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Abstract. Communication complexity is a central model of computa-
tion introduced by Yao [22], where two players, Alice and Bob, receive
inputs x and y respectively and want to compute f(x, y) for some fixed
function f with the least amount of communication. Recently people
have revisited the question of the privacy of such protocols: is it pos-
sible for Alice and Bob to compute f(x, y) without revealing too much
information about their inputs? There are two types of privacy for com-
munication protocols that have been proposed: first, an information the-
oretic definition ([9,15]), which for Boolean functions is equivalent to the
notion of information cost introduced by [12] and that has since found
many important applications; second, a combinatorial definition intro-
duced by [13] and further developed by [1].

We provide new results for both notions of privacy, as well as the
relation between them. Our new lower bound techniques both for the
combinatorial and the information-theoretic definitions enable us to give
tight bounds for the privacy of several functions, including Equality,
Disjointness, Inner Product, Greater Than. In the process we also prove
tight bounds (up to 1 or 2 additive bits) for the external information
complexity of these functions.

We also extend the definitions of privacy to bounded-error random-
ized protocols and provide a relation between the two notions and the
communication complexity. Again, we are able to prove tight bounds for
the above-mentioned functions as well as the Vector in Subspace and
Gap Hamming Distance problems.

Keywords: Communication complexity · Information complexity ·
Lower bound · Privacy

1 Introduction

Communication complexity is a central model of computation, first defined by
Yao, [22], that has found applications in many areas of theoretical computer
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science. In the 2-party communication complexity setting, we consider two play-
ers, Alice and Bob with unlimited computational power. Each of them receives
an input, say x ∈ X for Alice and y ∈ Y for Bob, and their goal is to com-
pute f(x, y) ∈ Z for some fixed function f with the minimum amount of
communication.

Imagine now that Alice and Bob still want to collaboratively compute f(x, y),
while retaining privacy of their input. The loss of privacy measures how much
information about (x, y) is leaked to an eavesdropper who has only access to the
transcript (external privacy), or how much information about one party’s input
is leaked through the transcript to the other pary (internal privacy). A perfectly
private protocol will reveal no information about x and y, other than what can
be inferred from the value of f(x, y).

For example, if Alice and Bob both want to output the minimum of x, y ∈
{0, 1}n and the identity of the person holding it, then the deterministic communi-
cation protocol with optimal communication is the trivial protocol of complexity
2n. In fact one can show that any deterministic protocol that has optimal commu-
nication is not private at all against an eavesdropper since basically both players
have to send the input to the other one. However a perfectly private deterministic
protocol exists, alas with much worse communication complexity: the two parties
initiate a counter i = 0 and in each round i = 0 to 2n − 1, Alice announces “Yes”
if x = i, otherwise “No”; Bob announces “Yes” if y = i, otherwise “No”. If neither
party says “Yes” then they increment i, otherwise the protocol ends when some-
one says “Yes”. It is clear that from the transcript, one only learns what can be
inferred from the value of the function and nothing more.

In order to quantify privacy, Bar-Yehuda et al. [9] provided a definition of
internal privacy of a function f according to an input distribution μ, a vari-
ation of which has been subsequently referred to as internal information cost
(ICint

μ (f)). At a high level, it measures the amount of information Alice learns
about Bob’s input from the transcript and vice versa. A second type of infor-
mation cost, called external information cost (ICext

μ (f)) was defined in [12] and
measures the amount of information that is learned by an external observer about
Alice and Bob’s inputs given the messages they exchanged during the protocol.
The notion of internal and external information cost has recently found many
important applications in communication complexity, including better commu-
nication lower bounds for important functions, direct sum theorems and new
compression schemes [2,3,5–8,12,20].

Klauck [15] also defined an information theoretic notion of privacy, which we
denote here by PRIVint

μ (f), which is closely related to the internal information
cost (the only difference being that we subtract the information that the function
reveals about the inputs, which the players are allowed to learn). In fact, the two
notions are basically equivalent for boolean functions and all our results about
PRIV can be translated to results about information cost. These definitions have
the advantage of being easily related to other tools in information theory, but
are not easily seen in a combinatorial way.

Feigenbaum et al. [13] gave a combinatorial definition of privacy for the
uniform distribution over inputs that was extended by Ada et al. [1] to any
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distribution μ, called average case objective privacy-approximation ratio, that
we will refer to simply as external privacy-approximation ratio (we only study
this average-case notion, and not a related worst-case notion also defined in
that work), and we denote this by PARext

μ (f, P ). It is equal to the expected
value over the inputs (x, y) drawn from some distribution μ of the following
ratio: the number of inputs that are mapped to the same value by f (that are
indistinguishable from (x, y) by looking only at the function’s output) over the
number of inputs giving rise to the same transcript as the one of (x, y) (that
are indistinguishable of (x, y) by looking only at the protocol’s transcript). They
also defined (average) subjective (or internal) privacy-approximation ratio (here
again we will omit “average”) which we denote PARint

μ (f, P ), which captures how
much more one player learns about the input of the other one by the transcript
than by the value of the function, and equals the ratio of the number of Alice’s
possible inputs x that are indistinguishable by looking only at Bob’s input y
and the output of the function, over the number of x’s that are instiguishable by
looking at y and the full transcript plus the symmetric ratio for Bob. Last, they
computed lower bounds for the privacy-approximation ratio of several functions,
however restricting themselves to the case of uniformly distributed inputs.

More recently, Ada et al. in [1] have modified the definition of privacy-
approximation ratio, which we denote as PARext

μ (f) and PARint
μ (f), so that it

measures the size of subsets of X×Y not just by counting the number of elements,
but relative to the inputs’ distribution μ. They showed that the logarithm of this
new definition of internal PAR can be lower bounded by the zero-error internal
information cost (which nevertheless can be arbitrarily smaller for certain func-
tions with large output range). They also proved a tradeoff between privacy and
communication complexity for a specific function (Vickrey-auction) and the
uniform distribution of inputs. We note that in [13] and [1] only deterministic
protocols were considered. Moreover, the relation between PRIV and PAR was
not very well understood.

Our Results: We prove new relationships between PRIV, PAR and communi-
cation complexity, as well as providing new lower bound techniques for the two
notions of privacy, PRIV and PAR, both external and internal, enabling us to
give tight bounds for the privacy of various functions in the case of deterministic
protocols. We also extend the definitions of PRIV and PAR to bounded-error
randomized protocols, and derive linear lower bounds for various functions.

New lower bounds for external PAR of deterministic protocols for boolean func-
tions: For boolean functions we give new lower bounds techniques, relating it to
the rank of the function and the deterministic complexity.

Theorem 1. For boolean f , for any distribution μ with full support,
PARext

μ (f) ≥ rank (Mf ) − 1.

Theorem 2. For boolean f , for any distribution μ with full support,
log PARext

μ (f) ≥ √
D(f).

Observe that this implies that log PARext
μ (f) is in fact polynomially related to

the deterministic communication complexity. Notably, it therefore holds that
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the only boolean functions with low privacy loss (as measured using PARext)
are functions that have low communication complexity (this is not the case with
non-boolean functions as was already observed by [13]).

New lower bounds for external PAR of deterministic protocols for non-boolean
functions: For simplicity we restrict ourselves to full support distibutions μ,
but it is possible to extend the results to general distributions by considering
summations over only the rectangles whose intersection with μ’s support is not
empty. First, we present a general lower bound technique for PARext

μ (f) via
linear programming. We relate it to two other well known lower bound techniques
for communication complexity (see [14]): the rectangle bound (rec(f)) and the
partition bound (prt(f)). This linear program, whose optimal value is denoted
by ˜PARμ(f), can be written as a weighted sum of rectangle bounds recz(f),
where the weight is equal to the weight of the inputs (x, y) according to μ that
are mapped to z by f . It is, hence, easy to compute for many functions:

Theorem 3. For all f , for any distribution μ with full support, PARext
μ (f) ≥

˜PARμ(f).

Theorem 4. For all f , for any distribution μ with full support, ˜PARμ(f) ≥∑
z∈Z

∣
∣f−1(z)

∣
∣
μ

· recz(f).

Moreover, we bound external PAR as a weighted sum of the size of the z-fooling
sets Fz of Mf :

Theorem 5. For all f , for any distribution μ with full support, PARext
μ (f) ≥∑

z

∣∣f−1(z)
∣∣
μ

· |Fz|.
New lower bound techniques for external IC and PRIV: We prove a new lower
bound on the external zero-error information cost which, using the equivalence
between IC and PRIV given in Theorem 12, will in turn give new lower bounds
on PRIVext

μ (f).

Theorem 6. Fix a function f . Suppose there exists δ > 0 and a distribution μ
over the inputs of f , such that for all monochromatic rectangles R of f , μ(R) ≤ δ.
Then it holds for every protocol P that computes f without error on any input
that ICext

μ (P ) ≥ log(1/δ).

We remark that our theorem allows us to prove exact bounds for zero-error
IC up to an additive constant term (with a small constant, between 1 and 2).

Theorem 7. For each of f = EQ,GT,DISJ, there exists μ such that ICext
μ (f) ≥

n. Also, there exists μ such that ICext
μ (IP) ≥ n − 1 − o(1).

These are much sharper than typical lower bounds on IC, which work in
the bounded-error case and incur multiplicative constants [6,7,10,16]. The only
other such sharp lower bounds we are aware of are due to Braverman et al. [4]
who study the AND and DISJ functions. However they prove sharp bounds for
the internal IC of DISJ, not for the external IC as we study here.
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Our bound proves an optimal lower bound on the zero-error information
cost of certain functions (i.e. without any additive constant loss). For the one
bit AND, we show that there exists μ with ICext

μ (AND) ≥ log2 3. This matches
the bound of [4] (they also proved optimality via different techniques).

Privacy for bounded-error randomized protocols: We define for the first time
PAR and PRIV for bounded-error protocols. Such protocols can be much more
efficient than deterministic ones and it is important to see whether they remain
private or not. These definitions capture again how much more information is
leaked by the protocol than by the output of the function, where now we consider
randomized protocols that compute the function with some bounded error. We
show that for any protocol, PRIV is a lower bound on PAR, both for the external
and internal notions.

Theorem 8. ∀μ, f, ε, PRIVext
μ,ε (f) ≤ log PARext

μ,ε (f) and PRIVint
μ,ε(f) ≤

2 log PARint
μ,ε(f) − 2.

Internal PRIV is lower bounded by internal IC, which was shown in [16]
to subsume almost all known lower bounds for communication complexity, i.e.
smooth rectangle, γ2-norm, discrepancy, etc. Hence,

Corollary 1 (Informal). In the bounded error setting, for all boolean f whose
internal information complexity equals communication complexity, all notions of
privacy loss (PRIV, PAR, external, internal) are equivalent to each other and
to the communication complexity.

Interestingly, PAR sits between information and communication complexity,
and it is an important open question whether these two notions are equal for all
functions (and hence make PAR equal to them).

Applications: We exhibit the power of these new lower bound techniques for
PAR and PRIV by proving optimal lower bounds on most of the examples of
functions left open in [13] and more: Equality, Disjointness, Inner Product,
Greater Than (Millionaire’s problem).

Table 1. Lower bounds for specific functions, zero error.

Problem PARext
μ PRIVext

μ

[13] Our contribution (for some μ)
(for uniform μ) (for μ with full support)

Equality - 2n n − 1
Disjointness

(
3
2

)n
2n − 1 n − 1

Inner Product - 2n − 1 n − 2 − o(1)
Greater Than 2n + 1

2n+1 − 1
2

2n − 1 n − 1

Comparison between the two notions of privacy: For the case of bounded-error
protocols, the two notions of privacy seem to be practically equal for most func-
tions. However, for the zero-error case, they can diverge for certain functions. In
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Table 2. Lower bounds for specific functions, with bounded error

PRIVint
μ,ε,PRIVext

μ,ε (for some μ) PARint
μ,ε,PARext

μ,ε (for some μ)

Equality Θ(1) Θ(1)

Disjointness Θ(n) 2Θ(n)

Inner Product Θ(n) 2Θ(n)

Greater Than Θ(log n) 2Θ(log n)

order to understand the differences between the notions, we study their robust-
ness when we change slightly the input distribution and we show that the infor-
mation theoretic notion of privacy is more robust to such changes. Moreover, we
show that while PRIV is always less than the expected communication complex-
ity of the protocol, the same is not true for PAR. We also discuss an error in the
appendix of [13] where they claim that PRIV is not as robust as PAR.

2 Preliminaries

We consider three non empty sets X ,Y ,Z and a function f : X × Y → Z.
μ denotes a distribution over X × Y, and for any set E ⊆ X × Y, |E|μ :=∑

(x,y)∈E μ(x, y). Mf is the matrix of f : Mf [x, y] := f(x, y). A rectangle of
X × Y is a product set A × B where A ⊆ X , B ⊆ Y.

We let P denote a two-party communication protocol. Protocols may use
both public and private random coins. We let r denote the ensemble of all ran-
dom coins (public and private) a protocol may use; we let R denote a random
variable of all these coins, and Rpub denote just the public coins. Given a (pos-
sibly randomized) protocol P , for any input (x, y) ∈ X × Y and random coins
r, P (x, y, r) is the value output by Alice and Bob upon running the protocol,
and TP (x, y, r) is the transcript, comprising all messages and public coins. We
omit r in the previous if P is deterministic. Let CC(P ) be the maximum num-
ber of bits communicated by P over all choices of inputs and random coins. Let
D(f) = minP CC(P ) where P ranges over all deterministic protocols comput-
ing f . Let Rε(f) = minP CC(P ) where P ranges over all randomized protocols
computing f with error at most ε on each input.

In the following paragraph we let P be a deterministic protocol that perfectly
computes a function f . For any input (x, y) ∈ X ×Y, the monochromatic f -region
of (x, y) is defined as Df

x,y := f−1(f(x, y)), and is equal to the monochromatic
P -region DP

x,y of (x, y). The monochromatic P -rectangle of (x, y) is defined as
DTP

x,y := T−1
P (TP (x, y)) (the fact that this is a rectangle and not an arbitrary

subset is a well-known consequence of P being a communication protocol). For
any output z ∈ Z, the monochromatic f -region of z is: f−1(z) := f−1({z}),
which is equal to the monochromatic P -region of z, P−1(z). Let RP

z be the set
of P -rectangles covering P−1(z), that is: RP

z := {DTP
x,y|(x, y) : P (x, y) = z}. Let

RP = ∪z∈ZRP
z =

{
DTP

x,y

∣∣(x, y) ∈ X × Y}
be the set of all P -rectangles. For each
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z ∈ Z, cutP (f−1(z)) is the number of P -rectangles in f−1(z); R(X × Y) is the
set of all rectangles in X × Y.

For three random variables A,B,C the conditional mutual information is
defined as I(A;B|C) := H(A|C)−H(A|BC), where H denotes Shannon entropy:
if X and Y are two random variables H(X) =

∑
x P{X = x} log(1/P{X = x})

and H(X|Y ) = E[− log(P(X|Y ))]. We recall some simple facts about information
and entropy (more details about information theory can be found in the textbook
of Cover and Thomas [11].) For any random variables X,Y,Z,W , the Chain Rule
says that H(X,Y ) = H(X) + H(Y |X) and I(X,Z;Y ) = I(X;Y ) + I(Z;Y |X).
Another easy fact (see for example [1]) is that:

|I(X;Y |W ) − I(X;Y |W,Z)| ≤ H(Z) (1)

We let DKL denote the KL-divergence, DKL(X ‖ Y ) = Ex∼X log Pr[X=x]
Pr[Y =x] . It is

easy to see that I(X;Y ) = DKL(XY ‖ X ′Y ) where X ′ is an independent copy of
X. We will also use the following data processing inequality for KL-divergence
(we include a proof in the appendix for the sake of completeness):

Lemma 1. For any X,Y and any deterministic function L, the following holds:

DKL(X ‖ Y ) ≥ DKL(L(X) ‖ L(Y )) (2)

2.1 Definitions of Privacy

In the following, (X,Y ) denotes a pair of random variables, distributed according
to μ, and P denotes a (possibly randomized) protocol.

Information Cost: We define the external and internal information cost,
notions that have recently found many applications in communication complex-
ity [2,6,7,12]. The external information cost measures the amount of information
that is learned from someone who looks at the messages exchanged between Alice
and Bob during the protocol about their inputs. The internal information cost
measures the amount of information that Alice learns about Bob’s input and
vice versa.

Definition 1. The external information cost of P is defined as ICext
μ (P ) :=

I(X,Y ;TP (X,Y,R)). The external information cost of f is ICext
μ,ε (f) :=

infP ICext
μ (P ) where the minimum is over all protocols P computing f with dis-

tributional error ε.

Definition 2. We define the internal information cost of P as ICint
μ (P ) :=

I(X;TP (X,Y,R)|Y )+I(Y ;TP (X,Y,R)|X). The internal information cost of f is
ICint

μ,ε(f) := infP ICint
μ (P ) where the minimum is over all protocols P computing

f with distributional error ε.

Information-theoretic privacy: In [9], the definition of privacy (Idet
c−i in their nota-

tions) is basically the same as what we now call ICint
μ (P ) (they used the max
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instead of the sum of the two terms). A related notion of privacy has been defined
by Klauck in [15]. We give a distribution-dependent version of his definition. At a
high level, it quantifies how much more an observer learns about the inputs from
the transcript than from the value of the function. We also define an internal
version of the definition. We assume that the output of a randomized proto-
col depends only on the transcript (i.e. P (x, y, r) is a deterministic function of
T (x, y, r)).

Definition 3. The external privacy of P is defined as PRIVext
μ (f, P ) :=

I(X,Y ;TP (X,Y,R)) − I(X,Y ; f(X,Y )). For ε ≥ 0, the external ε-error pri-
vacy of f is defined as the following, where the infimum is taken over all
protocols P computing f with distributional error at most ε: PRIVext

μ,ε (f) :=
infP PRIVext

μ (f, P ). We let PRIVext
μ (f) := PRIVext

μ,0(f).

Definition 4. The internal privacy of P is defined as PRIVint
μ (f, P ) :=

I(X;TP (X,Y,R)|Y )−I(X; f(X,Y )|Y )+I(Y ;TP (X,Y,R)|X)−I(Y ; f(X,Y )|X).
For ε ≥ 0, the internal ε-error privacy of f is defined as the following, where the
infimum is taken over all protocols P computing f with distributional error at
most ε: PRIVint

μ,ε(f) := infP PRIVint
μ (f, P ). We let PRIVint

μ (f) := PRIVint
μ,0(f).

It is easy to see that our definition is equivalent to the one in [15] for deter-
ministic or zero-error protocols.

Combinatorial privacy PAR: We present here the definition of PAR for deter-
ministic protocols given by [1], which modified the original definition in [13] in
order to measure the size of regions relative to the inputs’ distribution.

Definition 5. The external privacy-approximation ratio of a deterministic

protocol P for f is defined as: PARext
μ (f, P ) := E(x,y)∼μ

[
|Df

x,y|µ∣
∣
∣D

TP
x,y

∣
∣
∣
µ

]

=

E(x,y)∼μ

[
|DP

x,y|µ∣
∣
∣D

TP
x,y

∣
∣
∣
µ

]

(where the equality holds because P has zero error). The exter-

nal privacy-approximation ratio of a function f is defined as: PARext
μ (f) :=

inf
P

PARext
μ (f, P ) where the infimum is over all deterministic P computing f

with zero error.

Definition 6. The internal privacy-approximation ratio of a deterministic pro-

tocol P for f is defined as: PARint
μ (f, P ) := E(x,y)∼μ

[
|Df

x,y∩X×{y}|
µ∣

∣
∣D

TP
x,y∩X×{y}

∣
∣
∣
µ

]

+

E(x,y)∼μ

[
|Df

x,y∩{x}×Y|
µ∣

∣
∣D

TP
x,y∩{x}×Y

∣
∣
∣
µ

]

. The internal privacy-approximation ratio of a func-

tion f is defined as: PARint
μ (f) := inf

P
PARint

μ (f, P ) where the infimum is over

all deterministic P computing f with zero error.

The external PAR equals a weighted sum of the number of rectangles tiling
each f -monochromatic region.
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Theorem 9 ([1]). For any deterministic protocol P , we have: PARext
μ (f, P ) =∑

z∈Z
∣∣f−1(z)

∣∣
μ

· cutP (f−1(z)).

This result was stated in [1] but for completeness we present a proof in the
appendix.

We now extend the definition to randomized protocols. In the following, the
expectations are taken over inputs x, y and random coins r. A simple calculation
shows that the following definition coincides with the definition of [1,13] in the
case of deterministic zero-error protocols.

Definition 7. We define:

– The external PAR of a randomized protocol P as:

PARext
μ (f, P ) := Ex,y,r

[
PX,Y,R((X,Y )=(x,y) | TP (X,Y,R)=TP (x,y,r))

PX,Y ((X,Y )=(x,y) | f(X,Y )=f(x,y))

]
.

For ε ≥ 0, the external ε-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most ε:
PARext

μ,ε (f) := infP PARext
μ (f, P ).

– The internal PAR of a randomized protocol P as:

PARint
μ (f, P ) :=Ex,y,r

[
PX,Y,R(Y =y | TP (X,Y,R)=TP (x,y,r)∧X=x)

PX,Y (Y =y | f(X,Y )=f(x,y)∧X=x)

]

+ Ex,y,r

[
PX,Y,R(X=x | TP (X,Y,R)=TP (x,y,r)∧Y =y)

PX,Y (X=x | f(X,Y )=f(x,y)∧Y =y)

]
.

For ε ≥ 0, the external ε-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most ε:
PARint

μ,ε(f) := infP PARint
μ (f, P ).

Remark 1. There is another way to generalize the definition of PAR for 0-error
protocols. This alternative definition is deferred to the appendix.

3 Relations Between Privacy Notions and Communication

We prove a number of relations between the different notions of privacy, com-
munication complexity and information cost both for deterministic and random-
ized protocols. We summarize them in Fig. 1. In the diagram, an arrow A ← B
indicates that A ≤ B (up to constants). The quantities indicate worst-case com-
plexity except for Dist (see Theorem 13). Relations between:

– PAR and PRIV are given in Theorem 8 (which was proved in [1] only for the
deterministic 0-error internal case);

– D (resp. Rε) and PAR is given by Theorem 11;
– IC and PRIV are given in Theorem 12 (which was proved in [1] only for the

deterministic 0-error internal case);
– The expected distributional complexity and IC (or PRIV) for every possible

input distribution is given in Theorem 13;
– PRIVext and PRIVint is given in Theorem 14;
– PARext and PARint comes from Theorem 15 (for the deterministic case).

We start by proving that PRIV provides a lower bound for the log of PAR:
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Fig. 1. Lower bounds diagrams for deterministic and bounded error cases

3.1 Relations Between the Different Notions of Privacy
and Communication Complexity

We provide below the proof of Theorem 8. The other theorems are proven in the
appendix.

Theorem 8 [restated]. For any input distribution μ and any (deter-
ministic or randomized) protocol P, it holds that PRIVext

μ (f, P ) ≤
log

(
PARext

μ (f, P )
)
andPRIVint

μ (f, P ) ≤ 2 · log
(
PARint

μ (f, P )
) − 2. As a con-

sequence, ∀μ, f, ε it holds that PRIVext
μ,ε (f) ≤ log

(
PARext

μ,ε (f)
)
andPRIVint

μ,ε(f) ≤
2 · log

(
PARint

μ,ε(f)
) − 2.

Proof. For external privacy, this is a consequence of Bayes rule, and for internal
privacy, this is a consequence of Bayes rule and an argument about the worse of
the two terms comprising internal PRIV and PAR. The details of this proof will
appear in the full version of the article ([17]).

Remark 2. Note that when the protocol is externally (resp. internally) perfectly
private, the inequality is tight since PRIVext

μ (f, P ) = 0 and PARext
μ (f, P ) = 1

(resp. PRIVint
μ (f, P ) = 0 and PARint

μ (f, P ) = 2).

3.2 Applications: Tight Bounds on PAR and PRIV for Specific
Functions

For boolean functions, PRIV is essentially lower bounded by Information Cost,
which subsumes almost all known lower bounds for communication complex-
ity, i.e. smooth rectangle, γ2-norm, discrepancy, etc [16]. Hence, Theorem 8
implies

Corollary 1 [restated]. For all f, μ, ε such that Rε(f) = O(ICint
μ,ε(f)), it holds

that log PARμ,ε(f) = PRIVμ,ε(f) = Rε(f) up to constant factors (for both
internal and external notions).
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Interestingly, the notion of PAR sits between information and communication
complexity, and it is an important open question whether these two notions are
equal (which would also make PAR equal to them). For the bounds in Table 2,
the results follow immediately from known lower bounds on the IC of these
functions: for EQ the lower bound is trivial, for DISJ one can look at IC directly
[6,7], while for EQ, IP,GT one can look at their discrepancies [10]. Then, using
Theorem 12 and 8 we obtain bounds on internal PAR. Note that the bounds also
hold for external PRIV and PAR (since internal is always at most external, see
Theorem 14). Moreover, we can also get similar lower bounds for the functions
Vector in Subspace and Gap-Hamming distance by the results in [16].

4 New Lower Bound Techniques for PAR and PRIV
of Deterministic Protocols

In Subsects. 4.1 and 4.2, we assume μ to be full-support for simplicity. By restrict-
ing the summations to the rectangles that intersect the support of μ, it is possible
to get similar results for a general distribution.

4.1 External PAR of Boolean Functions

Let f be a boolean function, P a deterministic protocol for f and T its tran-
script. Let n0 and n1 be the number of P -rectangles with output 0 and 1
(n0 = |RP

0 |, n1 = |RP
1 |). We lower bound PAR by the communication matrix

rank.

Theorem 1 [restated]. For boolean f , for any distribution μ with full support,

PARext
μ (f) ≥ min{rank (Mf ) rank (Mnotf )} ≥ rank (Mf ) − 1.

The proof will appear in the full version of the article ([17]) and uses Theorem
9 in [1]. Moreover, we are going to use the following result of Yannakakis, which
restated in our notation says that

Lemma 2 (Lemma 1 in [21]). For boolean f and any deterministic protocol
P , log min(n0, n1) ≥ √

D(f).

In fact, Yannakakis proves only that log n1 ≥ √
D(f), but it is easy to verify

that the proof is independent of the value of the monochromatic rectangles,
so it similarly follows for the 0-rectangle case. Using in addition the fact that
PARext

μ (f) ≥ min(n0, n1), we have

Theorem 2 [restated]. For boolean f , for any distribution μ with full support,
log PARext

μ (f) ≥ √
D(f).

Note that Theorem 1 is not true in general for non-boolean functions (see
Appendix).
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4.2 External PAR for Non-boolean Functions

Definition 8. Let ˜PARμ(f) be the value of the following linear program:

min
wz,R

∑

z,R

wz,R · ∣
∣f−1(z)

∣
∣
μ

s.t. ∀ (x, y) ∈ f−1(Z) :
∑

R:R�(x,y)

wf(x,y),R = 1 (3)

∀ (x, y) ∈ f−1(Z) :
∑

R:R�(x,y)

∑

z

wz,R = 1 (4)

∀ z, ∀R : wz,R ≥ 0. (5)

where the z’s and the R’s are always taken respectively in Z and in R(X × Y).

Intuitively, from conditions (4) and (5), we can interpret wz,R as a probability
distribution. In fact, wz,R is the probability to pick R and outputs z on (x, y).
This is because condition (3) forces the probability of outputting f(x, y) on (x, y)
to be 1.

Theorem 3 [restated]. For all f , for any distribution μ with full support,
PARext

μ (f) ≥ ˜PARμ(f).

Proof. Let P be a deterministic protocol for f and T its transcript. We can show
that wz,R := 1R∈RP

z
satisfies the conditions of Definition 8 and deduce the lower

bound. The details of this proof will appear in the full version of the article
([17]).

Relation with rectangle linear program: We relate this linear program to
the rectangle bound defined in [14]. For uniform output distribution, we can
generalize this relation to the partition bound (see Appendix).

Definition 9. recz(f) is the optimal value of the following linear program, where
R is taken in R(X × Y):

min
wR

∑

R

wR s.t. ∀(x, y) ∈ f−1(z) :
∑

R:R�(x,y)

wR = 1 (6)

∀(x, y) ∈ X × Y \ f−1(z) :
∑

R:R�(x,y)

wR = 0 (7)

∀R : wR ≥ 0. (8)

Theorem 4 [restated]. For all f, for any distribution μ with full support,
˜PARμ(f) ≥ ∑

z∈Z
∣∣f−1(z)

∣∣
μ

· recz(f).

The proof will appear in the full version of the article ([17]).

Relation between PAR and fooling sets: Recall that a z-fooling set (z ∈ Z)
for f : X × Y → Z is a subset Fz ⊆ f−1(z) such that: ∀ (x, y) ∈ Fz, f(x, y) =
z and ∀ (x1, y1), (x2, y2) ∈ Fz, (x1, y1) �= (x2, y2) it holds that f(x1, y2) �=
z or f(x2, y1) �= z. By Theorem 9 in [1] and the following theorem we lower
bound PAR by fooling sets.
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Theorem 10 ([18]). If Fz is a z-fooling set for f , then any covering of f−1(z)
by monochromatic rectangles has at least |Fz| rectangles.

Theorem 5 [restated]. For all f and any set of z-fooling sets {Fz}z∈Z , for any
distribution μ with full support, PARext

μ (f) ≥ ∑
z∈Z

∣∣f−1(z)
∣∣
μ

· |Fz|.

4.3 New Lower Bound Techniques for External IC

We show lower bounds on the external information complexity, which using
Theorem 12 will in turn give new lower bounds on information-theoretic privacy.
Our lower bounds hold for zero-error randomized protocols, which of course
imply the same bounds for deterministic protocols.

Theorem 6 [restated]. Fix a function f. Suppose there exists δ > 0 and a
distribution μ over the inputs of f, such that for all monochromatic rectangles R
of f, μ(R) ≤ δ. Then it holds for every P that computes f without error on any
input (i.e. even on pairs of inputs lying outside μ′s support) that ICext

μ (P ) ≥
log(1/δ).

The proof will appear in the full version of the article ([17]).

Corollary 2. For any function f with a fooling set S of size |S| = k, there
exists a distribution μ such that for all protocols P that compute f with zero
error over μ, it holds that ICext

μ (P ) ≥ log k.

The proof of this corollary will appear in the full version of the article ([17]).
Note that Theorem 6 can be used to prove an optimal lower bound on the zero-
error information complexity of certain functions. For example, for one bit AND,
the hard distribution μ is uniform over (0, 1), (1, 0), (1, 1), and our theorem
implies that ICext

μ (P ) ≥ log2 3. This matches a recent exact bound (which is in
particular an upper bound) by Braverman et al. [4].

4.4 Applications: Tight Bounds on External PAR and PRIV
for Specific Functions

Our applications in Table 1 follow from the lower bounds techniques that we have
seen and applying well known facts about the rank or the size of the fooling sets
of the communication matrix of the functions in question.

The proofs will appear in the full version of the article ([17]).

5 Quality of the Two Definitions

5.1 Privacy for Deterministic Protocols

Deterministic protocols: for deterministic protocols, the two definitions of pri-
vacy, PRIV and PAR, can be arbitrarily different for the same distribution. In
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high level, PRIV captures the expected privacy loss of a protocol, while PAR
captures a more “risk-averse” notion of privacy, where a protocol is penalized
heavily for high-privacy-loss events, even if they occur with small probability.

In the appendix, we show that this difference makes PRIV a much more
robust definition: an ε change in the input distribution causes at most an εn
change in PRIV, so PRIV is “smooth”. Furthermore, PRIV always remains less
than the expected communication of the protocol, which we believe to be another
natural property. We prove that this is not the case for PAR: sometimes an ε
change in the input distribution can cause PAR to change exponentially, and
PAR can grow arbitrarily larger than the expected communication. Finally we
also point out an error in the appendix of [13] and show that for the example
they gave, in fact PRIV is just as good as PAR at distinguishing two protocols
in their example.

Bounded-error case: As we explained in Sect. 3.2, in the case of bounded-error
randomized protocols, the two notions of privacy are in fact both equal to the
communication complexity for all boolean functions for which we have a tight
bound on their communication complexity. Moreover, for functions with large
output, we still do not have any example where PRIV and PAR are different
when we are allowed bounded error.
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of Theorem 6 could be greatly simplified. We would also like to thank Omri Weinstein
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A Appendix

A.1 Complements to Sect. 2

Omitted Proofs. The proofs of Lemma 1 and Theorem 9 will appear in the
full version of the article [17].

Discussion About the Definition of PAR. In Sect. 2, definition 7, we have
defined PAR for randomized bounded-error protocols relatively to the transcript
and the output value of the function. This definition is consistent with the one
for deterministic protocols. However it is also possible to extend the definition of
PAR by taking the output of the protocol instead of the output of the function:

Definition 10. – An alternative definition for the exter-
nal PAR of a randomized protocol P is: PARext,alt

μ (P ) :=

Ex,y,r

[
PX,Y,R((X,Y )=(x,y) | TP (X,Y,R)=TP (x,y,r))

PX,Y ((X,Y )=(x,y) | P (X,Y )=P (x,y))

]
. For ε ≥ 0, the external ε-error

PAR of f is defined as the following, where the infimum is taken over all proto-
cols P computing f with error at most ε: PARext,alt

μ,ε (f) := infP PARext,alt
μ (P ).
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– An alternative definition for the internal PAR of a randomized protocol P is:

PARint,alt
μ (P ) :=Ex,y,r

[
PX,Y,R(Y =y | TP (X,Y,R)=TP (x,y,r)∧X=x)

PX,Y (Y =y | P (X,Y )=P (x,y)∧X=x)

]

+ Ex,y,r

[
PX,Y,R(X=x | TP (X,Y,R)=TP (x,y,r)∧Y =y)

PX,Y (X=x | P (X,Y )=P (x,y)∧Y =y)

]
.

For ε ≥ 0, the external ε-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most ε:
PARint,alt

μ,ε (f) := infP PARint,alt
μ (P ).

A.2 Omitted Roofs from Sect. 3

We have proven Theorem 8 in Sect. 3. We prove here the other theorems stated
in this section.

Relations Between the Different Notions of Privacy and Communi-
cation Complexity. Firstly we show that for any protocol (deterministic or
randomized), the external privacy-approximation ratio is at most exponential in
the communication of the protocol.

Theorem 11. For any protocol P , PARext
μ (f, P ) ≤ 2CC(P ).

The proof will appear in the full version of the article [17].
The relation between internal IC and internal PRIV for deterministic proto-

cols was explained in [1]. It is possible to improve the lower bound and to show
the same relationship for external notions and any (deterministic or randomized)
protocol.

Theorem 12. For any protocol P and any distribution μ,

PRIVint
μ (f, P ) ≤ ICint

μ (P ) ≤ PRIVint
μ (f, P ) + 2 log(|Z|)

PRIVext
μ (f, P ) ≤ ICext

μ (P ) ≤ PRIVext
μ (f, P ) + log(|Z|)

Proof. By definition of IC and PRIV we have, respectively for the external and
the internal notions:

ICint
μ (P ) − PRIVint

μ (f, P ) = I(X; f(X,Y )|Y ) + I(Y ; f(X,Y )|X) ≤ 2 log(|Z|),
ICext

μ (P ) − PRIVext
μ (f, P ) = I(X,Y ; f(X,Y )) ≤ log(|Z|).

For the lower bounds, note that mutual information is always positive.

Moreover, if Distμ,ε for ε ≥ 0 represents the expected distributional complex-
ity of a randomized ε-error protocol with respect to some input distribution μ,
we have:

Theorem 13 ([11]). For any randomized ε-error protocol and any input distri-
bution, Distμ,ε(P ) ≥ ICext

μ,ε (P ).

The proof of this well-known fact can be found in [11] for example.
Note that, since ICext

μ,ε (P ) ≥ ICint
μ,ε(P ), we also have: Distμ,ε(P ) ≥ ICint

μ,ε(P ).
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Relation Between Internal and External Privacy. We first study the case
of PRIV and then focus on PAR.

Theorem 14. PRIVint
μ (f, P ) ≤ PRIVext

μ (f, P ) + log(|Z|).
Proof. Braverman [7] proved that: ICint

μ (P ) ≤ ICext
μ (P ). Hence, with 12:

PRIVint
μ (f, P ) ≤ ICint

μ (P ) ≤ ICext
μ (P ) ≤ PRIVext

μ (f, P ) + log(|Z|).
Moreover, we show that internal PAR is smaller than external one for deter-

ministic protocols:

Theorem 15. For any deterministic protocol P computing f :

PARint
μ (f, P ) ≤ 2 · PARext

μ (f, P ).

The proof will appear in the full version of the article [17].
However, Theorem 15 does not hold in general for ε-error randomized proto-

cols. For instance, consider that Alice receives an s-bit string x, and Bob receives
x plus an n-bit string y, such that x and y are independent, and they want to
compute the function that reveals x: f(x, y) = x. The protocol they use, where
only Bob sends messages, is the following: if x = 0s then Bob sends y, otherwise
he sends a random n-bit string (independent of x and y). Then:

PARint
μ (f, P ) = Ex,y,t

[
P(XY = xy|T = t,X = x)

P(XY = xy|X = x)

]
+ 1

=
∑

x,y,t

P(X = x, Y = y, T = t)
P(Y = y|T = t,X = x)

P(Y = y|X = x)
+ 1

= 2n
∑

x,y,t

P(X = x, Y = y, T = t)P(Y = y|X = x, T = t) + 1

= 2n

⎛

⎝
∑

x	=0,y,t

1
22n+s

1
2n

+
∑

x=0,y=t

1
2n+s

· 1

⎞

⎠ + 1 = 2n−s + o(1)

and:

PARext
μ (f, P ) = Ex,y,t

[
P(X = x,XY = xy|T = t)

P(X = x,XY = xy|f(X,Y ) = f(x, y))

]

=
∑

x,y,t

P(X = x, Y = y, T = t)
P(X = x, Y = y|T = t)

P(Y = y)

(sincef(x, y) = x)

= 2n
∑

x,y,t

P(X = x, Y = y, T = t)P(X = x, Y = y|T = t)

= 2n

⎛

⎝
∑

x	=0,y,t

1
22n+s

1
2n+s

+
∑

x=0,y=t

1
2n+s

1
2s

⎞

⎠ = 2n + o(1)

Hence, if x is of length s = n/2, then PARint
μ (f, P ) = 2n/2+o(1) is exponentially

bigger than PARext
μ (f, P ) = o(1).
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A.3 Omitted Proofs for Sect. 4

Relation with Partition Linear Program. It is also possible to lower bound
PARext

μ (f) by 1
|Z| ·prt(f), where prt(f) is defined in [14]. The details of this fact

wille appear in the full version of the article [17].

Rank Argument Fails for Non-boolean Functions. For instance, consider
the following function that take three values: let EQ′ : {1, . . . , m}2 → {0, 1, 2}
be the function defined by:

EQ′(x, y) =

⎧
⎪⎨

⎪⎩

0 if x �= y and x < m or y < m

1 if x = y and x < m or y < m

2 otherwise (x = m or y = m).
whose matrix is:

⎛

⎜⎜⎜⎜⎜
⎝

1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2

⎞

⎟⎟⎟⎟⎟
⎠

.

Then, for any (zero-error) protocol P solving EQ′, the number of 0-rectangles and
the number of 1-rectangles are at least the minimum number of such rectangles
for EQm−1:

EQm−1 : {1, . . . , m − 1}2 → {0, 1}, (x, y) �→ 1 iff x = y.

But the number of 2-rectangles can be only 2. Now, if we pick a distribu-
tion μ and δ satisfying

∣∣EQ′−1(0)
∣∣
μ

=
∣∣EQ′−1(1)

∣∣
μ

= δ/2 < 2−(2m−2) and
∣
∣EQ′−1(2)

∣
∣
μ

= 1−δ, then one can see that PARext
μ (EQ′) ≤ 3. Hence for this func-

tion EQ′ and this distribution μ: PARext
μ (EQ′, P ) ≤ 3 whereas : rank (MEQ′) ≥

rank
(
MEQn−1

)
= 2n−1.

Proofs of Applications. An advantage of our techniques is that they give
bounds for any distribution of input μ, and not only for a uniform distribution
as in [13]. Since any of these problems can be solved by sending Alice’s entire
input (n bits), the communication complexity is always upper-bounded by n,
hence so PAR is always upper-bounded by 2n. The lower bounds stated in Table
1 can be proved using Theorem 1.

Now we explain briefly how to obtain the results of Theorem 7 (see the full
version of the article ([17]) for the details). For the lower bounds for EQ,DISJ,
GT, we can apply Corollary 2 using an appropriate fooling set, followed by the
relationship between IC and PRIV given in Theorem 12. For IP it is possible to
use the well-known fact that all 0-monochromatic rectangles of the IP function
contain at most 2n elements.

A.4 Privacy for Deterministic Protocols

Robustness over the Input Distribution. We show that PAR is not robust
over the input distribution μ. More precisely, we give an example of a function
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and of two distributions with exponentially small statistical distance, but whose
privacy-approximation ratio is constant for one and exponential for the other.

Proposition 1. There exists a function f and two input distributions μ1, μ2

satisfying |μ1−μ2| ≤ 2−n/2 in statistical distance, and yet such that PARext
μ1

(f) =
Θ(1) and PARext

μ2
(f) = Ω(2n/2).

Proof. Let m = 2n and f : {0, . . . ,m}2 → {0, 1, 2} be the function defined by:

f(x, y) =

⎧
⎪⎨

⎪⎩

0 if x �= y and x �= m and y �= m

1 if x = y and x �= m and y �= m

2 otherwise (x = m or y = m).
whose matrix is:

⎛

⎜⎜⎜⎜
⎜
⎝

1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2

⎞

⎟⎟⎟⎟
⎟
⎠

.

Let μ1 be the following distribution: with probability 2−n pick a random
element of f−1(0)∪f−1(1), and with probability 1−2−n pick a random element
of f−1(2).

Set ε = 2−n/2 and let μ2 be the following distribution: with probability 2−n+ε
pick a random element of f−1(0)∪f−1(1), and with probability 1−2−n − ε pick
a random element of f−1(2).

Consider now the protocol P , where first Alice and Bob exchange a single
bit to check whether x = m or y = m and if they are both different than m,
Alice and Bob solve Equality (by having Alice send her entire input to Bob).

Then we have:

PARext
μ1

(f) ≤ PARext
μ1

(f, P ) =
∣∣f−1(0)

∣∣
μ1

· n0 +
∣∣f−1(1)

∣∣
μ1

· n1 +
∣∣f−1(2)

∣∣
μ1

· n2

≤ (
∣∣f−1(0)

∣∣
μ

+
∣∣f−1(1)

∣∣
μ1

) · 2n +
∣∣f−1(2)

∣∣
μ1

· 3 = Θ(1)

On the other hand, any protocol for this function must solve Equality so n0

and n1 must be at least 2n, since they have to be larger than the rank of the
matrix. Consider the optimal protocol P for f

PARext
μ2

(f) = PARext
μ2

(f, P ) =
∣∣f−1(0)

∣∣
μ2

· n0 +
∣∣f−1(1)

∣∣
μ2

· n1 +
∣∣f−1(2)

∣∣
μ2

· n2

≥ (
∣
∣f−1(0)

∣
∣
μ2

+
∣
∣f−1(1)

∣
∣
μ2

) · 2n = (
1
2n

+ ε) · 2n = Ω(2n/2 ).

One can finally verify that |μ1 − μ2| = ε = 2−n/2.

In fact, the right way to look at the robustness of PAR is to talk about
log PARext

μ (f). Even in this case, we see that an exponentially small change to
the input distribution can change the log PARext

μ (f) from constant to Ω(n).
On the other hand, we can prove that when the statistical distance of the

input distributions is ε, then the PRIV changes by at most O(εn). This implies
that in our previous example, PRIV changes only by an exponentially small
amount.
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Theorem 16. For any protocol P and any two input distributions μ, μ′ with
statistical distance |μ − μ′| ≤ ε, it holds that : |PRIVext

μ (P ) − PRIVext
μ′ (P )| ≤

O(εn) and |PRIVint
μ (P ) − PRIVint

μ′ (P )| ≤ O(εn).

Proof. The proof is a consequence of the fact that two statistically close joint
distributions must have similar mutual information. To prove this formally we
use the following lemma:

Lemma 3 (Lemma 3.15 of [19]). For any random variables XY,X ′Y ′ such
that |XY − X ′Y ′| ≤ ε and where X,X ′ take value in {0, 1}n, it holds that

|H(X | Y ) − H(X ′ | Y ′)| ≤ 4(H(ε) + εn).

The details of this proof will appear in the full version of the article [17].

Relationship Between Communication and Privacy. A natural method-
ology for studying privacy is to measure the amount of information revealed by
the transcript above and beyond what is supposed to be revealed. We believe
that both PRIV and PAR were designed with this methodology in mind.

One intuitive bound that “natural” measures of information should satisfy is
the following: a transcript of length c can reveal at most c bits of information. As
a consequence, the privacy loss should also be bounded by the communication
(appropriately normalized of course: for example in the case of PAR, one would
compare log PAR to communication).

When taking an expectation over randomized protocols, as one does for
instance when measuring the complexity of zero-error randomized protocols, one
would therefore also expect that the privacy loss revealed should be bounded by
the expected communication. While PRIV does indeed satisfy this property, we
observe that PAR does not:

Remark 3. For the Greater Than function GT under the uniform input distri-
bution U , the following holds:

1. For all zero-error protocols P solving GT, PARext
U (P ) ≥ 2n − 1.

2. There exist a zero-error protocol for GT where the expected communication
is constant.

The first point was proved in Theorem 1. The second point follows from the
trivial protocol that exchanges their inputs bit-by-bit starting with the high-
est order bits until the players find a difference, at which point they terminate
because they know which player has the greater value. Then clearly under uni-
form inputs, for each i ≥ 1 the probability of terminating after 2i bits is 1−2−i,
and so the expected communication is 2

∑∞
i=1 i · 2−i = 4 regardless of the size of

the inputs.
Thus, the above remark shows that PAR can tend to infinity even though

the expected communication is constant, which violates the “natural” property
that c bits of communication can reveal at most c bits of information.
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On the other hand, one could argue that PAR captures a “risk-averse” notion
of privacy, where one does not want the expected privacy loss but rather the
privacy loss with higher weights assigned to high-privacy-loss events. In this
case one may also want to look at worst-case choices of inputs and random coins;
worst-case inputs were defined in [1,13], although they did not study worst-case
random coins since they focused on deterministic protocols.

Error in Appendix of [13]. An example was given in the appendix of [13] that
claimed to exhibit a function f and two protocols P,Q such that PARext

U (P ) =
O(1) and PARext

U (Q) = 2Ω(n), whereas it was claimed that PRIVext
U (P ) =

PRIVext
U (Q) = Θ(n). This was interpreted to mean that PRIV was not suffi-

ciently precise enough to capture the difference between these two protocols.
However the second claim is incorrect as a calculation reveals that

PRIVext
U (P ) = O(1) and so PRIV does indeed distinguish between the two pro-

tocols. The flaw in their argument was in using the geometric interpretation of
PRIV: the characterization of [9] that they use only applies to the worst distri-
bution for a function (which for the function they give is not uniform), whereas
they explicitly want to study the uniform distribution. For the worst distribu-
tion μ it is indeed the case that PRIVext

μ (P ) = Θ(n), but not for the uniform
distribution. Therefore, for their example, PRIV is actually just as capable as
PAR in distinguishing the two protocols P,Q.
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