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Abstract With the rapid advance in short-range radio communications for vehicles
(e.g., IEEE 802.11p), vehicular ad hoc networks have emerged as a new paradigm
of mobile ad hoc networks. Within a vehicle ad hoc network, there are several
types of wireless communications, including vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and infrastructure-to-vehicle (I2V). A wide variety of existing
applications are being developed based on vehicular ad hoc networks, such as traffic
safety, transport efficiency, and entertainment on the move. A key enabling tech-
nology for vehicular ad hoc network is message routing among vehicles. Efficient
message routing is particularly challenging for vehicular ad hoc networks because of
frequent network disruption, fast topological change and mobility uncertainty. The
vehicular trajectory knowledge plays a key role in message routing. By extracting
mobility patterns from historical vehicular traces, we develop trajectory predictions
by using multiple order Markov chains. We then present routing algorithms taking
full advantage of predicted probabilistic vehicular trajectories. We carry out exten-
sive simulations based on large datasets of real GPS vehicular traces. The simulation
results demonstrate that the trajectory based routing algorithms can achieve higher
delivery ratio at lower cost.

1 Introduction

With the rapid advance in short-range radio communications for vehicles (e.g.,
IEEE 802.11p), vehicular ad hoc networks have emerged as a new paradigm of
mobile ad hoc networks. A vehicular ad hoc network is a network of vehicles
which communicate with each other via short-range wireless communications [1].
Within a vehicle ad hoc network, there are several types of wireless communications,

Y. Zhu (B) · Y. Wu · B. Li
Department of Computing Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China
e-mail: yzhu@cs.sjtu.edu.cn

S. C. Mukhopadhyay (ed.), Internet of Things, Smart Sensors, 143
Measurement and Instrumentation 9, DOI: 10.1007/978-3-319-04223-7_6,
© Springer International Publishing Switzerland 2014



144 Y. Zhu et al.

includingvehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-
to-vehicle (I2V). Vehicular ad hoc networks have many appealing applications, such
as driving safety [2], intelligent transport [3, 4], and entertainment on the move.

Efficient message routing is of central importance to vehicular ad hoc networks
[5–11]. Message routing in a vehicular ad hoc network may introduce nonneligible
delivery latency because of frequent network topology disconnections. Thus, we
should stress that themessage routing in vehicular ad hoc network is suitable for those
applications which can tolerate certain delivery latency. There are many examples of
such applications, including peer-to-peer file sharing, entertainment, advertisement,
and file downloading.

The knowledge of future vehicular traces plays a key role for optimal routing.
Existing routing algorithms heavily rely on prediction of vehicle mobility. However,
they have adopted only simple mobility patterns, such as the spatial distribution
and inter-meeting time distribution, which support coarse-grained predictions of
vehicle movements. Some algorithms [9, 12] assume random mobility in which
vehicles move randomly in an open space or a road network. This model is simple
but far from the reality. Some other algorithms assume simple mobility patterns
such as exponential inter-meeting times and regular spatial distributions. As a result,
prediction results based on these simple patterns are of limited value to efficient
routing in vehicular ad hoc networks. In addition, many of existing algorithms ignore
the fact that links in a vehicular ad hoc network have unique characteristics [11]. On
the one hand, a link is typically short-lived. This suggests that the capacity of the link
is limited. Thus, the order for forwarding packets becomes important. On the other
hand, links in a densely populated area may interfere with each other. This indicates
that link scheduling becomes necessary.

To overcome the limitations of existing algorithms, this chapter presents an
approach to taking full advantage of trajectory predictions. By analyzing an extensive
dataset of real vehicular traces, we find that there is strong spatiotemporal regularity
with vehicle mobility. More specifically, our results based on conditional entropy
analysis demonstrate that the future trajectory of a vehicle is greatly correlated with
its previous trajectory. Thus, we develop multiple order Markov chains for predict-
ing future trajectories of vehicles. With the available future trajectories of vehicles,
we present an analytical model and theoretically derive the delivery probability of
a packet. We develop an efficient global algorithm and a fully distributed algorithm
which needs only localized information. The two algorithms jointly consider packet
scheduling and link scheduling. We evaluate the algorithms with extensive trace
driven simulations, based on the trace dataset collected in Shanghai and Shenzhen.
The results demonstrate that our algorithm considerably outperforms other algo-
rithms in terms of delivery probability and delivery efficiency.

The rest of the chapter is organized as follows. In Sect. 2, we briefly introduce
vehicular ad hoc networks. Next, we present the network model and formulate the
problem of message routing in vehicular ad hoc networks. In Sect. 4 we analyze vehi-
cle traces and present a mobility model based on Markov chain. Section5 describes
a global routing algorithm and distributed routing algorithm. Simulation results are
presented in Sect. 6. The chapter is concluded in Sect. 7.
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2 Vehicular Ad Hoc Networks

As illustrated in Fig. 1, a vehicular ad hoc network is simply a system of vehicles
that communicate with each other with short-range radios, such as 5.9GHz DSRC.
Besides inter-vehicle communications, vehicles can also communicate with the
infrastructure that is comprised by roadside units (RSUs).

Conceptually, inexpensive wireless local area network (WLAN) technologies,
such as WiFi, can be used for V2V, V2I, and I2V communications. However, new
challenges arise by high vehicle speeds and highly dynamic network environments.
In addition, new requirements are imposed by applications of vehicular ad hoc net-
works, especially by those safety-critical applications, e.g., high reliability of mes-
sage delivery, low packet latency.

In response to the new challenges and new requirements, new standards have been
developed. The American Society for Testing and Materials (ASTM) subcommittee
E17.51 examined issues concerning vehicle roadside communications and proposed
DSRC. It is largely based on the IEEE 802.11a standard, including the physical
(PHY) layer and the media access control (MAC) layer. Currently, the IEEE 802.11p
working group continues the main tasks of DSRC.

Compared with traditional mobile ad hoc networks, vehicular ad hoc networks
face several new challenges.

First, vehicular ad hoc networks are subject to frequent disruptions. It is difficult
to find a connected path between a pair of source and destination in vehicular ad hoc
networks. This is caused by high mobility and uneven distribution of vehicles over
the network.

Second, vehicles usually move at a high speed of up to 80Km/h. Two vehicles
can communicate only when they are within the communication range. Recent study
has shown that the contact duration in case of a vehicle and a static access point is
as short as 10 s on average [13].

Finally, there is a great deal of uncertainty associated with vehicle mobility. Vehi-
cles move at their own wills. It is difficult, if not impossible, to gain the complete
knowledge about the vehicular trace of future movement, i.e., the position of the
vehicle at a given point in time. For message routing in a vehicular ad hoc network,
a relay node must decide how long a packet should be kept and which node a given
packet should be forwarded to. Existing study [14, 15] shows that it is possible to
find an optimal routing path when the knowledge of future node traces is available,
which is NP-hard though. However, it is impractical to have prior knowledge about
future traces of nodes.
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Fig. 1 The illustration of
vehicle-to-vehicle commu-
nications and vehicle-to-
infrastructure communica-
tions in a road intersection
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3 Network Modelling and Routing Complexity

3.1 Network Model

The vehicular ad hoc network is modeled as a set of nodes, N. When two nodes,
i and j, are in the communication range (denoted by D), i.e., dij < D , there is a link
between the two nodes and they can communicate with each other while the link
exists.

The position of node n at time τ is denoted by pn(τ ). The time is slotted. Therefore,
the trajectory of node n is a sequence of positions, denoted by

Tn = 〈pn(0), pn(1), ..., pn(τ )〉 . (1)

The distance between two nodes, i and j, at time τ is denoted by dij(τ )

Links in the network are changing with the relative positions of the nodes. The
set of all possible links at time τ is denoted by L(τ ),

L(τ ) = {li,j|di,j(τ ) ≤ D; ∀i, j ∈ N}. (2)

Links are assumed to have the same capacity in theoretical analysis.
The vehicular ad hoc network tries to deliver a set of packets, denoted by Φ, and

the packets are of equal size. A packet has a source, δ(p), and a destination, ψ(p). A
packet is copied and forwarded from one node to another if there is a link between
them. A packet group, θ(p), is introduced to denote all the copies of packet p in the
network. The size of packet group, |θp|, increases when there is a new copy-forward
process of packet p in the network.
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3.2 Formulation of Routing in Vehicular Ad Hoc Networks

The main goal of message routing is to move the packets from their sources to
respective destinations. The delivery performance objectives include delivery ratio,
delay and efficiency. In the following, we first analyze the properties of individual
packets, and then show the objectives in a global view.

The delivery probability is the chance of a packet successfully delivered from its
source to its destination. The delivery probability of packet p, denoted by ρp, depends
on the routing strategy, Υ , and the trajectories of nodes,

ρp = fϒ(δ(p),ψ(p), {Tn|n ∈ N}). (3)

With given trajectories, ρp can be calculated at the beginning and it does not change
over time. But in the real world where the future traces are uncertain, this delivery
probability can be considered as a random variable.

The delay of a packet, denoted by σp, is defined as the total transmission time
spent for the network to deliver the packet to its destination. Analysis of delay is
similar to that of delivery probability. The delay consists of two parts. One part is
the time already spent, and the other is time to spent,

σp(τ ) = τ + �ϒ(δ(p),ψ(p), {Tn}). (4)

When σpτ = τ , the delivery of the packet is complete.
The cost of the transmission of a packet, denoted by ζp, is defined as the total

number of times that a packet is forwarded. A new copy is created when a packet is
forwarded. Thus, the total number of copies indicates the delivery cost. The cost is
therefore defined as

ςp = |θ(p)| . (5)

One of the common objectives of vehicular ad hoc networks is to maximize delivery
ratio. The delivery ratio is defined as the proportion of successfully delivered packets
to the total packets to be transmitted. The number of total packets is often omitted
in calculations because it is fixed and not affected by routing strategies. Thus, one
objective can be given by

max
∑

p∈�
E[ρp]. (6)

Thus, the problem is to find the optimal routing of the packets through the vehicular
ad hoc network that meets (6).

Two other common objectives are minimization of delay and minimization of
total cost, which are given respectively by

min
∑

p∈�
E[σp], andmin

∑
p∈�

E[ςp]. (7)
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The efficiency is defined as the ratio of total successfully delivered packets to the
total cost, given by

� =
∑

p∈�
E[ρp]/

∑
p∈�

E[ςp]. (8)

A high efficiency indicates that one algorithm achieves high delivery ratio at a low
cost.

3.3 Analysis of Routing Complexity

The optimal routing for achieving the objectives mentioned above is extremely diffi-
cult to design. For analysis simplification, we first assume that the routing algorithm
have the complete knowledge of all vehicles and their future traces, and the set of
packets to be transmitted. Note that this is impractical in the real world.

Without loss of generality, we take the objective of maximizing the delivery ratio
for example. Objective (6) can be written as,

max
∑

p∈�
E[fϒ(δ(p),ψ(p), {Tn|n ∈ N})]. (9)

Theorem 1: This routing problem with objective (9) when the vehicular traces and
the set of packets to transmit are given is NP-hard.

The concise proof for the theorem is as follows. The well studied edge-disjoint
path (EDP) problem is known to be NP-hard, which tries to find the maximal number
of edge-disjoint paths. By reducing the EDP problem to the ideal routing problem,
we can prove the ideal routing problem is also NP-hard [8]. The basic reduction
procedure is as follows. The vertices of EDP are mapped to the vehicles, and each
edge is mapped to a contact of vehicles. The source destination pairs are mapped to
the source and destination pairs of the packets to transfer. As a result, the routes are
valid edge-disjoint paths.

In practice, the complete knowledge is hard to be obtained because the future
knowledge of vehicular traces is usually unavailable. Following this practical con-
straint, the trajectory of a node is divided into two parts: the past and the future,
denoted by

{Tn} = {Tn|τ≤t} ∪ {T ′
n|τ>t}. (10)

Let λt(p) to denote the current position of the packet. The objective at time t for
routing becomes

max
∑

p∈�
E[ρp] = max

∑
p∈�

E[fϒ(λt(p),ψ(p), {Tn}, {T ′
n})]. (11)

The second part of the trajectory is different from the first part. The first part has
been fixed while the second part is not fixed and unknown at the time of being.
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Since the objective of delay minimization has similar formation, we generalize
(11) to the following,

max
∑

p∈�,n∈N
�(λt(p),ψ(p), {Tn|τ≤t}, {T ′

n}). (12)

where Θ denotes the global metric for the whole network. If we omit the inputs, the
objective becomes

max
∑

p∈�
�p,N,t . (13)

This is the practical objective with the limited knowledge beyond time t.

4 Mobility Analysis and Modelling

In this section, we quantitatively reveal the spatiotemporal regularity with vehicle
mobility. The quantitative analysis is based on mining the large dataset of vehicular
traces of more than 4,000 taxis in Shanghai, China, which have a duration of more
than two years. The GPS trace of a taxi, equipped with a GPS receiver, was collected
by the vehicle periodically sending its instant position to a data collection center at
an interval from 10s to several minutes. The taxis operates in the whole urban area
of Shanghai, which covers an area of over 120km2.

For simplification of discussion, the whole space is divided into Q small grids.,
and is denoted by S,

S = {s0, s1, . . . , sQ−1|si ∩ sj = ∅}. (14)

whereQ is the total number of grids. The time is slotted. The location of a vehicle at a
given time is considered as a random variable which takes state values from the grid
space. Let Si denote the random variable for vehicle i. We reveal the spatiotemporal
regularity by computing the marginal and the conditional entropies of Si given the
previous K states.

For vehicle i, suppose we have observed its states for L time slots. The state
sequence of the vehicle can be denoted by a vector Ti = < s0, s1, . . . , sL−1 >,

where sj ∈ S, 0 ≤ j ≤ L − 1 is the positional state of vehicle i at time slot j. Suppose
that sj appeares oj times in the vector of Ti, 0 ≤ j ≤ L − 1. Thus, the probability of
vehicle i taking state sj can be computed as oj/L. Then, the marginal entropy of Si is

H(Si) =
∑Q−1

j=0
(oj/L) × log2

1

oj/L
. (15)

Next, we compute the conditional entropy of Si given its immediately previous state
S1i which has the same distribution with Si. The conditional entropy is,
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Fig. 2 The CDFs of mar-
ginal entropy and conditional
entropies of a vehicle posi-
tional state. The grid size is
200m × 200m, and the num-
ber of vehicles is 500
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H(Si|S1i ) = H(Si, S1i ) − H(Si). (16)

To derive the conditional entropy, we have to derive the entropy of the joint ran-
dom variable (Si, S1i ) By using the state sequence Ti, we derive a sequence of
2-tuples, T1

i = < (s0, s1), (s1, s2), . . . , (sL−2, sL−1) >. By counting the occur-
rences of

(
sj−1, sj

)
, denoted by oj−1, j, we can get its probalibty. Thus, the joint

entropy of the two dimensional random variable of (Si, S1i ) is,

H(Si, S1i ) =
∑Q−1

j=1

oj−1,j

L − 1
× log2

1

oj−1,j/(L − 1)
. (17)

By generalizing the previous computation, we can compute the conditional entropy
of Si given its immediately previous K states S1i , S2i , . . . , SK

i

H(Si|S1i , S2i , ...SK
i ). (18)

In essence, by showing the marginal entropy we reveal spatial regularity, which char-
acterizes the uncertainty of a vehicle residing a location in the space. By showing the
conditional entropy given the previous states, we reveal the spatiotemporal regularity
of vehicle mobility. This characterizes the uncertainty of a vehicle residing a specific
location when its previous states are given. This demonstrates the correlation of a
vehicle’s positional states over different times.

In Fig. 2, the cumulative distribution functions (CDFs) of the marginal and the
conditional entropies for are shown. The conditional entropies K = 1, 2, 3 are sig-
nificantly smaller than the marginal entropy. This implies that the uncertainty of
the positional state becomes smaller when the previous states are known. We also
find that when K becomes larger, the entropy continues to decrease. This suggests
that more previous states help further reduce uncertainty. However, the improve-
ment quickly stalls K as increases. This gives the guidance to the order selection for
trajectory prediction using multiple order Markov chains.
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4.1 Modelling Vehicular Mobility with Markov Chain

A mobility pattern of a node characterizes the regularity of its mobility.

Definition 1. Themobility pattern of node n, denoted by MPn, is defined as a pair of
random variables, MPn = (α,β). The probability distribution of the mobility pattern
characterizes the regularity of the vehicle’s mobility.

We develop the following mobility pattern for characterizing the spatiotemporal
regularity of vehicle mobility. For vehicle i, its mobility pattern is defined as Mi =
(H, F), where H is a vector of past positional states, H =< H0, H1, . . . , HK−1 >,
K ≥ 1, and F is the future positional state. The mobility pattern characterizes the
frequencies of F following H in the vehicle’s traces by computing the probability
distribution of the two-dimensional random variable Mi. This can be achieved by
analyzing the historical traces of the vehicle, as discussed in Sect. 3.

The notion of mobility pattern is general enough to cover the regularities that have
been studied. For the study of inter-meeting times, the mobility pattern is

MPn = (A, B), (19)

where A is a random variable representing the inter-meeting time of vehicle n and a
second vehicle, and B is the random variable denoting the second vechile. Based on
this mobility pattern, we are able to describe the distribution of inter-meeting times
between n and any other vehicle.

For the study of spatial distribution of a vehicle, the mobility pattern is

MPn = (S,∅) , (20)

where S is the random variable representing the spatial state and φ denotes a null
random variable.

To predict the trajectory of a vehicle, exiting simple patterns are inadequate. In
the next subsection, we present our method of trajectory prediction by developing
multiple order Markov chains based on the spatiotemporal mobility pattern.

4.2 Predicting Future Trajectories

The problem of predicting the trajectory of vehicle i at time t is to compute the
future trajectory Ti|τ>t , given the trajectory before t, Ti|τ<t . A trajectory, T, can be
described by a sequence of positional states,

T = < s0, s1, . . . , sτ , . . . > . (21)
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Because of the uncertainty associatedwith vehiclemobility, theremay exist a number
of possible future trajectories.

Definition 2. The set of all possible trajectories of node n is defined as a trajectory
bundle, denoted by TBn, which can be characterized by

TBn =< Dn(1), Dn(2), . . . , Dn(τ ), . . . > . (22)

where Dn(τ ) is the probability distribution of spatial states at future time τ .

Dn(τ ) : Pn
s (τ )|s ∈ S. (23)

where Pn
s (τ ) is the probability of the node n appearing in state s at time τ .

To predict the trajectory of a vehicle, it is essentially to calculate the trajectory
bundle of the vehicle. For trajectory prediction, we develop multiple order Markov
chains for predictions. The key is to establish the matrix of transition probabilities.
The transition probabilities are computed on an individual vehicle’s basis, since
different vehicle possesses different regularities.

For a vehicle, we can easily derive its transition matrix (denoted by X) from its
mobility pattern. When we are using a K-order Markov chain, an element, xij ∈ X,
represents the transitionprobability fromHi toFj,whereHi is a sequenceof positional
states, Hi =< hi

0, h11, . . . , hi
k−1 >, and Fj is a single state. Then, xij = Pr

(
Hi, Fj

)
,

where Pr(·) is the probability distribution function of the mobility pattern of the
vehicle.

By applying the K-order Markov chain, we can compute the trajectory bundle as
follows. Given the current trajectory of node n is Tn

c =< s−k+1, s−k+2, . . . , s0 >,

the initial distributions for Tn
c are

Dn(τ ) :
{

Pn
sτ (τ ) = 1

Pn
s (τ ) = 0, s �= sτ

, (τ ≤ 0). (24)

The distributions of spatial state at future times can be iteratively calculated. For a
single trajectory (denoted by<< s1, . . . , sk >, s >, its probability is

Pn
<s1,..,sK >,s(τ ) = x<s1,..,sK >,s ×

∏K

i=1
Pn

si
(τ − K + i). (25)

Pn
si(t) are derived from the previous distributions x<s1,...,sk , s and is defined in the

transition matrix. Then, Dn(τ ) can be derived by

Dn(τ ) : Pn
s (τ ) =

∑
all<si>

P<si>,s
n(τ ), τ > 0. (26)
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4.3 Computing Inter-Vehicle Delivery Probability

With the predicted trajectories, we are able to derive the encounter probabilities
which are required for computing the eventual delivery probabilities.

Given the trajectory bundles of node i and j,Di(τ ) andDj(τ ) are known. Let εi,j(τ )

denote the encounter probability of the two nodes at time τ . It can be calculated by

εi,j(τ ) =
∑

s∈S
Pi

s(τ ) × Pj
s(τ ). (27)

Then, the encounter probability, εi,j is given by

εi,j = 1 −
∏T

τ=t
(1 − εi,j(τ )), (28)

where T denotes the max prediction range of time.
If the overall objective is to minimize the delivery delay, the estimated encounter

time for the two nodes can be derived by

ηi,j =
T∑

τ=t

τ × εi,j(τ )/

T∑

τ=t

εi.j(τ ). (29)

Therefore, the estimated delay of a packet can be calculated through trajectories in
a similar way with delivery probability computation.

5 Trajectory-Based Routing

In this sectionwe first present the global routing algorithm and the distributed routing
algorithm.

5.1 Global Algorithm

Designing the optimal routing for achieving (13) is difficult, especially without any
knowledge about future vehicular traces. We present a global routing algorithm with
only predicted trajectories of vehicles.

The global metric of a packet changes after intermediate transfers over time.
Consider that a packet, p, is forwarded from node i to j at time t. After the forwarding,
the increment in the global metric becomes


�p,N .t = �p,N,t(j) − �p,N,t(i). (30)
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And the original objective becomes

max
∑

p∈�
(
∑t−1

τ=0

�p,N,τ + 
�p,N,t). (31)

Since the sum of increments before time t has been fixed, it can further be written as

max
∑

p∈�

�p,N,t . (32)

Item ΔΘ can be considered as the current metric for packet p.
At time t, theremay exist a number of links thatmay inferencewith each other, and

it is impossible for all the links to be active simultaneously. The routing algorithm
must schedule the links, i.e., choose a subset of links from all possible links to
maximize the sum of current metrics. Thus, the objective becomes

max
∑

p∈�, l∈L(t)
(
�p,N,t × li,j). (33)

The optimal routing performs two tasks, i.e., link scheduling and packet scheduling.
Before the routing decision can be made, we have to obtain the metric increment of
every packet over all possible transfers. When all the increments are available, the
optimal routing chooses such a set of links and a set of packet transfers that meet (33).

We should emphasize that even when all ΔΘp,N,t are available, finding the best
links and packet transfers is still anNP-hard problem.A brief proof is as follows. This
problem can be considered as a weighted maximum independent set problem that
has been proved to be NP-hard. To solve this problem, a number of existing heuristic
algorithms [16] can be used, in which ΔΘp,N,t are considered as link weights.

As mentioned before, we take delivery probability maximization as example. The
delivery probability of packet, ρp, depends on the encounter probability of every two
nodes, denoted by εi,j,∀i, j ∈ N . In the following we derive the relationship between
metric increments and encounter probability.

The probability for the packet to be delivered in no more than one hop is

ρ1p = ελ(p),ψ(p). (34)

Then, for a two hop delivery with the two-hop route of < λ(p), n1,ψ(p) >, the
probability is

ρ<λ(p),n1,ψ(p)>
p = ελ(p),n1 × εn1,ψ(p). (35)

Thus, the probability for packet being delivered in two hops is

ρ2p = 1 −
∏

n∈N,n �=λ(p),ψ(p)
(1 − ρ<λ(p),n,ψ(p)>

p )

= 1 −
∏

n∈N,n �=λ(p),ψ(p)
(1 − ελ(p),n × εn,ψ(p)). (36)
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The delivery probability of the packet with the h-hop route < λ(p), n1, . . . , nn−1
ψ(p) > is

ρ
<λ(p),n1,..,nh−1,ψ(p)>
p = ελ(p),n ×

∏h−2

i=1
εni,ni+1 × εnh−1,ψ(p). (37)

Then the set of all h-hop routes (denoted by Ξ ) which starts from λ and ends at ψ is
denoted by

Ξh(λ,ψ) = {< λ, n1, .., nh−1,ψ >| ni ∈ N; ni �= λ,ψ}. (38)

Thus, the h-hop delivery probability is calculated by

ρh
p = 1 −

∏
r∈
h(λ(p),ψ(p))

(1 − ρr
p). (39)

Therefore, the total delivery probability is

ρp = 1 −
∏

0<h<H
1 − ρh

p . (40)

Constant H acts as the hop limit.
From the previous analysis, we can find that encounter probability is the key to

computing the overall delivery probability of a packet. Since it is impossible to know
future movements of vehicles, the knowledge of encounter probability of each pair
of vehicles is not immediately available.

Fortunately, we have observed that there is strong spatiotemporal regularity with
vehiclemobility. Based on this observation,we presentmobility patterns to character-
ize this regularity. With the mobility pattern, we are enabled to predict the trajectory
of a vehicle. With trajectories of vehicles, we can effectively compute the encounter
probability of two vehicles.

We should stress that the encounter probability computed based on this method is
more accurate than those derived from simple patterns, such as inter-meeting times
and spatial distribution. Our prediction effectively makes use of both the current
state information and the historical information of vehicle movement. In addition,
the historical information is purely based on individual vehicles. This overcomes the
problem with traditional methods that require historical information about any pair
of vehicles, which introduces additional overhead.

The global algorithm is described as follows. According to Sect. 4.2, each vehicle
which has a transition matrix obtained from historical data can calculate its future
trajectory bundle using its current position.With the trajectory bundles, the encounter
probability of every two vehicles is known from (27). Then, the delivery probability
of each packet in the network through each possible path can be calculated by (28) and
(40). With these probabilities, the global algorithm solves an optimization problem
to determine which the best next hop for each packet is. The algorithm repeatedly
schedules the delivery until all the packets are delivered.
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5.2 Distributed Algorithm

The global algorithm requires the complete knowledge of all packets and vehicles.
More specifically, for each packet, the knowledge of its source and destination, and
the current position must be known. For each vehicle, the knowledge of its position
and the mobility pattern must be known. These pieces of knowledge are not available
in a distributed setting. Thus, we design a practical, distributed algorithm with which
a vehicle requires only limited and localized knowledge.

The distributed algorithm consists of two fundamental building blocks. In the first
block, the new objective for each individual vehicle is designed, since it is impractical
for individual vehicles to compute the global objective. In the second block,we define
the metadata for vehicles to exchange with each other at meetings.

In the distributed setting, the knowledge of nodes and packets is usually incom-
plete. Therefore, a global optimization (32) is hard for it is impossible to compute the
global metric Θ and the current metric 
Θ (defined in (11), (12), and (30)). In this
case, we have to design a new metric based on which an individual vehicle makes
routing decisions. Let the incomplete set of nodes and packets be denoted by and ,
respectively. Then, the new objective becomes

max
∑

p∈�′ 
�p,N ′,t . (41)


Θp,N ′
,t becomes the new metric of packet p at time t, which is local and can be

computed by individual vehicles for each packet. When making routing decisions, a
node maximizes the sum of local metrics of all the packets it knows.

It would be better for a node to have more knowledge about nodes and packets.
Since it is difficult for a node to have the complete knowledge, we design a distributed
protocol for the nodes to exchanging information when they meet each other. By this
way, the knowledge can be propagated throughout the network.

For exchanging information, we define metadata, which include two parts of
information. The first part is about the mobility pattern and the most update position
of each vehicle (time stamped). The second part is about the packets that the node
carries. Note that for a relatively stable set of vehicles, the mobility pattern reflects
the regularity of a vehicle’s mobility. Thus, it is relatively stable and therefore it is
no need to update the mobility patterns frequently.

As a distributed algorithm, each vehicle executes the routing algorithm indepen-
dently. For each vehicle, a routine procedure is invoked each time it finds a new
communication neighbor. For neighbor discovery, it is required that every vehicle
periodically broadcasts hello messages so that other vehicles can discover it when it
enters their communication ranges.

In the following we describe the procedure, supposing that vehicle n finds another
vehicle, n′, entering its communication range. The Pseudo code description of this
procedure is shown in Fig. 3.

First, node n updates its neighbor set (Λn). Then, node n and n′ exchange their
metadata. The metadata of a node, i, denoted by Mi include two metadata sets, Pi
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Fig. 3 Pseudo code of the procedure of the distributed algorithm, which is executed upon each
contact with a vehicle

and Vi. Set Pi contains the metadata about the packets that node carries, including
identification and source-destination pair. Set Vi contains the metadata about the
vehicles known to node i, including ID, most update position and mobility pattern.

Next, it recalculates the metrics for all the packets it carries, and sort the packets
respect to the newmetrics in the decreasing order. The packetswill then be transferred
in the sorted order. Note that if the node has already been transferring a packet, the
transmission of this packet is not interrupted. After its completion, the packets shall
be transmitted according to the new order. By ordering the packets, we are essentially
doing the link scheduling in a distributed way. However, before a packet transfer can
be started, a vehicle has to follow media access control to avoid potential collisions.

As packets are transferred between vehicles, the packet set, Pi, is updated when-
ever the vehicle receives a new packet from its neighbors.

6 Simulation Study

We evaluate our algorithms with the performance metric of delivery ratio, delay,
cost and efficiency. These metrics have been defined in Sect. 2. We compare our
algorithms with several other algorithms, which is to be introduced shortly.

The simulations are conductedwith the three datasets of real GPS vehicular traces.
One dataset includes the vehicular traces ofmore than 4,000 taxis collected in Shang-
hai, the second dataset is the traces of more than 2,000 buses in Shanghai and the
third dataset consists of vehicular traces of more than 12,000 taxis collected in Shen-
zhen. The Shanghai dataset covers a duration of two years and the Shenzhen dataset
a duration of one month. The whole urban area of Shanghai is 133km in length and
69km in width, and that of Shenzhen is about 27km in length and 97km in width.
Table1 shows the summary of the three trace datasets.

The whole space is divided into grids, and the grid size is three kilometers by
default and will be varied in the impact study of grid size. The communication range
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Table 1 Summary of trace
datasets

Trace Shanghai taxi Shanghai bus Shenzhen taxi

# of nodes 4,000 2,000 12,000
Contacts (per hour) 352 891 425
Granularity (second) 60 60 60
Duration (hour) 17,280 17,280 720
Range (km×km) 133×69 133×69 27× 97

is 300m. We consider link interfaces, and each node can communicate with one
neighbor at any time. We randomly select a subset of 400 taxis or buses from the
complete trace for simulations.

For each packet, we randomly select its source and destination. The packets are
injected at different times. Every packet has the same size and priority. Themaximum
hop and themaximum time-to-live (TTL) of each packet is set to 20–2h, respectively.
The number of packets is varied from 100 to 800 to study different loads of the
network.

The order ofMarkov chainsK is set to two. From conditional entropy analysis, we
have already found that a higher order beyond twogives little reduction in uncertainty.
To build the mobility pattern for each vehicle, its vehicular trace of the past 15
days is used. Each data point is the average over five different runs of trace-driven
simulations.

We compare our routing algorithms with the following algorithms

• Flooding [17], also known as epidemic routing, is a simple algorithm. Each node
forwards all the packets it carries to any node it meets. This algorithm provides an
upper bound on delivery ratio and a lower bound on delivery delay. It introduces
very high cost, which is the major defect.

• P-Random [15] is an opportunistic routing algorithm, which randomly decides
whether to forward a packet to another node. In simulations, the probability is set
to 0.4. This algorithm represents the algorithms without predictions.

• MobySpace [9] is a routing algorithm for delay tolerant networks. It obtains
the probability of each node residing in each possible location by analyzing the
historical trace data. It assumes that every node has the full knowledge of such
probabilities of all vehicles. It then computes the contact probability of every two
vehicles based on the probability distribution, and then routing decisions can be
made.

• Max-Contribution [11] is a routing algorithm using a simplemobility pattern that
only considers the inter-meeting times of exponential distribution. This pattern
makes prediction independent of the current location of a vehicle.
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Fig. 4 Delivery ratio versus
amount of packets, with
Shanghai taxi dataset
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6.1 Performance Results

Wepresent performance results of our algorithms compared against other algorithms.
First, we show the results using the Shanghai dataset of real taxi traces. To charac-
terize the mobility pattern, the vehicular trace of the recent 15 days is used.

We vary the amount of packets and compare the six algorithms in terms of delivery
ratio, average delay and total cost under different loads of network. For a given setting
of amount of packets, the same set of packets and the set of nodes are used for all
the six algorithms.

Since the delivery ratio is largely affected by the simulated time length, we use the
metric of relative delivery ratio instead of bare delivery ratio, which is the delivery
ratio of each algorithm normalized by that of Flooding. In Fig. 4, the performance
of the six algorithms in terms of relative delivery ratio is shown. We can see that
our algorithms perform better than P-Random, MobySpace and Max-contribution.
Among the six algorithms, Flooding performs the best, as expected. In general, the
algorithms that use predictions produce better delivery ratios than the algorithms
that make no predictions. Our algorithms are better than MobySpace and Max-
Contribution because our algorithms use not only the historical traces information
but also the current state and the previous states. Predicted trajectories of vehicles
help to find better routing paths. The global algorithm is better than the distributed
one since it has the global, complete network information. We can also find that
when the amount of packets increases, the overall delivery ratios of all algorithms
decrease. The reason is that the overall capacity of the network is limited. By injecting
more packets, the packets may compete for network resources and as a result, fewer
packets can be delivered in the end.

In Fig. 5, average delay against amount of packets is plotted. Our algorithms have
a lower delay than P-Random, MobySpace and Max-Contribution. As expected,
Flooding has the smallest delay. The average delays of our algorithms are slightly
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Fig. 5 Average delay versus
amount of packets, with
Shanghai taxi dataset
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Fig. 6 Total cost versus
amount of packets, with
Shanghai taxi dataset
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larger than that of flooding. This performance gain of our algorithms is mainly due
to the fact that routing paths with high delivery probabilities usually lead to shorter
delays. Since our algorithms can select routing paths of high delivery probabilities,
the resultant delay is low.

Figure6 shows the costs of the six algorithms.We canfind that our algorithms have
lower costs, better than all the other algorithms. Themain reason is that by effectively
predicting the trajectories of vehicles, we only consider the paths that lead to eventual
delivery with high probability. Therefore, unnecessary packet transfers are greatly
reduced.

In Fig. 7, we compare the efficiencies of the six algorithms. We can see that our
algorithms have higher efficiency, better than all the other algorithms. Flooding and
P-Random have a similar efficiency and are much worse than the rest four. This
is due to the blindness of Flooding and P-Random when they are making transfer
decisions. Max-Contribution and MobySpace have larger efficiency than Flooding
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Fig. 7 Efficiency versus
amount of packets, with
Shanghai taxi dataset
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andP-random, but have lower efficiency than our algorithms, sinceMax-Contribution
and MobySpace merely uses a simple mobility pattern of inter-meeting time.

6.2 Impact of Grid Size

We study the impact of grid size. According to the design of the algorithms, two
vehicles residing in the same grid are considered to encounter with each other, but
they may be unable to communicate in reality. Meanwhile, a larger grid size results
in a lower algorithm complexity. The simulation is performed with the Shanghai taxi
dataset with the Shanghai bus dataset.

In Fig. 8, the delivery ratios of the two algorithms are shown for different grid
sizes. We find that when the grid size increases, the relative delivery ratio of the
two algorithms increases almost linearly. This confirms that a larger grid size makes
the algorithms more aggressive, thus injecting more packets into the network. As a
result, the delivery ratio becomes higher.

In Fig. 9, we show the performance of delivery delay of the two algorithms when
the grid size is varied from 500 to 6,000.We can see that when the grid size increases,
the average delays of both the algorithms slightly decrease Shanghai Bus dataset, but
increase for Shanghai taxi dataset. Buses have much stronger regularity than taxis.
For Shanghai bus dataset, a larger gird size leads to a more aggressive forwarding
strategy and helps find shorter routing paths. For Shanghai taxi dataset, however, a
more aggressive forwarding strategy size does not lead to short routing paths. The
main reason is that predictions for taxis are less effective than for buses and the more
aggressive forwarding results in less effective utilization of the limited forwarding
opportunities in vehicular ad hoc networks.

In Fig. 10, we look at the performance of total cost of the two algorithms when
the grid size varies. It is apparent from the result that the costs of the two algorithms
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Fig. 8 Delivery ratio versus
grid size
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Fig. 9 Average delay versus
grid size
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quickly increase as the grid size becomes larger. This is easy to understand since
with a larger grid size, the algorithms intend to forward more packets and thus inject
more packets into the network. Thus, a higher cost is observed when the grid size is
larger.

The performance of efficiency for the two algorithms for different grid sizes is
shown in Fig. 11. The performance results match our expectation that the efficiency
of the algorithms quickly decreases as the grid size becomes larger. This results from
the fact that a larger grid size allows the algorithms to make more aggressive data
forwarding.

In summary, the grid size controls the tradeoff between delivery ratio and cost
(and also efficiency). And importantly, although a grid size introduces higher cost,
the delivery delay may not be decreased.



Vehicular Ad Hoc Networks and Trajectory-Based Routing 163

Fig. 10 Total cost versus grid
size
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Fig. 11 Efficiency versus
grid size
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6.3 Impact of Historical Traces

The impact of the use of historical traces is studied. To this end, we vary the length of
the historical trace that is used for building the mobility pattern of a given vehicular
node. The length is varied from 2 to 16 days. To offset the effect of grid size, we
study the performance under two configurations of grid size, 500 and 2,000m. The
simulation is performed with the Shanghai taxi dataset.

In Fig. 12, the performance of relative delivery ration of the trajectory based
algorithms is shown for different lengths of historical trace. We can see that the
relative delivery ratio increases quickly when a longer length of historical trace is
used for both the global and the distributed algorithms. This strongly demonstrates
that a longer trace builds a better mobility model and is beneficial to prediction of
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Fig. 12 Delivery ratio versus
length of historical trace
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Fig. 13 Average delay versus
length of historical trace
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vehicular trajectory. This makes the routing process more effective by making use
of the predicted trajectory. In addition, we find that when the grid size is 2,000 m,
the delivery ratio performance becomes better, as observed previously in the study
on the impact of grid size.

In Fig. 13, we show the performance of average delay of the two algorithms for
different lengths of vehicular trace. We find that when the length of vehicular trace
increases, the average delay drops slightly for both the algorithms. This shows that
a longer historical trace is also beneficial to reduction of delivery delay.

Figure14 shows the performance of the two algorithms in terms of total cost for
different lengths of historical vehicular trace. The results show that the cost for each
of the two algorithms also increases when the length of historical trace becomes
larger. However, it should be noted that the increase in cost when the grid size is
500 m is much slower than the one when the grid size is 2,000 m. Thus, we can
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Fig. 14 Total cost versus
length of historical trace
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Fig. 15 Efficiency versus
length of historical trace
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conclude that when a small grid size, e.g., 500 m, is used, a longer historical trace
only introduces a modest increase in cost. But when a large grid size is used, the cost
rises quickly as the length of historical trace increases.

In Fig. 15, we show the performance of efficiency of the two algorithms for dif-
ferent lengths of historical trace. We can see that as the length of historical trace
increases from 2 to 16 days, the efficiency of each algorithm slowly increases. In
addition, the efficiency with a grid size of 500 m is much higher than that with a
grid size of 2,000 m. And, the efficiency with a grid size of 2,000 m almost does not
change as the length of historical trace increases.

In summary, a longer historical trace helps improve the performance of the tra-
jectory based algorithms.
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7 Conclusion

Vehicular ad hoc networks are a new type of mobile ad hoc networks. Efficient
message routing is of significant importance to applications of vehicular ad hoc net-
works. However, different from traditional mobile ad hoc networks, existing routing
algorithms for mobile ad hoc network cannot directly be used. Although routing of
vehicular ad hoc networks has been studied, existing work either assumes the avail-
ability of future vehicular traces, e.g., through navigation systems, or fails to make
effective use of the vehicular traces. By developing multiple order Markov chains,
we predict future vehicle trajectories. The proposed trajectory based algorithms take
full advantage of predicted probabilistic vehicle trajectories. Performance results
verify that our algorithm outperforms other algorithms. This demonstrates that pre-
dicted trajectories do help improve message routing performance in vehicular ad hoc
networks.
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