MultiMasher: A Visual Tool
for Multi-device Mashups

Maria Husmann, Michael Nebeling, and Moira C. Norrie

Institute of Information Systems, ETH Zurich CH-8092 Zurich, Switzerland
{husmann,nebeling,norrie}@inf.ethz.ch

Abstract. The proliferation of a wide range of computing devices from
tablets to large displays has created many situations where we no longer
use a single device only. Rather, multiple devices are commonly used
together to achieve a task. However, there is still little tool support for
such scenarios in which different devices need to be combined to control
an interface. Our goal is to enable multiple devices to view and interact
with multiple web resources in a coordinated manner based on our new
idea of multi-device mashups. In this paper, we present a first, visual tool
for mashing up devices to access web sites, and discuss how we addressed
the challenges as well as interesting issues for further research.

1 Introduction

Nowadays, it is not uncommon for a person to possess multiple computing de-
vices such as a mobile phone, tablet, desktop and laptop computer. At the same
time, there are devices that are shared by groups of users such as interactive
tabletops or large screens. For example, in a group meeting there could be a
mobile phone for each participant, as well as tablets, a laptop computer for the
person leading the discussion and a large screen which is used to share infor-
mation with participants. In order to fully profit from such kinds of ecosystems,
it is desirable to use the devices in combination, rather than using each device
in isolation. However, this is currently often not possible because most appli-
cations are designed for a single device. Moreover, migration between devices
requires additional mechanisms and infrastructure as well as modifications to
the applications themselves [1].

While recent research in the area of distributed user interfaces has focused on
developing frameworks and tools [2,3] to systematically support the distribution
and migration of applications across devices, most solutions are usually limited
to considering only a single application [4]. On the other hand, there is also
a great body of research on web mashups that combine content, presentation
and functionality from different web-based sources, with the aim of creating
new applications from existing resources. However, research on mashups has so
far focused on combining multiple existing web sites and services on a single
device [5], whereas our goal is, not only to combine multiple web resources to
create a new application, but also to support mashing up multiple devices so that

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 27-38, 2013.
© Springer International Publishing Switzerland 2013



28 M. Husmann, M. Nebeling, and M.C. Norrie

applications can be distributed between, and accessed from, different devices at
the same time. We define a multi-device mashup as a web application that reuses
content, presentation, and functionality provided by other web pages and that
is distributed among multiple cooperating devices.

Our new idea of such multi-device mashups introduces a number of interesting
challenges. Some of these have partly been addressed by the respective research
communities in distributed interfaces and mashups, but they need to be com-
bined, adapted and extended to support the design and development of mashup
applications that involve multiple devices. For example, while the mashup com-
munity has come up with ways to introduce interactions between components
that originate from different sources [6], these need to be expanded to support
interactions across devices. Instead of each device accessing web content in isola-
tion, in a multi-device mashup, access needs to be coordinated [4]. For example,
a selection of a list item on one device may trigger an update both on the cur-
rent and connected devices. Moreover, mashups traditionally assume a single
device and user, but multi-device mashups may involve multiple devices as well
as multiple users when devices are shared between users.

To address these challenges and experiment with possible solutions, we de-
veloped MultiMasher—a visual tool for rapidly designing multi-device mashups.
We motivate the need for such a tool by presenting a scenario for a multi-device
mashup in Section 2. In Section 3, we then give an overview of MultiMasher,
followed by architecture and implementation details in Section 4. Section 5 picks
up on some of the issues and discusses them in more detail, while Section 6 gives
concluding remarks and an overview of opportunities for further research.

2 Scenario

To illustrate the usage of a multi-device mashup, we consider the following sce-
nario also depicted in Fig. 1: two users, Alex and Bill, are planning a mountain
biking trip together at home in their living room. They need to decide on a route
and find out how they can get to the starting point by train. Alex has a smart-
phone, Bill a tablet, and additionally they share their TV for a larger display
area. Alex and Bill have split their tasks in the following way: Bill is browsing a
route repository such as SwitzerlandMobility! and Alex is querying the connec-
tions on the web site of the local railway company. When Bill inspects a route,
the starting point of the route is sent to Alex’ smartphone where she can browse
the available railway connections, while Bill checks whether the route suits their
criteria for length, difficulty, and scenery. Some starting places may take too
long to reach, others may require too many changes of trains, which is a hassle
when travelling with bikes. The resulting railway connections of Alex’ query are
displayed on her smartphone in a list. She can select a connection for which the
details are displayed on the large screen, where also Bill’s information about the
suggested route are visible. If Alex enters a new time on her mobile phone or
selects a new connection, the detailed view is updated also on the large screen.

! http://www.mountainbikeland.ch


http://www.mountainbikeland.ch

MultiMasher: A Visual Tool for Multi-device Mashups 29

samorestore vm e Daser Umst. Kersem  miomaton pres 3
1 Behnhofieltestele Datum ot Geis Reisemit Selequng  Bemerkunaen 2 R
o Brmen o 72080 oo s @ irzw e {Z4a

Rt L R

Rees
=

[ -metvecnner @kare @Katencer [ tecansirt [Dvoriesen by barrerere veronaung (I presanzeige

Dauer:0:45: e tach

Length: 59 km
of which 21 km
unsurfaced:

of which Singletrail: 1 km

Requirements:  medium
Conditions: difficult (opposite direction: difficult)

Height difference: ~Napf (Stachelegg)-Luzern: 700 m
Luzern-Napf (Stachelegg): 1550 m

Show height profile

Fig. 1. A scenario using a shared screen, tablet and mobile phone for planning a moun-
tain biking trip. la and 1b are elements from the railway website. 1b displays a list of
possible railway journeys to a given destination. Selecting a journey updates the detail
view in la. 2a to 2c are taken from the route repository website. Interaction with one
of these elements on the tablet also updates the shared screen and vice versa. The
destination for the query in 1b is taken from 2c.

Together they discuss whether the currently visible trip is a good match. During
the discussion, they can also interact with the content on the large screen. If
they are not happy with the current trip, Bill starts looking for another route.

3 MultiMasher

As a first step, we created MultiMasher, a visual tool that allows mashing up
devices for accessing web content of multiple sources. The goal is to build a tool
designed to facilitate the quick and easy creation of multi-device mashups, such
as the one described in the scenario, through a direct manipulation interface,
without the need for modelling or programming. MultiMasher is aimed at both
developers and non-technical end-users to assist them in the rapid prototyping
of distributed interfaces and development of multi-device mashups. With Mul-
tiMasher, users should be able to, not only create multi-device mashups for the
devices at hand, but also decide how they should adapt to a different set of



30 M. Husmann, M. Nebeling, and M.C. Norrie

devices. At a later stage, the mashups created through MultiMasher could also
be used as a basis for complex mashup applications that will finally be deployed.

To create a mashup, a user needs to connect the devices involved to the
MultiMasher server. This is done by loading the MultiMasher tool in the browser,
which automatically connects the device to the server. More devices can be added
at any time. Users can then load the web sites that they want to mashup, select
UI elements on that web site, and distribute these to the connected devices. This
can be done on any of the connected devices and is not restricted to the device
that was initially used to start the distribution. For example, in our scenario,
Bill could start the mashup on his tablet and Alex could join on her smartphone
designing the parts concerning the railway information. Also, the user can save
mashups and continue adapting them at a later point in time. In our scenario,
Alex could decide later on to not only show the details of the selected railway
connection on the large screen, but also the complete list of available connections.
Thus, mashups can be created in an iterative manner in that existing mashups
can be reused to form the basis of a new one.

MultiMasher distinguishes the following two modes: In the design mode,the
users create a multi-device mashup. In the distribution mode, a multi-device
mashup is active on the devices and the users interact with it.

MultiMasher includes a toolbar that can be loaded into existing web sites.
The toolbar exposes the functionality of MultiMasher to the user. By default,
the toolbar is hidden except for a small button which enables the design mode
and slides in the whole toolbar (Fig. 2). Thus, the toolbar does not take up
any screen space, which is rare on some devices, when it is not in use. When
in design mode, the user can select UI elements and send them to connected
devices, where the elements will be mashed up with the content that has been
sent to the device previously.

Android Chrome Mobile .

e

Distribution

"W copy | Distribute |iClientsi | Undo | Save | Load \W[LTENERAZIEG

Fig. 2. The MultiMasher toolbar. The name of the local client is displayed on the right.
The clients available for a mashup can be selected from a list (centre). On the left, the
distribution mode can be selected.

When a user is creating a mashup, the present client devices are offered for
selection (Fig. 2). In a list, each device is a represented visually. For every device,
a name is generated automatically, making use of the operating system and
browser information. This name can be changed by the user to a name of their
own choice. Additionally, there is a visual representation of the available screen
space in pixels for each device, which helps the users to map the physical devices



MultiMasher: A Visual Tool for Multi-device Mashups 31

to the representations. We imagine that this could also be done in other ways,
e.g. by mapping each device to a colour which would be displayed on the actual
device and in the representation. Each device can be selected for participation
in the mashup. The list of devices is updated as devices join or leave. When a
new device joins, it can easily be added to an ongoing mashup. Therefore, it
is not required that all devices are present when the user starts the process of
creating a mashup. The toolbar also provides an undo functionality that causes
the device to leave the current distribution and restores the original web site.

When the design mode is activated through the toolbar, the user can select
UT elements by clicking on them or touching them on touch devices. This direct
selection method should make it easy also for non-technical users to choose el-
ements, as they do not need to know the underlying structure of the web site.
MultiMasher provides visual feedback for selected elements (Fig. 3) by high-
lighting them. Any number of elements can be selected simultaneously. When
at least one element is selected, the user can send it to connected devices, by
pressing the distribute button in the toolbar. The selected elements will then be
sent to the client devices selected in the device list. MultiMasher supports two
modes for distributing Ul elements. The first mode, move, sends the element to
the target devices without keeping a copy on the source device. In contrast, the
second, copy, sends the UI element to the target devices and retains a copy on
the source device. In our scenario, the details for a railway journey have been
moved from the smartphone to the large screen. They are no longer visible on
the smartphone, but only on the large screen. The gallery and the facts for the
mountain biking trip have been copied from the tablet to the large screen. They
are present on both devices.

Station/Stop Date Time Duration Chg. Travel with Information Fare

1

‘Station/Stop Date Time Platform Travel with Occupancy Comments parkit

M0, 220413 dep 14:04 5 14 2.4 InterRegio
Direction: Luzern,
arr 14:49 R2343 5

s
dep 14:57 4 1424 RegioExpress
B schipfeim ar 1520 3 RE 2330 Direction: Bem ®

aaily

r [@Map [FCalendar [E) Textview [ Read out d Fully accessible connection [ Price list
ediate stops [ Hotel |
2 Bz Wo220413 dsp 1409 | 149 2 RS1Ss 14 21 [T |
© @ scrapheim ar 1558 -
© @ senipmem ar 1028 E
+ Bzuors Wo220413 dsp 1504 125 1 IRRE 14 24 omor o [
© @ schipheim ar 1629 ]
[ Close i detais | print |
© Earlier [E3First connection [ Last conne ction Later ©
Yc
(&) e-mail _[@) Word mySBB: [{3) Departure (i3] Arrival (i3] Relation © Timetable Booklet Zu

SRR ciscouic | Ciens | o | sove | ood [ RAC]

Fig. 3. Selecting Ul elements in distribution mode. Coloured outlines provide visual
feedback for selected elements.

One of the biggest challenges in MultiMasher was to synchronize interactions
of a web site as the UI elements are distributed across devices. MultiMasher
provides a first partial solution to synchronizing state by replaying interactions
on each device. For example, if a menu allows the selection of content, the menu



32 M. Husmann, M. Nebeling, and M.C. Norrie

and the content area can be on two separate devices, thus, leveraging the differing
capabilities of each device, such as input modality and display size. Selecting a
menu item on the first device will update the content on the second device. In
our scenario, selecting a railway connection on the mobile phone, will update the
corresponding detail view on the large screen. Ul elements that are copied on
multiple devices are also synchronized by default. For example in the scenario, a
photo gallery is copied on the shared screen as well as on the tablet. As the two
are synchronized, when the user navigates through the photos on the tablet, the
gallery on the shared screen updates also.

In the future, MultiMasher should also allow users to define interactions across
web sites by connecting elements from multiple sources. In our scenario, the
starting location of the bike tour is connected to the destination input in the
timetable of the railway company. As the user on the tablet navigates among
possible bike tours, the user on the mobile phone gets an updated list of con-
nections to the destination and can change query parameters such as the date,
which are independent of the bike tour.

MultiMasher allows the user to save created mashups and load them at a
later point in time. Once a mashup is loaded, it can be adapted by adding new
devices, redistributing elements or adding new web sources. For example, in our
scenario, a third user, Chris, could show up with his tablet and would like to
search bike tours in parallel to Bill. His device would need to be integrated.
Chris may also know another good source for bike tours and would like to show
information from this new source on the large screen to Alex and Bill.

Also, multiple mashups can be merged. For example, if two mobile phones
are participating in one mashup and a tablet is connected to a shared screen
in another mashup, these two mashups can be combined. As a result, all four
devices will be connected and interactions on a mobile phone may now update
content on the shared screen. In our scenario, there could be an existing mashup
of timetables on two mobile phones, one showing the list of connections and
the other the details. Another existing mashup could combine the large screen
and the tablet for viewing bike trips. The two can be merged by distributing
the detail view from the mobile to the large screen in order to obtain the setup
described in the scenario.

Saving, loading, and merging support an iterative and explorative work pro-
cess that developers may employ when creating prototypes. Users can create par-
allel versions and merge them later on. On the other hand, non-technical users
can load mashups created by experienced developers and do minor changes, such
as adding a new device.

Saved multi-device mashups can be previewed in MultiMasher before be-
ing loaded on the connected devices. The preview tool (Fig. 4) lists all stored
mashups that include the given device. When a mashup is selected, a preview
of all devices participating is displayed. Each device is presented in a miniature
version. Thus, the user can quickly see what devices are involved and how the
content is distributed across the devices.



MultiMasher: A Visual Tool for Multi-device Mashups 33

¢ WikiBike

‘Windows 7 Firefox Android Chrome Mobile i0S Mobile Safari

s i

Fig. 4. Previewing mashups in MultiMasher. The devices are scaled according to avail-
able space in pixels.

4 Architecture and Implementation

In this section, we describe the overall architecture of MultiMasher and then
give implementation details. Figure 5 illustrates the client-server architecture of
MultiMasher. The server coordinates the communication between client devices
and stores created mashups. The device manager informs clients of devices join-
ing or leaving. It extracts operating system and browser information, which are
used for device name generation.

The persistence manager stores mashups and device information in a database
and retrieves them when an existing mashup is requested for loading. When a
mashup is active, the server-side event manager receives events from the client-
side event managers and forwards them to all clients involved in the mashup.
During the process of creation and adaptation of a mashup, the selection engine
in the server receives selections of Ul elements from source clients that need to
be displayed on target clients in the mashup. The selection engine merges these
selections with previous selections for the target clients and notifies the presen-
tation engine in the clients about the updates. The mashup manager handles
the creation and adaptation of mashups. It receives changes to mashups from
the selection engine and integrates them into the existing mashups. The mashup
manager handles the merging of multiple mashups and propagates changes in
mashups to the persistence manager. On the client side, an event engine forwards
local events to the server and replays remote events locally. With this mecha-
nism, the event engine ensures a consistent state across multiple devices. When
a user interacts on source devices, the interaction triggers an event, which will
be replayed on all devices in the mashup, thus simulating the interaction and
causing the same actions on all devices. The selection engine on the client side



34 M. Husmann, M. Nebeling, and M.C. Norrie

Client Server
Event | Event Device
Engine M Engine Manager
Selection |, | Selection Mashup
Engine | Engine Manager
Presentation Persistence ( B \‘
Engine Manager )
Database

Fig. 5. MultiMasher architecture

allows the user to select Ul elements, visualises current selections, and reports
them to the server-side selection engine. The presentation engine processes se-
lections from the server and adapts the Ul so that only the requested elements
are visible. All clients load a full version of the involved web site, but only show
the selected elements and their parents. All elements that are not needed are
simply hidden. In the future, the presentation engine could be extended with
layout information for the visible elements.

The MultiMasher server is implemented in jQuery? on top of the Node.js?
platform. Persistence is achieved with a MySQL database where information
about mashups and client devices is stored. As the server needs to propagate
events from a source device to all other devices in a mashup, a mechanism for
server push is needed. We decided to use the socket.io* library which is integrated
as a Javascript library on the client side and as a Node.js module on the server
side. Socket.io transparently provides a server push mechanism using websockets,
if supported by the browser, otherwise it employs fallback mechanisms such as
longpolling. Socket.io informs the device manager when a device disconnects
and, thus, the device manager is constantly aware of the connected devices.

On the client side, MultiMasher consists of a Javascript library that can be
integrated into existing web sites. The integration can be achieved by modifying
the HTML file of the web site or via a browser plugin such as Greasemonkey®.

When the MultiMasher library is loaded into a web site, it injects a toolbar
which allows the activation of a design mode in which Ul elements can be se-
lected. When in design mode, a transparent overlay is added over the web site.
Thus all clicks or touches on the UI are captured by the overlay. This mecha-
nism prevents clicks from activating actions on the web sites, such as following
a link. From the click location on the overlay, we calculate the underlying Ul
element with the elementFromPoint Javascript function on the document node.

2 http://www. jquery.com/

3 http://www.nodejs.org

4 http://www.socket.io

® http://www.greasespot.net


http://www.jquery.com/
http://www.nodejs.org
http://www.socket.io
http://www.greasespot.net

MultiMasher: A Visual Tool for Multi-device Mashups 35

As we use id attributes for identification, we find the closest parent (including
the selected element) in the DOM tree that has an id attribute using jQuery.

When a user designs a mashup, the client sends a list of devices and the
selected Ul elements to the server. The server notifies the devices of their partic-
ipation in the mashup and propagates the selection. All elements that are hidden
by MultiMasher are marked by a class, so the system can distinguish between
elements that have been hidden by the web site itself and those by MultiMasher.
Upon activation of a mashup, MultiMasher adds event listeners for DOM events
such as click or change. When an event is detected, it is sent to the server, which
forwards it to all devices participating in the mashup. When an event is received
from the server, it is replayed in all other clients, thus causing the same reac-
tion on all devices. As Ul elements are only hidden but not removed from the
DOM, events on them can still be triggered. A flag distinguishes local events
from remote events. Thus, endless event cycles can be prevented by only sending
local events to the server. The approach of replaying events is very simple, but
it also has some limitations. In cases where an event triggers an update to the
original web server of the source, the update would be executed multiple times.
For events that only cause queries, the approach works fine.

5 Discussion and Related Work

Our work on MultiMasher builds on two, so far isolated, research streams on dis-
tributed interfaces and web mashups. Existing research in the area of distributed
user interfaces has focused on using one existing interface and distributing it
across multiple devices. On the other hand, research on mashups has focused on
combining multiple existing web sites and services, but on a single device. We
aim at the rapid creation of distributed interfaces by reusing parts from existing
web sites, thus creating mashups that can span more than one device.
Recently, there has been increased interest in the systematic development of
distributed user interfaces [4]. Many of the proposed approaches build from the
research on model-based user interfaces that require a specific set of models
organised into different abstraction layers [7] and user interface description lan-
guages. For example, the work presented in [3] builds on top of the UsiXML
langugage and also the MARIA XML language has recently been extended to
support distributed user interfaces [1]. When it comes to the implementation,
the proposed solutions either require special cross-platform, peer-to-peer toolkits
for general graphical user interfaces [8] or use HTML proxy-based techniques in
the case of web applications [9]. Our goal was to provide a flexible tool that does
not require specific models, languages and protocols and that is compatible with
common web interface implementations based on HTML, CSS and JavaScript.
Common to most mashup tools such as Potluck [10], d.mix [11], Firecrow [12]
and DashMash [13] is that they have been designed with non-technical end-
users in mind. The general goal is to simplify the creation of web mashups
based on visual tools for data aggregation and integration, graphical extraction
and composition of various web resources and example code. Some of the latest



36 M. Husmann, M. Nebeling, and M.C. Norrie

tools can even directly assist end-users in the mashup development process. For
example, DashMash [13] can recommend other services that could also be useful
in the current design context. However, with most of these approaches, it is
not clear who defines and configures available services and how they can scale
to supporting the development of complex web applications. An exception is
MashArt [5,6] which is a platform designed to support web information system
development in the form of mashups. MashArt targets advanced users with the
goal of enabling them to create their own applications through the composition
of interface, application and data components. The focus is on supporting the
integration of existing web services and presentation components using an event-
based paradigm so that components can react to events of other components.

While the component-based approach is generally promising, supporting reuse
of web components that were originally created for different web sites is a com-
plex issue for which different techniques have been proposed. For example, [14]
presents a paradigm they call distributed orchestration which allows integrating
web services and interfaces based on workflow and business process modelling
techniques. While this approach enables inter-component communication, it is
unclear how it supports mashup applications created for multiple users. In con-
trast, [15] presents an approach that focuses on adding awareness widgets to ap-
plications, which could in principle provide a basis for multiuser-aware mashups,
but only considers one application and device. We regard our work on Multi-
Masher as a combination and extension of these approaches in that we support
reuse of different web application components and allow also non-experienced
users to distribute them across devices.

In this paper, we have presented a first implementation of MultiMasher that
still has some limitations and will be the subject of both technical and user
evaluations in the future. For example, we have tested MultiMasher on several
existing web sites such as Wikipedia and achieved good results, but there are still
open issues when the propagation of interactions generates multiple updates to
a database, such as when a comment is posted using one device and the submit
button also triggered on all connected devices, or when a web site requires user
authentication and the mashup is in fact to be used by more than one user. For
example, Twitter and Facebook could not be easily integrated in a mashup with
MultiMasher. In contrast, we have achieved good results with web sites which
present content without requiring an authenticated user, such as blogs, news,
and reviews web sites.

At this stage, MultiMasher only allows users to design mashups for devices
that are actually connected to the system at design time. We are currently
working on a more flexible solution that allows designing for an unknown set
of devices at run-time. For example, a mashup could initially be designed for
two tablets. If, at a later stage, a mobile phone is used instead of one of the
tablets, the phone could take over that role in the mashup. MultiMasher could
analyse the available devices and their characteristics and offer this information
to the user. In addition to allowing users to rearrange the mashup elements
for the new device, the system could automatically scale the mashup according



MultiMasher: A Visual Tool for Multi-device Mashups 37

to the difference in screen size, or otherwise adjust the layout, to facilitate the
adaptation to different device capabilities and input modalities.

Moreover, changes may not only occur in the set of devices, but also in the web
sites involved in the mashups. Therefore, additional mechanisms are required for
MultiMasher to handle changes in the structure of web sites. Similar to other solu-
tions, our selection method is currently restricted to web page elements that have
an id attribute. The solution presented in [2] generates id attributes where they
are missing. While this technique could be added to our approach, it is insufficient
to handle all possible changes, e.g. when an element is moved within the internal
DOM structure, or completely removed from the web site. In a related project, we
are working on new robust implementation strategies that MultiMasher could build
on in the future. In addition, if fully automatic solutions are not possible, the user
could be informed and asked for suggestions. As an alternative, we are currently
experimenting with a new selection method allowing users to select a region in the
rendered web interface by spanning a rectangle with the mouse or finger. This re-
gion is then distributed and handled as a new window showing only the selected
parts of the web site. However, as some elements may only be visible under certain
viewing conditions, this method also needs to take into account that web sites may
render differently on different devices, which requires further work.

6 Conclusion and Future Work

Based on a common scenario in which multi-device mashups would be desirable,
we have presented our ongoing work on MultiMasher, a visual tool for rapidly de-
veloping multi-device mashups. MultiMasher provides an easy selection mecha-
nism for distributing and mashing up UI elements, and is suited for an iterative
design process as it implements first mechanisms for saving, loading, and merging
multi-device mashups.

MultiMasher already provides much of the required functionality for quick
and easy creation of mashups spanning multiple devices. However, at this stage,
the resulting applications are not fully suited for a production environment. For
example, as the main focus was on rapid prototyping of distributed mashups,
we are currently relying on relatively simple mechanisms for the distribution of
interfaces and the propagation of interactions. Moreover, privacy and security is-
sues were out of scope. Some of the challenges could be addressed by introducing
the notion of users in different roles and providing additional infrastructure. For
example, a proxy that acts as the single client to the original web source could
be used. However, rather than providing a generic and complex proxy-based so-
lution that can handle all different kinds of scenarios, our goal for future versions
of MultiMasher is that tailored proxy clients would be generated as part of the
deployment of a multi-device mashup.

Another direction we can see for the future is improving the support for
both experienced developers of distributed interfaces and non-technical end-
users. This includes building new mechanisms into MultiMasher to support the
evaluation of mashups in both static and dynamic multi-device environments.



38

M. Husmann, M. Nebeling, and M.C. Norrie

For example, a user testing mode could be added that logs the interaction of the
user with the mashup. As most user interactions are already tracked and sent to
the server to keep the distributed interface synchronised, interactions could be
recorded and later replayed for further analysis of the users’ activities as well as
for user performance evaluations in distributed, multi-device scenarios.

References

1.

10.

11.

12.

13.

14.

15.

Paterno, F., Santoro, C., Spano, L.D.: Maria: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. TOCHI 16(4), 19:1-19:30 (2009)

Ghiani, G., Paterno, F., Santoro, C.: On-Demand Cross-Device Interface Compo-
nents Migration. In: Proc. MobileHCI (2010)

Melchior, J., Vanderdonckt, J., Roy, P.V.: A Model-Based Approach for Distributed
User Interfaces. In: Proc. EICS (2011)

Paterno, F., Santoro, C.: A Logical Framework for Multi-Device User Interfaces.
In: Proc. EICS (2012)

Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428-443. Springer, Heidelberg (2009)

Daniel, F., Matera, M.: Turning Web Applications into Mashup Components: Is-
sues, Models, and Solutions. In: Gaedke, M., Grossniklaus, M., Diaz, O. (eds.)
ICWE 2009. LNCS, vol. 5648, pp. 45-60. Springer, Heidelberg (2009)

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi-Target User Interfaces. IWC 15
2003)

1(\/Ielchior7 J., Grolaux, D., Vanderdonckt, J., Roy, P.V.: A Toolkit for Peer-to-
Peer Distributed User Interfaces: Concepts, Implementation, and Applications. In:
Proc. EICS (2009)

Ghiani, G., Paterno, F., Santoro, C.: Push and Pull of Web User Interfaces in
Multi-Device Environments. In: Proc. AVI (2012)

Huynh, D.F., Miller, R.C., Karger, D.R.: Potluck: Data Mash-up Tool for Casual
Users. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 239-252.
Springer, Heidelberg (2007)

Hartmann, B., Wu, L., Collins, K., Klemmer, S.R.: Programming by a Sample:
Rapidly Creating Web Applications with d.mix. In: Proc. UIST (2007)

Maras, J., Stula, M., Carlson, J.: Reusing Web Application User-Interface Controls.
In: Auer, S., Diaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757,
pp. 228-242. Springer, Heidelberg (2011)

Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Diaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152-166.
Springer, Heidelberg (2011)

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed
Orchestration of User Interfaces. Inf. Syst. 37(6), 539-556 (2012)

Heinrich, M., Griineberger, F.J., Springer, T., Gaedke, M.: Reusable Awareness
Widgets for Collaborative Web Applications - A Non-invasive Approach. In: Bram-
billa, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 1-15.
Springer, Heidelberg (2012)



	MultiMasher: A Visual Tool
for Multi-device Mashups
	1 Introduction
	2 Scenario
	3 MultiMasher
	4 Architecture and Implementation
	5 Discussion and Related Work
	6 Conclusion and Future Work
	References




