properties 
of BTM. 

For an IRC botnet, it has a group of IRC servers which could link together in a P2P 
topology, so its CDC is robust. However, in case the DNS/IP addresses of IRC 
servers, the hard-coded login password in bots are exposed, the botnet will suffer 
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from a single-point-of-failure or hijacking. The bot can only push some limited text 
messages to botmasters, so the uplink performance is low.  

For a HTTP protocol, it has only limited HTTP servers, more badly, all kinds of 
resources, such as Domain Name, publicly accessible IP address, and the physical 
computers, must be considered by botmasters. In case the DNS/IP addresses of HTTP 
servers are exposed, the botnet will also suffer from a single-point-of-failure. 
Although the efficiency can be enhanced by increasing the number and performance 
of HTTP servers, it is generally very limited and cost sensitive. 

For structured P2P protocol, it is vulnerable to Index Poisoning and Sybil attack 
inevitably; for unstructured P2P protocol, it is vulnerable to crawling and sensor 
injecting inescapably. In case the hardcoded keys are exposed, the commands 
broadcasted among the P2P botnet could be monitored in time by defenders who 
employ Sybil nodes.  

IP Flux (a.k.a. Fast Flux) protocol evolves from HTTP protocol. When the Domain 
Name of its mothership [17] is exposed, it still has a single-point-of-failure risk. 
Although there are multi step-stones, the efficiency of mothership is not enhanced at 
all. The main objective of IP Flux is to conceal the real IP address of motherships. 

Domain Flux protocol evolves from HTTP protocol, it introduces a DGA to make 
the Domain Name of C&C servers predictable so as to equip with recoverability [23]. 
Although the DGA could be easily reverse analyzed, the botmasters will not lose 
control due to certification mechanism. 

URL Flux protocol also involves from HTTP protocol, it introduces a UGA 
(Username Generation Algorithm) to make the URL of C&C servers predictable so as 
to equip with recoverability [5]. Same to DGA, UGA is also resilient to reverse 
engineering. The downside of URL Flux lies in its absence of uplink capability. 

Table 2. The Security Properties of Common C&C Protocol 

RO=Robustness, RE=Recoverability, D/I=DNS/IP, K=Key, AL= Algorithm, DP=Downlink Performance, 

UP=Uplink Performance, SP=Storage Performance, OR= One-time Registration, PSR= Persistent Status 

Report, H=High, L=Low, S=Support, O=On-demand, Y=Yes, N=No 

Protocol\ 
Property 

Resilience Openness Efficiency Monitorability 
RO RE D/I K AL DP UP SP OR PSR 

IRC H  N N  H L L S O 
HTTP L  N Y  L L L S S 
IP Flux L  N   L L L S S 

Domain Flux L H Y Y Y L L L S O 
URL Flux H H Y Y Y H     

P2P   L-H  L-H  N  L     
Cloud Flux   Y Y Y H H H   

BTM H H Y Y Y H H H S O 
 

4.2 URL Flux Resilience and Efficiency Study 

URL Flux Attack Model. Security defenders such as CERT, ISP and the most 
important Web 2.0 providers, could reverse analyze the UGA and monitor the 
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behavior of particular usernames which could be generated by UGA. In addition, 
defenders may try to replay the commands. 

Resilience and Efficiency Analysis. For username monitoring attack, URL Flux 
exploits a large number of public Web 2.0 services as downlink C&C servers; thus, its 
robustness depends on the Web 2.0 services. Only when all the hard-coded Web 2.0 
services become unavailable, URL-Flux fails. Obviously, the extreme situation is an 
extremely low-probability event. In case the usernames generated by UGA on one 
Web 2.0 service is blocked by the service provider, botmasters could switch to other 
Web 2.0 services. Therefore, RoemBot is very resilient. The C&C servers are high-
performance websites which could serve millions of communications concurrently. 
Therefore, RoemBot is very efficient. The published commands always   include 
“StartDate” and “ExpireDate” [5], making replay attack impossible. Furthermore, 
because the private key is owned only by botmasters, injecting malicious commands 
is impossible. 

4.3 Domain Flux Resilience and Efficiency Study 

Domain Flux Attack Model. Security defenders could identify the active authentic 
registration servers in time using the same DGA with bots. After that, they could 
either setup a sinkhole to measure the botnet or physically control the active 
registration servers. 

Resilience and Efficiency Analysis. Since the Seed used by DGA is distributed via 
commands dynamically, so the defenders could not predict the future domain names 
used by bots until they monitor the issued commands, so they can’t register the 
domain names in advance, making sinkhole attack difficult. For botmasters, they 
should always setup the servers in advance, and then publish the Seed. In this way, 
bots will always firstly locate the authentic servers rather than the fake sinkhole 
servers. Since bots encrypt the RI using the hard-coded public key, even if the 
registration servers are completely controlled by defenders, the RI is also secure. 
Anyhow, the RI and SI will never be accessed by unauthorized people. 

4.4 Cloud Flux Resilience and Efficiency Study 

Cloud Flux Attack Model. The desired shortened URL (i.e., BotID+Date) makes it 
easy for the USS providers to enumerate potential bots by searching (and disabling) 
short URLs that have such a date suffix. Also, once a BotID is discovered, those 
URLs can be banned going forward. 

Resilience and Efficiency Analysis. CFHS and USS could ensure sufficient 
performance even for large-scale botnets (i.e., more than ten millions) to store 
numerous files and request shortening services in parallel. So DUC is very efficient. 
Since the files uploaded by bots are encrypted and have random filenames, CFHS 
providers are hard to find them out. Since the combination of BotID and current date 
is not unusual, there is a relatively high collision probability with normal URLs, it is 
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impossible for USS providers to block all malicious requests. Furthermore, the Cloud 
Flux technique could also use some simple enhancements. For example, it is more 
useful to use keyed hashes. Hence, a better shortened URL could be HMAC 
(BotID+Date, SymmetricKey), where SymmetricKey is reported in RI via RC. This 
would defeat such enumeration efforts. 

5 Defense against RoemBot 

We introduce possible defense strategies in three ways. First, a coordinated 
cooperation channel should be set up to identify and defend against this technology; 
second, we should infiltrate botnets to monitor their activities in time; third, we 
should pay more attention to the relatively vulnerable step-stones used by botmasters. 

Building International Coordinated Mechanism: RoemBot relies on Web 2.0, 
CFHS and USS heavily. For this reason, defenders should focus their defense effort 
on security enhancement for publicly available services. This effort can prevent these 
services from being abused to some degree. In the case that abnormalities are 
detected, there should be a coordinated channel such as CERT and ISP to stop the 
corresponding services. 

Infiltration: Since all bots must find commands in an active way, all of them are 
inescapably vulnerable to an infiltrator [18, 25]. After reverse engineering of RoemBot, 
an infiltrator can be written using the same protocol and algorithm to simulate RoemBot. 
In this way, defenders are able to track the botnet activities in time. 

Step-stone Penetration and Forensics: Botmasters always use step-stones to conceal 
their origination; however, step-stones are generally vulnerable and relatively easy to 
penetrate. Once compromising one or more step-stones, defenders could monitor the 
incoming traffic, making tracing back to the active botmasters possible. In addition, 
defenders could also infer the characteristic of botmasters based on their habits such 
as the keyboard layout, language preference and time-zone [26].  

Although the above defense mechanisms cannot shut down or decrease the C&C 
capability significantly, they still could increase the cost of botmasters to some degree. 

6 Related Works 

Wang et al. [3] presented the design of an advanced hybrid peer-to-peer botnet. Vogt et 
al. [4] presented a “super-botnet” - that works by inter-connecting many small botnets 
together in a peer-to-peer fashion. Ralf Hund et al. [6] introduced the design of an 
advanced bot called Rambot, developed from the weaknesses they found when tracking a 
diverse set of botnets. Starnberger et al. [9] presented Overbot, which uses an existing 
P2P protocol, Kademlia, to provide a stealth C&C channel. Singh et al. [8] evaluated the 
feasibility of exploiting email communication for botnet C&C. Cui et al. [5] proposed 
URL-Flux for botnets C&C which has proved to be robust and efficient. Kui et al. [29] 
conducted a systematic study on the feasibility of solely using DNS queries for massive-
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scale stealthy communications among entities on the Internet. Their work shows that 
DNS can be used as an effective stealthy C&C channel for botnets.  

Nevertheless, none of existing research works has studied how botmasters might 
design a resilient and efficient bidirectional communication channel. Specially, all 
of the above proposed P2P and URL-Flux based botnets are unidirectional although 
they are resilient. Although the DNS-based C&C channel is bidirectional, its 
authoritative domain name servers suffer from single-point-of-failure problem, 
making massive-scale uploading stolen data in parallel very hard; furthermore, the 
botmasters must create and register the new domain names continuously. Thus, our 
study compliments the existing research works to some degree. 

7 Conclusion and Future Works 

In this paper, we present a Botnet Triple-Channel Model and implement a 
corresponding prototype named RoemBot. RoemBot exploits URL Flux for CDC, 
Domain Flux for RC and a new proposed protocol named Cloud Flux for DUC. 
Compared with traditional botnets, RoemBot has a more resilient commands 
distribution channel, a recoverable information registration channel, and a more 
efficient data uploading channel, which could satisfy all of the four security properties 
of botnets, thus promising to be very attractive for botmasters. We believe our 
findings demonstrate that research on alternative advanced botnets mitigation 
methods is urgently needed. 

We also believe that BTM-based botnet design represents a main direction of future 
botnets. Therefore, we plan to prove that any botnet must accomplish a BTM-style 
architecture in order to construct an “ideal” botnet. The ultimate goal of our work is to 
increase the understanding of advanced botnets; we will invest more research on how 
to fight against this kind of advanced botnet in the future. 
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Abstract. The Android platform uses a permission system model to
allow users and developers to regulate access to private information and
system resources required by applications. Permissions have been proved
to be useful for inferring behaviors and characteristics of an applica-
tion. In this paper, a novel method to extract contrasting permission
patterns for clean and malicious applications is proposed. Contrary to
existing work, both required and used permissions were considered when
discovering the patterns. We evaluated our methodology on a clean and
a malware dataset, each comprising of 1227 applications. Our empirical
results suggest that our permission patterns can capture key differences
between clean and malicious applications, which can assist in character-
izing these two types of applications.

Keywords: Android Permission, Malware Detection, Contrast Mining,
Permission Pattern.

1 Introduction

The increase in Android smartphone sales has led to a surge in the number
of applications available on application markets. Additionally, the freedom of
installing applications from third-party markets, rather than being constrained
to only the official market, has boosted the number of Android applications.
This, in turn, has incentivized application developers to churn out applications
and upload them on different third-party markets [1]. As no application review
process is in place for third-party markets, the cleanliness of these applications
cannot be guaranteed [2]. Users can only rely on the description and permissions
listed on the application market to decide whether or not they should install an
application.

Android platform employs a permission system to restrict application privi-
leges in order to secure a user’s private information [3]. However, its effective-
ness highly depends on the user’s comprehension of permission approval [4]. The
permissions requested during application installation are referred to as required
permissions. Unfortunately, as noted by Felt et al. [4], not all the users read or
understand the warnings of required permissions shown during installation. In
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order to have a better understanding of permission requests, Frank et al. [3] pro-
posed a probability model to identify the common required permission patterns
for all Android applications. Zhou and Jiang [5] listed the top required permis-
sions for both clean and malicious applications, but only individual permissions
were considered by frequency counting.

We observed that the following issues have been overlooked in the area of
Android permissions analysis:

• Contrasting Permissions Patterns. Despite the numerous research endeav-
ors [4,6,7] aimed at interpreting Android permissions and their combinations,
there is no existing work that aims at identifying the permission differences
between clean and malicious Android applications.

• Used Permission. No work has considered incorporating used permissions,
which can be extracted from static analysis by the Andrubis system [8], into
the permission patterns. Compared to required permissions, used permissions
provide a better understanding of the permissions that are needed by an
application in order to function properly. Whenever an API call is invoked
during the execution of an application, the Android platform will verify if
the API call is permission-protected before proceeding to execute the call;
such permissions are referred to as used permissions.

With the availability of the Andrubis framework and the advances in data min-
ing, it is now possible to consider both required and used permissions, together
with the use of our new pattern mining algorithm to generate contrasting per-
mission patterns for clean and malicious applications. While most of the existing
work is based on required permissions, used permissions are equally important
and should be considered to better differentiate between permission patterns for
clean and malicious applications. Therefore, our aim is to identify a set of unique
and common permission patterns that can contrast clean applications from ma-
licious ones.

In order to apply our pattern mining technique to identify the desired con-
trast permission patterns, a clean and a malware dataset are considered. In 2012,
Zhou and Jiang [5] published the first benchmark dataset of malicious applica-
tions, which comprises of 49 malware families. The applications were collected
from third-party markets between August 2010 and October 2011. As there
was no clean dataset publicly available, we proceeded to collect our own clean
applications that were released during the same time period as the malware
dataset. The clean applications were downloaded from two popular third-party
application markets: SlideME (http://slideme.org) and Pandaapp
(http://android.pandaapp.com). The applications were sorted based on the num-
ber of downloads and the ratings given by the users, and only the top ones were
selected.

To our knowledge, this work reports one of the first pattern mining methods
that can generate unique and common permission patterns, which include both
required and used permissions, for clean and malicious applications. The novelty
and contributions of this work can be summarized as follows:
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• To find the permission combinations, a new contrast permission pattern
mining algorithm (CPPM) is proposed to identify the permission patterns
that can significantly differentiate between clean and malicious applications.

• To our knowledge, this is the first work to incorporate both required and used
permissions to generate permission patterns. Based on our empirical results,
it can be deduced that such patterns can help to contrast clean applications
from malicious ones.

The rest of the paper is organized as follows: Section 2 briefly reviews the An-
droid platform, the permission system and the current research work in malware
detection. In Section 3, we present our initial analysis on the collected datasets
using statistical methods followed by the proposed contrast pattern mining algo-
rithm. The experiments and the obtained results are then reported in Section 4
together with a discussion of our findings. Finally, Section 5 concludes the paper
together with our future work.

2 Background and Related Work

2.1 Android and Its Permission System

Android is a Linux-based Operating System (OS) which was designed and devel-
oped by the Open Handset Alliance in 2007 [9]. The Android platform is made
up of multiple layers consisting of the Linux-kernel, libraries and an application
framework with built-in applications [10]. Additional applications can be down-
loaded and installed from either official market, Google Play [11], or third-party
markets.

Google applies the permission system as a measure to restrict access to priv-
ileged system resources. Developers have to explicitly mention the permissions,
that require user’s approval, in the AndroidManifest.xml file. Android adopts
an ‘all-or-nothing’ permission granting policy. Hence, the application is installed
successfully only when the user chooses to grant access to all of the required
permissions.

There are currently 130 official Android permissions and they are classified
into four categories: Normal, Dangerous, Signature and SignatureOrSystem [12].

• Normal permissions do not require the user’s approval but they can be
viewed after the application has been installed.

• Dangerous permissions require the user’s confirmation before the installation
process starts; these permissions have access to restricted resources and can
have a negative impact if used incorrectly.

• A permission in Signature category is granted without the user’s knowledge
only if the application is signed with the device manufacturer’s certificate.

• The SignatureOrSystem permissions are granted only to the applications
that are in the Android system image or are signed with the device manu-
facturer’s certificate. Such permissions are used for special situations where
the applications, built by multiple vendors, are stored in one system image
and share specific features.
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After an application is installed, a set of Application Programming Interfaces
(APIs) are called during the runtime. Each API call is associated with a particu-
lar permission. When an API call is made, the Android OS checks whether or not
its associated permission has been approved by the user. Only a matching result
will lead to the execution of the API call. In this way, the required permissions
are able to protect the user’s privacy-relevant resources from any unauthorized
operations. However, it cannot deter malware developers from declaring addi-
tional required permissions for their applications. From the above observation,
several studies [3, 6, 7] have tried to identify the common required permissions
that are frequently declared by Android application developers.

2.2 Android Permissions and Related Work

Understanding Android Permissions. Frank et al. [3] selected 188, 389 ap-
plications from the official market and analyzed the combinations of permission
requests by these applications using a probabilistic model. Bartel et al. [13]
proposed an automated tool that can statistically analyze the methods defined
in an application and subsequently, generate the permissions required by the
application. This, in turn, ensured that the user did not grant access to unnec-
essary permissions when installing the application. A model designed by Sanz
et al. [14] was based on features that comprised solely of Android permissions,
which helped to understand the Android permission system and the patterns for
normal permission requests.

Permission-Based Malware Detection. Malware detection is an emerging
topic in the study of the Android platform with many successful achievements;
however, not much attention has been paid on detection using permission pat-
terns. Chia et al. [7] argued that the current user-rating system is not a reliable
source of measurement to predict whether or not an application is malicious.
Their dataset consisted of 650 applications from the official market and 1, 210
applications from a third-party market. The required permissions were extracted
from the dataset, together with other application-related information to develop
a risk signal mechanism for detecting malware.

Sahs and Khan [15] focused on feature representation as one of the challenges
to malware detection. The features included: (i) permissions extracted from man-
ifest files and (ii) control flow graphs for each method in an application. Each
feature was processed independently using multiple kernels and the authors ap-
plied a one-class Support Vector Machine to train the classifiers. However, the
evaluation results showed that the common features existing in both the clean
and malware datasets affected the detection error rate.

Wu et al. [16] put forward a static feature-based technique that can aid to-
wards malware detection. First, they applied K-means algorithm to generate
the clusters and used Singular Value Decomposition to determine the number
of clusters. In the second step, they classified clean and malicious applications
using the k-Nearest Neighbor (kNN) algorithm.
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Zhou et al. [17] proposed a two-layered system, known as DroidRanger and
used “permission-based behavioral foot-printing and heuristics-based filtering”.
The authors observed that the permissions extracted from the malicious appli-
cations gave an insight into uncommon permission requests by some malware
families.

In [14], Sanz et al. proposed to extract the permissions and the hardware
features to build the feature set. As a result, they observed that clean applications
required two to three permissions on average, but some of malicious applications
only had one permission and were still able to carry out the attack.

2.3 Summary and Problem Identification

Malware proliferation is rising exponentially and the attack vectors used by
malware authors are getting more sophisticated. Current solutions proposed to
thwart attacks by malicious applications will struggle to keep up with the in-
crease of malware. The Android platform relies heavily on its permission system
to control access to restricted system resources and private information stored on
the smartphone. However, there is no evidence providing a clear understanding
on the key differences for permissions in clean and malicious applications.

Thus, we identify the following research questions:

• How can we measure the similarities and differences between permission
requests for clean and malicious applications?

• What method can be used to incorporate used permissions in the permission
patterns?

To answer these questions, we have extended the current statistical method
used for identifying both required and used permission patterns in Android ap-
plications. A contrast pattern mining technique has been proposed to identify
the most useful permission combinations that can distinguish between clean and
malicious applications.

3 Mining Contrast Permission Patterns

3.1 Experimental Dataset

For our malware dataset, we used Zhou and Jiang’s [5] collection of 1227 mali-
cious applications, which comprises of 49 malware families. These were collected
from third-party markets between August 2010 and October 2011. In order to
maintain the same timeline as the malware dataset, we proceeded to collect
our set of 1227 clean applications that were released during the same period
as the malicious ones. The clean applications were downloaded from two pop-
ular third-party application markets: SlideME (http://slideme.org) and Pan-
daapp (http://android.pandaapp.com). The applications were sorted based on
the number of downloads and the ratings given by the users, and only the top
ones were selected.
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3.2 Statistical Analysis on Android Permissions

Statistical analysis has been widely used to analyze Android permissions. Ac-
cordingly, we started our work with an initial analysis on the clean and malware
datasets using frequency counting and extended Zhou and Jiang’s work [5] to
explore used permissions. A novel contrast pattern mining algorithm is then
presented to identify specific permission patterns that differentiate clean appli-
cations from malicious ones.

We employed statistical analysis to study both required and used permissions
for clean applications as well as malicious ones. Based on the aforementioned two
types of permissions for clean and malicious applications, we further generated
the following four sub-datasets: (1) Required permissions for clean applications;
(2) Required permissions for malicious applications; (3) Used permissions for
clean applications; and (4) Used permissions for malicious applications. Direct
frequency counting was employed on all four sub-datasets to find out the most
popular permissions required or used.

By comparing the top 20 required permissions for clean and malicious appli-
cations listed in Table 1, we found that malicious applications requested a total
of 14, 758 permissions, in contrast to the 4, 470 permissions requested by clean
applications. Among these permissions, we found some of them only appeared
in one dataset, in other words, those permissions were only required or used
by clean applications but not malicious ones, and vice versa. We refer to these
permissions as the ‘unique permissions’. Similarly, we name those permissions
that appear in both clean and malware datasets the ‘common permissions’. In
total, there are 33 unique required permissions for clean applications and 20 for
malicious ones; and also 70 common required permissions. Another 5 permis-
sions were never requested by any application. For used permissions, there are
9 unique ones for clean applications and only 4 for malicious ones. The number
of common used permissions dropped to 28, and a large number of 87 permis-
sions was never used by any application. The four most frequently requested
common permissions by both clean and malicious applications are: INTERNET,
ACCESS_COARSE_LOCATION, WRITE_EXTERNAL_STORAGE and VIBRATE.

In contrast, among the top 20 required permissions, 9 of them appeared fre-
quently in the malware dataset. Moreover, when comparing the top 20 used
permissions in clean and malicious applications in Table 2, we observed that 16
out of 20 popular used permissions were common in both datasets.

Statistical analysis such as direct frequency counting is suitable for identifying
single permissions that are popular in each sub-dataset. However, it still requires
further manual checking to confirm the obtained permission lists for clean and
malicious applications. This, in turn, further complicates the counting process
if permission combinations are to be considered instead of individual permis-
sions. Therefore, we extended the analysis of Android permissions by proposing
a contrast pattern mining algorithm.
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Table 1. Top 20 Required Permissions by Clean and Malicious Applications

Clean Applications Malicious Applications
Required Permission Frequency Required Permission Frequency

INTERNET 1121 INTERNET 1199
ACCESS NETWORK STATE 663 ACCESS COARSE LOCATION 1146
READ PHONE STATE 391 VIBRATE 994
WRITE EXTERNAL STORAGE 362 WRITE EXTERNAL STORAGE 823
ACCESS COARSE LOCATION 236 READ SMS 779
VIBRATE 210 WRITE SMS 762
WAKE LOCK 188 READ CONTACTS 680
ACCESS FINE LOCATION 162 BLUETOOTH 633
GET TASKS 125 WRITE CONTACTS 542
SET WALLPAPER 102 DISABLE KEYGUARD 491
ACCESS WIFI STATE 64 WAKE LOCK 471
RECEIVE BOOT COMPLETED 60 RECORD AUDIO 461
READ CONTACTS 58 ACCESS FINE LOCATION 446
WRITE SETTINGS 45 ACCESS NETWORK STATE 416
CAMERA 43 READ PHONE STATE 414
CALL PHONE 42 SET ORIENTATION 413
SEND SMS 34 CHANGE WIFI STATE 384
RESTART PACKAGES 32 READ LOGS 361
RECEIVE SMS 31 BLUETOOTH ADMIN 342
RECORD AUDIO 27 RECEIVE BOOT COMPLETED 325

3.3 Contrast Permission Pattern Mining

In order to discover a set of permission patterns that can visibly show contrast
between clean and malicious applications, we propose the Contrast Permission
Pattern Mining (CPPM) method. The output permission patterns were expected
to have the ability to indicate the difference between the clean and malicious ap-
plications. CPPM was designed to process more than one dataset and take both
individual and combined permissions and their combinations into consideration.
Two major processes were involved in CPPM : (1) candidate permission itemset
generation, and (2) contrast permission pattern selection, as illustrated in Fig. 1.

1. Candidate Permission Itemset Generation
The purpose of this process is to obtain a number of candidate permission
combinations that are likely to be the expected contrast patterns. CPPM
takes at least two datasets as input. In our case two datasets were loaded,
each of which contained either clean or malicious applications. We gener-
ated the candidate permission itemsets from every dataset using the same
procedure, which included the following two steps:
Apriori-Based Itemset Enumeration. Given Dx is one of the input
datasets with either required or used permissions, which contains n applica-
tions. Let I = {A,B,C . . . } be the set of possible items in Dx. Each item
can be considered as a permission required or used by an application and
an itemset is formed by a set of items (permissions required or used). The
Apriori-based approach [18] enumerates candidate itemset from the simplest
structure with only a single item. Based on this single item, a more complex
itemset is then obtained by adding new items. This joining operation is re-
peated continuously to increase the number of the items in the itemsets. In
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Table 2. Top 20 Used Permissions by Clean and Malicious Applications

Clean Applications Malicious Applications
Used Permission Frequency Used Permission Frequency

INTERNET 1029 INTERNET 1161
WAKE LOCK 816 ACCESS COARSE LOCATION 1125
ACCESS NETWORK STATE 738 VIBRATE 954
VIBRATE 608 WAKE LOCK 826
READ PHONE STATE 457 ACCESS WIFI STATE 584
ACCESS COARSE LOCATION 372 ACCESS NETWORK STATE 519
SET WALLPAPER 126 READ SMS 473
ACCESS FINE LOCATION 116 WRITE CONTACTS 426
GET ACCOUNTS 98 READ PHONE STATE 354
ACCESS WIFI STATE 85 RECORD AUDIO 319
READ SMS 82 SET WALLPAPER 297
RESTART PACKAGES 65 ACCESS FINE LOCATION 199
GET TASKS 61 GET ACCOUNTS 178
CHANGE CONFIGURATION 55 GET TASKS 124
RECEIVE SMS 37 RECEIVE BOOT COMPLETED 111
FLASHLIGHT 37 ACCESS CACHE FILESYSTEM 101
WRITE CONTACTS 34 WRTIE OWNER DATA 59
RECEIVE BOOT COMPLETED 23 CHANGE CONFIGURATION 52
WRTIE OWNER DATA 12 READ HISTORY BOOKMARKS 49
WRITE SETTINGS 10 EXPAND STATUS BAR 41

each iteration, one new item is tentatively added into the existing candidate
itemset. However, the Apriori-based approach can generate a large number
of candidate itemsets with high computational cost. To alleviate this prob-
lem, a support-based pruning technique is employed to reduce the number
of candidate itemsets and consequently, the experimental time.
Support-Based Candidate Pruning. Support is usually used to measure
the occurrence frequency of a certain item or itemset in a dataset. Let A, B ⊆
I be two items, and {A,B} forms a candidate itemset. The support of the
candidate itemset {A,B} can be calculated by:

supp(A,B) =
number of applications that contain A and B in Dx

total number of applications in Dx
(1)

The candidate itemset {A,B} is considered as frequent only if supp(A,B) ≥
δsupp, where δsupp is user-specified minimum support threshold. In classic
pattern mining methods, only the frequent itemset is considered. Any item-
set with a lower support than the pre-determined threshold is treated as
infrequent and discarded. However, in our case, the statistical analysis re-
sults showed most of the unique permissions were requested or used by few
applications. This indicated that they have low support value. In order to
inadvertently miss any valuable patterns, we decided to take both frequent
and infrequent candidate itemsets, but only used frequent ones to generate
new candidate itemsets to cut down the computational cost.

2. Contrast Permission Pattern Selection
The permission itemsets obtained from the previous steps need to be reduced
according to the pre-defined selection criteria. This process guarantees that
the output itemsets are highly contrasted between clean and malicious ap-
plications. The contrasts are shown by the different occurrence behaviors
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in two datasets. If one permission itemset is frequent in one dataset, it is
often considered to carry more common features than the infrequent ones.
Therefore, the selection of specific contrast permission pattern is based on
comparison of its supports between two datasets. The bigger the difference
is in support values, the greater the contrast a permission pattern has.

Given one candidate permission itemset {A,B} and its supports in clean
and malware datasets, supp(A,B)clean and supp(A,B)malicious, calculate
the difference by diff(A,B) = supp(A,B)clean−supp(A,B)malicious. Then,
{A,B} is identified as a contrasted permission pattern only if diff(A,B) ≥
δdiff , where δdiff is a user-specified minimum support difference. All the
candidate permission itemsets need to be tested using this approach, and
the ones with big support difference will be selected as the final output
contrast permission patterns.

4 Experiments and Results

4.1 Experiment Settings

According to the statistical analysis not all the permissions were required or used.
Hence, to evaluate the proposed CPPM algorithm, we ignored the permissions
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Table 3. Four Sub-datasets Used in CPPM Experiments

Dataset Permission involved Permission Discarded

(i) Clean Required 103 27
(ii) Malicious Required 90 40
(iii) Clean Used 37 93
(iv) Malicious Used 31 99

that were not required or used in each sub-datasets respectively. Table 3 gives
more details of the four new sub-datasets. The statistical analysis results also
showed that only a small set of permissions had support that were greater than
0.1 (10%), so we followed the previous studies [19–21] to set 0.05 as an acceptable
value for minimum support threshold for all four sub-datasets in CPPM. The
minimum support difference threshold was set to be 0.15 (15%) and applied
to filter out itemsets that were highly contrasted between clean and malicious
applications.

4.2 Contrast Permission Patterns

Among the generated permission patterns, we found that 23 distinct permissions
were present in the highly contrasted permission combinations as listed in Ta-
ble 4. We classified the permissions based on the following categories: normal,
Dangerous, Signature and SignatureOrSystem. We recorded 6 permissions be-
longing to the Normal category, 15 permissions for the Dangerous category and
1 permission each for the Signature and SignatureOrSystem category.

We found that the generated permission combinations were correlated and
differed between clean and malicious applications. Based on the experimental
results, we recorded 56 required permission patterns that were unique to the
malware dataset, 31 used permission patterns that only appeared amongst mal-
ware, 17 required permission patterns and 9 used permission patterns that were
present in both clean and malware dataset. These findings are presented as per-
mission patterns (described in Table 5) which are listed in Tables 6-10, and
summarized below.

Unique Required Permission (URP) Patterns. In Table 6 and 7, we pre-
sented the permission patterns that were frequently required by the applications
in our dataset. It should be noted that these required permission patterns were
unique to the malware dataset only; hence the support value for the clean ap-
plications was 0.

In Table 6, the top 15 permission combinations, where the first permission in
the listed patterns belonged to the normal permissions category, are presented.
The permission combinations from URPSet1 and URPSet2 were both required
by more than 60% of the malware. In fact, we found that the INTERNET permis-
sion (pms0001) is frequently requested along with other permissions and their
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Table 4. Permission Index

Permission Category Permission ID Permission Name

Normal pms0001 INTERNET
Normal pms0006 ACCESS NETWORK STATE
Normal pms0007 VIBRATE
Normal pms0012 RESTART PACKAGES
Normal pms0013 RECEIVE BOOT COMPLETED
Normal pms0023 ACCESS WIFI STATE

Dangerous pms0002 ACCESS FINE LOCATION
Dangerous pms0003 WAKE LOCK
Dangerous pms0004 WRITE EXTERNAL STORAGE
Dangerous pms0005 READ PHONE STATE
Dangerous pms0008 READ CONTACTS
Dangerous pms0011 READ LOGS
Dangerous pms0020 ACCESS COARSE LOCATION
Dangerous pms0021 SEND SMS
Dangerous pms0022 GET TASKS
Dangerous pms0024 CHANGE WIFI STATE
Dangerous pms0028 WRITE CONTACTS
Dangerous pms0029 RECEIVE SMS
Dangerous pms0030 READ SMS
Dangerous pms0031 WRITE SMS
Dangerous pms0036 CALL PHONE
Signature pms0010 FACTORY TEST

SignatureOrSystem pms0052 INSTALL PACKAGES

Table 5. Types of Permission Patterns

Permission Patterns Description

Unique Required Permission (URP) Required permission patterns
present only in malware dataset

Unique Used Permission (UUP) Used permission patterns
present only in malware dataset

Common Required Permission (CRP) Required permission patterns
present in both clean and malware datasets

Common Used Permission (CUP) Used permission patterns
present in both clean and malware datasets

support values are relatively high. The permission combination, INTERNET and
RECEIVE BOOT COMPLETED were present in 55% of the malware dataset. Other
such patterns involving the INTERNET permission are listed in Table 6.

In Table 7, we listed the patterns that can have an impact on the following
actions: access location information, read/write/send and receive SMS, access to
contact list, write to external storage and access to phone state.

Unique Used Permission (UUP) Patterns. In Table 8, the combinations
of the used permissions that are unique to the malware dataset only are reported.
It can be noted that the INTERNET permission is included in the top 3 permission
combinations, UUPSet1 to UUPSet3 and appears in over 40% of the malware
samples.
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Table 6. Unique Required Permission Sets in Malware Dataset (Normal Permissions)

Permission Set Support Permission Set ID
Clean Malware

pms0001, pms0005, pms0023 0 0.6309 URPSet1
pms0001, pms0006, pms0023 0 0.6031 URPSet2
pms0001, pms0013 0 0.5542 URPSet3
pms0006, pms0013 0 0.5168 URPSet4
pms0006, pms0031 0 0.4964 URPSet5
pms0001, pms0021 0 0.4312 URPSet6
pms0013, pms0023 0 0.4263 URPSet7
pms0021, pms0029 0 0.3701 URPSet8
pms0004, pms0013 0 0.3660 URPSet9
pms0001, pms0005, pms0020 0 0.3562 URPSet10
pms0001, pms0005, pms0006, pms0007 0 0.3497 URPSet11
pms0001, pms0004, pms0020 0 0.3122 URPSet12
pms0023, pms0024 0 0.3097 URPSet13
pms0006, pms0008 0 0.2975 URPSet14
pms0013, pms0031 0 0.2943 URPSet15

Table 7. Unique Required Permission Sets in Malware Dataset (Danger-
ous/Signature/SignatureOrSystem Permissions)

Permission Set Support Permission Set ID
Clean Malware

pms0002, pms0005, pms0020 0 0.2690 URPSet16
pms0002, pms0004, pms0020 0 0.2576 URPSet17
pms0002, pms0005, pms0023 0 0.2307 URPSet18
pms0002, pms0004, pms0023 0 0.2234 URPSet19
pms0030, pms0036 0 0.3228 URPSet20
pms0021, pms0036 0 0.3163 URPSet21
pms0031, pms0036 0 0.2690 URPSet22
pms0029, pms0036 0 0.2674 URPSet23
pms0021, pms0028 0 0.2519 URPSet24
pms0008, pms0030 0 0.3269 URPSet25
pms0008, pms0021 0 0.2894 URPSet26
pms0008, pms0031 0 0.2649 URPSet27
pms0008, pms0029 0 0.2429 URPSet28
pms0028, pms0036 0 0.2413 URPSet29
pms0004, pms0006, pms0023 0 0.4475 URPSet30
pms0004, pms0030 0 0.3896 URPSet31
pms0004, pms0005, pms0020 0 0.3106 URPSet32
pms0004, pms0021 0 0.2462 URPSet33
pms0005, pms0013 0 0.5453 URPSet34
pms0005, pms0031 0 0.5094 URPSet35
pms0005, pms0021 0 0.4190 URPSet36

Another interesting observation is the presence of the READ LOGS (pms0011)
permission in over half of the permission patterns presented in Table 8. It is often
combined with the INTERNET (pms0001) and ACCESS FINE LOCATION (pms0002)
permissions. The remaining patterns include combinations of network-related
and SMS-related permissions.

Common Required Permission (CRP) Patterns. Previously, we presented
the permission patterns that were unique to malicious applications only. In Ta-
ble 9, we listed the permission combinations that appeared in both clean and
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Table 8. Unique Used Permission Sets in Malware Dataset

Permission Set Support Permission Set ID
Clean Malware

pms0001, pms0005, pms0006, pms0007 0 0.5542 UUPSet1
pms0001, pms0005, pms0011 0 0.4687 UUPSet2
pms0001, pms0006, pms0011 0 0.4320 UUPSet3
pms0005, pms0006, pms0011 0 0.4312 UUPSet4
pms0001, pms0007, pms0011 0 0.4149 UUPSet5
pms0005, pms0007, pms0011 0 0.4133 UUPSet6
pms0006, pms0007, pms0011 0 0.3855 UUPSet7
pms0001, pms0002, pms0005, pms0007 0 0.3423 UUPSet8
pms0001, pms0021 0 0.3358 UUPSet9
pms0001, pms0002, pms0011 0 0.2845 UUPSet10
pms0002, pms0005, pms0011 0 0.2845 UUPSet11
pms0001, pms0002, pms0006, pms0007 0 0.2829 UUPSet12
pms0002, pms0005, pms0006, pms0007 0 0.2829 UUPSet13
pms0002, pms0006, pms0011 0 0.2755 UUPSet14
pms0001, pms0020 0 0.2600 UUPSet15

Table 9. Common Required Permission Sets in Both Clean and Malware Datasets

Permission Set Support Difference Permission Set ID
Clean Malware

pms0001, pms0005 0.3121 0.9307 −0.6186 CRPSet1
pms0005 0.3187 0.9340 −0.6153 CRPSet2
pms0005, pms0023 0.0236 0.6308 −0.6072 CRPSet3
pms0001, pms0023 0.0505 0.6349 −0.5844 CRPSet4
pms0023 0.0522 0.6349 −0.5827 CRPSet5
pms0006, pms0023 0.0399 0.6031 −0.5632 CRPSet6
pms0005, pms0006 0.2421 0.7905 −0.5485 CRPSet7
pms0001, pms0005, pms0006 0.2421 0.7897 −0.5477 CRPSet8
pms0001, pms0004, pms0005 0.1328 0.6544 −0.5216 CRPSet9
pms0004, pms0005 0.1337 0.6553 −0.5216 CRPSet10
pms0004, pms0005, pms0006 0.1149 0.5623 −0.4474 CRPSet11
pms0004, pms0023 0.0293 0.4637 −0.4344 CRPSet12

malware datasets. However, it can be observed based on the support value differ-
ence that the permission patterns are more prevalent in the malware dataset, as
shown by the negative support difference values. We identified four permissions:
INTERNET (pms0001), READ PHONE STATE (pms0005), ACCESS NETWORK STATE

(pms0006) and ACCESS WIFI STATE (pms0023) that were present in different
permission combinations and appeared in more than 40% of the malware dataset.

Common Used Permission (CUP) Patterns. In Table 10, we presented
the used permission combinations that appeared in both the clean and mal-
ware datasets. Although both datasets had the same permission patterns, the
ones in the malware dataset have higher support values. The patterns include
the following permissions: INTERNET (pms0001), READ PHONE STATE (pms0005),
ACCESS NETWORK STATE (pms0006), VIBRATE (pms0007) and lastly, READ LOGS

(pms0011). The same support difference for CUPSet1 and CUPSet2 indicated
that the occurrence of these permission combinations are highly relevant. More-
over, we observed that even though READ LOGS (pms0011) permission did not
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Table 10. Common Used Permission Sets in Both Clean and Malware Datasets

Permission Set Support Difference Permission Set
Clean Malware ID

pms0001, pms0005 0.2991 0.9152 −0.6161 CUPSet1
pms0005 0.3032 0.9169 −0.6137 CUPSet2
pms0001, pms0005, pms0006 0.2363 0.7718 −0.5355 CUPSet3
pms0005, pms0006 0.2363 0.7718 −0.5355 CUPSet4
pms0001, pms0005, pms0007 0.2168 0.6512 −0.4344 CUPSet5
pms0005, pms0007 0.2192 0.6528 −0.4336 CUPSet6
pms0005, pms0011 0.0538 0.4686 −0.4148 CUPSet7
pms0011 0.0693 0.4760 −0.4067 CUPSet8
pms0001, pms0011 0.0685 0.4711 −0.4026 CUPSet9

appear in the common required permission patterns, but it appeared in three
common used permission patterns READ LOGS, CUPSet7 - CUPSet9.

4.3 Discussion

Observations from Statistical Analysis. From our statistical analysis in
Section 3.2, we observed that the INTERNET permission remained the most re-
quired (97.72%) and used (94.62%) permission in our experimental dataset. We
also found, from Tables 1 and 2, that there was a significant difference in
the frequencies of required and used permissions for the clean and the malware
datasets. This further confirmed the observation made by Felt et al. in [22] that
both clean and malicious applications can be over-privileged. Till date, most of
the proposed solutions have only considered required permissions extracted from
the AndroidManifest.xml files. From our statistical results, we argue that used
permissions should also be considered as part of the feature set and as such, can
aid towards malware detection.

Observations from Contrast Permission Patterns. In Section 4.2, we
present the most significant permission sets generated by contrast mining. We
found that a large number of required and used permission sets were unique in
malicious applications only. The same permission sets were non-existent in clean
applications, as shown by the 0 support value. This is a good indication that the
contrast permission sets can be further applied during the malware detection
phase to identify malicious applications. For normal required permissions, we
observed from Table 6 that the permission set IDs, URPSet1 and URPSet2
were required by 63% and 60% of the malicious applications in our dataset, re-
spectively. We deduced that this might be the case due to the fact that 25% of
our experimental malware samples (malicious applications) belong to the Droid-
KungFu3 malware family. As demonstrated in [23], malware samples classified
under DroidKungFu3 attempt to extract device ID, network-related information
and send all information back to the attacker’s server.

As for the Dangerous required permissions sets included in Tables 7, we
noticed several interesting permission sets on which we provide further expla-
nation. For permission set IDs URPSet16 and URPSet17, we found that 25%
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of malicious applications required both ACCESS_FINE_LOCATION (pms0002) and
ACCESS_COARSE_LOCATION (pms0020) permissions. While pms0002 is used to
access to GPS location sources, pms0020 is used for location information re-
lated to network sources. However, the documentation [24] provided by Google
specifies that if a developer requires network and GPS location information,
they do not need to include both permissions in the application; only requesting
ACCESS_FINE_LOCATION should suffice. The presence of unused permission can
be exploited via permission inheritance during inter-component communications,
as explained in [25].

For the used permission sets that were unique in our malware dataset (Table
8), we observed that the permission set: INTERNET (pms0001), READ_PHONE_STATE
(pms0005), ACCESS_NETWORK_STATE (pms0006), VIBRATE (pms0007)with permis-
sion set ID UUPSet1 was used by 55% of the malware samples. Interestingly, the
samepermission set canbe found inTable 6under thepermission set IDURPSet11,
with the exception that it was required by only 35% of the malware samples.

Moreover, it can be noted from Table 8 that the READ_LOGS (pms0011) per-
mission was frequently associated with the permission sets and appeared in 25%
to 50% of the malware dataset. There was previously no indication that the
READ_LOGS (pms0011) permission was a highly used permission among mali-
cious applications as the permission did not appear in the Top 20 most Used
permission, in Table 2. This further consolidates our argument that permission
patterns cannot be generated by only considering the number of frequencies for
that particular permission.

Furthermore, we also noted that there are several permission sets which ap-
peared in both clean and malware datasets, shown in Tables 9 and 10. The
negative support difference given in the table shows that the permission sets were
more prevalent in malicious applications than in clean ones. We observed that
the top two permission sets, CRPSet1 and CRPSet2 in Table 9 and CUPSet1
and CUPSet11 in Table 10 are the same.

5 Conclusion

Android uses a permission system to control access to restricted resources on
smartphones. The permissions are indicative of the characteristics of an applica-
tions and as such, can be used to differentiate clean applications from malicious
ones. However, most of the existing work only focused on required permissions
and there is no extensive work on understanding key similarities and differences
in permission patterns between clean and malicious applications.

To address these aforementioned issues, in this paper we combined both re-
quired and used permissions to identify a set of unique and common contrast
permission patterns. Additionally, an efficient pattern mining method that can
identify contrasting permission patterns for our clean and malware datasets was
proposed. We observed that some permission sets were common in both datasets,
while others were unique to only the clean or the malicious dataset.

By applying support value to the set of permission patterns, we filtered out
the permission combinations that are less significant. Compared to Frank et



84 V. Moonsamy et al.

al.’s work [3] where the authors had to simulate permission request data to test
their generated patterns, we applied our proposed methodology to combine the
required and used permissions and retained those which can be used to contrast
clean and malicious applications. Last but not least, since obfuscation methods
cannot be applied to Android permissions, the generated permission sets can be
used to contrast clean and malicious applications. In the future, we would like to
work on finding contrasting patterns that can differentiate between an original
application and a repackaged one.
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Abstract. The increasing popularity of Android apps makes them the
target of malware authors. To defend against this severe increase of An-
droid malwares and help users make a better evaluation of apps at install
time, several approaches have been proposed. However, most of these so-
lutions suffer from some shortcomings; computationally expensive, not
general or not robust enough. In this paper, we aim to mitigate Android
malware installation through providing robust and lightweight classifiers.
We have conducted a thorough analysis to extract relevant features to
malware behavior captured at API level, and evaluated different classi-
fiers using the generated feature set. Our results show that we are able
to achieve an accuracy as high as 99% and a false positive rate as low as
2.2% using KNN classifier.

Keywords: Android, malware, static detection, classification.

1 Introduction

As Android mobile devices are becoming increasingly popular, they are becoming
a target of malware authors. To protect mobile users from the severe threats
of Android malwares, different solutions have been proposed. Several systems
have been proposed based on Android permission system. In [12], if an app
requests a specific or a combination of critical permissions, a risk signal will be
raised. In [22], several risk signals have been proposed depending on an app’s
requested permissions, its category, as well as the requested permissions from
apps belonging to the same category. In [17], different risk scoring schemes have
been designed using probabilistic generative models. However, the permission-
based warning mechanisms fall short for several reasons:

– The existence of a certain permission in the app manifest file does not neces-
sarily mean that it is actually used within the code. According to [13, 14, 26],
a large percentage of Android apps are over-privileged.

– A large number of requested permissions, specially the critical ones, are actu-
ally not used within the application’s code itself, but rather are required by
the advertisement packages.

– Malware can perform malicious behavior without any permission [15].

Another direction to detect malicious activities in Android apps relies on
the semantic information within the application bytecode. CHEX [16] statically

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 86–103, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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vets Android apps for component hijacking vulnerabilities through performing
data flow analysis and conducting reachability tests on the generated system
dependency graphs to detect potential hijack enabling flows. Similarly, Wood-
pecker [15] exposes capability leaks through using data flow analysis and explor-
ing the reachability of a dangerous permission from a non-protected interface.
While these approaches are effective in detecting the particular vulnerabilities
that they target, they cannot be generalized to detect other malicious activi-
ties. DroidRanger [29], on the other hand, combines permission-based behavioral
footprints and a heuristic based filtering scheme to detect malicious apps.

In this paper, we aim to overcome the shortcomings of the permission-based
warning mechanisms and build a robust and lightweight classifier for Android
apps that could be used for malware detection. To select the best features that
distinguish between malware from benign apps, we rely on API level informa-
tion within the bytecode since it conveys substantial semantics about the apps
behavior. More specifically, we focus on critical API calls, their package level
information, as well as their parameters.

Instead of following a heuristic based approach for identifying critical features
for malware functioning, we have analyzed a large corpus of benign and malware
samples, generated the set of APIs used within each app, and conducted a fre-
quency analysis to list out the ones which are more frequent in the malware than
in the benign set. Furthermore, for certain critical APIs which were frequent in
both sample sets, we have conducted a simple data flow analysis on the malware
APK samples to identify potentially dangerous inputs. We generated a list of fre-
quently used parameters, thoroughly examined them to filter out the dangerous
ones and flagged all apps that request them. To perform API level feature ex-
traction and data flow analysis, we have developed a tool called DroidAPIMiner
built upon Androguard [2] reverse engineering tool. We use RapidMiner [7] to
build the classification models.

In summary, the contributions of this paper are as follows:

– We introduce a robust and efficient approach for describing Android malware
that relies on the API, package, and parameter level information.

– Based on the identified feature set of Android malware, we provide valuable
insights about malware behavior at API-level.

– We produce and evaluate different classifiers for Android apps. Our testing
shows that some of them achieve a high accuracy and low false positive rate
compared to the permission-based classifiers. In fact, KNN achieves a 99%
accuracy and 2.2% false positive rate.

2 Approach Overview

In our work, we follow a generic data mining approach that aims to build a
classifier for Android apps. The classifier should be able to automatically learn
to identify complex malware patterns and make smart decisions based on that.
The classifier should also be able to generalize from the input set to correctly
predict an accurate class of given new apps. As depicted in Fig. 1, our approach
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Fig. 1. Our Approach

is divided into three phases: feature extraction, feature refinement, and models
learning and generation.

During the feature extraction phase, we statically examine the collected be-
nign and malware APK samples to determine and extract the necessary features
for malware to function. In selecting the feature set, we focus on some seman-
tic information encapsulated within the bytecode of apps. More specifically, we
extract API calls and their package level information. Besides, we extract the
requested permissions of the apps for the generation of the baseline model.

During the feature refinement phase, we remove the API calls that are ex-
clusively invoked by third-party packages such as advertisement packages. We
reduce our feature set further to include only those APIs whose support in the
malware set is significantly higher than in the benign set. For those APIs which
were frequent in the two sets, we perform data flow analysis to recover their
parameter values and select only the APIs that invoke dangerous values. Sub-
sequently, for each APK file, we generate a set of feature vectors along with
associated class labels, i.e. malware or benign. For the last two steps, we have
implemented DroidAPIMiner, a python program that import libraries from An-
droguard static analysis tool for Android apps [2]. Section 3 will be dedicated
to discuss in more details how we conduct feature extraction and refinement.
We discuss in Section 4 some of the insights that we have gained based on the
identified features.

During the model learning and generation phase, we feed the representative
vectors to standard classification algorithms that build the models by learning
from them. We have generated 4 different classifiers: ID5 DT [20], C4.5 DT
[21], KNN [8] and SVM [25]. We test the generated classifiers to estimate the
accuracy using split validation. Two thirds of the data set are randomly selected
for training and the rest one third is dedicated for testing. For this step, we
use RapidMiner [7] to generate the classification models and evaluate them. In
Section 5, we perform the classification and evaluate the models.

3 Feature Extraction and Refinement

In this section, we aim to systematically determine and extract necessary fea-
tures for malware functioning. Android app’s bytecode contains information that
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could be used to describe its behavior. From the bytecode, we can retrieve in-
formation ranging from coarse-grained levels as packages to fine-grained levels
as instructions. We do not perform sophisticated program analysis because it
is computationally expensive. Rather, we focus on extracting package and API
level information since they clearly capture the app’s behavior. More specifically,
we consider class name, method name, and some parameters of the callee and
the package name of the caller, which we will describe in the next subsections.

3.1 Extraction of Dangerous APIs

Contrary to previous work, we do not follow a heuristic-based approach to iden-
tify dangerous APIs for malware functioning. Instead, we aim to reliably identify
the major APIs that malwares invoke by statically analyzing our samples.

Effectively, we have statically analyzed a large set of malware and benign apps
and generated a list of distinct API calls within each set. A distinct API refers
to a distinct combination of Class Name, Method Name, and Descriptor. We
then conduct a frequency analysis to select those APIs which are more used in
the malware than in the benign set. We further refine the API list to include
only those with a usage difference higher or equal to a certain threshold.

3.2 Extraction of Package Level Information

Most of Android apps contain one or more third-party packages (according
to our analysis, 71 % of the benign apps contain at least one advertisement
package). These packages often exhibit some suspicious behavior. For instance,
many ads use encryption to hinder their removal. Also, getCellLocation() and
getDeviceId() methods are often called by ad kits for users’ identification and
tracking purposes. We aim to identify at what package level a certain API is
invoked. To achieve this goal, we have performed the following tasks:

– Extract advertisement and similar packages: Using Androguard, we gen-
erate all distinct packages invoked within each APK in our collected sample.
We remove from the generated packages names all common packages such as
Android specific packages, Java packages, etc. We inspect the remaining items
and compile a list of advertisement, web tracking, web analysis and application
ranking packages. In total, we have identified around 412 distinct advertise-
ment and similar packages. Some commonly used advertisement packages are:
Admob, Flurry, Millennialmedia, Inmobi, Adwhirl, Adfonic, Adcenix, etc.

– Identify calling packages: We check at what package a certain API is called.
In other words, we distinguish if an API is invoked only by a third-party
package, only by the application specific packages, or by both. We white-list
any APIs that are exclusively invoked by third-party packages.

3.3 Extraction of APIs Parameters

Certain frequent APIs in the malware set did not yield to a high support differ-
ence between the malware and the benign sample as they were also common in
the benign sample. For example, some methods within string manipulation and
IO classes are almost as frequent in the malicious set as in the benign set. To
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Table 1. Categorization of Parameters to Frequently Used Malware APIs

Classes Methods Parameter Category

Intent
IntentFilters

setFlags, addFlags,
setDataAndType,
putExtra, init

Flag is either:
CALL, CONNECTIVITY, SEND, SENDTO,
or BLUETOOTH

ContentResolver query, insert,
update..

URI is either:
Content://sms-mms, Content://telephony,
Content://calendar, Content://browser/bookmarks,
Content://calllog, Content://mail,
or Content://downlaods

DataInputStream
BufferedReader
DataOutputStream
DataOutputStream

init, writeBytes... Reads from process
Reads from connection
Uses SU command

InetSocketAddress init parameter IP is explicit or port is 80

File
Stream
StringBuilder
String
StringBuffer

init, write, append,
indexOf, Substring

Dangerous Command such as: su, ls, loadjar, grep,
/sh, /bin, pm install, /dev/net, insmod, rm, mount,
root, /system, stdout, reboot, killall, chmod, stderr
Accesses external storage or cache
Contains either:
An identifier (e.g. Imei), an executable file( e.g. .exe,
.sh), a compressed file (e.g. jar, zip), a unicode string,
an sql query, a reflection string, or a url

increase this difference, we have performed data flow analysis on these specific
APIs in order to recover the parameters values that have been passed to them
through inspecting the registers invoked.

Based on our initial investigation, these APIs generated distinct parameters
which resulted in a big number of features. To reduce the parameter feature set,
we have categorized the parameters based on different criteria. Table 1 includes
the APIs on which we have performed the data flow analysis along with the
criteria that we have adopted to categorize their input parameters.

4 Insights in API-Level Malware Behavior

Based on the API level analysis, we have identified the top APIs that Android
malwares invoke. Fig.2 shows the top 20 APIs that produce the highest difference
of usage between malware and benign apps. As illustrated, we get a better dif-
ference after filtering out third-party packages. For example, the method init in
Java.Util.TimerTask initially produced 14% usage difference between the two
sets. This difference increased to 28% after whitelisting this API in third-party
packages since it is mainly invoked by them in the benign sample.

We discuss here some of the top commonly used malware features that our
study generated after refining the initial feature set. To help understand malware
behavior and gain more insight into what resources are accessed and what actions
are performed, we classify the APIs by the type of requested resources and
utilities. At the end of the section, we present the data flow analysis results.
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Fig. 2. Top 20 APIs with the Highest Difference Between Malware and Benign Apps

4.1 Application-Specific Resources APIs

Content Resolver: This class provides access to content providers. It pro-
cesses requests (CRUD operations) by directing them to the appropriate content
provider. The most frequent methods used in this class by malware are insert(),
delete() and query(). This latter can be invoked to grab sensitive information
from content providers of other apps if they are not protected by permissions.
As stated in [5], some vendor pre-installed apps have implicitly exported content
providers which allowed other apps to successfully obtain sensitive information
from them without acquiring the necessary permissions.

Context: Context class provides global application information such as its spe-
cific assets, classes, and resources. startService() is very frequently used meth-
ods within this class with a support of more than 70% in malware and less than
34% in benign ones. This API can be invoked to start a given service in the back-
ground without interacting with the user. getFilesDir() and openFileOuput()

are other frequent APIs in this class that malwares call to create files and get
their absolute paths. getApplicationInfo() is often used by malwares for ob-
taining various information about the app such as whether it’s debuggable, in-
stalled on external storage, holds factory test flag, etc.

Intents: Intents allow launching other activities and services and interacting
with the phone’s hardware. The most frequent APIs used by malwares within In-
tents are setDataAndType(), setFlags() and addFlags(). setDataAndType()
allows setting the URI path for the intent data with an explicit MIME data
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type. As stated in the official documentation of Android [4], this method should
“very rarely be used” since it allows to override the ordinary inferred MIME
type of data of a newly specified MIME type. setFlags() and addFlags() are
used to set the old flags or add new ones to the intent to specify how it should
be handled. Depending on the parameter flag to these APIs, malware controls
the associated component such as running it with foreground priority.

4.2 Android Framework Resources APIs

ActivityManager: This class allows interacting with other activities running
in the system. The method getRunningServices() is often invoked by mal-
ware to inquire whether a certain service (like Anti-virus) is currently executing.
getMemoryInfo() is also frequently invoked by malware and might be used to
check how close the system to have no enough memory for other background
process and thus needing to start killing other processes. restartPackage() is
often invoked by malware to kill other apps’ services. According to Android’s
documentation [1], the original behavior of this method is no longer available to
apps as it “allows them to break other applications by removing their alarms,
stopping their services, etc”.

PackageManager: This class contains information about the application pack-
ages installed on the device. Malicious apps call getInstalledPackages() to
scan the system against a list of known anti-virus and take an appropriate action
based on that (e.g. remain dormant, kill the anti-virus process, etc.) .

Telephony/ SmsManager and telephony/ gsm/ SmsManager: These
classes allows managing various SMS operations. Malware authors invoke many
methods within theses classes. sendTextMessage() is very frequently used by
malwares authors to send sms messages to premium rate numbers without the
user’s consent and thus incur financial losses. Examples of SMS Trojans include
malware belonging to the following families: SpyEye, OpFake, Gemini, etc.

TelephonyManager: This class retrieves various information about tele-
phony services on the device. The most frequently used APIs by
malwares are: getSubscriberId(), getDeviceId(), getLine1Number(),
getSimSerialNumber (), getNetworkOperator(), and getCellLocation().
Malware authors collect these private data and send it to remote servers to
build users profiles and track them. As illustrated in Fig. 2, getSubsriberId()
is the mostly used API by our malware sample.

4.3 DVM Related Resources APIs

DexClassLoader: This class allows loading classes from external .jar and .apk
files containing a classes.dex. loadClass() is one of the most frequently invoked
APIs by malware and is used to execute code not installed as part of the app and
consequently evade malware detection techniques that rely on static analysis.

Runtime and System: Runtime class allows apps to interact with the environ-
ment in which they are running. Malware invokes Runtime.getRuntime.exec
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() method to execute dangerous Linux commands along with the supplied argu-
ments in a newly spawned native process and thus avoid the normal execution
lifecycle of the program. System class provides system related facilities such as
standard input, output and error output streams. loadLibrary()dynamically
loads native libraries and can be used maliciously through running native code
exploiting some known system vulnerabilities.

4.4 System Resources APIs

ConnectivityManager, NetworkInfo, and WifiManage: These classes pro-
vide network related functionalities such as answering queries about different
connections (Wifi, GPRS, UMTS) and network interfaces. Android malware
calls APIs within ConnectivityManager class (getNetworkInfo()), NetworkInfo
(getExtraInfo(), getTypeName(), isConnected(), getState()), and within
WifiManager(setWifiEnabled() and getWifiState()) to establish a network
connection and interact with malicious remote servers.

HttpURLConnection and Sockets: APIs within these classes are used to
send and receive data over the web and establish communication with re-
mote servers. The most frequent APIs used by malwares in HttpURLConnec-
tion are setRequestMethod(), getInputStream(), and getOutputStream()

which manage transferring data between the malware apps and the malicious
servers. Similarly, malware applications often invoke getInputStream() and
getOutputStream() in Socket class for the same purpose. We have also noted
a heavy use of InetSocketAddress which implements an IP socket address given
an IP address and a port number.

OS Package: A lot of frequently used APIs in malware belong to OS package
which allows message passing, ipc services, process and threads management.
sendMessage()method in os.Handler class inserts messages into message queues
of different executing threads, while obtainMessage() retrieves messages from
the message queues. Malware authors often invoke myPid() and killProcess()

in Process class to request killing processes based on a given pid. However, the
kernel will impose restrictions on which processes an application can actually
kill [6]; only apps and packages sharing common UIDs can actually kill each
other. Unfortunately, these restrictions will not prevent Android malware from
killing processes beyond their scope once they can root the device.

IO Package: IO package provides IO processing services such as reading and
writing to streams, files, internal memory buffers, etc. Malwares invoke APIs
within IO.DataOutputStream (such as writeBytes()) to write data and upload
files through a URL connection. Similarly, they call APIs in IO.DataInputStream
(such as readLines(), available()) to read and download malicious payloads
from a certain URL connection. Methods within IO.FileOutputStream (such as
write()) are used to write the malicious content downloaded from a remote
server to local files. mkdir(), delete(), exists() and ListFiles() are other
used APIs in IO.File by malware for file management.
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4.5 Utilities APIs

String, StringBuilder and StringBuffer: These classes provide an inter-
face for creating and manipulating strings. Malware heavily call substring(),
indexOf(), getBytes(), valueOf(), replaceAll(), and Append(). These meth-
ods can be used for code obfuscation, construction of payloads to be sent to
servers, and evasion of static malware detection techniques through dynamically
creating URLs, parameters to reflection APIs, and dangerous Linux commands.

Timer: Timers facilitate scheduling one-shot or recurring tasks for future ex-
ecution. Malware can invoke APIs within this class (such as schedule() and
cancel()) to avoid dynamic analysis by remaining dormant until a fixed date
is reached, or until a specific event has been fired.

ZipInputStream: This class allows decompressing data from an InputStream
ZIP archive. Malwares rely on methods in this class to decompress and read data
from compressed files (.jar, .apk, .zip) downloaded during execution or originally
attached to the app. Commonly used APIs by malware in this class are read(),
close(), getNextEntry() and closeEntry().

Crypto: This package serves as an interface for implementing cryptographic
operations such as encryption, decryption, and key agreement. Methods within
Crypto.Cipher such as getInstance() and doFinal() transform a given input
to an encrypted or decrypted format while Crypto.spec.DESKeySpec() allows
specifying a DES key. These methods can be used for code obfuscation and avoid-
ing static detection through encrypting root exploits, SMS payloads, targeted
premium SMS numbers, and URLs to remote malicious servers.

w3c.dom: This package provides the official w3c Java interfaces for the Docu-
ment Object Model (DOM), which is used in apps for XML document process-
ing. Malwares use several APIs in w3c.dom such as getDocumentElement (),
getElementByTagName(), and getAttribute() to parse XML files. XML can
be used by malwares to establish bot communication, encode data, and process
local configuration files.

4.6 Parameters Features

Based on the data flow analysis that we have conducted, we obtained the frequent
parameters (categorized as discussed in Table 1) that are used by malwares
applications more often than the benign ones in certain API invocations. Table
2 depicts some of the top invoked parameters types that yield to the highest
support difference between the malware and benign sample.

From the data flow analysis results depicted in Table 2, we can gainmore insight
on Android malware behavior. A large percentage of String manipulation opera-
tions are performed on dangerous Linux commands (such as SU, mount, sh, bin,
pm install, killall, chmod). These commands are mainly used by malware authors
to root the phone and exploit some well known vulnerabilities. After getting su-
peruser privilege, malwares perform various dangerous Linux operations through
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Table 2. Some Frequent API Parameters in Malware

Class Method Parameter type Difference (%)

StringBuilder append Dangerous command 35.95
ContentResolver query SMS or MMS 23.65
StringBuilder append Unicode string 23.6
StringBuilder init Dangerous command 23.07
DataOutputSream writebytes Reads from process 21.80
DataOutputSream init Reads from process 21.62
runTime exec Dangerous command 21.27
InetSocketAddress init Port 80 19.91
StringBuilder append Compressed file 19.58
DataInputStream init Reads from connection 19.27
String valueOf Unicode string 18.05
StringBuilder append File manupilation 17.79
File init Accesses external storage 16.92
InetSocketAddress init Explicit IP 14.87
String getBytes URL manupilation 14.05
Intent setFlags SendTo 12.94
Intent setFlags Call 11.67
ContentResolver query Telephony 10.88
Intent setFlags Send 10.47
ContentResolver query Call log 10.12

invoking runtime.exec(). Most of the ContentResolver operations are performed
on SMS, MMS, telephony or call log content providers.

5 Classification and Evaluation

5.1 Data Set

To extract malware and benign apps’ features, generate and evaluate the classifi-
cation models, we have collected and analyzed around 20,000 apps. Our malware
sample consists of 3987 malware apps that we collected from different sources
(McAfee and Android Malware Genome Project [3]). The malware sample be-
longs to different Android malware families. Our benign sample consists of the
top 500 free apps in each category in Google Play (around 16000 apps) that we
collected in July 2012.

5.2 Classification Models

As discussed earlier, our objective is to build a model that classifies unknown
apps as either benign or malware. For that, we have employed four different
algorithms for the classification: ID3 DT [20], C4.5 DT [20], KNN [8], and linear
SVM [25]. These inducers belong to different family of classifiers. C4.5 and ID3
are related to decision trees and KNN belong to Lazy classifiers. SVM is a
supervised learning method that proceeds through dividing the training data by
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an optimal separating hyperplane. We have decided to employ algorithms from
different classifiers because we hope that they will produce different classification
models for Android apps. Our analysis shows that KNN and ID3 DT models lead
to a better accuracy compared to the other models.

To test our generated classification models, we use split validation. That is,
we randomly split our dataset into training (2/3) and testing set (1/3). We build
the classification models based on the training set and feed the testing instances
to evaluate the models. To evaluate each classifier’s performance, we measured
the True Positive Ratio (TPR), i.e., the proportion of malware instances that
were correctly classified:

TPR =
TP

TP + FN

where TP is the number of malware apps correctly identified and FN is the
number of malware apps classified as benign apps. Similarly, we measure the
True Negative Ratio (TNR), i.e., the proportion of benign instances that were
correctly classified:

TNR =
TN

TN + FP

where TN is the number of benign apps correctly identified and FP is the number
of benign apps identified as malware apps. To capture the overall performance,
we measure the models’ accuracy, i.e., the total number of benign and malware
instances correctly classified divided by the total number of the dataset instances:

Accuracy =
TP + TN

TP + TN + FP + FN

By means of our collected dataset, we conducted different experiments to find
the optimum feature set that will produce the best cut between the malware and
benign sample.

5.3 Permission-Based Feature Set

In the first experiment, we extract the permissions requested by malware and
benign apps and obtain their perspective percentage usage in the two sets. We
then rank the permissions based on the difference usage and took the top k
permissions that are more frequently requested in malware than in benign apps.
To determine the optimum k permissions, we evaluate the performance of the
models for k = 10, 20, 30..., up to 124.

Fig. 3 depicts the results obtained for the permission-based feature set in
terms of accuracy, TPR, and TNR. As illustrated, the models’ accuracy increases
as the feature set includes more permissions. It should be noted that only 64
permissions were more frequent in the malware set than in the benign set, which
means that after the top 64 permissions, the classifiers start to learn also from
the permissions that are frequent in the benign set. This makes the classifiers
not solid enough since they can fail to detect malicious apps in the following
two scenarios. First, malware authors can easily defeat the permission-based
classifiers through merely declaring “benign” permissions in the manifest file.
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Second, the classifiers will not be able to correctly classify repackaged android
malware; which is based on legitimate apps but embeds extra payload to achieve
a malicious goal. The manifests of the repackaged apps include both the original
permissions of the benign app and the permissions needed for the malicious
behavior and thus confuse the classifiers.

To demonstrate that the permission model is not robust enough, we designed
an experiment in which we modify our malware set and feed it to the classifiers.
In each malware manifest, we declare 10 new permissions (the top 10 in the
benign set) and keep everything else unchanged. As shown in Fig. 3(d), when
the feature set contains the permissions used in the benign set, the classifiers
are not able to correctly classify the malware set. In fact, using the top 80
permissions, the classification rate of KNN drops to 67% and of ID3 to 43%.

(a) Accuracy (b) TPR

(c) TNR (d) Classification Rate of Modified Mal-
ware Set

Fig. 3. Performance of Permission-based Models

5.4 API-Based Feature Set with Package Level and Parameter
Information

In the second experiment, our feature vector includes the generated APIs within
each set, which make up in total 8375 distinct APIs. We also embed package level
information. That is, we white-list the APIs that are exclusively called by third-
party packages. We specifically filter out these APIs to avoid the case where a
benign app might be classified as malicious if a third-party package invokes a
possibly “malicious”API. Consequently, the support of white-listed APIs drops
in the benign set.
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(a) API Features Distribution (b) Accuracy

(c) TPR (d) TNR

Fig. 4. Performance of API-based Models

We conduct a frequency analysis and took only the APIs whose usage in the
malware set is higher than in the benign set. Based on this, we have reduced our
features to 491 APIs. As shown in Fig. 4(a), a large portion of these APIs have
a usage difference of less than 6% which will result in creating more noise in the
classifiers and slow down the learning process. To solve this issue, we further
refine our feature set to include only the top 169 APIs (with a usage difference
greater or equal to 6%).

We generate the classification models for the top k (10, 40, 80, 120 and 169)
API features and evaluate their performance. As depicted in Fig. 4, using the
top 169 API based features, we achieve the highest accuracy, TPR and TNR
using KNN. C4.5 is the worst performing model as it barely achieves 83% TPR.

In the same experiment, we also include the parameter-based features ob-
tained using data flow analysis on the original set. We re-generate the models
and evaluate them after adding 20, 40, and 60 parameters to the 169 filtered
APIs. As shown in Fig. 4, by adding the top 20 used parameters, we are able
to achieve the highest accuracy (99%) and TPR (97.8%) using KNN algorithm.
The other algorithms also perform better with the newly added parameter-based
feature set.

Unlike permission-based classifiers, it is not possible to trick API-based clas-
sifiers through declaring benign APIs, because the models do not rely on benign
features to classify a given app. Rather, they only rely on the APIs (along with
parameters) that are more frequently used in malware than in benign apps.
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5.5 Models Comparison

To show the improvement achieved over the experiments performed, we plot the
accuracy, TPR, and TNR of the classification models together as depicted in
Fig. 5. We consider two permission models. The first one is trained on the top
60 frequent permissions in malware and the second one on all the permissions.
For the API filtered model, the feature vector includes all the top 169 features.
The last model that we consider is trained on the top 169 filtered APIs along
with the top 20 frequent parameters in certain APIs within malware.

As shown in Fig. 5, our API based features performs better than the
permission-based one. We were able to improve the accuracy, TPR and TNR
of the models by embedding package and some parameter features to our orig-
inal features. KNN is the best performing model, followed by ID3, SVM then
C4.5.

(a) Accuracy (b) TPR

(c) TNR

Fig. 5. Models Comparison

5.6 Processing Time

It is evident that the processing time is a crucial metric for a scalable detection
system. In this section, we report the execution time of DroidAPIMiner which
consists of the time required to de-assemble an apk file and to extract the API
and parameter feature set. We also report the time that RapidMiner requires for
applying different classification models to classify a new instance. We perform
the analysis an Intel Core i5-2430M machine with 6GB of memory.
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Fig. 6. Distribution of DroidAPIMiner Processing time

Fig. 6 shows the distribution of DroidAPIMiner processing time among the
collected apps sample. As depicted in the graph, more than 80% of the apps
require less than 15 sec to be analyzed by DroidAPIMiner. Besides, as shown in
Table. 3 applying KNN algorithm to classify new inputs is quite fast and takes
less than 10 sec. In total, our detection system requires on average about 25
sec to classify an apk file as either benign or malicious, which makes it efficient
enough to be deployed on either mobile devices and back-end servers.

Table 3. Processing Overhead of the Classification Algorithms

Algorithm Model Application
and Classification time (sec)

ID3 185.0 +- 32.0
KNN 9.0 +- 1.0
C4.5 21.0 +- 4.0
SVM 160.2 +- 40.0

6 Discussion

In this section, we discuss some potential evasion techniques that malware au-
thors may adopt in order to thwart our classifiers. Furthermore, we discuss how
our tool handles these cases.

– Reflection: Malware authors may use reflection to easily obfuscate any danger-
ous API call and thus evade the static detection of the occurrence of that API
by our analysis tool. However, it should be noted that our study has shown
that reflection APIs are more frequently used by our malware set than in the
benign set, which makes them part of the feature vector for the classification.

– Native Code: To avoid static detectors at the bytecode level, malwares some-
times embed malicious payload within native content. Since our detection tool
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only works at bytecode level, it will not be able to detect any dangerous meth-
ods invoked. However, the use of JNI calls such as System.loadLibrary() is
also used as a classification feature by our tool.

– Bytecode Encryption: To prevent reverse engineering of Java code, malware
authors may encrypt their code and allow the decryption at runtime. Our tool
considers decryption APIs as a classification feature.

– Dynamic Loading: As discussed earlier, DexClassLoader allows loading classes
from .jar and .apk files at runtime and executing code not installed as part of
an app. loadClass() in DexClassLoader also belongs to our feature set.

– More Benign Calls: Since our classifiers rely on the frequency of API calls,
malware authors might think of introducing more benign API calls into their
code. However, our tool is not susceptible to this problem, because we do not
rely on the occurrence of benign API calls as a feature for the classification.
Rather, we only consider the occurrence of malicious call as a feature.

7 Related Work

Several studies have been conducted in the field of Android malware detection.
One much-studied direction focuses on the permission system. Kirin [12] blocks
apps that declare risky permission combinations or contain any suspicious action
strings used by activities, services or broadcast receivers. Zhou et al. [29] detect
Android malware based on the similarities of the requested permissions and the
behavioral footprints to different known malware families. Sarma et al. [22] pro-
pose different risk signals based on the requested permissions, category as well as
requested permissions of apps belonging to the same category. In another work,
Sarma et al. [17] employ probabilistic generative models to compute a real risk
score of Android apps based on the permissions that they request.

Another direction of related work relies on system level events to detect pos-
sible malicious behavior. Schmidt et al. [23] extract library and system function
calls from Android executables and compare them to malware executables to
classify apps. Crowdroid [10] collects system call traces of running apps on dif-
ferent Android devices and applies clustering algorithms to detect malwares.

More similar research to our study rely on semantics within the bytecode to
detect specific vulnerabiltities in Android applications. Potharaju et al. [19] aim
to detect plagiarized apps through different detection schemes relying on sym-
bol tables and method-level Abstract Syntactic Tree fingerprints. In [28], Zhou
et al. aim to systematically detect and analyze repackaged apps on third party
Android markets based on fuzzy hashing techniques.

Other related work for detecting malware through bytecode level informa-
tion have been proposed by Blasing et al. [9] and Zhou et al. [29]. However, the
first one (AASandbox) relies on a trial and error approach to identify suspicious
patterns in the source code, while DroidRanger performs the detection with re-
gards to a heuristic based filtering. In our work, we conduct a thorough frequency
analysis of API calls within benign and malware apps to extract malware
features and employ machine learning to get the most relevant ones.
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A different direction for detecting Android malware relies on dynamic anal-
ysis. Andromaly [24] continuously monitors various system metrics to detect
suspicious activities through applying supervised anomaly detection techniques.
In [11], Enck et al. perform dynamic taint analysis to track the flow of private
and sensitive data through third party apps, and detect any leakage to remote
servers. Portokalidis et al. [18] propose a security model for protecting mobile
devices which performs multiple attack detection techniques simultaneously on
remote servers hosting an exact replica of the devices. Lok and Yin [27] present
DroidScope, a virtualization based platform for Android malware analysis. It
rebuilds both the operating system and Java level semantics, and enables in-
strumentation of the Dalvik and native instructions. Consequently, Droidscope
can be used to understand the behavior of malware both at the native code level
as well as at the interaction with the system.

8 Conclusion and Future Work

We have presented a robust and lightweight approach for detecting Android
malware based on different classifiers. To predict whether an app is benign or
malicious, the classifiers rely on the semantic information within the bytecode of
the applications ranging from critical API calls, package level information and
some dangerous parameters invoked. Rather than following a heuristic based
approach for determining the feature vector of the classifiers, we have statically
analyzed a large corpus of Android malwares belonging to different families and a
large benign set belonging to different categories. We have conducted a frequency
analysis to capture the most relevant API calls that malware invoke, and refined
the feature set to exclude API calls made by third-party packages. We performed
a simple data flow analysis to get dangerous input to some API calls.

Our classification results indicate that we are able to achieve a better accu-
racy, TPR and TNR using a combination of API, package, and parameter level
information in comparison to the permissions-based feature set. As future work,
we plan to further reduce the false positives and negatives through analyzing
the samples that were not correctly classified and finding out the reasons behind
the misclassification.
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Abstract. As more and more people are using VoIP softphones in their
laptop and smart phones, vulnerabilities in VoIP protocols and systems
could introduce new threats to the computer that runs the VoIP soft-
phone. In this paper, we investigate the security ramifications that VoIP
softphones expose their host to and ways to mitigate such threats.

We show that crafted SIP traffic (noisy attack) can disable a Windows
XP host that runs the official Vonage VoIP softphone within several min-
utes. While such a noisy attack can be effectively mitigated by threshold
based filtering, we show that a stealthy attack could defeat the threshold
based filtering and disable the targeted computer silently without ever
ringing the targeted softphone.

To mitigate the stealthy attack, we have developed a limited context
aware (LCA) filtering that leverages the context and SIP protocol in-
formation to ascertain the intentions of a SIP message on behalf of the
client. Our experiments show that LCA filtering can effectively defeat
the stealthy attack while allowing legitimate VoIP calls to go through.

Keywords: VoIP, Softphone, Security, Attack on Host, Host Defense.

1 Introduction

As VoIP is getting increasingly popular, it becomes an attractive target to at-
tackers [8]. Many known VoIP exploits stem from vulnerabilities of the de facto
signaling protocol in use, Session Initiation Protocol (SIP) [16]. Previous works
[27,12,8,23] have shown that SIP weaknesses make it possible for the attackers
to do such things as remotely monitor a call, modify billing control signals, and
even implement voice pharming attacks. As with any device on the Internet, if a
VoIP phone is vulnerable and unprotected, then an attacker can exploit it from
anywhere in the world.

In this paper we take an alternative point of view by focusing on the stability
and security of the systems that host VoIP softphones. As with most network
based applications softphones enlarge a device’s attack surface, which increases
the chance that an attacker can find a point of leverage and pivot to compromise
the host machine. In this paper we case study the softphone provided by Vonage,
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which at one point had the largest US residential VoIP market share [13,14], in
order to investigate stability and security threats that a VoIP softphone can
introduce to the host running it and how we can mitigate such threats.

Specifically, we present two attacks against a Windows XP host running the
official Vonage softphone. These attacks use crafted SIP messages and can make
the Windows XP Host completely unusable until reboot. Indirectly, these at-
tacks also prevent the victims from receiving incoming and making outgoing
calls within seconds. The first attack (the noisy attack) can remotely disable a
machine running the Vonage softphone by occupying all available physical and
virtual memory within minutes. The second attack (the stealthy attack) takes
longer to achieve the same effect, but it never rings the softphone. These attacks
illustrate that weaknesses in a VoIP softphone can introduce fatal vulnerabilities
to the host system. Few people may realize that, indeed, a vulnerable application
can enable a remote attacker to completely disable the computer that runs the
vulnerable application.

We have investigated ways to mitigate the identified attacks from the network.
We have first used threshold based filtering to detect the spikes in arrival rates of
Invite messages, and we have found that it can effectively diminish the effects
of the noisy attack by as much as 99.8%. However, threshold based filtering
is not effective against the stealthy attack, which neither rings the softphone
nor use abnormally high rate of SIP messages. We have designed the limited
context aware (LCA) approach, which buffers all incoming packets in a waiting
queue to determine whether they are attack related or safe legitimate traffic.
Our experimental results show that our LCA method can eliminate 100% of the
stealthy attack’s packets without interfering with standard SIP operation.

The rest of the paper is organized as follows. In section 2 we illustrate the basis
of our two attacks by presenting signal flooding techniques to disable the oper-
ation of the softphone itself. We then present our two attacks for the softphone
host in section 3, and two defense mechanisms against the identified attacks in
section 4. In section 5, we empirically evaluate the two attacks and the effec-
tiveness of our proposed defenses against them. We discuss the existing related
work in section 7 and the implications of the identified attacks on a softphone
host in section 6. Finally we conclude in section 8.

2 Background

Session Initiation Protocol (SIP) [16], is a general purpose application layer
signaling protocol used for creating, modifying, and terminating multimedia ses-
sions, such as VoIP calls, among Internet endpoints known as User Agents (UAs).
To facilitate locating UAs, all users in a SIP network are identified by a SIP
Uniform Resource Identifier (URI), which typically includes an username and
hostname in a format much like an email address.

Signaling between UAs is based on the request-response paradigm. A User
Agent Client (UAC) sends requests to a User Agent Server (UAS) which then
replies with both the appropriate response and a corresponding status code. An
endpoint can function as both UAC and UAS at the same time.
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Fig. 1. An example SIP message flow for a VoIP call

INVITE sip:17031234567@129.174.130.175:5060 SIP/2.0 Via:
SIP/2.0/UDP 216.115.20.41:5061 Via: SIP/2.0/UDP 216.115.20.29:5060
Via: SIP/2.0/UDP 216.115.27.11:5060;branch=z9hG4bK8AE8A3914F0
From: "GMU" <sip:17032345678@216.115.27.11>;tag=455412559 To:
<sip:17031234567@voncp.com> Call-ID:
58A8C0B-8D6F11DC-B8E18C7A-2083704C@216.115.27.11 CSeq: 101 INVITE
Contact: <sip:17032345678@216.115.20.41:5061> Max-Forwards: 13
X-Von-Relay: 216.115.27.30 Content-Type: application/sdp
Content-Length: 361

v=0 o=CiscoSystemsSIP-GW-UserAgent 5330 7344 IN IP4 216.115.27.30
s=SIP Call c=IN IP4 216.115.27.30 t=0 0 m=audio 13598 RTP/AVP 0 18
2 100 101 c=IN IP4 216.115.27.30 a=rtpmap:0 PCMU/8000 a=rtpmap:18
G729/8000 a=fmtp:18 annexb=no a=rtpmap:2 G726-32/8000 a=rtpmap:100
X-NSE/8000 a=fmtp:100 192-194 a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16

Fig. 2. An example SIP Invite message with SDP information

Figure 1 illustrates the message flow of a normal SIP VoIP session between
UA-A and UA-B without authentication. Initially, A only knows the URI of B.
Since this does not provide the specific location information needed to complete
a call, A must send the Invite to its outbound proxy server, atlanta.com. Once
atlanta.com resolves the URI, it forwards the Invite to the appropriate next
hop, boston.com. Next, boston.com relays the Invite to B and sends a Trying

back to atlanta.com, which is relayed to A. Once B receives the Invite, it sends
a Ringing to A. When B finally answers the call, it sends a 200 Ok to A, to
which A responds with an Ack.

During this exchange, the packets also contain a session description protocol,
or SDP. This establishes the voice data parameters each client will use, such
as media codec and port numbers. Figure 2 shows an example of an Invite

message with SDP information.
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Fig. 3. Typical registration, as well as call setup and termination

At the end of the call, the UAC that first hangs up sends a BYE to the other UAC.
The other UAC then responds with a 200 Ok and terminates its RTP stream.Upon
receiving the 200 Ok, the first UAC terminates its RTP stream as well.

Based on HTTP digest authentication [3], SIP provides authentication of
Invite, Register and Bye messages from UAC to UAS. Figure 3 illustrates the
message flows of typical authenticated registration, call setup and termination.
Because SIP does not require the UAC to authenticate the Invitemessage from
UAS, most VoIP service providers (e.g., Vonage, AT&T) do not have authenti-
cation protection of the Invite message sent from the SIP server to SIP phone.
This enables attackers to freely spoof Invitemessage and ring any targeted SIP
phone with the spoofed Invite message.

Once the Vonage softphone receives a spoofed Invite, it will keep ringing for 3
minutes unless the user picks up the softphone or a corresponding Cancelmessage
is received. The SIP softphone will not ring for duplicate Call-IDs repeated within
a certain period (60 seconds for the Vonage softphone). The Vonage softphone has
two ports allocated for incoming RTP audio streams, creating a limit of two simul-
taneous phone “lines.” Therefore, attackers only need to send two spoofed Invite

messages to occupy the two lines of the targeted Vonage softphone.
In our experiments we have found that two things will happen when both lines

of the Vonage softphone are ringing. First, all additional incoming call requests
are given a Busy response. For legitimate calls routed through the client’s proxy,
this means that the caller is sent to voicemail. Second, since no line is free, the
target can not make an outgoing call. If the target answers and hangs up on
a fake Invite, then that line would become free until the next Invite arrives.
For the Vonage softphone, lines become available again when audible ringing
stops at three minutes. In other words, only two spoofed Invite messages are
needed every three minutes to occupy both lines and prevent the softphone from
receiving incoming calls. In the rest of this paper, we investigate how attackers
can exploit the vulnerabilities of the SIP protocol and SIP softphones to disable
a Windows XP host that runs the official Vonage SIP softphone.
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Attack Invite

(a) Noisy attack.

Attack Invite

Attack Cancel

(b) Stealthy attack.

Fig. 4. Visualization of the Attack from Multiple Sources

3 Disabling the Softphone Host

Most previous attacks on VoIP have targeted either the VoIP infrastructure
(such as the proxy servers, billing systems, network usability, and fundamentals
of SIP signaling) or the physical VoIP devices. It is not clear precisely how
weaknesses in the softphone open the host up for attack. In the following sections
we show how attackers can disable Windows XP machines running the official
Vonage softphone. In section 3.1, we describe a host DoS attack that can consume
a target machine’s memory resources in minutes. In section 3.2, the attack is
significantly refined into a slower but much stealthier form.

3.1 Noisy Attack on Softphone Host

According to the SIP specification [16], the signaling processing at the the caller’s
and callee’s sides are inherently stateful. In other words, the end UAC needs to
allocate memory for keeping the state information for every Call-ID seen in
any received Invite so that the UAC can respond to all requests that require
repeated responses. For example, if all incoming lines are busy, up to three
Busy responses over ten seconds are sent for every Invite request received. This
enables attackers to deplete the memory of the host running SIP softphone.

To launch such a noisy attack, the attacker only needs to make sure that each
crafted Invitemessage has an unique Call-ID. The attacker can easily spoof the
source IP address and launch the attack from distributed places as visualized in
figure 4(a).

Specifically, the attacker can send a large number of crafted Invite messages
at a high rate (e.g., hundreds per second) to the targeted softphone. The recip-
ient will only hear as many simultaneous rings as they have lines (e.g., Vonage
softphone has two lines). The high rate of crafted Invite messages will disable
the softphone even if the user keeps hanging up the fake calls.

Because the softphone will allocate memory for each incoming Invitemessage
even if the phone lines are busy, a high rate (e.g., hundreds messages per second)
of Invite messages can occupy almost all free physical memory on the host



Disabling a Computer by Exploiting Softphone Vulnerabilities 109

Fig. 5. Screenshot of the memory usage of the Windows XP host before the attack

within a few minutes. As the attack continues and memory usage grows, if the
system does not have enough RAM to handle the allocations, then the user will
receive out of memory errors and excessive virtual memory page swaps will make
the host completely unresponsive.

The fundamental vulnerabilities here are: 1) the softphone needs to keep the
state of every incoming Invite message as specified in the SIP RFC; 2) the
deallocation of the memory can not keep up with the high rate of memory
allocation triggered by the high rate of Invite messages. Therefore, even if
the softphone can hang up (the fake calls) faster that the incoming Invite

messages, the memory consumption would continue to increase and eventually
lead to occupying all free memory of the host. We found these vulnerabilities are
specific to the Invite message. Other SIP messages, such as Cancel and Bye do
not have a similar effect on memory allocation.

We implemented this attack and were able to deplete almost all available
free memory of a Windows XP host running a Vonage softphone in just several
minutes. The host begins thrashing indefinitely and is unusable until reboot.

3.2 Stealthy Attack on Softphone Host

The noisy attack will cause the target softphone to ring if it is not used. From
the attacker’s point of view, it is desirable to attack the softphone host without
ever ringing the softphone so that the softphone users will not be alerted.

In SIP, the call initiator is allowed to send Cancel messages after sending
out the Invite message. This essentially tells the receiver to ignore any Invite

message that has the matching Call-ID. As a result, the receiver SIP phone will
not ring.

As indicated in figure 4(b), the stealthy attack exploits this feature of SIP by
sending a number of Cancel messages with the matching Call-ID immediately
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Fig. 6. Screenshot of the memory usage of the Windows host after the attack. The
error message notes that the virtual memory is filled and the the swap file size needs
to be increased.

after every Invite message is sent. While only one Cancel message is needed to
silence the receiver SIP phone, multiple Cancel messages are used here to make
sure any sent Invite message will not ring the receiver SIP phone even if some
Cancel messages are lost in the network.

Because of the n extra Cancel messages per Invite message, the rate of
Invite messages needs to be reduced to 1

n+1 of that of noisy attack to avoid
network congestion and packet loss. This slows down the memory consumption
due to the attack and it takes longer to disable the softphone host. However,
since the stealthy attack will never ring the softphone, it can remain undetected
over a significantly longer time period. The end result is the same, almost all
memory is occupied and the machine will need to be rebooted in order to be
usable again.

We have implemented this stealthy attack. The empirical results show signifi-
cant effects on a target system within the first half-hour. It takes about two hours
depending on the rate of Invite messages for the stealthy attack to deplete the
host memory and disable the host completely.

Figure 5 shows the memory usage and CPU utilization of the Windows XP
host before the attack. The official Vonage softphone used less than 12MB mem-
ory and less than 7MB virtual memory file. The CPU utilization of the Windows
XP host is only 2%.

As shown in Figure 6, memory usage and CPU utilization of the Windows XP
host went up significantly after an attack. Specifically, the attack has not only in-
creased thememory usage of the Vonage softphone from 11MB to 190MB, but also
increased its virtual memory usage from 6MB to 552MB. This effectively depleted
the available free memory of the entire Windows XP host and caused it to hang.
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(a) Packets are processed im-
mediately.
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RejectionArrival/Departure Next Packet in Queue

(b) Packets are held for one second, then processed.

Fig. 7. Visualizations of the filter queueing systems

4 Defense Mechanisms

Proper defense against SIP spoofing attacks is not an easy solution without
authentication or encryption. As discussed in section 2, the softphone is pro-
grammed to respond to even vaguely authentic looking signals, which makes it
very difficult to distinguish between real and fake on a packet to packet basis.
In order to make a decision, a grouping or series of packets must be analyzed.

Of course, analyzing too many packets per grouping in the defense may in-
troduce unacceptably high latency for SIP to remain operational. On the other
hand, too few packets would make it hard for the defense to reliably determine
whether the traffic is an attack or not. Analyzing only previous packets, such
as with state machines, prevents the mechanism from blocking the beginning of
attacks. This is a serious disadvantage if the attack only consists of unrelated
single packets, such as our noisy DoS attack.

There are some external factors that can guide the defense mechanism though.
For instance, the average person should not expect to receive more than one or
two calls a second. Anything more than that is probably due to network error or
a flooding attack. For another example, if a call is cancelled by the caller before
the callee would have a reasonable chance to answer, then it is unnecessary
to ring the callee at all. There heuristics allow us to simplify the defense by
excluding the those SIP messages that would not set up meaningful calls.

Given previous work and noted limitations, we present two defense mecha-
nisms for SIP flooding attacks. The threshold (TH) filter, in section 4.1, consid-
ers only one factor: the rate at which Invite messages are arriving. The limited
context aware (LCA) filter, in section 4.2, queues Invite messages long enough
to determine if there is any associated cancelling signals. If state machine based
filtering can be thought of as using the past to guide decisions, then the threshold
filter uses the present, and the LCA filter uses a slice of the relative future.
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Without Filter

Attack InviteLegitimate Invite

With Filter

(a) Noisy attack v. Threshold filter.

Attack InviteLegitimate Invite Attack Cancel

Without Filter

With Filter

(b) Stealthy attack v. LCA filter.

Fig. 8. Attack and legitimate mixed streams with and without the filters activated

4.1 Defending against Noisy Attack with the Threshold Filter

As detailed in section 3.1, the noisy attack consists of large number crafted
Invite messages. To protected the softphone and its host, we want to filter out
attack Invite messages while allowing legitimate Invite messages to pass.

Ideally the filter should be able to definitively distinguish attack packets from
legitimate traffic. Given that the whole attack Invitemessage can be crafted and
spoofed by the attacker, there is no meaningful content “pattern” or “signature”
in the Invite message we can use to distinguish attack Invite messages from
legitimate Invite messages. In addition, the attack Invite messages can spoof
the source IP address of legitimate SIP servers. Therefore, we can not filter the
noisy attack based on source IP either.

This leaves the arrival rate as the only usable detection factor—anything
above a certain arrival rate indicates that an attack is more than likely occurring.
How do we decide on that threshold level? While it can change from user to user,
we can safely assume that even a heavy telephone user should not expect more
than one to two legitimate phone calls per second. Any higher rate of incoming
calls can not be manually handled by a human.

Figure 7(a) illustrates the filtering with threshold of one Invite message per
second. For high rate (e.g., hundreds of attack Invite messages per second)
noisy attack, threshold based filtering can be a very effective mitigation as it
can filter out most, if not all attack Invite messages. However, threshold based
filtering can still let very few attack Invite messages to reach the protected
machine at the rate of no more than one attack Invite message per second
as shown in figure 8(a). In addition, threshold based filtering has a very small
chance to block legitimate Invite message while the high rate noisy attack is
going on. This, however, is not a concern as the high rate noisy attack would
have made the softphone unusable anyway.

If the noisy attack uses a rate of Invite messages less than one per second,
it will not be effectively blocked by the threshold based filtering. However, it
would take much longer time for such a low rate noisy attack to deplete the
memory of the softphone host. In addition, keeping ringing the softphone during
such extended period of time (e.g., several hours) would most likely alert the
softphone user. Therefore, low rate noisy attack is likely to be stopped before it
causes real problem to the softphone and its host.
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The stealthy attack, on the other hand, would never ring the target softphone.
This makes it unlikely to be noticed by the user of the targeted softphone. Since
the stealthy attack has a much lower rate of Invite messages than the noisy
attack, it can not be effectively filtered by the threshold based filter. Therefore,
it is necessary to develop other defense against the stealthy attack.

4.2 Defending against Stealthy Attack with the LCA Filter

As detailed in section 3.2, the stealthy attack sends a low rate of cancelled Invite

messages, consuming memory slowly while preventing the target softphone from
ringing.

To filter such a stealthy attack with low rate Invitemessages, we need to find
some characteristics that can distinguish such stealthy attack from legitimate traf-
fic. One unique characteristics of the stealthy attack is that every Invitemessage
is followed by at least one Cancelmessage with matching Call-ID. This enables us
to filter out the stealthy attack while allowing legitimate calls to go through.

Specifically, we introduce a queue to temporarily hold every incoming SIP mes-
sage for a fixed period of time T . Such a queue of incoming SIP messages gives us
a limited context from which we can ascertain the intentions of the incoming SIP
messages by looking for any Cancels associated with any Invite in the queue. As
shown in figure 7(b), the queue consumer periodically checks the front packets in
the queue. If the packet is an Invite, then the rest of the queue is searched for
any Cancelmessage with a matching Call-ID). If any are found, then the Invite
and the associated Cancels are dropped. If any packet in the queue has waited for
at least the required time of T , we pull it off the queue and forward it along the
incoming path.

Note such a limited context aware filtering could indeed block legitimate
Invite followed by legitimate Cancel caused by immediate hanging up after
dialing the number. This is fine as the legitimate call has been cancelled by the
caller already.

The period of time T for the queue needs to be long enough to catch all the asso-
ciated Cancel that can prevent the previous Invite from ringing the callee’s SIP
phone. On the other hand, it can not be too long to interfere with legitimate SIP
signaling. For Vonage, if an Invite from a proxy server is held for more than 1.5
seconds, then the proxy automatically sends a Cancel. Thus 1.5 seconds is the up-
per limit of T . For the lower time limit, we must consider that it is advantageous
for the attacker to send Cancels as soon as possible; the fewer they send and longer
theywait, then themore likely that the softphonemight ring. In our limited context
aware (LCA) filter, we use a one second wait time.

By searching for an associated Cancel, the LCA filter has a way to distin-
guish calls that should be allowed from those that shouldn’t. This eliminates
any dependency of the effectiveness on the arrival rate. As seen in figure 8(b),
the LCA filter can effectively filter all the stealthy attack traffic while virtu-
ally never blocking legitimate traffic. The only theoretical false positive is when
the (31 hexadecimal digits) Call-ID of a Cancel message from a stealthy attack
happens to match that of a legitimate Invite message.
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Fig. 9. Details of the escalating memory usage during the Noisy DoS attack without
the Threshold filter

5 Experiments

To prove the concept of the attack and defense, we have implemented both the
noisy and the stealthy attacks in Linux, the threshold based and LCA filters
within the transparent network bridge in FreeBSD using divert sockets.

We have conducted two sets of experiments. In section 5.1 we demonstrate the
effect of both noisy and stealthy attacks on the softphone host by measuring the
memory usage caused by the attacks. In section 5.2 we analyze the effectiveness
of the defense mechanisms, and present the overhead required to implement both
filtering systems.

The target for these experiments is a virtual machine of 256 MB RAM running
Windows XP and the X-PRO Vonage 2.0 softphone, release 1105x build stamp
17305. To avoid sending unnecessary outbound traffic, we have filtered out any
replies related to our attack traffic.

5.1 Attacks

We created the initial Invite template from a PCAP trace of a legitimate
call captured at the target’s gateway. While this is the easiest solution given
our setup, it is possible for the attacker to gather enough information through
other means and create a template from scratch without a man-in-the-middle,
or MITM. For instance, the proxy server IP addresses are relatively static if the
target’s geographical location is known and the attacker could scan the target’s
open ports to see which the softphone is using. This means that an attacker can
execute this threat from anywhere in the world as long as they know the target’s
IP address.

The memory usage over the course of the noisy DoS attack is detailed in figure
9. Note that in the first minute there was a dramatic climb in the softphone’s
memory usage from 17MB to 161MB. Also, the processor utilization rose to
80–100% as soon as the flooding began. In nine minutes, the Vonage softphone
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has occupied over 500MB virtual memory and almost all 256MB RAM. By the
sixteenth minute, as in shown in figure 6, the system has been resizing the swap
file, the processor has become still swamped, and the UI has become completely
unresponsive. The system did not return to usable state, even after several days,
until rebooted.

Figure 11(b) shows the the memory usage of the Vonage softphone under the
stealthy DoS attack. The memory usage growth under stealthy attack is much
slower than the noisy DoS attack, and the processor utilization does not spike
as soon as flooding begins. The end result is the same though, after roughly two
hours, the Windows XP host will have no free memory and an UI that remains
unresponsive until the system is rebooted.

For these attacks, the average memory allocated per Invite was 13KB. This
is slightly higher, 49KB, during the first minute of the noisy attack. Considering
that only the Call-ID had to be changed, and it has 31 hexadecimal digits, then
this could theoretically consume even large memory systems.

5.2 Defense Mechanisms

In this section we analyze the effectiveness of the defense mechanisms against
their associated attacks. Additionally, we present the maximum packet handling
rate and the overhead of the filters. We have conducted experiments with various
combinations of attacks and the filters: 1) threshold filter against noisy attack; 2)
threshold filter against stealthy attack; 3) LCA filter against stealthy attack; and
4) combination of LCA filter and threshold filter (LCA filter first and threshold
filter second) against stealthy attack. Since the LCA filter is only effective against
stealthy attack, we do not test LCA filter against noisy attack.

Figure 10 shows the measured effectiveness, in term of attack packets blocked,
of various filters against various attacks. Specifically, the threshold filter is able
to block 99.8% of the noisy DoS attack and 95.6% of the stealthy attack at their
maximum rate of Invite. This illustrates that the threshold filter’s effectiveness
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Fig. 11. Comparison of the escalating memory usage during the attacks with and
without a filter

decreases if the Invite arrival rate decreases. Note that the threshold filter can
not block Cancels, so only 15.2% of all attack traffic was blocked. In addition,
the threshold filter has a slight chance to block legitimate Invitemessages since
it does not distinguish legitimate and illegitimate Invite messages. The LCA
filter, on the other hand, is able to block 100% the stealthy DoS attack at any ca-
pacity. In the LCA filter experiments, we mixed the legitimate Invite messages
(from legitimate calls) with stealthy attack Invitemessages. The LCA filter has
never blocked any legitimate Invite messages mixed within the stealthy attack
traffic. In summary, the threshold filter and LCA filter are complementing each
other, and the combination of them are effective against both noisy and stealthy
attacks.

We have measured the memory consumption caused by the noisy and stealthy
attacks as well as the impact of the threshold based filtering and the LCA fil-
tering. As seen in figure 11(a), the threshold filter effectively slows down the
memory growth during a noisy attack. Without any filtering, noisy attack has
consumed 813 MB of memory of the softphone host in 16 minutes. With thresh-
old filtering, noisy attack has only occupied 67.7 MB in 16 minutes. Figure 11(b)
compares the memory consumptions of the stealthy attack with and without the
LCA filtering. The LCA filtering has successfully prevented the stealthy attack
from occupying additional memory from the softphone host.

We have measured the maximum throughput (i.e., fastest packet rate without
packet loss due to congestion) of both the noisy and stealthy attacks with and
without threshold and LCA filtering. As shown in figure 12, noisy attack can
achieve rate of about 300 Invite per second. Threshold filtering can handle rate
close to 600 Invite per second. While maximum rate of stealthy attack is less
than 250 Invite per second, LCA filtering can handle rate close to 500 Invite

per second.
Per RFC 2544, we have measured the processing latency of our filters at the

maximum throughput. As shown in figure 13, the threshold filter introduces no
more than one millisecond processing delay when running against either the noisy
or stealthy attack. The LCA filter adds less than five milliseconds processing
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delay in addition to one second queueing delay. Neither the one second queueing
delay nor the processing delay has shown any noticeable impact on the normal
VoIP signaling functionality in our experiments.

6 Discussion

The host disabling attacks we present in this paper are relatively straight forward
to implement. In fact, since the softphone chooses a predictable port number, the
attacker only needs to know the target’s IP address. Our experience shows that
when the Vonage softphone is behind a NAT enabled router, often the external
mapping retains the internal port number. Therefore, to disable a targeted soft-
phone behind NAT, the attacker only needs the public IP address of the targeted
softphone, which can be easily obtained by observing any SIP traffic from the
targeted softphone anywhere along its path. Since the process of spoofing SIP
messages implies changing the source IP address, and optionally the caller ID
information, there is an innate layer of stealth in the attack.
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While host disabling attacks described in sections 3.1 and 3.2 are conducted
against the Vonage softphone, they are actually exploiting features defined in the
SIP protocol. Therefore, these attacks could be applicable to other softphones as
well. It is one of our future works to investigate if other softphones are vulnerable
to the newly identified attacks.

Besides our proposed network based mitigation, enforcing the SIP authenti-
cation on Invite messages from the SIP server to the SIP phone could help
mitigate the newly identified attacks. To prevent the replay of authenticated
Invite messages to the SIP phone, the SIP phone needs to challenge each au-
thenticated Invite message to it. This would introduce substantial overhead to
the SIP phone. To the best of our knowledge, no US residential VoIP service
provider enforces the authentication of SIP messages from the SIP server to the
SIP phone.

7 Related Work

Early VoIP security work primarily focused on analyzing the vulnerabilities and
potential exploits of VoIP protocols and their implementations. McGann and
Sicker [11] analyzed the potential security threats in SIP-based VoIP, creating
an invisible listening post and modifying negotiation information on the fly.
Geneiatakis et al. [4] surveyed the security vulnerabilities in SIP. Later work
focused more on demonstrating exploits on current VoIP systems rather than
illustrating potential exploits. Me and Verdone [12] detailed several VoIP attacks
over insecure wireless networks. State [23] showed that it is possible to exploit
the implementation vulnerabilities of a SIP stack in order to make any targeted
GXV-3000 SIP phone accept calls from a remote attacker without ringing or user
interaction. Zhang et al. [27] demonstrated that vulnerabilities in SIP can be
used to launch billing attacks on currently deployed commercial VoIP services.
Wang et al. [24] investigated the trust of several leading VoIP services (e.g.,
Vonage, AT&T) and showed that their VoIP calls can be transparently diverted
and redirected—leading to voice pharming attacks on the VoIP users. It has
been further detailed [26] that these call diversion attacks can be launched by
a remote attacker who is not initially in the path of VoIP traffic of the target.
Lee et al. [10] showed how flooding attacks can cause constant ringing on the
target UAC but did not discuss the effects on host resources. Herculea et al.
[7] surveyed eight VoIP flooding attacks and arrival rates, but did not address
host resource effects. Seedorf et al. [17] demonstrated single message attacks for
eight SIP UAC implementations, but did not discuss remotely disabling the host.
Kapravelos et al. [9] detailed arrival rates and cancelling a pending call, but did
not claim that their attack is silent nor discussed its effects on the host. To the
best of our knowledge, no previous work discusses how crafted SIP messages can
be used to remotely disable a host that executes VoIP applications.

On the other side of the line significantwork exists in securingVoIP.Geneiatakis
et al. [5] surveyed SIP security mechanisms. In a later paper, Geneiatakis et al. [6]
detailedmemoryusage of a SIPproxyunder aflooding attack but did not discuss ef-
fects of such an attack on the UAChost. Additionally, they presented a bloomfilter
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system to track call state in order to detectInvitefloods.However, unlike our LCA
filter, once a flood is detected their system can not distinguish legitimate pack-
ets. Reynolds and Ghosal [15] proposed a multi-protocol scheme to defend against
flooding attacks on VoIP networks. Wu et al. [25] and Sengar et al. [18] presented
using state information and cross-protocol correlation to detect denial-of-service
attacks on VoIP. Sengar et al. [19] detailed a VoIP intrusion detection based inter-
active protocol statemachine.Deng and Shore [2] proposed using nonces to protect
the SIP servers from flooding attacks. Kapravelos et al. [9] presented a flow state
based filter mechanism for preventing nuisance dialing but did not address false
positive rates. Soupionis et al. [22] detailed an audio based anti-bot verification
method and more formal methods later [20,21]. In general, most existing VoIP de-
fense mechanisms are designed to protect the VoIP servers, and be deployed close
to them, rather than end hosts such as SIP softphones. Additionally, most exist-
ing detection methods are somewhat post-mortem and do not provide real-time
flood protection while guaranteeing to keep legitimate VoIP calls alive against the
attacks that we have described. To the best of our knowledge there is no existing
work focused on securing against SIP messages that can remotely disable a host
executing VoIP applications.

8 Conclusion

VoIP is a quickly growing dependence for modern communication needs. Unfor-
tunately, its benefits come with an increased risk of attacks from the Internet.
Most current exploits (e.g., billing attacks and remote eavesdropping attempts),
however, have focused on the VoIP devices (e.g., servers, clients) or users. To
the best of our knowledge, we are the first to demonstrate that an attacker can
completely disable the very host that runs vulnerable VoIP applications.

We have developed two attacks that can disable a Windows XP computer
running the official Vonage softphone. The noisy attack, which rings the targeted
softphone, can disable the targeted Windows XP host within a few minutes.
The stealthy attack, which never rings the targeted softphone, can completely
disable the targeted Windows XP host within a couple of hours. Both versions
can be launched from anywhere in the world as long as the target’s IP address
is known. Given the large subscriber base of VoIP and the ease of implementing
such attacks, this is a viable threat to systems stability and security.

To mitigate the host disabling attacks, we have designed and evaluated two
network based defense mechanisms. The threshold based filtering has very low
overhead and can block 99.8% of the attack traffic at its maximum rate. However,
threshold based filtering is not effective against slow and stealthy attacks and can
block critical portions of legitimate VoIP traffic. Limited context aware (LCA)
filtering can reliably filter all stealthy attack traffic while allowing virtually all
legitimate traffic to pass in real-time. Therefore, the combination of threshold
and LCA filters are effective against both the noisy attack and stealthy attack.
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Abstract. Recent maturity of virtualization has enabled its wide adop-
tion in cloud environment. However, legacy security issues still exist in
the cloud and are further enlarged. For instance, the execution of un-
trusted software may cause more harm to system security. Though con-
ventional sandboxes can be used to constrain the destructive program
behaviors, they suffer from various deficiencies. In this paper, we pro-
pose VCCBox, a practical sandbox that confines untrusted applications
in cloud environment. Leveraging the state-of-the-art hardware assisted
virtualization technology and novel design, it is able to work effectively
and efficiently. VCCBox implements its system call interception and ac-
cess control policy enforcement inside the hypervisor and create an in-
terface to dynamically load policies. The in-VMM design renders our
system hard to bypass and easy to deploy in cloud environment, and
dynamic policy loading provides high efficiency. We have implemented a
proof-of-concept system based on Xen and the evaluation exhibits that
our system achieves the design goal of effectiveness and efficiency.

Keywords: Sandbox, Hypervisor based security, Hardware assisted vir-
tualization, Cloud computing.

1 Introduction

In recent years, cloud computing has become a heated topic in both industry
and academia. Virtualization, as an underlying technology of cloud computing,
plays a key role in utility computing and private cloud. Among all virtualization
techniques, hardware assisted virtualization has been widely adopted since it is
compatible with existing OS kernels and is supported by various commodity and
open-source hypervisors.

Cloud computing is a double-edged sword from the perspective of security. It
provides better environment for solving security problems but also enlarges the
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harm of legacy security issues. For example, some programs may behave mali-
ciously while providing desired features, and this could be either intentional or
not. How to securely execute untrusted applications and confine their destruc-
tive behaviors has been an everlasting issue in system security. Generally, this
problem can be resolved by sandbox, a mechanism that controls the runtime en-
vironment of a program and mediates its interactions with the outside. Hence,
the program behavior can be limited to what the user allows. Unfortunately,
most currently available sandboxes possess various deficiencies, such as liability
to be bypassed, and requirement of modified or dedicated kernel. More impor-
tantly, as we step into the cloud computing era, it becomes difficult and even
impossible to deploy them in real production environment. We present a detailed
examination of representative sandbox mechanisms in Section 6.2.

To overcome such shortcomings, we present VCCBox, a sandbox architecture
constructed on top of the hypervisor, which embraces contemporary hardware
assisted virtualization technology for robustness and ease-of-deployment. We
observe that the system call is the only entry for an application to perform
sensitive operations and access system resources. Hence, we intercept system
calls from the hypervisor level and check whether they violate access control
policies that are compiled from policy scripts written by the user in a C-like
language and loaded into the hypervisor dynamically at runtime. The decision
made to a system call can be either permitted, disallowed or deceived.

In summary, we make the following contributions:

– We first propose a sandbox architecture based on hardware assisted virtu-
alization technology, which overcomes several defects of existing solutions.

– We have implemented a mechanism to dynamically load code into the hy-
pervisor at runtime. To the best of our knowledge, we are the first to use
this technique in hypervisor-based security mechanisms.

– We have devised a special variant of C programming language as the policy
description language, which enables fast development of effective, flexible
and powerful policies.

– We have implemented a Xen-based prototype system named VCCBox and
performed detailed evaluation showing that our system is effective and effi-
cient for adoption in production cloud environment.

The remainder of this paper is organized as follows. Section 2 presents not
only the application scenario and technical background of our system, but also
the design of the system, while Section 3 details the implementation. Then we
present the results of evaluation in Section 4 and analyze possible limitations of
our system and some future work in Section 5. Finally, we discuss several related
work in Section 6 and conclude our paper in Section 7.

2 System Overview and Design

In this work, we utilize the contemporary hardware assisted virtualization tech-
nology to design a sandbox mechanism named VCCBox. We take advantage
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of the higher privilege of the hypervisor to achieve non-circumventable protec-
tion. Moreover, hardware assisted virtualization is prevalent in cloud computing
nowadays, rendering our system suitable for real production environment.

2.1 Application Scenario

To demonstrate the usefulness of our VCCBox system, we provide the following
two scenarios:

– Peter is an administrator of several virtual servers running a few services
such as HTTP and FTP in a company. However, he is not sure whether
these server programs contain malicious parts. It is possible for a web server
to possess a backdoor that sends out sensitive files when triggered by a
special URL.

– James is a manager of a few virtual private servers, and he rents his virtual
machines to individuals. Unfortunately, some tenants use the VMs to per-
form malicious activities such as sending spams or launching DDoS attacks.
It can be trivial and time-consuming to manually stop these behaviors.

In above scenarios, sandboxes can be used to confine the vicious behaviors of
untrusted or malicious programs. However, traditional in-OS sandboxes may not
fulfill this need. In the first scenario, it could be a tedious and non-trivial task to
install and configure sandboxes for respective virtual servers considering the large
amount of VMs on a physical machine. Furthermore, in-OS sandboxes are not
applicable to the second scenario at all, since the end user has full control on the
virtual machine and can easily disable the sandbox. Under such circumstances,
our VCCBox system is useful, since it runs at the hypervisor level, and thus is
easy to be deployed in cloud environment and hard to bypass.

2.2 Technical Background

Since our approach involves hardware assisted virtualization, specifically, Intel
VT, we give a brief introduction of it. The traditional x86 architecture has four
privilege levels, ring 0 (highest) for kernels to ring 3 (lowest) for applications.
In Intel VT, these four rings are categorized into VMX non-root mode, and a
new VMX root mode with even higher privilege is introduced. Since the legacy
four rings still exist, the operating system can run without modification. When
virtualization is enabled, several sensitive instructions change their semantics
and trap into the hypervisor for the whole system to run correctly. Namely,
the virtual machine and the hypervisor alternately obtain the CPU time slice.
When the operating system tries to execute a sensitive instruction or an external
interrupt occurs, an event called VMexit is triggered. Therefore, the processor
switches its privilege level to VMX root mode and a previously registered VMexit
handler is called to enable the hypervisor to deal with the event appropriately
for correct virtualization. After that, VMentry gives the control back to the
operating system and reverts to the previous status. Therefore, the hypervisor
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naturally provides security applications with an opportunity due to its higher
privilege and its capability to intervene in the execution of the virtual machine
systems. Currently, modern processors equipped with this technology are widely
used in production environment.

Assumption. Since our method involves virtualization, we assume that the hy-
pervisor and the management domain are trusted. We believe that this assump-
tion is reasonable since it is a fundamental assumption shared by many other
hypervisor-based security mechanisms [8,14,16,24] and can be consolidated by
existing hypervisor protection techniques [1,21,23]. Though attacks to the VMM
exist, they are out of the scope of our work.

2.3 System Architecture

VCCBox is constructed on an existing hypervisor in order to be compatible
with the production environment. As is illustrated in Fig. 1, our system resides
in both the hypervisor and the management domain and is composed of four
parts: policy manager, policy library, system call interception and system call
feedback. The asterisks indicate that the corresponding parts can be multiple.

Fig. 1. Architecture of VCCBox

VCCBox works in a straightforward way. It intercepts system calls since they
are essential for an application to access system resources, and then consults the
policy library to find out applicable measures. Leveraging the higher privilege of
the hypervisor and proper design, our system call interception mechanism cannot
be bypassed. Moreover, the policies in the library can be added, removed and up-
dated dynamically at runtime, eliminating domain-hypervisor context switches
and making our system highly efficient. The policies are compiled from flexible
policy scripts written by the user of our system (usually an administrator) using
a C-like policy description language. Fig. 2 depicts the entire system workflow.

System Call Interception and Feedback. System call interception is the
first step towards sandboxing. Currently, two approaches can be used by an ap-
plication to request system services, i.e., software interrupt and fast system call
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mechanism. However, the hypervisor cannot intercept them directly since nei-
ther of them triggers VMexit events. Fortunately, there are multiple approaches
which allow the system calls to be intercepted indirectly. Once a system call is
intercepted, we look for the corresponding policy and enforce it. The policy uses
virtual machine introspection [8] to obtain necessary information and makes a
decision out of the following three: permitted, disallowed and deceived. To feed
back the result, we take the following approach: nothing additional is required
for permitted ; for disallowed and deceived, we “skip” the system call and provide
appropriate return value to the application by modifying relevant registers; one
extra thing is needed for deceived, i.e., filling the “output” parameters of the
system call with specific value.

Fig. 2. Workflow of VCCBox

Policy Library Management. Our policies are per program. Thus, we check
if the upcoming process needs to be sandboxed when a context switch occurs.
If not, system call interception will not be enabled in order to retain the per-
formance. Otherwise, each interesting system call of the sandboxed process is
associated with a policy routine. The policies can be added, removed and up-
dated dynamically at runtime. Thus, we need to modify the hypervisor to provide
an interface for management of policies. This interface is not complicated since
we only need to load executable code into the hypervisor space. Our policy is
written by the administrator using a C-like policy language. We do not adopt
existing policy languages [9,12,17,18] since they are not sufficiently flexible and
powerful. We use a customized compiling tool chain to compile the policy into
executable code. Finally, the code is transferred to the hypervisor.

2.4 Policy Description Language

Our policy description language is designed to be a real “programming language”
that is powerful and flexible and can be easily compiled to native code. Previous
sandboxing policy languages do not fulfill this need so we do not adopt them
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in our system. To better illustrate our policy language, we first show a policy
example written in this language in Lst. 1.

/* notepad.exe NtOpenFile */

sandbox_t policy(unsigned int params)

{

sandbox_t result = permit;

wchar_t filename1[] = L"password.txt";

wchar_t filename2[] = L"secret.txt"

wchar_t *filename;

unsigned int pos, len;

guest_read_int_at(params + 12, &pos);

guest_read_int_at(pos + 8, &pos);

guest_read_int_at(pos, &len);

filename = (wchar_t *)malloc(len); /* assume malloc succeeds */

guest_read_string_at(pos + 4, len, filename);

if (!wstrcmp(filename, filename1))

{

result = disallow;

}

else if (!wstrcmp(filename, filename2))

{

guest_write_int_at(params + 4, -1);

result = deceive;

}

free(filename);

return result;

}

Listing 1. Policy Example

We can see from the above sample that our policy language is C-like. It can
be considered as a subset of C programming language since not all features are
necessary and a few limitations are imposed:

– The first line is a directive, i.e. a comment indicating the target program and
system call name, which is similar to the #!/bin/bash in a shell script.

– The code cannot #include files since it will run in hypervisor kernel.

– Float types and computations are not supported, which are also unnecessary.

– Global variables are not allowed, and literal strings must be initialized with a
char/wchar t array, since the final binary does not have a constant section.

– The code must have the policy function and be self-contained. User-defined
functions are allowed (though not shown here), and built-in functions can
be used such as memory management (e.g., malloc), string operation (e.g.,
strcpy), and guest memory reading/writing functions.
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3 Implementation Details

In this section, we detail our implementation with a focus on how to modify
the existing VMM (hypervisor and management domain) in order to satisfy
our needs. Our prototype system uses Xen hypervisor (version 4.1.2), while the
dom0 (management domain) and the domU (guest domain) are CentOS 5.5
(64bit) with a patched kernel (version 2.6.34.4) and Windows XP SP3 (32bit),
respectively. The development machine has an Intel Core i5 processor with the
latest hardware assisted virtualization support. In the following, we present some
implementation details for the key techniques in our approach.

3.1 Data Structures and Definitions

We first briefly introduce some key data structures used in our system. As is
shown in Fig. 3, our policy library is implemented as a single list and its each
node is a policy entry corresponding to a process. Another important data
structure is policy item, which is used for loading the executable policy code
to the hypervisor. It pertains to one process and one system call. The meanings
of most fields are evident, so we do not explain them here. The following sections
will explain how these data structures are made use of.

+proc_name : char []

+policy_count : int

+handlers : int (*)(void) []

+next : policy_entry *

policy_entry

policy_library

+proc_name : char []

+syscall_num : int

+handler_size : int

+handler : void *

policy_item

Fig. 3. Data Structures

3.2 Additional VMexit Handler

In order to capture necessary events, we need to modify some existing VMexit
handlers. Moreover, several events must be intentionally processed to trigger
VMexit events. We detail how these events are intercepted and handled.

Process Switch Interception. Since our policy is per process, we need to
intercept process switches in order to correctly sandbox target applications. The
task state segment (TSS) mechanism provided by the x86 architecture is not used
by modern operating systems for task switching. In contrast, paging mechanism
is widely adopted by operating systems to isolate process spaces. Hence, process
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switch involves the alteration of page table base address register (cr3 under
x86). Moreover, though Windows uses a thread-based scheduling method, the
context switch routine will not overwrite the cr3 register if the upcoming thread
and current thread belong to the same process. Therefore, we consider VMexit
events caused by cr3 write to be process switches.

When such an event occurs, we read the process name from the kernel data
structure, and then look it up in the policy library. We traverse the single list
and compare the current process name with the proc name field. If a match is
found, the handlers field is copied to a per-domain variable active handlers,
and system call interception is enabled. Otherwise, system call interception is
disabled in order to retain performance.

System Call Interception. Intercepting the system call is a pivotal step in our
system. Unfortunately, neither software interrupt nor fast system call (sysenter)
can be directly intercepted. Hence, we must deliberately trigger some events that
can trap into the hypervisor. Multiple ways can be used to achieve this. After
comparing their pros and cons, we take the method similar to that in Ether [4],
i.e., deliberately modifying the SYSNENTER EIP model specific register (MSR) to
generate a page fault. We observe that no program actually uses the conventional
software interrupt mechanism to perform system calls, and thus do not intercept
such interrupts. Existing approaches are available if necessary[4].

To implement this, we first need to intercept access to the SYSENTER EIPMSR.
For write operations, we store the value at a safe place for future use, while for
read operations, we always return the real value for transparency. When system
call interception is enabled, a carefully chosen magic value is written to that
MSR. Thus, we consider a page fault to be a system call if 1) the page fault
linear address (cr2 under x86) is equal to the magic value and 2) the page fault
error code indicates an instruction fetch.

When a system call is intercepted, we look up the corresponding handler in
the per-domain variable active handlers using system call number (eax under
x86). The handler is executed if it exists. Otherwise, the system call is permitted
by default. The handler returns a value that is either permitted, disallowed or de-
ceived. For permitted system calls, we simply assign the saved real SYSENTER EIP

value to the eip register. For disallowed and deceived, we skip the system call,
and return error and success, respectively. Note that when sysenter is executed,
the current privilege level (CPL) will be ring 0. Thus, to skip the system call,
we must get back to ring 3. This is implemented by preparing several sysexit
related registers (e.g., ecx, edx) and pointing eip to a sysexit instruction.

3.3 Management of Policies

We load policies into the hypervisor dynamically at runtime to avoid perfor-
mance penalty caused by context switches between the hypervisor and the man-
agement domain. We use a technique called runtime hypervisor manipulation,
i.e., we create a hypervisor interface and employ the hypercall mechanism for
implementation.
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Hypercall is a domain-hypervisor communication mechanism that is similar
to system calls in the operating system. To make use of it, we first register a new
hypercall in Xen named do vccbox op, which has only one argument, a pointer
to the structure struct policy item, and then implement its handler routine.
If the policy with the same process name and system call number exists, we
consider it to be a policy update, otherwise it is treated as a policy add. Specially,
if the value of the handler size field is 0, we consider it as a policy removal.
Upon policy removal, if the policy count decreases to 0, the whole policy entry
is removed from the library. A policy manager in the management domain fills
the structure struct policy item with necessary information and then issues
a hypercall to tell the hypervisor what to do.

We observe that policy code execution and policy management are concur-
rent, so a race condition that the currently executing policy is being updated
or removed may occur and must be eliminated. To this end, we use a spinlock
to synchronize these two actions. We also point it out here that, though our
mechanism is similar to loadable kernel modules under Linux, we do not con-
sider this to be an insecure factor because, 1) the whole VMM is considered as
our trusted computing based by assumption, 2) this mechanism is not designed
to accommodate all loadable modules but only our policies, i.e., it is a dedicated
channel for policy management, not a generic interface.

3.4 Policy Code Generation

Generating the policy code is an essential part in our system. Since our policy
code ultimately runs in the hypervisor, we must keep the application binary
interface compatible. Thus, we use the same arguments as Xen is compiled.
Moreover, we need a preprocessing step to add necessary dependencies (e.g.,
declarations of guest memory reading/writing functions) to the policy file in
order to make the policy compilable by gcc. Thus, we devise the following code
generation procedure shown in Fig. 4.

The first step is to validate whether the policy text conforms to our limitations.
It is performed by canonical tokenizing and parsing tools (i.e., flex and bison)1.
Once the policy is validated, we use a preprocessing part to add some necessary
declarations and definitions to the policy text. Then, the completed compilable
policy is fed to gcc to generate an object file in ELF format using arguments
obtained from Xen’s makefile. Next, we obtain the addresses of the functions
in the hypervisor that is called by our policy. For example, our guest memory
reading functions are implemented via hvm copy from guest virt nofault. We
look up relevant information in the object file (e.g., symbol table) and then fill
the corresponding locations with real addresses. This process can be considered
as a simplified “linking”. After that, the policy function binary can be loaded
into the hypervisor using the hypercall mechanism mentioned above.

1 This part is not yet fully implemented in our current prototype system.
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Fig. 4. Procedures of Policy Code Generation

4 Evaluation

In this section, we present the analytical and experimental evaluation of our
VCCBox prototype. The two goals of our evaluation are to demonstrate that
VCCBox can sandbox real applications, and to measure the performance degra-
dation introduced by our system. The following experiments were all conducted
on a machine with Intel Core i5-760 processor and 8GB memory. The version of
Xen used in our experiment is the latest 4.1.2 and the dom0 is 64 bit CentOS 5.5
with kernel version 2.6.34.4. The guest OS is Windows XP SP3 allocated with
one processor core and 2 GB memory.

4.1 Effectiveness Evaluation

In order to evaluate the effectiveness of our system, we write three different
policies targeting the same system call. We choose NtOpenFile here since it
is representative. (Note that not all system calls can be deceived). In fact, the
policy example in Lst. 1 is for this system call. We give a brief explanation of the
policy here. NtOpenFile has 6 parameters. The first one is an output parameter
used to return the handle of the opened file, and is our deception target. The
third parameter is a structure, which designate the path of the file to be opened.
Thus, the sample policy means: if the program tries to open “password.txt”,
it will get an error; if it tries to open “secret.txt”, it will be provided with an
invalid handle; otherwise, the open operation is successful.2

2 Note that the sample policy is only for demonstration and still needs to be improved
for practical use.
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Fig. 5. Effectiveness Evaluation Result

We devise a test program to open the file designated in its argument. The
program is sandboxed by our system, and we provide different arguments to this
program and observe its output. We call NtOpenFile directly from ntdll.dll

for accuracy, and print the return value and the first parameter containing the
opened file handle. To verify the correctness of the handle, we use it as the
parameter of ReadFileEx, a user space function that reads file content from a
handle. Moreover, we use type command (similar to cat under Linux) to show
the real file content for comparison. The result is shown in Fig. 5, from which we
can see that our policy is successfully enforced. For password.txt, the system
call is disallowed, so the return value is set to 0xC00000001, indicating a failure.
Our program checks this failure and reports it. For secret.txt, the system
call is deceived. We set the return value to 0, meaning a successful system call,
but set the output parameter of NtOpenFile to 0xFFFFFFFF, which indicates
INVALID HANDLE. Our program reports an error code 6, which exactly means
ERROR INVALID HANDLE, proving that our method has successfully deceived the
system call3. Our test program is not designed to be malicious. However, due to
the higher privilege and ability to intercept events of the virtual machine, our
method can not be circumvented.

4.2 Performance Evaluation

The runtime overhead of our system comes from the additional VMexit handler
routines and hypercalls. However, policy management is not a periodical event,

3 A real NtOpenFile does not necessarily returns 0 when it provides an invalid handle.
Here we only use this sample to indicate that our deceived policy works correctly.
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and it does not often happen in practice since system administrators do not fre-
quently change the policies once they are successfully loaded. Moreover, context
switches occur much less frequently than system calls, and thus contribute lit-
tle to the performance degradation according to our experiences. Therefore, we
focus on the performance penalty caused by intercepting and handling system
calls.

We look into the difference between normal system call execution and sand-
boxed execution. We denote the time for normal system call as τx. If an applica-
tion is not sandboxed, we do not enable system call interception, hence incurring
no performance overhead. If an application is sandboxed, all of its system calls
will be trapped into the hypervisor. Thus, unhandled system calls will go through
the process of interception without policy execution. This time is denoted as τe.
While handled system calls are intercepted with policy execution, so we denote
the time of policy execution as τp. Note that since only one policy for a program
can lead to system call interception, and the per system call policies will not
run together for one system call, the number of policies does not influence the
overall performance. Tab. 1 shows the time of execution for different situations.

Table 1. Time Comparison for Different Situations

Situation Time

Normal τx
Intercept + No handler τe+τx

Intercept + Handler + permitted τe+τp+τx
Intercept + Handler + disallowed/deceived τe+τp

However, the magnitude of τe, τp and τx is indeterminate, since τp and τx are
respectively per policy and per system call, and the time of execution
depends on which path is taken. Thus, we cannot theoretically calculate the
performance impact, and micro-benchmark is rendered difficult. So we perform
macro-benchmark to measure the performance impact caused by our system.
Thus, we enable system call interception for all processes and permit all system
calls.

Results from Benchmark Tools. We use Super PI, DAMN Hash Calcula-
tor, Everest, Crystal DiskMark to benchmark the performance overhead of the
processor, memory access and I/O introduced by our system. The results are
summarized in Fig. 6, which exhibit that our system is highly efficient.

Results with Real Workload Experiment. To evaluation the efficiency of
VCCBox under real workloads, we employ kernel building, a comprehensive task
that represents a typical workload and is used widely for profiling. Specifically, we
record the time of building the Windows Research Kernel (WRK) under different
circumstances. Through scrutinizing possible policies, we observe that the most
time-consuming part of a policy is read memory access operations, since the
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Fig. 6. Benchmark results (Lower is better)

kernel data structures are complicated and frequently point to other structures,
leading to multiple memory accesses in retrieving a single piece of information.
For example, to obtain the filename from the handle, a parameter of NtReadFile,
around 7 memory reads are performed. Such read access to memory content
is implemented by hvm copy from guest virt nofault function (HVMCOPY for
short). Thus, we add different numbers of synthetic HVMCOPY function calls in
the system call handler and record the kernel building time. The result of the
experiment is shown in Tab. 2.

Table 2. Time for Kernel Building

Situation Time (ms) Overhead

Normal 99734 N/A
Intercept + No HVMCOPY 102750 3.0%
Intercept + 10 HVMCOPYs 106617 6.9%
Intercept + 20 HVMCOPYs 110595 10.9%
Intercept + 30 HVMCOPYs 114094 14.4%
Intercept + 40 HVMCOPYs 119922 20.2%

We can see the system call interception itself causes only 3.0% runtime over-
head. Moreover, the performance degradation is gradually aggravated as the
number of HVMCOPYs (representing the policy complexity) increases. Ordinary
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policies such as preventing a file with specific name from being read will never
use more than 40 HVMCOPYs, and two decisions (disallowed and deceived) will
cause the system calls to be skipped. Thus, we may safely consider the overhead
of 20.2% as the worst case, which is acceptable.

5 Discussion and Future Work

The above evaluation exhibits that our current prototype can work effectively
and efficiently. In this section, we discuss several limitations of our VCCBox
prototype and some future work.

5.1 Extensibility Related Issues

VMM and OS Support. Our current implementation targets Xen and Win-
dows only. However, other hypervisors and operating systems can also be sup-
ported. KVM [13] is a rising star among VMMs and wins high favor from both
academia and industry, while Linux is the dominating operating system in pro-
duction environment. We would like to integrate support for them into future
versions of VCCBox.

Heterogeneous VM Situation. We currently assume that all virtual ma-
chines run the same operating system and/or software. The server environment
for load balancing usually satisfies this requirement. However, virtual machines
in multi-tenant cloud environment can be heterogeneous. Fortunately, our ar-
chitecture can support such situation. Preliminarily, we can add VMID and
OS-Type entry to the policy to distinguish virtual machines and guest operating
systems, Further, we can automatically identify the running operating system
using oracles [14] or fingerprinting methods [10].

5.2 Insufficiencies and Improvement of Policy

Policy Complexity. Our policy description language is flexible and powerful,
which sacrifices its simplicity. It is more complex than other current policy lan-
guages and requires the writer (usually a system administrator) to be familiar
with operating system data structures. We intend to reduce the policy complex-
ity by integrating recent advances in automatically narrowing the semantic gap
such as Virtuoso [5] and VMST [6].

Policy Robustness. Since we need to retrieve the data inside the virtual ma-
chine, our policies depend heavily on virtual machine introspection [8]. How-
ever, this mechanism can be subverted by direct kernel structure manipulation
(DKSM), a technique that directly modified the kernel data structures to mislead
security applications [2]. This issue is considered as an open problem by state-
of-the-art tools on bridging the semantic gap [5,6] and is not solved to date.
Fortunately, DKSM can be prevented by our sandbox mechanism by disallow-
ing untrusted drivers to be loaded, since DKSM requires the kernel privilege to
work. In the future, we plan to investigate reliable virtual machine introspection
method so as to thoroughly address this issue.
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Policy Debugging. Since our policies are ultimately running as code inside the
hypervisor, a bug such as access violation can cause more severe results such as
crashing the whole physical machine. Hence, we need a mechanism to debug the
policy binary. To this end, we can add a debug option in our preprocessing mod-
ule. When this option is enabled, we insert several validations into the generated
compilable C code and use dedicated secure versions of necessary functions. The
debug version of C code is not designed for daily use since the additional secu-
rity examination will degrade the performance. The primary purpose of policy
debugging is to prevent the policy writer from making careless mistakes.

6 Related Work

6.1 Hypervisor Based Security

With the advent of the cloud computing era, virtualization technology has been
widely adopted in research of system security. Hardware assisted virtualization
provides powerful processor-level support for privilege separation, memory isola-
tion and access control, which are all desirable features for security applications.
Currently, security research efforts based on hardware assisted virtualization can
be categorized in malware analysis [4,15,25], kernel protection [19,22,24] and ex-
ecution monitoring [11,16,20].

Malware analysis platforms use hardware assisted virtualization chiefly for
the purpose of transparency. In essence, malware analysis tools have different
goals with sandboxes. They passively observe the behavior of potentially harm-
ful programs, while sandboxes actively interfere with the execution process of
untrusted applications. Some techniques of malware analysis can be naturally
used for sandboxing. For example, the system call interception method adopted
by our system is first proposed in Ether [4].

Kernel protection mechanisms do not address the issue of application behav-
ior confinement. Instead, they are concerned about how to secure the operating
system kernel. Thus, most of them fall into the category of anti-rootkit mecha-
nism. In contrast, VCCBox confines the user-level behaviors of an application,
and does not care about kernel execution. Interestingly, VCCBox can defeat
kernel-level rootkit in a trivial way, i.e.,enforcing a policy to prevent untrusted
applications from loading malicious kernel extensions via system calls.

Execution monitoring is a fundamental underlying technique for malware
analysis and other security tasks. A significant challenge to correctly monitoring
the process inside the virtual machine is semantic gap [3], which can be chiefly
addressed by virtual machine introspection. However, some execution monitoring
tools employs a hybrid approach, i.e., using an in-guest component to actually
monitor the execution process, while the hypervisor protects this component
from being detected or tampered. Though this hybrid approach better solves
semantic gap and improves efficiency, VCCBox insists the conventional out-of-
the-box approach in order not to lose the ease-of-deployment.
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6.2 Application Sandbox

Application sandboxing is not new in security area. Many approaches have been
used to construct sandboxes. Here we introduce a few representative relevant
research efforts in sandbox and compare them with our VCCBox.

Janus [9] is an early and simple sandbox system. It runs entirely in user space
and takes advantage of the /proc interface under Linux for system call inter-
position. Hence, it is subject to race condition attacks such as “Time of Check
to Time of Use” (TOCTTOU), and is liable to be bypassed [7]. Moreover, this
interface is not available under such operating systems as Microsoft Windows.

Systrace [17] takes a hybrid approach that involve both user-space and
kernel-space to address the TOCTTOU race condition. Systrace however uses an
interactive policy generator, which makes it not suitable for production environ-
ment where nobody can always stay before the screen. Systrace also assumes
the sandboxed application is intrinsically benign and only behaves viciously
under external attacks, which limits it usage to defend intrinsically malicious
applications.

Authenticated system calls [18] is a cryptographic approach towards securing
the system calls. To initialize, the to-be-sandboxed application is processed by
a trusted installer, which statically analyzes the program to locate system calls
and mine their legal usages to generate policies. Then, it replaces each conven-
tional system call with an authenticated one containing the policy and a message
authentication code (MAC). The kernel verifies the MAC and enforces the pol-
icy when executing the system call. A main shortcoming of the sandbox is that
when the program is obfuscated, the static analysis can hardly get useful system
call information.

TxBox [12] introduces the concept of transaction from database for sand-
boxing. It allows a program to run as a transaction, hence is able to roll back
any devastating impact caused by the program. The transaction mechanism has
several inherent advantages when used to construct a sandbox. For example, it
allows the concurrent execution of sandboxed application and damage detection
process, and is able to recover from a multi-staged attack. However, TxBox relies
on a dedicated Linux kernel with transaction features, limiting its practicality.

7 Conclusion

In this paper, we have presented the motivation, design, implementation and
evaluation of VCCBox, a hypervisor-based sandbox which eliminates various
deficiencies of previous work and is a practical sandbox solution for cloud en-
vironment. In particular, by leveraging the state-of-the-art hardware assisted
virtualization and implementing the sandbox routine totally inside the VMM,
VCCBox can not be bypassed and is easy to deploy in virtual cloud infrastruc-
ture. Moreover, runtime hypervisor manipulation is adopted to dynamically load
policies into the hypervisor, which ensures the high performance of VCCBox.
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Abstract. Currently virtualisation technology is being deployed widely and 
there is an increasing interest on virtualisation based security techniques. There 
is a need for securing the life cycle of the virtual machine based systems. In this 
paper, we propose an integrated security architecture that combines access 
control, intrusion detection and trust management.  We demonstrate how this 
integrated security architecture can be used to secure the life cycle of virtual 
machines including dynamic hosting and allocation of resources as well as 
migration of virtual machines across different physical servers. We discuss the 
implementation aspects of the proposed architecture and show how the 
architecture can counteract attack scenarios involving malicious users 
exploiting vulnerabilities to achieve privilege escalation and then using the 
compromised machines to generate further attacks.  

Keywords: Virtualisation, Trusted computing, Access Control, Intrusion 
detection, Security attacks. 

1 Introduction 

Security issues play a vital role in every organisation, as greater availability and 
access to information in turn imply that there is a greater need to protect them. To 
address this issue, several access control mechanisms, languages and systems [1-6] 
have been proposed in the past. Many of these systems make certain basic 
assumptions about the state of the platform that is hosting and running the 
applications and systems software. There is an inherent trust that is placed on the 
underlying platform when a user or an upper level application is authenticated or 
authorised to perform actions. In the current networked world with heterogeneous 
platforms and numerous software applications and system software running on these 
platforms, it is important such underlying trust assumption about the system state be 
properly examined. There are several reasons for this. Firstly, computing platforms 
have become very powerful and can run many applications simultaneously. In 
particular, as the number of software applications increases, greater is the possibility 
for security vulnerabilities. These vulnerabilities in turn make the platform more 
vulnerable to attacks. Secondly, attacks themselves are becoming more and more 
sophisticated. Furthermore, attackers also have easier access to ready-made tools that 
enable exploitation of platform vulnerabilities more effective. Thirdly, platforms are 
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being shared by multiple users and applications (belonging to different users) both 
simultaneously as well as at different times. Therefore there is a great chance of the 
platform being left in a vulnerable state as different users and applications run. 
Finally, because platforms have become much more complex today, users themselves 
are unaware of their platform vulnerabilities. Hence there is need for techniques for 
integrated security techniques for enhancing the security of the systems. 

In this paper, we propose an integrated security architecture which combines policy 
based access control intrusion detection techniques and trusted computing for 
securing the lifecycle of distributed applications running on virtual machines.  The 
paper is organized as follows. Section 2 presents an application scenario which 
highlights the need for such integrated security techniques in the current environment. 
In Section 3, we propose novel integrated security architecture for securing the life 
cycle of virtual machine based distributed applications. Section 4 presents the 
implementation details. Finally, Section 5 concludes the paper. 

2 Application Scenario 

The current networked environment is characterised by different types of security 
attacks and the attacks dynamically changing to avoid detection and prevention. 
Given the heterogeneous nature of the technology spectrum with different operating 
system platforms, fixed and mobile, with different networks and numerous different 
applications, the range of attacks possible is wide ranging. Hence it is complex and 
difficult to detect and prevent these different types of attacks using single security 
technologies such as access control or intrusion detection and prevention. There is a 
need to develop integrated security architecture combining different security 
functionalities as well as deploy a range of security tools such as access control 
mechanisms and intrusion detection systems. Such an integrated architecture is 
necessary to deal with emerging attacks. Let us consider an example scenario which 
illustrates the need for integrated security architecture. 

Consider the scenario in Figure 1, where we have distributed system architecture 
with applications running on virtual machines (VMs) on top of a Virtual Machine 
Monitors (VMMs) [7]. Let us assume that a customer requests to host virtual 
machines in this distributed datacentre architecture. Consider the case where the 
VMMs have security tools such as access control and intrusion detection to protect 
their resources from security attacks. Each VMM may have its own access control 
policies for hosting virtual machines. For instance, assume that Chinese wall access 
policy [8] is being enforced by the access control system as shown in Figure 1.  
Assume that there are VMs hosting requests from banks and oil companies.  With the 
Chinese wall policy, if Bank A’s VM is hosted on VMM1, then say Bank B’s VM 
cannot be hosted on the same VMM1. However it can be deployed on VMM2.  Now 
consider a Bank C’s VM which cannot be hosted on any of the VMMs. If Bank C’s 
VM is hosted on VMM1, then there is a possibility for information leakage between 
Bank A’s VM and Bank C’s VM. Similarly if Bank C’s VM is instantiated on 
VMM2, then there could be information leakage between Bank B’s VM and Bank C’s 
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VM. Hence the security architecture should not allow Bank C’s VM to be deployed 
on any of the VMMs. However, it will allow virtual machines belonging to an oil 
company to be hosted on the VMM. Either the datacentre administrator has to deploy 
a new physical server to host the Bank C’s VM or host the Bank C’s VM only when 
one of the other Banks’ VM terminates or shuts down.  
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Fig. 1. Integrated Security Architecture for Virtual Machines 

In addition, there is also a need to ensure secure operation of the virtual machines. 
Note that the intrusion detection tools have been deployed at the VMM instead of the 
VMs to ensure that they themselves do not succumb to attacks at the VMs (which are 
the ones that are being monitored). Hence the intrusion detection security tool at the 
VMM should detect if an attacker exploits some known vulnerabilities in the VM (or 
any traditional security tools (TST) such as [6] that are present at the VM) to generate 
attacks. Furthermore, in the distributed environment, there may be a need for 
migration of virtual machines to different physical machines. That is, a VM1 running 
on top of VMM1 may migrate to a VMM2. Hence the security architecture needs to 
ensure that the virtual machine can be migrated in a secure manner. Hence we can see 
the need for a security architecture that brings together access control policies and 
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mechanisms with the intrusion detection and prevention mechanisms in a trusted 
manner to respond to dynamic changes in attacks.  

2.1 Integrated Security Approach 

Let us now consider logical security functionalities that need to be combined in the 
integrated security architecture.  

There have been numerous security models that focus on access controls. We 
mentioned the Chinese wall policy in the previous section above when describing the 
application scenario. The traditional access control models include discretionary 
access control models such as those based on access control lists, mandatory access 
control models such as those based on security labels, type enforcement models, 
information flow models as well as role based access control models. In principle, 
each of these can be applied in a virtual machine based distributed systems context. 
For instance, sHype architecture [9] addressed the enforcement of mandatory access 
control for virtual machine based systems. It provides a reference monitor interface 
inside the hypervisor (VMM) to enforce information flow constraints between virtual 
machine partitions. When a virtual machine partition makes a request to access a 
shared virtual resource, an access control module in the VMM acting as the reference 
monitor enforces the mandatory access control policy. Extending this to a distributed 
system, a distributed application can be represented as a collection of virtual machines 
that execute across different physical machines. Using such a system, we can achieve 
a range of access policies such as type enforcement, Bell-LaPadula [10], Chinese wall   
as well as information flow type security policies. 

Access control systems are concerned about preventing access to the resources by 
the unauthorised users. However if a user (attacker) is successful in obtaining high 
level privileges through any means such as exploiting a vulnerability such as buffer 
overflow or by using stolen credentials, access control systems will not be able to 
differentiate these (malicious) users and are not able to enforce any restrictions on the 
actions performed by them. Hence by gaining unlawfully the higher level privileges, 
the attackers are successful in performing malicious activities such as installing 
malicious software or altering the legitimate applications and using these 
compromised systems to generate attacks. Such attacks are often detected by the 
intrusion detection systems in the traditional environment since they have signatures 
or baseline behaviour for the normal use of the systems or entities. In this case, 
although the attacker has obtained higher privileges, the actions performed by the 
malicious users (such as installing root kits and altering ls code to hide the malicious 
process) either match with the signatures stored in the attack signature database or 
deviate from the normal behaviour of the system. Hence the intrusion detection 
system raises an alarm when suspicious activity is detected.  

Integrating the intrusion detection mechanisms in the VMM gives rise to several 
advantages. It provides isolation as the VMM itself is protected from the 
vulnerabilities in the applications and operating system in the guest virtual machines. 
Also as the VMM has control on the resources of the system such as memory and I/O 
devices, it is able to inspect the resources allocated to virtual machines. Hence the 
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intrusion detection mechanisms if they are placed in the VMM can take advantage of 
this capability in their evaluations.  Furthermore, as the intrusion detection code is 
interposed between a malicious virtual machine and the attacked resource, this 
interposition enables efficient detection of attacks. For instance, Dunlap et al [11] 
proposed ReVirt architecture for secure logging by placing the logging tool inside the 
VMM. Garfinkel [12] proposed a Livewire intrusion detection system which makes 
use of the VMM to achieve introspection and obtain the state of the virtual machines. 
However in a distributed environment, we need to be able to detect attacks not only 
from a single VMM but from distributed VMMs by sharing information about 
intrusions between them in a secure manner.  Lycosid [13] detects hidden process in 
the virtual machines by comparing the implicit guest view with the VMM image. If 
the number of processes reported by the guest VM does not match with the number of 
processes identified by the VMM then there is a hidden process. It does not address 
attacks generated by visible process.  

However there are also some additional challenges with the intrusion detection 
systems. For example, signature based systems cannot deal with the zero day attacks 
and anomaly based tools have higher false alarms. Our observations confirm that 
many attacks first exploit one or more weaknesses in access control followed by the 
malicious activity. However since the access control and intrusion are often 
implemented separately, they are not efficient in detecting and preventing 
sophisticated attacks. Furthermore, traditionally access control systems have been 
implemented in the operating system or at the applications by the respective vendors, 
and intrusion detection systems are installed and configured by the end users.  Hence 
there is a need for integrating the access control and intrusion detection tools in a 
virtualised environment for greater efficient detection of attacks. Such an integrated 
security architecture should also address additional challenges that arise in a virtual 
environment such as dynamic hosting of virtual machines on the VMM, dynamic 
varying of the allocated resources and migration of the virtual machines between 
different physical servers. Hence the architecture should support techniques that can 
ensure secure hosting, secure operation, and secure migration of the virtual machines. 

Finally let us consider the integrity and trustworthiness of the VMM platform 
itself. The third logical functionality that we would like to consider in the integrated 
security approach is that of trust management, which helps to establish the trust on the 
VMM platform.  The notion of trust is the expectation that an entity will behave in a 
particular manner for a specific purpose.  A trusted platform is a platform that 
contains hardware based subsystem and special processes (Trusted Platform Module 
(TPM) [14]), which dynamically collect and provide evidence of behaviour. These 
special processes themselves are “trusted” to collect evidence properly. There are also 
third parties endorsing platforms which underlie the confidence that the platform can 
be “trusted”. The basic idea is if the physical machine has the TPM, then using its 
mechanisms, one can measure the state of the VMM on boot and confirm that the 
VMM is brought into a trustworthy state, if it matches with some reference state. 
Once the VMM with its access control and intrusion detection functionalities are in a 
trustworthy state, then the guest virtual machines can be loaded onto the secure 
VMM.  
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This completes our integrated security architecture which brings together the 
access control, intrusion detection and trust management functionalities into the 
virtual machine based distributed system environment. 

3 Security Architecture Overview 

Consider the secure and trusted VMM based architecture diagram shown in Figure 1, 
where each physical server is equipped with a hardware trusted platform module 
(TPM) chip. Within the VMM, security functionalities of access control, intrusion 
detection and security decision evaluation have been implemented using the modules 
Access Control Module (ACM), Intrusion Detection Engine (IDE) and Decision 
Evaluation Engine (DEE) respectively. This architecture is used to manage the 
security life cycle of a virtual machine such as secure hosting of a virtual machine, its 
secure operation as well as secure migration of virtual machines. 

There are several components to the DEE module that perform entity validation, 
logging, taint analysis, information sharing, and secure migration. The entity 
validation in the DEE is responsible for determining the entity at fine granular level. 
Note that the entity can vary depending on the action associated with the virtual 
machine. For example, before hosting a VM on the VMM, the VM is considered as an 
entity. After the VM is hosted, the processes running in the VM can be considered as 
entities. After the entity is determined by the entity validation component, the DEE 
makes a decision on the entity by considering the security policies in the ACM and 
the IDE components.  The ACM module is used for enforcing different access control 
policies such as Chinese wall to prevent conflicting virtual machines being hosted on 
the same server; e.g. virtual machines from Bank A and Bank B. Furthermore, it also 
has techniques to detect privilege escalation attacks performed by the users in the 
virtual machines.  The IDE module is used for detection of both known attacks as 
well as suspicious behavior by monitoring the interactions of virtual machines.  Some 
components such as entity validation and logging are active for all events on the 
virtual machines whereas other components such as taint analysis [15] are invoked for 
specific actions on virtual machines. Taint analysis is invoked only when the ACM or 
IDE detects some suspicious activity in the virtual machine. Information sharing 
component is only used for sharing attack information between different secure VMM 
based physical servers in the distributed environment. Secure migration component is 
used to validate the capability of the remote physical server to which the virtual 
machine will be migrated. 

Now let us consider how these modules in our secure and trusted VMM based 
architecture can be used for securing the life cycle of the virtual machines.   

3.1 Secure Hosting  

Most of the current virtualisation systems support dynamic hosting of virtual 
machines.  However there is a need to ensure secure hosting of the virtual machines. 
The DEE module in our model is concerned with ensuring secure hosting of virtual 
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machines on the VMM. Before hosting a virtual machine on the VMM, the entity 
validation component in the DEE module determines whether the virtual machine 
conflicts with any of the access control policies enforced in the ACM module. If any 
of the conflicting virtual machines are already running on the VMM, then the DEE 
module prevents hosting of the virtual machine on the VMM. If hosting of the virtual 
machine does not conflict with any of the running virtual machines, then the DEE 
evaluates other factors such as the available resources. If the DEE then decides to host 
the virtual machine, then the TPM based system is used to measure the state of the 
virtual machine and ensures it is trustworthy at boot time.  

Now let us consider briefly how TPM based system can be used to ensure that VM 
boots into secure state for completeness. A Trusted Platform includes a Trusted 
Platform Module (TPM) chip, a Core Root of Trust for Measurement (CRTM), TCG 
Software Stack (TSS) and the related certification. The TPM is a hardware chip that 
performs cryptographic functions and is separate from the main CPU. The CRTM is 
the first piece of software to run as the platform is booted. The TSS is the software 
code that is needed to perform various functions of the Trusted Platform. There are 
also a number of Certification Authorities that issue a certificate vouching that 
various features of the Trusted Platform are genuine. Once the platform is booted, the 
CRTM measures itself to ensure that it has not been compromised and stores the 
measured value in the Platform Configuration Register (PCR) of the Trusted Platform 
Module. For this reason, the TPM is also called as the Root of Trust for Storage 
(RTS). Then, the CRTM passes control to the first measurement agent (MA). A 
bootstrapping process follows where all agents measure the software modules they are 
responsible for and store the measured values inside the PCRs. The process continues 
until the last measurement agent has recorded the value inside the TPM. This way, at 
every boot, the TPM stores the measurement values of all the software components of 
the Trusted Platform. This ensures that the VMM, the VM operating system and its 
applications are in secure state during boot time. 

3.2 Secure Operation  

Now let us consider how the DEE ensures secure operation of the virtual machines.  
The entity validation and the logging in the DEE are invoked for all the actions on 

the virtual machines. The entity validation component identifies the entities at fine 
granular level and determines which security policies in the ACM or IDE component 
need to be enforced on the interactions of the entity. Logging is used for capturing  
the specific features of the virtual machine and the entity interactions.  In addition to 
the security policies in the ACM and the IDE which are able to detect the attacks, the 
DEE determines whether additional policies need to be enforced on the VM entities. 
Whenever suspicious behaviour is identified by the ACM or the IDE components, the 
DEE can decide to perform taint analysis to determine if the suspicious behaviour is 
actually malicious. The DEE can also be used for sharing of information between the 
different secure VMM physical servers. For instance, this can happen when new 
attacks are discovered by one physical server and shared with others. 
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Now let us consider a common attack scenario involving privilege escalation 
during the operation of the system and see how this attack can be detected with the 
proposed integrated security architecture. For example, consider a user who has 
logged on with limited privileges exploits some vulnerability to obtain higher 
privileges and performs malicious activities such as disabling security tools that have 
been installed in a virtual machine or installs some malicious programs in the virtual 
machine. 

First let us consider the privilege escalation by exploiting vulnerabilities in the 
SQL server. In one of the attacks mentioned in [16], a user who has logged in with 
limited privileges obtains administrative privileges by changing three bytes in the 
memory by exploiting buffer overflow vulnerability. SQL server validates the user id 
before giving access to any of the objects. If the user id is set to 1, then the user is 
considered to have the administrative privileges. The user can alter the id in the 
memory in the vulnerable server after calling VirtualProtect(). The administrative 
privileges of such malicious users will be valid until the SQL server is restarted. 
Hence a malicious user can use such temporary higher privileges to perform 
malicious activity.  Hence there is a need to detect such attacks during runtime by 
detecting the user privilege escalation. 

Note initially when the user first logged in as a normal user, the ACM has details 
of the user and his/her privileges in its user_store. Let us now consider how the 
runtime privilege escalation by the user, by altering the bits in the memory, is 
detected by the ACM module in the secure VMM. Recall the VMM is used to access 
and monitor the runtime state information of guest virtual machine such as vCPU 
registers, process and applications running in the guest virtual machine. There are 
three different types of memory in the VMM which are known as machine, physical 
and virtual.  Machine memory is the real memory which is controlled by the VMM. 
Physical memory is the memory assigned to the virtual machine and the virtual 
machine is under the illusion that the physical memory is the actual memory. The 
virtual memory is similar to the usage in traditional operating systems. The 
conversion between machine address to physical addresses is performed using a 
lookup table in the VMM. The ACM module makes use of the xc_map_foreign_range 
function in the VMM to access the memory contents of the guest virtual machine. 
Now the runtime privileges of the logged users are determined by analysing the 
memory allocated to the virtual machine and the actual privileges of the users are 
available in user_store. Hence in this case, the ACM module can detect the privilege 
escalation of the logged users.  

Another example attack scenario is when a virtual machine is infected with 
malware such as conficker [17], torpig [18] or LOIC [19]. In such cases, the IDE 
module comes into play in the detection of such attacks. This happens when the 
interactions in the virtual machines are found to be suspicious. For example, the LOIC 
attack floods the victim machines with TCP, UDP and HTTP messages. Such 
flooding attacks are detected by the signature or anomaly detection component in the 
IDE module. For example, such attacks are detected when the traffic from the VM 
matches with the known attack signatures or exceeds a predefined threshold.  The 
virtual machine is then suspended and taint analysis is performed in an isolated 
environment.   
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Secure operation also should consider techniques for secure update of the virtual 
machines. One approach is to apply the updates to the snapshot image and then 
validate the image in an isolated environment before applying the updates to the 
virtual machine in the production environment. 

3.3 Secure Migration  

Let us now consider the situation when a virtual machine which is running on a one 
VMM based physical server has to be migrated to another one. It is role of the DEE to 
ensure that the virtual machine is migrated to a secure platform. If the remote physical 
server does not have the capabilities to enforce the current virtual machine specific 
policies, then the virtual machine should not be migrated to the remote location. For 
example, the DEE needs to ensure that the remote server which needs to host the 
migrated VM does not have any conflicting VMs already running on it. Similarly, in 
some cases the remote server may not have hardware support for virtualisation. In 
such cases, the capabilities of the VMM based security modules may not be capable 
of enforcing the security policies which require hardware support for virtualisation. 

When there is virtual machine migration, the DEE determines whether the set of 
security policies from the ACM and IDE that are specific to the virtual machine are 
satisfied. Then the information sharing component in the DEE contacts the remote 
server to check whether it has the required resources to host the virtual machine to be 
migrated. Then the capabilities of remote server are checked to ensure that the current 
level of VM security policies can be enforced at the remote server. Our architecture 
makes use of TPM based validation to ensure that the remote server is capable of 
achieving a similar level of security for the virtual machine. An additional challenge 
arises in the migration of virtual machines between physical servers, when different 
representations for specification of security policies have been used by the different 
servers. We have assumed that the specification of security policies have been done 
using the same language. In our case, we use XML based specification of the security 
policies for virtual machines.    

4 Implementation 

In this section we consider a malicious user, with limited privileges, exploiting 
vulnerability in a virtual machine by performing privilege escalation and then 
compromising the anti-virus software running in the virtual machine. Then the 
attacker uses compromised system to generate further attacks. Let us consider how 
our security architecture is able to deal with such an attack scenario. 

In our attack scenario, we have used the anti-virus software Avira [20]. Note that 
Avira is one of the major anti-virus software providers and is an excellent security 
product. We have just used this as an example to illustrate how a malicious user to 
exploit current security measures to conduct attacks. Our research confirms similar 
attacks are also possible with other anti-virus software.     
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4.1 Anti-Virus Software Overview  

Now let us consider a simplified description of Avira Antivirus Free Software and its 
security features that is relevant for our illustration purposes. It consists of several 
Windows services, user-level processes, and kernel-mode drivers. Among these 
modules, Realtime Protection service is crucial in Avira's protection mechanism, as it 
provides realtime protection not only to the system (e.g. on-access detection of 
malware), but also to itself (self-protection such as prevention of unauthorised 
alteration on Avira-related files). In particular, unloading the kernel-mode drivers and 
the filter driver is blocked by Realtime Protection service as shown in Figure 2. Also, 
a user cannot stop, pause, or restart the service, as the service ignores such requests. 
Also one cannot terminate or kill the processes associated with the service (blocked 
by the driver). 

 

 

Fig. 2. Driver Protection in Antivirus Tool 

Kernel-mode drivers further strengthen Avira's self-protection. One of them locks 
Avira-related registry keys so that they cannot be modified by the system users. 
Avira's program folder is protected by the filter driver so that even the user with 
administrator privilege cannot add any file and delete or modify its files. Furthermore, 
the processes of Avira are protected by the kernel-driver in a way that even the user 
cannot kill them. Last but not least, Avira uses files in FAILSAFE folder if some its 
files in its installation folder are corrupted. To sum up, the protection architecture of 
Avira has security enforcements to defend it from the malicious users. 

Avira also checks for updates regularly and downloads the latest signatures and 
engines to deal with new types of attacks. There are three ways for carrying out the 
updates. First, the update of the definitions occurs automatically on a daily basis. 
Next, a user can trigger an automatic update via a menu or a command-line. Thirdly, a 
user can download the latest definitions from the Internet, and manually update Avira 
antivirus with the downloaded definitions. Once an automatic update is started, Avira 
first checks the current definition and engine versions to determine whether an update 
is indeed required or not. If so, it downloads the latest definition and engine files from 
a few dedicated servers, and then checks and installs them. While updating, Avira 
keeps logging all relevant events so that a user or an administrator can infer possible 
reasons if the update fails.  

4.2 Attack Scenario 

In this section, we describe an attack on the file replacement to compromise the anti-
virus software and the operating system. Once this can be achieved, the attacker has 
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complete control of the virtual machine and hence can use the system to generate 
different types of attacks. We will present an attack scenario where the attacker uses a 
compromised virtual machine to flood the network with malicious traffic and describe 
how our architecture can prevent such attacks. Our experiment environment was a 
virtual machine with Windows 7 Ultimate with Avira Free Antivirus 2012 which was 
running on Xen VMM 

We have used a staged malware in this scenario: First the malicious user runs a 
malware installer (first stage); the malware installer performs only the actions that are 
permitted under any anti-virus software's realtime protection. In this particular 
example, it checks the following: OS version, privilege of current user, anti-virus 
solution installed on the system, and version of currently active signatures and 
engines.  If Avira is installed on the target system, then the installer triggers an 
update; alternatively, s/he may just wait for an update to be started by the Avira's 
scheduler service. 

When an update begins, the installer monitors the status of Avira’s Realtime 
Protection service. Once the service is deactivated during the update, the installer 
performs the required actions that are normally blocked or prevented by Avira’s 
Realtime Protection service. In this example, the installer's ultimate goal is to replace 
Avira's sqlite3.dll with a malicious one (second stage) so as to subvert both Avira and 
the system.  

 

 

Fig. 3. Real-time Protection Service Process after update 

It performed the following tasks:  

• For privilege escalation, it dropped and executed any known or zero-day 
exploit that is normally detected by Avira. Notice that this local privilege 
escalation (e.g. from admin to SYSTEM) is required only once. After this 
file replacement process, the malware obtains SYSTEM privilege on the 
target machine. 

• Unloads Avira's filter driver that is normally protected by the service. 
• Dropped the real payload (fabricated sqlite3.dll) and replaced the original 

file in Avira's installation folder with the malicious one. This file operation is 
shown in Figure 3.  

• The installer deletes itself as a clean-up process to erase its existence; 
alternatively, the payload may delete the installer. 

As the filter driver has been unloaded, it should be restored, even though Realtime 
Protection service automatically loads and attaches the filter driver when it restarts. 
The reason for the restoration is that the service's restart triggered by Avira after an 
update proceeds to some extent and fails if the driver remains unloaded; of course, the 
installer can manually restart the service after the first restart by Avira fails. But still 
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the best solution is to restore the driver, because the service restart by Avira succeeds 
if the filter driver is restored. Interestingly enough, even if the start of the service was 
triggered and failed, it is logged as successfully started in the Avira's update log file, 
which is good from the attacker's point of view.  

 

 

Fig. 4. Successful Attack 

On restarting, Realtime Protection service loads the malicious sqlite3.dll which 
provides full SQLite functionalities, and becomes active without any problem. 
However, once loaded by the service, the malicious sqlite3.dll obtains SYSTEM 
privilege on the target machine. In other words, this attack allows the malware to 
escalate its privilege from a user to SYSTEM, which means UAC (User Access 
Control) on Windows becomes ineffective. Also, almost any malicious activity 
becomes possible, as it is loaded and executed in the context of Avira's Realtime 
Protection service. Furthermore, the DLL can perform file operations on the 
installation folder, even while the filter driver is loaded; this allows the attacker to 
update the malicious DLL. The result of this file replacement and loading operations 
is shown in Figure 4. The original sqlite3.dll (sqlite3_ori.dll, 389KB) has been 
replaced with the malicious version (sqlite3.dll, 612KB), and the fabricated DLL has 
been loaded by the service (window on the left side). Here, the original DLL was not 
removed to show its replacement. After becoming a part of Avira, the malware might 
be able to modify Avira's memory area. If so, it is possible to make Avira to look 
normal (with the tray icon's umbrella open), but totally ineffective. 

In the above scenario, the TPM prevents such unauthorised services during restart 
of the service. However it is important to note that the attacker can also generate 
attacks by compromising his virtual machine during runtime and generate attacks 
without restating the service. In our architecture, such runtime attacks are prevented 
by the secure VMM when the ACM module detects the privilege escalation of the 
logged user to system level or when the IDE module detects malicious traffic 
originating from the compromised virtual machine. Although the attacker is 
successful in compromising the virtual machine, s/he does not have access to the 
security components in VMM. Hence such attacks will not be successful with our 
integrated security architecture.  
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Fig. 5. Flooding with Malicious Traffic 

Now let us consider an attack scenario. Figure 5 shows the case where an attacker 
has compromised a virtual machine during runtime and generates malicious traffic 
without restarting the virtual machine. Such an attack will be successful and the 
attacking source can remain anonymous in a traditional datacenter. Since the attacker 
has obtained complete control of the virtual machine and the traditional security tools 
in the virtual machine, s/he can alter the logs in the compromised system.  Hence it is 
extremely difficult for the datacenter administrator to determine the attacking source 
for such attacks since the attack traffic does not have any valid MAC or IP address.  

With our architecture, the attacks shown in Figure 5 are not possible in the first 
place. Since the traffic does not have valid MAC or IP address it will be blocked by 
the IDE module and an alert will be raised to the administrator. Hence our 
architecture can detect and prevent such an attack even before the attack traffic is 
placed on the network.  

5 Concluding Remarks 

We have proposed integrated security architecture which combines trusted 
computing, access control and intrusion detection techniques for securing the life 
cycle of the virtual machines. We have also shown how our architecture can prevent 
attacks from malicious users exploiting vulnerabilities to achieve privilege escalation 
and then using the compromised machines to generate further attacks.  
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Abstract. We propose a generic mediated encryption (GME) system
that converts any identity based encryption (IBE) to a mediated IBE.
This system is based on enveloping an IBE encrypted message using a
user’s identity into another IBE envelope, using the identity of a secu-
rity mediator (SEM) responsible for checking users for revocation. We
present two security models based on the role of the adversary whether
it is a revoked user or a hacked SEM. We prove that GME is as secure as
the SEM’s IBE (the envelope) against a revoked user and as secure as the
user’s IBE (the letter) against a hacked SEM. We also present two instan-
tiations of GME. The first instantiation is based on the Boneh-Franklin
(BF) FullIBE system, which is a pairing-based encryption system. The
second instantiation is based on the Boneh, Gentry and Hamburg (BGH)
system, which is a non pairing-based encryption system.

Keywords: Key Revocation Problem, Identity-based Encryption, Dou-
ble Encryption.

1 Introduction

The key revocation problem has received the attention of the cryptography com-
munity because the user’s public key cannot be used if the corresponding private
key is compromised. This problem occurs in public key cryptography because
it depends on digital certificates. Digital certificates are signatures issued by
a trusted certificate authority (CA) that securely ties together a number of
quantities. Typically, these quantities contain at least the ID of a user (U) and
its public key (PK). Frequently, the CA comprises a serial number (SN) for
the purpose of managing the certificates. The CA also binds the certificates
to an issue date D1 and an expiration date D2. By issuing the signature of
SigCA(U, PK, SN,D1, D2), the CA provides PK, which is the user’s public
key, between the current date D1 and the future date D2.

A user’s public key may have to be revoked before its expiration date D2. For
Instance, if a user’s secret key is accidentally leaked or an attacker is successful
in compromising it, the user’s public key and private key should be revoked; a
new key pair should be generated and the corresponding certificate should be
issued.

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 154–168, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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If the CA can revoke a certificate, then third parties cannot depend on this
certificate unless the CA shares certificate status information indicating whether
this certificate is still valid. This certificate status information has to be recently
generated. In addition, it must be widely distributed. Sharing a great deal of
fresh certification information periodically leads to the key revocation problem.
which consumes large amount of computation power and bandwidth. This is
considered a hindrance to global application of public-key cryptography.

1.1 Some Previous Solutions to the Key Revocation Problem

The most widely-known and a very ineffective way to solve the key revoca-
tion problem is the certificate revocation list (CRL)[17,7]. A CRL is a list that
contains certificates revoked before their due date. The CA produces this list
periodically, with its signature. Since the CA will probably revoke many of its
certificates -say 10 %- if they are produced for a validity time of one year[15,11],
the CRL will be too lengthy if the CA has many clients. Despite this, the com-
plete CRL must be sent to any party that needs to carry out a certificate status
check. There are improvements to this approach, such as delta CRLs[2] which
list only those certificates revoked since the CA’s last update, but the consumed
transmission bandwidth costs, and the computation costs required to enable the
transmission of these lists are still very high. Another method of solving the key
revocation problem is the online certificate status protocol (OCSP)[13].

Micali [15,11,14] proposed a promising way to solve this problem. (See also
[16,9,10].) Similar to previous PKI proposals, Micali’s Novomodo system includes
a CA, one or more directories (to distribute the certification information) and
the users. Despite this similarity, however, it is more efficient than CRLs and
OCSP, without sacrificing security.

The advantage of Novomodo over a CRL-based system is that a directory’s
reply to a certificate status query is brief, only 160 bits per query (if T has cached
SigCA(U, PK, SN,D1, D2, Xn)). On the other hand, the length of a CRL, in-
creases with the number of certificates that have been revoked (i.e. number of
clients). Novomodo has several advantages over OCSP. First, Novomodo depends
on hashing while OCSP depends on signing. Because hashing has lower computa-
tion costs than signing, the CA’s computational costs in Novomodo is typically
much lower. Second, the directories in Novomodo do not have to be trusted,
unlike the distributed components of an OCSP CA. Instead of issuing signa-
tures depended on third parties, the directories only publish hash pre-images
sent by the CA (which cannot be produced by Novomodo directories). Third,
the directories do not perform any online computation and make Novomodo
less vulnerable to DoS attacks. Finally, although OCSP does not consume too
much bandwidth because it only generates one signature per query, Novomodo’s
bandwidth consumption is typically even lower, since public-key signatures are
typically longer than 160 bits (length of Xn−i sent per query).

A disadvantage of all the above techniques for solving the key revocation
problem is relaying on third-party queries[11]. It is preferable to eliminate third-
party queries for several reasons. First, since anyone can ask for third-party
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queries, each certificate server in the system must be able to get the certificate
status of every client in the system. The situation is much simpler if third-party
queries are eliminated. Each server is only required to have certification proofs for
the clients that it works for. In addition, multi-cast can be used to push certificate
proofs to clines and consequently, the transmission costs are reduced. Second,
third-party queries multiply the query computation costs of the CA and/or its
servers. For example, if each client queries the certification status of X other
clients per day, then the system must processXN queries (where N is the number
of clients). Third, from a business model perspective, non-client queries are not
recommended because if T is not a client of the user’s CA, what motivation
does the CA have to deliver T fresh certificate status information? Finally, since
the CA must reply to queries from non-clients, it becomes more vulnerable to
DoS attacks, and this is a security concern. In summary, removing third-party
queries leads to a reduction in infrastructure costs, simplifies the business model
and increases security. We can completely remove third-party queries by using an
implicit certification where T, without acquiring any information other than the
user’s public key and the parameters of the user’s CA, can encrypt its message
to the user so that he can decrypt only if the key is currently certified. This
allows us to enjoy the infrastructure benefits of eliminating third-party queries.
This can be achieved by identity-based encryption (IBE).

The notion of identity-based cryptography was put forth by Shamir [19]. In the
same paper, Shamir also proposed a concrete construction of an identity-based
signature system. Identity-based cryptography offers the advantage of simplify-
ing public key management, as it eliminates the need for public key certificates.
In Shamir’s seminal paper, he successfully achieved this goal by designing an
identity-based signature based on RSA, but the construction for identity-based
encryption can not be achieved using a similar approach since sharing a common
modulus between different users make RSA insecure. Examples of cryptanaly-
sis RSA with the same modulus used for different encryption/decryption pairs
are [20,1]. Sixteen years later, Sakai, Ohgishi and Kasahara [18] proposed the
first identity-based cryptography and independently, Boneh and Franklin [4] pro-
posed the first reliable and provable identity-based cryptography, which is based
on Weil pairings over elliptic curves. Cocks [6] presented a system that is based
on factorisation of a composite integer. These cryptosystems opened a new era
in cryptography.

Gentry presented the notion of certificate-based encryption (CBE)[11]. This
system combines public-key encryption (PKE) and IBE while keeping most of
the advantages of each. Using PKE, each client creates its own public-key/secret-
key pair and asks for a certificate from the CA. The CA uses an IBE system to
create the certificate. This certificate has all of the functionality of a conventional
PKI certificate as well as also being able to be used as a decryption key. This
double encryption gives us implicit certification. If T wants to encrypt a message
to the user, it double encrypts the message using PKI and IBE, and then the user
uses both his secret key and an up-to-date certificate from his CA to decrypt
the message. CBE has no escrow (since the CA does not know the user’s secret
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key), and it does not a have secret key distribution problem since the CA’s
certificate needs not be kept secret. Although CBE consumes less computation
and transmission costs than Novomodo, it is preferable to completely eliminate
the use of certificates to preserve the infrastructure costs.

Boneh, Ding, Tsudik and Wong were the first to introduce the notion of me-
diated cryptosystems in [3]. They designed a variant of RSA that allows an
immediate revocation of, for instance, an employee’s key by an employer for
any reason. Their system is based on the so-called security mediator (SEM)
architecture, in which SEM is a semi-trusted server. If an employee wants to
decrypt/sign a message, he must co-operate with the SEM to do so. The idea
behind their system is based on splitting the secret key of an employee between
the employee himself and the SEM. Hence, without the SEM cooperation, the
employee cannot sign or encrypt the message. This is also helpful to monitor the
security of sent/received secure messages in the company. This SEM architecture
was proven useful [3] to simplify signature validation and enable key revocation
in legacy systems. Although this system does not require a CA to create a cer-
tificate or send certificate status information and hence, the computation and
transmission costs are kept to minimum, it has two major security concerns.
First, There is a security flaw in [8,12]. Second, since SEM is centralised, it rep-
resents a single point of failure for the system and hence the system is vulnerable
to DOS attacks. Moreover, because SEM is a semi-trusted server, a hacked SEM
can be a major threat to the system security.

1.2 Our Contribution

Assume that there is a company, XYZ, and the security manager of this com-
pany wants to upgrade the currently-used IBE system to one that supports key
revocation. The security manager has two options. He can install a CBE system
[11], but he has to uninstall the currently used IBE and install a PKE. PKE
certificates will lead to more computation and transmission costs. The other op-
tion is using SEM structure as presented in [3,12]. The security manager also
has to uninstall the current IBE system and install a new one that supports
key revocation. The system will be more vulnerable to DoS attacks. The process
of uninstalling the currently used IBE and install a new encryption system is
time-consuming and expensive. It is like having a safe with a one-key lock and
you want to replace it with a two-key lock, you will have to completely remove
the old lock and install the new one. The question we address in this paper is “Is
there a way to make any IBE support key revocation without having to uninstall
it?”.

In this paper, we present a technique that is capable of making any IBE system
support key revocation. This idea is based on a letter-envelope technique. If T
wants to encrypt a message to U, he first encrypts it, normally using U’s identity
(letter), then he encrypts the letter again using SEM identity (envelope). After
that, the message is sent back to SEM. If U is revoked, SEM will not open
the envelope for him. If U is not revoked, the SEM will open the envelope and
send the letter to U who decrypts the message using his private key. This is like
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installing a new lock beside the old one. The original key is with the user and
the other key is with the SEM.

The structure of our system combines the advantages of both Gentry[11] and
Boneh et al. [3]. It eliminates completely the use of certificates. In addition, the
SEM in our system is not a single point of failure. If the SEM is compromised,
the system can continue working using the IBE system. In addition, the SEM
does not have to be trusted or semi-trusted. If the SEM is compromised, all the
messages sent to the SEM, before or after an attack, are safe and secure.
Paper Organization. The rest of the paper is organized as follows: Section 2
presents the generic mediated encryption (GME) and its security proof. Section
3 presents two implementations of GME, the first one based on the BF IBE
system[4], which is based on pairings, and the second one based on the BGH
system[5], which is not based on pairing. The last section presents the conclusions
of the paper.

2 Generic Mediated Encryption

In the following section, we explain the security model and security proof of
GME. Table 1 presents the definitions of the symbols used.

Table 1. Symbols

Symbol Definition

U User

S SEM

P System Parameters

Gen IBE Setup Algorithm

KG IBE Key Generation Algoritm

Enc Encryption Algorithm

Dec Decryption Algorithm

r The private Key

2.1 The Model

Definition 1. A Generic Mediated Encryption system is a 6- tuple of algo-
rithms. These algorithms are (GenS, KGS, GenU , KGU , Enc, DecS, DecU)
such that:

– GenU (1
k1): The private key generator (PKG) runs the probabilistic IBE key

generation algorithm GenS, which takes as input a security parameter 1k1 .
It returns MSKS (first PKG master secret) and public parameters PS .

– GenU (1
k2):PKG runs the probabilistic IBE key generation algorithm GenU ,

which takes as input a security parameter 1k2 . It returns MSKU (second
PKG master secret) and public parameters PU .

– KGS(MSKS, PS , IDS): This algorithm generates the secret key rS for SEM
with identity IDS using PS and MSKS.
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– KGU (MSKU , PU , IDU): This algorithm generates the secret key rU for user
with identity IDU using PU and MSKU .

– Enc(PS , PU , IDU , IDS,m): The probabilistic encryption algorithm Enc takes
PS, PU , IDU , IDS, m. It returns a ciphertext C on message m.

– DecS(PS , rS , C): The deterministic decryption algorithm DecS takes (PS,
rS , C) as input along with the user revocation status. If the user is revoked,
DecS returns ⊥. Otherwise it returns CU .

– DecU (PU , rU , CU ): The deterministic decryption algorithm DecU takes (PU ,
rU , CU ) as input. It returns m.

2.2 Security

Our main concern is the GME security against two different types of attacks:
1) by a revoked user and 2) by a compromised SEM. GME must be secure
against each of these individuals, considering that each obtains ‘half’ of the
information needed to decrypt. Correspondingly, we define IND-CCA security
using two different games. The adversary selects the game to play. In the first
game, Type 1, the adversary plays the role of a revoked user. After demonstrating
knowledge of the private key related to his identity, the revoked user can make
DecS queries. In the second game, Type 2, the adversary plays the role of a
compromised SEM. After demonstrating knowledge of the private key related to
his identity, a compromised SEM can make DecU queries. We can say that our
system is secure if no adversary can win either game.

Type 1: The challenger runs GenS(1
k1 , t1) and GenU (1

k2 , t2), and gives PS and
PU to the adversary. The adversary then interleaves key extraction quires and
decryption queries with a single challenge query. These queries are answered as
follows:

– On key extraction queries (MSKU , PU , IDU ), the challenger outputs rU
corresponding to the identity IDU , otherwise it returns ⊥.

– On decryption queries (PS , PU , IDU , IDS , rU , C), the challenger checks that
rU is the private key related to IDU . If so, it generates rS and outputs
DecU (DecS(C)), otherwise it returns ⊥.

– On challenge query (PS , PU , ID
′
U , r

′
U ,M0,M1) the challenger checks that rU

is the private key related to IDU . If so, it chooses random bit b and returns
Enc(m), otherwise it returns ⊥.

In the end, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b′ = b and ID′

U , r
′
U was not a subject of a valid decryption query after

the challenge. The adversary’s advantage is defined to be the absolute value of
the difference between 1/2 and its probability of winning.

Type 2: The challenger runs GenS(1
k1 , t1) and GenU (1

k2 , t2), and gives PS and
PU to the adversary. The adversary then interleaves key extraction quires and
decryption queries with a single challenge query. These queries are answered as
follows:
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– On key extraction queries (MSKS, PS , IDS), the challenger outputs rS cor-
responding to the identity IDS , otherwise it returns ⊥.

– On decryption queries (PS , PU , IDU , IDS , rS , C), the challenger checks that
rS is the private key related to IDS . If so, it generates rU and outputs
DecU (DecS(C)), otherwise it returns ⊥.

– On challenge query (PS , PU , ID
′
S , r

′
S ,M0,M1) the challenger checks that rS

is the private key related to IDS. If so, it chooses random bit b and returns
Enc(m), otherwise it returns ⊥.

In the end, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b′ = b and (ID′

S , r
′
S was not a subject of a valid decryption query after

the challenge. The adversary’s advantage is defined to be the absolute value of
the difference between 1/2 and its probability of winning.

Definition 2. A generic mediated encryption system is secure against adap-
tive chosen ciphertext attack (IND-GME-CCA) if no PPT adversary has non-
negligible advantage in either Type 1 or Type 2.

Remark: Type 1 and Type 2 are IND-GME-CCA secure if both IBES and
IBEU are IND-ID-CCA secure. If IBES and IBEU are IND-ID-CPA secure,
then Type 1 and Type 2 are modified by eliminating the decryption queries to
get IND-GME-CPA security.

2.3 Security Proof

The security proof of GME is defined by the following two theorems.

Theorem 1. If an adversary A, who plays the role of a revoked user, has an
advantage ε against GME, then this adversary has the same advantage against
IBES.

Theorem 2. If an adversary A, who plays the role of a compromised SEM,
has an advantage ε against GME, then this adversary has the same advantage
against IBEU .

Proof : Theorem 1 means that the game between adversary A, who plays the
role of a revoked user, and challenger B against GME (Type 1) is identical to
the game between the same adversary A and the challenger B against IBES .
To prove that, we rewrite Type 1 as follows:

Type 1’

– The Setup phase is the same as Type 1.
– Key extraction queries are the same as Type 1.
– Decryption queries are the same as Type 1.
– On challenge query (PS , PU , ID

′
U , r

′
U ,M0,M1) the challenger checks that rU

is the private key related to IDU . If so, it chooses random bit b and returns
C = Enc(m), otherwise it returns ⊥. Since the revoked user has rU , then he
can partially decrypt the message to get CS=EncS(m), where EncS is the
the SEMs IBE encryption algorithm.



Generic Mediated Encryption 161

In the end, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b′ = b and (ID′

S , r
′
S was not a subject of a valid decryption query after

the challenge. The adversary’s advantage is defined to be the absolute value of
the difference between 1/2 and its probability of winning. This concludes Type
1’.

From Type 1’, we can see that:

– Type 1’ represents a game against IBES , because in the challenge phase,
the adversary A has to attack CS = EncS(m) to get the message m.

– The only difference between a game against GME (in the case of a revoked
user) and IBES is the excess information of PU which does not give the
adversary any information to identify m.

This concludes the proof of Theorem 1. The proof of Theorem 2 is similar.

3 Implementation of GME

Generally speaking, a GME system is produced by the combination of two IBE
systems. To prove that GME is generic, we present GME in two different in-
stantiations. The first one is based on the BF FullIBE [4] which is based on
pairings. The other instantiation is based on BGH IBE system[5], which is not
based on pairings . We first briefly review bilinear pairings, and the bilinear
Diffi-Helman assumption, which is the base of the BF FullIBE security. Then
we present GME using BF FullIBE. After that, we briefly review some of the
security topics related to the BGH IBE system, then we represent GME using
BGH IBE system.

3.1 Review on Pairings

BF IBE [4] is based on bilinear map called a ‘pairing’. The pairing which is often
used to construct BF IBE is a modified Weil or Tate pairing on a supersingular
elliptic curve or Abelian variety. However, we review pairings and the related
mathematics in a more general form here.

Let G1 and G2 be two cyclic groups of a large prime order q. G1 is an additive
group and G2 is a multiplicative group.

Admissible Pairings: ê is called an admissible pairing if ê : G1 × G1 → G2 is
a map with the following properties:

– Bilinear: ê(aQ, bR)=ê(Q,R)ab for all Q,R ∈ G1 and all a, b ∈ Z.
– Non-degenerate: ê(Q,R) 	= 1 for all Q,R ∈ G1.
– Computable: There is an efficient algorithm to compute ê(Q,R) for any

Q,R ∈ G1.
– Symmetric: ê(Q,R) = ê(R,Q) for any Q,R ∈ G1.

Bilinear Diffie-Hellman (BDH) Parameter Generator: As in [4], we say
that a randomized algorithm IG is a BDH parameter generator if IG takes a



162 I. Elashry, Y. Mu, and W. Susilo

security parameter k > 0, runs in time polynomial in k, and outputs the descrip-
tion of two groups G1 and G2 of the same prime order q and the description of
an admissible pairing ê : G1 ×G1 → G2.

BDH Problem: Given a randomly chosen P ∈ G1, as well as aP, bP and cP
(for unknown randomly chosen a, b, c ∈ Zq), compute ê(P, P )abc.

For the BDH problem to be hard, G1 and G2 must be chosen so that there is
no known algorithm for efficiently solving the Diffie-Hellman problem in either
G1 or G2.

BDH Assumption: As in [6], if IG is a BDH parameter generator, the advan-
tage AdvIG(B) that an algorithm B has in solving the BDH problem is defined
to be the probability that the algorithm B outputs ê(P, P )abc when the inputs
to the algorithm are G1, G2,ê,aP, bP and cP where (G1, G2,ê) is IG’s output
for large enough security parameter k, P is a random generator of G1, and a, b, c
are random elements of Zq. The BDH assumption is that AdvIG(B) is negligible
for all efficient algorithms B.

3.2 GMEBF

Let k be the security parameter given to the setup algorithm, and let IG be a
BDH parameter generator.

– Setup: The algorithm works as follows:
– Public key generator (PKG) runs IG on input k to generate groups G1, G2

of some prime order q and an admissible pairing ê : G1 ×G1 → G2.
– Picks an arbitrary generator P ∈ G1.
– Picks a master secret s ∈ Zq and sets Ppup = sP .
– Chooses cryptographic hash functions H1{0, 1}∗ → G1, H2 : G1 → {0, 1}n,

H3 : {0, 1}n × {0, 1}n → Zq and a hash function H4 : {0, 1}n → {0, 1}n for
some n.

The system parameters are P = (G1,G2,ê,P , Q,H1,H2,H3,H4). The message
space is M = {0, 1}n. The master secret is s ∈ Zq.

– Extract: For given strings IDU , IDS ∈ {0, 1}∗, the algorithm do the follow-
ing:

– Computes QS = H1(IDS) and QU = H1(IDU ).
– Sets the private key rS = sQS and rU = sQU .

– Encrypt: To encrypt M ∈ M for a user with public key IDU , do the
following:

– Compute QS = H1(IDS) and QU = H1(IDU ).
– Chooses a random σ ∈ {0, 1}n.
– Sets r = H3(σ,M).
– Sets the ciphertext C as:

C = 〈rp, σ ⊕H2(g
r
U )⊕H2(g

r
S),M ⊕H4(σ))〉
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where gU = ê(QU , Ppub) and gS = ê(QS , Ppub).

– Decrypt: To decrypt C = 〈U, V,W 〉 ∈ C for a user with public key IDU ,
the user sends C to the SEM. The SEM does the following:

– if user is revoked, the SEM returns ⊥.
– if user is not revoked, the SEM returns

CU = 〈U, V ⊕H2(ê(dS , U)),W 〉
– The SEM sends CU to user.
– After receiving CU = 〈U, VU ,W 〉, the user calculates M as follows:
– Computes VU ⊕H2(ê(dU , U)) = σ.
– Computes W ⊕H4(σ) = M .
– Sets r = H3(σ,M). Test that U = rp. If not, reject the ciphertext, otherwise

the user outputs M as a decryption of C.

This concludes GMEBF .
Remark : As in [4], a symmetric encryption E can be used instead of Xor to
encrypt the message m.

3.3 Security Proof

Lemma 1. Let A be a IND-CCA adversary that has advantage ε against
GMEBF . This adversary A can be a revoked client or a hacked SEM. Then,
there is an IND-CCA adversary B with the same probability ε against the BF
FullIBE.

Proof. If an adversary A simulates the role of a revoked user, then he plays
Type 1 with the challenger. The ciphertext sent to the adversary is C = 〈rp,M⊕
H2(g

r
U )⊕H2(g

r
S)〉. The adversary then partially decrypts it using his secret key

rU to get CS = 〈rp,M ⊕H2(g
r
S)〉, which is the message m encrypted by FullIBE

using the SEM’s ID. This also can be applied for a hacked SEM.

3.4 Boneh-Gentry-Hanburg (BGH) Scheme

Boneh, Gentry and Hamburg presented an Anon-IND-ID-CPA scheme [5]. Un-
like the Boneh-Franklin scheme, this scheme is secure based on the quadratic
residuosity (QR) assumption. In the following, we present the QR assumption
and Jacobi symbols, then we present GME based on the BGH scheme.

3.5 QR Assumption and Jacobi Symbols

For a positive integer N , define the following set:

J(N) = [a ∈ ZN : a
N = 1]

where a
N is the Jacobi symbol of a w.r.t N . The quadratic residue set QR(N) is

defined as follows
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QR(N) = [a ∈ ZN : gcd(a,N) ∧ x2 ≡ a mod N has a solution].

Definition 1. Quadratic Residuosity Assumption: Let RSAgen(1k) be a prob-
abilistic polynomial time (PPT) algorithm. This algorithm generates two equal
size primes p, q. The QR assumption holds for RSAgen if it cannot distinguish
between the following two distributions for all PPT algorithms A.

PQR(1
k) : (N, V )(p, q) ← RSAgen(1k), N = pq, V ∈R QR(N)

PNQR(1
k) : (N, V )(p, q) ← RSAgen(1k), N = pq, V ∈R J(N) \QR(N)

i.e. adversary A cannot distinguish between elements in J(N) \ QR(N) and
elements in QR(N).

Definition 2. Interactive Quadratic Residuosity Assumption: Let H be a col-
lision free hash function such that H : [0, 1]∗ → J(N). Let O be a square root
oracle that picks uN ← J(N) \ QR(N) and maps input pair (N, x) to one of

HN (x)
1
2 or uNHN (x)

1
2 in ZN based on which value is quadratic residue. The

Interactive Quadratic residue assumption holds for the pair (RSAgen,H) if for
all PPT algorithms A, the function IQRAdvA,(RSAgen(1k),H) =

|Pr[(N, V ) ← PQR(1
k) : AO(N, V ) = 1]− |Pr[(N, V ) ← PNQR(1

k) :
AO(N, V ) = 1]|

is negligible. IQRAdvA,(RSAgen(1k),H) is the IQR advantage of A against
(RSAgen,H).

3.6 QAlgorithm

Q is a deterministic algorithm with inputs (N, u,R, I), where N ∈ Z+ and
R, u, I ∈ ZN . This algorithm outputs four polynomial functions f, f, g, τ ∈
Z[x]N . This Algorithm must satisfy the following conditions to be Enhanced
IBE compatible:

– If R and I are quadratic residues, then f(r)g(i) is also quadratic residue for

all values of r ← R
1
2 and i ← I

1
2 .

– If uR and I are quadratic residues, then f(r)g(i)τ(i) is also quadratic residue

for all values of r ← uR
1
2 and i ← I

1
2 .

– If R is quadratic residue, then f(r)f(−r)I is quadratic residue for every

r ← R
1
2 .

– If uR is quadratic residue, then f(r)f(−r)I is quadratic residue for every

r ← uR
1
2 .

– If I is quadratic residues, then τ(i)τ(−i)u is also quadratic residue for all

values of i ← I
1
2 .

– τ is independent of R, that is Q(N, u,R1, I) and Q(N, u,R2, I) produces the
same value of τ for any value of N, u,R1, R2, I.

An example of Q is explained in [5] as follows:

– Find a solution (x, y) ∈ Z
2
N to the equation Rx2 + Sy2 = 1 mod N .
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– Find a solution (α, β) ∈ Z2
N to the equation uα2 + Iβ2 = 1 mod N .

– Calculate the polynomials f(r) ← xr + 1, f(r) ← 1 + Syβ + αxr , g(i) ←
2ys+ 2, τ(i) = 1 + βi.

The proof that Q Algorithm is Enhanced IBE Compatible can be found in [5].

3.7 GMEBGH

– Setup(1k): Using RSAgen(1k), generate (p,q). Calculate the modulus N ←
pq. Choose u ∈ j(N) \QR(N), and choose a hash function H : ID× [1, l] →
j(N). The public parameters P are [N, u,H ]. The master secret MSK pa-
rameters are p, q and a secret key K for a pseudorandom function FK :
ID × [1, l] → [0, 1, 2, 3].

– KG(MSK, IDU , IDS , l): Using the master secret MSK, ID, and the mes-
sage length l, the private key for decryption (rj) is generated using the
following algorithm:

foreach j ∈ [1, l] do
RU,j ← H(IDU , j) ∈ j(N)
RS,j ← H(IDS , j) ∈ j(N)
w ← FK(ID, j) ∈ [0, 1, 2, 3]
choose aU ∈ [0, 1] such that uaURU,j ∈ QR(N)
choose aS ∈ [0, 1] such that uaSRS,j ∈ QR(N)
let[zU,0, zU,1, zU,2, zU,3] be the four square roots of uaURU,j ∈ ZN

let[zS,0, zS,1, zS,2, zS,3] be the four square roots of uaSRS,j ∈ ZN

rU,j ← zU,w

rS,j ← zS,w
end

The decryption key for User is dU,ID ← (P, rU,1, ..., rU,L) and the decryption
key for the SEM is dS,ID ← (P, rS,1, ..., rS,L).

– Enc(P, IDU , IDS,m): Generate a random value i ← ZN and calculate I ←
i2 and then encrypt m ∈ [−1, 1]L using P as follows:

τ(i) ← Q(N, u, 1, I)

k ← ( τ(i)N )
foreach j ∈ [1, L] do

RU,j ← H(IDU , j) ∈ j(N)
RS,j ← H(IDS , j) ∈ j(N)
[xU,j , yU,j ] ← Q(N, u,RU,j , I)
[xS,j , yS,j] ← Q(N, u,RS,j, I)
gU,j(i) ← 2yU,ji+ 2
gS,j(i) ← 2yS,ji+ 2

cj ← mj .(
gU,j(i)

N ).(
gS,j(i)

N )
c ← c1......cL

end

The ciphertext is (I, k, c).
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– Decrypt(C, dID): To decrypt a ciphertext C = (I,K, c) for User with public
key IDU , User sends C to the SEM. The SEM then does the following:

– if User is revoked, the SEM returns ⊥.
– if User is not revoked, the SEM Calculates cU as follows:

foreach j ∈ [1, L] do
RS,j ← H(IDS , j) ∈ j(N)
if r2S,j = RS,j then

[xS,j , yS,j] ← Q(N, u,RS,j, I)
fj ← xS,jrS,j + 1

cU,j ← cj .(
fj
N )

end
if r2S,j = uRS,j then

[xS,j , yS,j, α, β] ← Q(N, u,RS,j, I)
f j ← 1 + I2j−1yS,jβ + αxjrS,j

cU,j ← cj .(
fj

N )

end

end

and returns CU = (I,K, cU ) to User. Then User decrypts CU as follows:

foreach j ∈ [1, L] do
RU,j ← H(IDU , j) ∈ j(N)
if r2U,j = RU,j then

[xU,j , yU,j] ← Q(N, u,RU,j , I)
fj ← xU,jrU,j + 1

mj ← cj .(
fj
N )

end
if r2U,j = uRU,j then

[xU,j , yU,j, α, β] ← Q(N, u,RU,j , I)
f j ← 1 + I2j−1yU,jβ + αxjrU,j

mj ← cj .k.(
fj

N )

end

end

This concludes BGHBGH .

3.8 Security Proof

Lemma 2. Let A be an Anon-IND-CPA adversary that has advantage ε against
GMEBGH . This adversary A can be a revoked client or hacked SEM. Then, there
is an Anon-IND-CPA adversary B with the same probability ε against the BGH
system.

Proof. If an adversary A simulates the role of a revoked user, then he plays
Type 1 with the challenger. The ciphertext sent to the adversary is

cj ← mj .(
gU,j(i)

N ).(
gS,j(i)

N ). The adversary then partially decrypts it using his
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secret key rU to get cS,j ← mj .(
gS,j(i)

N ), which is the message m encrypted by
BGH using SEM’s ID. This also can be applied for a hacked SEM.

Remark: Using the same encryption system for both the SEM and the users
has a unique advantage. If roles of the SEM and a user are exchanged, the
system will not be effected. For example, if the employee responsible for the
SEM is promoted or fired and another employee becomes the one responsible
for the SEM, all we have to do is assign the ID for the SEM to the the new
employee’s ID. On the other hand, the system will be vulnerable to escrow. This
implementation is more suitable for closed environments, such as a company. If
escrow is really a serious security concern, however, the public parameters can
be generated using two PKGs, one for the users and the other for the SEMs.

4 Conclusion

In this paper, we present a generic mediated encryption (GME) system that
converts any IBE system to a mediated system. Although it is based on double
encryption, our system is efficient. The ciphertext size is the same as a single
IBE. It combines the advantage of CBE and SEM structures. Our system is
more efficient than CBE because it does not depend on certificates, and it is
more secure than [3] and [12] because the SEM in GME is not a single point of
failure and can be untrusted. We prove that GME is as secure as the IBE system
used in the case of a revoked user or a hacked SEM.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004),
http://www.cs.stanford.edu/~xb/eurocrypt04b/

2. Boneh, D., Ding, X., Tsudik, G.: Fine-grained control of security capabilities. ACM
Trans. Internet Technol. 4(1), 60–82 (2004)

3. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of pub-
lic key certificates and security capabilities. In: Proceedings of the 10th Conference
on USENIX Security Symposium, SSYM 2001, vol. 10, p. 22. USENIX Association,
Berkeley (2001)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

5. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of the 48th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2007, pp. 647–657. IEEE Computer Society,
Washington, DC (2007)

6. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Rfc5280:
Internet x.509 public key infrastructure certificate and certificate revocation list
(crl) profile (May 2008)

http://www.cs.stanford.edu/~xb/eurocrypt04b/


168 I. Elashry, Y. Mu, and W. Susilo

8. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg
(2003)

9. Aiello, W., Lodha, S., Ostrovsky, R.: Fast digital identity revocation. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Heidelberg (1998)

10. Gassko, I., Gemmell, P.S., MacKenzie, P.: Efficient and fresh certification. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 342–353. Springer, Heidelberg
(2000)

11. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

12. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

13. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: Rfc 2560: Internet
public key infrastructure online certificate status protocol - ocsp

14. Micali, S.: Efficient certificate revocation (1996)
15. Micali, S.: Novomodo: Scalable certificate validation and simplified pki manage-

ment. In: 1st Annual PKI Research Workshop (2002)
16. Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal

on Selected Areas in Communications 18(4), 561–570 (2000)
17. Housley, R., Polk, W., Ford, W., Solo, D.: Rfc3280: Internet x.509 public key

infrastructure certificate and certificate revocation list (crl) profile (April 2002)
18. Sakai, K.O.R., Kasahara, M.: Cryptosystems based on pairing. In: Symposium on

Cryptography and Information Security (SCIS 2000), Japan (2000)
19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

20. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)



 

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 169–181, 2013. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013 

An Efficient Reconfigurable II-ONB  
Modular Multiplier 

Li Miao1,2, He Liangsheng1, Yang Tongjie1,* Gao Neng2,  
Liu Zongbin2, and Zhang Qinglong2 

1 Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004, China 
2 SKLOIS, Institute of Information Engineering,  

Chinese Academy of Sciences, Beijing, 100093, China 
{limiao12,lshhe,tjyang,gaoneng,zbliu,qlzhang}@is.ac.cn 

Abstract. In Elliptic Curve Cryptography(ECC), due to the characteristic of 
high efficiency, the modular multiplication operation in type II optimal normal 
basis(II-ONB) over binary field has become a key research trend. Based on B. 
Sunar’s basis conversion theory, in this paper, an improved II-ONB modular 
multiplication algorithm has been proposed and an efficient reconfigurable 
modular multiplier, which can support different lengths has been implemented. 
This work has been simulated using ModelSim and synthesized under 0.18μm 
CMOS technology. Then, complexity comparison has also been accomplished. 
The results prove that our proposed reconfigurable II-ONB modular multiplier 
can not only guarantee high flexibility for arbitrary modular multiplication, but 
also have area advantage in resource-constrained ECC applications. 

Keywords: Elliptic Curve Cryptography; Type II Optimal Normal Basis; 
Reconfigurable Modular Multiplier; Basis Conversion. 

1 Introduction 

In modern age, along with flourishing development of E-Commerce, E-
Administration and military communications, information security has been more and 
more widely focused by people. The public-key cryptography system can effectively 
solve problems like anti-repudiation, authentication and key distribution on public 
channels. Based on the elliptic curve discrete logarithm problem(ECDLP), Elliptic 
Curve Cryptography(ECC)[1-2] has already been proved to be more secure and more 
efficient than RSA. Therefore, ECC has gradually replaced RSA as the next 
generation of public-key cryptography standard[3]. Modern cryptanalysis indicates 
that ECC provides high security strength per bit[4], so at the same security level, it 
can offer the fastest computation, the least storage requirement and the lowest 
communication bandwidth, which is very suitable for resource restriction devices[5-6] 
like mobile telephones, PDA, wireless network and smart cards. In fields of high-end 
applications, such as network server and certificate authority, due to large secure 
connection number and certain real-time requirement, ECC can provide signature 
authentication service with higher throughput, too. 
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Finite field multiplication is a critical operation for ECC implementation 
performance, and how to design an efficient and flexible finite field multiplier has 
also become a focus in cryptographic applications[7-11]. At present, these are two 
main implementation methods for large integer multiplication: the software and the 
hardware. The software method is highly flexible and convenient to use, but restricted 
by the general purpose microprocessor instruction system, the operation efficiency is 
so low that it can’t meet the need for high speed applications. Therefore, it’s 
necessary to design application specific integrated circuit(ASIC). This hardware 
method can reach high speed and low power consumption, but the specific property in 
structure is too inflexible to further development. ECC usually chooses keys with 
different lengths for information graded protection. When key length changes, the 
hardware circuit must be redesigned that results in a waste of manpower and material 
resources. In the meanwhile, it increases ECC chip types and managing difficulty. 
One efficient solution is to design a kind of parameter reconfigurable hardware circuit 
to improve ECC chips flexibility, in which the reconfigurable design of finite field 
multiplier is the kernel[12-14]. 

Normal basis[15] is one of the most important representation over binary field. 
Currently, there is no flexible and reconfigurable design scheme for normal basis 
multiplier at all times. In order to simplify extremely complicated multiplication 
operation in normal basis, researchers have found a special class of normal basis 
called optimal normal basis(short for ONB)[16]. The ONB has the lowest 
computational complexity, whose exponentiation and multiplication operations are 
very simple. Type I ONB and type II ONB(short for II-ONB) are two kinds of most 
commonly used ONB[17], while with the highest efficiency, II-ONB multiplication 
operation has been widely used. For GF(2m), there are 174 m values in the range 
m∈[2,1000], for which a II-ONB exists. And multiplication matrix M of II-ONB has 
the minimum number of “1”, which is equal to 2m-1. Except the first column, every 
other column has only two “1”, which greatly reduces space complexity and 
computational complexity of modular multiplication operation. Consequently, designs 
for II-ONB multiplier have become hot. 

In 2001, B.Sunar proposed an idea and concrete method of basis conversion[18], 
which provided a new thinking for II-ONB multiplier. In 2008, A. H. Namin of 
Canada Windsor University brought forward a word-level multiplier for II-ONB[19]. 
This multiplier had advantage in computation speed, but disadvantage in circuit area. 
Moreover, it could not support modular multiplication operation with variable 
lengths. In 2009, T. F. Al-Somani of Saudi Umm Kula University presented an 
improved Massey-Omura normal basis multiplier using three-stage pipelines[20]. It 
had been advanced significantly in performance, but could not support modular 
multiplication operation with diverse lengths, too. 

Up to now, almost all II-ONB multipliers were designed fixed in structure and only 
achieved a sort of specific ECC operation over binary field. The bad flexibility was 
difficult to meet the need for ECC flexible processing. Therefore, this paper aims to 
do some research and design an efficient reconfigurable II-ONB multiplier to meet 
the needs of II-ONB multiplication operation with different lengths, and provide a 
new design method and technology for solving problems of II-ONB multiplier in 
multiplication operation with single length and poor flexibility. 
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2 Type II Optimal Normal Basis and Multiplication Operation 

For element β∈GF(2m), a normal basis can be expressed as 12 2{ , , , }
m

b b b
-

  and the 

corresponding normal polynomial is defined as F(t)=tm + cm-1t
m-1 + … + c1t + c0. II-

ONB can be constructed[17] if 2m+1 is a prime and if either 2 is a primitive root 
modulo 2m+1 or 2m+1=3 (mod 4) and the multiplicative order of 2 modulo 2m+1 is 
m holds. Then, 1r rα −= +  generates an optimal normal basis for GF(2m), where r is a 
primitive (2m+1)th root of unity, i.e., r2m+1=1 and ri ≠1 for any 1≤i<2m+1. 

In normal basis, the square operation of A is just simple cyclic shift operation, 
namely A2=(am a1 a2 

… am-1). However, the multiplication operation is relatively 
complex. Firstly, a multiplication matrix M should be computed, whose calculation 
steps are as follows[21]: 

1. Calculate the convert matrix E from (1, t, ..., tm-1) to 
12 2( , , , )

m

t t t
−

 : 

1

2 1
0,0 0,1 0,2 0, 1

2 2 1
1,0 1,1 1,2 1, 1

4 2 1
2,0 2,1 2,2 2, 1

2 2 1
1,0 1,1 1,2 1, 1

mod ( )

mod ( )

mod ( )

mod ( )
m

m
m

m
m

m
m

m
m m m m m

t e e t e t e t F t

t e e t e t e t F t

t e e t e t e t F t

t e e t e t e t F t
−

−
−

−
−

−
−

−
− − − − −

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅










 

The coefficients meeting all above equations form convert matrix E: 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

m

m

m m m m

e e e

e e e
E

e e e

-

-

- - - -

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û




   


 

2. Calculate the inverse matrix of E: G=E-1. 
3. Suppose matrix Q is expressed as: 

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

m

Q

q q q q -

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û




    

  

Calculate matrix D =EQG. 
4. Suppose μi,j=dj-i,-i(i, j=0, 1, …, m-1) and subscripts of d get the least non-negative 

integer values of modulo m. The multiplication matrix M is obtained: 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

m

m

m m m m

M

m m m
m m m

m m m

-

-

- - - -

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û
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The product of A ⋅ B in normal basis can be expressed as C=AMBT, where BT 
denotes the transpose of B.  

The modular multiplication algorithm in normal basis is shown as Algorithm 1. 
The core operation is the matrix multiplication (step 3), which calculates 1 bit product 
in every cycle. 

 
Algorithm 1. Modular multiplication algorithm in normal basis[21] 

1 2 1 2

1 2

Input: ( , , , ), ( , , , ),

(2 )

Output: Product ( , , , )

1. ,

2. for 1 to   do

3. ( , )

4. 1 (1 )

5.

m m

m

m

T

i

A a a a B b b b

multiplication matrix M for GF

C c c c

x A y B

i m

c f x y xMy

x bit cyclic left shift of x

y

= =

=

  = =

  =

       = =

       <<<

       <<

 



1 2

1 (1 )

end  for

6.  ( , , , )
m

bit cyclic left shift of y

C c c c

<

     

= 

 

3 II-ONB Modular Multiplication Algorithm 

There are two important steps during the design of II-ONB modular multiplier: the 
first step is converting elements represented in II-ONB to a specific basis N’, which 
makes multiplication operation in basis N’ have a regular representation; the second 
step is multiplying the elements in basis N’. 

3.1 Basis Conversion Theory 

According to II-ONB construction method, for GF(2m), normal element β = r + r-1, 
where r is a primitive (2m + 1)th root of unity, i.e., r2m + 1 = 1 and ri 

≠ 1 for any i ∈[1, 
2m+1), the normal basis is given as 

12 2{ , , , }
m

N β β β
−

=  . If 2 is a primitive root modulo 
2m+1, then the set of powers of 2 modulo 2m + 1 is: 

2 2
1 {2,2 , , 2 }mod (2 1)mP m= +     (1) 

Equation (1) is equivalent to 1 {1,2, ,2 }Q m=  . Therefore, a basis element 2 2i i

r r−+  
can be written as rj + r-j for j∈[1, 2m]. Furthermore, it is always possible to rewrite rj + 
r-j as r(2m+1)-j + r-(2m+1)+j. If j≥m+1, then this has the benefit of bringing the power of r 
to the range [1, m]. If the multiplicative order of 2 modulo 2m+1 is equal to m, then 
the set of powers of 2 modulo 2m + 1 is: 
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2

2 {2,2 , , 2 }mod (2 1)mP m= +    (2) 

Equation (2) is equivalent to 2 {1,2, , }Q m=  . As a result, a basis element 2 2i i

r r−+  
can be written uniquely as rj + r-j with j∈[1, m]. The basis whose element is r j + r-j is 
defined as N’ = {β1, β2, 

..., βm}, where βj = r j + r-j and j∈[1, m]. 

Let A be expressed in the basis N as 12 4 2
1 2 3

m

mA a a a aβ β β β
−′ ′ ′ ′= + + + +  where β=r + 

r-1. The representation of A in the basis N’ is given as A=a1β1 + a2β2 + a3β3 + ... + amβm 
where βi = ri + r-i. We can express the permutation between the coefficients aj=ai’ 
as[18,22]: 

 

[1, ]

(2 1) [ 1,2 ]

k if k m
j

m k if k m m

                     ∈
=  + −      ∈ +   

(3) 

Where k = 2i-1(mod 2m + 1) for i=1, 2, ..., m. Not a normal basis, basis N’ is just a 
shifted form of canonical basis[16]. 

3.2 II-ONB Modular Multiplication Algorithm Based on Basis Conversion 

Adopt Equation (3) for basis conversion. A, B∈GF(2m), can be represented in basis N’ 

as 
1 1

( )
m m

i i

i i i
i i

A a a r rβ −

= =

= = +   and 
1 1

( )
m m

i i

i i i
i i

B b b r rβ −

= =

= = +  . Then product C=A ⋅ B can be 

written as: 

  

1 1

( ) ( )

1 1 1 1

1 2

( ) ( )

( ) ( )

m m
i i j j

i j
i j

m m m m
i j i j i j i j

i j i j
i j i j

C A B a r r b r r

a b r r a b r r

C C

− −

= =

− − − + − +

= = = =

= ⋅ = + +

= + + +

= +

  
    
 

   
(4) 

If i = j, then ri-j + r-(i-j)=r0 + r0=0, so the coefficients of βk in C1 are the sum of all 
aibj for which k=|i - j|∈[1, m]. In C2, |i + j|∈[1, 2m] can be divided into |i + j|∈[1, m] 
and |i + j|∈[m+1, 2m], while the latter case can be replaced by 2m + 1-|i + j|. So C2 can 
be transformed into the following: 

  

( )

2
1 1

( ) ( )

1 1 1 1

1 2

( )

( ) ( )

m m
i j i j

i j
i j

m m i m m
i j i j i j i j

i j i j
i j i j m i

C a b r r

a b r r a b r r

D D

+ − +

= =

−
+ − + + − +

= = = = − +

= +

= + + +

= +



  

 

(5) 

 



174 L. Miao et al. 

 

In Equation (5), the coefficients of βk in D1 are the sum of all aibj for which k=|i + 
j|∈[1, m] where i∈[1, m] and j∈[1, m-i]. And D2 can be represented as: 

  

( )

2
1 1

2 1 ( ) (2 1 ( ))

1 1

( )

( )

m m
i j i j

i j
i j m i

m m
m i j m i j

i j
i j m i

D a b r r

a b r r

+ − +

= = − +

+ − + − + − +

= = − +

= +

= +

 

 
 

(6) 

In Equation (6), the coefficients of βk in D2 are the sum of aibj for which k = 2m + 1 
- |i + j|∈[1, m] where i∈[1, m] and j∈[m-i+1, 2m]. 

Suppose 
mod 2 1 mod 2 +1

( )
2 1 mod 2 1

i m i m m
k i

m i m others

                  +     0 ≤  ≤
=

+ −    +      




（ ）

（ ）
. According to above 

deduce, it is easy to prove that j j ( ) ( ) ( ) ( )
1 1 1

( ) ( )
m m m

i i i k i j k i j k i j k i j i
i i i

A a a a aβ β β β β β+ − + −
= = =

= = + = +   [19]. 

Thus, product C also can be represented as: 

  

1 1

( ) ( )
1 1

( ) ( )
1 1

( ) ( )
1 1

( )

( )

( )

( )

m m

j j j j
j j

m m

j i k i j k i j
j i

m m

j k i j k i j i
j i

m m

j k i j k i j i
i j

C A b b A

b a

b a a

b a a

β β

β β

β

β

= =

+ −
= =

+ −
= =

+ −
= =

= =

= +

= +

= +

 

 

 


 

(7) 

The single bit ci can be written as: 

( ) ( ) ( ) ( )
1 1

( ) ( )
m m

i j k i j k i j j k i j k i j
j j

c b a a a b b+ − + −
= =

= + = + 
 

(8) 

From above analysis, II-ONB modular multiplication algorithm based on basis 
conversion is brought forward, as shown in Algorithm 2. This is a serial algorithm, 
composed by outer and inner loops. Operations of AND (&), XOR (⊕) and cyclic 
shift (>>>) can be directly mapped to hardware implementation. 
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Algorithm 2. II-ONB modular multiplication algorithm based on basis conversion 

1 2 1 2

1 2

1 2 1 2

0

0 1 2

Input: ( , , ), ( , , , )

Output: Product ( , , , )

1. : ( , , ), ( , , , )

2. 0, 0

3. [1 : 2 1] { , , , , ,

m m

m

m m

m m

A a a a B b b b in normal basis N

C c c c in normal basis N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b b

′ ′ ′ ′ ′ ′= =

′ ′ ′=

′  = =

  = =

  + =

 



 


2 1

1 2

, , , }

4. for 1 to  do

5. for 1 to  do

6. c c ( & ( [ ] [2 1 ]))

end  for

7. 1 (1 )

end  for

8. : ( , ,

i i j

b b

i m

j m

a D j D m j

D bit cyclic right shift of D

Basis conversion C c c

  =

        =

               = ⊕ ⊕ + −

           

        >>>

     

′ ′  =



, )
m

c in normal basis N′
 

In Algorithm 2, input data 
1 2

( , , )
m

A a a a′ ′ ′=   and 1 2
( , , , )

m
B b b b′ ′ ′=   are in normal 

basis N. Firstly, convert operands A and B from normal basis N to basis N’. Then, 
calculate 1 bit ci after m inner loops and product C after m outer loops. Finally, 
convert product C from basis N’ back to normal basis N after the operation is 
completed. From analysis we can learn that the computational complexity of 
Algorithm 2 is O(m2), which can be further improved adopting parallel computation. 
Therefore, this paper proposes an improved II-ONB modular multiplication algorithm 
based on basis conversion, as shown in Algorithm 3. 

Algorithm 3. An improved II-ONB modular multiplication algorithm based on basis 
conversion 

1 2 1 2

1 2 1 2

0

0 1 2

1 2

Input: ( , , ), ( , , , )

Output: Product ( )

1. : ( , , ) ( , , , )

2. 0, 0

3. [1 : 2 1] { , , , , ,

, , ,
m m

m m

m

m

in normal basis

in normal basis

A a a a B b b b N

C N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b

c c c

′ ′ ′ ′ ′ ′= =

=
′  = =

  = =

  + =

′ ′ ′
 

 




，

2 1

1 2

, , , }

4. for 1 to  do

5.       & ( [1: ] [2 : 1])

6.       1 (1 )

end  for

7.  : ( , , , )

m

i

m

b b b

i m

C C a D m D m m

D bit cyclic right shift of D

Basis conversion C c c c in normal basis N

  =

  = ⊕ ⊕ +  

  >>>

     
′ ′ ′=



  
In Algorithm 3, there exists only one layer loop that can generate product C in 

basis N’ after m loops. So, the computational complexity reduces to O(m). In public-
key cryptography, it usually performs continuous modular multiplication operations, 
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so basis conversion is only needed before the first modular multiplication operation 
and after the last modular multiplication operation. Consequently, the implementing 
time of basis conversion can be ignored. 

4 Design of Reconfigurable II-ONB Modular Multiplier 

4.1 Reconfigurable Basis Conversion Circuit 

According to above analysis, based on B. Sunar’s basis conversion theory, the basis 
conversion circuit is designed adopting reconfiguration method in this paper. The 
implementation of basis conversion circuit is closely related to the finite field length 
m. Basis conversion of fixed length can be accomplished by simple connections, but 
for different lengths, it requires very complex computing circuit. In ECC algorithms, 
basis conversion is only demanded before and after continuous modular 
multiplication operations respectively and the implementing time of basis conversion 
can be ignored, hence it can be realized by SW/HW method. From basis conversion 
theory we can see the corresponding relationship between j and i is fixed when m is 
determinate. So in this paper, we calculate corresponding position information in 
advance by software, then write them into configuration registers. In this way, when 
performing basis conversion by hardware, choosing values through configuration 
registers is enough. 

a'2 a'3 a'ma'4 a'm-1a'1

MUX

ai

Configura
tion 

Registers

clk
WEN

Cfg_datain
Cfg_dataout

reset

 

Fig. 1. Reconfigurable basis conversion circuit 

The reconfigurable basis conversion circuit is shown in Fig. 1. It requires m clock 
cycles to complete once basis conversion. If hardware resources are adequate, it can 
use multiple MUXs in parallel to increase basis conversion implementing efficiency. 
In the best situation, it can complete basis conversion in only one clock cycle. 

4.2 Reconfigurable Modular Multiplier Design 

In order to support modular multiplication in II-ONB with different lengths, 
according to Algorithm 3, this paper designs an efficient reconfigurable II-ONB 
modular multiplier based on basis conversion, as shown in Fig. 2. In the right part, 
there are two 385-bit registers R1 and R2, both of which are used to store B values 
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and b0 is constant “0”. In every one clock cycle, these two registers carry out 1-bit 
joint shift operation: for R1, bi=bi+1; for R2, bi=bi-1⊕(bj & Datapath_ctl[i-1]). Register 
C is used to store product C. Datapath_ctl[0:383] is the control signal of the data path, 
whose value is also associated with the finite field length 

384 length length-1

Datapath _ ctl {00 0 ,1,0 00}
−

=    . In the left part, there are two shift registers, which 

are used to store A and B separately. Their control signals RegA_ctl[7:0] and 
RegB_ctl[7:0] are given by the control unit. In all the clock cycles, 
RegA_ctl=RegB_ctl=1. 

When signal start is valid, the multiplier begins initialization. The controlled 
registers R1 and R2 jointly shift 1 bit. At the same time, in order to make the MSB of 
operation data and registers align right, two barrel shift registers shift (384-length) 
bits. After length clock cycles, the multiplier generates product C in basis N’ . The 
maximum length of the multiplier is set 384. When operands are less than 384 bits, all 
data in registers align right and high bits are filled up zero. According to different 
length ranges, registers in our design also can be extended to support modular 
multiplication operation of larger length. 

 

Fig. 2. Reconfigurable II-ONB modular multiplier structure 

5 Implementation and Performance Analysis 

5.1 Simulation and Synthesis 

In order to validate our design, the proposed reconfigurable II-ONB modular 
multiplier has been modeled in Verilog HDL and simulated functionally with 
ModelSim SE 6.1f. The implementation has verified our design’s function correctly 
[21]. Fig. 3 depicts simulation results of B-191. 
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The operation data are: 

A= 7a12de5c_d5e55e5a_d587de51_a51c551a_de1b2151_b11a21de 
B= 64545d85_5da54d5e_c4b545a5_d45e4456_7aadcccd_dbeebdad 

The modular multiplication product is: 

C=18db1d7c_d6274cb7_d760e71a_35ae72e5_6de25e4a_73e6fac9 
 

 
 

 

Fig. 3. Simulation of B-191 modular multiplication operation 

Additional efforts have also been devoted to as ASIC implementation. In order to 
evaluate performance more accurately, making use of Synopsys’s Design Complier 
for Solaris, logical synthesis has been accomplished under 0.18μm CMOS 
technology. Table 1 depicts the result report under the constraint of 4.0ns. Our design 
only occupancies 55k gates in area, while the clock frequency can reach 320MHz. 

Table 1. Synthesis results under 0.18μm CMOS technology 

Constraint
(ns) 

Area(μm2)
Equivalent Gates 

(kgates)

Delay 
(ns) Combinational Logic Registers

4.0 398 868 156 892 55 3.1 

5.2 Analysis and Comparison 

Area-Timing complexity comparison of different II-ONB modular multipliers are 
shown in Table 2. The delays of a two-input AND gate and an n-input XOR gate have 
been approximated by TA and 

2log n   TX separately. In [19] and [23], multipliers were 

both designed on word-level, where m denotes the finite field length, k denotes the 
number of parallel modules and w denotes the word length. Because the hardware 
structure of our design is fixed, the area and delay of circuit are finalized. The space 
complexity of this work is 768#AND+1152#XOR and the computational complexity 
is 2TA+3TX. In order to compare our design with others, we have chosen the practical 
finite field size of m=233 that is a recommended NIST(National Institute of Standards 
and Technology) binary field degree with k=8 and w=32 which are practical for VLSI 
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implementation. The complexity comparison of different II-ONB modular multipliers 
in F2233 with k=8 and w=32 are shown in Table 3. 

Table 2. Area-Timing complexity comparison of different II-ONB modular multipliers 

Designs # AND # XOR Multiplication Delay 

Namin[19] 2km (4k-1)m wTA+(w+
2log 2k   )TX 

Massey[23] k(2m-1) k(2m-2) w(TA+(1+
2log m   )TX) 

This work 768 1152 2TA+3TX 

Table 3. Complexity comparison of different II-ONB modular multipliers in F2233 with k=8 
and w=32 

Designs # of AND # of XOR Multiplication Delay 

Namin[19] 3728 7223 32TA+36TX 
Massey[23] 3720 3712 32TA+288TX 
This work 768 1152 64TA+96TX 

 
It can be seen from Table 3 that, due to the word-level structure, compared to our 

design, in spite of owning shorter multiplication delays, Namin’s and Massey-
Omura’s multipliers occupied much more hardware resources. In addition, both of 
these two multipliers couldn’t support modular multiplication operation with scalable 
lengths, and it required to re-design the hardware circuit when parameters changed. 
However, our proposed reconfigure multiplier is one efficient solution for modular 
multiplications with variable parameters. When parameters changed, only 
reconfiguring the structural parameters is enough, and the hardware structure doesn’t 
need to change. So, among above designs, our reconfigurable multiplier is the most 
flexible in structure. 

6 Conclusions 

In this paper, some researches on reconfiguration design of II-ONB modular 
multiplier over binary field in ECC have been done. According to B. Sunar’s basis 
conversion theory, operation data in normal basis have been converted to a new 
defined basis. On this condition, an improved II-ONB modular multiplication 
algorithm has been proposed, and an efficient reconfigurable modular multiplier 
supporting different lengths has been implemented. Finally, this work has been 
simulated and synthesized. Besides, performance analysis has also been 
accomplished. The experimental results prove that our design has higher flexibility 
and smaller area, which is the most suitable to resource-constrained ECC applications. 
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Abstract. In this paper, we consider the security of public-key encryp-
tion schemes under linear related-key attacks, where an adversary is
allowed to tamper the private key stored in a hardware device, and sub-
sequently observe the outcome of a public-key encryption system under
this modified private key. Following the existing work done in recent years,
we define the security model for related-key attack (RKA) secure public-
key encryption schemes as chosen-ciphertext and related-key attack (CC-
RKA) security, in which we allow an adversary to issue queries to the
decryption oracle on the linear shifts of the private keys. On the basis
of the adaptive trapdoor relations via the one-time signature schemes,
Wee (PKC’12) proposed a generic construction of public-key encryption
schemes in the setting of related-key attacks, and some instantiations from
Factoring, BDDH with CC-RKA security, and DDH but with a weaker
CC-RKA security. These schemes are efficient, but one-time signatures
still have their price such that in some cases they are not very efficient com-
pared to those without one-time signatures. Bellare, Paterson and Thom-
son (ASIACRYPT’12) put forward a generic method to build RKA secure
public-key encryption schemes, which is transformed from the identity-
based encryption schemes. However, so far, the efficient identity-based en-
cryption schemes are generally based on parings. To generate a specific
construction of public-key encryption schemes against related-key attacks
without pairings, after analyzing the related-key attack on the Cramer-
Shoup basic public-key encryption scheme, we present an efficient public-
key encryption scheme resilient against related-key attacks without using
one-time signature schemes from DDH. Finally, we prove the CC-RKA
security of our scheme without random oracles.

Keywords: Public-key encryption, Related-key attack, CC-RKA
security.

1 Introduction

In the traditional security model, it is assumed that the adversary is isolated
from the internal states of the honest communication parties. However, with
the development of information technologies, the security of cryptographic al-
gorithms in modern cryptography is analyzed in the black-box model, where an
adversary may view the algorithm’s inputs and outputs, but the private key as
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well as all the internal computation remains perfectly hidden. Unfortunately,
this idealized assumption is often hard to satisfy in real systems. In many sit-
uations, the adversary might get some partial information about private keys
through methods which were not anticipated by the designer of the system and,
correspondingly, not taken into account when arguing its security. Such attacks,
referred to as key-leakage attacks, come in a large variety. An important example
is side-channel [18] attacks that exploit information leakage from the implemen-
tation of an algorithm, where an adversary observes some “physical output” of a
computation (such as radiation, power, temperature, running time), in addition
to the “logical output” of the computation.

In recent two decades, this requirement has been relaxed to capture security
under the scenarios where some information of the keys is leaked to the adversary.
When an adversary tampers the private key stored in a cryptographic hardware
device, and observes the result of the cryptographic primitive under this modified
private key, there is a related-key attack (RKA) [4,11]. The key here could be
a signing key of a certificate authority or a decryption key of an encryption
scheme. In related-key attacks, the adversary attempts to break an encryption
scheme by invoking it with several private keys satisfying some known relations.

Wee [20] proposed a generic construction of public-key encryption schemes in
the setting of linear related-key attacks. In [20], the constructions exploit certain
existing public-key encryption schemes that are susceptible to linear related-
key attacks, to obtain public-key encryption schemes that are secure against
linear related-key attacks from adaptive trapdoor relations via strong one-time
signatures, which generates a tag in the ciphertext of the concrete scheme. The
security of this realization is analogous to those for obtaining chosen-ciphertext
attack (CCA) security from extractable hash proofs [19], and trapdoor functions
[15], which implies a trick that the RKA decryption oracle will return ⊥ for tag
= tag∗ generated from an one-time signature scheme, whenever the ciphertext
with tag given by the adversary matches the challenge ciphertext with tag∗ or
not. Briefly, RKA.Decrypt oracle outputs ⊥ when given a ciphertext with tag
= tag∗ even φ(sk) 	= sk, where φ denotes a linear shift. That is to say, the
RKA decryption query will not help the adversary to obtain more information if
tag = tag∗. Besides, Wee [20] designed some efficient strong one-time signatures
to reduce the total overhead of the specific schemes. However, though one-time
signatures are easy to construct in theory, and are more efficient than full-fledged
signatures, they still have their price. Particularly,

– Known one-time signature schemes based on general one-way functions [10]
allow very efficient signing, key generation and signature verification, but
they require the expensive valuations of the one-way function. More prob-
lematic, such schemes usually have long public keys and signatures, resulting
in long ciphertexts.

– Although one-time signature schemes constructed based on number-theoretic
assumptions by adapting full-fledged signature schemes have the advantage
of shorter public keys and signatures, but this yields schemes of which com-
putational cost for key generation, signing, and verifying is more expensive.
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Bellare, Paterson and Thomson [6] provided a framework to enable the con-
struction of identity-based encryption schemes that are secure under related-key
attacks. In [6], a very particular type of framework, which allows to reduce RKA
security of a modified identity-based encryption scheme directly to the normal
identity-based encryption security of a base identity-based encryption scheme,
is used. Because of this framework, exploiting known results on identity-based
encryption in a black-box way is allowed and re-entering the often complex se-
curity proofs of the base identity-based encryption schemes is avoided. Based
on this, they constructed the RKA secure schemes for public-key encryption.
Their schemes are achieved in the standard model and hold under reasonable
hardness assumptions in the standard model, but they are transformed from the
identity-based encryption schemes. Anyway, most of the current identity-based
encryption schemes based on bilinear pairings, which are not very efficient.

Our Contributions. Inspired by the above, in this paper, we attempt to bridge
this gap in Wee’s public-key encryption schemes resilient against related-key
attacks from DDH [20] without using any one-time signature schemes. First of
all, we review the definition of linear related-key attacks introduced by Wee [20]
in the setting of public-key encryption, and describe how to attack the public-key
encryption system of Cramer and Shoup [9] in our RKA security model, which
is a bit different from that described in [20]. In Wee’s attack [20], a related-
key deriving function only changes one part of the secret keys, while our attack
changes all parts of the secret keys with the same linear shift function φ. In the
second place, on the practical side, with some trivial modifications to the basic
cryptosystem of Cramer and Shoup [9], we obtain an efficient scheme that is RKA
secure based on the decisional Diffie-Hellman assumption. Our technique is to
hide the functions related to the randomness that appear in the Cramer-Shoup
scheme, such that even given the private keys used in the encryption function
of the message, the adversary still has no idea to output the message under
the modified secret keys without the hiding information. Our scheme is very
efficient, as we do not need any pairing computation to implement encryption
and decryption. Finally, we prove the CC-RKA security of our scheme under
the DDH assumption. Interestingly, regarding the CC-RKA security proof, [20]
simulates the RKA decryption queries via key homomorphism and make the
adversary fail through key fingerprint, and [6] uses key malleability to simulate
the RKA decryption queries and collision-resistant identity renaming to make
the proof goes; however, in our specific construction, we avoid to make use of
such techniques to claim the security.

To begin with, we briefly describe the framework introduced in [4]. Infor-
mally, a public-key encryption scheme is resilient to related-key attacks, then
it is chosen-ciphertext attack secure even when the adversary obtains partial
information of the message in the scheme under the modified private keys of the
adversary. This is modeled by providing the adversary with access to a related-
key attack decryption oracle: the adversary can query the decryption oracle
with any function (φ, C), and then receive (φ(sk), C), where sk is the secret
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key (we note that the related-key deriving functions can be chosen depending on
the public key, which is known to the adversary). The adversary can query the
related-key attack decryption oracle adaptively, with only one restriction that
the decryption of a ciphertext C with the private key φ(sk) cannot equal the
decryption of the challenge ciphertext C∗ with the original private key sk.

1.1 Related Works

Micali and Reyzin [17] put forward a comprehensive framework for modeling
security against side-channel attacks in 2004, which relies on the assumption
that there is no leakage of information in the absence of computation. Later in
2008, Halderman et al. [14] described a set of attacks violating the assumption
of the framework of Micali and Reyzin. Specially speaking, their “cold boot”
attacks showed that a significant fraction of the bits of a cryptographic key
can be recovered if the key is ever stored in memory, of which the framework
was modeled by Akavia, Goldwasser and Vaikuntanathan [1]. Similarly, fault
injection techniques can be used to falsify, inducing the internal state of the
devices being modified, if given physical access to the hardware devices [7].

Bellare and Kohno [5] investigated related-key attacks from a theoretical point
of view and presented an approach to formally handle the notion of related-key
attacks. Followed the approach in [5], Lucks [16] presented some constructions for
block ciphers and pseudorandom function generators. To solve the open problem
in related-secret security whether or not related-key secure blockciphers exist,
Bellare and Cash [3] provided the first constructions to create related-secret
pseudorandom bits. Based on the work in [3], Applebaum, Harnik, and Ishai [2]
gave RKA secure symmetric encryption schemes, which can be used in garbled
circuits in secure computation. Later, Bellare, Cash and Miller [4] proposed
approaches to build high-level primitives secure against related-key attacks like
signatures, CCA secure public-key encryption, identity-based encryption, based
on RKA secure pseudorandom functions. Also, there are a lot of other works
about cryptographic systems with RKA security such as signatures [6,13], CCA
secure public-key encryption [6,20], identity-based encryption [6].

The remainder of this paper is organized as follows. In Section 2, we briefly
present the basic definitions, and the security assumptions that are used in our
construction. In Section 3, we review the concepts associated to this work and the
security model of RKA secure public-key key encryption systems. In Section 4,
we propose an efficient public-key encryption scheme resilient against related-key
attacks, after the analysis of a linear attack on the Cramer-Shoup cryptosystem
[9], and prove its security under the hardness of the DDH problem. Finally, we
conclude this paper in Section 5.

2 Preliminaries

In this section, we look back some basic notions, definitions, and tools that
are used in our construction. We formally state the decisional Diffie-Hellman
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assumptions, and present the technical definitions that will be used repeatedly
in our analysis.

2.1 Complexity Assumptions

Suppose that Groupgen is a probabilistic polynomial-time algorithm that inputs
a security parameter 1λ, and outputs a triplet (G, p, g) where G is a group of
order p that is generated from g, and p is a prime number.

The Decisional Diffie-Hellman Assumption. The decisional Diffie-Hellman
(DH) assumption is that the ensembles {G, g, f, gr, f r} and {G, g, f, gr1, f r2}
are computationally indistinguishable, where (G, p, g) ← Groupgen(1λ), and
the elements g, f ∈ G, r, r1, r2 ∈ Zp are chosen independently and uniformly
at random.

A Basic Scheme Based on DDH. Since the introduction of DDH assumption
[8], it has already found several interesting applications. Note that the DDH
assumption readily gives a chosen-plaintext attack (CPA) secure public-key en-
cryption scheme. Let the public key consist of random elements g, f , gx1 , fx2 ∈
G, and the secret key consist of random element x1, x2 ∈ Zp. The encryption of
a message M ∈ G is given by (C1, C2, C3) = (gr, f r, (gx1fx2)r ·M), where r ∈
Zp is a random element. The message M can be recovered with the secret key
x1, x2 by computing M = C3 · (C1)

−x1 · (C2)
−x2 .

2.2 Public-Key Encryption

A public-key encryption scheme is composed of the following four randomized
algorithms [12]: Keygen, Encrypt, and Decrypt.

– Keygen(1λ) → (sk, pk): Taking a security parameter λ as input, this algo-
rithm outputs a private key and a public key pair (sk, pk).

– Encryptpk(m) → C: Taking a plaintext m (in some implicit message space),
and a public key pk as input, this algorithm outputs a ciphertext C.

– Decryptsk(C) → m: Taking a plaintext m, a ciphertext C, and a private
key sk as input, this algorithm outputs m for a valid ciphertext or ⊥ for an
invalid ciphertext.

We require that a public-key encryption system is correct, meaning that if
(sk, pk) ← Keygen(1λ), and C ← Encryptpk(m), then Decryptsk(C) → m.

3 Modeling Related-Key Attacks

In this section, we define the notion of a chosen-ciphertext attack; in addition, we
present a natural extension of this notion to the setting of related-key attacks,
as introduced by Bellare, Cash and Miller [4]. Also, we introduce some notions
about related-key attacks, as proposed in [2].
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3.1 Chosen-Ciphertext Attacks

A public-key encryption scheme (Keygen, Encrypt, Decrypt) is secure against
chosen-ciphertext attacks (CCA security) if for a stateful adversary algorithm
A, the advantage in the following game is negligible in the security parameter λ.

1. (sk, pk) ← Keygen(1λ).
2. (m0, m1) ← ADecryptsk(·)(pk) such that |m0| = |m1|.
3. C∗ ← Encryptpk(md) where d ∈ {0, 1}.
4. d′ ← ADecryptsk(·)(C∗).
5. Output d′.

Here Decryptsk(·) is an oracle that on an input C, it returns Decryptsk(C).
The weaker security notion of CPA security (i.e. secure against CPAs) is

obtained in the above security game when depriving adversary A of the the
access to the decryption oracle.

3.2 RKA Security

Related-Key Deriving Functions.Our definition follows the notion of related-
key deriving functions given in [5]. Briefly speaking, a class Φ of related-key de-
riving functions φ: sk → sk is a finite set of functions with the same domain
and range, which map a key to a related key. Additionally, Φ should allow an
efficient membership test, and φ should be efficiently computable. Note that in
our concrete constructions, we only consider the class Φ+ as linear shifts.

The family Φ+. Any function φ : Zp → Zp in this class is indexed by � ∈ Zp,
where φ�(sk) : = sk +�.

We constraint that if sk is composed of several elements as (sk1, . . . , skn) with
n ∈ Z+, for any ski where i ∈ {1, . . . , n}, φ�(ski) : = ski +� with � ∈ Zn

p .

CC-RKA Security. A public-key encryption scheme (Keygen, Encrypt, De-
crypt) is Φ-CC-RKA secure if for a stateful adversary algorithmA, the advantage
in the following game is negligible in the security parameter λ.

1. (sk, pk) ← Keygen(1λ).
2. (m0, m1) ← ARKA.Decryptsk(·,·)(pk) such that |m0| = |m1|.
3. C∗ ← Encryptpk(md) where d ∈ {0, 1}.
4. d′ ← ARKA.Decryptsk(·,·)(C∗).
5. Output d′.

Here RKA.Decryptsk(·, ·) is an oracle that on an input (φ, C), it returns
Decryptφ(sk)(C). We constraint that algorithm A can only make queries (φ,
C) such that φ ∈ Φ and (φ(sk), C) 	= (sk, C∗).

We say that algorithm A succeeds if d′ = d, and algorithm A’s advantage can
be defined as

AdvCCRKA
Φ,A (λ)

def
= |PrCCRKA

Φ,A [Succ]− 1/2|,
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where PrCCRKA
Φ,A [Succ] denotes the event that algorithm A outputs the bit d′ =

d.
Briefly speaking, key fingerprint means that any attempt to forge sk induces

a random output of Decryptsk(c
′).

4 An Efficient Construction without Pairings

In this section, we put forward our construction based on the Cramer-Shoup
cryptosystem [9], and present its security proof under the DDH assumption. To
begin with, we describe a simple linear related-key attack on the Cramer-Shoup
public-key encryption scheme, which to some extent illustrate some technical
obstacles in achieving RKA security.

4.1 Related-Key Attacks on Cramer-Shoup Cryptosystem

We point out a linear related-key attack on the CCA secure encryption scheme
based on the DDH assumption proposed by Cramer and Shoup [9]. The details
of the Cramer-Shoup public-key encryption scheme is given as follows.

– Key generation. Choose random g, f ∈ G, x, y, a, b, α, β ∈ Zp, a collision
resistant hash function H : G3 → Zp, and sets u1 = gxfy, u2 = gaf b, u3 =
gαfβ.
The public key is PK = (g, f , u1, u2, u3, H), and the secret key is SK =
(x, y, a, b, α, β).

– Encryption. To encrypt message M ∈ G,
1. choose random r ∈ Zp, and set C1 = gr, C2 = f r, C3 = u1

r ·M .
2. compute t = H(C1, C2, C3), C4 = (u2u3

t)r.
3. output ciphertext C = (C1, C2, C3, C4).

– Decryption. To decrypt ciphertext C = (C1, C2, C3, C4),
1. compute t = H(C1, C2, C3), and output ⊥ if C4 	= C1

a+tαC2
b+tβ .

2. otherwise, output M = C3 · C1
−x · C2

−y.

Suppose we are given a valid ciphertext (C1, C2, C3, C4) of some message
M . We can recover M by making decryption queries to RKA.Decrypt oracle
on related secret keys via the following attack. For any � ∈ Zp, we change the
secret key (x, y, a, b, α, β) to (x+�, y+�, a+�, b+�, α+�, β+�), then
(C1, C2, C3, C4 · (C1 · C2)

�+t·�) can be decrypted to M · (C1 · C2)
−� under

the modified secret keys. As C1, C2 and � are known to us, we can obtain M
easily by computing M · (C1 · C2)

−� · (C1 · C2)
�.

Obviously in the above cases, message M can be easily recovered given the
output of the decryption algorithm on the modified secret keys.

4.2 Our Construction

Let G be a group of prime order p. We present a public-key encryption scheme
which is CCA secure under the linear related-key attacks as follows.
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– Key generation. Choose random elements g, f , h ∈ G, x, y, a, b, α, β, γ
∈ Zp, a collision resistant hash function H : G4 → Zp, and sets u1 = gxfy,
u2 = gaf b, u3 = gαfβ , v = hγ .
The public key is PK = (g, h, f , u1, u2, u3, v), and the secret key is SK =
(x, y, a, b, α, β, γ).

– Encryption. To encrypt message M ∈ G,
1. choose random elements r, r′ ∈ Zp, and set

C1 = grvr
′
, C2 = f rvr

′
, C3 = hr′ , C4 = u1

r ·M.

2. compute t = H(C1, C2, C3, C4), C5 = (u2u3
t)r.

3. output ciphertext C = (C1, C2, C3, C4, C5).
– Decryption. To decrypt ciphertext C = (C1, C2, C3, C4, C5),

1. compute t = H(C1, C2, C3, C4), and output ⊥ if the following equation
holds.

C5 	= (C1 · C3
−γ)a+tα(C2 · C3

−γ)b+tβ .

2. otherwise, output M as M = C4 · (C1 · C3
−γ)−x · (C2 · C3

−γ)−y.

Correctness. For any sequence of the key generation and encryption algorithms,
it holds that

(u2u3
t)r = (C1 · C3

−γ)a+tα(C2 · C3
−γ)b+tβ

= (gaf b(gαfβ)t)r,

M = C4 · (C1 · C3
−γ)−x · (C2 · C3

−γ)−y

= C4 · (gxfy)−r,

and therefore the decryption algorithm is always correct.

Remarks. Note that compared to the scheme proposed in [20], our construction
is more efficient. The CCA-RKA secure public-key encryption schemes in [20] are
built from adaptive trapdoor relations [15] to generate a tag for every ciphertext
via a strong one-time signature scheme, which implies a trick in it such that the
adversary cannot obtain more information if tag of a ciphertext C equals tag∗ of
the challenge ciphertext C∗, not to mention C = C∗; while in our construction,
we use the Cramer-Shoup public-key encryption scheme [9] as the basis, and the
strong one-time signature schemes are replaced by the ciphertext to generate
tag, such that RKA.Decrypt oracle will still not facilitate the adversary when a
given ciphertext C matches the challenge one C∗, as long as SK does not equal
to φ(SK) for any φ ∈ Φ.

4.3 Security

Theorem 1. Assume the hardness of decisional DH problem, the above public-
key encryption scheme is secure in the CC-RKA security game regarding linear
related-key deriving function φ+.
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Proof. The proof of security is based on augmenting the proof of Cramer and
Shoup with the ideas of generating a generic construction. Specifically, we show
that any algorithm A that breaks the security of the scheme, we can build an
algorithm B that can distinguish between a DH instance and a non-DH instance,
which is given a random tuple (g, f , Z1 = gr, Z2 = f r) ∈ G4 as input.

Setup. Algorithm B chooses random elements h ∈ G, x, y, a, b, α, β, γ ∈ Zp,
and a collision resistant hash function H : G4 → Zp, and then sets u1 = gxfy,
u2 = gaf b, u3 = gαfβ, v = hγ .

Algorithm B sends the public key PK = (g, h, f , u1, u2, u3, v) to algorithm
A, and keeps the private key SK = (x, y, a, b, α, β, γ).

Phase 1. Algorithm A queries (φ, C) to RKA.Decrypt oracle. Algorithm B
responds using the private key φ(SK).

Challenge. Algorithm A outputs two messagesM0,M1 on which it wishes to be
challenged. Algorithm B chooses a random bit d ∈ {0, 1}, and a random element
r′ ∈ Zp, and then responds with the ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ),

where

C∗
1 = Z1v

r′ , C∗
2 = Z2v

r′ , C∗
3 = hr′ ,

C∗
4 = Z1

xZ2
y ·Md, C∗

5 = Z1
a+αt∗Z2

b+βt∗ .

Here t∗ = H(C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ).

Phase 2. Algorithm A continues to adaptively issue queries (φ, C) to
RKA.Decrypt oracle.

– If φ(SK) = SK and C = C∗, such queries are ruled out by the definition of
CC-RKA security game, so algorithm B responds with ⊥.

– Otherwise, algorithm B responds as in Phase 1.

Output. Algorithm A output a guess d′ ∈ {0, 1}. If d′ = d, algorithm B output
1; otherwise, algorithm B outputs 0.

Obviously, if (g, f , Z1, Z2) is a DH instance, then the simulation will be iden-
tical to the actual attack, such that algorithm A has a non-negligible advantage
in outputting the bit d′ = d.

Lemma 1. If (g, f , Z1, Z2) is a DH instance then algorithm A’s view is iden-
tical to the actual attack.

Proof. The actual attack and simulated attack are identical except for the chal-
lenge ciphertext. It remains to prove that the challenge ciphertext has the correct
distribution when (g, f , Z1, Z2) is a DH instance. Actually, in this case, for a
random r ∈ Zp, Z1 = gr and Z2 = f r, the ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 )

as it should be. Assume that algorithm A’s advantage in breaking the CC-RKA
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security of the above scheme is ε, then we can see that algorithm A’s probability
in outputting the bit d = d′ could be 1/2 + ε.

Next, we show that if (g, f , Z1, Z2) is a non-DH instance, then algorithm A
has a negligible advantage in outputting the bit d′ = d. We assume that (g, f ,
Z1, Z2) is a non-DH instance, where logg Z1 = r1, logf Z2 = r2, and r1 	= r2.

Let (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) be the challenge ciphertext given to algorithm A by al-

gorithm B. We use Failure to denote the event where for RKA decryption queries
(φ, C) it holds that (C1, C2, C3, C4) 	= (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ), and H(C1, C2, C3, C4)

= H(C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ). Note that the event Failure has a negligible probability to

occur because hash function H is collision resistant. We say that a ciphertext C
is invalid if logg

C1

C3
γ+� 	= logf

C2

C3
γ+� for any � ∈ Zn

p .
Below we prove that algorithm A has a negligible advantage in outputting the

bit d′ = d if the event Failure does not happen. Specifically speaking, we perform
it in two cases: (1) if the event Failure does not happen, then the RKA decryption
oracle rejects all invalid ciphertexts except with a negligible probability; (2) if
the RKA decryption oracle rejects all invalid ciphertexts, then algorithm A has
a negligible advantage in outputting the bit d′ = d. We conclude by the fact that
the event Failure occurs with a negligible probability.

Lemma 2. If (g, f , Z1, Z2) is a non-DH instance and the event Failure does
not happen, then the RKA decryption algorithm rejects all invalid ciphertexts
except with a negligible probability.

Proof. The probability of the invalid ciphertexts happening in our security
game is analogous to that in the Cramer-Shoup public-key encryption scheme [9]
except that for the RKA decryption oracles, some invalid ciphertexts which will
be rejected in the security game of the Cramer-Shoup scheme will be accepted
in our security game. Suppose that algorithm A is given the public key PK =
(g, h, f , u1, u2, u3, v), and the challenge ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ).

We prove this lemma via considering (a, b, α, β) ∈ Zp from algorithm A’s point
of view, such that for k = logg f , (a, b, α, β) is uniformly random subject to⎧⎨

⎩
logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

.

Note that algorithm A learns nothing on (a, b, α, β) by querying valid ci-
phertexts to the decryption oracle. Actually, from submitting a valid ciphertext,
algorithm A only learns a linear combination of the constraint logg u1 = x+ ky
which is know from the public key.

We denote (C1, C2, C3, C4, C5) 	= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ) as the first invalid

ciphertext queried by algorithm A, where C1 = gr1vr
′
, C2 = f r2vr

′
, r1 	= r2,

and t = H(C1, C2, C3, C4). In this case, there are three cases we need to take
into consideration.

– (C1, C2, C3, C4) 	= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) and t = t∗. This is impossible since we

assume that the event Failure does not happen.
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Note that the event Failure will never happen because the hash function
H in our construction is collision resistant.

– (C1, C2, C3, C4) 	= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) and t 	= t∗. In this case, if the RKA

decryption algorithm accepts the invalid ciphertext, we obtain the following
equations.⎧⎪⎪⎨

⎪⎪⎩
logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

logg C5 = r′1(a+�) + r′2k(b+�) + tr′1(α+�) + tr′2k(β +�)

.

where w = logg h.
These equations are linearly independent as long as k2(r1−r2)(r

′
1−r′2)(t−

t∗) 	= 0, so algorithm A can be used to guess (a, b, α, β). Therefore, the
probability that the decryption algorithm accepts the first invalid ciphertexts
is at most 1/p.

– (C1, C2, C3, C4) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ), t = t∗ but C5 	= C∗

5 , In this case, if
the RKA decryption algorithm accepts the invalid ciphertext, we obtain the
following equations.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

logg C5 = r1(a+�) + r2k(b+�) + t∗r1(α+�) + t∗r2k(β +�)
− r′w�(a+�+ t∗(α+�) + b+�+ t∗(β +�))

.

where w = logg h.
These equations are linearly independent as long as � 	= 0, which is ruled

out by the definition of CC-RKA security, so algorithm A can be used to
guess (a, b, α, β).

For all the subsequent invalid decryption queries, the above analysis holds
except that each time the RKA decryption oracle rejects an invalid ciphertext
algorithm A can rule out one more value of (a, b, α, β).

Lemma 3. If (g, f , Z1, Z2) is a non-DH instance and the RKA decryption
algorithm rejects all invalid ciphertexts, then algorithm A has a negligible ad-
vantage in outputting the bit d′ = d.

Proof. We prove this lemma by considering the distribution of (x, y, γ) ∈
Zp from the view of algorithm A. Algorithm A is given the public key PK
= (g, h, f , u1, u2, u3, v), such that algorithm A’s point of view, (x, y, γ) is
uniformly random subject to logg u1 = x + ky where k = logg f and logg v =
k′γ where k′ = logg h. We suppose that the RKA decryption algorithm rejects
all invalid ciphertexts, and note that by querying valid ciphertexts to the RKA
decryption oracle, algorithm A does not learn any more information about (x,
y, γ) except the relations of the constraint logg u1 = x + ky and logg v = k′γ.
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Hence, algorithm A cannot learn any information about (x, y, γ) through the
RKA decryption queries.

Let C1 = Z1v
r′ , C2 = Z2v

r′ , C3 = hr′ . Note that as long as k′k(r1 − r2) 	= 0,⎧⎨
⎩

logg u1 = x+ ky
logg v = k′γ
logg Z1

xZ2
y = r1x+ kr2y

are linearly independent. In the following, we consider two cases.

– φ(SK) = SK and (C1, C2, C3, C4, C5) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ). In this case,

from the definition of the CC-RKA security game, such queries will be ruled
out, therefore the RKA decryption algorithm outputs ⊥ with noticeable
probability.

– φ(SK) 	= SK and (C1, C2, C3, C4) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ). If the verification

of C5 on (C1, C2, C3, C4) with φ(SK) fails, the RKA decryption algorithm
outputs ⊥. Otherwise, the RKA decryption algorithm responds as

M ′ = C∗
4 · (C∗

1 · C∗
3
−γ−�)−x−� · (C∗

2 · C∗
3
−γ−�)−y−�

= Md · g−r·� · hr′·�·(x+�) · f−r·� · hr′·�·(y+�)

= Md · g−r·� · f−r·� · hr′·�·(x+y+�+�).

We can see that even the all the ciphertexts submitted to RKA.Decrypt oracle
are exactly the same as the challenge ciphertext, algorithm A procures nothing
about (x, y, γ) from the RKA decryption queries under (x+�, y+�, γ +�),
as long as (x +�, y +�, γ +�) 	= (x, y, γ). On the one hand, without (x, y,
γ), algorithm A fails to compute d′ = d under the modified secret keys (x +�,
y+�, γ +�). Therefore algorithm A’s probability in outputting the bit d′ = d
is 1/2.

Lemma 2 makes sure that as long as the event Failure does not happen, the
RKA decryption algorithm rejects all invalid ciphertexts except with a negligible
probability. Lemma 3 proves that as long as the RKA decryption algorithm
rejects all the invalid ciphertexts, algorithm A has a negligible advantage in
outputting the bit d′ = d. Therefore, we can say that algorithm A’s probability
in outputting the bit d′ = d is 1/2.

To sum up, we can see that if (g, f , Z1, Z2) is a DH tuple, algorithm A
wins the CC-RKA game with the probability 1/2 + ε, such that algorithm B’s
probability in solving the decisional DH problem is 1/2 + ε; if (g, f , Z1, Z2) is
a non-DH tuple, algorithm A wins the CC-RKA game with the probability 1/2,
such that algorithm B’s probability in solving the decisional DH problem is 1/2.
Denote by B(g, f , Z1, Z2) = 1 the event that algorithm B solves the decisional
DH problem. Hence, algorithm B has a non-negligible probability

Pr[B(g, f, Z1, Z2) = 1] = 1/2 · (1/2 + ε) + 1/2 · 1/2 = 1/2 + ε/2

of solving the decisional DH problem.
This concludes the proof of Theorem 1.
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4.4 Efficiency

We compareWee’s CC-RKA secure public-key encryption scheme from factoring,
from BDH, from DDH with weaker security and ours from DDH in Table 1.

In this table, “Pairing-E” means the sum of paring computation executed dur-
ing the encryption phase, and “Pairing-D” means the sum of paring computation
executed during the decryption phase. “Ex-E” means the the sum of exponen-
tiation computation executed during the encryption phase, “Ex-D” means the
the sum of exponentiation computation executed during the decryption phase.

Table 1. Comparison between public-key encryption schemes with CC-RKA security

Scheme Ciphertext Size Pairing-E Pairing-D Ex-E Ex-D

Factoring[20] 6 0 0 9 7

BDH[20] 6 1 3 7 5

DDH[20] 7 0 0 9 9

Ours 5 0 0 7 5

5 Conclusions

Followed the work in [4], Wee [20] proposed the first public-key encryption
scheme against related-key attacks via adaptive trapdoor relations [19] while
paying a small overhead in efficiency, of which the existing public-key set-ups
can be maintained without changing. In the constructions of [20], to make sure
the efficiency of the specific constructions, Wee [20] designed some efficient strong
one-time signatures in their instantiations. However, though one-time signatures
are easy to construct in theory, and are more efficient than full-fledged signa-
tures, (i.e., those which are strongly unforgeable under adaptive chosen-message
attack), they still have their price.

Based on a framework to enable the construction of identity-based encryption
schemes that are secure under related-key attacks, Bellare, Paterson and Thom-
son [6] provided a framework to enable the construction of public-key encryp-
tion schemes that are secure under related-key attacks. Public-key encryption
schemes in [6] are achieved in the standard model and hold CC-RKA under rea-
sonable hardness assumptions in the standard model, but they are transformed
from the identity-based encryption schemes such that pairing computation is
inevitable in the efficient instantiations.

To construct an efficient public-key encryption scheme under the setting of
CC-RKA security without pairings and any one-time signature schemes, in this
paper, we focus on the achievement of a full fledged CCA secure public-key
encryption scheme in the context of related-key attack security. After a succinct
review of the security notions related to public-key encryption schemes with
RKA security, we start with pointing out a simple linear related-key attack on
the Cramer-Shoup basic CCA secure public-key encryption scheme [9]. Next,
we propose an efficient public-key encryption scheme which is resilient against
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related-key attacks from DDH, which is in fact a variant of the Cramer-Shoup
public-key encryption scheme [9]. Finally, we prove its CC-RKA security under
the difficulty of solving the DDH problem.
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Abstract. Developers sometimes maintain an internal copy of another software 
or fork development of an existing project. This practice can lead to software 
vulnerabilities when the embedded code is not kept up to date with upstream 
sources. We propose an automated solution to identify clones of packages 
without any prior knowledge of these relationships. We then correlate clones 
with vulnerability information to identify outstanding security problems. This 
approach motivates software maintainers to avoid using cloned packages and 
link against system wide libraries. We propose over 30 novel features that 
enable us to use to use pattern classification to accurately identify package-level 
clones. To our knowledge, we are the first to consider clone detection as a 
classification problem. Our results show our system, Clonewise, compares well 
to manually tracked databases. Based on our work, over 30 unknown package 
clones and vulnerabilities have been identified and patched. 

Keywords: Vulnerability detection, code clone, Linux. 

1 Introduction  

Developers of software sometimes embed code from other projects. They statically 
link against an external library, maintain an internal copy of an external library’s 
source code, or fork the development of an external library. A canonical example is 
the zlib compression library which is embedded in much software due to its 
functionality and permissive software license. In general, embedding software is 
considered as a bad development practice, but the reasons for doing so include 
reducing external dependencies for installation, or the need to modify functionality of 
an external library. The practice of embedding code is generally ill advised because it 
has implications on software maintenance and software security. It is a security 
problem because at least two versions of the same software exist when it is embedded 
in another package. Therefore, bug fixes and security patches must be integrated for 
each specific instance instead of being applied once to a system wide library. Because 
of these issues, for most Linux vendors, package policies exist that oppose the 
embedding of code, unless specific exceptions are required. 

In the example of zlib, each time a vulnerability was discovered in the original 
upstream source, all embedded copies required patching. However, in the past, 
uncertainty existed in Linux distributions of which packages were embedding zlib and 



198 S. Cesare, Y. Xiang, and J. Zhang 

 

which packages required patching. In 2005, after a zlib [1] vulnerability was reported, 
Debian Linux [2] made a specific project to perform binary signature scans against 
packages in the repository to find vulnerable versions of the embedded library. To 
create a signature the source code of zlib was manually inspected to find a version string 
that uniquely identified it. This manual and time consuming approach still finds 
vulnerable embedded versions of software today. We constructed signatures for 
vulnerable versions of compression and image processing libraries including bzip2, 
libtiff, and libpng. We performed a scan of the Debian and Fedora Linux [3] package 
repository and found 5 packages with previously unknown vulnerabilities. Even for 
actively developed projects such as the Mozilla Firefox web browser, we saw windows 
of exploitability between upstream security fixes and the correction of embedded copies 
of the image processing libraries. Even in mainstream applications such as Firefox, 
these windows of opportunity sometimes extended for periods of over 3 months. 

The traditional approach for discovering duplicated fragments of insecure code has 
been through the use of code clone detection. Code clone detection applies pattern 
recognition on the syntactic or structural nature using the insecure code fragment as a 
template. Then a search is performed over other code to identify duplication or near 
identical duplication. 

1.1 Motivation for Package-Level Clone Detection 

Clone detection theoretically solves the problem of insecure code fragments 
propagating to other locations. However, in practice the number of code clones is 
significantly high. For developers of individual projects, clone information may be 
useful. Yet, package maintainers and operating system distributions have no realistic 
actions to take with such clone information since they are not the primary developers 
of the software they release. What package maintainers and operating system vendors 
want is the ability to repackage or build the software in such a way that improves 
security and eliminates clones. If vendors know that an entire package is cloned in 
another, then they can modify the build process to use the operating system's system 
wide library package. This is an achievable goal and improves the security and 
stability of the system. This is our motivation and the reason we see package-level 
clone detection as an important addition to software engineering that traditional clone 
detection does not address. 

1.2 Motivation for Automated Approaches 

The approach of manually searching for embedded copies of specific libraries deals 
poorly with the scale of the problem. According to the list of tracked embedded 
packages in Debian Linux, there are over 420 packages which are embedded in other 
software in the repository. This list was created manually and our results show that it 
is incomplete. Other Linux vendors were not even tracking embedded copies before 
our research supplied them with relevant data. It is evident from this that an 
automated approach is needed for identifying embedded packages without prior 
knowledge of which packages to search for. This would aid security teams in 
performing audits on new vulnerabilities in upstream sources. This identifies the 
motivation for our system named Clonewise to identify package-level clones. 
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Previous systems that automate and address part of the problem are software 
provenance systems. Our system extends such works by recognising more features in 
software that can be used to fingerprint pacakges. Our system also addresses the 
problem of software being implemented in multiple languages, even within the same 
package. Our work is language agnostic. We also address the problem of requiring 
every version of a software to match it against a query. Our system can determine if a 
package is embedded, irrespective of which version number is used. This has 
advantages, but also makes identifying security problems in specific versions harder. 
We overcome this by using side-information that tracks the necessary information and 
that is maintained by operating system vendors. 

Our work is also similar to the concept of structural or higher-level clones as 
proposed in [4]. We are much more specific in the type of structure we are searching 
for. That is, package-level clones. The structural clones in [4] use directory-level 
clones to simulate module-level clones which is not as accurate. 

1.3 Generality 

At first glance, package-level clone detection may appear to be a Linux distribution 
specific problem. However, this problem applies to any vendor who maintains a 
repository of software packages and shares common code amongst packages. This 
problem also applies to any vendor which for legal reasons needs to know the 
provenance of embedded packages such as open source libraries.  Finally, the problem 
applies to any vendor who needs to know what open source libraries have been 
embedded so as to keep up-to-date with upstream releases. It is quite conceivable that 
any large software project may incorporate some permissively licensed open source 
software as an embedded library or package. For all of these reasons, software 
engineering needs to incorporate automated means to provide assurance that the state of 
software and the existence of package-level clones is known. 

1.4 Innovation 

Our approach is to consider code reuse detection as a binary classification problem 
between two packages. The classification problem is ‘do these two packages share 
code?’ We achieve this by performing feature extraction from the two packages and then 
performing statistical classification using a vector space model. The features we use are 
based on the filenames, hashes, and fuzzy content of files within the source packages 

To identify security vulnerabilities we associate vulnerability information from public 
advisories to vulnerable packages and vulnerable source files. We then discover all 
clones of these packages in a Linux distribution. Finally, we check the manually tracked 
vulnerable packages that Debian Linux maintain for each vulnerability and report if any 
of our discovered clones are not identified as being vulnerable. 

In this paper we make the following contributions: 

• We define the problem of package clone detection, and the sub-categories of 
shared and embedded package clone detection. 

• We are the first ones to formulate code reuse detection as a pattern 
classification problem. Then, it is feasible to apply traditional pattern 
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classification algorithms to achieve accurate clone detection. We employ a 
novel asymmetric bagging based classifier combination method to address the 
specific classification problem. 

• We propose over 30 new features for the purpose of clone detection, which are 
fundamental to solve the specific pattern classification problem. In particular, 
the proposed features are basis to the accuracy of clone detection. 

• We propose applications of package clone detection. We present algorithms to 
identify outstanding security vulnerabilities based on out-of-date clones. 

• We implement a complete system, Clonewise, which demonstrates our system 
effectively identifies package clones, finds vulnerabilities and is useful to 
vendors. For example, Debian Linux is planning infrastructure integration of 
Clonewise.  

The structure of this chapter is as follows: Section 2 defines the problem of 
package clone detection and outlines our approach. Section 3 describes how 
Clonewise detects shared and embedded package clones using machine learning. 
Section 4 describes the algorithms we use to identify vulnerabilities based on clone 
information. Section 5 evaluates our system. Section 6 examines related work. 
Section 7 outlines future work. Finally we present our conclusions in Section 8. 

2 Problem Definition and Our Approach 

2.1 Problem Definition 

A package clone is the duplication of one package’s code in another package. It is the 
presence of code reuse between packages. How do we find these package clones? 

A package can be embedded in another package. How do we determine this 
knowing that a package clone exists? 

A package clone may contain vulnerabilities or other security problems because 
the clone is out of date. How do we find these? 

2.2 Our Approach 

Our approach for detecting clones is based on binary classification and shown in Fig. 
1 and described below. A key point is that if two packages share code, one is not 
necessarily embedded in the other. We therefore detect code reuse and embedding as 
related but distinct problems. 

Our approach is to consider code reuse detection as a binary classification problem 
between two packages. The classification problem is ‘do these two packages share 
code?’ We achieve this by performing feature extraction from the two packages and then 
perform statistical classification using a vector space model. The features we use are 
based on the filenames, hashes, and fuzzy content of files within the source packages. 

A package clone consisting of two packages can be analysed to determine if one 
package is embedded in the other. We use a binary classification problem to answer 
this. The features we use are based on the size of the cloned code relative to the size 
of each package, and other features such has how many packages are dependent on 
the packages we are analysing. 
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We determine vulnerable packages by correlating security tracking information 
with our package clone detection analysis. 

 

 

 

 

 

 

 

Fig. 1. Shared package clone detection (above) and embedded package clone detection (below) 

3 Package Clone Detection 

Clonewise is currently based on machine learning and we have found this approach to 
be most versatile and successful. We employ statistical classification to learn and then 
classify two packages as sharing or not sharing code. 

Classification is a well-studied problem in machine learning and software is 
available to make analyses easy. Weka [5] is a popular data mining toolkit using 
machine learning that Clonewise uses to perform machine learning.  

3.1 Shared Package Clone Detection 

Feature extraction is necessary to perform shared package clone classification. We 
need to select features that reflect if two packages share or do not share code. The 
feature vector we extract is obtained from a pair of packages that we are testing for 
sharing of code. The 26 features we use  are discussed in the following subsections. 

Number of Filenames 
Our first set of features is simply the number of filenames in the source trees of the 
two packages being compared. 

Source Filenames and Data Filenames 
In Clonewise, we distinguish between two types of filename features. Filenames that 
represent program source code and programs that represent non program source code. 
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We distinguish these two types of filenames by their file extension. The list of 
extensions used to identify source code are c, cpp, cxx, cc, php, inc, java, py, rb, js, pl, 
m, mli, and lua. Almost all of the features in Clonewise are applied for both source 
and data filenames. 

Number of Common Filenames 
To identify that a relationship exists between two packages such that they share 
common code, we use common filenames in their source packages as a feature. 
Filenames tends to remain somewhat constant between minor version revisions, and 
many filenames remain present even from the initial release of that software. For our 
purposes we can ignore directory structure and consider the package as a set of files, 
or we can include directory structure and consider the package as a tree of files. We 
noted several things while experimenting with this feature: Many files in a package do 
not contribute to the actual program code. C code is sometimes repackaged as C++ 
code when cloned. For example, lib3ds.c might become lib3ds.cxx. The filenames of 
small libraries can often be referred to as libfoo.xx or foo.xx in cloned form. Some 
files that are cloned may include the version number. For example, libfoo.c might 
become libfoo43.c. We therefore employ a normalization process on the filenames to 
make this feature counting the number of similar filenames more effective. 

Normalization works by changing the case of each filename to be all lower case. If 
the filename is prefixed with lib, it is removed from the filename. The file extensions 
.cxx, .cpp, .cc are replaced with the extension .c. Any hyphens, underscores, numbers, 
or dots excluding the file extension component are removed. 

Number of Similar Filenames 
It is useful to identify similar filenames since they may refer to nearly identical source 
code. A fuzzy string similarity function is used that matches if the two filenames are 
85% or more similar in relation to their edit distance. 

Our similarity measure is defined as: 

We chose the edit distance as our string metric after experimenting with other 
metrics including the smith-waterman local sequence alignment algorithm and the 
longest common subsequence string metric. 

Number of Files with Identical Content 
We perform hashing of file content using the ssdeep software and do a comparison of 
hashes between packages to identify identical content without respect to the filenames 
used. Like the previous class of feature, we have a feature for the number of files 
having identical content that are  all program source code, and a feature for the 
number of files having identical content that are non-program source code. 

Number of Files with Common Filenames and Similar Content 
To increase the precision of file matching from the previous feature, we employ a 
fuzzy hash of the file contents and then perform an approximate comparison of those 
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hashes for files with similar filenames. While the previous approach is based on file 
names alone, the new approach is a combination of file names and content. Fuzzy 
hashing can be used to identify near identical data based on sequences within the data 
that remain constant using context triggered piecewise hashing [6]. The result of 
fuzzy hashing file content is a string signature known as its fuzzy hash. Approximate 
matching between hashes is performed using the string edit distance known as the 
Levenshtein distance. The distance is then transformed to a similarity measure. The 
similarity measured is a number between 0 and 100. Zero indicates that the hashes are 
not at all similar, and 100 indicates that the hashes are equal. 

We have features for the number of files of similar content with a similarity greater 
than 0 of program source code and non-program source code. We also count the 
number of similar files having a similarity greater than 80. 

Scoring Filenames 
Not all filenames should be considered equal. Filenames, such as README or 
Makefile that frequently occur in different packages should have a lower importance 
than those filenames which are very specific to a package such as libpng.h. We 
account for this by assigning a weight for each filename based on its inverse 
document frequency [7]. The inverse document frequency lowers the weight of a term 
the more times it appears in a corpus and is often used in the field of information 
retrieval. 

The inverse document frequency is defined as: 

where D is the set of packages, d is a package, and t is a filename in a package. 
We use features scoring the sum of matching filename weights to the number of 

similar files, the number of similar files and similar content with similarity greater 
than 0 and 80, for both program source code and non-program source code.  

Matching Filenames between Packages 
If filename matching between two packages was performed as an exact match, then 
the number of filenames shared would be the cardinality of the intersection between 
the two sets of filenames. However, in Clonewise the filename matching is 
approximate based on the string edit distance. This means that some filenames such as 
Makefile.ca could potentially match the filenames Makefile.cba and Makefile.cb. 
Moreover, the scores for each filename as discussed in the previous section can be 
different depending on which filename is deemed to be a match. We solve this 
problem by employing an algorithm from combinatorial optimization known as the 
assignment problem. 

The assignment problem is to construct a bijective mapping between two sets, 
where each possible mapping has a cost associated with it, such that the mappings are 
chosen so that the sum of costs is optimal. Formally, the assignment problem is 
defined as: 
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Given two sets, A and T, of equal size, together with a weight function C: A × T → 
R. Find a bijection f: A →T such that the cost function: 

is optimal. 
In our work the sets are the two packages and the elements of each set are the 

filenames in that package. The cost of the mapping between sets is the score of the 
matching filename in the second set according to its inverse document frequency. Our 
use of the assignment problem seeks to maximize the sum of costs. 

The assignment problem can be solved in cubic time in relation to the cardinality 
of the sets using the Hungarian or Munkres [8] algorithm. 

The Munkres algorithm is effective, however for large N, a cubic running time is 
not practical. We employ a greedy solution that is not optimal but is more efficient 
when N is large. 

3.2 Shared Package Clone Classification 

The output of Clonewise is the set of packages where the classification determines the 
package pairs share code. Clonewise also reports the filenames between the packages 
and the weights of those filenames. 

Clonewise uses supervised learning to build a classification model. We use the 
manually created Debian embedded-code-copies database that tracks package clones 
to train and evaluate our system. We employ a number of classifiers to evaluate our 
system as described in Section 7. 

3.3 Embedded Package Clone Detection 

To detect embedded package clones we use the results of shared package clone 
detection and apply a filtering stage to exclude packages where the first package is 
not embedded in the second package. We solve this problem by considering the 
problem as a binary classification problem.  

Similar to the shared package clone detection approach, we perform feature 
extraction before using statistical classification. The 18 features we use are 
summarized in the following: 

Number of Filenames 
As in shared package clone detection, the number of filenames that are source and 
data are used. 

Percent of X Embedded in Y 
These features say how much of one package is embedded in the other package. 

Package X has Lib in Name 
These features are useful in identifying if a package is a library, which increases its 
likelihood that it is an embedding. If the package name is prefixed with ‘lib’, then the 
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feature is assigned a value of 1. If the prefix is not that, then the value is 0. The prefix 
is compared without regard to case. 

A to B Ratio 
These features inform us on how big the packages are relative to each other. It is 
typical that an embedded library is smaller than the software it is embedded in. 

Package Dependents 
These features inform us on how many other packages depend on the package in 
question. Libraries are typically used by many other packages and so the value for this 
feature will also be high. As explained earlier, that the package is library indicates 
that the package is more likely to be embedded. 

3.4 Classification Using Asymmetric Bagging 

For training our classifier, we have a finite set of labelled positive cases as obtained 
from vendor generated databases and we are able to arbitrarily generate labelled 
negative cases. We have many more negative cases than we have positive cases, 
wherein a positive case indicates an embedded package clone. This scenario 
represents the imbalanced class problem [9] where many classifiers favour the 
majority class. We decided to improve our detection rate of the positive class by 
addressing the imbalanced class problem by performing asymmetric bagging [10]. 

Asymmetric bagging uses all the labelled positive cases and use an equivalent 
number of negative cases obtained from a random sampling. This extends traditional 
bagging which uses a random and equal sampling from both classes. The asymmetric 
bagging approach described generates a single bag upon which a classification model 
is built from training. Many bags are created and classification models are built for 
each bag. When performing classification of an unlabelled instance, each bag makes a 
prediction and the results are aggregated using a majority vote. This has the effect or 
improving the accuracy when detecting positive cases. We implemented the 
asymmetric bagging algorithms by extending the bagging meta-classifier in the Weka 
machine learning toolkit. 

4 Inferring Security Problems 

In this section, we examine algorithms and approaches to detect software 
vulnerabilities. Package-level clone detection is not strictly the best method to 
discover security problems through code cloning. However, it is almost impossible in 
practice to apply code-level clone detection across tens of thousands of packages with 
potentially hundreds of thousands of clones and expect developers to integrate fixes. 
The reality is, a vendor's security team can fix high impact bugs and push for package 
maintainers to build their software using system wide package-level libraries. In 
effect, the only practically used system of bug fixing on a large scale in regards to 
clones, is by fixing package-level clones. Yet the problem still exists of how to 
motivate package maintainers or security teams to apply these fixes. The current 
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practice is to highlight that the cloned package contains known security problems and 
pointing out that there is less cost in rebuilding the software to eliminate the higher-
level clone than it is to apply individual patches. Therefore, we see value in 
Clonewise as being a tool that can bring about good practices of eliminating package 
clones by highlighting vulnerabilities. To achieve the task of vulnerability detection, 
we propose use-cases for clone detection by Linux security teams. We also propose a 
completely automated solution to find out-of-date clones that have outstanding 
security vulnerabilities. 

4.1 Use-Case of Clone Detection to Detect Vulnerabilities 

One method which we initially tried, for the purpose of vulnerability detection, was to 
look at packages that had reported vulnerabilities against them. We considered this a 
list of security sensitive packages. We used this list of packages as input to our clone 
detection analysis. Anytime a security sensitive package was cloned, we verified that 
the clone was not out of date. This is an effective method to detect vulnerabilities, but 
it requires manual analysis. Even though the technique we described is manual, it still 
has benefits today and can be used in an on-going basis to detect new vulnerabilities. 

If a new vulnerability is found in a package, then clone detection should be 
performed on the Linux distributions because it is likely the same vulnerability is 
present in the cloned software. For example, if a vulnerability is reported for libpng, 
then clone detection should be performed and each libpng clone checked to see if the 
vulnerability is present. This method can be used by Linux security teams, but for old 
vulnerabilities it is not advisable since many clones would be patched but not reported 
by a Linux vendor. Therefore, we looked at other automated methods to detect out-of-
date clones which we describe in the following sub-sections. 

4.2 Automated Vulnerability Inference 

In Clonewise, we can use clone detection in addition to Debian Linux's security 
tracking information to identify untracked vulnerabilities. 

Clonewise takes a vulnerability report given as a CVE (Common Vulnerabilities 
and Exposures) number as input and extracts the vulnerable package from the data. 
The standardized package name associated with the vulnerability, given as a CPE 
(Common Platform Enumeration) package name, is translated to a native Debian 
package name. 

Clonewise then parses the summary of the CVE report to find the vulnerable 
source files. It is possible to extract theses vulnerable source files from the summary 
by tokenizing the summary into words and extracting words that have a file extension 
of known programming languages. 

Clonewise then looks at all the clones of the vulnerable package and trims the list 
by ensuring one of the vulnerable source files is present in the clone and that the 
fuzzy hash between the vulnerable package’s source is similar to the clone’s. 

We also trim the list by ignoring clones that we believe have been patched to use 
the system wide dynamic library. We did this by checking if in the binary version of 
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the package the embedded package was a package dependency. If the embedded 
package is a dependency, then the main package almost certainly uses it for dynamic 
linking. Dynamic linking is the normal approach vendors use to address the security 
implications of package clones. 

Finally, Clonewise checks to see if Debian Linux is tracking this package clone as 
being affected by that particular CVE. If it is not being tracked, then Clonewise will 
report the package as being potentially vulnerable. 

This process of finding outstanding vulnerabilities is applied to every CVE of interest 
in the database, and a final report is generated. The normal process is that a security 
analyst then verifies each reported vulnerability and eliminates any false positives. 

5 Results and Evaluation 

In this section, we discuss how we use an Amazon EC2 cluster to generate our results. 
We then discuss how our system performs against a labelled dataset of package clones 
and the security vulnerabilities our system has discovered. Finally, we discuss a web 
service to perform online scanning of software using our EC2 generated database. 

5.1 Clonewise Compute Cluster 

Our system employs multicore and clustering. We analysed our Linux distribution using 
a high performance compute cluster. We purchased 4 hours of cluster computing time 
from the Amazon EC2 cloud computing service. We built a 4 node cluster with dual 
CPUs per node, Intel Xeon E5-2670, eight-core "Sandy Bridge" architecture), 60.5G of 
memory per node, and CPU performance identified as 88 EC2 compute units. We then 
performed package-level clone detection on this infrastructure. 

5.2 Establishing the Ground Truth for Training and Evaluation 

Debian Linux maintain a manually created database of packages that are cloned in 
their security tracker database. We use this list of entries to establish the ground truth 
for our labelled data in an evaluation. 

The Debian database was not originally created to be processed by a machine, so 
some of the data is not consistent in referencing packages with their correct machine 
readable names. Instead, shorthand or common names for packages and libraries are 
sometimes used. We cull all those entries which do not reference package sources and 
are therefore not suitable for our system. 

Table 1. Accuracy of Shared Package Clone Detection 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.47562 0.57687 0.98599 0.52137 

Multi. Perceptron 0.80555 0.26806 0.98948 0.40225 
C4.5 0.85878 0.68725 0.99436 0.76349 

Random Forest 0.89881 0.70039 0.99499 0.78728 
Rand. Forest (0.8) 0.96746 0.58607 0.99426 0.72994 
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Table 2. Accuracy of Shared Package Clone Detection 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 439/322 484/56296 57.69% 0.85% 

Multilayer Perceptron 204/557 48/56732 26.81% 0.08% 
C4.5 523/238 86/56694 68.73% 0.15% 

Random Forest 533/228 60/56720 70.04% 0.11% 
Random Forest (0.8) 446/315 15/56765 58.61% 0.03% 

Table 3. Accuracy of Embedded Package Clone Detection 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.10171 0.94349 0.35580 0.18362 

Multi. Perceptron 0.75229 0.43101 0.94540 0.54802 
C4.5 0.89235 0.75164 0.97396 0.81597 

Random Forest 0.89067 0.72798 0.97225 0.80114 
Asym. Bagging 0.53196 0.91852 0.93168 0.67372 

Table 4. Accuracy of Embedded Package Clone Detection 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 718/43 6341/2808 94.35% 69.31% 

Multilayer Perceptron 328/433 108/9041 43.10% 1.18% 
C4.5 572/189 69/9080 75.16% 0.75% 

Random Forest 554/207 68/9081 72.80% 0.74% 
Asymmetric Bagging 699/62 615/8534 91.86% 6.72% 

 
We had two types of negative labeled entries where two packages are said not to be 

cloned with each other. One case was for shared package clone detection, and the 
other was for embedded package clone detection. To establish true negatives for 
shared package clone detection, we randomly selected pairs of packages not in our 
true positive list. We label these package pairs as negatives. This data can be unclean 
since we observe the labeled true positives are incomplete, but even so, the true 
negatives we label are still useful for training our statistical model.  In total, we 
obtained 761 labelled positives and 56780 negatives. 

Table 5. Adhoc Detection of fedora Linux vulnerabilities 

Package Embedded Package 
OpenSceneGraph lib3ds 
mrpt-opengl lib3ds 
mingw32-OpenSceneGraph lib3ds 
libtlen expat 
centerim expat 
mcabber expat 
udunits2 expat 
libnodeupdown-backend-ganglia expat 
libwmf gd 
Kadu mimetex 
cgit git 
tkimg libpng 
tkimg libtiff 
ser php-Smarty 
pgpoolAdmin php-Smarty 
sepostgresql postgresql 

To generate true negatives for the embedded package clone detection, we paired up 
all packages that were reported as being embedded in X, ignoring those cases where 
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X was the embedded code. This is what we expect our system to report – that X is 
embedded in Y and Z, but Y is not embedded in Z, and Z is not embedded in Y. In 
total, we were able to label 9149 negative cases. 

5.3 Accuracy of Shared Package Clone Detection 

We  employed 10-fold validation from our labeled dataset to evaluate the accuracy of 
our system and experimented with a number of classifiers including Naïve Bayes 
[11], Multilayer Perceptron, C4.5 [12], and Random Forest  [13]. Our results are 
shown in Table 1 and Table 2. The data is very imbalanced and this skews the 
accuracy, which easily achieves better than 99%, because we can identify negative 
cases more easily than positive cases. We obtained the best result using the Random 
Forest classification algorithm. This classification algorithm performed significantly 
better than all other algorithms we evaluated. The true positive rate is 70.04%, the 
precision is 89.88%, the recall is 70.05%, and the f-measure is 78.73%, which we 
think is quite reasonable for the first implementation of an automated system for 
package clone detection. The false positive rate must be very low for our system to be 
used by Linux security teams. Our initial false positive rate is 0.11%. We then 
modified the decision threshold of the random forest algorithm to consider false 
positives as more significant than false negatives. Our false negative rate is 0.03% 
with a decision threshold of 0.8 which represents that 3 in every 10,000 package pairs 
is mislabeled as a positive. The true positive rate is lower with a higher decision 
threshold and is 58.61%. This is the trade-off we accept for a low false positive rate. 
There are about 18,000 source packages, so there are 18,000 package pairs that are 
classified when performing clone detection on an individual package. Therefore, if 
our training data were not noisy, we would predict 4 to 5 false positive per complete 
clone detection on an individual package. However, our labelled negatives are noisy, 
and some negatives are actually positives. Therefore, we think between 4 to 5 false 
positives is closer to an upper limit. This is reasonable for a manual analyst to verify 
and we think it will not cause significant burden on Linux security teams. 

Table 6. Adhoc Detection of Debian Linux vulnerabilities 

Package Embedded Package 
boson lib3ds 
libopenscenegraph7 lib3ds 
libfreeimage libpng 
libfreeimage libtiff 
libfreeimage openexr 
r-base-core libbz2 
r-base-core-ra libbz2 
lsb-rpm libbz2 
criticalmass libcurl 
albert expat 
mcabber expat 
centerim expat 
wengophone gaim 
libpam-opie libopie 
pysol-sound-server libmikod 
gnome-xcf-thumnailer xcftool 
plt-scheme libgd 
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Table 7. Automated Vulnerability Inference 

TP + FP (Packages) 19 

TP (Packages) 10 

FP (Packages) 9 

TP + FP (CVEs) 132 

TP (CVEs) 81 

FP (CVEs) 51 

Table 8.  Automated Detection of Potential Vulnerabilities 

Package Embedded Package 
freevo feedparser 
hedgewars freetype 
ia32-libs * (see text) 
libtk-img tiff 
likewise-open curl 
luatex poppler 
planet-venus feedparser 
syslinux libpng 
vnc4 freetype 
vtk tiff 

5.4 Accuracy of Embedded Package Clone Detection 

We evaluated the embedded package clone detection using a number of classifiers 
including Naïve Bayes, Multilayer Perceptron, C4.5, and Random Forest. Our results 
are shown in Table 3 and Table 4. We obtained the best result using the C4.5 
classification algorithm. The true positive rate was 75.16%, the false positive rate was 
0.75%, the precision was 89.24%, the recall was 75.16%, and the f-measure was 
81.60%. We then used this algorithm as a base classifier for our asymmetric bagging 
meta-classifier with 50 bags. This improved the true positive rate to 91.86% but also 
increased the false positive rate to 6.72%. We see this as an acceptable trade-off to 
improve the true positive rate. 

5.5 Practical Package Clone Detection 

As part of the practical results from our system we contributed 34 previously 
untracked package clones to Debian Linux’s embedded code copies database. Thus, 
we feel that the package clone detection provides tangible benefit to the Linux 
community. We also verified if the embedded packages we detected were not in fact 
patched by the Linux vendors to link dynamically against a system wide library.  

5.6 Vulnerability Detection 

A consequence of package clone detection is determining if a clone is out of date and 
if it has any outstanding and unpatched vulnerabilities. As part of our work we 
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detected over 30 vulnerabilities in Debian and Fedora Linux because of package clone 
issues by checking security sensitive packages manually, or using adhoc identification 
of out-of-date clones. The vulnerabilities in each package we found using clone 
detection are shown in Table 5 and 6. 

5.7 Automated Vulnerability Detection 

We performed a more recent evaluation of completely automated vulnerability 
inference over the years of 2010, 2011, and 2012. Clonewise reported 132 
vulnerabilities across 19 packages. We submitted bug reports against each package to 
Debian Linux. Not all our submitted bug reports were actual vulnerabilities. Some 
reports were erroneous because Clonewise falsely identified a package clone when 
one did not exist. Another source of errors was that some bugs we reported as 
vulnerabilities could not be triggered, even though the clone was correctly identified 
and had unpatched CVEs. This was true of libpng image processing library being 
embedded in the syslinux boot loader package. Boot loading displays an image, but 
does not allow an attacker to control that image to trigger the vulnerability. A high 
number (64) of vulnerabilities were found in the ia32-libs package. This package 
contains a list of embedded libraries and is only updated by Debian on point releases. 
Debian informed us that this package would invariably contain vulnerabilities, but in 
the unstable release of Debian an alternative approach will be employed which 
resolves these issues by not embedding libraries. 

Debian have not yet confirmed all our bug reports so we investigated each package 
manually to check that a package clone existed, and that the internal version number 
of the library was a version vulnerable to the CVE Clonewise reports. The results are 
shown in Table 7. It should be noted that the high number of true positives is largely 
accounted for by the 64 vulnerabilities we marked as such once Debian informed us 
that ia32-libs was by nature collecting vulnerabilities until point releases. 
Nonetheless, we detected unverified vulnerabilities in more than 50% of the packages 
Clonewise reported. We performed this manual analysis stage of all vulnerabilities, 
except for those in ia32-libs, in less than 2 hours. Our results are shown in Table 6. In 
the case that these potential vulnerabilities are not confirmed by Debian, then Debian 
will still need to update their internal CVE database to report that those packages are 
unaffected. Therefore, our work still remains beneficial. 

The results of our system demonstrate that we effectively identify vulnerabilities 
with a false positive rate that is practical for manual verification in a feasible amount 
of time. 

5.8 Clonewise as a Web Service 

We have made available some functionality that Clonewise implements at 
http://www.codeclones.com. The web service takes a tarball of source code and 
reports if any of around 420 common open source libraries are embedded in it. The 
web service frontend is implemented in PHP, shell scripts, and Python. The frontend 
passes the request to HTTP-based load balancer located on another server. The load 
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balancer then passes the request to a backend cluster. We can scale our system by 
running a script to add more nodes to the backend cluster as necessary. The web 
service uses Amazon EC2 to provide the virtual private servers. 

6 Related Work 

Large scale manual attempts at auditing specific Linux distributions for embedded 
packages have occasionally occurred in the past. In 2005, the Debian package 
repository was scanned for vulnerable zlib fingerprints based on version strings [14]. 
Antivirus signatures were generated and ClamAV performed the scanning. Our 
system improves practice by automating the discovery of embedded packages without 
prior knowledge of which packages are embedded. Additionally, our system 
automatically constructs the signatures to detect embedded packages. 

Related works to ours is that of software clone detection [15]. Clone detection 
identifies duplicated copies of code fragments. This can be used to identify 
duplication of effort in source code which can be a source of software bugs or 
confusion. Work has been done on detecting higher-level clones, including file-level 
clones [4]. Our work extends higher-level clones by being more accurate for package-
level duplication. Additionally, clone detection has been used on industrial sources 
like the Linux kernel [16] or as used by Microsoft engineers [17]. Our system is not as 
fine grained as traditional code clone detection and detects code similarity at the 
source file and package level. This allows us to integrate our system into existing 
practice as can be used by Linux vendors, and allows us to use vulnerability 
information which is provided at the package level. We believe that while our 
approach is simplistic, this method offers practical and immediately useful benefits to 
practitioners. 

Software plagiarism is another software similarity problem and detection systems 
for this often make the distinction between attribute counting and structure based 
techniques. Attribute counting is based on software metrics, or the frequencies of 
particular features occurring, as in [18]. Structure based techniques rely on using 
program structure which typically include the use of dependency graphs or parse 
trees, as in [19] and [20]. Tree and graph edit distances show similarity. [21] and [22] 
use greedy string tiling. Another approach [23] considers tokenization of source code 
adaptive sequence alignment. 

Clone detection can be performed on the textual stream in a source file once 
whitespace and comments are removed [24]. The key concept is that a fingerprint of a 
code fragment is obtained and then the remainder of the source scanned for possible 
matching duplicates. More recently [25, 26] has used the token approach with good 
success in large scale evaluations. Large scale copy and paste clones using a data 
mining approach was investigated in [27, 28]. 

An alternative approach is to use the abstract syntax tree of the source to generate a 
fingerprint [29]. Tree matching can subsequently be used to discover software clones. 
Abstract syntax trees are more impervious to superficial changes to the textual stream 
and textual organization of the code. 
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Other program abstractions can be used to fingerprint code fragments such as the 
program dependency graph which is a graph combining control and data 
dependencies [30]. An interesting semantic approach to clone detection is to use the 
memory states of a program [31]. 

In non-exact matching of code fragments, similarity searches can be used using 
appropriate distance metrics such as the Euclidean distance, given an appropriate 
threshold for similarity. In [32], trees were used to represent source code, and subtrees 
transformed to a vector representation. This allowed for the Euclidean distance and 
clustering to identify clones. Using non exact matching of code fragments allows 
detection of duplicated code that has been revised or that subjected to an evolutionary 
process. Our system allows for evolution and revision of code by using fuzzy hashing 
over the source. This has advantages in detecting package-level clones without storing 
all versions of a particular software package. 

7 Future Work 

Using our classification approach to clone detection, there are several ways we could 
see it applied to improve current practice. We could apply our system to more source 
code, including other Linux distributions, BSD vendors and also online source code 
repositories such as Sourceforge [33]. It is conceivable that source code repositories 
could offer services to find package clones. Our system could be integrated into a 
package build system to automatically update the embedded database information or 
ask for validation from a package maintainer. Debian Linux would like our Clonewise 
tool to run constantly in the background and scan the source code repository to update 
a live database of clones. If we did this, we could enforce build recommendations that 
aim for avoidance of embedded code. The Debian Linux security team has asked us to 
perform this integration into their distribution as part of a standard operating 
procedure for when a vulnerability is found in a package and this is a focus of our 
current work.  

8 Conclusion 

In addition to the number of reported vulnerabilities and subsequent patching and 
resolution of vulnerabilities, we believe our research has much value in the practical 
approach of coping with embedded code and packages that may or may not be known 
about. We believe all vendors benefit in creating and maintain databases of embedded 
code in their package repository and our research fills a gap when the manual task of 
auditing in excess of 10,000 packages per distribution is too time consuming to be 
practical. There is much work as a consequence that could be applied to current 
practice to aid operating system security and we feel our work is a good step towards 
this goal. 
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Abstract. Generating exploits from the perspective of attackers is an ef-
fective approach towards severity analysis of known vulnerabilities. How-
ever, it remains an open problem to generate even one exploit using a
program binary and a known abnormal input that crashes the program,
not to mention multiple exploits. To address this issue, in this paper, we
propose PolyAEG, a system that automatically generates multiple ex-
ploits for a vulnerable program using one corresponding abnormal input.
To generate polymorphic exploits, we fully leverage different trampoline
instructions to hijack control flow and redirect it to malicious code in the
execution context. We demonstrate that, given a vulnerable program and
one of its abnormal inputs, our system can generate polymorphic exploits
for the program. We have successfully generated control flow hijacking
exploits for 8 programs in our experiment. Particularly, we have gener-
ated 4,724 exploits using only one abnormal input for IrfanView, a widely
used picture viewer.

Keywords: software vulnerability, dynamic taint analysis, exploit
generation.

1 Introduction

Software vulnerability is one of the major threats to the computer system. Ex-
ploit generation from the perspective of attackers is one of the most effective
approaches for vulnerability assessment. Traditionally, exploit generation is per-
formed manually and requires prior knowledge of the vulnerabilities. However,
manually generating exploits is time-consuming and highly dependent on the
experience of the analysts, and cannot satisfy the demand for vulnerability as-
sessment and defense.

To address this issue, many exploit generation schemes have been proposed.
Brumley et al. [8] proposed an approach to automatically generate exploits for
the potential vulnerabilities by comparing victim applications with their patched
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versions. Lin et al. [14] presented a dynamic exploit generation method by mu-
tating a set of input values relevant to the execution of a vulnerable code lo-
cation. The exploits they generated can only crash the programs so that their
approaches are not able to verify whether the vulnerability is used to execute
malicious code. Avgerinos et al. [2] proposed the first system to generate exploits
containing malicious code by source code analysis and preconditioned symbolic
execution. However, such approach cannot be used for the closed source software.

In this paper, we propose an automatic polymorphic exploit generation
(PolyAEG) system that aims to generate polymorphic exploits containing mali-
cious code by given program binary and an abnormal input causing it to crash.
To achieve PolyAEG, the following questions need to be answered.

In order to hijack the control flow and make sure malicious code execution,
(i)which input bytes should be modified? and (ii)what values should be assigned
to them? (iii)Based on the abnormal input, how can we diversify the exploit
generation for a vulnerable program?

To answer these questions, PolyAEG traces program execution and performs
dynamic taint analysis. During the taint analysis, PolyAEG detects all possible
hijacking points, generalizes the constraints for the current execution path and
identifies all user-controlled memory regions. When a hijacking point is detected,
PolyAEG leverages trampoline instructions and one shellcode under the current
runtime context, and accommodates them into the appropriate user-controlled
memory regions to ensure that the hijacked execution flow reaches the shellcode.
The data dependencies between the program input and the accommodated ele-
ments can be clearly identified by PolyAEG, so PolyAEG can find all relevant
input bytes. They should be modified for exploit generation.(answer i)

In addition, as for an effective exploit, the values of the bytes to be modified
should satisfy both data dependencies mentioned above and the path constraints.
PolyAEG solves all the values for these bytes respectively, and use them to con-
struct the new input, i.e., the exploit. When the program runs with this exploit,
the control flow can be hijacked from the hijacking point and the trampoline
instructions together with the shellcode can appear at expected memory loca-
tions.(answer ii)

PolyAEG can diversify combinations of different trampoline instructions and
shellcode to generate polymorphic exploits. Moreover, PolyAEG is able to iden-
tify all possible hijacking points. For each hijacking point, PolyAEG performs
the same exploit generation procedure as above, which contributes to more ex-
ploits.(answer iii). The generated exploits can be used to systematically evaluate
the severity of the program vulnerability.

This paper makes the following contributions:

– We propose an PolyAEG architecture that can automatically generate poly-
morphic exploits by given program binaries and abnormal inputs. PolyAEG
performs dynamic taint analysis to extract the execution information, ana-
lyzes the layout of the memory to accommodate the shellcode and trampoline
instructions, and eventually constructs exploits by modifying relevant input
bytes.
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– We propose a novel approach to produce exploits by diversifying combina-
tions of trampoline instructions and shellcode. It is not only increase the
chance for generating one effective exploit, but also contribute to polymor-
phic exploit generation, which is important for a systematic evaluation of a
found vulnerability.

– We implement PolyAEG and verify it by generating exploits for several real-
world program vulnerabilities. PolyAEG successfully generated control flow
hijacking exploits for each program. Especially, it generates 4,724 exploits
for IrfanView, a widely used picture viewer, using one abnormal input.

The remainder of paper is organized as follows: Section 2 introduces PolyAEG’s
overview. We present different phases for exploit generation in Section 3 to 5.
PolyAEG was evaluated with different vulnerable programs in Section 6. We
discuss limitations and future work in Section 7. Related work is presented in
Section 8 and conclusions are in Section 9.

2 Overview of PolyAEG

PolyAEG takes in one vulnerable program and one abnormal input, and gener-
ates polymorphic exploits. Figure 1 shows the architecture of PolyAEG. Basi-
cally, PolyAEG is performed in the following three phases: Dynamic Information
Extraction, Constraint Generation, and Exploit Generation.

Fig. 1. The overview of PolyAEG

– Phase 1: Dynamic Information Extraction. In this phase, we dynamically
run the vulnerable program with the given abnormal input that can crash
the program, trace each instruction and perform dynamic taint analysis to
collect execution information. We analyze the taint propagation procedure
to detect hijacking points of the control flow and extract tainted memory
regions for storing utilized trampoline instructions and shellcode.

– Phase 2: Constraint Generation. The goal of this phase is to generate the path
constraints which ensure that the hijacking point is reachable when the pro-
gram runs with the exploit as input. The path constraints are generated based
on the tainted execution information from Phase 1. They are represented by
a set of constraint formulas with the input data as variables to check.
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– Phase 3: Exploit Generation. In Phase 3, we leverage trampoline instructions
to construct a trampoline instruction chain which redirects the program’s ex-
ecution to the shellcode. We accommodate the chain and the shellcode into
tainted memory regions. We eventually generate one exploit by modifying
the relevant input bytes according to specified data dependencies and path
constraints identified in previous phases. Diverse patterns of trampoline in-
struction chains and multiple alternatives for shellcode location contribute
to polymorphic exploit generation.

We will further discuss the details in the following sections.

3 Dynamic Information Extraction

An effective exploit must ensure the program’s execution could be hijacked and
the trampoline instructions and shellcode should be located at the appropriate
places in the memory when the program runs with it as input. Therefore, we need
to detect hijacking points, identify the path constraints restricting the execution
to the hijacking point, and extract the layout of user-controlled memory regions
that could be applied to accommodate trampoline instructions and the shellcode.

To achieve this, we trace the vulnerable program running with the abnor-
mal input and perform fine-grained dynamic taint analysis at byte level. We
enhance existing taint analysis approaches [10,15] especially by constructing
iTPG(instruction-level Taint Propagation Graph) and GTSR(Global Taint State
Record), which not only records taint propagation but supports backtracking
analysis.

iTPG records the taint propagation information during the vulnerable pro-
gram running at instruction level. As is shown in Figure 2, a grey node represents
a memory taint source corresponding to the data coming from the program in-
put(e.g., files or network); a white node represents a tainted instruction. The
edges linking nodes represents the data flow dependency among tainted data.

GTSR records taint states of memory bytes, general registers and bit flags
in EFLAGS. Each item is represented by a 3-tuple <TaintId, TaintStat, iTN-
ode>, where TaintId denotes the identifier of each byte or bit, TaintStat denotes
whether it is tainted or not, and iTNode denotes a pointer which points to the
tainted instruction last modifying the byte indicated by TaintId. Note that, a
32 bit register is specified by four bytes in GTSR.

iTPG and GTSR reflect the runtime context about taint propagation. The re-
lationship between them is illustrated by Figure 2. When one tainted instruction
ti modifies tainted bytes recorded in GTSR, a new iTPG node representing ti
will be added into iTPG. We find the last tainted instruction ti’ that modified
those tainted bytes, and then link ti to ti’. Meanwhile, we update the corre-
sponding iTNode pointing ti’ before to point to ti. If executing ti also influences
some bit flags in EFLAGS, we handle it similarly.

From iTPG and GTSR, we can idenfity the relevant input bytes of a tainted
byte and the data dependencies between them. As is shown in Figure 2, a tainted
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Fig. 2. iTPG, GTSR and TMG

byte tb corresponds to one item in GTSR. The iTNode points to a node in
iTPG which represents the tainted instruction last modifying tb. Backtracking
along iTPG from this node to taint source nodes, we obtain a trace consisting
of recorded tainted instructions. From that, we can identify the tb’s relevant
input bytes ini, ..., inj and their data dependencies value(tb) = f(value(ini), ...,
value(inj)), where f can be educed by the semantics of the tainted instructions
within the trace.

During dynamic taint analysis of the vulnerable program, we detect hijack-
ing points by checking if tainted data are used in indirect control transfer(i.e.,
loaded on EIP) with ret, jmp and call instructions. When a hijacking point is
detected, we identify the layout of tainted memory areas and path constraints.
A tainted memory area consists of successive tainted bytes. We denote it as
tmg(tainted memory garget). It can be expressed as <start, end>, where start
indicates the starting address of this area and end indicates the ending address.
We extract all the tmg, denoted as TMG, from GTSR, and will utilize them to
accommodate shellcode and trampoline instructions. Path constraints are iden-
tified by analyzing the executed path indicated by iTPG. We discuss it in the
next section.

4 Constraint Generation

The exploits are generated by modifying relevant input bytes. The modifications
should satisfy specified predicates that guarantee the program can execute to the
hijacking point, especially when the input contains checksum fields. To ensure
the hijacking point is reachable, we identify all “input-derived” branches within
the path to the hijacking point, and generalize the constraints which reflect all
the corresponding branch-taken results.
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We denote “input-derived” branches as tainted branches. At each tainted
branch, we identify the relevant input bytes that influence its branch-taken re-
sult, and generalize the corresponding constraints. A tainted branch instruction
corresponds to an iTPG node in iTPG. Backtracking along iTPG from this node
to taint source nodes, we can obtain the relevant input bytes and an iTPG nodes
sequence which represents a trace of recorded tainted instructions. The trace can
be used to symbolically generalize constraints for this tainted branch. In this pa-
per, we utilize Z3 [11] which is a high-performance SMT solver to achieve this.
First, we assign the relevant input bytes to different symbolic variables, and
then perform concolic symbolic execution for each tainted instruction within the
trace. At the branch instruction, since the corresponding bits in EFLAGS indi-
cate the branch-taken result, we generate constraint formulas according to their
values in SMT format [3].

Path constraints generated at tainted branches definitely guarantee that the
hijacking point can be reached. However, it may have side effects, such as the
following example.

if(strcmp(taintstr ,"http"))

goto loc_1;

else

goto loc_2;

loc_1:

//do sth causing the return address overwritten.

// ...

return; // hijacking point!

// ...

loc_2:

return;

If taintstr is “xttp”, the hijacking point can be reached and the correspond-
ing constraint will be generated as “taintstr[0]! = h” at one branch instruc-
tion in strcmp. However, according to the constraint, when taintstr is “hxtp”,
the hijacking point cannot be reached which is obviously incorrect. If we gen-
eralize constraints when strcmp returns instead of generalizing constraints at
tainted branches within strcmp, we can obtain “taintstr[0]! = h||taintstr[1]! =
t||taintstr[2]! = t||taintstr[3]! = p” which makes more sense.

To solve this problem, we perform constraint generation primarily at tainted
branches, and secondarily at tainted library calls. When a tainted library func-
tion is called, we pause tainted branches constraint generation procedure, and
identify the return address and the arguments of the function. When the function
returns, we generate constraint formulas with the tainted arguments as symbolic
variables according to the function’s semantics and return result. After that, we
resume tainted branches constraint generation. In our implementation, we han-
dle comparison library functions for strings or memory such as strcmp, strncmp,
memcpy etc. They are commonly used in vulnerable programs and influence
whether hijacking points can be reached.
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5 Exploit Generation

The exploit generation procedure is conducted when one hijacking point is de-
tected. According to current execution context, we construct a trampoline in-
struction chain consisting of different trampoline instructions to redirect the
control flow to the shellcode. Diverse patterns of trampoline instruction chains
enable the variety of generated exploits. Together with the shellcode, the tram-
poline instructions within an adopted trampoline instruction chain should be
accommodated into the tainted memory regions, since they must be contained
within the exploit.

To construct the exploit, we find all relevant input bytes for the shellcode
and the trampoline instructions within the chain. Then, we modify them to the
appropriate values to ensure the expected exploiting procedure, i.e., when the
vulnerable program runs with the generated exploit, 1)the utilized trampoline
instructions and the shellcode can appear at the expected locations, 2)the control
flow can be taken over at the hijacking point, and 3)the trampoline instructions
are executed one by one until the execution of the shellcode eventually.

5.1 Trampoline Instruction Chain Construction

We mainly leverage three types of trampoline instructions to construct a tram-
poline instruction chain.

– {call/jmp register} For this type of trampoline instructions, the only operand
is register. Normally, eight general registers can be used as the operands of
the call/jmp instructions. Therefore, we can obtain 16 trampoline instruc-
tions.

– {call/jmp [register + offset]} The only indirect memory operand is decided
by eight general registers and an offset. In this paper, the offset range is set
between -256 and 256, and then we can construct 8192 trampoline instruc-
tions.

– {successive instructions sequence} Each trampoline of this type is a sequence
of successive instructions in the code sections loaded into the process address
space. They act as one instruction during executing, so we regard them as
one trampoline instruction. We only consider one trampoline instruction of
this type, i.e., pop, pop, ret, in this paper. It is commonly utilized for SEH
exploits.

Given a trampoline instruction I, we can accurately compute its execution
target address which is denoted as I.target in the current runtime context. Only
when I.target is in one tmg, i.e., tmg.start≤I.target<tmg.end, it is considered as
a candidate for constructing a trampoline instruction chain. We denote this tmg
as I.tmg. Therefore, we can obtain a set of candidate trampoline instructions
Cand = {I|tmg.start ≤ I.target < tmg.end, tmg ∈ TMG}.

We denote a trampoline instruction chain as TrampChain=I0 , I1 · · · , In, where
1≤n≤|Cand|, I0, I1 · · · , In ∈ Cand and different from one another. A success-
ful execution redirection by them is illustrated with the dotted line in Figure 3,
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where I.addr represents the I’s memory address in the process address space and
I.code represents the opcode of I. We can obtain the following characteristics:

(i)I0.addr replaced the tainted data used in indirect control transfer(i.e., the
tainted return address or function pointer).

(ii)Ij+1 .code is accommodated at Ij .target, where 0≤j<n;
(iii)shellcode s is accommodated at In.target.

Fig. 3. The demonstration of a TrampChain

Inspired by the characteristics above, we construct TrampChains by analyzing
all the possibilities of combining different candidate trampoline instructions in
Cand. Then we select the TrampChains that meet the following three criteria.

(i) I0.addr can be found in the non-randomized modules loaded into the pro-
cess address space;

(ii) len(Ij+1.code) ≤ Ij .tmg.end− Ij .target, for 1<j<n;
(iii) In.tmg.end− In.tmg.start >= len(s);
There may be address conflicts in accommodating the trampoline instructions

in a TrampChain. We mainly consider two cases of address conflicts:(i) Ij and Ik
are accommodated in the same tmg and Ij is overlapped by Ik, where 0<j<k≤n,
(ii)Ij is overlapped by the return address pushed when one call trampoline in-
struction Im executes. We solve these conflicts as follows.

The address conflicts for case (i) contain two situations respectively shown
in Figure 4(a),(b). For the former situation, i.e., Ik−1.target < Ij−1.target <
(Ik−1.target+ len(Ik.code)), we try to put Ik.code into another memory area in
this tmg which is long enough and not occupied by trampoline instructions, for
instance, at Ik−1.target

′. Meanwhile, we utilize an extra jmp instruction which
is accommodated at Ik−1.target to reach that position. For the latter situation,
i.e., Ij−1.target ≤ Ik−1.target < (Ij−1.target+len(Ij .code)), it cannot be solved
and the corresponding trampoline instruction chain under construction cannot
be used to generate a valid exploit.

For the case (ii), for any 0< j ≤ n, if j>m≥0, the return address of Im
will corrupt Ij that has not executed, so the trampoline instruction chain will
be destroyed. This address conflict cannot be solved and we discard the chain.
However, if j<m≤n, since Ij finishes executing before Im, the execution flow to
the shellcode will not be influenced. In this situation, we enlarge the length of Ij
from len(Ij) to len(Ij)’, as is shown in Figure 5. We then use len(Ij)’ to solve
the following address conflicts related to Ij .
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Fig. 4. Address conflicts for case(i) and the solutions

Fig. 5. Address conflicts for case(ii) and the solutions

Diverse trampoline instruction chains can contribute to polymorphic exploit
generation for the vulnerable program. Meanwhile, we know that the size of
In.tmg may be larger than len(s). Besides In.target, s has multiple alterna-
tives to locate itself, i.e., the addresses before or after In.target, as is shown in
Figure 6. We can enumerate all alternative positions for locating s in In.tmg
to enable more exploits by leveraging an extra jmp instruction at In.target if
needed. Address conflicts may happen in this situation as well. We use a similar
approach to resolve them.

Fig. 6. Multiple alternatives for shellcode location in In.tmg

Although tmgs may be loaded at different places because of stack or heap
randomization when the program runs again, the offset between I.target and
I.tmg.start will keep the same. After I0 seizes the program’s execution, the other
trampolines within the TrampChain can be surely executed one after another as
expected and the shellcode will get executed ultimately.

5.2 Exploit Construction

If the hijacking point is detected and we finish accommodating the trampoline
instruction chain and the shellcode without address conflicts in the tainted mem-
ory regions, we can finally construct the exploit by modifying all relevant input
bytes.
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Figure 7 demonstrates the exploit construction. The hacked return address
or function pointer is replaced by I0.addr. The other instructions within the
TrampChain and the shellcode are correspondingly accommodated at the previ-
ous instruction’s target address. Any tainted byte tb is relevant to specific input
bytes ini, ..., inj and satisfy the formula value(tb)=f(value(ini), ..., value(inj)),
as is discussed in Section 3. We collect all such formulas for all accommodated
bytes and submit them to a SMT solver [11] together with the path constraints
that guarantee the hijacking point can be reached. If we successfully obtain the
satisfying answers to all relevant input bytes, the exploit can be constructed by
only modifying these input bytes to such new values.

Fig. 7. The demonstration of exploit construction

Note our method can also be applied when only partial bytes(i.e., not 4-
bytes) are controlled in the hacked return address or function pointer, which
traditionally means insufficient control over the program’s execution so that
exploiting cannot be successful. We enumerate all possible values of the hacked
return address or function pointer by altering the values of its controlled bytes. If
there exists one alternative equivalent to one available trampoline’s address, we
are able to hijack the program’s execution and conduct the following execution
flow redirection. Our current approach for this case works well in the systems
without module randomization. We leave that as our future work.

6 Evaluation

We developed PolyAEG based on QEMU [4]. We modified QEMU to support
process identification, dynamic instrumentation, system call interception and
dynamic taint analysis. We use Z3 [11] to generalize path constraints and query
satisfying answers. We searched trampolines’ addresses from the modules loaded
into the vulnerable process. We generate trampolines’ opcodes according to Intel
assembly syntax. Shellcodes are selected from Metasploit [1]. We produce diverse
exploit data containing trampolines and shellcode based on the program input,
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and eventually write them into files respectively as final multiple exploits. In all,
PolyAEG consists of approximately 30,000 lines of C/C++ code. We evaluated
PolyAEG on a Linux machine with a 3.2 GHz Intel(R) Core(TM) i5-3470 CPU,
500 GB hard disk and 4 GB RAM. We used 8 real world vulnerable programs.
Their information are shown in Table 1. They all were performed in Windows
XP SP2, QEMU’s guest OS.

Table 1. List of programs that PolyAEG generated exploits for

Program Advisory ID. Input Size Type of hijacking points

IrfanView v3.99 CVE-2007-2363 2648 return address

Mp3 CD Ripper v2.6 CVE-2011-5165 4432 return address

WAV Converter v1.5 CVE-2010-2348 8208 function pointer

CoolPlayer v2.19.2 CVE-2009-1437 601 return address

Aviosoft DVD Player CVE-2011-4496 1472 return address

FreefloatFtp v1.00 CNNVD-201302-349 981 return address

AutoPlay v1.33 CVE-2009-0243 701
function pointer &
return address

Internet Download
Manager v6.12

N/A 2340 return address

6.1 Method Validation

We use a test case to illustrate the process of exploit generation for vulnerable
programs. For convenience, we present it using the statistics collected from the
runtime context. They might be different as the program runs again. However,
the offset between a trampoline’s target and the corresponding tmg’s starting
address would be unchanged, as mentioned in Section 5. It guarantees the correct
execution flow redirection.

Freefloat Ftp will crashwhen it processesmalformed remote user commands. In
this experiment, we sent a user command(a string consisting of 1024 ‘A’)that could
crash it. PolyAEG performed dynamic taint analysis and showed that when “ret
0x8” at 0x00402ebb was executed, the taint data ‘0x41414141’ would be loaded
to EIP as a return address. Therefore, PolyAEG detected one hijacking point.

We used 338-bytes shellcode BIND shown in Table 5 to produce exploits. Ta-
ble 2 shows candidate trampoline instructions for the vulnerable program. We
denote CandL as the set of trampoline instructions whose corresponding tmg’s
size is larger than the shellcode, while CandS is the ones whose corresponding
tmg’s size is smaller than that. We know that call esp and call [ebp+0x14] could
be employed as In within TrampChain, since their corresponding tmgs were large
enough to accommodate the shellcode. In addition, only the addresses of call edi
and call esp were available in the code sections of the process address space, they
could be employed as I0 within TrampChain. After analyzing different possibili-
ties to construct TrampChains with these trampolines, we obtained four effective
TrampChains shown in Table 3, with #exploit representing the corresponding
count of generated exploits.
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Table 2. The Cand of Freefloat Ftp when using shellcode BIND

Cand trampoline target tmg

CandS call edi 0x911b24 <0x911b24,0x911c4d>

CandL
call esp 0xc0fc2c <0xc0fb25,0xc0fef9>
call [ebp+0x14] 0x911850 <0x911735,0x911b09>

We choose the fourth TrampChain shown in Table 3 to elaborate the execution
flow redirection. The trampolines applied within the TrampChain were shown
in Table 4. For call esp, as I0, we used its address 0x7c934393 which was found
in ntdll module and placed it at the stack space where stored the tainted return
address, i.e., 0xc0fc20. As for call edi and call [ebp+0x14], they were put at the
previous instruction’s target respectively. We used their opcodes. The execution
flow was redirected as follows: call esp initially hijacked the program’s execution
when “ret 0x8” was called. The execution flow reached 0xc0fc2c where call edi
was placed. Then call [ebp+0x14] at 0x911b24 gained the execution flow after
executing call edi. Finally, the shellcode located at 0x911850, the target address
of call [ebp+0x14], got executed successfully.

Table 3. TrampChains and the corresponding number of generated exploits

TrampChain #exploit

call esp 128

call esp − > call [ebp+0x14] 37

call edi − > call [ebp+0x14] 102

call esp − > call edi − > call [ebp+0x14] 100

Multiple alternatives in tmg<0x911735,0x911b09> were available for accom-
modating the shellcode besides 0x911850. We put the shellcode at other places
in this tmg and leveraged an extra jmp at 0x911850 to reach the shellcode. Thus,
we obtained multiple exploits (i.e., 100) under this TrampChain.

The exploits were eventually constructed by modifying all relevant input bytes
according to the path constraints and the data dependencies between accommo-
dated bytes and the program input. We validate them by running the vulnerable
program. They turned out to be effective and could be applied to exploit the
program.

Table 4. The statistics of trampolines in the 4th TrampChain

I trampoline target address contents of I

I0 call esp 0xc0fc2c 0xc0fc20 \x93\x43\x93\x7c
I1 call edi 0x911b24 0xc0fc2c \xff\xd7
I2 call [ebp+0x14] 0x911850 0x911b24 \x33\xc0\xc6\xc0\x14\xff\x14\x28
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Diverse patterns of TrampChains and multiple choices for shellcode accom-
modations contribute to polymorphic exploit generation. Note that the length
of the shellcode decides the last trampoline leveraged(i.e., In) to construct a
TrampChain. Thus, if another shellcode with a different length is leveraged, we
can obtain another set of different TrampChains. Further, more exploits are
available.

6.2 Polymorphic Exploit Generation

PolyAEG generated polymorphic exploits for 8 real world vulnerable programs.
It identified 9 hijacking points. Of these, AutoPlay had two hijacking points.
Both of them could be leveraged to generate exploits. In the experiments, we
used AutoPlay1 and AutoPlay2 to denote the program with different hijacking
points. Exploits were generated by hijacking function pointers in WAV Converter
and AutoPlay2. In other programs, PolyAEG generated exploits by hijacking
return addresses.

PolyAEG could generate exploits containing various shellcode. We selected
one shellcode for each vulnerable program randomly. Their properties are shown
in Table 5. Table 6 illustrates the statistics about polymorphic exploit generation.
|Patrn| is the number of effective TrampChains and #exploit is the number of
generated exploits. Among these vulnerable programs, PolyAEG generated the
most exploits for IrfanView. The main reason is that IrfanView had a broad
memory area to accommodate the shellcode. CoolPlayer had the second quan-
tity of exploits with the most patterns of trampoline instruction chains. The
produced exploits with various attacking patterns are beneficial for systemati-
cally evaluating the vulnerability in CoolPlayer.

Table 5. The properties of shellcodes

ID Functionality Length ID Functionality Length

CMD spawn a shell 21 CALC pop up a calculator 226

MSG pop up a message box 45 RVSE bind reverse tcp 366

ADD add a new local account 233 NTPD popup a notepad 86

DWN download and execute 297 BIND listen at port 4444 338

As GS security cookie protection has been imported, the successful rate to ex-
ploit by hijacking an overflowed return address has reduced. Exploiting
SEH(Structured Exception Handler) is a more effective and practical exploiting
method. However, safeseh mechanism was introduced to prevent such exploits in
Windows operating systems. Despite all this, SEH exploits can successfully be
produced by our approach. Since not all modules loaded by a process arm with
safeseh, we choose trampoline instructions in non-safeseh modules to bypass this
protection mechanism. AutoPlay2 and WAV Converter are such samples that we
handled in this way.
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Table 6. The statistics of polymorphic exploit generation for all programs

Program shellcode |Patrn| #exploit

IrfanView DWN 3 4724

FreefloatFtp BIND 4 367

CoolPlayer CMD 29 3750

AutoPlay1 MSG 3 282

AutoPlay2 MSG 1 64

Program shellcode |Patrn| #exploit

Mp3CDRipper ADD 1 3399

WAVConverter CALC 4 180

Internet DMgr NTPD 3 112

Aviosoft DTV
Player

RVSE 1 126

Address conflicts could be well addressed. For instance, in an exploit of WAV
Converter, pop,pop,ret was used as the trampoline instruction to hijack the pro-
gram’s execution and it would be overwritten if shellcode were located at its
target address. To solve this problem, the shellcode was stored at a address be-
fore pop,pop,ret and jmp was used to redirect the execution flow to the shellcode.

In conclusion, PolyAEG is capable of generating exploits automatically and
polymorphically for vulnerable programs. The polymorphic exploits generated
with various attacking patterns will be conductive to systematically assess the
severity of the vulnerabilities.

6.3 Performance Overhead

The overhead is dominated by the cost on dynamic taint analysis and exploit
generation. The former is basically decided by recording taint propagation, and
the latter is mainly decided by solving constraints. Figure 8 shows the quanti-
ties of tainted instructions(#tainted inst), and the average counts of constraint
formulas(#constraints) and symbolic variables(#variables) for one exploit gen-
eration. #tainted insts could reflect the overhead of taint propagation for the
program. Both #constraints and #variables indicated the overhead of solving
constraints to construct exploits.

Fig. 8. The statistics about tainted instructions, constraint formulas and symbolic
variables for all programs
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Figure 9 presents the time overhead of generating one exploit for each pro-
gram. Mp3 CD Ripper and WAV Converter cost far more time than the others
because they cost the most both on dynamic taint analysis and constraint solv-
ing. Freefloat Ftp ranked third since it had to solve the most constraints amongst
all the programs except for Mp3 CD Ripper and WAV Converter.

We evaluated memory overhead of polymorphic exploit generation for each
program. We used %MEM, i.e., the program’s share of the physical memory, to
present memory cost. It was mainly dominated by the quantity of all produced
exploits and the expense for each exploit generation. From Figure 10, we know
that both of these factors contributed to the highest cost of Mp3 CD Ripper
amongst these programs. In addition, AutoPlay2 not only cost the least memory
on generating one exploit, which was indicated as Figure 8, but also had the least
exploits. It thus consumed the lowest memory resource.
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Fig. 9. The time overhead on one exploit generation

In summary, as an off-line exploits generation system, PolyAEG has reason-
able overhead on both time and memory consuming. We currently have little
consideration on optimization of constraint solving. We will further handle it by
eliminating duplicated constraints and simplifying the symbolic variables.
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Fig. 10. The memory overhead on polymorphic exploit generation
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7 Limitations and Future Work

Our approach has some limitations. First, PolyAEG generates control flow hi-
jacking exploits. It makes limited effort to bypass ASLR and DEP. Second, par-
tially controlling to a hacked return address or function pointer is an obstacle
to exploiting. PolyAEG can produce exploits only under specified conditions.
Third, shellcode is wholly stored. We do not consider the situation when shell-
code is split into several units and placed into different tainted areas. In addition,
PolyAEG does not identify all possible paths to a hijacking point due to high
expense on whole-system symbolic execution [2,9]. But it generalizes path con-
straints that guarantee a reliable path to hijack program’s execution.

We plan to extend PolyAEG to overcome those limitations in future work.
We will also enhance PolyAEG to deal with more advanced exploitable situa-
tions about heap corruptions, use-after-free, and so on. Moveover, it is still an
open problem to exploit non-control flow hijacked vulnerabilities, and we will do
further research on it.

8 Related Work

Dynamic Taint Analysis. Dynamic taint analysis [16] can be used to tackle
problems such as protocol reverse engineering, vulnerability detection, exploit
generation, signature generation and so on. A few of general frameworks are
available, such as [15,10,5,17,18]. TaintCheck [15] is one of the first dynamic taint
analysis tools for protecting binary program from memory corruption attacks.
TaintEraser [18] applies taint analysis for binaries to identify information leaks.
Dytan [10] is flexible for taint analysis, allowing users to customize taint sources,
sinks and propagation policy. Minemu [5] provides fastest taint analysis despite
the limited functionally.

libdft [13] is a fast and reusable data flow tracking framework. It provides API
for building dynamic taint analysis tools, e.g., libdft-DTA, and can be tailored
to implement problem-specific instances.

Our enhanced taint analysis techniques with supporting backtracking analy-
sis can be applied to support various analysis situations. Specifically for exploit
generation, it enable us to accurately identify control flow hijacking, path con-
straints and data flow dependency.

Automatic Exploit Generation. Avgerios et al. [2] proposed AEG for po-
tential buggy programs. They used preconditioned symbolic execution to find
exploitable paths and generated exploits by solving path predicate and exploit
predicate. AEG worked solely on close source programs, and used hardened
memory address of shellcode instead of trampolines, which would failed to ex-
ploit under address randomization. By contrast, PolyAEG aimed to generate
exploits for vulnerable binary programs, and leveraged trampolines to redirect
the execution flow to shellcode. Thus the generated exploits turned out to be
more effective and practical to exploit a vulnerable program.
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Heelan et al. [12] described a technique to automatically generate an exploit by
given a crashing input for a vulnerable program by employing jump-to-register
trampolines. However, few candidates for trampolines limited the ability of poly-
morphic exploit generation. PolyAEG provided multiple alternatives for tram-
polines, and leveraged them to construct diverse trampoline instruction chains.
It not only increased the successful rate to generate one effective exploit, but en-
abled to generate multiple exploits which contributed to systematical evaluation
of the severity of the vulnerability.

Cha et al. implemented MAYHEM [9] for finding exploitable bugs in binary
programs and proving with working shell-spawning exploits. They proposed
hybrid symbolic execution and index-based memory modeling that made ex-
ploitable bugs discovered efficiently. However, the exploit generation policy was
similar to related works above. Thus, polymorphic exploit generation was not
addressed in their system.

Brumley et al. [8,7,6]and Lin et al. [14] also gave solutions to automatic exploit
generation problems. However, the exploits they generated in their works were
not the same with ours. Their exploits were simply aimed to make the program
run in an unsafe state, such as crashing or consuming 100% CPU, instead of
executing a injecting shellcode.

9 Conclusions

We propose PolyAEG, a system that automatically generates multiple exploits
for a vulnerable program using one corresponding abnormal input. To generate
different polymorphic exploits, we fully leverage trampolines to construct diverse
trampoline instruction chains in order to hijack execution flow and redirect it to
shellcode within the runtime context. We used PolyAEG to successfully generate
exploits for 8 vulnerable binary programs. In particular, we have generated 4,724
exploits using only one abnormal input for IrfanView, a widely used picture
viewer.
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Abstract. The web tunnel is a common attack technique in the Internet and it is 
very easy to be implemented but extremely difficult to be detected. In this 
paper, we propose a novel web tunnel detection method which focuses on 
protocol behaviors. By analyzing the interaction processes in web 
communications, we give a scientific definition to web sessions that are our 
detection objects. Under the help of the definition, we extract four first-order 
statistical features which are widely used in previous research of web sessions. 
Utilizing the packet lengths and inter-arrival times in the transport layer, we 
divide TCP packets into different classes and discover some statistical 
correlations of them in order to extract another three second-order statistical 
features of web sessions. Further, the seven features are regarded as a 7-
dimentional feature vector. Exploiting the vector, we adopt a support vector 
machine classifier to distinguish tunnel sessions from legitimate web sessions. 
In the experiment, our method performs very well and the detection accuracies 
of HTTP tunnels and HTTPS tunnels are 82.5% and 91.8% respectively when 
the communication traffic is above 500 TCP packets. 

Keywords: web tunnel detection, protocol behaviors, packet analysis, feature 
vector, support vector machine. 

1 Introduction 

In contemporary, people rely more and more on computers and the Internet. Network 
applications such as webpage browsing, business e-mail exchanging, microblog 
posting and online shopping become indispensable elements in people’s jobs and 
daily lives. The accelerating rise in the demand for those techniques motivates diverse 
attacks from malicious users. The attackers utilize the legitimate-looking traffic 
generated by application-layer protocols (ALP) widely used in the Internet to launch 
imperceptible intrusions like implanting computer viruses, exposing sensitive 
information and filching confidential files. 

At present, firewalls and application level gateways (ALG) configured to secure 
network boundaries can frustrate most bare attacks, for example downloading Trojans 
                                                           
* Corresponding author. 
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from offensive websites and access violations from the extranet to the intranet. In 
their existing incarnations, they usually protect local networks from damages by 
concentrating on controlling which websites local hosts are allowed to visit and which 
ALPs are permitted for communications. In order to achieve this goal, security 
policies of firewalls and ALGs are commonly implemented as filter criteria 
intercepting packets containing prohibited IP addresses or typical features of 
unapproved ALPs. In general, the two categories of devices operate cooperatively to 
enforce the criteria: the firewall checks IP addresses and port numbers while the ALG 
judges whether the traffic of a certain protocol conforms to the corresponding rules. 
For instance, in the case of a network only approving the non-encrypted Internet 
browsing, the firewall is the first defensive line which merely hands outgoing 
(ingoing) TCP packets, to (from) port 80 or 8080 at IP addresses not in the forbidden 
set, over to the ALG. The ALG then scrutinizes the format of the HTTP content in 
order to ensure that the peers are really “speaking” HTTP. Additionally, the ALG can 
also rule out potential malicious behaviors by denying particular strings in some 
vulnerable fields such as URLs, Hosts, User-Agents and values of different keys. 

Upon most occasions, firewalls and ALGs can deal with bare intrusions with ease. 
However, some artful covered attacks have been devised in the past decade. Those 
techniques can successfully bypass the filter criteria utilized in firewalls and ALGs as 
legitimate applications and the application-layer tunnel (ALT) is a celebrated one 
among them. Nowadays, the ALT has become a threat which can’t be overlooked to 
the Internet. The ALT is easy to be implemented but extremely difficult to be 
detected. The main idea of the ALT is disguising an ALP as another. The technique 
carries out the tunneling process by encapsulating the traffic of prohibited ALPs 
inside the payload of allowed ALPs. What’s more, the formats of the embedded 
traffic can be various so that the ALT can perform obfuscation of original data to 
thwart pattern-matching classifiers based on the formats of ALPs employed by ALGs. 
The ALT can be implemented in two ways: one is in clear-text ALPs (CALT) and the 
other is in encrypted ALPs (EALT). As Fig. 1 shows, the CALT has a transport-layer 
shell and an unsuspicious header of a permitted clear-text ALP and the forbidden 
traffic is camouflaged in the body of entity data. Illustrated in Fig. 1, the EALT only 
has a transport-layer shell of an allowed encrypted ALP while the encrypted payload  
 

 

Fig. 1. The message structure of the two kinds of ALTs 
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is actually the encrypted prohibited traffic. In practice, because of the ubiquity of the 
web usage, the HTTP tunnel and the HTTPS tunnel are prevalent implementations for 
the CALT and the EALT respectively. As a result, the detection method we propose 
in this paper is aimed at the two ALT implementations. 

1.1 Outline of Our Contributions 

We propose a novel detection method to thwart web tunnels. Our technique is 
designed based on the protocol behaviors of HTTP and HTTPS. By analyzing the 
interaction processes in web communications, we give a scientific definition to web 
sessions which are our detection objects. Under the help of the definition, we firstly 
extract four first-order statistical features which are widely used in previous research 
of web sessions. Further, we concentrate on the TCP packets in the transport layer. 
Utilizing the packet lengths and inter-arrival times, we divide TCP packets into 
different classes and dig out the statistical correlations of them. With these 
correlations, we extract another three second-order statistical features of web sessions. 
Then, the seven features we have obtained can compose a 7-dimentional feature 
vector and we believe that the vector can fully reflect the statistical characteristics of 
web traffic. Exploiting the vector, we adopt a support vector machine classifier to 
distinguish tunnel sessions from legitimate web sessions. In our method, the detection 
rates of HTTP tunnels and HTTPS tunnels can reach above 80% and 90% 
respectively when the communication traffic is above 500 TCP packets. 

1.2 Paper Organization 

The rest of this paper is organized as follows. Section 2 summarizes the related work. 
Section 3 introduces some important notions and techniques used in this paper. 
Section 4 describes the work flow of our detection method. Section 5 discusses the 
process of the protocol feature extraction. Section 6 shows the detection results of our 
method. Section 7 is the conclusion. 

2 Related Work 

Early web tunnel detection is executed only at the application layer. Borders and 
Prakash proposed one of the first mechanisms to detect HTTP tunnels, named “Web 
Tap” [1]. The filter is designed to reveal covert communications tunneled in the 
HTTP traffic. The Web Tap depends on the simple analysis of features at the 
application layer, like HTTP transaction rates, transaction times, access frequency, 
etc. Strictly speaking, the analysis is coarse so that it may cause many false positives 
and false negatives, resulting in an unreliable system. Bissias et al. invented a 
statistical technique which can infer the source in HTTPS streams [2]. The technique 
shapes a website usually visited by a tuple with two elements: the size profile and the 
time profile. Given a website, the authors collect the HTTP packet sequences 
composing each HTTP request for the website. Then the mean value sequence of the 
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lengths of these packets is the size profile and the mean value sequence of the inter-
arrival times between the same packets is the time profile. HTTPS traces to be tested 
will be compared to the shapes of websites with the similarity computed from the 
cross-correlation between the sequences, making it possible to discover the 
destination. Subsequently, Liberatore et al. improved the technique and they extended 
the work to each URL to assign a given trace to a gathered profile, the Jaccard and the 
naïve Bayes similarity metrics [3]. Campos et al. exploited a clustering scheme to 
recognize different traffic patterns by a sequence of application-layer triples 
containing interactive features between peers: the length of data from the client, the 
length of data from the server and the time interval between data pairs [4]. 

Recently, researchers turned to the transport layer in order to devise advanced 
detection techniques and many methods based on both application-layer features and 
transport-layer features were worked out. McGregor et al. used many features of TCP 
packets to cluster the traffic so as to identify different ALPs [5]. The features include 
packet length, length percentile, etc. Moore and Zuev proposed a naive Bayes classifier 
to recognize ALPs and the results of classification were excellent [6]. The method firstly 
deploys some deep inspection in the TCP packets to dig out almost all the available 
features in TCP flows. Then it utilizes statistical approaches to kick out irrelevant 
factors in the feature vector, which can significantly improve the performance. Wright et 
al. adopted a similar technique to propose a k-nearest-neighbors classifier according to 
the K-L distance between feature vectors form different ALPs and the technique 
performed well in the identification of HTTP and HTTPS [7]. 

Most of the techniques listed above are utilized for traffic classification. They operate 
on the features collected from massive packets generated by ALPs and the experimental 
results are considerable. Nevertheless, the effects on the ALT of these classifiers have 
not been demonstrated. The ALT has the same transport-layer shell as that of normal 
ALPs, which may disable the classifiers. The detection method which is really effective 
on the HTTP tunnels was proposed by Crotti et al [8]. The technique runs on the 
fingerprint of ALPs and has a high detection rate against the HTTP tunnel. The 
fingerprint is trained from single TCP flows and it consists of two elements: TCP packet 
length sequence and TCP packet inter-arrival time sequence. Although the method can 
find out most HTTP tunnels, it still has some flaws in the fingerprint measurement 
which is its core concept. The packet classification in the fingerprint evaluation is coarse 
and the technique ignores many remarkable protocol behaviors in HTTP, so the 
fingerprint detection is inefficient and it is vulnerable in theory. 

3 Preliminaries 

In this section, we will introduce some important notions and useful techniques which 
can help us expose protocol behaviors in HTTP utilized in our detection method. 

3.1 HTTP Flow and HTTP Session 

In the fingerprint detection technique, the authors define an HTTP flow by a pair of 
reversed TCP flows: the client to the server and the server to the client. In computer 
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networks, a TCP flow can be defined as a tetrad: source IP address, destination IP 
address, source port number and destination port number, while absolutely an HTTP 
flow can’t be defined in the same way. When browsing a website, the requests for 
associated objects of an HTML file can be sent on other ports different from the 
original one which sends the request for the text webpage. Especially, in the keep-
alive visiting method, requests for different HTML files may be sent on the same port. 
In addition, the HTTP server can also be a set of hosts. As we know, the associated 
objects of HTML files can be stored in different servers (it is extremely popular for 
large websites). As a result, the requests for an HTML file can refer to more than one 
server and we can’t define the HTTP server as a single host. From the above, the 
definition of HTTP flows in the fingerprint detection technique is obviously 
unreasonable and it will doubtlessly lose many crucial characteristics of HTTP flows. 

The scenario in Fig. 2 shows the amounts of HTTP requests at different times 
when a client is browsing a website. In this figure, we can see that the request 
distribution has crests and troughs. Each crest is a busy time interval with the outburst 
in requests and every trough is a silent period containing no requests. In terms of the 
behaviors of HTTP, a crest represents the requests for an integrated HTML file 
including the text webpage and its associated objects, while a trough between two 
consecutive crests is the time for visitors to handle the documents, such as reading 
news, thinking over a problem and saving elements. According to this, an HTTP flow 
can be defined as a pair of crests: a request crest in the client and the corresponding 
response crest in the server. The definition is not limited to a tetrad and it can 
scientifically describe the features in HTTP. The trough is called “Think Time” [4] 
and it is a significant factor in the analysis of HTTP flows. In practice, the length of 
the silent period is flexible and it differs from user to user. Therefore, the “Think 
Time” is not a main object in the study of HTTP, but it is only used to separate 
different HTTP flows. HTTP flows will be cut into pieces if the “Think Time” is too 
short. Considering the response time of the human body and the network delay, we 
hold the view that a reasonable “Think Time” should be longer than 5 seconds, which 
means that any two consecutive crests, with a trough less than or equal to 5 seconds 
between them, should belong to the same HTTP flow. 

With the concepts discussed above, we can obtain the complete definition of HTTP 
flows. An HTTP flow consists of a series of requests from a client to a server and the 
corresponding responses from the server to the client. The interval between adjacent 
requests should not be more than 5 seconds. The client is a single host defined as an 
IP address. The server is a set of hosts with similar IP addresses. In general, the 
different servers in a large website are deployed in the same subnet. Hence, we can 
define the similar IP addresses as follows. If we have two IP addresses denoted by 
two 32-bit (IPV4) unsigned integers ipa and ipb, we will say they are similar when: 

 

255             if  and  both belong to Class C

65535         if  and  both belong to Class B

16777215    if  and  both belong to Class A

ipa ipb ipa ipb

ipa ipb ipa ipb

ipa ipb ipa ipb

⊕ ≤
 ⊕ ≤
 ⊕ ≤

 (1) 
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Where ⊕  is the operator of the binary “XOR”. Owning the definition of HTTP 
flows, an HTTP session can be easily defined as a set of HTTP flows with the same 
client and server in a certain period (the interval between any adjacent flows in a 
session should be less than or equal to this period). In this paper, we set this period to 
half an hour. Since HTTPS is the encrypted version of HTTP and there is no essential 
discrepancy in them, HTTPS flows and sessions can be defined in the same way. 
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Fig. 2. The distribution of requests in the browsing 

3.2 Kernel Density Estimation 

The Kernel Density Estimation (KDE) is a practical method to approximate the 
distribution of a random variable [9]. Here, we can utilize the technique to estimate 
the probability density functions (PDF) of some crucial parameters in our detection 
method. For a random variable X, if we have n samples {x1,x2,…,xn}, then we can 
approximate the distribution of X by the KDE: 
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( ) ( )
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i

x x
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nh h=

−
=   (2) 

Where ( )f x  is the estimated PDF of X, h is called the kernel bandwidth, and ( )K   

is the kernel which can be any non-negative function satisfying: 

 ( ) 1K g dg
+∞

−∞

=  (3) 

In general, the kernel is assumed as a Gaussian distribution whose standard 
deviation is 1, because Gaussian distribution has desirable smoothness properties: 
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Figure 3 [9] illustrates how an estimate of the PDF is constructed. For each data point, 
a Gaussian distribution centered on the very point is fitted. The summation of those 
functions gives an estimate of the real PDF. 
 

 
Fig. 3. The construction of an estimated PDF 

The kernel bandwidth h plays an important role in the accuracy of the 
approximation. In practical estimation of the bandwidth, if the kernel is a Gaussian 
distribution, h can be optimized as [9]: 

 
1 15
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( ) 1.06

3
h n

n

σ σ
−

= ≈  (5) 

Where σ  is the standard deviation of the samples. 

4 Our Tunnel Detection Method 

As mentioned before, our detection concentrates on the web tunnels (HTTP and 
HTTPS tunnels). If the length of a flow is short, the limited quantity of information in 
it will not sufficiently support us to judge whether it is a tunnel correctly. For this 
reason, our detection objects are HTTP and HTTPS sessions but not flows. Different 
from previous techniques, in our detection method, we discover some novel statistical 
features from protocol behaviors based on TCP packets in HTTP and HTTPS 
sessions. With these features, we can successfully identify the tunneled traffic in 
suspicious sessions. In the analysis of the TCP packets in sessions, we only focus on 
their lengths and inter-arrival times. 

The work flow of our detection method is illustrated in Fig. 4. First, we collect 
plentiful legitimate sessions to obtain some significant statistical characteristics of 
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TCP packets in normal HTTP and HTTPS. Then, with the help of those 
characteristics, we extract seven features of suspicious sessions to be tested and those 
features are denoted by a 7-dimentional vector FV. Last, the vector FV is submitted 
to a classifier and the classifier identifies the types of the sessions. The classifier 
exploited here is a two-class Support Vector Machine (SVM) and we utilize the 
LIBSVM [10] as our tool. The SVM only identifies the suspicious sessions as two 
categories: normal HTTP (HTTPS) sessions and tunnel sessions, and the SVM is 
trained by feature vectors from the two categories of sessions in advance. We select 
the SVM as the classifier for our detection method due to its outstanding 
performance. Actually, if we collect tunnel sessions to compute the characteristics, 
the method can also operate well. But, after all, tunnel sessions are a tiny minority and 
to get massive normal HTTP and HTTPS sessions is much easier for us. 
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Fig. 4. The diagram of the work flow 

5 Feature Extraction 

In this section, we will discuss the seven features we collect from suspicious sessions. 
Four of the features are first-order statistics and the other three are second-order 
which can reveal the correlations between packets in sessions. The seven features are 
all extracted according to protocol behaviors. Hereafter, we use “HTTP” to represent 
both “HTTP” and “HTTPS”. 

5.1 First-Order Features 

As Section 3 explains, HTTP requests can be sent in different ports and each port can 
send more than one request. In the observation of HTTP flows, we can find out that in 
a single TCP connection the next request will not be sent until the response from the 
server to the former one arrives. Specifically, if we denote a request by req and a 
response by res, in a TCP connection, we can only get the sequence (req, res, req, res, 
req, res), but can’t get the sequence (req, req, req, res, res, res). Hence, we can easily 
calculate the sizes (Bytes) of requests and the sizes of their corresponding responses. 
Further, we can discover the following four first-order features in sessions. 
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Feature 1: Average Request Size (Reqavg). Reqavg is the arithmetic average of the 
sizes of HTTP requests in a session. 

Feature 2: Request Size Variance (Reqvar). Reqvar is the variance of the sizes of 
HTTP requests in a session. 

Feature 3: Average Response Size (Resavg). Resavg is the arithmetic average of the 
sizes of HTTP responses in a session. 

Feature 4: Response Size Variance (Resvar). Resvar is the variance of the sizes of 
HTTP responses in a session. 

The four simple features are widely used in previous work by other forms [1, 2, 3, 
4, 5, 6]. The features are useful but obviously not enough because they don’t have 
absolute exclusiveness in the detection. 

5.2 Packet Classification 

As what previous work did, in order to analyze TCP packets, we should divide them 
into different classes. We denote a TCP packet by a tuple with three elements: the 
packet length (exclude TCP header), the inter-arrival time and the direction. The 
direction here has two optional values: 0 (the packet is from the client to the server) and 
1 (the packet is from the server to the client). The inter-arrival time represents the 
interval between the packet and the former one which has the same direction. We 
assume that there are no direct correlations between packets from different flows in a 
session, so the inter-arrival times are only computed in each flow respectively and the 
inter-arrival time of the first packet with either direction in each flow is regarded as 0. 
Flows are independent packet sequences in a session and flows are separated by the 
“Think Time”. The TCP packets mentioned here do not contain the TCP control packets 
whose lengths are zero, such as SYN, FIN, RST and pure ACK, because they are 
irrelevant to HTTP behaviors. The coming problem is how to divide packet lengths and 
inter-arrival times into different bins. We utilize the KDE technique mentioned in 
Section 3. In the Ethernet, the maximum segment size (MSS) of TCP packet is 1460 
bytes, so the packet lengths are between 1 and 1460. Owing to the “Think Time”, the 
inter-arrival times are between 0 and 5000 (the unit is millisecond). The situation may 
happen that because of the network delay, the inter-arrival times of some packets from 
the server to the client in a flow may be a little longer than 5000ms, and we regard these 
times just as 5000ms. We select all the packets in the collected legitimate sessions as 
samples to estimate the PDF. We denote the counts of occurrences of the 1460 lengths 
and 5001 times by {CL1,CL2,…,CL1460} and {CT0,CT2,…,CT5000}. Then, the PDF of the 

length ( )f l  and the inter-arrival time ( )f t  can be estimated by the KDE technique 

with the Gaussian kernel as the following formulas. 
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The outline of the packet length division is as follows and the inter-arrival time 
division can be done by the same method. 
Step 1. Calculate cumulative probability CP between 1 and 1460: 

 
1460

1

( ) CP f l dl=   (8) 

Step 2. If we want to divide the lengths into b bins, we can split the interval [1, 1460] 
into b segments by b-1 cut points in ascending order {L1,L2,…,Lb-1}. We can denote 1 
and 1460 by L0 and Lb, and then we can compute the cut points by: 
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This division scheme is closely related to the real distribution of the two elements, 
which will help improve the detection performance remarkably. If we have BL bins of 
the packet lengths and BT bins of the inter-arrival times, we can obtain 
2 BL BT× × classes of TCP packets. In the KDE of packet length, we rule out the 
packets from the servers because the overwhelming majority of them are in the size of 

1460, which can cause the classification useless. It should be noted that ( )f l  and 

( )f t  are non-integrable functions, so we adopt the infinitesimal method to compute 

the integral and the infinitesimal is 0.05. Then, in the collected legitimate sessions, we 
can count the packets and compute the occurrence probability of each class by the 
maximum likelihood estimation. In the estimation, we adopt the Good-Turing 
smoothing technique to handle the packet classes which are not observed [11]. 

5.3 Second-Order Features 

The packet distribution is a typical feature in sessions. By the packet classification, 
we can get the occurrence probabilities of the 2 BL BT× ×  packets in legitimate 
sessions. Then we can utilize the K-L divergence to measure the difference between 
the packet distribution in suspicious sessions and that of legitimate sessions. 

Feature 5: Packet Distribution Difference (DKL). DKL is the K-L divergence of 
legitimate packet distribution from suspicious packet distribution: 
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( ) ln
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P i
D P i

Q i

× ×

=

=   (10) 

Where P(i) is the discrete probability density function of the packets in suspicious 
sessions and Q(i) is the function for the normal ones. In the computation, we needn’t 
take special handling on the situation 0 ln 0  because we have the equation: 
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So, we can just interpret 
( )

( ) ln
( )

P i
P i

Q i
 as zero when P(i) is zero (1 2i BL BT≤ ≤ × × ). 

Because we implement the Good-Turing smoothing technique in the maximum 
likelihood estimation, we can ensure that ( ) 0Q i > . 

Flows in sessions can be expressed as different TCP packet sequences. HTTP has 
some particular interactive behaviors which can hardly be found in other ALPs. For 
example, when a packet from the server arrives at the client, the client will scan the 
data in the packet immediately. If some object links are in this packet or can be 
computed from the data in this packet, the client will send the requests on other ports 
dynamically regardless of whether the current response has been received integrally. 
In practice, these behaviors can be fully reflected by the packet sequences. So, we 
consider that the ordered packets in a flow are closely related and a packet is related 
to the ones nearby. In terms of protocol behaviors, correlations in packets are not 
merely restricted in the adjacent packets, but they are usually regarded as the 
collocations in some consecutive packets. In our detection method, we investigate 
pairs of packets within a certain range N (N is an integer greater than 1) in order to 
find out packet collocations in HTTP. For the analysis of collocations, we can adopt 
some techniques widely used in the statistical natural language processing [12].We 
define that any two packets in the same flow with a distance less than N is a packet 
pair and we denote a packet pair “xy” by an ordered pair <x,y>. These packet pairs are 
called N-Range Packet Pairs (N-RPP) [12]. Figure 5 illustrates an example for 3-
RPPs, and in the dashed box we can observe three 3-RPPs: <2,5>, <2,4> and <5,4>. 
The numbers in packet pairs here are labels of packet classes. 
 

 

Fig. 5. An example for 3-RPPs 

Because we have 2 BL BT× ×  packets, we can obtain 2(2 )BL BT× ×  N-RPP 

theoretically. The occurrences of N-RPPs are prominent features in HTTP sessions. 
The entropy is usually utilized to evaluate the uncertainty and the potential regularity 
in random variables. For different protocols, the regularities of behaviors have 
significant difference, so we can also use the entropy to extract a feature of N-RPPs in 
sessions. 
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Feature 6: N-RPP Entropy (EN-RPP). We regard the N-RPP as a random variable and 
EN-RPP is its entropy: 

 
2(2 )

- 2
1

( ) log ( )
BL BT

N RPP
i

E F i F i
× ×

=

= −   (12) 

Where F(i) is the occurrence probability of the ith N-RPP ( 21 (2 )i BL BT≤ ≤ × × ). 

Similar to Equation (11), when F(i) is zero, we can treat 2( ) log ( )F i F i  as zero. 

In the information theory, another measurement for discovering interesting 
collocations is the mutual information (MI). For two discrete random variables X and 
Y, the MI can be defined as: 

 2

( , )
( ; ) ( , ) log

( ) ( )y Y x X

p x y
MI X Y p x y

p x p y∈ ∈

=  (13) 

Where x and y represent all the possible values of X and Y. Here, p(x,y), p(x) and p(y) 
are the occurrence probabilities of “xy”, “x” and “y”. However, the packets in a 
sequence are usually treated as different points. So, we utilize the pointwise mutual 
information (PMI) which is more suitable than the MI to evaluate the correlations of 
packets. The PMI between two particular points x and y can be defined as: 

 2

( , )
( ; ) log

( ) ( )

p x y
PMI x y

p x p y
=  (14) 

Here, in our case, we regard p(x,y), p(x) and p(y) as the occurrence probabilities of the 
packet pairs “xy”, “x?” and “?y”, where the symbol “?” represents any packet. 

Now we can obtain the definition of the N-Range Mutual Information (N-RMI). 
The N-RMI can be defined as the PMI of an N-RPP [12]. The N-RMI can measure 
the collocation degree of an N-RPP and the larger the N-RMI is, the more reasonable 
the occurrence of the corresponding N-RPP is. With the definition of the N-RMI, we 
can use Equation (14) to evaluate the N-RMI of a certain N-RPP <x,y>. Given an 
HTTP flow, we denote the counts of occurrences of any N-RPP, the N-RPPs <x,y>, 
<x,?> and <?,y> by Ctot, Cxy, Cx? and C?y severally. Then, the N-RMI of the N-RPP 
<x,y> can be calculated by [12]: 

 , 2 2 2
? ? ? ?
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- log log log

( ) ( ) ( / )( / )
xy tot xy tot

x y
x tot y tot x y

C C C Cp x y
N RMI

p x p y C C C C C C< > = = =  (15) 

Here, we give an example to explain the computation of the N-RMI further. Given 
a packet sequence “2,5,1,3,4,15,103,19,2,3,3”, we can evaluate the 4-RMI of the 4-
RPP <2,3>. All the 4-RPPs in this flow are: <2,5>, <2,1>, <2,3>, <5,1>, <5,3>, 
<5,4>, <1,3>, <1,4>, <1,15>, <3,4>, <3,15>, <3,103>, <4,15>, <4,103>, <4,19>, 
<15,103>, <15,19>, <15,2>, <103,19>, <103,2>, <103,3>, <19,2>, <19,3>, <19,3>, 
<2,3>, <2,3>, <3,3>. Then, C23=3, C2?=5, C?3=8 and Ctot=27, so we have: 

 23
2,3 2 2

2? ?3

3 27
4- log log 1.0179

5 8
totC C
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 (16) 



246 F. Wang et al. 

 

If an N-RPP doesn’t emerge in the legitimate sessions observed, we can infer that 
the appearance of the N-RPP is impossible and its occurrence is extremely 
anomalous. Therefore, instead of executing the smoothing technique in the 
computation of the packet distribution, we give a custom infinitesimal value INFS to 
the N-RPPs not observed as their N-RMIs. We can utilize the N-RMI to extract 
another feature of HTTP sessions. 

Feature 7: N-RMI Distance (DN-RMI). In a session, we may have many different N-
RPPs. We select M N-RPPs which have the first M greatest N-RMIs in a suspicious 
session because we believe these N-RPPs can well present statistical correlations of 
this session. If a session only has S N-RPPs, where S M< , we’ll regard the N-RPP 
with the smallest N-RMI in this session as the surplus M S−  N-RPPs. Then, DN-RMI 
can be defined as [12]: 

 
2 2

- , ,
1 1

| - - | ( , )
BL BT BL BT

N RMI i j i j
i j

D N RMI N RMI i jσ
× × × ×

< > < >
= =

= − ×   (17) 

Where ,- i jN RMI< >  is the N-RMI of the N-RPP <i,j> in the suspicious session and 

,- i jN RMI< >  is the N-RMI in legitimate sessions. The expression ( , )i jσ  is evaluated 

as: 
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6 Experiment 

6.1 Data Collection 

The data collection is a crucial factor for our detection results, so it will be discussed 
with detail in this section. We deploy our packet sniffer on the gateway of our 
department which owns about 350 personal computers to collect legitimate HTTP and 
HTTPS sessions. Within a month, we collect 14462 HTTP and 9154 HTTPS 
legitimate sessions. Additionally, we generate some tunnel sessions: 200 HTTP 
(HTTPS) sessions with FTP encapsulated, 200 HTTP (HTTPS) sessions with SMTP 
encapsulated and 200 HTTP (HTTPS) sessions with POP3 encapsulated. The usage of 
those sessions is listed in Table 1, where “PD&N-RMI” is the amount of sessions 
used to compute the packet distribution and N-RMIs in legitimate sessions, “Train” is 
the amount of session samples used to train our classifier and “Test” is the amount of 
session samples to be tested. 

In an SVM classifier, if the data sets used for training the classification model are 
not balanced, the classification accuracy may not be a good criterion for evaluating 
the effect of classifying, which will invalidate the detection results in our 
experiments. Therefore, in order to balance the scales of data sets for higher detection 
reliability, we set the amount of legitimate HTTP (HTTPS) sessions for training to 
300, which is just the sum of all the tunnel sessions for training. 
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Table 1. The usage of collceted sessions 

 PD&N-RMI Train Test 
HTTP 14062 300 100 

HTTPS 8754 300 100 
FTP over HTTP (HTTPS)  100 100 

SMTP over HTTP (HTTPS)  100 100 
POP3 over HTTP (HTTPS)  100 100 

 
In the data collection, we should bring out some processing details. The inter-

arrival times may be distorted by network jitters. So, in order to reduce the impact of 
network noises as far as possible, all the data are collected in a certain time period on 
weekdays (14:00-17:30) and all the tunnel sessions are also generated in the same 
period. To simulate normal communication scenarios, when generating tunnel 
sessions, we deploy one host in our department LAN and the other in the WAN 
outside. We utilize the HTTPTunnel [13] to generate HTTP tunnel sessions and the 
Barracuda HTTPS Tunnel [14] to generate HTTPS tunnel sessions. There are two 
modes of the tunnel traffic generation, with a proxy (intermediary forwarding) and 
without proxies (direct connection). Since the proxy can visibly slow down the 
protocol interaction, which can be easily caught, we utilize the mode for direct 
connection. As explained in Section 4, we can’t judge a session with few packets, so 
the sessions used for training and testing in our detection method all have more than 
500 packets. In Section 6.2, we will use some or all of those packets for experiments. 

6.2 Results 

To implement our detection method, we should set the parameters firstly. In the 
packet classification, BL and BT can’t be too large, which may ruin the similarities of 
packets. So, in our detection method, BL is 20 and BT is 15. We set N and M to 3 and 
25 respectively, so we focus on the 3-RPP and the 3-RMI. The custom infinitesimal 
INFS we utilize to evaluate the 3-RMIs of unobserved 3-RPPs is set to -50. Figure 6 
shows the results of the KDE and we can see that the estimated PDF can approximate 
the real density well. In the experiments, we use both our detection method and the 
fingerprint detection technique to detect the tunnel sessions to make a comparison. In 
our detection, in both training and testing, each session is denoted by its feature vector 
FV consisting of Reqavg, Reqvar, Resavg, Resvar, DKL, E3-RPP, D3-RMI. In the fingerprint 
detection, the fingerprint is trained from all the legitimate sessions collected by us. 
The results for HTTP and HTTPS tunnel detection are shown in Table 2 and Table 3, 
where “Packet” is the amount of packets in training and testing session samples, 
“Legitimate” is the amount of sessions identified as the legitimate sessions, “Tunnel” 
is the amount of sessions identified as the tunnel sessions, “HTTP (HTTPS)” 
represents the legitimate HTTP (HTTPS) sessions, “FTP” represents HTTP (HTTPS) 
sessions tunneled with FTP, “SMTP” represents sessions tunneled with SMTP and 
“POP3” represents sessions tunneled with POP3. 
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Table 2. Detection results of HTTP tunnels 

Packet Type 
Our Detection Method Fingerprint Detection Technique 

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy 

100 

HTTP 62 38 62% 44 56 44% 

FTP 31 69 69% 42 58 58% 
SMTP 37 63 63% 33 67 67% 
POP3 46 54 54% 48 52 52% 

   62.0%   55.3% 

300 

HTTP 75 25 75% 65 35 65% 
FTP 22 78 78% 38 62 62% 

SMTP 29 71 71% 39 61 61% 
POP3 39 61 61% 43 57 57% 

   71.3%   61.3% 

500 
or more 

HTTP 81 19 81% 63 37 63% 
FTP 8 92 92% 29 71 71% 

SMTP 17 83 83% 45 55 55% 

POP3 26 74 74% 39 61 61% 
   82.5%   62.5% 

 

Table 3. Detection results of HTTPS tunnels 

Packet Type 
Our Detection Method Fingerprint Detection Technique 

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy 

100 

HTTPS 69 31 69% 52 48 52% 
FTP 28 72 72% 40 60 60% 

SMTP 26 74 74% 32 68 68% 

POP3 45 55 55% 47 53 53% 
   67.5%   58.3% 

300 

HTTPS 73 27 73% 70 30 70% 
FTP 15 85 85% 35 65 65% 

SMTP 25 75 75% 36 64 64% 
POP3 20 80 80% 49 51 51% 

   78.3%   62.5% 

500 
or more 

HTTPS 87 13 87% 57 43 57% 
FTP 2 98 98% 32 68 68% 

SMTP 7 93 93% 21 79 79% 
POP3 11 89 89% 42 58 58% 

   91.8%   65.5% 
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Fig. 6. Results of the KDE: up-left is the KDE of packet lengths in HTTP sessions, up-right is 
the KDE of inter-arrival times in HTTP sessions, down-left is the KDE of packet lengths in 
HTTPS sessions and down-right is the KDE of inter-arrival times in HTTPS sessions 

As the results show, with the data collected, our detection method performs 
obviously better than the fingerprint detection technique does. Because we 
concentrate on protocol behaviors to extract useful features, our detection method is 
more effective. To improve the detection accuracy, the fingerprint detection technique 
needs many more sessions to train the fingerprint. With the amount of packets in 
sessions increasing, the detection rate rises significantly. Additionally, we can see that 
in our detection method the detection rate against HTTPS tunnels is higher. So, we 
can infer that protocol behaviors in HTTPS are more distinctive and pronounced than 
that in HTTP. Further, Table 4 and Table 5 show the detection results when we kick 
out partial features from the feature vector (the amount of packets in sessions is above 
500). We can see that detection accuracies decrease significantly when we abandon 
the first-order features or the second-order features. Hence, we can conclude that the 
two categories of features both play important roles in our detection method. 

Table 4. Results without some features in HTTP tunnel detection 

Type 
Without First-Order Features Without Second-Order Features 

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy 
HTTP 60 40 60% 53 47 53% 
FTP 31 69 69% 30 70 70% 

SMTP 53 47 47% 42 58 58% 
POP3 46 54 54% 59 41 41% 

   57.5%   55.5% 
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Table 5. Results without some features in HTTPS tunnel detection 

Type 
Without First-Order Features Without Second-Order Features 

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy 
HTTPS 72 28 72% 49 51 49% 

FTP 21 79 79% 22 78 78% 
SMTP 45 55 55% 48 52 52% 
POP3 39 61 61% 33 67 67% 

   66.8%   61.5% 

7 Conclusion 

In this paper, we devise a novel web tunnel detection method based on protocol 
behaviors. We extract seven useful statistical features according to the communication 
characteristics in HTTP and HTTPS. With those features, we utilize a SVM classifier 
to distinguish legitimate sessions and tunnel sessions. In the experiment, the detection 
accuracy of our method is much higher than that of the technique proposed in 
previous work. 

In the future, we can research protocol behaviors in other applications. Obtaining 
the behavior characteristics, we can extend our feature extraction method to do further 
classification of network traffic. 
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Abstract. Consumer devices are increasingly being used to perform
security and privacy critical tasks. The software used to perform these
tasks is often vulnerable to attacks, due to bugs in the application itself
or in included software libraries. Recent work proposes the isolation of
security-sensitive parts of applications into protected modules, each of
which can only be accessed through a predefined public interface. But
most parts of an application can be considered security-sensitive at some
level, and an attacker that is able to gain in-application level access may
be able to abuse services from protected modules.

We propose Salus, a Linux kernel modification that provides a novel
approach for partitioning processes into isolated compartments. By en-
abling compartments to restrict the system calls they are allowed to
perform and to authenticate their callers and callees, the impact of un-
safe interfaces and vulnerable compartments is significantly reduced. We
describe the design of Salus, report on a prototype implementation and
evaluate it in terms of security and performance. We show that Salus
provides a significant security improvement with a low performance over-
head, without relying on any non-standard hardware support.

Keywords: Privilege separation, principle of least privilege, modular-
ization.

1 Introduction

Both desktop and mobile devices are increasingly being used to perform security
and privacy critical tasks, such as online banking, online tax declarations and
e-commerce in general. The software to perform these tasks either runs inside
a web browser, or is written as a standalone application. In both cases, the
software is often vulnerable to attacks, either due to bugs in the application
itself or due to bugs in included software libraries or in the runtime environment
used to execute the application (e.g. the browser).

Because of their widespread use and potentially high-impact nature, such ap-
plications form an interesting target for cybercriminals. A lot of research has fo-
cused on defending against specific attack vectors such as buffer overflows[1,2,3,4],
format string vulnerabilities[5] and non-control-data attacks[6]. Even though
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many of these defense mechanisms are applied in practice, successful attacks
against high-value applications are still common.

To provide stronger security guarantees, research efforts have shifted to the
isolation of small, security-sensitive parts of applications such as cryptographic
libraries. By relying on hardware support for trusted computing, state-of-the-art
research prototypes are able to achieve such isolation with a very small trusted
computing base, in some cases even excluding the running kernel[7,8,9,10] or even
having a zero-software TCB[11]. Recent work[12] has proven that such platforms
can effectively isolate sensitive information in protected modules from the rest
of the system; an in-process or in-kernel attacker is only able to interact with
a module through its predefined interface. Hence, an attacker that has com-
promized a non-security-sensitive part of the application can still only perform
the actions explicitly allowed by the interface of a security-sensitive part of the
application.

In practice however, isolating security-sensitive parts of an application is diffi-
cult as most program logic can be considered security-sensitive at some level[13].
A too coarse-grained approach will result in bloated modules that may contain
vulnerabilities and that are too big to be formally verified[14]. Minimum-sized
modules on the other hand, can provide strong and easily verifiable guarantees,
but may need to expose insecure interfaces to interact with other modules. This
is a common problem of module-isolating security platforms, both in software as
in hardware. For instance, in the recent DigiNotar attack, the root CA’s private
cryptographic key was safely stored in a hardware security module (HSM), but
its insecure interface enabled attackers to sign arbitrary certificates.

In order to improve upon these shortcomings, we acknowledge that almost
every part of an application performs security-sensitive operations. To reduce
chances of a successful attack, we propose to partition the entire application into
compartments and implement a non-hierarchical access control mechanism be-
tween compartments. Compartments not only provide provable secure isolation
of stored private data (as modules in related work do), but are also able to con-
fine software vulnerabilities to the compartments they occur in by restricting the
types of system calls that they are allowed to perform. In addition, caller/callee
authentication is able to reduce the impact of insecure interfaces. By separating
likely attack vectors from attack targets and placing them into different com-
partments, an attacker has to find a vulnerability in multiple compartments to
reach her goal.

Consider, as an example, a certificate signing application consisting of a parser,
a validator, a signer and a logging component (Figure 1). When run as a single
monolithic application, a vulnerability in any one of these components can lead
to the compromise of the entire application. When placing each of these com-
ponents in a separate compartment under Salus, components can only call each
other through their well-defined interfaces and each component can authenticate
both its callers and its callees. This restricts the flow of data and control between
compartments to predefined patterns, which significantly raises the bar for an
attacker, since she would need to exploit multiple vulnerabilities in different
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Fig. 1. Salus’ compartmentalization enables strong isolation of security-sensitive data
and contains possibly vulnerable code. Multiple vulnerable compartments need to be
exploited to attack the system successfully.

components of the system in order to perform a successful attack. Furthermore,
by restricting the types of system calls that can be made from each compartment,
the impact of a successful attack is reduced.

Concretely, we make the following contributions in this paper:

– We present a novel approach for partitioning processes into compartments
with support for strong isolation of sensitive data and containment of vul-
nerabilities. To the best of our knowledge, Salus is the first solution that
simultaneously (1) reduces the impact of insecure compartment interfaces,
(2) enables compartments to restrict the types of system calls they are al-
lowed to perform and (3) executes compartments in same address space.

– We report on a prototype implementation of Salus in the Linux kernel.
– We evaluate the security of our approach and the performance of our proto-

type.

The remainder of this paper is structured as follows: in Section 2 we define
our attacker model and describe our desired security properties. In Section 3 we
provide a high-level overview of Salus, before presenting our prototype imple-
mentation in Section 4. Finally we evaluate our approach in Section 5, discuss
related work in Section 6 and conclude in Section 7.

2 Attacker Model and Security Properties

We consider an attacker with the ability to inject and execute arbitrary code in
a process, for instance by exploiting a buffer-overflow vulnerability. We assume
the application under attack takes advantage of Salus’ protection mechanism
by authenticating caller and callee on each intercompartmental call and by re-
stricting the possible system calls to those strictly required. Salus must protect
against such an attacker in the following way:

– The exploitation of a compartment must not affect the security of compart-
ments other than those that explicitly trust the compromised compartment,
in the sense that an attacker should be able to interact with those trusted
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compartments only through their public interface. A compartment trusts an-
other compartment when it is a caller or callee. Although this objective does
not protect against abuse of poorly designed interfaces, Salus provides appli-
cation developers with the primitives required to create secure compartment
interfaces.

– Attackers are explicitly allowed to create new compartments. There is thus no
guarantee that compartments requesting protection can be trusted. Hence,
Salus must isolate compartments from one stakeholder from those of another,
possibly malicious, stakeholder.

– An attacker should not be able to execute system calls that have been
revoked.

Kernel-level and physical attacks are considered out of scope. Regarding the
cryptographic primitives used, we assume the standard Dolev-Yao model[15]: An
attacker can observe, intercept and adapt any message. Moreover, an attacker
can create messages, for example by duplicating observed data. However, the
cryptographic primitives used cannot be broken.

3 Overview of the Approach

This section presents a high-level overview to Salus. Section 3.1 describes the
memory access control mechanisms on which Salus is based. Section 3.2 presents
the services Salus provides to protected applications. Section 3.3 shows how
these services are used in a typical life cycle of a compartmentalized application.
Finally, section 3.4 describes how two compartments can securely communicate
with each other.

3.1 Compartments of Least Privilege

Structure of a Compartment The basic layout of a compartment, shown in
Figure 2, is a virtual memory region divided into two sections: a public section
and a private section. The public section contains the compartment’s code and
any data that should be read accessible by other compartments of the same
application. This section can never be modified after initialization, which enables
other compartments to authenticate the compartment based on a cryptographic
hash of the public section (see Section 3.4). The start of the functions that make
up the compartment’s public interface are marked as entry points. Execution
of the compartment can only be entered through these memory locations (see
Table 1).

The private section contains the compartment’s private data, which consists
of application-specific security-sensitive data (e.g. cryptographic keys) as well as
data relevant to the correct execution of the compartment, such as the runtime
call stack. The data in the private section is read and write accessible from
within the compartment, but completely inaccessible for code executing outside
of the compartment. Note that since each compartment has its own private call
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Fig. 2. Salus’ memory access control model enables the creation of compartments that
provide strong isolation guarantees to sensitive data. Secure communication primitives
reduce the impact of an insecure interface.

Table 1. The enforced memory access control model enforces, for example, that a
compartment’s private section (4th column) can only be read-write accessed from the
public section of the same compartment (3rd row)

from\to Entry pnt. Public section Private section Unprot. mem.

Entry pnt. --- --x --- ---

Public section r-x r-x r-w rwx

Private section --- --- --- ---

Unprot. mem/
r-x r-- --- rwx

other compartment

stack, intercompartmental function call arguments and return addresses must be
passed via CPU registers (as opposed to passing them using the runtime stack).

Applications can still have a memory region that is not part of any compart-
ment. This region is termed unprotected memory and is read/write accessible
from any compartment. All compartments of the same application run in the
same address space, which facilitates the compartmentalization of legacy appli-
cations. Nonetheless, fine-grained compartmentalization of a large code base can
still require significant developer effort. Therefore, Salus enables applications to
be compartmentalized incrementally by storing code and/or data in unprotected
memory. While unprotected memory does not provide any of the security guar-
antees of compartments, it does provide an incremental upgrade path for legacy
applications.

As an example of a compartment, consider a single compartment providing a
certificate signing service (see Figure 2). The compartment provides two func-
tions as part of its public interface. The first function, set key, allows setting
the cryptographic key used to sign certificates. This key is stored as the m key

variable in the private section. The second function, sign cert, handles the
actual signing requests. Salus’ memory access control model ensures that only
these two functions are executable; any attempt to jump to another memory
location in the compartment will fail. Similarly, any attempt to directly read or
write the cryptographic key in the private section from unprotected code or from
another compartment will be prevented. Only after calling a valid entry point



Salus: Non-hierarchical Memory Access Rights to Enforce the PoLP 257

will read and write access to the private section be enabled, making the crypto-
graphic key only accessible while the compartment is being executed. When the
function is terminated, execution returns to the caller and read/write access to
the compartment’s private section will again be disabled.

Special care is required when execution returns to a compartment after a call
to another compartment. Execution must resume at the return location, which
is the instruction right after the call instruction in the caller compartment. This
location however does not typically correspond to an entry point and hence
would cause a memory access violation according to Salus’ memory access con-
trol model (see Table 1). Compartments can implement a return entry point to
avoid this access violation. Right before calling another compartment, the return
location is placed on the top of the calling compartment’s private stack. When
the intercompartmental call has finished, execution flow jumps to the return
entry point where the return location is retrieved from the stack and jumped
to. Note that a return entry point is a software implementation and follows the
same access rights as any other entry points.

Restriction of Privileges. Salus provides two important primitives to limit
the impact of a compromised compartment. The first primitive is caller and callee
authentication. By authenticating callers and callees, a compartment can limit its
interaction to trusted compartments only. Although this does not protect against
trusted compartments that have been compromised, it does significantly limit
the capabilities of an attacker after a successful exploit. Moreover, compartments
can dynamically adjust their trust relations to other compartments. For instance,
the certificate signing compartment introduced in the previous section (Figure 2)
could restrict communication to the compartment that last set its cryptographic
key. Secure communication between compartments is discussed in more detail in
Section 3.4.

The second primitive allows compartments to disable specific system calls
for any code executed from within their public section. Once a system call is
disabled, it cannot be re-enabled. By carefully partitioning an application into
compartments, each of which should disable any system call it doesn’t need, the
impact of the exploitation of a vulnerable compartment is minimized. Note that
much more fine-grained solutions exist than restricting complete system calls[16].
However, we focus on providing strong compartmentalization primitives that can
be used as a building blocks for finer-grained privilege restriction mechanisms.

3.2 Provided Services

To enable compartmentalization of applications, Salus provides runtime support
of the following services:

Create. After code is loaded into memory, this service can be used to create a
new compartment. Given a memory location and size for the compartment
to create, Salus will enable memory protection for this region and will return
a system-wide unique ID for the new compartment.
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Destroy. A compartment can only be destroyed by the compartment itself.
After destruction, the memory access protection is disabled. Hence, a com-
partment should overwrite any private data before destruction.

Request compartment ID. To support secure communication, Salus provides
a service to request the ID and layout (i.e. the size and locations of the public
and private sections and the available entry points) of a compartment cov-
ering a given memory location. If there is no compartment at the specified
location, the service returns an error code. This service is used as a primitive
in compartment authentication.

Request caller ID. To support caller authentication, Salus provides a service
to request the ID and layout of the compartment that called an entry point
of the current compartment.

Disable system call. To limit the impact of the exploitation of a compart-
ment, unused system calls can be disabled. Once a system call is disabled, it
cannot be re-enabled. To prevent an attacker from gaining system call priv-
ileges by creating a new compartment, compartments inherit system call
privileges from their parent.

3.3 Life Cycle of a Compartmentalized Application

Compartmentalized applications can be started as any other application. After
the (trusted) operating system or loader loads the application into memory and
starts its execution, the application can create the required compartments. Fi-
nally, execution can jump to the compartment containing the application’s main
function. Compartments can be created at any point during the applications’
execution, for example, at the time a new (compartmentalized) plugin is loaded.

Creation of Compartments. As the first step of setting up a new compart-
ment, the application allocates (unprotected) memory and loads the compart-
ment’s code. Next, the application enables protection of this memory region,
by calling Salus’ creation service. Note that there is no guarantee that the new
compartment’s code has been loaded correctly into memory, since the creator
might have been compromised already. However, any tampering with the code
will be detected when the compartment tries to communicate with another com-
partment, as will be explained in Section 3.4.

When a new compartment is created, Salus clears the first byte of the pri-
vate section. This serves as a flag to indicate to the compartment that it should
initialize itself when its service is first requested. As part of its initialization, a
compartment should clear the private memory locations it will use. This pre-
vents an attacker from crafting a private section by setting it up in unprotected
memory locations where a new compartment will later be created. Initialization
code typically also disables the system calls that will not be used during further
execution of the compartment.

Destruction of Compartments. A compartment can only be destructed by
the compartment itself. This ensures that compartments can clear their private
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section (which may contain sensitive data), before the memory protection is
lifted. In addition, trusted communication endpoints could be notified of the
compartments’ imminent destruction. After destruction, the unprotected mem-
ory area of the destructed compartment can be freed.

3.4 Secure Communication

Salus’ memory isolation mechanism provides strong guarantees that sensitive
data in the private section can only be accessed by code in the public section[12].
Reconsidering our certificate signing as an example (see Figure 1), we can prove
that the signing key will never leave its compartment. But an attacker with
access to the compartment’s interface is still able to sign arbitrary certificates.
Salus limits the feasibility of such attacks by enforcing both caller as callee au-
thentication. The signing compartment, for example, may enforce that it can
only be accessed by the validator compartment. Likewise, the validator authen-
ticates the signing compartment to verify that it hasn’t been tampered with
before its memory protection was enabled.

Security Report. Authenticating a compartment consists of verifying whether
that compartment adheres to a trusted security report of that compartment. A
security report of a compartment consists of:

The cryptographic hash of its public section This allows any code to ver-
ify that the public section of the compartment has not been tampered with:
the cryptographic hash should be recalculated at runtime and be compared
to the known-good value stored in the security report. This protects against
an attacker who is able to modify the public section of a compartment during
its creation, before memory protection is enabled (see Section 3.3).

The layout of the compartment When a creation request originates from
unprotected memory, the request itself may have been tampered with. An
attacker could, for instance, specify an incorrect layout for the compartment
to create. This may result in the use of unprotected memory that should
be under Salus’ protection. By storing the known-good layout of the com-
partment in the security report, any code can verify that the layout was not
tampered with during creation of the compartment.

A cryptographic signature In order to have integrity protection and authen-
tication of the security report, it is digitally signed by its issuer. Each com-
partment can decide independently whether or not to trust a certain issuer,
which opens up the opportunity to integrate compartments from different
parties into a single application. Since the cryptographic signature provides
integrity protection, security reports can be placed in unprotected memory.

Authentication of Called Compartments. When exchanging sensitive in-
formation between compartments, caller and callee must authenticate each other
before sensitive data is exchanged.
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To authenticate a compartment to be called, its ID must first be obtained
using Salus’ ‘request compartment ID’ service. Next, the callee’s security report
must be acquired. For this a central service where each compartment registers
to on initialization, can be used. Given the callee’s ID, the service should return
the (location of the) corresponding security report. Note that this service need
not be trusted, as any tampering with the information returned will be detected
during the next steps. Once the security report has been obtained, it should be
validated by checking the cryptographic signature and by checking that the issuer
is trusted. Each compartment should contain a private list of trusted security
report issuers. Next, the callee compartment’s layout should be requested from
Salus and a hash of the Public section should be calculated. The layout and the
hash must be compared to the values listed in the security report. This completes
the authentication and allows the caller to securely call one of the callee’s public
functions.

When calling a compartment that has already been authenticated in the past,
a re-validation must occur because the callee may have been destroyed since the
last interaction. A full authentication using the security report on every call
would be very time consuming, so to reduce the performance impact, Salus
allows compartments to be re-authenticated quickly based on their ID. Salus
ensures each compartment has an ID that is unique on the system until the next
reboot. Hence, a re-authentication can simply consist of requesting the ID of
the compartment to be called (using the ‘request compartment ID’ service) and
checking that it is the same as during the initial authentication. Using unique
identifiers has the added benefit that code can distinguish between different
instances of the same compartment.

Authentication of Calling Compartments. To enable compartments to
limit use of their (possibly insecure) interface to trusted caller compartments,
Salus provides primitives for caller authentication. For a compartment to authen-
ticate its caller, it can first request the caller’s ID and memory location (using
the ‘request caller ID’ service) and proceed to authenticate the caller similarly
as described above.

4 Implementation

Access rights to compartment sections depend on the value of the program
counter. For instance, only if execution is in the public section of a compart-
ment, will the private section of that compartment be read/write accessible.
This program counter-based memory access scheme is at the core of Salus’ pro-
tection mechanism. Enforcing this scheme purely in software would have a huge
performance impact as every memory access has to be checked. A pure hardware
implementation of the scheme is possible[11], but prohibits its use on commod-
ity, off-the-shelf PC platforms. The approach taken for Salus combines the best
of both alternatives, by using the key insight that memory access rights for com-
partments only need to change when execution crosses a compartment border.
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This allows Salus to use the standard memory management unit (MMU) to
enforce the memory protection scheme.

A prototype for Salus has been implemented as a Linux kernel modifica-
tion. Section 4.1 describes how the program counter-based access control mech-
anism is implemented in this prototype. Section 4.2 describes the API Salus pro-
vides to processes and finally Section 4.3 lists the Linux system calls that had
to be modified in order to provide a secure implementation of the protection
mechanism.

4.1 Program Counter-Based Access Control

By aligning compartment sections to pages, the standard MMU found on any
recent commodity computer can be applied to enforce the required memory pro-
tection scheme. After a compartment is created (e.g. from unprotected memory),
the MMU access rights for the pages of the new compartment are set up accord-
ing to Table 1: the public section is world-readable while the private section is
isolated completely.

When execution tries to enter a compartment (e.g. because of a call instruc-
tion), a page fault is generated by the MMU. Based on the memory location
addressed and the access type (read, write or execute), Salus determines whether
a valid entry point was called and, if necessary, modifies the access rights of only
the public and private sections, according to Table 1. This minimizes the num-
ber of page faults and access right modifications, thereby reducing the overall
performance impact.

Because unprotected memory is always readable, writable and executable,
no page fault is generated when execution returns from a compartment to un-
protected memory. To restore the access rights of the exited compartment, the
compartment itself must issue a system call to Salus.

The Linux page fault handler was modified to implement these access right
modifications. To keep track of a process’ compartments, the Linux process de-
scriptor data structure was extended with a list of comp struct structures. Each
comp struct describes a single compartment and contains:

– The (virtual) start address and length of the public and private sections
– The compartment’s unique ID
– The compartment’s saved stack pointer
– A list of the compartment’s remaining system call privileges

4.2 System Call API

The following new system calls were implemented in the Linux kernel. These
system calls represent the API Salus provides to processes.

void salus create(void* start, uint len pub, uint len priv)Before a
new compartment is created, the list of existing compartments is checked to
ensure that the new compartment will not overlap with any existing ones.
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New compartments must also not overlap with the kernel or have their mem-
ory pages mapped to files. When these checks succeed, a new compartment
is created and added to the current process’ compartment list. It receives
the same system call privileges as its parent.

void salus destroy(void) Since compartments can only be destroyed from
within their own public section, this system call does not require any ar-
guments. This system call restores the original memory access rights on
memory region occupied by the executing compartment and then removes
the compartment from the current process’ compartment list.

struct comp layout* salus layout(void* addr) This system call returns
the ID and memory layout of the compartment covering a given memory
location. It can be implemented by simply iterating over the current process’
compartment list until a matching compartment is found. A null pointer is
returned when there is no compartment covering the given address.

struct comp layout* salus caller(void) This system call returns the ID
and memory layout of the compartment that last called an entry point of
the current compartment. A null pointer is returned when the current com-
partment was last called from unprotected memory.

void salus syscall disable(uint syscall id) This system call disables
further use of the specified system call, by removing it from the list of sys-
tem call privileges in the comp struct of the current compartment. Once a
system call is revoked, it cannot be re-acquired.

void salus return(void* addr) Before execution returns from a called com-
partment back to its caller (i.e. unprotected memory or another compart-
ment), the access rights of the called compartment’s pages need to be re-
stored. This system call performs this access rights modification and then
continues execution at the specified address.

4.3 Conflicting System Calls

Some existing system calls in the Linux kernel conflict with Salus’ compartmen-
talization. Additional security checks had to be inserted for these conflicting
system calls.

mprotect. The mprotect system call can be used to change the access rights
of pages in memory. Additional checks were added to prevent this system
call from modifying the access rights of compartments.

mmap. Existing system calls such as mmap or mremapmodify the virtual address
space of a process. An attacker could abuse these system calls to map a
compartment’s private section to a file, for instance. Additional checks were
added to prevent this type of abuse.

personality. In Linux, each process has a personality, which defines the pro-
cess’ execution domain. The personality includes, among other settings, a
READ_IMPLIES_EXEC bit, which indicates whether read rights to a memory
region should automatically imply executable rights as well. For compart-
ments this would result in world-executable public sections, nullifying the
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use of designated compartment entry points. Therefore, Salus enforces that
this bit is disabled for compartmentalized processes.

fork. The fork, vfork and clone system calls can be used to create a new pro-
cess or thread. As these processes or threads share parts of their page tables,
the elevated access rights of the private section of a called compartment, af-
fects all processes/threads and enable its access from unprotected memory.
While these system calls could be modified to create copies of the page tables,
our prototype currently uses Linux’ existing CLONE_VM and VM_DONTCOPY

flags to prevent compartments being mapped in the new process or thread.
Checks were also added to the madvice system call, since it can be used to
modify the VM_DONTCOPY flag.

5 Evaluation

The effectiveness of Salus’ protection mechanisms is evaluated in Section 5.1 and
its performance impact is discussed in Section 5.2.

5.1 Security Evaluation

To evaluate Salus’ security, we make a distinction between memory-safe and
memory-unsafe compartments. A memory-unsafe compartment can be exploited
by an attacker using low-level attack vectors such as buffer overflows[1,2,3,4],
format string vulnerabilities[5] or non-control data attacks[6]. A memory-safe
compartment does not contain such vulnerabilities, for instance because it was
written in a memory-safe language or simply because the compartment doesn’t
contain any memory-safety bugs.

Since memory-safe compartments cannot be exploited directly, the only attack
vector against them is through exploitation of another compartment in the same
address space. However, recent research[12] has shown that memory protection
mechanisms such as those offered by Salus, are able to provide full source code
abstraction. This means that, even when other compartments have been suc-
cessfully exploited, an attackers’ capabilities are limited to interacting with the
memory-safe compartment through its public interface. A carefully constructed
interface can thus effectively limit the attack surface of a compartment. But in
many cases, creating a secure interface is still a challenging problem[17]. Recall
the example of a certificate signing compartment introduced in Section 3.1: even
if the private cryptographic key is never exposed, an attacker could potentially
still use the compartment’s interface to sign arbitrary certificates[18]. By taking
advantage of Salus’ support for caller/callee authentication however, the risk of
such an attack can be minimized by only servicing requests from compartments
that would issue them as part of the normal operation of the application (e.g. in
Figure 1, the signer compartment should only accept requests from the validator
compartment).

Memory-unsafe compartments may still contain vulnerabilities that can be
exploited by attackers. Even though Salus does not prevent such attacks, com-
partmentalization can still provide significant security benefits. Firstly, high-risk
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components can be identified and be placed in separate compartments. Effective
but high-overhead countermeasures[19,20] can be used to harden such compart-
ments. By only applying these countermeasures to likely vulnerable compart-
ments, their performance impact remains limited.

Secondly, compartmentalization can automatically thwart certain types of at-
tacks. For instance, limiting entrance of compartments to valid entry points
significantly reduces the chance of an attacker finding enough gadgets to suc-
cessfully execute a return-oriented-programming (ROP) attack[21,22].

Thirdly, compartmentalization can be used as a building block for new coun-
termeasures. For instance, a custom loader could be implemented that loads
compartments at different locations in memory for every program execution.
This is similar to address space layout randomization (ASLR)[23], but can be
applied at a much finer-grained level.

Finally, even when a compartment has been successfully exploited, Salus can
still limit the impact of the attack. Because Salus provides entry point enforce-
ment, caller/callee authentication and system call privilege containment, an at-
tacker will likely have to compromise multiple vulnerable compartments before
reaching her intended target. This significantly increases the effort an attacker
must take to successfully exploit the application. The ability to confine attack-
ers to the exploited compartment even allows implementing a tightly controlled
sandbox where user-provided machine code can be executed safely.

5.2 Performance Evaluation

To evaluate the performance of Salus, we performed micro- and macrobench-
marks. All tests were run on a Dell Latitude E6510. This laptop is equipped
with an Intel Core i5 560M processor running at 2.67 GHz and contains 4 GiB
of RAM. A Ubuntu Server 12.04 distribution with (modified) Linux 3.6.0-rc5
x86 64 kernel was used as the operating system.

System-Wide Impact. To show that legacy applications not using the mod-
ularization technique are not impacted by our changes to the Linux kernel, we
ran the SPECint 2006 benchmark. All tests finished within ±0.4% compared to
the vanilla kernel.

Microbenchmarks. To measure the overhead caused by switching the access
rights, we created a microbenchmark that measures the cost of a call to a secure
compartment and compare it to the cost of calling a regular function and calling
a system call. The compartment used in the benchmark immediately returns to
the caller. The system call and function behave similarly.

Table 2 displays the results of this microbenchmark. Calling a compartment is
about 677 times slower compared to calling a regular function. This overhead is
attributed to the need to modify the access rights of pages. Compared to calling
a system call, the compartment is only 20 times slower. Due to these high costs,
there is a trade-off to be made between a low number of compartment transitions
and small compartments with additional security guarantees.
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Table 2. Compartment access overhead

Type CPU cycles Relative

Function Call 5,944 1
System Call 193,970 32.63
Compartment Call 4,024,227 677.02

Secure Web Server. As a macrobenchmark, we compartmentalized an SSL-
enabled web server. For every new connection a new compartment is created,
securing session keys even in the event that an attacker is able to inject shellcode
in the compartment providing its own SSL session.

The secure compartment was built using the PolarSSL cryptographic library
and a subset of the diet libc library. A simple static 74-byte page is returned to
the clients over an SSL-connection protected by a 1024-bit RSA encryption key.

Table 3. Requests per second of an SSL-enabled webserver where every SSL session
is protected in its own compartment, for an increasing number of clients

Concurrency Vanilla kernel Salus kernel Relative perf.

1 109.11 96.54 -11.52%
2 165.56 153.62 -7.21%
4 184.31 164.78 -10.60%
8 199.98 175.35 -12.32%
16 206.82 181.00 -12.48%
32 207.78 181.50 -12.65%
64 206.64 180.35 -12.72%
128 206.49 180.97 -12.36%

We used the Apache Benchmark to benchmark this web server for an in-
creasing number of clients that are concurrently requesting pages. The results
are shown in Table 3. The performance overhead tops at 12.72% and is mainly
attributed to the many compartment boundaries crosses during the SSL negoti-
ation phase.

Compartmentalized Parser. As input files are often under the control of
an attacker and sanitation of their content can be difficult, parsers are a likely
attack vector for many applications. As a second benchmark, we isolated the de-
compressing function of gzip (GNU zip). While disabling unused system calls for
the entire process would result in similar security guarantees, we are interested in
the impact of repeated compartment crossings in a parser setting. Applications
that place their parser and the rest of the application in different compartments,
would incur a similar overhead as only one additional compartment boundary
needs to be crossed.
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To benchmark the application, we created input files with randomized content,
ranging from 16KiB to 64MiB in size, compressed them and measured the time
taken to decompress the files with the hardened application. The application
was run 100 times on each file. File I/O used a buffer of 32KiB and the output
was redirected to the null device. Figure 3 displays the results.

Fig. 3. Salus’ performance overhead on the gzip macro benchmark drops significantly
as the input file size increases

Given the relatively high overhead of a call to a compartment and the low
computation cost of the decompressing function, it is unsurprising that for small
input files the overhead can be as high as 21.9%. When the input size is increased
however, the overhead drops steadily to -0.5% for 64MiB input files, even though
also the number of compartment-border crossings increases from 8 to 8200. We
attribute this significant drop in overhead to the increased amount of slow disk
I/O that needs to be performed as the input file size gets bigger, an effect that
we predict to see in most parser-like compartments. The small performance gain
of 0.5% can be attributed to cache effects.

The way an application is partitioned will have a significant impact on per-
formance. Applications should be compartmentalized in logical blocks where
each compartment has direct access to most of its required data. Once a logical
block has finished, control and all data should be passed to the next compart-
ment, reducing the number of inter-compartment calls. Smaller, heavily pro-
tected compartments such as an SSL compartment, provide strong security but
may impact performance more significantly when called repeatedly. This makes
the performance impact of compartmentalization difficult to predict. Therefore
we advocate for automatic partitioning tools that reduce the number of com-
partment crosses and help the programmer decide which compartments should
be hardened most thoroughly.

6 Related Work

Various security measures have been proposed to harden applications. Many of
them aim to protect against very specific vulnerabilities such as buffer overflows
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[1,2,3,4], format string vulnerabilities[5] or non-control data attacks[6]. While
these countermeasures make it significantly more difficult for an attacker to
compromise software applications, they cannot offer complete protection. Static
verification of source code[24], in contrast, is able to provide such hard secu-
rity guarantees, but typically comes at a significant economic cost in terms of
programming and verification effort.

Singaravelu et al.[13] proposed to isolate security-sensitive parts of applica-
tions in complete isolation from the rest of the system. Many research proposals
have since been filed based on this principle. Each of them provides some way of
executing modules in isolation, relying on a trusted code base ranging from only
a few thousands of lines of code[8,10] to only the protected modules themselves
and a small runtime library[7,9]. While these research prototypes offer provable
security to the sensitive data that they protect[12], they do not attempt to re-
duce the impact of a vulnerability elsewhere in the code by executing modules
with the least amount of privileges possible[25]. An attacker who successfully
gains control over the platform is still able to interact with protected modules
unrestrictedly.

Other work focuses on confining possible software vulnerabilities. Early work
focused on reducing the size of the kernel itself[26], where process privileges are
managed by capabilities. Recently Watson et al.[16] proposed applying a similar
idea to partition applications themselves, where capabilities can be granted to
each created partition. As partitions live in their own process, interaction takes
place through remote procedure calls and pointers cannot to passed directly.
Salus avoids these drawbacks by executing compartments in the same address
space and unprotected memory can be used to gradually partition legacy appli-
cations. While fine-grained privilege containment is out of scope for this paper,
Salus can easily be extended with a capability mechanism.

Native Client (NaCl)[27,28], which builds upon the concepts of software fault
isolation[29], takes another approach and attempts to completely sandbox x86
code. Accesses to the environment from within a sandbox are tightly controlled
by runtime facilities. While NaCl focuses on downloaded, untrusted binary code,
it could be used to partition entire applications. Interaction between two NaCl
partitions is provided through a service similar to Unix domain sockets, making
porting existing legacy applications a challenging undertaking. Salus on the other
hand can provide a similar tightly controlled sandbox by placing such partitions
in one compartment while the remaining legacy application is placed in another.
A specially created wrapper can ensure that all system call privileges are revoked
before execution control is given to the sandboxed code. There are however two
major differences compared to NaCl. First, Salus only impacts performance when
compartment boundaries are crossed. NaCl on the other hand places constraints
on the binary code itself, resulting in a varying performance impact. Second,
Salus employs a non-hierarchical separation of privilege, allowing compartments
to be completely isolated from other compartments (possibly provided by other
vendors) while compartments of the same vendor can co-operate easily.
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Finally, our earlier work[30,10] is the most related to Salus. It also employs a
program-counter based access control mechanism, but assumes a safe interface.
Therefore it has the same limitation as other research prototypes[9,7,8] that
provide strong isolation of sensitive data: it does not reduce the possible impact
of exploited vulnerabilities.

7 Conclusion

Recent module-isolation security architectures provide strong security guaran-
tees of sensitive data stored in small pieces of applications. In practice, however,
it is hard to isolate such security-sensitive parts, as most code in an application
is sensitive up to some level. As a result, modules of such platforms may need
to provide unsafe interfaces. We presented Salus, a new security architecture
that can not only provide strong isolation guarantees of sensitive data, but its
mutual authentication support also reduces the impact of insecure interfaces.
By placing likely attack vectors and targets into different compartments, mul-
tiple compartments need to be attacked successfully before an attack target is
reached.
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13. Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reducing tcb complexity for
security-sensitive applications: three case studies. In: EuroSys 2006 (2006)

14. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual
machine-based platform for trusted computing. ACM SIGOPS 37(5) (2003)

15. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

16. Watson, R.N., Anderson, J., Laurie, B., Kennaway, K.: Capsicum: practical capa-
bilities for unix. In: USENIX Security (2010)

17. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Computers & Security 11(1), 75–89 (1992)

18. Hoogstraten, H., Prins, R., Niggebrugge, D., Heppener, D., Groenewegen, F., Wet-
tinck, J., Strooy, K., Arends, P., Pols, P., Kouprie, R., Moorrees, S., van Pelt, X.,
Hu, Y.Z.: Black tulip - report of the investigation into the diginotar certificate
authority breach. Technical report, FoxIT (2012)

19. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.:
Paricheck: an efficient pointer arithmetic checker for c programs. In: ASIACCS
2010, pp. 145–156. ACM, New York (2010)

20. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In: USENIX 2009
(2009)

21. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: CCS 2007, pp. 552–561. ACM (2007)

22. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: CCS 2010, pp. 559–572.
ACM, New York (2010)

23. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In: USENIX 2003 (2003)

24. Jacobs, B., Piessens, F.: The VeriFast program verifier (2008)
25. Saltzer, J., Schroeder, M.: The protection of information in computer systems.

Proceedings of the IEEE 63(9), 1278–1308 (1975)
26. Liedtke, J.: Toward Real Microkernels. Communications of the ACM 39(9) (1996)
27. Yee, B., et al.: Native client: A sandbox for portable, untrusted x86 native code.

In: SP 2009, pp. 79–93. IEEE (2009)
28. Sehr, D., et al.: Adapting software fault isolation to contemporary cpu architec-

tures. In: USENIX Security Symposium (2010)
29. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault

isolation. In: Proceedings of the Fourteenth ACM Symposium on Operating Sys-
tems Principles, SOSP 1993, pp. 203–216. ACM, New York (1993)

30. Strackx, R., Piessens, F., Preneel, B.: Efficient Isolation of Trusted Subsystems in
Embedded Systems. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST,
vol. 50, pp. 344–361. Springer, Heidelberg (2010)



Scalable Security Model Generation and Analysis
Using k-importance Measures

Jin B. Hong and Dong Seong Kim

Computer Science and Software Engineering,
University of Canterbury,

Christchurch,
New Zealand

jho102@uclive.ac.nz, dongseong.kim@canterbury.ac.nz

Abstract. Attack representation models (ARMs) (such as attack graphs, attack
trees) can be used to model and assess security of a networked system. To do this,
one must generate an ARM. However, generation and evaluation of the ARM
suffer from a scalability problem when the size of the networked system is very
large (e.g., 10,000 computer hosts in the network with a complex network topol-
ogy). The main reason is that computing all possible attack scenarios to cover
all aspects of an attack results in a state space explosion. One idea is to use only
important hosts and vulnerabilities in the networked system to generate and eval-
uate security. We propose to use k-importance measures to generate a two-layer
hierarchical ARM that will improve the scalability of model generation and secu-
rity evaluation computational complexities. We use k1 number of important hosts
based on network centrality measures and k2 number of significant vulnerabilities
of hosts using host security metrics. We show that an equivalent security analysis
can be achieved using our approach (using k-importance measures), compared to
an exhaustive search.

Keywords: Attack Models, Network Centrality, Security Analysis, Security
Metrics.

1 Introduction

Attack representation models (ARMs) (e.g., Attack Graphs (AGs) [1] and Attack Trees
(ATs) [2]) are widely used for computer and network security analysis. One main us-
age of ARMs is to formulate security solutions to enhance the network security while
minimising the cost [3, 4]. One of limitations using ARMs is a scalability problem [5],
because computing all possible attack scenarios has s state space explosion problem.
There are two main types of ARMs; Graph-based and Tree-based. Graph-based (e.g.,
logical attack graphs [6], multiple prerequisite graphs [7]) and tree-based (e.g., pro-
tection trees [8], attack countermeasure trees [9]) ARMs are non-state space models,
but graph-based ARMs have an exponential number of possible attack paths in security
evaluation. Hierarchical attack representation models (HARMs) [10,11] have been pro-
posed to improve the scalability of non-state space models, but the scalability problem
still remains when evaluating network security of a very large sized network system.
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ARMs have different phases in its lifecycle. The preprocessing phase collects net-
work information (e.g., network reachability, vulnerabilities), and the generation (or
construction) phase combines these information to build an ARM. The representation
phase stores and visualises the ARM, and the evaluation phase analyses the network
security via the ARM. The modification phase updates the ARM when the network
changes. Generation of graph-based ARMs is scalable, but the evaluation has a scala-
bility problem. In contrast, the evaluation of tree-based ARMs is scalable only if the
size of the ARM has a polynomial size complexity.

Model simplifications (e.g., graph aggregation [12], adjacency matrix clustering [13],
graph simplification via collapsing similar nodes [7]) and heuristic methods (e.g., Par-
ticle Swarm [14], new heuristic algorithms [15]) are used to improve the scalability,
but these methods require an ARM generated specific to their evaluation method us-
ing all network information. We propose to use k-importance measure to rank hosts in
the network and vulnerabilities of the hosts, and generate ARMs only using those se-
lected hosts and vulnerabilities to improve the scalability of generation and evaluation
of ARMs. We use network centrality measures (NCMs) (e.g., degree, closeness, and
betweenness [16, 17]) to rank k1 number of hosts in the network, and security metrics
(e.g., Common Vulnerability Scoring System (CVSS) [18], risk [9]) to rank k2number
of important vulnerabilities of the hosts.

NCMs identify characteristics of network components based on the structure. The
structure of the network is important in a cyber attack, as some attacks (e.g., sequential
attacks) progress based on how network components are connected. The reachability
information is based on the network structure. As a result, NCMs can distinguish attack
paths that are most likely be used in an attack than others. Security metrics reflect
characteristics of vulnerabilities in hosts. Security metrics can be measured from real
systems [19], cloud systems [20], emulations [21], and honey pots [22].

We propose to use a two-layer HARM to analyse network security [11], to capture
network information (e.g., network reachability) in the upper layer and vulnerability
information (e.g., CVSS) in the lower layer. NCMs are used on the upper layer to rank
important hosts in the network, and security metrics on the lower layer to rank important
vulnerabilities in the hosts.

The contributions of this paper are summarised as follows:

– To propose an efficient ARM generation method based on k-importance measures;
– To generate HARMs using k-importance measures and show that nearly equivalent

security analysis can be achieved;
– To simulate scalability and accuracy of the HARMs (or ARMs) using k-importance

measures against the exhaustive search method when analysing the network
security.

The rest of the paper is as organised as follows. In Section 2, related work is given. In
Section 3, an example network and HARMs are described in the phases of generation
and evaluation, with an evaluation example based on risk analysis. Simulation results
are shown in Section 4. Discussion is given in Section 5, and Section 6 concludes this
paper.
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2 Related Work

Security analysis using all possible attack scenarios can cover all set of known at-
tacks. Various modelling techniques are proposed to improve the scalability of ARMs
[6, 7, 10, 11], but computing all possible attack scenarios (e.g., full AG [1], attack re-
sponse trees [23]) for a large sized network still suffers from a scalability problem [5].
Model simplifications and heuristic methods are widely used to improve scalability in
the evaluation phase, but not in the generation phase.

Attack scenarios are often used to generate ARMs [23]. Chen et al. [24] used com-
pact AG, similar to a logical AG in [6], to find n-valid paths that has less than n steps
to reach the target, where n denotes the number of stepping stone hosts in the network.
Further, they defined a weighted-greedy algorithm to find the optimal security solu-
tion in the evaluation phase. Their experiment results clearly showed that covering a
larger set of attack scenarios is computationally expensive. Mehta et al. [25] ranked
AG components based on attack probabilities. A full AG is constructed (i.e., capturing
all possible attack scenarios [1]), which requires computing exponential number of at-
tack paths in a large sized network. AG components cannot be ranked until full AG is
generated. Sawilla et al. [26] used partial cuts in evaluation of AGs. Partial cuts divide
network components by their importance, such that the relevance between a network
component and the attack is decided based on the generated AG. However, the struc-
ture of the AG is heavily dependent on network reachability. That is, network structure
affects how important network components are chosen in the AG. Various techniques
(e.g., model simplification and heuristic methods) are proposed to improve scalability
in the evaluation phase, but they did not consider reducing the computation complexity
in the generation phase.

Importance measures are used in some application domains. Cadini et al. [17] used
NCMs to capture strengths and weaknesses of network safety. Georgiadis et al. [16]
described network security using NCMs, but only implications of NCMs are described.
Gallon et al. [18] integrated CVSS framework with AGs to construct an AG, but the
structure of the ARM is the same with other AGs. Previous works using NCMs and
security metrics to assess the performance network security were applied only in the
evaluation phase of ARMs.

We propose k-importance measures in the generation phase of ARMs using impor-
tant hosts and vulnerabilities. To the best of our knowledge, no other work considered
this approach to improve scalability. We show that our approach can provide nearly
equivalent security analysis of a large sized networked system in a scalable manner.
That is, by using only a subset of network components, it reduces the computational
complexity in all phases of ARMs lifecycle. Important hosts are chosen based on NCMs
(e.g., degree, closeness, betweenness [16,17]), and important vulnerabilities are chosen
based on security metrics (e.g., CVSS [18], structural importance [9]). Generation and
evaluation of ARMs using k-importance measures and their computation methods are
presented in Section 3.
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3 A Network and Attack Models

Analysing network security follows procedural steps; (i) gather information from the
network (e.g., reachability, vulnerabilities), (ii) generate an ARM using given network
information, (iii) analyse network security via ARM using security metrics, and (iv)
update the ARM if there is any change in the network. Figure 1 shows the steps taken
to analyse the network security, with additional feature to use k-importance measures.
Computations of k-importance measures are processed at the beginning of the genera-
tion phase.

Reachability

Vulnerability
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Reachability
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Preprocessing Generation Evaluation
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Network
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Fig. 1. Lifecycle of an ARM

3.1 Network Settings and the Attack Scenario

We use a network example as shown in Figure 2. We assume all host connections have
the same cost (e.g., same throughput and attack probabilities), and the probability of
attacks are the same for all hosts. However, different edge costs can be modelled with
different edge weights, and also the probability of attacks can hold different values.
H1, H2, H3 and H4 (intermediate host machines) are identical hosts with same vulner-
abilities, and H5 (a target machine) is running a virtual machine. We define an attack
scenario with the location of an attacker outside the network (i.e., attack from Internet),
and the goal is to compromise the target host (i.e., obtaining the administrator privilege
of H5).

Vulnerability information is collected from a real system using vulnerability scan-
ners (e.g., NESSUS [27]). On the intermediate host machines (based on Windows XP
SP1), about 60 known vulnerabilities are found. Some vulnerability information is not
given (e.g., NESSUS plugin name, port number, CVSS BS, and Common Vulnerabil-
ities and Exposures (CVE) ID). For automated generation of ARMs, it is difficult to
interpret vulnerability description to model vulnerability interactions (e.g., difficulties
in processing manual input of vulnerability information due to various language for-
mats, such as grammar and choice of words). Therefore, we scope the list of known
vulnerabilities only with identifications (e.g., CVE ID is given). Total 11 vulnerabilities
are identified as shown in Table 1 with details including CVE ID, CVSS BS, impact,
exploitability, confidentiality impact (CI) and access level. All vulnerabilities are ac-
cessible via the network (i.e., no local access is required) and no authentications are
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Fig. 2. A network example

required to exploit vulnerabilities. The CI is categorised into None (denoted as N), Par-
tial (denoted as P), or Complete (denoted as C), where None means no information on
the machine is accessible, Partial means a considerable amount of information could
be accessible, and Complete means all information of the system is compromised, by
the attacker respectively. The access level describes the privilege acquired by the at-
tacker, where only a single vulnerability allowed the attacker to gain the administrator
privilege.

Table 1. List of vulnerabilities in H1-H4

ID CVE ID CVSS BS Impact Exploitability CI Access Level Authentication

v1 CVE-2005-1794 6.4 4.9 10.0 P None None
v2 CVE-2011-0661 10.0 10.0 10.0 C None None
v3 CVE-2010-0231 10.0 10.0 10.0 C None None
v4 CVE-2011-2552 7.8 6.9 10.0 N None None
v5 CVE-1999-0520 6.4 4.9 10.0 P None None
v6 CVE-2010-2729 9.3 10.0 8.6 C None None
v7 CVE-1999-0505 7.2 10.0 3.9 C Admin None
v8 CVE-2002-1117 5.0 2.9 10.0 P None None
v9 CVE-2003-0386 4.3 2.9 8.6 P None None
v10 CVE-2010-0025 5.0 2.9 10.0 P None None
v11 CVE-1999-0497 0.0 0.0 10.0 N None None

A total of 23 vulnerabilities are found on the target machine (i.e., H5 running a
VMware ESXi). We assume that the attacker can only access network hosts via re-
mote access (i.e., no physical access), then there are 11 vulnerabilities accessible via
remote connections. The list of vulnerabilities of H5 is shown in Table 2. In the au-
thentication field, some vulnerabilities (CVE-2010-1142, CVE-2010-1141 and CVE-
2008-2097) require a SingleSystem condition satisfied. These vulnerabilities require
the attacker to have an access, such as command line, desktop session or web interface
on the machine. Any vulnerability with disclosure of machine information (i.e., CI is
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either P or C) allows the attacker to gain an access to the machine (i.e., SingleSystem
authentication is satisfied). There are vulnerabilities without any CI (i.e., CI is N), but
they allow the attacker to distribute softwares (e.g., Trojan horse) that could be used to
gain access of network hosts. However, we do not consider these cases.

Table 2. List of vulnerabilities in H5

ID CVE ID CVSS BS Impact Exploitability CI Access Level Authentication

v12 CVE-2011-1789 5.0 2.9 10.0 N None None
v13 CVE-2011-1786 5.0 2.9 10.0 N None None
v14 CVE-2011-1785 7.8 6.9 10.0 N None None
v15 CVE-2011-0355 7.8 6.9 10.0 N None None
v16 CVE-2010-4573 9.3 10.0 8.6 C None None
v17 CVE-2010-3609 5.0 2.9 10.0 N None None
v18 CVE-2010-1142 8.5 10.0 6.8 C None Single System
v19 CVE-2010-1141 8.5 10.0 6.8 C None Single System
v20 CVE-2009-3733 5.0 2.9 10.0 P None None
v21 CVE-2008-4281 9.3 10.0 8.6 C None None
v22 CVE-2008-2097 9.0 10.0 8.0 C Admin Single System

3.2 Computing k-importance Measures

In this subsection, we describe how to rank and select important hosts and vulnerabili-
ties based on k-importance measures. k1 denotes the number of important hosts and k2

denotes the number of important vulnerabilities used to generate ARMs, respectively.

Ranking k1 Number of Important Hosts. We use network reachability information
in conjunction with NCMs to rank important hosts. Among many NCMs, we use only
basic NCMs (e.g., degree, closeness and betweenness centrality measures) [17]. The
degree centrality computes the popularity of a node (e.g., a host in a network graph)
based on number of direct connections with other nodes (e.g., single-hop neighbour
hosts), with its computational complexity of O(n) where n is the number of nodes in the
graph. The closeness centrality computes the distance of a node to all other nodes, with
its computational complexity of O(n3) using Floyd algorithm [28]. The betweenness
centrality computes the significance of a node between all node pairs, with its compu-
tational complexity of O(n3) using Floyd algorithm. A problem using NCMs is when
two or more nodes have the same rank. In this work, nodes with the same rank will be
assigned with the same rank, and we will consider other approaches in future work. The
normalised NCMs of the example network is shown in Table 3, where high values rep-
resent higher importance. Each NCM ranks are combined to give the overall rankings
of the hosts. The final rank is determined by taking into account their ranks from each
NCMs. A node with high scores in all three NCMs will have a higher rank (e.g., H4 has
highest score in all NCMs) than other nodes. RankSum values are calculated by adding
up their ranks from each NCM (e.g., RankSum of H1 is calculated by adding values of 1
(first equally important based on degree centrality), 1 (first equally important based on
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closeness centrality), and 2 (second equally important based on betweenness centrality)
resulting in value of 4). Then, the RankSum values are used to give the final rank of each
host in an ascending order. Since H1 and H2 have the same value of RankSum, they are
equally ranked overall.

Table 3. Network Centrality Measurements

Degree Closeness Betweenness RankSum Final Rank

H1 3/4 4/5 8/12 4 2
H2 3/4 4/5 8/12 4 2
H3 2/4 4/7 4/12 12 4
H4 3/4 4/5 10/12 3 1
H5 1/4 4/12 4/12 14 5

Another importance of using NCMs is to compute the proportion of important hosts
(i.e., the value of k1). The density of the network (i.e., the proportion of host intercon-
nections in respect to the number of hosts) is one of the important factors because the
number of available attack paths are proportional to the network density (i.e., there are
more available attack paths in a dense network (e.g., fully connected or mesh topolo-
gies) than a sparse network (e.g., star or tree topologies)). We use closeness centrality to
compute the value for k1, because the closeness centrality directly measures the amount
of host connections in the network. In a fully connected network, the sum of normalised
degree centrality measure is equal to the number of hosts in the network (i.e., all net-
work components are used in at least one attack path). The sum of degree centrality is
three (out of five), which we will assign as the value of k1 (i.e., k1 = 3).

3.3 Ranking k2 important Number of Vulnerabilities in Hosts

Various security metrics evaluate different aspects of vulnerabilities. Values are as-
signed to security metrics (e.g., CVSS base score (BS) [18]) and these values are relative
to each other. For our example, we use CVSS BS to rank vulnerabilities. The rank based
on CVSS BS is shown in Table 4 and Table 5 for intermediate hosts and target host vul-
nerabilities, respectively. The proportion of important vulnerabilities is chosen by their
CVSS BSs. The average CVSS BS is calculated, and vulnerabilities with CVSS BS
higher than the average are selected. We determine the k2 values with threshold values
set to the average CVSS BSs. The average CVSS BSs are 6.5 and 7.3 for intermediate
hosts and the target host, respectively. Therefore, in this example, the value of khost

2 = 5,
and the value of ktarget

2 = 7.

3.4 Generation of HARMs

Generation of HARM Using All Network Information. We use a two-layer HARM
to analyse security of the system. We generate the HARM in which an AG in the upper
layer (e.g., using ARM generating tools, such as MulVAL [29]), and an AT in the lower
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Table 4. Intermediate host vulnerability rankings

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

CVSS BS 6.4 10.0 10.0 7.8 6.4 9.3 7.2 5.0 4.3 5.0 0.0
Rank 6 1 1 4 6 3 5 8 10 8 11

Table 5. target host vulnerability rankings

v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22

CVSS BS 5.0 5.0 7.8 7.8 9.3 5.0 8.5 8.5 5.0 9.3 9.0
Rank 8 8 6 6 1 8 4 4 8 1 3

layer are used. The HARM of the example network is shown in Figure 3, where the
attacker is denoted as A. H1, H2, H3 and H4 have identical lower layer ATs (i.e., the
AT goal is defined as Compromise Host). We assume only one prerequisite condition
is required when exploiting vulnerabilities with prerequisites (i.e., one vulnerability is
chosen from a set of vulnerabilities satisfying the same condition).

Generation of a Reduced HARM Using k-importance Measures We generate a re-
duced HARM based on k-importance measures, denoted as ReHARM as shown in Fig-
ure 4. The size difference is significantly reduced in comparison to the HARM shown in
Figure 3, even with the small network example. The selected important hosts with k1 = 3
are H1, H2, H4. Since H5 is designated as the target, it must be included in the upper
layer. If we want to assess security of the network system, only selected hosts are in-
cluded in the AG model. The number of selected important vulnerabilities is k∗Host

2 = 5
and k∗Target

2 = 7 for intermediate hosts and the target host, respectively. It is also possi-
ble to generate a full HARM, then take into account important hosts and vulnerabilities
to derive a ReHARM, which could be regarded as an abstract interpretation. However,
it is an unnecessary step to generate the ReHARM because it can be derived directly
from the preprocessing phase (i.e., with given network and vulnerability information).

3.5 Security Evaluation

We analyse the risk associated with each attack path using the HARM with all details
(e.g., a full HARM), denoted by Rap. The computation of the risk is shown in equation
(1) [9], where Pgoal is the probability of an attack, and Igoal is the impact value. Note that
it is possible to apply different security analysis by adopting different methods or even
different ARM in the lower level of the ReHARM. To compute the risk, we use impact
values directly from Table 1 and Table 2, and the exploitability is scaled by a factor
of 10, to represent the probability of an attack. The exploitability value is computed by
taking into account access vector, access complexity and authentication of vulnerability,
which reflect characteristics of attack probabilities.

Rap = Pgoal × Igoal (1)
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H1A

H2

H3

H4 H5

(a) An AG in the upper layer

Compromise Host

AND1

v7 OR1

Nonev3 v4 v5 v6 v8 v9 v10 v11v1 v2

(b) An AT of intermediate hosts in the lower layer

Compromise Target

AND1

v22

OR1

Nonev21v16

AND2

OR2

v20 v14v12 v13 v18v15 v17 v19

(c) An AT of the target host in the lower layer

Fig. 3. The HARM of the example network
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H1A

H2

H4 H5

(a) A reduced AG in the upper layer

Compromise *Host

AND1

v7 OR1

Nonev3 v4 v6v2

(b) A reduced AT of intermediate
hosts in the lower layer

Compromise *Target

AND1

v22

OR1

Nonev21v16

AND2

OR2

v14 v18v15 v19

(c) A reduced AT of the target host in the
lower layer

Fig. 4. The ReHARM of the example network

Risk Computation Using the HARM. First, we compute Phost (i.e., probability of an
attack on intermediate hosts), as shown in equation (2). Note that PNone = 1 (i.e., not
choosing to exploit a vulnerability from the list has a probability of one).

Phost =Pv7 ×PhostOR1

=0.39× [1− ((1−Pv1)× (1−Pv2)× (1−Pv3)× (1−Pv4)× (1−Pv5)

×(1−Pv6)× (1−Pv8)× (1−Pv9)× (1−Pv10)× (1−Pv11)× (1−PNone))]

=0.39

(2)

Now we compute Ihost as shown in equation (3). Note that INone = 0 (i.e., not exploit
a vulnerability has no impact).

Ihost =Iv7 + IhostOR1

=10.0+max(Iv1, Iv2 , Iv3 , Iv4 , Iv5 , Iv6 , Iv8 , Iv9 , Iv10 , Iv11 , INone)

=10.0+ 10.0

=20.0

(3)

Similarly, we can compute Ptarget = 0.8 and Itarget = 30.0.
Now, we compute all possible attack paths, based on the HARM shown in Figure 3

using exhaustive search. The list of all possible attack paths and their risk analysis are
summarised in Table 6. Each attack path is presented with sequences of the hosts. We
observe the highest risk value is 8.52 (from paths pa3 and pa6).
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Table 6. Risk analysis of attack paths

Path Number Attack path Pgoal Igoal Rap

pa1 H1H2H4H5 0.047 90.0 4.27
pa2 H1H3H2H4H5 0.019 110.0 2.04
pa3 H1H4H5 0.122 70.0 8.52
pa4 H2H1H4H5 0.047 90.0 4.27
pa5 H2H3H1H4H5 0.019 110.0 2.04
pa6 H2H4H5 0.122 70.0 8.52
pa7 H3H1H2H4H5 0.019 110.0 2.04
pa8 H3H1H4H5 0.047 90.0 4.27
pa9 H3H2H1H4H5 0.019 110.0 2.04
pa10 H3H2H4H5 0.047 90.0 4.27

Risk Analysis Using the ReHARM. We show risk analysis using ReHARM. The
same calculation as the risk analysis of the HARM is used. We denote the risk analysis
using ReHARM as R∗

ap. First, we compute P∗
host as shown in equation (4).

P∗
host =Pv7 ×P∗

hostOR1

=0.39× [1− ((1−Pv2)× (1−Pv3)× (1−Pv4)× (1−Pv6)× (1−PNone))]

=0.39× [1− 0]

=0.39

(4)

Now we compute I∗host , as shown in equation (5).

I∗host =Iv7 + I∗hostOR1

=10.0+max(Iv2, Iv3 , Iv4 , Iv6 , INone)

=10.0+ 10.0

=20.0

(5)

Similarly, we can compute P∗
target = 0.7776 and I∗target = 30.0.

Based on the ReHARM as shown in Figure 4, we compute all possible attack paths
using exhaustive search. Table 7 shows the risk analysis based on ReHARM. The high-
est risk value is 8.28 (from paths pa∗2 and pa∗4), which is nearly equivalent to the risk
analysis using the HARM shown in Table 6.

4 Simulation Results

We conduct simulations to investigate the effectiveness of security analysis using k-
importance measures. Figure 5 shows the example network used for simulations. We
were not able to use a real system with a large number of hosts to show the scalability
of our proposed approach. The network consisted of 1000 hosts. 500 hosts were as-
signed in the DMZ network, 500 hosts were assigned in the Internal network, and one
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Table 7. Risk analysis of attack paths using ReHARM

Path Number Attack path P∗
goal I∗goal R∗

ap

pa∗1 H1H2H4H5 0.046 90.0 4.15
pa∗2 H1H4H5 0.118 70.0 8.28
pa∗3 H2H1H4H5 0.046 90.0 4.15
pa∗4 H2H4H5 0.118 70.0 8.28

target host was assigned in the Database network. Firewalls, denoted as FW1 and FW2,
controls the data flow in the network, restricting access to the Internal and Database net-
works from outside. The attack scenario is for an attacker located outside the network
to compromise the target host. All hosts were assigned with 10 vulnerabilities, where
a single vulnerability (vroot) granted the admin privilege when exploited, two vulner-
abilities (v1

user and v2
user) granted the user privilege, and the rest does not change the

privilege status. To exploit vroot , the attacker must exploit either v1
user or v2

user. There is
no restriction to exploit all other vulnerabilities. We use Intel(R) Core(TM)2 Quad CPU
@ 2.66GHz with 3.24 GB of RAM on a Windows XP SP3 machine, and the simulation
was coded in Python.

Internet

A
F

W

1

Internal 

Network

DMZ Network

F

W

2

Database

Any   → DMZ
DMZ → Internal

Internal → Database

T

Fig. 5. An example network for simulation

4.1 Security Analysis Based on Host Importance

Risk of the network system is analysed, where different vulnerabilities are assigned
with difference impact values chosen reasonably and randomly (vroot with 10, v1

user and
v2

user with 5, and the rest with 1). We assume that the probability of an attack success on
all vulnerabilities is one, but we can assign real probability values as in Section 3. We
compare security analysis using exhaustive search and k-importance measures. We use
degree centrality measures to rank k1 important hosts. First, we consider all network
hosts to compute the risk of the example network in Figure 5. Then, we continuously
compute the risk value by generating the ReHARM by varying values of k1. As the
number of hosts modelled reduces, generation and evaluation times reduces although
equivalent risk analysis is kept. The simulation result when k2 = 10 is shown in Table
8. Generation and evaluation times are shown in Figure 6.
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Table 8. Security analysis using k1 values (k2 = 10)

No. of hosts Generation time (s) Evaluation time (s) Risk value No. of attack paths

1000 0.725 113.515 348 55942475
900 0.603 108.358 348 55942475
800 0.528 104.626 348 55942475
700 0.456 102.873 348 55942475
600 0.372 101.780 348 55942475
500 0.309 96.998 348 5699925
400 0.241 42.796 348 3274425
300 0.181 8.172 348 848925
200 0.103 0.250 0 0
100 0.047 0.172 0 0

0 0.0 0.0 0 0

The density of simulation network is 0.006 (i.e., each host on average has a direct
connection to six other hosts). The simulation result shows that the risk value is still
equivalent when the network size has reduced by 70% (i.e., k1 = 300). The genera-
tion time consistently reduces as the number of hosts modelled decreases as shown in
Figure 6(a). The evaluation time decreases steadily down to 50% of hosts modelled.
When the number of attack paths reduced, the evaluation time decreases rapidly. When
the number of hosts modelled are reduced to 250, the hosts directly affecting the risk
analysis are removed, such that the risk output is misleading. This is shown in Figure
6(b). Also, we can observe that changing number of vulnerabilities (i.e., k2) does not af-
fect the scalability of the evaluation phase. The optimal solution using degree centrality
measures was found at k1 = 266.

(a) Generation time using k1 values (b) Evaluation time using k1 values

Fig. 6. Performance of security analysis using k1 values

4.2 Security Analysis Based on Vulnerability Importance

We rank vulnerabilities with given impact value information. All network hosts are
modelled to investigate the performance of risk analysis when k2 number of important
vulnerabilities are considered in the risk analysis. The simulation result is shown in
Table 9. Generation and evaluation times are shown in Figure 7.
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Table 9. Security analysis using k2 values (k1 = 1000)

No. of Vulnerabilities Generation time (s) Evaluation time (s) Risk value

10 0.725 113.515 348
9 0.650 110.796 348
8 0.634 110.576 348
7 0.609 111.343 348
6 0.587 111.608 348
5 0.572 111.858 348
4 0.544 111.108 348
3 0.519 111.920 348
2 0.466 111.218 348
1 0.381 110.264 3
0 0.369 110.233 3

(a) Generation time using k2 values (b) Evaluation time using k2 values

Fig. 7. Performance of security analysis using k2 values

Table 10. Naive and optimal solution comparison

Generation time (s) Evaluation time (s) Risk value No. of attack paths

Naive 0.725 113.515 348 5942475
Optimal 0.097 0.578 348 24255

The generation time shows constant improvement, because there are a few numbers
of components to generate in the lower layer. However, there are no improvements
shown in the evaluation time for all k1 values. It shows that k2 values do not affect the
performance of evaluation. If vulnerability models become more complex (i.e., multi-
ple paths in exploiting vulnerabilities), the computational complexity of lower layer will
also increase. The optimal solution is found when k2 = 2. The naive solution compared
to the optimal solution is shown in Table 10. The optimal solution shows approximately
87% generation time improvement and 99.5% evaluation time improvement respec-
tively. We will investigate to find optimal k1 and k2 values in our future work.
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5 Discussion

We used k-importance measures to generate a ReHARM. A risk analysis showed that
an equivalent security solution can be achieved, while the size of the HARM is sig-
nificantly reduced. Accuracy and performances of security analysis using k-importance
measures are investigated through simulation. The NCM (e.g., closeness centrality) ef-
fectively ranked important hosts based on the network topology, and nearly equivalent
risk value is computed. Moreover, the time performance was also improved for gener-
ating and evaluating the HARM.

However, the security analysis of the example system showed that not all vulnerabil-
ities associated security metrics. Also, a single security metric often does not capture
various effects of vulnerabilities (e.g., high CVSS BS, but low structural importance),
and other requirements to satisfy the success of an attack are not well defined (e.g.,
privilege requirements). Network topologies and attack goals determine which hosts in
a network are important in an event of an attack. The proportion of the network hosts
unused in an attack also depends on the network density (e.g., a sparse network and a
dense network), such that determining the value of k1 is difficult. In addition, an attacker
located inside the network reduces the coverage of the network, but NCMs cover all net-
work hosts. Lastly, attack on less important hosts and vulnerabilities are not properly
addressed.

5.1 Vulnerabilities without Security Metrics

Using a vulnerability scanner NESSUS [27], about 60 vulnerabilities of a real host
machine were reported. However, only 11 vulnerabilities had CVSS BS, which gives set
of security metrics associated with these vulnerabilities. There were textual description
of vulnerabilities (e.g., Vulnerability Synopsis and Vulnerability Description), but this
is difficult to process automatically. Moreover, 10 vulnerabilities are scanned without
any descriptions. Incomplete security data makes difficult to automate and analyse the
network security. Other sources of vulnerability scanners and security metrics will be
investigated in our future work.

5.2 Categorised Vulnerability Ranking

A single security metric cannot capture all aspects of vulnerabilities. The attack goal
changes how vulnerabilities will be exploited by an attacker. For example, an attack
goal of gaining the admin privilege defines a subset of vulnerabilities that must be ex-
ploited to achieve this, but an attack goal to hijack a communication of a host defines
a different subset of vulnerabilities to achieve this goal. So, there needs a definition
of vulnerability categories that satisfy different attack goals. Then vulnerabilities can
be ranked within each subset. In addition, the ranking of vulnerabilities can be com-
bined from vulnerability rankings based on various security metrics, such as CVSS
BS rankings and structural importance rankings [9]. Improvements and effectiveness of
categorising and combining vulnerability rankings should be further investigated.
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5.3 Network Features for k1 Selection

The network topology defines possible attack scenarios. A dense network (e.g., fully
connected or mesh network topologies) allows the attacker to take many different attack
paths to reach the target, so that a large proportion of network hosts will be used in at
least one attack path. In contrast, a sparse network (e.g., star or tree network topologies)
limits the number of attack paths, and the number of unused hosts (i.e., hosts that does
not benefit the attacker in any attack scenario) increases. Therefore, the value of k1 will
depend on the attack scenario and the network topology. The effect of different network
topologies for determining the value of k1 importance measures needs to be studied, and
the relationship between the number of hosts and the value of k1 for the same network
topology needs to be taken into account.

5.4 Modelling Attackers Located Inside the Network

Ranking important hosts using NCMs incorporates only the reachability of network
hosts. However, an attacker located inside the network allows the attacker to bypass
some of the network security (e.g., firewalls). Compared with an attack from outside the
network, the scope of an attack is much smaller (i.e., only a subset of network hosts are
considered) because the distance to the target is much closer. In such case, the ranking
of important hosts using NCMs is inaccurate, because all network hosts are considered
in NCMs. Therefore, one needs to consider an effective method to rank important hosts
accurately for such attack scenarios.

5.5 Attack on Less Important Hosts and Vulnerabilities

By enforcing security only on important hosts and vulnerabilities allow attackers to
exploit less important hosts and vulnerabilities, and security analysis based on impor-
tant hosts and vulnerabilities cannot capture such attacks. One solution is that if all
attack paths are covered with selected set of hosts and vulnerabilities, then any attack
scenarios, regardless of using important or less important hosts and vulnerabilities, are
covered. However, a naive approach to check the coverage of attack paths is computa-
tionally expensive (i.e., exponential number of attack paths need to be checked). More
efficient method to cover all attack paths with a set of hosts and vulnerabilities will be
studied in our future work.

6 Conclusion

Security analysis using the ARMs allows users and system administrators to become
aware of vulnerable network components and configurations, and security solutions
can be enforced or suggested to enhance the network security. However, existing ARMs
have a scalability problem when the network size becomes large. Generating an ARM
requires all the network information, and simplifications and heuristic methods are used
in evaluation to improve the scalability. That is, not all network information is required
for security analysis. Therefore, we proposed to use k-importance measures to improve
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generation and evaluation of ARMs. k1number of important hosts and k2 number of
important vulnerabilities are ranked and selected to generate an ARM (e.g., a two-layer
HARM) and to evaluate the network security. We described methods to rank important
hosts using NCMs and vulnerabilities using security metrics. We showed equivalent se-
curity solutions can be achieved using k-importance measures, while the performances
improved in both generation and evaluation in terms of time and computation require-
ments. We also showed that time and computation requirements can be optimised by
selecting appropriate number of important hosts and vulnerabilities, which showed a
significant improvement compared to the exhaustive search method.
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Abstract. The security of an embedded system is often compromised
when a “trusted” program is subverted to behave differently. Such as
executing maliciously crafted code and/or skipping legitimate parts of
a “trusted” program. Several countermeasures have been proposed in
the literature to counteract these behavioural changes of a program. A
common underlying theme in most of them is to define security policies
at the lower level of the system in an independent manner and then check
for security violations either statically or dynamically at runtime. In this
paper we propose a novel method that verifies a program’s behaviour,
such as the control flow, by using the device’s side channel leakage.
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1 Introduction

In recent years, embedded systems have been proliferated into wide range of
modern life applications. One of the main application vector of embedded sys-
tems is communication [1,2,3]. A typical embedded system application contains
hardware and software components. The hardware component includes storage
area, execution engine and other peripherals required to successfully execute in-
structions. The software component is a written procedures or rules stored in a
memory pertaining to the operation of a computer system or part of the system
itself.

The execution of a software program always involves incrementing the pro-
gram counter (a special register which stores the address of the next instruction).
Normally the program counter is incremented by “1”; however, certain instruc-
tions change its value by more than one in both directions. This kind of change
is known as Control Flow Change and can be caused by both conditional and
unconditional branching instructions. According to [4], program control flow is
the most attacked target in software and such attacks are called Control Flow
Attacks. A Control Flow Attack is one of the main threats for embedded sys-
tems [5,6,7]. Control Flow Attacks can be performed on embedded systems for
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two reasons. Firstly, the attacker installs his code segment on the target device.
Later on when the device executes a genuine program, the attacker targets saved
function return addresses to divert the control flow into his previously installed
code. Secondly, the attacker does not install any code but instead when the pro-
gram is executed the attacker changes the saved return addresses just in order
to skip the execution of certain parts of the program.

In the literature, several countermeasures have been proposed to counteract
these kinds of intrusions. To explain some of them; in [8], the authors discuss
a technique that employs a dedicated hardware module to detect and prevent
unintended program behaviors. In this method the program’s properties are ex-
tracted through a static code analysis and the hardware module uses them to
enforce a permissible program behavior at runtime. Another countermeasure,
described in [9] introduces Control-Flow Integrity (CFI) enforcement. The CFI
dictates that software execution must follow the path of a Control-Flow Graph
(CFG) determined ahead of time. The work of Michael Frantzen and Michael
Shuey [10], presents a buffer overflow prevention method. This is acheived via
a kernel modification that performs transparent, automatic and atomic oper-
ations on the function return addresses before they are written into the stack
and before the program transfers execution back to the saved return addresses.
In [11], Aurélien et al. discussed a control flow enforcement technique based on
Instruction Based Memory Access Control (IBMAC). This is done by using a
simple hardware modification to divide the stack into a data and a control flow
stack (or return stack). Moreover, access to the control flow stack is restricted
only to return and call instructions, which prevents control flow manipulation.
More countermeasures can be found in [12,13,14]. Most of the proposed coun-
termeasures are demanding in terms of computational capability, memory usage
and often rely on a hardware module that is not present on simple devices.

In this paper we present a novel approach to verify a program’s control flow
by using the device’s side channel leakage. In our proposal we modelled the
device as a Markov Process with hidden states, each state belonging to a part
of the program. Then a verifying device extracts the control flow transition
that the device had followed when executing the program from its side channel
leakage (power consumption). This extracted control flow (state sequence) is
then verified against a list of valid state transitions of the application which was
calculated ahead of time.

The rest of the paper is structured as follows. Section 2 briefly provides back-
ground information on side channel leakage. Section 3 discusses the proposed
control flow verification methodology. Section 4 discusses our experimental re-
sults. Finally, section 5 concludes the paper.

2 Side Channel Leakage

Side channel leakage is information revealed by a device about its internal state
while processing a certain procedure. Smart cards and other embedded devices
use electric current to turn transistors on and off. The instantaneous electric
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current that the device consumes depends on how many transistors that the
executed instructions and data turn on and off. This difference in the electric
current is then reflected in the power consumption and electromagnetic emission
of the device. The power consumption and/or electromagnetic emission can then
be recorded and analysed to extract secret information from the target device.

In the context of cryptology, side channel leakage can be employed in re-
trieving cryptographic secret keys from target devices, such as smart cards. Side
channel information such as timing [15,16,17], power consumption [18,19,20] and
electromagnetic emission [21,22,23] have been used in attacking implementations
of cryptographic algorithms including AES [24], DES [25] and RSA [26].

Besides extracting cryptographic keys, side channel information has also been
used to reverse engineer embedded device applications [27,28,29]. This is done by
constructing a power consumption template of the target device using an iden-
tical reference device. Then use the templates to recognise executed instructions
from the target device’s power consumption waveform. In addition, side channel
information can also be used by device manufacturers and application develop-
ers to detect cloned devices and design advanced applications. Instruction-level
power consumption model of an embedded device has been used to design a
low-power consuming applications for mobile embedded devices where batteries
are the main power source [30,31]. In [32], the authors discuss, theoretically, how
side channel leakage can be used to fingerprint a smart card platform and then
use it later to detect cloned cards.

3 Control Flow Verification

An application is a combination of basic blocks. A basic block is a linear sequence
of executable instructions with only one entry point (the first instruction exe-
cuted) and one exit point (the last instruction executed) [33]. After executing one
basic block the processor jumps into another basic block based on the branch-
ing instruction executed at the end of the current basic block. This branching
instruction can be conditional or unconditional. A basic block may have many
predecessors and many successors. It might also be its own successor. Program
entry basic blocks might not have predecessors that are within the program and
program ending basic blocks never have successors within the program itself.

An embedded device, with one or two programs installed in its non-volatile
memory, can be modelled as a state machine with each state corresponding to
a basic block of the program(s). When the program is being executed we can
not directly observe the states that the processor is going through but we can
observe the side channel information emitted by the device. Such information
can be the power consumption [18,34] or the electro-magnetic emission [22,21,23]
of the device. The side channel information emitted by the device is directly
dependent on the states executed by the processor.

The questions here are, by only using this observable physical emission can we
reconstruct the state sequence that the processor went through when executing
the program? Furthermore, once the sequence is reconstructed can we verify it?
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3.1 Control Flow Reconstruction

To reconstruct the state sequence that a device followed during the execution
of a program from its side channel leakage we modelled the device as a Hidden
Markov Model (HMM) [35,36]. A Markov Model is a memoryless system with
a finite number of hidden states. It is called memoryless because the next state
depends only on the current state.

In such a model the states are not directly observable. However, there has to
be (at least) one observable output of the process that reveals partial information
about the state sequence that the device has followed. Fig. 1, illustrates aMarkov
Process with five hidden states (i.e A to E).

Astart

B

D

C

E

τab

τac

τbb

τbc

τcd
τce

τdc

τde Gnd

V dd

Unobservable Observable

Rs

I

ea

eb

ec

ed
ee

Power Consumption

VRs = I ×Rs

+5V

Fig. 1. A Markov model representing a device executing a program with five states (A,
B, C, D and E). The power consumption is the observable output that reveals partial
information about the state sequence of the device.

In case of the Markov Process illustrated in Fig. 1, the hidden states are the
program’s basic blocks and the observable output is the power consumption of
the device. This observable output is measured via a resistor (Rs) connecting
the ground pin of the device and ground pin of the voltage source.

Building the Hidden Markov Model. Building a Hidden Markov Model
(HMM) requires a set of finite states qi’s, a transition probability distribution
matrix T = {τij}, emission probability distribution matrix E = {ei} and initial
state distribution π. Given these probability distribution matrices, the HMM is
defined as λ = (T,E,π).
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The transition probability distribution τij , is the probability that the next
state is qj if the current state is qi, for 1 ≤ i, j ≤ S where S is the number of
states. If we denote st the current state of the system at a time t, τij = P(st+1 =
qj | st = qi) is the probability of transitioning from state qi to state qj . Given
an observation (power consumption) Ot at a time t, the emission probability
distribution ei(Ot) = P(Ot | st = qi) is the probability that Ot was emitted
by the state qi. To compute ei(Ot) first we need to build a power consumption
template for each state. The template of each state is generated by computing
the mean, μqi , and the covariance, σqi of the state’s power consumption traces.

Let us consider N L-dimensional power consumption traces {xn} generated
by the device while executing the state qi were recorded. The mean, μqi , and
covariance, σqi , are calculated using the computation in equations (1) and (2)
respectively.

μqi =
1

N

N∑
n=1

xn (1)

σqi =
1

N

N∑
n=1

(xn − μqi)(xn − μqi)
T (2)

where N is the number of power traces recorded for state qi and (xn − μqi)
T

is the transpose of (xn − μqi). These templates can be built beforehand using
an identical reference device and a target program. Assuming the power traces
are derived from a Multivariate Gaussian Normal Distribution Model [37], the
emission probability distribution ei(Ot) is computed using the equation in (3).

ei(Ot) =
1

(2π)L/2√σqi

exp(−1

2
(Ot − μqi)σ

−1
qi (Ot − μqi)

T ) (3)

Now, if we take a number of observations O = {Ot,Ot+1,Ot+2, · · · ,Ot+n},
the emission probability distribution matrix E becomes:

E =

⎡
⎢⎢⎢⎣
e1(Ot) e1(Ot+1) e1(Ot+2) · · · e1(Ot+n)
e2(Ot) e2(Ot+1) e2(Ot+2) · · · e2(Ot+n)

...
...

...
. . .

...
eS(Ot) eS(Ot+1) eS(Ot+2) · · · eS(Ot+n)

⎤
⎥⎥⎥⎦ (4)

Normally when an application is invoked, the execution always starts at the
program entry point (main()). Therefore, the initial state distribution for the
first basic block is always 1 and 0 for the other basic blocks. For example, for
the system depicted in Fig. 1 the execution of the application always starts at
A. So, the initial state distribution becomes πA = 1 and {πB, πC , πD, πE} = 0.

To successfully compute E using equation (3), all observations {Ot, · · · ,Ot+n}
must have equal dimensionality. In other words, the power consumption traces
generated by all states must have the same number of sample points. However, in
reality this may not always be true. In addition, the dimension of the emissions
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(power traces) may be too large for a robust and fast classification. A common
way to attempt to resolve this problem is to use a dimensionality reduction tech-
nique. In doing this we have to maintain as much information about the original
emission (power consumption) as possible. Two of the most popular techniques
for this purpose are: Principal Components Analysis (PCA) and Fisher’s Linear
Discriminant Analysis (F-LDA).

Principal Components Analysis (PCA) is a technique used to reduce the
dimension of an observation while keeping as much of its variance as possible
[38]. This is achieved by orthogonally projecting the observation onto a lower
dimensional subspace vector.

Let us consider an N L-dimensional observations of emissions {xn}, where
n = 1, ..., N and their covariance matrix σ. A lower dimensional subspace in
this Euclidean space can be defined by a D-dimensional unit vector −→u1, where
D < L. The projection of each observation, xn, onto that subspace is given by−→u1

Txn. Now if we stack up all the emissions into a matrix of N×Lmatrix, where
L is the number of samples of each observation, the projection of each row of
the matrix is represented as UTX , where U is a matrix of eigenvectors of the
covariance matrix σ. The projection of the observations onto a D-dimensional
subspace that maximizes the projected variance is given by D eigenvectors [39]−→u1, . . . ,

−→ud with the D largest eigenvalues λ1, . . . , λd.

Fisher’s Linear Discriminant Analysis (F-LDA) is a method used in
statistics, pattern recognition and machine learning to find a linear combination
of features which characterises two or more class observations [40,41,42]. The
resulting combination may be used as a linear classifier for dimensionality re-
duction before classification. However, instead of maximising the variance of the
original data like PCA, information regarding the covariance of different classes
is taken into consideration. These are the “between-class” and “within-class”
covariance matrices.

Now, let us consider again the N L-dimensional observations for each class.
Then the “within-class” covariance σW is computed as,

σW =

S∑
i=1

∑
w∈xi

(w − μqi)(w − μqi)
T =

S∑
i=1

Nqiσqi (5)

In the above equation, Nqi , σqi and w are the number of observations, the
covariance and the power traces of class qi. The “between-class” covariance σB

is computed as

σB =

S∑
i=1

(μqi − μ)(μqi − μ)T (6)

where μqi is the individual class’s mean as defined in equation (1) and μ is
the mean of the entire observation which is computed as shown in equation (7).
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μ =
1

N

∑
∀x

x =
1

N

S∑
i=1

Nqiμqi (7)

Now, let us consider a D-dimensional unit vector −→u1 onto which the data is
projected. This time the objective is to maximise both the projected “between-
class” and the projected “within-class” covariance:

J (−→u1) =
−→u1

TσB
−→u1−→u1

TσW
−→u1

(8)

The projected J is maximised if −→u1 is the eigenvector of σ−1
W σB . The D-

dimensional subspace is created by the first D orthogonal directions that max-
imise the projected J . These are given by the D eigenvectors −→u1, · · · ,−→uD of
σ−1
W σB with the largest eigenvalues λ1, · · · , λD.

Calculating the Most Probable State Sequence. The probability distri-
bution matrices E, T and π can be constructed ahead of time using an identical
reference device and the target application. Now let us consider we observe emis-
sions (power consumption traces) O = {Ot,Ot+1,Ot+2, · · · ,Ot+n}, where n is
the length of the state sequence. These emissions were recorded while the device
was executing the target application. The most likely sequence of states that
produces the observations O is calculated using the Viterbi Algorithm [43] as
shown in equations (9) and (10). This state sequence is regarded as the control
flow that the device has followed when executing the program.

V1,j = P(O1 | s1 = qj) · πj (9)

Vt,j = P(Ot | st = qj) ·maxi∈S(τij · Vt−1,j) (10)

In equation (10), S is the state space of the Markov Process, πj the probability
of state qj being the initial state and τij probability of transitioning from state
qi to state qj . The Vt,j is the probability of the most probable state sequence
responsible for the first t emissions that has qj as its final state. The state
sequence that resulted in highest probability, according to equation (10), from
all possible state sequences of the same length as the emission is regarded as the
most probable state sequence that generated the emissions.

3.2 Verifying the Reconstructed State Sequence

As described in section 3, a program is a combination of basic blocks. Before
loading the program into the target device, a list of valid transitions between the
states (basic blocks) are extracted using a code analysis tool. This list of valid
transitions is known as the Control Flow Graph (CFG). A CFG, G = (I, P ), is
represented by the program’s states identity, I, and control flow path, P . For
instance, for the program illustrated in Fig. 1, the CFG is given as G = (I, P ),
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where I = {A,B,C,D,E} and P = {(A,B), (A,C), (B,B), (B,C), (C,D),
(C,E), (D,C), (D,E)}. The CFG is then installed into the verifying device (i.e
the terminal in the case of a smart card application).

Now the task is verifying if the reconstructed state sequence is among the
valid transitions in the CFG. However, since the reconstruction of the state
sequence (explained in section 3.1) from the power consumption is a probabilistic
process, we have to first confirm that the reconstructed state sequence is the
actual state sequence that the device followed when executing the program.
This can be acheived by comparing a hash value generated over the identity of
actually executed states (H∗) with a hash value generated over the identity of
reconstructed states from the power trace (H

′
). In equation (11),H∗ is generated

by the device that executes the program and sent to the verifying device that
generates H

′
.

f(H∗, H
′
) =

{
1, if H∗ = H

′

0, otherwise
(11)

If it is a match, the reconstructed sequence is what the processor went through
when executing the program. Otherwise, the reconstructed sequence is not the
path that was followed by the device. Equation (11) can only verify that the
execute state sequence and the extracted state sequence are the same. Unfortu-
nately, this does not verify if the executed state sequence (control flow) is valid.
Therefore, the validity of the control flow is verified by comparing it against
the pre-calculated paths, P , in CFG. If the reconstructed state sequence is not
among the valid paths in CFG, the device/program is regarded as compromised.

4 Experimental Results

To implement the techniques discussed above we chose ATMega163 + 24C256
based smart card. ATMega163 is an 8-bit microcontroller based on AVR ar-
chitecture. Note that this smart card does not have any countermeasure against
power analysis attacks. To construct a more reliable template for the states of the
test program (see Fig (3)), we removed all other factors that influence the power
consumption of the device. Such factors can be the intrinsic and ambient noise
introduced by the measurement setup. To minimise the influence of the ambient
noise, we have properly warmed up the measurement equipment beforehand so
that it is all running at a uniform temperature during the power trace collec-
tion phase. This requires running few test measurements to be discarded before
the actual power trace collection starts. The intrinsic noise introduced into the
measurement can be minimised by collecting several traces for each state and
calculating the mean. This reduces the standard deviation of the noise by a fac-
tor of

√
n, given that n is the number of power traces involved in calculating the

mean.
The power consumption is measured as a voltage drop across a resistor con-

necting the ground pin of the smart card and the ground pin of the voltage
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source. The smart card is running at a 4 MHz clock cycle and is powered up
by a +5V supply from the reader. The measurements are performed using a
LeCroy WaveRunner 6100A [44] oscilloscope capable of measuring traces at a
rate of 5 billion samples per second (5GS/s). The shunt resistor is connected
with the oscilloscope using a Pomona 6069A [45] probe, a 1.2m co-axial cable
with a 250MHz bandwidth, 10MΩ input resistance and 10pf input capacitance.
All measurements are sampled at a rate of 500 MS/s and the same setup is used
throughout the experiment.

4.1 Control Flow Reconstruction

For our experiment we implemented a test application with five basic blocks
(states). Each state accomplishes certain task within the program. The processor
follows different control flow paths to execute the application depending on a
value “Vreader” sent from a terminal. The state machine diagram of the test
application is presented in the Fig. 2.

Fig. 2. Test program’s control flow
diagram

State1start

State2 State3

State4

State5

τ12

τ13

τ14

τ25
τ35

τ33

τ43

τ45

Fig. 3. High-level description of the test
program

State1 : Par = r e c e i v e ( )
Vreader = r e c e i v e ( )
Vnvm = read (nvm)
i f ( Vreader == Vnvm)

State2 : par = ( par )ˆ2
goto State5

end
e l s e i f ( Vreader > Vnvm)

State4 : par = par + 216
par = par/5
Vreader = Vreader − 2
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
e l s e i f ( Vreader < Vnvm)

State3 : par = par ∗ 2
par = par − 129
Vreader = Vreader + 1
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
State5 : c l e a r r e g i s t e r s

clear memory

Invoking the test program requires passing two arguments: “Vreader” (0 ≤
Vreader ≤ 9) and “Par” (0 ≤ Par ≤ 255). The “Vreader” is compared with a
reference value “Vnvm” (0 ≤ Vnvm ≤ 9) (stored in the non-volatile memory of the
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smart card) before changing a state. For our experiment the Vnvm is initialised
to “4” and the arguments Par and Vreader are randomly generated and passed
to the program through the smart card reader.

Building the Hidden Markov Model. As discussed in Section 3.1, building
a Hidden Markov Model requires the initial probability distribution π, transi-
tion probability distribution T and the emission probability distribution E. As
illustrated in Fig. 2, the execution of the test program always starts at State1.
Therefore, the probability of State1 being the initial state is “1”, and “0” for
all other states. If πi is the probability of Statei being the initial state in the
execution of the program, the initial probability distribution vector of our test
program is given as:

π = {π1 = 1, π2 = 0, π3 = 0, π4 = 0, π5 = 0} (12)

To compute the transition probability distribution matrix, T, we invoked the
program with a randomly generated “Par” and all possible values (i.e. 0 to 9)
of “Vreader” and record the control-flow transition of the program. Note that for
each different value of “Vnvm” the matrix T is different.

Table 1. Transition probability distribution of the program illustrated in Fig. 2 and
3. The columns represent next states and the rows represent current states.

Transition from Transition to [%]
State1 State2 State3 State4 State5

State1 τ11=0 τ12=0.1 τ13=0.4 τ14=0.5 τ15=0
State2 τ21=0 τ22=0 τ23=0 τ24=0 τ25=1
State3 τ31=0 τ32=0 τ33=0.55 τ34=0 τ35=0.45
State4 τ41=0 τ42=0 τ43=0.2 τ44=0 τ45=0.8
State5 τ51=0 τ52=0 τ53=0 τ54=0 τ55=0

To compute the emission probability distribution matrix E, we collected 1000
traces for each state. Using these traces we computed the mean μqi , and covari-
ance, σqi , for each state as a template.

As shown in figure 4, the states of the test application generate power con-
sumption traces of different dimension. In our experimentE is computed over the
first 250 sample points of the traces. However, a covariance matrix of 250×250 is
still too large to compute its inverse. For this purpose we applied the techniques
discussed in Section 3.1 (PCA and F-LDA) on the first 250 sample points of the
state emission (power consumption) before computing E.

Principal Components Analysis (PCA) is used to find a subspace whose
basis vectors corresponding to the maximum variance directions in the original
data. In other words PCA searches for those vectors in the underlying data
that best describes the data. When applying PCA the dimensionality of the
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Fig. 4. Mean of the power traces of the states illustrated in Fig. 2

projected data has to be selected carefully. On the one hand, if it is too small,
too much of variance of the original data may get lost and with it important
information about the state emissions. On the other hand, if it is too large, the
state classification becomes less reliable again. This might be because of the bad
conditioning of large covariance matrix. Another reason can be, as the dimension
increase the class emission cross-correlation increases. Therefore, when choosing
the dimensionality for the projected data we have to decide how much of variance
of the original data that we can afford to lose.
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Fig. 5. Original data after PCA
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For example, in our experiment the first 100 principal components were ac-
counted for 54.76% of the variance of the original emission. the first 250 principal
components are accounted for 80.74% of the variance of the original emission.
In Fig.5 we show plots of the first two principal components after PCA.

Fisher’s Linear Discriminant Analysis (F-LDA) is a technique used to
classify between classes by finding discriminant features of the class data and
projecting them onto these discriminant vectors. In other words, F-LDA searches
for those vectors in the underlying data that best separates among the classes.
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Fig. 6. Original data after F-LDA

In Fig. 6 we present the first two components of the state emissions after
F-LDA. As discussed earlier PCA searches for vectors that best describes the
original data. However, it does not take the other classes into consideration. For
this reason PCA may not produce a satisfactory result when classifying different
classes. We can see that in Fig. 5 the principal components of classes emissions
overlap. However, as shown in Fig. 6 the classes are better separated after F-
LDA.

Calculating the Most Probable State Sequence. To calculate the most
probable state sequence, first we have to implement the Viterbi Algorithm dis-
cussed in Section 3.1. To do this we have two options: use the MATLAB [46]
Statistics Toolbox implementation hmmviterbi [47] or create our own implemen-
tation of the equations (9) and (10). Although, the MATLAB Statistics Toolbox
implementation of Viterbi Algorithm might be useful for some statistical calcu-
lations we could not use it in our experiment. This was because firstly it does
not utilise the initial probability distribution (π) and secondly the output is not
in the format that we want it to be. Therefore, we created our own MATLAB
implementation and the source code is available at the end of the paper in Ap-
pendix A. As you can see it from the source code, our implementation takes all
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three matrices (π, E and T) that we discussed in Section 3 and gives us the
most likely state sequence as a vector.

Our test program has six valid control-flow paths from the initial state, state1,
to the final state, state5. Our implementation of the Viterbi algorithm calcu-
lates a sequence of states with the highest probability of generating the emission
O. We ran the test program for all possible valid paths by varying the argu-
ment “Vreader” and calculated the most probable state sequence from the smart
cards power consumption trace. We ran the test program 1000 times by varying
“VReader”, recorded the power trace and calculated the most likely sequence of
states for each run.

4.2 Verifying the Reconstructed State Sequence

For all the state sequences that we calculated, we verified them using the 2-step
verification system discussed in Section 3.2. Before comparing the reconstructed
state sequence against the CFG, we have to make sure that the reconstructed
sequence is the actual path that the smart card went through. For that pur-
pose we verified the hash values calculated by the smart card against the hash
values calculated over the reconstructed state sequence. Then we compared the
reconstructed state sequence against the valid paths in CFG. In our experiment
we successfully verified the control flow for all (1000) runs of the test program
that we made. In our experiment we calculated the CFG manually; however, for
large programs calculating it manually might be difficult and complicated. In
such a case the CFG may be extracted using a source code analysis tools, such
as MALPAS [48].

5 Conclusion

In the literature several methods have been proposed to counteract a program’s
control flow violation. In most of them the proposed solutions require either a
dedicated hardware module or the main processor to perform extra computations
to check the control flow security of the program(s) at runtime. Usually this
computation utilises the program’s properties which are extracted ahead of time,
such as CFG. These properties are then used to check the program’s behaviour
dynamically. However, these kind of solutions may not be suitable for low-end
devices deployed as coprocessors in bigger systems, such as hardware security
modules in communication devices.

In this paper we proposed a novel approach into checking a program’s control
flow integrity by using the side channel leakage of the target device. In our
method the device is not required to perform extra computation. However, it
requires another device to check for its program’s control flow integrity as it
executes the program. This method can be used in smart card (or any other
embedded device that need to connect to an external device to execute the
application) where the terminal (external device) acts as the verifying device.
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Appendix

A Viterbi MATLAB Implementation

Listing 1.1. MATLAB implementation of the Viterbi algorithm described in sec-
tion 3.1

% [state_sequence ] = viterbi_sequence (initial_probability ,

% transition_probability ,

% emission_probability )

% initial_probability = initial probability (\pi_{i})

% transition_probability = transition probatility (T)

% emission_probability = emission probability (E)

% state_sequence = most probable state sequence that would

have resulted to the emission of (O)

% Author: Mehari G. Msgna

% Date: 16 April , 2013

function [state_sequence ] = viterbi_sequence (

initial_probability , transition_probability ,

emission_probability )

number_of_states = length(initial_probability (1,:));

number_of_observations = length(emission_probability (1,:)

);

state_sequence = zeros(1,number_of_observations);

sequence_probability = zeros(number_of_observations ,

number_of_states );

for c = 1: number_of_states

sequence_probability (1,c) = emission_probability (c,1)

* initial_probability (1,c);

end

for r = 2: number_of_observations

temp = zeros(1, number_of_states );

for c = 1: number_of_states

for c1 = 1: number_of_states

temp (1,c1) = transition_probability(c1,c) *

sequence_probability (r-1,c1);

end

mx = max(temp (1,:));

sequence_probability (r,c) = emission_probability (

c,r) * mx;

end

end

for j = 1: number_of_observations

[value , index] = max(sequence_probability (j,:));

state_sequence (1,j) = index;

end

end
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Abstract. Online shopping is becoming more and more interesting for
clients because of the ease of use and the large choice of products. As
a consequence, 2.3 billion online clients have been identified in 2011.
This rapid increase was accompagnied by various frauds, including stolen
smart cards or fraudulent repudiation. Several e-payment systems have
been proposed to reduce these security threats and the 3D-Secure pro-
tocol is becoming a standard for the payment on the Internet. Neverthe-
less, this protocol has not been studied in-depth, particularly in terms
of privacy. This paper proposes a detailed description and an analysis
of the 3D-Secure protocol, through a new privacy-orienting model for e-
payment architectures. Some improvements of 3D-Secure protocol, con-
cerning the protection of banking information, are also presented. Then,
this article presents and analyses a new online payment architecture cen-
tered on the privacy of individuals.

Keywords: Electronic payment, privacy and security.

1 Introduction

In recent years, e-commerce has considerably grown with the democratization of
the Internet. Thus, online payments were adopted by 69% of Internet users in
2011. Fraud amount in e-payment has increased with the same regularity and be-
come now a major concern for financial institutions and web clients [20]. Indeed,
although the online payment only represents a small percentage of transactions,
it concentrates, for instance, 40% of the amount of fraud in France and 54% in
United Kingdom [23]. Clients and merchant websites are not always the only
actors in the electronic payment architecture. In addition to the two banks, the
security problem is sometimes modified by the introduction of another actor, the
third-party cashiers, as Paypal or Amazon payment (called Cashier as a Service
in [35]), but it is not the scope of this paper.
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Many directives are related to the security of online payments, as for instance,
the European Directive 2000/31/EC on e-commerce security [13]. In the same
way, the Directive on Payment Services, [14], provides an european wide single
market for payments and a legal platform for SEPA (Single Euro Payment Area,
[16]). The banking industry strategy is centered on identity spoofing and user
authentication. The first protocol proposed to securize electronic transactions
was SET (Secure Electronic Transactions, [32]). Standard e-payment protocols
are later enhanced by an additional secret, sent by mobile phone, as for the 3D-
Secure protocol [33] or an additional device as a CAP reader [25]. However, the
results in terms of security of these responses are mitigated [28,18]. Moreover,
if the SET protocol has been extensively studied by the academic literacy (for
instance [27,8,9,10]), the 3D-Secure protocol is surprisingly overlooked, excepted
in the security analysis of Murdoch and Anderson [28] and Pasupathinathan
et al. [30] .

Security and authentication in e-business should not be strengthened to the
detriment of users’ privacy [26]. There are a lot of personal information involved
in all steps of a payment on the Internet and these data should be protected.
Principles of user centric architecture and privacy by design are more and more
accepted by numerous organizations and actors of various areas. For example,
the European Commision is more and more interested by the privacy protection.
Thus, the principle of data minimization has been strengthened in 2010, requiring
that the personal data disclosure should be limited to adequate, relevant and
non-excessive data [15]. Another important aspect of user’s privacy concerns the
data sovereignty principle: the personal data belong to an individual, with a
control and a consent on the use of data and their purposes. Finally, the data
sensitivity principle applies personal data must be considered as sensitive and
requires a decentralized structure for their storage. These principles should be
applied to e-payment systems.

The e-payment development has strongly modified the traditional relation-
ship between a bank and its clients. During these transactions, a large amount
of user’s personal information is requested and stored. It is therefore essential
to focus on user privacy in online payments and services. Surprisingly, the e-
payment industry does not seem concerned by privacy. PCI/DSS is a first step
of payment industry into personal data protection [19]. However, this norm is
mainly concerned by data security in payment systems. User’s privacy protec-
tion has completely disappeared in e-payment protocols on the Internet by the
transition from SET to 3D-Secure [28]. Some existing publications deal with e-
payment protocol generally focused on the security of service providers and users
without talking about the user’s privacy. The aim of the proposed architecture
is to meet all the requirements in terms of security and privacy protection.

Our Contribution. We propose a list of necessary requirements for security and
privacy protection of users and merchants during online payments. Then, using
these requirements, we analyze the level of privacy protection of the current 3D-
Secure protocol and propose an improvement of the protocol in order to enhance
some privacy criteria. Our main contribution is the proposition of an e-payment
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architecture providing security for the actors and more privacy protection for the
users and the service providers. The presented solution allows the users to make
a purchase on the Internet, with the generation of an electronic bank cheque.
More precisely, the proposed solution ensures the data minimization, sensitivity
and sovereignty principles without disclosing any user’s banking information.

Organization. The reminder of this paper is organized as follows: Actors of the
system and the security and privacy requirements are presented in Section 2.
In Section 3, a description of existing e-payment solutions are presented, with
a detailed focus on the 3D-Secure protocol, as well as an improvement of this
latter. Finally, the context and the new solution are proposed and explained in
Section 4, then analyzed in Section 5.

2 Security and Privacy Requirements of e-payment
Systems

Four actors are present in electronic payments: The client C wants to purchase
an online service with a credit card, through the website of a service provider
SP . These two actors have one payment provider: the debit account bank and
credit account bank, called respectively in this paper client’s bank and SP
bank. In most of e-payment architectures, a fifth actor is involved, the trusted
party as a third-party cashier or the Directory used in 3D-Secure. The role of this
fifth actor is consequenlty various. However, the security analysis of the payment
scheme is generally similar and allows to authenticate the banks. The proposed
architecture is concentrated on the payment phase. Thus, in the case where the
authentication and/or the registration with the SP is required, we assume it
is properly conducted. The protocol should securely ensure that the client is
debited and the SP is paid, but the SP does not need to know inadequate
client’s information.

Several personal data are involved during an online payment. These data must
be protected against numerous threats. A list of these potential threats has been
presented by Antoniou and Batten in [5]. These threats notably concern the
information revealed by a client to the SP . In order to ensure the minimization
principle, the personal information must be divided in different parts. Indeed,
depending on the data owner, the information will be differently protected. How-
ever, the data sovereignty and data sensitivity principles must also be applied to
any e-payment architecture. In the proposed approach, the personal information
is divided in three parts:

1. The identity information Id includes the information allowing to know the
client’s identity, for instance, his/her name.

2. The order information OI includes the detailed basket and other data linked
to the expected service, as the SP name. These data are known by the SP .

3. The banking information BI is, for instance, composed of client’s bank name,
the personal account number (PAN) or the cryptogram CVX2. These data
are known by the client’s bank. As an indication, it is necessary to take note
that the PAN can also allow to identify a client.
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A list of fifteen requirements Ri including all privacy principles, as well as the
risks raised in the literature, is established. These requirements should be taken
into account by the e-payment architectures:

– R1: The confidentiality of transactions requires that each exchanged
data must be encrypted in order to protect these data against external en-
tities.

– R2: The integrity of transmitted information allows the accuracy of the
content and so the non-alteration of data during transmission or storage.

– R3: The confidentiality of client’s identity towards the SP ensures
that a client can access to a service without disclosing his/her identity to
the SP . This requirement is waived if the customer wants a home delivery
service.

– R4: The confidentiality of client’s identity towards the SP bank en-
sures that a client can access to a service without disclosing his/her identity
to the SP bank.

– R5: The client’s authentication by a trusted party ensures the identity of
the client. Depending on the situation, the trusted party can ideally be the
client’s bank or another trusted party where the client is registered.

– R6: The SP authentication by the client or by a trusted party ensures the
identity of the SP .

– R7: The banks authentication by a trusted party ensures the identity of
SP bank and client’s bank.

– R8: The non-reusability of transmitted information (banking or other)
allows to have unique and non-reusable transactions.

– R9: The confidentiality of order information OI ensures that only au-
thorized persons have access to order information. This requirement includes
that the client’s basket is unknown to the client’s bank.

– R10: The confidentiality of banking information BI (or client’s data
minimization principle) ensures that only authorized persons have access to
banking data. This requirement includes the fact that the SP does not know
the client’s banking information.

– R11: The client’s anonymity is ensured if the requirements R3, R4, R9 and
R10 are fulfilled. Indeed, OI or BI partially allows to identify the client.

– R12: The SP’s data minimization principle includes the fact that the client
does not know the SP bank. This condition is very important when the SP
is a very small organisation, for instance one person. Indeed, in this case,
the SP bank is the same bank than the manager’s personal bank. Moreover,
the SP ’s data minimization principle includes the requirement R4. The SP
bank does not need to know the client.

– R13: The data sovereignty principle involves the uses of personal data
associated to the client with his/her control and consent.

– R14: The data sensitivity principle involves that the personal data are con-
sidered as sensitive and requires a de-centralized structure for data storage.

– R15: The ownership of a certificate for the client should not be re-
quired in order to facilitate the e-payment. This last requirement concerns
the usability of payment systems.
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3 Existing e-payment Architectures

3.1 Introduction and Related Works

An online service generally begins with an authentication and a secure connec-
tion between the client and the SP website, using a protocol such as SSL/TLS
[22,17]. This protocol involves the client trusting in the SP to keep this payment
information and is aware of known published browser attacks [34,24,3]. However,
the client can use a trusted partyner, such as Paypal. This service implies the
creation of a Paypal account for the client and, consequently, a large amount of
personal data is registered: name, email, address, PAN , CVX2 and expiration
date. Then, the client can send and receive online payments without providing
new data, through the Paypal platform. Nevertheless, although Paypal specifies
not sell or rent this information, its privacy policy [31] adds it can share some
of your personal information with third parties in the world. If the client does
not use a trusted partyner, he/she must supply the SP bank, through the SP
website, his/her banking information: PAN , CVX2 and expiration date. Client’s
banking information is so directly sent to the SP .

Several payment schemes have been recently proposed. For instance, a secure
payment protocol managing different aspects such as smart card with network
capabilities or the multiplicity of entities is proposed in [11]. However, these
scenarios do not manage user’s privacy. Antoniou and Batten are interested
in enforcing trust in e-commerce systems [5]. They propose four models with
four levels of privacy protection. However, these protocols are centered around
one deliverer which knows all stakeholders of the process. Another scheme is
suggested by Ashrafi and Ng in [6], by using a non-reusable password based
authentication. The process ensures the client’s privacy and minimizes the SP
business risks. This protocol uses the card company with an optional payment
gateway and has the same complexity as the 3D-Secure protocol. However, all
the security is based on the card company which stores all the client’s payment
details in a local centered database.

The SET protocol [32] was developed by a consortium of credit card compa-
nies, such as VISA [1] and MasterCard [2], and software corporations. It is a
protocol for securing e-payment transactions by credit card which runs in two
steps: registration and purchase. This protocol ensures the data confidentiality
and integrity and provides a mutual authentication between the SP and the
client, through a trusted third party, the SP bank. This secure protocol has
many advantages considering client’s and SP privacy. The SP does not know
the client’s banking information. The client bank does not see the contents of
the order. And finally, the client does not know the identity of the SP bank.
However, in terms of client’s privacy, the client does not necessarily trust the SP
bank which authenticates him/her. Therefore, the SP bank knows the client’s
identity. In addition, although the client’s bank does not know the contents of
the client’s order, it knows the SP identity. SET has been extensively analyzed
in the begining of the 2000s and improved [8,7,21]. Thus, the client’s consent to
send his/her credit card details cannot be proved [9]. Moreover, this protocol is
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complex from the client perspective and expensive for the SP . Indeed, a specific
software must be installed by the client in order to prove card detention with an
electronic signature. In addition, card readers and distribution of certificates by
the SP are inevitable. Consequently, the successor of the SET protocol is the
3D-Secure protocol where the few parts concerning privacy of SET are simply
deleted. The Fig.1 quickly analyses this protocol.

3.2 Description of the 3D-Secure Protocol

The 3D-Secure protocol [33] is the commonly used two-factors authentication
system for e-payment, developed by VISA in 2001. Other financial organizations
also developed their own implementations of VISA’s 3D-Secure licensed architec-
ture, such as MasterCard with its MasterCard SecureCode, American Express
with SafeKey [30]. In order to use the 3D-Secure protocol, a dedicated module
called MPI (Merchant Plug In) is implemented into the SP website. Moreover, a
dedicated server (the Directory) is made available for this system. This scheme
works as specified below (see Fig.4 in the Section Annexes):

A. The client sends to the SP his/her purchase intention, with his/her banking
information: PAN , expiration date and CVX2.

B. MPI queries the Directory server with the VEReq (Verify Enrollment re-
quest) message.

C. The Directory server checks the SP identity, the card number and the client’s
bank. The Directory recovers the ACS (Access Control Server) managing the
card and transfers the VEReq message. The PAN allows the Directory server
to identify the ACS.

D. The ACS checks if the client’s card is enrolled in the 3D-Secure program and
sends the cardholder authentication URL to the MPI through the VERes
(Verify Enrollment Result) message.

E. MPI sends the PAReq (Payer Authentication Request) message to the pre-
vious URL. This message contains the details of the authorized purchase
and requests the ACS to authenticate the cardholder. The authentication
protocol depends on the cardholder’s bank.

F. The client provides the necessary information for authentication to the bank.
G. ACS sends to MPI a confirmation of client’s authentication through PARes

(Payer Authentication Responses) message.
H. MPI records PARes message as confirmation of client’s authentication by

ACS.
I. SP authenticates to the bank. The bank checks the nature of the transaction

from the client’s bank and confirms the payment authorization from the
SP . The SP gets his/her payment and the client’s bank stores payment
information to ensure non-repudiation of the transaction.

The main security flaw of 3D-Secure implementations, underlined in [28], has
been corrected by many banks. The client authentication with his/her date of
birth or other trivial secrets is consequently replaced by an One Time Password
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sent to user’s mobile phone. As an indication, the complete payment phase is not
described. Thus, the entire payment system using 3D-Secure protocol contains
more than nine steps.

3.3 Privacy Analysis and Improvements of 3D-Secure

In a first step (step A), the client sends his/her banking information to the
SP bank. However, this information can identify him/her. Consequently, the
requirements R3 and R10 can not be guaranteed. The requirements R4 and R12

are also not respected given that the client’s bank knows the SP identity and
the SP bank knows the client’s identity. Then, even if the client’s authentication
is realized by his/her bank, this authentication is also realized by the Directory
server (step C). Consequently, R5 is partially ensured. Similarly, the SP au-
thentication is not realized by the client or by a client’s trusted party (step C.
and I.), and R6 is not respected. In addition, the order information is contained
in the PAReq message sent to ACS (step E.), these data are consequently not
confidential (R9). Thus, the requirements R3, R4, R9 and R10 are not ensured,
the requirement of anonymity R11 cannot be respected. Finally, R13 is only par-
tially respected. Indeed, the client has not total control over these data which
passes through many entities. In addition, in terms of privacy, the sensitivity of
exchanged information is not enough taken into account. Therefore, R14 is not
ensured. The 3D-Secure protocol ensures therefore only six of the fifteen require-
ments. However, the privacy protection of 3D-Secure can easily be improved by
using the SP bank certificate. Indeed, in the 3D-Secure protocol, CVX2 and the
expiration date are not necessary. These data are only used for the compatibility
with classic existing payment systems. Thus, given that the client’s authentica-
tion from his/her bank is strong, these two elements are unnecessary. The SP
bank certificate contains the standard information, as well as the Directory pub-
lic key. Only two steps must so be modified (the other seven steps are the same
as above):

A. The SP provides the SP bank certificate to the client. Thus, the
client sends to the SP his/her purchase intention, with only his/her PAN
encrypted by the Directory public key. These data are intended for a
dedicated module MPI implemented into the SP website.

C. The Directory server decrypts the PAN with its private key and checks
the SP identity, the card number and the client’s bank. The Directory re-
covers the ACS managing the card and transfers the VEReq message.

These small changes do not involve significant modifications in the 3D-Secure
architecture. Moreover, these improvements involve none of the client’s banking
information is visible by the SP and thus ensure R10. Indeed, through the SP
bank certificate, the encryption of PAN is possible and use of CVX2 is avoided.
In addition, only relevant data and useful data pass through the Directory server.
The requirement R14 can be taken into account, as well as R5. Indeed, the client
is only authenticated by his/her bank. The Fig.1 shows the increase of the privacy
protection level thanks to these modifications.
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Ri Properties 3D-Secure 3D-Secure SET
Modified

R1 Confidentiality of transactions Yes Yes Yes

R2 Integrity Yes Yes Yes

R3 Confidentiality of client’s identity for SP No No No

R4 Confidentiality of client’s identity for SP bank No No No

R5 Client’s authentication Partial Yes No

R6 SP authentication No No No

R7 Banks authentication Yes Yes Partial

R8 Non-reusability Yes Yes No

R9 Confidentiality of OI No No Partial

R10 Confidentiality of BI No Yes Yes

R11 Client’s anonymity No No No

R12 SP data minimization No No No

R13 Data sovereignty No No Partial

R14 Data sensitivity No Partial Partial

R15 Ownership of certificate not necessary Yes Yes No

Fig. 1. Properties of the 3D-Secure protocols and comparison with SET

Nevertheless, this improved protocol does not fulfill all requirements described
in Section 2. The minimization principle, specially R9, is not respected. For ex-
ample, the client’s bank knows the purchases of the client or at least the mer-
chant category. The bank is so able to deduce the purchases type. Consequently,
the anonymity principle is not respected. Moreover, as often in the existing e-
payment architectures, the fifth actor always takes place in the middle of the
transaction, for instance, the Directory server in 3D-Secure or the card company
in the Ashrafi and Ng’s model [6]. Thus, the privacy is always exposed to an
impossibility of complete protection.

4 The New e-payment Architecture

The proposed architecture combines the advantages of electronic cheque systems
and easy-of-use of online payment systems described in Section 3.1. However, the
architecture is not considered as an electronic cheque scheme [4] which are often
difficult to use for the average user. Indeed, these systems lead to the use of
client’s certificate and an electronic checkbook card. Many computations and
storages by the client’s bank are also required, even if [12] proposes a small
improvement. Finally, these schemes do not generally take into account privacy
protection, excepted in [29].

Thus, our new architecture involves five actors: the client, the merchant SP ,
both banks and an additional entity, the interbank system IS. The goal of this
interbank trusted third party is detailed later. Each bank generates a key pair,
where the public key is certified by the IS. This latter publishes these certifi-
cates which contain the following: its name; its public key; the hash function
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algorithm; the signature algorithm and the name of certification authority. Sim-
ilarly, the SP has a key pair, where the public key is certified by the trusted
third party contractualized with, for instance the interbank system. These cer-
tificates are composed by the following data: its name; its public key; the hash
function algorithm; the signature algorithm; the name of certification authority
and the parameters describing the payment scheme recognizing the SP and al-
lowing to secure the future payment (American Express, VISA, MasterCard,..).
In addition, as explained in the sequel, the new architecture allows the SP not
to reveal the identity of its bank. Thus, in order to add privacy for the SP , the
generation of the SP certificate by a trusted party different from the SP bank
is preferable. For instance, the interbank trusted party could play this role.

Notations: The notations for the proposed e-payment protocol are:

– SignX(m): Signature of message m by the actor X with message recovery;
– [m]KPUX

: Encryption of message m by the public key KPU of the actors X ;
– [m]KSX

: Encryption of message m by the session key KS of the actors X ;
– Ni: Random number i used to guarantee the freshness of messages;
– H(m): Hashing of message m.

The online payment architecture respecting the users’ privacy proposed in
this article is based on the generation of two documents: a contract between the
SP and the client, and another electronic bank document, called electronic bank
cheque or cheque to simplify. As explained in the beginning of this section, this
latter document is different from the cheque generated in the electronic cheque
architecture. The interbank system IS plays the role of a trusted third party.
It enables communication between banks without revealing information about
the other actors. As explained in the following section, the fifth actor can not
be excluded. However, IS has the smallest possible role for managing authentifi-
caitons banks and prevent money laundering. The new solution is summarized in
Fig.2. First, the client creates his/her basket and sends it to the SP with a ran-
dom number N1, as well as a session key KS1 (Step 1). N1 ensures the freshness
of message and KS1 encrypts data between the client and the SP . In the case
where the client has a certificate, the session key is replaced by his/her public key.

Client � SP : [Basket,N1,KS1 ]KPUSP
(1)

The SP then generates a contract with its client (Step 2), containing:

– The total amount Amount of purchases;
– A random order number Order generated by the SP . This number should

not link to the SP identity;
– A symmetric random key KS2 encrypted by the public key of the SP bank

KPUBankSP
;

– The beneficiary’s name Benef encrypted by the previous symmetric key
KS2 ;

– The URL of the SP in order to return to the payment page;
– The detailed shopping list Basket, such as quantity or unit price.
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Fig. 2. The proposed e-payment architecture

SP : Contract = {Amount,Order, [KS2 ]KPUBankSP
, [Benef ]KS2

, (2)

URL,Basket}

To avoid the non-repudiation and ensure the SP authenticity, the SP signs
the contract. It is then sent to the client with the hash of Basket andN1 (Step 3).

Client � SP : [SignSP (Contract,H(N1, Basket))]KS1
(3)

Then, the client connects to his/her bank, using a macro of its Internet browser
(Step 4). The macro establishes the HTTPS connection and sends a filtered con-
tract. The authentication protocol depends on the client’s bank. But, a strong
authentication is recommended. The filtered contract only contains the necessary
information of the contract for the client’s bank: the whole amount, the currency,
the encrypted symmetric key, the encrypted beneficiary’s name and the random
order number. Thus, the client’s bank does not know the SP identity. Moreover,
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a random number N2 ensures the freshness of messages. The client has no public
key certificate, his/her bank will consequently use the session key KS3 to encrypt
the messages with his/her client. To encrypt the beneficiary’s name, a session
key is favoured in order to reduce the computation complexity.

Client � BankC : [Amount,Order, [KS2 ]KPUBankSP
, [Benef ]KS2

, (4)

N2,KS3]KPUBankC

Then, if the authentication is successful and the client is creditworthy, the
bank positively responds to the client’s request. The bank generates an electronic
bank cheque to the SP (Step 5). This electronic cheque includes: the total; the
currency; the random order number; the encrypted beneficiary’s name; the en-
crypted symmetric key; the information of the client’s bank and the signature of
the client’s bank. Thus, the cheque does not contain client’s banking information.

BankC : Cheque = SignBankC(Amount,Order, [KS2 ]KPUBankSP
, (5)

[Benef ]KS2
, DueT imeDate,BankDetails)

The client’s bank signs the cheque and encrypts it with the interbank system
public key. Thus, IS could check the banks identities and the cheque validity.
The cheque is sent to the client (Step 6) who forwards it to SP (Step 7). N2 and
N3 ensure the freshness of transactions. N2 also gives the identity of the request.
The result being encrypted, the SP cannot know client’s banking information.

Client � BankC : [[Cheque]KPUIS
, N2]KS3

(6)

Client � SP : [[Cheque]KPUIS
, N3]KPUSP

(7)

Then, the SP obtains [Cheque]KPUIS
and N3 thanks to its private key. So,

the SP authenticates to its bank (Step 8) and provides its filtered contract, the
signed and encrypted electronic bank cheque. As previously, the authentication
protocol depends of the SP bank. However, a strong authentication is recom-
mended. The SP filtered contract contains: the whole amount, the currency, the
beneficiary’s name and the random number N4.

SP � BankSP : [Amount,Order,Benef, [Cheque]KPUIS
, N4]KPUBankSP

(8)

In order to validate the banks identities and the cheque, the SP bank authen-
ticates to the interbank system and transfers the cheque (Step 9), using N5 for
the freshness of the transaction.

BankSP � IS : [[Cheque]KPUIS
, N5]KPUIS

(9)
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The interbank system checks the identity of the SP bank and decrypts the
electronic cheque with its private key (Step 10). The validity of this cheque, its
signature, and consequently the identity of the client’s bank, are checked. Then,
if the verifications are correct, the interbank system re-encrypts the cheque with
the public key of the SP bank and the cheque is transferred to this bank (Step
11). N5 is reused to identify the request.

BankSP � IS : [Cheque,N5]KPUBankSP
(11)

The SP bank decrypts the cheque with its private key (Step 12). It firstly
checks that the cheque amount and currency are similar to those provided by
the SP in the filtered contract. Then, the bank decrypts the symmetric key with
its private key. Thanks to this symmetric key, the SP bank decrypts the ben-
eficiary’s name. Afterwards, the bank compares the beneficiary’s name of the
filtered contract with the decrypted name of the electronic cheque. As indica-
tion, the verification of the client’s bank signature by the SP bank is optionnal.
Indeed, the interbank system has processed to this verification. The SP bank
can use directly the client’s bank information.

Finally, if one verification fails, the transaction is cancelled. However, if all
verifications are correct, the SP bank contacts SP and validates the cheque as
being authentic; that allows the SP to deliver service for its client (Step 13, 14).
The random numbers N3 and N4 allow to identify the requests and to guarantee
the freshness of transactions.

SP � BankSP : [Response,Amount,Order,N4]KPUSP
(13)

Client � SP : [Service, Amount,Order,N3]KS1
(14)

The SP bank also contacts the client’s bank, located through the electronic
cheque. The debit/credit process between banks completes this payment archi-
tecture in using the electronic cheque as payment proof.

5 Analysis of the Architecture

Most of security and privacy requirements are ensured by the first eight steps of
the proposed architecture. Moreover, the proposed protocol has no more steps
than 3D-Secure as the described steps of 3D-secure are not as detailed as our
protocol. In addition, the last five steps allow to ensure the banks authentication
by the interbank system (R7) and so to avoid the money laundering.

5.1 Data Security and Authentication

The secure channel between actors and the encryption schemes ensure the confi-
dentiality of exchanged data during the protocol. Consequently, the requirement
R1 is ensured. The use of random numbers garantees the freshness of messages,
avoids the linkability and ensures the data integrity respecting R2 and R8. En-
tities authentication is realized through certificates, the first one for the SP and
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the second one for each bank. Thus, contrary to the SET protocol, the trusted
third party is not one of banks. The banks own certificates issued by IS. The SP
certificate is provided by IS or another trusted autority. These documents allow
to sign, encrypt and decrypt information and to prove the validity of the SP and
banks. The interbank system manages the bank certificates and authenticates
the SP bank and the client’s bank. Moreover, IS checks information contained
in the signed electronic cheque and gives a validation of cheque for the SP bank.
The contract signed by the SP then allows client to obtain his/her service with
indicated conditions. Finally, validation of the client’s bank identity by IS and
verification of transaction information by the SP bank ensure the SP to be paid
once the service provided. Thus, the requirement R7 can be ensured. Moreover,
these verifications by IS also allow to avoid money laundering by malicious SP
and malicious SP bank.

5.2 Privacy Analysis

The proposed architecture is more respectful of the users’ privacy than the SET
protocol and 3D-Secure protocol. The SP authentication by the client and then
the SP bank, ensures the SP validity and the client does not provide personal
order data as long as he/she is not certain to use a service. The requirement R6

is thus respected. Moreover, the client’s identity is never disclosed and the SP
bank does not know the client. This authentication is realized by the client’s
bank. Thus, R3, R4 and R5 are respectively ensured. More precisly, in order to
respect the client’s privacy during the transfer of data to different banks, the
order number, used in Step (3), should not contain SP information, such as
the business number. Consequently, it must be random or unidentifiable. As an
indication, in the case where the two banks would be the same, all requirements
would be preserved except that the bank could know the SP and the client.
Moreover, the client’s bank knows neither contents of the basket, nor the SP
with whom his/her client deals. The requirement R9 is consequently ensured.
This new proposition also solves the other privacy problems of 3D-Secure proto-
col. The client’s banking information is preserved against the SP ensuring the
requirement R10. The encrypted cheque with IS public key allows the SP not
to have knowledge of the client’s bank. Moreover, contrary to all the existing
e-payment architecture, the client’s banking information is never disclosed to the
SP . Thus, the requirements R3, R4, R9 and R10 are respected. Consequently,
the client can be anonymous and the requirement R11 can be ensured. Finally,
the cheque encrypted with IS public key prevents the client to know the SP ’s
bank. Consequently, the protection of some SP personal information, represent-
ing the requirement R12 is also ensured by this protocol. This requirement is
important when the SP is a small organisation and consequently, when the SP
bank is the same bank than the manager’s personal bank.

The most sensitive data of client and SP are protected. The requirement R14

is ensured and the client only provides the necessary, appropriate and relevant
information (minimization and sensitivity principles). In addition, contrary to
the existing protocol, the fifth part performs at the end of the architecture. Thus,
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the privacy is not always exposed to an impossibility of complete protection.
Once the SP has signed the contract, the client should click two times to accept
it: one for the confirmation of his/her basket and one for the validation of the
payment. Thus, the client has read two times the similar information. These two
clicks are used to ensure the client’s consent and, consequently R13. These clicks
could be replaced by a client’s signature based on a certificate. In the future, the
certificate will be possibly present in the client’s identity card or his/her passport.
Finally, the ownership of certificate by the client is not necessary (R15), contrary
to SET protocol. Figure 3 summarizes the analysis of the proposed architecture
compared to the existing protocols 3D-Secure and SET protocol.

Ri Properties 3DS SET Our protocol

R1 Confidentiality of transactions Yes Yes Yes

R2 Integrity Yes Yes Yes

R3 Confidentiality of client’s identity for SP No No Yes

R4 Confidentiality of client’s identity for SP bank No No Yes

R5 C’s authentication Partial No Yes

R6 SP authentication No No Yes

R7 Banks authentication Yes Partial Yes

R8 Non-reusability Yes No Yes

R9 Confidentiality of OI No Partial Yes

R10 Confidentiality of BI No Yes Yes

R11 C’s anonymity No No Yes

R12 SP data minimization No No Yes

R13 Data sovereignty No Partial Yes

R14 Data sensitivity No Partial Yes

R15 Ownership of certificate not necessary Yes No Yes

Fig. 3. Properties of the 3D-Secure, SET and the proposed protocols

6 Conclusion

A lot of sensitive information are transferred during current online payment
transaction, introducing strong privacy problems. Current e-payment systems,
such as 3D-Secure, are not designed to ensure user’s privacy. Moreover, even if
its proposed improvement is more respectful of the privacy, several underlined
requirements are not ensured. The proposed architecture allows to overcome
these weaknesses by respecting the client’s privacy against the banks and the
SP , as well as the SP privacy. This solution is mainly based on the generation
of an electronic bank cheque associated with certificates.

This architecture is fully compliant with the data minimization, data
sovereignty and data sensitivity principles. More particularly, the payment trans-
action never discloses any client’s banking information. Moreover, the client
does not need to have particular knowledge or cryptographic devices. The non-
repudiation could be improved by supplying the client with a certificate.
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Moreover, in order to prove the practicability of the proposed solution, a proof
of concept and a statistical study are currently conducted (see Annexes).
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Fig. 4. The 3D-Secure protocol

Statistical Study

In order to justify the importance of the privacy protection issues during an on-
line payment, a statistical study was conducted on a sample of 354 individuals.
In particular, for the question ”Are you concerned by the issues of privacy pro-
tection on the Internet?”, 87% of responses are positive and 69% of individuals
have apprehensions during this transaction.

Patent

There is a provisional application for patent cover sheet.
The docket number is 61/712616.
A U.S. patent deposit has been made with the patent number: US 04097.
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Fig. 5. After the registration of
the client with only the storage of
one pseudonym and one password,
the client logs in to the SP

Fig. 6. The client fills his/her basket

Fig. 7. The recap chart is pro-
cessed

Fig. 8. The client chooses his/her delivery
option and the contract is generated

Fig. 9. After the contract up-
loaded and the cheque has been
generated, the cheque is transmit-
ted to the SP bank through the
SP

Fig. 10. The transaction is concluded and
the bill is sent to the client

Perspectives

A proof of concept has been developed to demonstrate the feasibility of the
proposed protocol. The Figures 5, 6, 7, 8, 9 and 10 provide an overview of the
current implementation.
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Abstract. Users of online social networks (OSNs) share personal infor-
mation with their peers. To manage the access to one’s personal infor-
mation, each user is enabled to configure its privacy settings. However,
even though users are able to customize the privacy of their homepages,
their private information could still be compromised by an attacker by
exploiting their own and their friends’ public profiles. In this paper, we
investigate the unintentional privacy disclosure of an OSN user even with
the protection of privacy setting. We collect more than 300,000 Facebook
users’ public information and assess their measurable privacy settings.
Given only a user’s public information, we propose strategies to uncover
the user’s private basic profile or connection information, respectively,
and then quantify the possible privacy leakage by applying the proposed
schemes to the real user data. We observe that although the majority of
users configure their basic profiles or friend lists as private, their basic
profiles can be inferred with high accuracy, and a significant portion of
their friends can also be uncovered via their public information.

1 Introduction

Online social network (OSN) websites have attracted a large number of users
in the past few years. Facebook, the most popular OSN, was launched in 2004;
by March 2013, the monthly active users exceeded 700 million [2]. Each user
account typically includes the user’s basic profile, such as gender, education,
and friend list, and other personal data, such as photos and messages. Clearly
not every user is willing to share all its information with peer users, either
friends or strangers [18]. Accordingly, many social network sites allow a user
to take control over its information visibility by configuring privacy settings.
Thus, users are able to set their information visibility to different types, and the
setting granularity varies from site to site. For instance, except for profile image
and name, a Facebook user is capable of configuring its friend list, each piece
of profile information, wall post and photo accessibility to strangers and specific
friends.

However, some of an OSN user’s private information that is protected by its
privacy setting can be easily compromised. In other words, a privacy setting is

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 323–341, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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not effective as what it claims to be. This is due to the intrinsic vulnerabilities
inside the privacy setting policy. For instance, as shown in Figure 1, user A and
user B are mutual friends; each configures its privacy independently such that
their information visibility are as the figure shows. An attacker, who does not
set up connections with user A or user B, has no access to user A’s friend list,
but can access some of its photos or posts; thus some of user A’s friends, who
responded to A’s posts or left photo comments, are leaked. When the attacker
also visits user B, who has a public friend list, the attacker can confirm the
connection between A and B. Exploiting this kind of vulnerability, we wonder
whether A’s friends or B’s basic information could be uncovered even with the
protection of their personalized privacy settings. More generally, we attempt to
measure, from an average attacker’s perspective, with limited resources, how
much of a user’s privacy could possibly be compromised based on its plainly
leaked information.

From the stance of a stranger to a target user, this paper strives to evaluate
the user’s privacy setting breaches on a large scale and attempts to answer the
following questions:

– Can one’s privacy setting be undermined by developing more sophisticated
and practical schemes, which can infer more private profile information based
on what has been directly published from the person’s homepage?

– How accurate can users’ privacy be inferred? While users can configure their
privacy settings to different types, can the amount of inferred privacy be
quantified given each privacy setting type?

– Is the amount of inferrable privacy mainly determined by the user’s privacy
setting? If so, can the number of affected users with a certain setting be
estimated on a large scale?

Although previous research [16, 17] has investigated the gap between OSN
users’ privacy expectation and their actual privacy settings, the vulnerabilities
in privacy settings themselves are not studied. Yet there are rare existing research
that specifically examines whether a privacy setting can keep the privacy of user
information as it is configured. While several efforts [8, 14, 29] have demonstrated
the possibility to infer OSN users’ one attribute value from another, or to infer
the connections, they are based on (1) a large amount of training data [29] or
(2) the assumption of the availability of specific kinds of information, such as
group membership [14, 29] and music interests [8], which in reality may be set
as private by users. The effects of users’ privacy settings upon their profiles are
not taken into account, let alone to measure the privacy setting breach. A large
number of users, who share certain attribute values with the target users, are
required as the training data to conduct the information inference. Thus, those
strategies can only be taken by attackers with rich resources.

In this paper, we investigatewhether certain privacy settings can effectively pro-
tect a user’s private information as the user configured.We dwell onmeasuring and
quantifying the unintentional leakage of a target user’s basic profile information
and friend list, which are the pivot of its social profile. For each target user with
a certain privacy configuration, we propose the profile and connection inference
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Fig. 1. An Attacker’s View

schemes based on the user’s publicly available information. In addition, instead of
relying on a large amount of training data, our approach only needs a small num-
ber of users in the target user’s neighborhood. The proposed schemes can be con-
ducted by any average users without many resources. We crawl and collect about
300,000 Facebook users’ publicly available information as our dataset. The status-
quo of those users’ privacy settings is measured. Then, we quantify the amount of
inferrable private information by using our proposed schemes, and observe that a
remarkable amount of privacy could be uncovered, indicating that privacy settings
do not effectively guarantee users’ information privacy.

The remainder of the paper is organized as follows. Section 2 surveys related
work. Section 3 introduces the dataset we collected, and the privacy setting
statistics. Section 4 illustrates the privacy breach of each primary setting case
under different attack schemes. Section 5 quantifies the breach based on the
Facebook dataset. Section 6 discusses the generality of privacy breach in other
OSNs, and finally Section 7 concludes the paper.

2 Related Work

There are two major research directions on the privacy and security issues in
OSNs: (1) to reveal the privacy threats in OSNs by conducting surveys [16, 17]
and proposing attack models [26], information inference algorithms [6, 8, 9,
13, 14, 19, 28], de-anonymization algorithms [4, 21], and re-identification al-
gorithms [27]; and (2) to reinforce users’ privacy by redesigning the OSN system
structure [5, 10, 20, 23] and conducting anonymization [22, 25]. This paper in-
vestigates the privacy setting breaches, which belongs to (1). We describe the
related work as follows.

The disparity between users’ actual privacy settings and their privacy expecta-
tion in Facebook has been studied by Madejski et al. [17] and Liu et al. [16]. They
obtained users’ expectations by conducting surveys and retrieved their factual pri-
vacy settings; and then detected the inconsistency between the two. Both found
that there was a significant variance between users’ privacy expectations and their
privacy settings. But they assumed that the privacy setting can effectively protect
the data that it is configured to protect. In contrast, this paper intends to challenge
this assumption and unveils the privacy setting vulnerability in itself. In addition,
we measure the privacy setting status-quo on a much larger scale.
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Regarding information inference, there are profile mining [6, 8, 19, 29] and link
mining [13–15, 24, 28] approaches, both of which this paper explores. Zheleva et
al. [29] presented several classification models using links and group memberships
to infer the target users’ profiles. But in many OSNs such as Facebook, the group
membership is covert by default. Moreover, it assumes that a specific percentage
of attribute values are publicly available to perform the inference, and a user set
that consists of thousands of users as training data is needed for classification.

Chaabane et al. [8] extracted semantic correlations among users’ music inter-
ests, and computed each user’s probability vector belonging to certain semantic
topics. The users with similar vectors shared the same attribute value. However,
this method is limited to those users who have published their music interests,
and is not applicable to more general users who have not done so. A large dataset
is also needed for classification.

Mislove et al. [19] assumed that users sharing the same attribute values were
inclined to form dense communities. The traditional community detection algo-
rithm is modified to take user’s attribute values into consideration. The algo-
rithm is applied to a school student dataset to infer their majors schools, and
etc., but when it is applied to a larger user set from a broader geographical area,
the accuracy is much lower than that using the student dataset.

Compared to these related works, this paper designs inference schemes from
the stance of an individual user instead of a global view, thus it avoids the
need of a large amount of training data and only demands the information
of the target user’s reachable neighbors. More importantly, our schemes take
the actual availability of users’ attribute values into consideration, instead of
assuming specific attribute values to be in hand.

Another important privacy threat is the compromise of a user’s connections, i.e.,
the friend list. Leroy et al. [14] uncovered the social graph given the user’s group
membership information.However, it is not easy to obtain these group-relateddata
in most OSNs, in which group information is private. Staddon et al. [24] inferred a
user’s friend list based on the situation that most OSNs provide the shared friend
function once a connectionhas been set up to the target user.However, the dilemma
is if the attacker connects to the target user, likely the target user’s friend list is
already accessible to the attacker. Bonneau et al. [7] also aimed at uncovering a
target user’s friend list in Facebook by exploiting the public listing feature, but the
feature has been disabled and is not available anymore.

3 The Facebook Dataset

Facebook was chosen as our research target because it is the world’s most pop-
ulous OSN providing many flexible features and diverse user resources. More
importantly, its privacy setting policy is similar to the policies that most exist-
ing OSNs adopt, but in finer granularity. In Facebook, one can set each of its
information item individually as “Public,” which means to be visible to every
user, or visible only to specific or all friends.

While collecting the dataset, the collector acts as a user who neither belongs
to any specific group nor sets up connections with any of the sample users.
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The retrieved data are all set as “Public,” i.e., accessible to every normal user.
Hence, the inference experiments can be reproduced by any other users. More-
over, since we only collected public information, none of Facebook’s security
policies were broken. For privacy concern, user names and IDs are anonymized.

The dataset is organized into a database, consisting of about 300,000 Facebook
users. The crawling originated from 50 graduate students at the same institution
and was conducted in a breadth-first manner. Out of the total users, about
120,000 users were crawled at the beginning phase, and all their main profile
subpages were collected. The rest about 180,000 users were crawled thereafter,
and all but their photo subpages were collected as photo pages are not used for
evaluation. Out of the 300,000 users, there are 909 users all of whose friends’
profiles are also in the dataset; for the rest of users, only some of their friends
are in the dataset.

To quantify the information leakage, we emphasize the unintentional revela-
tion of a user’s targetProfile, including an attribute set: {location, institution}
and the friend list. The attribute set is called the basic attribute set, and its
element is basic attribute. While targetProfile is the pivot of a user’s social
profile, other information items from wall like status, messages, to photos are
not included in it because they are improvised and hard to infer.

We define the percentage of users that have certain information public as
“public ratio.” Based on our dataset, the public ratios of users’ four main sub-
pages are: 83.8% for profile page, 62.2% for friends page, 55.1% for wall page,
and 45.6% for photo page. For a profile page, it is considered to be public when
at least one value in the basic attribute set is visible. A photo or wall page is
considered to be public if at least one album or post is visible. A friend list is
considered public when it is visible.

As many as 37.8% of users conceal their friend lists from strangers. Compared
to about 28% for the dataset in Gundecha’s work [12], more users in our dataset
are aware of connection privacy. Although about 83.8% of users publish one or
more basic attribute values, a majority of them provide incomplete basic profiles.
Based on the dataset, only 9.9% of users publish complete basic attribute values.

Those statistics demonstrate that a significant number of users customize
their targetProfiles as private or partially private. The inference of their
targetProfiles reflects the effectiveness of their privacy settings. Next, we
present the schemes to infer each of the two targetProfile items in detail.

4 Exploiting Privacy Setting Vulnerability

Targeting a user’s targetProfile, we design different inference schemes for each
possible privacy setting type on the four subpages, including profile, friends, wall,
and photo. For easy presentation, the notations we used are listed as follows:

U : user set.
PS(u) : u ∈ U , user u’s privacy setting on four subpages: profile, friends, wall,

photo in sequence; denoted as a 4-tuple, and entry value 1 means all basic
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Table 1. User Sets and ratio

User Set U1 U2 U3 U4

PS

0100 0001 0001 1001 0000 11xx
0101 0010 0010 1010 1000
0110 0011 0011 1011
0111

Ratio 54.0% 14.3% 15.4% 22.4% 8.2%

attributes are visible in the profile page, visible friend page, some visible
posts on the wall or photos, respectively, while 0 represents the opposite.

BA(u) : u ∈ U , user u’s basic attribute values.

FL(u) : u ∈ U , all users in u’s friend list, denoted as a user set.

targetProfile(u) : u ∈ U , user u’s targetProfile, that is {BA(u), FL(u)}.
G = (V, E) : the social graph formed by users in user set V , and E consists of

the undirectional connections among users in V ; ∀u, v ∈ V , if v ∈ FL(u)
and u ∈ FL(v), (u, v) ∈ E. Most frequently it is used to denote a user’s
neighborhood graph.

GC(k) : 1 ≤ k ≤ n, a set of members of a community structure detected in a
user’s neighborhood, and n communities detected in total.

The scenarios under which the targetProfile has to be inferred include when
PS = (0, 1, x, x), PS = (1, 0, x, x) and PS = (0, 0, x, x), where x can be either 1
or 0. According to the inference objective and public information, we categorize
users into four sets from U1 to U4 by their PS values. U1 and U2 consist of
users whose BA values can be inferred while U3 consists of users whose FL can
be inferred from their public information, and U4 consists of those whose BA
or FL are hard to be directly inferred from their public information.

Table 1 shows the possible PS values in each user set and the ratio of users
in it. About 8.2% of users display complete targetProfiles to strangers, thus
they are not the inference objects. The union of U1, U2 and U3 consists of
69.4% of users, those users’ targetProfiles are not complete with more or less
additional information accessible. In the following subsections, we first illustrate
BA inference followed by FL; in particular, we infer BA for users in U1 and U2,
then we infer FL for users in U3, followed by the hardest case for users in U4.

4.1 Basic Attributes from Friends

The users in U1 display incomplete or no BA but their friend lists are visible,
and their BAs should be inferred. Table 1 shows that 54% of users belong to
U1, indicating that a large group of users’ privacy are threatened if their BAs
can be properly compromised. This scenario is formulated as:

U1 = {v|v ∈ U and PS(v) = (0, 1, x, x)};
Inference objective: BA(v), v ∈ U1;

Public information: FL(v), v ∈ U1.
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Intuitively, a user’s geographical location, occupation, and interests affect the
formation of its social circle. Some connections are set up with colleagues or
classmates, while others are from interest communities. Thus, its friends could
be classified into different groups, each of which is distinguished by an attribute
value shared by the group members and the user. Some of its friends may belong
to multiple groups. For example, one author’s Facebook friends can be classified
into three main groups: one from college, one from graduate school, and one from
the current city. Some friends from the graduate school are also in the current
city, while no one from college is in the current city. The three groups are dis-
tinguished by attribute values at the city or institution level. The friends could
be classified into smaller groups by using finer granularity attributes like class
and department. The friends in the same group have a higher chance to con-
nect to each other than those from different groups. In other words, community
structure exists in the user’s friend circle: the connections inside a community
are denser than the connections among communities [11].

Therefore, for v ∈ U1, this feature can be exploited to infer BA(v), i.e., to
study the connections among v’s neighbors and detect communities. We first
obtain the social graph in v’s neighborhood, G = (V,E) and V = FL(v), by
traversing v’s friends and retrieving their profile pages and friend lists, although
some of them are private. Then, we conduct the community detection in the
graph. After that, we identify the most widely shared basic attribute value within
each community as the community feature, and assemble those features together
to form BA(v). During the neighborhood traversal, neither users who have pri-
vate profiles nor those who have private friend lists are eliminated during the
process. This is because their information could be leaked from their shared
friends with v, who have looser privacy configurations. The steps to infer BA(v)
are detailed below as Scheme 1:

1. Traverse each user u for u ∈ FL(v) and retrieve BA(u) and FL(u); then
form v’s neighborhood graph G = (V,E), V = FL(v), based on FL(u) for
each u ∈ FL(v).

2. Detect the communities in v’s neighborhood graph, G = (V,E), V = FL(v),
using Girvan-Newman algorithm [11]; and the resulting communities are
denoted as GC(1), GC(2), · · · , GC(n).

3. For each community GC(k), 1 ≤ k ≤ n, find the community feature A(k)
and its frequency such that A(k) ∈ BA(u) for u ∈ GC(k) and A(k) is the
most widely shared basic attribute value among the community members.

4. Merge A(k)s of the same value and sum up their frequencies for 1 ≤ k ≤ n;
then sort the merged A(k)s by institution and location separately in de-
creasing frequency order. The top-ranked values from the two sorted lists
are taken as BA(v).

The Girvan-Newman algorithm is chosen as our community detection al-
gorithm because it does not hold bias against small-sized graphs. Since the
detection algorithm is conducted on the v’s neighborhood graph, which is on
comparatively small scale, the algorithms that hold bias to sparsely connected
or small graphs are excluded from our consideration. On the other hand, the
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Girvan-Newman algorithm proceeds by removing the edges with the highest
edge-betweenness [11] value iteratively, and the procedure is suitable to conduct
on small-sized graphs.

As for the number of top values to take in step 4, it can be decided by the
target user’s number of friends and the frequency of sorted values. More friends
indicate more experience, and more values should be taken. Meanwhile, the
values whose frequency is comparable with that of the top one value could also
be taken. Intuitively, the higher the frequency, the higher the probability the
value is accurate.

4.2 Basic Attributes from Wall and Photos

The users in U2 display incomplete or no BA and conceal their friend lists from
strangers, but some of their wall posts or photos are visible. We need to infer their
BAs. Out of the dataset, 14.3% of the users belong to U2. It is formulated as:

U2 = {v |v ∈ U and PS(v) = (0, 0, x1, x2), x1, x2 = 0, 1 and x1 + x2 > 0};
Inference objective : BA(v), v ∈ U2;
Public information : v’s public wall posts or photos.

Although the target user v’s friend list is private, a direct leakage of v’s con-
nections is in v’s photos or wall posts where its friends leave comments or get
tagged. Different numbers of connections are leaked for different users, depend-
ing on their activities and privacy settings on the wall and photo subpages. We
randomly choose 330 users in the dataset seeds’ neighborhood that belong to U2,
and crawl their public photos and part of wall posts. The cumulative number of
users having less than or equal to a certain number of leaked friends is depicted
in Figure 2. While about 90 users have no friends leaked, over half of the users
have more than five friends leaked and the maximum number of leaked friends is
295. If all the public wall posts are crawled, the number of leaked friends would
increase.

Whereas v has some leaked friends, they may compose a small portion of v’s
total friends. Namely, the leaked friends can be too spare to form detectable
communities in v’s neighborhood. Therefore, Scheme 1 is not applicable to users
in U2. We seek to uncover BA(v) in v’s leaked friends’ neighborhood, instead of
v’s neighborhood. First we traverse the directly leaked friends to retrieve their
public friend lists and verify their connections to v. For those verified friends,
their own friends can be traversed to obtain their neighborhood graphs and then
detect communities in their neighborhoods. As illustrated before, the commu-
nity feature is supposed to be the most widely shared by community members.
Here v is classified to a certain community in each of the verified friends’ neigh-
borhood, and it should have a high probability to share the community feature.
Accordingly, the steps to reveal BA(v) are detailed below as Scheme 2:

1. Look through v’s wall and photos to retrieve leaked friends.
2. Traverse each leaked friend to retrieve its friend lists if public and verify its

connection with v.
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3. For each verified friend u, traverse its friends and detect communities in
u’s neighborhood using the Girvan-Newman algorithm, resulting in GC(1),
GC(2), · · ·, GC(n); if v ∈ GC(k), find the corresponding community feature
A(k) and its frequency.

4. Merge and sort A(k)s, found in v’s leaked friends’ neighborhoods, in decreas-
ing frequency order and identify BA(v) in the top values.

Intuitively, the more friends leaked, the more community features can be found
to increase the inference accuracy. Figure 2 demonstrates the possibilities of
conducting the scheme. However, some users may display their photo and wall
subpages but no comments are there; hence no friends are leaked. These cases
are treated the same as these users in U4.

Besides, Scheme 2 could also be improved by assigning weights to the leaked
friends, under the observation that those friends who comment or leave messages
to user v might be closer to v than other friends. Higher priority could be given
to the community feature found in those closer friends.

Fig. 2. Leaked Friends

Input: R(v) = leaked friends
Output: FL(v), C(v)

while |R(v)| > 0 do
R = R(v);
R(v) = {};
for u ∈ R do

Retrieve FL(u);
T (v) = T (v) + {u};
if FL(u) is private then

C(v) = C(v) + {u};
else

if v ∈ FL(u) then
FL(v) = FL(v) + {u};
for w ∈ FL(u) do

if w ∈ T (v) then
pass;

else
R(v) = R(v) + {w};

Algorithm 1. Traversal

4.3 Friends from Wall and Photos

Those users who conceal friend lists but display some wall posts or photos are
categorized into U3. We need to infer their FLs. As Table 1 shows, 15.4% of
users belong to U3. The scenario is formulated as:

U3 = {v |v ∈ U and PS(v) = (x, 0, x1, x2), x, x1, x2 = 0, 1 and x1 + x2 > 0};
Inference objective : FL(v), v ∈ U3;
Public information : v’s public wall posts or photos.

We aim to uncover v’s full friend list while there are some directly leaked friends
from v’s wall or photo subpages. Therefore, the inference task can be interpreted
as traversing near v’s neighborhood graph starting from the leaked friends and
ascertaining whether those reachable users are v’s friends. A few important is-
sues must be considered to make the traversal practical. First, considering that
the number of reachable users increases exponentially with the traversal depth,
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we should limit the depth so that the traversal is doable. Second, the v’s neigh-
borhood graph may be disconnected; thus, if there are components with no start-
ing friends inside, it is arduous to measure the distance between disconnected
components in hops by traversing beyond v’s neighborhood. We use the word
component to refer to a connected subgraph within v’s neighborhood. Third, for
traversed users having private friend lists, it is difficult to distinguish whether
they are v’s friends.

Taking these practical issues into account, we refrain the traversal from going
beyond v’s neighborhood graph. The traversal can be conducted in a breadth-
first manner, starting from the leaked friends as roots. It proceeds only on those
users whose friend lists include v, and stops on users whose friend lists exclude
v. Those traversed users with private friend lists could be gathered together for
further verification. Overall, the inference scheme consists of two steps and are
detailed below as Scheme 3:

1. Traverse the v’s neighborhood graph starting from the leaked friends as
Algorithm 1 specified.

2. Determine the connectivity between v and traversed users who have private
friend lists.

Algorithm 1 uses the following notations:

R(v) : the set of users that are yet to be traversed in the coming iteration;
R : the set of users that are to be traversed in the current iteration;
T (v) : the set of users that have been traversed;
C(v) : the set of users that have been traversed but have their friend lists private.

Initially, R(v) consists of the leaked friends from photos and walls, while T (v),
C(v), and FL(v) are empty. Each iteration represents the traversal of users a
certain depth away from roots. The algorithm terminates when no users traversed
in the previous round are friends of v, that is R(v) is empty. Furthermore, the
algorithm could be adjusted to terminate in advance by confining the traversal
depth. The depth can be recorded by counting the number of iterations, and the
traversal terminates when the depth limit has been reached.

When the traversal algorithm terminates normally, all of v’s friends who have
public friend lists and are in the same components with the leaked friends should
be included in the derived set FL(v). On the other hand, users who are in dif-
ferent components from the leaked friends cannot be reached. This limitation is
due to the feasibility concerns of Scheme 3. However, as the evaluation result
in Section 5.2 indicates, on average the largest component in a user’s neighbor-
hood consists of over 75% of its friends. In other words, a leaked friend is likely
to be included in the largest component; and thus the majority of v’s friends
are reachable from the leaked friends. Besides, as the component size and edge
density vary in v’s neighborhood, the traversal complexity differs.

Complexity of Algorithm 1. The complexity of algorithm 1 is analyzed
in terms of the number of users whose information have to be retrieved. As-
sume that all users’ numbers of friends are at the same magnitude, denoted
as f . Algorithm 1 constrains the traversal to be within two hops away from
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the target user v; and thus all v’s friends and its friends’ friends are traversed
in the worst case. We first take the v’s f friends into count; and then we
count its friends’ friends as follows. In the algorithm, each user can only be
traversed once. Thus, counting v’s friends’ friends should exclude v’s friends.
Let G = (V,E), V = FL(v) denote v’s neighborhood graph; and then for
each u ∈ V , f − degree(u) of its friends would be counted, which excludes
v’s friends. Thus,

∑
u∈V f − degree(u) more users should be counted, that is,

f2−∑
u∈V degree(u), in which

∑
u∈V degree(u) = 2|E| according to graph the-

ory. In total, the algorithm is in O(f + f2 − 2|E|).
Therefore, the more densely v’s friends connect to each other, the fewer users

have to be traversed. The complexity varies between Θ(f2) and Θ(f). The best

case is when v’s friends compose a complete graph, i.e. |E| = f(f−1)
2 , then the

complexity is O(f). When the algorithm terminates by limiting the traversal
depth, the complexity would be lower.

As for the second step of Scheme 3, i.e., distinguishing the connectivity be-
tween v and traversed users who have private friend lists, the traditional link
prediction algorithms such as common friends or Katz [15] can be employed.

4.4 No Leaked Friends

The users holding the strictest privacy settings are categorized into U4. These
users set friends, wall and photo subpages as private and display some or no
profile information. The users in this category constitute about 22.4% of the
dataset. We need to infer both their FLs and BAs. While the inference schemes
presented before start from some friend connections, the users in U4 display
none of their friends.

Other means have to be sought to identify possible friends. One source to seek
is the special friends or family member sections. Otherwise, the search people
function could be exploited by using a user’s location or institution, if provided,
as keywords. Then, the search results can be traversed one by one to check
whether the target user is included in their friend lists. As long as one of the
target user’s friends with public friend lists can be found, previous schemes can
also be conducted to reveal its targetProfile. Otherwise, their privacy can not
be inferred by our schemes.

In the next section, we apply these schemes to the dataset presented in Section
3 to quantify the privacy that can be compromised in each case.

5 Evaluation

The BA inference schemes are conducted on users who display their BA values,
and the FL inference schemes are conducted on users who display their FL
values; otherwise, the ground truth is not available for verification.

For the targetProfile inference, evaluation bias may be induced in the results
when a user’s public profile is incomplete or fallacious. Considering the real
name policy of Facebook [1], the problem of profile authenticity will not be as
significant as incompleteness, which results in false positives. Especially for the
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location attribute values, only hometown and current city are available in the
ground truth, while schemes 1 and 2 can also infer other cities where a user has
ever stayed, such as those associated with the institutions where the user has
ever been. Hence, the actual location inference accuracy should be higher than
what the results illustrate.

5.1 Inferring Basic Attribute Values

Scheme 1 is evaluated first, which can be applied to the users with public friend
lists. Out of the dataset,there are 909 users all of whose friends are in the dataset;
thus, scheme 1 is applied to those users, referred to as evaluated users. Those
who display nothing in their profiles are excluded due to the lack of ground truth
for verification. Besides, users with more than 1,000 friends are excluded from
the evaluation results. They consist of 5.17% of the total evaluated users, but
less than three, if not zero, users fall into each user sample bin in this range;
sparsity of user sample isn’t likely to result in representative evaluation result.

We use the “igraph” [3] library to detect communities in each evaluated user’s
neighborhood with the Girvan-Newman algorithm [11]. In each community, the
most frequently shared basic attribute value, the community feature, can be
either a location or an institution value. We identify both the most-shared insti-
tution and location values when the community size is above average, and the
one with lower frequency is called the additional feature of the community. Then
we merge and sort those community features and additional features separately
in decreasing frequency order by location and institution, respectively. The top
ranked values are taken as the user’s inferred basic attribute values.

We evaluate the basic attribute inference schemes from the following three
aspects. (1) How many basic attribute values could be inferred? The number of
public attribute values in evaluated users’ homepages which are taken as ground
truth, varies from user to user; thus, the number of basic attribute values that
can be inferred for each user should be measured. (2) How accurate are inferred
values? The number of top values from sorted community features, taken as in-
ferred basic attribute values, can be adjusted; hence the accuracy of each value
in the top rank should be be measured. (3) Whether the number of correctly
inferred basic attribute values and the inference accuracy are affected by the
number of the evaluated user’s friends. Since the basic attribute values are in-
ferred from the target user’s friends’ information, we want to know whether the
number of friends affects the inference accuracy or number. Figures 3 to 6 give
answers to those questions one by one. In all these figures except for Figure 6,
the x-axis value is the number of users’ friends and the y-axis value is the average
value of users whose number of friends fall into the 20 user sample bin.

Figure 3 depicts the number of correctly inferred basic attribute values com-
pared to the number of basic attribute values in ground truth. The figure shows
that more attribute values could be inferred for users with more than 100 friends
compared to those with less friends. It verifies the previous claim that the more
friends a users has, the more attribute values could be derived; but the differences
among users who have more than 120 friends are not significant. On average,
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Fig. 3. Inferred Attribute Number

  

 
 

 
 

Fig. 4. Inference Accuracy

more than two attribute values could be correctly inferred. Attribute values that
are not reflected in a user’s community features cannot be inferred; one possible
reason is that the user is not active in certain OSN communities, or its residence
in a certain institution or city is too short to form a community.

The accuracy of the top values taken as inferred basic attribute values are
shown in Figures 4 and 5. The accurate ratio is defined as the ratio between the
number of verified inferred attribute values and the number of inferred values.
In Figure 4 top 1 institution and location are taken as inferred values while in
Figure 5 top 2 and top 3 institutions are taken as inferred values.

Figure 4 shows that the inference accurate ratio for institution is about 90% on
average, and overall, the more friends the target user has, the higher the average
accurate ratio is. Meanwhile the accurate ratio of location is not as good due to
the false positives incurred by the incomplete ground truth of location values.
As we mentioned at the beginning of this section, only hometown and current
city are included in the ground truth for location while we infer all the places
that the user has ever been. In addition, the accurate ratio of the top 1 location
value for users with more than 500 friends fluctuates more strongly. One reason
is that usually the larger the number of friends, the more experience a user
has or the more locations a user has ever been, and in turn the less chance for
the hometown or current city to be derived as the top 1 inferred location value.
Another reason is that users with more than 500 friends are sparse at some point
compared to users with fewer friends; thus the accurate ratio cannot be averaged
and tends to go extremes due to the sparse user sample. This also explains the
higher variance for those users in Figures 3 and 5.

Though the missing of ground truth for location leads to false positives, each
institution is usually associated with a location; as long as institutions are cor-
rectly inferred, corresponding locations could also be derived. Hence, we further
evaluate the accurate ratio of inferred institution information in Figure 5. Fig-
ure 5 depicts the accurate ratio of top 2 and top 3 ranked institution values.
It shows the accuracy of top 2 institution values is over 80%, which on average
is higher than that of top 3 institution values. It verifies our claim that higher-
ranked community features hold higher probability to be shared by the target
user. Besides, the accurate ratio is not largely affected by the number of users’
friends.
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Fig. 5. Top Institutions Accuracy

 

 
 

 

Fig. 6. Community Feature Sharing

For users belonging to U2, we first measure the community feature sharing
ratio to evaluate their basic attribute values inference accuracy, since their ba-
sic attributes are derived from the community feature in their leaked friends’
neighborhood. Figure 6 depicts the community feature sharing ratio, and x-axis
value is the community size. More than 8,500 communities are detected in the
evaluated users’ neighborhood. On average, the sharing ratio is higher when the
community feature is an institution value compared to when it is a location
value. This difference can also be explained by the ground truth incompleteness
of location information. Though the community features are not 100% shared
by all members, they will not be directly taken as the inferred basic attribute
values and the wrong community features will be eliminated in the later steps
of Scheme 2.

We further evaluate the inference accuracy of Scheme 2 on some of the dataset’s
seed users which belong to U2. Because seed users are from the same institu-
tion and location, the ground truth scraped from users’ homepages are com-
plemented by that fact. We detect those seed users’ community memberships
in their friends’ neighborhood, and take the top ranked community features as
their inferred attribute values. As a result, the inference accuracy of top 1 ranked
feature is 100%.

In summary, for users who conceal their basic attribute values but have their
friend list public or some friends leaked from other profile sections, those value
could be uncovered with high accuracy by exploiting their friends’ information.

5.2 Inferring Friend List

For a user v in U3, v’s retrievable friends, according to Scheme 3, are confined to
those who are in the same component with one of the leaked friends. As defined
in Section 4.3, a component is a connected subgraph within v’s neighborhood.
We first measure the components in users’ neighborhoods. Based on the evalu-
ated users, most of their neighborhood graphs are disconnected, on average 20
components exist and the number of components increases with the number of
a user’s friends. While there are a noticeable number of components, most of
them are small. Figure 7 illustrates the ratio of a user’s friends that are in their
largest neighborhood component, over 85% of friends on average are included in
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Fig. 7. Friends in the Largest Component

 

 

 

  

 
 
 
 

Fig. 8. Traversed Friends Ratio in 1 Hop

the largest component. The more friends a user has, the larger portion of friends
are in the largest component. Thus, as the leaked friends are likely to be in the
largest component, a majority of friends could be reached from them.

In Figure 8, the ratio of traversed friends in the evaluated users’ neighbor-
hoods is illustrated, and the traversal starts from different number of roots in
one hop away. Each curve represents a different number of roots, which are ran-
domly chosen from target user’s friends. For users with fewer than 100 friends,
a majority of friends could be traversed in one hop from five roots, while for
users with more friends, about 10%, 25%, and 35% of friends could be traversed
in one hop away from two, five, and ten roots, respectively. Over all, the more
friends a user has, the more of its friends can be reached via traversal given the
same number of roots and hops.

Figure 9 indicates the ratio of friends traversed in two hops away. About 70%
of friends could be traversed from 5 roots, and 80% of friends could be traversed
from 10 roots. The curve for two roots fluctuates more violently because the
choice of roots affects the traversal path and a high-degree node results in more
retrieved friends. When starting from 5 or 10 roots, the high-degree nodes stand
a higher chance to be traversed as roots or within two hops. Still, on average
about half of a user’s friends could be retrieved from two randomly chosen roots
in two hops. Interestingly, the ratio is not clearly affected by users’ number of
friends. It means that no matter how many friends a user has, most of its friends
are closely connected while some are estranged from others.

To sum up, for users who conceal their friend lists but display other pro-
file sections from which some of their friends could be leaked out, over half of
their friends could be revealed using our traversal algorithm starting from the
leaked friends in two hops. The complexity of the traversal algorithm ensures
the traversal can be conducted in limited resource.

After that, we measure the second step of scheme 3, i.e., to distinguish the
connections between user v and the traversed users who have private friend lists.
Those users are those who connected to v’s friends and have private friend lists.
The number of common friends is taken as the metric to infer the connections.
Those private-friend-listed users are sorted by their numbers of friends shared
with v, which is leaked from v’s public-friend-listed friends. The top quarter of
users are taken as v’s hidden friends. Figure 10 illustrates the inference accuracy,
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Fig. 9. Traversed Friends Ratio in 2 Hops

  

   

  

Fig. 10. Private-Friends Inference Ratio

and it also illustrates the total revealable friends ratio, which consists of both
the public-listed friends and those hidden friends. Compared to the results of
[15] which also used common neighbors as the metric to infer co-authorship, our
accuracy is slightly higher. In total, for users belonging to U3, more than 70%
of their friends could be correctly revealed on average by Scheme 3.

Users in U4 hide all connections, which is hardest to infer their targetProfile.
However, if some of their friends are known beforehand or can be found by using
the search people function mentioned in Section 4.4, their targetProfile can be
inferred and evaluated similar as stated above.

6 Discussion

While our approach explores a user’s information visibility from the perspective
of a stranger, it cannot know the privacy customization to the user’s friends.
However, the privacy setting for strangers can only be stricter than that for
friends. In other words, friends must be able to access more information than
strangers. Thus, if some private information could be correctly inferred by a
stranger, the inference can also be reproduced by friends.

If a user does not post certain profile item on Facebook such as education,
we cannot know whether the invisibility is due to privacy setting or vacancy.
However, if the inferred information could be verified based on the ground truth
retrieved from other sources, we still view such a case as privacy leakage.

Due to the lack of ground truth, the experiments are only conducted on users
who display their targetProfiles to strangers. However, we speculate that those
users with stricter privacy are also inclined to be more prudent in setting up
connections. Thus, their online friend circles are created in a more moderate
manner, which does not increase the difficulty of community feature detection or
neighborhood graph traversal. Therefore, our evaluation results reflect a possible
privacy breach of average users.

The profile inference schemes proposed in this paper arenot limited toFacebook.
They could also be applied to other OSNs that enable privacy configuration and
allow users to post a variety of data other than profile and connection. ThoseOSNs
include MySpace, Google+, and Renren, in which users could also upload photos,
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leave messages or comments, and customize the visibility of different types of in-
formation. When the accessibility of a user’s profile or connections is constrained,
the information revelation could be initiated from public connections in the friend
list or posts from friends by using our schemes 1, 2 or 3.

7 Conclusion

In this paper, we investigated the unintentional privacy disclosure of OSN users
even with the protection of privacy settings. We first examined users’ privacy
settings on different information sections of a large dataset collected from Face-
book. Then, for each possible privacy configuration, we proposed correspond-
ing schemes to reveal basic profile and connection information starting from
leaked public connections on the target user’s OSN homepage. Finally, using our
dataset, we quantified the achievable privacy exposure in each case, and mea-
sured the accuracy of our privacy inference schemes given a different amount of
public information. The evaluation results indicate that a user’s private basic
profile could be inferred with high accuracy, while a user’s covert connections
could be uncovered in a significant portion based on even a small number of
directly leaked connections.

Our privacy inference schemes can be conducted by attackers without much
resources; and those schemes are applicable to users adopting specific privacy
settings. The dataset statistics show that a majority of users are among that
group. Therefore, the privacy of those users could be undermined facilely and
the actual information privacy level of them may fail to meet what their privacy
configuration specifies. We discussed that our privacy inference schemes could
be applied to other OSNs that provide similar features as Facebook. We plan to
analyze the privacy breach on those OSNs in the future.
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Abstract. The use of RFID (Radio Frequency Identification) technology can be 
employed for automating and streamlining safe and accurate brand 
identification (ID) uniquely in real-time to protect consumers from 
counterfeited products. By placing brand tags (RFID tags) on brands at the 
point of manufacture, vendors and retailers can trace products throughout the 
supply chain. We outline a Web-based Anti-counterfeit RFID System (WARS) 
to combat counterfeit branding. Despite these potential benefits, security, and 
privacy issues are the key factors in the deployment of a web-based RFID-
enabled system in anti-counterfeiting schemes. This paper proposes an 
asymmetric cryptosystem to secure RFID transmission in retail supply chain 
using Elliptic Curve Cryptographic (ECC) techniques. The uses of ECC 
techniques provide greater strength than other current cryptosystems (such as 
RSA, and DSA) for any given key length, enables the use of smaller key size, 
resulting in significantly lower memory requirements, and faster computations, 
thus, making it suitable for wireless and mobile applications, including 
handheld devices. 

Keywords: Asymmetric Cryptography, ECC, RFID, WARS and Counterfeit.  

1 Introduction 

Counterfeiting is a significant and growing problem worldwide, occurring both in less 
and well developed countries. Considering the countries worldwide, almost five 
percent of all products are counterfeited [1], [2].  Counterfeiting continues to increase 
globally because of the high margins achieved through counterfeiting by 
manufacturers and the demand for trade name goods at value prices by consumers [3]. 
The problem of counterfeiting is further magnified because of the opening of huge 
new economies in Eastern Europe and Asia [4]. In the past, counterfeit goods were 
easy to identify because these products typically represented luxury goods made with 
shoddy materials and sold in limited venues such as open-air markets in large, 
cosmopolitan cities as New York and Los Angeles. Today, however, counterfeiting 
impacts virtually every product category: from fake foods, beverages and everyday 
household products to pharmaceuticals, auto parts and consumer electronics [5]. 
Counterfeiting refers to the unauthorized production of goods protected by 
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trademarks, copyrights, or patents. Due to the technological advancements in 
materials and processing techniques, many counterfeit goods have found their way to 
legitimate bricks-and-mortar retail stores, such as Walmart, and Target, in developed 
and developing countries. Many successful brands also become victims of the 
worldwide phenomenon of counterfeiting, where cheap impersonations of the brands 
are distributed by the counterfeiters. Nowadays, the brand counterfeiting context is 
increasingly dominated by the unconstrained presence of fake brands [6]. Therefore, 
this topic has generated a substantial body of scholarly discussion, research and 
thought [7]. 

The majority of the research on counterfeiting has focused attention on the demand 
side of counterfeiting [8], [9], [10] that is consumer accomplices who engage in 
aberrant consumer behaviour [11], [12] and deliberately purchase counterfeit goods 
with scant research addressing the supply side [13]. It can be argued that 
counterfeiters are good marketers because they have found a need and are finding a 
way to fulfill it [14]. To develop techniques that effectively combat the problem of 
counterfeiting, it is necessary to determine and identify the existence of the 
segment(s) of consumer accomplices who purchase counterfeit goods.  

The economic and social consequences of counterfeiting are enormous. It is 
estimated that brand holders lose approximately $600 billion of revenue annually due 
to counterfeiting and make up approximately seven percent of world trade [15].In the 
USA economy, the cost of counterfeiting is estimated to be up to $200 billion per year 
[16]. A large majority of these products include clothing, luxury goods, entertainment 
equipment, medicines and pharmaceutical products, handbags, automotive parts and 
high tech products. Manufacturers of affected products have a direct loss in sale 
revenues; this is often directly related to losses in tax revenues, and may also result in 
job losses. Furthermore, counterfeit goods are everywhere on the Internet and if a 
brand has revenue generating capability or brand credibility, it will surely be 
counterfeited and sold online. Online auction sites and business-to-business websites 
also provide the ideal online medium for counterfeit sales that worth billions. Michael 
Danel, the secretary general of the World Customs Organization identified that if 
terrorism did not exist, counterfeiting would be the most important criminal act of the 
early 21st century. 

The effect of counterfeiting is always greater than the value of the counterfeit 
product itself. By damaging consumers’ perception of the performance, reliability, 
and safety of branded devices, counterfeiting tarnishes brand image, customer loyalty, 
and satisfaction. Actions to limit counterfeits can arise from both supply and demand 
side, considering the tactics companies employ to deter counterfeits [16] and the 
motivations that make a counterfeit an interesting option for some customers [17], 
[18]. Also, there is no single solution to this problem; anti-counterfeiting strategies 
should be multifaceted. The anti-counterfeiting strategies are possible by the use of 
mobile/wireless technology to combat counterfeiting. The application of these 
principles can be facilitated by the use of the wireless technology such as Radio 
Frequency Identification (RFID) [19]. Today's advanced technology is capable of 
uniting brand tags (RFID) and data processing into a single integrated system.  
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A Web-based Anti-counterfeit RFID System (WARS) can be used to automate and 
streamline safe and accurate brand identification (ID) uniquely in real-time by product 
marketing managers and to protect consumers from counterfeited products [20]. By 
placing brand tags (RFID tags) on brand items at the point of manufacture, 
manufacturers can trace products throughout the supply chain. The retail industry can 
use an online application, such as WARS at the point of sale to document the 
authenticity of their brand products at retail in real-time.  The brand tags can store the 
unique product IDs and the product information can be stored in an associated (i.e., 
manufacturers) database.   If the brand is not properly tagged or the brand tag is not 
associated (i.e., the product information is missing) with the database, then the 
retailers know the product is counterfeit. Additionally, by placing brand tags at the 
point of manufacture, not only can brands be traced throughout the supply chain, but 
it can also prevent counterfeit brands from entering into the supply chain. 

These RFID-based systems can collect and organize data exponentially faster and 
more accurately. The unique ID number on standard RFID tags (e.g., passive) can be 
used to verify the authenticity of the products to which they are attached.  As in the 
distribution chain, RFID-based systems in retail can greatly aid in reducing the cost of 
keeping accurate inventory data.  With minimum staff and less time, retailers can 
keep accurate inventories.  They can spend more time providing service to customers 
rather than counting product. In addition, the accuracy of the real time inventory data 
enables product marketing managers to ensure that hot selling items are properly 
stocked and to ensure replenishment order for these items are placed as quickly as 
possible.  The RFID-based systems enable the product marketing managers to identify 
slow moving items quickly and to take corrective action to goose demand through 
promotional or advertising activity before a ‘fire sale’ is needed.  Thus RFID systems 
help managers to maintain their margins. These systems are, also, a significant aid in 
deterring theft in retail environments.  RFID enable brand tags to trigger alarms when 
they are removed from the store without a due process.  In the past several decades, 
RFID-based systems have been successfully deployed for anti-theft purposes. 

Despite these potential benefits, security, privacy and system deployment issues 
are the key factors in the deployment of a RFID-enabled system in anti-counterfeiting 
schemes and imposes significant threat on overall profitability [21]. Since a RFID-
enabled web-based anti-counterfeiting systems use a wireless communication system, 
retailers or vendors and network servers need a strong security system (such as 
public-key cryptography) and mutual authentication protocol in their conversation 
[22]. Over the past three decades, public key cryptography such as RSA (Rivest, 
Shamir and Adelman) and DSA (Digital Signature Algorithm) has become a mainstay 
for secure communications. It provides the foundation for both key management and 
digital signatures. Public key cryptography is used to distribute the secret keys in key 
management and to authenticate the origin of data and protect the integrity of that 
data in digital signatures. However, over the past two decades, new techniques such 
as Elliptical Curve Cryptography (ECC) have been developed for better performance 
and higher security than these public key techniques [23].  

One of the protocol proposed by Beller, Chang, and Yacobi [24], which provides 
mutual authentication and key agreement between users and servers with lower 
computational burden on the user side. This is important since the retailers usually 
communicate using a small, portable handset (e.g., smart phone) with limited power 
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and processing capability. In this paper we will examine and propose a solution using 
ECC to address the security issues relating to RFID-enabled anti-counterfeiting 
systems. 

The paper is structured as follows: Section 2 illustrates the application of a real-
time Web-based Anti-counterfeit RFID System (WARS) to curb counterfeit branding. 
Section 3 discusses the Security issues and outlines the proposed solutions of WARS. 
Section 4 discusses the verification processes of counterfeit branding. Section 5 
illustrates the practical implication of WARS and ECC. Section 6 concludes the 
paper. 

2 Web-Based Anti-counterfeit RFID System 

RFID is an advanced emerging technology that elegantly provides a solution to 
leading global brands in multiple industries including retail, pharmaceuticals, 
electronics, entertainment, aviation, IT and many more. WARS represent one of the 
most promising approaches to curb counterfeit branding. WARS mainly consist of 
smart brand tags, a RFID Reader and retailer’s IT system. It can be embedded into the 
retailer’s web portal (i.e., dashboard) to identify the authenticity of the brand tags. 
Each unique brand tag can be passive, semi-passive or active [25]. Passive tags can be 
used for both reading/writing capabilities by the RFID reader and do not need an 
internal power (i.e., battery). They get energized by the reader device and have a read 
range from 10 mm to almost 10 meters [26]. Passive tags are cheap, ranging from 
$0.25c to $0.40c each and life expectancy is unlimited. Thereby, we suggest the use 
of passive brand tags (13.56 MHz ISO 15693 tag) with the read range of one meter 
attached to each brand at the point of manufacture. The main components of the 
WARS are shown in Figure 1.  

 

 

Fig. 1. Main components of WARS 
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The passive brand tag antenna picks up radio-waves or electromagnetic energy 
beamed at it from an RFID reader device attached to mobile devices (e.g., iPad, 
iPhone or smartphone) and enables the chip to transmit the brand’s unique ID and 
other information to the reader device, allowing the product to be remotely identified 
[20].  A mobile device-based RFID reader will ensure that the identity of the brand 
product is passed to the device (e.g., iPhone) and automatically logged into an 
integrated database server (e.g., SQL server) using a wireless network. The RFID 
reader can also request any additional information from the brand tag that is encoded 
on it [26]. The reader converts the radio waves reflected back from the brand tag into 
digital information [27] then passed onto WARS (embedded in a smartphone/iPhone) 
for processing. The brand database can also link with other databases through Internet 
for retrieving specific brand information. 

As the retail industry currently faces counterfeit branding issues, multi-layer RFID 
architecture can establish an infrastructure to address such a challenge, to automate 
and simplify the functionality for tracking and detecting brands wirelessly. Figure 2 
shows a retailer’s mobile-based web portal (i.e., dashboard) integrated with WARS. 
By clicking ‘Brand Authenticity’ tab on the dashboard will enable WARS. 
 

 

Fig. 2. Retailer’s web portal (dashboard) 

Figure 3 shows the windows based WARS application, which can be embedded 
with a mobile device for capturing brand information (e.g., product ID, product name, 
or brand name) automatically and wirelessly. The WARS application identifies every 
product uniquely with a brand ID embedded in brand items through RFID-enabled 
mobile devices.  A brand tag only contains a unique ID and perhaps other information 
(e.g. product and brand name), which a WARS application uses to retrieve a product 
record stored in the retail branding database (e.g., SQL server). A  WARS can also be 
linked to other (e.g., brand manufacturer) databases.  
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Fig. 3. WARS application for automatic brand detection 

In case of counterfeit branding issues, a retailer or vendor can use WARS for 
detecting and determining the right brands. After running the WARS application, the 
retail staff needs to connect RFID reader first by clicking “Connect RFID Reader” 
button. Then detect brand product(s) by clicking “Search Tagged Product” button.  

When the required brand items are in the mobile device-based RFID readers 
energizing field, the WARS application beeps, indicating that the identified brand is 
not counterfeited and displays the brand information (e.g., tag ID, product name, and 
brand name) in real-time in the list box as shown in Figure 3. 

In case of counterfeit brand items, the WARS pop-up an error message, “Brand 
information is not found”. 

3 Security of WARS 

Counterfeit branding has been an issue in many industries that affect only the bottom 
line and a company’s reputation. High value luxury goods, such as handbags, 
wristwatches, and other products, are among the most susceptible to counterfeiting. 
The brand holders spend large amounts of money to trace and eliminate the 
counterfeit products and the people responsible to ensure that counterfeit products 
don’t sully their brands.  

Most of the security threats in retail supply chain are attributed to the security of 
the communication channel between authentic RFID-enable reader devices (e.g., 
smart phone) and the brand (RFID) tags through the air interface (i.e., wireless 
communication). A brand tag reading occurs when a reader device generates a radio 
frequency “interrogation” signal that communicates with the brand tag (e.g., a tagged 
camera), triggering a response from the brand tag [28]. Since RFID-enabled anti-
counterfeit systems uses open air space as a communication channel (wireless),   the 
content (such as brand name) of the communication may be exposed to an 
eavesdropper, or system services can be used fraudulently. Further with respect to 
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Read/Write (reprogrammable) tags, unauthorized alteration of brand data can be the 
possibility in the supply chain. As a result, security is the key issue which presents a 
host of challenges for the successful implementation of RFID-enabled anti-counterfeit 
branding systems. To address RFID security issues, we propose a separate security 
layer, which ensures a reliable proper security measures such as authenticity, 
confidentiality and intractability over the wireless communication channel [9] in the 
RFID-enable anti-counterfeiting architecture. The security layer implements a strong 
cryptographic algorithm such as ECC initially proposed by other researches [29].The 
security measures are as follows: 

1) Attaching a brand tag (RFID) to the high value product – Brand tags can be 
attached to or is permanently embedded in each high value products (such as 
a wristwatch) at the point of manufacture to prevent counterfeit products 
from entering the supply chain. Including a digital signature in these brand 
tags can create authentication schemes that are extremely difficult for 
counterfeiters to circumvent. This will add an extra layer of security, which 
ensures that the counterfeiters cannot duplicate the signature as it is an 
effective measure to prevent a repudiation of service. 

 

2) Strong cryptographic techniques and mutual authentication to protect high-
value products - Cryptography is the science of keeping information secure. 
It provides confidentiality, authentication, integrity and non-repudiation. 
Cryptography can be classified into two categories: symmetric and 
asymmetric. In symmetric key cryptography, both parties share the same key 
for encryption as well as the corresponding decryption. Assymetric key 
cryptography uses pairs of keys – a public key, is used for encryption and its 
corresponding, intrinsically linked private/secret key is used for decryption. 
Both public and private keys can be used interchangeably.  

Asymmetric cryptography has proved to be so useful that it has become a 
common part of everyday life. Emerging technologies such as e-commerce 
web site uses a secure server employs asymmetric cryptography to secure 
online transactions. In this paper, we suggest an Asymmetric cryptography - 
the core technology behind digital signatures and authentication, offers the 
robust protection that can combat counterfeit branding. 

3.1 Asymmetric Cryptography 

Asymmetric cryptography uses a combined public and private key to encrypt 
messages and digital signatures. Although asymmetric cryptography offers superior 
security, it is by nature also demanding, complex, and costly to implement. Most of 
the public-key cryptosystems such as RSA and DSA are used for performing 
asymmetric authentication. The strength of technology provided by asymmetric 
cryptography is directly proportional to the key length used. As the key gets longer, 
the computational and software complexity also get longer. ECC can be an emerging 
alternative to public-key cryptosystems, and can be used to create faster, smaller, and 
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more efficient cryptographic keys [30]. The countries like United States, United 
Kingdom, Canada and some NATO member countries have adopted some form of 
ECC for future systems to protect classified information between their governments. 
The United States Department of Defense aims at replacing almost 1.3 million 
existing equipment over the next 10 years that uses ECC for key management and 
digital signatures [23]. 

3.2 Elliptic Curve Cryptography  

ECC is a public key encryption technique based on elliptic curve theory in 
cryptography was first proposed by Victor Miller and Neal Koblitz in 1985. ECC 
provides higher strength per bit than any other current cryptosystem (such as RSA, 
DSA, etc.), thus, making it suitable for wireless and mobile applications, including 
smartcards and handheld devices. The advantage of elliptic curve over the other 
public key systems such as RSA, DSA etc. is the key strength. The following table 1 
summarizes the comparison of the key strengths ECC and other public key schemes 
[23]. 

Table 1. Comparison of the key strengths between RSA/DSA and ECC 

RSA/DSA Key Size (bits) ECC Key Size (bits) 
1024 160 
2048 224 
3072 256 
7680 384 

15360 512 
 

The above table shows that a 244-bit ECC key has the equivalent strength of a 
2048-bit RSA key for security; a 384-bit ECC key matches a 7680-bit RSA key. So, it 
is clear that greater strength for any given key length enables the use of smaller key 
size, bandwidth savings, lower computational loads and memory requirements, and 
hence faster computations [23][30]. 

ECC generates keys through the properties of the elliptic curve equation instead of 
the traditional method of generation as the product of very large prime numbers. An 
elliptic curve E over a field R of real numbers, is defined by an equation, E : y2 + 
a1xy + a3y as shown in Figure 4. Where a1, a3  are real numbers belong to R, x and y 
take on values in the real numbers. 

An elliptic curve represents a looping line intersecting two axes as shown in the 
following figure. ECC is based on properties of a mathematical equation derived from 
points where the line intersects the axes. Multiplying a point on the curve by a 
number will produce another point on the curve, but it is quite difficult to identify the 
number, even the original point and the result are known.  
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Fig. 4. Graph of the elliptic curve function 

We propose an ECC public key [16] cryptosystem to communicate between two 
parties - sender and receiver.  Both sender and receiver must agree to use an elliptic 
curve Ep (s,r) to communicate the messages, where p is a prime number.  The sender 
(S) selects a large random number α, which is less than the order of Ep (s,r) and a 
random point A and C on the elliptic curve. The sender computes S1 = α(C + A) and 
S2 = αA. S keeps the random number α, and the point A as his/her private keys and 
publishes S1 and S2 as a general public keys. 

Similarly, the receiver (R) selects a large random number β and a point B on the 
elliptic curve. He/she computes R1 = β(C+B) and R2 = βB. R keeps the random 
number β and the point B as his/her private keys and publishes R1 and R2 as general 
public keys. After publishing the public keys, the communicating parties again 
calculate the following quantities and publish them as their specific public keys of 
each other. 

• The sender calculates SR = αR2 and publishes it as his/her specific public key 
for receiver. 

•  The receiver calculates RS = βS2 and publishes it as his/her specific public 
key for sender. 

 
The encryption and decryption processes are as follow: 
 
Encryption: If R wants to communicate the message M then all the characters of the 
message are coded to the points on the elliptic curve using the code table, which is 
agreed upon by the both S and R.  Then each message point is encrypted to a pair of 
cipher points E1,E2 . R uses a random number γ, which is different for the encryption 
of different message points. 

 
E1 = γC 
E2 = M + (β + γ) S1 – γ S2 + SR 
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After encrypting all the message character, the receiver converts the pair of points 
of each message point into the text characters using the code table. Then he/she sends 
the cipher text to S in the public channel (i.e., air). 

Decryption: After receiving the cipher text, S converts the cipher text into the points 
on the elliptic curve and recognizes the points E1 and E2 of each character. Then 
he/she decrypts the message as follows. 

M = E2 – (αE1 + αR1 + RS) 

An asymmetric scheme (using ECC) for security of WARS is shown in the 
following Figure 5. 

 

 
 

Fig. 5. An asymmetric encryption (ECC) algorithm for secure communication 

4 How Does WARS Work Using ECC? 

The manufacturer embeds a brand tag (i.e., smart RFID tag) in each of its brand at the 
point of manufacture. Each brand tag contains a private key and a certificate that has 
the approval of luxury products (such as handbags, wristwatches, and other products) 
manufacturers, as well as identifying information about the brand, such as the name, 
description, etc. Retailers or vendors can use WARS at the point of purchase to verify 
the authenticity of high value products. The following steps are needed to verify 
counterfeit bands with retailers IT system using ECC: 

a) A RFID-based smart phone (i.e., WARS) enables the brand tag to transmit 
brand’s unique ID and pass it to the retailer’s web-based IT (i.e., host) 
system. 

b) The retailer’s host system first requests a certificate (a random number along 
with a public key). The host then combines that number with the public key 
to create a challenge message, which the host sends back to the brand tag. 

c) The brand tag uses its securely stored private key to compute the elliptic 
curve digital signature of the challenge message and sends this digital 
signature back to the host. 

d) Using the corresponding public key, the host verifies the signature by 
decrypting random number is shown in the Figure 6. 

 

 
Receiver 

 
Sender ENCRYPT DECRYPT 

Cipher text  M M
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Fig. 6. Verification processes of counterfeit branding 

Only an authentic brand with knowledge of the private key can produce a correct 
digital signature. Using the verification result, the host decides whether to 
authenticate the brand to respond to RFID-enabled reader device. The host can also 
determine whether brand ID and other information are correct for use with the host 
and could also use the brand to track. 

5 Practical Implication of WARS and ECC 

A drawback of existing anti-counterfeiting measures (such as barcodes) is the low 
achievable degree of automation when checking the originality of a product. With 
existing schemes, large-scale checks, for example required in retail warehouses, are 
not feasible. RFID helps to address this problem, and provides the possibility to 
implement extensible, secure protection mechanisms in the retail supply chain. A 
RFID-based real-time automatic Anti-counterfeit RFID System (WARS) can be 
implemented in retail supply chain for combating counterfeit branding. Retailers or 
vendors would use WARS at the point of purchase to authenticate the brands [32].  

As ECC employs both public and private key, a counterfeiter cannot derive one 
key based on knowledge of the other key. Thus, only brand tags that know the private 
key can respond correctly to a retailer’s IT systems (i.e., host) challenge and the host 
system can determine this knowledge using only the corresponding public key. If a 
counterfeiter cannot obtain the private key, then the host can assume that any brand 
responding correctly is authentic. 

In case of corrupt retailers or vendors, customer can verify the brand authenticity 
via SMS (Short Message Service), which is getting popular now-a-days and almost 
been used everywhere. Using SMS, consumers can send messages; make purchases 
and receive notification, all on a mobile device. For example, financial services 
institutions, such as banks, and credit card companies, are experiencing high rates of 
customer adoption and usage of SMS-based mobile banking services as the services 
become available on all mobile telephone technologies [33].  
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Upon purchasing a brand, customers can find an item specific code, such as brand 
serial number. Then, they text the code to manufacturer using their mobile phone and 
receive a reply confirming that the brand is genuine or warning that it may be 
counterfeited. 

6 Conclusions and Future Work 

In this paper we have outlined, and designed a Web-based Anti-counterfeit RFID 
System (WARS) to curb counterfeit branding. The authors have shown the 
application and practical implication of the above system. Efforts are being made to 
develop the complete system (i.e., WARS) for use in retail sectors to prevent 
counterfeiting. We also propose a separate security layer in WARS architecture to 
address RFID security issues and propose a reliable proper security measures such as 
authenticity, confidentiality and intractability using asymmetric cryptosystem (ECC) 
over the wireless communication. The advantage of elliptic curve over the other 
public key systems such as RSA, DSA etc, is the key strength, which provides greater 
security and more efficient performance.  

The security and implementation properties of the ECC seem to be over the highest 
cryptographic strength per bit among all existing public-key systems. The RSA-based 
protocols have significant problems in terms of the bandwidth and storage 
requirements. For example, a 244-bit ECC key has the equivalent strength of a 2048-
bit RSA key for security; a 384-bit ECC key matches a 7680-bit RSA key. So, it is 
clear that ECC is an emerging alternative to public-key cryptosystems, and has the 
smaller key sizes result in smaller system parameters, smaller public-key certificates, 
bandwidth savings, faster implementations, and lower power requirements. Thus, the 
use of the ECC in wireless communication system is highly recommended to combat 
counterfeit branding. 

Nevertheless, implementation of such a security system requires specialized 
knowledge and a significant investment in hardware and software development, has 
prevented most manufacturers from employing it. 

However, as the microprocessors available to counterfeiters wanting to hack these 
systems continue to become faster and cheaper, a key length that seemed adequate a 
few years ago may no longer offer adequate security. For this reason, effective 
asymmetric implementations have been too costly for all but the most high-end 
applications. 

Finally the implementation of the proposed system could be an interesting area of 
future research. 
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Abstract. Cloud computing is an emerging technology and it utilizes the cloud 
power to many technical solutions. The e-learning solution is one of those 
technologies where it implements the cloud power in its existing system to 
enhance the functionality providing to e-learners. Cloud technology has 
numerous advantages over the existing traditional e-learning systems. However 
security is a major concern in cloud based e-learning. Therefore security 
measures are unavoidable to prevent the loss of users’ valuable data from the 
security vulnerabilities. This paper investigates various security issues involved 
in cloud based e-learning technology with an aim to suggest remedial in the 
form of security measures and security management standards. These will help 
to overcome the security threats in cloud based e-learning technology. Solving 
the key problems will also encourage the widespread adoption of cloud 
computing in educational institutes. 

1 Introduction 

E-learning is a form of learning created by combining digitally delivered content with 
learning support and services. E-learning systems usually require many hardware and 
software resources. Educational organizations cannot afford huge investments to 
obtain these resources. In past three decades, the computing world is based on the 
Internet, featured by the rapid development and application of computer technology. 
The cloud computing model is one of the very important shapes of a new era. This 
technology is based on the distributed computing, parallel computing, grid computing, 
Virtualization technologies; property- based remote attestation technologies, etc. 
Cloud computing is the best solution as it delivers the computing resources (hardware 
and software) as a service over the internet [1]. It provides resources and capabilities 
of information technology via services offered by CSP (cloud service provider). It is a 
way to increase the capacity or add capabilities dynamically without investing in new 
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infrastructure, training new personnel, or licensing new software. It extends 
Information Technology’s (IT) existing capabilities. As cloud computing has become 
a research hotspot among modern technologies, researchers pay more attentions to its 
applications. When cloud computing is applied in the field of education, a lot of 
problems had been studied, such as the technology for future distance education 
cloud, teaching information system [2] [3] [4], the integration of teaching resources 
[5], and teaching systems development [6]. In integration of e-learning and network, 
emphasis is placed on building of software and hardware platform in e-learning 
system, functional structure, network security  management and training, information 
technology integration to teaching [7], campus network environment [8], online 
education[9] and semantic web technologies-based multi-agent system [10] [12]. 

Cloud computing has grown from being a promising business concept to one of the 
fast growing segments of the IT industry. But as more and more information on 
individuals and companies are placed in the cloud, concerns are beginning to grow 
about just how safe an environment it is. Despite of all the hype surrounding the 
cloud, enterprise customers are still reluctant to deploy their business in the cloud. 
Security is one of the major issues which reduces the growth of cloud computing and 
complications with data privacy and data protection continue to plague the market. 
This paper examines security issues associated with e-learning. It investigates the 
more popular e-learning standards to determine their provisions and limitations for 
security. This paper also focuses on the basic way of cloud computing development in 
relation to e-learning, growths and common security issues arising from the usage of 
cloud services. 

The rest of the paper is organized as follows. Section 2 describes traditional e-
learning to cloud e-learning. Section 3 describes privacy and security in e-learning 
while section 4 explains the security concerns in cloud computing. Section 5 describes 
cloud based possible attacks, section 6 describes the proposed identity authentication 
in cloud based e-learning and section 7 is the conclusion. 

2 From Traditional E-Learning Network to Cloud E-Learning 

E-learning is an Internet-based learning process, using Internet technology to design, 
implement, select, manage, support and extend learning, which will not replace 
traditional education methods, but will greatly improve the efficiency of education. 
As e-learning has a lot of advantages like flexibility, diversity, measurement, opening 
and so on, it will become a primary way for learning in the new century as depicted in 
Fig. 1.[20] 
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Fig. 1. Architecture of a simplified Learning System 

Mendez [11] illustrates that in traditional web-based learning mode, system 
construction and maintenance are located inside the educational institutions or 
enterprises, which led to a lot of problems, such as significant investment needed but 
without capital gains for them, which leads to a lack of development potential. In 
contrast, cloud-based e-learning model introduces scale efficiency mechanism, i.e. 
construction of e-learning system is entrusted to cloud computing suppliers, which 
can make providers and users to achieve a win-win situation. The cloud-based 
environment supports the creation of new generation of e-learning systems, able to 
run on a wide range of hardware devices, while storing data inside the cloud. Ouf [19] 
has presented an innovative e-learning ecosystem based on cloud computing and Web 
2.0 technologies. The article analyses the most important cloud-based services 
provided by public cloud computing environments such as Google App Engine, 
Amazon Elastic Compute Cloud (EC2) or Windows Azure, and highlights the 
advantages of deploying e-learning 2.0 applications for such an infrastructure. The 
authors also identified the benefits of cloud-based e-learning 2.0 applications 
(scalability, feasibility, or availability) and underlined the enhancements regarding the 
cost and risk management. 

Chandran [17] focused on current e-learning architecture model and on issues in 
current e-learning applications. The article presents the Hybrid Instructional Model as 
the blend of the traditional classroom and online education and its customization for 
e-learning applications running on the cloud computing infrastructure. The authors 
underline the e-learning issues, especially the openness, scalability, and 
development/customization costs. The existing e-learning systems are not 
dynamically scalable and hard to extend integration with other e-learning systems is 
very expensive. The article proposed the hybrid cloud delivery model that can help in 
fixing the mentioned problems. In this article a new paradigm is highlighted in 
educational area by introducing the cloud computing in order to increase the 
scalability, flexibility and availability of e-learning systems. The authors have 
evaluated the traditional e-learning networking model, with its advances and issues, 
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and the possibility to move the e-learning system out of schools or enterprises, inside 
a cloud computing infrastructure. The separation of entity roles and cost effectiveness 
can be considered important advantages. The institutions will be responsible for the 
education process, content management and delivery, and the vendor takes care of 
system construction, maintenance, development and management. The e-learning 
system can be scaled, both horizontally and vertically, and the educational 
organization is charged according to the number of used servers that depends on the 
number of students as shown in Fig.2. 

The e-learning cannot completely replace teachers; it is only an updating for 
technology, concepts and tools, giving new content, concepts and methods for 
education, so the roles of teachers cannot be replaced [20]. The teachers will still play 
leading roles and participate in developing and making use of e-learning cloud. The 
blended learning strategy should improve the educational act. Moreover, the 
interactive content and virtual collaboration [13] guarantee a high retention factor. On 
the other hand, e-learning cloud is a migration of cloud computing technology in the 
field of e-learning, which is a future e-learning infrastructure, including all the 
necessary hardware and software computing resources engaging in e-learning. After 
these computing resources are virtualized, they can be afforded in the form of services 
for educational institutions, students and businesses to rent computing resources. The 
proposed e- learning cloud architecture can be divided into the following layers: 
Infrastructure layer as a dynamic and scalable physical host pool, software resource 
layer that offers a unified interface for e-learning developers, resource management 
layer that achieves loose coupling of software and hardware resources. 

 

Fig. 2. Architecture for Cloud Based Higher Education System 
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Infrastructure layer is composed of information infrastructure and teaching 
resources. Information infrastructure contains Internet/Intranet, system software, 
information management system and some common software and hardware; teaching 
resources is accumulated mainly in traditional teaching model and distributed in 
different departments and domain. This layer is located in the lowest level of cloud 
service middleware, the basic computing power like physical memory, CPU, memory 
is provided by the layer. Through the use of virtualization technology, physical server, 
storage and network form virtualization group for being called by upper software 
platform. The physical host pool is dynamic and scalable, new physical host can be 
added in order to enhance physical computing power for cloud middleware services 
[14]. 

Software resource layer mainly is composed by operating system and middleware. 
Through middleware technology, a variety of software resources are integrated to 
provide a unified interface for software developers, so they can easily develop a lot of 
applications based on software resources and embed them in the cloud, making them 
available for cloud computing users. In ESaaS, cloud computing service is provided 
to customers. As is different from traditional software, users use software via the 
Internet, not need a one-time purchase for software and hardware, and not need to 
maintain and upgrade, simply paying a monthly fee. 

Resource management layer is the key to achieve loose coupling of software 
resources and hardware resources. Through integration of virtualization and cloud 
computing scheduling strategy, on-demand free flow and distribution of software over 
various hardware resources can be achieved. This layer mainly consists of content 
production, educational objectives, content delivery technology, assessment and 
management component [15]. 

3 Privacy and Security in E-Learning 

Security and privacy problems appear in e-learning because of operation mechanism 
and policy mechanism. The failure of security technology makes personal privacy be 
spread, diffused, aggrieved and scouted without permission. The primary concern in 
e-learning is the security that can be summarized as follows [18]: 

3.1 User Authorization and Authentication 

The elementary feature of e-learning system is the reliable identification – recognition 
of the user as a genuine member of a user community because it is the basis for 
Access control to the e-learning system.  

Authentication – verification of the user’s identity.  
Authorization – permission to access specific resources. The Authorization is usually 
is granted only to registered students and even their access is generally restricted to a 
certain subset of the e-learning material based on the billing, if e-learning is offered 
on billing basis and on the level of learning of the registered student which will allow 
him/her to either to move to the next level or have a revision of the previous session. 
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3.2 Entry Points 

There are many "entry points" in e-learning system. A system can be attacked only 
through its "entry points". Designers can limit the security risks by reducing the 
number of entry points but E-Learning system cannot be implemented using this since 
there are a large number of multiple users from different geographic locations. 

3.3 Dynamic Nature 

The other challenge is the dynamic nature of these systems where any process may 
join or leave the group sessions at any time. Security is also concern with each 
particular member process, a strict session has to be maintained and the credentials 
are to be verified to control both at the session level and at the participant site. 

3.4 Protection against Manipulation 

One of the issues of e-learning is manipulation from the side of the students the 
system must be secured against manipulation. There are many possible solutions 
where any manipulations can be protected by using the techniques of encryption, 
digital signatures, firewalls, etc. 

3.5 Confidentiality 

Confidentiality refers to the assurance that information and data are kept secret and 
private and are not disclosed to unauthorized persons, processes or devices. In an e-
learning perspective, students need the assurance that their assignments they submit 
online are kept private and only disclosed to the intended examiner. 

3.6 Integrity 

Integrity is that only authorized users are allowed to modify the contents which 
include creating, changing, appending and deleting data and metadata and the attacks 
on integrity are generally the attempts made to actively modify or destroy information 
in the e- learning site without proper authorization. 

3.7 Availability 

The e-learning material e-content, data (or metadata) are to be made available to the 
learner at the specified session when the user log on to the system for their session at 
the period of time, if the required material is not available the learner will lose interest 
and not get the at most use of e-learning system. Mainly there are two types of 
attacks, (i) blocking attack and (ii) flooding attack, e.g.: Denial of Service, Node 
attacks, Line attacks, Network infrastructure attacks[16]. 
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3.8 Non-repudiation 

Non-repudiation is another important step in information security where the learners 
have to be provided with E-Learning services without any possible fraud such as 
when computer systems are broken in to or infected with Trojan horses or viruses, to 
deny the works or changes done by them in the system elimination of a refuted 
activity performed by a user. 

4 Security Concerns of Cloud Computing  

Security is one of the people’s peak concerns on all grounds. People are more 
concerned of the security especially when using the technologies that involve internet. 
Because the internet has many loopholes that can crash the application or hack the 
application to gain access to the users or company details by hackers worldwide. E-
learning technology is now incorporated with many latest technologies to provide 
more provision and reduce the complexity from traditional e-learning methodology to 
their users. So there is a question raised on how the cloud provides security in e-
learning technology and to the e-learners. So our research throws light to identify the 
security issues with cloud based e-learning and the countermeasures took recently on 
those problems. 

The major security challenge with clouds is that the owner of the data may not 
have control of where the data is placed. Due to the extensive complexity of the 
cloud, we contend that it will be difficult to provide a holistic solution to securing the 
cloud, at present. Cloud system will: (i) support efficient storage of encrypted 
sensitive data. (ii) Store, manage and query massive amounts of data. (iii) Support 
fine-grained access control and (iv) support strong authentication. Security issues for 
many of these systems and technologies are applicable to cloud computing. For 
example, the network that interconnects the systems in a cloud has to be secure. 
Finally, data mining techniques may be applicable to malware detection in clouds. 

5 Cloud Computing Based Possible Attacks 

As more educational institutes move to cloud computing, more attack vectors 
criminals may attempt include:  
 
Denial of Service (DoS) Attacks: Some security professionals have argued that the 
cloud is more vulnerable to DoS attacks, because it is shared by many users, which 
makes DoS attacks much more damaging. Twitter suffered a devastating DoS attack 
during 2009.  
 
Cloud Malware Injection Attack: A first considerable attack attempt aims at 
injecting a malicious service implementation or virtual machine into the Cloud system 
[5]. Such kind of Cloud malware could serve any particular purpose the adversary is 
interested in, ranging from eavesdropping via subtle data modifications to full 
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functionality changes or blockings. This attack requires the adversary to create its 
own malicious service implementation module (SaaS or PaaS) or virtual machine 
instance (IaaS), and add it to the Cloud system.  
 
Side Channel Attacks: An attacker could attempt to compromise the cloud by 
placing a malicious virtual machine in close proximity to a target cloud server and 
then launching a side channel attack. 
 
Authentication Attacks: Authentication is a weak point in hosted and virtual 
services and is frequently targeted. There are many different ways to authenticate 
users; for example, based on what a person knows, has, or is. The mechanisms used to 
secure the authentication process and the methods used are a frequent target of 
attackers. Currently, regarding the architecture of SaaS, IaaS, and Paas, there is only 
IaaS offering this kind of information protection and data encryption.  

6 Proposed Identity Authentication in Cloud Based E-Learning 

Traditionally, identity authentication is applied when an individual requests access to 
system. For this situation, the three elements or items used for identity authentication 
are what you have, what you know, and what you are. Cloud computing introduces a 
whole new challenge for identity authentication. For an identity authentication 
example, consider that when a program running within the cloud needs to access 
some data stored in the cloud, i.e., what you have and what you are criteria are 
irrelevant. However, the context of the access request is relevant and can be used [18]. 
Only some access key and the careful monitoring protects against unauthorized 
access. In cloud computing (as well as other systems), there are many possible layers 
of access control. For example, access to the cloud, access to servers, access to 
services, access to databases (direct and queries via web services), access to VMs, and 
access to objects within a VM. Depending on the deployment model used, some of 
these will be controlled by the provider and others by the consumer.  

Google Apps, a representative SaaS Cloud controls authentication and access to its 
applications, but users themselves can control access to their documents through the 
provided interface to the access control mechanism. In IaaS type approaches, the user 
can create accounts on its virtual machines and create access control lists for these 
users for services located on the VM. Regardless of the deployment model, the 
provider needs to manage the user authentication and access control procedures (to 
the cloud). While some providers allow federated authentication – enabling the 
consumer-side to manage its users, the access control management burden still lies 
with the provider. This requires the user to place a large amount of trust on the 
provider in terms of security, management, and maintenance of access control 
policies. This can be burdensome when numerous users from different organizations 
with different access control policies, are involved. This proposal focuses on access 
control to the cloud. However, the concepts here could be applied to access control at 
any level, if deemed necessary. We propose a way for the consumer to manage the 
access control decision-making process to retain some control, requiring less trust of 
the provider as illustrated in Fig-3. 
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This approach requires the client and provider to have a pre-existing trust 
relationship, as well as a pre-negotiated standard way of describing resources, users, 
and access decisions between the cloud provider and consumer. It also needs to be 
able to guarantee that the provider will uphold the consumer-side’s access decisions 
[20]. Furthermore, we need to show that this approach is at least as secure as the 
traditional access control model. This approach requires the data owner to be involved 
in all requests. Therefore, frequent access scenarios should not use this method if 
traffic is a concern. However, many secure data outsourcing schemes require the user 
to grant keys/certificates to the query side, so that every time the user queries a 
database, the owner needs to be involved.  

 

 

Fig. 3. Proposed Identity Authentication in cloud based e-learning 

 

Fig. 4. Proposed Identity Authentication for proofing in details 

The proposed method has the ability to use identity data on untrusted hosts i.e Self 
Integrity Check. It should be independent of third party. It establishes the trust of 
users through putting the user in control of who has his data. Identity is being used in 
the process of authentication, negotiation, and data exchange as in Fig. 4. 
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7 Conclusion 

Computer security issues exacerbate with growth of Internet as more people and 
computers join the web, opening new ways to compromise an ever increasing amount 
of information and potential for damages. However, an even bigger challenge to 
information security has been created with the implementation of cloud computing. 
This paper gave a brief general description of cloud based e-learning security issues 
and possible directions of solutions. Some information security challenges that are 
specific to cloud computing have been described. Security solutions must make a 
trade-off between the amount of security and the level of performance cost.  

Cloud computing has a dynamic nature that is flexible, scalable and multi-shared 
with high capacity that gives an innovative shape for e-learning systems. On the other 
hand, several deadly threats are affecting these benefits in cloud based e-learning 
systems. This research paper has discussed the influence of cloud computing in e-
learning systems and the various security issues threatening the cloud based e-
learning with the few guidelines to effectively handle these security issues. 

The key thesis of this paper is that security solutions applied to cloud computing 
must span multiple levels and across functions. Our goal is spur further discussion on 
the evolving usage models for cloud computing and the increasing security cover 
these will need to address both the real and perceived issues, thus spurring new 
research in this area. Economic benefit of such research and resulting solutions will 
be increased trust in, and accelerated adoption of, cloud computing. 
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Abstract. This paper presents a model for ensuring data integrity using 
anomalous node identification in non-homogeneous wireless sensor networks 
(WSNs). We propose the anomaly detection technique while collecting data 
using mobile data collectors (MDCs), which detect the malicious activities 
before sending to the base station (BS). Our technique also protects the leader 
nodes (LNs) from malicious activities to ensure data integrity between the 
MDC and the LNs. The proposed approach learns the data characteristics from 
each sensor node and passes it to the MDC, where detection engine identifies 
the victim node and eventually alarm the LNs in order to keep the normal 
behaviour in the network. Our empirical evidence shows the effectiveness our 
approach.  

Keywords: WSN, data integrity, mobile data collector, compromise, malicious, 
anomaly. 

1 Introduction 

The development of WSNs has attracted a lot of attentions due to the potentiality of 
broad applications in both military and civilian operations. Usually WSNs are 
deployed in unattended and often hostile environments such as military and homeland 
security operations [1, 2, 3, 6, 17, 18, 19, 22]. Recent advances in wireless sensor 
network research have shown that an attacker can exploit different mechanisms of 
sensor nodes spread malicious code through the whole network without physical 
contact [18, 19]. Therefore, it is imperative to adopt security mechanisms providing 
confidentiality, authentication, data integrity, and non-repudiation, among other 
security objectives, are vital to ensure accurate network operations. 

A WSN may consist of hundreds or even thousands of sensor nodes. The sensor 
node consists of distributed autonomous devices using sensors to cooperatively 
monitor or collect sensing data at different locations. This renders it impractical to 
monitor and protect each individual node from a variety of malicious attacks. For 
instance, once a particular node is compromised, intruders can launch various 
malicious codes to launch attacks. They might spoof, alter or replay routing 
information to interrupt the network routing [1]. They may also launch the Sybil 
attack [2, 3], where a single node presents multiple identities to other nodes, or the 
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identity replication attack, in which clones of a compromised node are put into 
multiple network places [3]. Moreover, adversaries may inject bogus data into the 
network to consume the scarce network resources [4, 5]. In addition, if the 
coordinators of the sensor networks are compromised, all members of the clusters 
become more vulnerable to different types of security attacks. This situation poses the 
demand for compromise-tolerant security design, especially for the coordinators.  

A node can be captured by the intruder to find sensitive data or to compromise 
other nodes. In all of the WSN topologies, the sensor nodes send the sensed data to 
the coordinators. In a clustered based topology, the coordinators are called cluster 
heads, whereas in a chain oriented network the coordinators are called chain leaders. 
If the coordinator is compromised, these nodes can be used by the intruders to 
compromise other nodes. Thus coordinator compromise is a serious threat to wireless 
sensor networks deployed in unattended and hostile environments. To mitigate the 
impact of compromised nodes, we propose a model of compromise-tolerant security 
mechanism by adopting a detection engine within the MDC. This technique will 
enable to protect the BS as well as cluster coordinator and ensure the data integrity 
between MDC and BS.  

The main contributions of this paper are three-folds: 

• The design of deploying detection engine within the mobile data collectors to 
identify the malicious node of WSN cluster. As mobile data collection 
techniques are attracting attentions nowadays due to their energy-saving 
characteristics, the proposed idea is well fitted in this category of research.  

• The proposed method prevents not only the members of a cluster or chain, but 
also the leader of the cluster/chain from malicious activities. Additionally, as 
the mobile data collectors are carrying messages to the BS, the BS can also be 
kept safe from the malicious activities.  

• The proposed method reduces memory overhead. We adopt the mobility in 
collecting data by utilizing multiple mobile data collectors (MDCs) and 
enhanced the performance of data collection process by using the spatial 
division multiple access (SDMA) technique.  

The rest of the paper is organized as follows. Section 2 presents the network 
architecture model of the proposed node anomaly detection technique. Section 3 
describes details of our anomalous node detection method. In Section 4, we describe 
the experimental setup. Simulation results are presented in Section 5. Finally in 
Section 6, we draw the conclusion and describe the future work.  

2 Network Architecture Model 

The proposed anomaly node detection technique can be deployed over all hierarchical 
networks, either in cluster based or tree based or chain oriented network. In this paper, 
we consider the network topology is chain oriented topology. In a chain oriented 
sensor network, multiple chains can be constructed, where all the chains will be 
restricted to Voronoi cells [22]. Furthermore, in these topological networks, mobile 
data collectors can be used to collect data from the deployed sensor nodes [8]. 
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An overview of the architectural model is illustrated in Figure 1. The leader nodes 
are  depicted using  the blue  coloured dots.  All  the  sensor  nodes  deployed  inside a 
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MDC
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Fig. 1. The network architecture model for the proposed anomaly node detection technique 

Voronoi cell send their data to the leader nodes. On the other hand, the mobile data 
collectors visits the polling points on a regular basis and collect data from the leader 
nodes. The data gathering scheme for large scaled wireless sensor networks can be 
extended by using multiple MDCs and the spatial division multiple access (SDMA) 
technique. This is described in details in [8]. For example, in Fig. 1, two MDCs travel 
within the network and collect data from the leaders. The two MDCs work at the 
same time, and when an MDC arrives at a polling point, leaders associated with this 
polling point are scheduled to communicate with the MDC. Two leaders in a 
compatible pair can upload data simultaneously in a time slot, while an isolated leader 
(i.e., a leader by itself or not in any compatible pair) sends data to the MDC 
separately. 

The BS is usually situated outside the sensing field. Sending the data by the 
sensors to the remote BS may lead to non-uniform energy consumption among the 
sensors, because the sensor nodes (or leader nodes) that are responsible for sending 
data to the BS, need to cover long-range distances. As a result, they deplete energy 
much faster than other sensor nodes, and die quickly [9, 10, 11]. The consequence of 
this situation may result in partitioning the network and loss of robustness.  However 
recent studies [12, 13, 14] have proposed sink mobility or collecting data using a 
mobile device as an efficient solution for data gathering problem.  Employing mobile 
devices to collect data can reduce the effects of the hotspots problem, balance energy 
consumption among sensor nodes, and thereby prolong the network lifetime to a great 
extent [15, 16]. 
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To solve the vital data gathering problem of large scaled WSNs, we adopt mobility 
in collecting data by utilizing multiple mobile data collectors (MDCs) and enhanced 
the performance of data collection process by using the spatial division multiple 
access (SDMA) technique [8]. In the proposed scheme, the sensing field is divided 
into several non-overlapping regions and for each of the regions, an MDC is assigned. 

  

Fig. 2. Polling points are marked on the Voronoi edges 

Each MDC takes the responsibility of gathering data from the leaders in the region 
while traversing in their transmission ranges. The traversal paths of the MDCs are 
determined using the Voronoi diagram constructed with respect to the leader nodes. 
We also consider exploiting the SDMA technique by equipping each MDC with two 
antennas. With the support of SDMA, two distinct compatible leader nodes in the 
same region can successfully make concurrent data uploading to their associated 
MDC. Intuitively, if each MDC can simultaneously communicate with two 
compatible leader nodes, the data uploading time in each region can be cut in half in 
the ideal case. 

We further focus on the problem of minimizing DGS time among different regions. 
Besides this, the data gathering problem using multiple MDCs and the SDMA 
technique requires optimal solutions, discussed in [8, 13]. These optimization 
problems can be formulated using an Integer Linear Programming (ILP) approach. 
However, the complexity of an ILP solution is generally high, which is not suitable 
for a large scaled WSN [11]. Therefore, a heuristic region-division and traversing 
algorithm was used in [8] to provide a feasible solution to the problem. One of the 
common challenges of the WSN is the conservation of power, thus elongating the life 
span of a sensor node. A lot of research is being carried out towards ‘energy 
efficiency’ of WSN. In this paper an attempt has been made to secure the WSNs with 
the help of ‘Cross layer’ approach. This is an extended and enhanced version of [8].   

In our proposed model, an MDC travels within each region and stops at some 
locations to collect data from the leader nodes. These positions are called polling 
points. To take full advantage of the SDMA technique, polling points should be 
equidistant from the associated leader nodes. Figure 2 shows some positions of 
polling points in four different cases. If there are only two leader nodes, the position 
of the polling point can be found at the intersection between the Voronoi edge and the 
line joining the two leader nodes (Fig. 2(a)). For more than two leader nodes, the 
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polling point can be found at the intersection of different Voronoi edges (Fig. 2(b-d)). 
Any two leader nodes associated with the same polling point are said to be compatible 
if an MDC arriving at this polling point can successfully decode the multiplexing 
signals concurrently transmitted from these two leader nodes. Detailed discussions on 
utilizing SDMA at physical layer for concurrent data uploading is provided in [8]. 

The following assumptions are made specific to our proposed DGS: 
• It is assumed that MDCs have access to a continuous power supply. Usually the 

BS is equipped with the source of continuous power supply. Thus, when an MDC 
visits the base station, it can replace its battery. 
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Fig. 3. Basic structure of a sensor node 

• It is assumed that the MDCs are familiar with the target field. Location images of 
the target field can be stored in each MDC. Thus, an MDC is able to visit any 
point within the target field. 

• It is also assumed that each MDC can forward the gathered data to one of the 
nearby MDCs when they are close enough, such that data can eventually be 
forwarded to the MDC that will visit the static data sink. 

3 Anomaly Node Detection Method 

In this section we present the scaffold of our anomaly detection technique. First we 
present the basic diagram of a sensor node which integrates hardware and software for 
sensing, data processing, and communications. They rely on wireless channels for 
transmitting data to and receiving data from other nodes. A sensor node is made up of a 
sensing unit, a processing unit and transceiver unit and a power unit, as illustrated in 
Figure34. They may also have additional application-dependent components such as a 
location finding system, power generator and mobilize. Sensors devices that can observe 
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or control physical parameters of the environment is converted to digital signals by the 
ADC, and then fed into the processing unit. The processing unit which is generally 
associated with a small storage unit, manages the procedures that make the sensor node 
collaborate with the other nodes to carry out the assigned sensing tasks. A transceiver 
unit connects the node to the network. Power units may be supported by power 
scavenging units such as solar cells.  Most of the sensor network routing techniques and 
sensing tasks require knowledge of location with high accuracy. Thus, it is common that 
a sensor node has a location finding system. A mobilize may sometimes be needed to 
move sensor nodes when it is required to carry out the assigned tasks.  
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Fig. 4. Anomaly detection model 

Figure 4 illustrates the overview of our proposed detection model. We propose two 
approaches for detecting the malicious node in our model. Firstly leader node, we 
called it LN, which will store the receiving data from all sensor nodes in the cluster 
into their buffer memory, as shown in Figure 4. Then the MDC node should use 
another buffer where the sensing data, from the LN, will be stored. In both cases 
every node ID (nID) will be considered as uniquely identifier of each node, so that 
after detection LN can identify the victim node. The detection engine will be 
deployed into the MDC node and the data will be passed to detection engine to 
identify the victim node. Finally the MDC will transfer the list of legitimate nID to 
the LN and then LN will transfer  the data to its main memory based on the list of 
supplied nID. The MDC also send the information to BS based on the legitimate nID. 
If there is any malicious node identified, the MDC will immediately inform to the LN 
for taking protection measure.    

4 Experimental Setup 

The purpose of this experiment is to evaluate the effectiveness of anomaly detection 
of LN within WSN region. Our evaluation is based on a real-life dataset in which the 
modes or partitions in the data can be controlled.  



 Ensuring Data Integrity by Anomaly Node Detection during Data Gathering in WSNs 373 

 

We use a real-life dataset called the IBRL dataset in our evaluation [21]. The IBRL 
data set includes a log of about 2.3 million readings collected from 54 sensor nodes. 
The total log size is 150MB and the data were averages averaged over all time. The 
IBRL data is a publicly available set of sensor measurements gathered from a wireless 
sensor network deployed in the Intel Berkeley Research Laboratory [21]. In this data 
set the have used temperature and humidity data of 12 hour periods. In this period, as 
shown in Figure 5, one of the sensors started to report erroneous data or abnormal 
data. This can be seen as a dotted block in figure 5(a) and the elaboration in figure 
5(b).  Analysing the behaviour of the sensors showed that most had such behaviour 
toward the end of the experiment, but this particular sensor started its drift earlier than 
the others. 

  
(a)                     (b) 

 

 

Fig. 5. Abnormal data reading from sensors 

To investigate the effect of a non-homogeneous environment, a synthetic dataset, 
from real dataset, with five disjoint clusters was built. Data from each sensor was 
gathered randomly according to the distribution (cluster) assigned to that sensor.  The 
data is generated so that it has the same range as the IBRL dataset.   Since each sensor 
recorded multiple readings of the same temperature and humidity, we can compress 
the data. Instead of keeping all (temperature, humidity) attributers, only unique 
attributes have been kept with their relative frequency of occurrence. Also, 
temperature and humidity values have been rounded up to whole numbers. With this 
method, the volume of the data has been reduced significantly by over an order of 
magnitude. 

Detection Engine: The first step of our detection engine is to select the parameters to 
monitor and group them in a pattern vector [x1]   xμ∈ℜ, μ=1,..., N, that is  
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where μ the observation index and n is the number of parameter types or key 
performance indices (KPI’s) chosen to monitor the environmental condition. In our 
detection method we use the technique called discrete wavelet transform (DWT) 
method proposed in [19], which is a mathematical transform that separates the data 
signal into fine-scale information known as details coefficients, and rough-scale 
information known as approximate coefficients.  

After selecting the data parameters from the data sets, we the produce our 
experimental databases and calculate the feature weights and averaged it to make a 
class value. In our technique we use two parameters; one is support thresholdθ, and 
other is correlation thresholdδ, in order to decide whether data is normal or abnormal. 
For instance the temperature is > θ and Humidity is >δ we called this data as 
malicious data, otherwise the rest of the data is treated as normal. After the threshold 
calculation we prepare to train the classifier algorithm for evaluation of test data as 
illustrated in Fig. 6.  
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Fig. 6. Detection engine of MDC 
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5 Experimental Results 

The effectiveness of our WSN malicious data detection technique can be measured by 
the number of FP (false positive) alarms and the TP (true positive) alarms. Since our 
dataset (IRBL), there are no predefined labels for malicious data, we assessed the data 
and labelled as malicious data that falls outside the expected value range. In our 
experiment, we have chosen two parameters, namely temperature and humidity.  

Figure 7 shows the average performance of our experiment. In the graph it has 
been shown that the performance of detection ratio is approximately 95%. It is clear 
from the graph that the node n11 and n13~n19 shows abnormal behaviour which falls 
outside of our measured value. Also we can see some of nodes, n46~n51 shows the 
performance below the measured value. According to our estimation, those node will 
be identified as malicious node due to their abnormal behaviour of sending data.  

  

Fig. 7. The average performance of the experiment 

The Fig. 8 shows the ROC (Receiver Operating Characteristic) report of our 
second data set, where we have used five different clusters.  The AUC is a popular 
measure of the accuracy of an experiment. All things being equal, the larger the AUC, 
the better the experiment is at predicting by the existence of the classification. The 
possible values of AUC range from 0.5 (no diagnostic ability) to 1.0 (perfect 
diagnostic ability). The CI option specifies the value of alpha to be used in all CIs. 
The quantity (1-Alpha) is the confidence coefficient (or confidence level) of all CIs. 
The P-value represents the hypotheses tests for each of the criterion variables.   

Obviously, a useful experiment should have a cut-off value at which the true 
positive rate is high and the false positive rate is low. In fact, a near-perfect 
classification would have an ROC curve that is almost vertical from (0, 0) to (0, 1) 
and then horizontal to (1, 1). The diagonal line serves as a reference line since it is the 
ROC curve of experiment that is useless in determining the classification.  It has been 
shown from the figure that the abnormality of sensor node falls in second cluster 
(figure 8.b) and last cluster (figure 8.e). The best cluster is cluster 1 (figure 8.a) and 
cluster 4 (figure 8.d), which reflects the similar picture presented in figure 7.  
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Fig. 8(a). AUC of Chain 1  

 

Fig. 8(b). AUC of Chain 2 
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Fig. 8(c). AUC of Chain 3 

 
Fig. 8(d). AUC of Chain 4 
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Fig. 8(e). AUC of Chain 5 

6 Conclusion and Future Works 

This paper proposed a model to identify malicious node from real-world datasets within a 
non-homogeneous WSN. Our model ensured the data integrity within LN and BS by 
deploying a detection engine within the MDC. In our simulation, the results show that we 
can achieve ~70% of detection rates based on our measured value using the real data. In 
terms of the true alarm rate, the proposed algorithm outperforms. It has been noted that 
detection ratio has an impact on selecting the threshold value. Our results suggest that the 
finding optimum threshold can lead to more effective anomaly detection.  In particular, 
our results confirm that the proposed algorithm can maintain acceptable anomaly detection 
accuracy while using just half of the input data.  

In the future, we plan to extend our work to investigate anomaly detection with 
actual faults obtained from the bioorganic fertilizer plant environment, and study its 
performance by increasing the DWT level and considering other different types of 
parameters. Furthermore, we also plan to investigate ways to identify and eliminate 
erroneous sensor readings at the sensor nodes, which could help further reduce wasted 
energy from transmitting unwanted erroneous measurements to the base station. 
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Abstract. Oblivious Transfer(OT) protocol allows a client retrieving
one or multiple records from a server without letting the server know
about the choice of the client. OT has been one of the emerging research
areas for last several years. There exist many practical applications of
OT, especially in digital media subscription. In this paper, we propose a
fully homomorphic encryption based secure k out of n oblivious transfer
protocol. This novel protocol, first ever to use fully homomorphic en-
cryption mechanism for integers numbers, allows the client choosing its
desired records by sending encrypted indexes to the server, server works
on encrypted indexes and sends back encrypted result without knowing
which records the client was interested in. From the encrypted response
of the server, the client only can decrypt its desired records. The security
analysis demonstrates that, the desired security and privacy requirement
of OT is ensured by the proposed protocol. Some optimizations are also
introduced in the proposed solution to reduce transmission overhead.

Keywords: Oblivious Transfer, Homomorphic Encryption, Private In-
formation Retrieval, Data Outsourcing.

1 Introduction

In the current world, the use of information technology has increased tremen-
dously. Consequently, secure storage, transmission and retrieval of information
become one of the top concerns in the IT era. The diversity of devices, appli-
cations and infrastructures have increased this concern by another fold. The
privacy of information in any transaction is no more a small issue. Private In-
formation Retrieval (PIR) and Oblivious Transfer (OT) are some of the crypto-
graphic protocols that ensures the privacy of the user in retrieving information
from a storage or a server. Unlike PIR, OT ensures the server security too by
not allowing the user retrieving unauthorised record(s). OT has been used in
many applications including certifying email and coin flipping [1], simultaneous
contract signing [2], digital right management [3], e-subscription to sell digital
goods [4], privacy preserving data mining in distributed environment [5] etc.

To understand the basic principle of OT protocol, let us consider an example:
let us say, a server stores n number of digital contents or records of information

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 380–392, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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x1, x2, ..., and xn. Clients or users need to subscribe with the server to access an
item. In such e-subscription, there will be two requirements to be fulfilled from
the server’s and the client’s point of view respectively: (i) the client should not
be able to retrieve any item(s) which it did not subscribe for and (ii) the server
is not allowed to know which item(s) the client retrieved. That is, if the client
wants to retrieve or access item xi, OT protocol ensures that server cannot learn
the value of i and the client cannot learn any xj for all j 	= i.

In this paper our proposed solution uses a secure cryptographic protocol, par-
ticularly the fully homomorphic encryption over integer numbers proposed by
Dijk and Gentry [6] in 2010, to ensure data privacy of the client. The server’s
security is ensured by encrypting all of its records using a symmetric key en-
cryption system such as, AES [7] or DES [8]. k out-of n OT can be achieved by
repeating 1 out-of n OT protocol k times. This approach incurs extremely high
overhead. In this paper, we have proposed some optimizations in the k − n OT
protocol. It transmits the encrypted database only once at the beginning of the
protocol. The server uses separate keys to encrypt each record using a symmet-
ric key encryption technique. The protocol only allows the desired keys to be
decrypted by the client. On the other hand, the client encrypts its choices using
the homomorphic encryption technique and transmits to the server. The server
encrypts and manipulates keys and indexes using the same technique without
being able to decrypt any of the choices of the client. The fully homomorphic
encryption of Dijk and Gentry is as strong as the approximate Greatest Common
Divisor (GCD) problem (more detail of approximate GCD can be found in [9]).
The security analysis shows that the proposed protocol ensures both the server’s
and the client’s requirements.

The rest of the paper is organized as follows: Section 2 describes some back-
ground knowledge on the topic of the paper including the fully homomorphic
encryption system which is used in the proposed protocol, Section 3 and 4 dis-
cuss our proposed model and the protocol, Section 5 discusses the security and
performance analysis and finally, Section 6 concludes the paper with some hints
towards the future research directions.

2 Background and Related Work

This section discusses about various OT protocols and existing solutions and
the definition of homomorphic and fully homomorphic encryption system. This
section also discusses how the fully homomorphic encryption for binary digits is
extended to work for integer numbers.

2.1 Types of Oblivious Transfer Protocol

OT can be of three basic types:

– 1-out-of-2 (1− 2 OT ):
1 out-of 2 oblivious transfer protocol allows the client retrieving one item
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out of 2 from the server. The server does not know which item was accessed
by the client and the client does not know about any item it did not chose to
retrieve. Rabin [10] first proposed 1−2 OT protocol in 1981. In this RSA [11]
based protocol, the server sends the message (an item) to the client with
the probability of 1/2 and hence, the server remain oblivious whether the
message was received or not. Later on, 1 − 2 OT was developed by Evan
et al. [12] while applying it in randomized protocol for signing contracts,
certifying mail and flipping coin.

– 1-out-of-n (1-n OT):
1 out-of- n oblivious transfer protocol allows the client retrieving one item
out of n from the server. Often times 1-n OT is used as a generalization
of 1-2 OT. 1-n OT is also similar to Private Information Retrieval (PIR),
first proposed by Kushilevitz and Ostrovsky [13] in 1997, with an additional
condition. In PIR the client can retrieve 1 item from n items without letting
the server know its choice. The client may retrieve or access other items.
Whereas, 1-n OT ensures the client won’t be able to access anything other
than what it retrieved. Some more about 1 − n OT protocol can be found
in [14,15].

– k-out-of-n (k-n OT):
k out-of- n oblivious transfer protocol allows the client retrieving k number of
items out of n from the server. The client would send k number of indexes to
the server. The server would return all those desired items without knowing
client’s choices. k− n OT was first proposed by Ishai et al. in [16]. Additive
homomorphic encryption based k−n OT protocol is proposed in [17]. k−n
OT can also be achieved by repeated use of 1−nOT. However, this approach
would be very inefficient due to huge amount of overhead transmitted from
server to the client.

2.2 Fully Homomorphic Encryption System (FHES)

Homomorphic encryption is a special form of encryption where one can perform
a specific algebraic operation on the plain-text by applying the same or different
operation on the cipher-text. If X and Y are two numbers and E and D denote
encryption and decryption function respectively, then homomorphic encryption
holds following condition for an algebraic operation, such as ′+′:

D[E(X) + E(Y )] = D[E(X + Y )] (1)

Most homomorphic encryption system such as RSA [11], ElGamal [18], Be-
naloh [19], Paillier [20] etc. are capable to perform only one operation. But fully
homomorphic encryption system can be used for many operations (such as, addi-
tion, multiplication, division etc.) at the same time. In the area of cryptography,
fully homomorphic encryption system proposed by Dijk et al. in [6] is consid-
ered as a breakthrough work which can be used to solve many cryptographic
problems [21]. We have used this fully homomorphic encryption technique with
necessary improvements and variations in data mining [22,23] and in private
information retrieval [24].



(k − n) Oblivious Transfer 383

Fully Homomorphic Encryption for Binary Bits

Fully homomorphic encryption of [6] works both over binary and integer num-
bers. This scheme has the ability to perform both addition and multiplication
over the cipher-text and these operations are represented in plain-text. Hence,
a untrusted party is able to operate on private or confidential data, without the
ability to know what data the untrusted party is manipulating.

The fully homomorphic scheme [6] is a simplification of an earlier work in-
volving ideal lattices [25]. It encrypts a single bit (in the plain-text space) to an
integer (in the cipher-text space). When these integers are added and multiplied,
the hidden bits are added and multiplied (modulo 2). A simple encryption and
decryption process of symmetric version of the scheme is as follows:

Encryption : Lets say, p is the private key, q and r are chosen random numbers,
and m is a binary message i.e. m ∈ {0, 1}. Then the encryption of m would
be c = pq + 2r +m.

Decryption : The message m is recovered simply by performing following oper-
ation: m = (c mod p)mod 2.

Thus, this encryption scheme works in the bit level and underlying bits are
calculated accordingly if we add or multiply on cipher-text.

Using the symmetric version of the cryptosystem, it is possible to construct
an asymmetric version. The asymmetric version is more useful especially when
multiple parties are involved in the computation such as in data mining, data
gathering, data outsourcing, OT, PIR etc. The asymmetric version of [6] would
be as follows:

KeyGen(λ) : Choose a random n-bit odd integer p as the private key. Using
the private key, generate the public key as xi = pqi + 2ri where qi and ri
are chosen randomly, for i = 0, 1, ..., τ . Rearrange x− i such that, x0 is the
largest.

Encrypt(pk,m ∈ {0, 1}): Choose a random subset S ⊆ {1, 2, ..., τ} and a ran-
dom integer r. m is encrypted to the cipher-text
c = (m+ 2r+ 2

∑
i∈S xi)(mod x0). Let us denote this operation as Epk(m).

Decrypt(sk, c): The message m is recovered simply by performing
m = (c mod p)mod 2. Let us denote this operation as Dsk(c).

The asymmetric version works same way as the symmetric one with same
correctness and security strength. We have discussed about this in [24] and [22].
The addition and the multiplication on cipher-texts are reflected as addition
and multiplication being acted on the message bit respectively. This produces
the correspondence between the cipher-text space and the plain-text space, as
addition in the cipher-text space reduces to exclusive OR (⊕) in the plain-text
space and multiplication in the cipher-text space reduces to AND (∧). This
correspondence (homomorphism) between these two operations, addition and
multiplication, are shown in Equations 2 and 3, respectively.

E(m1) + E(m2) = E(m1 ⊕m2) (2)
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E(m1) · E(m2) = E(m1 ∧m2) (3)

Hence, from this correspondence, it is possible to construct very complicated
binary circuits to evaluate on the data, without exposing the actual data. More
details regarding the implementation can be found in the original paper [6].

Fully Homomorphic Encryption for Integers

Oblivious transfer deals with the privacy and security of some numeric values
being exchanged between the client and the server. Hence, we need to extend
the underlying cryptosystem to accommodate integer numbers, so that integer
numbers can be taken into consideration. This is achieved by representing the
integer as a binary vector and encrypting each bit separately and maintaining
their positions or orders. For instance, an 8-bit integer X can be encrypted and
presented as cipher-text as shown in Equation 4, assuming the binary represen-
tation of X is X8 ++X7 ++X6 ++X5 ++X4 ++X3 ++X2 ++X1.

Epk(X) =

Epk(X8) ++Epk(X7) ++Epk(X6) ++Epk(X5) ++Epk(X4) ++

Epk(X3) ++Epk(X2) ++Epk(X1)

where ++ represents concatenation operation.

(4)

This representation of integer number allows encrypting and decrypting each
bit using the fully homomorphic encryption and decryption for binary digits as
discussed in section 2.2. Not only that, some binary operations such as XOR,
OR, AND etc. can be performed on two encrypted integer numbers homomor-
phically. Let us consider two integers X and Y of �-bit long each. That is,
X = {X
 ++ ...++X2 ++X1} and Y = {Y
 ++ ...++ Y2 ++ Y1}. Let us say we want
to perform binary XOR operation on X and Y , i.e. R = X XOR Y , where
R = {R
 ++ ...++R2 ++R1} and Ri = Xi XOR Yi. Therefore, according to fully
homomorphic encryption Ri = Dsk(Ri′), where Ri′ = Epk(Xi) XOR Epk(Yi).
For all i = 1 to �.

3 Model Definition

Let us consider a client C wants to access k number of records (k ∈ {1, 2, ..., n})
out of n records {R = R1, R2, ..., Rn} stored in a database server S. Index of
the interested records {I = I1, I2, ..., Ik} are known to C only. C does not want
S to discover which record(s) it is interested in. On the other hand, S wants to
ensure only the desired record is received by C. Figure 1 illustrates the block
diagram of the proposed model in brief.
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Fig. 1. Block diagram of the oblivious transfer protocol between the client and the
server

The client C and the server S participates in the proposed OT protocol using
the fully homomorphic encryption discussed in section 2.2. They also generate
keys, encrypt, decrypt and transmit according to the protocol description dis-
cussed in following the section.

4 Proposed Solution

This section discusses our proposed OT protocol in the sequence of parameter
setup, communication steps and algorithms.

4.1 Parameters and Initial Setup

Let us assume both the client C and the server S are capable to perform following
operations to setup and carry on the proposed protocol:

Key generation
Client: Client C generates its private key and public key sk and pk respec-
tively using the key generation technique discussed in section 2.2.
Server: Server S generates secret key sets χ = {κ1, κ2, ..., κn} using crypto-
graphically secure pseudo-random number generator (CSPRNG). Standards
of CSPRNG can be found in [26]. Each key is used to encrypt each record.
That is, key κi is used to encrypt record Ri.

Encryption
Two kind of cryptosystems will be used in the proposed protocol:
FHES

Fully homomorphic encryption system based encryption and decryption
functions for integer numbers works as follows:
Encryption: Epk(i) encrypts an �-bit integer i using the public key pk,

returning an encrypted �-block long cipher-text c.
Decryption: Dsk(c) decrypts an �-block long cipher-text c using the

private key sk, returning a plain-text �-bit integer i.
Symmetric Key Cryptosystem

A secured symmetric key cryptosystem (e.g. AES [7] or DES [8]) based
encryption and decryption notations are as follows:



386 M. Kaosar et al.

Encryption: Ri′ = E′κi(Ri) represents the encryption of record Ri

using the key κi.
Decryption: Ri = D′κi(Ri′) represents the decryption of encrypted

record Ri′ using the key κi.
Homomorphic XOR for Integers

Denoted as (X � Y ), receives two �-block long cipher-text X and Y , and
returns a third encrypted �-block long cipher-text Z. The output is calculated
bit-by-bit using the exclusive OR property of the homomorphic encryption
discussed in section 2.2, that is Zi = Xi XOR Yi, where XOR is evaluated
using Equation 2.

Shuffle by random permutation
Denoted as ζ(B′), randomly rearranges all � number of blocks of the cipher-
text B′, where B′ = Epk(B). That is, if B′ = {Epk(B
) ++ ...++Epk(B2) +
+Epk(B1)}, ζ(B′) will return {Epk(Bi) ++ ...++Epk(Bj) ++Epk(Bk)} where
values of i, j, k are non-repeating random numbers within the range of 1 to �.

4.2 The Algorithm

Algorithm 1. Oblivious Transfer between C and S

input of C : pk, sk, k, n, I
input of S : pk, R, n
output to C : RI1 , RI2 , ..., RIk

Begin
Server S
Generate set of random keys χ = {κ1, κ2, ..., κn}
Client C
for All(i ∈ I) do

Q ← Epk(Ii)
SendToS(Q)
Server S
Γ ← φ /* Initializes response string*/
for j = 1 to n do

αj ← ζ(Q�Epk(j))�Epk(κj) /* ζ rearranges the order of the bits randomly*/

βj ← E′kj (Rj)
Γj ← {αj

⋃
βj}

Γ ← Γ
⋃

Γj

end for
SendToC(Γ )
Client C

γ ← ΓIi /* Extracts desired block from Γ . Components of γ are α and β*/
αi′ ← α /* Extracts encrypted keys*/
βi′ ← β /* Extracts encrypted record*/
κIi ← Dsk(αi′) /* Decrypts the key to decrypt the desired record*/
RIi ← D′κIi

(βi′) /* This is the desired record of index Ii*/
end for
End
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4.3 Flow Diagram

The algorithmic flow diagram for one request is shown in Figure 2.

Fig. 2. Flow diagram of oblivious transfer protocol between C and S for one request

4.4 Further Optimization

In Algorithm 1, k − n OT is implemented by repeated calling of 1 − n OT k
times. The client C sends k encrypted requests separately to the server S. The
server returns the encrypted records each time the client requests. In the case
of big size of the records, this method will be very inefficient. Alternatively,
the server can transmit the whole chunk of encrypted records once at the first
time and later on can transmit only the encrypted keys (the key which is used
to encrypt a particular record), every time the client sends a request. In sum-
mary, the part of β in Figure 2 can be transmitted once at the beginning of
the protocol and α can be transmitted k times to the client. This would re-
duce the transmission overhead drastically. Moreover, the client also can send
all the k number of requests at once. The optimized solution is described in
Algorithm 2.
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Algorithm 2. Efficient Oblivious Transfer between C and S

input of C : pk, sk, k, n, I
input of S : pk, R, n
output to C : RI = {RI1 , RI2 , ..., RIk}
Begin
Server S
Generate set of random keys χ = {κ1, κ2, ..., κn}
Ω ← φ /* Initializes the encrypted records*/
for i = 1 to n do

Ω ← Ω
⋃

E′ki(Ri)
end for
Client C
Q ← φ
for All(i ∈ I) do

QIi ← Epk(Ii)
Q ← Q

⋃
QIi

end for
SendToS(Q,k) /* C sends all requests together to S*/
Server S
β ← φ
for j = 1 to n do

βj ← E′kj (Rj)
β ← β

⋃
βj

end for
SendToC(β) /* Sends all the encrypted records together*/
for i = 1 to k do

αi ← φ
for j = 1 to n do

αj ← ζ(QIi � Epk(j)) � Epk(κj) /* ζ rearranges the order of the bits
randomly*/

αi ← αi

⋃
αj

end for
SendToC(αi)

end for
Client C
for i = 1 to k do

αIi ′ ← αi /* Extracts blocks fromα that contain the key κIi*/
κIi ← Dsk(αIi)
γ ← βIi /* Extracts desired block from β that contain RIi*/.
RIi ← D′κIi

(βi′) /* This is the desired record of index Ii*/
RI ← RI

⋃
RIi

end for
return RI

5 Analysis

The fully homomorphic encryption used in this protocol is as strong as approx-
imate GCD problem, though its efficiency may not be very high. Some recent
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Fig. 3. C is adversary. S1 guesses κ for C to compute a value to be equal to α.

Fig. 4. S is adversary. S2 guesses Ii for S to compute a value to be equal to Q[Epk(Ii).

works and ongoing research on improving this protocol, such as [27,28,21], indi-
cates its performance to be enhanced in near future.

In this protocol, C generates and stores its secret and public keys sk and pk
respectively. C does not send any data to S without being encrypted by its public
key pk. Therefore, C’s data is secured by the security of the fully homomorphic
encryption scheme of [6]. On the other hand, S encrypts its data using same
public key pk and performs operations on its own ciphe-rtext and C’s cipher-
text. The cipher-text is again shuffled using the function ζ() which is XORed
with secret key. S then discloses this cipher-text to C. Therefore, the privacy of
S’s data depends on whether C can learn anything from the result sent by S
and vice-versa. Let us consider C and S being adversary in two different cases:

Case1: the client C is adversary
Let us say C wants to recover a key κj where j /∈ I. That is C wants to recover
a key of a record which it did not retrieve. For each item Ii the client request,
it receives n blocks of cipher-text, which is αj = ζ(QIi � Epk(j)) � Epk(κj)
for all j = 1, 2..., n. Any block is only meaningful, in other word C can
retrieve a key from, if Ii = j. This condition would make QIi � Epk(j) =
Epk(Ii)�Epk(j) = 0 and hence, αj = Epk(κj) from which C can decrypt κj .
For any other block where Ii 	= j, QIi�Epk(j) would be non-zero and further
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shuffle by ζ() would make this part indistinguishable and unrecoverable to C.
Simulated and guessed key values in C is computationally indistinguishable.

Figure 3 shows C’s view and simulated outcome (α
c≡ α′), where, c≡ denotes

computational indistinguishability..
Case2: The server S is adversary

C encrypts all the indexes of its choices using its public key pk. Therefore,
no one can know about the indexes without the secret key sk which is only
possessed by C, given the fully homomorphic encryption is secure. Server
S cannot know the value of C’s choice by encrypting all indexes from 1
to n and and comparing with C’s encrypted choices. Because asymmetric
version of fully homomorphic encryption guarantees that two cipher-texts
of the same bits are always different. Moreover simulated or guessed index
of C’s choices are indistinguishable to S. Figure 4 illustrates S’s view and

simulated outcome (Q
c≡ Q′).

6 Conclusion and Future Work

In this paper, we have proposed a novel OT protocol using a fully homomorphic
encryption system. The security of this protocol is as strong as approximate
GCD problem. Security analysis also ensures that, the client C cannot discover
any record it did not retrieve and the server S cannot learn the choice(s) of
the client. The enhancement of the fully homomorphic encryption system used
in this solution will influence the performance of the proposed protocol in great
deal. Implementation and performance comparison with existing solution are left
for the future research.
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Abstract. Android based smartphones have become popular. Accord-
ingly, many malwares are developed. The malwares target information
leaked from Android. However, it is difficult for users to judge the avail-
ability of application by understanding the potential threats in the ap-
plication. In this paper, we focus on acquisition of information by using
a remote procedure call when we invoke the API to acquire phone ID.
We design a methodology to record invocation that are concerned the
API by inserting Log.v methods. We examined our method, and confirm
empirically the record of the call behavior of the API to acquire phone
ID.

Keywords: Android, Malware, Privacy Protection, Dynamic Analysis.

1 Introduction

In recent years, Android phone is becoming popular. Simultaneously, many ma-
licious applications called malware are developed for Android platform. Many
malwares that target Android cause information leakages, and leakage of per-
sonal information is a big problem. However, it is difficult for a user to grasp
threats of an application and judge the risk of it. Therefore, we focus on a mea-
sure method to prevent malwares from being distributed in the marketplace. In
this method, an application developer and a marketplace operator can previously
check the application on behalf of the user.

There are dynamic analysis and static analysis in approach of malware detec-
tion. However, in static analysis, there is a possibility that overlooking increases
when the variants of the malware outbreak. In dynamic analysis, there are some
problems too. With dynamic analysis, overhead of operation increases. Moreover,
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there is a possibility that a malicious developer can make his application to cir-
cumvent the detection. In order to solve these problems, we focus on detection
method using log output which is dynamic analysis. With marketplace oper-
ator using this method, detection which cannot be circumvented by malicious
developer can be realized.

Linux debug utility named strace monitors system calls used by an applica-
tion in Android. There is a method performing malware detection by analyzing
system calls that are obtained using the strace. Behavior using services of the
kernel can be detected by this method. However, there is a problem that system
call is not issued in the behavior which doesn’t use services of kernel, and it is
impossible to detect such a behavior.

In this paper, we focus on the fact that when API that retrieve the phoneID is
invoked, it is processed with remote procedure call. We propose a method record-
ing the invocations in accordance with the API by inserting Log.vmethod. That
is an output log API in remote procedure call by the Android Binder. The exe-
cution logging by this technique cannot be avoided even if modification of API
is performed on the call side. Therefore, it is impossible to circumvent the detec-
tion even if a developer has malicious intention. Furthermore, we implemented
proposal method tentatively and ran the application which acquires phoneID
on the Android emulator. As a consequence, we confirm empirically record of
invocation behavior of the phoneID acquisition API.

2 Android

Android is a platform that was developed targeting mobile information devices
such as smart phones and tablet PCs. Android application is running on the
Dalvik virtual machine(VM). When an Android application is launched, one
Dalvik VM is dedicated to execute that application. When a user installs an ap-
plication, by approving permissions, it becomes possible to take the cooperation
with other applications or access files made by other applications deviating from
the sandbox mechanism[1].

2.1 Android Application

Android consists of a Linux based OS kernel, a middleware and fundamental ap-
plications. The applications used by the user are on the top layer in AndroidOS.
Developers can publish applications in the Android market.

In the application framework of Android, API is provided and Android ap-
plication developer can use it freely. Application developers can use the result
the API outputs by this mechanism, without knowing about the complicated
procedures under the framework layer.

In AndroidOS, the independence of applications is maintained by the following
mechanisms so that applications don’t cause interference.
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– Application execution and process
Android application is executed in an individual Linux process allocated to
this sole application. Hence, a Linux process is started when an application
is executed. However, this process is terminated when system resources are
required from other applications, after this application is finished.

– Dalvik virtual machine allocation to every process
In Android, a Dalvik virtual machine is allocated to every process exclu-
sively. In this way, one application is executed independently from other
applications.

– Unique Linux user ID allocated to every application
During the installation, to every application is allocated unique ID. The
assigned ID serves as an owner of the application, and manages the process.
Files that the application creates are set up so that these files cannot be
fundamentally read from applications which have other ID. For this reason, a
file created by a certain application cannot be freely read from an application
with another ID.

2.2 Binder

Binder is a driver which offers the functionality to communicate between pro-
cesses. Even if some processes are in the same application, they run on separate
area. Moreover, there is a possibility that activities and services respectively
run on different processes in the application. Binder driver is used when ex-
changing information between these different processes. In this case, communi-
cations are controlled by the framework layer located above the kernel. Although
a user doesn’t use Binder directly, it plays an important role in interprocess
communication.

2.3 AIDL

In Android, one process cannot usually access memory of other processes. There-
fore, if a process wants to obtain data from other processes, interprocess com-
munication is necessary. AIDL(Android Interface Definition Language) is an
interface definition language used to generate some codes[2]. These codes un-
dertake the communication between two processes possible using interprocess
communication realized with Binder.

2.4 Android API

API, which means “Application Programming Interface”, is an interface to access
function from the library intended for the OS and for the programming language
of the applications. Functions used in many applications are offered within the
application framework of Android through API. Because it is unnecessary to
develop functions offered by API, development of application becomes easy with
API. Some of Android APIs also offer functions which serve as a base of the OS.
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3 Existing Android Malware and Detection Method

There are static analysis and dynamic analysis among analysis methods of appli-
cations. Static analysis is a method that an application is decompiled and source
code is examined, and dynamic analysis is a method that analyzes the behavior
of an application by running it. There are both advantages and disadvantages
for static analysis and dynamic analysis, and it is difficult to say which method
is better than the other. In this section, we outline static analysis and dynamic
analysis, as well as detection technique of malwares that both techniques use.

3.1 Android Malware

Malware is an application which performs a malicious action, such as causing a
leakage of privacy information or making data destroyed. Malware is developed
according to an environment with many targets. Therefore, malwares for Win-
dows with many users have accounted for a large percentage of entire malwares
until now. However, developers of malware also came to target AndroidOS. Ac-
cording to G Data Malware Report -Half yearly report January - June 2011 -[3],
during the first half of 2011 from the second half of 2010, malwares that target
smartphones with a focus on Android had increased from 55 to 803. Although
this number is lower than the number of malwares which target Windows, con-
sidering the kind of information stored in Android devices is important personal
information such as phone number or subscriber ID, it is thought that the risk
from a security point of view becomes high compared with other OS. From these
facts, despite enhancements of security including anti-malware in AndroidOS is
in urgent, the present security is insufficient. Most threats caused by Android
malwares are infection by installing the malwares that are obtained from a third
party market that is not legitimate Android market of Google.

3.2 Static Analysis

Static analysis is a program analysis method which analyzes a program by de-
compiling the application without performing an executable file. Static analysis
is mainly used when analyzing a source code.

Because analysis is performed without actually executing the application, the
potential threat is detected before the damage of malware occurs. On the other
hand, when the source code of the application is obfuscated or when the code
for attack is placed outside the application code using a cooperation function
with an external server, the possibility of being undetectable becomes high.

As static analysis method, there are many certification techniques and such
techniques are served as service. Bouncer[4] is a service offered by Google. It
prevents malware from spreading the market. However, malwares which have
passed bouncer’s certification had been reported[6].
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3.3 Dynamic Analysis

Dynamic analysis is a program analysis method which checks what kind of ac-
tion the application is carrying out by actually executing the application to be
inspected. Because application is actually run unlike static analysis and it is in-
spected based on the action, malwares can be detected even when the source code
is obfuscated, or when the code for an attack is placed outside the application
code.

TaintDroid[5] and AppFence[7] are dynamic analysis methods using infor-
mation flow tracking. TaintDroid monitors interprocess communications, and if
information is sent out TaintDroid alerts that event. Appfense implements two
information protections, replacing private data with shadow data and filtering
to prevent information leakage by intercepting the network system call. Both
researches modify Android kernel to conduct dynamic analysis for applications.

A logging system is used as a way of dynamic analysis. Isohara et al. proposed
a logging system in Android[8]. System calls are collected as log data in the
kernel level. These log data are analyzed with signature of threats to inspect the
application’s behavior. However, a problem is that action without system call is
difficult to detect.

4 Design of Record Method of Process Operation Using
Logcat

4.1 Record Method of Process Operation

strace is a debugging utility that supervises the system calls issued by a pro-
gram. In the process action recording method using this strace, the system call
about the API cannot be recorded if the API is belonged to TelephonyManager

class, This is because the information is called without using a service of the
kernel, when using API of a TelephonyManager class.

We insert a code that invokes Log.v method into the application framework
of AndroidOS, and modify it so that event logs may be output. And when an
application acquires the phoneID through API, the event log is recorded, and
we use a method of performing detection of information retrieval based on that
log. This method is also used in other OS. For example, in UNIX OS, a log is
recorded using syslog, and in Windows, a log is recorded using the function
named event log.

APIs which record logs are prepared within the application framework of
AndroidOS. These logs can be viewed using the function called logcat. In this
experiment, logs are collected and analyzed, which are output from a Log.v()

method of the Log class. This method is implemented in the layer which uses
Java language in application framework.

We examined interprocess communications which occur when using APIs of
TelephonyManager class. As a result, it turned out that processes and methods
communicate in the procedure as shown in a Figure 1.
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Fig. 1. Example of interprocess communication about getDeviceId()

The approach of checking which method is invoked by making log output is a
general technique performed in other OS. When performing one application in
Android, it is always run on independent Dalvik VM. Therefore, an application
cannot communicate with other processes directly, and the application must use
a driver called Binder. Then, we set a code that outputs a log in programs which
perform this interprocess communication, and when an application invokes API,
we detected and specified it based on the log information. This is the new point
in this proposal method. With this method, retrieved information can be checked
by seeing .aidl file without searching for the part which reads each information
directly. In this experiment, after an application is executed, invoked API can
be specified using the information acquired from the event log.

In this paper, the experiment was carried out for API contained in the
IPhoneSubInfo.aidlfile treating important information such as telephone num-
ber or subscriber ID. Concretely, at first the Log class of an android.util pack-
age is imported to IPhoneSubInfo.java file. Then, the code which outputs a
log to an onTransact method is inserted. OS is recompiled after that. Appli-
cation which invokes some APIs is installed to the emulator, and it is actually
executed. From obtained event logs, we focus on the variable named code used
in onTransact.

Table 1 shows the conversion table of the information about API contained
in an IPhoneSubInfo.aidl file and each API. In this paper, experiments are
not carried out for getLine1AlphaTag() and getCompleteVoiceMailNumber().
The reasons are the following two.

– In spite of being implemented in TelephonyManager.java, these two meth-
ods are undocumented as methods of the TelephonyManager class in the
site of Android Developer.
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Table 1. API defined in IPhoneSubInfo.aidl

API Acquired Information

getDeviceId() IMEI
getDeviceSvn()

(Method within getDeviceSoftwareVersion())
Software version

of device

getSubscriberId() Subscriber ID
getIccSerialNumber()

(Method within getSimSerialNumber())
Serial number
of SIM card

getLine1Number() Phone number

getLine1AlphaTag() Alpha identifier

getVoiceMailNumber() Voice mail number

getCompleteVoiceMailNumber() Complete voice mail number

getVoiceMailAlphaTag()
Voice mail

alpha identifier

– If we try to use these methods as methods of a TelephonyManager class in a
application, the error message that it is undefined within TelephonyManager

will come out.

From these reasons, experiments are carried out for seven APIs except the
previously mentioned two.

4.2 Abstract of Experiment

The goal of these experiments is not the static analysis that decompiles appli-
cation and analyzes a source code but the dynamic analysis that detects infor-
mation leakages by actually running the application and taking event logs. In
order to prevent from being detected by anti malware software, recent malwares
obfuscate itself to make such an analysis difficult, or cause information leakages
in cooperation with external server using webkit. The reason for using dynamic
analysis in this paper is because it can deal with situations that static analysis
cannot.

From the result of the record method using strace, it is predicted that per-
sonal information acquired by APIs of TelephonyManager is not retrieved by
the kernel, but passed from other information managing processes. So, we focus
on Binder driver which has an important role in interprocess communication.
In this paper, we carried out the experiment which detects that event when
APIs described in IPhoneSubInfor.aidl are invoked. We inserted a code that
invokes Log.vmethods which outputs a log message into onTransactmethod in
IPhoneSubInfo class invoked only when these APIs are invoked. Then, we tried
to specify the invoked API from the event logs. An argument called code ex-
ists in onTransactmethod of IPhoneSubInfo class. OnTransactmethod judges
which API invoked information from this code value. Therefore, we think that
we can specify which API is invoked from the event log of onTransact method
and code variable.
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Fig. 2. Log outputting code inserted into IPhoneSubInfo.java

4.3 Proposal Method

Figure 2 shows a inserted code outputting a event log into IPhoneSubInfo.java.
The place where a logging code is inserted was decided in consideration of the
following conditions.

– It is not a method performed in the same process as an application.
The getDeviceId() method of TelephonyManager class is run in the same
process as the application. Such a method can be incorporated as a library
in application by developer when application is developed. In the case of
inserting the code which outputs the event log into getDeviceId()method,
if a malware developer defines a method working similarly as getDeviceId()
in that application and executes the method, information is retrieved without
outputting the log. Therefore, it is very important to insert the code which
outputs the log into a method running on a process which is not same as the
application’s process.

– API which invoked the method can be specified
Even if a log is output from the code inserted into the program, this method
is not realized if which API was invoked by the application cannot be checked
from the log.

– Proposal method can be used to detect as many APIs as possible
If the code which outputs a log is inserted into each API method (e.g.
getDeviceId()), only that information can be monitored.

As a result of considering these three conditions, we concluded that a suitable
inserted place should be onTransact method of IPhoneSubInfo class. There
are some reasons for this decision. onTransact method doesn’t run on the
same process as application. Then, because the order of methods defined in
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IPhoneSubInfo.aidl file and value of code variable are corresponded, it is pos-
sible to judge which API was invoked. This is because code variable is used
within a switch statement in IPhoneSubInfo class. Furthermore, nine APIs de-
fined in IPhoneSubInfo.aidl can be inspected with this method.

There is also an advantage that APIs which don’t issue system call can be
detected. In existing research, the detection of malware is performed by logging
system call when using dynamic analysis[8]. However, in such a method, it is
difficult to detect APIs which don’t publish system call when running. On the
other hand, because we focus on interprocess communication which occurs when
the API is invoked, and insert a code which outputs the log when method is
invoked, it becomes possible to realize detection of information retrieval without
system call.

4.4 Experimental Procedure

1. Building of the source code
The make command is used to build the source code. IPhoneSubInfo.java
file is automatically generated from IPhoneSubInfo.aidl file at this time.

2. Insertion of a code which outputs a log
Figure 2 shows modified IPhoneSubInfo.java to output the event log. This
program outputs a log message which can be seen with Logcat view. Log.v is
a method which outputs a log of a detailed message. There are other methods
about log. Log.e outputs a log about error, Log.w outputs a log of warning,
Log.i outputs a log about information, and Log.d outputs a log of the debug
message. Fundamentally, usage of these methods is the same. String indicat-
ing tag is set as first argument and String which should be output as a log
message is set as second argument. The differences among these five methods
are found in use, and they are properly used so that acknowledgement of logs
becomes convenient. In this experiment, a log message includes two contents.
First content is a character string called IPhoneSubInfo.onTransact. And,
second content is a value of code variable, which indicates a kind of privacy
information acquired by an application.

3. Rebuild
After rewriting and saving IPhoneSubInfo.java file, build is performed
again.

4. Running application on the emulator
This experiment is entirely conducted on the emulator.

5. Reference of logs
Collected Logs are referred using Dalvik Debug Monitor Service tool. We
describe and considerer the results from these collected logs.

4.5 Result

A kind of information acquired by API could be detected from output logs.
Table 2 shows the correspondence of APIs used in experiment to code variables.
This corresponds with the order of method defined in IPhoneSubInfo.aidl file.
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Table 2. The correspondence table of API used in the experiment and code variable

code API

1 getDeviceId()

2

getDeviceSvn()

(Method within getDeviceSoftwareVersion())

3 getSubscriberId()

4

getIccSerialNumber()

(Method within getSimSerialNumber())

5 getLine1Number()

6 getLine1AlphaTag()

7 getVoiceMailNumber()

8 getCompleteVoiceMailNumber()

9 getVoiceMailAlphaTag()

This shows that we can know code variables corresponding to each method from
AndroidOS source code.

Figure 3 shows that logs output when getDeviceId() method is executed.
The emphasized line in Figure 3 is a log message which outputs the necessary
information in our proposal method.

4.6 Consideration

This experiment showed that detection and specification of API invoked from
application can be possible. In this experiment, we inserted the code which
outputs a log into onTransactmethod of IPhoneSubInfo class because we focus

Fig. 3. Log output when executing getDeviceId() method
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on APIs defined in IPhoneSubInfo.aidl. It is thought that APIs which are not
mentioned in this paper are also defined in aidl file if they execute interprocess
communication. Therefore, action of API is detectable by discovering the aidl
file and conducting the same experiment as this one.

5 Conclusion

In this paper, a detection method of phoneID acquisition using logcat is pro-
posed. With this method, it is possible to detect obfuscated applications which
cannot be detected with static analysis, or phoneID acquisition of an application
which sets attack code in an external server. The phoneID acquisition of API
which cannot be detected with dynamic analysis using strace could be detected.
Because we focus on the behavior of applications in our method, it is unnecessary
to acquire signatures of malwares in advance. Therefore, unknown malwares can
be detected with proposal method. Moreover, the system which outputs the log
in the proposal method is completely independent of the structure of application
thanks to the mechanism which retrieves phoneID as shown in Figure 1. For this
reason, a malicious developer is unable to avoid the analysis by this technique.

In a practical use, the proposal method should be used by marketplace opera-
tor. One of the reasons is that the proposal method has no real-time properties.
The proposal detection method needs to be performed before a user runs an
application on his device because the method grasps the behavior of an appli-
cation from the log output. Another reason is that the proposal method needs
to rebuild AndroidOS and to prepare linux system for the analysis. From these
reasons, the proposal method should be used in the marketplace operator’s side.

As for future work, the distinction between malwares and legitimate applica-
tions is considered. This method detects all applications that acquire phoneID
through API on the characteristics. When actually used, it is necessary to extract
only malware from these applications and specify it. In this paper, we carried
out experiments only about API defined in IPhoneSubInfo.aidl. However, we
didn’t carry out experiments about other APIs. As a future subject, we must
confirm if proposal method can be applied to detection of other APIs.
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Abstract. Steganography is the science of hiding a message signal in a host 
signal, without any perceptual distortion of the host signal. Using 
steganography, information can be hidden in the carrier items such as images, 
videos, sounds files, text files, while performing data transmission. In image 
steganography field, it is a major concern of the researchers how to improve the 
capacity of hidden data into host image without causing any statistically 
significant modification. In this work, we propose a reversible steganography 
scheme which can hide large amount of information without affecting the 
imperceptibility aspect of the stego-image and at the same time, it increases the 
security level of the system through using different method for embedding 
based on distinct type of transform, called Mix Column Transform. Our 
experimental results prove the ability of our proposed scheme in balancing 
among the three critical properties: capacity, security, and imperceptibility.  

Keywords: Data, Hiding, Mix Column Transform, Polynomial, Steganography. 

1 Introduction 

Steganography is considered a science or art of secret communication. In the recent 
years, digital steganography has become a hot research issue due to the wide use of 
the Internet as a popular communication medium. The goal of digital steganography is 
to conceal covert message in digital material in an imperceptible manner. Even 
though digital images, audio files, video data and all types of digital files can be 
considered as a cover item to conceal secret information, in this paper, we consider 
only digital images as cover item. After hiding a secret message into the cover image, 
we get an image with secret message; so-called stego-image, which is transmitted to a 
receptor via popular communication channels or put on some Internet website. To 
design useful steganography algorithm, it is very important that the stego-image does 
not have any visual artifact and it is statistically similar to natural images. If a third 
party or observer has some suspicion over the stego-image, steganography algorithm 
becomes useless [1]. Three common requirements can be used to rate the performance 
of steganographic techniques, which are: security, capacity, and imperceptibility [2]. 
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 Security: Many active or passive attacks could be launched against 
steganography. Hence, if the existence of the secret message can only be 
estimated with a probability not higher than “random guessing” when any 
steganalytic system is applied, then this steganography may be considered 
secure under such steganalytic system. Otherwise, we may claim it as 
insecure.  

 Capacity: Capacity is a critical aspect of any steganography. The hiding 
capacity provided by any steganographic scheme should be as high as 
possible, which may be given with absolute measurement (e.g., the size of 
secret message), or with relative value (e.g., data embedding rate, such as 
bits per pixel, bits per non-zero discrete cosine transform coefficient, or the 
ratio of the secret message to the cover medium, etc.). 

 Imperceptibility: Stego images should not have severe visual artifacts. Under 
the same level of security and capacity, the higher the fidelity of the stego 
image is, the better it is. If the resultant stego image appears innocuous 
enough, one can believe this requirement to be satisfied well for the 
possessor not having the original cover image to compare. 

Steganography can be mainly classified into four categories: (1) Steganography in 
image, (2) Steganography in audio, (3) Steganography in video, and (4) 
Steganography in text. The image steganography algorithms can be divided into two 
categories, namely, spatial domain and frequency domain [3]. In this work, a distinct 
type of transform will be applied on the color image called “Mix Column Transform” 
(MCT) based on some different type of mathematics called irreducible polynomial 
mathematics, which can meet the requirements of good steganographic system (high 
capacity, good visual imperceptibility, and reasonable level of security).    

After Section 1, in Section 2, we discuss the related works and our motivation for 
this work. The mathematical background of the proposed system is presented in 
Section 3. Then, in Section 4, the proposed algorithm is presented. Section 5 presents 
our results, analysis, and comparisons. Finally, Section 6 concludes the paper. 

2 Related Works and Motivation 

During the last decade, many steganography related works were proposed in both 
domains: spatial domain and transform domain. Many methods have been proposed 
so far for hiding secret information in spatial domain such as; LSB (Least Significant 
Bit) [4], [5], optimum pixel adjustment process [6], and so on.  

The authors in [4] present a scheme which provides two levels of security. It uses 
RSA Algorithm for encrypting the secret message, then hides it in the four LSBs 
(Least Significant Bits) of one of the three channels that could be selected through 
calculating the sum of all pixels in each channel and the one having the maximum 
value would be the indicator to specify where to embed the secret bits in the other two 
channels. The experimental results showed that the largest capacity that could be used 
by the proposed method was 30,116 bytes (240,928 bits) with PSNR (Peak Signal-to-
Noise Ratio) value 49.61 dB. However, adopting a combination of cryptography and 
steganography may increase the security of the system. 
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Various schemes also have been adopted by the researchers for embedding data in 
transform domain such as using wavelet transform [7], Discrete Cosine Transform 
(DCT) [8], Fourier Transform [9], and recently using contourlet transform [10]. The 
core idea of the last one is embedding the secret message in contourlet coefficients 
through an iterative embedding procedure to reduce the stego-image distortion. 
Hence, the embedding is done by changing the coefficient values proportional to the 
regions in which the coefficients reside and hidden data can be retrieved with zero bit 
error rate. The results showed that using cover selection can embed relatively more 
bits in a suitable cover image. The proposed method is robust against compression but 
the cost of embedding capacity has been decreased to only 10,000 bits. 

After investigating various works, we have found that gaining capacity with visual 
imperceptibility should be the main objective of any good steganographic scheme. 
Consequently, we have come up with a reversible steganographic scheme based 
transform domain. Our adopted transform domain is distinguished from those 
mentioned in the previous works since it has not been used before in this way in 
steganographic technique as far as we have investigated in this area. In addition, it is 
provided with more than one stego-key, hence, the proposed method can achieve 
effective level of security with having reasonable imperceptibility at the same time. 

3 Irreducible Polynomial Mathematics 

The forward Mix Column Transformation, called Mix Columns, operates on each 
column individually. Each byte of a column is mapped into a new value that is a 
function of all four bytes in that column [11]. The results of the Mix Column 
operation are calculated using GF 2  operations. Each element of GF 2  is a 
polynomial of degree 7 with coefficients in GF 2  (or, equivalently Z ). Thus, the 
coefficients of each term of the polynomial can take the value 0 or 1. Given that there 
are 8 terms in an element of GF 2 , an element can be represented by bit string of 
length 8, where each bit represents a coefficient. The least significant bit is used to 
represent the constant of the polynomial, and going from right to left, represents the 
coefficient of   by the bit  where  is  bits to the left of the least significant bit. 
For example, the bit string (10101011) represents 1). For 
convenience, a term x  is found in the expression if the corresponding coefficient is 1. 
The term is omitted from the expression if the coefficient is 0. Addition of two 
elements in GF 2  is simply accomplished using eight XOR gates to add 
corresponding bits. Multiplication of two elements in GF 2  requires a bit more 
work. The multiplication of two elements of Z  is simulated with an AND gate. 
Multiplication in GF 2  can then be accomplished by first multiplying each term of 
the second polynomial with all of the terms of the first polynomial. Each of these 
products should be added together. If the degree of the new polynomial is greater than 
7, then it must be reduced modulo some irreducible polynomial using one of the 
polynomials which explained in Table 1. In the case of Advanced Encryption 
Standard (AES), the irreducible polynomial is 1 [12]. Therefore, 
multiplication can be performed according to the following rule [11]: 
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x f x  b b b b b b b 0                                      if b 0b b b b b b b 0   00011011      if b 1  
In this work, the calculations of Mix Column Transform have been done using GF 2  which has not been used before in the literature. Values in GF 2  are 3-bits 

each, spanning the decimal range [0..7]. Multiplication takes place on 3-bit binary 
values (with modulo 2 addition) and then the result is computed modulo P(x) which 
can be  (1011) = 11 (decimal) or (1101) = 13 (decimal). For example: 5 × 6 = (101) × 
(110) =  (11110)  = (011)  mod (1011) = 3  (highlighted in Table 1) and 5 × 3 = (101) 
× (011) =  (1111) = (010)  mod (1101) = 2  (highlighted in Table 2). Hence, the 
specific polynomial P(x) provides the modulus for the multiplication results [13]. 

 

Table 1. Using Primitive Polynomial (11)     Table 2. Using Primitive Polynomial (13) 

  

4 Our Proposed Approach 

In our work, a distinct kind of transform will be applied on the color images to get 
new domain for embedding, which is sufficiently secure and can be applied for real-
time applications. We present both the embedding and extraction algorithms here.  

4.1 Embedding Algorithm 

The procedure of embedding is described with the following steps: 

Step 1. Dividing the cover image into blocks, each block of specified size which 
can be (3*3), (4*4), (5*5), etc. 

Step 2. Selecting some of the blocks for embedding the secret message according 
to secure key. 

Step 3. Pre-processing the specified blocks through taking out the 3 LSBs of from 
each value and storing it in a new matrix (block).  

Step 4. Applying the proposed transform (Mix Column Transform) on each 
specified block individually. 

Step 5. Hiding the secret bits within the matrix after transformation. 



 Reversible Data Hiding Scheme Based on 3-Least Significant Bits 409 

 

Step 6. Applying an inverse transform on the transformed blocks to get back the 
original blocks.  

Step 7. Returning the resulted matrix of 3 LSBs and combing it with original one. 
Step 8. Evaluating the proposed method through using the most common 

measurements that have been used in the literature such as Peak Signal Noise to Ratio 
(PSNR) and MSSIM for testing the invisibility and the quality of the stego image. 

4.2 Extraction Algorithm 

The proposed method is a blind algorithm so, there is no need for the original cover 
image during the process of extraction. Blind algorithm here refers to the ability of 
extracting the secret information from the stego-image without using the original 
cover. To recover the secret message, the following steps should be applied: 

Step 1. Dividing the stego-image into blocks, each block of the same size that has 
been specified during the embedding. 

Step 2. Determining the selected blocks that have been used for embedding the 
secret message through using the same secure key. 

Step 3. Pre-processing the blocks through taking out the 3 LSB’s and storing them 
in a new matrix (block). 

Step 4. Applying the proposed transform on each block individually. 
Step 5. Extracting the secret bits from the transformed blocks sequentially using 

secure key. 
Step 6. Reconstructing the secret message from the extracted bits. 

4.3 The Proposed Transform 

In order to apply MCT, it is supposed to have a matrix called transformed matrix 
which can be generated randomly and should have an inverse. The size of this matrix 
is variable and can be any. An example could be (3*3) as shown below:  

 

In addition to this matrix, we should have a block matrix taken from a cover image 
with the same size (3*3) which can be referred to as block matrix. Before performing 
the proposed transform, the block matrix should be pre-processed, then taking the 3 
least significant bits from the block matrix and placing in another matrix to get a new 
one as follows: 
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After that, both matrices have to be converted to polynomials as explained below: 

  1 11   1      *   
1 1   

 
                          Transformed Matrix                              Block Matrix 
 

The proposed transform can be performed via multiplying each row of the 
transformed matrix with each column of the original values of the block matrix: 
  1 · 1 1 ·     1 ·   1    1 

The result is 2 1  which represents (101) = (5) 
The same operation can be done to get the whole values of the resultant matrix 

which is:        
101 010 110110 100 010011 111 111  

The largest element appeared in this example is  because the results of the Mix 
Columns operation are calculated using GF 2  operations where, each element of GF 2  is a polynomial of the 2nd degree with coefficients in GF 2 . Thus, if the 
result of multiplication leads to get a polynomial with degree larger than 2, then the 
resultant polynomial should be reduced through dividing it by the irreducible 
polynomial 1  to get the remainder which will be used as a resulted 
polynomial. Next, the secret message for instance (111) can be embedded in the least 
significant bit (LSB) of the values of the middle column within the resultant matrix as 
follows:   101 011 110110 101 010011 111 111  

On the other hand, to get the original values of the block matrix, the resulting 
matrix from Mix Column Transform should be multiplied by the inverse matrix: 
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Again, each row of the inverse matrix will be multiplied by each column of the 
resulting matrix: 

        *     
        

                         
                         Inverse Matrix                            Resulting Matrix 
 

To get back the first value (03), the first row of the inverse matrix should be 
multiplied by the first column of the resulted matrix (after transform): 
  1 ·  1   ·  ·  1   1    1 
 

The result is 1  which represents (011) = (03) 
To get back the second value (0), the first row of the inverse matrix should be 

multiplied by the second column of the resulted matrix (after transform): 
  1 · 1   ·  1 · 1 1   1 

 
The result is 1 which has a degree 4 3  so, it should be 

reduced through dividing it by ( x 1 . This polynomial can be considered as a 
secret key because it can be changed and it is possible to use either ( x 1) or 
(  1). Therefore, the attacker cannot guess the utilized polynomial in the 
proposed steganographic algorithm. 

 
Consequently, all other values of the original matrix can be obtained through 

repeating the same operation.  1 1x 11 1 
011 010 001110 011 100010 001 001 

03 02 0106 03 0402 01 01   
The resulted matrix will again be combined with the block matrix: 
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Finally, the secret message can be retained through applying the Mix Column 
Transform on the final resulted matrix for instance:  07 01 0501 06 0605 06 07      *     

03 02 0106 03 0402 01 01  

                                           The Transform Matrix           Block Matrix (containing secret message) 
 

Converting again to polynomials: 
  1 11   1       *    

1 1x 11 1  

 
The first value can be got via multiplying the first row of the first matrix with the 

first column of the second matrix as explained below: 
  1 ·  1  1 ·  1 ·  1   1 
 
The result is  2 1  which represents (101) = (5) 
The second value can be got via multiplying the first row of the first matrix with 

the second column of the second matrix as explained below:  1 .  1. 1 1 . 1  1 1  
 

 
The result is 1 which is equivalent to (011) = (03)  
So, taking the LSB from the resulting value which represents the value of the 

secret bit, the original value (02) can be obtained. 
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5 Experimental Results and Discussion 

5.1 Experimental Setting 

The proposed technique is tested by using sequence of color images of size (512*512) 
with JPEG formats as shown in Figure 1 (a, b, c, d). The experiments have been 
conducted using MATLAB [21]. The image quality of the proposed algorithm has 
been tested using PSNR, which is estimated in decibel (dB) and is defined as: PSNR 10 log 255MSE  

MSE 1hw  

where (  and ) denote the width and height of the images respectively.  and  
stand for the value of pixel [i,j] in the original and the processed images, respectively. 

 
                                               (a) image1.jpg             (b) image2.jpg 

 
                                               (c) image3.jpg             (d) image4.jpg 

Fig. 1. Test images for the proposed technique 

MSE 3  

where ( , , and ) are mean square errors in the three channels; Red, 
Green, and Blue respectively. Table 3 shows the results of applying proposed 
technique using the mentioned test images [14]. Also Figure 2 and 3 show the output 
stego-images. 
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Table 3. Results of applying the proposed algorithm on the images of size (512*512) 

Color Images of size 

(512*512) 

Payload 

(Bits) 

Block 

Size 

PSNR (dB) of the 

Stego-image 
MSSIM 

Embedding Duration 

Time (seconds) 

Image1.jpg 

 

452925 

 

4*4 40.3286 0.9522 100.5894 

8*8 40.3497 0.9529 88.5150 

Image2.jpg 452925 
4*4 41.2353 0.9515 101.0418 

8*8 40.3330 0.9433 88.2186 

Image3.jpg 452925 
4*4 40.7893 0.9677 100.6362 

8*8 40.3022 0.9644 88.2186 

Image4.jpg 452925 
4*4 40.7988 0.9733 99.6066 

8*8 40.3466 0.9714 88.3590 

Table 4. Comparison between our proposed method and other related works 

The Steganographic 

Schemes 

The Cover 

Image 

Capacit

y 

(Bits) 

PSNR 

of the 

Stego-

image in 

(dB) 

Our Proposed Method 

PSNR 

of the 

Stego-

image 

in (dB) 

MSSIM 

Index 

Embedding 

Duration 

Time in 

Seconds 

1 
Reference 

[10] 

Lena .jpg 

(512*512) 
28,001 39.65 47.2571 0.9882 7.6440 

2 
Reference 

[19] 

baboon .bmp 

(512*512) 
162,775 30.02 40.0453 0.9841 36.4106 

 
Another measure for understanding image quality is Mean Structural Similarity 

(MSSIM) [15] which seems to approximate the perceived visual quality of an image 
more than PSNR or various other measures. MSSIM index takes values in [0,1] and it 
increases as the quality increases. We calculate it based on the code in [16] using the 
default parameters. In case of color images, we extend MSSIM with the simplest way: 
calculating the MSSIM index of each RGB channel and then, taking the average [17]. 

5.2 Comparative Analysis  

Comparing our proposed scheme with [18] and embedding the same secret message 
“AB1001CD” within the same cover image (baboon.jpg) of size (512*512), we got 
PSNR=77.3561 while [18] obtained PSNR=72.2156. So, our proposed method beats 
the scheme used by [18] significantly in terms of imperceptibility through getting 
higher PSNR. On the other hand, when comparing the proposed scheme with its 
alternative methods that used gray-scale images in their experiments as presented in 
[10] and [19], our proposed method exceeds those in terms of invisibility as shown in 
Table 4 (keeping the capacities same as were used in those schemes). 
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                               (a) image1_stego.jpg     (b) image2_stego.jpg 

 
                                         (c) image3_stego.jpg    (d) image4_stego.jpg 

Fig. 2. Results of applying the proposed algorithm on the images of size (512*512) using block 
size (4*4) 

 

 
                               (a) image1_stego.jpg    (b) image2_stego.jpg 

 
                                         (c) image3_stego.jpg      (d) image4_stego.jpg 

Fig. 3. Results of applying the proposed algorithm on the images of size (512*512) using block 
size (8*8) 

5.3 Security of the Proposed Transform 

According to Kerckhoffs' principle [20], the security of a steganographic system is 
based on secret key shared between the sender and the receiver called the stego-key 
and, without this key; the attacker should not be able to extract the secret message. In 
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our proposed method, the secret key was provided in more than one level; firstly the 
block size is variable and can be any size for instance (3*3), (4*4), etc. Secondly, the 
transformed matrix is generated randomly and it can be used in our transform if and 
only if it has inverse. Thirdly, not all the values of the specified block that have been 
selected for embedding will be used, instead, only 3 LSBs of each value will be taken 
out and saved separately in another block to be used in our proposed method which 
has not been used in the literature before. Finally, there is a secret key for selecting 
the blocks for embedding. That’s why the security of our proposed scheme has been 
significantly increased. 

6 Conclusion and Future Work 

In this work, we have presented an efficient steganographic method which adopted 
different style for embedding to increase the security of the system. On the other 
hand, the capacity of embedding secret message has been maximized without 
affecting the quality of the stego-image as proved by the experiment results  
for MSSIM measurements which were close to 1. As future work, the robustness of 
the proposed scheme could be tested against different types of attacks such as the 
compression to test the efficiency of it and thus, a detailed understanding of the 
scheme’s practicality could be realized. 
 
Acknowledgments. The authors would like to heartily thank the reviewers for their 
valuable comments that helped improve the paper. This work was supported by NDC 
Lab, KICT, IIUM. 

References 

1. Hernandez-Chamorro, A., Espejel-Trujillo, A., Lopez-Hernandez, J., Nakano-Miyatake, 
M., Perez-Meana, H.: A Methodology of Steganalysis for Images. In: IEEE 
CONIELECOMP 2009, Cholula, Puebla, Mexico, pp. 102–106 (2009) 

2. Li, B., He, J., Huang, J., Shi, Y.Q.: A Survey on Image Steganography and Steganalysis. 
Journal of Information Hiding and Multimedia Signal Processing 2(2), 142–172 (2011) 

3. Lin, C.-C.: An information hiding scheme with minimal image distortion. Computer 
Standards & Interfaces 33(5), 477–484 (2011) 

4. Swain, G., Lenka, S.K.: A Better RGB Channel Based Image Steganography Technique. 
In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 2011, Part II. CCIS, vol. 270, pp. 
470–478. Springer, Heidelberg (2012) 

5. Swain, G., Lenka, S.K.: LSB Array Based Image Steganography Technique by Exploring 
the Four Least Significant Bits. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 
2011, Part II. CCIS, vol. 270, pp. 479–488. Springer, Heidelberg (2012) 

6. Pandian, N., Thangavel, R.: A Hybrid Embedded Steganography Technique: Optimum 
Pixel Method and Matrix Embedding. In: Proceedings of the International Conference on 
Advances in Computing, Communications and Informatics, pp. 1123–1130. ACM (2012) 

7. Al-Hunaity, M.F., Najim, S.A., El-Emary, I.M.: Colored Digital Image Watermarking 
using the Wavelet Technique. American Journal of Applied Sciences 4(9), 658–662 (2007) 



 Reversible Data Hiding Scheme Based on 3-Least Significant Bits 417 

 

8. Liu, Q.: Steganalysis of DCT-Embedding Based Adaptive Steganography and YASS. In: 
The 13th ACM Multimedia Workshop on Multimedia and Security, pp. 77–85. ACM 
(2011) 

9. Rabie, T.: Digital Image Steganography: An FFT Approach. In: Benlamri, R. (ed.) NDT 
2012, Part II. CCIS, vol. 294, pp. 217–230. Springer, Heidelberg (2012) 

10. Sajedi, H., Jamzad, M.: Using contourlet transform and cover selection for secure 
steganography. International Journal of Information Security 9(5), 337–352 (2010) 

11. Stallings, W.: Cryptography and Network Security Principles and Practice. Prentice Hall, 
USA (2006) 

12. Li, H., Friggstad, Z.: An Efficient Architecture for the AES Mix Columns Operation. In: 
Proceeding of ISCAS 2005, Kobe, Japan, pp. 4637–4640 (2005) 

13. Addition and Multiplication Tables in Galois Fields GF(2^m), http://www. 
ee.unb.ca/cgi-bin/tervo/galois3.pl (last accessed May 30, 2013) 

14. Yua, Y.-H., Chang, C.-C., Lin, I.-C.: A new steganographic method for color and 
grayscale image hiding. Computer Vision and Image Understanding 107(3), 183–194 
(2007) 

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From 
Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4), 
600–612 (2004) 

16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: The SSIM Index for Image Quality 
Assessment, http://www.cns.nyu.edu/~lcv/ssim/ (last accessed: May 19, 
2013) 

17. Roussos, A., Maragos, P.: Vector-Valued Image Interpolation by an Anisotropic 
Diffusion-Projection PDE. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. 
LNCS, vol. 4485, pp. 104–115. Springer, Heidelberg (2007) 

18. Upreti, K., Verma, K., Sahoo, A.: Variable Bits Secure System for Color Images. In: 
Proceedings of the 2010 Second International Conference on Advances in Computing, 
Control, and Telecommunication Technologies, pp. 105–107. IEEE (2010) 

19. Lee, C.-F., Chen, H.-L., Tso, H.-K.: Embedding capacity raising in reversible data hiding 
based on prediction of difference expansion. Journal of Systems and Software 83(10), 
1864–1872 (2010) 

20. Salomon, D.: Coding for Data and Computer Communications, p. 345. Springer (April 12, 
2005) ISBN-13: 978-0387212456 

21. MATLAB: The Language of Technical Computing, http://www.mathworks.com/ 
products/matlab/ (last accessed May 30, 2013) 



Author Index

Aafer, Yousra 86
Abawajy, Jemal 342, 356
Abduallah, Wafaa Mustafa 405
Agten, Pieter 252
Au, Man Ho 182
Avonds, Niels 252

Batten, Lynn 69
Bian, Jiang 35
Binxing, Fang 53

Cesare, Silvio 197
Chaoge, Liu 53
Chen, Zhili 234
Chowdhury, Belal 342
Chowdhury, Morshed 342
Coquet, Vincent 305
Cui, Hui 182

Du, Wenliang 86

Economides, Anastasios A. 1
Elashry, Ibrahim 154

Farley, Ryan 104
Feng, Dengguo 122, 216

Hao, Liang 35
Hong, Jin B. 270
Hori, Yoshiaki 393
Huang, Liusheng 234

Islam, Md Rafiqul 356
Islam, Rafiqul 367, 380

Jiang, Jun 122
Jinqiao, Shi 53

Kajiwara, Naoya 393
Kaosar, Mohammed 367, 380
Karapistoli, Eirini 1
Kim, Dong Seong 270

Lacharme, Patrick 305
Li, Gang 69

Li, Jinguo 19
Li, Qi 216
Liangsheng, He 169
Lin, Yaping 19
Liu, Shaowu 69

Mamun, Quazi 367, 380
Markantonakis, Konstantinos 288
Masud, Md. Anwar Hossain 356
Matsumoto, Shinichi 393
Mayes, Keith 288
Miao, Haibo 234
Miao, Li 169
Moonsamy, Veelasha 69
Msgna, Mehari 288
Mu, Yi 154, 182
Murty, Kumar 305

Neng, Gao 169
Nie, Meining 122
Nishimoto, Yuuki 393

Pathan, Al-Sakib Khan 405
Piessens, Frank 252
Plateaux, Aude 305

Qinglong, Zhang 169

Rahma, Abdul Monem S. 405
Rong, Jia 69
Rosenberger, Christophe 305
Ruan, Xin 323

Sakurai, Kouichi 393
Strackx, Raoul 252
Su, Purui 122, 216
Susilo, Willy 154

Tongjie, Yang 169
Tupakula, Udaya 140

Varadharajan, Vijay 140
Vernois, Sylvain 305

Wang, Fei 234
Wang, Haining 323
Wang, Minghua 216
Wang, Xinyuan 104



420 Author Index

Xiang, Cui 53
Xiang, Yang 197
Xiao, Sheng 19
Xie, Mengjun 35

Yang, Wei 234
Yang, Yi 216
Yi, Xun 380
Yin, Heng 86

Ying, Lingyun 216

Yoshigoe, Kenji 35

Yue, Chuan 323

Zhang, Jun 197

Zhang, Wei 19

Zhou, Ting 19

Zongbin, Liu 169


	Preface
	Organization
	Table of Contents
	Session I: Security &amp; Privacy in Mobile, Sensor,and Ad Hoc Networks
	Anomaly Detection in Beacon-Enabled IEEE 802.15.4 Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The IEEE 802.15.4 MAC
	3.2 Attacking the IEEE 802.15.4 MAC

	4 Anomaly Detection in 802.15.4-Based WSNs
	4.1 Assumptions of the Model
	4.2 Detailed Algorithm Description

	5 Performance Evaluation
	5.1 Simulation Environment
	5.2 Simulation Results

	6 Conclusions and Future Work
	References

	Secure and Verifiable Top-k Query in Two-Tiered Sensor Networks
	1 Introduction
	1.1 Motivation
	1.2 Technical Challenges
	1.3 Limitations of Prior Arts
	1.4 Our Approach and Major Contributions

	2 Related Work
	2.1 Secure Range Query in Two-Tiered Sensor Networks
	2.2 Secure Top-k Query in Two-Tiered Sensor Networks

	3 Models and Problem Statement
	3.1 System Model
	3.2 Threat Model and Security Goals

	4 Confidentiality Preservation for Sensed Data
	4.1 Prefix Membership Verification
	4.2 Prime Aggregation
	4.3 Data Submission
	4.4 Query Processing

	5 Integrity Preservation for Query Results
	5.1 Differential Chain
	5.2 Query Response

	6 Analysis
	6.1 Data Confidentiality Analysis
	6.2 Integrity Analysis
	6.3 Performance Analysis

	7 Performance Evaluation
	7.1 Evaluation Methodology
	7.2 Evaluation Setup
	7.3 Result Analysis and Summary

	8 Conclusions
	References

	CamTalk: A Bidirectional Light Communications Framework for Secure Communications on Smartphones
	1 Introduction
	2 Background and Related Work
	2.1 Visible Light Communication
	2.2 Barcode Techniques
	2.3 Mobile Visual Channel

	3 System Design
	4 Implementation
	5 Evaluation
	5.1 Impact of External Factors
	5.2 Impact of Internal Factors
	5.3 Throughput

	6 Discussions
	7 Conclusion
	References


	Session II: Malware, Botnets, and Distributed Denialof Service
	Botnet Triple-Channel Model: Towards Resilient and Efficient Bidirectional Communication Botnets
	1 Introduction
	1.1 Weaknesses of Current Botnets
	1.2 Intrinsic Cause Analysis
	1.3 Proposed Bidirectional Communication Botnet
	1.4 Paper Organization

	2 Botnet Triple-Channel Model
	3 RoemBot: A BTM-Based Botnet
	3.1 Overview of RoemBot
	3.2 URL Flux Protocol for CDC
	3.3 Domain Flux Protocol for RC
	3.4 Cloud Flux for DUC

	4 RoemBot Resilience and Efficiency Study
	4.1 Security Properties of Current C&C Protocols
	4.2 URL Flux Resilience and Efficiency Study
	4.3 Domain Flux Resilience and Efficiency Study

	5 Defense against RoemBot
	6 Related Works
	7 Conclusion and Future Works
	References

	Contrasting Permission Patterns between Clean and Malicious Android Applications
	1 Introduction
	2 Background and Related Work
	2.1 Android and Its Permission System
	2.2 Android Permissions and Related Work
	2.3 Summary and Problem Identification

	3 Mining Contrast Permission Patterns
	3.1 Experimental Dataset
	3.2 Statistical Analysis on Android Permissions
	3.3 Contrast Permission Pattern Mining

	4 Experiments and Results
	4.1 Experiment Settings
	4.2 Contrast Permission Patterns
	4.3 Discussion

	5 Conclusion
	References

	DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android
	1 Introduction
	2 Approach Overview
	3 Feature Extraction and Refinement
	3.1 Extraction of Dangerous APIs
	3.2 Extraction of Package Level Information
	3.3 Extraction of APIs Parameters

	4 Insights in API-Level Malware Behavior
	4.1 Application-Specific Resources APIs
	4.2 Android Framework Resources APIs
	4.3 DVM Related Resources APIs
	4.4 System Resources APIs
	4.5 Utilities APIs
	4.6 Parameters Features

	5 Classification and Evaluation
	5.1 Data Set
	5.2 Classification Models
	5.3 Permission-Based Feature Set
	5.4 API-Based Feature Set with Package Level and Parameter Information
	5.5 Models Comparison
	5.6 Processing Time

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References


	Session III: Security for Emerging Technologies:VoIP, Peer-to-peer, and Cloud Computing
	Disabling a Computer by Exploiting Softphone Vulnerabilities: Threat and Mitigation
	1 Introduction
	2 Background
	3 Disabling the Softphone Host
	3.1 Noisy Attack on Softphone Host
	3.2 Stealthy Attack on Softphone Host

	4 Defense Mechanisms
	4.1 Defending against Noisy Attack with the Threshold Filter
	4.2 Defending against Stealthy Attack with the LCA Filter

	5 Experiments
	5.1 Attacks
	5.2 Defense Mechanisms

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	VCCBox: Practical Confinement of Untrusted Software in Virtual Cloud Computing
	1 Introduction
	2 System Overview and Design
	2.1 Application Scenario
	2.2 Technical Background
	2.3 System Architecture
	2.4 Policy Description Language

	3 Implementation Details
	3.1 Data Structures and Definitions
	3.2 Additional VMexit Handler
	3.3 Management of Policies
	3.4 Policy Code Generation

	4 Evaluation
	4.1 Effectiveness Evaluation
	4.2 Performance Evaluation

	5 Discussion and Future Work
	5.1 Extensibility Related Issues
	5.2 Insufficiencies and Improvement of Policy

	6 Related Work
	6.1 Hypervisor Based Security
	6.2 Application Sandbox

	7 Conclusion
	References

	Integrated Security Architecture for Virtual Machines
	1 Introduction
	2 Application Scenario
	2.1 Integrated Security Approach

	3 Security Architecture Overview
	3.1 Secure Hosting
	3.2 Secure Operation
	3.3 Secure Migration

	4 Implementation
	4.1 Anti-Virus Software Overview
	4.2 Attack Scenario

	5 Concluding Remarks
	References


	Session IV: Encryption and Key Management
	Generic Mediated Encryption
	1 Introduction
	1.1 Some Previous Solutions to the Key Revocation Problem
	1.2 Our Contribution

	2 Generic Mediated Encryption
	2.1 The Model
	2.2 Security
	2.3 Security Proof

	3 Implementation of GME
	3.1 Review on Pairings
	3.2 $GME_{BF}$
	3.3 Security Proof
	3.4 Boneh-Gentry-Hanburg (BGH) Scheme
	3.5 QR Assumption and Jacobi Symbols
	3.6 QAlgorithm
	3.7 $GME_{BGH}$
	3.8 Security Proof

	4 Conclusion
	References

	An Efficient Reconfigurable II-ONB Modular Multiplier
	1 Introduction
	2 Type II Optimal Normal Basis and Multiplication Operation
	3 II-ONB Modular Multiplication Algorithm
	3.1 Basis Conversion Theory
	3.2 II-ONB Modular Multiplication Algorithm Based on Basis Conversion

	4 Design of Reconfigurable II-ONB Modular Multiplier
	4.1 Reconfigurable Basis Conversion Circuit
	4.2 Reconfigurable Modular Multiplier Design

	5 Implementation and Performance Analysis
	5.1 Simulation and Synthesis
	5.2 Analysis and Comparison

	6 Conclusions
	References

	Public-Key Encryption Resilient to Linear Related-Key Attacks
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Complexity Assumptions
	2.2 Public-Key Encryption

	3 Modeling Related-Key Attacks
	3.1 Chosen-Ciphertext Attacks
	3.2 RKA Security

	4 An Efficient Construction without Pairings
	4.1 Related-Key Attacks on Cramer-Shoup Cryptosystem
	4.2 Our Construction
	4.3 Security
	4.4 Efficiency

	5 Conclusions
	References


	Session V: Security in Software and Machine Learning
	Clonewise – Detecting Package-Level Clones Using Machine Learning
	1 Introduction
	1.1 Motivation for Package-Level Clone Detection
	1.2 Motivation for Automated Approaches
	1.3 Generality
	1.4 Innovation

	2 Problem Definition and Our Approach
	2.1 Problem Definition
	2.2 Our Approach

	3 Package Clone Detection
	3.1 Shared Package Clone Detection
	3.2 Shared Package Clone Classification
	3.3 Embedded Package Clone Detection
	3.4 Classification Using Asymmetric Bagging

	4 Inferring Security Problems
	4.1 Use-Case of Clone Detection to Detect Vulnerabilities
	4.2 Automated Vulnerability Inference

	5 Results and Evaluation
	5.1 Clonewise Compute Cluster
	5.2 Establishing the Ground Truth for Training and Evaluation
	5.3 Accuracy of Shared Package Clone Detection
	5.4 Accuracy of Embedded Package Clone Detection
	5.5 Practical Package Clone Detection
	5.6 Vulnerability Detection
	5.7 Automated Vulnerability Detection
	5.8 Clonewise as a Web Service

	6 Related Work
	7 Future Work
	8 Conclusion
	References

	Automatic Polymorphic Exploit Generation for Software Vulnerabilities
	1 Introduction
	2 Overview of PolyAEG
	3 Dynamic Information Extraction
	4 Constraint Generation
	5 Exploit Generation
	5.1 Trampoline Instruction Chain Construction
	5.2 Exploit Construction

	6 Evaluation
	6.1 Method Validation
	6.2 Polymorphic Exploit Generation
	6.3 Performance Overhead

	7 Limitations and Future Work
	8 Related Work
	9 Conclusions
	References


	Session VI: Network and System Security Model
	A Novel Web Tunnel Detection Method Based on Protocol Behaviors
	1 Introduction
	1.1 Outline of Our Contributions
	1.2 Paper Organization

	2 Related Work
	3 Preliminaries
	3.1 HTTP Flow and HTTP Session
	3.2 Kernel Density Estimation

	4 Our Tunnel Detection Method
	5 Feature Extraction
	5.1 First-Order Features
	5.2 Packet Classification
	5.3 Second-Order Features

	6 Experiment
	6.1 Data Collection
	6.2 Results

	7 Conclusion
	References

	Salus: Non-hierarchical Memory Access Rights to Enforce the Principle of Least Privilege
	1 Introduction
	2 Attacker Model and Security Properties
	3 Overview of the Approach
	3.1 Compartments of Least Privilege
	3.2 Provided Services
	3.3 Life Cycle of a Compartmentalized Application
	3.4 Secure Communication

	4 Implementation
	4.1 Program Counter-Based Access Control
	4.2 System Call API
	4.3 Conflicting System Calls

	5 Evaluation
	5.1 Security Evaluation
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	References

	Scalable Security Model Generation and Analysis Using k-importance Measures
	1 Introduction
	2 Related Work
	3 A Network and Attack Models
	3.1 Network Settings and the Attack Scenario
	3.2 Computing k-importanceMeasures
	3.3 Ranking k2 important Number of Vulnerabilities in Hosts
	3.4 Generation of HARMs
	3.5 Security Evaluation

	4 Simulation Results
	4.1 Security Analysis Based on Host Importance
	4.2 Security Analysis Based on Vulnerability Importance

	5 Discussion
	5.1 Vulnerabilities without Security Metrics
	5.2 Categorised Vulnerability Ranking
	5.3 Network Features for k1 Selection
	5.4 Modelling Attackers Located Inside the Network
	5.5 Attack on Less Important Hosts and Vulnerabilities

	6 Conclusion
	References


	Session VII: Security and Privacy in Pervasive andUbiquitous Computing
	The B-Side of Side Channel Leakage: Control Flow Security in Embedded Systems
	1 Introduction
	2 Side Channel Leakage
	3 Control Flow Verification
	3.1 Control Flow Reconstruction
	3.2 Verifying the Reconstructed State Sequence

	4 Experimental Results
	4.1 Control Flow Reconstruction
	4.2 Verifying the Reconstructed State Sequence

	5 Conclusion
	References

	An e-payment Architecture Ensuring a High Level of Privacy Protection
	1 Introduction
	2 Security and Privacy Requirements of e-payment Systems
	3 Existing e-payment Architectures
	3.1 Introduction and Related Works
	3.2 Description of the 3D-Secure Protocol
	3.3 Privacy Analysis and Improvements of 3D-Secure

	4 TheNewe-paymentArchitecture
	5 Analysis of the Architecture
	5.1 Data Security and Authentication
	5.2 Privacy Analysis

	6 Conclusion
	References

	Unveiling Privacy Setting Breaches in Online Social Networks
	1 Introduction
	2 Related Work
	3 TheFacebookDataset
	4 Exploiting Privacy Setting Vulnerability
	4.1 Basic Attributes from Friends
	4.2 Basic Attributes from Wall and Photos
	4.3 Friends from Wall and Photos
	4.4 No Leaked Friends

	5 Evaluation
	5.1 Inferring Basic Attribute Values
	5.2 Inferring Friend List

	6 Discussion
	7 Conclusion
	References


	ATIS 2013: 4th International Workshop onApplications and Techniques in Information Security
	Securing a Web-Based Anti-counterfeit RFID System
	1 Introduction
	2 Web-Based Anti-counterfeit RFID System
	3 Security of WARS
	3.1 Asymmetric Cryptography
	3.2 Elliptic Curve Cryptography

	4 How Does WARS Work Using ECC?
	5 Practical Implication of WARS and ECC
	6 Conclusions and Future Work
	References

	Security Concerns and Remedy in a Cloud Based E-learning System
	1 Introduction
	2 From Traditional E-Learning Network to Cloud E-Learning
	3 Privacy and Security in E-Learning
	3.1 User Authorization and Authentication
	3.2 Entry Points
	3.3 Dynamic Nature
	3.4 Protection against Manipulation
	3.5 Confidentiality
	3.6 Integrity
	3.7 Availability
	3.8 Non-repudiation

	4 Security Concerns of Cloud Computing
	5 Cloud Computing Based Possible Attacks
	6 Proposed Identity Authentication in Cloud Based E-Learning
	7 Conclusion
	References

	Ensuring Data Integrity by Anomaly Node Detection during Data Gathering in WSNs
	1 Introduction
	2 Network Architecture Model
	3 Anomaly Node Detection Method
	4 Experimental Setup
	5 Experimental Results
	6 Conclusion and Future Works
	References

	(k − n) Oblivious Transfer Using Fully Homomorphic Encryption System
	1 Introduction
	2 Background and Related Work
	2.1 Types of Oblivious Transfer Protocol
	2.2 Fully Homomorphic Encryption System (FHES)

	3 Model Definition
	4 ProposedSolution
	4.1 Parameters and Initial Setup
	4.2 The Algorithm
	4.3 Flow Diagram
	4.4 Further Optimization

	5 Analysis
	6 Conclusion and Future Work
	References

	Detection of Android API Call Using Logging Mechanism within Android Framework
	1 Introduction
	2 Android
	2.1 Android Application
	2.2 Binder
	2.3 AIDL
	2.4 Android API

	3 Existing Android Malware and Detection Method
	3.1 Android Malware
	3.2 Static Analysis
	3.3 Dynamic Analysis

	4 Design of Record Method of Process Operation Using Logcat
	4.1 Record Method of Process Operation
	4.2 Abstract of Experiment
	4.3 Proposal Method
	4.4 Experimental Procedure
	4.5 Result
	4.6 Consideration

	5 Conclusion
	References

	Reversible Data Hiding Scheme Based on 3-Least Significant Bits and Mix Column Transform
	1 Introduction
	2 Related Works and Motivation
	3 Irreducible Polynomial Mathematics
	4 Our Proposed Approach
	4.1 Embedding Algorithm
	4.2 Extraction Algorithm
	4.3 The Proposed Transform

	5 Experimental Results and Discussion
	5.1 Experimental Setting
	5.2 Comparative Analysis
	5.3 Security of the Proposed Transform

	6 Conclusion and Future Work
	References


	Author Index



