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Preface

ICITS 2013, the 7th International Conference on Information Theoretic Security, was
held in Singapore during November 28–30, 2013. The conference took place on the
One-North Campus of the Nanyang Technological University. The general chairs of
the conference were Frédérique Oggier and Miklos Santha.

Information theoretic cryptography analyzes the existence and efficiency of cryp-
tographic schemes whose security is not based on computational hardness assump-
tions. This research topic is connected to several areas of mathematics such as
probability and information theory, algebra and algebraic geometry, combinatorics,
coding theory and quantum information processing, among others.

Two different kinds of submissions were solicited for ICITS 2013. Only original
research work could be submitted to the Conference Track, while submissions to the
Workshop Track could consist of research work that had been recently published or
submitted to other venues. Every submission was considered only for one track,
chosen by the authors. The two-track format was initiated in ICITS 2012, the previous
edition of the conference, and it has proved to be very successful in bringing together
researchers from information theory, cryptography, and quantum computing, com-
munities with different publication traditions.

The Program Committee received a total of 49 submissions, of which 14 were
accepted for the Conference Track and 10 for the Workshop Track. All submitted
papers were revised by the Program Committee, with the help in some cases of
external reviewers. These proceedings contain the accepted papers for the Conference
Track. The accepted works for the Workshop Track were presented at the conference
but do not appear in this volume. The list of the contributions in the Workshop Track
is given before the Table of Contents.

In addition to the contributed presentations, the program was completed with three
invited talks:

– ‘‘Multi-Linear Secret Sharing Schemes,’’ by Amos Beimel, Ben-Gurion University,
Israel

– ‘‘Entropic Uncertainty Relations and Their Applications in Quantum Cryptogra-
phy’’ by Marco Tomamichel, Centre for Quantum Technologies (CQT), Singapore

– ‘‘New Results on Percolation Through Topological Quantum Error Correcting
Codes,’’ by Gilles Zémor, Université de Bordeaux, France

Many people have contributed to the success of ICITS 2013. First of all, I thank all
authors of submitted papers for choosing ICITS 2013 to disseminate their work. Many
thanks to the members of the Program Committee. It was a pleasure to collaborate
with such a team of motivated, talented, and hardworking scientists to put together the
program of the conference. Reviewing and selecting the papers was a difficult task that
required a lot of their time and efforts. I also thank the external reviewers for assisting
the Program Committee in the reviewing process. I thank Adam Smith for his very



good advice and for sharing his experience as program chair of ICITS 2012. Special
thanks to the general chairs, Frédérique Oggier and Miklos Santha, for their invaluable
work in organizing the conference, and many thanks to all people who assisted them
in that challenging task: Noelle Chen from MAS General Office, NTU, Helen Chen
and Nicholas Tee from SPMS IT support, NTU, Nweni Myint Aung from CITS, NTU,
and Evon Tan from CQT, NUS.

November 2013 Carles Padró
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How to Construct Strongly Secure Network
Coding Scheme

Kaoru Kurosawa(B), Hiroyuki Ohta, and Kenji Kakuta

Ibaraki University, Hitachi, Japan
kurosawa@mx.ibaraki.ac.jp

Abstract. We say that a network coding scheme is strongly 1-secure
if a source node s can multicast n field elements {m1, · · · ,mn} to a
set of sink nodes {t1, · · · , tq} in such a way that any single edge leaks
no information on any S ⊂ {m1, · · · ,mn} with |S| = n − 1, where
n = mintimax-flow(s, ti) is the maximum transmission capacity. We also
say that a strongly h-secure network coding scheme is strongly (h + 1)-
secure if any h + 1 edges leak no information on any S ⊂ {m1, · · · ,mn}
with |S| = n − (h + 1).

In this paper, we show the first explicit algorithm which can con-
struct strongly k-secure network coding schemes. In particular, it runs in
polynomial time for fixed k.

Keywords: Network coding · Strongly secure · Construction

1 Introduction

Consider a directed acyclic network G = (V, E), where V is the set of nodes and
E is the set of edges. G has a source node s and a set of sink nodes {t1, · · · , tq},
and each edge can transmit a single element of a finite field F. Let

n = min
ti

max-flow(s, ti),

where max-flow(s, ti) denotes the maximum flow that s can send to ti.
Ahlswede et al. [1] showed that the source node s can send n field elements

(m1, · · · ,mn) to all the sink nodes simultaneously (i.e., multicast) by using a
network coding scheme. Li, Yeung and Cai [8] proved that linear coding is enough
to achieve this, where each intermediate nodes generates outgoing field elements
as linear combinations of their incoming field elements. (See Fig. 1.) A linear
network coding scheme can be expressed by an n × |E| matrix U . Jaggi et al.
[6] showed a polynomial time algorithm which can construct a linear network
coding matrix U from a given network G.

A linear network coding scheme is called k-secure if a source node s can
multicast σ < n field elements (m1, · · · ,mσ) in such a way that any k edges
leak no information on (m1, · · · ,mσ). (See Fig. 3 of Appendix A, where k = 1.)

C. Padró (Ed.): ICITS 2013, LNCS 8317, pp. 1–17, 2014.
DOI: 10.1007/978-3-319-04268-8 1, c© Springer International Publishing Switzerland 2014



2 K. Kurosawa et al.

Fig. 1. Linear network coding scheme with n = 3

Cai and Yeung [4] proved that there exists a k-secure linear network coding
scheme if and only if σ ≤ n − k. In [3], the same authors gave an algebraic
necessary and sufficient condition that a k-secure linear network coding matrix
U must satisfy. Recently Tang et al. [14] showed a probabilistic algorithm for
constructing k-secure linear network coding schemes.1

On the other hand, we say that a linear network coding scheme is strongly
1-secure if the source node can multicast n field elements (m1, · · · ,mn) in such
a way that any single edge leaks no information on any S ⊂ {m1, · · · ,mn}
with |S| = n − 1. We further say that a strongly h-secure network coding
scheme is strongly (h + 1)-secure if any h + 1 edges leak no information on any
S ⊂ {m1, · · · ,mn} with |S| = n − h − 1. Harada and Yamamoto showed that
there exists a strongly (n− 1)-secure linear network coding scheme if |F| is suffi-
ciently large [5, Theorem 3].2 However, they did not give an explicit construction
algorithm nor the concrete size of |F|.3

In this paper, we show an efficient construction algorithm of strongly k-secure
network coding schemes. Let

L = |E| +
k−1⎡

i=1

⎣
n − 1

i

⎤⎣ |E|
i + 1

⎤
.

Then our algorithm runs in time O(n2L) if |F| > L. This means that we solve the
open problem of [5]. In particular, if k is fixed as a constant, then our algorithm
runs in polynomial time in n and |E|.
1 See “Time Complexity” of [14, page 313].
2 Our strongly (n − 1)-secure is their strongly 0-secure [5].
3 They instead analyzed a case such that the source node multicasts n◦ < n field

elements [5, Sec. 6].
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1.1 Related Works

Bhattad and Narayanan [2] constructed a linear network coding scheme such
that a source node s can multicast n field elements {m1, · · · ,mn} to the sink
nodes in such a way that any (n − 1) edges leak no information on each mi.
Their security definition is different from strong (n − 1)-security because it does
not require strong k-security for k < n − 1.

Silva and F.R. Kschischang [10] introduced the notion of universal k-secure
coding schemes. A universal k-secure coding scheme is a transformation f :
{m1, · · · ,mn−k} → {x1, · · · , xn−k} which is independent of the underlying net-
work. The source node just sends {x1, · · · , xn−k} to the sink nodes by using
any linear network coding scheme. Then the resulting scheme is k-secure on
{m1, · · · ,mn−k}.

Silva and F.R. Kschischang [11] generalized this notion to strong k-security.
In their explicit construction, however, the source node can multicast only one
or two messages, namely m1 or (m1,m2).

Subsequently, Kurihara, Uematsu and Matsumoto [7] showed a universal
strongly k-secure coding scheme such that the source node can multicast n
messages to the sink nodes. Namely their coding scheme [7] is a transforma-
tion f : {m1, · · · ,mn} → {x1, · · · , xn} such that the source node can send
{x1, · · · , xn} to the sink nodes by using any linear network coding scheme over
F so that the resulting scheme is strongly k-secure on {m1, · · · ,mn}.

The cost we must pay for these universal coding schemes is that each xi is
a vector over F of length T for some T > 1. Each mi is also a vector over F of
length T .4 Hence the source node must run the underlying linear network coding
scheme T times sequentially.

On the other hand, Shioji, Matsumoto and Uyematsu [13] showed some vul-
nerability of such universal coding schemes against stronger eavesdroppers.

2 Preliminaries

F denotes a finite field, and Fp denotes a finite field of order p. wH(x) denotes
the Hamming weight of a vector x. I∂ denotes the π × π identity matrix. Let
X = (xi) denote a matrix such that the ith row is xi for each i.

Let U be an n × |E| matrix. Then

– For A ⊂ {1, · · · , |E|}, UA denotes the submatirx of U such that the columns
are restricted to A.

– UA,h denotes a matrix which consists of the last h rows of UA.
– For B ⊂ {1, · · · , n}, UA,B denotes the submatrix of UA such that the rows are

restricted to B.
4 In the scheme of Kurihara et al. [7], T ≥ n◦ + n if the source nodes multicasts n◦

messages. So T ≥ 2n if the source nodes multicasts n messages.
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Define

Ranki(U) = {A ⊂ {1, · · · , |E|} | |A| = rank(UA) = i} (1)

It is clear that Ranki(T · U) = Ranki(U) if T is a nonsingular matrix. Therefore
we write Ranki instead of Ranki(U) henceforth when it is clear from the context.
Note that |Ranki| ≤ ⎦|E|

i

)
.

For a vector x = (x1, · · · , xN ), let

support(x) = {i | xi ≡= 0}.

2.1 Linear Network Coding

Let n = mintimax-flow(s, ti), where max-flow(s, ti) denotes the maximum flow
from the source node s to a sink node ti. Then a linear network coding scheme
can be expressed by

(m1, · · · ,mn) × U = (d1, · · · , d|E|). (2)

Here (m1, · · · ,mn) is the message that the source node multicasts to the set of
sink nodes, where mi ∈ F. U is an n × |E| matrix over F which is called a linear
network coding matrix. di is the field element which is sent through an edge ei.
For example,

U =

⎛

⎝
100110000101100
010001100111111
001000011010011

⎞

⎠ (3)

is the linear network coding matrix used in Fig. 1.
Jaggi et al. [6] showed a polynomial time algorithm which can construct a

linear network coding matrix U from a given network G. Their algorithm works
if |F| ≥ q, where q is the number of sink nodes.

2.2 k-Secure Linear Network Coding

Consider a linear network coding scheme such that

(m1, · · · ,mn−k, r1, · · · , rk) × V = (d1, · · · , d|E|), (4)

where each ri is randomly chosen from F. We say that such a linear network
coding scheme is k-secure if any k edges leak no information on (m1, · · · ,mn−k).

Proposition 1. [4, Theorem 2] Suppose that |F| >
⎦|E|

k

)
. Then for any linear

network coding matrix U , there exists an n × n nonsingular matrix T such that
V = T × U is k-secure.

Proposition 2. [3, Lemma 3.1] The network coding matrix V of Eq. (4) is k-
secure if and only if

rank(VA) = rank(VA,k)
for any A ⊆ {1, · · · , |E|} such that |A| ≤ k.

Corollary 1. A network coding matrix V is 1-secure if and only if the last row
of V consists of nonzero elements.
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2.3 Simple Proof of Proposition 2

In this subsection, we show a simpler proof of Proposition 2 than that of
[3, Lemma 3.1]. Let V = (vi), where vi = (vi,1, · · · , vi,|E|).

First consider a linear network coding scheme such that

(m1, · · · ,mn−1, r1) × V =
n−1⎡

i=1

mivi + r1vn.

Corollary 1 states that it is 1-secure if and only if all the elements of vn are nonze-
ros. This is because r1vn works as the one-time pad to mask (m1, · · · ,mn−1) at
each edge.

Next consider a 1-secure linear network coding scheme such that

(m1, · · · ,mn−2, r1, r2) × V =
n−2⎡

i=1

mivi + r1vn−1 + r2vn.

Proposition 2 states that it is 2-secure if and only if rank(VA,2) = 2 for any
A ⊆ {1, · · · , |E|} such that |A| = rank(VA) = 2.

Without loss of generality, look at edges e1 and e2 and suppose that
rank(V{1,2}) = 2. Then from the above equation, we have

(d1, d2) =
⎦ n−2⎡

i=1

mivi,1,
n−2⎡

i=1

mivi,2

)
+ (r1, r2) × V{1,2},2

where

V{1,2},2 =
⎣

vn−1,,1, vn−1,2

vn,,1, vn,2

⎤
.

Now (r1, r2) × V{1,2},2 is a random vector if and only if rank(V{1,2},2) = 2.
Therefore (d1, d2) leaks no information on (m1, · · · ,mn−2) if and only if
rank(V{1,2},2) = 2.

The proof for k ≥ 3 is similar.

3 Strongly k-Secure Network Coding Scheme

3.1 Definition

Consider a linear network coding scheme of Eq. (2) such that each mi is indepen-
dently and uniformly distributed over F. Then strongly k-secure network coding
schemes are defined as follows.

Definition 1. 1. Such a scheme is strongly 1-secure if any single edge leaks no
information on any S ⊂ {m1, · · · ,mn} such that |S| = n − 1.

2. A strongly h-secure network coding scheme is strongly (h + 1)-secure if any
h + 1 edges leak no information on any S ⊂ {m1, · · · ,mn} such that |S| =
n − h − 1.
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Harada and Yamamoto showed that there exists a strongly (n − 1)-secure
linear network coding scheme if |F| is sufficiently large [5, Theorem 3]. However,
they did not present an explicit construction algorithm. They did not give a
concrete size of |F| either.

3.2 Necessary and Sufficient Condition

We can generalize Corollary 1 and Proposition 2 as follows.

Corollary 2. In Eq. (2), the network coding matrix U = (ui,j) is strongly 1-
secure if and only if ui,j ≡= 0 for all (i, j).

Proof. Equation (2) is written as

(m1, · · · ,mn) × U =
⎡

i∈=j

miui + mjuj ,

where U = (ui). Corollary 2 states that any single edge leaks no information on
{m1, · · · ,mn} \ {mj} if and only if all the elements of uj are nonzeros. This is
because mjuj works as the one-time pad to mask {m1, · · · ,mn} \ {mj}. This
argument holds for any mj . ∩←
Proposition 3. The network coding matrix U of Eq. (2) is strongly k-secure if
and only if

rank(UA) = rank(UA,B)

for any A ∈ Rankj and any B ⊂ {1, · · · , n} such that |B| = j for j = 1, · · · , k.

Proof. Suppose that U is strongly (k − 1)-secure. We will show that any k edges
leak no information on any S ⊂ {m1, · · · ,mn} with |S| = k if and only if
rank(UA,B) = k for any A ∈ Rankk and any B ⊂ {1, · · · , n} such that |B| = k.

Suppose that S∼ = {m1, · · · ,mn} \ {mi1 , · · · ,mik}. In this case, we consider
that (mi1 , · · · ,mik) are random elements (r1, · · · , rk). Also let B∼ = {i1, · · · , ik}.
Then from Proposition 2 and the second example of Sec. 2.3, it is easy to see
that any k edges leak no information on S∼ if and only if rank(UA,B′) = k for
any A ∈ Rankk. This argument holds for any {i1, · · · , ik}. ∩←

4 How to Construct Strongly 1-Secure Scheme

In this section, we show a deterministic polynomial time algorithm constructing
strongly 1-secure linear network coding schemes.

Tang et al. [14] presented a probabilistic algorithm for constructing k-secure
network coding schemes. We first show a deterministic polynomial time algo-
rithm constructing 1-secure linear network coding schemes based on their algo-
rithm. We next show a deterministic polynomial time algorithm constructing
strongly 1-secure linear network coding schemes.
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4.1 How to Increase Hamming Weight

For two given vectors x = (x1, · · · , xN ) and y = (y1, · · · , yN ) over F, we show
how to find α which maximizes wH(αx + y) in time O(N).5 Define

zeros(x,y) = {−yi/xi | xi ≡= 0}
= {α | αxi + yi = 0 with xi ≡= 0}.

Lemma 1. For any α such that α ∈ F \ zeros(x,y), it holds that

support(αx + y) = support(x) ∪ support(y).

Proof. Suppose that α ∈ F \ zeros(x,y). Then αxi + yi = 0 if and only if xi =
yi = 0. This means that

support(αx + y) = support(x) ∪ support(y).

∩←
Lemma 2. If |F| > wH(x), then we can find α such that α ∈ F \ zeros(x,y) in
time O(N).

Proof. Note that |zeros(x,y)| ≤ wH(x) < |F|. Therefore F \ zeros(x,y) ≡= ∅. We
can find α such that α ∈ F \ zeros(x,y) by using the following algorithm in time
O(N). For simplicity, suppose that F = Fp such that p is a prime.

(Algorithm Hamming weight increasing)

Input: Two vectors x = (x1, · · · , xN ) and y = (y1, · · · , yN ) over F, where
|F| > wH(x).

Output: α such that α ∈ F \ zeros(x,y).

1. Let N0 = wH(x).
2. Let a(0) = a(1) = · · · = a(N0) = 0.
3. For i = 1, · · · , N , do:
4. If xi ≡= 0, then do:
5. Compute qi = −yi/xi. If qi ≤ N0, then let a(qi) := 1.
6. Output the least j such that a(j) = 0 as α.

∩←
Consider x = (1, 1, 1, 0) and y = (0, 4, 2, 3) over F5. Then N0 = wH(x) = 3,

and initially we have a(0) = · · · = a(3) = 0. Next we compute q1 = 0, q2 = −4 =
1 and q3 = −2 = 3. Hence we set a(0) = a(1) = a(3) = 1. Finally the least j
such that a(j) = 0 is 2. Therefore we obtain α = 2. In this case,

αx + y = 2 × (1, 1, 1, 0) + (0, 4, 2, 3) = (2, 1, 4, 3).

5 Tang et al. [14] did not show such an algorithm.
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4.2 How to Make a NonZero Row

Let c ∈ {1, · · · , n}. For two n × π matrices X = (xi) and Y = (yi), we write

Y ∼=nonzero(c) X

if yi = xi for all i ≡= c, and wH(yc) = π.
We show a polynomial time algorithm which outputs a nonsingular matrix

T such that
T · X ∼=nonzero(c) X

from any X which does not contain a column vector (0, · · · , 0)T and any c ∈
{1, · · · , n} by using the Hamming weight increasing algorithm.

(Algorithm nonzero-row)

Input: A n × π matrix X = (xi) over F which does not contain a column
(0, · · · , 0)T , and c ∈ {1, · · · , n}.

Output: A nonsingular matrix T such that T · X ∼=nonzero(c) X.

1. Let y := xc.
2. For i = 1, · · · , n, do:
3. If i ≡= c, do:
4. Choose αi such that αi ∈ F \ zeros(xi,y) by using

the Hamming weight increasing algorithm.
5. Let y := αi × xi + y.
6. Let Q = (qi) be an n × n matrix such that

qi =
⎨

(α1, · · · , αn) if i = c
(0, · · · , 0) if i ≡= c

where αc = 0.
7. Output T = In + Q.

Theorem 1. The above algorithm outputs nonsingular matrix T such that T ·
X ∼=nonzero(c) X in time O(nπ) if |F| > π.

Proof. Let zi denote the ith row of T · X. Since T = In + Q, we have

T · X = (In + Q) · X = X + Q · X.

Therefore

zi =
⎨

xi if i ≡= c
xc +

⎩n
j=1 αjxj if i = c

We next show that wH(zc) = π. At line 4, if |F| > π, we can find αi such that
αi ∈ F \ zeros(xi,y) from Lemma 2. Then from Lemma 1, we can see that

wH(zc) = |support(zc)| = | ∪n
i=1 support(xi)| = π

because X does not include (0, · · · , 0)T . Therefore T · X ∼=nonzero(c) X.
Further by using the elementary row operation, it is easy to see that det(T ) =

det(In) = 1. Hence T is nonsingular.
Finally, line 4 takes time O(π) from Lemma 2. Line 5 also takes time O(π).

Hence the algorithm runs in time O(nπ). ∩←
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4.3 How to Construct 1-Secure Schemes

We can immediately obtain a deterministic polynomial time algorithm for con-
structing 1-secure linear network coding scheme from Sec. 4.2. Let U be a n×|E|
matrix of a linear network coding scheme. First compute T = nonzero-row
(U, n). Next let V = T · U . Then V is a 1-secure linear network coding matrix
from Corollary 1 and Theorem 1. This algorithm runs in time O(n|E|) from
Theorem 1.

An example of a 1-secure linear network coding scheme is shown in Appen-
dix A. It is obtained by applying the above algorithm to Fig. 1 in such a way
that α1 = α2 = 1.

4.4 How to Construct Strongly 1-Secure Schemes

We will now show a polynomial time algorithm which outputs a nonsingular
matrix T such that T · U is strongly 1-secure from any linear network coding
matrix U .

(Algorithm strongly one-secure)

Input: An n × |E| matrix U of a linear network coding scheme.
Output: A nonsingular matrix T such that V = T · U is strongly 1-secure.

1. Compute T0 :=nonzero-row(U, n).
2. Compute U∗ := T0 · U .

Let U∗ = (u∗
i ). Then wH(u∗

n) = |E|.
3. For i = 1, · · · , n − 1, choose βi such that βi ∈ F \ zeros(u∗

n,u∗
i ) by using the

Hamming weight increasing algorithm.
4. Output

T =

⎛

⎜⎜⎜⎝

β1

In−1

...
βn−1

0 · · · 0 1

⎞

⎟⎟⎟⎠ × T0

Theorem 2. For any linear network coding matrix U , the above algorithm out-
puts T such that V = T × U is strongly 1-secure in time O(n2|E|) if |F| > |E|.
Proof. Let V = (vi). Then vn = u∗

n and vi = u∗
i + βiu∗

n for i = 1, · · · , n − 1.
First from Theorem 1,

wH(vn) = wH(u∗
n) = |E|.

Next for i = 1, · · · , n − 1, we have

wH(vi) = wH(u∗
i + βiu∗

n) = wH(u∗
n) = |E|

from Lemma 1. Hence all the elements of V are nonzero. This means that V is
strongly 1-secure from Corollary 2.

Further T is nonsingular because T0 is nonsingular from Theorem 1.
Finally from Lemma 2, we can run step 1 if |F| > |E| in time O(n|E|).

Therefore the algorithm runs in time O(n2|E|). ∩←
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An example of a strongly 1-secure linear network coding scheme is shown in
Appendix A (Fig. 4). It is obtained by applying the above algorithm to Fig. 1 in
such a way that α1 = α2 = 1 at step 1, and β1 = β2 = 1 at step 3.

5 How to Construct Strongly k-Secure Schemes

In this section, we show how to construct a strongly k-secure linear network
coding scheme for k ≥ 2.

5.1 D-Zero Projection of U

We first introduce a notion of D-zero projection of U , where U is an n × |E|
matrix of a linear network coding scheme and D ⊂ {1, · · · , n}.

Definition 2. We say that bA = (x1, · · · , xn)T is a D-zero projection of UA if
bA = UA · (c1, · · · , c|D|+1)T for some (c1, · · · , c|D|+1) ≡= (0, · · · , 0) and xi = 0
for all i ∈ D, where |A| = rank(UA) = |D| + 1.

Definition 3. We say that an n× |Rank|D|+1| matrix W is a D-zero projection
of U if each column bA is indexed by A ∈ Rank|D|+1 and bA a D-zero projection
of UA.

It is an easy algebra to prove the following lemmas.

Lemma 3. There exists a D-zero projection of U if

rank(UA,D) = |D|
for each A ∈ Rank|D|+1.

Lemma 4. Let W be a D-zero projection of U . If the ith row of W consists of
nonzero elements, then

rank(UA,D∪{i}) = |D| + 1

for any A ∈ Rank|D|+1, where i ≡∈ D.

An example is presented in Appendix B.

5.2 Construction of Strongly k-Secure Scheme

We now show an efficient algorithm which outputs a nonsingular matrix T such
that T · U is strongly k-secure from any linear network coding matrix U for
k ≥ 2.

(Algorithm strongly k-secure)

Input: A linear network coding matrix U .
Output: A nonsingular matrix T such that V = T · U is strongly k-secure.
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1. Compute T0 :=nonzero-row(U, 1).
2. Compute Y0 := T0 × U .
3. For i = 1, · · · , n − 1, do:
4. Let U∗ be the first |E| columns of Yi−1.
5. For each D ⊂ {1, · · · , i} such that i ∈ D and |D| < k, do:
6. compute a D-zero projection WD of U∗ and let Xi := (Yi−1,WD).
7. Compute Ti :=nonzero-row(Xi, i + 1).
8. Compute Yi := Ti × Xi.
9. Output T := Tn−1 × · · · T1 × T0.

Theorem 3. For any linear network coding matrix U , let

L = |E| +
k−1⎡

i=1

⎣
n − 1

i

⎤⎣ |E|
i + 1

⎤
.

Then the above algorithm outputs T such that T · U is strongly k-secure in time
O(n2L) if |F| > L.

The proof is given in Appendix C.

5.3 Example for k = 2

We show an example for n = 3 and k = 2. Let U be a 3 × |E| matrix of a linear
network coding scheme. Our algorithm runs as follows.

1. Compute T0 :=nonzero-row(U, 1), and let U∗ := T0 × U .
This means that the first row of U∗ consists of nonzero elements, and the
other rows are the same as those of U .

U∗ = T · U
non-zero

***
***

2. Compute a {1}-zero projection W{1} of U∗.
Here each column bA of W{1} is indexed by A = (i1, i2) ∈ Rank2 and com-
puted as

bA = c1bi1 + c2bi2 = (0, x2, x3)T

for some (c1, c2) ≡= (0, 0), where bi is the ith column of U∗.6 Then (U∗,W{1})
looks as follows.

U∗ W{1}
non-zero 0, · · · , 0

*** ***
*** ***

6 Since the first row of U∗ consists of nonzero elements, it holds that rank(U∗
A,{1}) = 1

for any A ∈ Rank2. Therefore there exists a {1}-zero projection of U∗ from Lemma 3.
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3. Compute T1 :=nonzero-row((U∗,W{1}), 2).
Compute (U∗,W ∗

{1}) := T1 × (U∗,W{1}).
This means the 2nd row of (U∗,W ∗

{1}) consists of nonzero elements, and the
other rows do not change. Hence (U∗,W ∗

{1}) looks as follows.

U∗ W ∗
{1}

non-zero 0, · · · , 0
non-zero non-zero

*** ***

4. Compute a {2}-zero projection W{2} of U∗.
Here each column bA of W{2} is indexed by A = (i1, i2) ∈ Rank2 and com-
puted as

bA = c1bi1 + c2bi2 = (x1, 0, x3)T

for some (c1, c2) ≡= (0, 0), where bi is the ith column of U∗.7 Then (U∗,W ∗
{1},

W{2}) looks as follows.

U∗ W ∗
{1} W{2}

non-zero 0, · · · , 0 ***
non-zero non-zero 0, · · · , 0

*** *** ***

5. Compute T2 :=nonzero-row((U∗,W ∗
{1},W{2}), 3).

Compute X = (U∗,W ∗
{1},W

∗
{2}) := T2 × (U∗,W ∗

{1},W{2}).
Now the 3rd row of X consists of nonzero elements, and the other rows do
not change. Hence X looks as follows.

Fig. 2. Example for k = 2

6. Outputs T := T2 × T1 × T0.

In Fig. 2, W ∗
{1} is a {1}-zero projection of U∗, and W ∗

{2} is a {2}-zero projec-
tion of U∗. Since all the elements of U∗ are nonzeros, it is clear that

rank(U∗
A) = rank(U∗

A,{1}) = rank(U∗
A,{2}) = rank(U∗

A,{3}) = 1

7 Since the 2nd row of U∗ consists of nonzero elements, it holds that rank(U∗
A,{2}) = 1

for any A ∈ Rank2. Therefore there exists a {2}-zero projection of U∗ from Lemma 3.
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for any A ∈ Rank1. Next from Lemma 4 and from Fig. 2, we have

rank(U∗
A) = rank(U∗

A,{1,2}) = rank(U∗
A,{1,3}) = rank(U∗

A,{2,3}) = 2

for any A ∈ Rank2. Therefore U∗ is strongly 2-secure from Proposition 3.
The number of columns of (U∗,W ∗

{1},W{2}) is at most |E|+2·⎦|E|
2

)
. Therefore

we can compute each Ti if |F| > |E| + 2 · ⎦|E|
2

)
from Theorem 1.

We show a strongly 2-secure linear network coding scheme in Appendix A
(Fig. 5) which is obtained by applying our algorithm to Fig. 1.

A Example of Secure Linear Network Coding Schemes

Fig. 3. 1-Secure linear network coding scheme (mod3)

Fig. 4. Strongly 1-secure linear network coding scheme (mod5)
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Fig. 5. Strongly 2-secure linear network coding scheme (mod11)

B Example of D-Zero Projection

Consider

U =
⎣

1 1 2
0 1 1

⎤

over F5. Then

U{1,2} =
⎣

1 1
0 1

⎤
, U{1,3} =

⎣
1 2
0 1

⎤
, U{2,3} =

⎣
1 2
1 1

⎤
.

Therefore
Rank2 = {{1, 2}, {1, 3}, {2, 3}}

because
rank(U{1,2}) = rank(U{1,3}) = rank(U{2,3}) = 2.

Next

U{1,2},{1} = (1, 1)
U{1,3},{1} = (1, 2)
U{2,3},{1} = (1, 2)

Therefore from Lemma 3, there exists a {1}-zero projection of W because

rank(U{1,2},{1}) = rank(U{1,3},{1}) = rank(U{2,3},{1}) = 1

Let

b{1,2} = −(1, 0)T + (1, 1)T = (0, 1)T

b{1,3} = −2 · (1, 0)T + (2, 1)T = (0, 1)T

b{2,3} = −2 · (1, 1)T + (2, 1)T = (0,−1)T .
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Then bA is a {1}-zero projection of UA for A = {1, 2}, {1, 3} and {2, 3}.
Therefore W such that

W = (b{1,2},b{1,3},b{2,3}) =
⎣

0 0 0
1 1 −1

⎤

is a {1}-zero projection of U . Finally the second row of W consists of nonzero
elements. Therefore

rank(U{1,2},{1,2}) = rank(U{1,3},{1,2}) = rank(U{2,3},{1,2}) = 2

from Lemma 4.

C Proof of Theorem 3

At line 5 and line 6, we can show that there exists such a D-zero projection
WD of U∗ by induction on i based on Lemma 3. (See the footnotes of Sec. 5.3.)
At line 8, the (i + 1)th row of Yi consists nonzero elements, and the other rows
are the same as those of Xi. Therefore the final Yn−1 looks as follows, where
U∗ = T · U . It is also easy to see that W ∗

D is a D-zero projection of U∗ for all
D ⊂ {1, · · · , n} such that |D| < k (Fig. 6).

U∗ W ∗
{1} W ∗

{2} W ∗
{1,2} W ∗

{3} W ∗
{1,3} W ∗

{2,3} —
non-zero 0, · · · , 0 *** 0, · · · , 0 *** 0 · · · 0 *** —
non-zero non-zero 0, · · · , 0 0, · · · , 0 *** *** 0 · · · 0 —
non-zero non-zero non-zero non-zero 0 · · · 0 0 · · · 0 0 · · · 0 —
non-zero non-zero non-zero non-zero non-zero non-zero non-zero —

— — — — — — — —
non-zero non-zero non-zero non-zero non-zero non-zero non-zero non-zero

Fig. 6. The final Yn−1

In the above figure, since all the elements of U∗ are nonzeros, it is clear that

rank(U∗
A) = rank(U∗

A,{1}) = · · · = rank(U∗
A,{n}) = 1

for any A ∈ Rank1. Next from Lemma 4 and from the above figure, we have

rank(U∗
A) = rank(U∗

A,{1,2}) = · · · = rank(U∗
A,{n−1,n}) = 2

for any A ∈ Rank2. Similarly, we can see that

rank(U∗
A) = rank(U∗

A,B)

for any A ∈ Rankj and any B ⊂ {1, · · · , n} such that |B| = j for j = 1, · · · , k.
Therefore U∗ is strongly k-secure from Proposition 3.
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Lemma 5. Let Lk be the number of columns of the final X. Then

Lk ≤ |E| +
k−1⎡

i=1

⎣
n − 1

i

⎤⎣ |E|
i + 1

⎤
.

Proof. Let #A denote the number of columns of a matrix A. Then

Lk = #U +
k−1⎡

h=1

⎣
n − 1

h

⎤ ⎡

|D|=h

#WD

If |D| = h, then we have

#WD = |Rankh+1| ≤
⎣ |E|

h + 1

⎤

from Eq. (1), Therefore we have this lemma. ∩←
Therefore at line 7, we can compute each Ti if |F| ≥ L ≥ Lk in time O(nL)

from Theorem 1. To compute all Ti, it takes time O(n2L).
At line 5, it takes O(n|D|2) time to compute each WD. To compute all WD,

it takes time O(
⎩k

i=1 ni2
⎦
n−1

i

)
) which is bounded by O(n2L).

Finally the time complexity of line 2 and line 9 is bounded by O(n2L).
Therefore our algorithm runs in time O(n2L).
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Abstract. In this paper we propose a novel method for performing
secure two-party computation. By merging together in a suitable way two
beautiful ideas of the 80’s and the 90’s, Yao’s garbled circuit construc-
tion and Naor and Shamir’s visual cryptography, respectively, we enable
Alice and Bob to securely evaluate a function f(·, ·) of their inputs, x
and y, through a pure physical process. Indeed, once Alice has prepared
a set of properly constructed transparencies, Bob computes the function
value f(x, y) by applying a sequence of simple steps which require the use
of a pair of scissors, superposing transparencies, and the human visual
system. A crypto-device for the function evaluation process is not needed
any more.

Keywords: Yao’s construction · Visual cryptography · Secure compu-
tation

1 Introduction

Yao’s Construction. Latins said: Verba volant, scripta manent. Yao’s construction
disproves the saying. Indeed, [31,32], the papers which usually are cited when
the construction is used or referred to, do not contain any description of it. It
has never been written down by the author, but only provided to the commu-
nity during an oral presentation (FOCS 1986). Fortunately, verba were captured
by other researchers, who used the construction in subsequent papers, first of
all [21]. Later on, it has been widely exploited in protocol design, but, apart
some notable exceptions, it has more or less been considered as a powerful tool
for establishing existential results. However, in the last years, since it has been
shown that fine-tuned implementations, for reasonable input sizes, are becom-
ing practical in many settings, new attention has been devoted to it. A version
of the construction has been clearly described and proved secure according to
precise definitions and assumptions in [28]. In a few other new recently intro-
duced cryptographic primitives and protocols, e.g., functional encryption [7] or
non-interactive verifiable computing [22], the construction plays a key role, and
in [4] it has been even proposed to move from a view of Yao’s construction as a
cryptographic tool to a view of the construction as a cryptographic goal, which

C. Padró (Ed.): ICITS 2013, LNCS 8317, pp. 18–38, 2014.
DOI: 10.1007/978-3-319-04268-8 2, c© Springer International Publishing Switzerland 2014
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can be achieved with several security properties and privacy degrees1. From a
certain point of view, Yao’s idea is living nowadays a sort of second life.

Roughly speaking, Yao’s construction, enables two parties, Alice and Bob, to
privately evaluate a boolean function f(·, ·) on their inputs, x and y, in such a
way that each party gets the result and, at the same time, preserves the privacy
of its own input, apart from what can be inferred about it by the other party
from its input and the function value f(x, y). For example, if the function f(·, ·)
is the xor function, given x xor y and one of the input, there is no way to
preserve the other input.

In a nutshell, the construction works as follows: the boolean function f(·, ·)
is represented through a boolean circuit C(·, ·) for which, for each x, y, it holds
that C(x, y) = f(x, y). Yao’s idea is to use the circuit as a conceptual guide for
the computation which, instead of a sequence of and, or and not operations
on strings of bits x and y, becomes a sequence of decryptions on sequences of
ciphertexts. More precisely, one of the party, say Alice, given C(·, ·), computes
a new object C̃, which is usually referred to as the garbled circuit [2], where:

– to each wire w of C(·, ·), are associated in C̃ two random keys, k0
w and k1

w,
which (secretly, the correspondence is not public) represent 0 and 1, and,

– to each gate G(·, ·) of C(·, ·), corresponds in C̃ a gate table G̃ with four rows,
each of which is a double encryption, obtained by using two different keys
ka

w1
and kb

w2
, for a, b ∈ {0, 1}, of a message which is itself a random key kc

w3
,

for c ∈ {0, 1}. In details, each double encryption Eab=Ekb
w2

(Eka
w1

(kc
w3

)) uses
one of the four possible pairs of keys (ka

w1
, kb

w2
), associated to the input wires

(w1, w2) of gate G(·, ·), and the message which is encrypted is the random
key kc

w3
, associated to the wire w3 of output of the gate G(·, ·) if and only if

G(a, b) = c. The four double encryptions E00, E01, E10 and E11 are stored in
the gate table rows in random order.

Once C̃ has been computed, Alice sends to Bob all the gate tables G̃ asso-
ciated to the circuit gates G(·, ·), and reveals the random keys k0

w and k1
w, asso-

ciated to all the output wires w, and their correspondences with the values 0
and 1. Moreover, for the input wires of the circuit, she sends to Bob the ran-
dom keys kx1

w1
, kx2

w2
, . . . , kxn

wn
corresponding to the bit-values of her own input

x = x1x2 . . . xn. To perform the computation represented by C̃, then Bob needs
only the keys associated to the input wires corresponding to his own input. This
issue is solved by means of executions of 1-out-of-2 oblivious transfer protocols
[18], through which Bob receives the random keys ky1

wn+1
, ky2

wn+2
, . . . , ky2n

w2n
corre-

sponding to the bit-values of his own input y = y1y2 . . . yn and nothing else, while
Alice from the transfer does not know which specific keys Bob has recovered.

Finally Bob, according to the topology of the original circuit C(·, ·), level
after level, decrypts one and only one entry from each gate table G̃ in C̃, until
he computes one and only one random key associated to each output wire.
The binary string which corresponds to the sequence of computed random keys,
1 The introduction of [4] offers a brief history of the construction and a nice accounting

of the research efforts which followed.
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associated to the output wires, is the value C(x, y). Bob sends the result of the
computation to Alice2.

It is easy to check that the computation is correct and, intuitively, that the
privacy of the inputs is preserved. The random keys held by Bob, the rows of
each G̃, and the random keys obtained decrypting a row in each G̃, do not leak
any information about the actual bits of Alice’s input value.

Visual Cryptography. Visual cryptography is a special type of secret sharing in
which the secret is an image and the shares are random-looking images printed
on transparencies. It was introduced by Naor and Shamir [27] and, in a different
form, by Kafri and Keren [24]. The captivating peculiarity of this type of secret
sharing is that the reconstruction of the secret is performed without any com-
putational machinery: it is enough to superpose the shares (transparencies) in
order to reconstruct the secret. Roughly speaking, for black-and-white images,
the bit value 0 is encoded as a transparent pixel, the bit value 1 is encoded
as a black pixel, and the reconstruction operation is an or and is performed
by the human visual system when the shares are superposed. Visual cryptogra-
phy has been extensively studied (e.g. [1,6,11,12,14,16,17,19,23]); we refer the
interested reader to [15] for a collection of surveys on several aspects of visual
cryptography. For the goal of this paper we will be using a particular type of
visual cryptography: probabilistic visual cryptography [13,30].

Our Contribution. In this paper we merge together Yao’s construction and prop-
erly defined visual cryptography schemes, in order to propose a method through
which Alice and Bob can securely evaluate a function f(·, ·) of their inputs, x
and y, through a pure physical process.

Our efforts were inspired and driven by the work of Kolesnikov [26], who
showed that a different approach to the function evaluation process in Yao’s
construction can be pursued. Roughly speaking, instead of constructing the gar-
bled circuit C̃ by using for each gate G(·, ·) a gate table G̃, containing a double
encryption for each possible input pair of keys, Kolesnikov showed that it is
possible to use secret sharing schemes designed to realize the functionalities
implemented by the logical gates. Such schemes were referred to as gate equiva-
lent secret sharing schemes (GESS, for short) [26]. Using a GESS, any time that
two shares, say sha

w1
and shb

w2
, associated to the input wires w1 and w2 of gate

G(·, ·), are combined through the reconstruction function of the GESS, the secret
sw3 , associated to the output wire w3 of gate G(·, ·) is recovered. It follows that
an explicit representation G̃ of G(·, ·) is not needed any more, because all the
information required to reconstruct the secret value associated to w3, depending
on the functionality of the target gate G(·, ·), is coded and, hence, implicitly
represented, into the shares sha

w1
and shb

w2
. Therefore, given the circuit C(·, ·),

and by applying a bottom-up process, which starts from the circuit output wires
and ends when the circuit input wires are reached, Alice can construct shares
associated to the circuit input wires which encode all the information needed
to evaluate C(·, ·) on every pair of inputs (x, y). Then, as in Yao’s construction,

2 A detailed description of Yao’s protocol can be found in [28].
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Alice sends directly to Bob the shares corresponding to the bit-values of her
own input x, while Bob, by means of executions of 1-out-of-2 oblivious transfer
protocols, receives the shares corresponding to the bit-values of his own input
y. Finally, Bob applies iteratively the GESS reconstruction functions, until the
secrets associated to the output wires, which correspond to the value C(x, y),
are obtained.

In this paper we provide a generalization of the above approach and a visual
implementation.

Notice that, the technique used by Kolesnikov [26], does not immediately
extend to visual secret sharing. In order to exploit visual secret sharing, some
technical details and issues need to be addressed. The most important ones are
two: (i) we need to define and construct a visual counterpart of a GESS scheme,
and (ii) propose a physical method to perform the oblivious transfer. Both of
them are goals of independent interests. We show that the GESS construction
provided in [26] is a special case of a general construction which uses multi-secret
sharing schemes, and that it can be instantiated by using a visual multi-secret
sharing scheme. We also provide a construction. Regarding the oblivious trans-
fer, even if physical metaphors have often been used for describing cryptographic
primitives and protocols, only few papers have dealt with physical implementa-
tions. To our knowledge, the state of the art is summarized in [29], which is the
first paper that rigorously addresses the issue of realizing cryptographic proto-
cols by using tamper-evident seals (sealed envelopes and locked boxes). We could
use an oblivious transfer protocol of [29], but since we discuss a simpler scenario,
we propose an easier construction which uses indistinguishable envelopes. The
main result we achieve can be (informally) stated as follows:

Theorem 1. Every two-party computation representable by means of a boolean
function f(·, ·) can be performed preserving the privacy of the inputs x and y
through a pure physical visual evaluation process.

2 Definitions and Tools

Let us start by setting up the notation and stating basic definitions. We follow
essentially the treatment of [20,28] (i.e., see Sect. 2 of [28] or Chap. 7 of [20]).

2.1 Notation

Efficient Algorithms. An efficient algorithm is a probabilistic algorithm running
in poly(k) time, where k is a security parameter. Efficient algorithms are referred
to as PPT algorithms.

Negligible Functions. A function f(·) is negligible if it vanishes faster than the
inverse of any fixed positive polynomial. That is, for any positive integer c, there
exists an integer k0 such that f(k) ≤ 1

kc , for any k ≥ k0. We denote by negl(k)
a negligible function.
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Algorithms and Random Variables. If A(·) is a probabilistic algorithm, then, for
any x, the notation A(x) refers to the random variable that assigns to the string
σ the probability that A, on input x, outputs σ.

Distribution Ensembles. If S is an infinite set, and X = {Xs}s∈S and Y =
{Ys}s∈S are distribution ensembles3, then we say the X and Y are identically
distributed, X

p≡ Y for short, if, for every distinguisher D and for every s ∈ S,
it holds that Pr[D(Xs) = 1] − Pr[D(Ys) = 1] is equal to 0. Similarly, if the Ds
are PPT algorithms, and for all sufficiently large (in the length of the security
parameter) s ∈ S it holds that |Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| is a negligible
function negl(s) in s, we say that X and Y are computationally indistinguishable,
X

c≡ Y for short.

2.2 Secure Two-Party Computation

We consider two-party computation in presence of a static semi-honest adversary.
The adversary controls one of the parties and, although it follows the protocol
specification, it might try to learn extra information from the transcript of the
messages received during the execution.

A two-party computation is a random process that maps pairs of inputs to
pairs of outputs, one for each party. We refer to such a process as a function-
ality and denote it f : {0, 1}∼ × {0, 1}∼ → {0, 1}∼ × {0, 1}∼, where f(x, y) =
(f1(x, y), f2(x, y)).

Let π be a two-party protocol for computing f . Intuitively, a protocol is
secure if whatever a party can compute participating in the protocol can also be
computed by himself by using only his own input and his own function value.
More formally, for i ∈ {1, 2}, denoting with the random variables viewσ

i (x, y), the
view (i.e., input, random coins, messages received...) that party i has during the
execution of π(x, y), by outputσi (x, y) the output of party i, and by outputσ(x, y)
the output of both parties, we state the following4:

Definition 1. Let f be a functionality. A protocol π computes f in a perfectly
(computationally) secure way, in presence of a static semi-honest adversary, if

{outputσ(x, y)}(x,y)∈{0,1}∗ = {f(x, y)}(x,y)∈{0,1}∗

3 A random variable is sufficient to represent the input, the output or any intermediate
computation of a randomized entity in a single protocol execution. However, since it
is of interest analyzing the behavior of protocol executions, according to input sizes
depending on the security parameter k, collections of random variables are needed:
an ensemble is exactly a family of random variables, where each of them, say Xs, is
uniquely identified by an index s, related to the security parameter k.

4 We deal in the following with a deterministic functionality.Hence, we state the sim-
plified versions of the definitions in [20,28]. Moreover, we also state the definition for
the unconditionally secure case. As we will show later, by using an unconditionally
secure physical implementation of the oblivious transfer, known to be possible [29],
the definition in the physical world is achieved by our protocol.
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and there exists (PPT) algorithms Sim1 and Sim2 such that:

{Sim1(x, f1(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewσ

1 (x, y)}(x,y)∈{0,1}∗ ,

{Sim2(y, f2(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewσ

2 (x, y)}(x,y)∈{0,1}∗ .

3 Visual Gate Evaluation Secret Sharing

In this section, building on the definitions and the constructions provided in
[26], we introduce the notion of visual gate evaluation secret sharing (VGESS,
for short), and we show how to construct a VGESS scheme. We proceed as
follows: (i) we recall some notions on secret and multi-secret sharing schemes
and their visual version, (ii) we recall the definition of GESS schemes [26], (iii)
we define a general construction for GESS schemes, GenGESS for short, in terms
of multi-secret sharing schemes. The construction in [26] ends up to be a special
instance of it. Finally, in order to take benefits from the general form, (iv) we
define VGESS and, by using a visual multi-secret sharing scheme, (v) we realize
an implementation.

3.1 Secret Sharing and Multi-Secret Sharing Schemes

Let us briefly introduce secret sharing and multi-secret sharing schemes5.
Roughly speaking, a secret sharing scheme is a method through which a

dealer shares a secret s among a set of parties, in such a way that, later on,
some subsets of parties can reconstruct the secret, while others do not get any
information about it. Similarly, a multi-secret sharing scheme enables the dealer
to share more than one secret among the set of parties, in such a way that
different subsets of parties reconstruct different secrets.

Let P = {1, . . . , n} be a set of n parties. A collection of subsets A ⊂ 2P is
monotone if A ∈ A and A ⊆ B imply that B ∈ A.

Definition 2. Access structure. An access structure on the set of parties P is
a pair (A,F) such that A ⊂ 2P is a monotone collection, F ⊂ 2P , and A∩F = ∅.

(A,F) is a specification of the sets which reconstruct the secret and of the
sets which do not get any information about it. Usually sets in A are called
authorized, while sets in F are called forbidden. Sets in 2P \ (A ∪ F) are sets for
which we do not care.

Let S, SH1, . . . , SHn be finite sets. The set S is usually referred to as the
set of secrets and the sets SH1, . . . , SHn as the sets of shares. Moreover, denote
5 We do not follow the traditional entropy-based characterization, e.g., [8,25], since in

our analysis we are not going to use the entropy function. A comprehensive study of
secret sharing schemes which does not use the language of information theory can
be found in [5]. See also a recent survey [3].
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with s and sh1, . . . , shn elements belonging to S and SH1, . . . , SHn, respectively,
and for each X = {i1, . . . , im} ⊆ P, with SHX = SHi1 × . . . × SHim and with
shX = (shi1 , . . . , shim). Using the above notation, we state the following:

Definition 3. Secret sharing scheme (SSS for short). Let S be a set of
secrets, where |S| ≥ 2. A secret sharing scheme α = (Shr,Rec) with secret
domain S realizing the access structure (A,F) is a pair of algorithms Shr and
Rec where

– Shr is a probabilistic algorithm which takes as input a secret s ∈ S and outputs
a set of shares sh1, . . . , shn.

– Rec is a deterministic algorithm which takes as input a set of shares shX for
X ⊆ P, and outputs either s ∈ S or ⊥

satisfying the following properties:

1. Correctness. For each A ∈ A, and for every secret s ∈ S, it holds that
Pr[Rec(Shr(s)A) = s] = 1

2. Privacy. For each F ∈ F , and for every s1 ∈ S and s2 ∈ S, it holds that
Pr[Shr(s1)F = shF ] = Pr[Shr(s2)F = shF ]

Property 1 guarantees that each authorized subset reconstructs the secret, while
property 2 that each forbidden subset does not get any information from its
subset of shares, since the subset is compatible with each possible secret with
the same probability. Moreover, the definition does not assume any probability
distribution on the set S, and can be weakened by not requiring perfect recon-
struction or by requiring just statistical or computational privacy. Definition 3
can also be easily extended to multi-secret (MSSS for short), i.e., the case in
which the dealer distributes more than one secret. Formally, it is necessary to
consider, instead of a single set of secrets S and a single access structure (A,F),
sets of secrets S1, . . . , S∂ and access structures (A1,F1), . . . , (A∂,F∂).

Remark. Notice that, in our construction we will consider a simple multi-secret
sharing scheme, a 2-MSSS: the set of parties is P = {1, 2, 3}, the sets of secrets
are two and are equal, i.e., S1 = S2 = S, and the access structures are defined by
A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}} .

3.2 Visual Cryptography

Visual cryptography schemes can be deterministic or probabilistic. The schemes
introduced by Naor and Shamir are deterministic. The schemes introduced by
Kafri and Keren are probabilistic. Deterministic schemes need to associate to
each pixel of the secret image, a collection of m ≥ 2 pixels in the shares. Para-
meter m is called the pixel expansion of the scheme. For probabilistic schemes it
is possibile to have m = 1.

Given two images I1 and I2, with the same size, printed on transparencies,
we denote with Sup(I1, I2) the image that results from the superposition of the
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two images. Interpreting white as 0 and black as 1, for each pixel position (i, j),
we have that Sup(I1, I2) = I1(i, j) or I2(i, j).

Let us start with the definition6 of a probabilistic visual secret sharing scheme
for a set P = {1, 2} of two parties, with access structure defined by A = {{1, 2}}
and F = {{1}, {2}}.

Definition 4. Probabilistic (2, 2) -VCS. Let S be a set of secret images, such
that |S| ≥ 2. A probabilistic (2, 2)-VCS is a secret sharing scheme realizing the
access structure defined by A = {{1, 2}} and F = {{1}, {2}} where Shr and Rec
are such that

– Shr is a probabilistic algorithm which takes as input a secret I ∈ S and outputs
a pair of visual shares (sh1, sh2)

– Rec is the deterministic algorithm Sup(·, ·) which superposes sh1 to sh2

satisfying the following properties:

– Correctness: For each pixel position (i, j), if I(i, j) = • then Sup(sh1, sh2)
(i, j) = •, and if I(i, j) = ◦ then pr[Sup(sh1, sh2) (i, j) = ◦] > 0.

– Privacy: For each pixel position (i, j), regardless of the values of I(i, j),
pr[sh1(i, j) = ◦] = pr[sh2(i, j) = ◦], and, consequently, pr[sh1(i, j) = •] =
pr[sh2(i, j) = •].

Notice that, in the above definition we require that black pixels are recon-
structed perfectly.

In general, VCSs can be implemented by means of distribution matrices. Pre-
cisely, let n and m be two integers, where n represents the number of parties and
m is the pixel expansion. A scheme is usually defined by two collections C∗ and
C• of n × m matrices with elements in {◦, •}. The Shr algorithm, for each secret
pixel, chooses a distribution matrix M at random from C∗, if the secret pixel is
white, or from C•, if the secret pixel is black, and uses row i of M to construct
the pixel on the ith share. For example, the following collections of distribution
matrices can be used to realize a probabilistic (2, 2)-VCS:

C∗ =
{[◦

◦
]

,

[•
•
]}

C• =
{[◦

•
]

,

[•
◦
]}

More precisely, assuming that the set S of secret images contains all black-
and-white square images I of n × n pixels, and that R = {0, 1}, denoting the
distribution matrices in C∗ as C∗,0, C∗,1, and in C• as C•,0, C•,1, a probabilistic
(2, 2)-VCS, can be realized as follows:

6 In this abstract, to simplify the presentation of our approach, instead of providing
general definitions, we concentrate on specific definitions of VCS for the tools we
need in our construction.
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An example of application of the scheme is given in Fig. 1.

Fig. 1. Example of shares and superposition for a probabilistic (2, 2)-scheme.

The Probabilistic (2,2)-VCS satisfies Definition 4. More precisely:

Theorem 2. The Probabilistic (2, 2) -VCS construction realizes a probabilistic
(2,2)-VCS.

All proofs of our statements will appear in the full version of this paper.
We also remark that the Probabilistic (2,2) -VCS scheme is the same as the

random grid scheme of Kafri and Keren [24].
Let us now define a 2-MVCS i.e., a visual multi-secret sharing scheme for

a set P = {1, 2, 3} of three parties, with access structures defined by A1 =
{{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}. The
scheme will be used to share 2 secret images I0 and I1 which will be recon-
structed, respectively, by A1 and A2.

Definition 5. Probabilistic 2-MVCS. Let S be a set of secret images, such
that |S| ≥ 2. A probabilistic 2-MVCS is a multi-secret sharing scheme with
domains S1 = S2 = S realizing the access structure defined by A1 = {{1, 2}} ,
F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}, where Shr and
Rec are such that

– Shr is a probabilistic algorithm which takes as input two secret images I0 ∈ S
and I1 ∈ S and outputs three visual shares (sh1, sh2, sh3).

– Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following properties:
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– Correctness: For h = 0, 1, for each pixel position (i, j), if Ih(i, j) = •,
then Sup(sh1, sh2+h)(i, j) = •, and if Ih(i, j) = ◦, then pr[Sup(sh1, sh2+h)
(i, j) = ◦] > 0.

– Privacy: For each pixel position (i, j), pr[sh1(i, j) = ◦] = pr[sh2(i, j) = ◦] =
pr[sh3(i, j) = ◦], and, consequently, pr[sh1(i, j) = •] = pr[sh2(i, j) = •] =
pr[sh3(i, j) = •].

Notice that the definition does not state any requirement for the superposi-
tion of sh2 and sh3, that is we neither require a reconstruction nor an assurance
of no information leakage for the combination of the two shares: we simply don’t
care as in our application they will never appear at the same time.

By using in a suitable way the collections of distribution matrices C∗, C• of
the Probabilistic (2,2) -VCS, a Probabilistic 2 -MVCS can be realized as follows:

It is possible to show that the Probabilistic 2-MVCS satisfies Definition 5.
More precisely:

Theorem 3. The Probabilistic 2 -MVCS construction realizes a probabilistic 2-
MVCS.

3.3 GESS: Definition

At this point, we recall the definition of a GESS scheme given in [26]. Let
us define a selector v as a pair of bits, that is v ∈ V 2 = {0, 1} × {0, 1}.
A selection function Sel takes as input a pair of pairs and a selector, and
selects one element from each of the two pairs, according to the selector, i.e.,
Sel : (((a0, a1), (b0, b1)), (v1, v2)) → (av1 , bv2).

Given a gate G and a selector v = (v1, v2), we denote with G(v) the output
of gate G on input (v1, v2).

Definition 6. A gate evaluation secret sharing scheme for gate G is a pair of
algorithms (Shr,Rec) such that
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– Shr is a probabilistic algorithm which takes as input two secrets s0 ∈ S and
s1 ∈ S and outputs a tuple (t1, t2) where each ti, for i = 1, 2, consists of two
shares, i.e., t1 = (sh1,0, sh1,1) and t2 = (sh2,0, sh2,1)

– Rec is a deterministic algorithm which takes as input two shares and outputs
s ∈ S or ⊥

satisfying the following conditions:

– Correctness: For each s0 ∈ S and s1 ∈ S, and for any selector v ∈ V 2, it
holds that Rec(Sel(Shr(s0, s1), v)) = sG(v).

– Privacy: There exists a PPT algorithm Sim such that, for each s0 ∈ S

and s1 ∈ S, and for any selector v ∈ V 2, it holds that Sim(sG(v))
p≡

Sel(Shr(s0, s1), v).

3.4 A General Construction for GESS

A GESS for a gate G (GESSG, for short) can be implemented by using a
2-MSSS α = (ShrΣ , RecΣ). More precisely, we use two instances of α for a
set of parties P = {1, 2, 3}, denoted with the letters A and B to simplify the
presentation7. Instance A = (ShrA,RecA) and instance B = (ShrB ,RecB), with
ShrA = ShrB = ShrΣ and RecA = RecB = RecΣ , have secret domains S1 =
S2 = {s0, s1}, and both of them realize the pair of access structures defined by
A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}} .

The construction is given in Table 1. In step 1, the two instances of α provide
shares which reconstruct sG(0,0) and sG(0,1) (instance A) and sG(1,0) and sG(1,1)

(instance B). Then, in step 2 the shares of A and B are viewed as sub-shares, and
are rearranged and concatenated in order to construct shares which reproduce
the functionality implemented by G. The random permutation bit b is used to
hide the correspondence first-part/second-part of the share associated to the
right wire and the secret which is reconstructed. Finally, in step 3, the shares
for the wires of G are given in output.

Notice that the construction generalizes the construction given in [26]. Indeed,
Kolesnikov’s construction is a special case, where, assuming that the secrets
s0, s1 are n-bit strings and R0 and R1 are also n-bit strings, chosen uniformly
at random, the shares produced by the two instances of the 2-MSSS are shA

1 =
R0, sh

A
2 = sG(0,0) ⊕ R0, sh

A
3 = sG(0,1) ⊕ R0, and shB

1 = R1, sh
B
2 = sG(1,0) ⊕

R1, sh
B
3 = sG(1,1) ⊕R1, where R0 and R1 is the fresh randomness used by A and

B, respectively, and the Rec(·, ·) function is the ⊕ (xor) function.
We show now that the general construction for GESSG satisfies Definition 6.

More precisely:

Theorem 4. The GenGESS construction realizes a GESSG.
7 We stress that the scheme is the same, and it is used twice with independent and

fresh randomness.
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Table 1. General construction for a GESS scheme with a multi-secret sharing scheme.

3.5 Visual GESS

Visual gate evaluation secret sharing schemes (VGESS, for short) are a visual
realization of a GESS scheme. More precisely, we state the following:

Definition 7. A visual gate evaluation secret sharing scheme for gate G
(VGESSG, for short) is a pair of algorithms (Shr,Rec) such that

– Shr is a probabilistic algorithm which takes in input two secret images I0 ∈ S
and I1 ∈ S and outputs a tuple (t1, t2) where each ti, for i = 1, 2, consists of
two visual shares, i.e., t1 = (sh1,0, sh1,1) and t2 = (sh2,0, sh2,1)

– Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following conditions:

– Correctness: For each I0 ∈ S and I1 ∈ S, and for any selector v ∈ V 2, it
holds that, for each pixel position (i, j), if IG(v)(i, j) = •, then Sup(Sel((Shr(
I0, I1), v))(i, j) = •, and if IG(v)(i, j) = ◦, then pr[Sup(Sel((Shr(I0, I1), v))
(i, j) = ◦] > 0.

– Privacy: There exists a PPT algorithm Sim such that, for each I0 ∈ S

and I1 ∈ S, and for any selector v ∈ V 2, it holds that Sim(sG(v))
p≡ Sel(Shr

(s0, s1), v).
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It is possible to check that the general construction for GESSG, based on
a multi-secret sharing scheme, realizes a VGESSG if the multi-secret sharing
scheme therein used is substituted with a visual multi-secret sharing scheme.
Indeed, the following result holds:

Corollary 1. The GenGESS construction for a gate G realizes a VGESSG if the
2-MSSS is instanced with the Probabilistic 2-MVCS.

4 A Visual Two-Party Protocol

In this section we describe our visual two-party protocol. We start by showing
how to realize a physical oblivious transfer and then we provide a full specifica-
tion of the protocol.

4.1 Physical Oblivious Transfer

The 1-out-of-2 oblivious transfer (1-out-of-2-OT, for short) functionality [18]
is an extensively studied cryptographic primitive, which plays a key-role in
secure computation. Several implementations under general assumptions (e.g.,
enhanced trapdoor permutations) and specific assumptions (e.g., factoring,
discrete-log assumption) are available, secure w.r.t. semi-honest and malicious
adversaries, respectively. It is well known that the oblivious transfer is sufficient
for secure multi-party function evaluation. Actually, the protocol we are going
to propose is an unconditionally secure reduction of secure two-party function
evaluation to 1-out-of-2-OT.

Let Alice’s secrets be n-bit strings z0 and z1, let σ be Bob’s bit-choice,
and let ⊥ denote no output. The 1-out-of-2-OT functionality is specified by
((z0, z1, σ) → (⊥, zφ)). The construction we propose is partially inspired to the
approach pursued in [10], when the voter comes out from the booth.

A Physical 1-out-of-2 OT Protocol. Let us assume that the two secrets z0
and z1 are represented in form of transparencies, and Alice has two indistin-
guishable envelopes which perfectly hide the transparency inside. Alice and Bob
proceed as follows:

1. Alice puts the two secrets in the two envelopes, one in the first and one in
the second, and closes both of them. She also adds to each envelope a paper
post-it with number 0 and number 1, depending on the secret which is inside.
Then, she hands the two envelopes to Bob.

2. Bob turns his shoulders to Alice8, checks that the envelopes are identical,
takes the envelopes with the post-it corresponding to the secret he is interested
in, removes the post-it from both envelopes, turns again in front of Alice, and

8 If Alice thinks that Bob has had a career as illusionist, in order to be sure that Bob
does not substitute the envelope that will be destroyed with an identical but fake
one, might requests that Bob shows up in swimsuit.
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Table 2. V2PC protocol

inserts under Alice surveillance the remaining envelope in a paper-shredder
which reduces the envelop and its content in dust9.

Theorem 5. Assuming that indistinguishable envelopes which perfectly hide the
transparency inside can be used, then the Physical 1-out-of-2 OT protocol realizes
a physical perfectly secure 1-out-of-2-OT.

4.2 Our Visual Two-Party Protocol

The protocol is the same reduction of secure function evaluation to 1-out-of-2
OT given via Construction 1 in [26], but with VGESSs instead of GESSs.

V2PC Protocol. Let f : {0, 1}n×{0, 1}n → {0, 1}m be the target functionality
and let C(·, ·) be a boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that,
for all inputs x, y ∈ {0, 1}n, it outputs C(x, y) = f(x, y). Let us also assume
9 An alternative could be that the envelope is burned in front of Alice. The key-

property that need to be satisfied is that the physical process should be irreversible,
the secret cannot be even partially recovered.
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that the circuit is composed of q wires, labeled uniquely with β1, . . . , βq, 2n of
which are input wires, say β1, . . . , β2n, and m of which are output wires, and Ω
gates, represented for h = 1, . . . , Ω by functions Gh : {0, 1} × {0, 1} → {0, 1}. No
circuit-output wire is also a gate-input wire. Along the same line of the original
Yao’s protocol, the description can be split in two phases: (i) shares construction
phase, and (ii) interactive computation phase, described in Table 2.

At this point, we have all the elements needed to state and prove the following
result:

Theorem 6. Let f : {0, 1}n × {0, 1}n → {0, 1}m be a boolean function, and let
C(·, ·) be a boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that, for all
inputs x, y ∈ {0, 1}n, it holds that C(x, y) = f(x, y). Then, assuming indistin-
guishable envelopes can be used, the V2PC protocol computes f in a perfectly
secure way, in presence of a static semi-honest adversary.

4.3 Efficiency and Implementation Details

Two observations need to be done in order to use the V2PC Protocol.
First of all, notice that in the V2PC Protocol the size of the shares associated

to the right wire input gate, doubles at each level of the circuit. However, as
shown in [26], it is the best that can be done in a perfectly secure reduction of
secure function evaluation to OT which uses GESS schemes. It follows that the
construction can be used in real-world applications only for small-depth circuits.
Notice that the choice of using probabilistic visual cryptography schemes has
been done to avoid further increase in the size of the shares. Indeed, the use of
deterministic visual cryptography would have lead to an exponential extra factor
in the increase of the size.

Then, notice that the correctness property of the VGESS definition 7 requires
that the black area of the secret image will be reconstructed (deterministically)
with black pixels, while the white area will be reconstructed, with some proba-
bility, with at least one white pixel. The rationale behind the definition is that
in the reconstruction phase we will have to be able to visually distinguish the
final output value of the function. The quality of the reconstructed image heavily
depends on the depth of the circuit. Indeed, the more levels are in the circuit, the
more image superpositions have to be performed. For each intermediate image
reconstruction, the number of black pixels in the output can only increase. Thus,
the size of the image that we use to encode the values of the output (0 and 1),
must be sufficiently large in order to guarantee that the reconstruction of the
output will have, with some probability, at least one white pixel in the white
area of the original secret image. More specifically, denoting with d the depth of
the circuit, we have that the probability that a specific pixel in the reconstructed
white area is white is equal to (12 )d. Assume that our secret image is defined by
a matrix of t× t pixels and that our representation encodes the bit values, 0 and
1, as depicted in Fig. 2. The secret white area consists of t2/2 pixels. Hence, the
condition that we seek is that 1

2d
>> 1

t2/2 , which implies t >>
√

2d+1. In the
example which follows, where d = 2, we have chosen t = 8.
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5 A Simple Example

In this section we provide a simple example of application of the proposed
method. The secret function is

f((x1, x2), (y1, y2)) = (x1 and y1) or (x2 and y2)

where (x1, x2) is the private input of Alice and (y1, y2) is the private input of
Bob, with x1, x2, y1 and y2 being bits.

Image(0)≡ 0 Image(1)≡ 1 Permutation bit 0 Permutation bit 0 Permutation bit 1

Fig. 2. Bit representations: bit value, Image(0) and Image(1), and permutation bit,
prepended to a blank image.

Binary values are represented as two images consisting of 8 × 8 pixels, more
specifically we will use Image(0) and Image(1) shown in Fig. 2 to encode 0 and 1.

In the share construction phase of the V2PC protocol, Alice has to construct
a VGESS for each gate. Alice starts from gate G3. Gate G3 gives the output
value of f , which can be either 0 or 1. Alice constructs the VGESSG3 which
uses the two 2-MVCS A and B. The shares of scheme A reconstruct the secrets
sG3(0,0), sG3(0,1), and those of scheme B reconstruct sG3(1,0), sG3(1,1). Since G3 is
an or gate we have that scheme A reconstructs Image(0), Image(1), and scheme
B Image(1), Image(1).

To finish up the construction of the shares for VGESSG3 Alice has to choose,
at random, the permutation bit b. In the example we are constructing we assume
that the share of scheme A are placed on the left, so that b = 0 for ShA

1 and
clearly b = 1 for ShB

1 . The random bit will be visually represented as a 2-pixel
image which encodes 0 as one black pixel and one white pixel and 1 as two black
pixels10.

The 2-pixel image will be prepended to the share image (and will become part
of the share). Figure 2 shows the permutation bit prepended to a blank share.

Figure 3 (left) shows the shares for G3, including the permutation bit.
Now Alice can go on and consider gate G1. The output of G1 can be either

0||ShA
1 or 1||ShB

1 , where the first element is the permutation bit. Hence the
10 Notice that, for the permutation bit, we are using a deterministic (2, 2)-VCS with

pixel expansion m = 2. We have used this solution for the permutation bit because,
first of all it is possible to use a scheme with pixel expansion since each permutation
bit propagates only from one level of the circuit to the subsequent one, and secondly
because a scheme with pixel expansion allows a deterministic reconstruction.
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Fig. 3. Shares construction for gate G3 (left) and gate G1 (right).

secrets that we need to share are {0||ShA
1 , 1||ShB

1 }. Share ShA
1 corresponds to

the wire value 0, while share ShB
1 to the wire value 1. Since G1 is an and gate,

Alice will need to use two 2-MVCS schemes C and D such that scheme C
reconstructs sG1(0,0) = 0||ShA

1 and sG1(0,1) = 0||ShA
1 , and scheme B reconstructs

sG1(1,0) = 0||ShA
1 and sG1(1,1) = 1||ShB

1 .

Fig. 4. Shares construction for gate G2
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Fig. 5. Visual circuit for the computation of f

Also for gate G1 Alice has to choose the permutation bit that will allow the
correct reconstruction. Also in this case we decided to use b = 0. Figure 3 (right)
shows the shares for G1.

Finally Alice constructs the shares for G2. The output wire of G2 has to
be able to reconstruct either ShA

2 ||ShB
2 (when the wire value is 0) or ShA

3 ||ShB
3

(when the wire value 1). Gate G2 is an and gate, hence Alice will need to use two
2-MVCS schemes E and F such that scheme E reconstructs sG2(0,0) = ShA

2 ||ShB
2

and sG2(0,1) = ShA
2 ||ShB

2 , and scheme F reconstructs sG2(1,0) = shA
2 ||ShB

2 and
sG2(1,1) = ShA

3 ||ShB
3 .

Also for gate G2 Alice has to choose a permutation bit that will allow the
correct reconstruction. In this case we decided to use b = 1. Figure 4 shows the
shares for G2.

Fig. 6. An example of visual evaluation of the circuit for the computation of f for the
input ((1, 0), (1, 1))
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Alice has now completed the construction phase and all the shares that she
needs for the computation are the ones shown in Fig. 5. The figure shows for
each input wire the shares that correspond to the values 0 and 1. For example
for the left input wire of G1 the value 0 corresponds to share ShC

1 while the
value 1 corresponds to the share ShD

1 .
Notice that all the shares shown in the figure are known only to Alice so far.

At this point Alice chooses the shares that represent the values of her input. As
an example, assume that Alice’s input values are x1 = 0 and x2 = 1. Alice can
throw away ShD

1 and ShE
1 and keep ShC

1 , that represents x1 = 0, and ShF
1 , that

represents x2 = 1. Alice passes both shares, ShC
1 and ShF

1 to Bob. Then Alice
and Bob run two executions of the 1-out-of-2 physical OT protocol so that Alice
will pass to Bob only the shares that correspond to Bob’s input. As an example
assume that Bob’s input values are y1 = 1 and y2 = 1. After the execution of the
two 1-out-of-2 OT protocols, Bob has all the shares that correspond to his input
values and can perform the visual computation of f((1, 0), (1, 1)), as depicted
in Fig. 6.

6 Conclusions

Chapter 7 of [15] describes several applications of visual cryptography. In this
paper we have shown a new application: every two-party computation repre-
sentable by means of a boolean function f(·, ·) can be performed preserving the
privacy of the inputs x and y through a pure physical visual evaluation process.

Several extensions are possible: study non-trivial extensions to cope with
malicious adversaries or to the multi-party case, optimizations, use of different
visual cryptography schemes in order to achieve different properties, just to name
a few.
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of this paper, and an anonymous referee for hints and suggestions.
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Abstract. The contrast in visual cryptography has received a lot of
attention. It has been studied using three different measures. In this
paper we follow a measure-independent approach, which, by using the
structural properties of the schemes, enables us to provide a character-
ization of optimal schemes that is independent of the specific measure
used to assess the contrast. In particular we characterize and provide con-
structions of optimal schemes for the cases of (2, n)-threshold and (n, n)-
threshold schemes. Then, we apply the measure-independent results to
the three measures that have been used in the literature obtaining both
new characterizations and constructions of optimal schemes and alterna-
tive proofs of known results.

Keywords: Secret sharing · Visual cryptography · Optimal contrast

1 Introduction

Secret Sharing. Secret sharing allows the sharing of a secret among a set of par-
ticipants. Let P = {1, 2, . . . , n} be a set of participants and let s be a secret.
Participant i receives some information si, a share, computed from the secret s.
Some subsets of participants, called qualified, by using collectively their shares,
will be able to reconstruct the secret s. All other subsets of participants, called
forbidden, will not have any information about the secret s. The reconstruc-
tion process involves mathematical operations on the shares which have to be
performed using a computer.

Visual Cryptography. Visual cryptography is a form of secret sharing in which the
secret is an image and the shares are also images printed on transparencies. The
peculiarity of this form of secret sharing is that the reconstruction of the secret
is obtained by superposing the shares (transparencies) belonging to the qualified
set of participants that is reconstructing the secret. No machinery to perform
mathematical operations is required. The reconstruction process is performed by
the human visual system which basically computes an “or” of the superposed
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DOI: 10.1007/978-3-319-04268-8 3, c© Springer International Publishing Switzerland 2014
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pixels. A visual cryptography scheme is a way to accomplish the visual secret
sharing. We will restrict the attention to (k, n)-threshold visual cryptography
schemes, for which the qualified subsets of participants are all the subsets with
cardinality greater or equal to k.

Previous Results. Visual cryptography has been introduced by Naor and Shamir
[28]. A similar and related idea had been proposed by Kafri and Keren [23]. The
approach used by Kafri and Keren is called random grid visual cryptography
because it uses random images as building blocks for the schemes. The approach
used by Naor and Shamir is called deterministic visual cryptography because the
reconstruction is guaranteed in a deterministic way. A probabilistic model has
been introduced by Yang [34]: in the reconstructed image it is allowed that some
pixels be erroneously reconstructed as long as the probability of such mistakes
can be controlled. The three models (deterministic, probabilistic and random
grid) are related to each other. The random grid model in fact corresponds to
the probabilistic model. In [15] it has been proved that it is possible to trade the
probability error of a probabilistic scheme with the pixel expansion.

Deterministic visual cryptography has been widely studied. Many papers
have explored various aspects: minimal pixel expansion (e.g., [5,7,21], optimal
contrast (e.g., [6,9,22,24]), general access structures (e.g., [2,27]), perfect recon-
struction of black pixels (e.g., [7,8,31]), generalization to colored pixels (e.g.
[1,13,14,16,18–20,25,32,37]), and other issues (e.g. [4,35,36]). Recently also the
random grid model has received considerable attention (e.g., [10–12,29,30,33]).

We remark that the above citations are not comprehensive. We refer the
interested reader to [17] for more pointers to the literature.

Our Contribution. In this paper we focus the attention on the contrast measure
used for the deterministic model. Almost all the papers that have studied the
contrast have used the measure proposed by Naor and Shamir [28]; we will
denote with σns such a measure. Verheul and van Tilborg [32] have proposed an
alternative measure; we will denote it with σvv. Eisen and Stinson [21] provided
yet another measure with a discussion that emphasizes why their measure is
better than the other two; we will denote with σes the measure introduced in [21].
However, with the exception of [21,32], all the papers that study contrast optimal
schemes consider σns.

In this paper we study contrast-optimal visual cryptography schemes using
an approach that does not depend on the particular measure that one uses to
assess the contrast. More specifically we characterize the contrast for a family
of contrast measures, which we call linear contrast measures. The measures σns
and σes are members of such a family. This allows us to apply the results to
both measures. In the case of σns, since contrast optimal schemes are already
known, we simply obtain alternative constructions and proofs of optimality. In
the case of σes we provide novel results since no optimal schemes with respect to
this measure are known. The measure σvv does not belong to the family of linear
contrast measures. However with some adjustments to the proof techniques, we
show that the approach used to study linear contrast measures can be applied
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also to σvv for a particular class of schemes. Thus, for such a particular class of
schemes, we provide contrast optimal schemes also with respect to σvv. The above
results are proven for the cases of (2, n)-threshold and (n, n)-threshold schemes.

2 The Model

A secret image I has to be visually shared among a set P = {1, 2, . . . , n} of
n participants. A trusted party, called the dealer, in order to share I, creates
n images printed on transparencies, called shares, and distributes them to the
participants, giving one share to each participant. Some subsets of participants,
called qualified, will be able to reconstruct the secret by simply superposing
their shares. All other subsets of participants, called forbidden, cannot infer any
information about the secret image neither by superposing their shares nor by
any other computation on the shares.

A scheme is a method for encoding the secret image I into the n shares. The
encoding process associates, to each pixel of the secret image I, a collection of
m subpixels1 in each of the n shares.

A distribution matrix M is an n × m matrix that represents the encoding
of a pixel by means of the n shares. More precisely, row i of M represents
the collection of subpixels that is printed on share i, which is used to encode
the secret pixel of I. We will use 0 to denote a white pixel and 1 to denote a
black pixel. With this notation the superposition of pixels corresponds to the or
operation. Since the symbols ≤ and • are self-explanatory, where convenient, we
will also use ≤ and • to denote, respectively, white and black.

A scheme is specified by two collections C∈ = {M1
∈ ,M2

∈ , . . . , Mr0∈ } and C• =
{M1

• ,M2
• , . . . , Mr1• } of distribution matrices. In order to share a secret pixel of

I, the dealer will randomly choose a distribution matrix from C∈ if the secret
pixel is white, and from C• if the secret pixel is black. The sharing process is
repeated for every pixel of the secret image.

An access structure A = (Q,F) is a specification of the qualified subsets
of participants Q and of the forbidden subsets of participants F . Notice that if
Q ⊂ Q then any superset Q∼ of Q must belong to Q. Another natural requirement
is that any subset P of participants is either qualified or forbidden2. In most cases
the access structure is a threshold access structure: Q consists of all the subsets
of at least k participants, while F consists of all the subsets with at most k − 1
participants, with 2 → k → n. In such a case we talk about (k, n)-threshold visual
cryptography.

Since the shares are represented by rows of matrices, the following notation
will be useful. Given a matrix M and a set of participants P , we will denote
1 For deterministic visual cryptography it must be m ≥ 2, i.e., the pixel expansion

is unavoidable. The probabilistic and the random grid visual cryptography models
allow m = 1.

2 In a more general form, it is possible to consider access structures where there are
some subsets that are neither qualified nor forbidden; in such a case we simply don’t
care about what those subsets of participants can do with the shares.
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with M [P ] the submatrix of M consisting only of the rows corresponding to
participants in P . Moreover we will denote with Sup(M) the superposition of
the shares represented by the rows of M . Notice that Sup(M) is a binary vector
(like a row of M) where the ith element is equal to the or of the ith column of
M . Using this notation we have that Sup(M [Q]) is the pixel reconstructed by
the participants of a qualified set Q. Given a vector v, we will denote with w(v)
the Hamming weight of v, that is the number of 1s (i.e., the number of black
pixels) in v.

Definition 1. A (k, n)-threshold scheme S consists of two collections C∈ and
C• of n × m distribution matrices such that there exists two integers π and h,
0 → π < h → n, for which the following conditions are satisfied.

1. (Reconstruction) For any qualified set Q, for any M ⊂ C∈, we have that
w(Sup(M [Q])) → π and for any M ⊂ C•, we have that w(Sup(M [Q])) ≡ h.

2. (Security) For any forbidden set F , it holds that the two collections C∈[F ] =
{M [F ]|M ⊂ C∈} and C•[F ] = {M [F ]|M ⊂ C•} are indistinguishable in the
sense that they contain the same matrices with the same frequencies.

We will refer to π and h as to the contrast thresholds.

Base matrices. In many schemes the collection C∈ (resp. C•) consists of all the
matrices that can be obtained by permuting all the columns of a matrix B∈ (resp.
B•). For such schemes, the matrices B∈ and B• are called the base matrices of
the scheme. When a scheme is described with base matrices the contrast and
the security properties can be simplified to the following:

1. (Reconstruction) For any qualified set Q, we have that w(Sup(B∈[Q])) → π
and that w(Sup(B•[Q])) ≡ h.

2. (Security) For any forbidden set F , the two matrices B∈[F ] and B•[F ] are the
same up to a permutation of the columns.

Canonical schemes. Often, the base matrices can be described in a very conve-
nient way by means of column multiplicities. This is possible when a base matrix
that contains a specific column, consisting of i black pixels and n − i white pix-
els, with a multiplicity μ, contains also all the other possible columns that have
exactly i black pixels and n − i white pixels, each of them with the same mul-
tiplicity μ. When the above holds, we say that the scheme is in canonical form
and we can describe the base matrices by listing the multiplicities μi of the
columns that have exactly i black pixels. The white base matrix will be specified
by μ∈

0, μ
∈
1, . . . , μ

∈
n. The black base matrix will be specified by μ•

0, μ
•
1, . . . , μ

•
n.

Example. As an example we consider a (2, 3)-threshold scheme in canonical form
given by μ∈

0 = 2, μ∈
1 = 0, μ∈

2 = 0, μ∈
3 = 1 and μ•

0 = 0, μ•
1 = 1, μ•

2 = 0, μ•
3 = 0. The

base matrices and are:

B∈ =

⎡

⎣
≤≤•
≤≤•
≤≤•

⎤

⎦ B• =

⎡

⎣
•≤≤
≤•≤
≤≤•

⎤

⎦
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An example of application of the above scheme is provided below. The size of
the shares and of the reconstructed images is 3 times the size of the secret image
since the pixel expansion is m = 3. The “+” sign denotes shares superposition.

Secret image Share 1 Share 2

Share 3 Shares 1+2 Shares 1+2+3

3 Contrast: Properties and Notions

The contrast quantifies how well the secret image I can be seen by the human
visual system in the reconstructed form, obtained by superposing a subset of
shares. In the example provided above the contrast of shares 1+2+3 is clearly
better than the contrast of shares 1+2. The overall quality of the reconstructed
image depends on how much reconstructed black pixels differ from reconstructed
white pixels. Such a difference depends on the threshold parameters π and h and
on the pixel expansion m. Hence, the contrast is a function σ(π, h,m). Regardless
of the specific definition used for σ, according also to the discussion in [21], there
are some natural requirements for any meaningful definition of contrast:

Fact 1. A meaningful measure of contrast requires that σ(π, h,m) be: (i) a
decreasing function of π; (ii) an increasing function of h; (iii) a decreasing func-
tion of m.

Indeed, if we decrease π while keeping the same values of h and m, we are
improving the quality of the reconstruction of white pixels, without changing
anything else. Hence, the contrast should not decrease. Similarly, if we increase
h while keeping the same values of π and m, we are improving the quality of
the reconstruction of black pixels, without changing anything else. Again, the
contrast should not decrease. Finally, if we decrease m without changing the
values of π and h, we are maintaining the same difference in the reconstruction
of white and black pixels but we are “reducing the scale” at which we use such
a difference. Once again the contrast should not decrease.

Throughout the paper we will always consider meaningful definitions of con-
trast. So when we say “contrast” we implicitly mean “meaningful contrast”.

Three measures of contrast have appeared in the literature: σns (Naor and
Shamir [28]), σvv (Verheul and van Tilborg [32]) and σes (Eisen and Stinson [21]).
The measure introduced by Naor and Shamir [28]) is defined by:

σns(S) =
h − π

m
. (1)
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Verheul and van Tilborg [32], on the other hand, defined:

σvv(S) =
h − π

m(2m − h − π)
, (2)

while, Eisen and Stinson [21], used:

σes(S) =
h − π

2m − h
. (3)

Notice that the definition of the thresholds π and h that we use in this paper
is different from that used in [21,32]3. If we denote with π̂ and ĥ the thresholds
of [21,32] we have that π̂ = m−h and ĥ = m− π. Thus the definition of contrast
of [32], namely ĥ−l̂

m(ĥ+l̂)
, becomes (2) and the definition of contrast of [21], namely

ĥ−l̂
m+l̂

, becomes (3).
It is easy to check that σns, σes and σvv are meaningful. However, in [21], the

authors have pointed out some differences among them. They have emphasized,
through some examples, that σns associates the same value of the contrast to
reconstructed images which have clearly a different visibility, and σvv associates
the same value of the contrast to all images where black is perfectly recon-
structed, independently of the quantity of blackness in the reconstruction of
white pixels. According to these observation σes is a better choice for measuring
the contrast. We refer the reader to [21] for more details.

The following two facts are well known (see Lemmas 3.5 and 3.6 in [6]).

Fact 2. Given a scheme S defined with collections of distribution matrices C∈
and C•, with contrast σns(S), there exists a scheme S ∼ defined with base matrices
B∈ and B• with contrast σns(S ∼) = σns(S).

Fact 3. Given a scheme S defined with base matrices B∈ and B• with contrast
σns(S), there exists a canonical scheme S ∼ with contrast σns(S ∼) = σns(S).

When studying contrast optimal schemes, the above two facts are often used
to restrict the attention, without loss of generality, to canonical schemes. Facts 2
and 3 have been proved considering the measure of contrast σns. However, the
proof can be generalized to include any measure of contrast σ that can be
expressed in the form

σ =
f(π, h,m)
g(π, h,m)

, where f and g are linear functions of π, h,m. (4)

3 The authors of [32] used two thresholds, Θ̂ and ĥ, to measure the level of whiteness
in the reconstruction of a white or a black pixel, while we use two thresholds, Θ
(low) and h (high), to measure the level of blackness in the reconstruction of a white
or a black pixel. In [21] the thresholds measure the level of blackness too, but are
expressed as m− ĥ and m− Θ̂. In the first paper on visual cryptography [28] explicit
thresholds Θ and h are not used, but the conditions are stated in terms of the level
of blackness, too.
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More precisely, let π, h and m be integer values, such that 0 → π → h → m and
let f(π, h,m) and g(π, h,m) be functions

f(π, h,m) =
{

0 if π = h
> 0 if π < h

g(π, h,m) =
{

0 if π = h
> 0 if π < h

such that, for any integers a and b, it holds that

f(a(π1 + π2), a(h1 + h2), a(m1 + m2)) = af(π1, h1,m1) + af(π2, h2,m2)

and

g(b(π1 + π2), b(h1 + h2), b(m1 + m2)) = bg(π1, h1,m1) + bg(π2, h2,m2).

We will refer to definitions of contrast that satisfies (4) as linear.

The following two lemmas provide a generalization of Facts 2 and 3.

Lemma 1. Given a scheme S defined with collections of distribution matrices
C∈ and C•, with contrast thresholds π and h, pixel expansion m, and a linear
contrast σ(S) = f(π, h,m)/g(π, h,m), there exists a scheme S ∼ defined with base
matrices B∈ and B• with contrast σ(S ∼) = σ(S).

(We defer all the proofs to the full version of the paper.)

Lemma 2. Given a scheme S defined with base matrices B∈ and B•, with contrast
thresholds π and h, pixel expansion m and a linear contrast σ(S) = f(π, h,m)/g
(π, h,m), there exists a canonical scheme S ∼ with contrast σ(S ∼) = σ(S).

Since σes is linear, Facts 2 and 3 are true also for σes. Hence, for σns and σes
(as well as any other linear contrast), we can focus our attention on canonical
schemes. The definition of contrast σvv is not linear. Hence, we do not know
whether in this case we can restrict the attention to canonical schemes. The
transformations used in Lemmas 1 and 2, indeed, reduce the value of σvv.

Throughout the rest of the paper we will use σ without subscript when we
want to deal with any linear measure of contrast, and we will use the subscript
(i.e., σns, σes, and σvv) when we want to deal with a specific measure of contrast.

Lemma 3. Let S be a (k, n)-threshold scheme defined with base matrices and
let σ(S) a linear contrast. Then, there exists a scheme S ∼ with contrast σ(S ∼) ≡
σ(S) and satisfying the following property: B∈ and B• do not contain identical
columns.

By Lemmas 1, 2 and 3, we know that when the contrast is linear, there
exists a scheme with optimal contrast σ that is in canonical form and such that
the two base matrices do not contain identical columns. Hence, from now on,
without loss of generality, we restrict our attention to schemes having such two
properties.
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4 Previous Results

In this section we briefly survey the known results about σns, σes and σvv.

4.1 Results About γns

The problem of finding contrast optimal schemes with respect to σns has been
well studied and many results are known. Both bounds and schemes achieving
the bounds are known. For k = 2 we have the following bound, proved in [9] and
in [22].

Theorem 4. In any (2, n)-threshold scheme we have that σns → ∗n/2∪∧n/2�
n(n−1) .

Constructions of (2, n)-threshold schemes with optimal σns are known: the
pixel expansion is m =

⎛
n

∧n/2�
⎝
, the black base matrix consists of all binary

vectors of weight ∈n/2≥, and the white base matrix consists of equal rows each
with weight

⎛
n−1

∧n/2�−1

⎝
.

For the case of k = n, the paper by Naor and Shamir [28] provides a strict
bound on the contrast: σns → 1

2n−1 (it is also proves that m ≡ 2n−1). A construc-
tion of (n, n)-threshold schemes with optimal σns is also provided.

For general k, Krause and Simon [24] have proved that the optimal contrast
σns of (k, n)-threshold schemes is about 4−(k−1):

Lemma 4. For any (k, n)-threshold scheme we have that

σns → 4−(k−1) nk

n(n − 1) · · · (n − (k − 1))
.

Other bounds and constructions, optimal with respect to σns, for (3, n), (4, n),
(5, n) and (n − 1, n)-threshold schemes can be found in [6].

4.2 Results About γvv

In [32] Verheul and Van Tilborg introduced σvv as a measure for the contrast.
To our knowledge it is the only paper in which it has been used. The authors
provided the following intuitive justification for the measure: “Consider the con-
trast of two adjacent buildings A and B in the night, formed by the number of
illuminated windows. Then, the contrast formed by 100 illuminated windows in
A and 99 in B, is much less4 than 1 illuminated window in A and 0 in B”.

Following such an intuition, they referred to schemes with perfect black recon-
struction as to schemes with maximal contrast. Moreover, they proposed two con-
structions for (k, n) threshold schemes with perfect black reconstruction, based
on the use of functionals defined over finite fields, described some structural
properties of threshold schemes, and provided some lower bounds on the pixel
expansion. The first one, which applies to general schemes, is:
4 According to the measure γns the contrast in both cases is the same.



Measure-Independent Characterization of Contrast Optimal 47

Theorem 5. For any (k, n) threshold scheme with contrast thresholds π and h,
and pixel expansion m, it holds that m ≡ (h − π)2k−1.

The second lower bound on the pixel expansion refers to the class of uniform
schemes [32]. No explicit analysis of the contrast is provided.

4.3 Results About γes

The contrast measure σes has been introduced in [21]. Although there are good
reasons to consider this measure better than the others, as far as we know, no
other paper has considered σes as definition of contrast. In [21] σes has been used
as a motivation to study the pixel expansion subject to fixing the contrast thresh-
old π and h (or, more precisely5, π̂ and ĥ). Beside providing a linear program
that allows to find, if it exists, a (2, n)-threshold scheme achieving minimum
pixel expansion, Eisen and Stinson proved the following theorem.

Theorem 6. The following are necessary conditions for the existence of a (2, n)-
threshold scheme with pixel expansion m and contrast parameters π̂ and ĥ

m ≡

⎞
⎠⎨

⎠⎩

nĥ, if π̂ = 0
nĥ

l̂n+ĥ−l̂
, if ĥ ≡ m/2

4(ĥ−σ̂)(n−1)
n , otherwise.

(5)

The bounds on m provided in [21] are not given in a form that can be easily
used to obtain bounds on σes. Hence there are no explicit known bounds on σes.

5 Optimal Contrast for (2, n)-Threshold Schemes

In this section we present a characterization of (2, n)-threshold schemes with
optimal contrast σ. The characterization shows that, regardless of the particular
measure σ, the contrast optimal scheme has a specific form: the black base matrix
B• consists of all and only the columns with a specific weight w, that is μ•

w = 1,
for some w, 1 → w → n − 1, and μ•

i = 0, for i ⊆= w. The specific measure σ
determines the value of w. The white base matrix B∈ contains only all-black
and all-white columns and the multiplicities of these two type of columns is
uniquely determined by w. The security property determines the corresponding
white base matrix.

Lemma 5. There exists a (2, n)-threshold scheme with optimal contrast σ for
which the base matrix B∈ contains μ∈

0 —the column with all 0s— and μ∈
n —the

column with all 1s— while all other μ∈
i , for 1 → i → n − 1 are 0.

5 We state the following theorem using the original contrast thresholds Θ̂ = m − h,
ĥ = m − Θ as they appear in the original paper.
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As a consequence of the previous lemma, in a contrast optimal (2, n)-threshold
scheme, matrix B∈ contains only all-0 or all-1 columns, that is, we have that an
optimal scheme has μ∈

1 = μ∈
2 = . . . = μ∈

n−1 = 0 while μ∈
0 and μ∈

n are greater than
0. Since μ∈

0 > 0 and μ∈
n > 0, by Lemma 3 we have that μ•

0 = 0 and μ•
n = 0.

Before proceeding to the next lemma, let us introduce some notation needed
to prove the lemma. Given a black base matrix B• in canonical form, we partition
it into chunks, each one containing all the columns of a given weight. If B•
consists of μi1 , . . . , μiz , with 1 → i1 < . . . < iz → n − 1, then

B• = Ci1• ||Ci2• || . . . ||Ciz•

where C
ij• is the chunk containing all the columns with weight j. Each column

appears with multiplicity μij . Restricting the attention to one specific chunk
C

ij• , we have that in C
ij• each row contains the same number aij of 0s and the

same number bij of 1s. Notice that, by the security condition,
⎜z

j=1 aij must
be equal to μ∈

0, that is, the number of all-0 columns in B∈, and that
⎜z

j=1 bij

must be equal to μ∈
n, that is, the number of all-1 columns in B∈. Hence, we can

partition also B∈ in chunks that corresponds to the chunks of B•. Chunk C
ij∈

contains aij all-0 columns and bij all-1 columns, and we have that

B∈ = Ci1∈ ||Ci2∈ || . . . ||Ciz∈ .

An example will clarify the notation. Let n = 5 and assume that B• has
μ1 = 2, μ3 = 1 and μ4 = 1, that is the black base matrix contains 2 occurrences
of every column with weight 1, one occurrence of every column of weight 3 and
one occurrence of every column with weight 4. The chunks are:

B• =

⎡

⎟⎟⎟⎟⎟⎟⎣

C1
• C3

• C4
•

1000010000 1111110000 11110
0100001000 1110001110 11101
0010000100 1001101101 11011
0001000010 0101011011 10111
0000100001 0010110111 01111

⎤

⎥⎥⎥⎥⎥⎥⎦

B∈ =

⎡

⎟⎟⎟⎟⎟⎟⎣

C1
∈ C3

∈ C4
∈

0000000011 0000111111 01111
0000000011 0000111111 01111
0000000011 0000111111 01111
0000000011 0000111111 01111
0000000011 0000111111 01111

⎤

⎥⎥⎥⎥⎥⎥⎦

Now let hj be the number of 1s that we obtain by stacking two rows of chunk
C

ij• and πj be the number of 1s that we obtain by stacking two rows of chunk
C

ij∈ . Then we have that
h = h1 + h2 + . . . + hz

and
π = π1 + π2 + . . . + πz.
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Moreover, if we let mj be the number of columns in chunk C
ij• (or C

ij∈ since they
have the same size), we have

m = m1 + m2 + . . . + mz.

In the above example we have h1 = 4, h2 = 9 and h3 = 5, π1 = 2, π2 = 6 and
π3 = 4,m1 = 10,m2 = 10 and m3 = 5:

h = 4 + 9 + 5 = 18,

π = 2 + 6 + 4 = 12,

m = 10 + 10 + 5 = 25.

Lemma 6. For any linear contrast σ, there exists a contrast optimal canonical
(2, n)-threshold scheme whose multiplicities for B• are μ•

i = 0, for all but one i,
with 1 → i → n − 1.

The next theorem follows from Lemma 6 strengthening the result, by stating
that the multiplicity can be 1.

Theorem 7. For any linear contrast σ, there exists a contrast optimal (2, n)-
threshold scheme whose base matrix B• is defined by μ•

w = 1, for some w, with
1 → w → n − 1, and μ•

i = 0 for i ⊆= w, with 1 → i → n − 1.

Theorem 7 characterize explicitly the structure of the scheme that achieves
maximal contrast for all linear measures of contrast. In particular for σns and σes.

The specific value of w that maximizes the contrast is (not surprisingly)
different in each case.

First, we consider σes. In the following we prove that in order to maximize
σes we have to choose either w = ∈n(2 − ∩

2)≥ or w = ←n(2 − ∩
2)∪.

The case of σns has been already studied and it is known that choosing
w = ∈n/2≥ one gets optimal contrast. As a sanity check, exploiting the same
proof technique used for σes, we will prove that our analysis gives the same
result, obtaining an alternative proof of the result.

Before proceeding with the calculation of the value of w that maximizes the
contrast, we observe that, regardless of which contrast measure we are consider-
ing, for a contrast optimal scheme that satisfies Theorem 7 we have that

m =
(

n

w

)
, h =

(
n

w

)
−

(
n − 2

w

)
, and π =

(
n − 1
w − 1

)
.

5.1 Value of w that Maximizes γes

In order to compute the value of w which maximizes σes, we proceed as follows.
Notice that:

σes =
h − π

2m − h
=

⎛
n
w

⎝ − ⎛
n−2
w

⎝ − ⎛
n−1
w−1

⎝

2
⎛

n
w

⎝ − ⎛⎛
n
w

⎝ − ⎛
n−2
w

⎝⎝ .
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Let us call the numerator N and the denominator D, that is

N =
(

n

w

)
−

(
n − 2

w

)
−

(
n − 1
w − 1

)

and

D = 2
(

n

w

)
−

((
n

w

)
−

(
n − 2

w

))
.

Using the well-known equalities
(

n

w

)
=

n

w

(
n − 1
w − 1

)
and

(
n

w

)
=

(
n − 1

w

)
+

(
n − 1
w − 1

)

from which we get (
n − 1

w

)
=

(
n

w

)
−

(
n − 1
w − 1

)

we can express N and D as follows:

N =

(
n

w

)
−
(

n − 2

w

)
−
(

n − 1

w − 1

)

=
n

w

(
n − 1

w − 1

)
−
(

n − 2

w

)
−
(

n − 1

w − 1

)

=
( n

w
− 1
)(n − 1

w − 1

)
−
[(

n − 1

w

)
−
(

n − 2

w − 1

)]

=
( n

w
− 1
)(n − 1

w − 1

)
−
[

n − 1

w

(
n − 2

w − 1

)
−
(

n − 2

w − 1

)]

=
( n

w
− 1
)(n − 1

w − 1

)
−
(

n − 1

w
− 1

)(
n − 2

w − 1

)

=
( n

w
− 1
) (n − 1)!

(w − 1)!(n − 1 − (w − 1))!
−
(

n − 1

w
− 1

)
(n − 2)!

(w − 1)!(n − 2 − (w − 1))!

=
(n − 2)!

(w − 1)!(n − w − 1)!

(
n − 1

w
− n − 1 − w

w

)

=
(n − 2)!

(w − 1)!(n − w − 1)!
(6)

D =
(

n

w

)
+

(
n − 2

w

)

=
n!

w!(n − w)!
+

(n − 2)!
w!(n − w − 2)!
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=
(n − 2)!

w!(n − w − 2)!

(
n(n − 1)

(n − w)(n − w − 1)
+ 1

)

=
(n − 2)!

w!(n − w − 2)!

(
n(n − 1) + (n − w)(n − w − 1)

(n − w)(n − w − 1)

)

=
(n − 2)!

(w − 1)!(n − w − 1)!

(
n(n − 1) + (n − w)(n − w − 1)

w(n − w)

)
(7)

From Equations (6) and (7) we have that

σes =
N

D
=

w(n − w)
n(n − 1) + (n − w)(n − w − 1)

=
wn − w2

w2(1 − 2n) + 2n(n − 1)
.

We are interested in finding the maximum value of σes and also the value of
w that maximizes σes. We start by computing the first derivative:

α

αw
σes(n,w) =

(n − 1)(w2 − 4wn + 2n2)
(w2 + w(1 − 2n) + 2n(n − 1))2

.

Then we compute the roots of the first derivative, which are the roots of
the equation w2 − 4wn + 2n2 = 0, which are (2 − ∩

2)n and (2 +
∩

2)n. Since
(2 +

∩
2)n > n and 2 → w → n − 1 the only point where ∂

∂wσes(n,w) is 0 is
w0 = (2 − ∩

2)n. Moreover for w < w0, we have that ∂
∂wσes(n,w) > 0 and for

w0 < w → n − 1 we have that ∂
∂wσes(n,w) > 0. Hence the function ∂

∂wσes(n,w)
reaches its maximum in w0.

Recalling that w must be an integer, we have that the maximum contrast σes
is reached either at w1 = ∈(2 − ∩

2)n≥ or at w2 = ←(2 − ∩
2)n∪ and we have that

max σes = max

{
∈(2 − ∩

2)n≥n − ∈(2 − ∩
2)n≥2

∈(2 − ∩
2)n≥2(1 − 2n) + 2n(n − 1)

,

←(2 − ∩
2)n∪n − ←(2 − ∩

2)n∪2
←(2 − ∩

2)n∪2(1 − 2n) + 2n(n − 1)

}

5.2 Value of w that Maximizes γns

Using the same approach we can easily derive the value β which maximizes σns.
Indeed:

σns =
h − π

m
=

⎛
n
w

⎝ − ⎛
n−2
w

⎝ − ⎛
n−1
w−1

⎝
⎛

n
w

⎝

=
(n−2)!

(w−1)!(n−w−1)!

n!
w!(n−w)!

=
w(n − w)
n(n − 1)

=
1

n(n − 1)
(wn − w2)

The maximum of this function is reached in the same point where the function
wn − w2 reaches its maximum, which is w = n/2. Since w must be an integer,
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we need to consider as possible points of maximum ∈n/2≥ and ←n/2∪. However,
it is not difficult to see that the value of wn − w2 is the same in both cases, so
we can choose any of the two values, for example w = ∈n/2≥. Obviously we have
that the maximum value is the same as the one of Theorem 4 (i.e., we just get
an alternative proof of the same result):

max σns =
←n/2∪∈n/2≥
n(n − 1)

.

5.3 Value of w that Maximizes γvv for Schemes in Canonical Form

The definition of contrast σvv is not linear. Hence, Lemmas 1, 2 and 3 do not
work, and we do not know whether we can restrict our attention to the canonical
form. Lemma 6 does not work, too.

However, for the class of canonical schemes we are able to prove that Lemma
5 holds also for σvv and by an analysis similar to that of σns and σes we can
prove that the maximum contrast σvv is

max σvv =
1
n

.

Notice that the optimal construction in canonical form implied by our analy-
sis coincides with the maximal contrast construction for (2, n) threshold visual
schemes described in [32]. However, we remark that our proof technique does
not say anything about whether constructions not in canonical form can achieve
a better value of σvv.

6 Contrast Optimal (n, n)-Threshold Schemes

We prove that the construction of [28] for (n, n)-threshold schemes is optimal
with respect to any linear contrast σ. The construction of [28], in terms of base
matrices, is defined as follows: the base matrix B∈ consists of all the binary
vectors with even weight, and the base matrix B• consists of all the binary
vectors with odd weight. The authors proved that such a construction gives
contrast optimal, with respect to σns, and minimum pixel expansion schemes.
The second construction for (k, n)-threshold schemes given in [32], for k = n is
the same as the construction of [28]. In [9], it was shown the following result:

Theorem 8. Let S∈ and S• be two n × m boolean matrices such that the same
column does not appear in both. Then, S∈ and S• are base matrices of an (n, n)-
threshold scheme with pixel expansion m and relative difference Ω(m) → μ

m if and
only if all the columns with even weight appear in S∈ with multiplicity μ = m

2n−1

and all the columns with odd weight appear in S• with the same multiplicity μ.
Consequently, μ ≡ Ω(m) × m, Ω(m) → 1

2n−1 , and m ≡ 2n−1.
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Notice that, in the language of [9,28], the relative difference Ω(m) is σns. The
theorem states that the only way to construct contrast optimal (n, n)-threshold
schemes with σns = 1

2n−1 is by using B∈ and B•, as defined above (or base
matrices obtained by concatenating several copies of B∈ and B•).

Going through the proof of Theorem 8 in [9], we notice that the steps are
justified either by the Reconstruction property or by the Security property of
Definition 1. Moreover, the additional assumption that S∈ and S• do not contain
identical columns, is not a limitation in studying contrast optimal schemes with
respect to any linear contrast σ. Indeed, Lemma 3 confirms that, looking for
contrast optimal constructions for the class of linear measures of contrast, we
can restrict our attention to base matrices that do not contain identical columns.
Hence, we can conclude that the results holds for any linear contrast σ.

Actually, we can say a bit more: there is a unique way to construct (n, n)-
threshold schemes by means of base matrices, and the characterization of the
matrices is independent of the contrast measure—either linear or not— that is
used to quantify the contrast:

Theorem 9. Two n × m boolean matrices, S∈ and S•, are the base matrices
of an (n, n)-threshold scheme with contrast thresholds π and h if and only if S∈
contains all the columns with even weight with multiplicity h−π and S• contains
all the columns with odd weight with multiplicity h − π. Moreover, S0 and S1

might contain additional identical columns.

Notice that the identical common columns, make the reconstructed image
overall clearer or darker, depending on the number of black subpixels that the
identical common columns introduce in each share. For σns, σes and σvv, the
construction with no common columns is optimal with respect to the contrast
and to the pixel expansion.

7 Conclusions and Future Work

In this paper we have provided a measure-independent approach to the study of
the contrast for visual cryptography schemes. Our work was motivated by the
fact that although the contrast measure σes appears to be better than other defi-
nitions, most of the known results are for the definition σns. Interesting directions
for future work include the extension of the analysis to the case of (k, n)-threshold
schemes for any k and the study of the relation of the results presented in this
paper with other models (random grid and probabilistic). The results about σvv
presented in this paper hold for the class of canonical schemes and we do not
know whether considering other classes of schemes can lead schemes with better
contrast. Studying this question is an open problem. Another open problem is
to see whether the characterization given in Theorem 9, which holds for schemes
given with base matrices, holds also for schemes described in terms of collections
of matrices C∈ and C•.
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Abstract. In visual cryptography schemes (VCS), we often denote the
set of all parties by P = {1, 2, · · · , n}. Arumugam et al. proposed a
(k, n)-VCS with one essential party recently, in which only subset S of
parties satisfying S ⊆ P and |S| ≥ k and 1 ∈ S can recover the secret.
In this paper, we extend Arumugam et al.’s idea and propose a (k, n)-
VCS with t essential parties, say (k, n, t)-VCS for brevity, in which only
subset S of parties satisfying S ⊆ P and |S| ≥ k and {1, 2, . . . , t} ∈ S
can recover the secret. Furthermore, some bounds for the optimal pixel
expansion and optimal relative contrast of (k, n, t)-VCS are derived.

Keywords: Visual cryptography · Essential parties · Pixel expansion ·
Relative contrast

1 Introduction

A (k, n) visual cryptographic scheme (VCS) is a special type of secret sharing
method introduced by Naor and Shamir [1], which encodes a binary secret image
S into n share images in such a way that the physical stacking of any more than
or equal to k share images will reveal S, while any fewer than k share images
provide no information about S. Any VCS with n parties contains the following
two stages:

Encoding Stage: Firstly, a binary secret image S is encoded into n share
images by some VCS. Secondly, the n share images are printed on n trans-
parencies. Finally, the ith transparency is distributed to party i for 1 ≤ i ≤ n.

Decoding Stage: Some subset of parties superimpose their transparencies care-
fully. If this subset is qualified, the secret image S can be perceived from the
stacking result.

In general, a secret pixel has to be encoded into a block of m pixels on each
share image, where m is called pixel expansion and is expected to be as small
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as possible. In a qualified decoded image, the blocks decoded from a black pixel
have more black pixels than blocks decoded from a white pixel, which ensures
the emergence of the secret. The relative contrast measures the above difference
and is expected to be as large as possible. In general, optimal pixel expansion
and optimal relative contrast cannot be achieved by the same VCS [20].

Naor and Shamir [1] gave two methods to construct (k, n)-VCS, and their con-
struction of (k, k)-VCS is optimal in the sense that the pixel expansion reaches
minimum and relative contrast reaches maximum simultaneously. Droste [2]
devised a clever algorithm to find solutions of (k, n)-VCS, and his scheme per-
forms especially well for small k and n. Verheul et al. [3] studied the construction
and properties of (k, n)-VCS by coding theory and linear algebra. Eisen et al. [4]
studied (k, n)-VCS with specified gray levels of decoded blocks, and established
the connections between (2, n)-VCS and some block designs, such as BIBD and
PBD. Hofmeister et al. [5] characterized the exact optimal relative contrast of
(k, n)-VCS by linear programming.

Ateniese et al. [6] firstly realized general access structure VCS, in which
subsets of parties are divided into qualified sets and forbidden sets. Tzeng et
al. [7] gave a new model of VCS, where for certain qualified sets, a white pixel
is reconstructed as black while a black pixel is reconstructed as white and we
perceive a complement of the secret image. Blundo et al. [8] proved a lower
bound on the optimal pixel expansion of VCSs satisfying the model of Tzeng et
al. [7], and for (2, n)-VCS, they provided schemes achieving the bound. Liu et
al. [9] and Wang et al. [10] proposed shift tolerant VCSs such that the shares are
not required to be aligned exactly in the decoding stage. Horng et al. [11] and
Hu et al. [12] and Chen et al. [13] tried to propose cheating prevention VCSs
such that fake shares can be detected in the decoding stage. Wang et al. [14]
and Yang et al. [15] and Shyu et al. [16] constructed region incrementing VCSs,
in which the secret information can be revealed gradually region by region. Guo
et al. [17,18] realized VCSs directly by an algorithm.

Arumugam et al. [19] initiated the study of (k, n)-VCS with one essential
party, in which party 1 is specified as essential and only subset S of parties
satisfying |S| ≥ k and 1 ∈ S can recover the secret. (k, n)-VCS with one essential
party is suitable for situations where one party is the leader and the secret image
should not be retrieved in his absence. However, in a large company, there is
usually a board of directors who are all essential for big decision makings. In such
a case, the secret image should not be retrieved in the absence of any director.
In this paper, we extend Arumugam et al.’s idea to (k, n)-VCS with t essential
parties, which is denoted as (k, n, t)-VCS for brevity. The successful decoding
of a (k, n, t)-VCS not only requires that the number of parties at the scene is
no less than k, but also requires that the t essential parties are all at the scene.
The proposed (k, n, t)-VCS is especially suitable for group decision makings with
multiple essential parties. From another viewpoint, Arumugam et al.’s scheme
can be seen as a (k, n, 1)-VCS under the proposed model. Furthermore, we give a
construction of (k, n, t)-VCS from a given (k−t, n−t)-VCS and an optimal (t, t)-
VCS. Some bounds for the optimal relative contrast and optimal pixel expansion
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of (k, n, t)-VCS are derived from the known parameters of (k− t, n− t)-VCS and
(t, t)-VCS. Finally, we compare the exact formulae for relative contrast and pixel
expansion of the two (k, n, t)-VCSs obtained by the accumulative array method
[6] and the proposed method, and prove that the proposed method gives better
results.

This paper is organized as follows. In Sect. 2, we give some preliminaries
of VCS. In Sect. 3, we present the proposed (k, n, t)-VCS and its analysis. The
paper is concluded in Sect. 4.

2 Preliminaries

2.1 Basic Definitions

We first give some knowledge of access structure. Denote all parties as P =
{1, 2, · · · , n} and the power set of P as 2P . Γ = (Q,F ) is called an access
structure if Q ⊆ 2P and F ⊆ 2P and Q ∩ F = ∅. The elements of Q are
called qualified sets and the elements of F are called forbidden sets. If for any
element of Q, all of its supersets are also in Q, then Q is said to be monotone
increasing. If for any element of F , all of its subsets are also in F , then F is said
to be monotone decreasing. Γ = (Q,F ) is said to be a strong access structure
if Q is monotone increasing and F is monotone decreasing and Q ∪ F = 2P .
Q0 = {A ∈ Q : A∈ /∈ Q for all A∈ � A} represents the set of all minimal qualified
subsets of P . FM = {A ∈ F : A∈ ∈ ΓQual, for any a ∈ P \ A,A∈ = A ∪ {a}}
represents the set of all maximal forbidden subsets of P . In (k, n, t)-VCS, the
set of all qualified sets is Q = {A ⊆ P : |A| ≥ k and {1, 2, . . . , t} ⊆ A} and the
set of all forbidden sets is F = {A ⊆ P : |A| < k or {1, 2, . . . , t} � A}, where
parties {1, 2, . . . , t} are specified to be essential.

Next we set up our notations. Let S be an n×m Boolean matrix and X be a
subset of P = {1, 2, · · · , n} and Z be a subset of M = {1, 2, · · · ,m} and |X| be
the cardinality of X. S[X][Z] represents the |X| × |Z| matrix S constrained to
rows in X and columns in Z. S[X] represents the |X| × m matrix S constrained
to rows in X. The OR result of rows of S[X] is denoted by SX and its Hamming
weight is denoted by w(SX).

The formal definition of general access structure VCS is given as follows:

Definition 1 (VCS [6]). Let Γ = (Q,F ) be an access structure on a set P
of n parties. The two n × m Boolean matrices (S0, S1) constitute a solution of
(Γ,m)-VCS if they satisfy the following conditions:

1. (Contrast) There exists a positive real number α and a set of thresholds
{tX |X ∈ Q} such that for any party set X ∈ Q, we have w(S0

X) ≤ tX − αm
and w(S1

X) ≥ tX .
2. (Security) For any party set Y ∈ F , S0[Y ] and S1[Y ] are equal up to a

column permutation.

Remark: The number α is called the relative contrast and m is called the pixel
expansion and αm is called the contrast.
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2.2 Previous Results

2.2.1 Some Bounds of VCS

Theorem 1 ([6]). Let Γ = (Q,F ) be a strong access structure and FM be the
set of all maximal forbidden sets of Γ . Then there exists a Γ -VCS with pixel
expansion m = 2|FM |−1 and relative contrast α = 2−|FM |+1.

Theorem 2 ([20]). Let S0 and S1 be the two basis matrices of a Γ -VCS with
pixel expansion m and relative contrast α. If S0 and S1 have d common columns,
then by deleting the d common columns, we obtain a new Γ -VCS with pixel
expansion m − d and relative contrast αm

m−d .

Theorem 3 ([21]). There exists a (k, n)-VCS with pixel expansion

m =

⎡⎣
n
k

⎤
2k−2 if

⎣
n
k

⎤
is even,

(
⎣
n
k

⎤
+ 1)2k−2 if

⎣
n
k

⎤
is odd.

and relative contrast α = 1
m .

2.2.2 The Cumulative Array Method
Ateniese et al. gave a construction of strong general access structure VCS by
cumulative array method [6]. Let FM = {B1, B2, . . . , Bt} be the set of all maxi-
mal forbidden sets of a Γ -VCS with n parties. The cumulative array CA = (cij)
of FM is the n by t matrix defined by

cij =

⎡
0 if i ∈ Bj ,

1 otherwise.

Let M0 and M1 be basis matrices for a (t, t)-VCS. Let Xi be the set of integers
j such that cij = 1. The following two basis matrices S0 and S1 constitute a
solution of Γ -VCS.

S0 =

⎦

⎛

M0
X1

M0
X2
...

M0
Xn

⎝

⎞⎞⎞⎠ and S1 =

⎦

⎛

M1
X1

M1
X2
...

M1
Xn

⎝

⎞⎞⎞⎠

where M0
Xi

(resp. M1
Xi

) is the OR result of rows Xi of M0 (resp. M1).
For (k, n, t)-VCS, the set of maximal forbidden sets FM = {X ⊆ P :

{1, 2, 3, · · · , t} ⊆ X and |X| = k − 1 or X = P/i where i ∈ {1, 2, 3, · · · , t}}.
It is easy to see that |FM | =

⎣
n−t

k−t−1

⎤
+ t. Since the optimal (t, t)-VCS [1] has

pixel expansion 2t−1 and relative contrast 2−t+1, the (k, n, t)-VCS constructed
by cumulative array method has pixel expansion m = 2( n−t

k−t−1)+t−1 and relative
contrast α = 2−( n−t

k−t−1)−t+1.
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3 Our Work

In this whole section, Γ and Γ ∼ are defined as follows. Γ = (Q,F ) is an access
structure on Pt = {t+1, t+2, . . . , n} and Γ ∼ = (Q∼, F ∼) is an access structure on
P = {1, 2, . . . , n}, where Q∼ = {Z ∪ {1, 2, 3, · · · , t} : Z ∈ Q} and F ∼ = {Z ∪ T :
Z ⊆ Pt ∧ T � {1, 2, 3, · · · , t}} ∪ {X ∪ {1, 2, 3, · · · , t} : X ∈ F}. In such a case,
parties {1, 2, 3, · · · , t} are specified to be essential, since the absence of any of
them will make the secret image be unavailable, no matter how many parties
are at the scene.

3.1 Construction of VCS with t Essential Parties

Let M0 and M1 be the basis matrices for the optimal (t, t)-VCS [1], where M0

consists of all possible column vectors with even Hamming weight exactly once
and M1 consists of all possible column vectors with odd Hamming weight exactly
once. Let Ŝ0 and Ŝ1 be the basis matrices for a Γ -VCS with pixel expansion m,
where Ŝ0 is the white basis matrix and Ŝ1 is the black basis matrix.

Let X = {1, 2, · · · , t}, then M0[X][i] represents the ith column of M0, where
1 ≤ i ≤ 2t−1. Let mM0[X][i] = M0[X][i] ◦ M0[X][i] ◦ · · · ◦ M0[X][i]⎨ ⎩⎜ ⎟

m

denote the

concatenation of m copies of column vector M0[X][i]. The basis matrices S0 and
S1 for the constructed Γ ∼-VCS are defined as follows:

S0 =
⎥

mM0[X][1] . . . mM0[X][2t−1] mM1[X][1] . . . mM1[X][2t−1]
Ŝ0 . . . Ŝ0 Ŝ1 . . . Ŝ1

]

S1 =
⎥

mM0[X][1] . . . mM0[X][2t−1] mM1[X][1] . . . mM1[X][2t−1]
Ŝ1 . . . Ŝ1 Ŝ0 . . . Ŝ0

] (1)

Remark: Arumugam et al.’s scheme [19] works the same way as the proposed
scheme with a special “(1, 1)-VCS” having basis matrices M0 = [0] and M1 = [1].

In the following, we will construct a (4,5,2)-VCS with essential parties {1, 2}
from a (2,3)-VCS and the optimal (2,2)-VCS.

Example 1. We are given a (2,3)-VCS with basis matrices Ŝ0 and Ŝ1, and the
optimal (2,2)-VCS with basis matrices M0 and M1. We use the above construc-
tion in Eq. (1) to build a (4,5,2)-VCS, whose basis matrices are denoted as S0

and S1.

Ŝ0 =

⎦

⎛
0 0 1
0 0 1
0 0 1

⎝

⎠ and Ŝ1 =

⎦

⎛
1 0 0
0 1 0
0 0 1

⎝

⎠ (2)

M0 =
⎥

0 1
0 1

]
and M1 =

⎥
0 1
1 0

]
(3)
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From Eqs. (1) and (3), we have the following:

S0 =

⎦

⎛
0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
Ŝ0 Ŝ0 Ŝ1 Ŝ1

⎝

⎠

S1 =

⎦

⎛
0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
Ŝ1 Ŝ1 Ŝ0 Ŝ0

⎝

⎠

Combining the above with Eq. (2), the basis matrices S0 and S1 for the
(4,5,2)-VCS are explicitly given as follows:

S0 =

⎦

⎛

0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
0 0 1 0 0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎝

⎞⎞⎞⎞⎠

S1 =

⎦

⎛

0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1

⎝

⎞⎞⎞⎞⎠

The set of all qualified sets is Q = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
{1, 2, 3, 4, 5}}. The set of all maximal forbidden sets is FM = {{1, 3, 4, 5},
{2, 3, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}}. It is easy to verify that w(S1

X) ≥ 11 and
w(S0

X) = 10 for all X ∈ Q, and S0[X] and S1[X] are equal up to a column
permutation for all X ∈ FM . Hence S0 and S1 indeed constitute a (4,5,2)-
VCS, where the pixel expansion is m = 12 and the relative contrast is α = 1

12 .
From Sect. 2.2.2, we know that the (4,5,2)-VCS constructed by cumulative array
method has pixel expansion 2|FM |−1 = 16 and relative contrast 2−|FM |+1 = 1

16 .
Hence our method outperforms the cumulative array method in both parameters
with respect to (4,5,2) access structure.

Figures 1, 2, 3 and 4 in Appendix are the experimental results for the above
(4,5,2)-VCS, where Fig. 1 shows the binary secret image with letters “LOIS”
on it, and Fig. 2 shows the five share images, and Fig. 3 shows all qualified
decoded images, and Fig. 4 shows all maximal forbidden decoded images. If
X = {1, 2, 3, 4, 5}, w(S1

X) = 12 and w(S0
X) = 10 and w(S1

X) − w(S0
X) = 2, and

if X ∈ Q/{1, 2, 3, 4, 5}, w(S1
X) = 11 and w(S0

X) = 10 and w(S1
X) − w(S0

X) = 1.
Hence in Fig. 3, the 4th image is clearer than other three images.

Fig. 1. A binary secret image of size 200 × 100
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Fig. 2. The five share images of size 800 × 300
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Fig. 3. All qualified decoded images of size 800 × 300
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Fig. 4. All maximal forbidden decoded images of size 800 × 300
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3.2 Analysis of the Proposed VCS with t Essential Parties

Theorem 4. Given a Γ -VCS with pixel expansion m and relative contrast α
and basis matrices Ŝ0 and Ŝ1, and the optimal (t, t)-VCS [1] with basis matrices
M0 and M1, the two basis matrices S0 and S1 defined by Eq. 1 constitute a
solution of Γ ∼-VCS with pixel expansion 2tm and relative contrast α

2t .

Proof: First we prove the security property of the constructed Γ ∼-VCS. For any
forbidden set X ∈ F ∼, either case 1: X ∈ {Z ∪B : Z ⊆ Pt ∧B � {1, 2, 3, · · · , t}}
or case 2: X ∈ {A ∪ {1, 2, 3, · · · , t} : A ∈ F} holds.
Case 1: Since T = {1, 2, 3, · · · , t} � X, from the security property of the opti-

mal (t, t)-VCS, we know that there exists a permutation σ on {1, 2, . . . , 2t−1}
such that M1[B][j] = M0[B][σ(j)] holds for any j ∈ {1, 2, . . . , 2t−1}, where
B = X ∩ T . Apply permutation σ to S0 and S1 in the following way, where
S0

σ represents the permuted S0 and S1
σ represents the permuted S1.

S0
σ =

⎥
mM0[T ][σ(1)] . . . mM0[T ][σ(2t−1)] mM1[T ][1] . . . mM1[T ][2t−1]

Ŝ0 . . . Ŝ0 Ŝ1 . . . Ŝ1

]

S1
σ =

⎥
mM0[T ][σ(1)] . . . mM0[T ][σ(2t−1)] mM1[T ][1] . . . mM1[T ][2t−1]

Ŝ1 . . . Ŝ1 Ŝ0 . . . Ŝ0

]

In such a case, the left half part of S0
σ[B] (resp.S1

σ[B]) is the same as the right
half part of S0

σ[B] (resp.S1
σ[B]). Therefore, S0

σ[X] and S1
σ[X] are equal up a

column permutation, which leads to the satisfaction of the security property
in this case.

Case 2: Since A = X/{1, 2, 3, · · · , t} ∈ F , from the security property of the
given (Γ,m)-VCS, we know that there exists a permutation σ on {1, 2, . . . ,m}
such that Ŝ1[A][j] = Ŝ0[A][σ(j)]. Apply permutation σ on the first m columns
of S0, and then the second m columns of S0, · · · , until the 2t−1th m columns
of S0. Apply permutation σ on the (2t−1 + 1)th m columns of S1, and then
the (2t−1 +2)th m columns of S1, · · · , until the 2tth m columns of S1. Since
the above permutations to S0 and S1 do not change their first t rows, the
permuted S0 and the permuted S1 are the same constrained to rows X,
which leads to the satisfaction of the security property in this case.

Since the pixel expansion of the optimal (t, t)-VCS is 2t−1, the pixel expansion
of the constructed Γ ∼-VCS is m × 2t−1 × 2 = 2tm.

Now, we turn to prove the contrast property of the constructed Γ ∼-VCS. For
any qualified set X ∈ Q∼, X = {1, 2, 3, · · · , t}∪H, where H = X/{1, 2, 3, · · · , t} ∈
Q. From the contrast property of the givenΓ -VCS,we know thatw(Ŝ1

H)−w(Ŝ0
H) ≥

αm.
w(S1

X) − w(S0
X) = w(Ŝ1

H) + (2t − 1)m − (w(Ŝ0
H) + (2t − 1)m)

= w(Ŝ1
H) − w(Ŝ0

H) ≥ αm

= (
α

2t
)2tm

Hence the relative contrast of the constructed Γ ∼-VCS is α
2t . �



66 T. Guo et al.

Remark: Theorem 2.3 in [19] can be derived from Theorem 4 by setting t = 1.
Corollaries 1 and 2 follow immediately from Theorem 4.

Corollary 1. Let k, n and t be positive integers satisfying t < k and 2 ≤ k−t ≤
n− t. Given a (k − t, n− t)-VCS with pixel expansion m and relative contrast α,
there exists a (k, n, t)-VCS with pixel expansion 2tm and relative contrast α

2t .

Corollary 2. Let k, n and t be positive integers satisfying t < k and 2 ≤ k−t ≤
n − t. Let m and α be the optimal pixel expansion and optimal relative contrast
of (k − t, n − t)-VCS. Let m∼ and α∼ be the optimal pixel expansion and optimal
relative contrast of (k, n, t)-VCS. Then m∼ ≤ 2tm and α∼ ≥ α

2t hold.

Recall the definition of Γ and Γ ∼ given in the beginning of Sect. 3. In the
following, we give an upper bound on the optimal relative contrast α∼ and a
lower bound on the optimal pixel expansion m∼ of the constructed Γ ∼-VCS.

Theorem 5. Let m and α be the optimal pixel expansion and optimal relative
contrast of Γ -VCS. Let m∼ and α∼ be the optimal pixel expansion and optimal
relative contrast of Γ ∼-VCS. Then m∼ > m and α∼ < α always hold.

Proof: Let S0 and S1 be the basis matrices of a Γ ∼-VCS, with optimal pixel
expansion m∼. Let Ŝ0 and Ŝ1 denote the n − t by m∼ matrix obtained from S0

and S1, where

Ŝ0 =

⎦

⎛

S0
{{t+1}∗T}

S0
{{t+2}∗T}

...
S0

{{t+n−t}∗T}

⎝

⎞⎞⎞⎠ and Ŝ1 =

⎦

⎛

S1
{{t+1}∗T}

S1
{{t+2}∗T}

...
S1

{{t+n−t}∗T}

⎝

⎞⎞⎞⎠

where T = {1, 2, 3, · · · , t} and S0
{{t+1}∗T} represents the OR result of rows

{{t + 1} ∪ T} of S0.
We claim that S0[T ] and S1[T ] are equal up to some column permutation,

otherwise the secret can be reconstructed by only considering the shares hold by
all essential parties. Therefore, row vector S0

T and S1
T contain the same number

of 1s, say d. In such a case, Ŝ0 and Ŝ1 both contain at least d all 1 columns. By
deleting d all 1 columns from each of Ŝ0 and Ŝ1, we obtain two basis matrices
for Γ -VCS with pixel expansion m = m∼ − d, referring to Theorem 2, which is
always smaller than m∼.

Now, let S0 and S1 be the basis matrices of a Γ ∼-VCS, with optimal relative
contrast α∼ and pixel expansion mo. Consider basis matrices S̄0 and S̄1 con-
structed similarly as above. For any X ∈ Q, we have H = X ∪ {1, 2, 3, · · · , t} ∈
Q∼, and thus
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w(S̄1
X) − w(S̄0

X) = w(S1
H) − w(S0

H)
≥ α∼mo

The constructed Γ -VCS has relative contrast α = α∗mo

mo−d , which is always larger
than α∼. �
Remark: The proof of Theorem 2.7 in [19] assumes the existence of a Γ ∼-VCS
with optimal pixel expansion m∼ and optimal relative contrast α∼. However, in
general, the above two optimal parameters cannot be achieved simultaneously
by the same VCS [20]. The above flaws can be easily made up by assuming the
existence of a Γ ∼-VCS with optimal pixel expansion m∼ and the existence of
another Γ ∼-VCS with optimal relative contrast α∼, and then proving the two
conclusions separately.

To conclude this section, we compare the basic parameters of two (k, n, t)-
VCSs constructed by the proposed scheme and cumulative array method [6].

• From Sect. 2.2.2, we know that the (k, n, t)-VCS constructed by cumulative
array method has pixel expansion m = 2( n−t

k−t−1)+t−1 and relative contrast
α = 2−( n−t

k−t−1)−t+1.
• From Theorem 3, we know that there exists a (k − t, n − t)-VCS with pixel

expansion m ≤ (
⎣
n−t
k−t

⎤
+ 1)2k−t−2 and relative contrast α ≥ 2−k+t+2

(n−t
k−t)+1

. Com-

bining this fact with Theorem 4, we know that the (k, n, t)-VCS constructed
by the proposed scheme has pixel expansion ≤ (

⎣
n−t
k−t

⎤
+ 1)2k−2 and relative

contrast ≥ 2−k+2

(n−t
k−t)+1

.

For n ≥ 5 and 2 ≤ k − t < n − t, the exponential part
⎣

n−t
k−t−1

⎤
+ t − 1 is

asymptotically much larger than the exponential part k−2. Hence the proposed
scheme is asymptotically much better than cumulative array method for (k, n, t)
access structure.

4 Conclusion

In this paper, we propose a (k, n)-VCS with t essential parties, which includes
Arumugam et al.’s scheme [19] as a special case with t = 1. Similar to [19], we
then explore some bounds on the optimal pixel expansion and optimal relative
contrast of the proposed (k, n, t)-VCS. At last, we show that for (k, n, t) access
structure, the proposed scheme surpasses cumulative array method significantly
in both parameters.

Acknowledgments. This work was supported by 863 Program grant No. Y370071102,
the “Strategic Priority Research Program” of the Chinese Academy of Sciences grant
No. XDA06010701, the IIE’s Projects grant No. Y3Z001B102 and NSFC grant
No. 61303256.



68 T. Guo et al.

References

1. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

2. Droste, S.: New results on visual cryptography. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)

3. Verheul, E., Tilborg, H.V.: Constructions and properties of k out of n visual secret
sharing schemes. Des. Codes Crypt. 11(2), 179–196 (1997)

4. Eisen, P.A., Stinson, D.R.: Threshold visual cryptography schemes with specified
whiteness levels of reconstructed pixels. Des. Codes Crypt. 25, 15–61 (2002)

5. Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing
schemes in visual cryptography. Theoret. Comput. Sci. 240(2), 471–485 (2000)

6. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for
general access structures. Inf. Comput. 129, 86–106 (1996)

7. Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Des. Codes
Crypt. 27, 207–227 (2002)

8. Blundo, C., Cimato, S., De Santis, A.: Visual cryptography schemes with optimal
pixel expansion. Theoret. Comput. Sci. 369, 169–182 (2006)

9. Liu, F., Wu, C.K., Lin, X.J.: The alignment problem of visual cryptography
schemes. Des. Codes Crypt. 50, 215–227 (2009)

10. Wang, D.S., Dong, L., Li, X.B.: Towards shift tolerant visual secret sharing
schemes. IEEE Trans. Inf. Forensics Secur. 6(2), 323–337 (2011)

11. Horng, G.B., Chen, T.H., Tsai, D.S.: Cheating in visual cryptography. Des. Codes
Crypt. 38, 219–236 (2006)

12. Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Trans.
Image Process. 16(1), 36–45 (2007)

13. Chen, Y.C., Horng, G., Tsai, D.S.: Comment on “cheating prevention in visual
cryptography”. IEEE Trans. Image Process. 21(7), 3319–3323 (2012)

14. Wang, R.Z.: Region incrementing visual cryptography. IEEE Signal Process. Lett.
16(8), 659–662 (2009)

15. Yang, C.N., Shih, H.W., Wu, C.C., Harn, L.: k out of n region incrementing scheme
in visual cryptography. IEEE Trans. Circuits Syst. Video Technol. 22(6), 779–810
(2012)

16. Shyu, S.J.: Efficient construction for region incrementing visual cryptography.
IEEE Trans. Circuits Syst. Video Technol. 22(5), 769–777 (2012)

17. Guo, T., Liu, F., Wu, C.K.: Threshold visual secret sharing by random grids with
improved contrast. J. Syst. Softw. 86, 2094–2109 (2013)

18. Guo, T., Liu, F., Wu, C.K.: k out of k extended visual cryptography scheme by
random grids. Sig. Process 94, 90–101 (2014)

19. Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-visual cryptography
scheme. Des. Codes Crypt. (2012). doi:10.1007/s10623-012-9722-2

20. Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography
schemes. J. Crypt. 12(4), 261–289 (1999)

21. Adhikari, A., Dutta, T.K., Roy, B.: A new black and white visual cryptographic
scheme for general access structures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 399–413. Springer, Heidelberg (2004)



New Lower Bounds for Privacy
in Communication Protocols

Iordanis Kerenidis1,2, Mathieu Laurière3(B), and David Xiao1

1 CNRS, LIAFA, Université Paris 7, Paris, France
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Abstract. Communication complexity is a central model of computa-
tion introduced by Yao [22], where two players, Alice and Bob, receive
inputs x and y respectively and want to compute f(x, y) for some fixed
function f with the least amount of communication. Recently people
have revisited the question of the privacy of such protocols: is it pos-
sible for Alice and Bob to compute f(x, y) without revealing too much
information about their inputs? There are two types of privacy for com-
munication protocols that have been proposed: first, an information the-
oretic definition ([9,15]), which for Boolean functions is equivalent to the
notion of information cost introduced by [12] and that has since found
many important applications; second, a combinatorial definition intro-
duced by [13] and further developed by [1].

We provide new results for both notions of privacy, as well as the
relation between them. Our new lower bound techniques both for the
combinatorial and the information-theoretic definitions enable us to give
tight bounds for the privacy of several functions, including Equality,
Disjointness, Inner Product, Greater Than. In the process we also prove
tight bounds (up to 1 or 2 additive bits) for the external information
complexity of these functions.

We also extend the definitions of privacy to bounded-error random-
ized protocols and provide a relation between the two notions and the
communication complexity. Again, we are able to prove tight bounds for
the above-mentioned functions as well as the Vector in Subspace and
Gap Hamming Distance problems.

Keywords: Communication complexity · Information complexity ·
Lower bound · Privacy

1 Introduction

Communication complexity is a central model of computation, first defined by
Yao, [22], that has found applications in many areas of theoretical computer
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science. In the 2-party communication complexity setting, we consider two play-
ers, Alice and Bob with unlimited computational power. Each of them receives
an input, say x ≤ X for Alice and y ≤ Y for Bob, and their goal is to com-
pute f(x, y) ≤ Z for some fixed function f with the minimum amount of
communication.

Imagine now that Alice and Bob still want to collaboratively compute f(x, y),
while retaining privacy of their input. The loss of privacy measures how much
information about (x, y) is leaked to an eavesdropper who has only access to the
transcript (external privacy), or how much information about one party’s input
is leaked through the transcript to the other pary (internal privacy). A perfectly
private protocol will reveal no information about x and y, other than what can
be inferred from the value of f(x, y).

For example, if Alice and Bob both want to output the minimum of x, y ≤
{0, 1}n and the identity of the person holding it, then the deterministic communi-
cation protocol with optimal communication is the trivial protocol of complexity
2n. In fact one can show that any deterministic protocol that has optimal commu-
nication is not private at all against an eavesdropper since basically both players
have to send the input to the other one. However a perfectly private deterministic
protocol exists, alas with much worse communication complexity: the two parties
initiate a counter i = 0 and in each round i = 0 to 2n − 1, Alice announces “Yes”
if x = i, otherwise “No”; Bob announces “Yes” if y = i, otherwise “No”. If neither
party says “Yes” then they increment i, otherwise the protocol ends when some-
one says “Yes”. It is clear that from the transcript, one only learns what can be
inferred from the value of the function and nothing more.

In order to quantify privacy, Bar-Yehuda et al. [9] provided a definition of
internal privacy of a function f according to an input distribution μ, a vari-
ation of which has been subsequently referred to as internal information cost
(ICint

μ (f)). At a high level, it measures the amount of information Alice learns
about Bob’s input from the transcript and vice versa. A second type of infor-
mation cost, called external information cost (ICext

μ (f)) was defined in [12] and
measures the amount of information that is learned by an external observer about
Alice and Bob’s inputs given the messages they exchanged during the protocol.
The notion of internal and external information cost has recently found many
important applications in communication complexity, including better commu-
nication lower bounds for important functions, direct sum theorems and new
compression schemes [2,3,5–8,12,20].

Klauck [15] also defined an information theoretic notion of privacy, which we
denote here by PRIVint

μ (f), which is closely related to the internal information
cost (the only difference being that we subtract the information that the function
reveals about the inputs, which the players are allowed to learn). In fact, the two
notions are basically equivalent for boolean functions and all our results about
PRIV can be translated to results about information cost. These definitions have
the advantage of being easily related to other tools in information theory, but
are not easily seen in a combinatorial way.

Feigenbaum et al. [13] gave a combinatorial definition of privacy for the
uniform distribution over inputs that was extended by Ada et al. [1] to any
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distribution μ, called average case objective privacy-approximation ratio, that
we will refer to simply as external privacy-approximation ratio (we only study
this average-case notion, and not a related worst-case notion also defined in
that work), and we denote this by PARext

μ (f, P ). It is equal to the expected
value over the inputs (x, y) drawn from some distribution μ of the following
ratio: the number of inputs that are mapped to the same value by f (that are
indistinguishable from (x, y) by looking only at the function’s output) over the
number of inputs giving rise to the same transcript as the one of (x, y) (that
are indistinguishable of (x, y) by looking only at the protocol’s transcript). They
also defined (average) subjective (or internal) privacy-approximation ratio (here
again we will omit “average”) which we denote PARint

μ (f, P ), which captures how
much more one player learns about the input of the other one by the transcript
than by the value of the function, and equals the ratio of the number of Alice’s
possible inputs x that are indistinguishable by looking only at Bob’s input y
and the output of the function, over the number of x’s that are instiguishable by
looking at y and the full transcript plus the symmetric ratio for Bob. Last, they
computed lower bounds for the privacy-approximation ratio of several functions,
however restricting themselves to the case of uniformly distributed inputs.

More recently, Ada et al. in [1] have modified the definition of privacy-
approximation ratio, which we denote as PARext

μ (f) and PARint
μ (f), so that it

measures the size of subsets of X×Y not just by counting the number of elements,
but relative to the inputs’ distribution μ. They showed that the logarithm of this
new definition of internal PAR can be lower bounded by the zero-error internal
information cost (which nevertheless can be arbitrarily smaller for certain func-
tions with large output range). They also proved a tradeoff between privacy and
communication complexity for a specific function (Vickrey-auction) and the
uniform distribution of inputs. We note that in [13] and [1] only deterministic
protocols were considered. Moreover, the relation between PRIV and PAR was
not very well understood.

Our Results: We prove new relationships between PRIV, PAR and communi-
cation complexity, as well as providing new lower bound techniques for the two
notions of privacy, PRIV and PAR, both external and internal, enabling us to
give tight bounds for the privacy of various functions in the case of deterministic
protocols. We also extend the definitions of PRIV and PAR to bounded-error
randomized protocols, and derive linear lower bounds for various functions.

New lower bounds for external PAR of deterministic protocols for boolean func-
tions: For boolean functions we give new lower bounds techniques, relating it to
the rank of the function and the deterministic complexity.

Theorem 1. For boolean f , for any distribution μ with full support,
PARext

μ (f) ⊂ rank (Mf ) − 1.

Theorem 2. For boolean f , for any distribution μ with full support,
log PARext

μ (f) ⊂ ⎡
D(f).

Observe that this implies that log PARext
μ (f) is in fact polynomially related to

the deterministic communication complexity. Notably, it therefore holds that
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the only boolean functions with low privacy loss (as measured using PARext)
are functions that have low communication complexity (this is not the case with
non-boolean functions as was already observed by [13]).

New lower bounds for external PAR of deterministic protocols for non-boolean
functions: For simplicity we restrict ourselves to full support distibutions μ,
but it is possible to extend the results to general distributions by considering
summations over only the rectangles whose intersection with μ’s support is not
empty. First, we present a general lower bound technique for PARext

μ (f) via
linear programming. We relate it to two other well known lower bound techniques
for communication complexity (see [14]): the rectangle bound (rec(f)) and the
partition bound (prt(f)). This linear program, whose optimal value is denoted
by P̃ARμ(f), can be written as a weighted sum of rectangle bounds recz(f),
where the weight is equal to the weight of the inputs (x, y) according to μ that
are mapped to z by f . It is, hence, easy to compute for many functions:

Theorem 3. For all f , for any distribution μ with full support, PARext
μ (f) ⊂

P̃ARμ(f).

Theorem 4. For all f , for any distribution μ with full support, P̃ARμ(f) ⊂⎣
z∈Z

⎤⎤f−1(z)
⎤⎤
μ

· recz(f).

Moreover, we bound external PAR as a weighted sum of the size of the z-fooling
sets Fz of Mf :

Theorem 5. For all f , for any distribution μ with full support, PARext
μ (f) ⊂⎣

z

⎤⎤f−1(z)
⎤⎤
μ

· |Fz|.
New lower bound techniques for external IC and PRIV: We prove a new lower
bound on the external zero-error information cost which, using the equivalence
between IC and PRIV given in Theorem 12, will in turn give new lower bounds
on PRIVext

μ (f).

Theorem 6. Fix a function f . Suppose there exists σ > 0 and a distribution μ
over the inputs of f , such that for all monochromatic rectangles R of f , μ(R) → σ.
Then it holds for every protocol P that computes f without error on any input
that ICext

μ (P ) ⊂ log(1/σ).

We remark that our theorem allows us to prove exact bounds for zero-error
IC up to an additive constant term (with a small constant, between 1 and 2).

Theorem 7. For each of f = EQ,GT,DISJ, there exists μ such that ICext
μ (f) ⊂

n. Also, there exists μ such that ICext
μ (IP) ⊂ n − 1 − o(1).

These are much sharper than typical lower bounds on IC, which work in
the bounded-error case and incur multiplicative constants [6,7,10,16]. The only
other such sharp lower bounds we are aware of are due to Braverman et al. [4]
who study the AND and DISJ functions. However they prove sharp bounds for
the internal IC of DISJ, not for the external IC as we study here.
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Our bound proves an optimal lower bound on the zero-error information
cost of certain functions (i.e. without any additive constant loss). For the one
bit AND, we show that there exists μ with ICext

μ (AND) ⊂ log2 3. This matches
the bound of [4] (they also proved optimality via different techniques).

Privacy for bounded-error randomized protocols: We define for the first time
PAR and PRIV for bounded-error protocols. Such protocols can be much more
efficient than deterministic ones and it is important to see whether they remain
private or not. These definitions capture again how much more information is
leaked by the protocol than by the output of the function, where now we consider
randomized protocols that compute the function with some bounded error. We
show that for any protocol, PRIV is a lower bound on PAR, both for the external
and internal notions.

Theorem 8. ≡μ, f, π, PRIVext
μ,σ (f) → log PARext

μ,σ (f) and PRIVint
μ,σ(f) →

2 log PARint
μ,σ(f) − 2.

Internal PRIV is lower bounded by internal IC, which was shown in [16]
to subsume almost all known lower bounds for communication complexity, i.e.
smooth rectangle, α2-norm, discrepancy, etc. Hence,

Corollary 1 (Informal). In the bounded error setting, for all boolean f whose
internal information complexity equals communication complexity, all notions of
privacy loss (PRIV, PAR, external, internal) are equivalent to each other and
to the communication complexity.

Interestingly, PAR sits between information and communication complexity,
and it is an important open question whether these two notions are equal for all
functions (and hence make PAR equal to them).

Applications: We exhibit the power of these new lower bound techniques for
PAR and PRIV by proving optimal lower bounds on most of the examples of
functions left open in [13] and more: Equality, Disjointness, Inner Product,
Greater Than (Millionaire’s problem).

Table 1. Lower bounds for specific functions, zero error.

Problem PARext
μ PRIVext

μ

[13] Our contribution (for some μ)
(for uniform μ) (for μ with full support)

Equality - 2n n − 1
Disjointness

(
3
2

)n
2n − 1 n − 1

Inner Product - 2n − 1 n − 2 − o(1)
Greater Than 2n + 1

2n+1 − 1
2

2n − 1 n − 1

Comparison between the two notions of privacy: For the case of bounded-error
protocols, the two notions of privacy seem to be practically equal for most func-
tions. However, for the zero-error case, they can diverge for certain functions. In
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Table 2. Lower bounds for specific functions, with bounded error

PRIVint
μ,λ,PRIVext

μ,λ (for some μ) PARint
μ,λ,PARext

μ,λ (for some μ)

Equality Θ(1) Θ(1)

Disjointness Θ(n) 2Θ(n)

Inner Product Θ(n) 2Θ(n)

Greater Than Θ(log n) 2Θ(log n)

order to understand the differences between the notions, we study their robust-
ness when we change slightly the input distribution and we show that the infor-
mation theoretic notion of privacy is more robust to such changes. Moreover, we
show that while PRIV is always less than the expected communication complex-
ity of the protocol, the same is not true for PAR. We also discuss an error in the
appendix of [13] where they claim that PRIV is not as robust as PAR.

2 Preliminaries

We consider three non empty sets X ,Y ,Z and a function f : X × Y ∈ Z.
μ denotes a distribution over X × Y, and for any set E ≥ X × Y, |E|μ :=⎣

(x,y)∈E μ(x, y). Mf is the matrix of f : Mf [x, y] := f(x, y). A rectangle of
X × Y is a product set A × B where A ≥ X , B ≥ Y.

We let P denote a two-party communication protocol. Protocols may use
both public and private random coins. We let r denote the ensemble of all ran-
dom coins (public and private) a protocol may use; we let R denote a random
variable of all these coins, and Rpub denote just the public coins. Given a (pos-
sibly randomized) protocol P , for any input (x, y) ≤ X × Y and random coins
r, P (x, y, r) is the value output by Alice and Bob upon running the protocol,
and TP (x, y, r) is the transcript, comprising all messages and public coins. We
omit r in the previous if P is deterministic. Let CC(P ) be the maximum num-
ber of bits communicated by P over all choices of inputs and random coins. Let
D(f) = minP CC(P ) where P ranges over all deterministic protocols comput-
ing f . Let Rσ(f) = minP CC(P ) where P ranges over all randomized protocols
computing f with error at most π on each input.

In the following paragraph we let P be a deterministic protocol that perfectly
computes a function f . For any input (x, y) ≤ X×Y, the monochromatic f -region
of (x, y) is defined as Df

x,y := f−1(f(x, y)), and is equal to the monochromatic
P -region DP

x,y of (x, y). The monochromatic P -rectangle of (x, y) is defined as
DTP

x,y := T−1
P (TP (x, y)) (the fact that this is a rectangle and not an arbitrary

subset is a well-known consequence of P being a communication protocol). For
any output z ≤ Z, the monochromatic f -region of z is: f−1(z) := f−1({z}),
which is equal to the monochromatic P -region of z, P−1(z). Let RP

z be the set
of P -rectangles covering P−1(z), that is: RP

z := {DTP
x,y|(x, y) : P (x, y) = z}. Let

RP = ⊆z∈ZRP
z =

⎦
DTP

x,y

⎤⎤(x, y) ≤ X × Y}
be the set of all P -rectangles. For each
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z ≤ Z, cutP (f−1(z)) is the number of P -rectangles in f−1(z); R(X × Y) is the
set of all rectangles in X × Y.

For three random variables A,B,C the conditional mutual information is
defined as I(A;B|C) := H(A|C)−H(A|BC), where H denotes Shannon entropy:
if X and Y are two random variables H(X) =

⎣
x P{X = x} log(1/P{X = x})

and H(X|Y ) = E[− log(P(X|Y ))]. We recall some simple facts about information
and entropy (more details about information theory can be found in the textbook
of Cover and Thomas [11].) For any random variables X,Y,Z,W , the Chain Rule
says that H(X,Y ) = H(X) + H(Y |X) and I(X,Z; Y ) = I(X; Y ) + I(Z; Y |X).
Another easy fact (see for example [1]) is that:

|I(X;Y |W ) − I(X;Y |W,Z)| → H(Z) (1)

We let DKL denote the KL-divergence, DKL(X ∩ Y ) = Ex∼X log Pr[X=x]
Pr[Y =x] . It is

easy to see that I(X;Y ) = DKL(XY ∩ X ∗Y ) where X ∗ is an independent copy of
X. We will also use the following data processing inequality for KL-divergence
(we include a proof in the appendix for the sake of completeness):

Lemma 1. For any X,Y and any deterministic function L, the following holds:

DKL(X ∩ Y ) ⊂ DKL(L(X) ∩ L(Y )) (2)

2.1 Definitions of Privacy

In the following, (X,Y ) denotes a pair of random variables, distributed according
to μ, and P denotes a (possibly randomized) protocol.

Information Cost: We define the external and internal information cost,
notions that have recently found many applications in communication complex-
ity [2,6,7,12]. The external information cost measures the amount of information
that is learned from someone who looks at the messages exchanged between Alice
and Bob during the protocol about their inputs. The internal information cost
measures the amount of information that Alice learns about Bob’s input and
vice versa.

Definition 1. The external information cost of P is defined as ICext
μ (P ) :=

I(X,Y ;TP (X,Y,R)). The external information cost of f is ICext
μ,σ (f) :=

infP ICext
μ (P ) where the minimum is over all protocols P computing f with dis-

tributional error π.

Definition 2. We define the internal information cost of P as ICint
μ (P ) :=

I(X;TP (X,Y,R)|Y )+I(Y ;TP (X,Y,R)|X). The internal information cost of f is
ICint

μ,σ(f) := infP ICint
μ (P ) where the minimum is over all protocols P computing

f with distributional error π.

Information-theoretic privacy: In [9], the definition of privacy (Idet
c−i in their nota-

tions) is basically the same as what we now call ICint
μ (P ) (they used the max
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instead of the sum of the two terms). A related notion of privacy has been defined
by Klauck in [15]. We give a distribution-dependent version of his definition. At a
high level, it quantifies how much more an observer learns about the inputs from
the transcript than from the value of the function. We also define an internal
version of the definition. We assume that the output of a randomized proto-
col depends only on the transcript (i.e. P (x, y, r) is a deterministic function of
T (x, y, r)).

Definition 3. The external privacy of P is defined as PRIVext
μ (f, P ) :=

I(X,Y ;TP (X,Y,R)) − I(X,Y ; f(X,Y )). For π ⊂ 0, the external π-error pri-
vacy of f is defined as the following, where the infimum is taken over all
protocols P computing f with distributional error at most π: PRIVext

μ,σ (f) :=
infP PRIVext

μ (f, P ). We let PRIVext
μ (f) := PRIVext

μ,0(f).

Definition 4. The internal privacy of P is defined as PRIVint
μ (f, P ) :=

I(X;TP (X,Y,R)|Y )−I(X; f(X,Y )|Y )+I(Y ;TP (X,Y,R)|X)−I(Y ; f(X,Y )|X).
For π ⊂ 0, the internal π-error privacy of f is defined as the following, where the
infimum is taken over all protocols P computing f with distributional error at
most π: PRIVint

μ,σ(f) := infP PRIVint
μ (f, P ). We let PRIVint

μ (f) := PRIVint
μ,0(f).

It is easy to see that our definition is equivalent to the one in [15] for deter-
ministic or zero-error protocols.

Combinatorial privacy PAR: We present here the definition of PAR for deter-
ministic protocols given by [1], which modified the original definition in [13] in
order to measure the size of regions relative to the inputs’ distribution.

Definition 5. The external privacy-approximation ratio of a deterministic

protocol P for f is defined as: PARext
μ (f, P ) := E(x,y)∼μ

⎛
|Df

x,y|µ∣
∣
∣D

TP
x,y

∣
∣
∣
µ

⎝
=

E(x,y)∼μ

⎛
|DP

x,y|µ∣
∣
∣D

TP
x,y

∣
∣
∣
µ

⎝
(where the equality holds because P has zero error). The exter-

nal privacy-approximation ratio of a function f is defined as: PARext
μ (f) :=

inf
P

PARext
μ (f, P ) where the infimum is over all deterministic P computing f

with zero error.

Definition 6. The internal privacy-approximation ratio of a deterministic pro-

tocol P for f is defined as: PARint
μ (f, P ) := E(x,y)∼μ

⎛
|Df

x,y∪X×{y}|
µ∣

∣
∣D

TP
x,y∪X×{y}

∣
∣
∣
µ

⎝
+

E(x,y)∼μ

⎛
|Df

x,y∪{x}×Y|
µ∣

∣
∣D

TP
x,y∪{x}×Y

∣
∣
∣
µ

⎝
. The internal privacy-approximation ratio of a func-

tion f is defined as: PARint
μ (f) := inf

P
PARint

μ (f, P ) where the infimum is over

all deterministic P computing f with zero error.

The external PAR equals a weighted sum of the number of rectangles tiling
each f -monochromatic region.
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Theorem 9 ([1]). For any deterministic protocol P , we have: PARext
μ (f, P ) =⎣

z∈Z
⎤⎤f−1(z)

⎤⎤
μ

· cutP (f−1(z)).

This result was stated in [1] but for completeness we present a proof in the
appendix.

We now extend the definition to randomized protocols. In the following, the
expectations are taken over inputs x, y and random coins r. A simple calculation
shows that the following definition coincides with the definition of [1,13] in the
case of deterministic zero-error protocols.

Definition 7. We define:

– The external PAR of a randomized protocol P as:

PARext
μ (f, P ) := Ex,y,r

⎞
PX,Y,R((X,Y )=(x,y) | TP (X,Y,R)=TP (x,y,r))

PX,Y ((X,Y )=(x,y) | f(X,Y )=f(x,y))

⎠
.

For π ⊂ 0, the external π-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most π:
PARext

μ,σ (f) := infP PARext
μ (f, P ).

– The internal PAR of a randomized protocol P as:

PARint
μ (f, P ) :=Ex,y,r

⎞
PX,Y,R(Y =y | TP (X,Y,R)=TP (x,y,r)∧X=x)

PX,Y (Y =y | f(X,Y )=f(x,y)∧X=x)

⎠

+ Ex,y,r

⎞
PX,Y,R(X=x | TP (X,Y,R)=TP (x,y,r)∧Y =y)

PX,Y (X=x | f(X,Y )=f(x,y)∧Y =y)

⎠
.

For π ⊂ 0, the external π-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most π:
PARint

μ,σ(f) := infP PARint
μ (f, P ).

Remark 1. There is another way to generalize the definition of PAR for 0-error
protocols. This alternative definition is deferred to the appendix.

3 Relations Between Privacy Notions and Communication

We prove a number of relations between the different notions of privacy, com-
munication complexity and information cost both for deterministic and random-
ized protocols. We summarize them in Fig. 1. In the diagram, an arrow A ← B
indicates that A → B (up to constants). The quantities indicate worst-case com-
plexity except for Dist (see Theorem 13). Relations between:

– PAR and PRIV are given in Theorem 8 (which was proved in [1] only for the
deterministic 0-error internal case);

– D (resp. Rσ) and PAR is given by Theorem 11;
– IC and PRIV are given in Theorem 12 (which was proved in [1] only for the

deterministic 0-error internal case);
– The expected distributional complexity and IC (or PRIV) for every possible

input distribution is given in Theorem 13;
– PRIVext and PRIVint is given in Theorem 14;
– PARext and PARint comes from Theorem 15 (for the deterministic case).

We start by proving that PRIV provides a lower bound for the log of PAR:
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Fig. 1. Lower bounds diagrams for deterministic and bounded error cases

3.1 Relations Between the Different Notions of Privacy
and Communication Complexity

We provide below the proof of Theorem 8. The other theorems are proven in the
appendix.

Theorem 8 [restated]. For any input distribution μ and any (deter-
ministic or randomized) protocol P, it holds that PRIVext

μ (f, P ) →
log

⎨
PARext

μ (f, P )
⎩
andPRIVint

μ (f, P ) → 2 · log
⎨
PARint

μ (f, P )
⎩ − 2. As a con-

sequence, ≡μ, f, π it holds that PRIVext
μ,σ (f) → log

⎨
PARext

μ,σ (f)
⎩
andPRIVint

μ,σ(f) →
2 · log

⎨
PARint

μ,σ(f)
⎩ − 2.

Proof. For external privacy, this is a consequence of Bayes rule, and for internal
privacy, this is a consequence of Bayes rule and an argument about the worse of
the two terms comprising internal PRIV and PAR. The details of this proof will
appear in the full version of the article ([17]).

Remark 2. Note that when the protocol is externally (resp. internally) perfectly
private, the inequality is tight since PRIVext

μ (f, P ) = 0 and PARext
μ (f, P ) = 1

(resp. PRIVint
μ (f, P ) = 0 and PARint

μ (f, P ) = 2).

3.2 Applications: Tight Bounds on PAR and PRIV for Specific
Functions

For boolean functions, PRIV is essentially lower bounded by Information Cost,
which subsumes almost all known lower bounds for communication complex-
ity, i.e. smooth rectangle, α2-norm, discrepancy, etc [16]. Hence, Theorem 8
implies

Corollary 1 [restated]. For all f, μ, π such that Rσ(f) = O(ICint
μ,σ(f)), it holds

that log PARμ,σ(f) = PRIVμ,σ(f) = Rσ(f) up to constant factors (for both
internal and external notions).
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Interestingly, the notion of PAR sits between information and communication
complexity, and it is an important open question whether these two notions are
equal (which would also make PAR equal to them). For the bounds in Table 2,
the results follow immediately from known lower bounds on the IC of these
functions: for EQ the lower bound is trivial, for DISJ one can look at IC directly
[6,7], while for EQ, IP,GT one can look at their discrepancies [10]. Then, using
Theorem 12 and 8 we obtain bounds on internal PAR. Note that the bounds also
hold for external PRIV and PAR (since internal is always at most external, see
Theorem 14). Moreover, we can also get similar lower bounds for the functions
Vector in Subspace and Gap-Hamming distance by the results in [16].

4 New Lower Bound Techniques for PAR and PRIV
of Deterministic Protocols

In Subsects. 4.1 and 4.2, we assume μ to be full-support for simplicity. By restrict-
ing the summations to the rectangles that intersect the support of μ, it is possible
to get similar results for a general distribution.

4.1 External PAR of Boolean Functions

Let f be a boolean function, P a deterministic protocol for f and T its tran-
script. Let n0 and n1 be the number of P -rectangles with output 0 and 1
(n0 = |RP

0 |, n1 = |RP
1 |). We lower bound PAR by the communication matrix

rank.

Theorem 1 [restated]. For boolean f , for any distribution μ with full support,

PARext
μ (f) ⊂ min{rank (Mf ) rank (Mnotf )} ⊂ rank (Mf ) − 1.

The proof will appear in the full version of the article ([17]) and uses Theorem
9 in [1]. Moreover, we are going to use the following result of Yannakakis, which
restated in our notation says that

Lemma 2 (Lemma 1 in [21]). For boolean f and any deterministic protocol
P , log min(n0, n1) ⊂ ⎡

D(f).

In fact, Yannakakis proves only that log n1 ⊂ ⎡
D(f), but it is easy to verify

that the proof is independent of the value of the monochromatic rectangles,
so it similarly follows for the 0-rectangle case. Using in addition the fact that
PARext

μ (f) ⊂ min(n0, n1), we have

Theorem 2 [restated]. For boolean f , for any distribution μ with full support,
log PARext

μ (f) ⊂ ⎡
D(f).

Note that Theorem 1 is not true in general for non-boolean functions (see
Appendix).
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4.2 External PAR for Non-boolean Functions

Definition 8. Let P̃ARμ(f) be the value of the following linear program:

min
wz,R

⎜

z,R

wz,R · ⎤⎤f−1(z)
⎤⎤
μ

s.t. ≡ (x, y) ≤ f−1(Z) :
⎜

R:R�(x,y)

wf(x,y),R = 1 (3)

≡ (x, y) ≤ f−1(Z) :
⎜

R:R�(x,y)

⎜

z

wz,R = 1 (4)

≡ z, ≡R : wz,R ⊂ 0. (5)

where the z’s and the R’s are always taken respectively in Z and in R(X × Y).

Intuitively, from conditions (4) and (5), we can interpret wz,R as a probability
distribution. In fact, wz,R is the probability to pick R and outputs z on (x, y).
This is because condition (3) forces the probability of outputting f(x, y) on (x, y)
to be 1.

Theorem 3 [restated]. For all f , for any distribution μ with full support,
PARext

μ (f) ⊂ P̃ARμ(f).

Proof. Let P be a deterministic protocol for f and T its transcript. We can show
that wz,R := 1R∈RP

z
satisfies the conditions of Definition 8 and deduce the lower

bound. The details of this proof will appear in the full version of the article
([17]).

Relation with rectangle linear program: We relate this linear program to
the rectangle bound defined in [14]. For uniform output distribution, we can
generalize this relation to the partition bound (see Appendix).

Definition 9. recz(f) is the optimal value of the following linear program, where
R is taken in R(X × Y):

min
wR

⎜

R

wR s.t. ≡(x, y) ≤ f−1(z) :
⎜

R:R�(x,y)

wR = 1 (6)

≡(x, y) ≤ X × Y \ f−1(z) :
⎜

R:R�(x,y)

wR = 0 (7)

≡R : wR ⊂ 0. (8)

Theorem 4 [restated]. For all f, for any distribution μ with full support,
P̃ARμ(f) ⊂ ⎣

z∈Z
⎤⎤f−1(z)

⎤⎤
μ

· recz(f).

The proof will appear in the full version of the article ([17]).

Relation between PAR and fooling sets: Recall that a z-fooling set (z ≤ Z)
for f : X × Y ∈ Z is a subset Fz ≥ f−1(z) such that: ≡ (x, y) ≤ Fz, f(x, y) =
z and ≡ (x1, y1), (x2, y2) ≤ Fz, (x1, y1) ∪= (x2, y2) it holds that f(x1, y2) ∪=
z or f(x2, y1) ∪= z. By Theorem 9 in [1] and the following theorem we lower
bound PAR by fooling sets.
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Theorem 10 ([18]). If Fz is a z-fooling set for f , then any covering of f−1(z)
by monochromatic rectangles has at least |Fz| rectangles.

Theorem 5 [restated]. For all f and any set of z-fooling sets {Fz}z∈Z , for any
distribution μ with full support, PARext

μ (f) ⊂ ⎣
z∈Z

⎤⎤f−1(z)
⎤⎤
μ

· |Fz|.

4.3 New Lower Bound Techniques for External IC

We show lower bounds on the external information complexity, which using
Theorem 12 will in turn give new lower bounds on information-theoretic privacy.
Our lower bounds hold for zero-error randomized protocols, which of course
imply the same bounds for deterministic protocols.

Theorem 6 [restated]. Fix a function f. Suppose there exists σ > 0 and a
distribution μ over the inputs of f, such that for all monochromatic rectangles R
of f, μ(R) → σ. Then it holds for every P that computes f without error on any
input (i.e. even on pairs of inputs lying outside μ∗s support) that ICext

μ (P ) ⊂
log(1/σ).

The proof will appear in the full version of the article ([17]).

Corollary 2. For any function f with a fooling set S of size |S| = k, there
exists a distribution μ such that for all protocols P that compute f with zero
error over μ, it holds that ICext

μ (P ) ⊂ log k.

The proof of this corollary will appear in the full version of the article ([17]).
Note that Theorem 6 can be used to prove an optimal lower bound on the zero-
error information complexity of certain functions. For example, for one bit AND,
the hard distribution μ is uniform over (0, 1), (1, 0), (1, 1), and our theorem
implies that ICext

μ (P ) ⊂ log2 3. This matches a recent exact bound (which is in
particular an upper bound) by Braverman et al. [4].

4.4 Applications: Tight Bounds on External PAR and PRIV
for Specific Functions

Our applications in Table 1 follow from the lower bounds techniques that we have
seen and applying well known facts about the rank or the size of the fooling sets
of the communication matrix of the functions in question.

The proofs will appear in the full version of the article ([17]).

5 Quality of the Two Definitions

5.1 Privacy for Deterministic Protocols

Deterministic protocols: for deterministic protocols, the two definitions of pri-
vacy, PRIV and PAR, can be arbitrarily different for the same distribution. In
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high level, PRIV captures the expected privacy loss of a protocol, while PAR
captures a more “risk-averse” notion of privacy, where a protocol is penalized
heavily for high-privacy-loss events, even if they occur with small probability.

In the appendix, we show that this difference makes PRIV a much more
robust definition: an π change in the input distribution causes at most an πn
change in PRIV, so PRIV is “smooth”. Furthermore, PRIV always remains less
than the expected communication of the protocol, which we believe to be another
natural property. We prove that this is not the case for PAR: sometimes an π
change in the input distribution can cause PAR to change exponentially, and
PAR can grow arbitrarily larger than the expected communication. Finally we
also point out an error in the appendix of [13] and show that for the example
they gave, in fact PRIV is just as good as PAR at distinguishing two protocols
in their example.

Bounded-error case: As we explained in Sect. 3.2, in the case of bounded-error
randomized protocols, the two notions of privacy are in fact both equal to the
communication complexity for all boolean functions for which we have a tight
bound on their communication complexity. Moreover, for functions with large
output, we still do not have any example where PRIV and PAR are different
when we are allowed bounded error.
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A Appendix

A.1 Complements to Sect. 2

Omitted Proofs. The proofs of Lemma 1 and Theorem 9 will appear in the
full version of the article [17].

Discussion About the Definition of PAR. In Sect. 2, definition 7, we have
defined PAR for randomized bounded-error protocols relatively to the transcript
and the output value of the function. This definition is consistent with the one
for deterministic protocols. However it is also possible to extend the definition of
PAR by taking the output of the protocol instead of the output of the function:

Definition 10. – An alternative definition for the exter-
nal PAR of a randomized protocol P is: PARext,alt

μ (P ) :=

Ex,y,r

⎞
PX,Y,R((X,Y )=(x,y) | TP (X,Y,R)=TP (x,y,r))

PX,Y ((X,Y )=(x,y) | P (X,Y )=P (x,y))

⎠
. For π ⊂ 0, the external π-error

PAR of f is defined as the following, where the infimum is taken over all proto-
cols P computing f with error at most π: PARext,alt

μ,σ (f) := infP PARext,alt
μ (P ).
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– An alternative definition for the internal PAR of a randomized protocol P is:

PARint,alt
μ (P ) :=Ex,y,r

⎞
PX,Y,R(Y =y | TP (X,Y,R)=TP (x,y,r)∧X=x)

PX,Y (Y =y | P (X,Y )=P (x,y)∧X=x)

⎠

+ Ex,y,r

⎞
PX,Y,R(X=x | TP (X,Y,R)=TP (x,y,r)∧Y =y)

PX,Y (X=x | P (X,Y )=P (x,y)∧Y =y)

⎠
.

For π ⊂ 0, the external π-error PAR of f is defined as the following, where
the infimum is taken over all protocols P computing f with error at most π:
PARint,alt

μ,σ (f) := infP PARint,alt
μ (P ).

A.2 Omitted Roofs from Sect. 3

We have proven Theorem 8 in Sect. 3. We prove here the other theorems stated
in this section.

Relations Between the Different Notions of Privacy and Communi-
cation Complexity. Firstly we show that for any protocol (deterministic or
randomized), the external privacy-approximation ratio is at most exponential in
the communication of the protocol.

Theorem 11. For any protocol P , PARext
μ (f, P ) → 2CC(P ).

The proof will appear in the full version of the article [17].
The relation between internal IC and internal PRIV for deterministic proto-

cols was explained in [1]. It is possible to improve the lower bound and to show
the same relationship for external notions and any (deterministic or randomized)
protocol.

Theorem 12. For any protocol P and any distribution μ,

PRIVint
μ (f, P ) → ICint

μ (P ) → PRIVint
μ (f, P ) + 2 log(|Z|)

PRIVext
μ (f, P ) → ICext

μ (P ) → PRIVext
μ (f, P ) + log(|Z|)

Proof. By definition of IC and PRIV we have, respectively for the external and
the internal notions:

ICint
μ (P ) − PRIVint

μ (f, P ) = I(X; f(X,Y )|Y ) + I(Y ; f(X,Y )|X) → 2 log(|Z|),
ICext

μ (P ) − PRIVext
μ (f, P ) = I(X,Y ; f(X,Y )) → log(|Z|).

For the lower bounds, note that mutual information is always positive.

Moreover, if Distμ,σ for π ⊂ 0 represents the expected distributional complex-
ity of a randomized π-error protocol with respect to some input distribution μ,
we have:

Theorem 13 ([11]). For any randomized π-error protocol and any input distri-
bution, Distμ,σ(P ) ⊂ ICext

μ,σ (P ).

The proof of this well-known fact can be found in [11] for example.
Note that, since ICext

μ,σ (P ) ⊂ ICint
μ,σ(P ), we also have: Distμ,σ(P ) ⊂ ICint

μ,σ(P ).
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Relation Between Internal and External Privacy. We first study the case
of PRIV and then focus on PAR.

Theorem 14. PRIVint
μ (f, P ) → PRIVext

μ (f, P ) + log(|Z|).
Proof. Braverman [7] proved that: ICint

μ (P ) → ICext
μ (P ). Hence, with 12:

PRIVint
μ (f, P ) → ICint

μ (P ) → ICext
μ (P ) → PRIVext

μ (f, P ) + log(|Z|).
Moreover, we show that internal PAR is smaller than external one for deter-

ministic protocols:

Theorem 15. For any deterministic protocol P computing f :

PARint
μ (f, P ) → 2 · PARext

μ (f, P ).

The proof will appear in the full version of the article [17].
However, Theorem 15 does not hold in general for π-error randomized proto-

cols. For instance, consider that Alice receives an s-bit string x, and Bob receives
x plus an n-bit string y, such that x and y are independent, and they want to
compute the function that reveals x: f(x, y) = x. The protocol they use, where
only Bob sends messages, is the following: if x = 0s then Bob sends y, otherwise
he sends a random n-bit string (independent of x and y). Then:

PARint
μ (f, P ) = Ex,y,t

⎟
P(XY = xy|T = t, X = x)

P(XY = xy|X = x)

⎥
+ 1

=
⎜

x,y,t

P(X = x, Y = y, T = t)
P(Y = y|T = t, X = x)

P(Y = y|X = x)
+ 1

= 2n
⎜

x,y,t

P(X = x, Y = y, T = t)P(Y = y|X = x, T = t) + 1

= 2n




⎜

x⊥=0,y,t

1
22n+s

1
2n

+
⎜

x=0,y=t

1
2n+s

· 1



 + 1 = 2n−s + o(1)

and:

PARext
μ (f, P ) = Ex,y,t

⎟
P(X = x,XY = xy|T = t)

P(X = x,XY = xy|f(X,Y ) = f(x, y))

⎥

=
⎜

x,y,t

P(X = x, Y = y, T = t)
P(X = x, Y = y|T = t)

P(Y = y)

(sincef(x, y) = x)

= 2n
⎜

x,y,t

P(X = x, Y = y, T = t)P(X = x, Y = y|T = t)

= 2n




⎜

x⊥=0,y,t

1
22n+s

1
2n+s

+
⎜

x=0,y=t

1
2n+s

1
2s



 = 2n + o(1)

Hence, if x is of length s = n/2, then PARint
μ (f, P ) = 2n/2+o(1) is exponentially

bigger than PARext
μ (f, P ) = o(1).
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A.3 Omitted Proofs for Sect. 4

Relation with Partition Linear Program. It is also possible to lower bound
PARext

μ (f) by 1
|Z| ·prt(f), where prt(f) is defined in [14]. The details of this fact

wille appear in the full version of the article [17].

Rank Argument Fails for Non-boolean Functions. For instance, consider
the following function that take three values: let EQ∗ : {1, . . . , m}2 ∈ {0, 1, 2}
be the function defined by:

EQ∗(x, y) =






0 if x ∪= y and x < m or y < m

1 if x = y and x < m or y < m

2 otherwise (x = m or y = m).
whose matrix is:





1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2




.

Then, for any (zero-error) protocol P solving EQ∗, the number of 0-rectangles and
the number of 1-rectangles are at least the minimum number of such rectangles
for EQm−1:

EQm−1 : {1, . . . , m − 1}2 ∈ {0, 1}, (x, y) ∅∈ 1 iff x = y.

But the number of 2-rectangles can be only 2. Now, if we pick a distribu-
tion μ and σ satisfying

⎤⎤EQ∗−1(0)
⎤⎤
μ

=
⎤⎤EQ∗−1(1)

⎤⎤
μ

= σ/2 < 2−(2m−2) and⎤⎤EQ∗−1(2)
⎤⎤
μ

= 1−σ, then one can see that PARext
μ (EQ∗) → 3. Hence for this func-

tion EQ∗ and this distribution μ: PARext
μ (EQ∗, P ) → 3 whereas : rank (MEQ∗) ⊂

rank
(
MEQn−1

)
= 2n−1.

Proofs of Applications. An advantage of our techniques is that they give
bounds for any distribution of input μ, and not only for a uniform distribution
as in [13]. Since any of these problems can be solved by sending Alice’s entire
input (n bits), the communication complexity is always upper-bounded by n,
hence so PAR is always upper-bounded by 2n. The lower bounds stated in Table
1 can be proved using Theorem 1.

Now we explain briefly how to obtain the results of Theorem 7 (see the full
version of the article ([17]) for the details). For the lower bounds for EQ, DISJ,
GT, we can apply Corollary 2 using an appropriate fooling set, followed by the
relationship between IC and PRIV given in Theorem 12. For IP it is possible to
use the well-known fact that all 0-monochromatic rectangles of the IP function
contain at most 2n elements.

A.4 Privacy for Deterministic Protocols

Robustness over the Input Distribution. We show that PAR is not robust
over the input distribution μ. More precisely, we give an example of a function
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and of two distributions with exponentially small statistical distance, but whose
privacy-approximation ratio is constant for one and exponential for the other.

Proposition 1. There exists a function f and two input distributions μ1, μ2

satisfying |μ1−μ2| → 2−n/2 in statistical distance, and yet such that PARext
μ1

(f) =
β(1) and PARext

μ2
(f) = Ω(2n/2).

Proof. Let m = 2n and f : {0, . . . , m}2 ∈ {0, 1, 2} be the function defined by:

f(x, y) =






0 if x ∪= y and x ∪= m and y ∪= m

1 if x = y and x ∪= m and y ∪= m

2 otherwise (x = m or y = m).
whose matrix is:





1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2




.

Let μ1 be the following distribution: with probability 2−n pick a random
element of f−1(0)⊆f−1(1), and with probability 1−2−n pick a random element
of f−1(2).

Set π = 2−n/2 and let μ2 be the following distribution: with probability 2−n+π
pick a random element of f−1(0)⊆f−1(1), and with probability 1−2−n − π pick
a random element of f−1(2).

Consider now the protocol P , where first Alice and Bob exchange a single
bit to check whether x = m or y = m and if they are both different than m,
Alice and Bob solve Equality (by having Alice send her entire input to Bob).

Then we have:

PARext
μ1

(f) → PARext
μ1

(f, P ) =
⎤⎤f−1(0)

⎤⎤
μ1

· n0 +
⎤⎤f−1(1)

⎤⎤
μ1

· n1 +
⎤⎤f−1(2)

⎤⎤
μ1

· n2

→ (
⎤⎤f−1(0)

⎤⎤
μ

+
⎤⎤f−1(1)

⎤⎤
μ1

) · 2n +
⎤⎤f−1(2)

⎤⎤
μ1

· 3 = β(1)

On the other hand, any protocol for this function must solve Equality so n0

and n1 must be at least 2n, since they have to be larger than the rank of the
matrix. Consider the optimal protocol P for f

PARext
μ2

(f) = PARext
μ2

(f, P ) =
⎤⎤f−1(0)

⎤⎤
μ2

· n0 +
⎤⎤f−1(1)

⎤⎤
μ2

· n1 +
⎤⎤f−1(2)

⎤⎤
μ2

· n2

⊂ (
⎤⎤f−1(0)

⎤⎤
μ2

+
⎤⎤f−1(1)

⎤⎤
μ2

) · 2n = (
1
2n

+ π) · 2n = Ω(2n/2 ).

One can finally verify that |μ1 − μ2| = π = 2−n/2.

In fact, the right way to look at the robustness of PAR is to talk about
log PARext

μ (f). Even in this case, we see that an exponentially small change to
the input distribution can change the log PARext

μ (f) from constant to Ω(n).
On the other hand, we can prove that when the statistical distance of the

input distributions is π, then the PRIV changes by at most O(πn). This implies
that in our previous example, PRIV changes only by an exponentially small
amount.
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Theorem 16. For any protocol P and any two input distributions μ, μ∗ with
statistical distance |μ − μ∗| → π, it holds that : |PRIVext

μ (P ) − PRIVext
μ∗ (P )| →

O(πn) and |PRIVint
μ (P ) − PRIVint

μ∗ (P )| → O(πn).

Proof. The proof is a consequence of the fact that two statistically close joint
distributions must have similar mutual information. To prove this formally we
use the following lemma:

Lemma 3 (Lemma 3.15 of [19]). For any random variables XY,X ∗Y ∗ such
that |XY − X ∗Y ∗| → π and where X,X ∗ take value in {0, 1}n, it holds that

|H(X | Y ) − H(X ∗ | Y ∗)| → 4(H(π) + πn).

The details of this proof will appear in the full version of the article [17].

Relationship Between Communication and Privacy. A natural method-
ology for studying privacy is to measure the amount of information revealed by
the transcript above and beyond what is supposed to be revealed. We believe
that both PRIV and PAR were designed with this methodology in mind.

One intuitive bound that “natural” measures of information should satisfy is
the following: a transcript of length c can reveal at most c bits of information. As
a consequence, the privacy loss should also be bounded by the communication
(appropriately normalized of course: for example in the case of PAR, one would
compare log PAR to communication).

When taking an expectation over randomized protocols, as one does for
instance when measuring the complexity of zero-error randomized protocols, one
would therefore also expect that the privacy loss revealed should be bounded by
the expected communication. While PRIV does indeed satisfy this property, we
observe that PAR does not:

Remark 3. For the Greater Than function GT under the uniform input distri-
bution U , the following holds:

1. For all zero-error protocols P solving GT, PARext
U (P ) ⊂ 2n − 1.

2. There exist a zero-error protocol for GT where the expected communication
is constant.

The first point was proved in Theorem 1. The second point follows from the
trivial protocol that exchanges their inputs bit-by-bit starting with the high-
est order bits until the players find a difference, at which point they terminate
because they know which player has the greater value. Then clearly under uni-
form inputs, for each i ⊂ 1 the probability of terminating after 2i bits is 1−2−i,
and so the expected communication is 2

⎣∞
i=1 i · 2−i = 4 regardless of the size of

the inputs.
Thus, the above remark shows that PAR can tend to infinity even though

the expected communication is constant, which violates the “natural” property
that c bits of communication can reveal at most c bits of information.
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On the other hand, one could argue that PAR captures a “risk-averse” notion
of privacy, where one does not want the expected privacy loss but rather the
privacy loss with higher weights assigned to high-privacy-loss events. In this
case one may also want to look at worst-case choices of inputs and random coins;
worst-case inputs were defined in [1,13], although they did not study worst-case
random coins since they focused on deterministic protocols.

Error in Appendix of [13]. An example was given in the appendix of [13] that
claimed to exhibit a function f and two protocols P,Q such that PARext

U (P ) =
O(1) and PARext

U (Q) = 2∂(n), whereas it was claimed that PRIVext
U (P ) =

PRIVext
U (Q) = β(n). This was interpreted to mean that PRIV was not suffi-

ciently precise enough to capture the difference between these two protocols.
However the second claim is incorrect as a calculation reveals that

PRIVext
U (P ) = O(1) and so PRIV does indeed distinguish between the two pro-

tocols. The flaw in their argument was in using the geometric interpretation of
PRIV: the characterization of [9] that they use only applies to the worst distri-
bution for a function (which for the function they give is not uniform), whereas
they explicitly want to study the uniform distribution. For the worst distribu-
tion μ it is indeed the case that PRIVext

μ (P ) = β(n), but not for the uniform
distribution. Therefore, for their example, PRIV is actually just as capable as
PAR in distinguishing the two protocols P,Q.
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Hardness of Being Private. In: 27th Annual IEEE Conference on Computational
Complexity, CCC’12, pp. 192–202 (2012)

2. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive com-
munication. In: Proceedings of the 42nd STOC, pp. 67–76 (2010)

3. Brody, J., Buhrman, H., Koucky, M., Loff, B., Speelman, F., Vereshchagin, N.:
Towards a reverse Newman’s theorem in interactive information complexity, CCC
(2013)

4. Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: From information to exact
communication, In: STOC, pp. 151–160 (2013)

5. Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: Information lower
bounds via self-reducibility. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013.
LNCS, vol. 7913, pp. 183–194. Springer, Heidelberg (2013)

6. Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 209–218
(2002)

7. Braverman, M.: Interactive information complexity. ECCC, report No. 123,
STOC’12 (2011)

8. Braverman, M., Moitra, A.: An information complexity approach to extended for-
mulations. In: STOC’13 (2013)

9. Bar-Yehuda, R., Chor, B., Kushilevitz, E., Orlitsky, A.: Privacy, additional infor-
mation and communication. IEEE Trans. Inf. Theory 39(6), 1930–1943 (1993)



New Lower Bounds for Privacy in Communication Protocols 89

10. Braverman, M., Weinstein, O.: A discrepancy lower bound for information com-
plexity. In: Proceedings of the APPROX-RANDOM 2012, pp. 459–470 (2012)

11. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd, Hardcover,
New York, pp. 776 2006 ISBN: 0-471-24195-4

12. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: 42nd IEEE FOCS,
pp. 270–278 (2001)

13. Feigenbaum, J., Jaggard, A.D., Schapira, M.: Approximate privacy: foundations
and quantification. In: Proceedings of the 11th Conference on Electronic Commerce
(EC)., ACM Press, New York, pp. 167–178 (2010)

14. Jain, R., Klauck, H.: The partition bound for classical communication complexity
and query complexity. In: 25th IEEE Conference on Computational Complexity
(2010)

15. Klauck, H.: On quantum and approximate privacy. In: Proceedings STACS (2002)
16. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on

information complexity via zero-communication protocols and applications. FOCS
2012, 500–509 (2012)

17. Kerenidis, I., Laurière, M., Xiao, D.: New lower bounds for privacy in communi-
cation protocols, http://eccc.hpi-web.de/report/2013/015/ (full version, 2013)

18. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

19. Mahmoody, M., Xiao, D.: Languages with efficient zero Knowledge PCPs are in
SZK. ECCC technical report TR2012-052 (2012)

20. Jain, R.: New strong direct product results in communication complexity. J. ACM
(2013)

21. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-
grams. J. Comput. Syst. Sci. 43, 441–466 (1991)

22. Yao, A.C-C.: Some complexity questions related to distributive computing. In:
Proceedings of the 11th ACM Symposium on Theory of Computing (STOC),
pp. 209–213 (1979)

http://eccc.hpi-web.de/report/2013/015/


On the Transmit Beamforming for MIMO
Wiretap Channels: Large-System Analysis

Maksym A. Girnyk(B), Frédéric Gabry, Mikko Vehkaperä,
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Abstract. With the growth of wireless networks, security has become
a fundamental issue in wireless communications due to the broadcast
nature of these networks. In this work, we consider MIMO wiretap chan-
nels in a fast fading environment, for which the overall performance
is characterized by the ergodic MIMO secrecy rate. Unfortunately, the
direct solution to finding ergodic secrecy rates is prohibitive due to the
expectations in the rates expressions in this setting. To overcome this dif-
ficulty, we invoke the large-system assumption, which allows a determin-
istic approximation to the ergodic mutual information. Leveraging results
from random matrix theory, we are able to characterize the achievable
ergodic secrecy rates. Based on this characterization, we address the
problem of covariance optimization at the transmitter. Our numerical
results demonstrate a good match between the large-system approxima-
tion and the actual simulated secrecy rates, as well as some interesting
features of the precoder optimization.

Keywords: MIMO wiretap channel · Large-system approximation ·
Random matrix theory · Beamforming.

1 Introduction

Wireless networks have developed considerably over the last few decades. As
a consequence of the broadcast nature of these networks, communications can
potentially be attacked by malicious parties, and therefore, security has taken
a fundamental role in today’s communications. The notion of physical layer
security (or information-theoretic security) was developed by Wyner in his fun-
damental work in [1]. The wiretap channel, which is the simplest model to study
secrecy in communications, was introduced therein, consisting of a transmitter
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and two communication channels: to a legitimate receiver and to an eavesdrop-
per. The secrecy capacity of the wiretap channel is then defined as the maxi-
mum transmission rate from the transmitter to the receiver, provided that the
eavesdropper does not get any information. Finding the aforementioned secrecy
capacity is a difficult problem in general, due to its non-convex nature.

Notwithstanding, multiple-input multiple-output (MIMO) communications
[2,3] have become an emerging topic during the last two decades due to their
promising capacity gains. Similar to communication networks without secrecy
constraints, the overall performance for channels with secrecy constraints is lim-
ited by the channels’ conditions. In particular, the legitimate parties need to have
some advantage over the eavesdropper in terms of channel quality to guarantee
secure communications. Many techniques have been proposed to overcome this
limitation; one example is the use of multi-antenna systems, as in [4–7], where
the secrecy capacity of the MIMO wiretap channel with multiple eavesdroppers
(MIMOME) was characterized. These results extend to the problem of secret-
key agreement over wireless channels, as in [8] where key-distillation strategies
over quasi-static fading channels were investigated, and [9] where the secret-key
capacity of MIMO ergodic channels was considered. Finding the precoder matrix
achieving the MIMO secrecy capacity has been attempted in [4,7], however the
general form of the optimal covariance matrix remains unknown. Nevertheless,
in certain regimes, the optimal signaling strategies have been derived. The high
SNR case was investigated in [7], while the optimal transmitting scheme at low
SNR was found in [10]. In [11], the authors characterized the secrecy capac-
ity for some special cases of channel matrices with certain rank properties. The
special case where the transmitter and legitimate receiver have two antennas,
whereas the eavesdropper has a single antenna, has been addressed in [5]. More
recently, the same problem has been investigated in a computationally efficient
way in [12] by developing the generalized singular value decomposition (GSVD)-
based beamforming at the transmitter, and deriving the optimal transmit covari-
ance matrix. Optimal signalling in presence of an isotropic eavesdropper has
been recently investigated in [13]. In particular the authors in [13] found a close-
formed expression for the optimal covariance matrix in the isotropic case as well
as lower and upper bounds on the secrecy capacity for the general case.

All the references above considered quasi-static scenario, where the changes
in channel gains were slow enough, so that the transmitter could adapt its radia-
tion pattern to each channel realization. If, on the contrary, wireless channels are
subject to ergodic fading, a codeword spans many fading realizations and tradi-
tional notion of secrecy rate is no longer suitable. Hence, the concept of ergodic
secrecy rate, proposed in [14,15], has to be used to characterize the performance
of the wiretap channel. In [16–18] the problem of finding achievable ergodic
secrecy rates was addressed for multiple-input single-output (MISO) channels.
In the context of MIMO channels, in [19], following a previous work in [20], the
authors characterize the secrecy capacity of an uncorrelated MIMOME chan-
nel with only statistical channel state information (CSI) at the transmitter and
investigate the optimal input covariance matrix under a total power constraint.
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Unfortunately, for general fast-fading MIMOME channels evaluation of
ergodic secrecy rates is problematic due to the necessity of averaging over the
channel realizations. Hence, asymptotic approaches based on methods from ran-
dom matrix theory [21] have been proposed to circumvent these difficulties. Typ-
ically, such techniques assume that the number of antennas at the transmitter
and the receiver tend to infinity at a constant rate. Then, an explicit expres-
sion – or a deterministic equivalent – of the ergodic mutual information (MI)
is obtained. The expression is then shown to describe well the behavior of the
systems with realistic (finite) numbers of antennas.

In this paper, we make a first step in studying the problem of the ergodic
secrecy rate maximization under power constraint in MIMO wiretap channels.
After computing the deterministic equivalents of the two MIMO channels, we
address the problem of the transmit precoder optimization. We further show that
despite being capacity achieving for a point-to-point MIMO channel, the water-
filling strategy becomes a poor choice in the wiretap setting. For instance, under
the assumption that the transmitter performs the GSVD-based beamforming,
we derive the ergodic-secrecy-rate maximizing transmit covariance matrix, which
outperforms the water-filling solution.

2 System Model

Consider a scenario, where Alice, equipped with an M -antenna transmitter,
wants to communicate a message to Bob, who is equipped with an NM-antenna
receiver. The message has to be kept secret from unauthorized parties. Mean-
while, Eve tries to eavesdrop the message with the aid of an NE-antenna receiver.
The corresponding setup, depicted in Fig. 1, has the following channel model

yM =HMx + nM, (1a)
yE =HEx + nE, (1b)

Alice Bob

Eve

HM

HE

nM

nE

Fig. 1. The MIMO wiretap channel.
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where x ≤ CN (0M , IM ), nM ≤ CN (0NM , INM), nE ≤ CN (0NE , INE), and the
Kronecker model [22] is used, viz.,

HM =
⎡

ρM

M
R

1/2
M W MT

1/2
M ⊂ C

NM×M , (2a)

HE =
⎡

ρE

M
R

1/2
E W ET

1/2
E ⊂ C

NE×M , (2b)

where T M and RM are the transmit and receive correlation matrices of the
channel between Alice and Bob, T E and RE are the transmit and receive cor-
relation matrices of the channel between Alice and Eve, while W M and W E

have i.i.d. CN (0, 1) entries. The channel described by (1a) is referred to as the
main channel, whereas the channel described by (1b) is called the eavesdropper
channel.

For a given transmit covariance matrix, P � E{xxH}, under the assumption
that Alice uses Gaussian signals, the per-antenna achievable ergodic secrecy rate
is expressed as

Rs =
1
M

⎣
EWM

⎤
log det(INM +HMPHH

M)
⎦

−EWE

⎤
log det(INE +HEPHH

E)
⎦]+

,

(3)
where [·]+ = max{0, ·}. Note here the difference to [12], where quasi-static fading
scenario was considered.

For practical reasons, covariance matrix P is assumed to be designed
based on the long-term statistical CSI, namely, {ρM, ρE,T M,T E,RM,RE}.
Note, however, that in order to construct proper wiretap codes, Alice must
have access to the instantaneous CSI, {HM,HE}. Thus, the obtained result
is regarded as a computationally efficient lower bound on the achievable secrecy
rates.

By choosing the proper covariance matrix P , one can maximize the achiev-
able secrecy rate of the wiretap channel (1). The corresponding optimization
problem is formulated as

max
P

Rs

s.t. tr{P } → M
P ≡ 0M .

(4)

Unfortunately, the objective function of the above problem has no explicit
expression. To evaluate it, one has to perform averaging over the distribution
of W M and W E using, e.g., Monte-Carlo simulation. This approach is, how-
ever, quite time-consuming and inefficient. Therefore, a new approach has to
be applied to maximize the ergodic secrecy rate. In the following section, we
present an asymptotic expression for the ergodic secrecy rate in the limit where
dimensions of the channel matrix grow infinitely large.



94 M.A. Girnyk et al.

3 Achievable Ergodic Secrecy Rate

In this section, we provide the large-system approximation for the ergodic secrecy
rate of a finite-antenna wiretap channel. We start with the following definition.

Definition 1. Given the wiretap channel (1), the large-system limit (LSL) is
defined as a regime, where

NM = βMM ∈ ≥, βM = const, (5)
NE = βEM ∈ ≥, βE = const. (6)

That is, the numbers of antennas on each side of the channels grow large without
bound at constant ratios.

Based on the above definition, the following proposition presents the large-
system approximation for the ergodic MI.

Proposition 1. In the LSL, the following holds

Rs − [IM(ρM) − IE(ρE)]+ ∈ 0, (7)

where

IM(ρM) =
1
M

log det (IM + βMeMTMP )+
1
M

log det (INM
+δMRM) − βM

ρM
δMeM

(8a)

IE(ρE) =
1
M

log det (IM + βEeETEP ) +
1
M

log det (INE
+ δERE) − βE

ρE
δEeE,

(8b)

and sets of parameters {eM, δM} and {eE, δE} form the unique solutions to the
following two systems of equations

eM =
ρM
NM

tr
⎛

RM (INM
+ δMRM)−1

⎝
, (9a)

δM =
ρM
M

tr
⎤

T
1/2
M PT

1/2
M

⎞
IM + βMeMT

1/2
M PT

1/2
M

⎠−1
⎦

, (9b)

eE =
ρE
NE

tr
⎛

RE (INE
+ δERE)−1

⎝
, (10a)

δE =
ρE
M

tr
⎤

T
1/2
E PT

1/2
E

⎞
IM + βEeET

1/2
E PT

1/2
E

⎠−1
⎦

, (10b)

Proof. The proof is based on the concept of a deterministic equivalent [23,24].
Consider a matrix of the following type

B = R1/2WTW HR1/2, (11)
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where W is a random matrix consisting of i.i.d. entries with zero mean and
variance 1/M , while T and R are Hermitian non-negative definite of bounded
normalized trace. The latter are assumed to be generated by tight sequences [25].
Moreover, we assume that ⊆ b > a > 0, such that

a < lim inf
N

β < lim sup
N

β < b, (12)

where β � N/M . As shown in Corollary 1 in [24], when N and M grow large
without bound at ratio β, the following holds

m(−x) − m∈(−x) ∈ 0 (13)

almost surely, where m(−x) is the Stieltjes transform of B for x > 0 and

m∈(−x) =
1
M

tr
⎛

(IN + δR)−1
⎝

, (14)

where e and δ form a unique solution of the following system of fixed-point
equations

e =
1
N

tr
⎤

1
x

R (IN + δR)−1

⎦
, (15a)

δ =
1
M

tr
⎤

1
x

T (IM + βeT )−1

⎦
, (15b)

which, according to Proposition 1 therein, could be solved via an iterative algo-
rithm always converging to a unique fixed point.

Meanwhile, from Theorem 2 in [24] it follows that under the aforementioned
assumptions and some additional constraints on spectral radius of matrices T
and R, the Shannon transform [26] of B satisfies

V(−x) − V∈(−x) ∈ 0 (16)

almost surely, where

V∈(−x) =
1
M

log det (IM + βeT ) +
1
M

log det (IN + δR) − xβδe. (17)

The above Shannon transform represents the asymptotic behavior of the mean
MI in the LSL. Thus, having computed (17) at x = 1/ρ, with parameters satis-
fying (15a), we can evaluate the ergodic MI of each MIMO channel within our
wiretap model (viz., the main and eavesdropper’s channels). To address the influ-
ence of the transmit covariance matrix, it suffices to consider TP 1/2 instead of T
for both channels. This leads us exactly to (8), (9) and (10), thereby completing
the proof.
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4 Transmit Covariance Optimization

Based upon the asymptotic analysis carried out in the previous section, here
we address the problem of transmit covariance optimization (4). As mentioned
before, working directly with (3) is prohibitive due to expectation operators
therein. Moreover, as we have seen from the previous section, the influence of
the random parts of the channels W M and W E vanishes in the LSL. Thus, the
objective function of the corresponding optimization problem simplifies to

rs(P ) =
1
M

⎨
log det (IM + βMeMT MP ) − log det (IM + βEeET EP )

⎩+

. (18)

Note that here, we consider eM and eE as independent of the optimization vari-
able P due to the following reason. The optimal solution of the optimization
problem has to satisfy the KKT conditions, which require that ∩P rs(P ) = 0.
When taking into account the dependence of eM and eE on P , one has to take
the derivatives of rs(P ) w.r.t. the former. However, it can be verified that those
are zero, and hence interdependence between eM, eE and P does not play any
role in the optimization.

Unfortunately, since the problem is non-convex, finding the optimal covari-
ance of x is difficult. Hence, we will provide several suboptimal solutions that
give a lower bound on the secrecy capacity of the ergodic MIMO wiretap channel.

4.1 Water-Filling over the Main Channel

Isotropic transmission is the simplest strategy Alice can perform. However, it
is not capacity achieving even for a generic MIMO channel. Instead, based on
the statistical CSI of the main channel, {T M,RM}, Alice can perform SVD
βMeMT M = UΣV H, where U and V are orthonormal matrices. Then, optimal
transmit covariance is given by the water-filling (WF) solution as follows

P σ
WF = V ΣP V H, (19)

where [ΣP ]m,m =
⎜
μ−1 − [Σ]−1

m,m

⎟+, and μ is chosen to satisfy the power con-
straint. In this case Alice acts as if Eve did not exist, achieving the ergodic
capacity of the main channel. However, in the presence of an eavesdropper this
strategy may be quite inefficient, as we shall see later on.

4.2 GSVD-Based Precoder

Consider the scenario where the transmitter performs GSVD on the matrices
related to channels (1a) and (1b). Although the solution based on this assump-
tion is suboptimal, it is advantageous, as compared to the isotropic precoding.
Moreover, it takes into account the presence of the eavesdropper and can poten-
tially increase the ergodic secrecy rate as compared to the WF precoder.
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When applied to (18), the GSVD-based beamforming method is realized as
follows. Based on the statistical CSI of both channels, {T M,RM,T E,RE}, Alice
performs GSVD on matrices βMeMT M and βEeET E

βMeMT M = UMΣMV H, (20)

βEeET E = UEΣEV H, (21)

where ΣT
MΣM + ΣT

EΣE = IM . The above GSVD simultaneously diagonalizes
T M and T E, converting those into a set of parallel subchannels. Then, the trans-
mitted vector is constructed as x = V −Hs, where s ≤ CN (0M ,P ) and P is a
positive semi-definite diagonal matrix representing the power allocation across
the subchannels. For the above beamforming strategy, the optimal power allo-
cation was derived in [12] (here we have corrected the minor typo therein)

[P σ
GSVD]i,i =

1
2

[sign(σM,i−σE,i)+1]

⎥


−1+

√
1−4σM,iσE,i+

4(∂M,i−∂E,i)∂M,i∂E,i

log(2)μvi

2σM,iσE,i





+

,

(22)
where σM,i, σE,i and vi are the ith diagonal entries of ΣT

MΣM, ΣT
EΣE and

V −1V −H, respectively, and μ is chosen to satisfy the power constraint at the
transmitter.

5 Numerical Results

In this section, we provide results based on numerical simulations along with
some discussion. As seen from the objective function (18), spatial correlation at
the receiver side has no effect on the precoding design. Hence, for the sake of
simplicity, we assume that RM = INM and RE = INE . Meanwhile, correlation at
the transmitter side is assumed to be generated by a uniform linear antenna array
with Gaussian power azimuth spectrum [27], so that the entries of correlation
matrices T M and T E) are obtained by

[T ]a,b =
1

2πδ2

∫ Σ

−Σ

e2Σjdλ(a−b) sin(φ)− (φ−θ)2

2δ2 dφ, (23)

where dλ is the relative antenna spacing (in wavelengths λ), θ is the mean angle
and δ2 is the mean-square angle spread.

First, we plot in Fig. 2, the dependence of the ergodic secrecy rate on the
SNR. The transmit side correlation parameters are set as follows. The antenna
numbers are set to M = 6, NM = 6 and NE = 2. The antenna spacing is set
to one wavelength, the mean angles are set to θM = 40∈, θE = −10∈ and the
root-mean-square angle spread is chosen for both channels to be δM = δE = 5∈.
From the figure, we see that the the results derived in the LSL (solid lines) match
the simulations (markers) quite well even for relatively small numbers of anten-
nas. Moreover, we also see that “statistical” water-filling over the main channel
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Fig. 2. Ergodic secrecy rate vs.SNR (ρM = ρE = ρ) for a MIMO wiretap channel with
M = 6, NM = 6 and NE = 2 antennas. Transmit side correlation parameters: dλ = 1,
θM = 40◦, θE = −10◦, δM = δE = 5◦. Solid curves denote analytic results, while
markers denote simulated values averaged over 10 000 channel realizations.

performs well, approaching the performance of the GSVD-based precoding. The
isotropic precoder also achieves quite high ergodic secrecy rates, which can be
explained by a small number of antennas at the eavesdropper.

Figure 3 depicts similar dependence of the ergodic secrecy rate (3) on the SNR
with different network parameters. The transmit side correlation parameters are
chosen similar to the previous case, while the antenna numbers are set to M = 2,
NM = 3 and NE = 4. From the figure we see that water-filling over the main
channel is far from being optimal in this case. This can be explained by the fact
that in this setting Eve has many antennas and is therefore quite powerful in
terms of eavesdropping capabilities. Hence, maximizing the data rate of the main
channel, while ignoring the eavesdropper, is a poor strategy in this case. The
same observation applies to isotropic precoding, which performs even worse. On
the other hand, “statistical” GSVD-based beamforming proves the most efficient
among the considered strategies.

To emphasize the advantage of the GSVD we plot the ergodic secrecy rate
as a function of the number of antennas at Eve’s receiver, NE, in Fig. 4. We fix
dλ = 1 and keep the same parameters as in the previous figure. From Fig. 4 we
see that both the isotropic precoding and water-filling cannot provide strictly
positive ergodic secrecy rates when NE grows large. At the same time we observe
that GSVD-based precoding allows to efficiently allocate the power to achieve
strictly positive ergodic secrecy rates even when NE becomes much larger than
M and NM.
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Fig. 3. Ergodic secrecy rate vs.SNR (ρM = ρE = ρ) for a MIMO wiretap channel with
M = 2, NM = 3 and NE = 4 antennas. Transmit side correlation parameters: dλ = 1,
θM = 40◦, θE = −10◦, δM = δE = 5◦. Solid curves denote analytic results, while
markers denote simulated values averaged over 10 000 channel realizations.
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Fig. 4. Ergodic secrecy rate vs.number of Eve’s antennas NE for a MIMO wiretap
channel with M = NM = 4 antennas in the main channel. Transmit side correlation
parameters: dλ = 1, θM = 40◦, θE = −10◦, δM = δE = 5◦. SNR is set to ρM =
ρE = 0 dB. Solid curves denote analytic results, while markers denote simulated values
averaged over 10 000 channel realizations.
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Fig. 5. Ergodic secrecy rate vs.antenna spacing dλ for a MIMO wiretap channel with
M = 4, NM = 4 and NE = 2 antennas. Transmit side correlation parameters: θM = 40◦,
θE = −10◦, δM = δE = 5◦. SNR is set to ρM = ρE = 0 dB. Solid curves denote
analytic results, while markers denote simulated values averaged over 10 000 channel
realizations.

In Fig. 5, we plot the ergodic secrecy rate Rs against the spacing between the
neighboring antennas within the array. The rest of the transmit-side correlation
parameters remain unchanged and the SNR is set to ρ = 0 dB. Firstly, we note
that the achievable ergodic secrecy rates are non-convex and non-monotone func-
tions of the antenna spacing. Similar behavior was previously observed in [28]
and, moreover, the results obtained via the asymptotic approximation (solid
lines) are confirmed with the Monte-Carlo simulation results (markers). Never-
theless, quite interestingly, it can be observed that at low SNR, the optimized
secrecy rates are significantly higher than those obtained by the isotropic precod-
ing. Moreover, those are even higher than the secrecy capacity of an uncorrelated
wiretap channel, meaning that it can be advantageous to have correlation at low
SNR, provided that the transmit covariance is optimized. Finally, we point out
that again, as expected, the GSVD-based beamforming reveals to be the most
efficient among other choices.

6 Conclusions

In the present paper, we have studied the ergodic secrecy rate of a multi-antenna
wiretap channel. Using the theory of deterministic equivalents, we have obtained
the large-system approximation of the achievable ergodic secrecy rate, which
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holds when the numbers of antennas at each terminal grow very large at constant
ratios. The approximation proved accurate even for small numbers of antennas,
thereby simplifying the computationally demanding problem of transmit covari-
ance optimization. First, not only the objective function of the corresponding
optimization problem has closed-form expression, but it has interesting proper-
ties attributed to log-det expressions. Secondly, the objective depends only on
the correlation matrices of the channels, which can be known at the transmitter
by the widely adopted statistical CSI assumption. Once the approximation was
obtained, we were able to use some existing algorithms for the covariance opti-
mization. In particular, we have shown that GSVD-based beamforming performs
well, compared to, e.g., water-filling over the main channel.
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Abstract. In this paper, information theoretic cryptography is dis-
cussed based on conditional Rényi entropies. Our discussion focuses not
only on cryptography but also on the definitions of conditional Rényi
entropies and the related information theoretic inequalities. First, we
revisit conditional Rényi entropies, and clarify what kind of properties
are required and actually satisfied. Then, we propose security criteria
based on Rényi entropies, which suggests us deep relations between (con-
ditional) Rényi entropies and error probabilities by using several guessing
strategies. Based on these results, unified proof of impossibility, namely,
the lower bounds on key sizes are derived based on conditional Rényi
entropies. Our model and lower bounds include the Shannon’s perfect
secrecy, and the min-entropy based encryption presented by Dodis, and
Alimomeni and Safavi-Naini at ICITS2012. Finally, a new optimal sym-
metric key encryption protocol achieving the lower bounds is proposed.

Keywords: Information theoretic cryptography · (Conditional) Rényi
entropy · Error probability in guessing · Impossibility · Symmetric-key
encryption

1 Introduction

Motivation and Related Works. How to measure the quantities of informa-
tion is an important issue not only in information theory, but also in cryptogra-
phy because information measures in cryptography tell us not only the coding
efficiency but also security level in terms of equivocation of secret information.
Historically, Shannon entropy [2] is the measure of information theoretic cryp-
tography. On the other hand, it is also important to evaluate the cardinality of
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a set in which a random variable takes values, i.e., Hartley entropy [3]. Further-
more, min-entropy [4] is also considered to be an important quantity in guessing
the secret in the context of cryptography.

For instance, consider the case of symmetric-key encryption. As is well known
by Shannon’s seminal work [5], the perfect secrecy in symmetric-key encryp-
tion is formalized as H(M) = H(M |C), where M and C are random variables
which take values in sets of plaintexts and ciphertexts, respectively; and then,
symmetric-key encryption with perfect secrecy implies the lower bound on secret-
keys H(K) ≤ H(M) (Shannon’s bound, Shannon’s impossibility, [5]). Similarly,
we also know that the number of key candidates can be no less than the cardinal-
ity of the set of plaintexts. Furthermore, Dodis [6] recently showed that the sim-
ilar bound also holds with respect to min-entropy, namely, R∈(K) ≤ R∈(M),
for symmetric-key encryption with perfect secrecy. Also, Alimomeni and Safavi-
Naini [7] introduced the guessing secrecy, formalized by R∈(M) = R∈(M |C),
and under which they derived the bound R∈(K) ≤ R∈(M), where R∈(·) and
R∈(·|·) are the min-entropy and the conditional min-entropy, respectively. Here,
it is worth noting that the above results are proved utilizing totally different
techniques. This fact is very interesting from the theoretical viewpoint, and it
must be fruitful not only for cryptography but also for information theory if we
can unify the above proofs and derive them as corollaries. In order to unify them,
Rényi entropy [8] might be useful since it is considered to be a generalization of
Shannon, min, and several other kinds of entropies as well as the cardinality.

Starting from the above motivation, we develop fundamental results about
conditional Rényi entropies, and propose security criteria based on conditional
Rényi entropies which is inspired by adversaries’ guessing. Through these results,
we finally show a unified framework of Shannon’s impossibility via (conditional)
Rényi entropies. Specifically, our contribution of this paper is as follows:

Conditional Rényi Entropies, Revisited (Sects. 2 and 3). As we described,
we aim to show a unified framework of Shannon’s impossibility via (conditional)
Rényi entropies. Unfortunately, however, we cannot expect Rényi entropies to
satisfy rich properties like Shannon entropies, since Rényi entropies are obtained
axiomatically from several relaxed postulates for Shannon entropy. Due to this
fact, subadditivity does not hold for Rényi entropy although it is very fundamen-
tal property of Shannon entropy.

In considering the conditional Rényi entropies, we should refer to the result [9]
which analyzed the relations among exiting conditional Rényi entropies. How-
ever, their analyses are not sufficient in the following aspects. First, they do
not consider the Rényi entropies from axiomatic point of view. Recalling that
Rényi entropies are originally discovered axiomatically [8], it is important to
discuss conditional Rényi entropies from axiomatic and/or technological view-
points. Second, the analysis in [9] did not include two important conditional
Rényi entropies due to Arimoto [10] and Hayashi [11] denoted by RA

α(X|Y )
and RH

α(X|Y ), respectively. To the best of our knowledge, they are first intro-
duced in information theoretic [10] and cryptographic contexts [11], respectively.
Third, cryptographically important conditional min-entropies are not sufficiently
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analyzed in [9] since they cannot be not obtained from the conditional Rényi
entropies discussed in [9].

Based on the above considerations, we will discuss what kind of proper-
ties should be investigated in this paper from the axiomatic, information the-
oretic, and cryptographic viewpoints. Our analysis also includes RA

α(X|Y ) and
RH

α(X|Y ). In Sect. 2.3, we start our discussion from the postulates required for
Shannon and Rényi entropies, and discuss what kind of properties should be
required and/or are interested in. As a result, we conclude that non-negativity,
monotonicity, conditioning reduces entropy (CRE), data processing inequality
(DPI) are hopefully required, but the chain rule might not be satisfied. Then, we
consider the relation between conditional Rényi entropies and conditional min-
entropies. We clarify that the cryptographically useful conditional min-entropies
are obtained from the conditional Rényi entropies RA

α(X|Y ) and RH
α(X|Y ) as

special cases.
Sections 3.1–3.3 are devoted to show that the above inequalities actually hold.

Furthermore, we show an extension of Fano’s inequality [12] for conditional Rényi
entropies in Sect. 3.4, which will be useful in the forthcoming discussion as well
as the inequalities discussed in Sects. 3.1–3.3.

Proposal of Security Criteria Based on Conditional Rényi Entropies
(Sect. 4). In this paper, we propose security criteria based on conditional Rényi
entropies RA

α(X|Y ) and RH
α(X|Y ). Our motivation and significance for proposing

it lies in the following two points.
The first point lies in realistic significance which is deeply related to guessing

probability by adversaries. Owing to theoretical results about the conditional
Rényi entropies in Sects. 2 and 3, we will show that conditional Rényi entropies,
RA

α(X|Y ) and RH
α(X|Y ), play an important role to derive a lower bound on fail-

ure probability of guessing by adversaries, and it turns out that our security
criteria is a sufficient condition to make it reasonably large enough. Our way
of thinking of this is deeply related to the approach to show the converse of
channel coding theorem by Shannon [2] and the recent one to show the converse
of channel coding theorem in finite blocklength regime [13,14] in information
theory. The second point lies in mathematical importance for generalizing Shan-
non’s impossibility (or Shannon’s bounds) H(K) ≤ H(M) in symmetric-key
encryption with perfect secrecy. For details about this contribution, see below.

Generalizing Shannon’s Impossibility in Encryption (Sect. 5). One of
our main purpose in this paper is to generalize Shannon’s impossibility (or Shan-
non’s bound) in perfectly secure symmetric-key encryption so that all known
bounds (i.e., the Shannon’s, Dodis’s, and Alimomeni and Safavi-Naini’s bounds)
are captured in our generic bound. By utilizing information-theoretic results
about conditional Rényi entropies obtained in Sects. 2 and 3, we extend Shan-
non’s impossibility result for encryption by a generic and unified proof technique,
and it turns out that our new bound includes all the bounds mentioned above
as special cases.
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In this paper, several proofs of theorems are omitted due to the space limi-
tation. See the full version of this paper [1] for the omitted proofs.

2 Conditional Rényi Entropies, Revisited

2.1 Preliminaries: Rényi Entropies and α-Divergence

Definition 1 (Rényi entropy, [8]). Let X be a random variable taking values
on a finite set X . For a real number σ ≤ 0, the Rényi entropy of order σ is
defined by1 Rα(X) := 1

1−α log
∑

x∼X PX(x)α.

It is well known that many information measures such as Hartley entropy,
Shannon entropy, collision entropy, and min-entropies are special cases of
Rényi entropy. Namely, they are respectively obtained by R0(X) = log |X |,
R1(X) := limα∗1 Rα(X) = H(X), R2(X) = − log Pr{X = X ∪}, and R∈(X) :=
limα∗∈ Rα(X) = minx∼X {− log PX(x)}, where X and X ∪ are independently
and identically distributed (i.i.d.) random variables, and we define H(X) :=
−∑

x∼X PX(x) log PX(x) as Shannon entropy.

Definition 2 ( σ-divergence). Let X and Y be random variables taking values
on a finite set X . For a real number σ ≤ 0, the σ-divergence is defined by
Dα(X⊂Y ) = Dα(PX⊂PY ) = 1

α−1 log
∑

x∼X PX(x)α/PY (x)α−1.

The σ-divergence is considered as an generalization of Kullback-Leibler diver-
gence defined by D(X⊂Y ) :=

∑
x∼X PX(x) log(PX(x)/PY (x)) since it holds that

limα∗1 Dα(X⊂Y ) = D(X⊂Y ). Note that the σ-divergence is nonnegative for all
σ ≤ 0, and it is equal to 0 if and only if PX(·) = PY (·), similarly to Kullback-
Leibler divergence.

2.2 Definitions of Conditional Rényi Entropies

Similarly to Shannon entropy, it is natural to consider the conditional Rényi
entropies. However, several definitions of conditional Rényi entropies have been
proposed, e.g., [10,11,15–18]. In particular, relations and properties are discussed
in [9] among three kinds of conditional Rényi entropies such as RC

α(X|Y ) :=∑
y∼Y PY (y)Rα(X|Y = y), RJA

α (X|Y ) := Rα(XY ) − Rα(Y ), and RRW
α (X|Y ) :=

1
1−α maxy∼Y log

∑
x∼X PX|Y (x|y)α, defined in [15–18], respectively. The defini-

tions RC
α(X|Y ) and RJA

α (X|Y ) can be interpreted as extensions of conditional
Shannon entropy since they are analogues of H(X|Y ) :=

∑
y∼Y PY (y)H(X|Y =

y) and H(X|Y ) := H(XY )−H(Y ), respectively. The third definition RRW
α (X|Y )

is obtained by letting π = 0 of the conditional smooth Rényi entropy [18].

1 Throughout of the paper, the base of logarithm is e. Note that the base of logarithm
is not essential since the same arguments hold for arbitrary base of logarithm. We
also define 00 := 0 for α = 0.
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In addition to the above, two conditional Rényi entropies are known. They
are introduced in [10,11], and defined as

RA
α(X|Y ) :=

σ

1 − σ
log

∑

y∼Y
PY (y)

{
∑

x∼X
PX|Y (x|y)α

}1/α

(1)

RH
α(X|Y ) :=

1
1 − σ

log
∑

y∼Y
PY (y)

∑

x∼X
PX|Y (x|y)α (2)

respectively. Both of these conditional Rényi entropies are outside the scope of
[9]. RH

α(X|Y ) is defined in [11] to derive an upper bound of leaked information
in universal privacy amplification. RA

α(X|Y ) is used in [10] to show the strong
converse of channel coding theorem. We also note that RA

α(X|Y ) is implicitly
used even in cryptographic contexts. In [19], RA

1+s(X|Y ) = −((1+s)/s)α(s/(1+
s)|X|Y ) is used to bound an average security measure of privacy amplification,
where α(t|X|Y ) := log

∑
y(

∑
x PXY (x, y)

1
1−t )1−t.

Not only the conditional Rényi entropies discussed in [9] but also RA
α(X|Y )

and RH
α(X|Y ) are non-negative and are bounded by log |X | from above. Further-

more, note that the following fundamental relation holds.

Proposition 1. For a fixed real number σ ≤ 0, the probability distribution PY ,
and the conditional probability distribution PX|Y , it holds that

RH
α(X|Y ) → RA

α(X|Y ). (3)

Note that RH
α(X|Y ) → RA

α(X|Y ) for σ > 1 was proved in Lemma 7 of [19].
In addition, Proposition 1 means that: it holds even for 0 < σ < 1 and its proof
is simply shown by Jensen’s inequality; and the cases of σ = 0, 1 are meant to
take the limits at σ = 0, 1 (see Theorem 1).

2.3 Fundamental Requirements for Conditional Rényi Entropies

Here, we discuss fundamental properties required to conditional Rényi entropies
from axiomatic, information theoretic, and cryptographic viewpoints. In this
section, Rényi entropies are not restricted to each definition, and hence, it is
denoted by Rα(X|Y ).

Axiomatic Consideration. Recall that Rényi entropy is axiomatically obtai-
ned, namely, Rényi entropy is the unique quantity (up to a constant factor) that
satisfies weakened postulates for Shannon entropy [8]. According to [8], the pos-
tulates that characterize the Shannon entropy are, (a) H(X) is a symmetric func-
tion with respect to each probability in a probability distribution PX ; (b) H(X)
is a continuous function of PX ; (c) H(X) = 1 if X is a uniform binary random
variable, and; (d) the chain rule, i.e., H(XY ) = H(Y ) + H(X|Y ) holds2, where
2 This form of the chain rule is inductively obtained by using the postulate (d) in

[8, p. 547].
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H(X|Y ) :=
∑

y H(X|Y = y) = −∑
x,y PXY (x, y) log PX|Y (x|y). Then, Rényi

entropy is obtained by (a)–(c) and, instead of (d), H(XY ) = H(X)+H(Y ) if X
and Y are statistically independent.

Based on this derivation, it might be acceptable to require conditional Rényi
entropies to satisfy (a)–(c) with conditioned random variables. Namely,

– Rα(X|Y ) is symmetric with respect to {PX|Y (x|y)}x∼X for each y ≡ Y, and
{PY (y)}y∼Y .

– Rα(X|Y ) is a continuous function with respect to PXY (·, ·).
– Rα(X|Y ) = 1 if a binary random variable X is uniformly distributed for given

Y , i.e., PX|Y (1|y) = PX|Y (0|y) = 1/2 for all y ≡ suppY , where suppY :=
{y ≡ Y | PY (y) > 0}.

All conditional Rényi entropies in this paper satisfy the above properties although
we omit their proof.

Since the postulate (d) is replaced with H(XY ) = H(X)+H(Y ), it is natural
that Rényi entropies do not satisfy the chain rule. Actually, it is pointed out
in [9, Theorem 5] that RC

α(X|Y ) and RRW
α (X|Y ) do not satisfy the chain rule

for arbitrary σ ∈= 13. Similarly, the chain rule holds for neither RA
α(X|Y ) nor

RH
α(X|Y ) as well. See the full version of this paper [1] for the numerical examples

that do not satisfy the chain rule.
Instead, we consider several fundamental properties related to chain rule. Note

that, monotonicity, i.e., H(XY ) ≤ H(X) is derived from the chain rule since non-
negativity holds for conditional Shannon entropies. Hence, the non-negativity for
conditional Rényi entropies and monotonicity for Rényi entropies are important.
In fact, it is known that the monotonicity holds for Rényi entropies. Hence, we are
interested in the monotonicity for the conditional Rényi entropies. Namely, it is
desirable to satisfy that Rα(X|Z) → Rα(XY |Z) for random variables X, Y , and
Z. This inequality for conditional Shannon entropies are introduced in [20, (13.9)
in Lemma 13.6] as a useful one. Hence, we will investigate the following properties:

– (Non-negativity) Rα(X|Y ) ≤ 0 for all random variables X and Y .
– (Conditioned monotonicity) Rα(X|Z) → Rα(XY |Z) for random variables X,

Y , and Z, where the equality holds if Y = f(X,Z) for some (deterministic)
mapping f .

It is also known that Rényi entropies do not satisfy the subadditivity since
only the additivity for independent random variables is required instead of the
postulate (d) for Rényi entropies. Subadditivity for Shannon entropy is written
as H(XY ) → H(X) + H(Y ), which is equivalent to H(X|Y ) → H(X). This
inequality is called as “Conditioning reduces entropy” [21], CRE for short. Note
that CRE states that the entropy of random variable X decreases if some infor-
mation Y related to X is revealed. On the other hand, monotonicity implies that
the entropy of X increases if some information is added.
3 In the case of α = 1, conditional Rényi entropies coincide with conditional Shannon

entropy, and hence, chain rule is of course satisfied. In addition, it is obvious that
RJA

α (X|Y ) also satisfies the chain rule since it is defined to satisfy the chain rule.
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Furthermore, we can consider an inequality I(X;Z|Y ) ≤ 0, which is a direct
consequence of CRE, i.e., H(X|Y Z) → H(X|Y ). This property is often used
in proving information theoretic inequality, e.g., see Proof I in Sect. 5.2. Also,
combining this inequality with the chain rule, we can prove that Shannon entropy
is a polymatroid [22]. In the case of Shannon entropy, I(X;Z|Y ) = 0 holds
when X, Y , and Z form a Markov chain in this order [21], in symbols X ≥
Y ≥ Z. Moreover, we note that stronger inequality than H(X|Y Z) → H(X|Y )
is known for Shannon entropy if X ≥ Y ≥ Z. In this case, it holds that
H(X|Z) → H(X|Y ), which is equivalent to I(X;Z) ≤ I(X;Y ), called Data
processing inequality (DPI).

Summarizing, we will investigate the following properties:

– (CRE) Rα(X|Y ) → Rα(X) for random variables X and Y , where the equality
holds if X and Y are independent.

– (DPI) If X ≥ Y ≥ Z is satisfied, it holds that Rα(X|Y ) ≤ Rα(X|Z), where
the equality holds if there exists a surjective mapping f : Y ⊆ Z.

Relation to Other Entropies. Rényi entropy is an extension of many infor-
mation measures such as Shannon entropy, min-entropy, and Hartley entropy,
collision entropy, etc. In particular, from a cryptographic viewpoint, Shannon
and min-entropies are prominently important. Hence, it is better if Rα(X|Y )
satisfies the following properties:

(i) limα∗1 Rα(X|Y ) = H(X|Y ).
(ii) Conditional Rényi entropy of order σ converges to conditional min-entropies

if σ ⊆ ∩.

Similarly to conditional Rényi entropies, it is known that we can find several
definitions of conditional min-entropies. Among them, the average conditional
min-entropy

Ravg
∈ (X|Y ) := − logEY

[
max

x
PX|Y (x|Y )

]
(4)

proposed in [23] is important from a cryptographic viewpoint, e.g.,[23–27]. Also,
worst case conditional min-entropy can be found in the cryptographic context
(e.g., in the analysis of physically unclonable functions (PUFs), see [28]).

Rwst
∈ (X|Y ) := − log max

x∈X
y∈supp Y

PX|Y (x|y). (5)

Here we note that the conditional Rényi entropies RC
α(X|Y ), RJA

α (X|Y ), and
RRW

α (X|Y ) do not satisfy either (i) or (ii) shown above. Namely, it is pointed
out in [9] that,

– limα∗∈ RRW
α (X|Y ) = Rwst

∈ (X|Y ) but limα∗1 RRW
α (X|Y ) ∈= H(X|Y ),

– For N ≡ {C, JA}, limα∗1 RN
α(X|Y ) = H(X|Y ) but limα∗∈ RN

α(X|Y ) ∈=
Ravg

∈ (X|Y ), Rwst
∈ (X|Y ).
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In the above sense, RN
α(X|Y ), N ≡ {C, JA,RW} do not satisfy our requirements

for conditional Rényi entropies. In addition, note that (4) is not sufficiently ana-
lyzed in [9] since the conditional Rényi entropies corresponding to Ravg

∈ (X|Y )
is not provided in the literature while it plays important roles in many crypto-
graphic applications.

One of the reasons why we focus on RA
α(X|Y ) and RH

α(X|Y ) missing in
[9] is that they actually bridge the conditional Shannon entropy and the con-
ditional min-entropy appeared in cryptography as shown below. The proof of
limα∗1 RA

α(X|Y ) = H(X|Y ) is provided in [10]. For the rest of the proofs, see
the full version [1]. Therefore, in this paper, we will mainly focus on the proper-
ties of conditional Rényi entropies RA

α(X|Y ) and RH
α(X|Y ).

Theorem 1. For random variables X and Y , following relations are satisfied:

(i) lim
α∗1

RA
α(X|Y ) = lim

α∗1
RH

α(X|Y ) = H(X|Y ).

(ii) lim
α∗∈ RA

α(X|Y ) = Ravg
∈ (X|Y ), and lim

α∗∈ RH
α(X|Y ) = Rwst

∈ (X|Y ).

3 Information Theoretic Inequalities for Rényi Entropies

3.1 Conditioning Reduces Entropy

First, we discuss “conditioning reduces entropy” (CRE, [21]), which is formu-
lated as, in the case of Shannon entropies H(X) ≤ H(X|Y ) for random vari-
ables X and Y . However, it is pointed out in [9] that RC

α(X|Y ), RJA
α (X|Y ), and

RRW
α (X|Y ) provided in Sect. 2.1 do not satisfy CRE in general4. Fortunately,

however, RA
α(X|Y ) and RH

α(X|Y ), which are outside the scope of [9], satisfy
CRE in general. Since CRE for RA

α(X|Y ) is proved in [10,29], we will focus on
CRE with respect to RH

α(X|Y ) hereafter:

Theorem 2 (Conditioning reduces entropy). Let X and Y be random vari-
ables taking values on X and Y, respectively. For all σ ≤ 0, it holds that

RH
α(X|Y ) → Rα(X), (6)

where the equality holds if X and Y are statistically independent.

From this result and [10,29], it is immediately seen that Ravg
∈ (X|Y ) and

Rwst
∈ (X|Y ) also satisfy CRE, though it is possible to show it directly.

Theorem 2 is immediately obtained by recalling CRE for RA
α(X|Y ) and

the relation given by (3) in Proposition 1. Namely, it holds that RH
α(X|Y ) →

RA
α(X|Y ) → Rα(X). However, this proof does not tell us the difference between

both sides of (6). To see this gap, we introduce a conditional σ-divergence defined
by the same idea with RH

α(X|Y ) in the following form.

4 We can show that CRE is satisfied by RRW
α (X|Y ) in the case of α > 1.
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Definition 3 ([14]). Let X1 and X2 be random variables taking values on X ,
and Y be a random variable on Y. Then, for a real number σ ≤ 0, the condi-
tional σ-divergence between X1 and X2 given Y is defined as Dα(X1⊂X2|Y ) :=
Dα(PX1|Y ⊂PX2|Y |PY ) = 1

α−1 log
∑

x,y

PX1|Y (x|y)α

PX2|Y (x|y)α−1 PY (y).

Then, the following relation holds, which can be seen as an alternative proof
for Theorem 2 owing to Dα(PY |X⊂PY |PXα

) ≤ 0. Moreover, the condition for the
equality of (6) is easily derived by recalling that Dα(PY |X⊂PY |PXα

) = 0 if X
and Y are statistically independent.

Theorem 3. Let X, Y , and Z be random variables taking values on finite sets
X , Y and Z, respectively. For all σ ≤ 0, it holds that

Rα(X) − RH
α(X|Y ) = Dα(PY |X⊂PY |PXα

) (7)

where PXα
(x) := PX(x)α/

∑
x̃ PX(x̃)α for x ≡ X .

This relation (7) is an analogue of the well-known definition of the mutual
information, namely, I(X;Y ) := H(X) − H(X|Y ) since the mutual infor-
mation can be written as I(X;Y ) = D(PXY ⊂PXPY ) = D(PY |X⊂PY |PX) =
∑

x,y PY (x)PY |X(y|x) log PY |X(y|x)
PY (y) .

Hence, it is natural to define a mutual information of order σ by IHα (X;Y ) :=
Rα(X)−RH

α(X|Y ), which is similar to the Arimoto’s mutual information of order
σ defined by IAα(X;Y ) := Rα(X)−RA

α(X|Y ), in the context of describing channel
coding theorem in a general setting [10] .

Remark 1. Note that IHα (X;Y ) and IAα(X;Y ) are not symmetric, i.e., it holds
that IHα (X;Y ) ∈= IHα (Y ;X) and IAα(X;Y ) ∈= IAα(Y ;X) in general. In addition, it
is seen that IAα(X;Y ) → IHα (X;Y ) in general, since RH

α(X|Y ) → RA
α(X|Y ).

3.2 Data Processing Inequality

The data processing inequality (DPI, [21]) tells us that I(X;Y ) ≤ I(X;Z) holds
if X ≥ Y ≥ Z. We can extend Theorem 2, in the following way.

Theorem 4 (Data processing inequality). Let X, Y , and Z be random
variables taking on finite sets X , Y, and Z, respectively, and assume that X ≥
Y ≥ Z. Then it holds that IAα(X;Y ) ≤ IAα(X;Z) and IHα (X;Y ) ≤ IHα (X;Z)
for arbitrary σ ≤ 0. The equality holds if and only if there exists a surjective
mapping f : Y ⊆ Z.

Remark 2. DPI is very useful since it implies that the quality of information
degenerates by processing the information. It is worth noting that DPI generally
holds only if we use RA

α(X|Y ) and RH
α(X|Y ) since DPI is extension of CRE.
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3.3 Conditioned Monotonicity

Here, we show an extended monotonicity for conditional Rényi entropy, which
is also useful in cryptographic applications. In the case of Shannon entropy, this
results is easily verified by subadditivity, while this fact is presented in [20, (13.9)
in Lemma 13.6].

Theorem 5. Let X, Y , and Z be random variables taking values on finite sets
X , Y, and Z, respectively. Then, for N ≡ {A,H}, we have:

(i) RN
α(X|Z) → RN

α(XY |Z),
(ii) RN

α(X|Z) = RN
α(XY |Z) if and only if Y = f(X,Z) for some (deterministic)

mapping f .

3.4 Fano’s Inequality

We derive upper-bounds for RH
α(X|Y ) as follows, and they can be seen as exten-

sion of Fano’s inequality (see Remark 3).

Theorem 6. Let X and Y be random variables taking values in a finite set X .
Also, let Pe := Pr{X ∈= Y } and P̄e := 1 − Pe. Then, for σ ≤ 0, we have the
following inequalities.

(i) If 0 → σ → 1 and Pe ≤ 1 − 1
|X | , or σ ≤ 1 and 0 → Pe → 1 − 1

|X | , it holds that
RH

α(X|Y ) → 1
1−α log

[
(|X | − 1)1−αPα

e + P̄α
e

]
.

(ii) If 0 → σ → 1 and 0 → Pe → 1 − 1
|X | , or σ ≤ 1 and Pe ≤ 1 − 1

|X | , it holds that
RH

α(X|Y ) → 1
1−α log

[
(|X | − 1)1−αPα−1

e (1 − P̄ 2−α
e ) + P̄e

]
.

Here, in the above inequalities the case σ = 1 is meant to take the limits at
σ = 1, and the case Pe = 0 is meant to take the limits at Pe = 0.

Remark 3. In Theorem 1 it is shown that limα∗1 RH
α(X|Y ) = H(X|Y ). On the

other hand, by applying the L’Hospital’s rule to the right hands of inequalities
in Theorem 6, we obtain the following finite limits at σ = 1:

(i) lim
α∗1

1
1 − σ

log
[
(|X | − 1)1−αPα

e + P̄α
e

]
= Pe log(|X | − 1) + h(Pe),

(ii) lim
α∗1

1
1 − σ

log
[
(|X | − 1)1−αPα−1

e (1 − P̄ 2−α
e ) + P̄e

]
= Pe log(|X | − 1) + h(Pe),

where h(·) is the binary entropy function. Therefore, by taking the limit at σ = 1
for each of inequalities in Theorem 6, we obtain Fano’s inequality as a special
case. In this sense, our inequalities in Theorem 6 can be considered as extension
of Fano’s inequality.

Remark 4. Note that Fano’s inequality implies H(X|Y ) ⊆ 0 as Pe ⊆ 0. The-
orem 6 implies that, for any σ ≤ 0, RH

α(X|Y ) ⊆ 0 as Pe ⊆ 0, as we would
expect.
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4 Security Criteria Based on Conditional Rényi Entropies

As explained in Sect. 1, our motivation and significance for considering security
criteria based on conditional Rényi entropies lies in two points.

The first point lies in realistic significance which is deeply related to guess-
ing probability by adversaries. In Sect. 4.2, we show that (conditional) Rényi
entropies play an important role to derive a lower bound on failure probability
of guessing by adversaries.

The second point lies in mathematical importance for generalizing Shan-
non’s impossibility (or Shannon’s bounds) in information-theoretic cryptogra-
phy. Specifically, for symmetric-key encryption protocols, there exist several
known bounds on secret-keys including the Shannon’s bounds (see Sect. 4.1).
And, our purpose is to extend those bounds in a generic and unified manner by
using security criteria based on conditional Rényi entropies.

4.1 Existing Lower Bounds on Secret-Keys

We describe well-known Shannon’s bounds [5] for symmetric-key encryption and
its extensions (or variants) by Dodis [6], and Alimomeni and Safavi-Naini [7].
To describe the bounds, we use the following notation: let K, M , and C be
random variables which take values in finite sets K, M, and C of secret-keys,
plaintexts, and ciphertexts, respectively. Informally, a symmetric-key encryption
is said to meet perfect correctness if it has no decryption-errors; a symmetric-
key encryption is said to meet perfect secrecy if it reveals no information about
plaintexts from ciphertexts, which is formalized by H(M |C) = H(M) (see Sect. 5
for the formal model of encryption protocols and its explanation).

Proposition 2 (Shannon’s bound: [5]). Let β be a symmetric-key encryp-
tion such that both encryption and decryption algorithms are deterministic. If
β satisfies perfect correctness and perfect secrecy, we have H(K) ≤ H(M) and
|K| ≤ |M|.
Proposition 3 (Dodis’s bound: Th.3 in [6]). Let β be a symmetric-key
encryption. If β satisfies perfect correctness and perfect secrecy, we have R∈(K)
≤ R∈(M).

Remark 5. Note that a similar result with Proposition 3 is proved in [30] using
information spectrum methods [31]. In [30, Theorem 5], it is clarified that the
inf-spectral rate of the secret key is not less than that of the plaintext. Noticing
the recent results [33] of smooth min-entropy [32], the asymptotic version of
min-entropy is equivalent to the inf-spectral entropy. Hence, we can say that
Proposition 3 is proved in an asymptotic setting. However, [6] directly proves
R∈(K) ≤ R∈(M) in a non-asymptotic setup.

Proposition 4 (Alimomeni and Safavi-Naini’s bound: Th.2 in [7]). Let
β be a symmetric-key encryption such that both encryption and decryption algo-
rithms are deterministic. If β satisfies both R∈(M) = Ravg

∈ (M |C) and perfect
correctness, we have R∈(K) ≤ R∈(M).
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4.2 Lower Bounds on Failure Probability of Adversary’s Guessing

We show that lower bounds on failure probability of adversary’s guessing are
given by conditional Rényi entropies, RH

α(M |C) or RA
α(M |C), in general.

Let σ > 1. Suppose that an adversary obtains a ciphertext C by observing a
channel, and he chooses an arbitrary function g. Let M̂ := g(C), Pe := Pr{M ∈=
M̂}, and P̄e := 1 − Pe. The purpose of the adversary is to maximize Pr{M =
M̂} = P̄e (or equivalently, to minimize Pe) by taking a guessing strategy g.
Without loss of generality, we assume P̄e ≤ 1/|M|.

First, we derive a lower bound on Pe by using IHα (M ;C) as follows. The
proof is given in the full version [1] where DPI for RH

α(X|Y ) and our extension
of Fano’s inequality (i.e., Theorem 6) are effectively used.

Theorem 7. The failure probability of adversary’s guessing is lower-bounded by

Pe ≤ 1 − exp
{

1 − σ

σ
Rα(M)

}
exp

{
σ − 1

σ
IHα (M ;C)

}
. (8)

In particular, if PM is the uniform distribution, we have

Pe ≤ 1 − |M| 1−α
α exp

{
σ − 1

σ
IHα (M ;C)

}
. (9)

If we impose security criteria IHα (M ;C) → Ω for small Ω (say, Ω = 0) for an
encryption protocol (note that any other quantity Rα(M), |M| is independent
of security of the protocol), the above lower bound can be large, and hence
the adversary cannot guess a target plaintext from a ciphertext with reasonable
probability even if he chooses a powerful guessing strategy g.

Remark 6. The bound (8) is tight for σ = 2 and σ = ∩ in the following sense.

– Case of σ = 2: Consider the case that IH2 (M ;C) = 0 and PM is the uniform
distribution. Then, (9) implies that Pe ≤ 1 − exp(− 1

2R2(M)) = 1 − 1←
|M| , or

equivalently P̄e → 1←
|M| . The equality of this bound is achievable, since it is

the collision probability (i.e., an adversary can take a strategy which selects a
plaintext according to PM ).

– Case of σ = ∩: Consider the case IH∈(M ;C) = 0. Then, (8) implies that Pe ≤
1 − exp(−R∈(M)) = 1 − maxm PM (m), or equivalently P̄e → maxm PM (m).
The equality of this bound is achievable, since an adversary can take a strategy
g(C) = arg maxm PM (m).

Secondly, we show a lower bound on Pe by using IAα(M ;C). The proof is
given in the full version [1] where DPI for RA

α(X|Y ) and the results in [10,14]
are effectively used.

Proposition 5. The failure probability of adversary’s guessing is lower-bounded
by

Pe ≤ 1 − |M| 1−α
α exp

{
σ − 1

σ
IAα(M1/α;C)

}
, (10)
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where PM1/α
(m) = PM (m)1/α

∑

m̃ PM (m̃)1/α . In particular, if PM is the uniform distribu-
tion, we have

Pe ≤ 1 − |M| 1−α
α exp

{
σ − 1

σ
IAα(M ;C)

}
. (11)

Remark 7. If PM is the uniform distribution, the bound (9) is directly obtained
from the bound (11) since IAα(M ;C) → IHα (M ;C). However, it is not the case in
general.

Therefore, IHα (M ;C) → Ω or IAα(M ;C) → Ω for an extremely small Ω ≡ [0, 1] is
a sufficient condition to show that the failure probability of adversary’s guessing
is large enough (or equivalently, the success probability of adversary’s guessing
is small enough). Our security criteria based on conditional Rényi entropies is
IHα (M ;C) → Ω or IAα(M ;C) → Ω, which is equivalent to Rα(M) − RH

α(M |C) → Ω
or Rα(M) − RA

α(M |C) → Ω, and it is natural to consider the security criteria in
terms of an adversary’s guessing probability.

5 Generalizing Shannon’s Impossibility in Encryption

In this section, we extend the bounds in Sect. 4.1 in a generic and unified manner
by using security criteria based on conditional Rényi entropies.

5.1 The Model and Security Definition

We explain the traditional model of (symmetric-key) encryption protocols. In
the following, let M (resp. C) be a finite set of plaintexts (resp. a finite set of
ciphertexts). Also, let M be a random variable which takes plaintexts in M and
PM its distribution. C denotes a random variable which takes ciphertexts c ≡ C.

Let β = ([PED], φenc, φdec) be an encryption protocol as defined below:

– Let PED be a probability distribution over E × D which is a finite set of pairs
of encryption and decryption keys. [PED] is a key generation algorithm, and
it outputs (e, d) ≡ E × D according to PED;

– φenc is an encryption algorithm. It takes an encryption key e ≡ E and a
plaintext m ≡ M on input, and it outputs a ciphertext c ∪ φenc(e,m), which
will be sent via an authenticated channel;

– φdec is a decryption algorithm. It takes on input a decryption key d ≡ D and
a ciphertext c ≡ C, and it outputs m̃ ∪ φdec(d, c) where m̃ ≡ M.

If β = ([PK ], φenc, φdec) (i.e., [PED] = [PKK ] and e = d), β is said to be a
symmetric-key encryption.

In this paper, we do not require that φenc is deterministic, namely, φenc can
be randomized. Also, we assume that β meets perfect correctness, namely, it
satisfies φdec(d, φenc(e,m)) = m for any possible (e, d) and m. In addition, we
consider the case where an encryption protocol β is usable at most one time
(i.e., the one-time model).
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Let PM be a distribution on M, and we assume that it is fixed in the following
discussion.

Definition 4 (Secrecy). For σ ≤ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·).
An encryption protocol β is said to meet Ω-secrecy with respect to Rα(·|·), if it
satisfies Rα(M) − Rα(M |C) → Ω. In particular, β meets perfect secrecy with
respect to Rα(·|·), if Ω = 0 above.

Note that the traditional notion of perfect secrecy (i.e., H(M |C) = H(M))
is equivalent to that of perfect secrecy with respect to H(·|·) = RH

1 (·|·) = RA
1 (·|·)

(i.e., σ = 1).
Also, Ω-secrecy with respect to RH

α(·|·) (resp., RA
α(·|·)) is equivalent to IHα (M ;C)

→ Ω (resp., IAα(M ;C) → Ω) (see Sect. 4.2).

5.2 Basic Idea for Generalization of Shannon’s Impossibility

By Shannon’s work [5], it is well known that we have H(K) ≤ H(M) for
symmetric-key encryption with perfect secrecy (see Prop. 2), which is often called
Shannon’s impossibility. It will be natural to generalize or extend it to the Rényi
entropy. However, there exist some difficulties to generalize it in a technical view-
point, since in general conditional Rényi entropies do not always have rich prop-
erties like the conditional Shannon entropy as we have seen in Sects. 2 and 3. In
this subsection, we briefly explain our idea of generalizing Shannon’s impossibil-
ity to the Rényi entropy.

First, let’s recall two proof techniques used for deriving H(K) ≤ H(M)
below, where PS, PC, and CRE mean perfect secrecy, perfect correctness, and
conditioning reduces entropy, respectively.

Proof I Proof II
H(M) =H(M |C) (by PS) H(M) =H(M |C) (by PS)

=H(M |C) − H(M |KC) →H(MK|C)
(by PC) (by conditioned monotonicity)

=I(M ;K|C) =H(K|C) + H(M |KC)
=H(K|C) − H(K|MC) (by chain rule)
→H(K|C) =H(K|C) (by PC)
→H(K) (by CRE) →H(K) (by CRE)

In addition to PS and PC, the property commonly used in both proofs is
CRE. From this point of view, it would be reasonable to consider a class of
conditional Rényi entropies RH

α(·|·) and RA
α(·|·) which satisfy CRE.

In addition, in order to complete the proofs, the useful property of the
mutual information (i.e., I(X;Y ) = I(Y ;X)) is used in Proof I, while the
properties of conditioned monotonicity and chain rule are used in Proof II. At
this point, one may think it hopeless to apply the technique in Proof I, since
IHα (X;Y ) ∈= IHα (Y ;X) and IAα(X;Y ) ∈= IAα(Y ;X) in general; and also one may
think it hopeless to apply the technique even in Proof II, since each of RH

α(·|·) and
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RA
α(·|·) does not satisfy the (weak) chain rule in general. Nonetheless, our idea is

to follow that of Proof II: our technical point is not to use the (weak) chain rule,
but to successfully utilize the equality condition of conditioned monotonicity in
the case of PC. Owing to our new results about conditional Rényi entropies in
Sects. 2 and 3, we can prove extension of Shannon’s impossibility in a highly sim-
ple and unified way compared to other ways used for the proofs in the bounds
in Sect. 4.1, as will be seen in Sect. 5.3.

5.3 Lower Bounds

We newly derive a family of lower bounds on secret-keys with respect to (con-
ditional) Rényi entropies in a comprehensive way. And, it will be seen that our
new bounds include all the existing bounds in Sect. 4.1 as special cases.

Theorem 8. For arbitrary σ ≤ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let
β = ([PED], φenc, φdec) be an encryption protocol satisfying perfect correctness.
Then, we have the following bounds.

(i) (Lower bound on size of encryption-keys) If β satisfies Rα(C) → Rα(C|M)+
Ω and φenc is deterministic, we have Rα(E) ≤ Rα(C) − Ω.

(ii) (Lower bound on size of decryption-keys) Suppose that β satisfies Rα(M) →
Rα(M |C) + Ω. Then, we have Rα(D) ≤ Rα(M) − Ω.

(iii) (Lower bound on size of ciphertexts) It holds that Rα(C) ≤ Rα(M).

Proof. First, we can show (i) as follows.

Rα(C) → Rα(C|M) + Ω
(a)

→ Rα(CE|M) + Ω
(b)
= Rα(E|M) + Ω

(c)
= Rα(E) + Ω,

where (a) follows from Theorem 5 (i), (b) follows from Theorem 5 (ii) since φenc

is deterministic, and (c) follows from that M and E are independent.
Secondly, we can show (ii) as follows.

Rα(M) → Rα(M |C) + Ω
(a)

→ Rα(MD|C) + Ω
(b)
= Rα(D|C) + Ω

(c)

→ Rα(D) + Ω,

where (a) follows from Theorem 5 (i), (b) follows from Theorem 5 (ii) since β
meets perfect correctness, and (c) follows from that both RH

α(·|·) and RA
α(·|·)

satisfy CRE (see Theorem 2).
Finally, we show (iii). Let K̂ := (E,D). Then, we get

Rα(M)
(a)
= Rα(M |K̂)

(b)

→ Rα(MC|K̂)
(c)
= Rα(C|K̂)

(d)

→ Rα(C),

where (a) follows from that K̂ and M are independent, (b) follows from Theorem
5 (i), (c) also follows from Theorem 5 (ii) since β meets perfect correctness, and
(d) follows from that both RH

α(·|·) and RA
α(·|·) satisfy CRE (see Theorem 2). ∅∼

In particular, we obtain the following results for symmetric-key encryption
protocols. The proof is straightforward by setting E = D = K in Theorem 8.
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Corollary 1. For arbitrary σ ≤ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·).
Let β = ([PK ], φenc, φdec) be a symmetric-key encryption protocol which meets
perfect correctness. Then, we have the following.

(i) If β satisfies Rα(M) → Rα(M |C) + Ω, it holds that Rα(K) ≤ Rα(M) − Ω.
(ii) If β satisfies Rα(C) → Rα(C|M) + Ω and φenc is deterministic, we have

Rα(K) ≤ Rα(C) − Ω and Rα(C) ≤ Rα(M).

Corollary 2. For arbitrary σ ≤ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·).
Let β = ([PK ], φenc, φdec) be a symmetric-key encryption protocol which meets
perfect correctness and Ω-secrecy with respect to Rα(·|·). Then, it holds that
Rα(K) ≤ Rα(M) − Ω.

Interestingly, the following proposition shows that traditional perfect secrecy
implies a family of lower bounds of the Rényi entropy Rα(·) for all σ ≤ 0. The
proof follows from Corollary 1 by applying Ω = 0.

Corollary 3. Let β = ([PK ], φenc, φdec) be a symmetric-key encryption protocol
which meets both perfect correctness and perfect secrecy. Then, for any σ ≤ 0,
it holds that Rα(K) ≤ Rα(M). In particular, if φenc is deterministic, we have
Rα(K) ≤ Rα(C) ≤ Rα(M).

Remark 8. Note that the Shannon’s bounds (i.e., Proposition 2) are special
cases of Corollary 3, since they are obtained by applying σ = 0, 1 in Corollary
35. Also, Dodis’s bound (i.e., Proposition 3) is a special case of Corollary 3, since
it is obtained by applying σ = ∩ in Corollary 3. Furthermore, Alimomeni and
Safavi-Naini’s bound (i.e., Proposition 4) is a special case of Corollary 2, since
it is obtained by applying Ω = 0 and Ravg

∈ (·|·) = limα∗∈ RA
α(·|·) in Corollary

27. Therefore, since Corollaries 2 and 3 are special cases of Theorem 8, all the
bounds are special cases of ours in Theorem 8.

5.4 Construction

We note that H(M |C) = H(M) implies Rα(M |C) = Rα(M) for all σ ≤ 0, where
Rα(·|·) is RH

α(·|·) or RA
α(·|·). Therefore, in this sense security criteria based on the

Shannon entropy implies security criteria based on the Rényi entropy. However,
the converse is not true in general. Actually, security criteria based on the min-
entropy is strictly weaker than that of the Shannon entropy. Although in [7] it
is not shown that the lower bound in Proposition 4 is tight for symmetric-key
encryption protocols which do not meet perfect security, we can show that it is
tight by considering the following simple construction.

Suppose M = C = K = {0, 1} and PK(0) = PM (0) = p with 1/2 < p < 1.
We consider the one-time pad for 1-bit encryption β1 = ([PK ], φenc, φdec), where
φenc(k,m) = k⊕m and φdec(k, c) = k⊕c. Then, the following proposition shows
security and key-size of the above construction, and the proof is given in the full
version [1] .
5 Strictly speaking, our bounds are slightly more general than Shannon’s bounds and

Alimomeni and Safavi-Naini’s one, since we have removed the assumption that πenc

and πdec are deterministic
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Proposition 6. The above protocol β1 does not meet perfect secrecy, and β1

satisfies perfect secrecy with respect to Ravg
∈ (·|·), or equivalently IA∈(M ;C) = 0.

Furthermore, it holds that R∈(K) = R∈(M) in β1.

Remark 9. In the above construction β1, we note that limα∗∈ RH
α(M |C) =

Rwst
∈ (M |C) < R∈(M). Therefore, β1 does not meet perfect secrecy with respect

to Rwst
∈ (·|·). Also, β1 illustrates IA∈(M ;C) ∈= IA∈(C;M), while β1 meets IH∈(M ;C)

= IH∈(C;M)(∈= 0).

In general, for any sufficiently large σ ≤ 0, the following construction shows
that the lower bound in Corollary 2 for symmetric-key encryption protocols is
tight in an asymptotic sense.

Suppose M = C = K = {0, 1} and PM (0) = p and PK(0) = q such that
p = 1

2 (1 + λ1), q = p + λ2, and 0 < λi and λi = o(1/σ) for i = 1, 2. We
consider the one-time pad for 1-bit encryption β2 = ([PK ], φenc, φdec), where
φenc(k,m) = k ⊕ m and φdec(k, c) = k ⊕ c. Then, the following proposition is
shown, and the proof is given in the full version [1] .

Proposition 7. For a sufficiently large σ ≤ 0, the above protocol β2 does not
meet perfect secrecy, and β2 meets Ω-secrecy with respect to RH

α(·|·), or equiv-
alently IHα (M ;C) = Ω, with Ω = o(1/σ). Furthermore, it holds that Rα(K) =
Rα(M) − o(1/σ) in β2.

Remark 10. The above construction β2 meets Ω-secrecy with respect to RA
α(·|·),

or equivalently IAα(M ;C) = Ω, with Ω = o(1/σ). This fact directly follows from
Proposition 7 and the inequality IAα(M ;C) → IHα (M ;C). Also, by calculation we
can see that β2 illustrates IHα (M ;C) ∈= IHα (C;M) (see the full version [1]).
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Abstract. We introduce insider-proof private channels which are pri-
vate channels that additionally allow for security even when the key is
correlated with the message. This prevents an insider, who has access
to secret keys and the capability of choosing messages to be sent on
the channel, from signalling to someone who can read the ciphertexts.
We give a construction for approximately insider-proof private channels
using 2-universal hash functions.

Quantum key distribution (QKD) offers the promise of information-
theoretically secure communication, provided a number of assumptions
are met. Ideally, the number of these assumptions required in a protocol
should be reduced to a minimum. This is the motivation behind device
independent QKD (DIQKD) protocols which use an adversarial model
for the quantum devices. However, a previous report [3] pointed out that
current protocols for DIQKD can leak key to an outside adversary when
devices are used repeatedly. We show how to use the insider-proof private
channel to allow DIQKD protocols to reuse devices any desired number
of times without leaking information.

1 Introduction

We consider the use of private channels within quantum key distribution pro-
tocols in order to protect against attacks in certain scenarios where a minimal
number of assumptions are made.

1.1 Private Channels

The one-time pad is probably the best known information-theoretically secure
cryptographic primitive, which has many applications. The one-time pad is a
particular realization of a private channel, which transmits messages between
two parties without any information leaking two any third party. The one-time
pad takes two resources, a shared private key and a public authenticated channel,
and uses them to produce a private channel by adding the key k to the message
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DOI: 10.1007/978-3-319-04268-8 8, c© Springer International Publishing Switzerland 2014
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m to produce the ciphertext c = k≤m which is sent over the public channel. The
shared key must be strictly uncorrelated with any adversaries or the message.

Now consider a scenario in which we break this last assumption. Suppose
that an adversary is working in a secure lab and has access to the shared secret
keys and can choose messages to send via the one-time pad. Further, there is
some secret data d which the adversary wishes to communicate to an outside
partner. Knowing k, the adversary chooses a message m = k ≤ d. The resulting
ciphertext, sent via the public channel, is k ≤ m = d, from which the outside
partner trivially obtains the secret data.

To protect against this scenario we define insider-proof private channels
which are defined to be secure even if the messages are chosen adversarially
with knowledge of any shared private keys. A concrete goal, then, is to find a
realization of such a channel.

1.2 QKD

Quantum key distribution protocols [5] allow two distant parties who share some
small initial key to grow new shared randomness by making measurements on
quantum systems. In entanglement-based quantum key distribution schemes [8],
such as we consider here, the key growth is accomplished by distributing two
quantum systems in an entangled state between Alice and Bob (for example,
via pairs of entangled photons) which they measure using quantum devices. (An
entangled state is one that, even over physically separated systems, can not
be decomposed as a tensor product of local states on the systems.) They then
discuss their correlated measurement data via a public channel, performing error
correction and privacy amplification to obtain a final key.

The security of entanglement-based schemes results from the fact that if
Alice and Bob’s states are highly entangled then their joint state is almost in a
product state with Eve (this property of quantum mechanics is called monogamy
of entanglement [7]). When product states are measured in any bases the classical
outcomes are uncorrelated. Hence classical data obtained by measuring Alice
and Bob’s states will be uncorrelated with Eve. Furthermore, Alice and Bob can
decide whether they share an entangled state by checking for certain correlations
in their measurement data [8].

DIQKD. Proofs of security [15,16] for these protocols make assumptions about
the behaviour of the devices that Alice and Bob use, usually by specifying a par-
ticular measurement to be made. Additional required assumptions are that Alice
and Bob’s devices are shielded within their labs so that they can only accept
signals from outside - they do not signal to Eve - that quantum mechanics is
valid, and that Alice and Bob can each generate randomness locally which is
uncorrelated with Eve or their devices. Alice and Bob must also share a small
initial key for authentication and communicate over an insecure public chan-
nel. If Eve tampers with the public channel (beyond passively listening), or the
entangled states then QKD schemes can detect this and either abort or apply
privacy amplification to eliminate Eve’s knowledge of the final key.



124 M. McKague and L. Sheridan

Device-independent quantum key distribution (DIQKD) [1,2,12] is a concept
for protocols that makes fewer assumptions. In particular they make no assump-
tions about how Alice and Bob’s devices operate. Some assumptions are replaced
with testable requirements, in particular that the measurement devices should
have a very high efficiency to eliminate the “detection loophole.” Also, typical
security proofs for QKD make no mention of the fact that the devices should
not signal to Eve - it is built into the model of the devices, but needs to be
made explicit for DIQKD. In some DIQKD proofs the testable requirement for
high detector efficiency is replaced with a “fair sampling” assumption since cur-
rent devices are not capable of reaching high enough efficiencies. Note, however,
that normal QKD schemes can also be broken if the fair sampling assumption
is violated [10].

DIQKD protocols have the important advantage over traditional protocols
in that even if the measurement devices do not operate as specified in security
proofs the protocols can still certify whether a generated key is secure.

The Problem. Here we are interested in removing even more assumptions about
the operation of the measurement devices than in the current proofs of secu-
rity for device-independent protocols. Typically, DIQKD security proofs analyse
security for a single round only. Instead we consider the possibility of reusing the
devices over many rounds and we allow that they may have an internal memory
which can store arbitrary amounts of quantum or classical information. As usual
in the DIQKD scenario we treat the devices adversarially: we consider the worst
possible case consistent with the assumptions and data gathered.

In this very untrusting model, usual DIQKD protocols face a problem which
is that certain messages exchanged between Alice and Bob over a public channel
are determined by the measurement devices via their outputs. Although this
is known not to cause a problem (in certain protocols at least [4,13]) for the
current round of key generation, information about keys generated in previous
rounds may leak if the measurement devices bias their outputs in some way [3].
We can think of Alice and Bob’s quantum devices as Eve’s inside agents who
attempt to signal information to her over whatever channels are available.

In this paper we address this problem of reusing the same devices across mul-
tiple rounds of DIQKD, but do not consider how DIQKD might be accomplished
in a single round of a protocol using adversarial devices with memory. See [13]
for a proposal for such a protocol.

1.3 Results

Our main contribution is to describe, and prove the security of, an encryption
scheme, the insider-proof private channel, which allows Alice and Bob to com-
municate securely in the presence of an inside agent who knows their shared
keys and may choose some messages for them. In particular it is not possible
for the agent to manipulate the ciphertext sent over the public channel so as to
leak any information about Alice’s private data; neither the message itself nor
any other data is leaked to Eve.
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Security and Construction. The security of our scheme is defined in terms
of an ideal functionality which simply gives Alice’s message to Bob and sends a
random string to Eve consistent with the length of the message. (The length of
the ciphertext forms an upper bound on the amount of information in the mes-
sage, so Eve will always gain at least this much information about the message,
but note that in our scheme, it is always possible to securely pad the encrypted
message with a random string, resulting in fixed length strings transmitted from
Alice to Bob.) This is similar to the usual ideal functionality of a private channel
except that in our definition we allow the message, any other private data, and
the secret key to be correlated in an arbitrary way. We show that our proto-
col simulates the ideal functionality to within any desired error. This gives an
information-theoretic proof of security for our protocol.

Our construction is entirely classical, making use of 2-universal hash functions
[6] and a local source of trusted randomness which is independent of Eve and
the measurement devices. Such a source of randomness is already a requirement
for DIQKD. Our proof makes use of the quantum leftover hashing lemma [17],
giving security against quantum adversaries.

Application to DIQKD. In the context of DIQKD the insider-proof private
channel allows Alice and Bob to exchange data (such as information for error
correction and parameter estimation) which is determined by the devices across a
public channel without leaking information from the devices to Eve. The encryp-
tion remains secure even if the devices have complete information about Alice
and Bob’s shared secret keys (generated in previous rounds of the protocol) and
even if the devices have complete control over the message sent.

Our encryption protocol, when used within a DIQKD scheme, provides secu-
rity in the case where Alice and Bob do not announce whether they abort or
not (which is known to be another channel over which information may leak to
Eve.) There is a linear penalty in terms of net secure key rate, and the secu-
rity parameters also increase by a constant factor. However, for low error rates
the secure key rate approaches 1 and the security parameters can be chosen so
that the devices can be reused any desired number of times before they must be
securely destroyed. Note that even the most trusting QKD schemes can only be
used a finite number of times before they need to be rekeyed. Besides the lower
secure key rate there is no penalty, asymptotically, for using our scheme.

In terms of initial key, Alice and Bob must share enough key to authenticate
their messages and perform encryption for a single round of key generation, after
which they use key generated in past rounds for encryption and authentication.
If the error rate is low the required amount of initial key is much smaller than
the amount generated in a single round.

Other Applications. The usefulness of our scheme is not limited to DIQKD.
It can be used in any context, classical or quantum, in which there is some agent
which may choose messages and has at least some information on the secret keys
which are used for encryption. As an example, one might protect systems against
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trojan horses which attempt to collect data from the system and signal to Eve
without being detected. If the only channel available is encrypted, and sending
unencrypted data would be detected, then the trojan horse might attempt to
bias the cihpertexts of the encrypted channel. Our scheme would protect against
such signalling.

1.4 Organization of the Paper

The layout of this paper is as follows. In the next section, we describe what an
ideal private channel consists of and introduce a new cryptographic concept: the
σ-insider proof channel. This channel allows the secure transmission of a message,
even if the message is chosen adversarially. In Part 2.2 of this section we give a
recipe for implementing this channel and in Part 2.3 demonstrate the channel
does allow secure message transmission except with probability σ.

In Sect. 3.1, we begin to look at applying the σ-insider proof channel to quan-
tum key distribution and we specify and motivate the security model we are
working in. Following that, we outline the modifications to a DIQKD protocol
in Sect. 3.2, and in Sect. 3.3 it is shown that the DIQKD protocol is still secure
with the modifications that use the new channel. The composition of repeated
DIQKD rounds is considered in Sect. 3.4. Section 3.5 gives the asymptotic key
rate achieved by these bounds. Further details of the proof of security in the
DIQKD setting and a discussion of how protocol aborts need to be managed
and the composability implications are given in the appendices.

2 The Private Channel

We first describe the scenario and define the ideal insider-proof private channel.
We then give a protocol and prove that it approximates the ideal channel. The
proof relies on 2-universal hashing and the quantum leftover hashing lemma [17].

2.1 The Ideal Channel

Let us define a situation where Alice wishes to privately communicate some
information to Bob in the presence of a quantum eavesdropper, Eve, who wishes
to obtain access to some of Alice’s data. Further, there is an insider A∈ who has
access to Alice’s private keys and data, and who can choose some messages to
be sent to Bob. That is, there will be some encrypted channel from Alice to Bob
and A∈ can choose some inputs to the channel. However, A∈ has no other means
of communicating with Eve. Alice and Bob’s task is to complete their private
communication in such a way that Eve cannot gain any information about Alice’s
data or the message.

Definitions. To begin, let us describe the registers we will use. A contains the
message Alice will send, while B is the register which will hold the final message
for Bob. C is the ciphertext, or otherwise contains all the raw information leaked
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to Eve during the protocol. For example, if the channel is implemented using a
public channel then C contains all information sent over the channel. D contains
secret information that Alice does not want to leak. Finally, E contains Eve’s
quantum side information. We assume that the length of A, B and C are public.

Definition 1. The ideal private channel between A and B is defined as

πIPC
AB (α) =

∑

x,y

(|x⊂ →x|A ≡ |x⊂→y|B) α (|x⊂ →x|A ≡ |y⊂→x|B) (1)

So, the ideal private channel erases B and copies the contents of A into it.

Definition 2. A channel πABC is an σ-insider-proof private channel from A to
B if there exists a channel βCE such that for all CCCCQ states αABCDE,

∣∣∣∣πIPC
AB ≡ ID ≡ βCE(α) − πABC ≡ IDE(α)

∣∣∣∣
1

∈ σ (2)

Furthermore, if this is true for σ = 0 then we say that π is an insider-proof
private channel.

This definition essentially says that we consider a channel secure if we can
approximate it with the ideal channel, along with some simulator that generates
a transcript for Eve without referring to the secret data.

Although we have not explicitly stated that the insider can choose the mes-
sage, this is built into the fact that we allow any α, and hence this covers the
cases where the insider has deliberately correlated the registers A, D and its
memory A∈, possibly using some quantum measurement on half of an entangled
A∈E state.

Finally, in the case where we wish to implement such a channel using some
additional resources, such as a shared key or private randomness, we may extend
α with additional registers and add conditions as necessary to specify the form
of the resources. In keeping with the spirit of the definition, we will only con-
sider resources where the insider has access to any stored data, including shared
private keys.

It is interesting to note that, compared with the usual definition of a private
channel, the only difference is that the private key is allowed to be correlated
with the message.

2.2 The Channel

In order to achieve our goal, we must use some additional resources in the form
of a shared private key and a true random number generator on Alice’s side.
The shared key is in register K while Alice’s private random string is held
in R. The initial state must satisfy αKRBCDE = U

(n)
K ≡ U

(n)
R ≡ αBCDE and

αRABCDE = U
(n)
R ≡ αABCDE , where U (n) is the completely mixed state on n

qubits. Note that the message can be correlated with the shared key, but the
rest of the state cannot. As well, the private randomness is uncorrelated with all
other registers. Our protocol is summarized as follows.
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Protocol 1. Input for Alice: strings a, k. Input for Bob: string k.

1. Alice chooses a string r uniformly at random.
2. Alice calculates c = a ≤ [

(k · r) mod 2σ
]
and discards k.

3. Alice broadcasts (c, r) and then discards them.
4. Bob reconstructs a = c ≤ [

(k · r) mod 2σ
]
and then discards k, r and c.

2.3 Security of the Channel

We first sketch the proof, then provide the technical details. The insider A∈

chooses some message A with full knowledge of the shared key K. Hence the
message can be correlated with K. However, we will use a K of length more than
twice that of |A| (|K| > 2|A|) so that there are still > |A| bits of randomness
in K, even conditioned on A. Now when we produce the encryption key K ∈ by
combining K with R, we produce a K ∈ of length |A|. The leftover hashing lemma
(stated below) then says that K ∈ is almost completely random, even conditioned
on A and R. The ciphertext is then also completely random, even conditioned
on A and R, and Eve will not be able to figure out anything about A from R
and the ciphertext.

In order to prove that Protocol 1 produces an σ-insider-proof private channel
we first introduce 2-universal hash functions.

2-Universal Hash Functions. 2-universal hash functions are in fact families
of functions which, given a random seed, produce a very uniform output.

Definition 3. A 2-universal family of functions F is a family of functions f :
X ≥ Y such that, when f is drawn uniformly at random from F , for every
x1, x2 ⊆ X

P (f(x1) = f(x2)) =
1

|Y| (3)

Protocol 1 uses the following 2-universal family of hash functions introduced
in [6].

Lemma 1. The family of functions given by fr(k) = k ·r mod 2σ is 2-unversal.

Proof. Let x1 ∩= x2 be given. We wish to count the r for which

(r · x1) = (r · x2) mod 2σ. (4)

Taking the expression mod 2σ, i.e. taking the Ω least significant bits of the
string, can be expressed as taking the expression mod b for some element1 b in
GF(2n). Hence we can rewrite this as

r · (x1 ≤ x2) = 0 mod b. (5)

1 In particular, the element x� in the usual polynomial representation.
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Since the multiplication is over a field, r = 0 mod b and there is one solution
for every member of the equivalence class of 0, of which there are 2n−σ members.
Hence the fraction of strings r that are solutions is 2n−σ/2n = 2σ and the family
of functions is 2-universal. ←∪

Note that the family is symmetric in the roles of r and k, so we can use k as
the seed instead of r and the family is still 2-universal. The distinction becomes
important in the following lemma, which gives a useful approximation of how
uniform the output of the hash function is.

Lemma 2 (Quantum leftover hashing lemma [17]). Let X and E be ran-
dom variables. Let F be a family of 2-universal hash functions, indexed by a seed
R such that fR ⊆ F , that take an input X ⊆ {0, 1}n, and output Z ⊆ {0, 1}σ.
Then averaged over fR, the distribution on Z has the property:

φ(Z|ER) ∈ σ∈ +
1
2

√
2σ−Hλ′

min(X|E) , (6)

where the distance from uniform, φ, is given by

φ(A|B)∂ = min
ΣB

1
2

∅αAB − λA ≡ θB∅1 . (7)

Proof of Security.

Theorem 2. Let Ω and n > 2Ω be given. Then Protocol 1 implements an σ-
insider-proof secure channel where

σ =
∼

22σ−n (8)

Proof. We begin by reducing to an equivalent protocol by noting that, so long as
Bob completes the protocol before interacting with outside parties, his operations
commute with Eve’s. Hence we may assume that Eve receives her copy of (c, r)
after Bob has completed the protocol. This solves certain notational problems
where we need to trace out registers in the proper sequence in order to obtain
valid bounds. Also, in this version of the protocol, we make explicit the movement
of registers between different parties.

Protocol 3. Input for Alice: Registers A and K. Input for Bob: Register J .

1. Alice uses her random number generator to initialize R with a uniformly
random string.

2. Alice calculates K ∈ = (K · R) mod 2σ, then discards K and sends R to Bob.
3. Bob calculates J ∈ = (J · R) mod 2σ, then discards J .
4. Alice calculates C = K ∈ ≤ A and then discards K ∈ and sends C to Bob.
5. Bob calculates B = C ≤ J ∈ and then discards J .
6. Bob passes C and R to Eve.
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Here K contains the private shared key, of which J is Bob’s copy.
Next we make a further reduction. At the end of step 5, Bob’s state consists

solely of B, which is a copy of A. Hence we can instead simply apply πIPC
AB at

the end of the protocol and remove all of Bob’s operations, as well as J . Then
Alice can simply send C and R directly to Eve. Hence we arrive at the following
protocol

Protocol 4. Input for Alice: Registers A and K.

1. Alice uses her random number generator to initialize R
2. Alice calculates K ∈ = (K · R) mod 2σ and discards K.
3. Alice calculates C = A ≤ K ∈ and discards K ∈.
4. Alice sends C and R to Eve.
5. Alice and Bob apply πIPC

AB

Now we proceed with the security proof. Let Ω = |A| and n = |K| = |R|. For
notational convenience we assume that C is created in step 3, and B is created
in step 5, so we need not keep track of them beforehand. Let the quantum state
just after step t be α(t) and the σ-smooth min-entropy be Hφ

min. We suppose for
the moment that the key in register K is perfectly independent from Eve.

After step 1, since K is secret from Eve, H0
min(K|DE)∂(1) = n. By the chain

rule for smooth entropies [15], we also have

H0
min(K|ADE)∂(1) ⊕ n − Ω. (9)

In step 2 we apply the 2-universal hash given in Lemma 1, tracing out K and
producing encryption key K ∈ of length Ω. Using the leftover hashing lemma we
find

φ(K ∈|ADER)∂(2) ∈ 1
2

∼
22σ−n = σhash (10)

and hence there exists a θADER such that
∣∣∣
∣∣∣α(2)K′ADER − UK′ ≡ θADER

∣∣∣
∣∣∣
1

∈ σhash. (11)

Since for UK′ ≡ θADER A is independent of K ∈, we can XOR them together
in step 3 to obtain the ciphertext C which is again independent. We trace out
K ∈ and then C and R are sent to Eve in step 4. We find

∣∣∣
∣∣∣α(4)CADER − UC ≡ θADER

∣∣∣
∣∣∣
1

∈ σhash. (12)

Next we want to approximate θADER. Tracing out the C register, the above
inequality becomes

∣∣∣
∣∣∣α(4)ADER − θADER

∣∣∣
∣∣∣ ∈ σhash. Since α

(4)
ADER = α

(1)
ADER =

αADE ≡ UR we then obtain
∣∣∣
∣∣∣UC ≡ θADER − UC ≡ α

(0)
ADE ≡ UR

∣∣∣
∣∣∣ ∈ σhash . (13)
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Now UC ≡αADE ≡UR is a state that Eve can create by herself by operating only
on her registers by simply appending C and R distributed uniformly. Let us call
this operation β . Using the triangle inequality to combine (12) and (13),

∣∣∣
∣∣∣α(4)ACDER − IAD ≡ βCER(α(0))

∣∣∣
∣∣∣
1

∈ 2σhash = σ . (14)

We now introduce register B and after step 5, this becomes
∣∣∣
∣∣∣α(5)ABCDER − πIPC

AB ≡ ID ≡ βCER(α(0))
∣∣∣
∣∣∣
1

∈ σ . (15)

Hence the protocol implements a 2σhash-insider-proof private channel. ←∪

3 Application to DIQKD

We now consider the application of the σ-insider proof channel to DIQKD in the
context of reused devices with memory.

3.1 The Model

Alice and Bob share some private randomness and would like to grow more key
from it using a shared quantum state. However, they do not trust their measuring
devices or the state; in fact, they assume that Eve has built the devices and dis-
tributes the quantum state. Let us assume that it is possible for them to complete
a device-independent quantum key distribution (DIQKD) protocol securely in
this setting. There is some recent work that supports this assumption [4,13,14].
They successfully grow some new key on which Eve’s knowledge is bounded to
be less than σ, quantified using standard trace distance metrics [15]. After this,
they would like to reuse their devices to grow more key in another round, but the
malicious devices are allowed to have memories. As well, all shared randomness
used in the protocol will be taken from the previously generated keys, and hence
is also shared with the devices.2 We would like to know whether Alice and Bob
can grow new key in this situation.

We make the standard assumptions of DIQKD. We are working in the limit
of long keys for each run of the protocol. We assume that the untrusted devices
can be isolated within Alice and Bob’s laboratories, such that they can receive
arbitrary quantum signals from Eve, but can signal only to Alice and Bob and
not directly to Eve. We also assume that Alice and Bob can both generate trusted
randomness locally. Additionally, we assume Alice and Bob can perform classical
processing privately from the untrusted measuring devices in their labs.

This model was first introduced in [3], where the authors argue that in stan-
dard protocols Alice and Bob cannot grow further key using the same devices.
Particularly, they highlight the issue of whether the protocols are composable.
We show how to modify standard DIQKD protocols to eliminate side channels
related to Alice and Bob’s public discussion and show that they can still grow
new secret key. We comment on the issue of composability in Appendix B.
2 At the very least, the devices can know the raw keys from previous rounds, and

hence are strongly correlated with the final keys.
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3.2 The Protocol

The modifications we propose are restricted to the classical post-processing por-
tions of the protocol. The goal of the changes is to prevent the device from
having a communication channel back to Eve within the protocol itself. To this
end, we make use of an σ-insider-proof channel to send all information between
Alice and Bob that the untrusted devices may have influenced. (We assume no
other side channels.)

Our modification applies to DIQKD protocols with standard classical post-
processing [15]. Importantly, with standard post-processing the only information
communicated between Alice and Bob which depends on the quantum devices
are the parameter estimation data, the error correction data, and the abort flag.

1. Eve distributes an entangled state αABE to the devices in Alice and Bob’s
labs. Alice and Bob supply random (and independent) lists of basis choices to
the devices for the series of measurements and the devices output the results.

2. Alice announces her basis selections publicly to Bob. Where they have chosen
the same basis, the measurement result bit should be correlated for Alice and
Bob and can become part of the key. When they have chosen different bases,
they can check for CHSH violation or perform other parameter estimations.

3. Alice must send to Bob a subset of her outcomes of size Ω. To do this, they use
Protocol 1 to implement an σ-insider-proof private channel, which must not
leak information about previously grown keys (or other private data), d. The
message string a = a(k, d) is passed from Alice to Bob, encrypted. To do this,
she generates a random string r (|r| = n) and chooses a string k (|k| = n)
from her store of previously generated keys. She uses the type of 2-universal
hash function introduced in Lemma 1 to create ciphertext c = a ≤ (k · r)
mod 2σ. She sends this to Bob along with r. Bob uses r and k to recover a.

4. Bob performs parameter estimation. He sends a similarly encrypted message
to Alice containing a flag bit indicating abort or not, and if not, a second
encrypted message containing the detected bit error rate Q, the observed
parameters, and an appropriate error correction function, along with his par-
ity check bits. Bob pads this communication with randomness, so it is always
of fixed length. If they instead will abort, Bob sends the abort flag and a
random message instead of the error correction information.

5. Alice uses the information to correct her string to Bob’s.
6. Using a publicly chosen hash function they perform privacy amplification to

reduce Eve’s knowledge of the final key below a chosen bound. They discard
the session encryption key k used in the protocol.

We now show the security of this protocol.

3.3 Security of DIQKD Using an Insider-Proof Channel

Here we give an overview of the proof of security. For full details refer to
Appendix A.
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Referring to Fig. 1, in step 1 of the protocol we begin with some state shared
between Alice, Bob and Eve which is σ0 away from the ideal state where Eve is
in a product state with Alice and Bob. Step 2 can reveal no information about
Alice’s private data since the message sent to Bob comes from locally generated
randomness which is independent of αABE . Hence there is no need to encrypt
this information.

In step 3 Alice sends some measurement outcomes to Bob. Since these depend
on Alice’s device they must be encrypted using the insider-proof private channel.
If the ideal channel were used then this would cause no further deviation from
the ideal situation. In particular, no information would be revealed to Eve and
Bob receives the required data for continuing the usual DIQKD protocol. Since
we use the σ-insider-proof private channel instead the use of this channel moves
the shared state σ further away from ideal. Step 4 similarly moves the state a
further 2σ away from idea, since we use the σ-insider-proof private channel twice,
once for the error correction data and once for the abort flag. Note that steps 3
and 4 are the only steps which are different from the usual DIQKD procedure.

Steps 5 and 6 cause further deviation from the ideal by σqkd due to the usual
post-processing done in the DIQKD protocol.

3.4 Composing Rounds of the New Protocol

In the previous section, we saw that reusing untrusted devices in a new round of
QKD using the new protocol caused an increase in the security parameter of the
new and old keys by 3σ + σqkd. For comparison, if the devices were trusted, and
the original DIQKD protocol was used, this parameter would only have grown
by σqkd.

Then composing s rounds of successful key growth together,
∣∣∣∣π∼s

prot(UK ≡ θD ≡ τE) − π∼s
ideal(UK ≡ θD ≡ τE)

∣∣∣∣
1

∈ 3σ + σqkd . (16)

where π∼s means the channel π applied s times. Again using the data processing
inequality for s applications of πprot on Eq. (31) and then the triangle inequality
with Eq. (16) gives

∣∣∣∣π∼s
prot(αKDE) − π∼s

ideal(UK ≡ θD ≡ τE)
∣∣∣∣
1

∈ σ0 + 3sσ + sσqkd . (17)

This shows that each additional round can add at most 3σ + σqkd to Eve’s infor-
mation on the previously grown keys.

Notice that if an abort occurs in round i, the new key is not obtained for that
round, so the length of the final key string will depend on the number of aborts as
well as the error rates. However, Alice and Bob still sent two encrypted messages
to each other in an aborted round, in order to learn that their error rate was
above threshold. Therefore, they still must add 3σ for that round, though not
σqkd. This means that the security parameter will grow even on aborted rounds.

In practice, Alice and Bob should choose a maximum tolerated security loss
of all of their keys σsec. This will determine the number of rounds they would be
able to grow key in. They should agree to this number of rounds when they begin
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-Insider-Proof Channel in a DIQKD Protocol
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Fig. 1. Use of the insider-proof channel in a device independent quantum key distrib-
ution protocol.

to use their devices, then stop using and securely destroy the devices after that
many rounds. They do not wish to leak information to Eve about the number
of rounds that have aborted. (See Appendix B for further discussion.)

Note that this growth of the security parameter with the number of rounds
is also seen in the standard trusted-device QKD models when some of the grown
key is used for authentication in subsequent rounds. This means that even in
the simplest form of QKD with authentication in which the most assumptions
are made, there are only a finite number of rounds that Alice and Bob can
compose before they exceed their security tolerance. At that point, they must
re-key through some other means. This means that the results given here, which
only achieve a finite number of uses of the devices, are the best that can be
hoped for. Furthermore, in practice, all physical security devices have only a
finite lifespan.
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3.5 Asymptotic Secret Key Rate

The application key rates achievable with this protocol modification will depend
on the key rate of the underlying DIQKD protocol used, and n the number of
bits of the generated key that need to be used as the session keys for Alice and
Bob’s encrypted messages in the next round, and therefore cannot be used in
other applications.

Since we do not know the details of which DIQKD protocol can be used when
the devices have memories, we remain agnostic about the exact rate, however,
we can assume it would take a form:

r ⊕ f(Sobs) − H(A|B) (18)

for some function f with Sobs an observed parameter (eg. a Bell-inequality
violation) which is what is achieved by current protocols against memoryless
devices [9,11].

In this new protocol, we do not need to remove the amount of communication
H(A|B) required for error correction, since this is encrypted. However, we will
remove the amount of key required to encrypt the next round’s communication.
We now consider how much key this requires. From Theorem 2, we have:

σ =
∼

22σ−n =
1

2(n−2σ)/2
, (19)

Then n−2Ω = O(− log σ), so for a constant security parameter σ, the key length,
n, needs only exceed twice the message length, 2Ω, by a constant number of bits.

Now we must determine how large the total amount of encrypted information
sent between Alice and Bob must be asymptotically. Suppose the sifted key
length in one round is N . The parameter estimation message from Alice to Bob
must contain the bit values of an O(log N)-size subset of this string in order
to achieve an estimation error approaching zero. As N ≥ √ the fraction of
signals this represents goes to zero. Bob must send to Alice his error correction
function results, the size of which will depend on the error rate. The amount
of communication required will be H(A|B) + f(σEC) bits, where f(σEC) is a
function of the security parameter for the error correction that does not depend
on N , so that as N ≥ √ it also is negligible. Finally, Bob’s abort flag requires
a constant sized key.

In total, asymptotically, the amount of key needed to implement the insider-
proof channels in the protocol depends only on the size of the error correction
information to be shared. Since we have n ⊕ 2Ω + c where c is a constant, the
amount of key required is just twice the error rate: 2H(A|B).

Then we can see how the asymptotic key rate will change as compared with
the original version of the protocol,

r ⊕ f(Sobs) − 2H(A|B) . (20)

Notice that asymptotically the key rate does not fall as aborts occur, since in an
abort, Bob will send the encoded abort flag, but will not encode the H(A|B) bits
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of error correction information and rather save his key by sending a string output
by his random number generator instead. In the finite key regime however, it is
clear that aborts will reduce the amount of generated key that can be used in
other applications. (See Appendix B for details of how to treat aborted rounds.)

4 Conclusions

We have introduced the concept of an insider-proof channel. We hope that it will
have applications, particularly in device-independent schemes where untrusted
devices can be assumed not to have direct communication to the adversary,
but may be malicious. We construct an explicit example of such a channel
that will allow trusted parties to communicate, even about information that
the untrusted devices may have generated. We also show how this can be used
to reuse untrusted devices for many rounds of QKD.

The model of DIQKD assumed here gives a lot of power to the eavesdrop-
per, since Eve is allowed to prepare Alice and Bob’s measuring devices. It is
more restrictive to Alice and Bob than other models currently used to describe
untrusted device scenarios, where their devices may have manufacturing flaws,
but are assumed not to be outright malicious. Those models more realistically
represent most cryptographic scenarios today, wherein perhaps a user does not
understand the cryptography implemented by his web browser, but he down-
loaded an authenticated copy from a legitimate business. The business may not
have correctly implemented the security, and this is what DIQKD would try to
protect against, but it also does not benefit from gaining a reputation for selling
users’ credit card information to Eve.

However, this less-trusting model is interesting, first, because it provides
bounds for what is possible in other more-trusting DI scenarios, and second,
because despite its restrictions, QKD can still be performed without much loss
of performance. We have introduced a small modification to a DIQKD protocol
that allows untrusted and malicious devices to be used in repeated round of
secure key growth. It is interesting to note that the only part of the protocol
that requires modification is the classical post-processing. This suggests that
perhaps existing QKD protocols could be adapted to other new models readily,
simply by considering this portion carefully.

There remain some open questions. Are there other applications for insider-
proof channels? More specifically, are there other contexts where messages may
be chosen maliciously and with knowledge of private data? It also may be pos-
sible to improve the bounds presented here in order to get a higher asymptotic
key rate. It would also be nice to fit this type of protocol into a composabil-
ity framework, although it is not clear how to do that in existing frameworks.
Additionally, there may be other modifications that could be made to existing
protocols that accomplish this same task more efficiently.
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A Security of DIQKD Using an Insider-Proof Channel

In order to complete a QKD protocol Alice and Bob will require a series of
communication channels back and forth which they have authenticated. When
the devices in Alice and Bob’s labs may have some sensitive information in their
memories, then some of these channels must be private channels, in order to
show security.

Again, let the quantum state just after step t be α(t). At first, let us analyze
the protocol assuming we start with a perfect key so that p(0) = U

(3n)
K ≡ θD ≡

τE . After step 1, Alice and Bob share with Eve the state αABE . They pick
measurements and get outcomes in registers A∈ and B∈, so that their shared
state becomes α(1), where

α(1) = U
(3n)
K ≡ θD ≡

∑

omA
,o′

mB

p(omA
, o∈

mB
) |omA

⊂A′ →omA
|

≡ ∣∣o∈
mB

〉
B′

〈
o∈

mB

∣∣ ≡ α
(omA

,o′
mB

)

E . (21)

Now in step 2, Alice uses a public channel to send Bob her measurement
choices mA and Bob can also use a public channel to send Alice his choices
mB . Alice will prepare a private message for Bob that includes a subset a of
her outcomes omA

. She then implements (in step 3) an insider-proof quantum
channel to Bob, according to Protocol 4.

We can alter πABC to take the string in register K as part of the input state
rather than a parameter that defines πABC . In all other respects, the channel is
unchanged. Let the new channel be π∈

ABC . Then from Definition 2,
∣∣∣∣TrK πIPC

AB ≡ ID ≡ βCE(UK ≡ α) − TrK π∈
ABC ≡ IDE(UK ≡ α)

∣∣∣∣
1

∈ σ . (22)

Let the register A contain the subset of outcomes (so a is a function of omA
.

Then after an ideal private channel the state will be α(3) such that:
∣∣∣
∣∣∣α(3) − ξ(3)

∣∣∣
∣∣∣
1

∈ σ . (23)

where

ξ(3) := U
(2n)
K ≡ θD ≡

∑

omA
,o′

mB

p(omA
, o∈

mB
) |a⊂A →a| ≡ |omA

⊂A′ →omA
|

≡ |a⊂B →a| ≡ ∣∣o∈
mB

〉
B′

〈
o∈

mB

∣∣ ≡ α
(omA

,o′
mB

)

E ≡ IC,R . (24)
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Bob will also have to reply in step 4, again using an insider-proof channel twice.
First he sends a one-bit message about whether to abort and second he sends
the error correction information. For an ideal private channel:

∣∣∣
∣∣∣α(4) − ξ(4)

∣∣∣
∣∣∣
1

∈ 3σ . (25)

where

ξ(4) := θD ≡
∑

omA
,o′

mB

p(omA
, o∈

mB
) |b⊂A →b| ≡ |omA

⊂A′ →omA
|

≡ |b⊂B →b| ≡ ∣∣o∈
mB

〉
B′

〈
o∈

mB

∣∣ ≡ α
(omA

,o′
mB

)

E ≡ (IC,R)∗3 . (26)

At this point, they arrive at identical raw keys with probability 1 − σEC , where
Alice and Bob can choose σEC arbitrarily small. Then,

∣∣∣
∣∣∣α(5) − ξ(5)

∣∣∣
∣∣∣
1

∈ 3σ + σEC + σPE , (27)

defining

ξ(5) := θD ≡
∑

omA
,o′

mB

p(omA
, o∈

mB
) |kraw⊂A′ →kraw| ≡ |kraw⊂B′ →kraw| ≡ α

(omA
,o′

mB
)

E ,

(28)
where we dropped the C and R registers for convenience, and kraw still depends
on omA

and o∈
mB

. They then implement a privacy amplification hash in step
6 and let us define σqkd = σEC + σPE + σPA. So now we are left with a state
α
(6)
A′B′CDER such that:

∣∣∣
∣∣∣α(6)A′B′CDER − UA′B′ ≡ θD ≡ τ ∈

CER

∣∣∣
∣∣∣
1

∈ 3σ + σqkd . (29)

where UA′B′ is the normalized uniform distribution over all strings of a given
length and we have followed the standard analysis (see eg. [15]) for the overheads
of a single round of QKD. We can write this instead as

||πprot(UK ≡ θD ≡ τE) − πideal(UK ≡ θD ≡ τE)||1 ∈ 3σ + σqkd . (30)

where πprot is the action of the entire modified QKD protocol and πideal is an
ideal protocol that shares key between Alice and Bob while leaking nothing to
Eve.

Now let us relax the assumption of a perfect key. Instead, assume that Alice
and Bob have already successfully grown some key using a DIQKD protocol,
secure against malicious devices with memory. Before step 1, we assume that
Eve has bounded correlations with these keys:

||αKDE − UK ≡ θD ≡ τE ||1 ∈ σ0 . (31)
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We can apply πprot to both states in the above bound. Then using the data
processing inequality, we have

||πprot(αKDE) − πprot(UK ≡ θD ≡ τE)||1 ∈ σ0 . (32)

We can use the triangle inequality on Eqs. (30) and (32), to finally obtain

||πprot(αKDE) − πideal(UK ≡ θD ≡ τE)||1 ∈ σ0 + 3σ + σqkd . (33)

Now, let us back up a minute and consider what happens if Alice and Bob
need to abort in step 4. Implementing the insider-proof channel uses up their
store of private key. Asymptotically, the largest amount of key will be used to
send the error correction information. However, if they abort, there is no need
to send this. By using separate applications of the channel, after sending the
signal to abort, Bob is free to not use the insider-proof channel and instead send
a random string. This is fine, since referring to Protocol 1 the contents of R
are uniformly random, and, looking at Eq. (12), the contents of C cannot be
distinguished from a uniform string by the adversary, except with probability σ.
Therefore, in the case of an abort, the largest share of the cost of establishing a
insider-proof channel can be avoided by breaking up Bob’s messages in this way.

Notice also that extending each state in the norm in Eq. 33 to a larger Hilbert
space by tensor product with a state corresponding to a uniformly random n-bit
string 2−n

∑
x |x⊂→x| will not increase the trace distance. Therefore, all encoded

messages sent from Alice can be assumed to have a fixed length and remain
secure.

B Aborts

It may happen that on some rounds Alice and Bob must abort the protocol.
However, since the devices that Alice and Bob use can cause an abort even on
a “good” state αA′B′E , they can use this as a pretext to signal to Eve, as was
observed in [3]. Therefore, Alice and Bob must hide aborts when they occur. As
explained in Sect. 3.2, they can do this since they have encrypted the parameter
estimation bits and will also encrypt Bob’s signal as to whether or not to abort.
If they abort, they pretend to continue the protocol, but instead of exchanging
encrypted information to perform error correction, they send random strings. In
this round they do not gain any additional key, but also Eve does not learn that
they aborted.

Another concern is that it is possible for the boxes to conduct a denial-of-
service attack until Alice and Bob run out of key. If this should occur before
the number of rounds that Alice and Bob had agreed to use the devices for, this
would also constitute a signal to Eve. They must hide this also, so should it occur,
Alice and Bob should simulate the remaining rounds of key growth (sending each
other random strings) and then destroy the adversarial boxes securely. This is
not a foolproof solution however, since in the meantime Alice and Bob may need
to communicate privately. Thus at some point they will be forced to re-key and
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there is no reason to assume Eve will not notice this. Therefore, it is conceivable
that she may gain some information from the fact that this has happened and
it seems there is no way to completely avoid that, though Alice and Bob could
keep a piece of their initial authentication key from before the first round against
this eventuality. (This is similar to the case in trusted-device QKD when Eve
executes repeated denial-of-service attacks on Alice and Bob until they run out
of key.)

It appears that in this model we cannot think about each run of the device
independent protocol as a stand-alone element in a universal composability
scheme, in which it is public information how much key they have at any given
time. Alice and Bob certainly do not want to output on each round whether they
succeeded or failed in obtaining key. This may lead to additional considerations.
For example, the adversary may expect Alice and Bob to send a one-time-pad
encoded message at a particular time during the multi-round life of the devices
when they do not have key available to devote to the purpose. If this occurs they
can still avoid leaking information to the adversary by sending a random string
of the appropriate length instead. (However, this does not accomplish the com-
munication task Alice and Bob presumably wished to accomplish.) Note that in
this case, Alice and Bob have to consider their quantum key distribution in the
wider setting in which it is employed to avoid leaking information. Nevertheless,
when key is generated in the DIQKD scheme, the resulting key is secure under
the trace distance definition given in [15].
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Abstract. Attacks on cryptographic protocols are usually modeled by
allowing an adversary to ask queries to an oracle. Security is then defined
by requiring that as long as the queries satisfy some constraint, there is
some problem the adversary cannot solve, such as compute a certain
piece of information. Even if the protocol is quantum, the queries are
typically classical. In this paper, we introduce a new model of quantum
attacks on protocols, where the adversary is allowed quantum access to
the primitive, i.e., he may ask several classical queries in quantum super-
position. This is a strictly stronger attack than the standard one, and
we consider the security of several primitives in this model. We show
that a secret-sharing scheme that is secure with threshold t in the stan-
dard model is secure against superposition attacks if and only if the
threshold is lowered to t/2. This holds for all classical as well as all
known quantum secret sharing schemes. We then consider zero- knowl-
edge and first show that known protocols are not, in general, secure
in our model by designing a superposition attack on the well-known
zero-knowledge protocol for graph isomorphism. We then use our secret-
sharing result to design zero-knowledge proofs for all of NP in the com-
mon reference string model. While our protocol is classical, it is sound
against a cheating unbounded quantum prover and computational zero-
knowledge even if the verifier is allowed a superposition attack. Finally,
we consider multiparty computation and give a characterization of a
class of protocols that can be shown secure, though not necessarily with
efficient simulation. We show that this class contains non-trivial proto-
cols that cannot be shown secure by running a classical simulator in
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1 Introduction

Attacks on cryptographic protocols are usually modeled by allowing an adversary
to query an oracle that represents the primitive he attacks, for instance the
adversary specifies a message he wants to have signed, a challenge he wants a
prover to answer, or a subset of players he wants to corrupt Security is then
defined by requiring that as long as the queries satisfy some constraint, there
is some problem the adversary cannot solve, such as compute a certain piece of
information.

Several previous works consider what happens to security of classical pro-
tocols if we allow the adversary to be quantum. The model usually considered
is that the adversary is now a quantum machine, but otherwise plays exactly
the same game as in a normal attack, i.e., he still communicates classically with
the protocol he attacks. One example of this is the work of Watrous [Wat06],
showing that a large class of zero-knowledge protocols are also zero-knowledge
against a quantum verifier.

In this paper, we introduce a new model of quantum attacks on classical
as well as quantum cryptographic protocols, where the adversary is allowed to
ask several classical queries to the oracle in quantum superposition. In more
concrete terms, we ask, for multiparty protocols: what happens if the adversary
can be in superposition of having corrupted several different subsets? or, for
zero-knowledge protocols: what happens if a quantum verifier can be in super-
position of having issued several different challenges to the prover, and receive
the responses in superposition? As we will argue below, we believe such super-
position attacks to be a valid physical concern, but they also form a very natural
generalization from a theory point of view: in the literature on black-box quan-
tum computing, quantum black-box access to a function is usually defined by
extending classical black-box access such that queries are allowed to contain
several inputs in superposition. Our superposition attacks extend conventional
attacks in the same way.

There is recent work [BDF+11,Zha12b] that considers the random oracle
model and shows security of various schemes even if the adversary has quan-
tum access to the random oracle. These result are quite different from ours in
that they are concerned with allowing everything “in the adversary’s brain” to
be quantum, rather than considering his communication with the rest of the
world as we do. To the best of our knowledge our work is the first to consider
adversaries that have quantum access to the cryptographic primitive or proto-
col under attack1 but we emphasize that in independent work [BZ12,Zha12a]
superposition attacks are also considered, on pseudorandom functions and mes-
sage authentication codes.

At first sight, superposition attacks may seem rather exotic. However, it is
not hard to see that in several scenarios, it is very natural to consider these
attacks:
1 A preliminary announcement of some of our results was made in an invited talk by

one of the authors at the ICITS 2011 conference.
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Consider first protocols that handle quantum data, such as in several previous
works on quantum secret sharing and multiparty computation (e.g., Ben-Or
et al. [BCG+05]). Such a protocol requires players to communicate quantum
information and keep throughout the game a joint entangled quantum state
that involves all the players. If the players can do this, we should assume that
the adversary can do something of similar technological difficulty. It therefore
seems fair to allow the adversary to be in superposition of having interacted
with different subsets of players. Note here that “interacting with a player”
does not have to be a macroscopic process: the adversary could attempt to
communicate with the player in a way that is physically different from what the
implementation of the protocol expected, and in this way get more information
about the private state of the player than he was supposed to. For instance,
the effect of sending on a different frequency or a different number of particles
than expected may be hard to predict and may depend heavily on the way the
protocol is implemented. Several known attacks on quantum key distribution
work in this way. Now, if the communication defined by the protocol is quantum
in the first place, we see no reason why such an attack cannot be performed in
superposition against different players.

Second, what about classical protocols? One might think that here, super-
position attacks cannot be mounted. The argument would be that since honest
players are classical, they would “automatically” do a measurement of anything
they receive, thus forcing a collapse of any quantum state they are given. How-
ever, this may be a dangerous assumption in the future, considering the fact
that classical computing equipment becomes smaller and approaches the quan-
tum limit. If an adversary captures such a device containing a secret key, he may
be able to cool it down, for instance, and get some quantum effects to happen
during communication. On top of this, even honest players may in the future use
quantum computing and communication, but may sometimes need to execute a
classical protocol. Having to always do this on separate classical hardware would
be an unpleasant limitation.

So if we cannot be sure that hardware always behaves classically, perhaps an
easy solution would be to require explicitly in the protocol that every incoming
message is measured? However, such an idea seems problematic from a practical
point of view: an instruction to measure an incoming message makes little sense
to someone implementing the protocol on a classical machine, so we have to trust
that someone else responsible for the physical implementation will put equipment
in place to do the measurement. Moreover, making sure the measurement is
actually done is not as straightforward as one might think: most physicists today
subscribe to an interpretation of quantum mechanics where the belief is that the
wave function never actually collapses even when a measurement is done. Instead,
information is transferred to (a part of) the environment and this is experienced
as a collapse to a party who does not have access to the environment. In our
case, this means that if the adversary were to get access to this environment,
then from his point of view no measurement took place. Hence, equipment that
seeks to enforce that a measurement is done from the adversary’s point of view
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must in some sense keep information away from the adversary, and this may be
non-trivial if we are dealing with microscopic equipment.

In the face of these problems, we believe the most natural and elegant solution
is to ask for protocols that are secure regardless of whether any measurement is
performed on incoming messages, which exactly means we need security even if
the adversary has quantum access to the primitive.

Contributions of the paper. We first show that any classical secret-sharing scheme
that is perfectly secure with threshold t in the standard model is perfectly secure
against superposition attacks if and only if the adversary’s superposition is con-
strained to contain subsets of size at most t/2. If this condition is not satisfied,
not only does perfect security fail, we show examples where the adversary may
even learn the secret with certainty. We also consider quantum secret sharing
schemes and show that the same results hold for a large class of schemes derived
from classical linear secret sharing, this includes essentially all known schemes.

We then consider (classical) zero-knowledge protocols and first give strong
evidence that known protocols are not, in general, secure against superposition
attacks. We give such an attack on the well-known graph isomorphism proto-
col, showing how to extract from the prover the number of fixed points of the
prover’s secret permutation. A simple reduction shows that if this attack could
be simulated, then there is an efficient quantum algorithm computing the iso-
morphism between two graphs, as long as the isomorphism is unique. Thus the
protocol can only be zero-knowledge if graph isomorphism in most cases is easy
on a quantum computer.

We then use our result on classical secret-sharing to construct zero-knowledge
proofs for all of NP in the common reference string (CRS) model. While our pro-
tocol is classical, it is sound against a cheating unbounded quantum prover and
computational zero-knowledge against a quantum verifier, even if the verifier is
allowed a superposition attack2. Since our simulation is straight-line, the proto-
col is also secure under concurrent composition. We stress that our construction
does not make assumptions beyond what we need to protect against standard
attacks, nor is it less efficient than known constructions. Therefore this construc-
tion is an affirmative answer to our question above: we can indeed have protocols
that are secure, regardless of whether incoming messages are measured or not.

Finally, we consider classical multiparty computation and we define a UC-
style model for static and passive superposition attacks on classical MPC pro-
tocols. Given our result on secret-sharing schemes, it is natural to speculate
that classical MPC protocols that are secure against t corruptions, are secure
2 Since we use the CRS model, the reader may ask why we do not use existing protocols

for non-interactive zero-knowledge (NIZK), where the prover just sends a single
message to the verifier. In this way, the adversary would not get a chance to do
a superposition attack. However, the most general assumption under which NIZK
is known to be possible with an efficient prover is existence of one-way trapdoor
permutations. They in turn are only known to be realizable under assumptions that
are easily broken by a quantum adversary, such as factoring. Therefore we do not
consider NIZK a satisfactory solution.
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against superposition attacks corrupting t/2 players. The situation turns out to
be more complicated, however: We show that for the model that gives the adver-
sary the most power (and hence is the most hostile to the simulator), simulation
based security is not possible at all. However, putting a natural constraint on
the adversary, we are able to give a characterization of a class of protocols that
can be shown secure, though not necessarily with efficient simulation. We show
that this class contains non-trivial protocols, where by non-trivial, we mean that
although the protocol is secure against a classical attack, we can show that it
cannot be proved secure against a superposition attack by simply running the
classical simulator in superposition. The simulator that does exist is in some
sense “more quantum”.

Whether more general positive results hold in this constrained model remains
an open question. Likewise, the very natural question of security of quantum
multiparty computation protocols against superposition attacks remains open.
Note, however, that existing work on quantum multiparty computation is typi-
cally based on quantum secret sharing, where the adversary’s choice of subset to
corrupt is classical. The negative part of our result on secret sharing described
above shows that such protocol are not necessarily secure against superposition
attacks as they stand.

2 Preliminaries

We will model players in protocols in two different ways: when we are not inter-
ested in computational limitations on parties, a player will be specified by a series
of unitary transforms where the ith transform is done on all qubits available to
the party, after the ith message has been received (in the form of a quantum
register), and then some designated part of the storage is sent as the next out-
going message. We are limiting ourselves to perfect unitary transformation of
the party’s register because we are exactly considering the situation where an
attacker manages to prevent coupling between the party and the environment.

In cases where we want to bound the computational complexity of a player,
we consider players to be an infinite family of interactive quantum circuits, as
in the model from [FS09], and then the complexity is the circuit size.

2.1 Running Functions in Superposition

Consider any function, f : X ≤ Y and a register of qubits, |ψ⊂ =
∑

x

αx|x⊂|0⊂ →
HX ≡ HY , where dim(HX) = |X| and dim(HY ) = |Y |. To run f on |ψ⊂
means to apply the unitary transformation, Uf , such that Uf

∑

x

αx|x⊂|0⊂ =
∑

x

αx|x⊂|f(x)⊂. In general the register in HY , called the response register, can

contain any superposition of values, not just 0. In this case, we have that,
Uf

∑

x,a

αx,a|x⊂|a⊂ =
∑

x,a

αx,a|x⊂|f(x) ∈ a⊂ where ∈ is the bitwise xor.
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3 Secret Sharing

In (classical) secret sharing n parties are sharing some secret value s → S using
randomness r → R, where S and R are the sets of possible secrets and ran-
domness. We name the parties P1, . . . , Pn. Let [n] = {1, . . . , n}. Each party,
Pi, receives a share vi(s, r) → {0, 1}k, also called his private view . That is,
vi : S × R ≤ {0, 1}k.

For A ≥ [n], let vA(s, r) = {vi(s, r)}i∈A be the string containing the con-
catenation of views for parties Pi with i → A. For convenience in the following
we assume that each such string is padded, so that they have the same length
regardless of the size of A. That is, vA : S×R ≤ {0, 1}t. An adversary structure
G is a family of subsets G ≥ 2[n]. A secret sharing scheme is perfectly secure
against classical G-attacks if for any A → G, the distribution of vA(s, r) does
not depend on s. The adversary structure of the secret sharing scheme is the
maximal F ⊆ 2[n] for which the scheme is perfectly secure against F attacks. We
will only consider so-called perfect secret-sharing schemes, where it holds for all
A ∩→ G that vA(s, r) uniquely determines the secret s. I.e., in a perfectly secure,
perfect secret-sharing scheme a set of shares either carry no information on the
secret or fully determines the secret.

We will model any passive attack on the scheme as a one-time query to an
corruption oracle. The corruption oracle for a specific run of a secret sharing
scheme O(s, r, A) = vA(s, r) is the function that for a specific choice of secret,
randomness and set of parties, returns the private view of those parties. That
is, O : S ≡ R ≡ F ≤ {0, 1}t.

3.1 Two-Party Bit Sharing Example

Before we present the full model for secret sharing we start with a small example.
We consider the case of 2 parties sharing a single bit, b → {0, 1}, using a random
bit, r → {0, 1}. Here [n] = {1, 2}, F = {(1), (2)}, v1(b, r) = b ∈ r, v2(b, r) = r.

This scheme is of course secure against a classical attack, which we can model
by giving an adversary one-time access to an oracle that will return one share (r
or r ∈ b) on request. However, it is well known from the Deutch-Jozsa algorithm
that given quantum access to such an oracle, one can compute the xor of the two
bits from only one query. Hence the scheme is not secure against a superposition
attack. In the following we consider what happens in the general case.

3.2 Model for Secret Sharing

We will now give the full technical description of the model for superposition
attacks on general secret sharing. To do this we first consider the state spaces
needed to run the protocol and the attack on the protocol. First is the space
that contains the shares for all the parties, Hparties. The state in the register for
this space is unchanged throughout the attack and is

|parties⊂p =
∑

s∈S,r∈R

←
ps

←
pr|s, r, v[n](s, r)⊂p =

∑

s∈S,r∈R

←
ps

←
pr|s, r⊂

n⊗

i=1

|vi(s, r)⊂,
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where |s, r⊂ is the purification of the secret and randomness choice. This is purely
for technical reasons and does not matter for the adversary as he never sees it
(and hence they might as well be considered measured). Secondly is the space for
the environment, Henv, which the adversary can use to choose his query and use
as potential auxiliary register. The initial state for the environment is a general
(pure) state,

|ψ⊂e =
∑

x

αx|x⊂e → Henv ,

where x is in some set of arbitrary, but finite size. We will omit this for readability.
Finally is the space holding the adversary’s query to the corruption oracle,
Hquery. This is initially a ‘blank’ state,

|ω⊂q = |0, 0⊂q → Hquery.

The space for the entire model is hence, Htotal = Hparties ≡Henv ≡Hquery, and the
initial state is,

|init⊂t =
∑

s∈S,r∈R

←
ps

←
pr|s, r, v[n](s, r)⊂p ≡

∑

x

αx|x⊂e ≡ |0, 0⊂q → Htotal .

The attack will be defined by two operations and an adversary structure, F .
First the adversary needs to construct his query for the oracle. This includes
choosing the superposition of subsets he will corrupt and associated values for
the response registers. This is an arbitrary unitary operation. We will denote it,
Uadv,F
query ,

Uadv,F
query : Henv ≡ Hquery ≤ Henv ≡ Hquery .

After this unitary operation the state is

|query⊂t = Uadv,F
query |init⊂t

=
∑

s∈S,r∈R

←
ps

←
pr|s, r, v[n](s, r)⊂p ≡

∑

x,A∈F,a∈{0,1}t

αx,A,a|x⊂e ≡ |A, a⊂q

where we assume it is the identity on Hparties. Next the oracle, O(s, r, A), is
run. Let

UO : Hparties ≡ Hquery ≤ Hparties ≡ Hquery

denote the unitary applying this function. The state afterwards is UO|query⊂t,
which equals

∑

s∈S,r∈R

←
ps

←
pr|s, r, v[n](s, r)⊂p ≡

∑

x,A∈F,a∈{0,1}t

αx,A,a|x⊂e ≡ |A, a ∈ vA(s, r)⊂q

where we assume UO is padded with appropriate identities. Consider the final
state the adversary sees for a specific secret, s,

ρadv,F
s =

∑

r∈R
pr

∣∣ψadv,F
r ⊂∪ψadv,F

r

∣∣ ,

where |ψadv,F
r ⊂ =

∑

x,A∈F,a∈{0,1}t

αx,A,a|x⊂e ≡ |A, a ∈ vA(s, r)⊂q.
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Definition 1. A secret sharing scheme S is perfectly secure against superposi-
tion F-attacks if, and only if, for all unitary matrices, Uadv,F

query : Henv ≡ Hquery ≤
Henv ≡ Hquery and all possible pairs of inputs, s, s∼ → S it holds that ρadv,F

s =
ρadv,F

s∗ .

3.3 (In)security Against Superposition Attacks on Classical
Secret-Sharing

For an adversary structure F , we define F 2 = {A | ∅B,C → F : A = B ∼ C}.

Theorem 1. Let G be the classical adversary structure for S. S is perfectly
secure against superposition F-attacks if and only if F 2 ⊆ G.

Proof. For the forward direction, consider the adversary’s final state,

ρadvs =
∑

r∈R
pr |ψadv

r ⊂∪ψadv
r | ,

which equals
∑

r,x,x∗,A,A∗,a,a∗
prαx,A,aα∗

x∗,A∗,a∗ |x⊂e∪x∼|e ≡ |A, a ∈ vA(s, r)⊂q∪A∼, a∼ ∈ vA∗(s, r)|q .

Now, for any fixed A, A∼, a, a∼ and s, consider the matrix
∑

r∈R
pr|A, a ∈ vA(s, r)⊂q∪A∼, a∼ ∈ vA∗(s, r)|q.

The crucial observation now is that this matrix is in 1-1 correspondence with the
joint distribution of vA(s, r) and vA∗(s, r). Namely, its entries are indexed by pairs
of strings (α, β), where α, β are strings of the same length. And furthermore the
(α, β)’th entry is the probability that the events vA(s, r) = α∈a and vA∗(s, r) =
β ∈ a∼ occur simultaneously, where the probability is taken over a random r.
Now, if F 2 ⊆ G, we have that S is perfectly secure against classical F 2-attacks.
Therefore the joint distribution of vA(s, r) and vA∗(s, r) does not depend on s,
consequently each matrix

∑

r∈R
pr|A, a ∈ vA(r, s)⊂q∪A∼, a∼ ∈ vA∗(s, r)|q

is independent of s as well. Hence ⊕s, s∼ → S : ρadv,F
s = ρadv,F

s∗ as required.
For the only-if part, assume for contradiction that F 2 ∩⊆ G, i.e., there exist

A0, A1 such that A0 ∼ A1 ∩→ G. It follows that a secret shared using S is
uniquely determined from shares in A0 ∼ A1. Then consider the query |ωα⊂ =
(|A⊂|0⊂ + |A∼⊂|0⊂)/←

2. By the same computation as above, we see that ρadvs

contains a submatrix of form
∑

r∈R|aA ∈ vA(s, r)⊂∪aA∗ ∈ vA∗(s, r)|, that corre-
sponds to the joint distribution of shares in A and A∼. But since the secret is
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uniquely determined from these shares, it follows that this submatrix is differ-
ent for different secrets, and hence we get that there exists a measurement with
non-zero bias towards the secret, and so S is not perfectly secure against super-
position F -attacks. This is exactly the result we saw in the small example in
Sect. 3.1. √�
Alternative models for secret sharing. Here we take a closer look at how the
response register in handled during a superposition attack: When the adversary
runs a classical component in superposition, and sends it a message, then the
reply will in general be a superposition, nevertheless the reply might be com-
puted in different ways. In general quantum information processing, the standard
assumption is that the result is xor’ed into a response register a supplied along
with the input, e.g., if the component computes a function f , then on input |x⊂|a⊂,
the output is |x⊂|a ∈ f(x)⊂. This ensures that the components acts unitarily when
the input is quantum. We call this the supplied response register model.

When considering the case of an adversary attacking a protocol one may
be able to argue that the adversary will not have enough control to be able to
decide the a priori content of the response register. It may be more reasonable
to assume that the component the adversary talks to will create the response
register and return it to the adversary. We model this setting of created response
registers by restricting the more general setting by allowing only a = 0, in which
case the adversary will always receive |x⊂|f(x)⊂. Note that Theorem 1 applies in
this setting as well.

3.4 Attacks on Secret Sharing

Theorem 1, tells us that we cannot have perfect security if the condition F 2 ⊆ G
is violated, but nothing about how much information the adversary can actually
gain on the secret in this case. Of course, if F ∩⊆ G, the adversary can trivially
learn the secret. But if F ⊆ G one might hope that the adversary only learns
a small amount of information, and even that this could become negligible by
increasing the amount of randomness used to create the shares. However, in the
lemma below we show that, under a simple assumption on the secret sharing
scheme, an attacker can distinguish between two possible secrets with consid-
erable bias. The attack works even in the restricted setting of created response
registers. The proof is found in the full paper [DFNS11].

Lemma 1. Let G be the classical adversary structure for S. If there exist two
subsets, A0, A1 → G such that (1) A0 ∼ A1 /→ G and (2) any secret, s → S, com-
bined with the shares in A0 (A1) uniquely determine the choice of randomness,
r → R, then the following holds.
For any two secrets s, s∼ → S : s ∩= s∼, there exists a query (with a = 0) that will
allow an adversary to distinguish between s and s∼ with probability pguess, where
pguess ≥ 3

4 .

An example of such a scheme is a Shamir secret sharing scheme that is clas-
sically secure against t corrupted players. Here any subset of t players combined
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with the secret will give t + 1 points on a polynomial of degree at most t and
hence uniquely determine the choice of randomness.

4 Quantum Secret Sharing

In this section we study the security of quantum secret sharing against super-
position attacks. The situation turns out to be more complicated than for the
classical case, and security depends on the exact model for what the adversary
is allowed to do.

The model we will use for quantum secret sharing is that a secret is a quantum
state |sec⊂ =

∑
s∈S

αs|s⊂, i.e., some superposition over the possible classical
choices of secret. The secret sharing scheme is then a unitary transform that
maps each basis state |s⊂ plus an ancilla of appropriate size to a state

|Φs⊂ =
∑

v1,...,vn∈{0,1}k

αv1,...,vn
|v1⊂ · · · |vn⊂ ,

where we think of the content of the i’th register as the share of the i’th player.
A quantum secret sharing scheme is secure against adversary structure F , if any
subset of shares corresponding to a subset A → F contains no information on
the secret state, but any subset of shares B where B ∩→ F allows reconstruction
of the secret. It follows from the no-cloning theorem that security can only hold
if F has the property that for any B ∩→ F , the complement B̄ is in F .

An example of quantum secret sharing can be derived from Shamir’s secret
sharing scheme. Here we assume that n = 2t + 1, and the adversary structure
contains all subsets of size at most t, and S = Fp for the finite field Fp. We then
define |Φs⊂ = 1∪

M

∑
f∈Ps

|f(1)⊂ · · · |f(n)⊂, where Ps is the set of polynomials of
degree at most t with f(0) = s, and M the number of such polynomials.

There are several ways to define what it means that an adversary gets access
to some of the shares. The simplest form of attack we consider is called a share
capture attack, where the adversary essentially steals a subset of the shares (or
subsets of shares in superposition). Since it seems natural to assume that some
evidence of the absence of shares would be left after this, we assume that the
players whose shares are captured are left with erasure symbols ⊥ instead of
shares. Some notation to describe this more formally: we will let v = v1, . . . , vn

in the following, and |vA⊂ will stand for the basis state |vA⊂ = |w1⊂ · · · |wn⊂,
where wi = vi if i → A and wi = ⊥ otherwise. Likewise, for the Shamir based
example, we let |f(A)⊂ = |u1⊂ · · · |un⊂ where ui = f(i) if i → A and ui = ⊥
otherwise.

In an F -share capture attack, a query
∑

A∈F αA|A⊂|⊥⊂ · · · |⊥⊂ is prepared,
where the last part of the register will contain the captured shares. Then a
unitary transform U is executed on the shares and the adversary’s query. U is
specified by the following action on basis states for shares and player subsets:

U(|v1⊂ · · · |vn⊂|A⊂|⊥⊂ · · · |⊥⊂) = |vĀ⊂|A⊂|vA⊂ .
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We define U to act as the identity on all basis vectors not involved in the above
expression. This clearly makes U be unitary. In the actual attack,

U(|Φs⊂
∑

A∈F

αA|A⊂|⊥⊂ · · · |⊥⊂)

is computed and the adversary is given the last two registers, containing the cor-
rupted set(s) and the captured shares. We say that the scheme is secure against
F -share capture attacks if it always holds that the state the adversary gets is
independent of |s⊂. By linearity, security trivially extends to superpositions over
different |s⊂’s.
Proposition 1. Any quantum secret sharing scheme that is secure for adversary
structure F is also secure against F -share capture attacks.

The proof is straightforward and is found in the full paper [DFNS11].
A more interesting result emerges if we allow the adversary slightly more

power. We will consider what we call a capture-and-replace attack. Here, the
adversary prepares a query as before and U is executed. Now, the adversary
does some local computation. For convenience and without loss of generality for
our result, we assume that a unitary transform V is applied by the adversary to
the shares captured |vA⊂a (where a denotes the registers held by the corrupted
players) together with an ancilla in state |0⊂z: V |vA⊂a|0⊂z = |φA⊂az. Finally, the
adversary keeps register Z before U is executed again on the remaining registers.
Note that U = U†, so the second transformation puts the shares back in place. It
seems hard to argue that the adversary would be limited to only one application
of U , so there is good motivations to consider this attack. We talk about F-
capture-and-replace attacks in the same way as above. It is easy to see that
capture attacks are a special case of capture-and-replace attacks. In this more
general case however, it turns out that superposition attacks help the adversary,
and for the Shamir based scheme, we get a result similar to what we have for
classical secret sharing.

Theorem 2. Let G be the adversary structure containing sets of at most t,
for which the Shamir based quantum secret sharing scheme is perfectly secure.
Then, the scheme is perfectly secure against F -capture-and-replace attacks in
superposition if and only if F 2 ⊆ G.

The proof is similar to the proof of Theorem 1 and can be found in the full
paper [DFNS11]. The theorem generalizes easily to any quantum secret sharing
scheme derived from a classical linear scheme. We conjecture it generalizes to
any quantum scheme. However, the only other quantum schemes we are aware of
are schemes that use quantum shares for classical data. For instance, the 4 Bell-
states can be used to share 2 classical bits among two players who receive only
one qubit each. This scheme can also be broken under a superposition attack.
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5 Zero-Knowledge

5.1 An Attack Against the Graph Isomorphism Protocol

Consider the well-known protocol for proving graph isomorphism: The common
input is two graphs (G0, G1) on n nodes, where the prover P knows a permuta-
tion π such that π(G0) = G1. P will send to the verifier V a graph H = σ(G0)
where σ is a random permutation on n nodes. V sends a random bit b, and P
returns the permutation ρ = πbσ−1. Finally V checks that ρ(H) = Gb.

This protocol is perfect zero-knowledge against a classical as well as a quan-
tum verifier, but in the quantum case the proof assumes that the verifier is
limited to sending a classical bit b as challenge to the prover (see [Wat06] for a
precise definition of zero-knowledge when the verifier is quantum). We consider
what happens if a superposition attack is allowed, and we give a concrete attack
that allows to extract non-trivial information from the prover. We will only con-
sider input graphs for which the permutation π is uniquely defined from G0, G1.
This is mostly for simplicity, but note also that it is well-known that deciding
whether the permutation is unique is equivalent to deciding graph isomorphism
in the general case. Hence, assuming the latter is hard, algorithms trying to
compute an isomorphism between G0 and G1 are unlikely to have an easier time
when the permutation is unique.

To analyze what happens, we need to assume a concrete way in which P
communicates his permutation to V in the final message. We will assume a nat-
ural method, namely to send ρ, P sends ρ(0), . . . , ρ(n − 1) in the classical case.
We generalize this to the quantum case in the standard way: V supplies a register
|b⊂|i0⊂0 · · · |in−1⊂n−1 and |b⊂|i0 + ρb(0)mod n⊂0 · · · |in−1 + ρb(n − 1)mod n⊂n−1,
in returned, where ρb is the correct answer to b. By adding the answer into
the response register, we ensure that the operation of P is unitary.

The proof of the theorem below works by first constructing a concrete attack
that the verifier might execute and concluding that this attack would allow to
decide if the prover’s secret permutation has a fixed point or not. Then, if a
simulator existed for such a verifier, a simple reduction3 allows us to get the full
isomorphism between the graphs in all cases where the permutation in question
is unique:

Theorem 3. If the graph isomorphism protocol is zero-knowledge against super-
position attacks, then graph isomorphism can be computed efficiently by a quan-
tum algorithm for all inputs where the permutation in question is uniquely defined
by the input graphs.

Proof. We describe the attack a verifier might execute. We first specify the state
we will send to P :

1←
2

(|0⊂ + |1⊂) Fn(|1 + r mod n⊂0) Fn(|1⊂1) · · · Fn(|1⊂n−1) ,

3 We are grateful to Elad Verbin for pointing this reduction out to us.
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where Fn is the quantum Fourier transform over Zn and r is a random non-zero
value in Zn. The state can also be written as

1←
2

(|0⊂Fn(|1 + r mod n⊂0) Fn(|1⊂1) · · · Fn(|1⊂n−1) +

|1⊂Fn(|1 + r mod n⊂0) Fn(|1⊂1) · · · Fn(|1⊂n−1)) .

To see what happens to this state under the operation done by P , consider the
k’th register of those where Fn is applied, in the summand corresponding to
challenge bit b. Before P ’s operation, it is in state

Fn(|ik⊂k) =
n−1∑

j=0

ωikj
n |j⊂k ,

where ωn is the principal n’th root of unity and i0 = 1 + r mod n and ik = 1
otherwise. After the operation, we have the new state

n−1∑

j=0

ωikj
n |j + ρb(k)⊂k =

n−1∑

j∗=0

ωik(j
∗−ρb(k))

n |j∼⊂k

= ω−ikρb(k)
n

n−1∑

j∗=0

ωikj∗
n |j∼⊂k = ω−ikρb(k)

n Fn(|ik⊂k) ,

by a simple substitution of variables. Plugging this into the above overall state,
we get that the state P returns can be written as

1←
2

· (|0⊂ ω−(1+r)ρ0(0)
n Fn(|1 + r mod n⊂)ω−ρ0(1)

n Fn(|1⊂) · · · ω−ρ0(n−1)
n Fn(|1⊂)

+ |1⊂ ω−(1+r)ρ1(0)
n Fn(|1 + r mod n⊂)ω−ρ1(1)

n Fn(|1⊂) · · · ω−ρ1(n−1)
n Fn(|1⊂)) .

Collecting some terms, we get

1←
2

· (|0⊂ ω
−rρ0(0)−

∑

k ρ0(k)
n Fn(|1 + r mod n⊂)Fn(|1⊂) · · · Fn(|1⊂)

+ |1⊂ ω
−rρ1(0)−

∑

k ρ1(k)
n Fn(|1 + r mod n⊂)Fn(|1⊂) · · · Fn(|1⊂)) .

Note that since ρ0, ρ1 are permutations, we have
∑

k

ρ0(k) =
∑

k

ρ1(k) = n(n − 1)/2.

Using this and the fact that ρ0 = σ−1, ρ1 = πσ−1, we get that our state is of
form

1←
2
ω−n(n−1)/2−rσ−1(0)

n (|0⊂ + ωr(σ−1(0)−π(σ−1(0)))
n |1⊂) ≡

Fn(|1 + r mod n⊂)Fn(|1⊂) · · · Fn(|1⊂) .
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In the final step, we measure the first bit of the state in the basis

(|0⊂ + |1⊂)/
←

2, (|0⊂ − |1⊂)/
←

2.

Call the measurement results 0 respectively 1.
Let us consider the distribution we can expect of the measurement result:

σ−1(0) is uniform in Zn. Furthermore, it is clear that r(σ−1(0) − π(σ−1(0))) is
0 if σ−1(0) is a fixed point of π and uniform in Z

∗
n otherwise. It follows that

the distribution of the final measurement result depends only on the number of
fixed points of P ’s secret π.

Furthermore, if σ−1(0) is a fixed point of π, we will measure 0 with proba-
bility 1, if not, we get result 1 with non-negligible probability. It follows by a
Chernoff bound that in a polynomial number of queries we can decide except
with negligible error probability whether π has a fixed point or not. In fact, it
is not hard to see that the distribution of the measurement result for different
numbers of fixed points have non-negligible statistical distance, so in a polyno-
mial number of queries one can even get a reliable estimate of the number of
fixed points of π.

Now, if the protocol was zero-knowledge in our model, a simulator would exist
that on input any two isomorphic graphs would create a state indistinguishable
from the state our attack creates with the help of the prover. Thus, running the
simulator a sufficient number of times followed by the measurements described
above, we get an oracle that tells us whether the permutation that takes one
graph to the other has a fixed point.

Using such an oracle, we can compute the permutation: let G∼ = θ(G1) for
a random permutation θ and ask the oracle if the permutation mapping G0 to
G∼ has a fixed point. If the answer is no, we know that, e.g., θ(π(0)) ∩= 0 or
equivalently π(0) ∩= θ−1(0). Since we know θ, we can exclude one possibility for
π(0). Repeating this, we eventually find π(0) and can compute other values of π
in the same way. This terminates in polynomial time since a random permutation
has no fixed points with constant probability (about 1/e), and if this happens,
the value we can exclude is uniform among the potential values. √�

5.2 A Superposition-Secure Zero-Knowledge Protocol

In this section, we present a zero-knowledge proof for any NP problem in the
common reference string model. The proof is sound for an unbounded prover
(quantum or not) and is computationally zero-knowledge for a polynomially
bounded quantum verifier, even if superposition attacks are allowed.

For the protocol, we need a commitment scheme with special properties: we
require a keyed commitment scheme Commitpk, where the corresponding pub-
lic key pk is generated by one of two possible key-generation algorithms: GH or
GB. For a key pkH generated by GH, the commitment scheme CommitpkH is per-
fectly hiding, whereas the other generator, GB, produces a key pkB, such that
CommitpkB is unconditionally binding. Furthermore, we require that keys pkH
and pkB produced by the two generators are computationally indistinguishable,
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for any family of polynomial size quantum circuits. We call such a commitment
scheme a dual-mode commitment scheme. As a candidate for implementing such
a system, we can use a construction proposed in [DFS04]. That construction can
be based on any decision problem for which there is a perfect honest-verifier
zero-knowledge Σ-protocol, and where it is hard (for a quantum adversary) to
distinguish yes-instances from no-instances. A plausible candidate for such a
problem is the code equivalence problem (see [DFS04] for more details)4.

5.3 The Model

We now describe the framework for our protocol: the proof system is specified
w.r.t. a language L, and we have a prover P and a verifier V , both are assumed
classical (when playing honestly). They get as input a common reference string
CRS chosen with a prescribed distribution σ and a string x. P and V interact
and at the end V outputs accept or reject. The first two properties we require
are standard: Completeness: if x → L and P, V follow the protocol, V outputs
accept with probability 1. Soundness: if x ∩→ L (but CRS is chosen according to
σ) then for any prover P ∗, V outputs accept with probability negligible (in the
length of x) when interacting with P ∗ on input x and CRS.

For zero-knowledge, we extend the capabilities of a cheating verifier V ∗ so it
may do a superposition attack. For simplicity, we give our definition of superpo-
sition zero-knowledge only for 3-move public-coin protocols, i.e., conversations
are assumed to have the form (a, e, z), where e is a random challenge issued by
the verifier. It is not hard to extend the definition but the notation becomes
more cumbersome. First, V ∗ is assumed to be a quantum machine, and the
protocol is executed as follows: V ∗ receives x,CRS and P ’s first message a.
Now, instead of sending a classical challenge e, V ∗ is allowed to send a query∑

e,y αe,y|e⊂|y⊂. We assume the prover will process the query following his normal
algorithm in superposition, so the verifier will get the same two registers back,
in state

∑
e,y αe,y|e⊂|y + z(x, e, ρ)⊂, where z(x, e, ρ) is P ’s response to challenge e

on input x and internal randomness ρ. Finally, V ∗ outputs 0 or 1. Let preal(x) be
the probability that 1 is output. We say that the proof system is superposition
zero-knowledge if there exists a polynomial time quantum machine, the simu-
lator S, such that the following holds for any cheating verifier V ∗ and x → L:
S interacts with V ∗ on input x, and we let psim(x) be the probability that V ∗

outputs 1. Then |preal(x) − psim(x)| is negligible (in the length of x).
Note that, as usual in the CRS model, S only gets x as input and may

therefore generate the reference string itself.
4 An alternative construction can be derived from the public-key encryption scheme

of Regev [Reg05], which is based on a worst-case lattice assumption. However, the
resulting commitment scheme in unconditional hiding mode is only statistically
secure (rather than perfect). To use this scheme in our protocol we would need a
version of Theorem 1 that holds for secret-sharing schemes with statistical security.
We believe such a result is true, but do not have a proof at the time of writing.
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5.4 The Protocol

We now describe the basic ideas behind our protocol: we will let the CRS con-
tain the following: pkB, c = CommitpkB(0), pkB∼, where the public keys are both
generated by GB. Then, using a standard trick, we will let P show that either
x → L or c contains a 1. Since of course the latter statement is false, P still needs
to convince us that x → L. The simulator, on the other hand, can construct a
reference string where c does contain 1 and simulate by following the protocol.
The CRS will look the same to the verifier so we just need that the change of
witness used is not visible in the proof, i.e., the proof should be so-called wit-
ness indistinguishable. In this way, we can simulate without rewinding, and this
allows V ∗ to be quantum.

However, standard techniques for witness indistinguishability are not suf-
ficient to handle a superposition attack. For this, we need to be more spe-
cific about the protocol: a first attempt (which does not give us soundness)
is that P will secret-share his witness w (where for the honest prover, w will
be a witness for x → L), to create shares s1, . . . , sn where we assume the
scheme has t-privacy. Then P ’s first message is a set of commitments a =
(CommitpkB∗(s1, r1), . . . , CommitpkB∗(sn, rn)). The verifier’s challenge e will point
out a random subset of the commitments, of size t/2, and the prover opens the
commitments requested. Intuitively, this is zero-knowledge by Theorem 1: since
we limit the number of shares the verifier can ask for to half the threshold of the
secret sharing scheme, the state V ∗ gets back contains no information on the
secret w.

On the other hand, this protocol is of course not sound, the verifier cannot
check that the prover commits to meaningful shares of anything. To solve this,
we make use of the “MPC in the head” technique from [IKOS09]: Here, we make
use of an n-party protocol in which the witness w is secret-shared among the
players, and a multiparty computation is done to check whether w is correct with
respect to the claim on the public input, namely in our case x → L or the c from
the CRS contains 1. Finally all players output accept or reject accordingly. It is
assumed that the protocol is secure against active corruption of t players where
t is Θ(n). We will call this protocol πL,CRS in the following. Several examples
of suitable protocols can be found in [IKOS09]. In their construction, the prover
emulates an execution of π in his head, and we let vπL,CRS

(i, ρ) denote the view
of virtual player i, where ρ is the randomness used. The prover then commits to
vπL,CRS

(i, ρ), for i = 1, . . . , n and the verifier asks the prover to open t randomly
chosen views that are checked for consistency and adherence to πL,CRS . It is
shown in [IKOS09] that if no valid witness exists for the public input, then the
verifier will detect an error with overwhelming probability.

Now, observe that the process of emulating π can be thought of as a secret
sharing scheme, where the prover’s witness w is shared and each vπ(i, ρ) is a
share: indeed any t shares contain no information on w by t-privacy of the
protocol. Therefore combining this with our rudimentary idea from before gives
us the solution.
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Superposition-Secure Zero-Knowledge Proof for any NP-Language L.
The public input is x, of length k bits. The distribution σ generates the common
reference string as pkB, c = CommitpkB(0), pkB∼, where the public keys are both
generated by GB on input 1k.

1. The prover P emulates πL,CRS to generate vπL,CRS
(i, ρ) and sends to the

verifier V : CommitpkB∗(vπL,CRS
(i, ρ), ri), for i = 1, . . . , n.

2. V sends a challenge e designating a random subset of the commitments of
size t/2.

3. P opens the commitments designated by e, V checks the opened views accord-
ing to the algorithm described in [IKOS09], and accepts or rejects according
to the result.

Theorem 4. If (GB,GH, Commit) form a secure dual-mode commitment scheme,
then the above protocol is complete, sound and superposition zero-knowledge.

Proof. Completeness is trivial by inspection of the protocol. Soundness follows
immediately from the soundness proof in [IKOS09], we just have to observe
that the fact that the prover opens t/2 and not t views makes no difference, in
fact the proof holds as long as Θ(n) views are opened. For zero-knowledge, we
describe a simulator S: It will generate a common reference string as pkH, c =
CommitpkH(1), pkH∼ where both public keys are generated by GH on inout 1k. It
then plays the protocol with V ∗, answering its quantum queries by following the
protocol. This is possible since c now contains a 1, so S knows a valid witness.
To show that V ∗ cannot distinguish the simulation from the protocol, we define
series of games

Game 0 The protocol as described above, but where P talks to V ∗ doing a
superposition attack.

Game 1 As Game 0, but the CRS is generated as pkH, c = CommitpkH(0), pkH∼,
where both public keys are generated by GH.

Game 2 As Game 1, but the CRS is generated as pkH, c = CommitpkH(1), pkH∼.
Game 3 As Game 2, but P uses as witness the fact that c contains a 1.

Now, Game 0 and Game 1 are computationally indistinguishable by assumption
on the dual-mode commitment scheme. Game 1 and Game 2 are perfectly indis-
tinguishable by the fact that commitments done using pkH are perfectly hiding.
Game 2 and Game 3 are perfectly indistinguishable by Theorem 1 and the fact
that commitments done using pkH∼ are perfectly hiding. More concretely, note
that if you take a secret-sharing scheme meeting the conditions of Theorem 1
and you augment each share with a commitment, under a perfectly hiding com-
mitment scheme, to all the other shares, then you obtain a secret-sharing scheme
that still meets the conditions of Theorem 1 Then you note that the protocol can
be seen as using such an augmented secret-sharing scheme where the prover’s
witness is the secret, so we can apply Theorem 1 to conclude that Games 2 and
3 cannot be distinguished. Finally, note that Game 3 is exactly the same game
as the simulation. √�
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6 Multiparty Computation

We give a short summary of our results on multiparty computation. The details
can be found in the full paper [DFNS11]. To consider the security of multiparty
computation under superposition attacks we define a UC-style model that cap-
tures security under static and passive attacks. We use a notion where the envi-
ronment chooses inputs to and gets outputs from the parties, and also attacks
the protocol, i.e., he may issue a query |q⊂ where he asks to corrupt a subset
of players, possibly several in superposition. In the real process, he gets directly
|q⊂ back where the views of the corrupted players have been added in, including
their inputs and outputs, their randomness and all messages sent and received.
In the ideal process, the query goes to a simulator, who sends it to an ideal
functionality. The functionality only adds in the inputs and outputs of corrupt
players and the simulator must patch in views that match. Finally the environ-
ment gets the patched view back, and we now demand that its final states in the
real and the ideal process are indistinguishable. Again we can make a distinction
between created response registers, where the views are returned in newly cre-
ated registers, and supplied response registers, where the environment provides
the registers in which the (patched) views should be returned. This gives rise
to two distinct MPC models, which we call the CRR model and the SRR model
below.

Our first result is that in the SRR model, one can construct settings where
simulation seems to be impossible for purely technical reasons. Consider the
dummy 4-party function d(x1, x2, x3, x4) = (λ, λ, λ, λ), where λ is the empty
string, i.e., the function which gives no outputs on any of its inputs. Consider
protocol δ, where parties P2, P3, P4 runs as follows: On input xi, output λ and
terminate, and where P1 runs as follows: On input x1, create a random secret
sharing (s1, . . . , s4) of x1, send si to Pi and then output λ and terminate. If
we pick a secret sharing scheme which classically tolerates 2 corrupted parties,
then the secret sharing scheme is secure against corruption of 1 party under
superposition attacks. We would therefore expect the protocol δ to be a secure
implementation of d against corruption of 1 party under superposition attacks.
It turns out that δ is not a secure implementation of d against 1 corruption in
the SRR model. The reason is that the environment can put the supplied register
in a uniform superposition over all values. Then when the inputs and outputs
are added to the register by the ideal functionality it will have the same state
regardless of x1. So the simulator gets no information on x1 when P1 is corrupted
and hence cannot simulate the shares that P1 sends. The simulator could try to
process the supplied register to get rid of the problem, but for every simulator
there exists an environment that can anticipate what the simulator will do and
can invert its operation. The details are in the full paper [DFNS11].

We then show that in the CRR model, δ is indeed a secure evaluation of d
against corruption of 1 player, as we would expect; The details are in the full
paper [DFNS11]. Together, these results suggest that the “correct” model is the
CRR model.
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We then proceed to investigate general feasibility of secure function evalua-
tion against superposition attacks in the CRR model. This problem, however,
turns out to be far from trivial. As an example of this, suppose the protocol
in question is classically secure against corruptions of sets of size t. Now, since
the protocol is a classical process that in our model is run in superposition over
the inputs, one could expect that we could get a simulator for a superposition
attack with t/2 corruptions by running the classical simulator in superposition.
This turns out to be false. Specifically, we show that even though the above
protocol δ is a classical secure implementation of d against t = 2 corruptions, it
cannot be proven superposition attack secure against t/2 = 1 corruptions using
a simulator which consists of running a classical simulator in superposition. The
problem seems to come from the fact that in the MPC model, also the dealer,
P1, may be corrupted5, which can be used to force the way to simulate the shares
of different corrupt subsets to be inter-consistent, which in turn is the same as
being able to simultaneously simulate a corruption of all other players than the
dealer. But this is impossible, as they have three shares, which is sufficient to
determine x1. The details are in the full paper [DFNS11].

Not all hope is lost, however. The fact that simple classical simulation in
superposition is insufficient to prove superposition attack security does not rule
out simulators which are “more quantum” than this. And, indeed, we can show
that a large class of protocols can in fact be proven superposition attack secure,
although the simulator may not always be efficient. For deterministic functions
f we give, in classical terms, a complete characterization of the class of classical
MPC protocols which securely evaluate f under superposition attack.

The characterization goes as follows. Let f be a deterministic function, let
π be a protocol, let A ⊆ {1, . . . , n} denote a subset of corrupted parties, let
s = (s1, . . . , sn) denote a vector of inputs for π and let S denote the set of
possible input vectors. For two input vectors s and s∼ let Fs,s∗ = {A → F |sA =
s∼

A ∧ fA(s) = fA(s∼)} be the subset of allowed corruptions where the corrupted
parties have the same inputs and outputs in f . Finally, let r = (r1, . . . , rn)
denote a vector of random inputs for π and let R denote the space of such
vectors. Then it holds that the protocol π is a perfectly secure evaluation of f
against superposition F -attacks in the CRR model iff it is correct and there exist
a family of permutations, {πs,s∗,A : R ≤ R}s,s∗∈S,A∈Fs,s∗ with the following two
properties,

1. ⊕s, s∼ → S,⊕A → Fs,s∗ ,⊕r → R : |vA(s, πs,s∗,A(r))⊂ = |vA(s∼, πs∗,s,A(r))⊂.
2. ⊕s, s∼, s∼∼ → S,⊕A → Fs,s∗ , A∼ → Fs,s∗∗ :∑

r∈R
|vA(s, r)⊂∪vA∗(s, r)| =

∑

r∈R
|vA(s, πs,s∗,A(r))⊂∪vA∗(s, πs,s∗∗,A∗(r))|.

(The proof is in the full paper [DFNS11]) Note that property (1) is exactly
the statement that a (not necessarily efficient) simulator exists in the classical
model.
5 (This is in contrast to the pure secret-sharing model where only shareholders can be

corrupted.)
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Abstract. In the ideal world, cryptographic models take for granted
that the secret sources (e.g. secret keys and other secret randomness)
are derived from uniform distribution. However, in reality, we may only
obtain some ‘weak’ random sources guaranteed with high unpredictabil-
ity (e.g. biometric data, physical sources, and secrets with partial leak-
age). Formally, the security of cryptographic models is measured by the
expectation of some function, called ‘perfect’ expectation in the ideal
model and ‘weak’ expectation in the real model respectively. We propose
some elementary inequalities which show that the ‘weak’ expectation is
not much worse than the ‘perfect’ expectation. Instead of discussing the
results based on the min-entropy and collision entropy by Dodis and Yu
[TCC 2013], we present how to overcome weak expectations dependent on
the Rényi entropy and the expanded computational entropy. We achieve
these results via employing the discrete form of the Hölder inequality. We
also use some techniques to guarantee that the expanded computational
entropy is useful in the security model. Thus our results are more gen-
eral, and we also obtain some results from a computational perspective.
The results apply to all ‘unpredictability’ applications and some indis-
tinguishability applications including CPA-secure symmetric-key encryp-
tion schemes, weak Pseudorandom Functions and Weaker Computational
Extractors.

Keywords: Weak secret sources · The rényi entropy · Computational
entropy · Symmetric-key encryption schemes · Weak pseudorandom
functions · Computational extractors

1 Introduction

Traditionally, if a cryptographic system is secure, it means that it can be formally
proved that it’s secure in a certain security model, which usually takes for granted
that the secret is perfectly random. Unfortunately, in the real world the secret
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may only be obtained from non-uniform distribution. For example, if the secret
source is biometric data [8,11], physical sources [3,4], secrets with partial leakage
or group elements from Diffie-Hellman key exchange [16,22], then it can’t satisfy
perfect randomness.

Recently, there has been some interest in basing cryptographic primitives on
weak secrets, where the only information about the secret is some non-trivial
amount of entropy. Formally, the (T, ε)–security (in the real model) of a crypto-
graphic application P essentially requires that for any adversary A with resource
T and non-uniform distribution R, the expectation of f(R), which we call ‘weak
expectation’ is upper bounded by ε, where the function f(r) denotes A∈ s advan-
tage conditioned on secret key being r. In the ideal model, the non-uniform
distribution R is replaced with uniform distribution. Dodis and Yu [13] have
discovered an elementary inequality that upper bounds the weak expectation of
f(R) by a product of two terms: the first term only depends on the entropy defi-
ciency (i.e. the difference between m = length(R) and the amount of entropy it
has), and the second is essentially the ‘variance’ of f under uniform distribution
Um. However, in [13], only min-entropy is considered for some applications and
collision entropy is considered for some other applications. It’s well known that
as a measure of the diversity, uncertainty, or randomness of a system, the Rényi
entropy [24] is the most general notion, which includes the Shannon entropy,
the min-entropy, and the collision entropy. The advantage of the Rényi entropy
compared with collision entropy was proposed by Hayashi [18,19]. We’ll study
the upper bound of the ‘weak expectation’ from the most general perspective of
the entropy–the Rényi entropy. When the Rényi entropy is converted into min-
entropy and collision entropy, the corresponding results are the same as those
of [13]. Moreover, in [13], the entropy is information-theoretic. In reality, it’s
infeasible to information-theoretically measure the ‘weak source’.

The discovery [6,17,25] that simple computational assumptions (namely the
existence of one-way functions) make the computational and information-theoretic
notions completely different has been one of the most fruitful results in computer
science history, with impact on cryptography, complexity theory and computa-
tional learning theory. Two of the fundamental papers [17,25] found it natural
to extend information theory more generally to the computational setting, and
attempt to define its most fundamental notion of entropy. The most used is due
to Hȧstad, Impagliazzo, Levin, and Luby [17] (called HILL entropy). In this paper,
we’ll use an expanded version of the HILL entropy to study how to overcome ‘weak’
expectations.

APPLICATIONS. Firstly, we capitalize on the inequalities via the Rényi
entropy and expanded computational entropy to all unpredictability1 applica-
tions (e.g. one-way functions, MACs and digital signatures). Secondly,
the inequalities dependent on the Rényi entropy can be applied to
1 “unpredictability” means the adversary’s unpredictable property in the security

game.
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indistinguishability2 applications including CPA-secure symmetric-key encryp-
tion schemes, weak Pseudorandom Functions, Extractors and Non-Malleable
Extractors similar to the results of [13] that depend on collision entropy. Thirdly,
for some indistinguishability applications, such as CPA-secure symmetric key
encryption schemes and weak pseudorandom functions (PRF), we obtain some
results based on the expanded computational entropy, while those [13] that
depend on collision entropy are already greatly improved results as compared
to state-of-the-art [23] with much simpler proofs. We also introduce the con-
cept of weaker computational extractors, whose input is a source of sufficiently
high computational entropy, while the output is close to a uniform distribution
under the computational distance. Then we show a construction of a weaker
computational extractor from any weak PRF.

OUR CONTRIBUTION AND TECHNIQUES. We employ the discrete form
of the Hölder inequality, so that the weak expectation can be upper bounded by
a product of two terms, the first of which is determined by the Rényi entropy,
while the second only depends on the expectation of some function of f under
uniform distribution. More formally, we get two main results:

Result 1. If an unpredictability application P is (T, ε)−secure in the ideal
model, then P is (T, (2d · ε)

1
α∗ )−secure in the (m − d)−realα model where α ≤

(1,⊂) and 1
α + 1

α∗ = 1.

Result 2. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. If an indistinguishability appli-
cation P is (T ∈, ε)−secure and (T ∈, T, γ)-simulatable, then

(1) If 1 < α∈ < 2, we have that P is (T, σ)-α∈th power secure, where σ →
( ε+γ

2 )
α∗
2 . In particular, P is (T, [2d ·( ε+γ

2 )
α∗
2 ]

1
α∗ )−secure in the (m−d)−realα

model.
(2) If α∈ ≡ 2, we have that P is (T, σ)-α∈th power secure, where σ → ε+γ

2 . In
particular, P is (T, (2d · ε+γ

2 )
1

α∗ )−secure in the (m − d)−realα model.

Compared to previous results, our results are more general, since in previous
literature [13], only α = ⊂ (i.e. the min entropy) and α = 2 (i.e. the collision
entropy) are considered.

Though Barak and Dodis et al. [2,13] proposed a double-run trick to study
the connection between the security model and the square-security model for
indistinguishability applications, it seems impossible to directly expand this trick
to find the relationship between the security model and the βth power security
model in the ideal world. Fortunately, we find that if the Hölder inequality is
employed, then we can adopt the square-security model as a bridge between the
security model and the βth power security model. Consequently, Result 2 can
be obtained.

In [13], the randomness of a distribution is measured by its entropy which is
information-theoretic. In reality, it’s infeasible to information-theoretically mea-
sure the ‘weak source’. Thus in this paper, we extend these objective measures to
2 “indistinguishability” means the adversary’s indistinguishable property in the secu-

rity game.
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the computational case. By employing the Rényi entropy, we expand the compu-
tational entropy in [17] and study how to overcome the ‘weak’ expectation. We
discover that if the attacker’s advantage circuit size is chosen to be the circuit
size in the concept of expanded computational entropy, then this kind of compu-
tational entropy is useful in overcoming the ‘weak’ expectation, and some results
similar to Result 1 and 2 can be obtained. We also show some indistinguishabil-
ity applications including CPA-secure symmetric-key encryption schemes, weak
Pseudorandom Functions and Weaker Computational Extractors.

ORGANIZATION. The rest of the paper is organized as follows. In the fol-
lowing section, we recall some concepts and notations to be used in the paper. In
Sect. 3, we present how to overcome Weak Expectations via the Rényi Entropy.
In Sect. 4, we use an expanded version of the HILL entropy to study how to
overcome ‘weak’ expectations. Section 5 concludes the paper.

2 Preliminaries

In this section, we present some notations and definitions that will be used later.

Definition 2.1. ([24]) The Rényi entropy of order α of a random variable X
is defined as

Hα(X) =
1

1 − α
log(

∑

x

Pr(X = x)α),

where α ≡ 0 and α ∈= 1.

Remark 2.1. If α ≥ 1, Hα(X) converges to the Shannon entropy [9]:

H1(X) = −
∑

x

Pr(X = x) log Pr(X = x).

If α = 2, Hα(X) is called the collision entropy of X:

H2(X) = − log
∑

x

Pr(X = x)2.

If α ≥ ⊂, Hα(X) converges to the min entropy:

H∼(X) = − log max
x

Pr(X = x).

It’s very natural to extend the average (aka conditional) collision entropy
and min-entropy in [13] to the average (aka conditional) Rényi entropy, which
is as follows.

Definition 2.2. The average (aka conditional) Rényi entropy of a random vari-
able X conditioned on another random variable Z is defined as follows.

Hα(X|Z) =
1

1 − α
log(Ez∗Z [

∑

x

Pr(X = x|Z = z)α]),

where z ⊆ Z is denoted as sampling an element z according to distribution Z,
α ≡ 0 and α ∈= 1.
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If α = 2(resp.⊂), Hα(X|Z) is the same as the definition of average (aka
conditional) collision entropy (resp. min-entropy) in [13]. The difference between
average (aka conditional) Rényi entropy (when 1 < α → 2) and collision entropy
was discussed in [18,19].

The advantage of a circuit C in distinguishing the random variables X, Y
is denoted as ΔC(X,Y ) = |Pr(C(X) = 1) − Pr(C(Y ) = 1)|. The statisti-
cal distance between two random variables X, Y is defined by SD(X,Y ) =
1
2

∑
x

|Pr(X = x) − Pr(Y = x)| = max
C

ΔC(X,Y ). Given a circuit D, define

the computational distance δD between X and Y as δD(X,Y ) = |E[D(X)] −
E[D(Y )]|. We write ΔC(X,Y |Z)(resp. SD(X,Y |Z), δD(X,Y |Z)) as shorthand
for ΔC((X,Z), (Y,Z))(resp. SD((X,Z), (Y,Z)), δD((X,Z), (Y,Z))).

Let Ddet,{0,1}
s (resp. Ddet,[0,1]

s ) be the set of all deterministic circuits of size s

with binary output in {0, 1} (resp. [0, 1]), and let Drand,{0,1}
s (resp. Drand,[0,1]

s )
as the set of probabilistic circuits with output in {0, 1} (resp. [0, 1]).

HILL computational entropy is parameterized by quality (how distinguish-
able is X from a variable Z that has true entropy) and quantity (how much true
entropy is there in Z). Formally, it’s defined as follows.

Definition 2.3. ([5,17]) A distribution X has HILL entropy at least k, denoted
HHILL

ε,s (X) ≡ k if there exists a distribution Y where H∼(Y ) ≡ k, such that

∩D ≤ Ddet,[0,1]
s , δD(X,Y ) → ε.

Definition 2.4. ([21]) Let (X,Y ) be a pair of random variables. X has con-
ditional HILL entropy at least k conditioned on Y , denoted HHILL

ε,s (X|Y ) ≡ k,
if there exists a collection of distributions Zy for each y ≤ Y , giving rise to
a joint distribution (Z, Y ), such that H∼(Z|Y ) ≡ k and ∩D ≤ Drand,[0,1]

s ,
δD((X,Y ), (Z, Y )) → ε.

As shown in [15], HILL entropy (resp. conditional HILL entropy) drawing D

from Ddet,{0,1}
s , Ddet,[0,1]

s , Drand,{0,1}
s , Drand,[0,1]

s is essentially equivalent. How-
ever, the above definition is only limited to the min-entropy. It’s natural to
expand it to the Rényi entropy. The expanded version is as follows.

Definition 2.5. A distribution X has Expanded HILL entropy at least k,
denoted HEHILL

α,ε,s (X) ≡ k if there exists a distribution Y where Hα(Y ) ≡ k,

such that ∩D ≤ Ddet,[a,b]
s , δD(X,Y ) → ε, where a < b and α ≡ 0 and α ∈= 1.

Definition 2.6. Let (X,Y ) be a pair of random variables. X has conditional
EHILL entropy at least k conditioned on Y , denoted HEHILL

α,ε,s (X|Y ) ≡ k, if there
exists a collection of distributions Zy for each y ≤ Y , giving rise to a joint distrib-
ution (Z, Y ), such that Hα(Z|Y ) ≡ k and ∩D ≤ Drand,[a,b]

s , δD((X,Y ), (Z, Y )) →
ε, where a < b and α ≡ 0 and α ∈= 1.

Similar to [15], Expanded HILL entropy (resp. conditional EHILL entropy)
drawing D from Ddet,{a,b}

s , Ddet,[a,b]
s , Drand,{a,b}

s , Drand,[a,b]
s is essentially

equivalent.
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ABSTRACT SECURITY GAMES. The security of an application P is defined
via an interactive game between a probabilistic attackerA and a probabilistic chal-
lenger C(r), where C is fixed by the definition of P , and where the particular secret
key r used by C is derived from Um in the ‘ideal’ setting, and from some distribu-
tion R in the ‘real’ setting. The game can have an arbitrary structure, but at the
end C(r) should output a bit, with output 1 indicating that A ‘won’ the game and
0 otherwise.

Given a particular key r, we define the advantage fA(r) of A or r (against
particular C fixed by P ) as follows. For unpredictability games, denote fA(r)
as the expected value of C(r) taken over the internal coins of A and C; and for
indistinguishability games, fA(r) is the expectation of C(r) − 1

2 , thus fA(r) =
PrC,r(A wins) − 1

2 . fA is called A’s advantage circuit.
Let Um be the uniformly random distribution over {0, 1}m. Denote |E(fA(Um))|

as the advantage of A (in the ideal model). For c ≡ 0 and c ∈= 1 and all distribu-
tions R with Hc(R) ≡ m − d, denote maxR |E(fA(R))| as the advantage of A in
the (m − d)−realc model instead of limiting c to be ⊂ or 2 in [13]. Similarly, for
α ≡ 0 and α ∈= 1, denote maxR |E(fA(R))|, taken over all distributions R with
HEHILL

α,ε,s (R) ≡ m − d, as the advantage of A in the (m − d)−realEHILL
α,ε,s model3.

Definition 2.7. ([13]) An application P is (T, s, ε)−secure (in the ideal model)
if the advantage of any T−bounded A with the advantage circuit size s is at most
ε.

For c ≡ 0 and c ∈= 1, an application P is (T ∈, ε∈)−secure in the (m − d)−realc
model if the advantage of any T ∈−bounded A in the (m−d)−realc model is at most
ε∈.

Definition 2.8. For α ≡ 0 and α ∈= 1, an application P is (T ∈, s∈, ε∈)−secure
in the (m− d)−realEHILL

α,ε0,s∗ model if the advantage of any T ∈−bounded A with the
advantage circuit size s∈ in the (m − d)−realEHILL

α,ε0,s∗ model is at most ε∈.

3 Overcoming Weak Expectations via the Rényi Entropy

Since the unavailability of perfect random secret sources, it’s valuable to dis-
cover the connection between the advantages |E(fA(Um))| (in the ideal model)
and maxR |EfA(R)| (in the (m−d)−realc model) where c ≡ 0 and c ∈= 1. Unfortu-
nately, existing results [13] only considered the min-entropy for unpredictability
applications and the collision entropy for indistinguishability applications. In
the following, based on the Rényi Entropy and the discrete form of the Hölder
inequality, we’ll present an inequality which unify the corresponding connection
in both unpredictability and indistinguishability applications. Then we present
its applications and discuss its form when side information exists.
3 The difference between the model here and that in [13] is that the ‘weak’ secret source

here is measured by expanded HILL entropy while it’s measured by collision entropy
or min-entropy in [13].
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Lemma 3.1. ([1]) Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for all
(x1, x2, · · · , xn), (y1, y2, · · · , yn) ≤ R

n, we have

n∑

k=1

|xkyk| → (
n∑

k=1

|xk|α)1/α(
n∑

k=1

|yk|α∗
)1/α∗

,

which is the discrete form of the Hölder inequality.

Theorem 3.1. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for any (deterministic)
real-valued function f : {0, 1}m ≥ R and any random variable R with Hα(R) ≡
m − d, we have

|E[f(R)]| → (2d · E[|f(Um)|α∗
])

1
α∗ .

Proof. From Definition 2.1,
∑
r

Pr(R = r)α = 2(1−α)Hα(R). According to Lemma

3.1, we have

|E[f(R)]| = |
∑

r

Pr(R = r)f(r)| →
∑

r

|Pr(R = r)f(r)|

→ [
∑

r

Pr(R = r)α]
1
α · [

∑

r

|f(r)|α∗
]

1
α∗

= [2(1−α)Hα(R)]
1
α · [

1
2m

·
∑

r

|f(r)|α∗
]

1
α∗ · (2m)

1
α∗

= [2(1−α)Hα(R)]
1
α · {2m · E[|f(Um)|α∗

]} 1
α∗

→ 2
(1−α)(m−d)

α · {2m · E[|f(Um)|α∗
]} 1

α∗

= (2d · E[|f(Um)|α∗
])

1
α∗ .

Remark 3.1.
• If α ≥ ⊂, we get |E[f(R)]| → 2d

E[|f(Um)|]. Furthermore, if f is non-negative
function, the result of Theorem 3.1 degenerates into the result of Lemma 3.1
in [13]. It was mentioned that when the value of f can be negative, the result
in Corollary 3.1 of [13] (i.e. E[f(R)] → 2d

E[f(Um)]) is generally false, while
our result shows that if the absolute value operation is added to both sides of
the inequality, then the inequality holds.

• If α = 2, the result of Theorem 3.1 degenerates into the result of Lemma 3.2
in [13].

• If α ≥ 1, using L’Hôpital’s rule, we get

lim
α∗∪∼

{2d · E[|f(Um)|α∗
]} 1

α∗ = lim
α∗∪∼

[
∑

r

|f(r)|α∗
]

1
α∗

= e
lim

α∗→∞

ln(
∑

r
|f(r)|α∗

)

α∗ = e
lim

α∗→∞

∑

r
|f(r)|α∗

ln |f(r)|
∑

r
|f(r)|α∗

= max
r

|f(r)|.
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On the other hand, we can easily get that |E[f(R)]| → max
r

|f(r)| irrespective
of the Rényi entropy. Thus it’s meaningless to discuss the result under Shannon
entropy.

Corollary 3.1. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for any (determin-
istic) real-valued function f : {0, 1}m ≥ [0, 1] and any random variable R with
Hα(R) ≡ m − d, we have

E[f(R)] → (2d · E[|f(Um)|α∗
])

1
α∗ → (2d · E[|f(Um)|]) 1

α∗ .

Corollary 3.2. If an unpredictability application P is (T, ε)−secure in the ideal
model, then P is (T, (2d · ε)

1
α∗ )−secure in the (m − d)−realα model where α ≤

(1,⊂) and 1
α + 1

α∗ = 1.

Remark 3.2. The above corollary shows a upper bound about the advantage of
an adversary in the (m − d)−realα model, though the upper bound is not tight.
Since lim

α∪∼(2d · ε)
1

α∗ = lim
α∗∪1

(2d · ε)
1

α∗ = 2d · ε, we have that the above corollary

degenerates into Corollary 3.1 of [13].

Corollary 3.2 can be applied to all “unpredictability” applications such as
one-way functions, MACs and digital signatures. It shows that if the secret
sources are derived from the real world only guaranteeing high Rényi entropy,
then the unpredictable cryptosystems in ideality have not to be redesigned in
the real model, and the security levels in reality can be measured by that in
ideality and the Rényi entropy of the ‘weak’ random secret sources.

Definition 3.1. Consider β > 1. An application P is (T, σ)−βth power secure
if for any T−bounded adversary A, we have E[|f(Um)|β ] → σ, where f(r) denotes
A∈s advantage conditioned on key being r.

Corollary 3.3. If an indistinguishability application P is (T, σ) − α∈th power
secure in the ideal model, then P is (T, (2d · σ)

1
α∗ )−secure in the (m − d)−realα

model where α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1.

Though the min-entropy can be generalized to the Rényi entropy for all
unpredictability applications, it appears very difficult to connect E[|f(Um)|α∗

]
and E[f(Um)] for indistinguishability applications. The reason is that for indis-
tinguishability applications, the range of the function f(r) is [− 1

2 , 1
2 ], thus the

absolute value operation on the right hand side of the inequality in Theorem 3.1
can’t be deleted. Fortunately, Dodis et al. [13] proposed the Double-Run Trick
to connect E[fB(Um)] and E[fA(Um)2] where A and B are two adversaries in the
same kind of attack game with different number of oracle queries. We’ll adopt
this technique and find the relationship between E[fA(Um)2] and E[|fA(Um)|α∗

]
with α∈ > 1.

Dodis et al. [13] introduced the concept of simulatability about an indistin-
guishability application P and obtain the following Lemma (Lemma 3.2) via
using the Double-Run Trick.
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Lemma 3.2. (see [13]) Assume P is (T ∈, ε)−secure and (T ∈, T, γ)-simulatable4,
then P is (T, σ)-square secure, where σ → ε+γ

2 .
In particular, P is (T,

√
2d−1(ε + γ))-secure in the (m − d)-real2 model.

In the above lemma, only collision entropy is considered. We’ll amplify it to
the Rényi entropy. Divesh Aggarwal observed that the following lemma can be
employed to make the amplification.

Lemma 3.3. Consider 1 < β < 2. For any (deterministic) real-valued function
f : {0, 1}m ≥ [− 1

2 , 1
2 ], we have

E[|f(Um)|β ] → {E[|f(Um)|2]} β
2 .

The proof of Lemma 3.3 is given in Appendix B.

Theorem 3.2. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. Assume an indistinguisha-
bility application P is (T ∈, ε)−secure and (T ∈, T, γ)-simulatable, then

(1) If 1 < α∈ < 2, we have that P is (T, σ)-α∈th power secure, where σ →
( ε+γ

2 )
α∗
2 . In particular, by Corollary 3.3, P is (T, [2d · ( ε+γ

2 )
α∗
2 ]

1
α∗ )−secure in

the (m − d)−realα model.
(2) If α∈ ≡ 2, we have that P is (T, σ)-α∈th power secure, where σ → ε+γ

2 .
In particular, by Corollary 3.3, P is (T, (2d · ε+γ

2 )
1

α∗ )−secure in the (m −
d)−realα model.

Proof. By Lemma 3.2, we have that P is (T, σ∈)-square secure, where σ∈ → ε+γ
2 .

(1) If 1 < α∈ < 2, from Lemma 3.3, we obtain that

E[|fA(Um)|α∗
] → {E[|fA(Um)|2]}α∗

2 → (
ε + γ

2
)

α∗
2 .

Therefore, P is (T, σ)-α∈th power secure, where σ → ( ε+γ
2 )

α∗
2 .

(2) If α∈ ≡ 2, then E[|fA(Um)|α∗
] → E[|fA(Um)|2] according to fA(r) ≤ [− 1

2 , 1
2 ]

for all r ≤ {0, 1}m. Therefore, P is (T, σ)-α∈th power secure, where σ → ε+γ
2 .

Remark 3.3. Dodis et al. [13] enumerated the applications of Lemma 3.2 to
CPA-secure symmetric-key encryption schemes, weak Pseudorandom Functions,
Extractors and Non-Malleable Extractors. If the weak random sources are mea-
sured by the Rényi entropy instead of the collision entropy, we can obtain similar
results via Theorem 3.2.

In some settings, the weak secret sources are derived using some procedure,
during which the attacker gets some side information S about the secret sources.
Therefore, it’s valuable to extend the inequality of Theorem 3.1 into the aver-
age (aka. conditional) setting. Then it can be employed similarly to study the
relationship between the average-case ideal security quantity and real security
quantity. The inequality is as follows.
4 For space limitation, this definition is in Appendix A.
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Theorem 3.3. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for any real-valued
function f(z, s) and any random variables (Z, S), where |Z| = m and Hα(Z|S) ≡
m − d, we have

|E[f(Z, S)]| → {2d · E[|f(Um, S)|α∗
]} 1

α∗ .

• If α ≥ ⊂ and f is a non-negative function, the above result degenerates into
the result of Lemma 3.5 (a) in [13].

• If α = 2, the above result degenerates into the result of Lemma 3.5 (b) in [13].

Proof. From Definition 2.2, we have
∑

s

Pr[S = s]
∑

z

Pr[Z = z|S = s]α = 2(1−α)Hα(Z|S).

Therefore, from Lemma 3.1, we have

|E[f(Z, S)]| = |
∑
s,z

Pr[S = s] · Pr[Z = z|S = s] · f(z, s)|

= 2m · |
∑
s,z

[(
1

2m
)

1
α · Pr[S = s]

1
α · Pr[Z = z|S = s]] · [(

1

2m
)

1
α∗ · Pr[S = s]

1
α∗ · f(z, s)]|

≤ 2m · α

√∑
s,z

1

2m
· Pr[S = s] · Pr[Z = z|S = s]α · α∗

√∑
s,z

1

2m
· Pr[S = s] · |f(z, s)|α∗

= 2m · α

√
1

2m
· 2(1−α)·Hα(Z|S) · α∗

√
E[|f(Um, S)|α∗ ]

≤ 2
(1−α)(m−d)

α · {2m · E[|f(Um, S)|α∗
]} 1

α∗

= {2d · E[|f(Um, S)|α∗
]} 1

α∗ .

4 Overcoming Weak Expectations via the Expanded
Computational Entropy

Dodis and Yu [13] found some elegant results about overcoming weak expecta-
tions based on the min-entropy and the collision entropy, which are information-
theoretic. In reality, the ‘weak source’ may only be measured by efficient algo-
rithms. Thus, computational entropy may be a more valuable tool to study
how to overcoming weak expectation. Two papers [17,25] extended information
theory more generally to the computational setting, and attempted to define its
most fundamental notion of entropy. Due to the most usefulness of HILL entropy
introduced by Hȧstad, Impagliazzo, Levin, and Luby [17], in this section, we’ll
use an expanded version of the HILL entropy (EHILL entropy) to study how to
overcome ‘weak’ expectations. We choose the attacker’s advantage circuit size as
the circuit size in the concept of expanded computational entropy, and obtain
an inequality via the EHILL entropy. Then we present the relationship between
the ideal security quantity and real security quantity via the EHILL entropy in
all unpredictability applications and some indistinguishability applications. We
also show some concrete indistinguishability applications. Finally, we discuss its
form when side information exists.
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Theorem 4.1. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for any (deterministic)
real-valued function f : {0, 1}m ≥ [a, b] with size s and any random variable R

with HEHILL
α,ε0,s (R) ≡ m − d, we have |E[f(R)]| → {2d · E[|f(Um)|α∗

]} 1
α∗ + ε0.

Proof. Since HEHILL
α,ε0,s (R) ≡ m − d, we get that there exists a distribution Y

where Hα(Y ) ≡ m − d, such that ∩D ≤ Ddet,[a,b]
s , δD(R, Y ) → ε0.

From Theorem 3.1, we have that E[f(Y )] → {2d · E[|f(Um)|α∗
]} 1

α∗ . Since
f ≤ Ddet,[0,1]

s , we have that |E[f(R)] − E[f(Y )]| → ε0. Thus

|E[f(R)]| → {2d · E[|f(Um)|α∗
]} 1

α∗ + ε0.

Corollary 4.1. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. For any (deterministic)
real-valued function f : {0, 1}m ≥ [0, 1] with size s and any random variable R
with HEHILL

α,ε0,s (R) ≡ m − d, we have

E[f(R)] → {2d · E[f(Um)α∗
]} 1

α∗ + ε0 → {2d · E[f(Um)]} 1
α∗ + ε0.

Corollary 4.2. If an unpredictability application P is (T, ε)−secure in the ideal
model, then P is (T, (2d ·ε) 1

α∗ +ε0)−secure in the (m−d)−realEHILL
α,ε0,s model where

α ≤ (1,⊂) and 1
α + 1

α∗ = 1.

The above corollary shows that if the secret sources are derived from the
real world only guaranteeing high expanded computational entropy, then the
unpredictable cryptosystems in ideality have not to be redesigned in the real
model, and the security levels in reality can be measured by that in ideality and
the expanded computational entropy of the ‘weak’ random secret sources.

For indistinguishability applications, since f(r) ≤ [− 1
2 , 1

2 ], we can’t get the
inequality like Corollary 4.1. We’ll instead introduce the following definition.

Definition 4.1. Consider β > 1. An application P is (T, s, σ) − βth power
secure if for any T−bounded adversary A with the advantage circuit size s, we
have E[|f(Um)|β ] → σ, where f(r) denotes A∈s advantage conditioned on key
being r.

Applying this definition to Theorem 4.1, we get that α∈th power security
implies real model security as follows.

Corollary 4.3. If an application P is (T, s, σ) − α∈th power secure, then P is
(T, s, (2d · σ)

1
α∗ + ε0)−secure in the (m − d)−realEHILL

α,ε0,s model where α ≤ (1,⊂)
and 1

α + 1
α∗ = 1.

In the following we’ll obtain the relationship between the ideal security quan-
tity and real security quantity.
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Theorem 4.2. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. Assume P is a
(T ∈, s∈, ε)−secure and ((T ∈, s∈), (T, s), γ)−simulatable5, then

(1) If 1 < α∈ < 2, we have that P is (T, s, σ)-α∈th power secure, where
σ → ( ε+γ

2 )
α∗
2 . In particular, by Corollary 4.3, P is (T, s, [2d · ( ε+γ

2 )
α∗
2 ]

1
α∗ +

ε0)−secure in the (m − d)−realEHILL
α,ε0,s model.

(2) If α∈ ≡ 2, we have that P is (T, s, σ)-α∈th power secure, where σ → ε+γ
2 .

In particular, by Corollary 4.3, P is (T, s, (2d · ε+γ
2 )

1
α∗ + ε0)−secure in the

(m − d)−realEHILL
α,ε0,s model.

Proof. From Theorem 3.2, we get this result.

In the following, we show that the above result can be successfully applied to
CPA-secure symmetric-key encryption schemes, weak Pseudorandom Functions
and Weaker Computational Extractors.

Theorem 4.3. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. Assume P is a
((2t, 2q), s∈, 0)− CPA secure symmetric-key encryption scheme in the ideal
model. Then

(1) If 1 < α∈ < 2, then P is ((t, q), s, [2d · ( ε
2 )

α∗
2 ]

1
α∗ + ε0)−secure in the

(m − d)−realEHILL
α,ε0,s model.

(2) If α∈ ≡ 2, then P is ((t, q), s, (2d· ε
2 )

1
α∗ +ε0)−secure in the (m−d)−realEHILL

α,ε0,s

model.

Proof. From Theorem 4.2, we get this result.

Definition 4.2. A family H of functions {hr : {0, 1}n ≥ {0, 1}l|r ≤ {0, 1}m} is
((t, q), s, δ)−secure weak PRF, if for any t−bounded attacker A with the advan-
tage circuit size s, and random x, x1, · · · , xq−1 ⊆ Un and r ⊆ Um, we have

ΔA(hr(x), Ul|x, x1, hr(x1), · · · , xq−1, hr(xq−1)) → δ.

The concept of weak PRF here is essentially equivalent to the one in [13], as
the definition here is produced via adding the parameter s to the one in [13].
Just like CPA-secure symmetric-key encryption schemes, weak PRFs are easily
seen to be (((2t, 2q), s∈), ((t, q), s), 0)−simulatable. By Theorem 4.2, we have

Theorem 4.4. Let α, α∈ ≤ (1,⊂) and 1
α+ 1

α∗ = 1. Assume P is a ((2t, 2q), s∈, δ)−
secure weak PRF in the ideal model. Then

(1) If 1 < α∈ < 2, we have that P is ((t, q), s, σ)-α∈th power secure, where σ →
( ε+γ

2 )
α∗
2 . In particular, P is ((t, q), s, [2d · ( ε+γ

2 )
α∗
2 ]

1
α∗ + ε0)−secure in the

(m − d)−realEHILL
α,ε0,s model.

5 For space limitation, this definition is in Appendix A.
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(2) If α∈ ≡ 2, we have that P is ((t, q), s, σ)-α∈th power secure, where σ → ε+γ
2 . In

particular, P is ((t, q), s, (2d · ε+γ
2 )

1
α∗ + ε0)−secure in the (m − d)−realEHILL

α,ε0,s

model.

Extractors have many applications such as key generation, leakage-resilient
encryption and derandomization of BPP and IP, but its existence is still not
enough under computational perspective. Therefore, we introduce an expanded
definition of Extractors.

Definition 4.3. (Weaker Computational Extractors) We say that an effi-
cient function Ewc : {0, 1}m × {0, 1}n ≥ {0, 1}l is a (k,HEHILL

α,ε0,s , ε)−weaker
computational extractor, if for all R (over {0, 1}m) with HEHILL

α,ε0,s (R) ≡ k, for

random S (uniform over {0, 1}n), and ∩ D ≤ Dran,[0,1]
s , we get

δD(Ewc(R;S), Ul|S) → ε

where α ≡ 0, α ∈= 1, and S ⊆ Un is the random seed of Ewc. The value L = k− l
is called the entropy loss of Ewc.

Remark 4.1. It should be noticed that computational extractors and weak com-
putational extractors have been studied in [10]. Essentially, computational extrac-
tors are efficient functions that map a source of sufficiently high min-entropy to
an output, requiring that the joint distribution of output and seed be com-
putationally indistinguishable from uniform. A weak computational extractor is
defined similarly, but only requiring that the output of the function (without the
seed) be indistinguishable from uniform. While in this paper, it only requires the
computational distance between the uniform distribution and the joint distribu-
tion of output and seed be upper bounded by ε, in this sense, the output of the
function is further relaxed.

Corollary 4.4. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1. If H def
= {hr : {0, 1}n ≥

{0, 1}l|r ≤ {0, 1}m} is ((2t, 2), s∈, δ)−secure weak PRF in the ideal model, then

(1) If 1 < α∈ < 2, then Ewc(r; z)
def
= hr(z) is ((t, 1), s, [2d·( ε+γ

2 )
α∗
2 ]

1
α∗ +ε0)−secure

in the (m − d)−realEHILL
α,ε0,s model. Hence, Ewc(r; z) is a (m − d,HEHILL

α,ε0,s ,

[2d · ( ε+γ
2 )

α∗
2 ]

1
α∗ + ε0)-weaker computational extractor.

(2) If α∈ ≡ 2, then Ewc(r; z)
def
= hr(z) is ((t, 1), s, (2d · ε+γ

2 )
1

α∗ + ε0)−secure in
the (m − d)−realEHILL

α,ε0,s model. Hence, Ewc(r; z) is a (m − d,HEHILL
α,ε0,s , (2d ·

ε+γ
2 )

1
α∗ + ε0)-weaker computational extractor.

In the following, we study how to extend the inequality of Theorem 3.1 into
the average (aka. conditional) setting. It’s as follows.

Theorem 4.5. Let α, α∈ ≤ (1,⊂) and 1
α + 1

α∗ = 1, then for any real-valued
function f(r, s) with size s0 and any random variables (R,S), where |R| = m
and HEHILL

α,ε0,s0
(R|S) ≡ m − d, we have

|E[f(R,S)]| → {2d · E[|f(Um, S)|α∗
]} 1

α∗ + ε0.
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Proof. Since HEHILL
α,ε0,s0

(R|S) ≡ m − d, we have that there exists a joint distrib-

ution (Z, S), such that H∼(Z|S) ≡ m − d and for ∩D ≤ Dran,[0,1]
s , δD((R,S),

(Z, S)) → ε0.
According to Theorem 3.3, we have |E[f(Z, S)]| → {2d · E[|f(Um, S)|α∗

]} 1
α∗ .

Since f ≤ Dran,[a,b]
s , we have |E[f(Z, S)] − E[f(R,S)]| → ε0. Thus,

|E[f(R,S)]| → |E[f(Z, S)]| + ε0 → {2d · E[|f(Um, S)|α∗
]} 1

α∗ + ε0.

5 Conclusion

In the ideal world, a cryptographic system is considered to be secure, if it can be
formally proved that it’s secure in certain security model, which takes for granted
the secret is perfectly random. However, in the real world, the secret may only be
obtained from non-uniform distribution with some non-trivial amount of entropy.
The security of cryptographic models is measured by the expectation of some
function, with called ‘perfect’ expectation in the ideal model and ‘weak’ expecta-
tion in the real model respectively. We propose some elementary inequalities via
the Rényi entropy and the expanded computational entropy, which show that
the ‘weak’ expectation is not much worse than the ‘perfect’ expectation. The
results apply to all ‘unpredictability’ applications and some indistinguishabil-
ity applications including CPA-secure symmetric-key encryption schemes, weak
Pseudorandom Functions and Weaker Computational Extractors. Compared to
the results based on the min-entropy and collision entropy by Dodis and Yu
[TCC 2013], our results are more general, and we also obtain some results from
a computational perspective.
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A Definitions

Definition 1. (see [13]) We say that an indistinguishability application P is
((T ∈, T, γ)-simulatable, if for any secret key r and any legal, T -bounded attacker
A, there exists a (possibly illegal!) T ∈−bounded attacker B (for some T ∈ ≡ T )
such that:
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(1) The execution between B and ‘real’ C(r) defines two independent executions
between a copy Ai of A and a ‘simulated’ challenger Ci(r) , for i = 1, 2.
In particular, except reusing the same r, A1, C1(r), A2, C2(r) use fresh and
independent randomness, including independent challenge bits b1 and b2.

(2) The challenge b used by ‘real’ C(r) is equal to the challenge b2 used by
‘simulated’ C2.

(3) Before making its guess b∈ of the challenge bit b, B learns the values b1, b∈
1

and b∈
2.

(4) The probability of B violating the failure predicate F is at most γ.

Definition 2. We say that an indistinguishability application P is ((T ∈, s∈),
(T, s), γ)−simulatable, if for any secret key r and any legal, T -bounded attacker
A with the advantage circuit size s, there exists a (possibly illegal!) T ∈−bounded
attacker B (for some T ∈ ≡ T ) with the advantage circuit size s∈ such that it
satisfies items (1)-(4) of Definition 1.

Remark. The definition here is essentially equivalent to Definition 1, as the
definition here is obtained via adding the parameters s and s∈ to Definition 1.

B Proof

Proof. Since 1 < β < 2, we have 2
β > 1. From the Hölder inequality, we have

∑

r∧{0,1}m

[|f(r)β | · 1] → [
∑

r∧{0,1}m

|f(r)β | 2
β ]

β
2 · (

∑

r∧{0,1}m

1)1− β
2

= [
∑

r∧{0,1}m

|f(r)|2] β
2 · 2m·(1− β

2 ).

Therefore,

E[|f(Um)|β ] =
1

2m

∑

r∧{0,1}m

|f(r)β |

→ (2m)
β
2 · [

1
2m

·
∑

r∧{0,1}m

|f(r)|2] β
2 · 2m·(− β

2 )

= {E[|f(Um)|2]} β
2 .
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17. Hȧstad, J., Impagliazzo, R., Levin, L.A., Luby, L.M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. Hayashi, M.: Exponential decreasing rate of leaked information in universal random
privacy amplification. IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011)

http://cs.nyu.edu/courses/fall12/CSCI-GA.3210-001/index.html
http://cs.nyu.edu/courses/fall12/CSCI-GA.3210-001/index.html
http://eprint.iacr.org/2012/466.pdf


178 Y.Q. Yao and Z.J. Li

19. Hayashi, M.: Tight exponential evaluation for universal composablity with pri-
vacy amplification and its applications. Accepted in IEEE Trans. Inf. Theory
(arXiv:1010.1358) (2010)
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24. Rényi, A.: On measures of information and entropy. In: Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561
(1960)

25. Yao Andrew, C.: Theory and applications of trapdoor functions. In: Proceedings
of 23rd FOCS, pp. 80–91. IEEE (1982)



Modulus Computational Entropy

Maciej Skórski(B)
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Abstract. The so-called leakage-chain rule is a very important tool used
in many security proofs. It gives an upper bound on the entropy loss of
a random variable X in case the adversary who having already learned
some random variables Z1, . . . , Zλ correlated with X, obtains some fur-
ther information Zλ+1 about X. Analogously to the information-theoretic
case, one might expect that also for the computational variants of entropy
the loss depends only on the actual leakage, i.e. on Zλ+1. Surprisingly,
Krenn et al. have shown recently that for the most commonly used def-
initions of computational entropy this holds only if the computational
quality of the entropy deteriorates exponentially in |(Z1, . . . , Zλ)|. This
means that the current standard definitions of computational entropy
do not allow to fully capture leakage that occurred “in the past”, which
severely limits the applicability of this notion.

As a remedy for this problem we propose a slightly stronger definition
of the computational entropy, which we call the modulus computational
entropy, and use it as a technical tool that allows us to prove a desired
chain rule that depends only on the actual leakage and not on its his-
tory. Moreover, we show that the modulus computational entropy unifies
other, sometimes seemingly unrelated, notions already studied in the lit-
erature in the context of information leakage and chain rules. Our results
indicate that the modulus entropy is, up to now, the weakest restriction
that guarantees that the chain rule for the computational entropy works.
As an example of application we demonstrate a few interesting cases
where our restricted definition is fulfilled and the chain rule holds.

1 Introduction

Entropy is the most fundamental concept in Information Theory. First intro-
duced in this context by Shannon [Sha48], as a measure of the uncertainty asso-
ciated with a probability distribution, it has been generalized in many ways. The
commonly used generalization of Shannon Entropy is Rényi Entropy, defined for
any arbitrary nonnegative order, which includes Shannon Entropy as a special
case of order 1. Informally, a reasonable entropy measure indicates for a given
distribution how much randomness it contains. According to this intuition, dis-
tributions uniform over large sets should have very high entropy, in opposite to

This work was partly supported by the WELCOME/2010-4/2 grant founded within
the framework of the EU Innovative Economy Operational Programme.

C. Padró (Ed.): ICITS 2013, LNCS 8317, pp. 179–199, 2014.
DOI: 10.1007/978-3-319-04268-8 11, c© Springer International Publishing Switzerland 2014
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distributions which has small support or hit a small set with high probability,
being easy to predict.

Indistinguishability and entropy. The notion of entropy has been generalized also
for the purpose of Computational Complexity Theory and Cryptography, to take
computational aspects into account. The reader might wish to refer to [Rey11]
for a short survey. Historically computational entropy was first introduced in
[Yao82] and, basing on a different concept, in [HILL99]. This last approach,
based on the notion of indistinguishability, is the one we follow in this work.
Let us try to give some intuitions here (the precisely definitions will be given
in Sect. 2). To define computational entropy of X, one relaxes the requirement
that X should have entropy itself. Instead, we assume that X is only close to
a distribution Y which has suitable information-theoretic entropy. We have to
specify two things: (a) the notion of entropy we use and (b) what does it mean
“being close”. To give a rigorous formulation of (b), one uses the concept of
distinguishing, borrowed from convex analysis and topology. Function D sepa-
rates (distinguishes) a set X from another set Y with advantage at least σ if
D(x) − D(y) � σ for every x ≤ X, y ≤ Y. In turn, for a predefined class D of
functions, two sets are said to be (D, σ)-indistinguishable, if there is no D ≤ D
that can distinguish between these two sets with advantage greater than σ. The
smaller σ and the wider class D we take, the stronger indistinguishability we
obtain. Especially, indistinguishability applied to two probability distributions
(as one-element sets) and all boolean functions (as distinguishers), where acting
D on a distribution PX is defined by D (PX) = Ex∈XD(x), yields the definition
of the statistical distance. In applications involving computational complexity,
one usually use circuits of bounded size as a class of distinguishers.

Leakage Lemma and Chain Rule. Leakage lemma is the term commonly used in
referring to various generalizations of the observation which, saying less formally,
states that min-entropy of a distribution X conditioned on another distribution
Z distributed over {0, 1}m decreases, with respect to min-entropy of X, by at
most m (the number of bits in the string encoding Z). The name comes from
security-related applications, where one considers entropy of a distribution condi-
tioned on information that might have been revealed to the adversary. The larger
difference between entropy of a distribution and entropy of the corresponding
conditioned distribution, the larger leakage is; such an approach, based on com-
putational entropy, was used first by Dziembowski and Pietrzak [DP08]. In turn,
the term leakage chain rule is used to state the same principle for the case when
we are given entropy of X conditioned on Z1, and observing some further leak-
age Z2 ask for the entropy of X conditioned on Z1Z2. Such conditioning of an
already conditioned distribution refers to the so called “leakage-after-leakage”
scenario. The name “Leakage Chain Rule” comes from the fact that we think of
Z1 and Z2 as information about X that “leaked” subsequently to the adversary.

For commonly used information-theoretic notions of conditional entropy, the
chain rule is known to be true, i.e. the loss in entropy depends on |Z2| and
not on Z1. The problems appear in the case of computational generalizations of
entropy. The computational leakage lemma [DP08,FR12], turned out not to give
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rise naturally to the leakage chain rule at least for important indistinguishability
based definitions of conditional computational entropy and was addressed as
an open problem [FOR12]. The computational leakage chain rule was proved
only for specific scenarios, either by adding strong assumptions to definitions
[FR12,CKLR11], or by changing definitions (see [Rey11] for the discussion of
computational relaxed entropy based on Leakage Lemma [GW10]). Recently, a
counterexample to the chain rule for computational min entropy has been found
[KPW13]. It shows that the computational entropy of X|Z1Z2 can decrease
dramatically with respect to the entropy of X|Z1, even if Z2 is just a one bit.

Our contribution. Interested in establishing the (possibly) weakest condition to
make the leakage chain rule work for the ‘standard’ computational entropy (i.e.
defined using indistinguishability and the min-entropy), we define the modu-
lus computational entropy and show that its definition is satisfied by technical
assumptions which have been used by other authors to obtain a chain rule: the
decomposable entropy introduced by Fuller and Reyzin [FR12] and the sampla-
bility assumption used by Chung et al. in [CKLR11]. Interestingly, it is implied by
the “squared-indistinguishability” introduced in [DY13]. Furthermore, we inves-
tigate three cases that has not been considered yet: (a) when computational
entropy is almost maximal, (b) the existence of an NP oracle over the domain
of X to which distinguishers are given access1, and (c) when the leakage is rela-
tively short. In all these cases our definition is fulfilled and the chain rule works.
Summing up, we reduce already known necessary conditions to the one simpler
concept and show a few new non-trivial cases where the chain rule works.

Our techniques. We observe that to ensure the chain rule, one need to control the
conditional advantages of distinguishers, i.e. advantages calculated conditionally
on appropriate events. The same concept appears in [DY13]. This elementary
technique leads to quite non-trivial results and we believe that its application
can be of independent interest.

Outline of the work. Section 2 deals with some preliminary concepts, conventions
and notations. In Sect. 3 we explain basic definitions and terminology related to
the computational entropy, and discuss the positive and negative results related
to the leakage chain rule problem. In Sect. 4 we introduce our main tool– the
modulus entropy and show that the leakage chain rule holds for this notion.
Section 5 contains a brief summary of the most important consequences of our
results - estimating the cost of conversions to the modulus entropy from several
technical assumptions. Section 6 provides their proofs.

2 Preliminaries

Throughout this work we assume that all random variables are defined on some
finite probability space and they take values in {0, 1}∼. If X is a random variable
1 We stress that this is a non-trivial result, as the computational entropy X given Z
is calculated by distinguishers on {0, 1}n+m, thus it might happen that even circuits
of size 2n are not able to break it.
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then PX will be its distribution. Writing X ≤ S we mean that X takes its values
in the set S. By |S| we denote the cardinality of S. For two random variables
X,Z by X|Z = z we denote the distribution of X conditioned on Z = z and
(X,Z) means the concatenation of X and Z. For every n, by Un we denote
the uniform distribution over {0, 1}n. By (det{0, 1}, s) and (det[0, 1], s) we mean
the class of all deterministic circuits of size at most s, with output in the set
{0, 1} and [0, 1] respectively. Similarly, we denote by (rand{0, 1}, s) the set of
all randomized boolean circuits of size at most s. All logarithms are taken to
the base 2. For D : X ⊂ [0, 1] and k → log |X | we denote by Maxk

D ≡ X a set
of cardinality 2k such that for every x ≤ Maxk

D and every x∗ ∈≤ Maxk
D we have

D(x) � D(x∗). For a boolean function D, we write |D| =
⎡

x∪X D(x).

2.1 Min Entropy

We start with recalling information-theoretic notions.

Definition 1 (Min Entropy). A random variable X has at least k bits of
min-entropy, denoted by H∧ (X) � k, if and only if maxx PX (x) � 2−k.

The conditional min-entropy can be defined in two ways, both compatible with
the above definition. The first one is given below.

Definition 2 (Worst-Case Conditional Min-Entropy). Given a pair of
random variables (X,Z) we say that X conditioned on Z has the min-entropy
at least k and denote it by H∧(X|Z) � k, if and only if for every z
we have

max
x

PX|Z=z (x) � 2−k.

It is called the worst-case because it requires X to have high min-entropy when
it is conditioned on the event “Z = z” for every z. The alternative definition
requires this fact to hold on average:

Definition 3 (Average Conditional Min-Entropy [DORS08]). Given a
pair of random variables (X,Z) we say that X conditioned on Z has the average
min-entropy at least k and denote ⎣H∧ (X|Z) � k, if and only if

Ez∈Z

⎤
max

x
PX|Z=z (x)

⎦
� 2−k.

Usually it is not so important which one of these definitions is used, as one can
convert the average conditional min entropy into the worst-case variant.

Lemma 1 (See [DORS08], Lemma 2.2). Suppose that ⎣H∧ (X|Z) � k.
Then holds H∧ (X|Z = z) � k − log 1

σ with probability at least 1 − π over
z ≥ Z.
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2.2 Indistinguishability

Below we outline the concept of indistinguishability, being a key point in defining
computational entropy.

Definition 4. Let X and Y be subsets of some set P. Given σ > 0 we say that a
function F : P ⊂ [0, 1] distinguishes between X and Y with advantage at least
σ if for every x ≤ X and every y ≤ Y we have |F (x) − F (y)| � σ.

Definition 5. Let X and Y be as in Definition 4. Given a class F of [0, 1]-valued
functions on P, we say that X and Y are (F , σ)-indistinguishable if there is no
F ≤ F that can distinguish between X and Y with advantage greater than σ.

In this paper we are mostly interested in the case when P is equal to the set of
all probability distributions over some finite space α. In this case, every function
D : α ⊂ [0, 1] gives rise to a distinguisher FD : P ⊂ [0, 1] defined as FD(μ) =
Ex∈μD(x). Thus, we will overload the notation and say that D distinguishes
between X and Y with advantage at least σ if the corresponding function FD

distinguishes between X and Y with advantage at least σ. We note that D can
also be a randomized function, which receives an additional input R chosen
independently at random. The expectation ED(·) is then taken also over R.

3 Computational Entropy and Leakage - Previous Works

As mentioned before, computational entropy can be obtained by generalizing
entropy notions in many ways. We follow the approach based on indistinguisha-
bility as it seems to be the most standard way and was originally used for
studying leakage [DP08] as well as in further leakage-related works [CKLR11,
FR12,GW10].

3.1 Defining Computational Entropy

Three-layer definition. There are three key points, essential for defining compu-
tational entropy via indistinguishability:

(a) specify, for every k, what it means that a distribution “has (non-
computational) entropy at least k”,

(b) model the adversary, in particular define his computational power, and
determine his maximal acceptable success probability, and

(c) define the measure of the “computational distance” between a given
distribution and the set of distributions with entropy at least k (in the sense
of (a)).

In (a) one usually uses information-theoretic notion of entropy, most often the
min-entropy2. For (b) one uses a pair (D, σ) within the framework described
2 We use only min-entropy in this work. See, however, [VZ12] for a similar definition
based on Shanon Entropy.
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in Sect. 2.2. Finally, a rigorous formulation of (c) can be given in two ways,
traditionally called the “HILL” or the “Metric” version. In the HILL version,
defining entropy of a random variable X, we require X to be indistinguishable
from one single distribution with high entropy (in the sense of (a)), whereas in
the definition of the Metric Entropy we require X to be indistinguishable from
the set of all of high-entropy distributions, which is a bit weaker assumption.
The formal definitions below are provided for the conditional versions of both
notions. The unconditional versions, denoted HHILL,D,∂ (X) and HMetric,D,∂ (X),
are special cases obtained by fixing in the definitions below Z to be constant.

Definition 6 (HILL Computational Conditional Entropy [HLR07]). Let
X,Z be random variables taking values in {0, 1}n and {0, 1}m respectively. Given
σ > 0 and a class of distinguishers D, we say that X conditioned on Z has
at least k bits of computational HILL entropy against (D, σ) and denote by
⎣HHILL,D,∂ (X|Z) � k, if there exists a random variable Y ≤ {0, 1}n satisfying
⎣H∧ (Y |Z) � k, such that (X,Z) is (D, σ)-indistinguishable from (Y,Z) .

Definition 7 (Metric Computational Conditional Entropy [HLR07]).
With σ,D,X and Z as in Definition 6, we say that X conditioned on Z
has at least k bits of computational metric entropy against (D, σ), denoting
⎣HMetric,D,∂ (X|Z) � k, if (X,Z) is (D, σ)-indistinguishable from the set of all
distributions (Y,Z), satisfying ⎣H∧ (Y |Z) � k.

Usually one formulates both definitions more explicitly without using the very
general notion of indistinguishability (as in Definition 5)

Definition 6: ⎣HHILL,D,∂ (X|Z) � k if there exists a random variable Y ≤
{0, 1}n, ⎣H∧ (Y |Z) � k satisfying |ED(X,Z) − ED(Y,Z)| � σ for all D ≤ D.
Definition 7: ⎣HMetric,D,∂ (X|Z) � k if for every D ≤ D there exists a random
variable Y ≤ {0, 1}n, ⎣H∧ (Y |Z) � k and |ED(X,Z) − ED(Y,Z)| � σ.

However, our, more general, definitional approach appears to be more useful for
the applications presented in the sequel. The definitions of the HILL Computa-
tional Worst-Case Conditional Entropy HHILL,D,∂ (X|Z) and the Metric Com-
putational Worst-Case Conditional Entropy HMetric,D,∂ (X|Z) are obtained by
replacing ⎣H∧ (Y |Z) � k in Definitions 6 and 7 (resp.) with H∧ (Y |Z) � k.

The equivalence between the HILL and Metric-type Entropy. It has been observed
that the Metric Entropy is more convenient for proving leakage-related results
and, in fact, appears in all such proofs more or less implicitly. Fortunately, there
exists a conversion from the Metric Entropy (against real-valued circuits) to
HILL Entropy [BSW03]. This result in its full generality can be stated as follows:

Theorem 1 (Generalization of [BSW03], Theorem 5.2). Let P be the
set of all probability measures over α. Suppose that we are given a class D of
[0, 1]-valued functions on α, with the following property: if D ≤ D then Dc =def
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1−D ≤ D. For π > 0, let D∗ be the class consisting of all convex combinations of
length O

(
log |Σ|

σ2

⎛
over D. Let C ⊆ P be any arbitrary convex subset of probability

measures and X ≤ P be a fixed distribution. Consider the following statements:

(a) X is (D, σ + π) indistinguishable from some distribution Y ≤ C
(b) X is (D∗, σ) indistinguishable from the set of all distribution Y ≤ C
Then (b) implies (a).

This more general statement follows by inspection of the original proof.

Remark 1. By choosing α = {0, 1}n+m, a random variable Z ≤ {0, 1}m and C
to be the set of all distributions (Y,Z) satisfying H∧ (Y |Z) � k or alternatively
⎣H∧ (Y |Z) � k, we obtain the conversion from Metric Conditional Entropy to
HILL Conditional Entropy, for both: the worst and average case variants.

3.2 Leakage Rules

We are now ready to state the leakage chain rule for conditional min-entropy
and compare it with its known generalizations to computational case. Generally,
we are interested in the following problem:

Suppose we have a pair of random variables (X,Z1) and we know the
conditional entropy of X given Z1. What is the lower bound on the
entropy of X given (Z1, Z2), where Z2 is some other (possibly correlated)
random variable?

In the information-theoretic case we have the following result (cf. [DORS08],
Lemma 2.2)

Lemma 2 (Leakage Chain Rule). Let X,Z1, Z2 be random variables over
{0, 1}n, {0, 1}m1 , {0, 1}m2 respectively. Then

⎣H∧ (X|Z1, Z2) � ⎣H∧ (X|Z1) − m2 (1)

In the computational framework, the first leakage-related result appeared in
[DP08] and (formulated in a different way) in [RTTV08]. The parameters were
improved next in [FR12].

Lemma 3 (Leakage Lemma [FR12]). Let X and Z be random variables over
{0, 1}n and {0, 1}m, resp. Then

⎣HMetric,(det[0,1],s∗),∂∗
(X|Z) � HMetric,(det[0,1],s),∂ (X) − m

where s∗ = s + O(1), σ∗ = 2mσ and (det[0, 1], s) stands for the class of circuits
(as defined in Sect. 2).
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Let us observe, at least under assumption that there exists an exponentially
secure pseudorandom generator, that both losses: in quantity (by m bits) and
security measured as s/σ (by factor almost equal to 2m) can appear simultane-
ously3 - see Theorem 10 in Appendix A.

Leakage Chain Rule for Computational Entropy - negative and positive results.
It is a natural question to ask if the Leakage Chain Rule (Lemma 2) can be
“translated” into the computational version. In particular, one might be tempted
to conjecture that for X,Z1 and Z2 as in Lemma 2 it holds that

⎣HMetric,[0,1],s∗,∂∗
(X|Z1, Z2) �? ⎣HMetric,[0,1],s,∂ (X|Z1) − m2, (2)

with the security loss of factor 2m2 or poly (2m2 , 1/σ) for the above stated in
terms of HILL entropy, where by the security loss we mean s∗

∂∗ /
s
∂ (reduces to

σ/σ∗ if s∗ ∩ s). Unfortunately, this conjecture is false in general [KPW13]. On
the positive side, some progress towards proving it for restricted definitions of
entropy has been recently made [FR12,CKLR11,Rey11,GW10]. In [FR12], the
authors use an assumption called decomposability:

Definition 8 ([FR12]). Let X,Z be as in Lemma 3. Given the parameter s,
we say that the decomposable metric-entropy of X conditioned on Z is at least
k and denote ⎣HMetric−d,[0,1],s,∂ (X|Z) � k, if for every z

⎣HMetric,[0,1],s,∂(z) (X|Z = z) � k(z)

where σ(z), k(z) are some numbers satisfying E
⎝
2−k(Z)

⎞
= 2−k and E [σ(Z)] � σ.

Using this definition they are able to prove the following.

Theorem 2 ([FR12]). Let X,Z1, Z2 be as in Lemma 2. Then for s∗ ∩ s, and
σ∗ = 2m2σ, we have

⎣HMetric−d,[0,1],s∗,∂∗
(X |Z1, Z2 ) � ⎣HMetric−d,[0,1],s,∂ (X |Z1 ) − |Z2|

In the other approach [CKLR11], the authors use some samplability assumptions.

Theorem 3 ([CKLR11]). Let X,Z1, Z2 be as above. Suppose that there exists
a random variable Y ∗ with the following properties: (a) H∧ (Y ∗|Z1) � k, the
pair (Y ∗, Z1), (X,Z1) is (s, σ) indistinguishable and (b) there exists a randomized
circuit β of complexity sφ , which receives on its input z ≤ supp(Z1) and return
samples of Y ∗|Z1 = z1. Then for s∗ = α (s · 2−m2π − sφ ) , σ∗ ∩ σ + π we have

HMetric,[0,1],s∗,∂∗
(X|Z1, Z2) � HMetric,[0,1],s,∂(X| Z1) − |Z2| − log(1/π).

Finally, there is yet another result related to the chain rule problem, due to
[GW10]. The authors prove a version of 3 for using a nonstandard definition
of Metric Conditional Min-Entropy, which they call the relaxed computational
3 The question whether it can happen was raised in [FR12]
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entropy. The difference is in Layer (a) of the definition: they require (X,Z),
to be indistinguishable from all distribution (Y,Z ∗) satisfying H∧ (Y |Z ∗) � k,
where– in comparison to Definition 6– Z ∗ is not necessarily equal to Z. As
observed in [Rey11], one can easily generalize their approach to prove an “effi-
cient” computational version of 2 for this definition, with a loss of a factor at
most poly

⎠
2m2 , σ−1

⎨
in security. It seems however, that in the context of leak-

age Definitions 7 and 6 are more suitable, because Z can be what an adversary
might have learned about X [CKLR11]; see also the conclusions in [KPW13].
Being interested in applications in leakage cryptography, we follow the standard
definition of the computational entropy in this paper.

4 Modulus Entropy

Our definition is a bit different than Definition 8.

Definition 9 (Modulus Metric Entropy). Let X ≤ {0, 1}n and Z ≤ {0, 1}m

be random variables. Given σ > 0 and a class of deterministic boolean functions
D, we say that X conditioned on Z has modulus entropy at least k against
(D, σ), and denote it by ⎣H|Metric|,D,∂ (X|Z) � k, if for any D ≤ D there exists a
random variable Y ≤ {0, 1}n, satisfying ⎣H∧(Y |Z) � k, such that

Ez∈Z

⎩⎩Ex∈(X|Z=z)D(x, z) − Ex∈(Y |Z=z)D(x, z)
⎩⎩ � σ (3)

The definition above, formulated for the average-case conditional entropy, can
be stated also for the worst-case version, by replacing ⎣H∧ with H∧. Using
Lemma 1 we obtain immediately a conversion (with some loss) between them:

Lemma 4. Suppose that ⎣H|Metric|,D,∂ (X|Z) � k. Then H|Metric|,D,∂+σ (X|Z) �
k − log(1/π).

Intuitions and motivations behind modulus entropy. The only difference between
Definition 7 and Definition 9 is that they differ in order of the expectation and
absolute value signs. Thus, by the triangle inequality, the Modulus Entropy is
smaller than Metric Entropy. However, they are not necessarily equal in general.
Indeed, for D distinguishing between (X,Z) and (Y,Z) with the advantage no
greater than σ, contributions to this advantage from particular values of z, given
by the expressions σD(z) = Ex∈X|Z=zD(x, z) − Ex∈Y |Z=zD(x, z) can differ in
signs. For a few values z we can “flip” the output of D(·, z) as to ensure that
all their contributions are of the same sign; this is however not possible if Z
is to long, unless we lose much in efficiency. Thus |Ez∈ZσD(z)| � σ does not
imply Ez∈Z |σD(z)| � σ, which is required by inequality (3). In comparison
to Definition 8, our approach is far more general as allow σ(z) and k(z) to be
dependent on a chosen D.

We stress that condition 3 is not unnatural. Its purpose is to give much more
control over the particular contributions to the advantage, corresponding to the
outcomes of Z. For instance, Dodis et al. in [DY13] control the average square
of the contributions to the advantage (by the inequality Ez∈Z |σD(z)|2 � σ),
defining “squared indistinguishability”.
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4.1 Leakage Chain Rule for Modulus Entropy

We now show how modulus entropy allows us to prove a leakage chain rule. We
start with the reformulation of the leakage lemma proved in [FR12].

Lemma 5 (Corollary from [FR12], Proof of Lemma 3.5). Let D be a
boolean function, (X,Z) as in Lemma 3. Suppose |Ex∈XD (x) − Ex∈Y D (x)| �
σ, where H∧(Y ) � k. Then for any z ≤ supp(Z) there exist a distribution Y ∗

z

such that H∧ (Y ∗
z ) � k − log(1/PZ(z)) and

⎩⎩Ex∈X|Z=zD (x) − Ex∈Y ∗
z
D (x)

⎩⎩ �
σ/P(Z = z).

Now we are in position to prove the following (tight) chain rule.

Theorem 4. Let X,Z1, Z2 be as in Lemma 2 and D be a class of boolean func-
tions. Suppose that ⎣H|Metric|,D,∂ (X| Z1) � k. Then ⎣H|Metric|,D,2m2∂ (X| Z1, Z2) �
k − m2.

Proof. Fix a distinguisher D = D (x, z1, z2). We will construct a distribution
(Y,Z1, Z2) such that ⎣H∧ (Y |Z1, Z2 ) � k − m2 and D cannot distinguish
(X,Z1, Z2) from (Y,Z1, Z2) with advantage better than 2m2σ. For any z2, let
(Y z2 , Z1) be a distribution corresponding to D (·, z2) in the sense of Definition 9
(we write Y z2 as this distribution depends also on z2). More precisely, (Y z2 , Z1)
is such that

Ez1∈Z1

⎩⎩Ex∈(X|Z1=z1)D(x, z1, z2) − Ex∈(Y z2 |Z1=z1)D(x, z1, z2)
⎩⎩

⎜ ⎟⎥ ︸
∂D(z1,z2):=

� σ (4)

holds (cf. (3) in Definition 9). For every pair (z1, z2) let σD(z1, z2) denote the
value within the first expected value sign, as indicated on (4). Now, Lemma 5
implies that for any z1, z2 there exists a distribution Y ∗

z1,z2
such that

⎩⎩ED (X |Z1 = z1, Z2 = z2 , z1, z2) − ED
⎠
Y ∗

z1,z2
, z1, z2

⎨⎩⎩ � σD (z1, z2)
PZ2|Z1=z1 (z2)

(5)

and its min-entropy H∧
⎠
Y ∗

z1,z2

⎨
is at least k (z1, z2), where

k (z1, z2) � H∧ (Y z2 | Z1 = z1) − log(1/PZ2|Z1=z1 (z2)) (6)

Define (Y,Z1, Z2) by (Y |Z1 = z1, Z2 = z2 ) d= Y ∗
z1,z2

. Now we have

E(z1,z2)∈(Z1,Z2)

� λD(z1,z2)
P(Z2=z2|Z1=z1) (by(5))

⎥ ︸⎜ ⎟⎩⎩⎩Ex∈X|Z1=z1,Z2=z2 D (x, z1, z2) − Ex∈Y ∗
z1,z2

D (x, z1, z2)
⎩⎩⎩

�
∑

z1,z2

P((Z1, Z2) = (z1, z2)) · σD (z1, z2)
P (Z2 = z2|Z1 = z1)

=
∑

z1,z2

P (Z1 = z1) σD (z1, z2) =
∑

z2

Ez1∈Z1σD (z1, z2) �
∑

z2

σ = 2m2σ
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where the last inequality follows from (4). It remains to prove that
⎣H∧ (Y |Z1, Z2 ) � k − m2. We have:

E(z1,z2)∈(Z1,Z2)2
−k(z1,z2) � E(z1,z2)∈(Z1,Z2)

[
max

x
P [Y z2 = x| Z1 = z1]

PZ2|Z1=z1(z2)

]

=
∑

z1,z2

max
x

P [Y z2 = x| Z1 = z1] · PZ1(z1)

=
∑

z2

Ez1∈Z1

⎤
max

x
P [Y z2 = x| Z1 = z1]

⎦
� 2m2 · 2−k

where the first step follows from (6) and the last one from ⎣H∧ (Y z2 | Z1) � k.

Remark 2. Note that the entropy obtained after the leakage is again the Mod-
ulus Entropy. Thus, one can apply this theorem several times. The samplability
restriction in Theorem 3 does not have this feature.

Chain Rule for entropy against different circuits classes. Theorem 4 deals only
with entropy against boolean deterministic distinguishers D. It is natural to ask
if one could replace this class with a more general one, in particular, would the
theorem still hold if, in its statement, D was equal to the class of randomized
or real-valued distinguishers. We answer this question affirmatively in Lemma 6
below. To make its statement as strong as possible, in the assumption we use the
Modulus Entropy against boolean deterministic circuits as the weakest option
and the HILL Entropy as the strongest notion in the assertion.4

Lemma 6. Let X,Z be as in Theorem 3. Suppose that ⎣H|Metric|,s,∂ (X|Z) � k.
Then HHILL,s∗,∂∗

(X|Z) � k∗, where σ∗ = σ+2π, s∗ = s ·O
(

σ2

n+m

⎛
, k∗ = k− log 1

σ .

Proof. If ⎣H|Metric|,s,∂ (X|Z) � k then ⎣HMetric,det{0,1},s,∂ (X|Z) � k, as we pointed
out in the discussion after Lemma 4. Lemma 4 yieldsHMetric,det{0,1},s,∂+σ (X|Z)�
k − log 1

σ . Since for the Metric Worst-Case Entropy it makes no significant dif-
ference whether we use real-valued or boolean distinguishers (see Theorem 11 in
Appendix B), we obtain ⎣HMetric,s∗,[0,1],∂+σ(X|Z) � k − log 1

σ where s∗ = s+O(1).
The claim follows now from Theorem 1.

5 Passing to Modulus Entropy

While the modulus entropy, as shown in Theorem 4, solves the leakage chain
rule problem, it keeps being rather a technical assumption. We will give some
concrete examples where its definition is fulfilled, and thus admits the chain
4 Recall that for the HILL Entropy all kinds of circuits: deterministic boolean, deter-
ministic real valued, randomized boolean are equivalent [FR12] thus we can abbre-

viate the notation writing just HHILL,s∗,Θ∗
(X|Z).
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Table 1. Conversions to the modulus entropy

Additional assumptions on
H̃Metric,{0,1},s,Θ (X|Z) � k

Our conversion: H̃|Metric|,s∗,Θ∗
(X|Z) � k◦

k◦ Θ◦ s◦

(a) Decomposable entropy
[FR12]

k Θ s Theorem 5

(b) Samplability of Y |Z = z
given z, where
(Y, Z) ∼Θ,s (X, Z) [CKLR11]

k − O (log 1
Θ

) O (Θ) O (s/ 1
Θ2

)
Theorem 7

(c) Entropy against
poly(n)-circuits, given an
access to an NP oracle over
{0, 1}n

k − O (log 1
Θ

) O (
√

Θ) O (s/poly (n, 1
Θ

))
Theorem 8
(point b)

(d) Entropy very high, i.e.
k > n − O (log 1

Θ

) k − O (log 1
Θ

) O (
√

Θ) O (s/m+n
Θ3

log 1
Θ

)
Theorem 8
(point a)

(e) None k 2tΘ s − O (2m−tm
)

Theorem 6
(f) X is (Θ, s)
squared-indistinguishable from
Y given Z, and H̃∗ (Y |Z) � k

k
√

Θ s Theorem 9

rule. In comparison to the assertion of Theorem 4, they rely on some other
assumptions added to the Metric Entropy of X|Z. Conversion to the modulus
entropy, with estimated loss in parameters, is summarized in Table 1.

As shown, some of these assumptions were already studied in the leakage
literature. The proofs of conversions will be given in the next section.

5.1 Benefits of Using Modulus Entropy

To summarize, let us mention the three key features of the modulus entropy:

(a) it implies the metric entropy which is widely used in the leakage-resilient
cryptography,

(b) it allows to apply the tight chain rule multiple times, and
(c) it can be obtained from the known assumptions that guarantee the chain rule

(decomposability, samplability) and from other important or at least non-
trivial cases (squared-indistinguishability, high pseudo-entropy, NP-oracle).

Modulus Entropy vs Samplability and Decomposability. Comparing the conver-
sion results in the table with Theorems 2 and 3, we see that Modulus Entropy is
a weaker restriction and still guarantees the chain rule with at least comparable
quality. Starting from decomposability or samplability, converting to the Modu-
lus Entropy first and applying the chain rule next (and possibly translating into
the HILL entropy) yields the same loss as the direct use of that assumptions.
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6 Proofs of Conversion Results

Throughout all the proofs in this section, X,Z are random variables over {0, 1}n

and {0, 1}m respectively. The proofs are based on the following technical lemma.

Lemma 7. Let X,Z be random variables over {0, 1}n, {0, 1}m. Suppose that D
is such that for all distributions (Y,Z) with H∧ (Y |Z) � k the following holds:

Ez∈Z

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z)
⎩⎩ � σ. (7)

Then either for D∗ = D or for D∗ = Dc we have that for all distributions (Y,Z)
with H∧ (Y |Z) � k the following is true:

P(x,z)∈(X,Z)

⎝
D∗(x, z) − Ex∈Y |Z=zD

∗ (x, z) � σ/4
⎞

� σ2/16.

Proof. Consider the distribution (Y +, Z) which minimizes the left-hand side of
(7). Define σ(z) :=

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈ Y +|Z=zD (x, z)
⎩⎩. Observe that

min
(Y,Z):H→(Y |Z)�k

Ez∈Z

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z)
⎩⎩ =

= Ez∈Z

[
min

Yz :H→(Yz)�k

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Yz
D (x, z)

⎩⎩
]

.

Therefore, for every distribution Yz with min-entropy H∧ (Yz) � k we have
⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z)

⎩⎩ � σ(z)

Note that if σ(z) > 0 then either (a) Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z) �
σ(z) or (b) Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z) � −σ(z) holds for all Yz

with H∧ (Yz) � k. This follows from the convexity of the set of distribu-
tions H∧ (Yz) � k, which in turn implies that all values of Ex∈X|z=zD (x, z) −
Ex∈Yz

D (x, z), over the choice of Yz, form a convex set. Therefore

Ex∈X|z=zD
∗ (x, z) − Ex∈Yz

D∗ (x, z) � σ(z)

holds for all Yz with H∧ (Yz) � k, where D∗ is defined, depending on z, by

D∗(x, z) :=






D(x, z) in case (a)
Dc(x, z) in case (b)
0 if σ(z) = 0.

(8)

Since σ(z) � ∂
2 holds5 with probability at least ∂

2 over z ≥ Z, we get

Ex∈X|Z=zD
∗ (x, z) − max

Yz :H→(Yz)�k
Ex∈Y |Z=zD

∗ (x, z) � σ/2

5 Throughout the proofs, we will make use of the simple Markov-style principle: let
X be a non-negative random variable bounded by M . Then X > 1

2M
EX with

probability at least 1
2
EX.
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with probability at least ∂
2 over z ≥ Z. For every such z we obtain

Px∈X|Z=z

[
D∗(x, z) − max

Yz :H→(Yz)�k
Ex∈Y |Z=zD

∗ (x, z) � σ

4

]
� σ

4

Taking expectation over z ≥ Z we conclude that

P(x,z)∈(X,Z)

[
D∗(x, z) − max

Yz :H→(Yz)�k
ED∗ (Yz, z) � σ

4

]
� σ2

8
.

Therefore, either for D∗ = D or D∗ = Dc the probability on the left-hand side
of the above inequality needs to be at least 1

2 · ∂2

8 = ∂2

16 , which proves the claim.

6.1 Decomposable Entropy

We start by noticing that Definition 8 is stronger than our Definition 9.

Theorem 5. Suppose ⎣HMetric−d,s,∂ (X|Z) � k. Then ⎣H|Metric|,s,∂ (X|Z) � k.

Proof. Fix a distinguisher D = D(x, z). According to Definition 8, for
every z we have a distribution Yz such that H∧ (Yz) � k(z) and
|ED(X|Z = z) − ED(Yz)| � σ(z). Consider a distribution (Y,Z) defined by
(Y |Z = z) d= Yz. Since Ez∈Zσ(z) � σ, we obtain inequality (3). In turn, the
assumptions on k(z) implies ⎣H∧ (Y |Z) � k.

The following theorem converts Metric Entropy into Modulus Entropy (cf. case
(e) in Table 1). Its principal significance is that the equivalence between both
definitions is established, provided that Z is sufficiently short (grows at most
logarithmically in the security parameters).

Theorem 6. Suppose that HMetric,{0,1},s,∂(X|Z) � k. Then H|Metric|,s∗,∂∗
(X|Z)

� k, where σ∗ = 2tσ and s∗ = s − O (2m−tm).

Proof. For the sake of contradiction suppose that for some D of complexity s∗

and for every (Y,Z) such that H∧(Y |Z) � k we have that

Ez∈Z

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z)
⎩⎩ � σ∗.

Applying the same reasoning as at the beginning of the proof of Lemma 7, we
obtain that there exist a distinguisher D∗ (cf. (8)) such that for every distribution
Yz with H∧ (Yz) � k it holds that

Ex∈X|z=zD
∗ (x, z) − Ex∈Yz

D∗ (x, z) � σ∗(z), (9)

where Ez∈Zσ∗(z) � σ∗. Thus, for every (Y,Z) such that H∧ (Y |Z) � k we have

E(x,z)∈(X,Z)D
∗ (x, z) − E(x,z)∈(Y,Z)D

∗ (x, z) � Ez∈Zσ∗(z) � σ∗.

Recall that in the proof of Lemma 7, the value D∗(x, z) is defined as equal to
D(x, z) or Dc(x, z) or 0, depending on z. Instead, we can follow that construction
with respect to only 2m−t “heaviest” values z maximizing P(Z = z)σ∗(z) and set-
ting D∗ = 0 for other z. The obtained circuit is of size at most s∗+O (2m−tm) = s
and distinguishes with the advantage at least 2−tσ∗ = σ.
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6.2 The Samplability Assumption

In the next theorem we deal with the samplability assumption used in [CKLR11].

Theorem 7. Suppose that (X,Z) is (s, σ)-indistinguishable from a distribution
(Y ∗, Z), with the following properties (a) H∧ (Y ∗|Z) � k and (b) there exists a
randomized circuit β receiving on its input z ≤ supp(Z) and returning samples
from the distribution Y ∗|Z = z. Then

H|Metric|,s· λ2
64 −size(φ ),8

√
∂ (X|Z) � k − 2 log (1/σ) − 7.

Proof. Suppose that H|Metric|,s∗,∂∗
(X|Z) < k∗, where k∗ = k − 2 log (1/σ)− 7 and

σ∗ = σ2/64 and s∗ = σ2s/64 − size(β ). Thus, for some D of size s∗ and every
(Y,Z) with H∧(Y |Z) � k∗ we have

Ez∈Z

⎩⎩Ex∈X|Z=zD (x, z) − Ex∈Y |Z=zD (x, z)
⎩⎩ � σ∗. (10)

Let D∗ be a distinguisher obtained from Lemma 7. Consider the following D∗∗:
on input (x, z), which comes either from (X,Z) or (Y ∗, Z) do the following:

– for i = 1 to Ω =
⌈
64
∂2

⌉ − 1 sample yi ≥ Y ∗|Z = z using the circuit β ,
– if D∗(x, z) > max

i=1,...,l
D∗ (yi, z) — output 1, otherwise output 0.

Clearly D∗∗ has complexity at most (Ω + 1) · (s∗ + size(β )) = s. We will show
that it gives sufficient distinguishing advantage. We start with the following
easy observation, used implicitly in [CKLR11] (the proof of Lemma 16).

Lemma 8. For D be a [0, 1]-valued function. If Y + is distributed uniformly over
Maxk

D, then for any Y with H∧(Y ) � k + log 1
σ we have

Px∈Y [D(x) − Ex∈Y +D(x) > 0] < π.

The proof that D∗∗ is indeed a good distinguisher consists of two steps

Claim. On input (x, z) ≥ (X,Z) the circuit D∗∗ outputs 1 w.p. at least σ∗2/32.

Proof. Consider a distribution (Y +, Z) such that for every z the distribution
Y +| Z = z is uniform over Maxk

D(·,z). Since yi are independent and distributed
according to Y ∗|Z = z, it follows from Lemma 8 that Ex∈ Y +|Z=zD

∗ (x) �

max
i

D∗(yi, z) holds with probability at least
(
1 − 2k∗−k

⎛λ

� 1 − Ω · 2k∗−k � 1
2 .

Now, Lemma 7 yields D∗(x, z) > Ex∈ Y +|Z=zD
∗ (x) with probability at least ∂∗2

16
over (x, z). Since sampling yi is independent from (X,Z), the claim follows.

Claim. On input (y, z) ≥ (Y ∗, Z) the circuit D∗∗ outputs 1 w.p. at most σ∗2/64.

Proof. Note that y and y1, . . . , yλ are all independent copies of the distributions
Y ∗|Z = z. Therefore probability that y > maxi=1,...,l yi is at most 1

λ+1 � ∂∗2
64 .

From the last two claims we get P (D∗∗ (X,Z) = 1)−P (D∗∗ (Y,Z) = 1) � σ∗2/64,
which completes the proof of Theorem 7.
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6.3 Approximate Counting

It turns out that using a technique called the approximate counting, one can show
a conversion from metric to modulus entropy. However, we need some additional
assumptions to achieve both: high accuracy and efficiency in counting:

Theorem 8. Suppose that one of the following is true:

(a) HMetric,rand{0,1},s,∂(X|Z) � k against circuits of size s,
(b) HMetric,{0,1},s,∂(X|Z) � k against circuits of size s = poly(n), with an access

to an NP-oracle.

Then we have H|Metric|,s∗,∂∗
(X|Z) � k∗, where σ∗ = 8

←
σ, k∗ = k − log 1

∂ and s∗

given by s∗ = O
(
s · 2k−n−2·∂

log(1/∂)

⎛
in case (a) or s∗ = poly (n, σ) in case (b).

Note that to make the conversion in (a) efficient, we need the assumption that k
is large as it is easy to see that if k is much smaller than n then, in the formula
that gives the bound on s∗, the 2k−n−2 factor starts to dominate over σ.

Proof (Proof of Theorem 8). Suppose that H|Metric|,s∗,∂∗
(X|Z) < k∗. Then

Lemma 7 implies that for all Y ≤ {0, 1}n with H∧(Y |Z) � k∗ and some distin-
guisher D∗ of complexity s∗ + 1 we have

P(x,z)∈(X,Z) [D∗(x, z) − ED∗ (Y |Z = z, z) � σ∗/4] � σ∗2/16. (11)

Since
max

Yz :H→(Yz)�k∗
ED (Yz, z) = min

(
1, 2−k∗ |D∗(·, z)|

⎛
(12)

hence, combining this with (11), we obtain

P(x,z)∈(X,Z)

⎤
D∗(x, z) − 2−k∗ |D∗ (·, z)| � σ∗/4

⎦
� σ∗2/16. (13)

We now show that there exists a randomized function h such that for every z

P
(⎩⎩⎩h(z) − 2−k∗ |D∗ (·, z)|

⎩⎩⎩ � σ∗/8
⎛

� 1 − σ∗2/64, (14)

and h(z) is samplable for all z’s satisfying |D∗ (·, z)| < 2k∗
. More precisely: there

exists a randomized circuit of size O
(
s∗ · 2n−k

∂2 log 1
∂

⎛
= s, which computes h(z)

correctly for every such z. This is a corollary from the following claim.

Claim. Let D be a boolean circuit such that |D| � 2k. Then for π∗, π∗∗ ≤ ⎠
0, 1

2

⎨
,

Ω > 4·2n−k 1
σ∗2 log 1

σ∗∗ and (Ui)i=1,...,λ being independent and uniform over {0, 1}n,
the following inequality holds:

P

[⎩⎩⎩⎩⎩Ω
−1

λ∑

i=1

D (Ui) − 2−n|D|
⎩⎩⎩⎩⎩ � 2k−nπ∗

]
� 2π∗∗.
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Proof. Define g = 1
λ

⎡λ
i=1 D (Ui). The Chernoff Inequality6 yields

P [|g − ED(U)| � π] � 2max
(
e− φ2θ2

4δ2 , e− θφ
2

⎛
,

where φ2 = Var
(⎡λ

i=1 D (Ui)
⎛
. Since Var (D (Ui)) = 2k−n

⎠
1 − 2k−n

⎨
we have

φ2 = Ω · 2k−n
⎠
1 − 2k−n

⎨
. By setting 2n−kπ = π∗ we get σ2λ2

4ζ2 � 2k−nλσ∗2
4 and λσ

2 �
2k−nλσ∗

2 . Since ED(U) = |D|/2n, choosing Ω sufficiently large so that 2k−nΩπ∗2 >

4 log(1/π∗∗), we obtain P
⎝⎩⎩g · 2n−k − |D| · 2−k

⎩⎩ � π∗⎞ � 2e− log 1
φ∗∗ < 2π∗∗.

It follows from the claim that h(z) = 2k−n

λ

⎡λ
i=1 D (Ui, z) is a required sampler.

Consider the following distinguisher D∗∗: on input (x, z), which comes either
from (X,Z) or (Y,Z), return 1 iff D∗(x, z) > h(z) + ∂∗

8 . We will prove that D∗∗

distinguishes between (X,Z) and all (Y,Z) satisfying H∧ (Y |Z) � k. Note that
if D∗∗(x, z) = 1 then h(z) < 1 − ∂∗

8 and hence |D∗ (·, z)| < 2k∗
. Especially, D∗∗ is

of complexity at most s. Now, inequalities (14) and (13) yield

P(x,z)∈(X,Z) [D∗(x, z) > h(z) + σ∗/8] �

P(x,z)∈(X,Z)

⎤
D∗(x, z) > 2−k∗ |D∗ (·, z)| + σ∗/4

⎦
− σ∗2/64 � 3σ∗2/64,

Let k∗ = k + log(1σ where π = ∂∗2
64 . From (12), (13), (14) and Lemma 8, we

obtain

P(x,z)∈(Y,Z) [D∗(x, z) > h(z) + σ∗/8] �

P(x,z)∈(Y,Z)

⎤
D∗(x, z) > 2−k∗ |D∗ (·, z)|

⎦
+ σ∗2/64 � σ∗2/32.

Combining the last two estimates yields, if only H∧(Y |Z) � k∗, the inequality

P [D∗(X,Z) = 1] − P [D∗(Y,Z) = 1] � σ∗2/64

which completes the proof for case (a). In case (b), we proceed in the same way
but we compute numbers h(z) using an NP oracle. The basic result we use can
be stated as follows:

Lemma 9. [OG09] There is a probabilistic algorithm which, given a boolean
circuit D over {0, 1}n of size poly(n) and a natural number M , decides, with
success probability at least 3

4 , whether 1
4M < |D| < 4M , in time poly (n), using

an oracle for NP.
6 We use the following version: Let Xi be random variables satisfying |Xi − EXi| �
1 and X =

∑
i Xi. Then P [|X − EX| � γδ] � 2min

(
e− λ2

4 , e− λδ
2

)
, where δ =

Var(X)
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Let us make three important observations:

– The success probability 3
4 can be amplified to 1−π, by repeating the algorithm

O ⎠
log 1

σ

⎨
times and taking the majority answer.

– The factor 4 can be improved to 1+λ, by running the algorithm on the circuit
D∗ = D1 ∪ . . . ∪ Dk, where Di for i = 1, . . . , k are copies of D and k is such
that (1 + λ)k � 4.

Hence, there is an algorithm which, with probability at least 1 − π, computes a
value g such that (1 − λ)M < |D| < (1 + λ)M , in time poly

(
n, 1

γ , log 1
σ

⎛
, using

an oracle for NP. For every z, let M(z) be a value obtained by applying this
algorithm to the circuit D∗(·, z) and λ = ∂∗

16 , π = 1− ∂∗2
64 . Define h(z) := 2−kM(z).

If |D∗(·, z)| < 2k∗
, then |M(z) − |D∗(·, z)|| � 2 · 2k∗ · ∂∗

16 holds with probability at
least 1 − ∂∗2

64 , and thus for such values z holds the same estimate as in (14). We
proceed further with h as in the previous proof.

6.4 Squared Indistinguishability

Theorem 9. We say that X is (s, σ) squared-indistinguishable from Y given Z,
if for every circuit D of size s, Ez∈ [ED(X|Z = z, z) − ED(Y |Z = z, z)]2 � σ
(motivated by [DY13]). Suppose that X|Z is (s, σ) squared-indistinguishable from
Y given Z, and ⎣H∧ (Y |Z) � k. Then H|Metric|,s,

√
∂ (X|Z) � k.

Proof. From the inequality between the first and the second moment we obtain:

Ez∈Z |ED(X|Z = z, z) − ED(Y |Z = z, z)| �
(
Ez∈Z [ED(X|Z = z, z) − ED(Y |Z = z, z)]2

⎛ 1
2 �

←
σ. (15)
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A Tightness of the Leakage Lemma

Lemma 10. Let X ≤ {0, 1}n be a random variable, f : {0, 1}m ⊂ {0, 1}n be a
deterministic circuit of size s and σ < 1

12 . Then ⎣HMetric,det{0,1},s,∂ (f(X)|X) < 3.

Proof. Consider the following distinguisher D: on the input (y, x), where x ≤
{0, 1}m and y ≤ {0, 1}n, run f(x) and return 1 iff f(x) = y. Then for every x
we get D(f(x), x) = 1. Let Y be any random variable over {0, 1}n such that
⎣H∧(Y |X) � 3. Then by Lemma 1, with probability 2

3 over x ≥ X we have
H∧(Y |X = x) � 3 − log2(3). Since D(y, x) = 0 if y ∈= x, for any such x we have
Ey∈Y |X=xD (y, x) � 2−(3−log2(3)) � 3

8 , and thus, with probability 2
3 over x ≥ X,

we get Ey∈f(X)|X=xD (y, x) − Ey∈Y |X=xD (y, x) � 5
8 . Taking the expectation

over x ≥ X we obtain finally ED(f(X),X) − ED(Y,X) � 2
3 · 5

8 − 1
3 · 1 = 1

12 .
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We use this lemma to show that the estimate in Lemma 3 cannot be improved:

Theorem 10 (Tightness of the estimate in Lemma 3). Suppose that there
exists an exponentially secure pseudorandom generator f . Then for every m and
C > 0 we have HHILL,rand{0,1},2O(m), 1

2O(m) (f (Um)) � m+C and simultaneously
⎣HMetric,det{0,1},poly(m), 1

poly(m) (f (Um)| Um) � 3.

Proof. The first inequality follows from the definition of the exponentially secure
pseudorandom generator. The second inequality is implied by Lemma 10.

B Metric Entropy vs Different Kinds of Distinguishers

Below we prove the equivalence between boolean and real valued distinguishers

Theorem 11. For any random variables X,Z over {0, 1}n, {0, 1}m we have
HMetric,det[0,1],s∗,∂(X|Z) = HMetric,det{0,1},s,∂(X|Z), where s∗ ∩ s.

Proof. We only need to prove HMetric,det[0,1],s∗,∂ (X|Z) � HMetric,det{0,1},s,∂
∧

as the other direction is trivial (because the class (det[0, 1], s) is
larger than (det{0, 1}, s)). Suppose that HMetric,det[0,1],s,∂ (X|Z) < k.
Then for some D and all Y satisfying H∧ (X|Z) � k we have⎩⎩E(x,z)∈(X,Z)D(x, z) − E(x,z)∈(Y,Z)D(x, z)

⎩⎩ � σ. Applying the same reasoning
as in Theorem 6 we can replace D with D∗, which is equal either to D or to Dc,
obtaining for all distributions H∧ (Y |Z) � k, the following:

ED∗(X,Z) − ED∗(Y,Z) � σ.

Consider the distribution (Y +, Z) minimizing the left side of the above inequal-
ity. Equivalently, it maximizes the expected value of D∗ under the condition
H∧ (Y |Z) � k. Since this condition means that H∧ (Y +| Z = z) � k for all
z, we conclude that Y +| Z = z, for fixed z, is distributed over 2k values of x
giving the greatest values of D∗(x, z). Calculating the expected values in the last
inequality via integration of the tail yields

∫

t∪[0,1]

P(x,z)∈(X,Z) [D(x, z) > t] dt −
∫

t∪[0,1]

P(x,z)∈(Y +,Z) [D(x, z) > t] dt � σ

therefore for some number t ≤ (0, 1), the following holds:

P(x,z)∈(X,Z) [D(x, z) > t] � P(x,z)∈(Y +,Z) [D(x, z) > t] + σ.

Let D∗∗ be a {0, 1}-distinguisher that for every (x, z) outputs 1 iff D(x, z) > t.
Clearly D∗∗ is of size s + O(1) and satisfies

E(x,z)∈(X,Z)D
∗∗(x, z) � E(x,z)∈(Y +,Z)D

∗∗(x, z) + σ.

We assumed that (Y,Z) maximizes ED∗(Y,Z). Now we argue that (Y,Z) is also
maximal for D∗∗. We know that for every z the distribution Yz is flat over the
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set Maxk
D∗(·,z) of 2k values of x corresponding to largest values of D∗(x, z). It is

easy to see that Maxk
D∗(·,z) = Maxk

D∗∗(·,z). Therefore, we have shown in fact that

E(x,z)∈(X,Z)D
∗∗(x, z) − max

(Y,Z):H→(Y |Z)�k
E(x,z)∈(Y,Z)D

∗∗(x, z) � σ,

which means exactly that HMetric,{0,1},s∗,∂ (X|Z) < k.
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corrupt, it is impossible to construct VSS (and more generally, MPC)
protocols in this setting without using a broadcast channel (or some
equivalent addition to the model).

A great deal of research has focused on increasing the efficiency of
VSS, primarily in terms of round complexity. In this work we consider
a refinement of the round complexity of VSS, by adding a measure we
term broadcast complexity. We view the broadcast channel as an expen-
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1 Introduction

Verifiable secret sharing (VSS) [CGMA85], where a dealer wishes to share a
secret among a group of n parties, at most t of which (possibly including the
dealer) may be actively malicious, is a fundamental cryptographic primitive,
lying at the core of secure multi-party computation (MPC) [GMW87,BGW88,
CCD88] and used in a myriad of applications. Our focus in this paper is on
unconditionally (a.k.a. information-theoretically) secure VSS protocols (meaning
that the security properties are guaranteed to hold even when the malicious
parties are endowed with unbounded computational power) with honest majority
(t < n/2).

In the unconditional setting, it is typically assumed that parties are con-
nected pairwise by authenticated, private channels, and that in addition they
have access to a “broadcast” channel. Broadcast allows one party to send a con-
sistent message to all other parties, guaranteeing consistency even if the broad-
caster is corrupted. Because broadcast cannot be simulated on a point-to-point
network when more than a third of the parties are corrupt [LSP82], even proba-
bilistically, it is impossible to construct VSS (or more generally, MPC) protocols
in this setting without using a “physical broadcast channel” (that is, a black-box
which securely implements broadcast), or some equivalent addition to the model.
Further, it is known that in this regime (n/3 ≤ t < n/2), protocols are subject
to some (negligibly small) error probability and cannot achieve so-called perfect
security[CCD88,RB89,DDWY93], which is possible when t < n/3.

A great deal of research has focused on understanding the complexity as
well as increasing the efficiency of VSS, primarily in terms of round complex-
ity [GIKR02,FGG+06,KKK08,PCRR09,KPC10]. Indeed, given its typical
applications, such as implementing a pre-processing phase, as well as the
share phase in the general “share-compute-reveal” shape of an MPC proto-
col [GMW87], or its use during the setup phase of information-theoretic pro-
tocols when t ⊂ n/3 (e.g., [PW96,BTHR07,HR13]; see Related work), a fast
execution—namely, a (small) constant number of rounds (some specific figures
given later on)—is of utmost importance.

In this work we consider a refinement of the round complexity of VSS, by
incorporating an additional measure which we term broadcast complexity. We
view the broadcast channel as an expensive resource and seek to minimize the
number of rounds in which it is invoked as well. Justifiably so, high-level descrip-
tions of VSS (and, more generally, MPC) protocols tend to treat broadcast as a
black-box. When t < n/3, this may be viewed simply as a convenient abstrac-
tion, since broadcast in any case can be simulated in a point-to-point network
using Byzantine agreement1.

However, when t < n/2, the black-box treatment of broadcast is (as described
above) no longer a convenience but a requirement, and there are compelling
1 Trouble comes, however, when analyzing round complexity: as observed in [KK07,

Koo07,KKK08], Byzantine agreement is round-expensive, and the compilation
from black-box broadcast to simulated broadcast blows up the number of rounds
substantially.
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reasons to consider it more expensive than “mere” secure channels. Indeed, while
the latter can be realized for example via the physical exchange (using trusted
couriers) of large one-time pads between every pair of players, which may be done
in an asynchronous preprocessing phase and without any centrally trusted party,
we see no equally straightforward approach to physically implement broadcast
without a trusted party, and when the participants are geographically scattered.
Hence it is only natural to treat physical broadcast as an expensive resource,
and in particular to treat a protocol’s broadcast rounds as (substantially) more
expensive than ordinary rounds. In addition, the question of how many broadcast
rounds does VSS require in the t < n/2 regime is compelling from a theoretical
perspective.

Our results. Thus motivated to better understand the broadcast requirements
of verifiable secret sharing when t < n/2, in this work we present new upper
bounds on its broadcast and round complexity. Specifically, we show a constant-
round, linear VSS protocol which only uses two broadcasts in the sharing phase
and none in reconstruction—what we call a (2, 0)-broadcast VSS. The overall
number of rounds is (20, 1), again meaning 20 rounds in the sharing phase and
1 reconstruction round.

To our knowledge, the most efficient VSS protocol in terms of broadcast
rounds for the settings with t < n/2 is the (2, 2)-broadcast, (3, 2)-round protocol
of Kumaresan et al. [KPC10], which is exponential-time and not (apparently)
linear. The same authors also give a (3, 2)-broadcast, (4, 2)-round VSS which is
polynomial-time and linear (we believe—though the authors do not claim it here
either), at the expense of an additional round in the sharing phase. Hence our
(2, 0)-broadcast protocol improves the overall broadcast complexity (although it
is not as round-efficient).

Considering linear, constant-round protocols which use zero broadcasts
during reconstruction (which are more suitable for VSS applications such as
[broadcast-efficient] MPC), the most broadcast-efficient VSS protocol we are
aware of is the (7, 0)-broadcast protocol described in [RB89,Rab94]. Recently,
Hirt and Raykov [HR13] presented an approach allowing to construct (1, 0)-
broadcast VSS protocols for t < n/2, but the overall number of protocol rounds
is linear in n, making it not ideally fit for the natural applications of VSS men-
tioned above.

We derive our (2, 0)-broadcast, constant-round VSS protocol in two stages.

1. In the first stage, we obtain a (3, 0)-broadcast, constant-round protocol which
is inspired by the protocol in [Rab94], but leverages a number of novelties and
optimizations to reduce the broadcast complexity from 7 to 3; its overall round
complexity is (9, 1). This is presented in Sect. 3.1.

2. In the second stage, we apply a transformation to the sharing phase of the
above protocol such that it uses two rounds of broadcast instead of three.
This optimization is in turn inspired by the one presented in [KK07], and the
key method is what the authors called moderated protocols. This method is
a generic transformation which given any protocol Π employing broadcast
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channels, constructs a “moderated” version Π ∈ of Π where all calls to broad-
cast channels are substituted with a special broadcast simulation subroutine
controlled by a designated party (called the moderator).
A new key technical element in our construction is to show how using one
round of physical broadcast (the first one in our stage-1 protocol) one can
prepare a setup which allows to invoke sufficiently many broadcast simula-
tion routines later on. This transformation yielding the final VSS protocol is
presented in Sect. 3.2.

As our focus in this work is on reducing the overall number of broadcast rounds,
rather than broadcast (or otherwise) communication complexity, we forgo explicit
treatment of the latter. We do however note that protocols described herein
can be compiled via generic techniques into significantly more communication-
efficient versions; see work of Fitzi and Hirt [FH06], as well as recent work by
Ben-Sasson et al. [BFO12].

Related work. We already mentioned above the most closely related work regard-
ing unconditionally secure VSS for t < n/2 [Rab94,KPC10]. The role of broad-
cast in multiparty protocols has been studied in a number of other previous
works. Katz et al. [KKK08,KK07,Koo07], seeking to improve overall round
complexity when broadcast is simulated over point-to-point channels, construct
constant-round protocols for VSS and MPC whose descriptions use only a single
broadcast round. However, for t < n/2 they assume a PKI infrastructure (e.g.,
pseudosignatures [PW96]—more on this below) is already in place.

Fitzi et al. [FGMR02,FGH+02] , as well as Goldwasser and Lindell [GL05],
consider broadcast and MPC protocols for t < n which do not use physical
broadcast at all (nor equivalent assumptions), but instead weaken the guarantees
provided by the protocol. In particular these protocols are not robust and so
may fail to deliver any output at all. On the other hand, the so-called detectable
broadcast (and detectable MPC ) protocols of [FGMR02,FGH+02] do achieve
consistency among honest players: either the broadcast (MPC) succeeds and all
honest parties receive output, or it fails, in which case all honest parties agree
that it failed.

As mentioned above, unconditionally secure broadcast cannot be simulated
on a point-to-point network when more than a third of the parties are corrupt.
However, if there is a setup phase during which the parties enjoy access to a
physical broadcast channel (but need not know their future inputs), Pfitzmann
and Waidner [PW96] showed how to construct pseudosignatures, an information-
theoretic authentication technique for multiparty protocols which can then be
used to simulate future invocations of broadcast by running a so-called “authen-
ticated” Byzantine agreement protocol [DS83]; this avoids any need for a phys-
ical broadcast channel during the main phase of the protocol. The number of
broadcast rounds in the [PW96] setup construction is O(n2), and it works for
an arbitrary number of corruptions (t < n). This was later improved to O(n)
broadcast rounds by Beerliová-Trub́ıniová et al. in [BTHR07], at the price of
tolerating t < n/2 corruptions, and recently by Hirt and Raykov to just 1, as
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mentioned above. However, the overall round complexity of this construction (as
well as that in [BTHR07]) is O(n).

Minimizing the use of broadcast has also been considered in the related
problem known as secure message transmission by public discussion (SMT-PD),
where a Sender wants to send a message to a Receiver privately and reliably.
Recall that in this problem, Sender and Receiver are connected by n chan-
nels, up to t < n of which may be maliciously controlled by a computationally
unbounded adversary, as well as one public channel, which is reliable but not
private. SMT-PD was introduced in [GO08] as an important building block for
achieving unconditionally secure MPC on sparse (i.e., not fully connected) net-
works. The motivation for this abstraction comes from the feasibility in partially
connected settings for a subset of the nodes in the network to realize a broadcast
functionality despite the limited connectivity [DPPU86,Upf92], which plays the
role of the public channel. Such implementation of the public channel on point-to-
point networks is costly and highly non-trivial in terms of rounds of computation
and communication, as mentioned earlier. See, e.g., [GGO11] for further details.

We now turn to the presentation of the model, definitions and building
blocks, followed by the new VSS protocol (Sect. 3). Due to space limitations,
some of the auxiliary constructions and proofs appear in the full version of the
paper [GGOR13].

2 Model, Definitions and Tools

We consider a complete, synchronous network of n players P1, . . . , Pn who are
pairwise connected by secure (private and authenticated) channels, and who addi-
tionally have access to a broadcast channel. Some of these players are corrupted
by a centralized adversary A with unbounded computing power. The adversary is
active, directing players under his control to deviate from the protocol in arbi-
trary ways. As noted, we consider only static rather than adaptive adversary in
this work, meaning that he chooses which players to corrupt prior to the start
of protocol execution. The computation evolves as a series of rounds. In a given
round, honest players’ messages depend only on information available to them
from prior rounds; A, however, is rushing, and receives all messages (and broad-
casts) sent by honest players before deciding on the messages (and broadcasts)
of corrupted players. Sometimes we refer to A thus defined as a t-adversary.
We consider statistical security (since, as mentioned above, perfect security is
unachievable in this setting), and let κ denote the error parameter, κ ⊂ 2n.

Information checking. An information checking scheme (IC) [RB89] is a triple of
protocols (ICSetup, ICValidate, ICReveal) which achieves a limited signature-like
functionality for three players: a dealer D, intermediary I, and receiver R. D
holds as input a secret s → F, which he passes to I in ICSetup. ICValidate insures
that even if D cheats, I knows a value which R will accept. In ICReveal, I sends s
to R, together with some authenticating data, on the basis of which R accepts or
rejects s as having originated from D. More formally, the scheme should satisfy
the following guarantees:
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Correctness: If D, I, and R are honest, then R will accept s in ICReveal.
Non-Forgery: If D and R are honest, then R will reject any incorrect value

s∼ ≡= s passed to him in ICReveal, except with negligible probability.
Commitment: If I and R are honest, then at the end of ICValidate I knows

a value s such that R will accept s in ICReveal, except with negligible
probability.

Privacy: If D and I are honest, then prior to ICReveal, a cheating R has no
information on s.

We call an IC scheme linear if it meets the following additional condition.

Linearity: If D, I, and R have invoked ICSetup and ICValidate with respect to
several secrets {si}, then I may (without further interaction) invoke ICReveal
to authentically disclose any (public) linear combination of the si without
revealing each si individually.

Our weak secret sharing and verifiable secret sharing protocols make use of a
linear IC subprotocol based on that of [CDD+01], with some minor adjustments
to increase broadcast efficiency. The protocol and its proof of security appear in
the full version of the paper [GGOR13].

Weak secret sharing. An (n,t)-weak secret sharing scheme (WSS) is a pair of
protocols (WSS-Share,WSS-Rec) for a set of players P = {P1, . . . , Pn}, one of
whom, the dealer D, holds input s → F. It must satisfy the following guarantees
in the presence of an unbounded adversary corrupting up to t of the parties:

Weak Commitment: W.h.p., at the end of WSS-Share there exists a fixed
value s∼ → F∈{≥}, defined by the joint view of the honest parties, such that
all honest parties will output the same value, either s∼ or ≥, in WSS-Rec. If
D is honest, then w.h.p. all honest parties will output s∼ = s.

Privacy: If D is honest, then prior to WSS-Rec A gains no information on s
(i.e., his view is statistically independent of s).

WSS is useful as an information-theoretic, distributed commitment for the dealer
D. Thus, we may say that a dealer who completes WSS-Share has committed
to his (effective) input s, and that upon completing WSS-Rec he decommits
(if a proper value is reconstructed). We call a commitment to a value in F a
proper commitment (regardless of whether it equals the dealer’s actual input),
and a commitment to ≥ an improper (or garbage) commitment. We will also
need a slightly relaxed version of WSS called WSS-without-agreement (or very
weak secret sharing [BPW91]), in which the Commitment property above is
replaced by

Weak Commitment Without Agreement: W.h.p., at the end of WSS-
Share there exists a fixed value s∼ → F ∈ {≥}, defined by the joint view
of the honest parties, such that each honest party will output either s∼ or
≥ in WSS-Rec (but some may output s∼ and others ≥). If D is honest, then
w.h.p. all honest parties will output s∼ = s.



206 J. Garay et al.

Furthermore, we will call a WSS(-without-agreement) linear if it satisfies the
following in addition:

Linearity: If D has properly committed to several secrets {s(k)}, then he may
(without further interaction) invoke WSS-Rec to decommit to any (public)
linear combination of the s(k). If some of the commitments are garbage, there
still exists a fixed value s∼ → F ∈ {≥} which is reconstructed as the “linear
combination” (w.h.p.).

We can slightly strengthen this requirement in the case of the sum of two values,
to say that if one is properly committed and the other is garbage, their sum is
garbage also (as opposed to any fixed value, which Linearity gives). We will use
this property later on in the construction of VSS protocols.

Proper + Improper: If D has committed separately to s → F and to ≥, then
the reconstruction of the sum s + ≥ (or ≥ + s) will yield ≥ (w.h.p.).

Our WSS(-without-agreement) protocol is presented in Sect. 3.1. It has a sin-
gle sharing phase, which uses two broadcasts, and two different reconstruction
phases: one which uses a single broadcast round and achieves ordinary WSS,
and one which uses no broadcast but achieves only WSS-without-agreement.

Verifiable secret sharing. An (n,t)-verifiable secret sharing scheme [CGMA85] is
a pair of protocols (VSS-Share,VSS-Rec) for a set of players P = {P1, . . . , Pn},
one of whom, the dealer D, holds input s → F. In addition to the Privacy property
above in the WSS case, VSS must satisfy the following, stronger guarantee in
the presence of an unbounded adversary corrupting up to t of the parties:

Commitment: W.h.p., at the end of VSS-Share there exists a fixed value s∼ → F,
defined by the joint view of the honest parties, such that all honest parties
will output s∼ in VSS-Rec. If D is honest, then s∼ = s.

VSS strengthens WSS by guaranteeing that even when a cheating D does not
cooperate in the Reconstruction phase, the honest players can still recover the
value he committed to (which we now require to be a proper field element, not
≥). This makes possible a stronger variant of linearity, in which honest players
can reconstruct linear combinations of secrets shared by different dealers. This
strong linearity property is crucial for MPC applications of VSS.

We say that the parties verifiably share a secret s if each (honest) party
maintains some state such that, when the honest parties invoke VSS-Rec on
that joint state, they will reconstruct the value s (w.h.p.). Clearly, if a dealer D
has just completed VSS-Share with effective input s, then the parties verifiably
share s.

Linearity: If the parties verifiably share secrets {s(k)}, then they also (without
further interaction) verifiably share any (public) linear combination of the
secrets.
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We now turn to broadcast-type [LSP82] primitives over point-to-point channels
(and slightly extended communication models; see below) which will become
useful when further reducing the number of physical broadcasts (Sect. 3.2).

Gradecast. Graded broadcast (a.k.a. “gradecast”) was introduced by Feldman
and Micali [FM88]. It allows to broadcast a value among the set of recipients
but with weaker consistency guarantees than in the case of standard broadcast,
where all honest recipients are required to output the same value. In addition to
the value vi each recipient Pi also outputs a grade gi → {0, 1}.

Formally, a protocol achieves graded broadcast if it allows the dealer D → P
to distribute a value v → D among parties P with every party Pi outputting a
value vi → D with a grade gi → {0, 1} such that:

Validity: If the dealer D is correct, then every correct Pi → P outputs (vi, gi) =
(v, 1).

Graded Consistency: If a correct Pi → P outputs (vi, gi) with gi = 1, then
every correct Pj → P outputs (vj , gj) with vj = vi.

In [Fit03] gradecast is considered in different communication models. First, it is
shown that gradecast is achievable from point-to-point channels if and only if
t < n/3. Second, an extended communication model is considered where each
player can broadcast to a (every) pair of other players. Such a primitive is called
2-cast. A construction is then given which tolerates t < n/2 and achieves binary
gradecast given 2-cast channels.

In this paper we will make use of a round-efficient gradecast protocol allowing
arbitrary domains D based on that construction. Our construction works as
follows: First, we construct a weak broadcast primitive (see next) given 2-cast;
then, based on weak broadcast we build gradecast.

Weak broadcast. Weak broadcast (a.k.a. Crusader agreement [Dol82]) is another
weak form of broadcast, where the recipients either decide on the value sent by
the dealer or on a special symbol ≥ indicating that the dealer is malicious.

Formally, a protocol achieves weak broadcast if it allows the dealer D to
distribute a value v → D among parties P with every party Pi outputting a
value vi → D ∈ {≥} such that:

Validity: If the dealer D is correct, then every correct Pi → P outputs vi = v.
Weak Consistency: If a correct Pi → P outputs vi ≡= ≥, then every correct

Pj → P outputs vj → {vi,≥}.

The modifications to the gradecast and weak broadcast protocols in [Fit03] to
allow for arbitrary domains D, instead of just the binary domain, are presented
in the full version of the paper [GGOR13].

3 A Broadcast- and Round-Efficient VSS Protocol

In this section we present our new (2, 0)-broadcast, constant-round VSS protocol
for t < n/2. Its overall round complexity is (20, 1). This is the first linear VSS
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protocol enjoying such a small number of broadcast rounds without trusted
setup, while running in an overall constant number of rounds. We first obtain
a (3, 0)-broadcast, (9, 1)-round protocol which, at a high level, is inspired by
the ((7, 0)-broadcast) protocol in [RB89]; we then apply a moderated-protocol
transformation to shave off one additional broadcast round.

3.1 A (3, 0)-Broadcast, Constant-Round VSS Protocol

Our VSS protocol’s sharing phase uses a WSS protocol, which we now describe.
Our WSS(-without-agreement) protocol uses two broadcasts in its sharing phase,
and admits two different reconstruction phases: one which uses a single broadcast
round and achieves ordinary WSS, and one which uses no broadcast but achieves
only WSS-without-agreement. In turn, the protocol makes use of a linear IC
subprotocol based on that in [CDD+01]. (Due to space limitations, the protocol
appears in the full version of the paper [GGOR13].) The WSS protocol(s) is
shown below. Since its sharing and reconstruction phases are invoked at different
rounds of the VSS protocol’s sharing phase, we specify them as separate protocols
for convenience. The WSS protocol, with its two different reconstruction phases.

Protocol WSS-Share(P,D, s)

1. D chooses a random polynomial f(x) of degree ≤ t such that f(0) = s, and
sets si := f(i); this will be Pi’s share. For each pair Pi, Pj → P − {D}, run
ICSetup(D,Pi, Pj , si).

2–5. 2 x BROADCAST in 4,5: For each Pi, Pj → P −{D}, run ICValidate(D,
Pi, Pj , si).

Protocol WSS-Rec(P,D, s)

1. For each pair Pi, Pj → P − {D}, run ICReveal(Pi, Pj , si).
2. BROADCAST: D broadcasts the polynomial f(x) which he used to share

the secret. Pi broadcasts the list of pieces {(j, sj)} which he accepted in
ICReveal in the previous step.
Let HAPPY denote the set of players who accept at least n− t pieces, and all
of whose accepted pieces lie on the polynomial f(x). If |HAPPY| ⊂ n − t, all
players take s = f(0) to be the secret, otherwise ≥.

Protocol WSS-Rec-NoBC(P,D, s)

1. For each pair Pi, Pj → P −{D}, run ICReveal(Pi, Pj , si). If Pi accepts at least
n − t pieces, and all accepted pieces lie on a polynomial f(x) of degree ≤ t,
then Pi takes s = f(0) to be the secret, otherwise ≥.

Theorem 1. WSS = (WSS-Share,WSS-Rec) is a linear weak secret sharing
scheme secure against a static, unbounded adversary corrupting t < n/2 players.
Furthermore, WSS∼ = (WSS-Share,WSS-Rec-NoBC) is a linear WSS-without-
agreement scheme, secure against a static, unbounded adversary who corrupts
t < n/2 players.
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Proof. Commitment. First consider a cheating D. At the end of WSS-Share, an
honest Pi holds si which all honest parties will accept (due to the Commitment
property of the IC protocol). Now these pieces si held by the honest parties
define a polynomial f∼(x); if deg f∼(x) > t, then each honest party will accept
pieces not lying on the dealer’s broadcast polynomial f(x). Therefore we will
have |HAPPY| < n − t, and ≥ will be reconstructed. Note that this situation is
precisely a garbage commitment.

Otherwise deg f∼(x) ≤ t (and the commitment is proper). If the dealer’s
broadcast polynomial f(x) ≡= f∼(x) then again each honest party will accept
pieces not on f(x), and so ≥ will be reconstructed. If f∼(x) = f(x) then it
may be the case that ≥ is reconstructed (depending on the values honest parties
accept from dishonest parties), or that s∼ = f(0) = f∼(0) is reconstructed.
Regardless, there is only one non-≥ value which may be reconstructed, and it is
fixed by the joint view of the honest parties at the end of WSS-Share.

Now if D is honest, then by the IC Non-Forgery property no cheating party
can fool an honest party into accepting a value other than si during ICReveal
(except with negligible probability). It follows that each honest player will accept
⊂ n − t pieces, and all their accepted values will lie on the dealer’s polynomial
f(x). Thus |HAPPY| ⊂ n − t and the parties output s = f(0).

Privacy. If D is honest, then by the IC Privacy property, the adversary has no
information on any si value held by an honest player Pi prior to ICReveal. Hence
the adversary learns only the t points on the polynomial f(x) corresponding to
dishonest players’ shares, and in particular has no information on f(0) = s prior
to WSS-Rec.

Commitment Without Agreement. Define f∼(x) as above, by the shares of
the honest parties. As before if deg f∼(x) > t, all honest parties will accept a set
of pieces which do not lie on any degree t polynomial, and they will all output ≥.

If deg f∼(x) ≤ t, then honest party Pi will output s∼ = f∼(0) only if all the
pieces he accepts from dishonest parties lie on f∼(x); otherwise the set of pieces
he accepts will lie on no polynomial of degree t, and he will output ≥.

For an honest D, the argument is the same as in the with-agreement case:
Due to IC Non-Forgery, all honest parties will (w.h.p.) accept only values which
lie on f(x), and so all will output the correct value s = f(0).

Linearity. Suppose D has properly committed to values {s(k)}, using polyno-
mials fk(x). Then for each value s(k), player Pi holds a share s

(k)
i . To decommit

to a linear combination of the s(k), in WSS-Rec Pi reveals the linear combina-
tion of his s

(k)
i during ICReveal (in place of “si”), and D broadcasts the linear

combination of these polynomials (in place of “f(x)”). Then the properties of
commitment and privacy remain in place, since taking a linear combination of
polynomials of degree at most t results in a new polynomial of degree at most t.

If some of the commitments were garbage, this means exactly that some of
the polynomials (defined by the shares of the honest players) were of degree
> t. Nevertheless, taking a linear combination of these polynomials results in
a single, fixed polynomial whose free term is the only possible non-≥ value
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which honest parties will reconstruct (and then only if the new polynomial has
degree ≤ t).

Proper + Improper. A proper commitment is associated with a polynomial
of degree ≤ t, and an improper commitment with one of degree > t. Thus the
sum of the two has degree > t, corresponds to another improper commitment,
and will yield ≥ (w.h.p.).

We are now ready to present VSS3bc, our (3, 0)-broadcast, (9, 1)-round VSS
protocol, which uses the WSS protocol above in its sharing phase. Regarding
the presentation of our protocol(s), many VSS protocol descriptions rely on
a bivariate-polynomial approach; others are univariate-based. We opt for the
latter, since we feel that this protocol’s structure lends itself best to a univariate
polynomial description. At a high level, the protocol is inspired by that of Rabin
and Ben-Or [RB89], and has a similar structure. First D distributes shares of
a t-degree polynomial f where s := f(0) and of additional random t-degree
polynomials gk. Each player Pi commits to all shares via WSS. Then the parties
jointly carry out a cut-and-choose process in which the players are challenged
to reconstruct either gk or f + gk for each k, which must be degree t. Players
who complain of incompatible shares, or fail to participate, have their shares
broadcast (and hence fixed) by D.

As mentioned earlier, Rabin and Ben-Or’s VSS requires 7 broadcast rounds
in the share phase. One novelty which allows us to reduce broadcast round
complexity to 3 is that we require the dealer as well as the players to commit via
WSS to the shares he distributed, which constrains the misbehavior of a cheating
dealer. After all commitments are in place, the players broadcast a round of cut-
and-choose challenges in step 7. In step 8, parties respond to the challenges
by using WSS-without-agreement to reconstruct the shares of the appropriate
polynomials. In the final step 9, a broadcast is used to confirm the results of the
WSS-without-agreement; at the same time D has a chance (and is obligated) to
broadcast shares of players for whom he did not reconstruct the correct share
in step 8.

An additional trick which saves us a broadcast round can be seen in step
6, which is inserted between the last two rounds of the WSS share phase. In
this step, the parties perform a pre-broadcast by sending each other player their
intended WSS final-round broadcast on point-to-point channels. In step 7, they
officially complete WSS by echoing the pre-broadcast. This forces a cheating
player to “semi-commit” in step 6 to one of at most n − t possible final-round
broadcasts for WSS, since a majority (including at least one honest player) must
confirm his pre-broadcast. Luckily, semi-commitment restricts cheaters’ options
enough that players are able to broadcast the cut-and-choose challenges in the
same round—step 7—rather than waiting for full commitment and then using
another broadcast. (Note that in the case of a non-rushing adversary, step 6 is
unnecessary.)



Broadcast (and Round) Efficient Verifiable Secret Sharing 211

Protocol VSS-Share3bc(P,D, s)
1. D chooses a random polynomial f(x) of degree ≤ t such that f(0) = s, and

sets si := f(i). Also for 1 ≤ k ≤ κn, D chooses random polynomials gk(x)
of degree ≤ t, and sets tki := gk(i). D sends (si, {tki}k) to Pi.

2–5. BROADCAST: Pi and D will now each act as WSS dealers to com-
mit to Pi’s share si. We reserve si to denote the value D commits to,
and let s∼

i denote that which Pi commits to (these may be different if D
and/or Pi is dishonest). D and Pi act as dealer in steps 1–4 of WSS-Share
(D, si), WSS-Share(Pi, s

∼
i ), WSS-Share(D, tki), and WSS-Share(Pi, t

∼
ki) (1 ≤

k ≤ κn).
6. The parties have just completed WSS-Share step 4/ICValidate step 3. In

the next step (corresponding to WSS-Share step 5/ICValidate step 4) the
WSS/IC dealer will resolve conflicts. Instead of doing so immediately, let
BCi denote the broadcast which Pi would make. Pi first sends-to-all BCi.
Also, if D conflicted with any Pi in the previous step (namely in ICValidate
step 3) then in the following round D will broadcast all the values
(si, {tki}k). For now, D sends-to-all these values, which we call public pieces.

7. BROADCAST: Now Pi broadcasts BCi, which completes WSS-Share
step 5/ICValidate step 4, and D broadcasts the values (si, {tki}k) which
he sent-to-all in the previous step. Of course each player broadcasts his
view of the previous step; if it is not the case that at least t + 1 players
agree that Pi’s broadcast this round matches what he told them in the
previous round, then Pi is disqualified.
Additionally, each Pi ≡= D broadcasts a random challenge Ci → {0, 1}κ for
D and for the other Pj ’s. The challenge indicates, for each index k → [κn]
assigned to Pi (κ such in total), whether:
(1) D and Pj should reveal f(x) + gk(x), in which case set vkj = sj + tkj

and v∼
kj = s∼

j + t∼kj ; or
(2) D and Pj should reveal gk(x), in which case set vkj = tkj and v∼

kj = t∼kj .
8. ⊆k → [κn], j → [n], Pi participates in WSS-Rec-NoBC(D, vkj) and

WSS-Rec-NoBC(Pj , v
∼
kj). Pi’s outputs from these protocols are v

(i)
kj and

v
∼(i)
kj , respectively.

9. BROADCAST: Each Pi broadcasts his view of the previous round—
namely, the reconstructed shares v

(i)
kj and v

∼(i)
kj , for all k, j.

If a majority of players agrees on a non-≥ reconstructed value for vkj

(resp. v∼
kj), then such value is the broadcast (BC) consensus for the given

commitment, and the players who agree participate in the consensus. If
no BC consensus exists, or if the player who shared the value does not
participate, then the sharing player is disqualified. Consequently, if D is
not so disqualified, then there exists a BC consensus (which D endorses)
for all vkj . Assuming this is the case, then D is nevertheless disqualified if
for any k, the set of shares {vkj}j , together with appropriate public pieces,
does not lie on a polynomial of degree ≤ t.
In addition to broadcasting his view as described above, D also accuses
player Pj , by publicly broadcasting the shares (sj , {tkj}k), if either of the
following occurred:
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(1) D output ≥ in any WSS-Rec-NoBC instance for which Pj was dealer; or
(2) D reconstructed an incorrect value for Pj ’s share of any challenge poly-

nomial (v∼(D)
kj ≡= vkj).

If any such public pieces fail to lie on the appropriate degree-t polynomial,
or if D neglects to accuse Pj when there exists a BC consensus that v∼

kj ≡=
vkj , then D is disqualified.
Let HAPPY denote the set of non-disqualified players who were not
accused by D. If |HAPPY| < n − t, then D is disqualified.

Protocol VSS-Rec0bc(P, s)

1. Each player Pi → HAPPY invokes WSS-Rec-NoBC(Pi, si).
Each player Pi → P creates a list of shares consisting of those sj which he
accepts from any WSS-Rec-NoBC(Pj , sj) (including his own), together with
all public pieces sj . He takes any t + 1 shares from the list, interpolates a
polynomial f(x), and outputs s := f(0) as the secret.

Theorem 2. Protocol VSS3bc = (VSS-Share3bc,VSS-Rec0bc) is a (3, 0)-broadcast,
(9, 1)-round, linear verifiable secret sharing scheme secure against an unbounded
adversary who corrupts t < n/2 players.

The number of broadcast rounds, as well as total number of rounds, is easily
verified by inspection. In particular, broadcast is used in rounds 5, 7 and 9.
We will specifically reference these rounds in the next section, where we only
keep first and third broadcasts. The proof of Theorem 2 is broken up into three
lemmas, as follows.

Lemma 3. (Privacy) If D is honest, then w.h.p. the adversary A gains no
information on s prior to VSS-Rec0bc.

Proof. The secret-sharing properties of degree-t polynomials assure that the joint
distribution of all shares handed by D to the corrupted parties in step 1, is
uniformly random, in particular independent of s.

By the privacy property of protocol WSS employed in steps 2–7, the individ-
ual shares (si, {tki}k) of any honest party remain independent of the adversary’s
view. If in step 7 D broadcasts (si, {tki}k) for some Pi who conflicted with D
in an instance of ICValidate, then that Pi must have been corrupt and hence A
already knew these values (as well as the fact that D would broadcast them).

In step 7, A learns the honest parties’ random challenges, which are inde-
pendent of s and its shares, and thus yield no additional information.

The values reconstructed in step 8 are, for each challenge, either f(x)+gk(x)
or gk(x). The gk(x)’s themselves were chosen uniformly at random, and until step
8 A knew nothing about them except for the shares held by corrupt parties, by
WSS Privacy. Hence, conditioned on A’s view up to that point, the revealed
polynomial is uniformly random subject to consistency with the shares held by
corrupted parties. Since D is honest he will answer all challenges correctly, and
so A knows in advance that all honest parties will “accept” D’s responses.
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In step 9, A knows in advance what each honest party reconstructed from
each WSS, so those broadcasts reveal nothing. Additionally, if D accuses Pj , then
D output either ≥ or an incorrect value in some instance WSS-Rec-NoBC(Pj , ∩).
This implies w.h.p. that Pj was dishonest (WSS Commitment Without Agree-
ment), in which case A learns nothing when D broadcasts the shares (sj , {tkj}k).2

Lemma 4. (Commitment) With high probability, at the end of VSS-Share3bc
there exists a fixed s∼ → F such that all honest players output s∼ during
VSS-Rec0bc. If D is honest, then s∼ = s.

The proof of this lemma is presented in the full version of the paper [GGOR13].

Lemma 5. (Linearity) If the parties verifiably share secrets {s(k)}, then they
also (without further interaction) verifiably share any (public) linear combination
of the s(k).

Proof. Consider the situation when parties verifiably share a secret s according
to the protocol, for a dealer D who was not disqualified. By the Commitment
proof, we know that w.h.p. D’s WSS-commitment to si is proper for all i, and,
further, that each happy player has properly WSS-committed to the same value.
Since happy Pi have made proper WSS-commitments, the linearity of WSS-
commitment implies that such Pi can reveal (and are committed to) any linear
combination thereof.

Now consider secrets s(k) which are verifiably shared with shares s
(k)
i , inter-

polating polynomials fk(x) all of degree ≤ t. (We ignore the “shares” of players
who are disqualified in some execution of VSS-Share3bc—such players must be
corrupt and without loss of generality other players simply ignore their messages
and shares during VSS-Rec0bc.) Then any t + 1 of the summed shares

∑
k s

(k)
i

interpolate the polynomial f(x) =
∑

k fk(x), which is of degree ≤ t with free
term

∑
k s(k).

For any given non-disqualified Pi each share s
(k)
i associated with that player

is (w.h.p.) either (1) properly WSS-shared among all parties; or (2) publicly
known. If all the s

(k)
i for Pi are publicly known, then other players simply use the

public sum
∑

k s
(k)
i as Pi’s share during VSS-Rec0bc. Otherwise, by the linearity

property of WSS Pi can reveal any sum of s
(k)
i ’s. In particular, he can reveal

exactly the sum of those s
(k)
i ’s which are not already public, and this is what he

does when revealing his “share” in VSS-Rec0bc. This is of course the functional
equivalent of revealing the sum of all the s

(k)
i ’s since the other players need

only add the public values to the reconstructed value to obtain the “true” share∑
k s

(k)
i of

∑
k s(k). (And revealing the sum of all shares reveals exactly the same

information as revealing the sum of the non-public shares.)
2 As this discussion suggests, it may happen that D broadcasts an honest party’s

shares in step 9; this can only happen if A succeeds in an IC forgery attempt (hence
with negligible probability). As a consequence, our protocol achieves statistical but
not perfect privacy. On the other hand, privacy is perfect conditioned on the event
that A is unsuccessful in all forgery attempts, as a failed forgery by itself reveals
nothing about s.
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3.2 Further Reducing the Number of Broadcast Rounds

We now show how to modify protocol VSS-Share3bc so that only two rounds of
broadcast suffice. This improvement is inspired by the transformation presented
in Sect. 3.3 of [KK07].

We execute the transformation in three steps. First, we show how using one
round of physical broadcast one can prepare a setup (details below) which allows
to simulate sufficiently many gradecast channels later on. Second, we consider
a moderated version of VSS-Share3bc where the dealer acts as the moderator.
Third, we instruct the players to use one more round of physical broadcast in
order to agree on whether the moderator behaved correctly or not. The over-
all construction results in a constant-round share protocol which uses physical
broadcast in two rounds only—one for gradecast setup generation and one for
agreeing whether the dealer’s moderation was honest.

First, we describe two additional building blocks used in our transformation.

Gradecast from setup. In [HR13], Hirt and Raykov recently showed how to pre-
pare a setup allowing to simulate 2-cast channels (protocols Setup3 and Broadcast3
in [HR13]). The setup protocol Setup3 takes 3 rounds, where in the first two
rounds point-to-point channels are used and in the third round a physical broad-
cast is used. The protocol Broadcast3 simulating 2-cast from the prepared setup
uses point-to-point channels during 3 rounds.

Since gradecast is achievable from 2-cast channels in settings with t < n/2
(recall the description of gradecast in Sect. 2), we can interpret the setup for 2-
cast channels as a setup for gradecast channels. Let the protocol SetupGradecast
be defined to generate such a setup, i.e., SetupGradecast runs sufficiently many
instances of Setup3 for each triple of players in parallel. The following lemma
summarizes the security achieved by the pair of protocols (SetupGradecast,
Gradecast).

Lemma 6. Protocol Gradecast is a 6-round protocol achieving gradecast from a
setup and point-to-point channels tolerating t < n/2 malicious parties. More-
over, the setup used by protocol Gradecast is prepared using the 3-round protocol
SetupGradecast, where in the first two rounds point-to-point channels are used
and in the third round physical broadcast is used.

Moderated VSS. In [KK06], Katz and Koo proposed a new primitive called mod-
erated VSS which allows to execute VSS under the supervision of a designated
party called the moderator. If the moderator is honest, then the resulting pro-
tocol actually achieves the security properties of VSS; otherwise no security is
guaranteed.

Formally, a two-phase protocol for parties P, where there is a distinguished
dealer D → P who holds an initial input s and a moderator P ∼∼ → P (who
may possibly be the dealer), is a moderated VSS protocol tolerating t malicious
parties if the following conditions hold for any adversary controlling at most t
parties:
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– Each honest party Pi outputs a bit fi at the end of the sharing phase, and a
value si at the end of the reconstruction phase.

– If the moderator is honest during the sharing phase, then each honest party
Pi outputs fi = 1 at the end of this phase.

– If there exists an honest party Pi who outputs fi = 1 at the end of the sharing
phase, then the protocol achieves VSS; specifically: (1) if the dealer is honest
then all honest parties output s at the end of the reconstruction phase, and
the joint view of all the malicious parties at the end of the sharing phase is
independent of s, and (2) the joint view of the honest parties at the end of
the sharing phase defines a value s∈ such that all honest parties output s∈ at
the end of the reconstruction phase.

Theorem 7 ([KK06]). Assume there exists a constant-round VSS protocol Π,
using a broadcast channel in the sharing phase only, which tolerates t malicious
parties. Then there exists a constant-round moderated VSS protocol Π ∈, using a
gradecast channel and tolerating the same number of malicious parties.

The compilation of Π into Π ∈ is achieved by requiring the players to use a “mod-
erated broadcast subroutine” to simulate broadcast. Each time players invoke
the subroutine they update their flag fi indicating whether the broadcast simu-
lation has been successful. Players start executing Π ∈ with fi set to 1. The mod-
erated subroutine Modercast for party Pi broadcasting a message m is defined as
following.

Protocol Modercast(P, P ∼∼, Pi,m)

1. Pi gradecasts the message m.
2. The moderator P ∼∼ gradecasts the message he output in the previous step.
3. Let (mj , gj) and (m∈

j , g
∈
j) be the outputs of party Pj in steps 1 and 2, respec-

tively. Within the underlying execution of Π ∈, party Pj will use m∈
j as the

message “broadcast” by Pi.
4. Furthermore, Pj sets fj := 0 if (1) g∈

i ≡= 1, or (2) m∈
i ≡= mi and gi = 1.3

We are now ready to show the enhanced VSS protocol.
A (2,0)-broadcast, constant-round VSS protocol. In order to reduce the number of
rounds where physical broadcast is used we apply the following transformation
to the protocol VSS-Share3bc:

1. First, we generate gradecast setup using protocol SetupGradecast.
2. We then run a moderated version of the protocol VSS-Share3bc, where the

dealer acts as a moderator. The Modercast subroutine uses two sequential
gradecast invocations that are simulated using the setup prepared by the
protocol Gradecast.

3 We note that in the description of the compilation from [KK06] gradecast with grades
in {0, 1, 2} is used. Here we use gradecast with grades in {0, 1} because during the
compilation it is only required to distinguish the maximal grade from all other grades
(so we put maximal grade to 1 instead of 2).
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3. Finally, each player broadcasts (using physical broadcast) his flag fi indicating
whether he trusts the moderator (who is also the dealer). If the number
of players broadcasting 1 is greater than n/2 then the sharing phase was
successful, otherwise the dealer is disqualified.

The second and the third steps of the transformation have been already pro-
posed by Katz and Koo in [KK07], while in the first step they make use of
a pre-distributed PKI acting as a setup for gradecast. In our transformation,
instead of assuming a PKI we generate a setup for gradecast using the protocol
SetupGradecast. We call the modified sharing phase VSS-Share2bc.

Furthermore, in VSS-Share2bc we optimize the round complexity of the trans-
formation by parallelizing the beginning and the end of the protocol VSS-Share3bc
with the protocol SetupGradecast and broadcasting the flags, respectively.

Protocol VSS-Share2bc(P,D, s)

1-2. Players execute rounds 1 and 2 of the protocol SetupGradecast in parallel
with rounds 1 and 2 of VSS-Share3bc.

3–5. BROADCAST: Players execute round 3 of SetupGradecast and rounds 3-
5 of VSS-Share3bc. Each player broadcasts the concatenation of the values
resulting from protocols SetupGradecast and VSS-Share3bc.

6. Players execute round 6 of the protocol VSS-Share3bc.
7–18. MODERCAST: Players execute round 7 of VSS-Share3bc where the

Modercast subroutine is used instead of broadcast. The subroutine invokes
two gradecast channels sequentially. Each call to the gradecast channel is
simulated using the protocol Gradecast, which takes 6 rounds.

19. Players execute round 8 of the protocol VSS-Share3bc.
20. BROADCAST: Players execute round 9 of VSS-Share3bc. Each player

additionally broadcasts flag fi indicating whether Modercast was success-
ful. If the number of fi = 1 is greater than n/2, then the sharings generated
by VSS-Share3bc are accepted; otherwise, the dealer is disqualified.

Theorem 8. Protocol VSS2bc = (VSS-Share2bc,VSS-Rec0bc) is a (2, 0)-broadcast,
(20, 1)-round, linear verifiable secret sharing scheme secure against an unbounded
adversary who corrupts t < n/2 players.

Proof sketch. Due to Theorem 2, VSS3bc = (VSS-Share3bc,VSS-Rec0bc) is a lin-
ear verifiable secret sharing scheme secure against an unbounded adversary who
corrupts t < n/2 players. Hence, due to Theorem 7 the protocol VSS-Share2bc
obtains a moderated VSS protocol when substituting broadcasts in VSS-Share3bc
with Modercast. Finally, due to the definition of moderated VSS, if there exists
at least one honest party with fi = 1 then the moderated version of VSS-Share3bc
achieves VSS. Hence, since t < n/2, if more than n/2 parties broadcast fi = 1
then VSS-Share2bc achieves VSS; otherwise the dealer is corrupt and hence can
be disqualified.
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4 Summary and Open Problems

In the t < n/2, unconditional security regime, just because protocols treat broad-
cast as a black-box should not, from a theoretical perspective or otherwise, entitle
us to consider it a free resource, as there are compelling reasons to consider it
more expensive than “mere” secure channels. In this paper we proposed a refine-
ment of the round complexity of VSS, by adding a measure we term broadcast
complexity, and seeked to minimize the number of rounds in which it is invoked
as well, presenting a (2, 0)-broadcast, constant-round VSS protocol for t < n/2.
This is the first linear VSS protocol enjoying such a small number of broad-
cast rounds without trusted setup, while running in an overall constant number
of rounds.

One drawback of our resulting VSS protocol is that it is only proved secure
for static adversaries, since our WSS protocol, based on [CDD+01]’s, is not
adaptively secure. It is possible that the VSS protocol is adaptively secure, even
though the WSS protocol is not (per [Rab94,CDD+01]). We leave this corrobora-
tion for future work. We also leave open the question of whether (1, 0)-broadcast,
constant-round VSS protocols exist.
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Abstract. We initiate the study of the leakage-resilience of the informa-
tion-theoretic key distribution schemes. Such schemes, originally pro-
posed in the 1980s, have recently attracted a lot of interest in the
systems community. This is because, due to their extreme efficiency, they
can be executed on low-cost devices such as sensors, where the use of the
public-key cryptography is infeasible. We argue that the study of leak-
age resilience of such schemes is particularly well-motivated, since, unlike
more expensive devices, the sensors (or other similar devices) are unlikely
to be physically resilient to leakage.

We concentrate on the classical scheme of Blom (CRYPTO 1982),
since it is known to be optimal in a large class of such schemes. We
model the leakage as an input-shrinking function. In this settings we
show that Blom’s scheme is leakage-resilient in a very strong model,
where the adversary can (1) compromise completely some nodes in a
“standard” way, and (2) leak information jointly from the remaining
nodes. The amount leakage that we can tolerate can be up to (0.5− Θ) of
the total amount of information on the leaking nodes. We also show that
this bound is optimal, by providing an attack that breaks the scheme if
more leakage is available to the adversary. This attack works even in a
weaker model, where the nodes leak information independently.

In the proof we make use of the theory of the randomness extractors.
In particular we use the fact that inner product over a finite field is a
good 2-source extractor. This is possible since the Blom’s scheme is based
on the matrix multiplication.

1 Introduction

A recent trend in theoretical cryptography, initiated by [29,30,36], is to design
schemes that are provably-secure even if implemented on devices that are not
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fully trusted. The motivation for this research comes from the fact that, instead
of breaking the mathematical foundations of a cryptosystem, in real life it is
often much easier to attack its physical implementation. Such “physical attacks”
are usually based on the side-channel information about the internals of the
cryptographic device that the adversary can obtain by measuring its running-
time, electromagnetic radiation, power consumption (see e.g. [38]), or even by
actively tampering with it (see e.g. [4]) in order to force it to reveal information
about its secrets. Practitioners have developed several remedies to these attacks,
however, they are usually ad-hoc and lack a formal security argument.

Contrary to the approach taken by the practitioners, security of the con-
structions developed by the theoreticians is always analyzed formally in a well-
defined mathematical model, and hence covers a broad class of attacks, including
those that are not yet known, but may potentially be invented in the future.
Over the last few years several models for passive and active physical attacks
have been proposed and schemes secure in these models have been constructed
(see e.g. [1,2,7,8,11,14,15,19–21,23–25,27,29,30,32,33,37,40]). Some of these
papers [19,23,27,29,30,32] present the so-called general compilers i.e. algorithms
that transform any cryptographic functionality into a “physically-secure” one.
These generic constructions, although very inspiring theoretically, are of a lim-
ited practical relevance mostly because of the huge blow-up in the complexity of
the computed functionality. In another class of papers the authors develop new
schemes for concrete cryptographic task such as stream-ciphers [20,40], public-
key primitives [8,11,14,33,34,37], multiparty computation protocols [7] or zero-
knowledge schemes [24]. While some of these schemes can be quite effcient, it is
unclear if they will ever be used in practice, one of the reasons being that their
deployment would require a change in the existing industrial standards.

Therefore an alternative natural approach is to analyze the leakage-resilience
of existing cryptosystems in order to find among them those that exhibit good
leakage-resilience properties. One example of such work is the influential paper
of Akavia et al. [2] where the authors show leakage-resilience of the public-key
encryption scheme of Regev [42] and the identity-based encryption scheme of
Gentry et al. [26]. Another example can be found in [3] where the leakage-
resilience of the Okamoto identification scheme [39] is shown and used in a
construction of a signature scheme secure in the bounded-retrieval model. The
schemes in these examples are computationally secure and we are not aware of
any non-trivial example of a practical information-theoretically secure scheme
whose leakage-resilience has been shown in the literature.

Usually the information-theoretically secure schemes are considered not very
practical since, for various reasons, they are cumbersome to use in real-life, the
classical example being the one time pad encryption scheme that requires the
users to store very large keys. Nevertheless, some of the information-theoretically
secure schemes have found practical applications, due to their simplicity and eff-
ciency. One of such examples is the Shamir’s secret sharing scheme [44], which
is used as a building block for several cryptographic protocols. Another promi-
nent example are the information-theoretically secure key distribution schemes
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(KDS). The leakage resilience of one of such schemes, namely the classical Blom’s
scheme [5] is the main topic of this paper. Below we first give a brief introduction
to the KDS’s and then informally describe our leakage model.

Key Distribution Schemes (KDS). Since currently the main application of
the KDS’s are the sensor networks we will use the sensor network terminology.
We note, however, that the mathematical idea appeared much before the emer-
gence of such networks (Blom’s paper was published in 1982), and such schemes
have also other applications, one example being the HDCP (High-Bandwidth
Digital Content Protection) system created by Intel.

A sensor network consists of a large number m of autonomous devices denoted
by natural numbers 1, . . . , m. In many cases, sensors are being deployed in hos-
tile environment and are exposed to diverse malicious adversaries. In this case
security of communication between nodes becomes essential. Sensors need to
be able to communicate directly with each other over encrypted and authenti-
cated channels. Such communication requires that each pair of nodes share a
common secret key (which is used by this pair for encryption). After they are
deployed, the nodes should communicate without relying on any trusted third
party. Therefore, before the deployment, a trusted setup phase, called the key
predistribution, is executed. Since the sensors have a limited computing power
the use of the public-key cryptography is not an option, and the solutions based
on the symmetric-key primitives are preferred.

One obvious solution is for each sensor to store the secret key to pair with
any other node. In this case the common key of a pair would be secret and
known only to the nodes in this pair. This approach is not practical because
of the nature of sensors - the devices have limited memory, whereas the total
number of stored keys grows quadratically in the size of the network. Another
extreme is to give the same fixed key to every sensor in the network. While
this scheme would be very memory effcient its security is quite low, since the
adversary who compromises just one node, and extracts the key from it, would
be able to decrypt the communication between each pair of the not compromised
nodes sharing the same key.

Rolf Blom in [5] proposed a key distribution scheme which provides a nice
tradeoff between security and memory effciency. Description of the Blom key
distribution scheme as well as its security can be found in Sect. 2. Informally
speaking, the idea of [5] is to fix a number n of nodes that the adversary needs
to compromise in order to break the security of the system. More precisely:
as long as the number of compromised nodes is smaller than n then the keys
shared by any pair of not compromised nodes is unknown to the adversary.
The size of the stored information on each sensor is n · |K| bits (where |K|
is the length of the key that the sensors establish). Note that Blom’s scheme
can be viewed as a generalization of the schemes described above: by setting
n = m we obtain the scheme with high resilience against compromising of the
nodes, but high memory requirements, and by setting n = 1 we obtain the
other extreme case (low resilience and low memory requirements). For a formal
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analysis of Blom scheme see e.g. [6], where it is also shown that the Blom’s
scheme is optimal in terms of the amount of data that the sensors need to
store (as a function of n,m and |K|). Practical key predistribution schemes were
also proposed by Eschenauer and Gligor [22] who construct a scheme where
two nodes can establish the common key only with some probability. Other key
predistribution schemes providing different tradeoffs can be found for instance
in [9,17].

Leakage Resilience of the KDS’s. The sensors that execute the key distribu-
tion schemes are supposed to be low-cost, and therefore they cannot be assumed
to be leakage-proof, as physical protections against leakages is expensive. There-
fore analyzing the side-channel leakage-resilience of the key distribution schemes
is particularly well-motivated, and it is natural to pick the Blom’s scheme as
the first target for this analysis (for its optimality and simplicity). Let us start
with the description of our leakage model. As we already mentioned, several
models have been proposed for reasoning about the side-channel leakages, for
example the early approaches considered the leakages of the individual bits only
[13,30]. In this work we follow a very popular paradigm in which the leakage is
modeled as an input shrinking function, i.e. a function f whose output is much
shorter than its input (the length of the output of f will be called the amount
of leakage). Such functions were first proposed in cryptography in the so-called
bounded-storage model of Maurer [35]. Later, they were used to define the mem-
ory leakage occurring during the virus attacks in the bounded-retrieval model
[3,12,18]. In the context of the side-channel leakages they were first used in
[20] with an additional restriction that the memory is divided into two separate
parts that do not leak information simultaneously, and in the full generality in
the paper of Akavia et al. [2].

Our Contribution. In this paper we use the model of Akavia et al. i.e. we
do not impose any restrictions on the input of the leakage function, except that
we require only that the size of its output is bounded. Several other papers in
this model, already mentioned in the introduction, have been published in recent
years. A popular tool that is used in these works are the randomness extractors
(see e.g. [43]). Since some of these extractors are based on linear algebra (in
particular the famous inner product extractor of Chor and Goldreich [10]) hence
the Blom’s scheme, which itself uses the matrix multiplication, seems to be a
promising candidate for a leakage-resilient key distribution scheme. We confirm
this intuition in this paper.

More precisely, but still informally, we show that the Blom’s scheme is leakage-
resilient in the following sense. In our model we allow the adversary to both
perform the standard “non-leakage” attacks (i.e. to compromise the nodes) and
to leak from the uncompromised nodes1. Recall that n − 1 is the maximal num-
ber of nodes that the adversary can compromise while attacking the scheme
1 For simplicity of the notation in our formal model the leakage function is in fact also

applied to the compromised nodes.
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without leakage. In order to show the leakage-resilience we will now treat n as
a security parameter and allow the adversary to compromise significantly less
nodes than n − 1. Let j ≤ n − 1 denote the number of nodes that the adver-
sary actually compromised. It turns out (cf. Theorem 2) that if j is close to
n − 1 than the leakage-resilience of the Blom’s scheme is very low. In particular
if j = n − 1 then the scheme can be broken with leaking just |K| bits from
the uncompromised nodes, and in general Blom’s scheme can be broken in with
leakage of size that is ⊂0.5(n − j)2 · |K|. Therefore we assume that n − j is
linear in n. Under this assumption we show (Theorem 1) that the key estab-
lished between a pair of nodes, 1 and 2, say, remains secret even if the adversary
(additionally to the information that he got by compromising the nodes) learns
the value of the leakage function f on the concatenation of the internal data
of all the other nodes. The maximal amount of leakage (i.e. the length of the
output of f) that we can tolerate is at most c(n − j)2 · |K|, where c can be any
constant such that c < 0.5. A small caveat is that the leakage function cannot
depend on the identifiers2 of the sensors 1 and 2, and hence in this sense it is
non-adaptive.

Traditionally, the leakage resilience of the cryptographic schemes is measured
in terms of the relative leakage σ that they can tolerate, which is defined as the
ratio between the length of the output and the input of the leakage function.
In order to talk in these terms let us assume that the parameter n is linear in
m, i.e. there exists a constant π such that n = πm. Our Theorem 1 implies (cf.
Corollary 1) that the maximal achievable value of σ depends on the fraction α
of compromised nodes in the following way: σ ≤ c · (π − α)2/π (where c is any
constant such that c < 0.5). Hence, e.g., if the adversary did not compromise
any node then σ can be close to 0.5, if we choose π close to 1.

As highlighted above we also prove that the bound given in Theorem 1 is
optimal by showing an attack that uses leakage of size ⊂0.5(n − j)2 · |K|. This
attack actually works in a weaker model, where the sensors leak information
independently, i.e. separate leakage function is applied to each sensor and the
restriction on the leakage size concerns the sum of the lengths of the outputs
of these functions (cf. Definition 2). The leakage functions in this attack can be
chosen in advance, however they need to adaptively depend on the identifiers
of the sensors, hence we call it an adaptive model. In Sect. 7 we show an even
weaker attack (with slightly worse bounds) when the adversary does not even
need to adaptive in the sense that the leakage functions do not depend on the
identifiers of the sensors.

Before we present our contribution in detail we first describe formally (in
Sect. 2) the Blom scheme and its security in the standard model without leakages.
Then, in Sect. 3 we incorporate leakage into this model. Our main results are
stated in Sect. 4 and their proofs are given in Sects. 5–6.
2 In the Blom’s scheme every node i has its identifier i that is chosen randomly and

is used by the other nodes to compute the keys for communicating with i.
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2 Blom’s Key Distribution Scheme

In this section we give a formal definition of the Blom’s scheme that was already
informally introduced in Sect. 1. Let F denote some finite field (for instance
GF (p)), Mn(F) and Sn(F) will denote respectively the set of all matrices and
symmetric matrices of size n × n over field F. If m is the size of the network
(number of sensors participating in the protocol), then the scheme will be para-
meterized by n being a security parameter indicating the number of nodes which
needs to get compromised before the adversary is able to break the scheme. The
protocol setup requires that all secrets are being predistributed before the net-
work is deployed. To formalize, the protocol setup for an (F, n,m) -Blom scheme
(for the network size m and security parameter n) works as follows

– Central server selects publicly known identifiers x1, . . . , xm, where each xi →
F

n. Nodes are labeled 1, 2, . . . ,m so that xi is the identifier of the node i.
Next, server chooses uniformly at random as symmetric matrix R → Sn(F).
The matrix is kept secret and will be destroyed after this step. The secret
stored on device i consists of value Rxi → F

n. After this step each node is
associated with two values

(xi, Rxi)

where xi is publicly known and Rxi is kept secret. The network is deployed.
– If nodes i and j wish to establish a shared key, then i computes xT

j (Rxi),
whereas j computes xT

i (Rxj).

The symmetry of R assures that

xT
i Rxj = (xT

i Rxj)T = xT
j RT xi = xT

j Rxi

which guarantees that computed keys match on both sides of the channel.
It can be proven that if every n of the identifiers x1, . . . , xm are linearly

independent, then the adversary compromising any n−1 of the nodes (apart from
i and j of course), cannot determine the secret key which would be computed
by nodes i and j. Moreover, such an adversary cannot gain any knowledge on
this key. More formally, we can show [5] that

H(xT
i Rxj |secrets of n − 1 nodes) = H(xT

i Rxj)

where H(·) and H(·|·) denote respectively the entropy and conditional entropy of
a random variable. Formal proofs and extensions to conference keys can be found,
for instance, in [6]. In practical applications, to ensure this notion of security,
identifiers can be chosen as columns from a Vandermonde matrix (for definitions,
consult for instance [28]). In this paper we will assume that the identifiers are
simply uniformly and independently at random from F

n. This, of course, can
generate problems if, by accident, the selected identifiers are not linearly inde-
pendent. Fortunately, the probability that this happens will be negligible and
will disappear under the asymptotic notation.
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3 Leakage Attacks on the Blom’s Scheme

Consider a regular Blom scheme described in the previous chapter which is
determined by F, n and m being respectively the finite field, dimension of the
random symmetric matrix and the number of participants. Matrix R is randomly
chosen from Sn(F). Participants are receiving publicly known random identifiers
x1, . . . , xm → F

n as well as secrets of the form Rxi. The adversary wants to
find the common key of two nodes. To simplify the exposition let us assume
that these nodes are always 1 and 2, and therefore the key between them is
xT
1 Rx2 = xT

2 Rx1.
In our work, we will consider the scheme in a general framework of the

memory leakage. We allow the adversary to chose any function f and apply it
to the secrets Rx3, . . . , Rxm giving f(Rx3, . . . , Rxm). The function f models
an arbitrary memory leakage or an eavesdropping device which can be used on
stored secrets. It is worth noticing that compromising several nodes is just a
simple sub-case of the leakage function. Our results show that if the size of the
image of f is small enough, the distribution of xT

1 Rx2 conditioned on the value
of f is close to the uniform.

We wish to make our adversary adaptive, which means that it would choose
the leakage function f based on the publicly known identifiers. Note that it is
impossible to consider the leakage model when an adversary would be able to
choose f based on all the identifiers, namely x1, . . . , xm. Indeed, in this case, if
m > n + 2, f could just compute R based on Rx3, . . . , Rxm and output xT

1 Rx2.
Size of the image of f equals |F| and completely compromises the protocol,
which is unacceptable. Instead, we will allow an adversary to chose f based on
x3, . . . , xm.

A part from the model in which the function f operates simultaneously on
Rx3, . . . , Rxm we would consider the leakage model in which the adversary is
choosing functions f3, . . . , fm operating respectively on Rx3,. . . ,Rxm. It seems
that such an adversary would be significantly weaker then the one using the
joint function. Our results show that it is not the case. We will also consider
the non-adaptive adversary which needs to choose f before identifiers are being
set up.

Our security models are incorporating both the notion of regular sensor com-
promising (as considered in the usual security analysis of the Blom scheme) as
well as leakage functions. Next sections provide detailed descriptions of our secu-
rity definitions in terms of games between an adversary A and an oracle β.

Notation. For a random variable X we would define its support as
supp(X) := {x : P(X = x) > 0}. We will also need a notion of min-entropy
H∈(X) := minx∼supp(X) − log(P(X = x)). Statistical distance is defined as
Ω(X;Y ) := 1

2

⎡
x |P(X = x)−P(Y = x)|. By a distance to uniform distribution,

conditioned on a random variable we will understand d(X|Y ) :=
⎡

x P(Y = x) ·
d(X|Y = x) where d(X) := Ω(X;U) for U uniform independent on X.
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Strong Adaptive Adversary (Joint Leakage). Fix some parameters
n,m, j, k and the finite field F. There are m participants in the protocol. Consider
the following game between the oracle β and the adversary A.

1. A : The adversary chooses j nodes among 3, 4, . . . , m which we will call com-
promised. We may assume that the nodes chosen by an adversary are num-
bered 3, 4, . . . , j + 2.

2. β: The oracle chooses R → Sn(F) uniformly at random. Oracle chooses
x1, . . . , xm from F

n independently uniformly at random. Values of x3, . . . , xm

are sent to A.
3. A : The adversary chooses a function f : Fn(m−2) ≡ {1, . . . , |F|k}.
4. β : The oracle sends to the adversary x1, x2 as well as Rx3, . . . , Rxj+2 (secrets

from compromised nodes) and f(Rx3, . . . , Rxm).

Observe that, in order to simplify the notation, we measure the size of the leakage
not in terms of bits but in terms of the field elements and the function f can
also be viewed as having a type f : Fn(m−2) ≡ {0, 1}k log2 |F |. For an adversary
A, by V iewA we will denote the vector of values of all random variables which
were observed by the adversary during its game with the oracle.

Definition 1. We say that the (F, n,m)-Blom scheme is strongly (j, k, φ) -
secure if for any Adversary A in the game above we have that

d(xT
1 Rx2|V iewA) ≤ φ.

Weak Adaptive Adversary (Separate Leakages). The setting is the same
as in the strong adversary model. The difference between this model and the
strong one is in Steps 3 and 4:

3. A : Adversary chooses a functions f3, . . . , fm such that fi : Fn ≡ {1, 2, . . . ,
|F|ki} where k3 + · · · + km ≤ k.

4. β : Oracle sends to the adversary x1, x2 as well as Rx3, . . . , Rxj+2 (secrets
from compromised nodes) and f3(Rx3), . . . , fm(Rxm).

Definition 2. We say that (F, n,m)-Blom scheme described above is weakly
(j, k, φ)-secure if for any Adversary A in the game above we have that

d(xT
1 Rx2|V iewA) ≤ φ.

4 Our Results

In this section we state our main security results.

Theorem 1. For every n consider a (F, n,m)-Blom scheme and j(n) and k(n)
such that n − j(n) = β(n). Let c < 0.5 be an arbitrary constant. If k(n) ≤
c(n − j(n))2 then the scheme is strongly

⎣
j(n), k(n), |F|−Ω(n)

⎤
-secure. Moreover

the constant hidden in β(n) does not depend on |F|.
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The proof of this theorem is presented in Sect. 6 and the main technical machin-
ery is developed in Sect. 5. Observe that the leakage resilience (measured by the
parameters j(n), k(n) and |F|−Ω(n)) does not depend on the number of the par-
ties, but only on the difference between the parameters n and j(n). Traditionally,
the leakage resilience of a scheme is measured in terms of the relative size σ of
the leakage with respect to the total size of data that can leak, which in our
case is n(m − 2). The following corollary of Theorem 1 serves for interpreting
our result in this way. We will assume that there exists a constant π such that
n = πm, in other words: the security parameter (and hence the size of the data
stored by each node) is linear in the number of sensors.

Corollary 1. Let σ, α, π → [0, 1] and c < 0.5 be constants such that

σ ≤ c · (π − α)2

π
, (1)

and let F be an arbitrary finite field. Then for every m the (F, n,m)-Blom scheme
(with n = πm) is (α · m,σ · n(m − 2), |F|−Ω(n))-secure.

Proof. Let j := α · m and k = σ · n(m − 2). It is a straightforward calculation
that k ≤ c(n − j(n))2. Hence, by Theorem 1, the corollary is true. �

The corollary implies that, as long as the number j of compromised nodes is
a constant fraction of the total number of nodes, we can tolerate a constant
relative leakage σ with respect to the total size of the data. Observe that in the
extreme case when no parties are compromised we have α = 0, and hence σ is
at most cπ ⊂ π/2, which, for π close to 1, means that the relative leakage can
be close to 0.5.

As mentioned in the introduction, the parameters obtained in Theorem 1
are optimal. Indeed, even if we pass to the weak model, the adversary can fully
compromise the protocol for k(n) ⊂ |F|0.5(n−j(n))2 . To formalize, we can prove
the following.

Theorem 2. For every n consider a (F, n,m)-Blom scheme and n and k(n)
such that k(n) = 0.5(n − j(n))(n − j(n) + 1). Such scheme is not weakly
(j(n), k(n), φ)-secure for any φ < 0.1.

The proof appears in the full version of this paper [31]. Theorems 1 and 2 show
together, that two considered adaptive models, namely models with joint and
separate leakages can be considered as equivalent in terms of asymptotic security.
This means that allowing the adversary to compute leakage function “mixing”
the secrets stored at different nodes, gives him no significant advantage over the
model in which we allow only to leakages from separate nodes. This may be
viewed as counterintuitive, as one may expect that joint leakage model would
allow to significantly reduce the leakage size necessary to compromise the proto-
col. The main technical tool that we use to prove Theorem 1 is the lemma that
appears in the next section.
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5 The Main Technical Lemma

Lemma 1. Let X,Y be independent random vectors uniformly distributed over
F

n. If R is a random matrix uniformly distributed among supp(R) ∈ Mn(F) and
independent of (X,Y ), then for an arbitrary function f : Mn(F) ≡ {1, . . . , |F|k}
we have that

d(XT RY |X,Y, f(R)) ≤ |F|u−n+1 +
|F|k/8n

|supp(R)|1/8n
|F|(n−u+7)/2

for any u < n.

One may be tempted to think about this fact as a simple corollary from leftover
hash lemma (LHL), because we can treat the variable XT RY as coming from a
family of hash functions H(x,y)(R) = xT Ry indexed by random choice of (x, y).
It turns out that this is not the case since this hash family is only about 2/|F| -
almost universal which does not allow us to use the LHL. Trying modifications
of the LHL proof using, for instance, conditioning on the rank of the random
matrix R also does not seem to provide suffciently good estimates.

Before we present our proof we need some technical tools. We start with the
useful notion of an inner product extractor, then develop linear algebra lemmas
and finally move towards the core of the proof.

5.1 Strong Two Source Extractors

Definition 3. We will call a function Ext : Fn × F
n ≡ F a strong (k1, k2, φ)

-two-source extractor if and only if for any independent random variables X,Y
in F

n such that H∈(X) ≥ k1 and H∈(Y ) ≥ k2 we have

d(Ext(X,Y )|X) ≤ φ.

If X and Y are random vectors in F
n, then recall that by XT Y we will denote

the regular dot product of vectors X and Y [10]. For Ext(X,Y ) = XT Y , [16]
provides a simple proof of the bound on φ for |F| = 2. This result can be extended
to an arbitrary finite field F and follows easily from the work of [41].

Theorem 3 ([41]). (Inner product extractor) The function Ext : Fn × F
n

≡ F defined as Ext(X,Y ) = XT Y is a strong (kX , kY , |F|(2u−kX

+|F|(n+1)/22−(u+kY )/2))-two source extractor for any u ≤ kX .

5.2 Linear Algebra Tools

This section develops linear algebra tools ending with a following combinatorial
lemma which is crucial for the proof of our results.
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Lemma 2. Let {Mv}v∼Fn be any family of subsets of Mn(F) satisfying

⊆v∼Fn⊆M1,M2∼Mv
M1v = M2v.

Then
⎦

v∼Fn

|Mv| ≤ |F|4 · |F|n ·
∣∣∣∣∣

⎛

v∼Fn

Mv

∣∣∣∣∣

1−1/4n

.

Lemma 2 shows that sets Mv, v → F
n must be overlapping considerably com-

pared to |⎝ Mv|. Technical proof of this lemma appears in the full version of
this paper [31].

5.3 Proof of Lemma 1

Let us recall that we have set an integer n and an arbitrary function f : Mn(F) ≡
{1, 2, . . . , |F|k} for some k. We are given independent random variables X,Y,R
such that X,Y are uniformly random vectors from F

n and R is random matrix
chosen uniformly at random from supp(R) ∈ Mn(F). Let us define

Mi = {M → supp(R) : f(M) = i}.

and note that
⎡

i |Mi| = |supp(R)|. Also, let |R| := |supp(R)|. We wish to
estimate

d(XT RY |X,Y, f(R))

=
⎦

i

⎞

⎠P(R → Mi)
⎦

y∼Fn

P(Y = y)d

⎨
XT Ry

∣∣∣∣∣X,Y = y,R → Mi

⎩⎜

⎟

⎥ ︷︷ ︸
(∗)

For a fixed y and Mi we may look at

d

⎨
XT Ry

∣∣∣∣∣X,Y = y,R → Mi

⎩

as an inner product extraction from independent random variables X and Ry,
conditioned on event that {R → Mi, Y = y}. By Hi

∈(y) we will denote

Hi
∈(y) := H∈(Ry|R → Mi).

Of course H∈(X) = n log(|F|). Let us fix some u < n log(|F|). Using indepen-
dency of X,Y,R, Theorem 3 concerning inner product extraction gives us

d

⎨
XT Ry

∣∣∣∣∣X,Y = y,R → Mi

⎩
≤ |F|

(
2u

|F|n + |F|(n+1)/22−(u+Hi
∞(y))/2

)
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Plugging this estimation into (∩) gives us

(∩) ≤ |F| · 2u

|F|n +
⎦

i

⎞

⎠P(R → Mi)
⎦

y∼Fn

P(Y = y)|F|(n+3)/22−(u+Hi
∞(y))/2

⎜

⎟

≤ |F| · 2u

|F|n +
|F|−n

|R|
⎦

i

⎞

⎠|Mi|
⎦

y∼Fn

|F|(n+3)/22−(u+Hi
∞(y))/2

⎜

⎟

= |F| · 2u

|F|n +
|F|−n

|R| |F|(n+3)/22−u/2
⎦

i

⎞

⎠|Mi|
⎦

y∼Fn

2−Hi
∞(y)/2

⎜

⎟ (2)

Let us focus on estimating the term
⎡

i

(
|Mi|

⎡
y∼Fn 2−Hi

∞(y)/2
)
. We will use

the following Holder inequality

r⎦

i

xα
i ≤ r1−α

⎨
r⎦

i

xi

⎩α

(3)

valid for any 0 < π < 1 and xi > 0. Definition of Hi
∈(y) and Lemma 2 yield

⎦

i

⎞

⎠|Mi|
⎦

y∼Fn

2−Hi
∞(y)/2

⎜

⎟

=
⎦

i

⎞

⎠|Mi|
⎦

y∼Fn

√
max
z∼Fn

P(Ry = z|R → Mi)

⎜

⎟

=
⎦

i

⎞

⎠√
|Mi|

⎦

y∼Fn

√
max
z∼Fn

|{R : Ry = z} ← Mi|
⎜

⎟

≤ |F|n/2
⎦

i

⎞

⎠√
|Mi| ·

√ ⎦

y∼Fn

max
z∼Fn

|{R : Ry = z} ← Mi|
⎜

⎟ (4)

≤ |F|n|F|2
⎦

i

(
|Mi|1−1/8n

)
(5)

≤ |F|n|F|2|F|k/8n|R|1−1/8n (6)

Inequalities (4) and (6) come from applying (3) for π = 1/2 and π = 1 − 1/8n
respectively. Estimation in (5) can be deduced by applying Lemma 2 to receive
that ⎦

y∼Fn

max
z∼Fn

|{R : Ry = z} ← Mi| ≤ |F|4|F|n|Mi|1−1/4n



232 M. Jastrzȩbski and S. Dziembowski

Plugging obtained inequality (6) into (2) we receive

d(XT RY |X,Y, f(R)) ≤ |F| 2u

|F|n +
|F|−n

|R| F
(3n+7)/22−u/2|F|k/8n|R|1−1/8n

= 2u|F|−n+1 +
|F|k/8n

|supp(R)|1/8n
2−u/2|F|(n+7)/2

for any u ≤ n log |F|, which completes the proof with substitution u := u/ log |F|.
�

6 Proof of Theorem 1

Theorem 1 can be seen as a corollary from Lemma 1. We will need a following
lemma, counting the number of symmetric matrices given its values on a chosen
set of vectors.

Lemma 3. Let c1, c2, . . . , cj and v1, v2, . . . , vj be vectors such that ci → F
n,

vi → F
n and j ≤ n. In this setting, either

{M → Sn(F) : ⊆iMvi = ci} = ∪
or

|{M → Sn(F) : ⊆iMvi = ci}| ≥ |F|(n−j)(n−j+1)/2

Proof. The size of such set is minimal for v1, . . . , vj being linearly independent
which we will assume from this point. We are able to choose vectors vj+1, . . . , vn

so that v1, . . . , vn form a basis of Fn. To uniquely determine M it is enough to
set Mvj+1, . . . , Mvn. Note, that

M → Sn(F) ∅∼ ⊆a,b : vT
a Mvb = vT

b Mva.

This means, that if there exist a, b ≤ j such that vT
a cb ⊕= vT

b ca then we fall into
the first case of our lemma. Otherwise, Mvj+1 can be set into one of |F|n−j

ways. Indeed, cj+1 := Mvj+1 must fulfill vT
a cj+1 = vT

j+1ca for all a < j + 1,
which gives us a linear space of dimension n − j. Similarly, having set cj+1, the
value cj+2 := Mvj+2 can be set into one of |F|n−j−1 possibilities, etc. In total
we receive |F|(n−j)+(n−j−1)+...+1 possibilities of choosing M which completes the
proof. �

Proof (of Theorem 1). Proving the Theorem 1 is equivalent to estimating

d

⎨
XT

1 RX2

∣∣∣∣∣X1, . . . , Xm, RX3, . . . , RXj+2, f(X3, . . . , Xm, RX3, . . . , RXm)

⎩

(7)
where X1, . . . , Xm are m independent random vectors from F

n, R is a random
matrix from Sn(F) independent on (X1, . . . , Xm) andf has a type Fn(m−2)+n(m−2)

≡ F
k. Denote (7) with D.
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X1, . . . , Xm are random variables denoting identifiers attached to partici-
pants. Values of RX3, . . . , RXj+2 come from fully compromised nodes. One may
easily observe that the statistical distance described above indeed corresponds
to our model, as allowing the adversary to adapt to X3, . . . , Xm is equivalent to
increasing the number of arguments of function f .

Assume that we have set m − 2 vectors x3, x4, . . . , xm, xi → F
n. To shorten

notation, R(c3, . . . , cj+2) will denote the event {Rx3 = c3, . . . , Rxj+2 = cj+2}.
Define D(x3, . . . , xm) to be equal to

d

⎨
XT

1 RX2

∣∣∣∣∣X1,X2, Rx3, . . . , Rxj+2, f(x3, . . . , xm, Rx3, . . . , Rxm)

⎩
.

Obviously, this is equal to

⎦

(c3,...,cj+2)∼Fjn

P(R(c3, . . . , cj+2))

· d

⎨
XT

1 RX2

∣∣∣∣∣X1,X2, f(x3, . . . , xm, Rx3, . . . , Rxm), R(c3, . . . , cj+2)

⎩

Lemma 3 implies, that for any c3, . . . , cj+2, we receive

|{a : P(R = a|R(c3, . . . , cj+2)) > 0}| = 0

or
|{a : P(R = a|R(c3, . . . , cj+2)) > 0}| ≥ |F|(n−j)(n−j+1)/2.

Also, computing f(x3, . . . , xm, Rx3, . . . , Rxm) is equivalent to computing g(R)
for some g : Mn(F) ≡ F

k. Using Lemma 1 we obtain

D(x3, . . . , xm) ≤ |F|u−n+1 + |F|k/8n−(n−j)(n−j+1)/16n|F|(n−u+7)/2.

Averaging over x3, . . . , xm results in the same estimation for D :

D ≤ |F|u−n+1 + |F|k/8n−(n−j)(n−j+1)/16n|F|(n−u+7)/2.

Plugging k = c(n − j)2 leads us to

D ≤ |F|u−n+1 + |F|7/2 exp
{

log(|F|)
(

n − u

2
+

(2c − 1)(n − j)2

16n

)}

As n− j(n) = β(n), there is a constant j0 such that n− j(n) ≥ j0n, which gives

D ≤ |F|u−n+1 + |F|7/2 exp
{

log(|F|)
(

n − u

2
− (1 − 2c)j20n

16

)}

By an arbitrary choice of u < n we obtain D = |F|−Ω(n). �
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7 An Even Weaker Adversary

As described in Sect. 1 we can weaken our adversary even more (with respect to
the one in the proof on Theorem 2), and the negative result will still hold (with
slightly worse parameters). The definition of this new weaker model follows.

Weak Non-adaptive Adversary (Separate Leakages). The setting and the
security definition is the same as in the weak adaptive model (cf. Definition 2).
This only difference is that in this case the adversary will not adapt to x3, . . . , xm.
More precisely, the security game is as follows:

1. A : Adversary chooses j nodes among 3, 4, . . . , m which we will call compro-
mised. We may assume that the nodes chosen by an adversary are numbered
3, 4, . . . , j + 2. Adversary chooses functions f3, . . . , fm such that fi : Fn ≡
{1, 2, . . . , |F|ki} where k3 + · · · + km ≤ k

2. β: Oracle chooses R → Sn(F) uniformly at random. Oracle chooses x1, . . . , xm

from F
n independently uniformly at random. Oracle sends to the adver-

sary x1, x2, x3, . . . , xm as well as Rx3, . . . , Rxj+2 (secrets from compromised
nodes) and f3(Rx3), . . . , fm(Rxm)

Definition 4. We say that (F, n,m) scheme described above is weakly non-
adaptively (j, k, φ)-secure if for any Adversary A in the game above we have

d(xT
1 Rx2|V iewA) ≤ φ.

Theorem 4. For every n consider a (F, n,m)-Blom and j(n) and k(n) such that
k(n) = 0.5(n − j(n))(n − j(n) + 1). Such scheme is not weakly non-adaptively
(j(n), k(n), φ)-secure for any φ < 0.5(1 − 1/|F|)n−1

Proof of this theorem can be found in a full version of this paper [31].
In fact, in proofs of Theorem 2 as well as Theorem 4 we are explicitly con-

structing adversaries breaking the scheme with probabilities as indicated in state-
ments. Obtained result would suggest that the scheme in the non-adaptive model
cannot be yet considered as compromised, as (1 − 1/|F|)n−1 for growing n tends
exponentially to 0. Note, however, that this term is strongly dependent on |F| (as
we already mentioned, this is not the case in Theorem 1). In fact, for practical
consideration, if we would take |F | ⊂ 2 · 109, (32-bit integers) then even for very
large n ⊂ 2 · 109 we have

(1 − 1/|F|)n−1 ⊂ 1/e

which allows us to treat this error as constant for practical applications. Thus, we
may say that the leakage of size k(n) ⊂ 0.5(n− j(n))2 compromises the protocol
in practical setting and demonstrates that in practice non-adaptive and adaptive
models are also equivalent in terms of security.
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Abstract. We investigate the problem of algebraic manipulation detec-
tion (AMD) over a communication channel that partially leaks infor-
mation to an adversary. We assume the adversary is computationally
unbounded and there is no shared key or correlated randomness between
the sender and the receiver. We introduce leakage-resilient (LR)-AMD
codes to detect algebraic manipulation in this model.

We consider two leakage models. The first model, called linear leak-
age, requires the adversary’s uncertainty (entropy) about the message (or
encoding randomness) to be a constant fraction of its length. This model
can be seen as an extension of the original AMD study by Cramer et al.
[3] to when some leakage to the adversary is allowed. We study random-
ized strong and deterministic weak constructions of linear (L)LR-AMD
codes. We derive lower and upper bounds on the redundancy of these
codes and show that known optimal (in rate) AMD code constructions
can serve as optimal LLR-AMD codes. In the second model, called block
leakage, the message consists of a sequence of blocks and at least one
block remains with uncertainty that is a constant fraction of the block
length. We focus on deterministic block (B)LR-AMD codes. We observe
that designing optimal such codes is more challenging: LLR-AMD con-
structions cannot function optimally under block leakage. We thus intro-
duce a new optimal BLR-AMD code construction and prove its security
in the model.

We show an application of LR-AMD codes to tampering detection over
wiretap channels. We next show how to compose our BLR-AMD con-
struction, with a few other keyless primitives, to provide both integrity
and confidentiality in transmission of messages/keys over such channels.
We discuss our results and suggest directions for future research.

1 Introduction

In a basic message authentication scenario, Alice wants to deliver a message to
Bob in the presence of Eve, who can arbitrarily manipulate the communication.
The goal is to enable Bob to detect adversarial manipulation with high proba-
bility. This objective is achieved by appending to the message a relatively short
authentication tag, calculated based on the message and a shared secret key
between the legitimate parties. In the computational setting, message authen-
tication is also attained via public key cryptography using digital signatures.

C. Padró (Ed.): ICITS 2013, LNCS 8317, pp. 238–258, 2014.
DOI: 10.1007/978-3-319-04268-8 14, c© Springer International Publishing Switzerland 2014
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The classical message authentication problem adopts the strong Dolev-Yao
attacker model [5], which possesses complete read and write access to the commu-
nication and modifies messages arbitrarily in real-time. Keyless detection of such
a powerful adversarial manipulation is impossible. When a less powerful adver-
sary is present however, alternative solutions to keyless manipulation detection
may exist. In this work, we consider a theoretical model of communication where
Alice is connected to Bob through a channel whose content can be manipulated
by an additive (algebraic) noise chosen by Eve. There is no shared key between
Alice and Bob and the adversary is computationally unbounded.

Detection of algebraic manipulation has already been studied by Cramer
et al. [3]. There, the authors assumed that the communication system keeps its
content “private” and designed algebraic manipulation detection (AMD) codes
to provide message integrity, only when the adversary cannot view the codeword.
This restrictive assumption, however, makes the adversary of an oblivious nature
since manipulation will be solely based on the public codebook knowledge. We
relax this assumption and study leakage-resilient (LR)-AMD codes for situations
where the adversary obtains partial information about the codeword.

1.1 Problem Definition and Results

An LR-AMD code is defined by a pair of encoding and decoding functions. When
a message is encoded, the codeword is “partially” leaked to Eve. She then uses
this to determine an arbitrary noise variable and adds it to the codeword. We
say that decoding fails if the manipulated codeword is decoded to a message
other than the original one. The LR-AMD code must satisfy correctness and
security. Correctness means in the absence of noise, decoder returns the original
message. Security means small decoding failure probability for a non-zero adver-
sarial noise. The optimality of a code construction on the other hand is measured
via effective tag length or asymptotic rate: The former is the code redundancy
and the latter is the asymptotic message length divided by the code length.

We define two classes of LR-AMD codes, namely linear (L)LR-AMD and
block (B)LR-AMD codes. LLR-AMD coding is an extension of AMD coding [3]
to when Eve’s uncertainty about the message (or code randomness) stays pro-
portional to the length. We consider deterministic weak LLR-AMD codes which
provide security guarantee for a randomly chosen message as well as randomized
strong LLR-AMD codes that provide security for any message. BLR-AMD codes
are for detecting algebraic manipulation in the block leakage scenario, where the
message is a sequence of blocks and Eve’s uncertainty for (at least) one block
stays proportional to its length. We only focus on deterministic weak BLR-AMD
codes. The leakage in LR-AMD codes is specified by leakage rate 0 ≤ σ ≤ 1, i.e.,
the fraction of message/randomness that can be leaked in terms of min-entropy.

AMD Codes vs. LLR-AMD Codes. We show that optimal AMD code con-
structions work optimally as well under linear leakage. We first prove general
bounds on the failure probability of AMD codes when used in the linear leak-
age model. Applying these results to optimal AMD constructions suggests strong
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LLR-AMD constructions with the asymptotic rate of 1 and weak LR-AMD codes
with the asymptotic rate of 1/(1+σ). This implies upper bounds on the effective
tag lengths of weak and strong LLR-AMD code families. The more challenging
question is whether the bounds can be improved, especially for weak codes.
The answer is negative: We derive lower bound expressions on the effective tag
lengths of LLR-AMD code constructions, which are (almost) equal to the upper
bounds, thus implying the optimality of the code constructions.

BLR-AMD Codes. It is impossible to accomplish deterministic LLR-AMD
with rate over 1/(1+σ), revealing that when σ tends to 1 the maximum achiev-
able rate is bounded by 1/2. This leads us to a question whether there are reason-
ably interesting leakage scenarios for which deterministic AMD with higher rates
(less redundancy) is possible. We consider the block-leakage model, described
above, and introduce an efficient systematic BLR-AMD code construction that
hat achieves the asymptotic rate of 1. We note that this construction can be
used as a weak LLR-AMD code and also a strong LLR-AMD code by choosing
part of the message string to be used for encoding randomness.

Manipulation Detection Over Wiretap Channels. In the wiretap chan-
nel [13], the sender sends a message to the receiver over the main channel, while
the eavesdropper receives a noisy version via a probabilistic wiretapping channel.
Wyner showed that transmission with perfect security is possible using random-
ized wiretap codes [13]. To protect against tampering however, one needs key-
less manipulation detection which is impossible if the adversary’s manipulation
power is unrestricted. We thus restrict the adversary to “algebraic manipulation”
over the wiretap channel. We consider a wiretap channel with noise-free main
channel and u-ary erasure/symmetric wiretapping component with symbol era-
sure/corruption probability p. We show that the LLR-AMD codes detect algebraic
manipulation when p > 0.5, whereas the BLR-AMD code construction protects
against a wider range of p. Finally we consider the case that symbols are binary
and manipulation is “unrestricted”, i.e., the adversary is not limited to additive
tampering and can apply all bitwise tampering functions. We will use the following
construction. Alice encodes her message using a BLR-AMD code, passes it to a
Manchester encoder, and transmits the resulting codeword over the channel bit-
by-bit via on-off keying. We will argue that the combination of Manchester cod-
ing and on-off keying restrict the manipulation of the adversary to algebraic ones,
which can be detected with high probability by our BLR-AMD code construction.
The above construction can be composed with wiretap codes to provide both pri-
vacy and manipulation detection in secret key/message transport.

1.2 Discussion and Related Work

Error Correcting Codes. Shannon’s seminal work [12] provides the first for-
mal treatment of reliable message transmission when the communication channel
is corrupted by probabilistic noise. The adversarial channel model was later pro-
posed by Hamming [10] as an alternative to Shannon’s model. Existence and
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construction of error correcting codes over oblivious adversarial channels (cor-
rupting up to a p-fraction of bits) has been studied in [9,11]. Our goal in this
paper is detection of errors in adversarial channels.

Deterministic vs. Randomized Coding. We study both randomized and
deterministic LR-AMD codes. Randomized coding is interesting as it allows us to
detect algebraic manipulation of any messages, as opposed to a random message.
But nevertheless, the study of deterministic code constructions is crucial because
generating “true” randomness can be hard, e.g., for low-cost devices. When true
randomness is not available but the input message itself is a (random) secret key
deterministic LR-AMD coding becomes interesting.

Communication Channel Model. The application of LR-AMD codes to tam-
pering detection over wiretap channels suites for instance a scenario where a
covert adversary tries not to use high-energy jamming/overshadowing attacks
to avoid the risk of being detected. This adversary rathers annihilate, amplify,
and/or flip communication symbols using same energy signals. When binary
modulation is used, this is translated as the four bitwise tampering functions:
keep, flip, set-to-0, and set-to-1. Binary modulation is popular in many commu-
nication systems such as fiber optics.

Integrity Codes. We show an interesting application the BLR-AMD codes for
message integrity over tamperable wiretap channels. Similar problem has been
addressed by integrity codes [2]. We mention the main advantages of our app-
roach over the solution in [2]. The construction of an integrity code consists of
on-off keying and unidirectional coding. The authors realize that on-off keying
does not prevent all 1-to-0 errors if the adversary knows the modulator car-
rier. They resolve this by encoding bit “1” to a long random (e.g., 48-bit [2,
Sect. 4]) string. This solution however requires a lot of local secret randomness
(per transmitted bit) and causes a huge bandwidth waste by drastically decreas-
ing the transmission rate. Our approach alternatively benefits from the BLR-
AMD code construction that detects 1-to-0 conversions made by bit-flipping: It
does not need randomness and more importantly is much more efficient in rate.

Non-malleable Codes. Dziembowski et al. [7] introduced non-malleable (NM)
codes which relax the definition of error correction and detection: non-malleability
requires manipulation to result either in the original message or in an unrelated
variable. NM codes have found application in algorithmic tamper-proof security
[8]. Authors of [7] built an NM code construction for bitwise manipulation which
takes advantage of AMD codes. This sparks the idea of using LR-AMD codes to
build NM codes for leakage scenarios.

2 Notations and Preliminaries

We use calligraphic X and bold X letters to denote sets and their sizes, and
use uppercase X and lowercase x letters to denote random variables and their
realizations over sets. Xn indicates a sequence of length n and Xi represents its
ith element. We use PrX(E) to show the probability of E over distribution X,
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and use Ex(Y ) to indicate the expectation of Y over choices of x. Logarithms are
by default to base 2. The following definitions are used throughout the paper.

Definition 1. (Min-entropy) For a random variable X ⊂ X with distribution
PX , its min-entropy is obtained as H∈(X) = − log maxx PX(x).

Definition 2. (Conditional min-entropy) Given random variables X ⊂ X
and Y ⊂ Y with joint distribution PXY , the (average) conditional min-entropy
of X given Y is obtained as H̃∈(X|Y ) = − log(Ey

(
maxx PX|Y (x|y))

)
.

Definition 3. (Weak source) A random variable X over the set X of size X
is called a π -weak source if it holds H∈(X) → π log X. The source is called
π-weak conditioned on the random variable Z if it holds H̃∈(X|Z) → π log X.

3 LR-AMD Codes: Definitions

A leakage-resilient algebraic manipulation detection (LR-AMD) code is specified
by a pair of encoding/decoding functions Enc : M ≡ X and Dec : X ≡
M∈{≥}, where M is the message space, X is the additive group of the codeword
space, and ≥ is the manipulation detection symbol. Figure 1 illustrates Alice
using this code to send Bob a message M over an algebraically manipulable
channel with leakage. Alice encodes X = Enc(M) and sends it. The channel
leaks information Z to Eve. Eve uses Z to choose α ⊂ X and replaces X with
Y = X + α. Bob receives Y and decodes it to M̂ = Dec(Y ). We say decoding
fails if M̂ /⊂ {M,≥}.

Fig. 1. Algebraic manipulation with leakage.

An LR-AMD code must satisfy correctness and security : The former means
decoding of encoding of a message should return the message itself, and the latter
requires negligible failure probability (when α ⊆= 0). Depending on whether
security is for a random message or for all messages, we define weak and strong
LR-AMD codes, respectively. The random-message security for a weak LR-AMD
code lets the encoding function be deterministic. In this work, we only consider
“deterministic” weak LR-AMD codes. A strong LR-AMD code, however, must
be randomized to work for all messages. We define two classes of LR-AMD,
namely LLR-AMD and BLR-AMD, codes. Throughout, we let 0 ≤ σ, β ≤ 1 be
real values and M, R, and X be the message, randomness (if applicable), and
codeword spaces of sizes M = |M|, R = |R|, and X = |X |, respectively.
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3.1 LLR-AMD Codes

A linear (L)LR-AMD code guarantees security if the message/randomness min-
entropy is above a certain fraction of its length given the leakage information.

Definition 4. (Weak LLR-AMD code) The deterministic block code with
encoding function Enc : M ≡ X and decoding function Dec : X ≡ M ∈ {≥}
is a (M,X, σ, β)-weak LLR-AMD code if ∩m : Dec(Enc(m)) = m, and for
any adversary Adv and variables M ⊂ M and Z such that M is (1 − σ)-weak
conditioned on Z, it holds:

Pr
M,Adv

(
Dec(Enc(M) + Adv(Z)) /⊂ {M,≥}

)
≤ β. (1)

The code is systematic if Enc(M) = (M,Tag(M)) for Tag : M ≡ T , where M
and T are additive groups.

Definition 5. (Strong LLR-AMD Code) The randomized block code with
encoding function Enc : R×M ≡ X and decoding function Dec : X ≡ M∈{≥}
is a (M,X,R, σ, β)-strong LLR-AMD code if ∩m : Dec(Enc(m)) = m, and for
any adversary Adv and variables R ⊂ R and Z such that R is (1 − σ)-weak
conditioned on Z,

∩m : Pr
R,Adv

(
Dec(Enc(R;m) + Adv(Z)) /⊂ {m,≥}

)
≤ β. (2)

The code is systematic if Enc(R;M) = (M,Tag(R;M)) for some function Tag :
R × M ≡ R × G, where M, R, and G are additive groups.

Remark 1. Definitions 4 and 5 restrict leakage in terms of leftover min-entropy.
This is a general form of that used by the leakage-resilient cryptography litera-
ture [6] which assumes leakage of a uniform source via a limited-length function.

For consistency with [3] when there is no leakage (σ = 0), we drop σ from
the notation and use (M,X, β)-weak AMD and (M,X,R, β)-strong AMD codes.

3.2 BLR-AMD Codes

The block leakage model captures a scenario where the message is a sequence of
(equal-sized) blocks and the leakage information leaves (at least) one message
block with some leftover min-entropy proportional to its length. A BLR-AMD
code is a scheme that detects algebraic manipulation with the codeword in the
block leakage model. Here, we focus on deterministic weak BLR-AMD codes.

Definition 6. (BLR-AMD code) Let Enc : Ud ≡ X and Dec : X ≡ Ud∈{≥}
denote a deterministic block code. For U = |U|, X = |X |, 0 ≤ σ < 1 and
0 < β ≤ 1, the code is a (Ud,X, σ, β)-(weak)BLR-AMD code if for any adversary
Adv, message M ⊂ Ud and leakage Z such that ←o ⊂ {1, . . . , d} : H̃∈

(
Mo|Z,

(Mj)j ∼=o

) → (1 − σ) log U, the security property (1) holds.
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An instance of block leakage is when the message is a uniform secret and the
adversary can observe Z = (f1(M1), . . . , fd(Md)), for d arbitrary functions f1
to fd, provided that the sum of function lengths stays ≤ σd log U. This follows
that at least one of the functions fo should be of length ≤ σ log U, satisfying
the block leakage model. Another scenario where BLR-AMD codes can be used
is the tamperable wiretap channel, discussed in Sect. 5.

3.3 LR-AMD Code Optimality

It is of theoretical and practical significance to design LR-AMD code construc-
tions with flexible parameters, rather than a single code.

Definition 7. (LR-AMD code family) A class F of LR-AMD codes is called
an LR-AMD code family if for any integers Ω, φ ⊂ N and real 0 ≤ σ ≤ 1, it
contains an LR-AMD code with message size M → 2σ and failure probability
β ≤ 2−∂ for leakage rate σ.

We use effective tag length [2] and asymptotic code rate to measure the optimality
of an LR-AMD code family in concrete and asymptotic ways, respectively.

Definition 8. (Effective tag length) For Ω, φ ⊂ N, 0 ≤ σ ≤ 1, the effective
tag length of an LR-AMD code family F is λ∗

F (Ω, φ, σ) = minF∗ log X−φ where
F∗ ∪ F has all codes with M → 2σ and β ≤ 2−∂ for leakage rate σ.

Definition 9. (Asymptotic rate) For 0 ≤ σ ≤ 1, the asymptotic rate of an
LR-AMD code family F equals RateF (σ) = lim∂∪∈ maxσ maxF∗ σ

logX where
F∗ ∪ F has all codes with M → 2σ and β ≤ 2−∂ for leakage rate σ.

4 Optimal LR-AMD Constructions

4.1 LLR-AMD Code Constructions

This section aims to give optimal and efficient constructions of weak and strong
LLR-AMD code families. We show that there is no need for designing new codes
since an optimal AMD code construction (for no leakage) works almost optimally
when there is linear leakage. We show this by (1) proving general upper-bounds
on the failure probability of weak and strong AMD codes when used under linear
leakage, and (2) proving lower-bounds on the effective tag length (and failure
probability) of LLR-AMD code families. The former is shown below.

Theorem 1. (Appendix A) Any (M,X,R, β)-strong AMD code is a (M,X,
R, σ,RΣβ)-strong LLR-AMD code, and any (M,X, β)-weak AMD code is a
(M,X, σ,MΣβ)-weak LLR-AMD code.

We apply the above result to examples of optimal AMD code constructions.
Lemma 1 shows a strong AMD construction suggested by Cramer et al. [3].
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Lemma 1. [3] Let F be a field of size q and characteristic p, and d be any
integer such that d + 2 is not divisible by p. The tag generation function fs :
F × Fd ≡ F × F, such that

fs(r;m) = (r , rd+2 +
d∑

i=1

mir
i)

gives a family of systematic (qd, qd+2, q, d+1
q )-strong AMD codes with effective

tag length λ∗
s(Ω, φ) ≤ 2Ω + 2 log(φ/Ω + 3) + 2 when p = 2.1

Combining Theorem 1 and Lemma 1 gives us a family of (qd, qd+2, q, σ, d+1
q1−α )-

strong LLR-AMD codes whose failure probability becomes arbitrarily small by
choosing q sufficiently large. The effective tag length of this family, when p = 2,
is upper bounded as

λ∗
s(Ω, φ, σ) ≤ 2

1 − σ
(Ω + log(φ/k + 3)) + 2.

Below, we provide an optimal weak AMD code construction, whose security
is proven in Appendix B.

Theorem 2. (Appendix B) Let F be a field of size q and characteristic p, d ⊂
N, and t ⊂ {2, 3} be such that t ⊆= p. The tag generation function fw : Fd ≡ F,
such that

fw(m) =
d∑

i=1

(mi)t

gives a family of systematic (qd, qd+1, 2
q )-weak AMD codes with the effective tag

length λ∗
w(Ω, φ) ≤ Ω + 1 when p = 2.

Applying Theorem 1 to this construction results in a family of (qd, qd+1, σ,
2

q1−αd )-weak LLR-AMD codes. The effective tag length of this code family is
generally upper bounded by λ∗

w(Ω, φ, σ) ≤ ∂+Σσ+1
1−Σ , but becomes as low as ∂

1−Σ +
σφ + 3 when 1/σ tends from below to a natural number.

Compare the effective tag lengths of the two LLR-AMD constructions. For
the strong code, the tag length remains always logarithmic to φ (hence the
message length) regardless of leakage rate σ. For the weak code however, the tag
length increases linearly with φ when σ ⊆= 0, and thus it cannot be negligible to
the message length for arbitrarily small decoding failure. This can also be seen
comparing the decoding failure probabilities 1

q1−α and 1
q1−αd for the strong and

weak LLR-AMD codes: Letting these terms tend to zero, the two constructions
achieve the asymptotic rates of 1 and (at most) 1/σ, respectively. It is crucial to
know whether the above rates are the highest achievable. We obtain a positive
answer to this question by proving non-trivial (almost) tight lower bounds on
the effective tag lengths of weak and strong LLR-AMD code families.
1 We slightly modified the original code description [3] for consistency reasons. We

used r and Θ in place of x and u, respectively, and let randomness r be part of the
fs(., .) function’s output.
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Theorem 3. (Appendix C) Any weak, resp. strong, LLR-AMD code family
F has an effective tag length lower bounded as

λ∗
F (Ω, φ, σ) → max{ Ω

1 − σ
−2 , Ω+σφ−2}, resp. λ∗

F (Ω, φ, σ) → 2Ω

1 − σ
−2. (3)

The effective tag lengths of the AMD constructions (Theorem 2 and Lemma 1)
closely match the lower-bound expressions. This indicates the optimality of those
constructions under leakage. Again observe that unlike strong ones, weak LLR-
AMD codes cannot achieve more than 1/(1 + σ) asymptotic rate under linear
leakage rate of σ. We ask whether deterministic LR-AMD coding with higher
rate (less redundancy) is possible for other leakage scenarios. This is addressed
for the block leakage model in the following section.

4.2 BLR-AMD Code Construction

Theorem 4 introduces a novel deterministic BLR-AMD construction that is
optimal as it achieves the asymptotic rate of 1. The construction can be also
used as weak and strong LLR-AMD codes. The reason the code stays secure
under block leakage is that its tag generation function is nonlinear to all mes-
sage blocks, and leftover min-entropy even in one message block suffices to pro-
tect against algebraic manipulation. This is in contrast with strong LLR-AMD
codes (e.g., Lemma 1) which relies only on the min-entropy of the encoding
randomness.

Theorem 4. (Appendix D) For positive integers q and (odd) d, Fq+1 be a
field of size q +1 with primitive element θ , and G be a d×d non-singular matrix
over Zq such that
- each column of G consists of distinct entries, i.e., ∩j, i, i∧ ⊆= i : gi,j ⊆= gi→,j;
- entries of G (as integers) are at most τd for constant τ, i.e., ∩i, j : gi,j ≤ τd.
The tag generation function fblr : Zd

q ≡ Fq+1, such that

fblr(m) =
d∑

i=1

θ
∑d

j=1 gi,jmj mod q ⊂ Fq+1,

gives a systematic (qd, (q + 1)qd, σ, φd
q1−α )-BLR-AMD code.

Remark 2. There are possible ways to construct the matrix G in Theorem 4, e.g.,
using non-singular circulant matrices [4]. In Appendix H, we give one example
of constructing G with τ = 3 when q is prime.

The effective tag length of the above construction for Fq+1 of characteristic 2 is

λ∗
blr(Ω, φ, σ) ≤ Ω + log(τφ/Ω + 3)

1 − σ
+ 3.
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4.3 Comparing the Three Constructions

Figure 2 graphs the effective tag lengths of the three LR-AMD constructions
defined by fs(.; .), fw(.), and fblr(.) with respect to message length parameter
27 ≤ φ ≤ 220, letting leakage rate σ = 0.49 < 0.5 and security parameter
Ω = 128. For the strong LLR-AMD and the weak BLR-AMD constructions, the
tag length stays almost constant (around 520 and 260 bits, respectively). This
promises the asymptotic rate of 1 when φ tends to infinity. Of course fs(.; .) bears
around two times redundancy of fblr(.) since it carries the encoding randomness.
The minimum possible tag length of the weak LLR-AMD construction, however,
grows linearly with φ, leading to an asymptotic rate of 0.66.
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Fig. 2. Comparing the redundancies in the LR-AMD constructions (γ = 0.49).

5 Wiretap Channels: Manipulation Detection

Consider a special case of Fig. 1 when leakage is through a probabilistic wire-
tapping channel. For a passive wiretapper, Wyner [13] proved that keyless pri-
vate communication is possible with a slight noise over the wiretapping channel.
Keyless manipulation detection however is trivially impossible if the adversary’s
manipulation power is not restricted. We first study “algebraic” manipulation
detection over wiretap channel and next show how coding and modulation can
be combined to detect “unrestricted” manipulation over this channel.

5.1 Algebraic Manipulation

We consider symmetric and erasure u-ary wiretap channels, defined as follows.

Definition 10. (SWC/EWC) A (u, p)-symmetric wiretap channel (SWC)
transmits codeword as a sequence of elements of set Fu of size u, such that
its wiretapping component, SCu,p, either transmits a symbol correctly with prob-
ability 1 − p or corrupts it, i.e., converts to it any other symbol with probability
p/(u − 1).
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A (u, p)-erasure wiretap channel (EWC) is defined similarly, expect the wire-
tapping component, ECu,p, erases (converts to ξ) symbols instead of corrupting.

When u = 2, the definitions lead to the common binary wiretap channels,
denoted by p-BEWC and p-BSWC. Observe that the wiretap channel is a special
case of linear leakage when leakage is probabilistic, so one may use LLR-AMD
codes for them. Applying the construction of Lemma 1 gives the following result.

Corollary 1. The construction of Lemma 1 detects algebraic manipulation of
any message over the (u, p)-EWC with p > 0.5, with failure probability

≤ min
0.5<λ<p

(
d

q2λ−1
+ q− (p−β)2

p ln(u)

)
.

Here d and q are defined in Lemma 1. The proof of this result is given as part
of the proof for Theorem 5 below. Informally, the upper-bound is calculated as

follows: Except with probability ≤ q− (p−β)2

p ln(u) , the erasure channel erases π fraction
of symbols from the randomness R and the tag T = fs(R;m), where m is the
message. This implies the leftover min-entropy of 1 − σ → (2π − 1) log q for R,
and decoding failure of ≤ d

q2β−1 . Similarly, the following can be obtained for the
weak LLR-AMD construction of Theorem 2.

Corollary 2. The construction Theorem 2 detects algebraic manipulation of a
uniform message over the (u, p)-EWC with p > d

d+1 , with failure probability

≤ min
d

d+1<λ<p

(
2

q(d+1)λ−d
+ q− (d+1)(p−β)2

2p ln(u)

)
.

Observe that when p ≤ 0.5, the LLR-AMD code constructions provide no
security guarantees regardless of the value of u. This raises the question of the
possibility of tempering detection for p ≤ 0.5. We show a positive answer through
modeling the wiretap channel by block leakage, where only one message block
needs to have leftover uncertainty. Theorem 5 proves that the BLR-AMD code
construction of Theorem 4 detects algebraic manipulation over a wider range of
EWCs, i.e., when p > 0.5 or pp−1

> u−1, which covers e.g., p > 0.25 for u = 28.

Theorem 5. (Appendix E) The BLR-AMD code construction of Theorem 4,
with q such that logu(q + 1) ⊂ N, detects algebraic manipulation of uniform
message over the (u, p)-EWC with failure probability of at most

βblr1 = min
0.5<λ<p

(
τd

q2λ−1
+ (q + 1)− (p−β)2

p ln(u)

)
for p > 0.5, and (4)

βblr2 = min
ζ<λ<p

(
τd

qλ
+ (q + 1)− (p−β)2

2p ln(u) + e
d

(q+1)ζ

)
for pp−1

> u−1, (5)

where ζ = − logu(p) < p.2

2 δblr2 can be made arbitrarily small, e.g., by choosing d ⊂ q(β+ζ)/2 and q sufficiently
large.
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Proposition 1. Theorem 5 also holds for (u, p∧)-SWC with p∧ = (1−u−1)p and
p given in the theorem.

Proposition 1 holds since for the codeword X, the adversary’s view Z ∧ =
SCu,p→(X) can be simulated from the erasure channel output Z = ECu,p(X) by
letting Z ∧

i = r for uniformly random r ⊂ Fu when Zi = ξ, or Z ∧
i = Zi otherwise.

The construction of “optimal” AMD codes remains open for wiretap channels
that violate the condition on p and u in Theorem 5 and Proposition 1. This
includes p-BEWC with p < 0.5 and p-BSWC with p < 0.25.

5.2 Unrestricted Manipulation

We show how the code can be used in practice to detect unrestricted manipula-
tion over tamperable erasure/symmetric wiretap channels. To send a message to
Bob, Alice (i) encodes it by the BLR-AMD construction, (ii) applies Manchester
coding, and (iii) transmits the resulting codeword bit by bit separately using
on-off keying. The construction does not require any sort of extra randomness
(except message/key) in the system. Manchester code is a simple binary error-
detecting code that appends to each bit its complement. On-off keying is a
common transmission method in digital data communication (esp. fiber optics),
in which bits “1” and “0” are represented by carrier wave signal’s presence and
absence, respectively. Because of binary communication, the adversary can only
tamper with each bit using one of the four bitwise functions, i.e., keep, flip,
set-to-0, and set-to-1. Proposition 2 proves that assuming certain property for
on-off keying, BLR-AMD code can detect unrestricted manipulation.

Proposition 2. (Appendix F) Let Encmn/Decmn be the Manchester encod-
ing/decoding functions, and fblr be the BLR-AMD code of Theorem 4, where
q = 2v − 1 and Fq+1 = GF (2v). The code Encb(m) = Encmn(m, fblr(m))3 and

Decb(c) =

{
m̂, if Decmn(c) = (m̂, t̂) ≥= ∈, and t̂ = fblr(m̂)

∈, else
, (6)

has code rate almost d
2(d+1) and detects manipulation of uniform message over a

p-BEWC (or p/2-BSWC) with p > 0.5 with failure probability at most βblr1 (as
in Theorem 5), if the codeword is sent via on-off keying.4

It can be argued that the assumption that the on-off keying prevents the adver-
sary from using the set-to-0 function is plausible. More details can be found in
the e-print version of the paper [1, Appendix I].

3 For binary transmission, assume each message block mi ∈ Zq is mapped to its v-
bit string representation before being given to Manchester code (there would be no
mapping to 1v string).

4 The result assumes that on-off keying prevents the adversary from using the set-to-0
function.
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5.3 Wiretap Codes for Active Adversaries

We compose the construction of Proposition 2 with wiretap codes [13] for both
privacy and integrity of message/key transmission over wiretap channels.

Definition 11. The code with functions Encw : {0, 1}t ≡ {0, 1}k and Decw :
{0, 1}k ≡ {0, 1}t is a (t, k, β)-wiretap code over the p-BEWC (resp. p-BSWC)
if ∩m ⊂ {0, 1}t : Decw(Encw(m)) = m and for uniform M ⊂ {0, 1}t it holds
I(M ;Z)/t ≤ β, where Z = BECp(Encw(M)) (resp. Z = BSCp(Encw(M))).

Proposition 3. (Appendix G) Let Encw/Decw denote a (t, k, β)-wiretap code
over the p-BEWC (resp. p/2-BSWC), for p > 0.5, such that Encw(M) is uni-
form for uniform M . Let Encb/Decb be the code construction of Proposition 2
with v ≤ tβ. The code Encwb(m) = Encb(Encw(m)) and

Decwb(c) =

{
Decw(Decb(c)), Decb(c) ⊆= ≥
≥, else

. (7)

is a (t, n, 2β) wiretap code, with n = 2k(d+1)
d , which detects manipulation of M

over the p-BEWC (or p/2-BSWC) with failure probability at most βblr1 (as in
Theorem 5), if the codeword is sent via on-off keying.

Known results give (t, k, β)-wiretap code constructions over p-BEWC (resp.
p-BSWC) with arbitrarily small β > 0 and of rate arbitrarily close to p (resp.
h(p) = −p log(p)− (1− p) log(1− p)) [13]. The above code construction achieves
rates arbitrarily close to (p)/2 (resp. h(p)/2) and provides both privacy and
integrity of transmission with arbitrarily small failure probability.

6 Conclusion

The AMD study in linear and block leakage models captures interesting scenarios
of reliable communication in the presence of an adversary who receives arbitrary
but bounded leakage about the communication. We proved optimal LLR-AMD
and BLR-AMD constructions and showed an application of these codes to manip-
ulation detection over wiretap channels. This work raises a number of directions
to future work. These include manipulation detection over more general wiretap
channels and finding applications of LR-AMD codes to other areas of cryptogra-
phy. An example of the latter is adding robustness to non-perfect secret sharing
schemes, which is a subject of our ongoing work.

A Proof of Theorem 1: LLR-AMD

We prove the theorem for strong AMD codes (similar proof can be given for
weak AMD codes). Let Enc/Dec denote a (M,X,R, β)-strong AMD code. The
security property implies (when there is no leakage)

∩m : max
δ

Pr
R

(Dec(Enc(R;m) + δ) /⊂ {m,≥}) ≤ β, (8)
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where R is the uniform randomness of the encoder. For any m and δ, define
Rfail(m, δ) ∪ R as the set of r values that lead to the verification failure,
by satisfying Dec(Enc(R;m) + δ) /⊂ {m,≥}. Since R is uniform, the proba-
bility that R ⊂ Rfail(m, δ) equals to |Rfail(m, δ)|/R; thus, to write (8) as
∩m : maxδ |Rfail(m, δ)| ≤ βR. Let Z be any random variable such that
the randomness R is (1 − σ)-weak conditioned on Z for 0 ≤ σ ≤ 1, i.e.,
Ez

(
maxr Pr(R = r|Z = z) ≤ RΣ−1

)
. For any message m, the probability of fail-

ure when Z is leaked to the adversary Adv is upper bounded as

Pr(Dec(Enc(R;m) + Adv(Z)) /∈ {m, ⊥}) = Ez (Pr(Dec(Enc(R;m) + Adv(z)) /∈ {m, ⊥}|Z = z))

∞ Ez

(

max
δ

Pr(R ∈ Rfail(m, δ) | Z = z)

)

∞ Ez

(

max
δ

|Rfail(m, δ)|max
r

Pr(R = r|Z = z)

)

= max
δ

|Rfail(m, δ)| Ez

(

max
r

Pr(R = r|Z = z)

)

∞ εR
α

.

B Proof of Theorem 2: Weak AMD

We shall show that for the uniform message M ⊂ Fd and any (δm, δt) ⊂ Fd × F
such that δm ⊆= 0, it holds PrM (fw(M + δm) = fw(M) + δt) ≤ 2

q . Since δm =
(δm,1, . . . , δm,d) ⊆= 0, there exists at least non-zero one element δm,o ⊆= 0 for
1 ≤ o ≤ d. This lets us write the term fw(M +δm)−fw(M)−δt as a polynomial
of degree t − 1 with respect to the variable Mo, i.e., Poly(Mo)

Δ=

fw(M + δm) − fw(M) − δt =

[
d∑

i=1

(Mi + δm,i)
t − M t

i

]
− δt =

t∑
j=1

(
t

j

)
δj

m,oM
t−j
o + a0,

where a0 =
[∑d

i=1,i ∼=o (Mi + δm,i)
t − M t

i

]
− δt is the constant term. For any

values of (Mi)i∼=o, hence fixed a0, the polynomial Poly(Mo) evaluates to zero for
at most t − 1 ≤ 2 (out of q) values of Mo. The polynomial thus becomes zero
with probability at most (t−1)/q ≤ 2/q, implying the failure probability bound.

The effective tag length of this code family when p = 2 is obtained as follows.
For integers Ω, φ ⊂ N, let q = 2∂+1 and d = ∅φ/ log q∼ so that both β = 2/q ≤ 2−∂

and |Fd| = qd → 2σ are satisfied. By restricting the source space Fd to only
M = 2σ elements the code range will also reduce to X = q2σ elements in Fd+1.
This leads to log X − φ = φ + log q − φ = Ω + 1.

C Proof of Theorem 3: Tag Length

The proof relies on the results of the following lemma.

Lemma 2. For any weak, resp. strong, LLR-AMD code the failure probability
is lower bounded as
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δ ≥ max{
(

(1 − e−1)
M − 1

X − 1

)1−α

, (1 − e−1)Mα M − 1

X − 1
}, (9)

resp. δ ≥
(

(1 − e−1)
M − 1

X − 1

)(1−α)/2

. (10)

Proof. We start by the (M,X, σ, β)-weak LLR-AMD code. We shall show that
for any such code there exists a message distribution M ⊂ M, a leakage variable
Z with H̃∈(M |Z) → (1 − σ) log M, and an adversary whose success chance in
changing M is lower bounded by (9). We choose M to be uniform and Z to be an
σ log M-bit string that represents answers to the adversary’s σ log M questions
about the codeword. The variable Z is such that each bit Zi is defined by Zi =
Queryi(Zi−1

1 ,M), where Queryi shows the ith question. Let X = Enc(M) be
the codeword for M . The adversary can choose any non-zero adversarial noise δ ⊂
X/{0} to be added to the X. There are n = X−1 values for δ, at least t = M −1
of which lead to valid codewords X +δ. Let X+ be the set of such valid δ values.
If the adversary picks δ randomly, her success chance will be → t/n. We now
describe the adversary’s strategy as follows. She first chooses a random subset
H0 ∪ X/{0} of size k = n/t and runs the following algorithm.

H ← H0.
for
(
i = 1 to γ logM

)
Partition H arbitrarily to H1 and H2 of (almost) equal sizes.
Set Zi ← whether |H1 ∩ X+| > 0.

if Zi = 1 (Yes) then H ← H1.
else H ← H2.
return δ that is randomly chosen from H.

The size of H at the end of the algorithm decreases to k/MΣ. The adversary
succeeds with probability MΣ/k if and only if H0 ⊕ X+ is not empty, whose
probability is obtained as

Pr(|H0 ∩ X+| > 0) = 1 − Pr(|H0 ∩ X+| = 0) = 1 −
(

n−t
k

)(
n
k

)
= 1 − (n − k) × · · · × (n − k − t)

n × · · · × (n − t)
≥ 1 − (1 − k/n)t = 1 − (1 − 1/t)t ≥ 1 − e−1.

This concludes the adversary’s success probability is at least β → (1 − e−1)MΣ/
k = (1 − e−1)MΣ M−1

X−1 , which is the second term of (9). For the first term, we
use the fact that the message size M is such that after σ log M questions the
adversary cannot guess the correct message with probability more than β, and
this implies M1−Σ → 1/β. We use this to write (noting that 0 ≤ σ ≤ 1)

β1/(1−Σ) → (1 − e−1)
M − 1

MT − 1
=√ β →

(
(1 − e−1)

M − 1
X − 1

)1−Σ

.

A similar argument can be used for the (M,X,R, σ, β)-strong LLR-AMD code:
For uniform randomness R and the variable Z such that H̃∈(R|Z) → (1 −
σ) log R, the adversary can use a similar strategy to Algorithm 1 with σ log R
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questions to achieve the success chance of β → (1 − e−1)RΣ R(M−1)
X−1 , noting that

there are at least R(M − 1) valid δ values in H0. In a strong LLR-AMD code,
the adversary is assumed to know the message. So the randomness size R should
be large enough to satisfy R1−Σ → 1/β. Combining this with the above shows
the following for 0 ≤ σ ≤ 1 which proves (10).

β2/(1−Σ) → (1 − e−1)
M − 1
X − 1

=√ β →
(

(1 − e−1)
M − 1
X − 1

)(1−Σ)/2

. �

We use (9) to bound the effective tag length of weak AMD code families as

logX − Θ ≥ log
X

M
= log

(
X

M − 1
× M − 1

M

)
≥ log

X − 1

M − 1
+ log(1 − M−1)

≥ max{ 1

1 − γ
log

1

δ
, log

1

δ
+ γ logM} + log(1 − e−1) + log(1 − M−1)

≥ max{ κ

1 − γ
, κ + γΘ} − 2.

Similarly, (10) is used to bound the effective tag length of strong code families

logX − Θ ≥ 2

1 − γ
log

1

δ
+ log(1 − e−1) + log(1 − M−1) ≥ 2κ

1 − γ
− 2.

D Proof of Theorem 4: BLR-AMD

The code construction Encblr/Decblr is systematic, so we only need to show
the security property. Let the message M ⊂ Zd

q and Z follow the block leakage
model such that for some o ⊂ {1, . . . , d} it holds that H̃∈(Mo|Z, (Mj)j ∼=o) →
(1−σ) log q. The decoding failure probability when Z is leaked to the adversary
Adv is upper bounded as

Pr
M

(Decblr(Encblr(M) + Adv(Z)) /∈ {M, ⊥})

= Ez

(

Pr
M

(Decblr(Encblr(M) + Adv(z)) /∈ {M, ⊥}|Z = z)

)

∞ Ez

(

max
δ

Pr
M

(Decblr(Encblr(M) + δ) /∈ {M, ⊥}|Z = z)

)

(b)
= Ez

(

max
δm ∞=0,δt

E(mj)j ∞=o|Z=z

(
Pr
Mo

(fblr(M + δm) = fblr(M) + δt|Z = z, (Mj = mj)j ∞=o)
)
)

(11)

Equality (a) follows from the law of total probability and the systematic con-
struction of the BLR-AMD code. For fixed (Mj = mj)j ∼=o ⊂ Zd−1

q , δm ⊂ Zd
q ,

and δt ⊂ Fq+1, we write the term fblr(M + δm) − fblr(M) − δt as

d∑

i=1

[

τ
∑

j gi,j(Mj+δm,j)−τ
∑

j gi,jMj

]

− δt =

d∑

i=1

[(

τ
∑

j gi,jδm,j − 1
)

τ
∑

j ∞=o gi,jmj τ
gi,oMo

]

− δt =

d∑

i=1

[
aiY

gi,o
]
+ a0

�
= Pδ,(mj)j ∞=o

(Y ), (12)
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letting a0 = −δt, Y = θMo , and ai be the coefficient of Y gi,o in the summation,
i.e., ai =

(
θ
∑

j gi,jδm,j − 1
)
θ
∑

j ∞=o gi,jmj . Applying this to (11), we need to find
an upper-bound on

Ez

(
max

δm ◦=0,δt

E(mj)j ∞=o|Z=z

(
Pr
Mo

(Pδ,(mj)j ∞=o
(Y ) = 0|Z = z, (Mj = mj)j ◦=o)

))
. (13)

The polynomial Pδ,(mj)j ∞=o
(Y ) is of degree at most maxi(gi,o) ≤ τd over Fq+1.

Lemma 3 shows that the polynomial is non-constant since it has at least one
non-zero coefficient.

Lemma 3. For any choice of message blocks (Mj = mj)j ∼=o, δm ⊆= 0, and δt,
the polynomial Pδ,(mj)j ∞=o

(Y ) has at least one non-zero coefficient.

Proof. We prove the claim by contradiction. Assume that all ai’s are zero, imply-
ing (θ is a primitive element in Fq+1)

∀1 ≤ i ≤ d :
(
τ
∑

j gi,jδm,j − 1
)
τ
∑

j ∞=o gi,jmj = 0 ∈ Fq+1 ⇒
d∑

j=1

gi,jδm,j = 0 ∈ Zq.

The above can be written as δm.G = 0 over Zq, which holds only if δm = 0 as
G is non-singular. This contradicts the adversarial assumption δm ⊆= 0. ��
For any δ (such that δm ⊆= 0) and (Mj = mj)j ∼=o, at most τd values of Y (hence
Mo) make the polynomial evaluate to zero. Let Mo,fail(δ, (mj)j ∼=o) of size at
most τd be the set of such Mo values that lead to decoding failure, implying

Pδ,(mj)j ∞=o
(Y ) = 0 ⇐√ Mo ⊂ Mo,fail(δ, (mj)j ∼=o).

We prove security by upper-bounding the failure probability (13) as follows.

Ez

(

max
δm ∞=0,δt

E(mj)j ∞=o|Z=z

(
Pr
Mo

(Pδ,(mj)j ∞=o
(Y ) = 0|Z = z, (Mj = mj)j ∞=o)

)
)

= Ez

(

max
δm ∞=0,δt

E(mj)j ∞=o|Z=z

(
Pr
Mo

(Mo ∈ Mo,fail(δ, (mj)j ∞=o)|Z = z, (Mj = mj)j ∞=o)
)
)

∞ Ez

(

max
δm ∞=0,δt

E(mj)j ∞=o|Z=z

(|Mo,fail(δ, (mj)j ∞=o)|max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j ∞=o)
)
)

(a)
∞ φdEz

(

max
δm ∞=0,δt

E(mj)j ∞=o|Z=z

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j ∞=o)
)
)

(b)
= φdEz

(

E(mj)j ∞=o|Z=z

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j ∞=o)
)
)

(c)
= φdEz,(mj)j ∞=o

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j ∞=o)
)

(d)
∞ φd

q1−α
.

Inequality (a) holds since we have |Mo,fail(δ, (mj)j ∼=o)| ≤ τd, equality (b) is
attained by removing maxδ as the expression has become independent of this
parameter, equality (c) uses the law of total probability, and inequality (d) fol-
lows the assumption that H̃∈(Mo|Z, (Mj)j ∼=o) → (1 − σ) log q.
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E Proof of Theorem 5

For uniform message M ⊂ Zd
q , let T = fblr(M) ⊂ Fq+1 denote the tag calculated

by the BLR-AMD code and X = (M,T ) = (X1, . . . , Xd+1) denote the codeword.
Let η = logu(q+1) ⊂ N. For the purpose of u-ary transmission over (u, p)-EWC,
we replace each message block in the codeword by a sequence of η symbols
over Fu; hence, each codeword element Xi consists of η channel symbols. The
theorem provides two bounds, namely βblr1 (4) and βblr2 (5), on the BLR-AMD
detection failure probability under two different conditions of p > 0.5 and pp−1

>
u−1, respectively. To prove the two bounds, we provide different approaches to
bounding the failure probability of the code.

Approach 1: Proving βblr1 in (4) for p > 0.5. Considering 0.5 < π < p, any
message block Mo for o ⊂ {1, . . . , d}, and the tag T , we shall study two events: E1

that the channel leakage leaves (2π −1) log(q) bits of leftover min-entropy in Mo

and E2 that the BLR-AMD decoder detects adversarial tampering (assuming E1

holds). The failure probability will be then bounded as βblr1 ≤ Pr(E1) + Pr(E2).
Let ηo and ηt be the numbers of symbols erased from Mo and T , respectively.

We have from the chain rule of min-entropy

H̃∈(Mo|Z, (Mi)i∼=o) → H̃∈(Mo|(Mi)i∼=o)−(η − ηt) log(u) = (
ηo + ηt

η
− 1) log(q).

Noting that Pr(E1) = Pr(ηo + ηt < 2πη), we obtain this probability as

Pr(E1) =

∗2βη∼∑
i=0

(
2η

i

)
pi(1 − p)2η−i ≤ e

− (p−β)2

2p
2η

= e
− (p−β)2

p
logu(q+1)

= (q + 1)
− (p−β)2

p ln(u) ,

where the inequality follows the Chernoff bound. When E1 holds, the leftover
min-entropy of Mo shows the uncertainty rate of 1−σ → 2π−1. From Theorem 4,
the BLR-AMD decoder fails with probability Pr(E2) ≤ φd

q2β−1 . Proof is completed.

Approach 2: Proving βblr2 in (5) for pp−1
> u−1. The condition on p implies

p > ζ for ζ = logu(1/p). Choosing ζ < π < p, we consider three events: E1 that
there is (at least) one message block Mo, o ⊂ {1, . . . , d} that is completely erased,
E2 that at least πη symbols are erased from the tag T , and E3 that the BLR-
AMD decoder detects adversarial tampering (assuming that E1 and E2 hold).
The overall failure probability is bounded as βblr2 ≤ Pr(E1) + Pr(E2) + Pr(E3).

A message block Mi is completely erased with probability p∧ → pη =
plogu(q+1) = (q +1)logu(p) = (q +1)−ζ . This implies Pr(E1) = (1− p∧)d ≤ e−p→d =

e
− d

(q+1)ζ . On the other hand, E2 holds except with probability

Pr(E2) =

∗βη∼∑
i=0

(
η

i

)
pi(1 − p)2η−i ≤ e

− (p−β)2

2p
η

= (q + 1)
− (p−β)2

2p ln(u) .

Provided that E1 and E2 holdd, the leftover min-entropy of Mo is bounded as

H̃∞(Mo|Z, (Mi)i◦=o) ≥ H̃∞(Mo|(Mi)i◦=o) − (1 − β)η log(u) = β log(q),
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which implies the uncertainty rate of 1−σ → π and BLR-AMD decoding failure
probability of Pr(E3) ≤ φd

qβ (from Theorem 4). This completes the proof.

F Proof of Proposition 2

The code rate d
2(d+1) comes from the product of rates of the Manchester and

the BLR-AMD codes. We show that the failure probability is precisely that
of the BLR-AMD code over p-BEWC (or p/2-BSWC), which equals βblr1 for
p > 0.5. We show this by discussing that using on-off keying and Manchester
coding causes a bitwise manipulation adversary to be either detected or behave
like an additive (keep and flip) adversary, whose manipulation is detected by the
BLR-AMD code from Theorem 5. For message M , we denote the n-bit codeword
X = Encb(M), where n = 2(d + 1)v, by X = (X1,X2, . . . , Xn).

On-off keying prevents the adversary from set-to-0 tampering [1, Appendix
I]. She thus remains with keep, flip, and set-to-1 functions. Considering such an
adversary, let TampA = (t1, t2, . . . , tn) be the sequence of bit-manipulation func-
tions over the set of keep, flip, and set-to-1. We claim that Decmn(TampA(X)) ⊂
{≥,Decmn(TampS(X))}, where TampS = (t∧1, t

∧
2, . . . , t

∧
n) is an “additive” manip-

ulation sequence such that ∩1 ≤ i ≤ n/2 : (t∧2i−1, t
∧
2i) =

⎧⎪⎨
⎪⎩

(keep, keep), (t2i−1, t2i) ∈ {(keep, set-to-1), (set-to-1, keep), (set-to-1, set-to-1)}
(flip, flip), (t2i−1, t2i) ∈ (flip, set-to-1), (set-to-1, flip)}
(t2i−1, t2i), else

(14)

We consider the case where Decmn(TampA(X)) ⊆= ≥ since otherwise we are done
with the proof. For every 1 ≤ i ≤ n/2, the pair of codeword bits (X2i−1,X2i)
are either 01 or 10. We prove the claim by showing in both of these cases
(t∧2i−1(X2i−1), t∧2i(X2i)) = (t2i−1(X2i−1), t2i(X2i)). We show the equality for
(X2i−1,X2i) = 01 and the other case can be argued similarly: The equality holds
trivially from (14) if the pair (t2i−1, t2i) does not include any set-to-1 function;
if not, the only valid options are (t2i−1, t2i) ⊂ {(keep, set-to-1), (set-to-1, flip)}
for which the equality again holds.

G Proof of Proposition 3

For parameters d and v of the BLR-AMD code, let n = 2(d + 1)v and k = dv.
The codeword C = Encwb(M) is obtained by applying three encoding functions
sequentially. The first (wiretap) encoding gives X = Encw(M) ⊂ {0, 1}k which is
uniform for the uniform message M ⊂ {0, 1}t. The second (BLR-AMD) encoding
gives Y = (X, fblr(X)) ⊂ {0, 1}n/2, and the third (Manchester) encoding results
in C = Encmn(Y ). The code rate is t/n = (td)/(2k(d + 1)). The detection
failure probability equals that of the code Encb/Decb and uniformity of X (see
Proposition 2). It remains to prove the privacy property of the code.

We prove privacy for p-BEWC (noting that it also works for p/2-BSWC).
Manchester encoder Encmn appends to each bit of Y its negation. If both a bit
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and its negation are erased by p-BEWC (which occurs with probability p∧ = p2),
Eve cannot discover the bit. This implies that Eve’s view Z = BECp(C) can be
built from Z ∧ = BECp→(Y ), i.e., the view over the p∧-BEC without Manchester
coding. We thus remove Manchester coding and assume that Eve’s view is Z ∧ =
(Z ∧

1, Z
∧
2), where Z ∧

1 = BECp→(X) and Z ∧
2 = BSCp→(fblr(X)). We conclude

I(M ; Z) = I(M ; Z′
1, Z

′
2) = I(M ; Z′

1) + I(M ; Z′
2|Z′

1) ≤ I(M ; Z′
1) + H(Z′

2)

≤ I(M ; Z′
1) + (n/2 − k) ≤ I(M ; Z′

1) + v ⇒ I(M ; Z)/t ≤ δ + v/t ≤ 2δ.

H Non-singular Matrix Construction

Let H be a d × d diagonal matrix over (field) Zq, where q is prime and d < 3q,
with entries Hi,i = i for 1 ≤ i ≤ d. The following algorithm converts H into a
non-singular matrix that has non-identical entries in each and every column. It
is easy to show that the value of s is always upper bounded by 2i and thus at
the end, all entries in resulting matrix are less or equal to 2d + d = 3d.

G ← H
for
(
j = 1 to d − 1

)
Add column j of G to its column j + 1.

s ← 2
for
(
i = 2 to d

)
while

(
s equals any entry of G up to row i − 1

)
s ← s + 1

Add s times the first row of G to row i.
return G
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