
High-Level Internet of Things Applications
Development Using Wireless Sensor Networks

Zhenyu Song, Mihai T. Lazarescu, Riccardo Tomasi, Luciano Lavagno
and Maurizio A. Spirito

Abstract Wireless Sensor Networks (WSN)-based data gathering solutions were
envisioned from the beginning of the Internet of Things (IoT) paradigm because
of their important characteristics such as low-cost, long-term versatile sensing and
actuation capabilities, and distributed resilient bidirectional communications. How-
ever, many technologies converge into WSN platforms from several disciplines.
Their complexity and rapid pace of change may prevent most WSN and IoT play-
ers to keep up, since they need to focus on low cost and short development time
targets. Also important is the quality assurance to prevent the degradation of the
overall reliability perception needed for wide WSN adoption. Consequently, a ver-
satile and reusable WSN platform may benefit both industry and academic research
by speeding up and facilitating the distributed WSN application programming. The
framework presented provides the application developers with a set of development
tools and software component libraries that allow high-level application architecture
description, graphical definition and simulation of the component behaviour, and
automatic generation of both network simulation models and code for target node
programming.

Z. Song · R. Tomasi · M. A. Spirito
Pervasive Technologies Area, Istituto Superiore Mario Boella, Turin, Italy
e-mail: song@ismb.it

R. Tomasi
e-mail: riccardo.tomasi@polito.it; tomasi@ismb.it

M. A. Spirito
e-mail: spirito@ismb.it

M. T. Lazarescu (B) · R. Tomasi · L. Lavagno
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
e-mail: mihai.lazarescu@polito.it

L. Lavagno
e-mail: luciano.lavagno@polito.it

S. C. Mukhopadhyay (ed.), Internet of Things, Smart Sensors, 75
Measurement and Instrumentation 9, DOI: 10.1007/978-3-319-04223-7_4,
© Springer International Publishing Switzerland 2014

76 Z. Song et al.

1 Internet of Things and Wireless Sensor Networks

More than a decade ago, the Internet of Things (IoT) paradigm was coined [1], in
which the computers would be able to access data about objects and the environment
without human interaction. Complementing human-entered data was important in
order to increase the accuracy and pervasiveness of physical world information in
ICT systems at a sustainable cost.

Initially adopted and popularized by the Auto-ID Center at MIT and market
analysts [2, 3], the IoT concept received growing attention until recently it became
one of the most hyped terms. The vision encompass the ability to uniquely identify,
represent and access objects at any time and anywhere, in an Internet-like virtual
structure.

Traditionally, radio-frequency identification (RFID) was one technology con-
sidered key enabler for the IoT paradigm. Alongside, other low-cost identification
and communication technologies are also used: device-centric technologies, such as
near field communication (NFC), Bluetooth, barcodes, Quick Response (QR) codes,
ZigBee, digital watermarking, and networking technologies, like 3GPP Long Term
Evolution/Long Term Evolution-advance (3GPP LTE/LTE-A), Vehicular Ad-hoc
Networks, Wireless Sensor Networks, and Wireless Local Area Networks. These
blend the IoT concept into the Internet ofEverything (IoE) vision,where nearly every-
thing is connected to the Internet using machine-originated or machine-to-machine
(M2M) communications. Almost all smartphones, tablets and PCs are always con-
nected, and so are becoming other objects (like home appliances, cars, clothes, door
locks, light bulbs, toys, thermostats, vending machines, industrial instruments, data
collecting sensors) to provide a variety of services without human intervention.

The sheer versatility of the IoT paradigm makes it suitable for an ever increasing
variety of applications. In turn, these applications make use and rely on the many
diverse technologies and devices that concur to its realization. And all this widening
diversity makes increasingly difficult to define “typical” requirements for the devices
and their programming [4].

Along the RFID, Wireless Sensor Networks (WSNs) were considered a key tech-
nology for IoT paradigm capillary pervasiveness able to bring richer, versatile low-
cost sensing and actuation to applications. Intrinsically versatile, WSNs are suitable
for a wide variety of applications and systems, with very diverse requirements and
characteristics. However, this makes difficult to define specific application require-
ments and research directions, WSNs remaining a challenging multidisciplinary
area. An efficient implementation very often requires a good collaboration between
users, application domain experts, hardware designers, and software and firmware
developers.

As a long-term value, the IoT technologies allow going beyond application-
specific “vertical” pervasive systems. A single “horizontal” ecosystem of inter-
operable objects and services can seamlessly co-operate to provide new services
and optimization opportunities. In this vision, a key role is attributed to the tools that
support their modeling, design and development, mainly because these can unify

High-Level Internet of Things Applications Development 77

computing paradigms and development workflows among vendors, architects, inte-
grators and application developers.

2 Developing IoT Systems: Context, Scenarios and Challenges

We will analyze several representative scenarios where the IoT technology is used
attempting to extract a subset of abstract use-cases and their common key features.
Based on this analysis, we will then extract the key challenges that impact on the IoT
development tools and workflows.

2.1 A Reference Workflow for IoT Developments

Figure 1 shows a possible reference development workflow for IoT applications that
allows to introduce the IoT development context.

Traditionally, requirement definition starts by considering scenarios of indepen-
dent vertical domains or markets, also named “silos,” e.g., Intelligent Transportation
System, Smart Grids, Logistics.

Multiple use cases can be defined within any of these scenarios. This phase nor-
mally entails a thorough analysis of domain-specific aspects, including the analysis
of the expected uses and needs of key stakeholders and users. Even though a signif-
icant part of the IoT vision value lies in its “horizontality,” a main usage scenario is
usually needed to secure the initial deployment funding.

The initial analysis can produce requirements of different styles and granularities.
However, for adequate specificity, they must be mapped or split among a pre-defined
set of architecture components. StandardArchitectureReferenceModels (ARMs) are
defined to this purpose, such as that of the IoT-A project1. For instance, the mapping
defines the information view of the system including all data structures, i.e., the
models and protocols employed to share information across different components.

High-level architectures are often split into more controllable components within
detailed component design phases. These are then implemented by teams with
specific expertise (e.g., communication, interoperable services, low-power embed-
ded systems) and skills for specific hardware/software platforms and tools. At this
stage, new components are often integrated with COTS (Commercial Off-The-Shelf)
devices at various levels. Where available, these provide specific functions within
the system under development, including proper interplay with pre-existing legacy
systems where needed.

After the integration and the optional validation phase, the system is ready for
commissioning. This consists in its deployment and configuration in the final use

1 The IoT-A consortium. Internet of things architecture. http://www.iot-a.eu/

http://www.iot-a.eu/

78 Z. Song et al.

Fig. 1 IoT system design and development work-flow

High-Level Internet of Things Applications Development 79

scenario, and is often associated with the physical delivery to the end-users and their
training. Finally, the operational system and receives local or remote maintenance.

The tools can support the development in different phases of theworkflow.At high-
level architecture definition they help describing and modeling all key aspects of the
domain in a consistent information view. They should allow different levels of typing,
specification, and semantic annotation for the project elements, such as protocols,
key variables and parameters. Such models and parameters, possibly standardized,
should be associated to all components and are converted in data structures for project
algorithms.

The development-support tools cover a prominent role in detail design and devel-
opment of specific components. At these levels, they typically link the design high-
level abstractions (objects, variables) defined to their specific implementations. They
help especially the joint developments by several different experts and to unit test
the components.

In this phase, tool interoperability is key. Experts in specific IoT fields should
use their specific tools, typically focusing on a well-defined set of technologies. At
the same time, these tools should allow sharing models, interfaces and parts of the
development process.

During the integration, commissioning and operation stages (including mainte-
nance), the tools should support the development of IoT components able to inter-
operate with a broad set of COTS systems, legacy devices, and installation and
maintenance tools. This may entail supporting the broadest set of available open
protocols and standards, where applicable.

IoT Application Scenarios

A wide collection of studies on IoT markets, applications and use cases is available
in the scientific, technical and business literature. However, due to high diversity and
heterogeneity of the IoT definitions and deployments, a widely accepted taxonomy
of IoT applications is still elusive.

Referencing a common IoT application taxonomy is nevertheless important for
the IoT community. It simplifies the information exchange and improves the target-
ing of investments in IoT technical developments. Moreover, it is also a primary
tool helping to keep into account the various requirements. Common requirements
across different domains shall influence general-purpose IoT features, while domain-
specific requirements shall be considered for optional features to be supported by
IoT development in specific markets.

This section provides an overview of the main IoT application domains currently
identified by the research community. For each domain is suggested a set of key chal-
lenges that may potentially impact the IoT development-support tools. A restricted
set of possible use cases is analyzed in each domain to identify specific challenges.

The analysis follows the categorization suggested in the IERC(EuropeanResearch
Cluster on the Internet of Things) Clusterbook [5], modified based on other interna-
tional road-maps, white papers and review articles [4, 6–17].

80 Z. Song et al.

Smart Cities
Smart Cities vision involves a broad set of applications aiming to make cities more
sustainable, safe and enjoyable thanks to new ICT-supported models of cooperation
among citizens, institutions and companies (e.g., utilities, service providers). Most
applications require a large number of networked devices and systems deployed
on city-wide scale, making of Smart Cities a primal playground for IoT technolo-
gies [18].

The applications of interest range from systems supporting urban mobility and
its safety (e.g., Smart Parking, Traffic Congestion, Intelligent Transportation Sys-
tems), to applications monitoring or optimizing assets and critical infrastructures in
cities (Structural Health, Smart Lightning, Smart Roads), to systems monitoring and
protecting the citizens’ quality of life (Noise Urban Maps, Waste Management).

Structural health focuses on monitoring the status of buildings, bridges or other
infrastructure, e.g., by sensing their vibrations [19]. The challenges include large
scale deployment, unmanned operation, self-healing, processing and detecting
events from raw data via (potentially complex) algorithms running on-board the
nodes, embedding data transmission and management logic on tiny devices, low-
power constraints, inter-node coordination (coherent data time-stamping).

Traffic congestion monitors car and pedestrian traffic leveraging fixed [20] or
mobile [21] sensors. The challenges include large scale deployments, integration
of data from heterogeneous devices and data sources, interoperability of differ-
ent vendor sensors, interoperability with other systems (e.g., mobile terminals,
legacy trafficmonitoring platforms), input and output location-awareness, distrib-
ution of intelligence (e.g., due to time constraints), minimizing the commissioning
and maintenance effort.

Participatory sensing collects, analyses and shares data through participation of
local communities of volunteers [22]. The challenges include working with
heterogeneous data and sensors, the need for data annotation and semantic
interoperability, integration of crowd-sourced knowledge, interoperability with
community-provided devices, trust and privacy.

Smart Environment
The Smart Environment domain include any systemmonitoring or preventing critical
events in wide, unpopulated areas where significant environmental risks have been
identified. Such areas require constant monitoring and alerting about critical events,
such as fire in forests, landslides and avalanches in mountain areas, earthquakes in
seismic areas, exceptional air or water pollution events in heavy industrial or safety-
critical areas.

Forest fire detection in remote forest areas to alert public authorities [23]. The chal-
lenges include large-scale deployments without fixed communication infrastruc-
ture, strict low-power constraints, effective use of energy harvesting, unmanned
operation, integration of multi-hop communication solutions, need for efficient
data processing on board constrained nodes, real-time reporting of critical events,
self-configuration, self-healing.

High-Level Internet of Things Applications Development 81

Remote seismography collects seismic data from remote areas [24], e.g., bymeans
of microphones or seismic-acoustic sensors. The challenges include installations
in harsh conditions, need for data-processing techniques to trigger event detection,
synchronization and time-stamping of sensed data, reliable data retrieval with
constrained bandwidth.

Pollution monitoring of potentially dangerous gases in both urban and remote
areas using fixed or mobile sensors [25]. The challenges include data collec-
tion from fixed and mobile installations and geotagging, large sets heterogeneous
sensor calibration or self-calibration, power supply management.

Smart Water
Smart Water applications include all systems for water monitoring in both civil and
natural environments, such as water quality monitoring (e.g., presence of chemicals)
in rivers or in water distribution infrastructure, water leakage detection in pipes or
buffer tanks, monitoring of levels of rivers, dams and reservoir, e.g., for flood or
drought early warning.

Water leakages detection monitors pipes or distribution networks, e.g., by means
of pressure, flow or other types of sensors [26]. The challenges include installation
and operation in harsh conditions (e.g., underground), time-correlation of spatial
data, unmanned operation, combination and fusion of data from heterogeneous
sensors possibly provided by different vendors, unmannedmanagement of sensors
in remote locations.

Level-monitoring and flood detection for basins, dams, rivers, lakes checks lev-
els and detects floods [27]. The challenges include continuous monitoring and
processing of sensed data, lack of communication infrastructure, strict real-
time constraints when critical events occurs, resilient communication, distributed
processing and monitoring.

Smart Metering
The Smart Metering domain is a wide area of application. It involves remote moni-
toring (and control) of a large population of networked meters that provide data for
accounting and consumption billing of various commodities, such as electricity (both
consumed and generated in the so-called “Smart Grid”), water, gas and oil in storage
tanks, cisterns or transportation systems (e.g., water pipes, oil pipelines), level of
silos stock. The most mature Smart Metering solutions are currently in the electric
power distribution market.

Metering in the smart electric grid are applications for monitoring and account-
ing consumption via remote, automatedmeters [28]. The challenges include secu-
rity, privacy, reliability and transparency, interoperable standardized and certified
solutions, low-latency and robust communication formore advanced control appli-
cations.

Metering of heating systems formonitoring consumption and efficiency of heating
systems, e.g., to optimize or to partition heating costs across different units [29].
The challenges include low cost, ease of installation and maintenance, interoper-
able standardized and certified solutions, interoperability with legacy systems.

82 Z. Song et al.

Security and Emergency
The Security and Emergency domain, among the first explored in the WSN for IoT
field [30], includes protection of areas sensitive to people intrusion (e.g., perimeter
access control) or to environmental factors that increase the risks for people and goods
(e.g., monitoring liquids in areas with dense electric outlets, detecting presence of
gases and leakages in chemical factories, detecting radiations close to nuclear power
stations).

Perimeter control and tracking detects and localizes trespassers (e.g., thieves,
enemy troops) using distributed sensors and alarms [31]. The challenges include
tight security requirements, resilience to interference and disruption, complex
data management and processing for intruder detection.

Disaster recovery solutions assist rescuers aftermajor disasters like radiation leaks
or floods [32]. The challenges include resilience to interference and disruption
(e.g., many sensors disabled ormoved), real-time requirements during emergency,
interoperability with mobile networks (e.g., aerial vehicles or land robots), geolo-
cation, self-healing and reconfiguration.

Retail
The Retail domain includes systems to simplify stocking (Supply Chain Control),
storage (Smart ProductManagement),marketing (Intelligent ShoppingApplications)
and selling (NFC Payment) in shops and malls.

Smart shopping employs marketing-oriented applications in retail environments,
e.g., to track customers’ behaviour or feed targeted advertisements in malls [33].
The challenges include context awareness (e.g., location-dependent behaviour,
time awareness), interoperability with existing business systems, location and
time-awareness, fusion of heterogeneous data sources to detect user behaviour.

Stock control for shelves and stocks real-time monitoring in shops to simplify the
supply chain management, e.g., alerting for stocks that run out [34]. It includes
M2M monitoring of automated vending machines. The challenges include real-
time operation, ease of maintenance, integration with legacy enterprise systems,
deployment-specific configurations.

E-Payments enable payments via short-range communication technologies like
NFC [35]. The challenges include strong security requirements, interoperability
with payment systems available on COTS devices.

Logistics
The Logistics domain includes systems to support scenarios involving storage and
shipping of goods. It includes good monitoring during transportation (e.g., monitor-
ing of vibrations, strokes, box opening, break of cold chain), detection of improper
storage conditions (e.g., flammable materials close to heat sources), location of items
(e.g., in storages, harbours) or vehicles (e.g., for navigation support or theft preven-
tion).

Smart transport supports goodmonitoring during transport, e.g., in trucks or cargo
ships [36]. The challenges include monitoring system reliability and trust (e.g.,

High-Level Internet of Things Applications Development 83

anti-tampering), automatic association of sensor readings to goods, interoperabil-
ity across different logistics platforms.

Smart logistics support good detection and tracking in warehouses [37] and com-
binedmonitoring [38]. The challenges include standard identification and address-
ing schemes, tight integration with Enterprise systems, large scale operations,
reliable readings, standard solutions for tagging.

Industrial Control
Industrial control is one of the first application domains for IoT technologies (e.g., for
remote monitoring of manufacturing lines through SCADA systems). These systems
are typically deployed in manufacturing or process industries in order to remotely
checkmachineries (e.g.,M2Mapplications), diagnose the status and position ofmov-
ing vehicles or robots or to monitor the conditions of the manufacturing environment
(e.g., air quality monitoring in food processing industries). These systems help the
transition of industrial automations from custom, closed developments towards more
flexible internet-oriented schemes, directly integrated with enterprise and manage-
ment systems. They simplify data-intensive applications like real-time tracking or
predictive maintenance.

Manufacturing applications leverage autonomous M2M interactions to monitor
and optimize production lines [39]. The challenges include interoperability across
heterogeneous system, context-awareness, fusion of information from various
data sources, reliability in harsh industrial environments, large scale operations,
strong safety constraints.

Mobile robotics applications in industry inwhichmobile robots interactwithfixed
IoT infrastructures, e.g., to support internal logistics in manufacturing plants. The
challenges include support for mobile operations, context-aware behaviour, inter-
operability of robots with fixed sensors.

Smart Agriculture
Smart Agriculture focuses on monitoring the soil used for growing agricultural prod-
ucts, plants, greenhouses, or the environmental conditions (e.g., weather).

Crop monitoring for moisture, salinity, acidity, etc. using sets of chemical sensors,
e.g., to ensure product quality [40]. The challenges include operation in harsh con-
ditions, lack of central infrastructure, self-configuration, self-powered operations,
cost constraints.

Smart green houses are controlled and optimized via wireless sensors and actua-
tors [41]. The challenges include reliable operation (especially for control), inte-
gration of heterogeneous sensors, control logic support using distributed sensors
and actuators, simple maintenance, low-cost.

Smart Animal Farming
Closely related to Smart Agriculture, Smart Animal Farming enhances the produc-
tivity of animals for meat and related products (e.g., milk, eggs) by monitoring the
animal health conditions at different stages, animal tracking and identification (also
used for product traceability), and living environment.

84 Z. Song et al.

Animal monitoring looks for animal behavior, e.g., to detect states of sickness or
stress [42]. The challenges include data integration from heterogeneous sensors,
processing of large sensor datasets, data processing algorithms and techniques,
operation in harsh conditions.

Meat traceability from farm to fork for animal-derived products, including moni-
toring of physical parameters during various operation phases [43]. The challenges
include intermittent connectivity, standard identification and addressing schemes,
tight integration with enterprise systems, large scale operations.

Domotics and Home Automation
The Domotics and Home Automation are centered on homes and commercial build-
ings. They include applications to improve home safety, ease of use and sustainabil-
ity, e.g., through resource consumption monitoring (energy, heating, water), remote
control of appliances, optimization of air and ventilation or prevention of theft and
intrusion.

Building automation monitors and optimizes building subsystems, such as lighting
or heating, ventilation and air conditioning (HVAC) [44]. The challenges include
interoperability up to the semantic level, integration with legacy solutions, need
for standard protocols and interfaces, secure and safe operation.

Appliances control, automatic and remote, for, e.g., energy usage optimization in
Smart Grid Environments [45]. The challenges include interoperability up to the
Semantic level, standard protocols and interfaces, ease of use, context-awareness
features, real-time operations, secure and safe operations, privacy.

e-Health
e-Health systems focus on monitoring of patients or assets needed to assist the health
of people in any specific condition, including, e.g., disabled or elderly or under special
training or dietary situation. Specific applications include, e.g., detection of fall of
elderly people living alone, or monitoring of stocks of medicines in hospitals.

Patient surveillance in Ambient-Assisted Living (AAL) applications [46] and
other systems to monitor patients inside or outside hospitals [47], including moni-
toring of living parameters and position tracking. The challenges include ensuring
the privacy of patients’ data, data protection, management of sensed data, support
for patient mobility, wearable systems – low-power operation.

Fall detection, prevention and reaction for elderly or disabled people [48]. The
challenges include location-awareness, data processing complexity for fall detec-
tion, mobile and nomadic operations, reliability requirements.

IoT Application Challenges

The analysis of the main IoT application scenarios in Sect. 2.1 leads to a set of
challenges that are currently faced by the field, summarized in Table 1.

High-Level Internet of Things Applications Development 85
Ta

bl
e

1
Io
T
ap
pl
ic
at
io
n
ch
al
le
ng

es
by

us
e
ca
se

do
m
ai
ns

C
ha
lle

ng
es

D
om

ai
ns

Sm
ar
t

H
om

e
e-

L
og

is
tic

s
R
et
ai
l
Se
cu
ri
ty

an
d

Sm
ar
t

Sm
ar
t
Sm

ar
t

Sm
ar
t

Sm
ar
t

Sm
ar
t

In
du

st
ri
al

A
gr
ic
ul
tu
re

A
ut
om

at
io
n

H
ea
lth

em
er
ge
nc
y

an
im

al
ci
tie

s
en
vi
ro
nm

en
t
gr
id

M
et
er
in
g

w
at
er

co
nt
ro
l

fa
rm

in
g

C
lo
ud
-b
as
ed

la
rg
e
da
ta

pr
oc
es
si
ng

◦
◦

◦
◦

◦

C
ol
la
bo

ra
tiv

e
(u
nt
ru
st
ed
)

m
an
ag
em

en
t

◦

D
ep
lo
ym

en
t-
sp
ec
ifi
c

co
nfi

gu
ra
tio

n
◦

◦
◦

◦
◦

D
is
tr
ib
ut
ed

da
ta
an
d

lo
gi
c
pr
oc
es
si
ng

◦
◦

E
xt
ra
ct
io
n
of

co
nt
ex
t

an
d
en
vi
ro
nm

en
t

◦
◦

◦
◦

◦

H
ar
sh

en
vi
ro
nm

en
t

◦
◦

◦
◦

◦
◦

H
et
er
og
en
eo
us

de
vi
ce
s

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

In
te
ro
pe
ra
bi
lit
y
up

to
se
m
an
tic

le
ve
l

◦
◦

In
te
ro
pe
ra
bi
lit
y
w
ith

◦
◦

◦
◦

◦
◦

◦
◦

◦
pr
oc
es
se
s
an
d

sy
st
em

s
L
ar
ge
-s
ca
le
an
d/
or

de
ce
nt
ra
liz

ed
◦

◦
◦

◦
◦

◦
◦

◦

L
im

ite
d
ba
nd

w
id
th

◦
◦

◦
◦

L
oc
at
io
n
aw

ar
en
es
s

◦
◦

◦
◦

◦
L
ow

co
st

◦
◦

L
ow

po
w
er

op
er
at
io
n

◦
◦

◦
◦

L
ow

-l
at
en
cy

an
d

qu
al
ity

of
se
rv
ic
e

◦
◦

◦
◦

◦
◦

◦
◦

(c
on
tin

ue
d)

86 Z. Song et al.

Ta
bl

e
1

(c
on
tin

ue
d)

C
ha
lle

ng
es

D
om

ai
ns

Sm
ar
t

H
om

e
e-

L
og

is
tic

s
R
et
ai
l
Se
cu
ri
ty

an
d

Sm
ar
t

Sm
ar
t
Sm

ar
t

Sm
ar
t

Sm
ar
t

Sm
ar
t

In
du

st
ri
al

A
gr
ic
ul
tu
re

A
ut
om

at
io
n

H
ea
lth

em
er
ge
nc
y

an
im

al
ci
tie

s
en
vi
ro
nm

en
t
gr
id

M
et
er
in
g

w
at
er

co
nt
ro
l

fa
rm

in
g

M
ob

ili
ty

◦
◦

◦
◦

◦
N
o
co
m
m
un
ic
at
io
n
or

◦
◦

◦
po
w
er

in
fr
as
tr
uc
tu
re

O
n-
bo
ar
d
pr
oc
es
si
ng

◦
◦

◦
◦

◦
Pr
iv
ac
y

◦
◦

◦
◦

◦
◦

R
el
ia
bi
lit
y

◦
◦

◦
◦

◦
◦

R
es
ili
en
ce

to
di
sr
up
tio

n
an
d

in
te
rf
er
en
ce

◦
◦

◦
◦

Sa
fe
ty

◦
◦

◦
◦

◦
◦

Se
cu
ri
ty

◦
◦

◦
◦

◦
◦

◦
◦

Se
lf
-c
al
ib
ra
tio

n,
se
lf
-c
on
fig

ur
in
g,

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

se
lf
-h
ea
lin

g
Si
m
pl
e
an
d
lo
w
-c
os
t

m
ai
nt
en
an
ce

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

St
an
da
rd
iz
at
io
n
an
d

ce
rt
ifi
ca
tio

n
◦

◦
◦

◦
◦

◦
◦

◦

T
im

e
co
rr
el
at
io
n

◦
◦

◦
◦

◦
◦

High-Level Internet of Things Applications Development 87

WAN

HW nodes
RF devices

Antenna

Power Manag.
Energy Harvest

Packaging

Application−
Specific−

Peripherals
Sensors

Network Dev.

Sensors

t

Security

Standards
Protocols
Dev. Tools
IP Library

GIS

Security

High−Vol.−Processing
High Availability

Multichannel Alert

Mobile Integration

Ty
p

ic
al

 W
S

N
H

ar
d

w
ar

e

Cloud

Security
Application−

Specific−
Accelerators

High Availability
Mobile Integration

Web 2.0, LAMP
S

o
ft

w
ar

e

Embedded OSMicrokernel

Listen Process

Notify

Display

Listen Process ForwardAcquire Process Notify

S
en

so
r

Field Comm. GPRS

Gateway NodeSensor Node Server User

Fig. 2 A wide variety of technologies converge into a typical tiered WSN platform

Beyond the technical/scientific factors mentioned in the table, it is important to
remember that the IoT domain is also impacted by non-technical challenges of dif-
ferent nature, including social, process reliability, training, awareness, collaboration
and economic challenges, which should be addressed as the IoT domains and tech-
nologies evolve and mature.

3 WSN Application Development Overview

The IoT paradigm valued since the beginning the low-cost long-term WSN-based
data gathering solutions able to provide versatile sensing and actuation through dis-
tributed resilient bidirectional communications.

Early WSN projects made use of large-scale ad hoc, multi-hop, unpartitioned
networks of randomly deployed and mostly fixed and homogeneous tiny, resource-
constrained devices. This traditional definition is still applicable to a significant
class of applications (e.g., for the military and outdoor environmental monitoring
domains).

For instance, Fig. 2 shows the main components of a typical tieredWSN platform
for monitoring applications and some of the hardware and software technologies it
is made of. The block diagram in the middle section shows one or more sensors
(transducers) that are attached to the sensor nodes. These are typically small (in
size, resources and cost) and are suitably deployed within the application field to

88 Z. Song et al.

perform the measurements needed by the application. The sensors typically have
limited data storage, processing, energy reserves, and short-range communication
capabilities that can be used to process locally and forward the field measurements
required. Often they are expected to operate reliably and unattended for very long
periods (years).

The data sent by the sensor nodes ultimately reach a gateway (or sink) node, either
directly or after a few forwarding hops through the network. The gateway nodes
usually have larger memory, data processing, energy reserves, and long-range out-
of-field communication capabilities. Among other functions, the gateway nodes can,
e.g., buffer and further process the field data, and communicate with the application
server to transfer field data and configuration instructions.

The server is typically located outside (and can be far away from) the application
field and has processing, storage, and supply power to reliably store field data for
long periods of time, and allow to retrieve them in formats suitable for visualization
or further processing. Also, the server may be able to issue alerts on specific field
conditions or events.

However, many emerging WSN applications cannot be adequately defined in this
way and the structure of this generic platform and its components often need to be
adapted to best suit the application requirements and environmental conditions [49].
For instance, the sensor nodes, the gateways, or the server can be omitted for specific
applications. Also, the communication channels between the sensors (if any) and
with the gateways can be uni- or bidirectional, and form peer-to-peer, star, tree or
mesh topologies.

The top and bottom sections of Fig. 2 shows some of the many and multidiscipli-
nary technologies, both hardware and software that concur to the realization of the
WSN platform for most applications. Mastering all these technologies is difficult for
most WSN and IoT players, and keeping up with their rapid pace of change adds
to the challenges. Very often an efficient collaboration between users, experts of the
application domain, hardware designers, and software and firmware developers is
necessary to achieve efficient WSN implementations [50].

Considering all these, a definition of the WSN design space can be used as a
framework for discussion and coordination of both research efforts and the develop-
ment of flexible WSN platforms, which can be easily adapted to effectively support
the many application needs. Both industry and academic research can benefit from
a versatile and reusable WSN platform, easy to tailor to support a broad range of
applications, and including development tools, support for several hardware devices,
a library of software components for both the embedded and server parts of the
application, and tools to support the field planning and deployment [51]. However,
the development and maintenance of such a platform can be very costly and also
involve professionals with very diverse expertise, from advanced web and UI design
to low level firmware, and from IDE design to code generation techniques for high
level application descriptions. Quality assurance is also very important, since overall
unreliability perception is still a limiting factor to WSN wider adoption.

Hardware vendors usually provide WSN development platforms tailored around
the devices they produce. These usually consider most typical uses of the vendor’s

High-Level Internet of Things Applications Development 89

hardware, being often hardware-centric rather than application-centric. As such, they
can require significant extensionor adaptation to cover a broader range of applications
and may significantly lag the state of the art in the WSN field, since they follow the
progress of the producer.

Most of the open projects for embedded (TinyOS, freeRTOS, Contiki) or
server (GSN) components of the WSN platform are largely vendor- and hardware-
independent. But they also fail to address all development needs of a complete WSN
application, often requiring significant adaptation and integration for an effective use
by system integrators.

3.1 WSN Development Abstractions

Wireless sensor networks often operate under tight resource and budget constraints,
their range of application continuously diversifies, and, traditionally, WSNs are
developed and deployed by single organizations. These circumstances often facilitate
the optimization across the typical layers, which are valuable for component inter-
changeability and reuse for better reliability and lower costs [52]. The early WSN
advances and applications, some of which are shown in Table 2, clearly display the
tendency to blur the boundaries between layers even after the efficiency benefits of
the layers was generally recognized.

Along with the perceived lack of reliability, application development is still an
issue that hinders WSN wider adoption. Real-world applications continue to rely
mostly on node programming very close to the embedded operating system, which
increase the development time, costs, skill requirements, and limit the component
reuse and the overall application reliability.

Consequently, domain experts rarely develop efficient WSN applications [50].
The characteristics and requirements of the WSN devices on the one hand, and the
approaches for application development on the other provide a rich set of functions
which can meet many diverse applications requirements. However, a good under-
standing of these is needed in order to choose the best platform and methodology for
a given application.

Various programming models were proposed to overcome WSN programming
difficulties. Considering the level of abstraction from the operating system (OS) and
the operation of the underlying hardware, these can fall under the categories of:

1. OS-level programming;
2. virtual machine (VM) or middleware programming;
3. network macroprogramming.

The first two address the node-level programming [53] while the latter hinges on
network-level WSN programming (macroprogramming) abstractions [54].

90 Z. Song et al.

Table 2 WSN layers are usually unevenly covered by development frameworks and applications.
Often layer separation is blurred for better implementation efficiency

A T N L

Aloha [preamble sampling-based protocol] •
B-MAC [asynchronous adaptive preamble sampling protocol] •
BVR [Beacon Vector Routing, greedy point-to-point routing] • ◦
CODA [dynamic Congestion Detection and Avoidance] ◦ • ◦
CTP [Collection Tree Protocol with hop-based metric] • ◦
Deluge [protocol for network-scale node reprogramming] • ◦
DIP [probabilistic spatial node Density Inference Protocol] • ◦
Drain [sink-originated distributed best route discovery] • • ◦
Drip [registration-based unnamed reliable message dissemination] • ◦
Flush [adaptive reliable bulk multihop transport protocol] • • ◦
FPS [Flexible Power Scheduling for distributed power management] • • •
Fusion [of multiple distributed field data over unreliable channels] ◦ • ◦
GAF [Geographic Adaptive Fidelity for location-based routing] • • • •
Great Duck Island [habitat monitoring application] • • • •
Golden Gate Bridge [structural health monitoring application] • • • •
MintRoute [many-to-one cost-based routing for data collection] • •
MultihopLQI [routing protocol based on Link Quality Indicator] • ◦
North Sea [industrial sensing application] • • • •
PEDAMACS [topology-aware multihop TDMA protocol] •
PSFQ [Pump Slowly, Fetch Quickly transport protocol] • • •
Redwoods [environmental monitoring application] • • • •
RMST [Reliable Multi-Segment Transport for guaranteed delivery] • • •
SCP-MAC [Scheduled Channel Polling protocol] •
S-MAC [fixed-duty sleep-synchronized preamble-sampling protocol] •
SPIN [Sensor Protocol for Information via Negotiation] • •
T-MAC [synchronized contention-based adaptive-duty protocol] •
Volcano [application to monitor an active volcano] • • • •
WiseMAC [synchronized preamble sampling infrastructure protocol] •
X-MAC [short-preamble low power listening protocol] •
A Application, T Transport, N Network, L Link

OS-Level Programming

OS-level programming models consist in developing the application logic using
directly the resources made available by the embedded OS. Of the latter, one of
the first and widely used is TinyOS [55], a component-based OS that allows modular
programming using the C-based nesC language [56]. The modules have interfaces
that are connected using configurations, the latter being used to describe also the
application. The encapsulation provided by the modules hides the implementation
details, but the low level of abstraction, the event-based style, and the blocking nature
of the operations may complicate the implementation even of simple applications.

Asynchronous messages is one technique to reduce the programming complexity,
e.g., TinyGALS [57], which allows a globally asynchronous (message passing

High-Level Internet of Things Applications Development 91

through asynchronous FIFO queue), locally synchronous (within sequential mod-
ules) programming model. SOS [58] implements message passing between modules
using a priority queue, and CoMOS [59] uses preemptive inter-module message
handling.

More OS layers or the extension of the event model can also reduce the program-
ming complexity. SNACK [60] facilitates the design and reuse of parameterizable
service libraries and applications can be defined by combining services. T2 [61]
provides a telescopic abstraction hybrid made of a horizontal decomposition (to
support different hardware devices at low level) and a vertical decomposition (to
support platform-independent functionality at high level). OSM [62] addresses the
limitations of the static association of states to actions and the implicit change of the
program state in a pure event-driven programming model. OSM separates the state
and transitions, the latter and the associated actions being a function of state and
events, adds parallel composition for concurrency and hierarchical composition for
program refinement.

Thread abstraction is also proposed to address the limitations and complexity of
an event-driven programming model. While the event-driven model tends to opti-
mize the microcontroller sleep time, the static per-thread stack allocation may be too
expensive for the typically limited RAM of the sensor nodes. However, the block-
ing execution context of threads can significantly simplify the programs and the
programming.

An early lightweight concurrency model is proposed by Fiber [63] on top of
TinyOS,whileMANTISOS [64] provides fully preemptive, time-slicedmultithread-
ing. TinyThread [65] implements cooperating multithread as a library for TinyOS
with explicit and implicit execution context yielding, and per-thread stack estimation.
Protothreads [66] implement a similar multithreading approach for another event-
driven OS, Contiki, but without a per-thread stack, to improve efficiency. Y-Threads
[67] concept is similar to Fiber, but implements preemptive multithreading with a
shared stack for non-blocking computation behaviours and separate stacks for block-
ing control behaviours. The latter typically need a small stack which leads to better
overall hardware resource utilization.

Virtual Machine/Middleware Abstraction

Virtual Machines/Middleware (VM/MW) simplify the remote node reprogramming
at the expense of some processing overhead and total code size. The latter can be
minimized by limiting the generality of the VMs to subsets relevant to application
domain(s). Also, VMs provide platform-independent execution models facilitating
code reuse.

Interpreter-based VM as Maté [68] and ASVM [69] are implemented on top
of TinyOS and provide increased safety and reduced application code size, while
Melete [70] extendsMaté for concurrent applications. VMStar [71] allows the remote
update of both VM and application code. Remote programming is also included at
OS- or MW-level, for complete application or at finer grains (module or thread),

92 Z. Song et al.

as the necessity to update the application in the field rises. t-Kernel [72] addresses
reliability by providing OS protection and virtual memory through application code
modifications at load time.

Macroprogramming

Other WSN programming abstractions address the development of applications as
distributed processing at the network level, providingmodels and semantics to define
the communication and coordination among nodes. Unlike node-centric abstractions,
where the network behavior emerges from the processing and interactions defined for
single nodes, macroprogramming abstractions allow high-level behavioral descrip-
tions at network-level.

The programming paradigm that defines how the program elements (functions,
variables, computations) and their interactions can be expressed. It has a significant
impact on the learning curve, especially for domain experts that may have limited
programming experience.

Application description using imperative statements, which indicate explicitly
the way to change program state, are by far the most used, be these event-driven
(e.g., nesC) or sequential (e.g., Pleiades [73]). Declarative programming allows the
description of the application goal without explicitly defining how to accomplish it.
The programming can be functional (e.g., Regiment [74, 75]), rule-based (e.g., Snlog
[76]), SQL-like (e.g., TinyDB [77]), and special-purpose (e.g., Logical Neighbor-
hoods [78]). Hybrids mix declarative and imperative programming approaches, such
as imperative for node computation and declarative for inter-node communications
(e.g., ATaG [79]).

Pleiades extensions to C language allow to address the network nodes and their
internal state. Its network-level instructions are executed by only one network node at
a time with constructs designed to iterate through nodes, which make it particularly
suited to guarantee the distributed execution of concurrent applications. Regiment
constructs allow to apply functions and store the output on one or more nodes in a
region and Snlog uses logical programming constructs as predicates, tuples, facts, and
rules. The rules express the processing, the facts are the initial tuples (initial state),
and the tuples (the data) is structured according to predicates, similar to relational
database tables. TinyDB, as the earlier TAG [80], implements an energy-optimized
WSN-wide SQL query system from the base station. A sensor table implements the
data model as one line per sensor node and one column for each sensing capability.
It can be filled with field data following SQL queries or proactively, simplifying the
expression of data collection applications. Logical Neighborhoods allows the defin-
ition of node connections based on their logical affinity in the application, regardless
of their physical location. It is mostly suited for heterogeneous and decentralized
sense-and-react applications. ATaG is built around the abstract task and data item,
with copies of tasks that can run on different nodes and abstract channels that con-
nect data items to the tasks that consume them. It is mostly suited for sense-and-react
applications that require complex operations to decide the actions.

High-Level Internet of Things Applications Development 93

4 Model-Based Design, Simulation and Debugging
Framework for WSNs

WSN application developing and testing is often labor-intensive and error-prone
due to the wide diversity of requirements and application domains. A rich set of
tools to support WSN application development, testing and deployment is avail-
able addressing different aspects of the process: high-level modeling, architectural
design, abstract and detailed code development, code generation, application- and
network-simulation, co-simulation, deployment, validation, debugging, performance
monitoring and evaluation [55–81].

The rich choice of tools, devices, and techniques can provide adequate func-
tionality to meet most application requirements. However, a single comprehensive
approach has not yet emerged (see Sect. 3.1). The widening technology and tool
diversity is still difficult to master to obtain satisfactory implementations and the
application-domain experts often need to collaborate with the users and developers
to achieve efficient solutions.

In response to this need, theWSNdevelopment tools evolve to improve the support
for functional composition and complex distributed scenarios, with service-driven
models playing a key role.

In the following we present a complete and flexible framework that can speed
up and facilitate the programming of distributed WSN applications. It is based on
the graphical design tools Simulink®2 and Stateflow®3, both part of the widely used
Matlab4 environment. It provides the application developers a set of development
tools and software component libraries that allow a high-level description of the
application architecture, a graphical environment for the definition and simulation of
component behaviour, and automatic generation of network simulation models and
of code for target nodes.

The application architecture is described using the standardWeb Service Descrip-
tion Language (WSDL). The functional design of the architecture components can be
described as either white, gray or black boxes. The white boxes can be graphically
constructed using high-level abstract concurrent models, as Stateflow® diagrams.
The black boxes are either binary components or code written in the C language.
The gray boxes are a suitable combination between diagrams and external code.

Figure 3 shows the main phases of the development flow. After the high level
application design and simulation phase, the high-level abstract application model
can be used to automatically generate several representations, using a Model-Based
Design methodology. It can be used to generate network simulation models for the
widely used OMNeT++ and MiXiM simulation environments, and for some of the
most popular WSN operating systems, TinyOS and Contiki OS for deployment on

2 Mathworks Simulink http://www.mathworks.com/help/simulink/index.html
3 Mathworks Stateflow – Finite StateMachine Concepts http://www.mathworks.com/help/toolbox/
stateflow/index.html
4 http://www.mathworks.com/products/matlab/

http://www.mathworks.com/help/simulink/index.html
http://www.mathworks.com/help/toolbox/stateflow/index.html
http://www.mathworks.com/help/toolbox/stateflow/index.html
http://www.mathworks.com/products/matlab/

94 Z. Song et al.

Fig. 3 Overview of the framework development flow

target nodes. Moreover, hardware-in-the-loop simulation can be used to increase the
simulation accuracy with real-time physical data from a few node running in sync
and communicating with the software simulation.

The integration of theWSN into IoT applications can be simplifiedwhen targeting
the Contiki OS. In this case, the framework can generate support for web services
which can make the node application accessible through typical web-oriented meth-
ods (e.g., a normal web browser).

In the following we will illustrate the operation of the platform and how the
framework can facilitate WSN application design from high-level conceptual appli-
cation description, platform-independent graphical design, rapid prototyping, and
automatic target code generation for multiple targets.

4.1 Abstract Design Model

The proposed framework [82] makes use of a high-level abstract functional unit,
called Abstract Design Model (ADM), to define the structure and behaviour of the
target WSN application.

As shown in Fig. 4, each ADM is a programming abstraction, a self-contained
unit. It is perceived as a black box by other units and is externally characterized by
the tunable attributes and services it uses and provides. The internal details of the
ADMs do not depend on external entities, and they can be connected together in a
loosely-coupled fashion.

High-Level Internet of Things Applications Development 95

Fig. 4 Components of a typical Abstract Design Model of the framework

Therefore, the WSN applications running on the nodes can be modeled as a set of
interconnectedADMs that exchange servicemessages through their service ports. An
inbound service port (e.g., InServ_1, …, InServ_X in Fig. 4) imports the incom-
ing messages for an associated service used by the host ADM, while an outbound
service port (e.g., OutServ_1, …, OutServ_Y in Fig. 4) exports the outgoing
messages for a service it provides. Inbound and outbound service ports can also
be combined into a bidirectional port (e.g., InOutServ_1, …, InOutServ_Z in
Fig. 4), useful when a request-response communication pattern is needed. Moreover,
the tunable attributes that are exposed by an ADM (e.g., Attr_1, …, Attr_N in
Fig. 4) allow the developer to modify how it performs without changing its internal
logic.

An outbound service port of an ADM can be wired to an inbound service port
as long as they share the same service type. These are similar to function calls and
can be used to transmit service-specific messages between ADMs, without exposing
their implementation. The service ports can also be left disconnected, meaning no
incoming messages for the floating input ports and outgoing messages discarded on
the floating output ports.

ADM behavior is represented using an event-driven hierarchical Finite State
Machine (FSM) described using state charts, as shown in Fig. 4. The logic flow
(i.e., the transition from the current state to the next) can be controlled either by its
internal default transitions or by servicemessages imported from other ADMs. These
messages are processed by the FSM according to the values of its tunable attributes.

96 Z. Song et al.

Fig. 5 Framework development flow

Computation results are attached to outgoing service messages sent through out-
put service ports. User-defined operations can be implemented inside each state or
between state transitions. They will be executed upon entry, permanence, or exit
phases of each state.

Besides tunable attributes, eachADMcan have local variables (e.g.,loc_var_1
and loc_var_2 in Fig. 4) and local events (e.g. Evt_1 and Evt_2).

FSMs can be nested using sub-charts. These can be integrated into higher level
FSMs in sequential or parallel execution order, sharing the incoming and outgoing
messages, attributes, local variables and local events.

ADMs modularity and loosely-coupled port binding allows to construct an appli-
cation independent of ADM location within its architecture. ADM port binding can
be both intra-node and inter-node.When all application ADMs are within a node, the
ports are locally connected and the service messages are implemented by platform-
dependent messages or data sharing mechanisms.When not all ADMs are located on
the same node, neutral service messages are exchanged by the nodes (e.g., nodes in
the radio transmission range) to implement the logic binding of ADM service ports.
Moreover, when the ADM service ports are published on the Internet, the developer
can raise the target application abstraction level from a single node or local group to
the whole Internet.

4.2 Development Flow

Figure 5 shows the V-shape diagram of the development flow of the framework.
There are three types of development activities in the development flow: manual

tasks, supported tasks and automatic tasks.

High-Level Internet of Things Applications Development 97

Manual tasks are development activities that are not directly supported by the
framework and are performed using other development tools. The supported tasks
imply some activities performed manually by the developer, but they are also sup-
ported by specific tools of the framework. Automatic tasks are fully performed by
the framework.

The development flow allows the application developer to perform different tasks
to design, build, implement or transform the application constituent ADMs. Each
ADM can be instantiated in different forms in the framework, for different purposes.
For instance, it can be represented by a Simulink®/Stateflow® block in the high-level
implementation and simulation phase, for high-level description and debugging. Or
it can be an OMNeT++/MiXiM module for large network simulation. It can also
be a TinyOS component or Contiki OS process for node deployment, which will be
further detailed in the following.

Task I: Requirement Analysis

The first step in the design flow is a manual task. It consists in the analysis of
the requirements of the target WSN application by listing the desired functionality
and supported attributes, e.g., measurands monitored by the application, operations
expected from the nodes, state variables exposed as tunable attributes, and criteria
employed to validate the application and evaluate its performance.

We will assume a use case where the nodes collect and perform a distributed
processing of the data from a temperature sensor. Each WSN node wakes up period-
ically to carry out the following tasks:

1. sample the temperature values with the desired sampling frequency;
2. collaboratively average these values with those from its one-hop neighbors within

a sliding time window;
3. broadcast its calculated average temperature value to its neighbors.

Task II: Application Structure Design

The analysis result can be used to drive the application structure design phase, where
the developer conceptually decomposes the application into a set of interconnected
ADMs, each carrying out a part of the entire functionality. Since the ADMs are
characterized by services and attributes exposed on their boundary, their internal
behaviourmaynot be detailed in this step. Thedeveloper just assigns the requirements
listed earlier to the constituent ADMs by defining their boundaries. This can be done
describing the ADM services and attributes either manually or by importing them
from a library (e.g., created in previous designs).

The framework employs Representational State Transfer-based (REST) web ser-
vice design approaches for their flexible WSN integration. REST is a software archi-
tecture for distributed systems [83], such as the World Wide Web that has smoothed

98 Z. Song et al.

Fig. 6 The model structure of the node application

the way of developing, sharing and reusing IoT applications. It relies on stateless,
client-server, cacheable communication protocols, virtually always HTTP.

These help the application developer to construct the ADMs, while WSDL 2.0 is
adopted as the ADM description language. The definition of conceptual structures
of the application models and related ADMs are manual task that can be accelerated
using a WSDL graphical editor, such as [84] and [85].

In the proposeduse case, the followingparameters have been identified as potential
tunable attributes for each node:

1. its own node identifier (NodeId);
2. sample refresh interval inside the averaging algorithm (SenseInterval);
3. the sampling period of the temperature sensor (SamplingInterval);
4. the size of the time window to compute averages, which is equal to the node duty

interval (DutyInterval).

Based on the requirement analysis (first step in Fig. 5), the design is split
on three interconnected ADMs: a Sensor, Radio model, and Algorithm
(TempAverager) models, as shown in Fig. 6.

The Sensor model samples and pre-processes temperature data. The Radio model
interfaces with the protocol stack for short range communication with neighbor
nodes. The TempAverager model handles all on-board data processing. Both the
Sensor and the Radio models are connected to the TempAverager model to exchange
service messages (e.g., Sense and Msg in Fig. 6).

The developer manually defines a boundary description file for each ADM. These
are imported in the framework for the next step, template generation.

Task III: Skeleton Template Generation

This step starts by supplying the ADM description files to the framework to be
automatically mapped to skeleton templates defined as a Stateflow® blocks. All

High-Level Internet of Things Applications Development 99

Fig. 7 Overview of the gen-
erated skeleton template

Fig. 8 Application subchart

ADM services and attributes defined in the ADM templates are interpreted as ports
or pair of ports (for a request-response service).

For each port, a driver function is automatically created inside the skeleton tem-
plate, which hides the low-level Simulink® handling of signals and servicemessages.
These functions handle the service messages exchanges through ports. As the input
services, each tunable attribute has an input port and a state port variable allowing
to set the attribute value from outside the ADM.

Figure7 shows the skeleton template generated automatically for Stateflow®.
Each skeleton template is created with three FSMs that run in parallel:
InputDrivers, Application and OutputDrivers.

The Application FSM (shown in Fig. 8) contains the ADM main logic.
The InputDrivers and OuputDrivers FSMs handle the generated input

detectors and output actuators for the input and output ports (shown in Figs. 9, 10).
These do not need to be changed by the developer.

The generated skeleton templates can be used as the starting point for the imple-
mentations in the next step.

100 Z. Song et al.

Fig. 9 InputDrivers subchart

Fig. 10 OutputDrivers
subchart

Task IV: High-Level Design and Simulation

In this phase, the developer performs a supported task involving the high-level
application implementation, simulation and debugging. The implementation con-
sists mainly in skeleton template completion combination:

Skeleton template completion consists in adding the application-specific functions
to the skeleton template. These mainly process the imported service messages
based on the values of the exposed tunable attributes, and generate the outgoing
service messages.
TheADM internal logic is defined at high level, using state charts and flow graphs,
independent on the specifications of the target platform. As shown in Fig. 4, the
operations defined inside the states will be executed on state entry, permanence or
exit phases. The operations defined between two connected states will be executed
when the state changes through that state connection. The developer-defined oper-
ations can execute any local functions (e.g., loc_func_1, …, loc_func_2 in
Fig. 4) to perform computational tasks or generate outbound service messages.

Skeleton template combination allows to compose the application structure (e.g.,
as in Fig. 6). This is done by wiring the ADMs outgoing ports to incoming ports
and assigning suitable values to the their attribute ports.

High-Level Internet of Things Applications Development 101

Once the implementation of the skeleton templates is completed, the high-level
application models can be simulated and debugged at node-level. Afterwards, they
can be used to generate the implementations for different simulation or target plat-
forms.

Task V: Code Generation

The skeleton template filled with functional interconnected ADMs, simulated and
debugged, can be used for automatic code generation. A framework tool converts
the high-level and platform-independent design into target code that runs in different
network simulation environments or on target operating systems (OSs) and platforms.
These can be:

Simulink®/Stateflow® platform that can be used for node-level and small-scale
network simulation. No application translation is necessary;

OMNeT++/MiXiM that can be used for large-scale network simulation. Each
ADM that composes the target WSN application is mapped to a simple com-
ponent, the programming unit used by the simulators;

TinyOS which is a popular event-driven embeddedOS forWSNnodes. This can be
used for code deployment on target nodes. Each functionalADMof the application
is automatically converted to a TinyOS module component containing the ADM
internal logic;

Contiki OS is another popular event-driven embedded OS for WSN nodes. Each
ADM is instantiated as a protothread process and the code generated can also be
run in the COOJA simulator.
Moreover,ContikiOSallows to generate aRESTfulweb service support if needed.
This allows publishing the application as a standard web service on the Internet
without code modifications.

Task VI.a: Network-Level Simulation

Before network deployment, node behaviour and performance should be checked
and the target application optimized at node- or network-level.

Model generation converts the high-level functional ADMs to simple modules
in a node instance for the simulation environment. For the use case proposed, the
Sensor, Radio and TempAverager functional blocks are converted to simu-
lator simple modules, as shown in Fig. 11. An “adaptor” object is provided by the
development framework as a layer that conveys the messages exchanged across the
node instance borders.

Node instances are manually interconnected and configured using the simulation
initialization file. It can specify configurations like field size, node receiver sensitiv-
ity, initial position and mobility. For example, it can assign values to node properties
like NodeId, AvgWinSize, SamplingPeriod and define the properties of the

102 Z. Song et al.

Fig. 11 Simulation inMiXiM
and OMNeT++

communication channels between nodes. The network simulation environments also
allow the definition of various scenarios, e.g., node mobility or variable communi-
cation channel properties.

Any algorithm for the application logic provided by the simulation environments
can be easily connected to node instances allowing its performance evaluation in a
large-scale simulation.

Task VI.b: Hardware-in-the-Loop Simulation and Deployment

The framework supports automatic code generation for hardware-in-the-loop (HiL)
simulations for both target OSs:

TinyOS generation maps each ADM to a Module component. These components
react and process the internal and external events, service messages, and post
internal tasks. They can be manually wired together and assigned values to their
attributes using the generated OS Configuration file.
HiL simulation can be set up for TinyOS as shown in Fig. 12. The code for the

High-Level Internet of Things Applications Development 103

Fig. 12 HIL simulation on TinyOS platform

Fig. 13 Deployment on Contiki OS with REST web service support

stub node that is connected to the development framework configures it to act as a
gateway bridging the virtual and hardware nodes. It forwards the physical network
messages to the framework when queried and broadcasts the virtual network
messages to the physical net. The stub can also transfer real sensing samples
(e.g., the real temperature value) from its on-board sensors when requested by the
virtual nodes.

Contiki OS generation maps each ADM to a Contiki OS protothread process, such
as Sensor, TempAverager and Radio Processes in Fig. 13. These run in
parallel reacting to internal and external events, processing the service messages
using the functions from ADM behavioural description.
Particularly interesting for IoT applications, Contiki OS provides the essential
support forweb services. TheADMservice descriptionWSDLfile can be exposed
on the Internet to provide a standard remote access to the services, as shown in
Fig. 13. The border router is provided by Contiki OS to bridge the Internet and
the WSN.

104 Z. Song et al.

Fig. 14 Large scale network simulation in COOJA

Each Contiki node running applications with REST web service support can be
internally decomposed in two typeof processes: daemonprocesses and application
processes. A daemon process (identified by PID:0 in Fig. 13) can be automatically
generated by the framework. It receives and transforms CoAP Internet requests
to internal events, dispatches the events to the application processes, and returns
a CoAP response to the Internet requester. Each ADM-exposed service port is
considered a resource of the Contiki node and can be reported by accessing the
dedicated resource discover.
The COOJA simulator can be used to simulate large scale networks of Contiki
nodes. It can trace low-level communications among virtual nodes and monitor
network traffic, as shown in Fig. 14.

Once the developer validates the simulation results and the deployment perfor-
mance against the WSN application requirements, the design can be refined and
improved.

For instance, the sample application can be used to validate the framework capa-
bilities. The code generation was set to transform the high-level design ADMs to
nesC modules, suitable for a simple test-bed set up using Memsic Telos rev. B nodes
running TinyOS.

The generated nesC modules (Radio, Sensor and TempAverager) are con-
figured, interconnected and encapsulated in awrapper nesCmodule that is thenwired
in TinyOS to adapt the existing radio communication services.

Table 3 shows the code size and memory usage measured for the binary code
generated using the development framework and the same application logic imple-
mented manually. The results show a penalty for the generated code of less than
20 % in code size and less than 7 % in RAM requirements.

High-Level Internet of Things Applications Development 105

Table 3 Code size and the
memory usage for the use
case application

ROM RAM
[bytes] [bytes]

Hand-written 17220 492
Framework-generated 20562 526

5 Conclusion

IoT rapid evolution, diversification andpervasiveness benefit fromholistic approaches
and improvements of the collaboration among domain experts, developers, integra-
tors and operators of pervasive systems.

The development tools that support shared abstractions can play a primal role in
IoT application modeling and implementation at all levels.

In this context, we introduced a workflow and toolset aimed to support the defin-
ition and implementation of modular IoT systems based on WSNs, enabling hybrid
simulation and HiL emulation to accelerate and simplify the evaluation of system
behavior in complex, large-scale scenarios.

Acknowledgments Parts of this work were supported by ARTEMIS-JU and Governments of Italy,
Spain, and Greece through the ARTEMIS project WSN-DPCM (#269389).

References

1. Ashton, K.: That ‘internet of things’ thing. In the real world, things matter more than ideas.
Expert view. RFID J. (2009). http://www.rfidjournal.com/articles/view?4986

2. Brock, D.L.: The electronic product code (EPC)—a naming scheme for physical objects. MIT
Auto-ID Center White Paper (2001)

3. Bushell, S.: M-commerce key to ubiquitous internet. Expert view. Computerworld (2000).
http://www.computerworld.com.au/article/84178/m-commerce_key_ubiquitous_internet/

4. Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wirel. Commun.
11(6), 54–61 (2004)

5. Smith, I.G., Vermesan, O., Friess, P., Furness, A. (eds.): The internet of things 2012 new
horizons. In: IERC Cluster Book, 3rd edn. Platinum, Halifax (2012)

6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, archi-
tectural elements, and future directions. Future Generation Comput. Syst. 29(7), 1645–1660
(2013)

7. Akyildiz, I.F., Su,W., Sankarasubramaniam,Y., Cayirci, E.:Wireless sensor networks: a survey.
Comput. Netw. 38, 393–422 (2002)

8. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

9. Chong, C.-Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proc.
IEEE 91(8), 1247–1256 (2003)

10. Bandyopadhyay, D., Sen, J.: Internet of things: applications and challenges in technology and
standardization. Wirel. Pers. Commun. 58(1), 49–69 (2011)

11. Buttyán, L., Gessner, D., Hessler, A., Langendoerfer, P.: Application of wireless sensor net-
works in critical infrastructure protection: challenges and design options [security and privacy
in emerging wireless networks]. IEEE Wirel. Commun. 17(5), 44–49 (2010)

http://www.rfidjournal.com/articles/view?4986
http://www.computerworld.com.au/article/84178/m-commerce_key_ubiquitous_internet/

106 Z. Song et al.

12. Durisic, M.P., Tafa, Z., Dimic, G., Milutinovic, V.: A survey of military applications of wire-
less sensor networks. In: 2012 Mediterranean Conference on Embedded Computing (MECO),
pp. 196–199. IEEE (2012)

13. MacRuairi, R., Keane, M.T., Coleman, G.: A wireless sensor network application requirements
taxonomy. In: Second InternationalConference onSensorTechnologies andApplications, 2008
SENSORCOMM’08, pp. 209–216. IEEE (2008)

14. Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A survey on
facilities for experimental internet of things research. IEEE Commun. Mag. 49(11), 58–67
(2011)

15. Libelium. 50 sensor applications for a smarter world: get inspired! http://www.libelium.com/
top_50_iot_sensor_applications_ranking/, Aug 2013

16. Arampatzis, Th., Lygeros, J., Manesis, S.: A survey of applications of wireless sensors and
wireless sensor networks. In: Proceedings of the 2005 IEEE International Symposium on
Intelligent Control, Mediterrean Conference on Control and Automation, 2005, pp. 719–724.
IEEE (2005)

17. Tafich, M.: The internet of things: application domains. In: Proc. of Adv. Media Technol.
seminar, pp. 37–45. Technische Universität München (2013)

18. HernÃąndez-MuÃśoz, J.M., Bernat Vercher, J., MuÃśoz, L., Galache, J.A., Presser, M.,
HernÃąndez GÃşmez, L.A., Pettersson, J.: Smart cities at the forefront of the future inter-
net. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P.,
Krco, S., MÃijller, H., Li, M., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S.,
Avessta, S., Nilsson, M. (eds.) The Future Internet. Lecture Notes in Computer Science, vol.
6656, pp. 447–462. Springer, Berlin (2011)

19. Paek, J., Chintalapudi, K., Caffrey, J., Govindan, R., Sami M.: A wireless sensor network for
structural health monitoring: performance and experience. The Second IEEE Workshop on
Embedded Networked Sensors, 2005. EmNetS-II, pp 1–10, Sydney, Australia (2005)

20. Cheung, S.Y., Ergen, S.C., Varaiya, P.: Traffic surveillance with wireless magnetic sensors. In:
Proceedings of the 12th ITS World Congress, pp. 1–13. Citeseer (2005)

21. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic con-
ditions using mobile smartphones. In: Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pp. 323–336. ACM, New York, NY, USA (2008)

22. Burke, J.A., Reddy, S., Srivastava, M.B., Estrin, D., Hansen, M., Parker, A., Ramanathan, N.:
Participatory sensing (2006)

23. Yu, L., Wang, N., Meng, X.: Real-time forest fire detection with wireless sensor networks. In:
Proceedings. 2005 International Conference on Wireless Communications, Networking and
Mobile Computing, 2005, vol. 2, pp. 1214–1217. IEEE (2005)

24. Werner-Allen, G., Lorincz, K., Ruiz,M.,Marcillo, O., Johnson, J., Lees, J.,Welsh,M.: Deploy-
ing a wireless sensor network on an active volcano. IEEE Internet Comput. 10(2), 18–25 (2006)

25. Cordova-Lopez, L.E., Mason, A., Cullen, J.D., Shaw, A., Al-Shamma’a, AI.: Online vehicle
and atmospheric pollution monitoring using gis and wireless sensor networks. In: Journal of
Physics: Conference Series, vol. 76, p. 012019. IOP Publishing (2007)

26. Trinchero, D., Galardini, A., Stefanelli, R., Fiorelli, B.: Microwave acoustic sensors as an
efficient means to monitor water infrastructures. In: IEEE MTT-S International Microwave
Symposium Digest, 2009. MTT’09. pp. 1169–1172. IEEE (2009)

27. Castillo-Effer, M., Quintela, D.H., Moreno, W., Jordan, R., Westhoff, W.: Wireless sensor
networks for flash-flood alerting. In: Proceedings of the Fifth IEEE International Caracas
Conference on Devices, Circuits and Systems, 2004, vol. 1, pp. 142–146. IEEE (2004)

28. Fan, Z., Kalogridis, G., Efthymiou, C., Sooriyabandara, M., Serizawa, M., McGeehan, J.: The
new frontier of communications research: smart grid and smart metering. In: Proceedings of the
1st International Conference on Energy-Efficient Computing and Networking, pp. 115–118.
ACM (2010)

29. Nguyen,N.-H., Tran,Q.-T., Leger, J.-M.,Vuong,T.-P.:A real-time control usingwireless sensor
network for intelligent energy management system in buildings. In: 2010 IEEE Workshop on
Environmental Energy and Structural Monitoring Systems (EESMS), pp. 87–92. IEEE (2010)

http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/

High-Level Internet of Things Applications Development 107

30. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking for
âĂIJsmart dustâĂİ. In: Proceedings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pp. 271–278. ACM (1999)

31. Viani, F., Oliveri, G., Donelli, M., Lizzi, L., Rocca, P.,Massa, A.: Wsn-based solutions for
security and surveillance. In:Microwave Conference (EuMC), 2010 European, pp. 1762–1765.
IEEE (2010)

32. Tuna, G., Gulez, K., Mumcu, T.V., Gungor, V.C.: Mobile robot aided self-deploying wireless
sensor networks for radiation leak detection. In: 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2012)

33. Strohbach, M., Martin, M.: Toward a platform for pervasive display applications in retail
environments. IEEE Pervasive Comput. 10(2), 19–27 (2011)

34. Ping, L., Liu, Q., Zhou, Z., Wang, H.: Agile supply chain management over the internet
of things. In: 2011 International Conference on Management and Service Science (MASS),
pp. 1–4 (2011)

35. Mainetti, L., Patrono, L., Vergallo, R.: Ida-pay: an innovative micro-payment system based
on NFC technology for android mobile devices. In: 2012 20th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6 (2012)

36. Forcolin, M., Fracasso, E., Tumanischvili, F., Lupieri, P.: EuridiceâĂŤiot applied to logistics
using the intelligent cargo concept. In: 2011 17th International Conference on Concurrent
Enterprising (ICE), pp. 1–9. IEEE (2011)

37. Anderseck, B., Hille, A., Baumgarten, S., Hemm, T., Ullmann, G., Nyhuis, P., Potthast, J.-M.,
Schulz, R., Monecke, J., Zadek, H., et al.: Smarti: deploying the internet of things in retail
supply chains. Integration 10–11, 2013 (2012)

38. Carullo, A., Corbellini, S., Parvis, M., Vallan, A.: A wireless sensor network for cold-chain
monitoring. IEEE Trans. Instrum. Meas. 58(5), 1405–1411 (2009)

39. Brizzi, P., Conzon, D., Khaleel, H., Tomasi, R., Pastrone, C., Spirito, M.A., Pramudianto, F.:
Bringing the internet of things along the manufacturing line: a case study in controlling indus-
trial robot and monitoring energy consumption remotely. In: IEEE International Conference
on Emerging Technologies and Factory Automation—ETFA 2013. IEEE (2013a)

40. Wark, T., Peter, C., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., Valencia, Philip, S., Dave,
S., Bishop-Hurley, G.: Transforming agriculture through pervasive wireless sensor networks.
IEEE Pervasive Comput. 6(2), 50–57 (2007)

41. Chaudhary, D.D., Nayse, S.P., Waghmare, L.M.: Application of wireless sensor networks for
greenhouse parameter control in precision agriculture. Int. J.Wirel.Mob. Netw. (IJWMN) 3(1),
140–149 (2011)

42. Scalera A., Brizzi, P., Tomasi, R., Gregersen, T., Mertens, K., Maselyne, J., Van Nuffel, A.
Hessel, E., Van den Weghe, H.: The pigwise project: a novel approach in livestock farming
through synergistic performances monitoring at individual level. In: Proceeding of Conference
on Sustainable Agriculture through ICT innovation—EFITA 2013, Jun 2013

43. Brizzi, P., Conzon, D., Pramudianto, F., Paralic, M., Jacobsen, M., Pastrone, C., Tomasi, R.,
Spirito, M.A.: Bringing the internet of things along the manufacturing line: a case study in con-
trolling industrial robot and monitoring energy consumption remotely. In: IEEE International
Conference on Emerging Technologies and Factory Automation—ETFA 2013. IEEE (2013b)

44. Wheeler, A.: Commercial applications of wireless sensor networks using zigbee. IEEE Com-
mun. Mag. 45(4), 70–77 (2007)

45. Hubert, T., Grijalva, S.: Realizing smart grid benefits requires energy optimization algorithms
at residential level. In: Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES, pp. 1–8
(2011)

46. Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G.: The internet of things for
ambient assisted living. In: 2010 Seventh International Conference on Information Technology:
New Generations (ITNG), pp. 804–809 (2010)

47. Frederix, I.: Internet of things and radio frequency identification in care taking, facts and
privacy challenges. In: Wireless VITAE 2009. 1st International Conference on Wireless Com-
munication, Vehicular Technology, Information Theory and Aerospace Electronic Systems
Technology, 2009, pp. 319–323 (2009)

108 Z. Song et al.

48. Caporusso, N., Lasorsa, I., Rinaldi, O., La Pietra, L.: A pervasive solution for risk awareness
in the context of fall prevention. In: 3rd International Conference on Pervasive Computing
Technologies for Healthcare 2009, PervasiveHealth 2009, pp. 1–8 (2009)

49. Talzi, I., Hasler, A., Gruber, S., Tschudin, C.: PermaSense: investigating permafrost with a
WSN in the SwissAlps. In: Proceedings of the 4thWorkshop onEmbeddedNetworkedSensors,
EmNets ’07, pp. 8–12. ACM, New York (2007)

50. Szlavecz, K, Terzis, A., Ozer, S., Musaloiu-Elefteri, R., Cogan, J., Small, S., Burns, R.C., Gray,
J., Szalay, A.S.: Life Under Your Feet: An End-to-End Soil Ecology Sensor Network, Database,
Web Server, and Analysis Service. CoRR, abs/cs/0701170 (2007)

51. Wireless Sensor Network Development, Planning, Commissioning, and Maintenance (WSN-
DPCM). http://www.wsn-dpcm.eu/. Accessed Oct 2011

52. Hui, J.W.: An extended internet architecture for low-power wireless networks—design and
implementation. PhD thesis, EECS Department, University of California, Berkeley(2008)

53. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: a survey. ACM Trans.
Sen. Netw. 4(2), 8:1–8:29 (2008)

54. Mottola, L., Picco, G.P.: Programming wireless sensor networks: fundamental concepts and
state of the art. ACM Comput. Surv. 43(3), 19:1–19:51 (2011)

55. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions
for networked sensors. SIGPLAN Not. 35(11), 93–104 (2000)

56. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc language:
aholistic approach to networked embedded systems. SIGPLAN Not. 38(5), 1–11 (2003)

57. Cheong, E., Liebman, J., Liu, J., Zhao, F.: TinyGALS: a programming model for event-driven
embedded systems. In: Proceedings of the 2003 ACM Symposium on Applied Computing,
SAC ’03, pp. 698–704. ACM, New York (2003)

58. Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system
for sensor nodes. In: Proceedings of the 3rd International Conference on Mobile Systems,
Applications, and Services, MobiSys ’05, pp. 163–176. ACM, New York (2005)

59. Han, C.-C., Goraczko, M., Helander, J., Liu, J., Priyantha, B., Zhao, F.: CoMOS: An Operating
System for Heterogeneous Multi-Processor Sensor Devices. Technical Report MSR-TR-2006-
177, Microsoft Research (2006)

60. Greenstein, B., Kohler, E., Estrin, D.: A sensor network application construction kit (SNACK).
In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,
SenSys ’04, pp. 69–80. ACM, New York (2004)

61. Levis, P., Gay, D., Handziski, V., Hauer, J.H., Greenstein, B., Turon, M., Hui, J., Klues, K.,
Sharp, C., Szewczyk, R., et al.: T2: a second generation os for embedded sensor networks,
Telecommunication Networks Group, Technische Universität Berlin. Technical, Report TKN-
05-007, (2005)

62. Kasten, O., Romer, K.: Beyond event handlers: programming wireless sensors with attributed
state machines. In: Information Processing in Sensor Networks 2005, pp. 45–52 (2005)

63. Welsh,M.,Mainland,G.: Programming sensor networks using abstract regions. In: Proceedings
of the 1st Conference on Symposium on Networked Systems Design and Implementation, vol.
1, NSDI’04, pp. 3–3. USENIX Association, Berkeley (2004)

64. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C.,
Torgerson, A., Han, R.: Mantis os: an embedded multithreaded operating system for wireless
micro sensor platforms. Mob. Netw. Appl. 10(4), 563–579 (2005)

65. McCartney, W.P., Sridhar, N.: Abstractions for safe concurrent programming in networked
embedded systems. In: Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems, SenSys ’06, pp. 167–180. ACM, New York (2006)

66. Dunkels, A., Gronvall, B., Voigt, T.: Contiki—a lightweight and flexible operating system for
tiny networked sensors. Local Comput. Netw. 2004, 455–462 (2004)

67. Nitta, C., Pandey, R., Ramin, Y.: Y-Threads: supporting concurrency in wireless sensor net-
works. In: Proceedings of the Second IEEE International Conference onDistributedComputing
in Sensor Systems, DCOSS’06, pp. 169–184. Springer-Verlag, Berlin (2006)

http://www.wsn-dpcm.eu/

High-Level Internet of Things Applications Development 109

68. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. SIGOPS Oper. Syst.
Rev. 36(5), 85–95 (2002)

69. Levis, P., Gay, D., Culler, D.: Active sensor networks. In: Proceedings of the 2nd Conference on
SymposiumonNetworked SystemsDesign and Implementation, vol. 2, NSDI’05, pp. 343–356.
USENIX Association, Berkeley (2005)

70. Yu, Y., Rittle, L.J., Bhandari, V., LeBrun, J.B.: Supporting concurrent applications in wireless
sensor networks. In: Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems, SenSys ’06, pp. 139–152. ACM, New York (2006)

71. Koshy, J., Pandey, R.: Vmstar: synthesizing scalable runtime environments for sensor networks.
In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems,
SenSys ’05, pp. 243–254. ACM, New York (2005)

72. Gu, L., Stankovic, J.A.: T-kernel: providing reliable os support to wireless sensor networks.
In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems,
SenSys ’06, pp. 1–14. ACM, New York (2006)

73. Kothari, N., Gummadi, R., Millstein, T., Govindan, R.: Reliable and efficient programming
abstractions for wireless sensor networks. SIGPLAN Not. 42(6), 200–210 (2007)

74. Newton, R., Arvind, Welsh, M.: Building up to macroprogramming: an intermediate lan-
guage for sensor networks. In: Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks, IPSN ’05, Piscataway, IEEE Press, NJ (2005)

75. Newton, R., Morrisett, G., Welsh, M.: The regiment macroprogramming system. In: Proceed-
ings of the 6th International Conference on Information Processing in Sensor Networks, IPSN
’07, pp. 489–498. ACM, New York (2007)

76. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The design
and implementation of a declarative sensor network system. In: Proceedings of the 5th Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys ’07, pp. 175–188. ACM,
New York (2007)

77. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)

78. Mottola, L., Picco, G.P. : Programming wireless sensor networks with logical neighborhoods.
In: Proceedings of the First International Conference on Integrated Internet Ad hoc and Sensor
Networks, InterSense ’06, ACM, New York (2006)

79. Bakshi, A., Prasanna, V.K., Reich, J., Larner, D.: The abstract task graph: a methodology
for architecture-independent programming of networked sensor systems. In: Proceedings of
the 2005 Workshop on End-to-End, Sense-and-Respond Systems, Applications and Services,
EESR ’05, pp. 19–24. USENIX Association, Berkeley (2005)

80. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

81. Marron, P.J., Karnouskos, S., Minder, D., The CONETConsortium.: Roadmap on Cooperating
Objects. Kluwer Academic Publishers, Luxembourg (2009)

82. Song, Z.Y., Lavagno, L., Tomasi, R., Spirito, M.A.: A service-driven development tool for
wireless sensor network. In: C. Benavente-Peces, F.H. Ali, J. Filipe (eds.) PECCS, pp. 87–95.
SciTePress, Rome, Italy (2012)

83. IBM. Restful web services. http://www.ibm.com/developerworks/webservices/library/ws-
restful/

84. Eclipse wsdl editor. http://wiki.eclipse.org/index.php/Introduction_to_the_WSDL_Editor.
Accessed 8 Feb 2013

85. Liquid. http://www.liquid-technologies.com/WSDL-Editor.aspx. Accessed 10 Feb 2013

http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://wiki.eclipse.org/index.php/Introduction_to_the_WSDL_Editor
http://www.liquid-technologies.com/WSDL-Editor.aspx

	4 High-Level Internet of Things Applications Development Using Wireless Sensor Networks
	1 Internet of Things and Wireless Sensor Networks
	2 Developing IoT Systems: Context, Scenarios and Challenges
	2.1 A Reference Workflow for IoT Developments

	3 WSN Application Development Overview
	3.1 WSN Development Abstractions

	4 Model-Based Design, Simulation and Debugging Framework for WSNs
	4.1 Abstract Design Model
	4.2 Development Flow

	5 Conclusion
	References

