

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 79–91, 2013.
© Springer International Publishing Switzerland 2013

Toward an Integrated Quality Evaluation
of Web Applications with DEVS

Verónica Bogado, Silvio Gonnet, and Horacio Leone

INGAR, Universidad Tecnológica Nacional, CONICET
Avellaneda 3657, 3000 Santa Fe, Argentina

{vbogado,sgonnet,hleone}@santafe-conicet.gov.ar

Abstract. The increasing dynamic and complexity of Web systems turns
quality evaluation at any stage of the development into a key issue for the
project success in software development areas or organizations. This paper
presents a novel approach to evaluate Web applications (WebApps) from their
architectures, also considering their functionalities. Discrete EVents System
Specification (DEVS) is proposed for behavior and structure analysis based on
a set of quality criteria that serve as guidelines for development and evolution
of these Web systems. Three quality attributes are considered in this version of
the approach: performance, reliability, and availability, but the main advantages
are potential scalability and adaptability that respond to the features of these
systems.

Keywords: WebApp Quality Evaluation, Software Architecture, DEVS.

1 Introduction

Nowadays, Web has become an indispensable instrument to the most organizations.
Thus, developing Web applications (WebApps) becomes a challenge for the software
companies. WebApps are software systems with inherent multifaceted functionality and
they exhibit sophisticated behavior and structure, which must answer to the demands of
high quality and must have the ability to grow and evolve over the time [1]. Visible
features at runtime, i.e. during the operation of these systems, such as performance,
availability, or security are quality attributes that must to be considered and analyzed
during the development and improvement of WebApps. However, software companies
still develop this kind of software in an ad-hoc way, increasing problems related to
quality. With the aim to assist developers in the design of WebApps, systematic and
quantifiable approaches towards high-quality systems are required [2].

Despite the magnitude and impact of WebApps, there are no yet standard quality
assessment tools that give support to the software architects/developers during the
development of WebApps. However, Software Architecture (SA) is a mean to predict
the success or failure of a project providing different views of the system to analysis
quality aspects and there are some advances in this issue not only for Web system but
for software in general ([3], [4]).

80 V. Bogado, S. Gonnet, and H. Leone

In this work, we integrate structural, functional, and quality aspects in the same
analysis to improve quality of Web systems. We propose the construction of an
executable model based on Discrete EVent System Specification (DEVS, [5]), where
its execution will provide useful information to analyze behavior and quality of
complex and sophisticated Web systems applied to several domains. This model is
obtained from a Use Case Map (UCM, [6]) model that represents the architecture of
the WebApp to be evaluated and the main scenarios. UCMs help architects to
understand emergent behavior of complex and dynamic systems. DEVS formalism
and its underlying framework for modeling and simulation (M&S) allow us to build
an adaptable simulation environment, being an executable model of the WebApp
under evaluation. The simulation elements are specified following the principles of
modularity and hierarchy. This high level of abstraction enables us to represent
suitably the concepts of the SA of WebApps and complex paths to represent complex
dynamic scenarios (functionality) under common operation conditions on the Web.
Therefore, DEVS allows developers to study potential scenarios and operational
profiles of the system by mean of simulation, being a cheap way to prevent problems.

Parallel DEVS is particularly used for the specification of the simulation elements
due to it provides a set of features commonly found in WebApps. An Atomic Parallel
DEVS has a bag of ports to receive values at the same time with the possible multiple
occurrences of its element. It allows all imminent components to be activated
simultaneously and to send their outputs to other components having a confluent
transition function to solve collisions between internal and external events. Coupled
Parallel DEVS specifies components and how they are connected [5].

The rest of paper is organized as follows. Section 2 discusses related work
providing an overview. Section 3 summarizes the approach based on DEVS to
evaluate quality of Web systems. Section 4 describes a concrete WebApp, simulation
outputs, and simple examples of how to use the information to improve the software
designs after the evaluation. Section 5 presents conclusions and future work.

2 Related Work: An Overview

Quality evaluation employing architectural designs is becoming a key step in the
software development, but it is a growing trend to focus on WebApps because of the
demand of this kind of systems. In this context, there are general approaches based on
scenarios and qualitative analysis [3]. More formal proposals employ Markov
Decision Process with analytical resolution for a quantitative analysis of reliability,
performance, or security ([7], [8]). Queueing Theory is useful to measure
performance [9], while Petri Nets have been applied to evaluate different quality
attributes in an analytical form [10]. These formal techniques have some critical
limitations related to the modeling even more in WebApps development [11]. For
example, complex systems or software components are reduced to simple states
losing important information of the software elements.

Recently, empirical techniques have acquired importance in view that simulation
and prototyping provide abstraction level to model real software system. In this way,
prototyping has been successfully applied to evaluate SA but with high cost of
implementing the prototype [12]. Palladio Component Model (PCM) is a metamodel

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 81

to predict quality attributes. It has been focused on performance and reliability
prediction transforming the concrete SAs into dynamic models ([13], [14]).
Nevertheless, it is still necessary dynamic tools that can be as adaptable as the
metamodel in terms of expressiveness of the target model, which results in a
Queueing Network or Markov Chain losing features in the transformation.Finally,
approaches based on the visual notation UCM allow architects to model complex and
dynamic system, where scenarios and structures may change at runtime to study
performance using Layered Queueing Network [15].

Although there are several approaches for SA evaluation, there is still need of a
formal evaluation model that considers not only SA (structure) and isolated quality
attributes but includes functionality in the same analysis. Furthermore, the elements of
the evaluation model must represent the software elements and their sophistication. In
this way, UCM provides elements to represent graphically system structures (simple
and complex SA elements) and scenarios (functionality). On the other hand, DEVS is
a formalism to specify complex and dynamic systems with the purpose of simulating
them under possible scenarios and conditions. DEVS was successfully applied in
other domains ([16], [17]). DEVS provides two basic types of models, atomic and
coupled, and extensions like Parallel DEVS, which is used in this work. Parallel
DEVS has some advantages to simulate Web background allowing concurrence and
distributed components.

3 Quality Evaluation with DEVS

In this section, we summarize the elements considering for the simulation
environment with DEVS formalism. Due to the need of considering functional
requirements in the SA to have a complete view of the system, we propose UCM
models as inputs to evaluate the system quality (Fig. 1(a)). UCM is an informal
notation that captures functional requirements in terms of causal scenarios
representing behavioral aspects at high level design [6]. UCM does not replace
Unified Modeling Language (UML), but complements it being a bridge between
requirements and design. Due to it is a graphical notation, it is useful to understand
emergent behavior of complex and dynamic systems ([18], [19]). In the last few
years, UCM has gained an important place to describe WebApps because it provides
tools to treat sophisticated components and complex scenarios and operational uses.

UCM notation provides basic and architectural elements (Fig. 1 (a)):
responsibilities, paths and components. A path represents a scenario of the system and
it is executed after an external stimulus has happened. A responsibility point is a place
where the state of a system is affected or interrogated. Stimulus is a start point in an
execution where a pointer starts in this place and then is moved along the path. Thus,
the pointer enters and leaves components touching responsibility points inside.
Finally, end position is reached and the execution is finished by emitting a response.
UCM does not prescribe the number of threads associated with a path. So,
concurrency can be modeled with AND-Fork/Join elements generating several
concurrent subscenarios. Alternative subscenarios can be represented using OR-
Fork/Join ([6],[18],[20]).

82 V. Bogado, S. Gonnet, and H. Leone

Fig. 1. DEVS Framework for the quality evaluation of WebApps

To complement this flexible but informal notation, we have proposed a DEVS-
based simulation environment with the purpose of evaluating software quality. This
approach adds semantic to the simulation elements that represent software elements
building dynamic models. DEVS formalism specifies the architecture and behavior of
Web systems without losing important features of the responsibilities, simple and
composite components (hierarchical structures), among others. Furthermore, it
integrates several perspectives and quality attributes in the same analysis.

A conceptual framework for modeling and simulation (DEVS Framework, Fig. 1(b))
gives support to the formalism. It is composed by three entities [5]: i) Model: system
specification that defines the structure and behavior to generate data comparable to data
from the real world, ii) Simulator: computation system that executes the instruction of the
model giving life to it, iii) Experimental Frame: conditions under which the system is
observed for the experimentation and validation of the model. Modeling and Simulation
relationships link these parts. Therefore, the proposed simulation environment (SAESE,
Fig. 1(b)) has two main conceptual parts: simulation model for SA evaluation (SAVSM,
Fig. 1(b)) and experimental frame for SA evaluation (SAEEF, Fig. 1(b)). Simulator is
taken from DEVSJAVA (DEVS-Suite 2.01, Fig. 1(b)) implementation encapsulating this
part from the other two. Keeping separate theses entities gives some benefits such as the
same model can be executed by different simulators or several experiments can be
changed for studying different situations.

1 http://www.acims.arizona.edu/SOFTWARE/software.shtml

SA View - Simulation
Model

(SAVSM)
Model

Simulator

Experimental
Frame

Source
System

Modeling
relationship

Simulation
relationship

SA Evaluation -
Experimental Frame

(SAEEF)

DEVSJAVA (DEVS-Suite)

SA Evaluation - Simulation
Environment (SAESE)

WebApp

Components

Responsibilities

Responsibilities

System Context

Stimulus
Response

Scenario

System- SA

DEVS Framework

(a)

(b)

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 83

DEVS is an adaptable and scalable approach to tackle the SA evaluation problem
in the context of Web systems. It provides elements to build simple and complex
dynamic systems keeping the semantic of the Web software elements. Elements of the
core of UCM notation are specified as models of DEVS formalism.

Fig. 2 summarizes DEVS-based evaluation process, which has four main stages:
specify UCM for the WebApp, generate the DEVS-based simulation environment,
configure and execute the simulation, and analyses the results to make decisions,
where each one involves a set of activities detailed in the diagram. First, architects (or
developers) have to specify the SA using UCM notation (SA UCM), which can be
obtained from the user requirements, if it is an early evaluation, or from the
implementation, if it is a late evaluation (activity 1). So functional requirements
define the scenarios of the Web system and non-functional aspects provide
information to build the SA. This input model is translated into a DEVS hierarchy
(activity 2), where each element is translated into simulation elements specified in
DEVS, major details can be found in a previous work [21]. So, simple elements of
UCM such as OR-Fork/Join, AND-Fork/Join, stimulus (start point) are specified as
Atomic Parallel models, being the basis to build more complex structures. In this way,
responsibility, simple/composite components, system (SA view), and the whole UCM
are specified as Coupled Parallel models.

Fig. 2. DEVS-based quality evaluation process

Simulation elements generate the simulation model while configure the EF
(activities 3 and 4, Fig. 2). Simulation model represents the WebApp and it is a
Coupled Parallel DEVS called SAVSM. The background under the Web system
operates is represented by the EF, which is also a coupled model (SAEEF). These two
parts build the whole simulation environment for the WebApp by implementing them
in DEVS-Suite (activity 5, Fig. 2). Architect/developer has to configure the parameters
to run the simulation (evaluation) using information to adjust the probability

84 V. Bogado, S. Gonnet, and H. Leone

distributions (activity 6). After the evaluation (activity 7, Fig. 2), a set of measures
and quality indicators (explained in the next subsection) are obtained. This
information allows architects/developers to analyze the system (activity 8) and can
make design decisions if the quality requirements were not achieved (activity 9).

As we have mentioned, simulation elements build a hierarchical structure of DEVS
models that represents the whole simulation environment for the UCM of the
WebApp. It has two main parts that work together to simulate the dynamic of the
system. In this way, the simulation model (SAVSM, Fig. 3) represents the WebApp
architecture and the main scenarios. An input port is defined (erip) to receive requests
from external sources (SAEG from SAEEF, Fig. 3) and a set of output ports to emit
the responses, processed requests (esop, Fig. 3), and measures (described in Table 1 in
the following section) taken from internal components (rtaop, rdtop, rrtop, and
rfailop, Fig. 3) that are sent to the EF (SAEEF, Fig. 3).

Fig. 3. SAVSM: Simulation Model

Responsibilities are the smallest software unit (CPXRES) that together scenarios
elements such OR/AND define couplings to build complex DEVS that represent
simple components (SC), which can be coupled to obtain composite components (CC)
and the view of the architecture (SAVSM). CPXRES, SC, and CC define sets of
input/output ports for the causal flows (peip1…peipa1, seop1… seopa2, Fig. 3) and a set
of output ports to propagate taken measures (taop, dtop, rtop, and failop, Fig. 3).

The experimental frame, SAEEF, has a simulation element that represents the
stimulus of the system (SAEG, Fig. 4), which “gives life” to the WebApp. It emits a
request as output using the port rop. Other component defines the start and end of the
quality evaluation (SAEA, Fig. 4) sending signals using the port ssop. Finally, there is
a set of elements called “stat” that are responsible for the calculation of quality
indicators, one per quality attribute considered in the evaluation. So, we have defined
a DEVS model for the followings quality attributes visible at run time (Fig. 4):
performance (SAEPS), availability (SAEAS), and reliability (SAERS). These elements
have a set of input ports that receive measures or messages from other simulation

requests
from
SAEEF

measures
to SAEEF

ccx:CC
seop1

failop
rtop

peip1

dtop
taop

sc1:SC
seop1

taop

failop
rtop

peip1

dtop

SAVSM
esop

rfailop

erip

rrtop

rdtop

rtaop

cc1:CC

dtop

seop1

taop

failop
rtop

peip1

to next elements

from previous elements

…………………………………………….

peipa1

peipa1

peipa1

….

….

….

seopa2 ….

seopa2 ….

seopa2
….

processed
requests

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 85

elements, which are used to compute quality indicators (described in the next section).
The input ports allow SAEEF to propagate the measures sent from the SAVSM (rtaip,
procreqip, rfailip, rdowntimeip, and rrecovtimeip, Fig. 4) and the signal to start the
evaluation (sip, Fig. 4). The output interface emits the system indicators (explained in
Table 2, next section) for being used in future simulation of more complex
environment in the Web context.

Fig. 4. SAEEF: Experimental Frame

3.1 Software Quality Attributes and Related Measures

In this work, metrics related to performance, availability, and reliability are
considered to take direct and indirect measures [22]. Responsibilities are the main
providers of quantitative information so a set of basic metrics are defined (Table 1).

Table 1. Measures taken from each responsibility

ID Metric Description
rta Turnaround time per request Time that a responsibility requires to answer to a request.
fdt Downtime per failure Time that responsibility is “failed” due to a failure.

frt Recovery time per failure
Time that a responsibility needs to return to a normal
operation after a failure has occurred.

fn Number of Failures Failures that have happened in a responsibility.

Measures are propagated through the hierarchy from simple components to the top,

SAVSM (e.g. taop, dtop, rtop, and failop respectively, Fig. 3), sending theses values to
the SAEEF. Specific simulation elements have a set of specific domain operations that
return a more complex value (Table 2). These measures can be quality indicators of
the system, being outputs of the simulation environment (Table 2), or responsibilities
(e.g. turnaround time or downtime per responsibility, omitted here).

start
requests

(workload)
to

SAVSM

procreqip

rrecovtimeip

Performance

Reliability

Availability

staop

rop

sthop

sfailsop

ssop saea:SAEA saeg:SAEG
rop ssip

saeps:SAEPS
staop

sthop
ssip

sentreqip
procreqip

rtaip

sunavailop

saers:SAERS
sfailsop ssip

rfailip

saeas:SAEAS

sunavailop

savailop

rrecovtimeip
rdowntimeip

rfailip

ssip

rtaip

sip

rfailip

rdowntimeip

sip

savailop

SAEEF

Quality
indicators

responsibility
measures
from
SAVSM

86 V. Bogado, S. Gonnet, and H. Leone

Table 2. Quality Indicators: Simulation Outputs

Metric Description Attribute Sim. Element
Average turnaround
time of the system

Average time that the system requires
to answer to a request.

Performance
SAEPS

(port staop)

Average throughput
of the system

Average number of request served per
time unit in the system.

Performance
SAEPS

(port sthop)

Total unavailable
time of the system

Total time that the system is offline
(downtimes and recovery times).

Availability
SAEAS

(port sunavailop)

Total available time
of the system

Total time that the system has been
online.

Availability
SAEAS

(port savailop)

Total number of
failures of the system

Total amount of failures occurred in
the system.

Reliability
SAERS

(port sfailsop)

4 Evaluation, Results, and Design Decisions

Digital electoral register (DER) is a WebApp that keeps information about all people
registered to vote in a particular city including information of the polling place
locations. Furthermore, it has a specific module for geographical information
employing maps, which requires to access to an external server that returns a
coordinate with the latitude and longitude of a given location.

This WebApp has two kinds of users: elector and admin. They imply different
scenarios and operational uses of the system. The first one is a role defined for
anonymous people that ask for the polling locations. Each query generates a request
to the system and this workload grows in the last month before the Election Day. This
WebApp manages information about 60000 persons in condition to vote. On the other
hand, admin users are related to other scenario that implies the refinement of the
electoral register and the update of the information (electors and schools). In this
process of refinement, the coordinates of each elector address and polling place is
updated by submitting a query to the external server Gmaps. In the last scenario, a
higher load is generated 45 days before the closure of the electoral register (a month
before the Election Day).

Following the process presented in Section 3, we first specifies the Web system
using UCM notation considering the SA and the main scenarios, then we translate this
models into DEVS models, adjust parameters and run the simulation obtaining
indicators to analyze the system behavior and validate the quality requirements.

SA was rebuilt from the current implementation applying reverse engineering. We
have looked at the structure, functions, and operation of the WebApp to obtain a
technology independent architecture to study several scenarios and validate the
simulation environment. In this paper, we analyze the server and its behavior under
several conditions of uses due to it is the main part of this system and it must to be
evolved to manage not only information of people in a city but in a province or state.
Consequently, a traditional SA for WebApps is obtained, Client-Server pattern
structured in three levels with three main parts related to: presentation, business, and
data. The view of the server (DERSystem-Server) in particular has a composite
component (WebServer) and a simple component (DBServer), where the composite

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 87

component has two simple components inside, BusinessProcessor and
GMapsLocator. The first one executes the functionality related to the domain and the
other one interacts with GMaps. All these components embody fundamental units at
runtime for this WebApp. In conclusion, this architecture involves three levels of
complexity, where a client requires services to the server specified in Fig. 4, and this
server becomes a client to another external server (GMaps).

Each element of the architecture takes part according to the scenario. The first
scenario is focused on the elector query involving user requests (electors) as stimuli
and a set of responsibilities (Fig. 5). So, the scenario starts when a client connects to
the server (r1), enters the required data and an alphanumeric key that appears as an
image (r2). User data is validated (r3) while Captcha test is executed (r4) producing
concurrent subscenarios. Finally, the information required in the query is retrieved
from the DB, emitting a response with the information or an error message. Here the
performance is a critical issue due to the big workload generated by the potential
voters near to the Election Day (previous month to this crucial day).

Fig. 5. UCM of the Server: Scenario 1- Elector Query

The second scenario defines a more complex path involving several alternatives in
the causal flow (Fig. 6). The stimuli are given by the user requests (admin profile)
through the client, which connects to the server (r1). Once it is connected, the user
can chose between three options that produce three possible subscenarios: elector
registration (r2), schools registration -polling places- (r3), and geographical
coordinates updating of registered electors (r4). The first two options cause retrieving
the neighborhood associated to the given address (r5). The alternative paths are joined
to require the calculation of the coordinate (r6), where this responsibility involves a
query to GMaps. Lastly, once the coordinates are available, the information is updated
in the DB (r7) finishing the causal flow.

Regarding operation, this scenario has minor load due to the number of administrators
even so during the critical period. Here availability takes an important place.

We describe two quality attribute scenarios as examples. The first requirement is
related to system performance specifying that the turnaround time has to be less than
2000 ms under normal operation of DERSystem-Server to respond to the user requests
(electors). An availability scenario specifies that the unavailable time has to be less
than 60 min per month under normal operation of DERSystem-Server.

88 V. Bogado, S. Gonnet, and H. Leone

Fig. 6. UCM of the Server: Scenario 2- Elector Register Refinement (admin)

Fig. 7 illustrates the simulation environment for the second scenario and SA of the
WebApp in DEVS-Suite. Atomic models (grey nodes) compose coupled models that
represent responsibilities, simple and composite components, and view. Parameters
are configured using information from reports of failures and turnaround times.

Fig. 7. DEVS Simulation Environment: Scenario 2- Elector Register Refinement (admin)

A late SA evaluation takes place to understand the WebApp (DER System) in an
improvement process. In both scenarios, the simulation was run under conditions of
each critical period, where the request arrivals are defined by Poisson distribution.
Table 3 summarizes these conditions in columns two (period under evaluation) and
three (workload). The following columns present the system results (average for ten
simulations runs): number of requests sent to WebApp, turnaround time, unavailable
time, and number of failures. The real time employed by the simulator to execute each
scenario under the defined conditions is detailed in the last column.

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 89

Table 3. Summary of results after simulations runs

 Operation
time

Requests Turnaround
time

Unavailable
time

Failures Simulation
time

Scenario 1 30 days 11514 1029.63 ms 42.96 min 25.6 21 min
Scenario 2 45 days 3033 2643.11 ms 106.69 min 47.8 13.5 min

a. PC: Intel Core i7 860 2.80Ghz, RAM 4GB

Highlighted data can be directly used to validate the quality requirements specified

previously. The performance requirement is achieved by the first scenario but not by
the second one. Regarding availability requirement, the unavailable time has to be
less than 60 min per month, so the first scenario is fulfilled but the second one not
(should be less than 90 min in 45 days). These examples and other information that
describes each responsibility (omitted here, [21]) can be used to make design
decisions. It could help architects to find strengths and weaknesses in the complex
structure and behavior of WebApps.

Additional information taken from the implementation was used to validate the
outputs of the simulation environment detailed in Table 3. Now the simulation
environment can be used to evaluate the WebApp under new operational conditions.

5 Conclusions and Future Work

The main contribution of this work consists in evaluating Web systems employing
DEVS. A behavioral and structural analysis driven by quality attributes can be done
using a high level design specified with UCM notation. This integrated analysis
considers the main perspectives of the system: SA (structure), functionality
(scenarios), and quality (measures). A DEVS environment is briefly described:
simulation model represents the Web system and the experimental frame implements
quality goals and the environment that interacts with the system. Despite of this work
presented general designs, DEVS approach can be adjusted to specific Web
technologies (Web services, presentation design, frameworks as .Net, JAVA EE).

This approach provides several advantages to evaluate quality of WebApps that
could improve this kind of complex and dynamic systems. Firstly, high level
abstraction, a modular and hierarchical way to build domain-specific simulation
elements. Secondly, model decoupled from the simulator. Thirdly, the experimental
frame decoupled from the other two parts specifies the conditions under which the
system is observed, and the operational formulation of quality goals including one
element for each attribute that will be analyzed. Finally, homogenous representation
of the simulation elements allows the interchange of them building a simulation
environment based on interface and encapsulation of the internal mechanisms.

Regarding the case study, we have implemented the proposed simulation
environment for a WebApp, which has a traditional Web architecture client-server.
Two relevant scenarios were validated, analyzing quality requirements and obtaining
information to make design decisions that improve the current design or to make
changes that address new requirements.

90 V. Bogado, S. Gonnet, and H. Leone

Several issues remain open. Other quality attributes that are visible at runtime will
be studied, adding components to the experimental frame. In this way, new quality
aspects could be considered in the analysis to make design decisions that improve the
quality of WebApps. Moreover, it is interesting to include particularities of Web
systems in the model, behavioral or structural patterns, which are domain-specific to
resolve the inherent complexity of these systems for better results after the simulation.

Acknowledgements. Authors thank the financial support from Universidad
Tecnológica Nacional, CONICET, and Agencia Nacional de Promoción Científica y
Tecnológica (PAE-PICT 02315).

References

1. Pressman, R.: What a Tangled Web We Weave. IEEE Software 18(1), 18–21 (2001)
2. Casteleyn, S., Florian, D., Dolog, P., Matera, M.: Engineering Web Applications. Springer

(2009)
3. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and

Case Studies. Addison-Wesley (2002)
4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

(2012)
5. Zeigler, B., Praehofer, H., Kim, T.: Theory of Modeling and Simulation–Integrating

Discrete Event and Continuous Complex Dynamic Systems. Academic Press (2000)
6. Amyot, D.: Introduction to the User Requirement Notation: Learning by Example.

Computer Networks 42(3), 285–301 (2003)
7. Wang, W., Pan, D., Chen, M.H.: Architecture-based Software Reliability Modeling.

Journal of Systems and Software 79(1), 132–146 (2006)
8. Sharma, V., Trivedi, K.: Quantifying Software Performance, Reliability and Security: An

architecture-based Approach. Journal of Systems and Software 80(4), 493–509 (2007)
9. Spitznagel, B., Garlan, D.: Architecture-based Performance Analysis. In: Proc. 1998

Conference on Software Engineering and Knowledge Engineering, pp. 146–151 (1998)
10. Fukuzawa, K., Saeki, M.: Evaluating Software Architecture by Coloured Petri Nets. In:

Proc. 14th International Conference on Software Engineering and Knowledge Engineering,
pp. 263–270 (2002)

11. Singh, L.K., Tripathi, A.K., Vinod, G.: Software Reliability Early Prediction in
Architectural Design Phase: Overview and Limitations. Journal of Software Engineering
and Applications 4(3), 181–186 (2011)

12. Christensen, H., Hansen, K.: An Empirical Investigation of Architectural Prototyping.
Journal of Systems and Software 83(1), 133–142 (2010)

13. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-driven
Performance Prediction. Journal of Systems and Software 82(1), 3–22 (2009)

14. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Architecture-based reliability
prediction with the Palladio Component Model. IEEE Transactions on Software
Engineering (2011)

15. Petriu, D.B., Woodside, M.: Software Performance Models from System Scenarios in Use
Case Maps. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 141–158. Springer, Heidelberg (2002)

16. Byon, E., Pérez, E., Ding, Y., Ntaimo, L.: Simulation of Wind Farm Maintenance
Operations using DEVS. Simulation 87(12), 1091–1115 (2011)

 Toward an Integrated Quality Evaluation of Web Applications with DEVS 91

17. Ferayorni, A.E., Sarjoughian, H.S.: Domain driven Simulation Modeling for Software
Design. In: Proc. of the 2007 Summer Computer Simulation Conference (SCSC 2007), pp.
297–304 (2007)

18. Buhr, R.: Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering 24(12), 1131–1155 (1998)

19. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years The Next
Ten Years. Journal of Software 6(5), 747–768 (2011)

20. de Bruin, H., van Vliet, H.: Quality-driven Software Architecture Composition. The
Journal of Systems and Software 66(3), 269–284 (2003)

21. Bogado, V., Gonnet, S., Leone, H.: A Discrete Event Simulation Model for the Analysis of
Software Quality Attributes. CLEI Electronic Journal 14(3), Paper 3 (2011)

22. ISO/IEC 9126-1: Software Engineering – Product Quality – Part 1: Quality Model,
Number 1 (2001)

	Toward an Integrated Quality Evaluation
of Web Applications with DEVS
	1 Introduction
	2 Related Work: An Overview
	3 Quality Evaluation with DEVS
	3.1 Software Quality Attributes and Related Measures

	4 Evaluation, Results, and Design Decisions
	5 Conclusions and Future Work
	References

