
Protecting User Profile Data in WebID-Based

Social Networks Through Fine-Grained Filtering

Stefan Wild, Olexiy Chudnovskyy, Sebastian Heil, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. The WebID identification approach allows users to manage
their profile data at a self-defined place in the cloud and enables services
as well as other requesters to retrieve data stored within these profiles.
While existing access control mechanisms can secure entire user profiles
from unauthorized access, they lack fine-grained protection of sensitive
data within user profiles.

This paper presents an approach for applying requester-specific filters
to cloud-stored user profile data in WebID-based distributed social net-
works. Our approach aims at enabling profile owners to protect sensitive
user data within their profiles in a fine-grained manner. We demonstrate
our solution by integrating the approach into a WebID identity provider
and profile management platform.

Keywords: Security,Privacy,Trust, Identity, SocialWeb,SemanticWeb.

1 Introduction

With increasing presence of social media in daily activities [1], the need for trust-
worthy collaboration is becoming more and more important [4]. Centralized so-
cial networks such as Facebook, Google+ or LinkedIn provide varied possibilities
for personal information exchange and networking, but try to bind users within
their own domains [15]. Although a growing number of social networks tends to
make parts of their collected data available to the public through APIs [9], users
are not in full control of their identity data. Avoiding the creation of data silos
on the one hand and enabling users to remain in control of their data on the
other hand asks for a distributed social network (DSN) [15].

A DSN can be implemented on the basis of W3C’s WebID specification [13].
The WebID approach is a universal identification mechanism that enables per-
sons and machines to identify themselves via client certificates, i.e., without
entering any user name or password [11]. The client certificate refers via a URI
to a resource containing further data about the identity owner. This specific
URI is called WebID and the linked resource is called WebID profile. Users can
automatically generate a WebID, an appropriate WebID profile, and a client cer-
tificate using a WebID identity provider. Data within a WebID profile describes
attributes of the identity owner in a machine-readable way via RDF1 using

1 RDF Primer, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 269–280, 2013.
c© Springer International Publishing Switzerland 2013

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

270 S. Wild et al.

domain specific vocabularies like FOAF2. While utilizing profile data for creating
an improved user experience and optimizing customer services is advantageous,
there is also a major problem related to this topic:

An unprotected WebID profile is a potential source of information for known
and unknown as well as wanted and unwanted requesters. Since WebID profile
documents are parsed during authentication to verify public key information,
they have to be accessible for other services or agents. That is, also profile data
irrelevant to the authentication procedure per se could be retrieved without
further notice. For protecting WebID profiles from unauthorized access, data re-
trievals or tracking attempts, one could set access control rights to resources rep-
resenting the WebID profile documents [5,2]. Existing mechanisms only provide
coarse access control because they focus on resources instead of represented data.
Enabling fine-grained access control with these mechanisms requires outsourcing
sensitive WebID profile data to separate resources and set corresponding access
permissions. This kind of profile data distribution, however, negatively affects
flexibility, ease of maintenance, and portability of user profiles [7].

The paper presents our approach to protect WebID profile data from unau-
thorized access by providing these main contributions:

1. Theoretical foundation for fine-grained filtering of WebID profile data

2. Practical implementation of our approach using SPARQL

3. Demonstration as part of a WebID identity provider & management platform

The rest of this paper is organized as follows: We describe usage scenarios and
derive challenges for a solution in Section 2. We then analyze related work in
Section 3. Section 4 presents our approach. We evaluate the solution in Section 5
and show an example in Section 6. We conclude the paper in Section 7.

2 Usage Scenarios

The following scenarios illustrate various aspects of the problem and are used to
derive the challenges that need to be dealt with:

Scenario 1. As aWebID identity owner, Alice intends to restrict her profile data’s
visibility. She wants to do this because all information available could be easily
retrieved, if not properly addressed by appropriate access control mechanisms.
Sensitive profile data could be used for purposes she does not agree with, e.g.,
social network analysis or product marketing. Although restricting access to her
entire profile would be sufficient, Alice is not interested in losing advantages like
authentication or single-sign-on to new yet unknown services. To keep associated
services up-to-date, Alice wants to permit monitoring specific profile parts by
third-party entities for changes. Alice wants to allow anyone to access profile data
she marked as visible, even if Alice is currently unavailable or unauthenticated.

2 FOAF Vocabulary Specification 0.98, http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/

Protecting User Profile Data in WebID-Based Social Networks 271

Scenario 2. A friend of Alice, called Bob, wants to retrieve her current address
data. The identity owner Alice knows Bob and has granted him more visibility
rights compared to anonymous in Scenario 1. While Bob is allowed to see Alice’s
private address data, Alice does not want to share this data with Eve, which
might be a loose contact. Instead of private address data, only Alice’s office
address data is visible to Eve. Alice has to be enabled to express whom exactly
she wants to make information available to. That is, any agent authenticated
via WebID is to be treated differently when accessing data of Alice’s profile.

Scenario 3. Alice plans to switch the server hosting her WebID profile. She
has distributed her profile data to separate resources for applying access rights
at the resource level. For migrating to a new hosting server, Alice has to find,
consolidate and transfer all profile data being scattered among various resources
as well as adjust access control lists (ACLs) for these resources. Depending on
Alice’s setup used for securing her personal data, this migration might be a
complex undertaking.

Based on these scenarios, we infer following challenges a solution must deal with:

Flexibility. Defining filters on profile data for specific requesters must be flex-
ible and expressive to cover all described scenarios.

Portability. Profile owners must be enabled to easily transfer filter specifica-
tions to other systems without making major adjustments. Filter processors
have to be either available or easy to implement within new ecosystems.

Maintainability. Filters on profile data have to be standard-compliant to ease
maintenance and avoid introducing too much overhead. Both users and ma-
chines must be enabled to understand and modify filters on profile data.

3 Related Work

Web Access Control (WAC) is a vocabulary to define access rights to resources
at the document level [8]. Requesting agents and agent classes are supported as
entities to define access rights to. ACLs specified by WAC are machine-readable
through RDF and can be stored independently from the resources they pro-
tect. WAC is well-suited for scenarios involving many resources to grant access
to [3]. However, WAC does not support directly controlling access to specific
data within resources, e.g., data within WebID profiles. Outsourcing specific
data as self-contained resources enables more control with WAC. This, however,
complicates maintenance because the number of resources required to realize a
less coarse-grained control depends on amount and structure of data to apply
access rights to. Considering a WebID profile containing many triples to describe
diverse attributes of a person, a fine-grained control at its best would result in
outsourcing almost each triple to a separate resource. When applying changes,
this approach is inflexible. Additionally, such data distribution and related def-
inition of corresponding ACLs comes along with declining portability.

272 S. Wild et al.

The Access Control Ontology (ACO) is similar to WAC, but adds support for
roles and enables directly mapping permissions to HTTP verbs [12]. To protect
data within resources with ACO, relevant data has to be outsourced to separate
resources. ACO and WAC share the same maintainability and portability issues.

The approach proposed in [14] manipulates WebID profile data for particular
profile requesters by introducing sets of triples as alternative information sources
in relation to the original profile data. This allows to establish diverse views on
profiles depending on specific requesters identified through WebIDs. While WAC
and ACO only enable controlling access to resources, this vocabulary facilitates
manipulating data represented by resources. These view definitions increase flexi-
bility by providing improved filter expressiveness, e.g., new triples can be directly
inserted into the profile view. Due to this facility, it is necessary to resolve alter-
native triples available in both the view definition and the actual WebID profile.
While this resolution can be realized by merging and replacing relevant triples,
there is further processing required to prioritize what triples are shown or hidden
as part of the view. If view definitions are used as an additional layer of informa-
tion, profile data would be available in two different places, which are probably
conflicting with each other. Consequently, data stored in the user profile as well
as in the view definitions must be managed. This decreases maintainability.

4 Protecting User Profile Data by Fine-grained Filtering

For improving the protection of user profiles in WebID-based DSNs, our ap-
proach defines a fine-grained filtering of data marked as sensitive by the profile
owner. The filtering is applied during a graph-to-graph transformation. As trans-
formation source, graph G(V,E), G ∈ G represents a WebID profile containing
data about identity owner m ∈ I, where I is a set of all identities. T is a set of
RDF triples each consisting of subject s, predicate p, and object o. As T spans
a graph and G defines a set of triples, we formalize this equivalence in (1).

T ∼ G ⇔ ∀(s, p, o) ∈ T : s, p, o ∈ V ∧ (s, p) ∈ E ∧ (p, o) ∈ E (1)

The identity-based graph-to-graph transformation t is defined by (2).

t : G× I → G (2)

Transformation t maps graph G to graph G′. Graph G′ represents identity
owner’s m WebID profile filtered by sensitive data requester r ∈ I is not al-
lowed to retrieve. Equation (3) formalizes this transformation.

t(G, r) = G′ = (V ′ ⊆ V,E′ ⊆ E) (3)

Our approach handles sensitive data as a subset of triples T ∼ G. While all sensi-
tive data is available in graph G, only data requester r is allowed to see is present
in graph G′. Filter function f defines a mapping of a set of triples on {0, 1} de-
pending on the identity. While ”1” means sensitive data and, therefore, set of

Protecting User Profile Data in WebID-Based Social Networks 273

triples is present in graph G′, ”0” means the opposite. Consequently, whitelisting
or blacklisting of sensitive WebID profile data for particular requesters can be
achieved using filter function f as defined by (4).

f : I × {(s, p, o)} → {0, 1} (4)

Function f yields 1 for each triple in graph G and identity ownerm. Transforma-
tion t(G, r) uses f to create filtered graph G′ based on G for requester r. RDF
triples T ′ ⊆ T span graph G′ = (V ′, E′), T ′ ∼ G′ as defined in Equation (5).

T ′ = {(s, p, o)|fr((s, p, o)) = 1} (5)

To relieve identity/profile owner m from the need to define filter function fr
for each potential r, we introduce fallback function F (r) that yields the best
possible fallback entity for a given requester r. Possible fallback entities are:

– requesters authenticated using WebID U ⊆ I,
– specific requesters defined by the profile owner S ⊆ U ,
– requesters who are friends of the profile owner K ⊆ U , and
– anonymous requesters A ⊆ I, A ∩ U = ∅.

Let R = {k, u, a, n} be a set of special entities: k for friend, u for authenticated
user, a for anonym, n for null. Equation (6) formalizes fallback function F (r).

F (r) = e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r if ∃fr
k if ∃fk ∧ r ∈ K ∧ r /∈ S

u if ∃fu ∧ r ∈ U ∧ r /∈ S ∧ r /∈ K

a if ∃fa ∧ r ∈ A

n if �fr ∧ �fk ∧ �fu ∧ �fa

e ∈ (R ∪ S) (6)

Filter function fn, cf. Equation (7), implements a behavior as if no filtering is
active. This enables accessing profiles having no predefined filters.

fn((s, p, o)) = 1∀(s, p, o) ∈ T (7)

To use F (r) as part of t(G, r), we refine Equation (5) as shown in Equation (8).

T ′ = {(s, p, o)|fF (r)((s, p, o)) = 1} (8)

Filter specifications are hidden from anyone but profile ownerm. Otherwise, this
information is a potential subject to social engineering, e.g., profile analyzers
could conclude group affiliations utilizing knowledge about fr or F (r).

Figure 1 illustrates the theoretical foundation of our solution. When requester
r tries to retrieve data from the WebID profile of identity owner m, an appropri-
ate filter is searched for requester r using F (r). Profile owner m has to specify
eligible filters prior to this step in order to achieve a protection of sensitive
profile data. Filters are stored as filter specifications in the identity owner’s
WebID profile. Each filter specification (e, t) is a set consisting of entity e and

274 S. Wild et al.

t(G,F(r))
Retrieve filter

best matching to
r using F(r)

Graph G representating
requested profile

Graph G’ representing
filtered profile

Filter specification
(e,t) retrieved for r

Filtering of
requested profile

using retrieved filter
specification (e,t)

Serialization of
filtered profile

Requester r

Profile
response

Profile
request

Fine-grained Filtering of Sensitive User Profile Data

F(r)

Filter
specs.

Fig. 1. Approach to Protect Sensitive User Profile Data by Fine-grained Filtering

transformation function t. As soon as a matching filter specification is detected,
graph G, representing all WebID profile data of identity owner m, is converted
via graph-to-graph transformation t(G,F (r)) into graph G′, representing this
WebID profile filtered by data marked as sensitive by profile owner m. That is,
the profile retrieved by requester r only contains data satisfying the constraints
defined by filter function fF (r).

While various technologies are suitable for implementing this approach, we
introduce the WebID Profile Filter Language (WPFL) and use the SPARQL
CONSTRUCT query form [6] as transformation and filter function. WPFL de-
fines the proposed filter specification (e, t). It consists of three elements: entity
name for e, filter command for t and a specification element to bind them to-
gether and connect the filter to the WebID profile. The specification element
allows storing filter specifications either in the owner’s profile, i.e., graph G,
or separately as linked resources. These elements are described by three RDF
triples, as exemplarily shown in Turtle3 syntax below:

1 <WebID> f i l t e r : s p e c i f i c a t i o n [
2 f i l t e r : e n t i t y ENTITY;
3 f i l t e r : command COMMAND
4] .

The SPARQL CONSTRUCT query form facilitates constructing a new graph
G′ based on an existing graph G, as required by Equation (3). It can include
or exclude data during construction of G′ ∼ T ′ and, hence, implements

3 Turtle Terse RDF Triple Language, http://www.w3.org/TeamSubmission/turtle/

http://www.w3.org/TeamSubmission/turtle/

Protecting User Profile Data in WebID-Based Social Networks 275

Equation (5). A whitelisting - as defined by this equation - mentioning all data
to be available in graph G′ is described by following filter command4:

1 CONSTRUCT { ? s ?p ?o } FROM <WebID> WHERE { ? s ?p ?o .
2 FILTER(? s in (Subject1 , Subject2 , [. . .])) .
3 FILTER(?p in (Predicate1 , Predicate2 , [. . .])) .
4 FILTER(? o in (Object1 , Object2 , [. . .]))
5 }
As an example, if solely the foaf:knows predicate is mentioned, all contacts
are copied from G to G′. To increase filtering granularity, it is beneficial to also
mention subjects or objects of RDF triples, e.g., in order to include/exclude
specific contacts. This all together defines one filter directive. SPARQL’s UNION
keywords enable to use several filter directives in one filter command. We utilize
SPARQL Property Path [10] to cover filtering of context-dependent data. For
instance, street data could be context-dependent as they are element of an ad-
dress, which in turn could be element of either private or business contact data.
Property paths help to address relevant elements in graph G by specifying the
routes between them. For example, a filter command to construct a new graph
by including name and image of identity owner m as well as city and country of
his/her home - but not street, postal code etc. - is described as follows5:

1 CONSTRUCT { ? s ?p ?o } FROM <WebID> WHERE {
2 {? s ?p ?o . FILTER(?p in (f o a f : name , f o a f : img))} UNION
3 {? s ?p ?o . ? t con : home ?o} UNION
4 {? s ?p ?o . ? t con : home/con : address ?o} UNION
5 {? s ?p ?o . ? t con : home/con : address /con : c i t y ?o} UNION
6 {? s ?p ?o . ? t con : home/con : address /con : country ?o}
7 }

A dedicated SPARQL query uses the identity information provided by requester
r to select the best-matching available filter specification based on the retrieved
filter entity, as formalized in Equation (6). Once an appropriate filter speci-
fication is selected, the corresponding filter command is directly passed to a
SPARQL processor that executes the graph-to-graph transformation.

5 Evaluation

The proposed approach enables profile owners to create filters on their WebID
profile for specific requesters or groups of requesters. Profile owners can inde-
pendently include or exclude each RDF triple present in their profile. This fine-
grained and context-aware filtering allows to create customized profile views for

4 In contrast to whitelisting, blacklisting data is also supported by SPARQL CON-
STRUCT queries via MINUS statements.

5 In the example, lines 3 and 4 create the context required for including city and
country. Address data is described using the PIM ontology,
http://www.w3.org/2000/10/swap/pim/contact#

http://www.w3.org/2000/10/swap/pim/contact#

276 S. Wild et al.

diverse requesting entities. Unlike WAC and ACO, the proposed solution does
not require outsourcing data to separate resources for implementing a flexible
filtering. All necessary information can remain in one place. Compared to [14],
user profile data and filter specifications are separated from each other in our
solution. This simplifies updating, replacing or removing already existing filter
specifications. The fallback mechanism F (r) selects the most appropriate filter
based on availability and provided identity data. Such a fallback mechanism is
not part of any related work known to the authors.

In contrast to related work, both whitelisting and blacklisting of RDF triples
are supported by our solution. We recommend whitelisting because it does not
show what is hidden from requesters. Otherwise, knowledge about hidden data
could be subject to speculations. Additionally, whitelisting eases constructing
an empty graph representation of a profile, which might be relevant for iden-
tity owners having stringent requirements for privacy and, thus, want to forbid
anonymous profile requests. Our solution also allows to create filters that remove
all filter specifications during construction of the profile view. Consequently, pro-
file requesters remain unaware of the filtering.

To apply filtering of sensitive profile data by utilizing t(G, r), only the graph
representing the WebID profile and the requesting entity are used as input pa-
rameters. In comparison to ACO, our approach introduces only minimal over-
head with three RDF triples to define a filter specification for a specific requester.
The owner’s WebID profile can contain all filter specifications, i.e., while sepa-
ration between profile data and filter specifications is allowed, it is not required.
To further ensure maintainability, we did not develop an own language for fil-
ter commands, but use SPARQL as a well-established and proven language.
SPARQL empowers to create flexible and complex filters, whereas related work
tries reducing complexity by defining a restricted vocabulary. We assume that
restricted vocabularies offer advantages in terms of usability, but they also limit
possibilities of filtering and cause workarounds, like the necessity of outsourc-
ing sensitive user profile data. Independent of the chosen solution, we expect
that common profile owners do not have the skills to create and maintain filters
without assistance through specialized user interfaces.

For seamlessly integrating our solution into existing systems, filter function
fn implements a behavior as if no filtering is active. This facilitates accessing
profiles having no predefined filters. As identity owners are enabled to store all
necessary filter details within their WebID profile using our solution, the effort to
transfer filter specifications to a new hosting system is reduced. While ACO and
the approach proposed in [14] rely on particular processors to execute filters,
high availability of SPARQL processors for many platforms and architectures
contributes to our solution’s interoperability and, thus, filter portability.

6 Example

While our solution is generic and can be implemented in any platform, we demon-
strate it using Sociddea. Sociddea is a WebID identity provider and management

Protecting User Profile Data in WebID-Based Social Networks 277

Fig. 2. Representations of a WebID profile hosted on Sociddea

platform developed with ASP.NET MVC4. With Sociddea, a user can automati-
cally create a new WebID, an underlying WebID profile and an associated client
certificate. Although Sociddea allows users to host their WebID profiles in the
ecosystem provided by Sociddea, there is no constraint to do this. That is, users
are also enabled to create new client certificates for profiles hosted somewhere
else. Sociddea can represent a WebID profile in various ways. Figure 2 exempli-
fies an HTML and RDF/XML representation for the same WebID profile hosted
on Sociddea.

Sociddea provides a graphical user interface to configure filters for profile data.
Profile owners can switch from the common profile authoring to the filter specifi-
cation mode. All identity attributes presented in the profile authoring mode can
be used for specifying filters, i.e., each available identity attribute can be marked
as either visible or hidden. At the moment of writing this paper, Sociddea’s
graphical filter editor supports including/excluding identity attributes through
predicates, e.g., first name, last name or phone number. Through selecting an
available entity, an already existing filter specification is used to visualize the
former identity attribute selection by the user. Once the profile owner completed
the selection for a specific entity, this configuration is verified and send to the
Sociddea back-end. In order to enable machines to process this yet informal filter
configuration, a SPARQL CONSTRUCT statement is automatically created. As
whitelisting of attributes has been implemented, this SPARQL statement con-
tains all identity attributes declared as visible for the specific entity. All three
RDF triples relevant to specify the filter are stored within the owner’s WebID
profile. The process of creating such a profile data filter is shown in Figure 3.

Although the implementation generates SPARQL CONSTRUCT statements
based on the identity attributes selected by the users, the solution is not limited

278 S. Wild et al.

Fig. 3. Creation of Filter Specification Based on User Selection

to this. For generating profiles filtered by certain attributes, a profile owner is al-
lowed to use any valid statement. Our solution’s flexibility also allows to filter even
identity attributes unsupported by the graphical user interface and facilitates to
handle special cases like conditional filtering. Both can be accomplished via ap-
propriate SPARQL commands. Once the filter specification has been created, it is
automatically considered during all future attempts to access the particular pro-
file. That is, when a requester tries to retrieve the profile, the solution searches
for an appropriate filter specification using the provided identity data and the
filter:entity triples within the WebID profile. Having found a matching filter
entity, the filter:command triple belonging to the same filter:specification
is extracted and directly passed to a SPARQL processor, i.e., no modification is
made to the command.While results produced by the SPARQL processor are ren-
dered as defined in the request, rendering as such is not subject to our solution.
Figure 4 exemplifies the filtering of a WebID profile for an anonymous requester
using the previously created filter specification.

Having no additional logic to be interpreted for filtering, the SPARQL pro-
cessor can directly apply the filter specification and create a new filtered graph.
This allows an efficient execution.

Demonstration. Further information to our solution and a link to the Socid-
dea WebID identity provider and profile management platform is available at
http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

Protecting User Profile Data in WebID-Based Social Networks 279

Fig. 4. WebID Profile Data Filtered for Anonymous Requester

7 Conclusion

In this paper we proposed an approach for enabling identity owners to control
the way their profile data is exposed to others. We presented typical usage sce-
narios demonstrating the need for a flexible, portable and maintainable solution.
Our solution is substantiated by both a theoretical foundation for fine-grained
filtering and a practical implementation using SPARQL. We demonstrated the
solution as part of Sociddea - a WebID identity management platform.

Introducing requester-specific filters on WebID profile data allows profile own-
ers to keep control about amount and nature of personal data being presented
to entities requesting their profile data. We defined a filter vocabulary to con-
nect the current profile with the filter specification and established a fallback
mechanism to automatically select the best-matching filter depending on the
requester. To cover almost all scenarios of hiding and showing specifics within
profiles, we used SPARQL CONSTRUCT statements as filter commands. We
recommend whitelisting non-sensitive profile data per requester and exclude all
filter specifications during filtering.

As future work, we plan to conduct a more extensive evaluation of the pro-
posed solution including a user study focusing on creation and modification of
filters. From the technical point of view, we will analyze filter cascades to apply
several filters and combine protection needs. We also plan to add facilities for
reusing filters by sharing them between users of a DSN. Finally, we intend to ex-
tend the requester parameter within filter specifications towards a customizable
and machine-readable definition of the requesting party.

280 S. Wild et al.

Acknowledgment. Thisworkwas funded by theEuropeanCommission (project
OMELETTE, contract 257635).

References

1. Social Media Report 2012 (2012),
http://blog.nielsen.com/nielsenwire/social/2012/

2. Bonneau, J., Anderson, J., Anderson, R., Stajano, F.: Eight friends are enough:
social graph approximation via public listings. In: Proceedings of the Second ACM
EuroSys Workshop on Social Network Systems, pp. 13–18 (2009)

3. Chudnovskyy, O., Wild, S., Gebhardt, H., Gaedke, M.: Data Portability Using
WebComposition/Data Grid Service. International Journal on Advances in Inter-
net Technology 4(3 & 4), 123–132 (2012)

4. European Commission: ICT - Work Programme 2013 (2012)
5. Hackett, M., Hawkey, K.: Security, Privacy and Usability Requirements for Feder-

ated Identity (2012)
6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2012),

http://www.w3.org/TR/sparql11-query/

7. Heitmann, B., Hayes, C.: Achieving privacy-enabled user profile portability with
WebID and the Web of Data (2011)

8. Hollenbach, J., Presbrey, J., Berners-Lee, T.: Using RDF Metadata to Enable Ac-
cess Control on the Social Semantic Web. In: Proceedings of the Workshop on
Collaborative Construction, Management and Linking of Structured Knowledge
(CK 2009), vol. 514 (2009)

9. Savitz, E.: Welcome To The API Economy - Forbes (2012)
10. Seaborne, A.: SPARQL 1.1 Property Paths (2010),

http://www.w3.org/TR/sparql11-property-paths/

11. Sporny, M., Inkster, T., Story, H., Harbulot, B., Bachmann-Gmür, R.: WebID 1.0:
Web Identification and Discovery (2011),
http://www.w3.org/2005/Incubator/webid/spec/

12. Tomaszuk, D., Gaedke, M., Gebhardt, H.: WebID+ACO: A distributed identifica-
tion mechanism for social web (2011)

13. Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S.: An Architecture of a Dis-
tributed Semantic Social Network. Semantic Web (2012)

14. Tramp, S., Story, H., Sambra, A., Frischmuth, P., Martin, M., Auer, S.: Extending
the WebID Protocol with Access Delegation. In: Proceedings of the Third Inter-
national Workshop on Consuming Linked Data, COLD 2012 (2012)

15. Yeung, C.M.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-Lee, T.: Decentral-
ization: The future of online social networking. In: W3C Workshop on the Future
of Social Networking Position, Papers 2 (2009)

http://blog.nielsen.com/nielsenwire/social/2012/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-property-paths/
http://www.w3.org/2005/Incubator/webid/spec/

	Protecting User Profile Data in WebID-Based
Social Networks Through Fine-Grained Filtering
	1 Introduction
	2 UsageScenarios
	3 Related Work
	4 Protecting User Profile Data by Fine-grained Filtering
	5 Evaluation
	6 Example
	7 Conclusion
	References

