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Bifurcation at Isolated Eigenvalues
for Some Elliptic Equations on RN
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Abstract. This paper concerns the bifurcation of bound states u ∈ L2(RN )
for a class of second-order nonlinear elliptic eigenvalue problems that includes
cases which are already known to exhibit some surprising behaviour. By treat-
ing a larger class of nonlinearities we cover new cases such as a situation where
there is no bifurcation at a simple isolated eigenvalue lying at the bottom of
the spectrum of the linearization. As an application of recent work on bifur-
cation for problems that are only Hadamard differentiable, we also establish
bifurcation at all isolated eigenvalues of odd multiplicity which are sufficiently
far from the essential spectrum.
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1. Introduction

As has already been shown in several earlier contributions [3, 15, 17], the study
of bifurcation for bound states u ∈ L2(RN ) of simple looking elliptic equations
such as

−Δu+ V u+
u3

ξ2 + u2
= λu, (1.1)

where V ∈ L∞(RN ) and ξ ∈ L2(RN )∩C(RN ) with ξ > 0 on RN , reveals a number
of surprising phenomena. For example, there are potentials V for which bifurcation
can occur at points not belonging to the spectrum of the linearized problem

−Δu+ V u = λu.

On the other hand, as one might expect there is bifurcation at all eigenvalues of
−Δ + V lying below the essential spectrum. However, it is shown in Section 5

Switzerland



424 C.A. Stuart

below that this is no longer the case for the equation

−Δu+ V u− u3

ξ2 + u2
= λu, (1.2)

for some choices of V and ξ and the results in [3, 15, 17] do not apply to (1.2).
The occurence of the unusual phenomena mentioned above has nothing to do with
a lack of smoothness of the functions V and ξ since the conclusions are the same
even if the assumption that V and ξ are infinitely differentiable is added.

The purpose of the present paper is to study bifurcation at isolated eigenval-
ues of the linearization for a class of equation that includes both (1.1) and (1.2),
namely

−Δu+ V (x)u + g(x, u) + h(x,∇u) + ξ(x)f(η(x)u) = λu (1.3)

where V, ξ and η : RN → R and the nonlinear functions g : RN × R → R,
h : RN × RN → R and f : R → R are such that g(x, 0) = h(x, 0) = f(0) = 0 and
define terms of order higher than linear near u ≡ 0. The precise hypotheses are
formulated in Section 3 and the main result is Theorem 4.1. Taking g ≡ 0, h ≡
0, η = 1/ξ and f(s) = ±s3/(1 + s2), we recover (1.1), respectively (1.2). We seek
solutions (λ, u) where λ ∈ R and u �≡ 0 lies in the usual Sobolev space H2(RN )
since any distributional solution u ∈ L2(RN ) of equations (1.1) or (1.2) lies in this
space.

Under our hypotheses, the equations (1.1) to (1.3) can all be written in the
form M(u) = λu where M : H2(RN ) → L2(RN ) is a continuous mapping such
that M(0) = 0. However,M is not Fréchet differentiable at 0 and consequently the
classical results about bifurcation cannot be applied in the cases of interest here.
(See parts (2) and (3) of Theorem 3.4.) Nonetheless, M is Gâteaux differentiable
at 0 and it is also Lipschitz continuous in an open neighbourhood of 0. These
properties imply that M is actually Hadamard differentiable at 0. By exploiting
this, new conclusions about bifurcation of bound states for (1.3) are obtained in
Theorem 4.1 by using a recent abstract result about bifurcation for such problems
proved in [19]. The relevant parts of the abstract theory are set out in Section 2.
These results provide information about bifurcation at points which are not too
close to the essential spectrum of the linearised operator −Δ + V and, for such
points, the conclusions resemble those for smooth situations.

The other main contribution of this paper is to show that this restriction
cannot be avoided without introducing new restrictions on the behaviour of the
term ξf(ηu) in (1.3). A situation of this kind is treated in Section 5 where we show
that there may be no bifurcation at a simple eigenvalue Λ lying at the bottom of the
spectrum of −Δ+V and below its essential spectrum, if Λ is too near the essential
spectrum. It is important to note that all the other hypotheses of Theorem 4.1
are satisfied and yet the conclusions (ii) and (iii) fail. Thus this situation serves to
show that the restriction involving the distance from the essential spectrum in the
abstract result is also necessary since all the other hypotheses are satisfied there
too.
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Exploiting bifurcation theory for Hadamard differentiable mappings is not
the only way to deal with problems like (1.1) to (1.3). Rabier [10, 11] has shown
that, for an appropriate class of weights ξ and η, the equations can be treated in
weighted Sobolev spaces where Fréchet differentiability of the relevant operators
holds. It then follows that bifurcation occurs at every isolated eigenvalue of odd
multiplicity of −Δ+ V . The situation discussed in Section 5 shows that there are
choices of ξ and η for which this method cannot be used.

2. Bifurcation without Fréchet differentiability

For real Banach spaces X and Y ,

• B(X,Y ) = {L : X → Y : L is linear and bounded}
• Iso(X,Y ) = {L ∈ B(X,Y ) : L : X → Y is an isomorphism}
• Φ0(X,Y ) = {L ∈ B(X,Y ) : L is a Fredholm operator of index zero}.
Let X and Y be real Banach spaces and consider the equation F (λ, u) = 0

where F : R × X → Y with F (λ, 0) = 0 for all λ ∈ R. Setting S = {(λ, u) ∈
R×X : F (λ, u) = 0 and u �= 0}, λ0 is called a bifurcation point for the equation
F (λ, u) = 0 if there exists a sequence {(λn, un)} ⊂ S such that λn → λ0 and
‖un‖ → 0 as n → ∞. There is continuous bifurcation at λ0 if there exists a
bounded connected subset C of S such that C ∩ [R × {0}] = {(λ0, 0)}. In these
statements, S is treated as a metric space with the metric inherited from R×X .

In this paper, we only deal with the situation where X and Y are Hilbert
spaces with X ⊂ Y and F (λ, u) = M(u)− λu for a mapping M : X → Y .

Let (H, 〈·, ·〉, ‖ · ‖) be a real Hilbert space. For a self-adjoint operator S :
D(S) ⊂ H → H acting in H , the graph norm of S on D(S) is defined by

‖u‖S = {‖u‖2 + ‖Su‖2}1/2 for u ∈ D(S).

Recall that since S is closed, the graph space (D(S), ‖ · ‖S) is a Hilbert space. The
following result, which is an easy consequence of the closed graph theorem (see
Section 5 of [18]), provides a useful way of identifying the associated topology in
concrete situations.

Proposition 2.1. Let S : D(S) ⊂ H → H and T : D(T ) ⊂ H → H be two self-
adjoint operators having the same domain X = D(S) = D(T ). Then ‖ · ‖S and
‖·‖T are equivalent norms on the subspace X and S, T ∈ B(X,H) for any of these
norms.

For a self-adjoint operator S : D(S) ⊂ H → H , the spectrum and essential
spectrum are denoted by σ(S) and σe(S), respectively. If X denotes the graph
space of S then (see, for example, [2])

• σ(S) = {λ ∈ R : S − λI �∈ Iso(X,H)} and Λ = inf σ(S)
• σe(S) = {λ ∈ σ(S) : S − λI �∈ Φ0(X,H)} and Λe = inf σe(S)
• S − λI ∈ Φ0(X,H)⇔ λ �∈ σe(S)
• σd(S) = σ(S)\σe(S) consists of isolated eigenvalues of finite multiplicity.
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The following result concerning bifurcation for an equation of the form
M(u) = λu appears as Corollary 6.6 in [19]. Most of [19] is devoted to the more
general equation F (λ, u) = 0 in the setting of Banach spaces.

Proposition 2.2. Let (Y, 〈·, ·〉, ‖ · ‖) be a real Hilbert space and let (X, ‖ · ‖X) be the
graph space of some self-adjoint operator acting in Y . For δ > 0, BX(0, δ) = {u ∈
X : ‖u‖X < δ}. Consider the equation M(u) = λu where the function M : X → Y
has the following properties.

(H1) M(0) = 0.

(H2) M is Gâteaux differentiable at 0 and M ′(0) ∈ B(X,Y ) is also a self-adjoint
operator acting in Y with domain X.

(H3) For some δ > 0, M = M1 +M2 where M1 ∈ C1(BX(0, δ), Y ) with M ′
1(0) =

M ′(0) and there exists a constant L such that ‖M2(u)−M2(v)‖Y ≤ L‖u−v‖Y
for all u, v ∈ BX(0, δ). Let

LY (M2) = lim
δ→0

sup
u,v∈BX(0,δ)

u�=v

‖M2(u)−M2(v)‖Y
‖u− v‖Y <∞.

Then, for λ0 such that d(λ0, σe(M
′(0))) > LY (M2) we have the following

conclusions.

(i) If ker{M ′(0)− λ0I} = {0}, λ0 is not a bifurcation point.

(ii) If dimker{M ′(0)− λ0I} is odd, λ0 is a bifurcation point and there is contin-
uous bifurcation at λ0.

(iii) If ker{M ′(0) − λ0I} = span{φ} where ‖φ‖Y = 1, λ0 is a bifurcation point
and, for any sequence {(λn, un)} ⊂ S such that λn → λ0 and ‖un‖X → 0,
we have that un = 〈un, φ〉{φ+ wn} where 〈wn, φ〉 = 0 and ‖wn‖X → 0.

Remark. There is an example at the end of Section 6 in [19] in which X = Y =
L2(0, 1) and (H1) to (H3) are satisfied withM1 = 0 and LY (M2) = 1. The mapping
M is the Nemytskii operator defined byM(u)(x) = u(x)2/(1+|u(x)|) for u ∈ Y and
it is shown that the set of bifurcation points for the equation Mu = λu is [−1, 1].
Since M ′(0) = 0, σ(M ′(0)) = σe(M

′(0)) = 0 and so for λ0 = 1, we have bifurcation
at a point where ker(M ′(0)−λ0I) = {0} and d(λ0, σe(M

′(0))) = LY (M2), showing
that the conclusion (i) can fail if d(λ0, σe(M

′(0))) �> LY (M2). In Corollary 5.2
we see that parts (ii) and (iii) can also fail when (H1) to (H3) are satisfied but
d(λ0, σe(M

′(0))) �> LY (M2).

3. An elliptic equation on RN

In this section we present and prove our main results concerning bound states
u ∈ L2(RN ) of the equation (1.3). In the following subsections we introduce our
hypotheses term by term and discuss their main consequences.
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3.1. The linear term −Δu+ V u

Instead of restricting attention to bounded potentials, we deal with a larger class
which allows for singularities. We suppose that the potential V belongs to the
Kato-Rellich class TN(q) for some q ≥ 2 with q > N/2. This means that

(V) V = P +Q where P ∈ L∞(RN ) and Q ∈ Lr(RN ) for all r ∈ [1, q] for some
q ≥ 2 with q > N/2.

Clearly (V) is satisfied when V ∈ L∞(RN ), but V (x) = |x|−α is also allowed
provided that 0 ≤ α < min{2, N/2}.

An important consequence of condition (V) is that S = −Δ + V : D(S) ⊂
L2(RN ) → L2(RN ) is a self-adjoint operator with domain D(S) = H2(RN ), see
[1, 14, 12] for example. Furthermore, elementary Fourier analysis shows that the
graph norm of S = −Δ is equivalent to the usual Sobolev norm on H2(RN ), [16]
for example. Then by Proposition 2.1 this is also true for S = −Δ+ V whenever
V satisfies the condition (V). In particular, S ∈ B(H2(RN ), L2(RN )).

3.2. The term g(x, u)

The first nonlinear term in (1.3) is required to satisfy the following condition.

(G) g : RN × R → R is a Carathéodory function such that, for all x ∈ RN ,
g(x, 0) = 0 and g(x, ·) ∈ C1(R) with

|∂sg(x, s)| ≤ A{|s|α + |s|β} for all (x, s) ∈ R× RN

for some constant A and exponents α, β satisfying 0 < α ≤ β <∞ for N ≤ 4
and 0 < α ≤ β ≤ 4

N−4 for N > 4.

Theorem 3.1. Let g satisfy (G) and set G(u)(x) = g(x, u(x)) for u ∈ H2(RN ).
Then G ∈ C1(H2(RN ), L2(RN )) with DG(u)v = ∂sg(x, u)v for all u, v ∈ H2(RN ).
In particular, G(0) = 0 and DG(0) = 0.

Proof. The restrictions on α and β in condition (G) ensure that the following
intervals AN and BN are non-empty:

for N ≤ 4,

AN =
(
0, α

2

] ∩ (
0, 2

N

] ∩ (
0, 12

)
and BN =

(
0, β

2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
and for N > 4,

AN =
[
α(N−4)

2N , α
2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
and BN =

[
β(N−4)

2N , β
2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
.

Note that for N > 4, AN ∩ BN = ∅ if α < β(N−4)
N . For this reason, we

decompose ∂sg in the following way.
Let ψ ∈ C∞(R) be such that 0 ≤ ψ(s) ≤ 1 for all s with ψ(s) ≡ 1 for |s| ≤ 1

and ψ(s) ≡ 0 for |s| ≥ 2.
Set γ1(x, s) = ψ(s)∂sg(x, s) and γ2(x, s) = {1 − ψ(s)}∂sg(x, s) so that

∂sg(x, s) = γ1(x, s) + γ2(x, s) where

|γ1(x, s)| ≤ C1|s|α and |γ2(x, s)| ≤ C2|s|β for all (x, s) ∈ RN × R.
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Noting that (G) implies that γ1 and γ2 are Carathéodory functions, set
Γi(u)(x) = γi(x, u(x)) for i = 1, 2.

Choosing p such that 1/p ∈ AN , we have that p > 2, αp ≥ 2 and, for N > 4,
αp and 2p/(p− 2) ≤ 2N/(N − 4).

By the fundamental result concerning Nemytskii operators, we have that
Γ1 : Lαp(RN ) → Lp(RN ) is a bounded continuous mapping. For u ∈ Lαp(RN ),
Hölder’s inequality then shows that T1(u)v = Γ1(u)v defines a bounded linear

operator T1(u) : L
r1(RN )→ L2(RN ) where r1 = 2p

p−2 and that

T1 ∈ C(Lαp(RN ), B(Lr1(RN ), L2(RN ))).

Recalling that H2(RN ) is continuously embedded in Lt(RN ) for 2 ≤ t < ∞
if N ≤ 4 and for 2 ≤ t ≤ 2N/(N − 4) for N > 4, this implies that T1 ∈
C(H2(RN ), B(H2(RN ), L2(RN ))).

Choosing q such that 1/q ∈ BN , the same arguments show that Γ2 ∈
C(Lβq(RN ), Lq(RN )) and T2 ∈ C(Lβq(RN ), B(Lr2(RN ), L2(RN ))) where T2(u) =

Γ2(u)v and r2 = 2q
q−2 . Hence T2 ∈ C(H2(RN ), B(H2(RN ), L2(RN ))).

We now have that T = T1 + T2 ∈ C(H2(RN ), B(H2(RN ), L2(RN ))) where
T (u)v(x) = ∂sg(x, u(x))v(x) for u, v ∈ H2(RN ).

From condition (G), it follows that |g(x, s)| ≤ A
α+1{|s|α+1 + |s|β+1} where

1 < α+ 1 ≤ β + 1 <∞ for N ≤ 4 and 1 < α+ 1 ≤ β + 1 ≤ N
N−4 for N > 4. Also

g = g1 + g2 where

|g1(x, s)| = |ψ(s)g(x, s)| ≤ K1|s|α+1

and

|g2(x, s)| = |{1− ψ(s)}g(x, s)| ≤ K2|s|β+1,

so we have thatG1 ∈ C(L(α+1)2(RN ), L2(RN )) andG2 ∈ C(L(β+1)2(RN ), L2(RN ))
where G1(u)(x) = g1(x, u(x)) and G2(u)(x) = g2(x, u(x)). Hence G1 and G2 ∈
C(H2(RN ), L2(RN )) and therefore G = G1 +G2 ∈ C(H2(RN ), L2(RN )).

Now we show that G : H2(RN ) → L2(RN ) is Fréchet differentiable at u
with DG(u) = T (u) where T = T1 + T2, so that DG(u)v = ∂sg(x, u)v. For
u, v ∈ H2(RN ),∫

RN

{G(u+ v)−G(u)− T (u)v}2dx

=

∫
RN

{∫ 1

0

d

dt
g(x, u+ tv) dt− ∂sg(x, u)v

}2

dx

=

∫
RN

{∫ 1

0

∂sg(x, u+ tv)− ∂sg(x, u)dt v

}2

dx

≤
∫
RN

∫ 1

0

{∂sg(x, u+ tv)− ∂sg(x, u)}2dt v2dx

=

∫ 1

0

‖[T (u+ tv)− T (u)]v‖2L2dt ≤
∫ 1

0

‖T (u+ tv)− T (u)‖2B(H2,L2)dt‖v‖2H2 .
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Since T ∈ C(H2(RN ), B(H2(RN ), L2(RN ))), for all ε > 0, there exists δ > 0 such
that ‖T (u+ w)− T (u)‖2B(H2,L2) < ε whenever ‖w‖H2 < δ. Hence∫ 1

0

‖T (u+ tv)− T (u)‖2B(H2,L2)dt ≤ ε when ‖v‖H2 < δ,

proving the Fréchet differentiability of G : H2(RN )→ L2(RN ) at u with DG(u) =
T (u). Hence G ∈ C1(H2(RN ), L2(RN )). �

3.3. The term h(x,∇u)

The nonlinear function of the gradient in (1.3) is required to satisfy the following
conditions.

(H) h : RN × RN → R is a Carathéodory function such that, for all x ∈ RN ,
h(x, 0) = 0 and h(x, ·) ∈ C1(RN ) with

|∇ξh(x, ξ)| ≤ A{|ξ|α + |ξ|β} for all x, ξ ∈ RN

for some constant A and exponents α, β satisfying 0 < α ≤ β <∞ for N ≤ 2
and 0 < α ≤ β ≤ 2

N−2 for N > 2.

Theorem 3.2. Let h satisfy (H) and set H(u)(x) = h(x,∇u(x)) for u ∈ H2(RN ).
Then H ∈ C1(H2(RN ), L2(RN )) with DH(u)v = ∇ξh(x,∇u) · ∇v for all u, v ∈
H2(RN ). In particular, H(0) = 0 and DH(0) = 0.

Proof. Setting Ju = ∇u, we have that J ∈ B(H2(RN ), [H1(RN )]N ) and H(u) =
N(Ju) where N : [H1(RN )]N → L2(RN ) is defined by N(w)(x) = h(x,w(x)) for
w ∈W = [H1(RN )]N . Hence it is enough to prove that N ∈ C1(W,L2(RN )) with
DN(w)z = ∇ξh(x,w) · z for all w, z ∈W . This can be done by following the same
approach as was used to prove Theorem 3.1 so we need only mention a few crucial
points. First of all, ∇ξh is decomposed using a radial cut-off function ψ. For the
continuity of the resulting Nemytskii operators from [Lαp(RN )]N into Lp(RN ),
see [8] for example. Recall that H1(RN ) is continuously embedded in Lt(RN ) for
2 ≤ t < ∞ if N ≤ 2 and for 2 ≤ t ≤ 2N/(N − 2) for N > 2. In the present case,
the intervals AN and BN are given by

AN =
(
0, α

2

] ∩ (
0, 1

N

] ∩ (
0, 12

)
and BN =

(
0, β

2

]
∩ (

0, 1
N

] ∩ (
0, 12

)
for N ≤ 2 and

AN =
[
α(N−2)

2N , α
2

]
∩ (

0, 1
N

] ∩ (
0, 1

2

)
and BN =

[
β(N−2)

2N , β
2

]
∩ (

0, 1
N

] ∩ (
0, 1

2

)
for N > 2. The restrictions on α and β in (H) ensure that these intervals are
non-empty. �
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3.4. The term ξ(x)f(η(x)u)

We now come to the term in (1.3) which is not Fréchet differentiable in many
interesting cases. The following basic assumption is assumed to hold throughout
the discussion and is sufficient for our main result about bifurcation

(F) (i) f ∈ C(R) with lims→0
f(s)
s = 0 and |f(s)− f(t)| ≤ �|s− t| for all s, t ∈ R.

(ii) ξ and η are real-valued measurable functions on RN such that ξη ∈ L∞(RN ).

Under the hypothesis (F), we have that |ξ(x)f(η(x)s)| ≤ |ξ(x)|�|η(x)s| ≤
�‖ξη‖L∞|s| for all x ∈ RN and s ∈ R. Setting F (u)(x) = ξ(x)f(η(x)u(x)) for
u ∈ L2(RN ), it follows that F (u) ∈ L2(RN ) and then in the same way, that

F (0) = 0 and ‖F (u)− F (v)‖L2 ≤ �‖ξη‖L∞‖u− v‖L2 for all u, v ∈ L2(RN ).

Theorem 3.3. Let the condition (F) be satisfied.
Then F : L2(RN ) → L2(RN ) is Gâteaux differentiable at 0 with F ′(0) = 0

and it is also Lipschitz continuous with Lipschitz constant �‖ξη‖L∞. Hence F :
L2(RN )→ L2(RN ) is also Hadamard differentiable at 0.

‘A fortiori’, the same conclusions hold for F : H2(RN )→ L2(RN ).

Proof. For v ∈ L2(RN ) and t ∈ R, we have that |F (tv)(x)| ≤ �‖ξη‖L∞|tv(x)| and
the dominated convergence theorem shows that∥∥∥∥F (tv)

t

∥∥∥∥
L2

→ 0 as t→ 0.

This proves that F : L2(RN ) → L2(RN ) is Gâteaux differentiable at 0 with
F ′(0) = 0.

The Lipschitz continuity of F is already established in the remarks follow-
ing (F). �

The main result about bifurcation only requires F to satisfy the condition (F).
As we now show, additional restrictions are required in order to obtain properties
of F : H2(RN ) → L2(RN ) such as Fréchet differentiability at 0 or compactness.
To facilitate the discussion of these results we formulate some extra properties of
the weights ξ and η.

(W1) For some R > 0, η ∈ C2(|x| > R) with

η(x) > 0 and ∂αη/η ∈ L∞(|x| > R) for all multi-indices with |α| ≤ 2.

Furthermore

1

η
∈ L2(|x| > R) and lim inf

n→∞

∫
|x|>n+1

ξ(x)2dx/

∫
|x|>n

1

η(x)2
dx > 0.

Here are some typical examples of weights satisfying (F) and (W1)

Examples

(i) For some R,K > 0, η(x) = |x|t where t > N/2 and |ξ(x)| ≥ K|x|−t for
|x| > R. Note that by (F) we must also have that |ξ(x)| ≤ C|x|−t for |x| > R.
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(ii) For some R,K > 0, η(x) = ec|x| where c > 0 and |ξ(x)| ≥ Ke−c|x| for |x| > R.
By (F) we also have that |ξ(x)| ≤ Ce−c|x| for |x| > R.

(W2) For some R > 0, ξ ∈ L2(|x| > R) and there exists δ > 0 such that
|ξ(x)η(x)| ≥ δ a.e. on {x ∈ RN : |x| > R}.

Theorem 3.4. Let the condition (F) be satisfied.

(1) If (W1) is also satisfied, then F : H2(RN )→ L2(RN ) is Fréchet differentiable
at 0 if and only if f ≡ 0.

(2) If (W2) is satisfied and lim|s|→∞
f(s)
s = A ∈ R exists, then F : H2(RN ) →

L2(RN ) is compact if and only if A = 0. If A �= 0, then F : H2(RN ) →
L2(RN ) is not Fréchet differentiable at 0.

(3) If lim|s|→∞
f(s)
s = B ∈ R and |x|−N/2η(x) → ∞ as |x| → ∞, then

L(F ) ≥ |B| lim inf |x|→∞ |ξη(x)|, where L(F ) is the Lipschitz modulus of

F : H2(RN )→ L2(RN ) defined by

L(F ) = lim
δ→0

sup
u,v∈BH2(0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖H2

<∞

and ‘a fortiori’, we have the same lower bound for the L2-Lipschitz modulus

LL2

(F ) = lim
δ→0

sup
u,v∈BH2 (0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖L2

<∞,

which will be used in applying Proposition 2.2 to (1.3).

Remarks. The hypotheses (F)(ii) and (W1) imply that ξ ∈ L2(|x| > R) for some

R > 0. As the proof shows, in part (2) the property lims→0
f(s)
s = 0 in (F)(i) can

be weakened to f(0) = 0.

Combining Theorem 3.3 and part (3) we see that, if (F) holds with

lim
|s|→∞

f(s)

s
= ±�, lim

|x|→∞
|x|−N/2η(x) =∞

and

lim inf
|x|→∞

|ξη(x)| = ‖ξη‖L∞ , then L(F ) = LL2

(F ) = �‖ξη‖L∞

for F : H2(RN )→ L2(RN ).

Proof. (1) It follows from Theorem 3.3 that, if F is Fréchet differentiable at 0,
then F ′(0) = 0. Suppose that there exists T �= 0 such that f(T ) �= 0. It suffices
to show that there exists a sequence {un} ⊂ H2(RN )\{0} such that ‖un‖H2 → 0
and ‖F (un)‖L2/‖un‖H2 �→ 0. We construct such a sequence as follows.

Let ϕ ∈ C∞(R) have the following properties:

ϕ(s) = 0 for s ≤ 0, 0 ≤ ϕ(s) ≤ 1 for 0 < s < 1, ϕ(s) = 1 for s ≥ 1.
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For n > R, where R is the radius given in (W1), set un(x) =
Tϕ(|x|−n)

η(x) for |x| ≥ n

and un(x) = 0 for |x| ≤ n. Then un ∈ C2(RN ) and, for |x| = r > n,

∂iun(x) =
T

η(x)

{
ϕ′(r − n)xi

r
− ϕ(r − n)∂iη(x)

η(x)

}
and

∂2
ijun(x) = − T∂iη(x)

η(x)2

{
ϕ′(r − n)xi

r
− ϕ(r − n)∂iη(x)

η(x)

}
+

T

η(x)

{
ϕ′′(r − n)xixj

r2
+

ϕ′(r − n)δij
r

− ϕ′(r − n)xixj

r3

− ϕ′(r − n)xi∂iη(x)

rη(x)
− ϕ(r − n)∂2

ijη(x)

η(x)
+

ϕ(r − n)∂iη(x)∂jη(x)

η(x)2

}
.

Using (W1), these formulae show that there is a constant C such that, for |α| ≤ 2,
|∂αun(x)| ≤ C| 1

η(x) | for |x| > R and all n > R. Therefore it follows from (W1)

that un ∈ H2(RN ) and there is a constant C such that ‖un‖H2 ≤ C‖ 1
η‖L2(|x|>n).

Hence ‖un‖H2 → 0 as n→∞. Furthermore,

‖F (un)‖2L2 =

∫
RN

ξ2f(ηun)
2dx ≥

∫
|x|>n+1

ξ(x)2f(T )2dx

and so

‖F (un)‖2L2

‖un‖2H2

≥ f(T )2

∫
|x|>n+1

ξ(x)2dx

C2‖ 1
η‖2L2(|x|>n)

.

Thus lim infn→∞
‖F (un)‖L2

‖un‖H2
> 0 by (W1) and F : H2(RN ) → L2(RN ) is not

Fréchet differentiable at 0.

(2) Suppose first that A = 0. Then, for every ε > 0, there exists Aε > 0
such that |f(s)| ≤ Aε + ε|s| for all s ∈ R. Let {un} be a bounded sequence in
H2(RN ). Passing to subsequence, we can suppose that un ⇀ u weakly in H2(RN )
and we now show that ‖F (un)−F (u)‖L2 → 0, which establishes the compactness
of F : H2(RN )→ L2(RN ).

For any r > R,∫
|x|>r

F (un)
2dx ≤ 2

∫
|x|>r

ξ2{A2
ε + ε2η2u2

n}dx ≤ 2A2
ε

∫
|x|>r

ξ2dx + 2ε2‖ξη‖2L∞M2

where ‖un‖L2 ≤ M for all n, and the same estimate hold for
∫
|x|>r

F (u)2dx. On

the other hand,∫
|x|≤r

{F (un)−F (u)}2dx ≤
∫
|x|≤r

ξ2�2η2(un−u)2dx ≤ �2‖ξη‖2L∞

∫
|x|≤r

(un−u)2dx
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and hence∫
RN

{F (un)− F (u)}2dx

≤ 2

∫
|x|>r

F (un)
2dx+ 2

∫
|x|>r

F (u)2dx +

∫
|x|≤r

{F (un)− F (u)}2dx

≤ 8A2
ε

∫
|x|>r

ξ2dx + 8ε2‖ξη‖2L∞M2 + �2‖ξη‖2L∞

∫
|x|≤r

(un − u)2dx.

Since H2(|x| < r) is compactly embedded in L2(|x| < r), this shows that

lim sup
n→∞

‖F (un)− F (u)‖2L2 ≤ 8A2
ε

∫
|x|>r

ξ2dx+ 8ε2‖ξη‖2L∞M2.

But
∫
|x|>r

ξ2dx→ 0 as r →∞, so

lim sup
n→∞

‖F (un)− F (u)‖2L2 ≤ 8ε2‖ξη‖2L∞M2 for all ε > 0,

proving that ‖F (un)− F (u)‖L2 → 0 as required.

Suppose now that A �= 0. Setting g(s) = f(s)−As and then G(u) = ξg(ηu),
the preceding argument shows that G : H2(RN ) → L2(RN ) is compact. Choose
w ∈ C∞

0 (RN ) such that w �≡ 0 and suppw ⊂ B(0, 1/2). Consider the sequence
defined by un(x) = w(x − ne1) where e1 = (1, 0, . . . , 0) ∈ RN . It is easily seen
that un ⇀ 0 weakly in H2(RN ) and hence, by the argument just used to prove
the compactness of F when A = 0, we have ‖G(un)‖L2 → 0 since G(0) = 0. But,
for m,n ≥ R + 1 and m �= n,

‖F (un)− F (um)‖L2 ≥ ‖Aξη(un − um)‖L2 − ‖G(un)−G(um)‖L2

where

‖Aξη(un − um)‖2L2 ≥ A2δ2
∫
RN

(un − um)2dx = 2A2δ2
∫
RN

w2dx

since supp un ∩ supp um = ∅ and

‖G(un)−G(um)‖L2 → 0 as n,m→∞.

Thus {F (un)} has no convergent subsequence and consequently, F : H2(RN ) →
L2(RN ) is not compact.

Furthermore, since G(u) = ξg(ηu) = F (u)− Aξηu, it follows from Theorem
3.3 that G : H2(RN ) → L2(RN ) is Hadamard differentiable at 0 with G′(0)u =

−Aξηu. But we have just shown that ‖G′(0)(un−um)‖L2 ≥ √
2Aδ‖w‖L2 > 0 for all

m,n ≥ R+1 and m �= n, from which it follows that G′(0) : H2(RN )→ L2(RN ) is
not a compact linear operator. Since the Fréchet derivative of a compact operator
is always compact (see [9], for example), this implies that G : H2(RN )→ L2(RN )
is not Fréchet differentiable at 0. But the bounded linear operator u �→ Aξηu is
Fréchet differentiable from H2(RN ) to L2(RN ). Hence F : H2(RN ) → L2(RN )
cannot be Fréchet differentiable at 0.
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(3) Choose some u ∈ C∞
0 (RN ) such that u ≥ 0 on RN and ‖u‖L2 = 1. Then,

for δ > 0 and n ∈ N, define uδ
n by

uδ
n(x) =

δ

2nN/2
u

(
x− ne1

n

)
where e1 = (1, 0, . . . , 0).

Then, using the change of variable z = x−ne1
n in the integrals, we have that

‖uδ
n‖L2 =

δ

2
‖u‖L2, ‖∂iuδ

n‖L2 =
δ

2n
‖∂iu‖L2, ‖∂i∂juδ

n‖L2 =
δ

2n2
‖∂i∂ju‖L2

for 1 ≤ i, j ≤ N . Hence uδ
n ∈ BL2(0, δ) for all n and there exists n0 such that

uδ
n ∈ BH2 (0, δ) for all n ≥ n0. Also

‖F (uδ
n)‖2L2 =

∫
RN

ξ(x)2f

(
η(x)

δ

2nN/2
u

(
x− ne1

n

))2

dx

=

∫
RN

ξ(n[z + e1])
2f

(
η(n[z + e1])

δ

2nN/2
u(z)

)2

nNdz

=

∫
{z:u(z)>0}

ξ(n[z + e1])
2

{
f(wn(z))

wn(z)

}2

η(n[z + e1])
2

{
δu(z)

2

}2

dz

where

wn(z) ≡ η(n[z + e1])
δ

2nN/2
u(z)→∞ as n→∞

for all z �= −e1 such that u(z) > 0. Hence

lim inf
n→∞ ξ(n[z + e1])

2

{
f(wn(z))

wn(z)

}2

η(n[z + e1])
2

{
δu(z)

2

}2

≥ B2

{
δu(z)

2

}2

lim inf
|x|→∞

(ξη)2(x)

for almost all z ∈ RN . By Fatou’s Lemma,

lim inf
n→∞ ‖F (uδ

n)‖2L2 ≥
[
Bδ

2

]2
lim inf
|x|→∞

[ξη(x)]2
∫
RN

u(z)2dz

and hence

lim inf
n→∞ ‖F (uδ

n)‖L2 ≥ |B|δ
2
‖u‖L2 lim inf

|x|→∞
|ξη(x)|.

For all δ > 0, this implies that

sup
u,v∈BH2 (0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖H2

≥ sup
n≥n0

‖F (uδ
n)‖L2

‖uδ
n‖H2

≥ lim inf
n→∞

‖F (uδ
n)‖L2

‖uδ
n‖H2

= lim inf
n→∞

‖F (uδ
n)‖L2

‖uδ
n‖L2

‖uδ
n‖L2

‖uδ
n‖H2

≥ |B| lim inf
|x|→∞

|ξη(x)|,

since ‖uδ
n‖L2 = δ

2‖u‖L2 and
‖uδ

n‖L2

‖uδ
n‖H2

→ 1 as n→∞.

Thus L(F ) ≥ |B| lim inf |x|→∞ |ξη(x)| for F : H2(RN )→ L2(RN ). �
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4. Results about bifurcation for (1.3)

Under the hypotheses (V), (G), (H) and (F), we can now treat (1.3) as a special
case of Proposition 2.2 and hence of the more general Theorem 6.3 in [19]. For this
we choose

X = H2(RN ), Y = L2(RN ) and M = S +G+H + F : X → Y

where S,G,H and F are defined in Sections 3.1 to 3.4.
In Subsection 3.1, we have already noted that S = −Δ+ V : X ⊂ Y → Y is

self-adjoint and that its graph norm on X is equivalent to the usual Sobolev norm
for H2(RN ).

It follows from Theorems 3.1 to 3.3 that M ∈ C(X,Y ) with M(0) = 0 and
that M : X → Y is Gâteaux differentiable at 0 with M ′(0)u = Su for all u ∈ X .
Setting M1 = S+G+H and M2 = F , these results also show that M1 ∈ C1(X,Y )
with M ′

1(0) = S and that LY (M2) ≤ �‖ξη‖L∞. Thus the conditions (H1) to (H3)
of Proposition 2.2 are satisfied. Furthermore, setting

F (λ, u) = M(u)− λu for (λ, u) ∈ R×X,

we have that conditions (B1) to (B5) of [19] are satisfied for all λ0 �∈ σe(S). In
particular, for λ0 �∈ σe(S), Proposition 2.2 can be applied to (1.3) provided that
d(λ0, σe(S)) > �‖ξη‖L∞ . In Section 5 we shall provide examples, see Corollary 5.2
in particular, with G = H = 0, where 0 < d(λ0, σ(S)) < LY (M2) = �‖ξη‖L∞

and the conclusions of Proposition 2.2 fail. These examples also show that the
hypothesis (6.1) in Theorem 6.3 of [19] plays an essential role since the other
assumptions are satisfied yet the conclusion (6.1) fails.

In the present context, λ0 is a bifurcation point for the equation M(u) = λu
if and only if there exists a sequence {(λn, un)} ⊂ R×H2(RN ) of solutions of (1.3)
with un �≡ 0 such that λn → λ0 and ‖un‖H2 → 0.

From the preceding remarks, as an immediate consequence of Proposition
2.2 we obtain the following result. By the methods used in Section 3.2 and 3.3 a
nonlinearity of the form k(x, u(x),∇u(x)) could be treated instead of the separated
case g(x, u) + h(x,∇u) adopted here.

Theorem 4.1. Consider the equation (1.3) under the hypotheses (V), (G), (H) and
(F) and λ0 such that d(λ0, σe(S)) > �‖ξη‖L∞ where S = −Δ+ V .

(i) If ker{S − λ0I} = {0}, then λ0 is not a bifurcation point.
(ii) If dimker{S − λ0I} is odd, then there is continuous bifurcation at λ0.
(iii) If ker{S − λ0I} = span{φ} where ‖φ‖ = 1 there is continuous bifurcation at

λ0 and, for any sequence {(λn, un)} ⊂ R×H2(RN ) of solutions of (1.3) with
un �≡ 0 such that λn → λ0 and ‖un‖H2 → 0, we have that un = 〈un, φ〉L2{φ+
wn} where 〈wn, φ〉L2 = 0 and ‖wn‖H2 → 0.

Remarks. If f ≡ 0, the result applies to all points λ0 �∈ σe(S) and the conclusions
follow from standard bifurcation theory since M ∈ C1(X,Y ). For f �≡ 0, previous
work deals with the case g ≡ h ≡ 0 under much more restrictive assumptions the
term F . The following proposition summarises most of the earlier contributions. Its



436 C.A. Stuart

hypotheses imply that (V), (G), (H) and (F) are all satisfied with G = H = 0 and
η = 1/ξ. Hence in Proposition 4.2 we are discussing bifurcation for a special case of
(1.3), which includes (1.1) but not (1.2). As pointed out in [17], any distributional
solution u ∈ L2(RN ) lies in W 2,p(RN ) for all p ∈ [2,∞) and bifurcation for (4.1)
with respect to the H2-norm, as is discussed in Theorem 4.1, is equivalent to
bifurcation with respect to the L2-norm.

Proposition 4.2. Consider the equation

−Δu+ V u+ ξf

(
u

ξ

)
= λu for u ∈ H2

(
RN

)
(4.1)

under the following hypotheses: V ∈ L∞(RN ), ξ ∈ L2(RN ) with ξ > 0 a.e. and
f ∈ C1(RN ) is an odd function such that

(i) � = sups∈R |f ′(s)| <∞, f ′(0) = 0 and
(

f(s)
s

)′
> 0 for all s > 0,

(ii) there exists A > 0 such that sups>0 |As− f(s)| <∞.

We have the following conclusions about bifurcation for (4.1), where S =
−Δ+ V . Recall that Λ = inf σ(S) and Λe = inf σe(S).

(a) If ker(S−λ0I) = {0} and either d(λ0, σe(S)) > A or λ0 < Λe, then λ0 is not
a bifurcation point.

(b) If ker(S − λ0I) �= {0} and λ0 < Λe, then λ0 is a bifurcation point.
(c) Suppose that N ≤ 3 and that η = 1/ξ has the following properties:

η ∈ W 2,∞
loc (RN ), inf η > 0 and for

some t > 0, ∂αηt ∈ L∞(RN ) for 1 ≤ |α| ≤ 2.

If λ0 �∈ σe(S) and dimker(S − λ0I) is odd, then λ0 is a bifurcation point.

(d) If A > Λe − Λ and λ0 ∈ [Λe,Λ +A], then λ0 is a bifurcation point.
(e) Suppose that V ≡ 0 and ξ(x) = (1 + |x|2)t for some t > N/4. If λ0 >

A[1 + 4t−N
2 ], then λ0 is not a bifurcation point and λ0 > A = Λ + A since

Λ = Λe = 0.

Remark 1. Since f(0) = 0, it follows from (i) and (ii) that

lim
s→0

f(s)

s
= 0 <

f(s)

s
< A = lim

s→∞
f(s)

s
for all s > 0.

Also f ′(s) > f(s)
s for all s > 0, so � ≥ A and in some case the inequality is

strict. For example, f(s) = |s|2σs/(1 + s2)σ satisfies (i) and (ii) for all σ > 0, but
� = sups>0 f

′(s) = f ′(
√
2σ + 1) > 1 = A. On the other hand, f(s) = s − tanh s

also satisfies (i) and (ii) and in this case � = A = 1.

Remark 2. With η = 1/ξ and g = h = 0, we see that (4.1) is a special case of
(1.3) satisfying the conditions (V), (G), (H), (F) and (W2). Therefore Theorem 4.1
applies and yields information not contained in the conclusions (a) to (e). Notice
however that if f satisfies the hypotheses of Proposition 4.2, −f does not. Of
course, −f still satisfies (F) and so Theorem 4.1 can treat this case too, but as is
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shown in Section 5, the conclusions (b) and (d) of the proposition fail in this case,
as does part (c) for ξ(x) = e−α|x| with large positive α. Theorem 4.1 places much
weaker restrictions on the weights ξ and η.

Proof. Defining h by h(0) = 0 and h(s) = f(s)/(As) for s �= 0, our hypotheses on
f imply that h satisfies the conditions (H3) to (H5) of [17] and our equation (4.1)
is just (1.1) of [17] with q = V . Noting Proposition 2.1 of [17], the conclusions
(a), (b) and (d) are consequences of statements (R1) to (R3) in Section 3 of [17],
whereas (e) is just a restatement of the example following Theorem 3.1 in that
paper.

The hypotheses on η made in part (c) mean that η is a transference weight of
order 2 in the sense introduced by P.J. Rabier in [10, 11]. They ensure that ξ = 1/η
satisfies the condition (H2)∗ of Section 4 of [17], where the results of [10] are applied
to (4.1). In particular, the weighted Sobolev space W 2,2

η is continuously embedded

in H2(RN ) so bifurcation at λ0 in W 2,2
η implies that λ0 is a bifurcation point for

(4.1) in the sense of the present paper. Thus part (c) follows from statement (C2)
in Section 4.2 of [17]. In fact, as (C2) shows, Rabier’s work provides a stronger
statement about bifurcation at such points. �

Commentaries on the conclusions

(1) Since A ≤ �, the conclusion (a) is sharper than (i) of Theorem 4.1 for the
equation (4.1).

(2) Under the hypotheses of the proposition, consider a potential V such that
Λ = Λe and such that there exist b > a > Λe such that (a, b) ∩ σ(S) = ∅.
Then choose f with A > b − Λe. We now have that (a, b) ⊂ [Λe,Λ + A] and
hence every λ0 ∈ (a, b) is a bifurcation point by part (d) despite the fact that
λ0 �∈ σ(S). Note that at these points, d(λ0, σe(S)) ≤ λ0−Λe < b−Λe < A ≤
�‖ξη‖L∞ since ξη ≡ 1.

(3) In the next section we show that there are functions f satisfying (F) and
weights ξ for which statement (b) of the proposition fails even when λ0 = Λ
is a simple eigenvalue.

(4) The approach devised by Rabier can be used to establish bifurcation for (4.1)
at eigenvalues of odd multiplicity of S under much weaker hypotheses on f
provided that η = 1/ξ is a transference weight. See Section 5 of [10].

5. A case where there is no bifurcation at a simple eigenvalue

In this section we consider a special case of (1.3) in which the hypotheses (V),(G),
(H) and (F) are satisfied and Λ = inf σ(S) < inf σe(S) is a simple eigenvalue of S.
Consider the equation

−u′′ + V u+ e−α|x|f(eα|x|u) = λu on R, (5.1)

where α is a positive constant,

(V0) V ∈ C0(R) with V ≤ 0 but V �≡ 0 on R,
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and

(K) f ∈ C1(R) is an odd function with f ′(0) = 0, ( f(s)s )′ ≤ 0 for s > 0 and
� ≡ sups>0 |f ′(s)| <∞.

Clearly V ∈ L∞(R) and so V ∈ T1(q) for all q ≥ 2. Thus Su = −u′′ + V u
defines a self-adjoint operator S : H2(R) ⊂ L2(R) → L2(R). It follows from (V0)
that Λ ≡ inf σ(S) < 0 = inf σe(S) and that Λ is a simple eigenvalue of S with an
eigenfunction φ ∈ C2(R) which is strictly positive on R with ‖φ‖L2 = 1. Note that
d(Λ, σe(S)) = |Λ|.

For the ensuing calculations it is convenient to write f in the form f(s) =
k(s)s with k(0) = 0, where (K) ensures that k ∈ C(R) is an even function having
the properties

k ∈ C1((0,∞)) with k′ ≤ 0 on (0,∞) and − L ≤ k ≤ 0 on R,

where L ≡ − lims→∞ k(s) ∈ [0, �]. Note that if a function f satisfies the hy-
potheses of Proposition 4.2, then −f satisfies the condition (K). In particular,
f(s) = −|s|2σs/(1 + s2)σ satisfies (K) for all σ > 0.

Recall that H2(R) is continuously embedded in C1(R). Since V and k are
continuous, u ∈ C2(R) for any solution (λ, u) ∈ R×H2(RN ) of (5.1). This equation
can then be written as

−u′′ + {V + k(eα|x|u)}u = λu. (5.2)

Let Z > 0 be such that V (x) = 0 for |x| ≥ Z. Note that on R\(−Z,Z), for λ < 0,
the equation can be written as

u′′ = {k(eα|x|u) + |λ|}u. (5.3)

Theorem 5.1. Suppose that the conditions (V0) and (K) are satisfied and set L ≡
− lims→∞

f(s)
s . Note that 0 ≤ L ≤ �.

(i) If |Λ| > �, there is continuous bifurcation at Λ. Furthermore, for any sequence
{(λn, un)} ⊂ R×H2(R) of solutions of (5.1) with un �≡ 0 such that λn → Λ
and ‖un‖H2 → 0, we have that un = 〈un, φ〉L2{φ+ wn} where 〈wn, φ〉L2 = 0
and ‖wn‖H2 → 0. Also, for n large enough, un ∈ C2(R) has no zeros and so
there is a sequence {(λn, un)} ⊂ R×H2(R) of solutions of (5.1) with un > 0
on R and λn ≤ Λ such that λn → Λ and ‖un‖H2 → 0.

(ii) If |Λ| < L and α > |Λ|1/2, then Λ is not a bifurcation point for (5.1). Indeed,
setting ε = min{(L−|Λ|)/2, α2−|Λ|, |Λ|}, u ≡ 0 is the only solution of (5.1)
in H2(R) for λ ∈ (Λ− ε,Λ + ε).

Remark 1. Inspecting the proof of part (i), we observe that λn < Λ provided that
f(s) < 0 for all s > 0, since

Λ =

∫
R

(φ′)2 + V φ2dx >

∫
R

(φ′)2 +Wnφ
2dx ≥ inf σ(Sn) = λn,

in this case.



Bifurcation at Isolated Eigenvalues 439

Remark 2. In part (ii), the proof in fact shows that u ≡ 0 is the only solution with
u(x)→ 0 as x→∞ for λ ∈ (Λ−ε,Λ+ε). Note that in Step 1, the monotonicity of
J implies that limx→∞ u′(x)2 exists, and hence u′(x) → 0 if u(x) → 0 as x→ ∞.
The rest of the proof is the same.

Proof. (i) The first part of the conclusion is a special case of Theorem 4.1(iii),
so we only need to justify the claims about the signs of un and λn − Λ. Using
the oddness of f , we can suppose that there is a sequence of solutions converging
to (Λ, 0) in R × H2(R) and, in addition, that 〈un, φ〉L2 > 0 for all n. Let Z be
such that suppV ⊂ [−Z,Z]. Since m ≡ inf |x|≤Z φ(x) > 0 and ‖wn‖L∞ → 0, there
exists n0 such that φ + wn ≥ m/2 on [−Z,Z] for all n ≥ n0. By increasing n0 if
necessary, we can also suppose that λn < 0 and |λn − Λ| < |Λ| − � for all n ≥ n0.
But, for |x| ≥ Z, by (5.3) we have that

u′′
n = {k(eα|x|un)− λn}un ≤ {−�+ |Λ| − |λn − Λ|}un < 0

at points where un < 0 since −� ≤ −L ≤ k(s) ≤ 0 for all s ∈ R. Hence un

cannot have a negative minimum in the set (−∞,−Z] ∪ [Z,∞). Since un(−Z) >
0, un(Z) > 0 and lim|x|→∞ un(x) = 0, it follows that un ≥ 0 on (−∞,−Z]∪ [Z,∞)
and hence on R. Thus any zero of un is at least a double zero and the existence of
such a value implies that u ≡ 0, by the uniqueness of the solution of (5.1) with the
conditions un(x0) = u′

n(x0) = 0. Hence we have that un > 0 on R for all n ≥ n0.
Setting Wn(x) = V (x) + k(eα|x|un(x)), we see from (5.2) that un ∈ H2(R)

is a positive eigenfunction with eigenvalue λn of the operator Snu = −u′′ +Wnu.
Since k(s) ≥ −L for all s ∈ R, we have that Wn(x) ≥ −L for |x| ≥ Z and
so inf σe(Sn) ≥ −L. On the other hand, k ≤ 0 on R and hence inf σ(Sn) ≤
inf σ(S) = Λ < −� ≤ −L. This implies that inf σ(Sn) is a simple eigenvalue of
Sn with a positive eigenfunction and consequently λn = inf σ(Sn), showing that
λn ≤ Λ.

(ii) Let (λ, u) be a non-trivial solution with λ ∈ (Λ−ε,Λ+ε) and u ∈ H2(R).
We show that this leads to a contradiction.

Step 1, in which we show that u cannot change sign in (Z,∞).
For x, s ∈ R, let

L(x, s) = e−2αxΦ(eαxs) where Φ(t) =

∫ t

0

f(s)ds =

∫ t

0

k(s)s ds.

Then L(·, ·) ∈ C2(R2) with

∂xL(x, s) = αe−2αxψ(eαxs) where ψ(t) = f(t)t− 2Φ(t)

and
∂sL(x, s) = e−αxf(eαxs) = k(eαxs)s.

We observe that

ψ(t) = k(t)t2 − 2

∫ t

0

k(s)sds =

∫ t

0

k′(s)s2ds ≤ 0 for all t ∈ R

by (K).
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Consider now the function J : R→ R defined by

J(x) =
1

2
{u′(x)2 + λu(x)2} − L(x, u(x)).

Clearly, J ∈ C1(R) and, for x > Z,

d

dx
J(x) = u′(x){u′′(x) + λu(x)} − ∂xL(x, u(x)) − ∂sL(x, u(x))u

′(x)

= u′(x){u′′(x) + λu(x)− k(eαxu(x))u(x)} − ∂xL(x, u(x))

= −∂xL(x, u(x) = −αe−2αxψ(eαxu(x)) ≥ 0.

We also have that |f(s)| ≤ �|s| for all s ∈ R and so |Φ(s)| ≤ 1
2�s

2 and then

|L(x, s)| ≤ 1
2�s

2, too.

Since u ∈ H2(R) implies that limx→∞ u(x) = limx→∞ u′(x) = 0, it follows
that J(x) → 0 as x →∞ and then from the monotonicity of J that J(x) ≤ 0 for
all x > Z.

Suppose that u(x0) = 0 for some x0 > Z. Then 0 ≥ J(x0) =
1
2u

′(x0)
2 since

L(x0, 0) = 0. By the uniqueness of the solution of (5.1) satisfying the conditions
u(x0) = u′(x0) = 0, this implies that u ≡ 0 on R, whereas we have supposed that
u is a non-trivial solution. Hence u has no zeros in the interval (Z,∞).

Step 2, in which we prove that limx→∞ eαxu(x) =∞ or −∞.
In view of step 1 and the oddness of f , we can suppose that u > 0 on

(Z,∞). Since |λ| − α2 = −λ − α2 < (−Λ + ε) − α2 = |Λ| − α2 + ε ≤ 0 we
can choose β ∈ (|λ|1/2, α) and then set w(x) = ce−βx where c = 1

2u(R)eβR and
R = Z + 1. Then c > 0 and we consider the function z = u − w. Since β > 0
and u ∈ H2(R), z(x) → 0 as x → ∞. By the choice of c, z(R) = 1

2u(R) > 0. Let

Ω = {x > R : z(x) < 0} and suppose that Ω �= ∅. Then z ∈ C2(R) and there
exists a point x0 ∈ Ω such that z(x0) = min{z(x) : x ∈ Ω} < 0 and z′′(x0) ≥ 0.
But, on Ω,

z′′ = u′′ − w′′ = {k(eαxu) + |λ|}u− β2w ≤ |λ|u− β2u < 0

since k ≤ 0 on R, w > u > 0 on Ω and |λ| < β2. In particular, z′′(x0) < 0
contradicting the fact that z attains its minimum at z0. Hence Ω = ∅ and we have
proved that u(x) ≥ ce−βx for all x > R = Z +1. But then, eαxu(x) ≥ ce(α−β)x for
all x > R, where c > 0 and α− β > 0. Thus limx→∞ eαxu(x) =∞, as required.

Step 3, in which we obtain a contradiction to the conclusion of Step 1.
As in Step 2, we can assume without loss of generality that eαxu(x)→∞ as

x→∞ and hence k(eαxu(x))→ −L as x→∞. But

k(eαxu(x)) + |λ| = {k(eαxu(x)) + L} − L+ |λ|
≤ {k(eαxu(x)) + L} − L+ |Λ|+ |λ− Λ| < {k(eαxu(x)) + L} − ε

since L − |Λ| ≥ 2ε and |λ − Λ| < ε. Hence there exists R1 > Z + 1 such that
k(eαxu(x)) + |λ| < −ε/2 for all x > R1.
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Setting v(x) = sin
√

ε
2x, we have that v′′ = − ε

2v and the zeros of v are

xn =
√

2
εnπ for n ∈ Z. For n even, v > 0 on (xn, xn+1). Now consider an even

integer n such that xn > R1. Then∫ xn+1

xn

uv′′ − u′′vdx = uv′|xn+1
xn

= −
√

ε

2
{u(xn) + u(xn+1)} < 0.

On the other hand,∫ xn+1

xn

uv′′ − u′′v dx =

∫ xn+1

xn

−uε
2
v + {λ− k(eαxu)}uv dx

= −
∫ xn+1

xn

{ε
2
+ |λ|+ k(eαx)}uv dx > 0,

since uv > 0 on (xn, xn+1) by step 1 and k(eαxu(x)) + |λ| < −ε/2 by the choice
of R1. �

It is natural to look for a result similar to Theorem 5.1 for N ≥ 2. This can
easily be done for part (i), but for part (ii) which is the main point of Theorem
5.1 it is not so clear how to proceed. For the approach used here, the obstacle at
present is generalizing Step 1. Steps 2 and 3 can be extended to higher dimensions
so one could obtain the conclusion that there is no bifurcation of positive solutions
at Λ for potentials V having compact support and for which Λ < inf σe(−Δ+ V ).

Returning to the case N = 1, minor modifications of the proof of part (ii)
yield the same conclusion for other types of potential. For example (V0) could be
replaced by

(V1) V ∈ L∞(R) with V ≤ 0 a.e. on R and there exists a < b < Z such that
V ∈ C((a, b)) with V (x) < 0 for x ∈ (a, b) and V (x) = 0 for |x| > Z.

or

(V2) V ∈ L∞(R) with lim|x|→∞ V (x) = 0 and there exists Z > 0 such that

V ∈ C1((Z,∞)) and V ′(x) ≤ 0 for all x > Z.

Unlike (V0) and (V1), (V2) does not ensure that inf σ(S) < 0 so this condition
has to be added in that case.

Finally, to draw some important information from Theorem 5.1 we specify a
class of nonlinearities f which satisfy (K) and for which L = �.

(Q) f ∈ C1(R) is an odd function with f ′(0) = 0 which is concave on [0,∞) with
f ′(∞) ≡ lims→∞ f ′(s) > −∞.

Examples of functions satisfying (Q) are given by f(s) = �{arctan s− s} and
f(s) = �{tanh s− s} for any � > 0.

As already noted, functions of the form f(s) = −|s|2σs/(1 + s2)σ satisfy (K)
for all σ > 0, but they do not satisfy (Q) since L = − lims→∞ f ′(s) = 1 and
� = sups∈R |f ′(s)| = −f ′(

√
2σ + 1) > 1 for all σ > 0. On the other hand, for

functions of the form f(s) = −|s|γs/(1 + |s|γ), we find that (K) is satisfied for all
γ > 0 whereas (Q) is satisfied if and only if 0 < γ ≤ 1.
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The hypothesis (Q) implies that f ′ ≤ 0 on R and that sups∈R |f ′(s)| = �

where � = −f ′(∞) = − lims→∞
f(s)
s . Setting

ξ(x) = e−α|x| and η(x) = eα|x| and then F (u) = ξf(ηu),

it follows that the hypotheses (F), (W1) and (W2) of Section 4 are satisfied and
hence from Theorem 3.3 that F : H2(R)→ L2(R) is Hadamard differentiable at 0
with F ′(0) = 0. However, except in the trivial case f ≡ 0, Theorem 3.4 shows that
this mapping is not Fréchet differentiable at 0 and it is not compact. Furthermore,

L(F ) = LL2

(F ) = �.

Corollary 5.2. Consider the equation (5.1) under the hypotheses (V0) and (Q).

(i) If |Λ| > �, there is continuous bifurcation at Λ.

(ii) If |Λ| < � and α > |Λ|1/2, then Λ is not a bifurcation point. Indeed, setting
ε = min{(� − |Λ|)/2, α2 − |Λ|, |Λ|}, u ≡ 0 is the only solution of (5.1) in
H2(R) for λ ∈ (Λ− ε,Λ + ε).

Remark 1. Noting that d(Λ, σe(S)) = |Λ| and L(F ) = LL2

(F ) = �, we see that
d(Λ, σe(S)) < L(F ) in part (ii) and that in this case, Λ is not a bifurcation point for
(5.1). The other hypotheses of Theorem 4.1 are satisfied in both parts (i) and (ii).
Hence, under the assumptions (V0) and (Q), (5.1) is a special case of (1.3) which
satisfies the hypotheses (H1) to (H3) of Proposition 2.2 and so also the conditions
(B1) to (B5) of Theorem [19], as discussed at the beginning of Section 4.

Remark 2. Equation (5.1) is just (4.1) with ξ(x) = e−α|x| but the assumption (K)
means that f does not satisfy the hypotheses of Proposition 4.2 and (ii) shows
that the statement (b) of that proposition does not hold for λ0 = Λ in the present
situation. Of course, statement (c) also fails for (5.1) but it should be realized that
this happens solely because η(x) = 1/ξ(x) = eα|x| is not a transference weight.
See commentary 4 in Section 4.
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