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Abstract This paper presents a data mining method for analyzing historical con-
figuration data providing a number of opportunities for improving mass custom-
ization capabilities. The overall objective of this paper is to investigate how specific
quantitative analyses, more specifically the association rule Apriori, can support the
development within the three fundamental mass customization capabilities. The
results of the Apriori analysis can be utilized for improving the configuration process
by introducing soft constraints and consolidating the product structure by joining
components or modules and finally for improving production planning and control.
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1 Introduction

In any company, it is essential to offer products which match the needs and desires
of customers to achieve sales and profit. This is true for mass producers as well as
mass customizers; however, in mass customization, this issue is somewhat more
complex than mass production due to a much higher variety and a more complex
product structure. As pointed out by Salvador et al., mass customizers need three
fundamental capabilities to be successful: (1) solution space development—
identifying the attributes along which customer needs diverge, (2) robust process
design—reusing or recombining existing organizational and value chain resources
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to fulfill a stream of differentiated customer needs, and (3) choice navigation—
supporting customers in identifying their own solutions while minimizing com-
plexity and the burden of choice [1, 2].

To support companies in developing their capabilities as mass customizers,
some research has focused on assessing the fundamental capabilities, to evaluate
within which areas the companies should strengthen their efforts. All three capa-
bilities relate strongly to the product variety, which is also the main element which
differentiates mass customization from other business strategies. This implies that
tools and methods for continuously assessing, adjusting, and communicating the
product variety are needed in order to improve the three capabilities. Mass cust-
omizers often utilize product configuration software for implementing a choice
navigation process. A product configuration is a piece of software which allows
customers or sales people to configure a product from a set of predefined variety.
During a configuration process, a large amount of data are generated. These data
can be utilized for different kinds of analyses with the purpose of improving per-
formance within the three fundamental capabilities; Salvador et al. [3] address this
specific as one of several approaches to achieve mass customizing capabilities. The
data generated by a product configuration may include the following kind of data:

• Information about the customer
• Selected product options, e.g., parametric dimensions, optional modules, colors,

and functional requirements.
• BOM information, i.e., specific components for manufacturing the product and

quantities
• Sales process and manufacturing costs
• Lead times, quality data, etc.

The overall objective of this paper is to investigate how specific quantitative
analyses, more specifically the association rule Apriori, can support the develop-
ment within the three fundamental mass customization capabilities.

2 State of the Art

Data mining and association rules are a well-known field and have seen some
application in the area of mass customization [4]. The data mining methods
applied in this research have similarly been used in the domain of mass custom-
ization by among others: Geng et al. [5], Hong et al. [6], and Zhou et al. [7].
However, this paper contains two novel contributions compared with the current
state of research. First, it presents a specific case study where the number of
association rules is studied as a function of the support and confidence levels
chosen. Second, it suggests a method to exploit this knowledge to choose (in the
specific case) a reasonable combination of the complexity of association rules and
support and confidence levels.
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3 Method

The paper uses the association rule Apriori, which is a widely used data mining
rule [8]. The Apriori association rule is based on determining two parameters:
confidence and support. Support is ‘‘the ratio of the number of transactions that
contain the item set to the total number of transactions’’ [8], so support is the
indicator for the frequency with which a certain combination occurs.

Confidence is the support for a given combination (e.g., A ? B) divided by the
number of occurrences of A. So high support indicates a frequent occurrence of a
given combination (A ? B), while high confidence indicates that, e.g., A often is
found with B. So the confidence becomes a proxy for the likelihood of observing
B given A.

Figure 1 illustrates the different levels of complexity of association rules
defined and addressed in this research. Where the most simple association rule
assumes that lack of input leads to A occurring, the next level assumes that if
A occurs, B occurs with a given support and confidence and so forth. Note that
links are unidirectional, and thus, A leads to B does not imply that B leads to A. In
the context of mass customization, these complexities can be directly related to the
configuration choices or bill-of-material of the configured products. As an example
assume that customers choosing to use component A in their configuration also
chooses with some confidence and support to include component B. Of these
complexities of rules II–IV are investigated in this research to limit the scope.

This paper investigates two issues:

1. How the complexity of the association rules influences the number of rules that
can/should be taken into account.

2. How the support and confidence influence the number of rules at a given
complexity level of associations and compared to a higher level of complexity,
i.e., investigate what is driving increases in number of rules, confidence levels,
and/or support levels.

The resulting method investigates how complex a solution space is and how
difficult it can be to, e.g., guide a customer through the customization process. The
first point is investigated through identification of the number of additional rules
created through adding a level of complexity at given level of confidence and
support. The second point is investigated through ANOVA with confidence and
support levels as independent variables and the number of rules and the factorial
increase in the number of rules as dependent variables.

Fig. 1 An illustration of the
complexity of the mining
rules and their definition in
this paper
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The experimental setup is as follows: Confidence and support are varied from
0.25 to 1.00 in steps of 0.05, and all combinations of confidence and support levels
for rule complexity II–IV are investigated. This gives 16 9 16 9 3 (16 confidence
levels 9 16 support levels 9 3 complexity levels) = 768 investigations that are
carried out.

4 Results

The studied case contains 180 unique orders with 178 bill-of-material parameters
that vary in inclusion/exclusion of a configured product. BOM items always
included have been removed from the study, so that only BOM items that are
actually configured are included. The method is implemented and tested in the
open source software R using the package arules [9].

The results of these investigations on the case data are shown in Fig. 2. From
Fig. 2, it is shown that the number of rules increases from in thousands, to the
hundreds of thousands and to millions as one goes from a complexity of rules of II,
to III and III to IV, respectively. A simple experiment of adding a further level of
complexity to the rules indicates that tens of millions of additional rules are
created by adding this complexity. This underlines that the even a limited number
of orders can contain a very large number of association rules, when the com-
plexity of these rules increases from simple rules (i.e., A ? B) to more compli-
cated rules.

By using ANOVA analysis, treat support and confidence levels as independent
variables and the logarithmic number of rules (due to exponential behavior of the

Fig. 2 First row: the logarithmic increase in the number of rules when going from one
complexity level of rules to the next. Second row: factorial increase in complexity from one
complexity level to another
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number of rules) and the factorial increase in the number of rules as dependent
variables. The best fitted models are given in Table 1.

It should be noted that in the case of the factorial increase from going from II to
III and from II to IV in the complexity of the rules, the interaction between support
and confidence levels is in fact significant. However, removing the interaction only
lowers R2 from 0.77 to 0.76, so the interaction has limited explanatory value and
has been excluded. From the R2 and adjusted R2 values shown in Table 1, it is
clear that a large part of variation in the factorial increase in the number of rules
and the actual logarithmic values of the number of rules can be explained by a
combination of the support and confidence levels.

For all three levels of complexity of association rules, the support level is the
most significant variable in determining the number of rules created by using the
association rules. In general, the analysis shows that the higher the support (i.e.,
the higher the frequency of occurrence), the lower the number of rules. This seems
intuitively correct and can indicate a number of issues for the case. First, as the
number of association rules is quite low when support is 0.90 or above (for II–IV,
respectively, 117–545, 1,675–4,987, and 11,886–26,615, depending on the confi-
dence level), the number of fixed BOM combinations with high use frequencies is
low (taking 178 BOM items into account). Second, when support levels are low
(0.25), the number of rules increases dramatically (for II–IV, respectively,
904–3,322, 42,315–92,583, and 989,015–1,676,487, depending on the confidence
level). This implies that there are in fact a very large number of BOM combina-
tions that are frequently used (even with confidence level 1.00) and implies a large
degree of dependence inside the BOM structure in the particular case. For the
complexity of association rules at II, the confidence level is also significant in
explaining the number of rules. However, removing the confidence level only

Table 1 Overview of best ANOVA models excluding any non-significant variables

Impact on complexity
level II

Impact on complexity
level III

Impact on complexity
level IV

Estimate Pr ([|t|) Estimate Pr ([|t|) Estimate Pr ([|t|)

Intercept 4.53 0.000 6.32 0.000 8.24 0.000
Support level -1.99 0.000 -3.29 0.000 -4.75 0.000
Confidence level -0.39 0.001 – – – –
R2 0.53 0.55 0.55
Adj. R2 0.52 0.54 0.55

From to II to III in
rule complexity

From to III to IV in
rule complexity

From to II to IV in
rule complexity

Estimate Pr ([|t|) Estimate Pr ([|t|) Estimate Pr ([|t|)

Intercept 38.30 0.0000 26.03 0.0000 703.68 0.0000
Support level -36.35 0.0000 -23.20 0.0000 -824.22 0.0000
Confidence level 9.61 0.0000 2.85 0.0001 252.18 0.0000
R2 0.76 0.80 0.78
Adj. R2 0.76 0.80 0.78
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lowers R2 from 0.53 to 0.52, so like the interaction discussed previously, it can be
discounted from the discussion.

Of equal interest is how the number of association rules increases (for a fixed
support and confidence level) when the complexity of the association rules
increases. Interestingly enough, this depends both on the support level and on the
confidence level, though again with the largest contribution from the support level.
The R2 values are c. 0.80 for the fitted response models, indicating a strong
explanatory value of support and confidence levels. This is not necessarily intui-
tive. However, it implies that when increasing the complexity of the association
rules to investigate the BOM dependencies, the support and confidence levels are
non-trivial. Specifically, in the particular case, the response models imply that low
support levels tend to have high increases in the number of rules when the com-
plexity of the association rules is increased. In the sense of managing a solution
space, the number of rules to consider is thus very much higher if the support
levels are low. This could also indicate for the case that there are a large number of
constraints in the solution space for combinations that are seldom used.

5 Implications

The knowledge obtained from the Apriori analysis can be utilized in a number of
different ways. In this section, it is described for each mass customization capa-
bility, how utilization of the results can benefit mass customizers.

5.1 Solution Space Development

Solution space development concerns the identification and development of
product variety. This implies also to revise a company’s current product portfolio
in order to consolidate it if necessary over time. This is typically done by removing
unnecessary components or modules, which are seldom sold or which have a
function that can be incorporated into other modules or components. This will
generally imply lower manufacturing costs, similar to general design for manu-
facturing principles [10]. In this context, the results of the Apriori analysis could
be utilized to identify candidates for combining two modules into one module.
Often, mass-customized products are modular, and the modules are used to
accommodate product variety by allowing different variants of a certain module
type. However, this variety comes at a cost and reducing the number of module
variants will usually imply lower manufacturing costs. The results of the Apriori
analysis will indicate which modules are often sold together. If certain modules are
always sold together, it would be natural to consider joining these two modules.
There are, however, other considerations which could limit the possibilities of
joining two modules, e.g., if the two modules are supplied by different suppliers,
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utilize different manufacturing technologies, have different life cycles, etc., which
needs to be taken into account. If the module, however, could be combined, this
could imply a faster assembly process, as fewer modules would need to be
assembled, lower fabrication cost of modules, a simpler product structure with
lower administration costs as well as a simpler product family model and a simpler
configuration system.

5.2 Robust Process Design

Another natural approach to using the information gained from the Apriori method
would be to use this to design both planning processes and inventory management.
In production planning [11], the typical approach is to batch similar products/
components for planning purposes [12]. However, in mass customization, this is
typically one of the main planning challenges, as there are by definition no
standard products to group for production, so products are either made-to-order or
assembled-to-order from a central inventory of components/modules. Standard
inventory management would then imply that components/modules are grouped
based on their individual characteristics (price, demand profile, lead time, supplier,
etc.) [13]. However, this implies that items can be managed individually. The
study presented in this paper clearly concludes that a large number of components
directly or indirectly are always sold together. This strongly implies that both the
inventory management approach and the subsequent planning approach need to
take these dependencies into account.

5.3 Choice Navigation

The capability choice navigation is defined by Salvador et al. [3] as ‘‘Support
customers in identifying their own solutions while minimizing complexity and the
burden of choice.’’ Hence, this capability is related primarily to the capabilities of
the configuration system and its ability to configure a variety of products. The ideal
product configuration should, after a customer has finished a configuration, leave
the customer with the experience that the process has not been unnecessarily
difficult to perform and the customer has been able to match his or her needs
exactly to a specific configuration of a product [3].

The knowledge obtained from the Apriori analysis can be applied almost
directly to improve the product configuration process. If it is determined that
customers nearly always select component B given component A, it would be
obvious to introduce a ‘‘soft constraint’’ in the product configuration, which would
imply that once a customer selects component A, then component B is automat-
ically chosen as default. Contrary to a hard constraint, a soft constraint would
allow the customer to choose a different component than B following this.
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However, selecting B automatically would imply less effort from the customer for
performing the whole configuration process, yet leaving the flexibility to alter the
automated selection.

The introduction of soft constraints should, however, only be made if there is a
high confidence for a certain rule, i.e., component B is almost always chosen given
component A. If the confidence is lower, a different approach could be taken. The
Apriori analysis may in some cases indicate that if a component A is selected, then
components B, C, or D are chosen equally frequent; however, other components
may also be chosen. In this case, in an actual configuration, the customer is usually
presented with a number of different components to choose from (e.g., B, C, D, E,
F, and G). However, if this list is sorted according to confidence, then the most
likely component would be on top of the list and the least likely in the bottom. This
would, like the introduction of soft constraints, improve the configuration process
by reducing the necessary effort to perform the configuration process.

6 Conclusions

Establishing the links between components in configured products can potentially
significantly improve the ability to control the solution space and choice naviga-
tion for customers. Previous research has applied the Apriori data mining tech-
nique to establish these links. This paper focuses on a specific case and analyzes
180 sold configurations and their link to support and confidence levels used in the
data mining.

From the case study, it can be seen that number of rules to consider increases
dramatically as a function of the complexity of the rules. Furthermore, it can be
concluded that in particular, the support levels are critical when investigating the
rules. In general, low support levels lead to many rules and to disproportional large
increases in the number of rules as the complexity of rules applied is increased.
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