
Embedded Web Technologies
for the Internet of Things

Walter Colitti, Nguyen Thanh Long, Niccolò De Caro
and Kris Steenhaut

Abstract The adoption of open standard communication protocols based on
embedded IP and Web technologies is a key building block for the realization of
the Internet of Things (IoT) vision, where trillions of smart objects will be con-
nected and will open up exciting possibilities for the creation of new and innovative
services. Embedded Web protocols are interoperable, reduce the overall IoT archi-
tectural complexity, and deliver a long term value as it has already been demonstrated
by the success of the Internet and of the Web. This chapter discusses on the adop-
tion of IP and in particular of Web technologies in smart objects for the realization
of the Web of Things (WoT). The work reviews the main protocols and discusses
on how and why they improve interoperability, reduce the overall IoT architectural
complexity and facilitate the integration between the IoT and Web applications.

1 Introduction

Recent market studies in telecommunications have estimated that in the near future
billions or trillions of smart objectswill connect physical environments to the Internet.
A smart object can be defined as any physical entity enhancedwith sensing/actuating,
computation and communication capabilities. The concept of having physical entities
connected to the Internet is commonly known as the Internet of Things (IoT). IoT
will unleash exciting possibilities and challenges for a variety of application domains,
such as smart metering, e-health, logistics, building and home automation [1, 2].

The choice of the communication protocols has been amajor debate among the IoT
community. The IoT has been largely dominated by proprietary and domain specific
protocol stacks. This has been motivated by the need of performance optimization of
severely constrained devices and by the vendor lock-in based market, which forces

W. Colitti (B) · N. T. Long · N. De Caro · K. Steenhaut
Department ETRO-INDI, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
e-mail: wcolitti@etro.vub.ac.be

S. C. Mukhopadhyay (ed.), Internet of Things, Smart Sensors, 55
Measurement and Instrumentation 9, DOI: 10.1007/978-3-319-04223-7_3,
© Springer International Publishing Switzerland 2014

56 W. Colitti et al.

customers to be locked into a long term relationship. The use of highly specialized
proprietary protocols implies the need of sophisticated application gateways between
the network of smart objects and the Internet. Application gateways complicate the
overall architectural complexity, hamper the scalability and complicate the applica-
tion development. In addition, proprietary and specialized siloed protocols are also
an obstacle for the creation of new innovative services [3].

The fragmentation of communication technologies has been considered as one of
the main obstacles hampering the realization of the IoT vision. The ubiquity of sen-
sors and actuators will unlock huge opportunities for the Internet of Services (IoS).
But a necessary requirement is that the IoT will be based on open standard commu-
nication technologies which enable interoperability and plug-and-play capabilities.
Open standard communication protocols based on Internet andWeb technologies are
a way to deliver long term value [4].

The introduction of open standards based on IP and Web technology into smart
objects has been considered as a way to overcome the IoT protocol fragmentation
problem and consequently to improve interoperability, flexibility, scalability and
facilitate the integration of the IoT with the Internet and the Web without com-
plicating the architectural complexity. This is a common vision shared by several
communities, such as academia, industrial players and standardization bodies. The
IP for Smart Objects (IPSO) Alliance, a cluster of major IT/telecom players and
wireless silicon vendors, promote the use of embedded IP into constrained devices.
The Internet Engineering Task Force (IETF) has standardized IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN), which enables the transmission of
IPv6 packets in networks of resource constrained devices and IPv6 Routing Protocol
for Low-power and Lossy networks (RPL), which is an IPv6 based routing protocol
for the IoT [5–7].

A low power embedded IPv6 networking layer opens up the possibility to
embed Web services into smart objects based on the Representational State Transfer
(REST) and on the widely known Hyper Text Transfer Protocol (HTTP) up to the
sensor/actuator level. This is commonly known as the Web of Things (WoT) par-
adigm [8]. The use of HTTP on top of 6LowPAN based smart objects eliminates
the need of application gateways which can be replaced by less complex 6LoWPAN
enabled edge routers. This scenario preserves the end-to-end design principle when
connecting the WoT to the Internet/Web [9].

HTTP based Web applications are based on design principles different than IoT
applications. In addition, it has been demonstrated that HTTP is too cumbersome
for constrained devices. The main reason is that it is based on the Transmission
Control Protocol (TCP) which has a large overhead. Motivated by this problem,
the IETF Constrained RESTful environments (CoRE) working group, has defined
a web transfer protocol called Constrained Application Protocol (CoAP). CoAP is
a REST based web transfer protocol which includes several HTTP functionalities
re-designed for constrained devices. CoAP is based on the User Datagram Protocol
(UDP) instead of TCP [6, 10, 11].

The aim of this chapter is to give an overview on the introduction of standard
IP/Web technologies in networks of smart objects. We discuss on the benefits of

Embedded Web Technologies for the Internet of Things 57

embedded IP and on how this technology improves IoT interoperability and architec-
tural complexity. We describe embedded Web technologies, giving special attention
to CoAP which is the protocol we have adopted in our IoT system development, and
we review the main state-of-the-art work on Web standards. We also discuss on the
main architectural issues for the integration of networks of web based smart objects
with web applications. We do so by describing a concrete example of a REST/CoAP
based Wireless Sensor Network (WSN) we have developed for greenhouse monitor-
ing.

The rest of the chapter is organized as follows. Sections2 and 3 discuss on
embedded IP and on the embedded Web, respectively. Section4 focuses on CoAP
and on the main differences with HTTP. Section5 describes the main building blocks
which enable the integration of a REST/CoAP based WSN with a web application.
Section6 discusses on the main advantages of the adoption of open standard Web
based technologies. Section7 concludes the chapter.

2 Embedded IP Networking Technologies

The realization of a WoT requires the use of embedded IP technologies. This section
gives an overview of 6LowPAN and discusses on how it brings advantages in terms
of interoperability, architectural complexity and scalability.

The use of IP technology in smart objects is not straightforward. IP was designed
for relatively stable networks and for non-constrained nodes. Sensor/actuator motes
are severely constrained in terms of power, memory, communication bandwidth and
energy. As a consequence, networks of smart objects like WSNs can be considered
an instance of Low Power and Lossy Networks (LLN) [12, 13], in which the com-
munication protocols need low power consumption and in which the packet loss may
be deteriorated by the physical environments (fading, interferences, bit errors, etc.).
This problem has motivated IETF’s standardization activity in defining 6LoWPAN
so that to enable the use of IPv6 in networks of resource constrained devices, such
as the ones based on IEEE 802.15.4 radio links.

6LoWPAN defines an adaptation layer which provides encapsulation and header
compression mechanisms allowing IPv6 packets to be transferred between resource
constrained devices. IP packets in general have a significantly large packet header
resulting in a large overhead which increases the motes’ energy consumption and
the packet loss probability. The header compression in the 6LowPAN adaptation
layer eliminates redundant fields of the packet header. The adaptation layer also
provides fragmentation and reassembly mechanisms needed to transfer IPv6 packets
in multiple 127 bytes long IEEE 802.15.4 frames [5].

A major advantage of the use of embedded IP based technologies is the inter-
operability, which is one of the main reasons for the success of IP. IP has been
designed to work with different link layers (wired, wireless, etc.). This is of critical
importance when considering the heterogeneous nature of the IoT. IoT consists of
tiny constrained devices which communicate wirelessly but also of more powerful

58 W. Colitti et al.

Fig. 1 Embedded IP technologies decrease the architectural complexity by replacing application
gateways with border routers

devices connected to the network with wired communication. The layered archi-
tectural principle of IP facilitates the communication between these heterogeneous
devices. In addition, IP has been designed based on the end-to-end principle, so that to
decouple the networking technology from the upper application protocols which
could evolve independently. The network is transparent to the application logicwhich
is understood only at the end points. Without the end-to-end principle, application
functionalities should have been pushed into the networkwith consequent increase of
the architectural complexity. This would have hampered the huge application poten-
tial of the Internet and would have prevented IP to become the preferred networking
protocol for a variety of applications and data, such as text, voice, video, etc.

The advantages of the end-to-end design principle will be reflected in the IoT if IP
technology will be adopted as much as possible. Application developers can design
applications independently of the networking mechanisms and of the internal func-
tionality of embedded devices. In addition, IP technology enables the development
of applications and systems which are based on widely used protocols such as HTTP,
Simple Network Management Protocol (SNMP) and Dynamic Host Configuration
Protocol (DHCP) [9].

Figure1 gives an idea of the simplification of the network architectural complexity
when embedded IP based technology is deployed in the IoT. The figure shows a
simple case in which an application running in a certain Local Area Network (LAN)
needs to access a 6LowPAN enabled WSN via the Internet. The WSN is connected
to the Internet via a WSN border router. On the WSN side, the border router is
equipped with a low power wireless data link interface, such as IEEE 802.15.4,
which is typical in WSNs. On top of the data link layer, the 6LowPAN adaptation
layer compresses/decompresses IPv6 packets going from/to the Internet. With IP
being the networking protocol in the WSN, the edge device connecting the Internet

Embedded Web Technologies for the Internet of Things 59

to the IoT is nothing else than a router with a 6LowPAN adaptation layer. The figure
also shows that the application server and the sensor being accessed have the same
TCP/IP stack and consequently the end-to-end principle can be preserved across the
three network segments (LAN, Internet and IoT). If the sensor had a different non
TCP/IP based stack, the edge device connecting the IoT to the Internet would not
be a border router but an application gateway. It is straightforward to understand
that application gateways know the application logic and consequently the end-to-
end principle would not be preserved between the Internet and the IoT. In addition
application gateways decrease the network flexibility and hamper the scalability.
Whenever there is a protocol upgrade or a new application is developed, the change
has to be reflected in the application gateways [9].

3 Embedded Web Technologies

The previous section has discussed on the benefits of introducing standard IP net-
working into the IoT. This section gives an overview of how also the Web concept
and technologies have been considered to be ported to the IoT for the realization of
the WoT.

Web Services have been considered as a solution to facilitate the integration of
the IoT with theWeb.Web services allow application developers to rely on platform-
independent and reusable software, which drastically simplifies the application
development process. In addition, IoT monitoring and actuation functionalities can
become part of the mashup process which has been one of the key success factors of
the Web 2.0. Developers can seamlessly mash up functionalities provided by tradi-
tional web services with the ones offered by embedded devices. This opens up the
possibility to develop innovative and creative applications [14, 15].

There are two major Web service paradigms: WS-* and Representational State
Transfer (REST).

In the WS-* architecture, the service functionality and interfaces are declared in
a Web Service Description Language (WSDL) file. It uses Simple Object Access
Protocol (SOAP) messages with an Extensible Markup Language (XML) payload
and an HTTP based transport protocol to provide remote Procedure Calls (RPC)
between clients and servers. There has recently been an effort to adapt the paradigm
to constrained devices [16]. A lightweight version of WS-*, called Device Profile
for Web Services (DPWS) has also been proposed [17].

REST is an architectural style based on the concept that everything is modeled
as a resource. Resources are abstractions controlled by the server and identified by
a Universal Resource Identifier (URI). Resources are accessed by clients in a syn-
chronous request/response fashion using an application protocol. REST is not tied
to a particular application protocol. However, the vast majority of REST architec-
tures nowadays use HTTP. HTTP manipulates resources by means of its methods
GET, POST, PUT, etc. One of the main advantages of REST is that the resources are
decoupled from the services and therefore can be arbitrarily represented by means

60 W. Colitti et al.

of various formats. These means that more compact formats with a lower overhead
compared to XML can also be used, such as Java Script Object Notation (JSON).
JSON has a compact data representation but does not have the flexibility of XML.
A better compromise between the compact representation and the flexibility of XML
is a binary representation of XML called Extensible XML Interchange (EXI). In [6]
other binary representations of XML are described, such as Fast Infoset, a standard
defined by International Telecommunication Union Telecommunication Standard-
ization Sector (ITU-T), and Binary Extensible Markup Language (BXML), defined
by the Open Geospatial Consortium (OGC). The author in [6] shows that EXI pro-
vides a more efficient encoding up to 97% smaller than the equivalent XML. The
efficiency of EXI has also been demonstrated in [18].

REST has widely been accepted as the preferred architecture for the WoT
[8, 19, 14]. Firstly, REST is based on loosely-coupled stateless interactions and
consequently Web services based on RESTful Application Programming Interfaces
(APIs) can be reused and combined in a straightforward manner. Secondly, REST
has a more lightweight structure thanWS-* which makes it more appropriate for net-
works of constrained devices. The better performance of REST compared to WS-*
when applied to constrained devices has been demonstrated in [20] in terms of over-
head, memory footprint and completion time. Thirdly, theWorldWideWeb is largely
dominated by REST based Web services and therefore porting the REST principle
to the IoT would simplify its integration with the Web.

Various research papers have already demonstrated the feasibility of applying
REST/HTTP to the IoT for the realization of the WoT.

In [19], the authors propose to reuse the open, interoperable and standard prin-
ciples of the modern Web architecture to integrate physical objects to the Web. The
field of application considered in thework is the emerging field of Smart Home. Since
in REST/HTTP the discovery is done by following links and consequently there is
not mechanism for device discovery, the authors develop an ad hoc device discovery
procedure which locates and register information related to embedded devices. In
order to achieve interoperability with heterogeneous embedded devices and services,
the authors propose to use the Web Application Description Language (WADL), an
XML based file format that provides a machine readable description of HTTP based
Web applications. WADL is language and platform independent and it models the
resources provided by an embedded device and the relationships between them.
The authors use the Tmote Sky, a sensor/actuator programmable platform, on which
they implemented five different resources: three resources to monitor temperature,
humidity and illumination, one resource to activate a LED lamp and one resource to
measure the energy consumption of some electrical appliances. The system devel-
oped in this work also includes an application frameworkwhich supports the creation
of mashups and advanced rules in a simple way and in any programming language
that supports HTTP.

In [8], the authors apply theREST/HTTP principle to embedded devices. They use
the Sun SPOT platform, aWSNplatformwhich includes aWeb server which exposes
sensors, actuators and internal functionalities asREST resources represented in JSON
and accessed using HTTP requests. The actuators are controlled using synchronous

Embedded Web Technologies for the Internet of Things 61

HTTP calls (client pull) while monitoring functionalities are accessed through a
syndication mechanism via an external Atom(Pub) server. The authors implement
a physical mashup mechanism which apply typical Web 2.0 patterns to embedded
devices. They show the benefits of the system by developing two applications: an
energy aware Web dashboard, which allows people to control and experiment with
the energy consumption of their appliances, and the physical mashup editor, which
enables users to create physical mashups bymeans of visual components andwithout
requiring any programming skills.

In [21], the authors apply embeddedWeb technologies to the building automation
domain. They present an approach to integrate tiny wireless sensor/actuator nodes
into an IP/Web based network. Sensor and actuator nodes run a small Web server on
top of a TCP/IP stack. The Web server exposes the sensing and actuating function-
alities in a RESTful way and therefore can be accessed by means of HTTP methods.
The data is represented in the JSON format. Service discovery based on multicast
DNS messages enables the system to integrate new devices without additional con-
figuration effort. The authors measure the average response time of the embedded
Web based devices when responding to periodic HTTP GET requests and show that
the system offers an acceptable performance given the limited computing power and
memory constraints of the hardware platform.

Although the feasibility of adopting REST technologies in the WoT has been
proven and its advantages have been discussed as shown in the aforementioned
research work, there are still performance problems in the realization of a REST
based WoT, especially for the verbosity of HTTP which makes it not appropriate
to constrained devices. The authors in [8] evaluate the performance of the proposed
REST based WoT system and argue that the verbosity of HTTP does not prevent
highly efficient applications to be implemented. However, when battery life time and
latency is critical, more optimized protocols whichminimize the latency have a better
performance. When a sub-second latency can be tolerated and battery life time is not
critical, the advantages of HTTP outweigh the loss of performance. In addition to
the battery life time and latency, when applying the web service principle to network
of constrained devices the difference between IoT applications and traditional Web
applications need to be taken into account. IoT applications are short-lived and web
services reside in battery operated devices which most of the time sleep and wake
up only when there is data traffic to be exchanged. In addition, such applications
require a multicast and asynchronous communication compared to the unicast and
synchronous approach used in standard Web applications [6]. These characteristics
of IoT applications suggest that HTTP is not appropriate for theWoT and that a more
optimized REST based application protocol needs to be adopted.

4 Constrained Application Protocol

The previous section has described how the REST/HTTP principle has been applied
to smart objects to realize the WoT and how HTTP might not be optimal for con-
strained devices as a consequence of its verbosity and of its design principles which

62 W. Colitti et al.

Fig. 2 Difference between
the HTTP and CoAP stacks

are not suited for the IoT. The unsuitability of HTTP for the IoT has motivated
the effort of the IETF CoRE Working Group in defining a new protocol called
CoAP. This section is dedicated to a description of CoAP with main accent on the
major difference with HTTP and on the interoperability effort being done during the
standardization process. We will also review the main CoAP related literature work.

CoAP is a web transfer protocol optimized for resource constrained networks.
It consists of a subset of HTTP functionalities which have been re-designed taking
into account the low processing power and energy consumption constraints of small
embedded devices such as sensor motes. In addition, various mechanisms have been
modified and some new functionalities have been added in order tomake the protocol
suitable to the IoT. The difference between HTTP and CoAP protocol stacks is
illustrated in Fig. 2.

The first significant difference between HTTP and CoAP is the transport layer.
TCP flow control mechanism is not appropriate for IoT applications and its overhead
is considered too high for short-lived transactions. In addition, TCP does not have
multicast support. CoAP is built on top of UDP which has lower overhead and
provides multicast support.

CoAP is organized in two layers. TheTransaction layer handles the singlemessage
exchange between end points. The Request/Response layer is responsible for the
requests/responses transmission and for the resource manipulation. The dual layer
approach allows CoAP to provide reliability mechanisms even without the use of
TCP as transport protocol. In fact, a message can be labeled as Confirmable which
implies that it is retransmitted using a default timeout and exponential back-off
between retransmissions, until the recipient sends the Acknowledgement message.
In addition, the two layer approach enables asynchronous communication which is
a key requirement for the WoT in which embedded web servers are not always able
handle requests immediately.

Differently from HTTP, CoAP includes a built in observation mechanism which
allows a client to subscribe to a resource hosted on a CoAP server and to receive
notifications upon a change of the resource state [22]. The protocol also includes
a technique for discovering and advertising resource descriptions. The mechanism
is based on two approaches recently defined by IETF for HTTP: the well-known
resource path /.well-known/scheme (RFC 5785), which defines a “well-known lo-
cation” where to store resources to be easily located, and the Web Linking (RFC
5988), which defines a framework for typed links [10]. Since the resource descrip-
tions need to be machine interpreted, the IETF CoRE group has also worked on the

Embedded Web Technologies for the Internet of Things 63

standardization of theCoRE Link Format which standardizes the resource description
format itself [23]. In order to achieve a uniform and interoperable resource discovery,
a smart object running a CoAP server can provide a resource description available
via the well-known URI /.well-known/core, as done in the HTTP the well-known
resource path. The /.well-known/core resource accessed by a CoAP server returns a
list of links to the resources hosted by the server and other link relations.

One of the major design goals of CoAP has been to keep the message overhead as
small as possible and limit the use of fragmentation. HTTP has a significantly large
message overhead. This implies packet fragmentation and associated performance
degradation in networks of constrained devices. CoAP uses a short fixed-length
compact binary header of 4 bytes followed by compact binary options. A typical
request has a total header of about 10–20 bytes.

In [24], we have compared a REST/HTTP basedWSNwith a REST/CoAPWSN.
We have demonstrated that when using CoAP as application protocol there is a
significant performance improvement in terms of energy consumption and response
time. The improvement is consequence of the lower number of bytes transferred in
a CoAP client-server transaction compared to an HTTP client-server transaction.
Thanks to the header compression, after being encapsulated in the UDP, 6LoWPAN
andMAC layer headers, the CoAP packet can be transferred into a singleMAC frame
which has a size of 127 bytes.

AlthoughCoAP iswork in progress, it has alreadybeen addressed in some research
work, such as in [25] and in [26].

In [25], Maenpaa et al. propose an architecture for peer-to-peer (P2P) federation
of geographically distributed WSN islands. The WSN islands are low power and
lossy networks which use CoAP as application protocol. The border routers of the
WSN islands are equipped with cellular radio interface and are organized in a wide
area P2P overlay network. The wide area network provides various services such as
a common namespace and rendezvous. It uses Resource Location And Discovery
(RELOAD), a P2P signaling protocol being designed and standardized by IETF. The
P2P system is proposed as a decentralized alternative to the centralized approaches
used in CoAP, such as DNS-SD and Resource Directory. In order to integrate CoAP
and RELOAD, the authors introduce a CoAP application usage for RELOAD. The
application uses basic functionalities such as registration of CoAP resources in the
RELOADoverlay, rendezvous using dedicated connections forCoAPand rendezvous
using tunneling and the use of RELOAD overlay as a cache for sensor data. The use
case chosen to simulate and study the performance of the approach is road traffic
and road condition monitoring in the Finnish highway network.

In [26], the authors propose an approach which moves the application logic form
the embedded devices to the cloud. The approach enables the reuse of deployed
devices for different applications without changing the firmware. On the device side,
the approach is based on the implementation of thin servers, embedded web servers
which do not host any application logic and which only provide interfaces to ele-
mentary functionalities such as sensor/actuator access and configuration of device
parameters to interact with the physical world. The thin server’s interfaces are REST-
ful APIs mainly implemented with CoAP, or with HTTP for more powerful devices.

64 W. Colitti et al.

Fig. 3 Building blocks of an
end-to-end system integrating
a REST/HTTP Web applica-
tion with a REST/CoAPWSN

WEB

BACK-END

PROXY

RESOURCE
DIRECTORY

HTTP CoAP Wireless
Sensor
Network

APPLICATION

The authors argue that in order to simplify the application development, APIs must
be self-descriptive and concise, like the ones based on the CoRE Link Format and
Microformats.On the back-end side, application logic is based on scripting languages
(e.g. JavaScript) which are widely known by application developers. The authors use
Californium, a CoAP framework implemented in Java, integrated with JavaScript
support for the development of the application logic. In particular, a coapRequest
object API provides the same functionality as the well known xmlHttpRequest API.

5 Architecture of an End-to-End System for Integration
of a WoT with the Web

The previous sections discussed on the enabling technologies and protocols for port-
ing the REST principle to the IoT and therefore for the realization of the WoT. This
section discusses on the integration of the WoT with the Web in order to show how
standard embedded web technologies facilitate the integration and simplify the end-
to-end architecture. As baseline for the discussion, we use the prototype design and
development of a system which integrates a REST/CoAP based WSN with a web
application and which facilitates the seamless exploration, access and visualization
ofWSNdata. The platform has been developed for real-world deployment in a green-
house. However, The core building blocks of the platform can be reused for several
application domains which need to seamlessly explore, access and visualize WSN
data. An overview of the overall system is given in Fig. 3.

As illustrated in Fig. 3 the end-to-end system consists of three main building
blocks: the REST basedWSN, the back-end and the application. Sections5.1 and 5.2
describe the WSN and the back-end, respectively. This section only aims to describe
the architecture of an end-to-and REST based system which integrates a WSN with
a Web application. Therefore, the description of the monitoring application and its
functionalities is out of the scope of this work.

Embedded Web Technologies for the Internet of Things 65

5.1 The REST Based WSN

The WSN is a set of Zolertia Z1 motes. Zolertia is a programmable wireless sen-
sor platform with a radio chip supporting the 2.4GHz IEEE 802.15.4 standard. The
sensor motes run Contiki OS, a widely known operating system for constrained
devices such as wireless sensors and actuators. Each mote runs ContikiMAC, which
is the Contiki default MAC protocol, the Contiki 6LowPAN stack and RPL routing
protocol, and a Contiki low-power CoAP server called Erbium [27]. The motes are
equipped with an embedded temperature sensor and have been expanded with addi-
tional humidity and light sensors tomeet the requirements of greenhousemonitoring.
Temperature, humidity and light measurements are exposed as CoAP resources.

For interoperability purpose, the resources are exposed based on the IPSO Appli-
cation framework, which defines a template used to expose REST resources hosted
by CoAP or HTTP servers [28]. The framework groups resource types into Function
Sets, each one having a recommended root path under which its sub-resources are
organized. Each Function Set is assigned a Resource Type parameter which allows
the resource to be discovered. The resource semantics defined are compatible with
the HTTP Web Linking and with the CoRE Link Format. The data encoding format
used is JSON.

5.2 The Back-End

The back-end is the core component of the end-to-end system. It is located on the
edge beetween theWSN and the Internet and aims to integrate theWSNwith theWeb
application in a seamless and transparent way. Its main modules are implemented
in Java and run on a standard Linux Ubuntu machine physically located at the edge
between the WSN and the Internet. It is therefore equipped with two data link layer
technologies, being Ethernet and IEEE 802.15.4. The former one is a standard Eth-
ernet card integrated in the machine, while the latter one is realized with a Zolertia
Z1 mote running Contiki, connected to the USB port and configured to be a border
router.

The CoAP functionalities in the back-end box are enabled by Californium, the
Java based CoAP framework introduced in [26]. Although being relatively new, there
are already several CoAP implementations for several programming language [29].
Our choice for Californium is driven by its modular and flexible architecture and by
the fact that it provides HTTP-CoAP proxy functionality (see Sect. 5.2).

The backend integrates the WSN with the Web application via two major func-
tionalities: the transparent WSN resource access and the Web based WSN resource
search and discovery. The two building blocks enabling these two functionalities are
described in the two following sub-paragraphs.

66 W. Colitti et al.

5.2.1 Cross-Protocol Resource Access

Resources exposed by CoAP based sensor motes can be accessed by requests sent
by a CoAP client. However, when integrating the WSN with a Web application,
the data need to be accessed via HTTP requests sent by an HTTP client, unless the
HTTP client is equipped with CoAP functionalities. The solution of having CoAP
functionalities at the Web client side has been proposed in [30]. The author proposes
a CoAP plugin for the Mozilla Firefox Web browser. The plugin registers a protocol
handler for the scheme coap and therefore allows a user to discover and access the
WSN resources by directly entering CoAP URIs in the address bar or by followed
links on Web pages. Although this is an interesting solution, it cannot be largely
adopted while integrating WSNs with the Web. Firstly, it requires users to have the
CoAP browser installed which is not a typical scenario. A typical web scenario
consists of a user accessing, via an HTTP client, a web application running on a
web server, similar to the case shown in Fig. 3. In addition, having a CoAP client
running at the user side implies that the communication will go over UDP not only
in the WSN network segment but also in the Internet segment. Although CoAP over
UDP includes reliability mechanisms based on retransmissions, TCP should remain
the preferred transport protocol in the Internet segment for better performance and
higher reliability [31].

The problem of accessing CoAP servers from HTTP clients has been addressed
by the IETF CoRE group who has defined the guidelines for mapping HTTP requests
into CoAP ones and vice versa [31]. The mapping operation is executed in a reverse
proxy usually placed at the edge of the constrained network, as illustrated in Fig. 3.
The HTTP-CoAP proxy enables cross-protocol resource access by transparently
mapping an HTTP request coming from a Web application into a CoAP request to
be forwarded to a CoAP server and vice versa.

It isworth underlining that although the proxy translates two application protocols,
it does not have the same level of complexity as application gateways. As mentioned
in Sect. 2, an application gateway is aware of the application logic, which has major
impact on the architectural complexity. The HTTP-CoAP proxy is transparent to the
application logic because the two protocols are both based on REST and therefore
they use the same set of verbs to manipulate the resources. The proxy only maps the
Request/Response model of CoAP into HTTP (the REST requests/responses). The
underlying messages exchanged on the Transaction layer have no effect on the proxy
functions [31].

In our systemshown inFig. 3, the application server runs in an IPv4network.When
the application wants to query a CoAP server to retrieve its data, theWeb application
server generates a GET request with the URI http://sensor.domain.com/data, where
sensor is the name of the the CoAP server, domain.com is the network domain of the
WSN and of the proxy, resource is the requested resource, which in our case can be
temperature (temp), humidity (hum) or light (light). Once received the GET request,
the proxy generates the URI coap://sensor_ipv6_address.domain.com/resource
where sensor_ipv6_address is the IPv6 address of the CoAP server. Once the CoAP
server sensor receives the URI, it generates a response with the data embedded into

http://sensor.domain.com/data

Embedded Web Technologies for the Internet of Things 67

a JSON file. The proxy maps the CoAP response into an HTTP response and sends
it back to the Web application server.

In order to decrease the dependency between the Web application and the proxy
and between the proxy and the CoAP servers, the system relies on the Domain Name
System (DNS) which guarantees that the client does not need to know the IPv4
address of the proxy and the proxy does not need to know the IPv6 addresses of
the wireless sensor motes. This implies that the DNS keeps an A record resolving
the IPv4 address of the proxy and an AAAA record resolving the IPv6 address of
the sensor mote.

The description of the main mapping operation shows that the proxy is protocol
agnostic,meaning hat theWeb application accessesWSN resources as if it were using
HTTP and without having knowledge that the sensor data are accessed via CoAP.
The transparency is guaranteed by a homogeneous URI mapping. This implies that
during the mapping operation, the authority and the path of the resource URI do not
change. The only translation undergone by the URI is in the scheme (http: translated
into coap:).

5.2.2 Resource Search and Discovery

As described in Sect. 4, CoAP includes a technique for discovering and advertising
resource descriptions. A CoAP server can provide a description of the available
resources via the well-known URI /.well-known/core which returns a list of links
to the resources hosted by the server. There are cases in which this approach does
not guarantee good performance in terms of search and discovery capability. As an
example, we have calculated the time needed to discover all the resources in the
WSN with an increasing number of sensor motes. We define the discovery time as
the time needed by the CoAP client to send a GET request to the /.well-known/core
interface of every sensor mote and to receive the description of all the resources
exposed by the motes. For a number of motes equals to 9, 13 and 25 the discovery
time is around 8, 13 and 42s, respectively. This indicates that the resource discovery
mechanism might degrade the performance in case of large networks and when
trying to explore resources exposed by several sensor motes. Another case in which
the CoAP discoverymechanismmight hamper the search and discovery functionality
is when there are sleepy motes which sleep for long periods of time [23].

The IETF CoRE group has addressed this problem by introducing the Resource
Directory (RD), a registry which stores the descriptions of the resources exposed
by the CoAP servers. When exploring the WSN resources, the web application can
send a query to the RD instead of accessing the /.well-known/core interface of every
sensor mote.

CoAP server motes register their resource descriptions in the RD by sending a
POST message which also indicates the period of time during which the registration
is valid. Once this period has elapsed, the RD erases the corresponding resource
description, which indicates that the CoAP server is not reachable. The RD keeps
the registration alive upon receiving refresh messages from the CoAP server.

68 W. Colitti et al.

Resources registered on the RD can be queried by means of CoAP GET requests
which can also include filtering options which limit the scope of the lookup to certain
resource types or to a limited set of CoAP servers. The resource discovery process is
made transparent to theWeb application bymeans of the HTTP-CoAP proxymodule
described in Sect. 5.2.

6 Discussion

Up to now we have seen how embedded web services allow smart objects to become
web servers which expose resources in a REST fashion as any traditionalWeb server.
Although they facilitate the integration of the IoT with the Web, embedded web
services might have a cost for constrained devices and therefore might cause perfor-
mance degradation. Firstly, the CoAP/UDP/6LoWPAN/ stack significantly increases
the memory footprint which might not be tolerated by certain severely constrained
devices. In addition, the overhead introduced by the IP and web oriented commu-
nication protocols might have a significant impact on the power consumption and
consequently on the battery lifetime. Battery duration remains a serious bottleneck
for the realization of the IoT vision and therefore needs to be taken into consideration
when engineering networks of smart objects.

In order to have a general idea of the degradation introduced by embedded web
mechanisms in a WSN, we show a simple experiment which measures the average
mote’s power consumption in two different data collection simulation scenarios.
In the first scenario the data is collected via CoAP request/responses, while in the
second via a simple application which uses the same request/response approach as
CoAP, but does not include the reliability and other more sophisticated features
provided by CoAP. The reference application has been developed on top of the
same UDP/6LowPAN stack as the one used in the CoAP scenario. In both cases
the requests are initiated by the client running in the back-end. The experiments
have been executed with Cooja, an emulator of Contiki based sensor motes. Cooja
provides a tool called Energest able to estimate the energy spent by a mote while
transmitting, receiving, processing and while being in idle state. The aim of this
experiment is not to provide an exhaustive and quantitative analysis of the power
consumption but to give a qualitative indication of the cost that needs to be paid in
terms of power consumption when using CoAP. The experiment has been executed
with three mesh networks containing 9, 13 and 25. The results have been calculated
as average values of several independent simulation runs. The results are shown in
Fig. 4.

Figure4 clearly shows that when using CoAP the average power consumption of
a server mote is significantly higher than the simple application built on top of UDP.
This is mainly consequence of CoAP’s reliabilty mechanism based on retransmis-
sions. The diffeence between the two protocols is about 20% for 13 motes, 25% for
15 motes and 30% for 25 motes. In fact larger networks are likely more congested

Embedded Web Technologies for the Internet of Things 69

Fig. 4 Power consumption of a CoAP and non-CoAP based application

and consequently CoAP executes more retransmissions. The higher the number of
retransmissions, the higher the power consumption.

Although having an impact on the mote’s power consumption, the more sophis-
ticated mechanisms of CoAP are needed to increase the network reliability. Figure5
shows the success rate measured in the two scenarios described in the previous
experiment. The success rate is defined as the ratio between the number of responses
successfully received by the client and the number of requests sent by the client.
CoAP achieves a very high success rate in all the three simulated networks while the
application without CoAP has a success rate of about 95% for 9 and 13 motes and
drastically reduced (86%) for 25 motes.

These two simple experiments show that a key aspect of IoT communication
protocols is to find the right balance between power consumption and reliability.
This is also true and rather straightforward for protocols in other wired and wireless
communication networks as well. But the constrained nature of smart objects makes
the performance optimization of IoT protocols significantly more complex. This has
been one of the main reasons why the IoT has largely been dominated by several
service specific communication protocols. Communication engineers have mainly
tried to design protocols highly optimized for specific tasks and application domains.
Highly specialized proprietary protocols were also used by monitoring and control
system vendors to force customers to be locked into a long term relationship.

Proprietary and domain specific protocols can no longer be the adopted solution
in the present and future IoT. Sensor and actuator networks are no longer a niche
technology used in a few specific sectors. The trillion smart objects vision suggests
that we will be largely surrounded by sensors and actuators. This is also consequence
of the recent emerging open hardware based technologies which allow people to
build their own connected objects even without engineering skills. The ubiquity
of sensors and actuators will unlock huge opportunities for the creation of new
innovative services. But a necessary requirement is that the IoT will be based on

70 W. Colitti et al.

Fig. 5 Success rate of a
CoAP and a non-CoAP based
application

open standard communication technologies which enable interoperability and plug-
and-play capabilities [3].

Interoperability has been the main reason for the success and large scale adoption
and deployment of IP and Web technologies. It has been the result of a large open
standardization effort which has guaranteed that IP equipment made by different
manufacturers are interoperable in a plug-and-play fashion and that Web client and
servers can communicate in a platform and programming language agnosticway. The
IETF has reproduced the same interoperability driven standardization process for the
IoT communication protocols. This is proven by the CoAP plugtest events organized
by the IETF CoRE group in collaboration with the European Telecommunications
Standards Institute (ETSI). These events aim to test the interoperability of CoAP
in a multi-vendor and multi-service environment. The first CoAP plugtest event
has seen the participation of several research organizations and industrial players.
A total of 3406 tests were made, to test several CoAP functionalities between CoAP
client/server implementation of different institutions. More than 90% of the tests
succeeded and demonstrated the robust interoperability nature of CoAP [29].

Although the complexity of communication protocols increases when designed
for heterogeneous devices with different functionalities and constraints, open stan-
dard communication protocols based on Internet and Web technologies are a way to
deliver long term value. They eliminate the vendor lock-in problem, decrease the cost
of network maintenance and create opportunities for new and innovative business
models. This has been widely accepted by the industrial world and demonstrated
by the fact that some industry driven communication protocols which were born
without Internet and Web functionalities are being transformed into Internet/Web
oriented protocols. An example is ZigBee. ZigBee is a proprietary specification for
wireless communication between sensors and actuators maintained and published by
the ZigBee Alliance which include several big industrial players. ZigBee is based on
the IEEE 802.15.4 radio link layer. The network and transport layer are proprietary
and not based on the TCP/IP protocol stack. The application layer in ZigBee is orga-
nized in profiles, each profile providing standard interfaces and device definitions for
product interoperability in a vertical application domain, such as home automation,

Embedded Web Technologies for the Internet of Things 71

building automations and telecom services [9]. In particular, the application profile
related to energy services, called Smart Energy Profile (SEP), has gained momentum
especially in the USmarket. In its 1.0 version, the Smart Energy profile does not sup-
port IP/Web communications as a consequence of the fact that the ZigBee stack is not
IP based. However, when the smart grid market has identified the need for interoper-
ability, the ZigBeeAlliance has started a significant re-design of the ZigBee stack and
of the SEP. The network/routing layer of the new ZigBee IP stack is now based on the
IETF 6LowPANandRPL,while the transport layer on TCP andUDP.AS for the SEP,
its 2.0 version is based on the REST architecture and requires the use of HTTP for
interoperability. The use of CoAP as application protocol and UDP as transport pro-
tocol is also considered in the case of more constrained devices. The encoding format
adopted is EXI.

The migration of a mature and industry driven protocol like ZigBee towards
IP/Web technologies proves the fact that the IoT community has accepted that open
standards will significantly boost the IoT. There will surely be cases in which more
specialized and non IP based protocols will continue to exist. But this will likely hap-
pen only in certain vertical domains which need specific functionalities. The trillion
smart objects vision will necessarily require a migration from the siloed approach,
with service specific sensor and actuator networks, to the open and interoperable
IoT and WoT which will pave the way for the realization of an exciting Internet of
Services.

7 Conclusion

This chapter gave an overview on the introduction of standard IP/Web technologies
in the IoT. We discussed on the benefits of 6LowPAN and showed how it improves
interoperability and reduces the overall architectural complexity. We described how
embedded Web technologies based on REST/HTTP have been adopted in the IoT
for the realization of the WoT. We introduced CoAP, an HTTP like protocol which
is more appropriate for constraint devices. We presented the prototype design and
development of a system which integrates a REST/CoAP based WSN with a web
application. We described the architecture of the back-end system which provides
Web based WSN resource search and discovery functionality, enabled by the CoAP
based Resource Directory, and the transparent WSN resource access, enabled by the
HTTP-CoAP proxy. We showed that the proxy is protocol agnostic and transparent
to the application logic. We showed that IP/Web technologies for heterogeneous
devicesmakes it more complicated to find a balance between power consumption and
reliability. However, open standard communication protocols based on Internet/Web
technologies are a way to deliver long term value and therefore need to be a key
ingredient of the future IoT.

72 W. Colitti et al.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Net. 54,(15)
2787–2805 (2010)

2. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications
and research challenges. Comput. Net. 10(7), 1497–1516 (2012)

3. Ko, J., Eriksson, J., Tsiftes, N., Dawson-Haggerty, S., Vasseur, J. P., Durvy, M., Terzis, A.,
Dunkels, A., Culler, D.: Beyond interoperability pushing the performance of sensor network
IP stacks. In: 9th ACMConference on Embedded Networked Sensor Systems, November 2011

4. Zorzi, M., Gluhak, A., Lange, S., Bassi, A.: From today’s INTRAnet of things to a future
INTERnet of things: a wireless- and mobility-related view. IEEE Wireless Commun. 17(6),
44–51 (2010)

5. Dunkels, A., Eriksson, J., Finne, N., Österlind, F.: Low-Power IPv6 for the internet of things.
In: 9th International Conference on Networked Sensing Systems, 1–6, June 2012

6. Shelby, Z.: Embedded web services. IEEE Wireless Commun. 17(6), 52–57 (2010)
7. Hui, J.W., Culler, D.E.: IPv6 in low-power wireless networks. Proc. IEEE. 98(11), 1865–1878

(2010)
8. Guinard, D., Trifa, V., Wilde, E.: A Resource oriented architecture for the web of things. In:

Internet of Things 2010 International Conference (IoT 2010), November 2010
9. Vasseur, J.P., Dunkels, A.: Interconnecting Smart Objects with IP: The Next Internet. 1st ed.

Morgan Kaufmann. Burlington, Massachusetts (2010)
10. Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: an application protocol for billions of tiny

internet nodes. IEEE Int. Comput. 16(2), 62–67 (2012)
11. Shelby, Z., Hartke, K., Frank, B.: Constrained Application Protocol (CoAP). Internet-Draft,

draft-ietf-core-coap-13, 2012 (Work in progress).
12. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,

JP., Alexander, R.: In: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC
6550, 2012

13. Gaddour, O., Koubâa, A.: RPL in a nutshell: a survey. Comput. Net. 56(14), 3163–3178 (2012)
14. Zeng, D., Guo, S., Cheng, Z.: The web of things: a survey. J. Commun. 6(6), 424–438 (2011)
15. Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards physical mashups in the web of things.

In: 6th IEEE International Conference on Networked Sensing Systems, June 2009
16. Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.: Tiny web ser- vices: design and imple-

mentation of interoperable and evolvable sensor networks. In: The 6th ACM conference on
Embedded Network Sensor Systems (SenSys ’08) 253–266, 2008

17. Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEETrans. Industr.
Inf. 1(1), 62–70 (2005)

18. Castellani, A. P., Gheda, M., Bui, N., Rossi, M., Zorzi, M.: Web services for the internet of
things through CoAP and EXI. In: IEEE International Conference on Communications (ICC),
2011

19. Kamilaris, A., Trifa, V., Pitsillides, A.: The smart home meets the web of things. Int. J. Ad Hoc
Ubiquitous Comput. 7(3), 145–154 (2011)

20. Yazar, D., Dunkels, A.: Efficient application integration in IP-based sensor networks. 1st ACM
Workshop onEmbeddedSensing Systems for EnergyEffciency in, Buildings, 43–48November
2009

21. Schor, L., Sommer, P., Wattenhofer, R.: Towards a zero-configuration wireless sensor network
architecture for smart buildings. In; Proceedings of 1st ACMWorkshopOn Embedded Systems
For Energy-Efficient Buildings (BuildSys: pp. 31–36. USA, Berkeley) 2009

22. Hartke, K.: Observing Resources in CoAP, Internet-Draft, draft-ietf-core-observe-07, 2012
(Work in progress)

23. Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format. RFC 6690, 2013 (Work
in progress)

Embedded Web Technologies for the Internet of Things 73

24. Colitti, W., Steenhaut, K., De Caro, N., Buta, B., Dobrota, V.: Evaluation of constrained Appli-
cation Protocol for Wireless Sensor Networks. In: 18th IEEE International Workshop of Local
and Metropolitan Area Networks (LanMan), 1–6 November 2011

25. Maenpaa, J., JIMENEZBolonio, J., Loreto, S.: UsingRELOADandCoAP for wide area sensor
and actuator networking. EURASIP J. Wireless Commun. Net. 2012, 121. Springer (2012)

26. Kovatsch, M., Mayer, S., Ostermaier, B.: Moving application logic from the firmware to the
cloud: towards the thin server architecture for the internet of things. In: 6th International
Conference on InnovativeMobile and Internet Services in Ubiquitous Computing (IMIS 2012),
July 2012

27. Kovatsch, M., Duquennoy, S., Dunkels, A.: A low-power CoAP for contiki. In: 8th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems, October 2011

28. Shelby Z., Chauvenet, C.: The IPSO Application Framework, draft-ipso-app-framework-04,
2012, (Work in progress)

29. Lerche, C., Hartke, K., Kovatsch, M.: Industry adoption of the internet of things: a constrained
application protocol survey. In: 7th International Workshop on Service Oriented Architectures
in Converging Networked Environments, September 2012

30. Kovatsch, M.: Demo abstract: humanCoAP interaction with copper. In: 7th IEEE International
Conference on Distributed Computing in Sensor Systems, June 2011

31. Castellani, A., Loreto, S., Rahman, A., Fossati, T., Dijk, E.: Best Practices for HTTP-
CoAP Mapping Implementation, Internet-Draft, draft-ietf-core-http-mapping-02, 2013 (Work
in progress)

	3 Embedded Web Technologies for the Internet of Things
	1 Introduction
	2 Embedded IP Networking Technologies
	3 Embedded Web Technologies
	4 Constrained Application Protocol
	5 Architecture of an End-to-End System for Integration of a WoT with the Web
	5.1 The REST Based WSN
	5.2 The Back-End

	6 Discussion
	7 Conclusion
	References

