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Abstract. Large-scale computational models have become common
tools for analyzing complex man-made systems. However, when cou-
pled with optimization or uncertainty quantification methods in order
to conduct extensive model exploration and analysis, the computational
expense quickly becomes intractable. Furthermore, these models may
have both continuous and discrete parameters. One common approach
to mitigating the computational expense is the use of response surface
approximations. While well developed for models with continuous pa-
rameters, they are still new and largely untested for models with both
continuous and discrete parameters. In this work, we describe and in-
vestigate the performance of three types of response surfaces developed
for mixed-variable models: Adaptive Component Selection and Shrinkage
Operator, Treed Gaussian Process, and Gaussian Process with Special
Correlation Functions. We focus our efforts on test problems with a small
number of parameters of interest, a characteristic of many physics-based
engineering models. We present the results of our studies and offer some
insights regarding the performance of each response surface approxima-
tion method.

1 Introduction

Large-scale computational models have become common tools for analyzing com-
plex man-made systems. We are particularly interested in engineering models
that have a small number of variables of interest but are characterized by compu-
tationally expensive equation solvers such as partial differential equation solvers.
Many methods for exploring such models with data and scenario uncertainties
are computationally expensive. One key to successfully mitigating the computa-
tional expense involves the construction of surrogates for the large-scale models.
A surrogate can take many forms, but in this context we mean a meta-model or
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response surface approximation built from a limited amount of data generated
by the computationally expensive model. The purpose of the surrogate model is
to increase the efficiency of analyses that require frequent model interrogations
such as optimization and uncertainty quantification.

When the models are computationally demanding, meta-model approaches to
their analysis have been shown to be very useful. For example, one standard
approach in the literature is to develop an emulator that is a stationary smooth
Gaussian process [13, 23, 25]. There are many good overview articles which
compare various metamodel strategies. For example, Storlie et al. compare var-
ious smoothing predictors and nonparametric regression approaches in [30, 31].
Simpson et al. provide an excellent overview not just of various statistical meta-
model methods but also approaches which use low-fidelity models as surrogates
for high fidelity models [27]. This paper also addresses the use of surrogates in
design optimization, which is a popular research area for computationally expen-
sive disciplines such as computational fluid dynamics in aeronautical engineering
design. Haftka and his students developed an approach which uses “ensembles”
of emulators or hybrid emulators [35, 36]. The advantage of these types of hy-
brid or ensembles of emulators is that better performance can be obtained. For
example, one can select the best surrogate for various features or responses, or
one can use weighted model averaging of surrogates.

The particular challenge we address in our work is that of assessing the ac-
curacy relative to computational cost of surrogates for models that have both
continuous and discrete variables. While historically the variables of interest
in engineering models have been continuous, there is a growing use of discrete
variables that represent modeling choices (alternative plausible models) and de-
sign choices (e.g. discrete choices of materials, components, or operational set-
tings). The major challenge in using surrogates for mixed variable problems is
in handling the discrete variables. Typically, in surrogate models constructed
over continuous variables (e.g. polynomial regression, splines, Gaussian process
models), there is the assumption of continuity: as a continuous variable varies
by a small amount, the response is assumed to vary smoothly. With discrete
variables, we do not necessarily have continuous behavior. For example, if a
discrete variable representing a design choice varies from choice A to choice B,
the system may respond in a fundamentally different manner. Thus, surrogate
modeling approaches generally do not explicitly allow for categorical input vari-
ables. One option is to order these categorical inputs in some way and treat
them as continuous variables when creating a metamodel. In some cases, this
can lead to undesirable and misleading results. The other option is categorical
regression. In this approach, a separate surrogate model is constructed over the
continuous variables for each possible combination of the discrete variable values.
This approach has the advantage that the surrogate is only constructed on the
continuous variables, conditional on a particular combination of discrete values.
However, it quickly becomes infeasible as one increases the number of discrete
variables and/or the number of “levels” per variable [18]. It is clear that a more
appropriate and efficient treatment of categorical inputs is needed.
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In this work, we consider three approaches in the literature for constructing
mixed variable surrogates. They have their roots in response surface modeling
for continuous problems and tractably incorporate discrete variables in a manner
that relies on some simplifications and additional assumptions. Our goal is to
empirically evaluate and compare the three methods in order to gain insight into
how problem characteristics influence the efficacy of each surrogate approach.

The remaining sections of this paper discuss the three approaches we eval-
uated and the outcome of our computational experiments. Section 2 outlines
three approaches for constructing mixed variable surrogates. Section 3 describes
our approach for testing and evaluating the three surrogate methods. Section 4
provides results of the surrogates on several test problems, and Section 5 sum-
marizes the outcome.

2 Mixed Surrogate Approaches

This section describes three classes of methods that we investigated to generate
surrogate models for mixed discrete-continuous variable problems. These three
classes of methods are:

ACOSSO: ACOSSO, the Adaptive COmponent Selection and Smoothing Op-
erator, is a specialized smoothing spline model [29]. It uses the smoothing
spline ANOVA decomposition to separate the underlying function into sim-
pler functional components (i.e., main effects, two-way interactions, etc.)
then explicitly estimates these functional components in one optimization.
The estimation proceeds by optimizing the likelihood subject to a penalty
on each of the functional components. Each component involving continuous
predictors has a penalty on its roughness and overall trend, each component
involving discrete predictors has a penalty on its magnitude (L2-norm), while
interaction components involving both discrete and continuous predictors re-
ceive a combination of these penalties.

Gaussian Processes with Special Correlation Functions: Gaussian pro-
cess models are powerful emulators for computer models. A Gaussian process
model is defined by its mean and covariance function. The covariance func-
tion specifies how the response between two points is related: the idea is that
points close together in input space will tend to have responses that are sim-
ilar. Typically, the covariance function is a function of the distance between
the points. We investigated a variety of covariance functions that repre-
sent the covariance between discrete points and that appropriate for mixed
variable problems, all developed in Qian et al. [20, 39]: the exchangeable
correlation (EC), the multiplicative correlation (MC), and the unrestricted
correlation function (UC). For comparison, we also looked at the Individual
Kriging (IK) model which involves constructing a separate Gaussian pro-
cess surrogate over the continuous variables for each combination of discrete
variables. This is similar to categorical regression.

TGP: TGP, the treed Gaussian Process model, is an approach which allows
different Gaussian process models (GPs) to be constructed on different par-
titions of the space [8, 9]. This approach naturally lends itself to discrete
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variables, where the partitioning can be done between different values or
sets of discrete variables. In TGP, the discrete or categorical variables are
converted to a series of binary variables. The binary variables are then what
are partitioned upon: they become the “nodes” of the tree [10].

2.1 Adaptive COmponent Selection and Shrinkage Operator
(ACOSSO)

The Adaptive COmponent Selection and Shrinkage Operator (ACOSSO) es-
timate [29] was developed under the smoothing spline ANOVA (SS-ANOVA)
modeling framework. As it is a smoothing type method, ACOSSO works best
when the underlying function is somewhat smooth. The type of splines we are us-
ing involve the minimization of an objective function involving a sum-of-squares
error term, similar to regression modeling. However, in the objective function
for the splines, there are additional terms which can be viewed as regularization
terms: these penalty terms help smooth the function and they also help perform
variable selection. In the ACOSSO implementation, there is a penalty on func-
tions of the categorical predictors. This penalty formulation provides a variable
selection and automatic model reduction: it encourages some of the terms in the
objective function to be zero, removing certain discrete variables or levels of dis-
crete variables from the formulation. To facilitate the description of ACOSSO,
we first describe the multiple smoothing spline, then introduce the treatment of
categorical predictors and the ACOSSO estimator.

Multivariate Smoothing Splines. Consider a vector of predictors x =
[x1, . . . , xI ]

′. Assume that the unknown function f to be estimated belongs to
2nd order Sobolev space S2 = {f : f, f ′ are absolutely continuous and f ′′ ∈
L2[0, 1]}. The simplest extension of smoothing splines to multiple inputs is the
additive model [12]. For instance, assume that

f ∈ Fadd = {f : f(x) =
I∑

i=1

gi(xi), gi ∈ S2}, (1)

i.e., f(x) =
∑I

i=1 gi(xi) is a sum of univariate functions. Let xn =
[xn,1, . . . , xn,I ]

′ be the nth observation of a multivariate predictor x, n =
1, . . . , N , and yn = f(xn) + εn. The additive smoothing spline estimate of f
is the minimizer of

1

n

N∑
n=1

[yn − f(xn)]
2 +

I∑
i=1

λi

∫ 1

0

[g′′i (xi)]
2
dxi (2)

over f ∈ Fadd. The minimizer of the expression in Eq. (2), f̂(x) =
∑I

i=1 ĝi(xi),
takes the form of a natural cubic spline for each of the functional components
ĝi. Notice that there are I tuning parameters (λi) for the additive smoothing
spline. These tuning parameters λi control the trade-off in the resulting esti-
mate between smoothness and fidelity to the data; large values of λ will result
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in smoother functions while smaller values of λ result in rougher functions that
more closely match the data. Generally, λi is chosen by generalized cross val-
idation (GCV) [6] or m-fold CV [14]. A generalization to two-way and higher
order interaction functions can also be achieved in a similar manner; see [29]
for the full details of including interactions in the SS-ANOVA framework. The
minimizer of the expression in Eq. (2) can be obtained in an efficient manner
via matrix algebra using results from reproducing kernel Hilbert space (RKHS)
theory; for details see [37] or [11].

Discrete Predictors. A large advantage to the SS-ANOVA framework is the
ability to handle categorical predictors with relative ease. To facilitate the discus-
sion, we generalize our notation to the following. Assume that x = [x1, . . . , xI ]

′

are continuous on [0, 1] as previously in this section, while z = [z1, . . . , zJ ]
′ are

unordered discrete variables, and let the collection of the two types of predictors
be denotedw = [x′, z′]′. For simplicity, assume zj ∈ {1, 2, . . . , bj} for j = 1, . . . , J
where the ordering of the integers representing the groups for zj is completely
arbitrary. For notational convenience, let Gi = S2 for i = 1, . . . , I. Also let the
class of L2 functions on the domain of zj (i.e., {1, 2, . . . , bj}) be denoted as Hj

for j = 1, . . . , J .
For simplicity, we can once again consider the class of additive functions,

Fadd = {f : f(w) =

I∑
i=1

gi(xi) +

J∑
j=1

hj(zj), gi ∈ Gi, hj ∈ Hj}. (3)

Let wn = [xn,1, . . . , xn,I , zn,1, . . . , zn,J ]
′ be the nth observation of a multivariate

predictor w. The traditional additive smoothing spline is then the minimizer of

1

N

N∑
n=1

[yn − f(wn)]
2 +

I∑
i=1

λi

∫ 1

0

[g′′i (xi)]
2
dxi (4)

over f ∈ Fadd. Notice that in the traditional smoothing spline in (4) there is no
penalty term on the functions of the categorical predictors (hj).

Generalizing to the ACOSSO Estimate. The COmponent Selection and
Shrinkage Operator (COSSO) [15] penalizes on the sum of the semi-norms in-
stead of the squared semi-norms as in Eq. (4). A semi-norm is a norm which
can assign zero to some nonzero elements of the space. In this case, all functions
with zero second derivative (i.e., linear functions) will have zero penalty (i.e.,
semi-norm equal to zero). For ease of presentation, we will continue to restrict
attention to the additive model. However, all of the following discussion applies
directly to the two-way (or higher) interaction model as well.

The additive COSSO estimate, f̂(w) =
∑
ĝi(xi) +

∑
ĥj(zj), is given by the

function f ∈ Fadd that minimizes
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1

N

N∑
n=1

[yn − f(wn)]
2 + λ1

I∑
i=1

{[∫ 1

0

g′i(xi)dxi

]2
+

∫ 1

0

[g′′i (xi)]
2
dxi

}1/2

+

λ2

J∑
j=1

⎧⎨
⎩

bj∑
zj=1

h2j(zj)

⎫⎬
⎭

1/2

. (5)

There are four key differences in the penalty term in Eq. (5) relative to the addi-

tive smoothing spline of Eq. (4). First, there is an additional term
[∫ 1

0
g′i(xi)dxi

]2
in the penalty for continuous predictor functional components, which can also
be written [gi(1)− gi(0)]

2
, that penalizes the magnitude of the overall trend of

the functional components gi that correspond to continuous predictors. Second,
there is now a penalty on the L2 norm of the hj that correspond to the cate-
gorical predictors. Third, in contrast to the squared semi-norm in the additive
smoothing spline, each term in the sum in the penalty in Eq. (5) can be thought
of as a semi-norm over functions gi ∈ Gi or hj ∈ Hj , respectively, (only constant
functions have zero penalty). This encourages some of the terms in the sum to
be exactly zero. Fourth, the COSSO penalty only has two tuning parameters
(three if two-way interactions are included), which can be chosen via GCV or
similar means.

Finally, ACOSSO is a weighted version of COSSO, where a rescaled semi-
norm is used as the penalty for each of the functional components. Specifically,
we select as our estimate the function f ∈ Fadd that minimizes

1

N

N∑
n=1

[yn − f(wn)]
2
+ λ1

I∑
i=1

vi

{[∫ 1

0

g′i(xi)dxi

]2
+

∫ 1

0

[g′′i (xi)]
2
dxi

}1/2

+

λ2

J∑
j=1

wj

⎧⎨
⎩

bj∑
zj=1

h2j(zj)

⎫⎬
⎭

1/2

, (6)

where the vi, wj , 0 < vi, wj ≤ ∞, are weights that can depend on an initial

estimate of f which we denote f̃ . Our implementation of ACOSSO takes f̃ to
be the COSSO estimate of Eq. (5), in which λ1 and λ2 are chosen by the GCV
criterion. We then use

vi =

[∫ 1

0

g̃2i (xi)dxi

]−1

for i = 1, . . . , I

wj =

⎛
⎝ 1

bj

bj∑
zj=1

h̃2j(zj)

⎞
⎠

−1

for j = 1, . . . , J. (7)

This allows for more flexible estimation (less penalty) on the functional com-
ponents that show more signal in the initial estimate. As shown in [29], this
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approach results in better performance on many test cases and more favorable
asymptotic properties than COSSO.

The minimizer of the expression in Eq. (6) is obtained using an iterative
algorithm and a RKHS framework similar to that used to find the minimizer
of Eq. (4), see [29] for more details on the computation of the solution. The
two-way interaction model is used in the results of Section 4.

2.2 Gaussian Processes for Models with Quantitative and
Qualitative Factors

This section describes a computationally efficient method developed in Zhou,
Qian, and Zhou [39] for fitting Gaussian process models with quantitative and
qualitative factors proposed in Qian, Wu, and Wu [20]. Consider a computer
model with inputs w = (xt, zt)t, where x = (x1, . . . , xI)

t consists of all the
quantitative factors and z = (z1, . . . , zJ)

t consists of all the qualitative factors
with zj having bj levels. The number of the qualitative levels of z is given by

m =
J∏

j=1

bj . (8)

Throughout, the factors in z are assumed to be qualitative but not ordinal.
Gaussian process models with ordinal qualitative factors can be found in Section
4.4 of [20]. The response of the computer model at an input value w is modeled
as

y(w) = f t(w)β + ε(w), (9)

where f(w) = [f1(w), . . . , fp(w)]
t
is a set of p user-specified regression functions,

β = (β1, . . . , βp)
t is a vector of unknown coefficients and the residual ε(w) is a

stationary Gaussian process with mean 0 and variance σ2. The model in (9)
has a more general form than the standard Gaussian process model with only
quantitative factors x given by

y(x) = f t(x)β + ε(x), (10)

where f(x) = [f1(x), . . . , fp(x)]
t
is a set of p user-specified regression functions

depending on x only, β = (β1, . . . , βp)
t is a vector of unknown coefficients, and

the residual ε(x) is a stationary Gaussian process with mean 0, variance σ2 and
a correlation function for x.

For m in (8), let c1, . . . , cm denote the m qualitative levels of z and let w =
(xt, cq)

t (q = 1, . . . ,m) denote any input value. For two input values w1 =
(xt

1, c1)
t and w2 = (xt

2, c2)
t, the correlation between y(w1) and y(w2) is defined

to be
cor [ε(w1), ε(w2)] = τc1,c2ϕ(x1,x2), (11)
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where ϕ is the correlation function for the quantitative factors x in the model
(9) and τc1,c2 is the cross-correlation between the qualitative levels c1 and c2.
The choice of ϕ is flexible. We use a Gaussian correlation function [25]

ϕ(x1,x2) = exp

{
−

I∑
i=1

φi(x1i − x2i)
2

}
(12)

but other correlation functions such as Wendland’s compactly supported correla-
tion function [38] may also be used.

The unknown roughness parameters φi in (12) will be collectively denoted as
Φ = {φi}. Them×mmatrixT = {τr,s}, with entries being the cross-correlations
among the qualitative levels, must be positive definite with unit diagonal elements
in order for (11) to be a valid correlation function. This condition can be achieved
in two ways. One way is to use the semi-definite programming techniques with
positive definiteness constraints [20], which are computationally intensive. [39]
provides a more efficient way for modeling T by using the hypersphere decom-
position, originally introduced for modeling correlations in financial applications
[21]. This method first applies a Cholesky-type decomposition to T

T = LLt, (13)

where L = {lr,s} is a lower triangular matrix with strictly positive diagonal
entries. Then, let l1,1 = 1 and for r = 2, . . . ,m, consider a spherical coordinate
system

⎧⎪⎨
⎪⎩
lr,1 = cos(θr,1),

lr,s = sin(θr,1) · · · sin(θr,s−1) cos(θr,s), for s = 2, . . . , r − 1,

lr,r = sin(θr,1) · · · sin(θr,r−2) sin(θr,r−1),

(14)

where θr,s ∈ (0, π). Denote by Θ all θr,s involved in (14).
Suppose that the computer model under consideration is conducted at n dif-

ferent input values, Dw = (w0
1, . . . ,w

0
n), with the corresponding response values

denoted by y = (y1, . . . , yn)
t. The parameters in model (9) to be estimated are

σ2, β, Φ and Θ. The maximum likelihood estimators of these parameters are
denoted by σ̂2, β̂, Φ̂ and Θ̂, respectively. The log-likelihood function of y, up
to an additive constant, is

−1

2

[
n log(σ2) + log(|R|) + (y − Fβ)tR−1(y − Fβ)/σ2

]
, (15)

where F =
[
f(w0

1), . . . , f(w
0
n)
]t

is an n×pmatrix and R is the correlation matrix

with (i, j)th entry cor
[
ε(w0

i ), ε(w
0
j )
]
defined in (11). Given Φ and Θ, β̂ and σ̂2

are
β̂ = (FtR−1F)−1FtR−1y, (16)

and
σ̂2 = (y − Fβ̂)tR−1(y − Fβ̂)/n. (17)
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Plugging (16) and (17) into (15), Φ̂ and Θ̂ can be obtained as

(Φ̂, Θ̂) = argmin
Φ,Θ

{n log(σ̂2) + log(|R|)}. (18)

The optimization problem in (18) only involves the constraints that θr,s ∈
(0, π) for Θ̂ and φi ≥ 0 for Φ̂. It can be solved by modifying the DACE toolbox
in Matlab [16] to incorporate the reparameterization in (14). A small nugget
term is added to the diagonals of R to mitigate potential singularity. The fitted
model can be used to predict the response value y at any untried input value.
Given σ̂2, β̂, Φ̂ and Θ̂, the empirical best linear unbiased predictor (EBLUP) of
y at any input value w0 is

ŷ(w0) = f t(w0)β̂ + r̂t0R̂
−1(y − Fβ̂), (19)

where r̂0 =
{
cor

[
ε(w0

0), ε(w
0
1)
]
, . . . , cor

[
ε(w0

0), ε(w
0
n)
]}t

and R̂ is the estimated
correlation matrix of y. Similarly to its counterpart for the Gaussian process
model in (10) with quantitative factors, the EBLUP in (19) smoothly interpolates
all the observed data points. Features of the function ŷ(w) can be visualized by
plotting the estimated functional main effects and interactions.

In this work, we consider four methods for building Gaussian process models
for a computer experiment with qualitative and quantitative factors.

– The individual Kriging method, denoted by IK. This method fits data as-
sociated with different qualitative levels separately using distinct Gaussian
process models for the quantitative variables in (10).

– The exchangeable correlation method for the qualitative factors, denoted by
EC. It assumes the cross-correlation τr,s in (11) to be

τr,s = c (0 < c < 1) for r �= s.

– The multiplicative correlation method for the qualitative factors, denoted by
MC. It assumes the cross-correlation τr,s in (11) to be

τr,s = exp{−(θr + θs)I[r �= s]} (θr, θs > 0).

– The method proposed in (13) and (14) with an unrestricted correlation func-
tion for the qualitative factors, denoted by UC.

2.3 Treed Gaussian Processes (TGP)

In practice, many situations involving the emulation of computer models call for
more flexibility than is reasonable under the common assumption of stationar-
ity. However, a fully nonstationary model may be undesirable as well, because
of the vastly increased difficulty of performing inference due to a nonstation-
ary model’s complexity. A good compromise can be local stationarity. A treed
Gaussian process (TGP) [8] is designed to take advantage of local stationarity.
It defines a treed partitioning process on the predictor space and fits distinct,
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but hierarchically related, stationary GPs to separate regions at the leaves. The
treed form of the partition makes the model easily interpretable: having the
treed partitions with separate GPs makes it easy to identify the GP model in
each branch. At the same time, the partitioning results in smaller matrices for
inversion than would be required under a standard GP model and thereby pro-
vides a nonstationary model that actually facilitates faster inference. Using a
fully Bayesian approach allows for model averaging across the tree space, result-
ing in smooth and continuous fits when the data are not naturally partitioned.
The partitions are fit simultaneously with the individual GP parameters using
reversible jump Markov chain Monte Carlo, so that all parts of the model can be
learned automatically from the data. The posterior predictive distribution thus
takes into account uncertainty from the data, from the fitted parameters, and
from the fitted partitions.

TGP inherits its partitioning scheme from simpler treed models such as CART
[3] and BCART (for Bayesian CART) [5] . Each uses recursive binary splits so
that each branch of the tree in any of these models divides the predictor space in
two, with multiple splits allowed on the same variable for full flexibility. Consider
predictors x ∈ RP for some split dimension p ∈ {1, ..., P} and split value v,
points with xp ≤ v are assigned to the left branch, and points with xp > v
are assigned to the right branch. Partitioning is recursive and may occur on
any input dimension p, so arbitrary axis-aligned regions in the predictor space
may be defined. Conditional on a treed partition, models are fit in each of the
leaf regions. In CART the underlying models are “constant” in that only the
mean and standard deviation of the real-valued outputs are inferred. TGP fits
a Gaussian process Zν in each leaf ν using the following hierarchical model:

Zν |βν , σ
2
ν ,Kν ∼ Nnν (Fνβν , σ

2
νKν) β0 ∼ Nm(μ,B)

σ2
ν ∼ IG(ασ/2, qσ/2)

βν |σ2
ν , τ

2
ν ,W,β0 ∼ Nm(β0, σ

2
ντ

2
νW) W−1 ∼W ((ρV)−1, ρ)

τ2ν ∼ IG(ατ/2, qτ/2) (20)

where Fν = (1,Xν) contains the data in that leaf. N , IG, and W are the
Multivariate Normal, Inverse–Gamma, and Wishart distributions, respectively.
Kν is the separable power family covariance matrix with a nugget.

Classical treed methods, such as CART, can cope quite naturally with categor-
ical, binary, and ordinal inputs. For example, categorical inputs can be encoded
in binary, and splits can be proposed with rules such as xp < 1. Once a split
is made on a binary input, no further process is needed, marginally, in that
dimension. Ordinal inputs can also be coded in binary, and thus treated as cate-
gorical, or treated as real-valued and handled in a default way. This formulation
presents an alternative to that of Section 2.2. While that formulation allows a
powerful and flexible representation of qualitative inputs in the model, it does
not allow for nonstationarity. TGP allows the combination of qualitative inputs
and nonstationary modeling.
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Rather than manipulate the GP correlation to handle categorical inputs, the
tree presents a more natural mechanism for such binary indicators. That is, they
can be included as candidates for treed partitioning but ignored when it comes
to fitting the models at the leaves of the tree. The benefits of removing the
Booleans from the GP model(s) go beyond producing full-rank design matri-
ces at the leaves of the tree. Loosely speaking, removing the Boolean indicators
from the GP part of the treed GP gives a more parsimonious model. The tree is
able to capture all of the dependence in the response as a function of the indi-
cator input, and the GP is the appropriate nonlinear model for accounting for
the remaining relationship between the real-valued inputs and outputs. Further
advantages to this approach include speed (a partitioned model gives smaller
covariance matrices to invert) and improved mixing in the Markov chain when a
separable covariance function is used. Finally, the treed model allows the practi-
tioner to immediately ascertain whether the response is sensitive to a particular
categorical input by tallying the proportion of time the Markov chain visited
trees with splits on the corresponding binary indicator. A much more involved
Monte Carlo technique (e.g., following [24]) would otherwise be required in the
absence of the tree. Here we use the implementation developed by Broderick and
Gramacy [4].

3 Testing and Assessment Approach

In order to evaluate and compare the three mixed-variable surrogate modeling
approaches, we established a common experimental strategy that can be consis-
tently applied to all of them. There are three primary components to which we
paid particular attention. They are the test functions, the sample design used
for surrogate construction, and the comparison metrics. Each is described in the
following subsections.

3.1 Test Functions

In order to consolidate a common set of test functions on which to evaluate
the different surrogate approaches, we developed a generic C++ testbed. It was
designed and developed to meet the following requirements:

– ability to control the number of discrete variables and the number of levels
per discrete variable in order to test method scalability with respect to these
features,

– ability to control problem complexity in order to evaluate performance on a
variety of problems,

– extendable in order to easily add new functions, and
– easy to use in multiple computing environments across all surrogate software

packages.

The testbed include both defined hard-wired functions and randomly-
generated polynomial functions. The latter is based on work by McDaniel
and Ankenman [17]. We refer the reader to [33] for more details on the
implementation.
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3.2 Sample Design

The accuracy of a response surface surrogate can be affected by the number of
data points used to build it as well as how those points are chosen. Therefore,
we vary the number and design of build points in our numerical experiments. All
designs are based on Latin Hypercube designs (LHD) of the parameter space.
We define n to be the number of LHD runs per qualitative level of the categorical
variables and m to be the number of discrete levels (or combinations of levels).
The total number of points used to build each surrogate is mn. We consider
n = 10, 20, 40, 80, and the sample design for each training set is constructed in
three different ways.

Standard Latin Hypercube. In this approach, one Latin Hypercube design
of size mn is generated over all of the continuous parameters. It is then
randomly split it into m groups of n samples, and each group is assigned a
qualitative level of the categorical variables.

k Latin Hypercube. In this approach, a separate Latin Hypercube design is
generated for every given level of categorical variables. That is, we generate
m independent Latin hypercube designs, each of size n and corresponding
to one qualitative level.

Sliced Latin Hypercube. This approach is based on recent work by Qian [19].
This design is a Latin Hypercube for the continuous factors and is sliced
into groups of smaller Latin Hypercube designs associated with different
categorical levels. In this case, we generate a sliced Latin hypercube design
with m slices, where each slice of n runs corresponds to one qualitative level.

Because of the randomness associated with the LHS samples, we generate 10
replicate training sets for each combination of n and design type.

3.3 Comparison Metric

Evaluating the performance of computational methods can be challenging, par-
ticularly with regard to the accuracy of the method. This is because the accuracy
required for different applications of the method can vary. In this study, our pri-
mary focus is on gaining an understanding of the accuracy of mixed variable
surrogates relative to each other, so we use a relatively fine-grained metric. In
particular, we use mean squared error between surrogate predictions and true
function values over a set of given points. For every replication of a given n and
training design type, the mean squared errors (MSE) are calculated based on a
testing set using a Latin hypercube design with 200 samples for each qualitative
level. We then compare the mean and spread of the errors. Lower values of these
quantities constitute better performance.

4 Results

We present selected results of our evaluation of the surrogate approaches dis-
cussed in Section 2. Specifically, we compared the results of TGP, ACOSSO,
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and the Gaussian process model with the various special correlation functions.
Generally, we found that sample design type (standard Latin Hypercube, kLHD,
or sliced LHD) did not have a large effect on the MSE. Thus, we show only the
results using the sliced LHD. We applied these different surrogate methods to
a set of test functions to be described and compared the results over different
training set sizes.

4.1 Test Function 2

The first function we considered in our numerical experiments has one categorical
variable with five levels. It also two continuous variables, both of which fall
between the values of 0 and 1. This function has regions where the responses at
the different categorical levels are very similar. This will allow us to evaluate how
well the different surrogate approaches can resolve the different discrete levels.

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(2πx3 − π) + 7 sin2(2πx2 − π) if x1 = 1
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 12.0 sin(2πx3 − π) if x1 = 2
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 0.5 sin(2πx3 − π) if x1 = 3
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 8.0 sin(2πx3 − π) if x1 = 4
sin(2πx3 − π) + 7 sin2(2πx2 − π) + 3.5 sin(2πx3 − π) if x1 = 5

Fig. 1. Test Function 2

Figures 2-3 give the boxplots of the MSEs of the four methods for n = 10, 20.
The Y axis is the mean squared error (MSE) of the surrogate construction. The
Gaussian correlation function in (12) for the quantitative factors is used in the
IK, EC, MC and UC methods. Note that the Y-axis scale is different on these
figures. Ideally, it would be nice to see the MSE plotted on the same scale so
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that it is easy to see the decrease in error as a function of the number of training
samples. However, the MSE varied so dramatically for some of these results that
keeping an MSE scale to allow for plotting maximum MSE values would result
in the reader not seeing the differences in situations where the MSE was low.

Overall, ACOSSO does very well on this function and outperforms the other
methods, especially at the smaller sample levels of n = 10 and n = 20. We
expect this is because the structure of the ACOSSO surrogate maps naturally
to separable functions such as this one. For the four GP correlation schemes, the
EC, MC and UC methods outperform the IK method.

Fig. 2. Test Function 2. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 10 using the sliced LHD scheme.

In summary for Test Function 2: ACOSSO performed the best overall, the
GP variations with IK, EC, MC and UC methods also performed well.

4.2 Goldstein-Price

The second function we considered is the Goldstein-Price function. It has one
continuous variable and one discrete variable. The discrete variable, x1, can take
on the values of −2, 0, and 2. The continuous variable, x2, ranges between the
values of −2 and 2. This function varies by five orders of magnitude over the
domain we chose, so we performed the surrogate construction in log space and
the error is presented in log space.

f(x) = (1 + (x1 + x2 + 1)2 · (19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22))·
(30 + (2x1 − 3x2)

2 · (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22))
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Fig. 3. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC and UC methods
with n = 20 using the sliced LHD scheme

Fig. 4. Goldstein Price Function
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Figures 5-6 give the boxplots of the MSEs of the four methods for n =
10, 20, 40. In these figures, the Y axis is the mean squared error of the sur-
rogate in log space. For the Gaussian process model, the four variations of IK,
EC, MC and UC methods all used the compact support Wendland correlation
function. For the Goldstein-Price function, the compactly supported correlation
performed better than the Gaussian correlation function.

Overall, the variations of the Gaussian process model do very well on this
function. ACOSSO also performs well, and the mean MSE from ACOSSO is
close to the mean from the various GP methods. However, the variability of
the ACOSSO results is slightly larger, as shown in Figures 5-6. Note that TGP
has larger MSE at all sample levels. However, when we performed the surrogate
construction in the original space without taking the logarithm of the Goldstein-
Price function, TGP outperformed the other methods. This is likely due to the
ability of TGP to identify different regions of the space with different properties
(e.g. the scale of the Goldstein-Price function is much smaller in the center of
the domain than at the edges of the domain we are using for this case study).

Fig. 5. Goldstein-Price. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 10 using the sliced LHD scheme.

4.3 Fourth Order Polynomial

Using the polynomial generator, we randomly generated a 19-term fourth order
polynomial. It has four parameters, two of which are continuous and two of
which are discrete. The x3 and x4 are continuous variables that fall between 0
and 100, and x1 and x2 are discrete variables that have three levels, namely 20,
50, and 80. The polynomial is given by the following:
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Fig. 6. Goldstein-Price. Boxplots of the MSEs for the TGP, ACOSSO, IK, EC, MC
and UC methods with n = 20 using the sliced LHD scheme.

f(x) = 53.3108+ 0.184901x1 − 5.02914 · 10−6x31 + 7.72522 · 10−8x41 −
0.0870775x2 − 0.106959x3 + 7.98772 · 10−6x33 + 0.00242482x4 +

1.32851 · 10−6x34 − 0.00146393x1x2 − 0.00301588x1x3 −
0.00272291x1x4 + 0.0017004x2x3 + 0.0038428x2x4 − 0.000198969x3x4 +

1.86025 · 10−5x1x2x3 − 1.88719 · 10−6x1x2x4 + 2.50923 · 10−5x1x3x4 −
5.62199 · 10−5x2x3x4

The results for the fourth order polynomial are shown in Figures 7-8. These
figures show that the Gaussian processes with the various correlation functions
such as EC, MC, etc. perform well. Interestingly, ACOSSO does not seem to
improve, even as the size of training set increases. That is, the average MSE for
ACOSSO with n = 10 is 1.5, while the average MSE for ACOSSO with n = 80
is 1.4. In contrast, the other approaches all improve the MSE by eight orders of
magnitude. We hypothesize that ACOSSO is struggling when there is significant
interaction between variables. In particular, it is trying to construct its response
as the aggregation of separable functions which may not capture the interactions
well.
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Fig. 7. Fourth-order Polynomial. Boxplots of the MSEs for the TGP, ACOSSO, IK,
EC, MC and UC methods with n = 10 using the sliced LHD scheme.

Fig. 8. Fourth-order Polynomial. Boxplots of the MSEs for the TGP, ACOSSO, IK,
EC, MC and UC methods with n = 80 using the sliced LHD scheme.
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5 Summary

This paper investigated three main classes of surrogate methods which can han-
dle “mixed” discrete and continuous variables: adaptive smoothing splines, Gaus-
sian processes with special correlation functions, and Treed Gaussian processes.
We chose test problems which were challenging but tractable for repeated com-
parison runs. The results presented are representative of the extensive compar-
isons we performed, varying the number of build points used in the surrogate
construction, varying the sample designs used, and building multiple surrogates
of a given type so that we could compute statistics of the response to give fair
comparisons (e.g. so we would not be misled by constructing only one surrogate
on one set of build points).

Overall, all methods appear viable for small numbers of categorical variables
with a few levels, and we were able to gain some general insights across the
wide range of studies performed. ACOSSO and the Gaussian processes with
special correlation functions generally performed well. ACOSSO performed best
for separable functions, especially at small training set sizes. This is a particu-
larly valuable trait, as computational expense usually prevents large training set
sizes. When there are significant interactions between discrete and continuous
parameters, as in the fourth-order polynomial, ACOSSO performs poorly even
with a larger number of training points (40 or 80). Both results are expected be-
cause ACOSSO is constructed over separable functions, and its performance may
degrade somewhat when significant interactions between variables are present.
The GP with special correlation functions appears the most consistent of all the
methods. However, that approach was the most sensitive to build design and did
not perform as well with a plain LHD design, whereas ACOSSO and TGP were
not significantly affected by the design. TGP success depends on being able to
identify splits where individual GPs work well in separate parts of the domain.
TGP performs well on poorly scaled functions, but we found it does not perform
well when the continuous variables are not predictive for certain combinations
of categorical variable levels. These insights will allow us to move forward with
applying these surrogate methods to computational analysis problems for which
they are best suited.
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