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Preface

The present volume is dedicated to Bernhard Ruf on the occasion of his sixtieth
birthday. It contains articles by participants of the IX Workshop on Nonlinear
Differential Equations, which took place at the Federal University of Paráıba in
João Pessoa, Brazil in September 2012. The meeting belongs to a bilateral project
between Brazil and Italy, which started in 1993 as an initiative of Bernhard Ruf
and Carlo Pagani on the Italian side. From the beginning these events have been
gathering mathematicians from all over the world.

Bernhard Ruf



x Preface

Bernhard Ruf obtained his PhD in 1980 at the University of Zürich under
the guidance of Peter Hess, and as a student he made his first contacts with the
Brazilian community. His connections were intensified through the realization of
a series of workshops, scientific collaborations and joint papers. On the side, he
interlaced his research with scientists from several South American countries, USA,
Canada, most European countries, India, China, Japan, Australia and Russia.

Since 1994, Bernhard has been Full Professor at the Università degli Studi
di Milano, where he is a leading figure not only as a teacher and researcher, but
also as an adviser of PhD students and supervisor of post-docs. His talent and
dedication in mentoring young researchers is well known, and by now Bernhard
has raised more than one generation of young mathematicians.

Bernhard has been director of the PhD School in Mathematics and the or-
ganizer of the Leonardo da Vinci Lectures since 1990, a series of conferences by
worldwide recognized mathematicians. He is a director of three editions of the
Riemann International School of Mathematics since 2009 and Founder and Man-
aging Editor since 2002 of the Milan Journal of Mathematics, formerly edited as
“Rendiconti del Seminario Matematico e Fisico di Milano”. He has participated in
scientific and organizing committees of a number of international congresses and
has been invited to deliver plenary lectures in major events.

Bernhard’s contribution to mathematics touches several fields of nonlinear
analysis and partial differential equations systems combining methods from topol-
ogy, geometry and analysis: singularity and bifurcation theory, where he obtained
the remarkable and optimal result that an elliptic operator with cubic nonlinearity
and a small linear term is a global cusp map between suitable Banach spaces; best
embedding constants and the existence of extremals; lower-order perturbations; ex-
istence and nonexistence of solutions to related partial differential equations and
systems; limiting cases in embedding inequalities, obtaining significant advances
in the understanding of the lack of compactness in Trudinger–Moser type inequal-
ities; periodic orbits of Hamiltonian systems, by means of a generalization of the
famous Lyapunov center theorem; existence theorems for superlinear elliptic equa-
tions. His results appeared in more than eighty papers, most of which published
in prestigious journals.

As recognition for his outstanding scientific career, in 2002, Bernhard has
been appointed member of the Academy of Sciences and Letters “Istituto Lom-
bardo”.
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Asymptotic Behavior of Sobolev
Trace Embeddings in Expanding Domains

Emerson Abreu, João Marcos do Ó and Everaldo Medeiros

Abstract. We investigate the asymptotic behavior of best constants in ex-
panding domains Ωε = ε−1Ω (ε > 0), for the Sobolev trace embedding
H1(Ωε) ↪→ Lp(∂Ωε), 1 ≤ p ≤ 2∗ := 2(N−1)/(N−2). We provide a detailed
description of the shape for extremal uε of the best constant and prove that
the maximum of uε is achieved on the boundary ∂Ω, and concentrates around
a maximum point of the mean curvature of the boundary. The nonexistence
of extremal is obtained for large ε.

Mathematics Subject Classification (2010). Primary 35J20; Secondary 35B40.

Keywords. Sobolev trace embedding, best constant, asymptotic behavior of
extremals.

1. Introduction

We begin recalling some well-known facts and definitions: Let H1(Ω) denote the
Sobolev space over a smooth bounded domain Ω ⊂ RN (N ≥ 3) with norm
‖u‖2H1(Ω) :=

∫
Ω

(|∇u|2 + u2
)
dx. The Sobolev trace embedding states that

H1(Ω) ↪→ Lp(∂Ω), 1 ≤ p ≤ 2∗, (1.1)

(where 2∗ = 2(N − 1)/(N − 2) is the critical Sobolev exponent), which can be
expressed as

C‖u‖2Lp(∂Ω) ≤ ‖u‖2H1(Ω), ∀ u ∈ H1(Ω).

The best constant for this inequality is the largest constant which the above in-
equality holds, namely

C(Ω) := inf

{ ‖u‖2H1(Ω)

‖u‖2Lp(∂Ω)

: u ∈ H1(Ω), u ∈ Lp(∂Ω)\{0}
}
.

Research partially supported by the National Institute of Science and Technology of Mathematics
INCT-Mat, CAPES, CNPq and FAPEMIG.
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Related with this embedding Del Pino and Flores in [4] investigated the asymptotic
behavior of the best constant C(Ωλ) when Ωλ is an expanding bounded domain,
that is, Ωλ = λ−1Ω. It is known that existence of extremals for C(Ωλ) is after
normalization equivalent to the existence of ground state solutions to the problem⎧⎨⎩

−Δu+ u = 0 in Ωλ,

∂u

∂η
= |u|p−2u on ∂Ωλ.

(1.2)

It is worth mentioning that the limit problem associated with (1.2)⎧⎨⎩
Δw + w = 0 in RN

+

∂w

∂η
= |w|p−2w on RN−1

(1.3)

plays a crucial role on the study of the behavior of extremal functions to C(Ωλ).
Motivated by [4], here we investigate the asymptotic behavior of the best constant

Sp(Ω) := inf

{
‖u‖2∂

‖u‖2Lp(∂Ω)

: u ∈ H1(Ω), u ∈ Lp(∂Ω)\{0}
}
,

associated to the Sobolev trace inequality

S

(∫
∂Ω

|u|p dσ

)2/p

≤
(∫

Ω

|∇u|2 dz +

∫
∂Ω

u2 dσ

)
, ∀ u ∈ H1(Ω), (1.4)

where we are considering in H1(Ω) the equivalent norm ‖u‖2∂ :=
∫
Ω |∇u|2 dz +∫

∂Ω
u2 dσ. Thus a natural question is to investigate the behavior of Sp(Ωε) in

expanding domain Ωε := ε−1Ω = {ε−1z : z ∈ Ω}. Throughout this paper we
assume that 2 < p < 2∗. In this case it is known that the embedding H1(Ω) ↪→
Lp(∂Ω) is compact. So we have existence of extremals for Sp(Ω) and one can see
that there is a one-to-one correspondence between extremal function to (1.4) on
the domain Ωε and the solutions of the rescaling problem⎧⎨⎩

Δu = 0 in Ωε,

∂u

∂η
+ u = |u|p−2u on ∂Ωε.

(Pε)

Applying standard regularity theory and strong maximum principle we have that
solutions of (Pε) is smooth up to the boundary and defined signed in Ωε. Thus,
we assume from now on that our solutions are positive in Ωε.

Using a variational approach, more precisely, the mountain-pass theorem,
we show the existence of a least energy solution uε of (Pε) for small ε and then,
using energy estimates, we prove that the points where this solution uε attains its
maximum concentrate around a point of maximum for the mean curvature of ∂Ω.

The main characteristics of (Pε) are the presence of the nonlinear boundary
condition and that it has exactly two constant solutions u ≡ 0 and u ≡ 1 (non-
negative) for all ε > 0. For the mountain-pass solution uε obtained in this setting,
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we will establish energy estimates that distinguish it from those constant solutions
for small ε. More precisely, we will prove that for small ε > 0

IΩε(uε) < IΩε(1) =

(
1

2
− 1

p

)
ε1−N |∂Ω|, (1.5)

where IΩε is the associated functional to (Pε). In order to obtain the estimate
(1.5), it is crucial, in our approaches, the study of positive ground state solutions
to the following limit problem⎧⎨⎩

Δw = 0 in RN
+ ,

∂w

∂η
+ w = |w|p−2w on ∂RN

+ ,
(P∞)

where RN
+ = {(x, t) ∈ RN t > 0} and ∂RN

+ = {(x, 0) : x ∈ RN−1}. We point out
that (P∞) appears naturally after blow-up when studying solutions of (Pε). More
precisely, if we stand at a point on the boundary ∂Ω and take ε → 0, then the
domain Ωε becomes a half-space which, after a convenient rotation and translation,
may be assumed to be RN

+ . In [1] we proved the existence of a ground state solution
for (P∞) which is radial and has exponential decay in the N − 1 variables and we
also prove a sharp polynomial decay in the last variable (see Proposition 3.1).
Moreover, considering the space

E =
{
u ∈ D1,2(RN

+ ) : u|RN−1 ∈ L2(RN−1)
}
, (1.6)

(where u|RN−1 is understood in the sense of trace) we prove that Cp(RN
+ ) (the least

energy level from the associated functional to (P∞)) is achieved and Cp(RN
+ ) =

p−2
2p Sp(RN

+ )p/(p−2), where

Sp(RN
+ ) = inf

{
‖∇u‖2L2(Rn

+) + ‖u‖2L2(RN−1) : u ∈ E, ‖u‖Lp(RN−1) = 1
}
.

We observe that, in contrast with the limit problems used in Ni–Takagi [11]
and Del Pino–Flores [5] where the ground state solutions have exponential decay,
in our case the ground state solutions w(x, t) of (P∞) does not have exponential
decay in the t-variable. Thus, we have to perform a different analysis for this case
(see [9] for a related problem).

Now we are ready to state our main results.

Theorem 1.1. There exists εo > 0 such that for all ε ∈ (0, εo), problem (Pε) has a
nonconstant positive least energy solution uε.

After straightforward calculations one can see that Cp(Ωε), the least energy
level associated to IΩε , satisfies

Cp(Ωε) =
p− 2

2p
Sp(Ωε)

p/(p−2). (1.7)

Since Ωε expands toward to a half-space depending on the choice of origin, it is
natural to relate the behavior of Sp(Ωε) and uε with Sp(RN

+ ), the best constant
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and extremals of a suitable trace Sobolev embedding in RN
+ . For more details, we

refers to [1] where the authors studied some properties on the solutions of (P∞).
Next, if we denote by H(z) the mean curvature of the boundary at the point

z ∈ ∂Ω, we have.

Theorem 1.2. Assume that N ≥ 4 and let uε be the least energy solution of (Pε)
obtained in Theorem 1.1. If zε ∈ ∂Ωε is a point where uε achieves its maximum
value then

H(εzε)→ max
z∈∂Ω

H(z), as ε→ 0.

Moreover, there are positive constants γ = γ(p,N) and γ̃ = γ̃(p,N) such that:

(i) the associated critical value Cp(Ωε) can be estimated as

Cp(Ωε) = Cp(RN
+ )− εγ max

z∈∂Ω
H(z) + o(ε), as ε→ 0; (1.8)

(ii) the best constant Sp(Ωε) can be estimated as

Sp(Ωε) = Sp(RN
+ )− εγ̃ max

z∈∂Ω
H(z) + o(ε), as ε→ 0. (1.9)

Finally, we will study problem (Pε) for large ε, for which the main result can
be stated as follows.

Theorem 1.3. There exists ε∗ > 0 such that for each ε > ε∗, u ≡ 1 is the unique
positive solution of (Pε).

Remark 1.4. In the light of Theorem 1.3, the ground state of (Pε) is the constant

function uε ≡ 1, and the best constant Sp(Ωε) = Sp(Ωε) =
(
ε1−N |∂Ω|)1− 2

p as
ε→∞, which implies that Sp(Ωε)→ 0 as ε→∞, since p > 2.

Some related sharp inequalities involving Sobolev trace imbedding are given
by Bonder–Rossi [3], Adimurthi–Yadava [2], Escobar [7], and the references therein.
See also [2, 12]. Problems with nonlinear boundary conditions appear in a natural
way when one considers the Sobolev trace embedding, see for example [5], where
existence and qualitative behavior of solutions were investigated. When p = 2∗,
Adimurthi–Yadava in [2, see proof of Theorem 2] proved that (Pε) does not have
solution for ε large. We quote that in their approach they used strongly the ex-
tremal function w of the critical Sobolev imbedding H1(Rn

+) ↪→ L2∗−1(Rn−1).
They also obtain similar existence result for ε small.

2. Existence of extremal

As we quote in the introduction, the existence of extremal is equivalent the ex-
istence of least energy solutions to (Pε). For that we study critical points of the
associated functional to (Pε),

IΩε(u) :=
1

2

∫
Ωε

|∇u|2 dz +
1

2

∫
∂Ωε

u2 dσ − 1

p

∫
∂Ωε

(u+)p dσ,
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defined on the Hilbert space H1(Ωε) endowed with inner product

〈u, v〉 =
∫
Ωε

[∇u∇v + uv] dx

and the induced norm ‖u‖H1(Ωε) := 〈u, u〉1/2. The energy functional IΩε is well

defined and C1 with

I ′Ωε
(u)ϕ =

∫
Ωε

∇u∇ϕ dz +

∫
∂Ωε

uϕ dσ −
∫
∂Ωε

(u+)p−1ϕ dσ, ϕ ∈ H1(Ωε). (2.1)

Consequently, the weak solutions of (Pε) are critical points of IΩε and conversely
(see [13]).

Lemma 2.1. The functional IΩε satisfies the following conditions:

(i) for each u ∈ H1(Ωε) such that the trace of u+ is not identically zero on ∂Ωε,
we have lims→∞ IΩε(su) = −∞.

(ii) there exist ρ, α > 0, such that IΩε(u) ≥ α if ‖u‖H1(Ωε) = ρ.

Proof. Let u ∈ H1(Ωε) such that the trace of u+ is not identically zero on ∂Ωε.
From

IΩε (su) :=
s2

2

{∫
Ωε

|∇u|2 dz +

∫
∂Ωε

u2 dσ

}
− sp

p

∫
∂Ωε

(u+)p dσ,

we see that (i) holds, because p > 2. By inequality (1.4) we get

IΩε(u) ≥ C1‖u‖2H1(Ωε)
− C2‖u‖pH1(Ωε)

,

which implies (ii), and this completes the proof. �
Lemma 2.2. IΩε satisfies the Palais–Smale condition.

Proof. Let (uk) in H1(Ωε) be a (PS)-sequence for the functional IΩε , that is,
|IΩε(uk)| ≤ C and I ′Ωε

(uk)→ 0. Since(
1

2
− 1

p

)[∫
Ωε

|∇uk|2 dz +

∫
∂Ωε

u2
k dσ

]
= IΩε(uk)− 1

p
I ′Ωε

(uk)uk

≤ C1 + C2‖uk‖H1(Ωε),

using inequality (1.4), we get ‖uk‖2H1(Ωε)
≤ C′

1+C′
2‖uk‖H1(Ωε), which implies that

(uk) is bounded. Thus, up to a subsequence, we can assume that uk ⇀ u in H1(Ωε)
and uk → u in Lp(∂Ωε). Now observe that∫

Ωε

|∇(uk − u)|2 dz +

∫
∂Ωε

(uk − u)2 dσ

= (I ′Ωε
(uk)− I ′Ωε

(u))(uk − u) +

∫
∂Ωε

((u+
k )

p−1 − (u+)p−1)(uk − u) dσ.

(2.2)

By Hölder’s inequality, we have
∫
∂Ωε

((u+
k )

p−1 − (u+)p−1)(uk − u) dσ → 0. Since

uk ⇀ u and I ′Ωε
(u)(uk − u)→ 0, we obtain (I ′Ωε

(uk)− I ′Ωε
(u))(uk − u)→ 0. Thus,

IΩε satisfies the (PS) condition. �
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As a consequence of Lemmas 2.1 and 2.2 we have.

Proposition 2.3. For each ε > 0, the functional IΩε has a positive critical point
uε ∈ H1(Ωε) at the minimax level

Cp(Ωε) = inf
g∈Fε

max
0≤s≤1

IΩε(g(s)) > 0, (2.3)

where
Fε := {g ∈ C([0, 1], H1(Ωε)) : g(0) = 0, g(1) = e},

with e ∈ H1(Ωε), e �≡ 0 and IΩε (e) ≤ 0.

Proof. The proof is a simple consequence of Lemmas 2.1, 2.2 and the mountain
pass theorem. Moreover, uε is nonnegative in Ω. Indeed, taking ϕ = u−

ε as a test
function in (2.1) we have∫

Ωε

|∇u−
ε |2 dz +

∫
∂Ωε

(u−
ε )

2 dσ =

∫
∂Ωε

(u+
ε )

p−1(u−
ε ) dσ = 0.

Consequently, u−
ε ≡ 0. Finally, using standard elliptic regularity and maximum

principle we obtain uε > 0 in Ωε. �

Remark 2.4. As in [6] (see Lemma 3.1) we will use the equivalent characterization
of Cp(Ωε) more adequate to the arguments developed in this paper, more precisely

Cp(Ωε) = inf
v∈H1(Ωε)\{0}

max
s≥0

IΩε(sv).

Furthermore, it is easy to check that for each non-negative v ∈ H1(Ωε)\{0} there
is a unique sε = sε(v) > 0 such that

Cp(Ωε) ≤ IΩε(sεv) = max
s≥0

IΩε (sv). (2.4)

3. The limit problem

In this section we describe the asymptotic behavior of the ground state of the limit
problem (P∞), which will be crucial in order to get some estimates in the next
sections.

We consider the Hilbert space E defined in (1.6) endowed with the natural
inner product 〈u, v〉 = ∫

RN
+
∇u∇v dz +

∫
RN−1 uv dx and the corresponding norm

‖u‖2∂ =

∫
RN

+

|∇u|2 dz +

∫
RN−1

u2 dx. (3.1)

We summarize the main result about the limit problem (P∞) (see also [1], for
closed related result).

Proposition 3.1. Problem (P∞) has a positive solution w ∈ C∞(RN
+ )∩C2,α(RN

+ )∩E
such that

(i) w = w(x, t) is radially symmetric with respect to the variable x ∈ RN−1, that
is, w(x, t) = w(r, t) if r = |x|. Moreover, wr(r, t) < 0 in (0,+∞)× [0,+∞).
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(ii) w has exponential decay in the variable x and polynomial decay in the variable
t, that is, there exist c1, c2 > 0 such that

w(z) ≤ c1 exp(−c2|x|) 1

(1 + t2)(N−2)/2
, for all z = (x, t) ∈ RN

+ .

(iii) The derivatives of w has exponential decay in the variable x and polynomial
decay in the variable t, that is, there exist c1, c2 > 0 such that

|∇w(x, t)| ≤ c1 exp(−c2|x|) 1

(1 + t2)(N−2)/2
, for all z = (x, t) ∈ RN

+ .

Proof. For the proof of (i) and (ii) see [1]. Now we sketch the proof of (iii). Notice
that v = (wr +Aw) is a solution to the problem⎧⎨⎩

Δv = 0 in RN
+ ,

∂v

∂η
+ v = wp−2((p− 1)wr +Aw) on ∂RN

+

(3.2)

where A > 0 is a constant which will be chosen latter. Consider the function
ϕ1 = (wr +Aw)−. Since w has uniform decay we can choose r0 > 0 such that

wp−2(r, 0) ≤ 1/2 if r ≥ r0. (3.3)

Using that wr(r, t) < 0 for all (r, t) ∈ (0,+∞) × [0,+∞) we can choose A > 0
sufficiently large such that ϕ1 ≡ 0 if |(r, t)| ≤ R. Now, considering ϕ1 as a test
function in (3.2) and using estimate (3.3) we obtain∫

|z|≥R

|∇ϕ1|2 dz +
∫
|x|≥R

ϕ2
1 dx =

∫
|x|≥R

wp−2((p− 1)wr +Aw)ϕ1 dx

≤ 1

2

∫
|x|≥R

ϕ2
1 dx,

which implies ϕ1 ≡ 0 on RN
+ and so

0 ≤ −wr(r, t) ≤ Aw(r, t). (3.4)

In order to establish the decay of the derivative of w in the variable t we observe
that v = wt − w is a solution of{

Δv = 0 in RN
+ ,

v = −wp−1 on RN−1.
(3.5)

Let us define ϕ2 = (wt−w)+. Since −wp−1(x, 0) < 0 on RN−1, we have ϕ2(x, 0) ≡
0 on RN−1. Once again taking ϕ2 as a test function in (3.5) we concluded that

ϕ2 = 0 on RN
+ , and so wt(z) ≤ w(z), ∀z ∈ RN

+ . In particular, we obtain

(wt)+(r, t) ≤ w(r, t), for all (r, t) ∈ [0,∞)× [0, t). (3.6)

Now, let us fix A > 0 and observe that v = −wt −Aw is a solution of{
Δv = 0 in RN

+ ,

v = w(wp−2 − (A+ 1)) onRN−1.
(3.7)
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Since w(r, 0)→ 0 as r →∞ we get −wt(r, 0)−Aw(r, 0) = w(r, 0)(wp−2(r, 0)−(A+
1)) < 0, r ≥ r0. Thus, we can choose A > 0 such that ϕ3(r, 0) = (−wt(r, 0) −
Aw(r, 0))+ = 0, ∀ r ≥ 0, where ϕ3 = (−wt −Aw)+. It follows from (3.7), that∫

RN
+

∇(−wt −Aw)∇ϕ3dz =

∫
RN−1

∂(−wt −Aw)

∂η
ϕ3dx = 0.

Notice that ϕ3 ≡ 0 on the set {wt > 0}. Thus, we have

0 =

∫
RN

+∩{wt<0}
∇(−wt −Aw)∇ϕ3dz =

∫
RN

+

|∇((wt)− −Aw)+|2dz,

which implies

(wt)− ≤ Aw, in RN
+ . (3.8)

From (3.4), (3.6), and (3.8) we get the desired result. �

4. Upper estimate for Cp(Ωε)

In order to prove that the minimax solution uε is nonconstant for ε sufficiently
small, we will obtain an upper bound estimate to the minimax level Cp(Ωε) using
the characterization given in (2.4). In order to avoid technicalities we assume from
now on that Ω is a domain strictly convex. Let w be a positive solution of (P∞)
and fix z0 ∈ ∂Ω. After a translation and rotation of the coordinate system we
may assume that z0 is the origin and the inner normal to Ω at z0 is pointing in
the direction of the positive t-axis. On the other hand, there exists a C2 function
G : Br0 → R defined in a ball Br0 = {x = (x1, . . . , xN−1) ∈ RN−1 : |x| < r0}, such
that G(0) = 0,∇G(0) = 0. Since Ω is strictly convex we consider the following
cylinder in RN :

U = {(x, t) ∈ RN : |x| ≤ r0 and 0 ≤ t ≤ t0},
where t0 = min|x|=r0 G(x) > 0. Notice that

∂Ω ∩ U = {(x, t) : t = G(x)}
Ω ∩ U = {(x, t) : t > G(x)}. (4.1)

Using the minimax characterization of Cp(Ωε) given in (2.4) with v0(x, t) =
w(ε(x, t) − z0) we obtain the following estimate.

Proposition 4.1. There exists a positive constant γ, depending on N and p, such
that

Cp(Ωε) ≤ Cp(RN
+ )− εγ max

z∈∂Ω
H(z) + o(ε), as ε→ 0. (4.2)

We split the proof of Proposition 4.1 into two lemmas. We set

g(x) = 〈D2G(0)x, x〉, x ∈ RN−1,
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and

R1(ε) :=

∫
Ωε

|∇w|2 dz −
∫
RN

+

|∇w|2 dz,

R2(ε) :=

∫
∂Ωε

(
w2

2
− wp

p

)
dσ −

∫
RN−1

(
w2

2
− wp

p

)
dx.

Choosing sε > 0 such that maxs>0 IΩε(sv0) = IΩε(sεv0) we can state.

Lemma 4.2. The following estimates hold as ε→ 0,

R1(ε) = −ε
∫
RN−1

|∇w(x, 0)|2g(x) dx+ o (ε) ,

R2(ε) = ε

∫
RN−1

w2
t (x, 0)g(x) dx + o (ε) .

Moreover, sp−2
ε = 1+ O (ε).

Proof. Let Uε = ε−1U that is, Uε = {(x, t) ∈ RN : |εx| ≤ r0 and 0 ≤ εt ≤ t0},
where t0 = min|x|=r0 G(x) > 0. Now observe that

−R1(ε) =

∫
RN

+ \Ωε

|∇w|2 dz

=

∫
RN

+ \Uε

|∇w|2 dz +
∫
Uε\(Ωε∩Uε)

|∇w|2 dz −
∫
Ωε∩(RN

+ \Uε)

|∇w|2 dz

= A1(ε) +A2(ε) +A3(ε).

By Proposition 3.1, there is a positive constant C = C(N) such that

A1(ε) :=

∫
RN

+ \Uε

|∇w|2 dz ≤ C

∫
RN

+ \Uε

e−2c2|x|

(1 + t2)N−2
dz

≤ C

∫ +∞

t0ε−1

1

t2N−4
dt

∫ r0ε
−1

0

e−2c2rrN−2 dr

+ C

∫ +∞

0

1

1 + t2
dt

∫ +∞

r0ε−1

e−2c2rrN−2 dr

≤ C

∫ +∞

t0ε−1

1

t2N−4
dt+ C

∫ +∞

r0ε−1

e−2c2rrN−2 dr

= o (ε) . (4.3)

Since (Ωε ∩ (RN
+ \ Uε)) ⊂ RN

+ \ Uε, the last estimate implies

A2(ε) :=

∫
Ωε∩(RN

+ \Uε)

|∇w|2 dz = o (ε) .
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Setting Dε = {(x, t) : |εx| ≤ r0, t0 ≤ εt ≤ G(εx)} ⊂ RN
+ \ Uε, we have

A3(ε) :=

∫
Uε\(Ωε∩Uε)

|∇w|2 dz

=

∫
|εx|≤r0

∫ G(εx)ε−1

0

|∇w(x, t)|2 dt dx−
∫
Dε

|∇w|2 dz

=

∫
|εx|≤r0

∫ G(εx)ε−1

0

|∇w(x, t)|2 dt dx+ o (ε) .

Applying the mean value theorem there exists c ∈ (0, t) such that |∇w(x, t)|2 =
|∇w(x, 0)|2 + 2 〈∇w(x, c),∇wt(x, c)〉 t, which together with the fact that G(x) =
g(x) + o(|x|2) implies

A3(ε) = ε

∫
|εx|≤r0

|∇w(x, 0)|2g(x) dx+ o (ε)

= ε

∫
RN−1

|∇w(x, 0)|2g(x) dx− ε

∫
|εx|≥r0

|∇w(x, 0)|2g(x) dx + o (ε) .

As in estimate (4.3) one has
∫
|εx|≥r0

|∇w(x, 0)|2g(x) dx = o (ε) . Thus,

R1(ε) = −ε
∫
RN−1

|∇w(x, 0)|2g(x) dx+ o (ε) . (4.4)

To estimate R2(ε) we write R2(ε) = I2(ε)− Ip(ε) where

2I2(ε) =

∫
∂Ωε

w2 dσ −
∫
RN−1

w2 dx and pIp(ε) =

∫
∂Ωε

wp dσ −
∫
RN−1

wp dx.

If Γε = ∂Ωε ∩ Uε we have

2I2(ε) =

∫
Γε

w2 dσ −
∫
|εx|≤r0

w2(x, 0) dx+

∫
∂Ωε\Γε

w2 dσ −
∫
|εx|≥r0

w2(x, 0) dx.

It follows from the exponential decay of w(x, t) in the variable x that∫
|εx|≥r0

w2(x, 0) dx = o (ε) . (4.5)

Setting Ω̃ε = Ωε \ (Ωε ∩ Uε) it follows from [3, Lemma 1.3] that∫
∂Ωε\Γε

w2 dσ ≤
∫
∂Ω̃ε

w2 dσ ≤ S(Ω̃ε)‖w‖2H1(Ω̃ε)
,

where S(Ω̃ε) is bounded independent of ε. Thus, using the same approach as in
the proof to estimate R1(ε), we obtain∫

∂Ωε\Γε

w2 dσ = o (ε) . (4.6)
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By estimates (4.5) and (4.6) it follows that

2I2(ε) =

∫
Γε

w2 dσ −
∫
|εx|≤r0

w2(x, 0) dx+ o(ε)

=

∫
|εx|≤r0

(
w2(x, ε−1G(εx))

√
1 + |∇G(εx)|2 − w2(x, 0)

)
dx+ o(ε).

(4.7)

Considering the function fε(r) = w2(x, rε−1G(εx))
√

1 + r2|∇G(εx)|2 one can see
that

f(1)− f(0) = w2(x, ε−1G(εx))
√

1 + |∇G(εx)|2 − w2(x, 0).

By the mean value theorem we obtain 0 ≤ rε ≤ 1 such that

2I2(ε) = 2

∫
|εx|≤r0

w(x, rεε
−1G(εx))wt(x, rεε

−1G(εx))

×
√
1 + r2ε |∇G(εx)|2(ε−1G(εx)) dx + o(ε).

Since ε−1G(εx)) = εg(x) + o(ε) we get

I2(ε) = ε

∫
RN−1

w(x, rεε
−1G(εx))wt(x, rεε

−1G(εx))

×
√
1 + r2ε |∇G(εx)|2g(x)χ{|εx|≤r0} dx+ o(ε)

= ε

∫
RN−1

w(x, 0)wt(x, 0)g(x) dx + o(ε).

A similar argument, we obtain the following estimate to Ip(ε),

Ip(ε) = ε

∫
RN−1

wp−1(x, 0)wt(x, 0)g(x) dx + o(ε).

Thus, we concluded that

R2(ε) = ε

∫
RN−1

[
w(x, 0)− wp−1(x, 0)

]
wt(x, 0)g(x) dx + o(ε)

= ε

∫
RN−1

w2
t (x, 0)g(x) dx + o(ε).

(4.8)

The estimate for sε is now obvious in view of the estimates founded above. Indeed,

sp−2
ε =

∫
Ωε
|∇w|2 dz + ∫

∂Ωε
w2 dσ∫

∂Ωε
wp dσ

=
R1(ε) +

∫
RN

+
|∇w|2 dz + ∫

RN−1 w
2 dx+ 2I2(ε)

pIp(ε) +
∫
RN−1 wp dx

.

Since w is a solution of (P∞), it follows that sp−2
ε = 1 + O(ε), which completes

the proof. �
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Proof of Proposition 4.1. As we are supposing that z0 = 0, by estimate (2.4) with
v0 = w(ε(x, t)) we get

Cp(Ωε) ≤
{
s2ε
2

( ∫
RN

+

|∇w|2 dz +

∫
Ωε

|∇w|2 dz −
∫
RN

+

|∇w|2 dz
)

+
s2ε
2

(∫
RN−1

w2 dx+

∫
∂Ωε

w2 dσ −
∫
RN−1

w2 dx
)

− spε
p

( ∫
RN−1

wp dx+

∫
∂Ωε

wp dσ −
∫
RN−1

wp dx
)}

,

which together with the estimates obtained in Lemma 4.2 implies

Cp(Ωε) ≤
{
s2ε
2

(∫
RN

+

|∇w|2 dz +

∫
RN−1

w2 dx

)
− spε

p

∫
RN−1

wp dx

}

+
R1(ε)

2
+R2(ε) + o(ε).

Since w is a least energy solution of (P∞), using once again Lemma 4.2 and
Lemma 8.1 in the Appendix, we get

Cp(Ωε) ≤ Cp(RN
+ )− ε

∫
RN−1

( |∇w(x, 0)|2
2

− w2
t (x, 0)

)
g(x) dx+ o(ε)

= Cp(RN
+ )− εH(z)γ + o(ε)

where (see Lemma 8.2)

γ =

∫
RN−1

( |∇w(x, 0)|2
2

− w2
t (x, 0)

)
|x|2 dx > 0 (4.9)

and this completes the proof of Proposition 4.1. �

5. L∞ estimates for solutions of (Pε)

Next we adapt the Nash–Moser iterative methods to obtain L∞ estimate for weak
solutions of (Pε) with uniform bounded energy.

Proposition 5.1. There exists εo > 0 and a positive constant C = C(Ω, p,N) such
that for all nonnegative solution uε of (Pε) with ε ∈ (0, εo), we have

1 < sup
Ω

uε(ε
−1z) ≤ C. (5.1)

Proof. Let zε be such that uε(zε) = maxΩε
uε(z). It follows from Hopf’s lemma

that

0 <
∂uε

∂η
(zε) = up−1

ε (zε)− uε(zε),

which implies the first inequality in (5.1) because p > 2. The second inequality in
(5.1) follows by one well-known Moser iteration method. �
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If A ⊂ RN is an open set we use the notation

JA(u) =
1

2

∫
A

|∇u|2dz + 1

2

∫
∂A

u2dσ − 1

p

∫
∂A

|u|pdσ.

Lemma 5.2. The function uε decay uniformly at infinity, namely, given η > 0 there
exists an R > 0 such that uε(z) < η, if |z − zε| > R, where zε denotes any
maximum point of uε in Ωε.

Proof. By contradiction let us assume that for some η > 0, there are sequences
εk → 0 and zk ∈ Ωεk (for short we denote Ωεk , uεk by Ωk and uk respectively)
such that

|zεk − zk| → +∞ and uk(z
k) ≥ η. (5.2)

We claim that

2Cp(RN
+ ) ≤ lim inf JΩk

(uk) (5.3)

which is a contradiction, because Proposition 4.1 implies

lim sup JΩk
(uk) ≤ Cp(RN

+ ).

Thus it only remains to prove (5.3). Since (uk) is uniformly bounded in C1,α(Ωk)
we may assume up to a subsequence that uk(z

εk + z) → u(z) uniformly over
compacts subsets of RN

+ and u satisfies⎧⎨⎩
Δu = 0 in RN

+ ,

∂u

∂η
+ u = up on RN−1.

(5.4)

Since u(0) = limk→∞ uk(z
εk) ≥ η we have that u ≥ 0 and by the maximum prin-

ciple u > 0. Since u is a nontrivial solution of (5.4), we have Cp(RN
+ ) ≤ JRN

+
(u) =

JBR(u)+JBc
R
(u). Now, using that limR→∞ JBc

R
(u) = 0 and limk→∞ JBR(uk) =

JBR(u), given δ > 0, for all R sufficiently large we get

lim
k→∞

JBR(zεk )∩Ωk
(uk) ≥ Cp(RN

+ )

2
− δ.

Similarly,

lim
n→∞ JBR(zk)∩Ωk

(uk) ≥ Cp(RN
+ )

2
− δ.

Let us consider R > 0 and a smooth cut-off function ηkR with 0 ≤ ηkR ≤ 1 and
|∇ηkR| ≤ C, where C is independent of R and k such that

ηkR = 0 on BR−1(z
εk) ∩BR−1(z

k),

and

ηkR ≡ 1 on RN
+ \ (BR−1(z

εk) ∪BR−1(z
k)).
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Taking wk = ηkRuk as a test function to J ′
εk
(uk) = 0 we obtain

0 = J ′
Ωk

(uk)wk = J ′
Ωk∩AR

(uk)wk + J ′
Ωk\(B1∪B2)

(uk)wk

= J ′
Ωk∩AR

(uk)wk + 2JΩk\(B1∪B2)(uk)− 2JΩk\(B1∪B2)(uk) + J ′
Ωk\(B1∪B2)

(uk)wk

= Ek −
∫
∂Ωk∩AR

up
kη

k
Rdσ + 2JΩk\(B1∪B2)(uk) +

(
2

p
− 1

)∫
∂Ωk\(B1∩B2)

up
kdσ

where

Ek =

∫
Ωk∩AR

∇uk∇wkdx+

∫
∂Ωk∩AR

u2
kη

k
Rdσ.

Since p > 2 we conclude that 0 ≤ Ek+2JΩk\(B1∪B2)(uk). Now, notice that Ek → 0.
Thus, JΩk\(B1∪B2)(uk) ≥ −δ. On the other hand,

JΩk
(uk) = JΩk∩B1(uk) + JΩk∩B2(uk) + JΩk\(B1∪B2)(uk) ≥ 2Cp(RN

+ )− δ − δ,

which implies estimate (5.3) and this completes the proof. �

In order to establish the polynomial decay of uε we use U(x) = (1+ |x|2) 2−N
2

solution of
−ΔU = N(N − 2)U

N+2
N−2 in RN

to build a suitable test function for our arguments in the next result.

Lemma 5.3. Let uε ∈ C∞(Ωε) ∩ C1,β(Ωε) be a positive solution of (Pε). Then,
there is a positive constant C0 independent of ε such that

uε(z) ≤ C0

(1 + |z|2)(N−2)/2
, ∀ z ∈ Ωε.

Proof. Let us consider the function Wε(z) = uε(z)/U(z) in Ωε. We claim that Wε

is uniformly bounded. For this, notice that Wε is a solution to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ΔWε −

N∑
i=1

bi(z)
∂Wε

∂zi
+ a(z)Wε = 0 in Ωε,

∂Wε

∂η
+ g1(z)Wε(z)− g2(z)W

p−1
ε = 0 on ∂Ωε,

(5.5)

where

bi(z) =
2

U(z)
·∂U(z)

∂zi
= −2(N − 2)zi

1 + |z|2 (i = 1, . . . , N), a(z) =
N(N − 2)

(1 + |z|2)2 , z ∈ Ωε

|g1(z)| =
∣∣∣∣1 + 1

U(z)
· ∂U
∂η

(z)

∣∣∣∣ ≤ (
1 +

(N − 2)|z|
1 + |z|2

)
and g2(z) = Up−2(z).

One can see that there exists C > 0 independent of ε such that

‖a‖L∞(Ωε), ‖bi‖L∞(Ωε), ‖g1‖L∞(Ωε)‖g2‖L∞(Ωε) ≤ C,

for all i = 1, . . . , N . Assume by contradiction that there is a sequence zε ∈ Ωε

such that Wε(zε) → +∞. By the weak maximum principle we may assume that
zε ∈ ∂Ωε for all ε > 0. So, we define Mε = Wε(zε). We have two cases to consider:
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Case 1: (zε) is bounded. In this case let us consider

W̃ε(z) =
Wε(zε +Mα

ε z)

Mε
, z ∈ Ω̃ε := M−α

ε (Ωε − zε) , α =
2− p

2
.

Since ‖W̃ε‖L∞(Ωε) ≤ C (independent of ε), using the regularity result due to
Lieberman [10], one can prove that

‖W̃ε‖C1,β(Ω̃ε)
≤ C, (5.6)

for some 0 < β < 1 and C positive constant independent of ε. Therefore, straight-

ening out the boundary in a neighborhood of zε, one can prove that Ω̃ε → RN
+

as ε → 0. Using (5.6), the Arzelà–Ascoli theorem and the diagonal argument we

obtain a nonnegative function W̃ ∈ C1,β/2(RN
+ ) such that

lim
ε↘0

W̃ε(z) = W̃ (z) ≥ 0 and W̃ (0) = 1. (5.7)

Since (zε) is bounded we can assume that limε↘0 zε = 0 ∈ ∂Ω. Then, one readily

deduces on any compact subset of RN
+ that

lim
ε→0

a(zε +Mα
ε z) = a(0), lim

ε→0
bi(zε +Mα

ε z) = bi(0), i = 1, . . . , N,

lim
ε→0

g1(zε +Mα
ε z) = g1(0), lim

ε→0
g2(zε +Mα

ε z) = g2(0).
(5.8)

It follows from (5.5)–(5.8), that the limit function W̃ ≥ 0 satisfies the following
limit problem ⎧⎪⎨⎪⎩

−ΔW̃ = 0 in RN
+ ,

∂W̃ (x, 0)

∂t
= −W̃ p−1(x, 0) on RN−1.

Since 2 < p < 2∗ − 1, we obtain by Theorem 1.2 in Hu [9] that W̃ = 0, which is a

contradiction with the fact that W̃ (0) = 1.
Case 2: There exists a sequence zk = zεk such that |zk| → ∞. In this case let us
consider

vk(z) =
Wk(zk + z)

Mk
z ∈ Ω̃k = Ωεk − zεk ,

where Mk = Wk(zk) =
uk(zk)
U(zk)

. Notice that Mk → ∞ and ‖vk‖L∞(Ω̃k)
≤ 1. More-

over, vk satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δvk −

N∑
i=1

bi(zk + z)
∂vk
∂zi

+ a(zk + z)vk = 0 in Ω̃k,

∂vk
∂η

+ g1(zk + z)vk(z)− up−2
k (zk + z)vk(z) = 0 on ∂Ω̃k.

(5.9)

Since up−2
k (zk + z)→ 0, similarly one can see that vk → v ∈ C1,β/2(RN

+ ),

lim
n→∞ vk(z) = v(z) ≥ 0, v(0) = 1 (5.10)
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and ⎧⎨⎩
−Δv = 0 in RN

+ ,

∂v

∂η
= −v on RN−1.

On the other hand, using the Hopf lemma at z0 = 0 we get 0 < ∂v
∂η = −v < 0,

which is a contradiction, and this conclude the proof. �
In order to obtain the exponential decay of uε let us consider the auxiliary

function v(x, t) = ϕ0(x)ψ0(t) where

ϕ0(x) := e−α(|x|) and ψ0(t) :=

(
1

1 + t2

)N−2
2

,

and α are positive constants that will be selected below.

Lemma 5.4. There exists c > 0 such that uε(x, t) ≤ cv(x, t) for all |x| ≥ 1, t ≥ 0.

Proof. Notice that v satisfies −Δv+ c(x, t)v = 0, x ∈ RN−1 \ {0}, t ∈ R where

c(x, t) = −α (N − 2)

|x| + α2 +
(N − 2)

(1 + t2)2
[(N − 1)t2 − 1].

Let us consider Vε = uε/v. A straightforward calculation yields

−ΔVε + 2α
N−1∑
i=1

xi

|x| (Vε)xi +
2(N − 2)t

(1 + t2)
Vt − c(x, t)Vε = 0, Ωε \ {0}.

Consider the set Aε =
{
(x, t) ∈ RN

+ : |x| ≥ 1, t ≥ 0
} ∩ Ωε. We claim that there

exists C > 0 independent of ε such that

‖Vε‖L∞(Aε) ≤ C. (5.11)

Suppose that (5.11) does not hold, that is, there exists yε = (xε, tε) ∈ Aε such
that Vε(yε) → +∞. From Lemma 5.3 we conclude that |yε| → +∞. Let ηε =
(η1(ε), . . . , ηN−1(ε), ηtε) ∈ RN be the unit outward normal to ∂Ωε at (xε, tε).
Then, using the Hopf lemma we have ∂Vε/∂ηε(yε) > 0. On the other hand, for ε
sufficiently small,

∂Vε

∂ηε
(yε) =

1

v

[
〈∇uε, ηε〉 − uε

v
〈∇v, ηε〉

]
≤ 0 (5.12)

which is impossible. Thus it remains to prove (5.12). Notice that

∂Vε

∂ηε
(yε) =Vε

[
up−1
ε − 1 + α

N−1∑
i=1

xi

|x|ηi(ε) +
tε(N − 2)

1 + t2ε
ηtε

]

≤Vε

[
up−1
ε − 1 + α+

tε(N − 2)

1 + t2ε
ηtε

]
.

Since Ω is strictly convex tε → ∞ as ε → 0. Thus, taking ε sufficiently small, we

can choose α > 0 such that up−1
ε − 1 + α + tε(N−2)

1+t2ε
ηtε ≤ − 1

2 and this completes

the proof. �
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6. Proof of Theorem 1.2

In this section we will complete the proof of Theorem 1.2, for that it will be crucial
in our argument the following lower bound estimate on the minimax level Cp(Ωε)
(see (6.1) below).

For any sequence εk → 0, let uk = uεk be the solution of (Qεk) given in Propo-
sition 2.3. Let us choose zk := zεk ∈ ∂Ωεk , such that uk(zk) = maxz∈Ωεk

uk(z) we

recall that since uk is harmonic in Ωεk , the maximum of uk in Ωεk must be on
∂Ωεk . With this notation we have the following estimate.

Proposition 6.1. There exists k0 such that for k ≥ k0, it holds

Cp(Ωεk) ≥ Cp(RN
+ )− εkγH(εkzk) + o(εk). (6.1)

Finalizing the proof of Theorem 1.2. Combining Propositions 4.1 and 6.1, we obtain
(1.8). From (1.7), (1.8) and Taylor’s theorem we obtain (1.9). Moreover, since γ > 0
we conclude thatH(z) ≥ H(z), for all z ∈ ∂Ω. Therefore,H(εzε)→ maxz∈∂ΩH(z),
which completes the proof of Theorem 1.2. �

6.1. Proof of Proposition 6.1

Up to a subsequence, we may assume that there exists z ∈ ∂Ω such that yk =
εkzk → z. Define uk(y) = uεk(y+ yk), y ∈ Ωεk − yk. Thus, after applying suitable
rotation and translation, we may assume that z = 0 and Ω ⊂ RN

+ can be described
in a fixed neighborhood U of z as {(x, t) : t > Gk(x)} with Gk smooth Gk(0) = 0
and∇Gk(0) = 0. We can take Gk such that Gk converges in C2

loc-topology to G the
corresponding parametrization of ∂Ω at z. We define Ωk = Ωεk and Uk = εk

−1U ,
and we set

Vk := {(x, t) ∈ RN : |εkx| ≤ r0 and 0 ≤ εkt ≤ tk} ⊂ Uk

where tk = min|x|=r0 Gk(x) > 0. Since Cp(Ωk) = IΩk
(uk) ≥ IΩk

(suk) for all s > 0,
using the decay of uk, we get Cp(Ωk) ≥ IVk∩Ωk

(suk) + o(εk) for all s > 0 where
Γk = Vk ∩ ∂Ωk and

IVk
(uk) =

1

2

∫
Vk∩Ωk

|∇uk|2 dz +
1

2

∫
Γk

|uk|2 dσ − 1

p

∫
Γk

|uk|p dσ.

Now we extend uk to Vk by defining uk(x, t) in the following way:

uk(x, t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uk(x, t) if εkt ≥ Gk(εkx),

uk(x, ε
−1
k Gk(εkx))

+(Gk(εkx)− εkt)

× [up
k(x,Gk(εkx))− uk(x,Gk(εkx)]

if εkt < Gk(εkx).

Using again the decay of uk we have Cp(Ωk) ≥ IVk
(suk) − IVk\(Ωk∩Vk)(suk) +

o(k). Passing to a subsequence, we may assume that uk → w in H1, where w
is a least-energy solution of (P∞). Now, let sk > 0 be such that IVk

(skuk) =
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sups>0 IVk
(suk). One can see that sk → 1 and IVk

(skuk) ≥ Cp(RN
+ ) + o(k). From

these facts, it follows that

Cp(Ωk) ≥ Cp(RN
+ )−R1(k) +R2(k) + o(εk), (6.2)

where

R1(k) :=
1

2

∫
Vk\(Ωk∩Vk)

|sk∇uk|2 dz,

R2(k) :=
1

2

∫
Γk

|skuk|2 dx− 1

p

∫
Vk∩RN−1

(skuk)
p dx.

Thus we can proceed as in the proof of Proposition 4.1, to obtain the following
estimates:

2R1(k) = −εk
∫
RN−1

|∇w(x, 0)|2g(x) dx + o(εk),

R2(k) = εk

∫
RN−1

w2
t (x, 0)g(x) dx + o(εk),

which together with (6.2) implies that estimate (6.1) holds. Thus, we obtain

Cp(Ωk) ≥ Cp(RN
+ )− εk

∫
RN−1

[ |∇w(x, 0)|2
2

− w2
t (x, 0)

]
g(x) dx+ o(εk).

This, together with Lemma 8.1 yields Cp(Ωk) ≥ Cp(RN
+ ) − εkγH(εkzεk) + o(εk),

and this completes the proof. �

7. Proof of Theorem 1.3

In this section we prove the nonexistence of nonconstant positive solution of (Pε),
for ε sufficiently large. Define u = 1

|∂Ω|
∫
∂Ω u dσ = average of u over ∂Ω. Using

standard argument one can prove the following Poincaré inequality.

Lemma 7.1. There exists a constant C, depending only on N such that

‖u− u‖L2(∂Ω) ≤ C‖∇u‖L2(Ω), ∀u ∈ H1(Ω).

Finalizing the proof of Theorem 1.3. We decompose u as u = u+ ϕ, where

u =
1

|∂Ω|
∫
∂Ω

u dσ and

∫
∂Ω

ϕ dσ = 0.

Observing that up−1 − up−1 = (p − 1)
(∫ 1

0
(u + tϕ)p−2 dt

)
ϕ, and using ϕ as test

function in (2.1), we obtain

ε

∫
Ω

|∇ϕ|2 dz +

∫
∂Ω

ϕ2 dσ = (p− 1)

∫
∂Ω

(∫ 1

0

(u+ tϕ)p−2dt
)
ϕ2 dσ,

which together with Proposition 5.1 implies that

ε

∫
Ω

|∇ϕ|2 dz ≤ ε

∫
Ω

|∇ϕ|2 dz +

∫
∂Ω

ϕ2 dσ ≤ C

∫
∂Ω

ϕ2 dσ.
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Using Lemma 7.1 we obtain that ϕ must be constant for ε sufficiently large. Thus
0 =

∫
∂Ω

ϕ dσ = |∂Ω|ϕ. Therefore ϕ ≡ 0 and the proof of Theorem 1.3 is complete.
�

8. Appendix (Mean curvature)

Given a positive solution w of (P∞), as in [4] we define its restricted energy den-
sity as

E(w, y) =

( |∇w|2
2

− w2
t

)
(y, 0), y ∈ RN−1.

Then we define the generalized curvature at z = (x, t) ∈ ∂Ω, with x ∈ RN−1 and
t ∈ R fixed as the following number:

H(z) = max
w∈S

∫
RN−1

〈
D2G(x)y, y

〉
E(w, y) dy,

where 〈, 〉 denotes the usual inner product in RN−1, and D2G(x) denotes the
Hessian matrix of G at x, and S denotes the set of positive solutions of (P∞). In
[1], the authors have proved there exists a positive constant C such that for all
w ∈ S we have ‖w‖L∞(Ω) ≤ C and w(y, 0) is radially symmetric in the variable y.
Thus H does not depend on the particular choice of G, but only of z.

In order to relate the generalized curvature to the mean curvature of ∂Ω at z
for sake of completeness we recall here a few important features about the mean
curvature (cf. Trudinger [8]). The eigenvalues of D2G(x), λ1, . . . , λN−1 are called
the principal curvatures of ∂Ω at z and the corresponding eigenvectors are called
the principal directions of ∂Ω at z. Furthermore, the mean curvature of ∂Ω at
z = (x, t) is given by

H(z) =
1

N − 1

N−1∑
i=1

λi =
−1

N − 1
div

(
(−∇G(x), 1)√
1 + |∇G(x)|2

)
=

1

N − 1
ΔG(x),

whenever ∇G(x) = 0. On the other hand, by a rotation of coordinates we may
assume that the x1, . . . , xN−1 axes lie along principal directions corresponding to
λ1, . . . , λN−1 at z. So, the Hessian matrix can be described as

D2G(x) =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN−1

⎤⎥⎥⎥⎦ .

Thus, at z = (0, 0) we have∫
RN−1

〈
D2G(0)y, y

〉
E(w, y) dy =

N−1∑
i=1

∫
RN−1

λiy
2
iE(w, y) dy.
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By the definition of themass moment of inertia we have that themoment of inertia
about the yi-axis, i = 1, . . . , N − 1, respectively the polar moment of inertia are
given by

Iyi =

∫
RN−1

y2iE(w, y) dy, I0 =
N−1∑
i=1

Iyi =
N−1∑
i=1

∫
RN−1

y2iE(w, y) dy,

respectively. Now, using the fact of E(w, y) is a symmetric function, we conclude
that Iy1 = · · · = IyN−1 , which implies that I0 = (N − 1)Iy1 . With this notation we
have

Lemma 8.1. For w ∈ S it holds,∫
RN−1

〈
D2G(0)y, y

〉
E(w, y) dy = H(0)ωN−2

∫ +∞

0

E(w, r)rN dr.

Proof. Notice that

N−1∑
i=1

λiIyi = Iy1

N−1∑
i=1

λi =

(
1

N − 1

N−1∑
i=1

λi

)
I0 = H(0)

∫
RN−1

|y|2E(w, y) dy,

which implies the desired result. �

Lemma 8.2. The constant γ defined in (4.9) is positive.

Proof. Here we proceed as in [5]. Taking ϕ(x, t) = |x|2wte
λtw+

t as a test function
in (P∞) we get

0 =

∫
RN

+

[
2x.∇xwwt + |x|2

( |∇w|2
2

)
t

+ λ|x|2wt

(∇xw∇w+
t + w+

t (tw
+
tt + w+

t )
)]
eλtw

+
t dz

+

∫
RN−1

|x|2w2
t dx,

where we are using the notation w+
t = (wt)

+ and w+
tt = (w+

t )t in the weak sense.
Integrating by partes we can estimate γ =

∫
RN

+∩{wt<0}[2wtx · ∇xw] dz + o(λ) as

λ→ −∞. Taking into account that x · ∇x = rwr < 0 we get γ > 0, which implies
the desired result. �
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Dedicated to Bernhard Ruf on the occasion of his 60th birthday

Abstract. In this paper we establish the existence of two positive solutions
for the obstacle problem∫

R

[
u′(v − u)′ + (1 + λV (x))u(v − u)

] ≥ ∫
R

f(u)(v − u), ∀v ∈ K

where f is a continuous function verifying some technical conditions and K is
the convex set given by

K =
{
v ∈ H1(R); v ≥ ϕ

}
,

with ϕ ∈ H1(R) having nontrivial positive part with compact support in R.
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Keywords. Obstacle problem, variational methods, positive solutions.

1. Introduction

In this paper we will be concerned with the question of existence of positive solu-
tions of a kind of obstacle problem. This class of problems has been largely studied
due both its mathematical interest and its physical applications. For example, it
appears in mechanics, engineering, mathematical programming and optimization,
among other things. See, for instance, the classical books Kinderlehrer & Stam-
pacchia [12], Rodrigues [18] and Troianiello [24] and the references therein.

The typical obstacle problem is as follows: Let Ω be a domain in RN . Given
functions g : R→ R and ϕ : Ω→ R, finding u ∈ H1

0 (Ω) satisfying∫
Ω

∇u · ∇(v − u) ≥
∫
Ω

g(u)(v − u) (P )
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for all function v in the convex set

K :=
{
v ∈ H1

0 (Ω); v(x) ≥ ϕ(x) a.e. Ω
}

(1.1)

where ϕ is called the obstacle function.

Related to this kind of problem, the reader may consult Jianfu ([10], [11]),
where the author uses variational methods, Le [13] in which is used subsolution-
supersolution techniques, Chang [4] where it is considered an obstacle problem
related to discontinuous nonlinearities and Rodrigues [19] who considers combina-
tion of the obstacle problem with nonlocal equations in a class of free boundary
problems. For more recent references we may cite Matzeu & Servadei [16], in
which the authors adapt for inequalities the iterative technique contained in de
Figueiredo, Girardi & Matzeu [6] for elliptic equations, Matzeu & Servadei [17]
where the stability of solutions obtained in [16] are analized. Other results may be
found in Servadei & Valdinoci [22], Mancini & Musina [15], Servadei ([21], [20]),
Magrone, Mugnai & Servadei [14].

These works and the references therein show clearly the mathematical im-
portance and the wide variety of practical situations in which obstacle problems
may be found and applied.

Here we are interested in the unidimensional counterpart of problem (P ).
More precisely, we consider the problem∫

R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

f(u)(v − u), ∀v ∈ K, (Pλ)

where u is a nonnegative function belonging to the convex set K given by

K :=
{
v ∈ H1(R); v ≥ ϕ

}
, (K)

where ϕ ∈ H1(R) is assumed to have nontrivial positive part, that is, ϕ+ =
max {ϕ , 0} �≡ 0. Moreover, λ > 0 is a parameter and f : R→ R is a nondecreasing
continuous function verifying the following assumptions:

f(t)

t
→ 0 as |t| → 0 (f1)

and the Ambrosetti & Rabinowitz Condition, that is, there is θ > 2 such that

0 < θF (t) ≤ f(t)t ∀t ∈ R \ {0} (f2)

where F (t) =
∫ t

0
f(s)ds. We assume that V : R → R is a nonnegative continuous

function such that

O := int
((
V −1({0}))) �= ∅

is a bounded open set of R containing the support of ϕ+, that is, Supp (ϕ+) ⊂ O.
Here, Supp(ϕ+) denotes the support of ϕ+ and

V −1({0}) = {x ∈ R;V (x) = 0} .
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The present paper was motivated by recent works involving the following
class of problems {−Δu+ (1 + λV (x))u = f(u) in RN

u(x) > 0 in RN

where λ is a positive parameter, V : RN → R is a nonnegative function and f is
a continuous function satisfying some technical conditions. The reader may find
more details in the papers of Alves [1], Bartsch & Wang [3], Clapp & Ding [5],
Ding & Tanaka [7] and their references. Here, we adapt some approaches found in
these references to study the obstacle problem (Pλ).

Our main result is the following

Theorem 1.1. Suppose (f1)–(f2) hold, then there are r, λ∗ > 0, such that if
‖ϕ+‖H1(R) <

r
2 , problem (Pλ) has two positive solutions for all λ > λ∗.

One of the main difficulties to prove Theorem 1.1 is related to the fact that
the energy functional associated with the problem (Pλ) does not satisfy in general
the well-known Palais–Smale condition, once that we are working in whole R.
To overcome this difficulty, we adapt some ideas found in del Pino & Felmer
[8], modifying the function f outside the set O, in such way that the energy
functional of the modified obstacle problem satisfies the Palais–Smale condition.
Using variational methods, we prove the existence of two solutions for the modified
obstacle problem. After that, it is proved that under the hypotheses of Theorem
1.1, the solutions found are solutions of the original obstacle problem.

The structure of this paper is as follows: In Section 2 we introduce the mod-
ified obstacle problem, in Section 3 we establish the existence of a first solution
for the modified obstacle problem by minimization, in Section 4 we show the ex-
istence of a second solution for the modified obstacle problem by the Mountain
Pass Theorem and in Section 5 we prove Theorem 1.1.

2. The modified obstacle problem

From this time onwards, since we intend to find positive solution, we will assume,
without loss of generality, that

f(t) = 0 ∀t ≤ 0.

To prove the existence of positive solutions for (Pλ), we will work with a
modified obstacle problem, following some ideas found in del Pino & Felmer [8].
To this end, we consider the function h : R→ R as follows:

h(t) =

{
f(t) if t ≤ a,
1
k t if t ≥ a,

where k > max
{

θ
θ−2 , 2

}
and a > 0 satisfy f(a)

a = 1
k . We now set

g(x, t) = χ(x)f(t) + (1− χ(x))h(t),
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where Ω ⊂ R is a bounded open set containing O and χ is the characteristic
function of the set Ω, that is,

χ(x) =

{
1, x ∈ Ω

0, x ∈ Ωc.

Using the function g, we will show the existence of two positive solutions for
the obstacle problem

(PA)

∫
R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u), ∀v ∈ K.

Remark 2.1. If u is a solution of (PA) verifying

u(x) ≤ a, ∀x ∈ Ωc,

then u is a solution of the original obstacle problem. Indeed, if x ∈ Ω, we have
χ(x) = 1 and so

g(x, u(x)) = f(u(x)).

If x /∈ Ω (x ∈ Ωc), then χ(x) = 0 and so

g(x, u(x)) = h(u(x)) = f(u(x)),

because h(u(x)) = f(u(x)) since 0 ≤ u(x) ≤ a in Ωc.

Let Eλ ⊂ H1(R) be the subspace

Eλ =

{
u ∈ H1(R);

∫
R

V (x)u2 <∞
}

endowed with the norm

‖u‖λ =

(∫
R

[|u′|2 + (1 + λV (x))|u|2]) 1
2

.

Hereafter, we denote by ‖ ‖ the usual norm in H1(R).
Since we approach our problem by means of variational method, we consider

the energy functional associated with the obstacle problem (PA), Iλ : Eλ → R,
given by

Iλ(u) =
1

2
‖u‖2λ −

∫
R

G(x, u) + Ψ(u),

where

G(x, t) =

∫ t

0

g(x, s)ds

and Ψ : E → (−∞,∞] is the indicatrix function of the set K, i.e.,

Ψ(u) = 0, ∀u ∈ K and Ψ(u) = +∞, ∀u ∈ Kc. (2.1)

Proposition 2.1. The functional Iλ satisfies the (PS) condition.
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Proof. Let d ∈ R and (un) ⊂ Eλ be a (PS)d sequence for Iλ. Then, there is
(zn) ⊂ E′

λ with zn → 0 such that

Iλ(un)→ d and I ′λ(un)(v − un) ≥ 〈zn, v − un〉 ∀n ∈ N and v ∈ K,

that is,∫
R

u′
n(v − un)

′ + (1 + λV (x))un(v − un)−
∫
R

g(x, un)(v − un) ≥ 〈zn, v − un〉 ,

for all v ∈ K.

Claim 2.1. (un) is a bounded sequence in Eλ.

We deal separately with the sequences (un+) and (un−), where un−=max{−un,0}.
Since un = un+ − un−, it is enough to show that (un+) and (un−) are bounded
in Eλ. To show the boundedness of (un−), we consider the test function v =
un + un− ∈ K. So,∫

R

(u′
n(un−)

′ + (1 + λV (x))unun−)−
∫
R

g(x, un)un− ≥ 〈zn, un−〉 .

Because

∫
R

(1 + λV (x))un+un− =

∫
R

g(x, un)u
−
n = 0, we obtain

−‖un−‖2λ ≥ 〈zn, un−〉 ,
which leads to

‖un−‖2λ ≤ ‖zn‖‖un−‖λ.
As zn → 0 in E′

λ, we conclude that un− → 0 in Eλ, and thus, (un−) is bounded
in Eλ.

With respect to (un+), fixing the test function v = un + un+ ∈ K, we derive
that

‖un+‖2λ −
∫
R

g(x, un)u
+
n ≥ 〈

zn, u
+
n

〉
, (2.2)

leading to

−
∫
Ω

f(un)un ≥ −‖un+‖2λ +
〈
zn, u

+
n

〉
. (2.3)

On the other hand, we know that

d =
1

2
‖un‖2λ −

∫
Ω

F (un)−
∫
Ωc

G(x, un) + on(1).

Using the definition of g, it is easy to prove that

2G(x, t) ≤ g(x, t)t ≤ 1

k
(1 + λV (x))|t|2 ∀x ∈ Ωc and t ∈ R. (2.4)

Thereby, from (f2) and (2.4)

d ≥ 1

2
‖un+‖2λ −

1

θ

∫
Ω

f(un)un − 1

2k

∫
Ωc

(1 + λV (x))|un|2 + on(1). (2.5)
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Combining (2.3) and (2.5),

d ≥
[(1

2
− 1

θ

)
− 1

2k

]
‖un+‖2λ − ‖zn‖‖un+‖+ on(1).

Since k > θ
θ−2 and zn → 0 in E′

λ, the last inequality implies that (un+) is bounded

in Eλ. Therefore, (un) is bounded in Eλ.
Now, we will show that (un) has a subsequence that converges strongly in Eλ.

Since (un−) converges to 0 in Eλ, without loss of generality, we will assume that

un ≥ 0 for all n ∈ N. We begin by fixing R > 0 so large in order that Ω ⊂ (−R
2 ,

R
2

)
and a function η ∈ C1(R,R) satisfying

• 0 ≤ η(t) ≤ 1, ∀t ∈ R;
• η(t) = 0, |t| ≤ R

2 ;

• η(t) = 1, |t| ≥ R;

• |η′(t)| ≤ C
R , ∀t ∈ R.

Claim 2.2. Given δ > 0, there is R > 0 such that∫
|x|≥R

(|u′
n|2 + |un|2) < δ.

Assuming that this claim is true, we continue with our proof. Considering
the test function v = un − η(un − ϕ+) = un − ηun ∈ K, it follows that∫

R

[u′
n(ηun)

′ + (1 + λV (x))un(ηun)] ≤
∫
R

g(x, un)(ηun) + on(1)

or, equivalently,∫
R

η|u′
n|2 +

∫
R

u′
nη

′un +

∫
R

(1 + λV (x))η|un|2 ≤
∫
|x|≥R

2

g(x, un)ηun + on(1)

implying that∫
|x|≥R

|u′
n|2 +

∫
|t|≤R

u′
nη

′un +

∫
|x|≥R

2

(1 + λV (x))η|un|2

≤
∫
|x|≥R

2

1

k
(1 + λV (x))η|un|2 + on(1).

Because k > 2, it follows that∫
|x|≥R

|u′
n|2 +

∫
|t|≤R

u′
nη

′un +

∫
|x|≥R

2

(1 + λV (x))η|un|2

≤
∫
|x|≥R

2

(
1 + λV (x)

2

)
|un|2 + on(1)

and so,∫
|x|≥R

|u′
n|2 +

1

2

∫
|x|≥R

2

(1 + λV (x))η|un|2 ≤
∫
|x|≤R

|u′
n||η′||un| ≤ C

R
+ on(1).
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Thereby, ∫
|x|≥R

|u′
n|2 +

∫
|x|≥R

(1 + λV (x))|un|2 ≤ C

R
+ on(1),

showing that

lim sup
n→+∞

∫
|x|≥R

(|u′
n|2 + |un|2) ≤ C

R
.

Now, we choose R > 0 so large in order

lim sup
n→+∞

∫
|x|≥R

(|u′
n|2 + |un|2) < δ,

proving the Claim 2.2.
Recalling that for each R > 0, the Sobolev embedding

H1(R) ↪→ C([−R,R])

is compact, we have that

un → u in C([−R,R]).

This limit, combined with the Claim 2.2, asserts that∫
R

g(x, un)un →
∫
R

g(x, u)u (2.6)

and ∫
R

g(x, un)v →
∫
R

g(x, u)v ∀v ∈ K, (2.7)

where u ∈ K is the weak limit of (un) in Eλ.
Since (un) is a bounded Palais–Smale sequence for Iλ, we have∫

R

u′
n(v−un)

′+(1+λV (x))un(v−un) ≥
∫
R

g(x, un)(v−un)+on(1) ∀v ∈ K (2.8)

or equivalently∫
R

[u′
nv

′ + (1 + λV (x))unv]

≥
∫
R

[|u′
n|2 + (1 + λV (x))|un|2] +

∫
R

g(x, un)(v − un) + on(1)

for all v ∈ K. Taking the inferior limits on both sides of the above inequality and
using (2.6) and (2.7), we get∫

R

[u′v′ + (1 + λV (x))uv]

≥
∫
R

[|u′|2 + (1 + λV (x))|u|2] +
∫
R

g(x, u)(v − u) + on(1)

that is, ∫
R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u), ∀v ∈ K

from where it follows that u is a critical point of Iλ.
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Using u as a test function in (2.8) and the limit (2.7), it follows that

lim sup
n→+∞

‖un‖2λ ≤ ‖u‖2λ.

Since Eλ is a Hilbert space, the last inequality leads to un → u in Eλ, finishing
the proof of proposition. �

3. First solution for (PA)

The first positive solution of (PA) will be obtained via Ekeland’s Variational Prin-
ciple [9]. In this section, we denote by Br and Kr the following sets

Br = {u ∈ Eλ; ‖u‖λ < r} and Kr = K ∩Br.

Theorem 3.1. There is r > 0, such that if ‖ϕ+‖H1(R) < 1
2

√
r, the variational

problem

m = inf{Iλ(u) : u ∈ Kr} (3.1)

has a solution for all λ > 0. Moreover, this solution is a positive solution of (PA).

Proof. First of all, we observe that∫
R

G(x, u(x)) =

∫
Ω

F (u) +

∫
Ωc

G(x, u(x)).

From (f1), if ‖u‖λ = r and r is small enough, we have that∫
Ω

F (u) ≤ 1

4

∫
Ω

|u|2 ≤ 1

4
‖u‖2λ.

Hence ∫
R

G(x, u(x)) ≤ 1

4
‖u‖2λ +

∫
Ωc

G(x, u(x)),

and so, by (2.4),∫
R

G(x, u(x)) ≤ 1

4
‖u‖2λ +

1

2k

∫
Ωc

(1 + λV (x))|u|2.
Thereby,

Iλ(u) ≥ 1

4
‖u‖2λ −

1

2k

∫
Ωc

(1 + λV (x))|u|2 + Ψ(u) (3.2)

from where it follows that

Iλ(u) ≥
(
1

4
− 1

2k

)
‖u‖2λ +Ψ(u), ∀u ∈ Eλ. (3.3)

Since k > 2,

I(u) ≥ 1

8
‖u‖2λ, ∀u ∈ Kr. (3.4)

From the above study, we have that m is well defined and m ∈ [0,+∞).
Therefore, there is (un) ⊂ Kr such that

Iλ(un)→ m.
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Once that (un) is bounded, because (un) ⊂ Br(0), we can assume, without loss of
generality, that

un ⇀ u in Eλ and un(x)→ u(x) a.e. in R.

By Ekeland’s Variational Principle, we also assume that

m ≤ Iλ(un) ≤ m+
1

n2
∀n ∈ N

and

Iλ(u) ≥ Iλ(un)− 1

n
‖u− un‖λ ∀u ∈ Kr.

Observing that ϕ+ ∈ Kr, by (3.4),

1

8
‖un‖2λ ≤ Iλ(un) ≤ m+

1

n2
≤ Iλ(ϕ+) +

1

n2
≤ 1

2
‖ϕ+‖2 + 1

n2

leading to

lim sup
n→+∞

‖un‖2λ ≤ 4 ‖ϕ+‖2 < r.

Thus, there is n0 ∈ N such that

‖un‖2λ < r ∀n ≥ n0.

Now, repeating the same arguments found in [11], we have that (un) is a (PS)m
sequence for Iλ, that is,

Iλ(un)→ m and I ′λ(un)(v − un) ≥ 〈zn, v − un〉 ∀v ∈ K (3.5)

with zn → 0 in E′
λ. Using Proposition 2.1, there are a subsequence of (un), still

denoted by (un), and u in Eλ such that

un → u in Eλ. (3.6)

From this, u ∈ Kr and Iλ(u) = m, showing that u is a solution for (3.1). Now,
combining (3.5) and (3.6), it follows that∫

R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u) ∀v ∈ K. (3.7)

Using the test function v = u+u− ∈ K, a direct computation implies that u− = 0,
consequently u is nonnegative. The positivity of u is obtained by applying the
maximum principle. �

4. Second solution for (PA)

In this section, we will apply the Mountain Pass Theorem due to Szulkin [23] to
get a second positive solution for problem (PA). Here, we denote by uλ the solution
obtained in Theorem 3.1.

Lemma 4.1. The energy functional Iλ verifies the geometry of the Mountain Pass
Theorem.
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Proof. Note that, by Theorem 3.1,

Iλ(u) ≥ Iλ(uλ) ∀u ∈ Kr.

Since Ψ(u) = +∞ for all u ∈ Kc
r, it follows that

Iλ(u) ≥ Iλ(uλ) ∀u ∈ Br. (4.1)

Moreover, if ρ = 1
8r

2, (3.4) gives

Iλ(u) ≥ ρ > 0, for all u ∈ ∂Br.

On the other hand, since ‖ϕ+‖2 < 1
4r

2, we have that ϕ+ ∈ Kr, and so,

Iλ(uλ) ≤ Iλ(ϕ+) ≤ 1

2
‖ϕ+‖2 < ρ, (4.2)

from where it follows that

inf
u∈∂Br

Iλ(u) > Iλ(uλ). (4.3)

We now observe that, for t ≥ 1, tϕ+ ∈ K. Then, Ψ(tϕ+) = 0 and

Iλ(tϕ+) =
t2

2

∫
R

(|ϕ′
+|2 + |ϕ+|2)−

∫
R

F (tϕ+).

By (f2), there are A,B > 0 such that

F (s) ≥ Asθ −B ∀s ≥ 0.

Consequently,

Iλ(tϕ+) ≤ t2

2

∫
R

(|ϕ′
+|2 + |ϕ+|2)− tθA

∫
D

(ϕ+)
θ +B|D|,

where D is a mensurable set with finite measure verifying D ∩ Supp (ϕ+) �= ∅.
From this,

Iλ(tϕ+)→ −∞ as t→ +∞,

and thus, setting e = tϕ+ for t large enough, we derive that

‖e‖ > r and Iλ(e) < Iλ(uλ). (4.4)

From (4.1)–(4.4), we deduce that Iλ satisfies the mountain pass geometry, see [23,
Theorem 3.2]. �

Theorem 4.1. Under the assumptions of Theorem 3.1, Problem (PA) has a positive
solution at the mountain pass level for all λ > 0, that is, there is wλ ∈ K verifying

Iλ(wλ) = cλ and I ′λ(wλ)(v − wλ) ≥ 0 ∀v ∈ K,

where cλ is the mountain pass level of Iλ.
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Proof. Combining Lemma 4.1 and Proposition 2.1 with the Mountain Pass Theo-
rem, we have that the mountain pass level cλ associated with Iλ is a critical value,
hence there is wλ ∈ K such that

Iλ(wλ) = cλ and I ′λ(wλ)(v − wλ) ≥ 0 ∀v ∈ K.

Using the test function v = wλ + wλ− ∈ K, a direct computation implies that
wλ− = 0, consequently wλ is nonnegative. The positivity of wλ is obtained by
applying maximum principle. �

Corollary 4.1. Under the assumptions of Theorem 3.1, problem (PA) has two pos-
itive solutions for all λ > 0.

Proof. From the previous study, we have two solutions denoted by uλ and wλ,
where uλ was obtained by minimization and wλ by Mountain Pass Theorem. More-
over, by (4.2),

m = Iλ(uλ) < ρ and Iλ(wλ) = cλ ≥ ρ.

Thus,

Iλ(uλ) < Iλ(wλ),

from where it follows that uλ and wλ are different. Hence, problem (PA) has two
positive solutions. �

5. Proof of Theorem 1.1

In what follows, our main goal is to show that there is λ∗ > 0 such that if λ ≥ λ∗,
the solutions uλ and wλ obtained in Corollary 4.1 satisfy

wλ(x), uλ(x) ≤ a, ∀x ∈ Ωc. (5.1)

From this, by using Remark 2.1, we will conclude that wλ and uλ are positive
solutions of (Pλ) if λ ≥ λ∗.

Hereafter, λn → +∞, un = uλn and wn = wλn . From Theorem 3.1, we know
that un ∈ Kr for all n ∈ N, thus (un) is bounded in H1(R). Next, we will show
that (wn) is also bounded in H1(R).

Lemma 5.1. The sequence (wn) is bounded in H1(R). More precisely, there is
M > 0 such that

‖wn‖λn ≤M ∀n ∈ N.

Proof. Since wn is a solution of (Pλn), it follows that∫
R

[w′
n(v−wn)

′+(1+λnV (x))wn(v−wn)] ≥
∫
R

g(x,wn)(v−wn), ∀v ∈ K. (5.2)

Repeating the same arguments used in the proof of Proposition 2.1, we derive that

Iλn(wn) ≥
[(

1

2
− 1

θ

)
− 1

2k

]
‖wn‖2λn

∀n ∈ N. (5.3)
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Now, considering the path γ(t) = tt∗ϕ+ for t ∈ [0, 1] and t∗ large enough and
setting

Σ = max
t∈[0,1]

J(γ(t)) > 0,

where

J(u) =
1

2

∫
Ω

[|u′|2 + |u|2]−
∫
Ω

F (u),

it follows that

Iλn(wn) ≤ max
t∈[0,1]

Iλn(γ(t)) = max
t∈[0,1]

J(γ(t)) = Σ ∀n ∈ N,

because Iλn(γ(t)) = J(γ(t)) for all n ∈ N and t ∈ [0, 1].
This combined with (5.3) implies that (‖wn‖λn) is bounded in R. �

Lemma 5.2. There are subsequences of (un) and (wn), still denoted by itself, which
are strongly convergent in H1(R).

Proof. In what follows, we will prove the lemma only for (un), because the same
arguments can be applied to (wn). Following the same arguments used in the proof
of Proposition 2.1, for each δ > 0, there is R > 0 such that

lim sup
n→+∞

∫
|x|≥R

[|u′
n|2 + |un|2] < δ.

The above limit yields∫
R

g(x, un)un →
∫
R

g(x, u)u (5.4)

and ∫
R

g(x, un)v →
∫
R

g(x, u)v ∀v ∈ K, (5.5)

where u ∈ K is the weak limit of (un) in H1(R).

Claim 5.1. The weak limit u is null in Oc, that is,

u(t) = 0 ∀t ∈ Oc.

Hence, u ∈ H1
0 (O).

In fact, for each m ∈ N, we define

Δm =

{
t ∈ R; V (t) >

1

m

}
.

It is immediate to see that

P = {t ∈ R; V (t) > 0} =
∞⋃

m=1

Δm.

Note that ∫
Δm

|un|2 ≤ m

λn
‖un‖2λn

≤ m

λn
r2 ∀n,m ∈ N
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where r is the constant given in Theorem 3.1. The last inequality, together with
Fatou’s Lemma, lead to ∫

Δm

|u|2 = 0 ∀m ∈ N.

Thereby, u = 0 a.e in Δm for all m ∈ N, implying that u = 0 a.e. in P . Now, the
claim follows using the continuity of u.

Using v = u as a test function in (3.7),∫
R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

(1 + λnV )unu+

∫
R

u′
nu

′ −
∫
R

g(x, un)(u − un).

(5.6)
Once that V (t) ≥ 0 and u = 0 in Ωc,∫

R

|u′
n|2 +

∫
R

|un|2 ≤
∫
R

u′
nu

′ +
∫
R

unu−
∫
R

g(x, un)(u − un).

Taking the limit of n→ +∞ and using (5.4)–(5.6),

lim sup
n→+∞

∫
R

[|u′
n|2 + |un|2] ≤

∫
R

[|u′|2 + |u|2].

Since H1(R) is a Hilbert space and un ⇀ u in H1(R), the above limit implies that
un → u in H1(R). �

As a consequence of the lemmas proved in this section, we have the following
results

Corollary 5.1. The sequences (un) and (wn) satisfy

λn

∫
R

V (x)|un|2 → 0 as n→ +∞ (5.7)

and

λn

∫
R

V (x)|wn|2 → 0 as n→ +∞, (5.8)

for some subsequence. Moreover, the weak limits u and w of (un) and (wn) respec-
tively, belong to H1

0 (O) and they are positive solutions of the obstacle problem∫
O
[ψ′(v − ψ)′ + ψ(v − ψ)] ≥

∫
O
f(ψ)(v − ψ) ∀v ∈ K̂ (PO)

where

K̂ :=
{
v ∈ H1

0 (O); v(x) ≥ ϕ(x) a.e. O} .
Proof. From now on, we will prove the lemma only for the sequence (un), because
the same arguments can be applied to (wn). Repeating the same type of arguments
explored in the proof of Claim 5.1, we get again an equality like (5.6), that is,∫

R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

(1 + λnV )unu+

∫
R

u′
nu

′ −
∫
R

g(x, un)(u − un).
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Using the fact that V (t)u(t) = 0 for all t ∈ R, it follows that∫
R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

u′
nu

′ +
∫
R

unu−
∫
R

g(x, un)(u − un). (5.9)

From Theorem 5.2, un → u in H1(R) for some subsequence. Hence,

lim inf
n→+∞

∫
R

(|u′
n|2 + |un|2) =

∫
R

(|u′|2 + |u|2),

lim
n→+∞

∫
R

(u′
nu

′ + unu) =

∫
R

(|u′|2 + |u|2),
and

lim
n→+∞

∫
R

g(x, un)(u− un) = 0.

The above limits combined with (5.9) yield

λn

∫
R

V |un|2 → 0.

To prove that (PO) holds, we begin recalling that for all v ∈ K,∫
R

[u′
n(v − un)

′ + (1 + λnV (x))un(v − un)] ≥
∫
R

g(x, un)(v − un).

Choosing v ∈ K̂, we get∫
R

[u′
n(v − un)

′ + un(v − un)− λnV (x)|un|2] ≥
∫
R

g(x, un)(v − un).

Taking the limit of n→∞ and using Lemma 5.2 and (5.7), we derive that∫
O
[u′(v − u)′ + u(v − u)] ≥

∫
O
f(u)(v − u) ∀v ∈ K̂,

finishing the proof. �

Corollary 5.2. The sequences (un) and (wn) satisfy the following limits

‖wn‖L∞(Oc
), ‖un‖L∞(Oc

) → 0 as n→ +∞.

Proof. These limits are an immediate consequence of the continuous embedding
H1(Ω

c
) ↪→ L∞(Oc

) together with the limits un → u and wn → w in H1(R) and
of the fact that u = w = 0 in Oc. �

Proof of Theorem 1.1. The study made in this section allows us to prove that (5.1)
holds for λ large enough. We will show only (5.1) to (un), because the argument is
the same for (wn). Arguing by contradiction, we assume that there is λn → +∞
such that

‖un‖L∞(Ωc) > a ∀n ∈ N. (5.10)

From Lemma 5.2, there is a subsequence of (un), still denoted by itself, and u ∈
H1

0 (O) such that

un → u in H1(R).
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By Corollary 5.2, the below limit holds

‖un‖L∞(Oc
) → 0 as n→ +∞,

which implies that there is n0 ∈ N such that

‖un‖L∞(Ωc) <
a

2
∀n ≥ n0,

obtaining a contradiction with (5.10). This way, it follows that there is λ∗ > 0
such that the solution uλ satisfies

uλ(x) ≤ a ∀x ∈ Ωc and λ ≥ λ∗.

Now, by Remark 2.1, we can conclude that uλ is a positive solution for (Pλ) for
λ ≥ λ∗. �
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Matemática of the Universidade Federal do Pará (Brazil). In particular, he would
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Multiplicity Results for some Perturbed
and Unperturbed “Zero Mass”
Elliptic Problems in Unbounded Cylinders

Sara Barile and Addolorata Salvatore

Abstract. We study the following nonlinear elliptic problem{−Δu = g(x,u) + f(x) in Ω,

u = 0 on ∂Ω,

on unbounded cylinders Ω = Ω̃×RN−m ⊂ RN , N−m ≥ 2, m ≥ 1, under suit-
able conditions on g and f . In the unperturbed case f(x) ≡ 0, by means of the
Principle of Symmetric Criticality by Palais and some compact imbeddings
in spherically symmetric spaces, existence and multiplicity results are proved
by applying Mountain Pass Theorem and its Symmetric version. Multiplicity
results are also proved in the perturbed case f(x) 
≡ 0 by using Bolle’s Per-
turbation Methods and suitable growth estimates on min-max critical levels.
To this aim, we improve a classical estimate of the number N−(−Δ+ V ) of
the negative eigenvalues of the operator −Δ+ V (x) when the potential V is
partially spherically symmetric.

Mathematics Subject Classification (2010). 35J20; 35J60; 46E35.

Keywords. Nonlinear elliptic equations, zero mass case, unbounded cylinders,
variational and perturbative methods, compact imbeddings.

1. Introduction

In this paper, we study the following semilinear elliptic problem{
−Δu = g(x, u) + f(x) in Ω,

u = 0 on ∂Ω,
(Pf )

where g : Ω× R → R and f : Ω → R are given functions with g′s(x, 0) ≡ 0 (“zero

mass case”) and Ω is an unbounded cylinder in RN , i.e., Ω = Ω̃ × RN−m ⊂ RN ,

The authors are supported by M.I.U.R. (research funds PRIN 2009 and ex 60%).
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N − m ≥ 2, m ≥ 1, Ω̃ ⊂ Rm open smooth bounded. We restrict to the case
where g(x, u) behaves as a superlinear but subcritical power up−1 at infinity with
2 < p < 2∗, where 2∗ = 2N

N−2 .

In bounded domains, many authors (see, e.g., Rabinowitz [27] and references
within) have looked for solutions of elliptic equations with zero Dirichlet boundary
conditions by variational methods.

In particular, if f = 0, Ambrosetti and Rabinowitz have proved the existence
of infinitely many solutions to (P0) by means of the Symmetric Mountain Pass
Theorem (see [2]) exploiting the symmetry of the problem.

Always in the bounded case, if f �≡ 0, some perturbative techniques have been
employed to find multiplicity results for values of p not much larger than 2 (see
[8, 9, 28, 30, 31]). Later on, when the symmetry of the problem is broken also by
the presence of non-homogeneous boundary conditions (see, e.g., [15, 18, 19]) more
restrictive assumptions for the exponent p have been found. Candela, Palmieri
and Salvatore in [17] have improved the previous results for problems with broken
symmetry by exploiting further radial symmetry assumption. In particular, in the
case of homogeneous boundary data, they state the existence of infinitely many
radial solutions in a ball for any p such that 2 < p < 2∗.

On the other hand, if Ω = RN , g = g(u) and f ≡ 0, in [11, 12, 13] thanks
to the radial symmetry of the problem Berestycki and Lions overcome the lack of
compactness and find infinitely many radial solutions of (P0) if g satisfies the so-
called double-power growth condition, namely g(u) behaves as a subcritical power
up−1 at infinity and a supercritical power uq−1 near the origin, where 2 < p <
2∗ < q. This condition have allowed later Benci and Fortunato in [10] to introduce
as a natural framework the Orlicz spaces Lp + Lq which have been used also in
more general cases by other authors such as Badiale, Pisani and Rolando in [7].

Recently, if f �≡ 0, in [4] the authors have obtained, by Bolle’s perturbation
method and variational techniques, multiplicity results of radial solutions in RN

when g(x, u) = |u|p−2u for any p such that 2 < p < 2∗. These results without
any difficulty can be proved for more general nonlinearities g(x, u), thus extending
to RN the results obtained in [17] for problems with zero Dirichlet boundary
conditions.

On the contrary, if Ω is an unbounded cylinder, to our knowledge, few existen-
ce and multiplicity results have been proved until now only for the unperturbed
problem (P0). Indeed, in [3] Azzollini and Pomponio have obtained existence and
multiplicity results to (P0), by exploiting compact imbeddings of cylindrical sym-
metric spaces in the Orlicz spaces Lp + Lq, in the three-dimensional autonomous

case. Indeed, they consider Ω = Ω̃×R2, Ω̃ a bounded interval of R, and g ∈ C(R,R)
and its primitive function G(s) =

∫ s

0 g(σ)dσ verifying the following assumptions:

(g′1) there exists μ > 2 such that for all s ∈ R: μG(s) ≤ g(s)s;
(g′2) for all s ∈ R: |g(s)| ≤ cmin(|s|q−1, |s|p−1);
(g′3) for all s ∈ R: G(s) ≥ c′ min(|s|q, |s|p);
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with 2 < p < 6 < q and c, c′ > 0, thus proving an existence result and, if in
addition g is odd, a multiplicity result.

Moreover, in [22] Fan and Zhao found multiple solutions for the p-Laplacian
problem on unbounded cylinders in RN , N ≥ 3; their results apply in particular
to problem (P0) (see [22, Remark 2]) but in their paper there aren’t the details of
the proof.

Anyway, up to now, no existence and multiplicity results have been stated
for problem (Pf ) with f �≡ 0 on Ω unbounded cylinder.

So, as concerns as the unperturbed case, the aim of this paper is to prove
that, by using some compactness imbeddings concerning “partially” spherically
symmetric Sobolev spaces and by means of Mountain Pass Theorem and its sym-
metric version, the results in [3] can be extended to dimensions N ≥ 3 and to
more general non autonomous nonlinearities g (see Remark 1.2) without using the
Orlicz spaces Lp + Lq.

More in general, in this paper, we establish existence and multiplicity results
to (Pf ) on unbounded cylinders also in the perturbed case f �≡ 0.

For the unperturbed case, we have the following result.

Theorem 1.1. Suppose that g ∈ C(Ω× R,R) verifies
(g0) g(x̃, y1, s) = g(x̃, y2, s) for every s ∈ R, x̃ ∈ Ω̃ and y1, y2 ∈ RN−m, |y1| = |y2|,

i.e., g(x̃, ·, s) is spherically symmetric on RN−m;
(g1) there exists μ > 2 such that

0 < μG(x, s) ≤ g(x, s)s for all x ∈ Ω and s ∈ R \ {0},
where G(x, s) =

∫ s

0
g(x, σ) dσ;

(g2) lim
s→0

g(x, s)

s
= 0 uniformly with respect to x ∈ Ω.

(g3) there exist 2 < p < 2∗, a0, a1 ≥ 0 such that

|g(x, s)| ≤ a0|s|p−1 + a1 for all x ∈ Ω and s ∈ R. (1.1)

Then, problem (P0) has at least one nontrivial weak solution. Moreover, if in ad-
dition

(g4) g(x, s) is odd with respect to s

holds, then (P0) has infinitely many weak solutions.

Remark 1.2. Let us point out that Theorem 1.1 extends the results in [3] to
dimensions N ≥ 3 and to more general non autonomous nonlinearities g(x, u).
In fact, in the case g(x, u) = g(u), conditions (g′1) and (g′3) obviously imply (g1)
while condition (g′2) implies (g2). Indeed, if |s| ≤ 1, by (g′2) and p < q it is
|g(s)| ≤ c |s|q−1. Thus for all s �= 0, |s| ≤ 1 we have

0 ≤
∣∣∣∣g(s)s

∣∣∣∣ ≤ c|s|q−2

and (g2) follows since q > 2.
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Furthermore (g′2) implies also (g3). Indeed, by (g′2) and p < q it is |g(s)| ≤
c |s|q−1 ≤ c |s|p−1 when |s| ≤ 1 while |g(s)| ≤ c |s|p−1 when |s| ≥ 1 so that (g3) is
satisfied with a0 = c and a1 = 0.

Remark 1.3. It is easy to prove (see [5]) that by (g1) and (g2), for any s0 > 0
small enough, there exists a function γs0 ∈ L∞(Ω), γs0(x) > 0 for every x ∈ Ω,
such that

G(x, s) ≥ γs0(x)|s|μ for all x ∈ Ω and s ∈ R s.t. |s| ≥ s0. (1.2)

Indeed, from (g1), fixed s0 > 0, we have that

G(x, s) ≥ G(x, s0)

|s0|μ |s|μ for all x ∈ Ω and s ∈ R s.t. |s| ≥ s0.

Setting γs0(x) =
G(x,s0)
|s0|μ for every x ∈ Ω, it follows that γs0(x) > 0. Now, we prove

that γs0 ∈ L∞(Ω) for s0 sufficiently small. Indeed, from (g2) and l’Hôpital’s rule,
we have that

lim
s→0

G(x, s)

s2
= 0, uniformly with respect to x, (1.3)

hence, fixing ε = 1, there exists δ1 > 0 such that

G(x, s) ≤ |s|2 for every x ∈ Ω and s ∈ R s.t. |s| < δ1.

Chosen s0 < δ1, it follows that G(x, s0) ≤ δ21 for every x ∈ Ω, so supess
Ω

γs0(x) is

finite and γs0 ∈ L∞(Ω).

As concerns as the perturbed case, we have the following result.

Theorem 1.4. Let N −m ≥ 3 and g ∈ C(Ω× R,R) satisfying (g0)–(g4) and

(g5) there exists γ0 > 0 such that

G(x, s) ≥ γ0|s|μ, for every x ∈ Ω and s ∈ R.

Taken any function f ∈ L
μ

μ−1 (Ω) such that

(f0) f(x̃, y1) = f(x̃, y2) for every x̃ ∈ Ω̃ and y1, y2 ∈ RN−m, |y1| = |y2|, i.e.,
f(x̃, ·) is spherically symmetric on RN−m,

problem (Pf ) has infinitely many weak solutions for all p verifying

2 < p < pN,m (1.4)

where pN,m = 2 + 4
(N−m)(m+1)−2 .

Remark 1.5. Since pN,m ≤ 2 + 2
N−2 , the result obtained above in the cylindrical

case extends in some sense the one obtained for problem (Pf ) when Ω is bounded
(see [9, 31]). Nevertheless, it doesn’t cover the whole interval (2, 2∗) as in the radial
case (see [17] for the bounded case and [4] for the unbounded case).

Remark 1.6. In the perturbed case, we need the further assumption (g5) which is
not guaranteed by (g1) and (g2) which imply only condition (1.2), as pointed out
in Remark 1.3.
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The paper is organized as follows: in Section 2, we introduce the variational
formulation of the problems and suitable “partially” spherically symmetric Sobolev
spaces. We overcome the lack of compactness of the problems by recalling some
compact Sobolev imbeddings for such spaces. Section 3 is devoted to the proof of
Theorem 1.1. In Section 4, we recall Bolle’s perturbation method and multiplicity
results for perturbed problems. In Section 5, we present some preliminary lemmas
and in Section 6, we prove Theorem 1.4. At last, in the Appendix 7, we improve a
classical estimate of the number N−(−Δ+V ), useful in the proof of Theorem 1.4.

Notation

• If x, y ∈ RN , x · y denotes the Euclidean product in RN ;
• If X is a Banach space, ‖ · ‖X denotes its norm;
• Lt(Ω), with 1 ≤ t ≤ +∞, denotes the Lebesgue space with the usual norm
| · |Lt(Ω);

• for all t > 1, t′ is its conjugate exponent, i.e., 1
t +

1
t′ = 1;

• ai, ci, Ci denote suitable positive constants.

2. Variational framework

In order to prove that problem (Pf ) and consequently (P0) has a variational struc-

ture, let us consider the space W 1,2
0 (Ω) endowed with the norm

||u|| =
(∫

Ω

|∇u|2 dx
) 1

2

. (2.1)

Let us point out that the norm in W 1,2(Ω) given by(∫
Ω

|∇u|2 dx +

∫
Ω

|u|2 dx
) 1

2

is equivalent to the norm ‖ · ‖. Indeed, as Ω is a subset of RN which lies between
two hyperplanes, by Poincaré inequality a constant k > 0 exists such that∫

Ω

|∇u|2 dx+

∫
Ω

|u|2 dx ≤ k

∫
Ω

|∇u|2 dx

(see [1, p. 159]). Hence, ‖·‖ is equivalent to the classical norm in W 1,2
0 (Ω). For this

reason, even if we have a problem with “zero mass” we don’t use the space D1,2(Ω)

but we study (Pf ) in W 1,2
0 (Ω) as in the “positive mass case”, thus simplifying the

argument in [3]. From now on, we denote by E the space W 1,2
0 (Ω) endowed with

the norm given by (2.1) and by (E′, ‖ · ‖E′) its dual space. Then, by the Sobolev
imbedding theorems (see [16, Corollary 9.14]) it follows

E ↪→ Lt(Ω) if 2 ≤ t ≤ 2∗. (2.2)

Let us point out that, since Ω is unbounded, the previous imbeddings are not
compact.



44 S. Barile and A. Salvatore

Now, it is possible to state the following variational principle.

Proposition 2.1. Let g ∈ C(Ω × R,R) satisfying (g2) and (g3) and f ∈ Lμ′
(Ω).

Then, the weak solutions of (Pf ) (resp. (P0)) are the critical points of the energy
functional defined on E by

J1(u) =
1

2

∫
Ω

|∇u|2 dx−
∫
Ω

G(x, u) dx −
∫
Ω

fu dx(
resp. J0(u) =

1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G(x, u) dx.

)
More precisely, J1 ∈ C1(E) (resp. J0) and its differential J ′

1 : E → E′ (resp. J ′
0)

is defined as

J ′
1(u)[ζ] =

∫
Ω

[∇u · ∇ζ − g(x, u)ζ − fζ] dx (2.3)(
resp. J ′

0(u)[ζ] =

∫
Ω

[∇u · ∇ζ − g(x, u)ζ] dx

)
for all u, ζ ∈ E.

Proof. It is sufficient to prove the above proposition for the functional J1, namely
that the functional

J1(u) =
1

2
‖u‖2 −

∫
Ω

G(x, u) dx −
∫
Ω

fu dx, u ∈ E,

is well defined and its Fréchet differential given in (2.3) is a continuous operator
from E to E′. We study separately the maps

ϕ0(u) =
1

2
‖u‖2, ϕ1(u) =

∫
Ω

G(x, u)dx, ϕ2(u) =

∫
Ω

fudx.

It is standard to prove that the map ϕ0 and ϕ2 are of class C
1(E) with differentials

ϕ′
0(u)[ζ] =

∫
Ω

∇u · ∇ζ dx and ϕ′
2(u)[ζ] =

∫
Ω

fζ dx for all u, ζ ∈ E.

Now, we have to prove that also ϕ1 is well defined and C1 in E and

ϕ′
1(u)[ζ] =

∫
Ω

g(x, u)ζdx for all u, ζ ∈ E. (2.4)

Let us point out that, from (g2) and (g3), it follows that fixing any ε > 0 a constant
cε > 0 exists such that

|g(x, s)| ≤ ε|s|+ cε|s|p−1 (2.5)

for all x ∈ Ω and s ∈ R. Indeed, by (g2), for any ε > 0 there exists δε > 0
such that for every |s| < δε it is |g(x, s)| ≤ ε|s| while by (g3) if |s| ≥ 1 it is
|g(x, s)| ≤ a0|s|p−1 + a1 ≤ (a0 + a1)|s|p−1 for all x ∈ Ω. If δε ≤ |s| ≤ 1, |g(x, s)| ≤
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Mε|s|p−1 with Mε = maxδε≤|s|≤1

∣∣∣ g(x,s)sp−1

∣∣∣. Then, (2.5) easily follows with cε =

max{Mε, a0 + a1}. Now, by integrating (2.5), it is

|G(x, s)| ≤ ε|s|2 + cε|s|p (2.6)

for all x ∈ Ω and s ∈ R. Thus, by (2.2) with t = 2 and t = p, it follows that
ϕ1 ∈ C1(E,R) and its Fréchet differential is as in (2.4) (see, e.g., [32, Theorem
1.22]). �

At this point, in order to overcome the lack of compactness of the problem,
we introduce a subspace EG of E involving spherical symmetry such that EG is a
“natural constraint” for J1 (resp. J0) and EG is compactly imbedded in Lt(Ω) for
suitable t′s.

Definition 2.2. Let G be a subgroup of O(N) defined by G = idRm × O(N −m).
The action of G on the space F(Ω,R) of the real functions defined on Ω is such
that, for all g = idRm × g1 ∈ G,

gu(x̃, y) := u(x̃, g−1
1 y), for every (x̃, y) ∈ Ω̃× RN−m.

The subspace of the fixed points of G is defined by

Fix(G) = {u ∈ F(Ω,R) : gu = u for all g ∈ G} .
Let EG = E ∩Fix(G). In other words, a function u ∈ E belongs to EG if and only
if u(x̃, ·) is spherically symmetric on RN−m. Obviously, the action of G on EG is
isometric, that is,

‖gu‖ = ‖u‖, for all g ∈ G.

Clearly, EG ↪→ E. We denote by (E′
G, ‖ · ‖E′

G
) the dual space of EG. Moreover,

by (g0) and (f0) (resp. by (g0)) the functional J1 (resp. J0) is invariant under the
action of the group G, i.e., J1 ◦ g = J1 (resp. J0 ◦ g = J0 ) for all g ∈ G. Hence, by
the Principle of Symmetric Criticality by Palais in [26], any critical point of J1|EG

(resp. J0|EG) is a “free” critical point of J1 (resp. J0). Therefore, from now on, we
look for critical points of J1 (resp. J0) constrained to EG and, for simplicity, we
still denote J1|EG (resp. J0|EG) by J1 (resp. J0).

In the following, we denote by W 1,2
G (Ω) = W 1,2(Ω) ∩ Fix(G). Let us recall

that the imbeddings of W 1,2
G (Ω) in Lt(Ω) spaces are compact as proved by P.L.

Lions in [25, Lemma III.2] (see also [6] for related results).

Since EG = W 1,2
0 (Ω) ∩ Fix(G) ↪→ W 1,2

G (Ω), it follows that

EG ↪→↪→ Lt(Ω) for 2 < t < 2∗. (2.7)

At this point, it is possible to prove the compactness of the Fréchet differential
of the functional ϕ1 introduced in Proposition 2.1.

Proposition 2.3. Under the same assumptions in Proposition 2.1, it follows that
dϕ1 is compact from EG in E′

G.
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Proof. Let us point out that there exists t0 > 1 such that

E ↪→ Lt0(p−1)(Ω) and Lt0(Ω) ↪→ E′, i.e., E ↪→ L
t0

t0−1 (Ω). (2.8)

Indeed, the system⎧⎨⎩
2 < t0(p− 1) < 2∗,

2 <
t0

t0 − 1
< 2∗,

i.e.,

⎧⎪⎪⎨⎪⎪⎩
2

p− 1
< t0 <

2∗

p− 1
,

2∗

2∗ − 1
< t0 < 2,

is solvable because, as 2 < p < 2∗,

max

{
2

p− 1
,

2∗

2∗ − 1

}
< min

{
2∗

p− 1
, 2

}
.

Since 2 < t0(p− 1) < 2∗, the conclusion follows by (2.7), (g3) and the fact that, if
‖un−u‖Lt0(p−1)(Ω) → 0 as n→ +∞, then ‖g(·, un)−g(·, u)‖Lt0 (Ω) → 0 as n→ +∞
(see [32, Lemma 1.20]). �

Remark 2.4. We cannot apply directly the last part of Theorem 1.22 in [32] as the
compact imbedding (2.7) does not hold for t = 2.

3. Unperturbed case

Our aim is to find weak solutions of problem (P0) by applying the Mountain Pass
Theorem (see [2, Theorem 2.1]) and its symmetric version (see [2, Corollary 2.9])
to the functional J0. In order to do this, we first recall the following Palais–Smale
condition, briefly (PS).

Definition 3.1. The functional J0 satisfies the (PS) condition if any sequence
(un)n ⊂ EG such that

(J0(un))n is bounded (3.1)

and

dJ0(un)→ 0 as n→ +∞, (3.2)

converges in EG, up to subsequences.

Proposition 3.2. Let g ∈ C(Ω × R,R) satisfying (g0), (g1), (g2) and (g3). Then,
the functional J0 satisfies the (PS) condition.

Proof. Let (un)n be a sequence verifying (3.1) and (3.2), then by (g1) and (2.3) it
follows

c1 + εn‖un‖ ≥ μJ0(un)− J ′
0(un)[un]

=
(μ
2
− 1

)
‖un‖2 +

∫
Ω

(g(x, un)un − μG(x, un)) dx

≥
(μ
2
− 1

)
‖un‖2

(3.3)
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where εn → 0 as n→ +∞ and c1 is a suitable positive constant. Hence, by (3.3),
(un)n is bounded in EG. So, u ∈ EG exists such that, up to subsequences, un ⇀ u
weakly in EG and, from Proposition 2.3,

ϕ′
1(un)→ ϕ′

1(u) in E′
G. (3.4)

Thus, (3.2) and (3.4) imply

(ϕ′
0(un)− ϕ′

0(u))[un − u]→ 0 if n→ +∞,

i.e., ∫
Ω

|∇(un − u)|2dx→ 0. (3.5)

and the conclusion follows. �

Proof of Theorem 1.1. By Proposition 2.1 and by (g0), the functional J0∈C1(EG).
Proposition 3.2 implies that the functional J0 satisfies the (PS) condition in EG.
Obviously, J0(0) = 0; we claim that there exist α, � > 0 such that

J0(u) ≥ α if u ∈ EG, ‖u‖ = �. (3.6)

In fact, fixing any ε > 0, from (2.6) and (2.2) two positive constants c2 and c3
exist such that

J0(u) ≥ 1

2
(1− εc2) ‖u‖2 − c3‖u‖p for all u ∈ EG.

Thus, since p > 2, taking ‖u‖ = � with ε and � small enough, (3.6) holds for a
suitable α > 0.

Now, fix u ∈ EG with u �= 0 and s0 > 0 with |s0| ≤ 1. Denote Ωu,s0 = {x ∈
Ω : |u(x)| ≥ s0}. By (g1), (1.2) and μ > 2, we have that

J0(u) ≤ 1

2
‖u‖2 −

∫
Ωu,s0

γs0(x)|u|μ dx

=
1

2
‖u‖2 −

∫
Ω

γs0(x)|u|μ dx+

∫
Ω\Ωu,s0

γs0(x)|u|μ dx

≤ 1

2
‖u‖2 −

∫
Ω

γs0(x)|u|μ dx+ ‖γs0‖L∞(Ω)

∫
Ω\Ωu,s0

|u|μ dx

≤ 1

2
‖u‖2 −

∫
Ω

γs0(x)|u|μ dx+ ‖γs0‖L∞(Ω)

∫
Ω

|u|2 dx.

Then, by Sobolev imbeddings (2.2) a positive constant c4 exists such that

J0(u) ≤ c4‖u‖2 −
∫
Ω

γs0(x)|u|μ dx. (3.7)

By (3.7), it follows that J0(tu)→ −∞ as t→ +∞. Whence, the classical Mountain
Pass Theorem applies (see [2, Theorem 2.1]) and a non zero critical point of J0
in EG, hence a non trivial weak solution of system (P0) exists. Furthermore, if
also condition (g4) holds, the functional J0 is even. Let V be a finite-dimensional
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subspace of EG. Now, it is easy to prove that the term
( ∫

Ω
γs0(x)|u|μ dx

) 1
μ

is a

norm in EG, hence by (3.7) and the equivalence of all norms in V , there exists a
positive constant R = R(V ) such that

J0(u) ≤ 0 if u ∈ V , ‖u‖ ≥ R. (3.8)

So the symmetric version of Mountain Pass Theorem applies (see [2, Corollary
2.9]) and I has an unbounded sequence of critical levels. �

4. Bolle’s perturbation arguments

From now on, we will study the perturbation problem (Pf ) by applying the method
introduced by Bolle in [14] for dealing with problems with broken symmetry. First,
we recall the main abstract theorem as stated in [15]. Remark that the theorem
holds for C2 functionals, but here we assume they areC1 according to [20]. The idea
is to consider a continuous path of functionals starting from a symmetric functional
J0 and to prove a preservation result for min-max critical levels in order to get
critical points also for the end-point functional J1 (which is the “true” functional
associated to the non-symmetric problem).

Let H be a Hilbert space equipped with the norm ‖ · ‖H . Assume that H =
H− ⊕ H+, where dim(H−) < ∞, and let (ek)k be an orthonormal basis of H+.
Consider

H0 = H−, Hk+1 = Hk ⊕ Rek+1 if k ∈ N,

so (Hk)k is an increasing sequence of finite-dimensional subspaces of H .
Let J : [0, 1] × H → R be a C1-functional and, taken θ ∈ [0, 1], let us set

Jθ = J(θ, ·) : H → R and J ′
θ(u) = ∂J(θ, u)/∂u. Furthermore, let

Γ = {γ ∈ C(H,H) : γ odd and there exists L > 0 s.t. γ(u) = u if ‖u‖H ≥ L},
ck = inf

γ∈Γ
sup
u∈Hk

J0(γ(u)).

Assume that:

(A1) J satisfies the following weaker form of the classical Palais–Smale condition:
any ((θn, un))n ⊂ [0, 1]×H such that

(J(θn, un))n is bounded, lim
n→∞J ′

θn(un) = 0 (4.1)

converges up to a subsequence;

(A2) for any b > 0 there exists Cb > 0 such that if (θ, u) ∈ [0, 1]×H then

|Jθ(u)| ≤ b =⇒
∣∣∣∣∂J∂θ (θ, u)

∣∣∣∣ ≤ Cb(‖J ′
θ(u)‖H′ + 1)(‖u‖H + 1);

(A3) there exist two continuous maps η1, η2 : [0, 1]×R→ R, Lipschitz continuous
with respect to the second variable, such that η1(θ, ·) ≤ η2(θ, ·) and if (θ, u) ∈
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[0, 1]×H then

J ′
θ(u) = 0 =⇒ η1(θ, Jθ(u)) ≤ ∂J

∂θ
(θ, u) ≤ η2(θ, Jθ(u));

(A4) J0 is even and for each finite-dimensional subspace V of H it results

lim
u∈V

‖u‖H→+∞
sup

θ∈[0,1]

J(θ, u) = −∞.

For i ∈ {1, 2}, let Ψi : [0, 1]×R→ R be the flow associated to ηi, i.e., the solution
of problem ⎧⎨⎩

∂Ψi

∂θ
(θ, s) = ηi(θ,Ψi(θ, s)),

Ψi(0, s) = s.

Note that Ψi(θ, ·) is continuous, non-decreasing on R and Ψ1(θ, ·) ≤ Ψ2(θ, ·). Set
η1(s) = sup

θ∈[0,1]

|η1(θ, s)|, η2(s) = sup
θ∈[0,1]

|η2(θ, s)|.

In this framework, the following abstract result can be proved (see [14, Theorem
3] and [15, Theorem 2.2]).

Theorem 4.1. There exists C̃ ∈ R such that if k ∈ N then

(i) either J1 has a critical level c̃k with Ψ2(1, ck) < Ψ1(1, ck+1) ≤ c̃k,

(ii) or ck+1 − ck ≤ C̃(η1(ck+1) + η2(ck) + 1).

Remark 4.2. If η2 ≥ 0 in [0, 1]×R, the function Ψ2(·, s) is non-decreasing on [0, 1].
Hence, ck ≤ c̃k for every ck satisfying case (i).

5. Preliminary lemmas

Now, in order to find multiple critical points of the non-even functional J1 associ-
ated to (Pf ) (see Proposition 2.1), we want to apply Bolle’s perturbation method.
Thus, consider the family of functionals J : [0, 1]× EG → R defined as

J(θ, u) =
1

2

∫
Ω

|∇u|2 dx−
∫
Ω

G(x, u) dx − θ

∫
Ω

fu dx

= J(0, u)− θ

∫
Ω

fu dx.

(5.1)

Clearly, J(0, ·) = J0 is an even functional while J(1, ·) = J1. By Proposition 2.1
we have that J is a C1-functional with

∂J

∂θ
(θ, ζ) = −

∫
Ω

fζ dx,

J ′
θ(u)[ζ] =

∂J

∂u
(θ, u)[ζ] =

∫
Ω

∇u · ∇ζ dx −
∫
Ω

g(x, u)ζ dx− θ

∫
Ω

fζ dx

for every θ ∈ [0, 1] and u, ζ ∈ EG.
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The following technical lemmas state that the functional J in (5.1) satisfies
assumptions (A1)–(A4) introduced in the previous section.

Lemma 5.1. Let g ∈ C(Ω×R,R) satisfying (g0), (g1), (g2) and (g3) and f ∈ Lμ′
(Ω).

Then, if (θn, un)n ⊂ [0, 1]×EG is a sequence verifying (4.1), then it converges up
to a subsequence.

Proof. Let (θn, un)n ⊂ [0, 1]× EG be a sequence satisfying (4.1), hence

1

2

∫
Ω

|∇un|2 dx−
∫
Ω

G(x, un) dx− θn

∫
Ω

fun dx ≤ a1

and∣∣J ′
θn(un)[un]

∣∣ = ∣∣∣∣∫
Ω

|∇un|2 dx −
∫
Ω

g(x, un)un dx− θn

∫
Ω

fun dx

∣∣∣∣ ≤ εn‖un‖

where εn → 0 as n→∞. As by (g1)

a2 + εn‖un‖ ≥ μJθn(un)− J ′
θn(un)[un] ≥

(μ
2
− 1

)
‖un‖2 − (μ− 1) θn

∫
Ω

fun dx

≥ a3‖un‖2 − a4‖un‖,
it follows that (un)n is bounded in EG; hence, it converges weakly in EG up to a
subsequence. Thus, the proof follows easily by (2.7) and standard arguments. �

Lemma 5.2. Let g ∈ C(Ω × R,R) satisfying (g0), (g2) and (g3) and f ∈ Lμ′
(Ω).

Then, for any b > 0 there exists Cb > 0 such that if (θ, u) ∈ [0, 1]× EG it is

|Jθ(u)| ≤ b =⇒
∣∣∣∣∂J∂θ (θ, u)

∣∣∣∣ ≤ Cb(‖J ′
θ(u)‖E′

G
+ 1)(‖u‖+ 1).

Proof. The expression of ∂J
∂θ (θ, u), the Hölder inequality and Sobolev embeddings

imply ∣∣∣∣∂J∂θ (θ, u)
∣∣∣∣ ≤ ‖f‖Lμ′(Ω)‖u‖Lμ(Ω) ≤ a5‖u‖ for all (θ, u) ∈ [0, 1]× EG,

so the conclusion follows. �

Since we want to determine the “control” functions ηi(θ, s) in (A3), we prove the
following

Lemma 5.3. Let g ∈ C(Ω × R,R) satisfying (g0), (g1), (g2), (g3) and (g5) and

f ∈ Lμ′
(Ω). Then, there exists a constant C > 0 such that

(θ, u) ∈ [0, 1]× EG, J ′
θ(u) = 0 =⇒

∣∣∣∣∂J∂θ (θ, u)
∣∣∣∣ ≤ C(J2

θ (u) + 1)
1
2μ .
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Proof. Let (θ, u) ∈ [0, 1]× EG such that J ′
θ(u) = 0. By (g1), (g5) and f ∈ Lμ′

(Ω),
we have that

Jθ(u) = Jθ(u)− 1

2
J ′
θ(u)[u] =

∫
Ω

(
1

2
g(x, u)u−G(x, u) dx− θ

2

∫
Ω

fu dx

≥
(μ
2
− 1

)∫
Ω

G(x, u) dx− θ

2

∫
Ω

fu dx

≥ a6‖u‖μLμ(Ω) − ‖f‖μ′

Lμ′(Ω)
‖u‖L(Ω)

≥ a7(‖u‖μLμ(Ω) − 1).

Then, by the Hölder inequality∣∣∣∣∂J∂θ (θ, u)
∣∣∣∣ ≤ ‖f‖Lμ′(Ω)‖u‖Lμ(Ω) ≤ C(J2

θ (u) + 1)
1
2μ

and (A3) holds with η2(θ, s) = −η1(θ, s) = C(1 + s2)
1
2μ . �

Lemma 5.4. Let g ∈ C(Ω×R,R) satisfying (g0), (g2), (g3) and (g5) and f ∈ Lμ′
(Ω).

Then, for each finite-dimensional subspace V of EG it results

lim
u∈V

‖u‖→+∞
sup

θ∈[0,1]

Jθ(u) = −∞.

Proof. Since by (g5) and the Hölder inequality

J(θ, u) ≤ 1

2
‖u‖2 − γ0‖u‖μ + ‖f‖Lμ′(Ω)‖u‖Lμ(Ω),

then the conclusion follows by μ > 2 and the equivalence of all norms in a finite-
dimensional space. �
Remark 5.5. Let us point out that, arguing as in Section 3, the proof of Lemma
5.4 holds again by using (g1) and (g2) instead of (g5). On the contrary, assumption
(g5) needs in the proof of Lemma 5.3.

6. Growth estimates and proof of Theorem 1.4

In order to apply Theorem 4.1, we consider a sequence of finite-dimensional sub-
spaces of EG as follows. Let us consider a Schauder basis (uk)k in EG. Then, we
can define

Hk = span{u1, . . . , uk}, H⊥
k−1 = span{uk, uk+1, . . . },

and a corresponding sequence of min-max levels as

ck = inf
γ∈Γ

sup
u∈Hk

J0(γ(u)), for each k ≥ 1, (6.1)

where Γ is as in Section 4 with H = EG. By the lemmas in the previous Section
the path of functionals (Jθ)θ∈[0,1] satisfies assumptions (A1)–(A4) of Theorem 4.1
with

−η1(θ, s) = η2(θ, s) = C(1 + s2)
1
2μ . (6.2)
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So, Theorem 4.1 applies. In order to state the existence of infinitely many
solutions of problem (Pf ), by Remark 4.2, we have to prove that alternative (i)
occurs for all k large enough. If, by contradiction, we assume that alternative (ii)
occurs for k large enough, by the form of ηi(θ, s) in (6.2), it follows that

ck+1 − ck ≤ C̃(c
1
μ

k+1 + c
1
μ

k + 1).

Therefore, arguing as in [8, Lemma 5.3], a constant C1 and an integer k0 exist
such that

ck ≤ C1k
μ

μ−1 for all k ≥ k0. (6.3)

In order to have a contradiction, we need a suitable lower estimate of the growth
of c′ks.

Following an idea of Tanaka in [31], let us point out that, by (2.6) for ε = 1
4 ,

a positive constant C > 0 exists such that

J0(u) ≥ 1

4
‖u‖2 − C‖u‖pLp(Ω)

so it is

ck ≥ bk (6.4)

where

bk = inf
γ∈Γ

sup
u∈Hk

K(γ(u)), K(u) =
1

4
‖u‖2 − C‖u‖pLp(Ω).

Then, by (2.7), we can apply Theorem B in [31] so that, for all k ∈ N there exists
a critical point uk ∈ EG of K such that

K(uk) ≤ bk (6.5)

and its large Morse index is greater or equal than k, i.e., the operator

K ′′(uk) = −1

2
Δ− Cp(p− 1)|uk|p−2 or equivalently −Δ− 2Cp(p− 1)|uk|p−2

has at least k non-positive eigenvalues.

Now, we deal with the case m ≥ 2 so that m + 1 ≥ 3. The case m = 1 can
be treated in a simpler way. Thanks to the partially spherically symmetry of uk

for all integer k, we can apply Proposition 7.3 in Appendix 7 with the potential
V = −2Cp(p− 1)|uk|p−2, so we have

k ≤ N−(−Δ− 2Cp(p− 1)|uk|p−2)

≤ Cm

∫
Ω̃×[0,+∞)

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ.
(6.6)

Moreover, since uk is a critical point of K, by (6.5) it follows that

bk ≥ p− 2

4p
‖uk‖2 =

p− 2

2
C‖uk‖pLp(Ω). (6.7)
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Now, our aim is to estimate the last integral in (6.6). Then, arguing as in [17] (see
also [4]), by the Hölder inequality, it follows that∫

Ω̃×[0,1]

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ (6.8)

≤
(∫

Ω̃×[0,1]

ρl dx̃dρ

) 2p−(p−2)(m+1)
2p

(∫
Ω̃×[0,1]

ρN−m−1|uk(x̃, ρ)|p dx̃dρ
) (p−2)(m+1)

2p

with l = − (N−m−1)(p−2)(m+1)
2p−(p−2)(m+1) . Let us point out that N − m ≥ 2 implies that

2p− (p− 2)(m+ 1) > 0, for any p ∈ (2, 2∗). Clearly, if

p < 2 +
4

(N −m)(m+ 1)− 2
, (6.9)

then l > −1 and (6.7) and (6.8) imply∫
Ω̃×[0,1]

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ ≤ C2‖uk‖
(p−2)(m+1)

2

Lp(Ω) ≤ C3b
(p−2)(m+1)

2p

k . (6.10)

On the other hand, applying again the Hölder inequality, for suitable r > 2, it is

∫
Ω̃×[1,+∞)

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ ≤
(∫

Ω̃×[1,+∞)

ρL dx̃dρ

) 2r−(r−2)(m+1)
2r

×
(∫

Ω̃×[1,+∞)

ρN−m−1|uk(x̃, ρ)|
p−2
r−2 r dx̃dρ

) (r−2)(m+1)
2r

(6.11)

with L < −1 where L = − (N−m−1)(r−2)(m+1)
2r−(r−2)(m+1) . Hence, by (6.11)∫

Ω̃×[1,+∞)

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ

≤ C4

(∫
Ω̃×[1,+∞)

ρN−m−1|uk(x̃, ρ)|
p−2
r−2 r dx̃dρ

) (r−2)(m+1)
2r

≤ C4 ‖uk‖
(p−2)(m+1)

2

L
p−2
r−2

r
(Ω)

.

(6.12)

Let us point out that in the previous estimates we need to choose r such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 <
2r − (r − 2)(m+ 1)

2r
< 1,

(N −m− 1)(r − 2)(m+ 1)

2r − (r − 2)(m+ 1)
> 1,

2 ≤ p− 2

r − 2
r < p.
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From direct calculations, recalling that N ≥ 4 and then 2 < p < 4, this system is
solvable if we choose r > 2 such that

max

{
p,

2(N −m)(m+ 1)

(N −m)(m+ 1)− 2

}
< r < min

{
4

4− p
, 2 +

4

m− 1

}
(6.13)

and this is possible for all p verifying

2 +
4

(N −m)(m+ 1)
< p < 2∗. (6.14)

Clearly, if we assume p satisfying (6.9) and (6.14), condition (6.13) becomes

2(N −m)(m+ 1)

(N −m)(m+ 1)− 2
< r < min

{
4

4− p
, 2 +

4

m− 1

}
. (6.15)

So, if (6.14) holds, by (6.12), (6.7) and the Gagliardo–Nirenberg interpolation
inequality (see [16]) it follows that∫

Ω̃×[1,+∞)

|uk(x̃, ρ)|
(p−2)(m+1)

2 dx̃dρ ≤ C4‖uk‖
(p−2)(m+1)

2

L
p−2
r−2

r
(Ω)

≤ C5

(
‖uk‖aL2(Ω)‖uk‖1−a

Lp(Ω)

) (p−2)(m+1)
2

≤ C6

(
b

a
2

k b
1−a
p

k

) (p−2)(m+1)
2

= C6 b
(r−2)(m+1)

2r

k

(6.16)

where 0 < a < 1 and a
2 + (1−a)

p = r−2
(p−2)r . Then, for p as in (6.9) and (6.14), by

(6.6), (6.10) and (6.16) for any integer k we have that

k ≤ C7 b
(p−2)(m+1)

2p

k + C8 b
(r−2)(m+1)

2r

k ;

therefore bk → +∞ and, since p < r, it follows that, for k large,

k ≤ C8 b
(r−2)(m+1)

2r

k

and consequently by (6.4)

ck ≥ C9 k
2r

(r−2)(m+1) if k is large enough.

Since 2r
(r−2)(m+1) ↑ N −m if r ↓ 2(N−m)(m+1)

(N−m)(m+1)−2 (see (6.15)), it follows that, if

p satisfies (6.9) and (6.14), for any δ > 0 and k large, it is

ck ≥ Cδ kN−m−δ. (6.17)

Really, (6.17) holds for any 2 < p < 2 + 4
(N−m)(m+1)−2 . To this aim, we recall the

following result.

Lemma 6.1. Assume that 2 < p ≤ 2 + 4
(N−m)(m+1) . Then, for some p such that

2+ 4
(N−m)(m+1) < p < 2+ 4

(N−m)(m+1)−2 , for all ε > 0 a positive constant Aε > 0

exists such that∫
RN

|u|p dx ≤ ε

∫
RN

|u|2 dx+Aε

∫
RN

|u|p dx, for all u ∈ EG.
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Proof. Let s > 1 and α > 0 real numbers that will be fixed later. By applying
Young’s inequality, we have that

|u|p = (εs)
1
s |u|α 1

(εs)
1
s

|u|p−α ≤ ε|u|αs + 1

s′(εs)
s′
s

|u|(p−α)s′ .

Our aim is to prove the existence of suitable α and s such that{
αs = 2,

2 + 4
(N−m)(m+1) < (p− α) s

s−1 < 2 + 4
(N−m)(m+1)−2

or, equivalently, if 2 < p < 2 + 4
(N−m)(m+1) ,{

α = 2
s ,

4
2p−(p−2)(N−m)(m+1) < s < 4

4−(p−2)(N−m)(m+1) .
(6.18)

Since it is easy to see that

1 <
4

2p− (p− 2)(N −m)(m+ 1)
<

4

4− (p− 2)(N −m)(m+ 1)
,

taking s as in (6.18), the proof concludes with p = (p − α) s
s−1 , i.e., p = sp−2

s−1 . If

p = 2 + 4
(N−m)(m+1) , the thesis follows from simpler arguments. �

The previous lemma implies that, if 2 < p ≤ 2 + 4
(N−m)(m+1) , for a suitable

p such that

2 +
4

(N −m)(m+ 1)
< p < 2 +

4

(N −m)(m+ 1)− 2
,

for ε > 0 small enough two positive constants Bε and Cε exist such that, for all
u ∈ EG,

J0(u) ≥ K(u) with K(u) = Bε‖u‖2 − Cε‖u‖pLp(Ω)
.

So, denoting by bk the min-max levels of K defined by (6.1), it follows that

ck ≥ bk. (6.19)

On the other hand, by applying to the functional K Theorem B in [31],
Proposition 7.3 in Appendix 7 and the subsequent arguments, estimate (6.17)
holds also for the critical levels bk of K and then, from (6.19) for the critical
levels ck of J0. Hence, we conclude that (6.17) holds for all p between 2 and
2 + 4

(N−m)(m+1)−2 . Finally, since

μ

μ− 1
< N −m

holds since N − m ≥ 3, (6.17) is in contradiction with (6.3) for k large. So,
alternative (i) of Theorem 4.1 and Remark 4.2 occur for all k large enough and
the existence of infinitely many weak solutions of problem (Pf ) follows if p is such
that 2 < p < pN,m where pN,m = 2 + 4

(N−m)(m+1)−2 .
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7. Appendix

In this section, we give a suitable estimate of the number N−(−Δ+ V (x)) of the
non-positive eigenvalues of the operator −Δ+ V (x) in EG. Let us recall that for
a general potential V the following proposition holds (see [21, 23, 24, 29, 31]).

Proposition 7.1. Let N ≥ 2 and V : Ω→ R. Then,
(i) if N ≥ 3, there is a constant C̃N > 0 such that

N−(−Δ+ V (x)) ≤ C̃N‖V−(x)‖
N
2

L
N
2 (Ω)

;

(ii) if N = 2, for any ε > 0 there is a constant C̃ε > 0 such that

N−(−Δ+ V (x)) ≤ C̃ε‖V−(x)‖ε+1
Lε+1(Ω)

where V−(x) = min{0, V (x)}.
Now, assume that the potential V : Ω→ R is partially spherically symmetric, i.e.,

(V0) V (x̃, y1) = V (x̃, y2) for every x̃ ∈ Ω̃ and y1, y2 ∈ RN−m, |y1| = |y2|.
Setting ρ = |y| with y ∈ RN−m, we state the following result useful for improving
the previous estimates of the number N−(−Δ + V (x)) when partially spherical
symmetry occurs.

Lemma 7.2. Let N−m ≥ 3 and V : Ω→ R verifying (V0). Then, λ is an eigenvalue
of −Δ+ V (x) in EG with eigenfunction ϕ if and only if it is an eigenvalue of

−Δx̃ − ∂2

∂ρ2
+

(N −m− 1)(N −m− 3)

4ρ2
+ V (x̃, ρ)

in W 1,2
0 (Ω̃× (0,+∞)) with eigenfunction ϕ̃ = ϕρ

N−m−1
2 .

Proof. By the partially spherical symmetry of the problem, λ is an eigenvalue of
−Δ+ V (x) in EG with eigenfunction ϕ if and only if λ is an eigenvalue of

−Δx̃ − ∂2

∂ρ2
− N −m− 1

ρ

∂

∂ρ
+ V (x̃, ρ)

inW 1,2
0 (Ω̃×(0,+∞)) with eigenfunction ϕ. This is equivalent to study the equation

Δx̃ϕ+
∂2ϕ

∂ρ2
+ p1(ρ)

∂ϕ

∂ρ
+ p2(x̃, ρ)ϕ = 0 (7.1)

where p1(ρ) = N−m−1
ρ and p2(x̃, ρ) = λ − V (x̃, ρ). By the classical change of

variable ϕ = ϕ̃e−
1
2

∫ ρ
1
p1(s) ds, (7.1) is equivalent to

Δx̃ϕ̃+
∂2ϕ̃

∂ρ2
+

(
−1

4
p21(ρ)−

1

2
p′1(ρ) + p2(x̃, ρ)

)
ϕ̃ = 0

namely

Δx̃ϕ̃+
∂2ϕ̃

∂ρ2
+

(
−1

4

(
N −m− 1

ρ

)2

+
1

2

N −m− 1

ρ2
+ (λ− V (x̃, ρ))

)
ϕ̃ = 0.
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Then, λ is an eigenvalue of

−Δx̃ − ∂2

∂ρ2
+

(N −m− 1)(N −m− 3)

4ρ2
+ V (x̃, ρ)

in W 1,2
0 (Ω̃× (0,+∞)) with eigenfunction ϕ̃ = ϕρ

N−m−1
2 . �

Now, we are ready to prove the following result.

Proposition 7.3. Let N −m ≥ 3 and V : Ω→ R verifying (V0).

(i) If m ≥ 2 and V ∈ L
m+1

2 (Ω), there exists a constant Cm > 0 such that

N−(−Δ+ V (x)) ≤ Cm

∫
Ω̃×[0,+∞)

|V−(x̃, ρ)|m+1
2 dx̃dρ.

(ii) If m = 1 and V ∈ Lε+1(Ω), for any ε > 0 there is a constant Cε > 0 such
that

N−(−Δ+ V (x)) ≤ Cε

∫
Ω̃×[0,+∞)

|V−(x̃, ρ)|ε+1 dx̃dρ.

Proof. (i) By Lemma 7.2 it is

N−(−Δ+ V (x)) = N−(−Δx̃ − ∂2

∂ρ2
+

(N −m− 1)(N −m− 3)

4ρ2
+ V (x̃, ρ)).

Hence, N −m ≥ 3 and Proposition 7.1 (i) imply

N−(−Δx̃ − ∂2

∂ρ2
+

(N −m− 1)(N −m− 3)

4ρ2
+ V (x̃, ρ))

≤ N−(−Δx̃ − ∂2

∂ρ2
+ V (x̃, ρ)) ≤ Cm

∫
Ω̃×[0,+∞)

|V−(x̃, ρ)|m+1
2 dx̃dρ.

(ii) It is enough to apply Lemma 7.2 and Proposition 7.1 (ii). �
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Università degli Studi di Bari “Aldo Moro”
Via E. Orabona 4
I-70125 Bari, Italy
e-mail: sara.barile@uniba.it

addolorata.salvatore@uniba.it

mailto:sara.barile@uniba.it
mailto:addolorata.salvatore@uniba.it


Progress in Nonlinear Differential Equations
and Their Applications, Vol. 85, 61–86
c© 2014 Springer International Publishing

Basic Properties of Ultrafunctions

Vieri Benci and Lorenzo Luperi Baglini

Dedicated to Bernard Ruf in occasion of his 60th birthday

Abstract. Ultrafunctions are a particular class of functions defined on a non-
Archimedean field R∗ ⊃ R. They provide generalized solutions to functional
equations which do not have any solutions among the real functions or the
distributions. In this paper we analyze systematically some basic properties
of the spaces of ultrafunctions.
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1. Introduction

In some recent papers the notion of ultrafunction has been introduced ([1], [2]).
Ultrafunctions are a particular class of functions defined on a non-Archimedean
field R∗ ⊃ R. We recall that a non-Archimedean field is an ordered field which
contain infinite and infinitesimal numbers.

To any continuous function f : RN → R we associate in a canonical way

an ultrafunction f̃ : (R∗)N → R∗ which extends f ; more exactly, to any func-
tional vector space V (Ω) ⊆ L2(Ω) ∩ C(Ω), we associate a space of ultrafunctions

Ṽ (Ω). The ultrafunctions are much more than the functions and among them we
can find solutions of functional equations which do not have any solutions among
the real functions or the distributions.

A typical example of this situation is analyzed in [2] where a simple Physical
model is studied. In this problem there is a material point interacting with a field
and, as it usually happens, the energy is infinite. Therefore the need to use infi-
nite numbers arises naturally. Other situations in which infinite and infinitesimal
numbers appear in a natural way are studied in [5], in [6] and in section 4.4.

In this paper we analyze systematically some basic properties of the spaces

of ultrafunctions Ṽ (Ω). In particular we will show that:

• to any measurable function f we can associate an unique ultrafunction f̃ such

that f(x) = f̃(x) if f is continuous in a neighborhood of x;

Switzerland
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• to every distribution T we can associate an ultrafunction T̃ (x) such that

∀ϕ ∈ D, 〈T, ϕ〉 =
∫ ∗

T̃ (x)ϕ̃(x)dx where
∫ ∗

is a suitable extension of the
integral to the ultrafunctions;

• the vector space of ultrafunctions Ṽ (Ω) is hyperfinite, namely it shares many
properties of finite vector spaces (see Sect. 2.4);

• the vector space of ultafunctions Ṽ (Ω) has an hyperfinite basis {δa(x)}a∈Σ

where δa is the “Dirac ultrafunction in a” (see Def. 18) and Σ ⊂ (R∗)N is a
suitable set;

• any ultrafunction u can be represented as follows:

u(x) =
∑
q∈Σ

u(q)σq(x),

where {σa(x)}a∈Σ is the dual basis of {δa(x)}a∈Σ ;
• any operator F : V (Ω)→ D′ (Ω), can be extended to an operator

F̃ : Ṽ (Ω)→ Ṽ (Ω) ;

the extension of the derivative and the Fourier transform will be analyzed in
some detail.

The techniques on which the notion of ultrafunction is based are related to
non-Archimedean Mathematics (NAM) and to non-standard analysis (NSA). The
first section of this paper is devoted to a relatively elementary presentation of
the basic notions of NAM and NSA inspired by [3] and [4]. Some technicalities
have been avoided by presenting the matter in an axiomatic way. Of course, it is
necessary to prove the consistency of the axioms. This is done in the appendix;
however in the appendix we have assumed the reader to be familiar with NSA.

1.1. Notation

Let Ω be a subset of RN : then

• C (Ω) denotes the set of continuous functions defined on Ω ⊂ RN ;
• Ck (Ω) denotes the set of functions defined on Ω ⊂ RN which have continuous
derivatives up to the order k;

• D (Ω) denotes the set of the infinitely differentiable functions with compact
support defined on Ω ⊂ RN ; D′ (Ω) denotes the topological dual of D (Ω),
namely the set of distributions on Ω;

• H1,p(Ω) is the usual Sobolev space defined as the set of functions in Lp (Ω)

such that ∇u ∈ Lp (Ω)
N
;

• H1(Ω) = H1,2(Ω);
• if V is a finite-dimensional vector space, V ′ will denote its dual; if V is a
Banach space, V ′ will denote its (topological) dual;

• supp(f) = {x ∈ RN : f(x) �= 0};
• mon(x) = {y ∈ RN : x ∼ y};
• gal(x) = {y ∈ RN : x ∼f y}.
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2. Λ-theory

In this section we present the basic notions of non-Archimedean Mathematics and
of non-standard analysis following a method inspired by [3] (see also [1] and [2]).

2.1. Non-Archimedean fields

Here, we recall the basic definitions and facts regarding non-Archimedean fields,
namely fields that contain infinite and infinitesimal numbers. In the following, K
will denote an ordered field. We recall that such a field contains (a copy of) the
rational numbers. Its elements will be called numbers.

Definition 1. Let K be an ordered field. Let ξ ∈ K. We say that:

• ξ is infinitesimal if, for all positive n ∈ N, |ξ| < 1
n ;• ξ is finite if there exists n ∈ N such as |ξ| < n;

• ξ is infinite if, for all n ∈ N, |ξ| > n (equivalently, if ξ is not finite).

Definition 2. An ordered field K is called non-Archimedean if it contains an infin-
itesimal ξ �= 0.

It is easily seen that all infinitesimal are finite, that the inverse of an infi-
nite number is a nonzero infinitesimal number, and that the inverse of a nonzero
infinitesimal number is infinite.

Definition 3. A superreal field is an ordered field K that properly extends R.

It is easy to show, due to the completeness of R, that there are nonzero
infinitesimal numbers and infinite numbers in any superreal field. Infinitesimal
numbers can be used to formalize a new notion of “closeness”:

Definition 4. We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ is
infinitesimal. In this case, we write ξ ∼ ζ. Moreover, we say that ξ, ζ are finitely
close if ξ − ζ is finite. In this case, we write ξ ∼f ζ.

Clearly, the relation “∼” of infinite closeness is an equivalence relation. This
leads to consider its equivalence classes:

Definition 5. Let K be a superreal field, and ξ ∈ K a number. The monad of ξ is
the set of all numbers that are infinitely close to it:

mon(ξ) = {ζ ∈ K : ξ ∼ ζ},
and the galaxy of ξ is the set of all numbers that are finitely close to it:

gal(ξ) = {ζ ∈ K : ξ ∼f ζ }.
By definition, it follows that the set of infinitesimal numbers is mon(0) and

that the set of finite numbers is gal(0). In particular, given any infinitesimal number
ξ, ξ is infinitely near to a real number (the number 0). So we could argue that,
similarly, the monad of any number ξ ∈ K contains (exactly) one real number.
This is clearly false if we take ξ infinite, but it is true whenever ξ is finite:
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Theorem 6. If K is a superreal field, every finite number ξ ∈ K is infinitely close
to a unique real number r ∼ ξ, called the shadow or the standard part of ξ. The
number r is the only real number which determines the section

{x ∈ R : x ≤ ζ}, {x ∈ R : x > ζ}.
Theorem 6 is a well-known result in non-Archimedean analysis (see, e.g., [7]).

Basically, Theorem 6 shows that the finite part of every non-Archimedean superreal
field can be thought of as constructed starting from R and “surrounding” each real
number r with a cloud of numbers that are infinitely close to r.

From now on, given a finite number ξ we will denote its shadow as sh(ξ),
and we put sh(ξ) = +∞ (sh(ξ) = −∞) if ξ ∈ K is a positive (negative) infinite
number.

2.2. The Λ-limit

In this section we will introduce a superreal field K and we will analyze its main
properties by mean of the Λ-theory (see also [1], [2]).

To formalize the Λ-theory we need a “mathematical universe” U, i.e., a set
that contains all the usual objects of analysis such as real numbers, real functions
and so on. For our applications a good choice of U is given by the superstructure
on R:

U =

∞⋃
n=0

Un

where Un is defined by induction as follows:

U0 = R;
Un+1 = Un ∪ P (Un) .

Here P (E) denotes the power set ofE. Identifying the couples with the Kuratowski
pairs and the functions and the relations with their graphs, it follows that U
contains almost every usual mathematical object. Given the universe U, we denote
by F the family of finite subsets of U. Clearly (F ,⊂) is a directed set. We recall
that a directed set is a partially ordered set (D,≺) such that, ∀a, b ∈ D, ∃c ∈ D
such that

a ≺ c and b ≺ c

A function ϕ : D → E, defined on a directed set will be called net (with values
in E). A net ϕ is the generalization of the notion of sequence and it has been
constructed in such a way that the Weierstrass definition of limit makes sense: if
ϕλ is a real net, we have that

lim
λ→∞

ϕ(λ) = L

if and only if

∀ε > 0, ∃λ0 > 0, such that ∀λ > λ0, |ϕ(λ) − L| < ε. (1)
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The key notion of the Λ-theory is the Λ-limit. Also the Λ-limit is defined for
real nets but differs from the limit defined by (1) mainly for the fact that there
exists a non-Archimedean field in which every real net admits a limit.

Now, we will present the notion of Λ-limit axiomatically:

Axioms of the Λ-limit

• (Λ-1) Existence Axiom. There is a superreal field K ⊃ R such that every net
ϕ : F → R has a unique limit L ∈ K (called the “Λ-limit” of ϕ.) The Λ-limit
of ϕ will be denoted as

L = lim
λ↑U

ϕ(λ).

Moreover we assume that every ξ ∈ K is the Λ-limit of some real function
ϕ : F → R.

• (Λ-2) Real numbers axiom. If ϕ(λ) is eventually constant, namely ∃λ0 ∈
F , r ∈ R such that ∀λ ⊃ λ0, ϕ(λ) = r, then

lim
λ↑U

ϕ(λ) = r.

• (Λ-3) Sum and product Axiom. For all ϕ, ψ : F → R:

lim
λ↑U

ϕ(λ) + lim
λ↑U

ψ(λ) = lim
λ↑U

(ϕ(λ) + ψ(λ)) ;

lim
λ↑U

ϕ(λ) · lim
λ↑U

ψ(λ) = lim
λ↑U

(ϕ(λ) · ψ(λ)) .
These axioms state in a precise way the properties of the Λ-limit that we

discussed before: (Λ-1) states that every net ϕ : F → R has a limit, and that every
number ξ ∈ K is the limit of some net; (Λ-2) are familiar notions which holds also
for the Weierstrass limit (1). The following theorem states that these axioms are
consistent.

Theorem 7. The set of axioms {(Λ-1), (Λ-2), (Λ-3)} is consistent.

Theorem 7 will be proved in the Appendix.

Now we want to extend the definition of the Λ-limit to any bounded net of
mathematical objects in U (a net ϕ : F → U is called bounded if there exists n
such that ∀λ ∈ F , ϕ(λ) ∈Un). To this aim, consider a net

ϕ : F → Un. (2)

We will define lim
λ↑U

ϕ(λ) by induction on n. For n = 0, lim
λ↑U

ϕ(λ) is defined by the

axioms (Λ-1), (Λ-2), (Λ-3); so by induction we may assume that the limit is defined
for n− 1 and we define it for the net (2) as follows:

lim
λ↑U

ϕ(λ) =

{
lim
λ↑U

ψ(λ) | ψ : F → Un−1 and ∀λ ∈ F , ψ(λ) ∈ ϕ(λ)

}
.

Definition 8. A mathematical entity (number, set, function or relation) which is
the Λ-limit of a net is called internal.
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2.3. Natural extensions of sets and functions

Definition 9. The natural extension of a set E ⊂ R is given by

E∗ := lim
λ↑U

cE(λ) =

{
lim
λ↑U

ψ(λ) | ψ(λ) ∈ E

}
where cE(λ) is the net identically equal to E.

This definition, combined with axiom (Λ-1), entails that

K = R∗.

Since a function f can be identified with its graph then the natural extension
of a function is defined by the above definition. Moreover we have the following
result:

Theorem 10. The natural extension of a function

f : E → F is a function f∗ : E∗ → F ∗

and for every net ϕ : F ∩P (E)→ E, and every function f : E → F , we have that

lim
λ↑U

f(ϕ(λ)) = f∗
(
lim
λ↑U

ϕ(λ)

)
.

When dealing with functions, sometimes the “∗” will be omitted if the domain
of the function is clear from the context. For example, if η ∈ R∗ is an infinitesimal,
then clearly eη denotes exp∗(η).

The following theorem is a fundamental tool in using the Λ-limit:

Theorem 11 (Leibniz Principle). Let R be a relation in Un for some n ≥ 0 and
let ϕ, ψ : F → Un. If

∀λ ∈ F , ϕ(λ)Rψ(λ) then

(
lim
λ↑U

ϕ(λ)

)
R∗

(
lim
λ↑U

ψ(λ)

)
.

When R is ∈ or = we will not use the symbol ∗ to denote their extensions,
since their meaning is unaltered in universe constructed over R∗.

2.4. Hyperfinite extensions

Definition 12. An internal set is called hyperfinite if it is the Λ-limit of a net
ϕ : F → F .

So the hyperfinite sets are the Λ-limit of finite sets. There importance relies
on the fact that, by virtue of Theorem 11 they share many properties of finite set
even if, in general, they have a large cardinality.

Definition 13. Given any set E ∈ U, the hyperfinite extension of E is defined as
follows:

E◦ := lim
λ↑U

(E ∩ λ).
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All the internal finite sets are hyperfinite, but there are hyperfinite sets which
are not finite. For example the set

R◦ := lim
λ↑U

(R ∩ λ)

is not finite. The hyperfinite sets are very important since they inherit many
properties of finite sets via Leibniz principle. For example, R◦ has the maximum
and the minimum and every internal function

f : R◦ → R∗

has the maximum and the minimum as well.

Also, it is possible to add the elements of an hyperfinite set of numbers or
vectors as follows: let

A := lim
λ↑U

Aλ

be a hyperfinite set; then the hyperfinite sum is defined in the following way:∑
a∈A

a = lim
λ↑U

∑
a∈Aλ

a.

In particular, if Aλ =
{
a1(λ), . . . , aβ(λ)(λ)

}
with β(λ) ∈ N, then setting

β = lim
λ↑U

β(λ) ∈ N∗

we use the notation
β∑

j=1

aj = lim
λ↑U

β(λ)∑
j=1

aj(λ).

2.5. Qualified sets

When we have a net ϕ : Q→Un, where Q ⊂ F , we can define the Λ-limit of ϕ by
posing

lim
λ∈Q

ϕ(λ) = lim
λ↑U

ϕ̃(λ)

where

ϕ̃(λ) =

{
ϕ(λ) for λ ∈ Q;

∅ for λ /∈ Q.

As one can expect, if two nets ϕ, ψ are equal on a “large” or a “qualified” subset
of F then they share the same Λ-limit. The notion of “qualified” subset of F can
be precisely defined as follows:

Definition 14. We say that a set Q ⊂ F is qualified if for every bounded net ϕ we
have that

lim
λ↑U

ϕ(λ) = lim
λ∈Q

ϕ(λ).
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By the above definition, we have that the Λ-limit of a net ϕ depends only on
the values that ϕ takes on a qualified set (it is in this sense that we could imagine
Q to be “large”). It is easy to see that (nontrivial) qualified sets exist. For example
by (Λ-2) we deduce that, for every λ0 ∈ F , the set

Q (λ0) := {λ ∈ F | λ0 ⊆ λ}
is qualified. In this paper, we will use the notion of qualified set via the following
theorem:

Theorem 15. Let R be a relation in Un for some n ≥ 0 and let ϕ, ψ : F → Un.
Then the following statements are equivalent:

• there exists a qualified set Q such that

∀λ ∈ Q, ϕ(λ)Rψ(λ);

• we have (
lim
λ↑U

ϕ(λ)

)
R∗

(
lim
λ↑U

ψ(λ)

)
.

Proof. It is an immediate consequence of Theorem 11 and the definition of qualified
set. �

3. Ultrafunctions

In this section, we will introduce the notion of ultrafunction and we will analyze
its first properties.

3.1. Definition of ultrafunctions

By now, we just stated that “ultrafunctions are generalized functions”, but we
never stated which properties this space of generalized functions satisfy. The ques-
tion is: which properties would we like a space of generalized functions to have?
In what follows, Ω denotes an open set in RN and by ultrafunctions we mean
ultrafunctions defined on Ω∗.

First of all, since we started by saying that one of the aims of ultrafunctions
is to generalize distributions, it is natural to request that every distribution is
an ultrafunction (or, more precisely, that the space of distributions D(Ω) can be
embedded into the space of ultrafunctions).

Moreover, we would like to have only “good” functions as ultrafunctions. Of
course, the notion of “good function” depends on the context. In this context,
a function is “good” if it is continuous on Ω. So our second request is that the
ultrafunctions are in the space C(Ω)∗.

Also, we would like to have a scalar product. A natural scalar product in
functional analysis is 〈f, g〉 = ∫

f(x)g(x)dx. To be sure that 〈·, ·〉 is, in fact, a scalar
product on the space of ultrafunctions, we require that the space of ultrafunctions
is a vector subspace of

(
L2(Ω)

)∗
.
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Finally, our last request is to have “enough compactness” to get existence
results in a very large class of problems. In order to satisfy this request, we con-
struct the space of ultrafunctions as a hyperfinite-dimensional vector space. One
would argue that this leads to a contradiction with our first request; as we will
show, our choice of the setting for generalized functions avoids this problem.

Now, let us formalize correctly our requests: let Ω be a set in RN , and let
V (Ω) be a (real or complex) vector space such that D(Ω) ⊆ V (Ω) ⊆ L2(Ω)∩C(Ω).
Definition 16. Given the function space V (Ω) we set

Ṽ (Ω) := lim
λ↑U

Vλ(Ω) = Span∗(V (Ω)◦),

where

Vλ(Ω) = Span(V (Ω) ∩ λ).

Ṽ (Ω) will be called the space of ultrafunctions generated by V (Ω).

So, given any vector space of functions V (Ω), the space of ultrafunction gen-
erated by V (Ω) is a vector space of hyperfinite dimension that includes V (Ω), and
the ultrafunctions are Λ-limits of functions in Vλ. Hence the ultrafunctions are
particular internal functions

u : (R∗)N → C∗.

Observe that, by definition, the dimension of Ṽ (Ω) (that we denote by β)
is equal to the internal cardinality of any of its bases, and the following formula
holds:

β = lim
λ↑U

dim(Vλ(Ω)).

Since Ṽ (Ω) ⊂ [
L2(R)

]∗
, it can be equipped with the following scalar product

(u, v) =

∫ ∗
u(x)v(x) dx,

where
∫ ∗

is the natural extension of the Lebesgue integral considered as a func-
tional ∫

: L1(Ω)→ C.

Notice that the Euclidean structure of Ṽ (Ω) is the Λ-limit of the Euclidean struc-
ture of every Vλ given by the usual L2 scalar product. The norm of an ultrafunction
will be given by

‖u‖ =
(∫ ∗

|u(x)|2 dx

) 1
2

.

Remark 17. Notice that the natural extension f∗ of a function f is an ultrafunction
if and only if f ∈ V (Ω).
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Proof. Let f ∈ V (Ω), and Q(f) = {λ ∈ F | f ∈ λ}. Since, for every λ ∈ Q(f),
f ∈ Vλ(Ω) and, as we observed in Section 2.3, Q(f) is a qualified set, it follows by

Theorem 15 that f∗ ∈ Ṽ (Ω).
Conversely, if f /∈ V (Ω) then by Leibniz Principle it follows that f∗ /∈ V ∗(Ω)

and, since Ṽ (Ω) ⊂ V ∗(Ω), this entails the thesis. �

3.2. Delta-, Sigma- and Theta-basis

In this section we introduce three particular kinds of bases for V (Ω) and we study
their main properties. We start by defining the Delta ultrafunctions :

Definition 18. Given a number q ∈ Ω∗, we denote by δq(x) an ultrafunction in

Ṽ (Ω) such that

∀v ∈ Ṽ (Ω),

∫ ∗
v(x)δq(x)dx = v(q). (3)

δq(x) is called Delta (or the Dirac) ultrafunction centered in q.

Let us see the main properties of the Delta ultrafunctions:

Theorem 19. We have the following properties:

1. For every q ∈ Ω∗ there exists a unique Delta ultrafunction centered in q;
2. for every a, b ∈ Ω∗ δa(b) = δb(a);

3. ‖δq‖2 = δq(q).

Proof. 1. Let {ej}βj=1 be an orthonormal real basis of Ṽ (Ω), and set

δq(x) =

β∑
j=1

ej(q)ej(x).

Let us prove that δq(x) actually satisfies (3). Let v(x) =
∑β

j=1 vjej(x) be any
ultrafunction. Then∫ ∗

v(x)δq(x)dx =

∫ ∗
⎛⎝ β∑

j=1

vjej(x)

⎞⎠(
β∑

k=1

ek(q)ek(x)

)
dx

=

β∑
j=1

β∑
k=1

vjek(q)

∫ ∗
ej(x)ek(x)dx

=

β∑
j=1

β∑
k=1

vjek(q)δj,q =

β∑
j=1

vkek(q) = v(q).

So δq(x) is a Delta ultrafunction centered in q.
It is unique: if fq(x) is another Delta ultrafunction centered in q then for

every y ∈ Ω∗ we have:

δq(y)− fq(y) =

∫ ∗
(δq(x)− fq(x))δy(x)dx = δy(q)− δy(q) = 0
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and hence δq(y) = fq(y) for every y ∈ Ω∗.
2. δa (b) =

∫ ∗
δa(x)δb(x) dx = δb (a) .

3. ‖δq‖2 =
∫ ∗

δq(x)δq(x) = δq(q). �
Now we will recall some basic facts of linear algebra which will be used later.

Given a basis {ej} in a finite-dimensional vector space V, the dual basis of {ej} is
the basis

{
e′j
}
of the dual space V ′ defined by the following relation:

e′j [ek] = δjk.

If V has a scalar product (· | ·), then, V and V ′ can be identified and hence, the
dual basis

{
e′j
}
is characterized by the following relation:(

e′j | ek
)
= δjk.

The notion of dual basis allows to give the following definition:

Definition 20. A Delta-basis {δa(x)}a∈Σ (Σ ⊂ Ω∗) is a basis for Ṽ (Ω) whose
elements are Delta ultrafunctions. Its dual basis {σa(x)}a∈Σ is called Sigma-basis.
The set Σ ⊂ Ω∗ is called set of independent points.

So, a Sigma-basis is characterized by the fact that ∀a, b ∈ Σ∫ ∗
δa(x)σb(x)dx = δab. (4)

The existence of a Delta-basis is an immediate consequence of the following
fact:

Remark 21. The set {δa(x)|a ∈ Ω∗} generates all Ṽ (Ω). In fact, let G(Ω) be the
vectorial space generated by the set {δa(x) | a ∈ Ω∗} and suppose that G(Ω) is

properly included in Ṽ (Ω). Then the orthogonal G(Ω)⊥ of G(Ω) in Ṽ (Ω) contains
a function f �= 0. But, since f ∈ G(Ω)⊥, for every a ∈ Ω∗ we have

f(a) =

∫ ∗
f(x)δa(x)dx = 0,

so f�Ω∗ = 0 and this is absurd. Thus the set {δa(x) | a ∈ Ω∗} generates Ṽ (Ω),
hence it contains a basis.

Let us see some properties of Delta- and Sigma-bases:

Theorem 22. A Delta-basis {δq(x)}q∈Σ and its dual basis {σq(x)}q∈Σ satisfy the

following properties:

1. if u ∈ Ṽ (Ω), then

u(x) =
∑
q∈Σ

(∫ ∗
σq(ξ)u(ξ)dξ

)
δq(x);

2. if u ∈ Ṽ (Ω), then

u(x) =
∑
q∈Σ

u(q)σq(x); (5)
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3. if two ultrafunctions u and v coincide on a set of independent points then
they are equal;

4. if Σ is a set of independent points and a, b ∈ Σ then σa(b) = δab;
5. for any q ∈ Ω∗, σq(x) is well defined.

Proof. 1. It is an immediate consequence of the definition of dual basis.
2. Since {δq(x)}q∈Σ is the dual basis of {σq(x)}q∈Σ we have that

u(x) =
∑
q∈Σ

(∫
δq(ξ)u(ξ)dξ

)
σq(x) =

∑
q∈Σ

u(q)σq(x).

3. It follows directly from 2.
4. If follows directly by equation (4)
5. Given any point q ∈ Ω∗ clearly there is a Delta-basis {δa(x)}a∈Σ with

q ∈ Σ. Then σq(x) can be defined by mean of the basis {δa(x)}a∈Σ . We have to
prove that, given another Delta-basis {δa(x)}a∈Σ′ with q ∈ Σ′, the corresponding
σ′
q(x) is equal to σq(x). Using (2), with u(x) = σ′

q(x), we have that

σ′
q(x) =

∑
a∈Σ

σ′
q(a)σa(x).

Then, by (4), it follows that σ′
q(x) = σq(x). �

Let Σ be a set of independent points, and let LΣ : Ṽ (Ω) → Ṽ (Ω) be the
linear operator such that

LΣσa(x) = δa(x)

for every a ∈ Σ.

Proposition 23. LΣ is selfadjoint, positive and∫ ∗
LΣu(x)v(x)dx =

∑
a∈Σ

u(a)v(a).

Proof. Since u(x) =
∑

a∈Σ u(a)σa(x) and v(x) =
∑

a∈Σ v(a)σa(x), then∫ ∗
LΣu(x)v(x)dx =

∫ ∗
LΣ

(∑
a∈Σ

u(a)σa(x)

)(∑
b∈Σ

v(b)σb(x)

)
dx

=
∑
a∈Σ

∑
b∈Σ

u(a)v(b)

∫ ∗
δa(x)σb(x)dx =

∑
a∈Σ

u(a)v(a).

Hence, clearly, LΣ is selfadjoint and positive. �

From now on, we consider the set Σ fixed once for all and we simply denote
the operator LΣ by L. Since L is a positive selfadjoint operator, A = L1/2 is a
well-defined positive selfadjoint operator. For every a ∈ Σ we set

θa(x) = Aσa(x).
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Theorem 24. The following properties hold:

1. {θa(x)}a∈Σ is an orthonormal basis;
2. for every a, b ∈ Σ, θa(b) = θb(a);
3. for every ultrafunction u we have

u(x) =
∑
a∈Σ

u(a)σa(x) =
∑
a∈Σ

u(a)θa(x) =
∑
a∈Σ

u(a)δa(x),

where we have set, for every a ∈ Σ,

u(a) := (A−1u)(a) =

∫ ∗
θa(ξ)u(ξ)dξ;

u(a) = (A−1u)(a) = (L−1u)(a) =

∫ ∗
σa(ξ)u(ξ)dξ;

4. for every ultrafunctions u, v we have∫ ∗
u(x)v(x)dx =

∑
a∈Σ

u(a)v(a) =
∑
a∈Σ

u(a)v(a);

5. for every ultrafunction u we have∫ ∗
u(x)dx =

∑
a∈Σ

u(a).

Proof. 1) {θa(x)}a∈Σ is a basis since it is the image of the basis {σa(x)}a∈Σ respect
to the invertible linear application L. It is orthonormal: for every a, b ∈ Σ we have∫ ∗

θa(x)θb(x)dx =

∫ ∗
Aσa(x)Aσb(x)dx =

∫ ∗
Lσa(x)σb(x) = σb(a) = δab.

2) We have

θa(b) =

∫ ∗
θa(x)δb(x)dx =

∫ ∗
θa(x)Aθb(x)dx

=

∫ ∗
Aθa(x)θb(x)dx =

∫ ∗
δa(x)θb(x)dx = θb(a).

3) The equality

u(x) =
∑
a∈Σ

u(a)σa(x)

has been proved in Theorem 22, (5); the equality

u(x) =
∑
a∈Σ

u(a)θa(x),

where u(a) =
∫ ∗

θa(ξ)u(ξ)dξ, follows since {θa(x)}a∈Σ is an orthonormal basis.
And

(A−1u)(a) =

∫ ∗
δa(ξ)A

−1u(ξ)dξ =

∫ ∗
A−1δa(ξ)u(ξ)dξ =

∫ ∗
θa(ξ)u(ξ)dξ

since A (and, so, A−1) is selfadjoint.
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The equality

u(x) =
∑
a∈Σ

u(a)δa(x),

where u(a) =
∫ ∗

σa(ξ)u(ξ)dξ, follows by point (1) in Theorem 22. And

u(a) =

∫ ∗
σa(ξ)u(ξ)dξ =

∫ ∗
L−1δa(ξ)u(ξ)dξ =

∫ ∗
δa(ξ)L

−1u(ξ)dξ = (L−1u)(a).

4) We have that
∫ ∗

u(x)v(x)dx =
∑

a∈Σ u(a)v(a) since {θa(x)}a∈Σ is an
orthonormal basis:∫ ∗

u(x)v(x)dx =

∫ ∗ (∑
a∈Σ

u(a)θa(x)

)(∑
b∈Σ

v(b)θb(x)dx

)

=
∑
a∈Σ

∑
b∈Σ

u(a)v(b)

∫ ∗
θa(x)θb(x)dx =

∑
a∈Σ

u(a)v(a);

the equality
∫ ∗

u(x)v(x)dx =
∑

a∈Σ u(a)v(a) follows by expressing u(x) in the

Delta-basis and v(x) in the Sigma-basis:∫ ∗
u(x)v(x)dx =

∫ ∗(∑
a∈Σ

u(a)δa(x)

)(∑
b∈Σ

v(b)σb(x)

)
dx

=
∑
a∈Σ

∑
b∈Σ

v(b)u(a)

∫ ∗
δa(x)σb(x)dx =

∑
a∈Σ

u(a)v(a).

5) This follows by expressing u(x) in the Delta-basis:∫ ∗
u(x)dx =

∫ ∗ ∑
a∈Σ

u(a)δa(x)dx =
∑
a∈Σ

u(a)

∫ ∗
δa(x)dx =

∑
a∈Σ

u(a). �

3.3. Canonical extension of a function

Let V ′(Ω) denote the dual of V (Ω) and let M denote the set of measurable func-
tions in RN . If T ∈ V ′(Ω) and if there is a function f ∈M such that

∀v ∈ V (Ω), 〈T, v〉 =
∫

f(x)v(x)dx

then T and f will be identified, and with some abuse of notation we shall write
T = f ∈ V ′(Ω) ∩M. With this identification, V ′(Ω) ∩M ⊂ L2.

Definition 25. If T ∈ [V ′(Ω)]∗ , there exists a unique ultrafunction T̃ (x) such that

∀v ∈ Ṽ (Ω), 〈T, v〉 =
∫ ∗

T̃ (x)v(x)dx.

In particular, if u ∈ [V ′(Ω) ∩M]
∗
, ũ will denote the unique ultrafunction such

that

∀v ∈ Ṽ (Ω),

∫ ∗
u(x)v(x)dx =

∫ ∗
ũ(x)v(x)dx.
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Notice that V ′(Ω) ∩M is a space of distributions which contains the delta
measures, so to every Delta distribution δq is associated an ultrafunction which,
by definition, is the Delta ultrafunction centered in q, as expected. Moreover, the

definition is well posed: in fact, if T ∈ [V ′(Ω)]∗ , then the function fT : Ṽ (Ω)→ R∗

such that for every ultrafunction u

fT (u) = 〈T, u〉

is a linear functional on Ṽ (Ω). So fT ∈
(
Ṽ (Ω)

)′
and by Riesz’s Representation

Theorem it follows that there is one (and only one) element T̃ (x) in Ṽ (Ω) such

that for every u ∈ Ṽ (Ω) we have

fT (u) =

∫ ∗
T̃ (x)v(x)dx.

Since fT (u) = 〈T, u〉, we have proved that the definition is well posed.

Definition 26. If f ∈ V ′(Ω)∩M, (̃f∗) is called the canonical extension of f . In the

following, since f and f∗ can be identified, we will write f̃ instead of (̃f∗).

Thus any function

f : RN → R
can be extended to the function

f∗ : (R∗)N → R∗

which is called the natural extension of f and if f ∈ V ′(Ω) ∩M, we have also the
canonical extension of f given by

f̃ : (R∗)N → R∗

If f /∈ V (Ω), by Remark 17, f̃ �= f∗, thus f∗ /∈ Ṽ (Ω).

Example: if Ω = (−1, 1), then |x|−1/2 ∈ V (−1, 1)′ ∩M; the ultrafunction ˜|x|−1/2

is different from
(|x|−1/2

)∗
since the latter is not defined for x = 0, while(

˜|x|−1/2

)
x=0

=

∫ ∗
|x|−1/2δ0(x)dx.

Theorem 27. If T ∈ [V (Ω)′]∗ , then

T̃ (x) =
∑
q∈Σ

〈T, δq〉 σq(x)

=
∑
q∈Σ

〈T, θq〉 θq(x)

=
∑
q∈Σ

〈T, σq〉 δq(x).
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In particular, if f ∈ [V ′(Ω) ∩M]∗

f̃(x) =
∑
q∈Σ

[∫
f∗(ξ)δq(ξ)dξ

]
σq(x) (6)

=
∑
q∈Σ

[∫
f∗(ξ)θq(ξ)dξ

]
θq(x) (7)

=
∑
q∈Σ

[∫
f∗(ξ)σq(ξ)dξ

]
δq(x). (8)

Proof. It is sufficient to prove that

∀v ∈ V (Ω),

∫ ∑
q∈Σ

〈T, δq〉σq(x)v(x)dx = 〈T, v〉 .

We have that∫ ∑
q∈Σ

〈T, δq〉σq(x)v(x)dx =
∑
q∈Σ

〈T, δq〉
∫

σq(x)v(x)dx

=

〈
T,

∑
q∈Σ

(∫
σq(x)v(x)dx

)
δq

〉
= 〈T, v〉 .

The other equalities can be proved similarly. �

3.4. Ultrafunctions and distributions

In this section we will show that the space of ultrafunctions is reacher than the
space of distribution, in the sense that any distribution can be represented by an
ultrafunction and that the converse is not true.

Definition 28. Let D ⊂ Ṽ (Ω) be a vector space. We say that two ultrafunctions u
and v are D-equivalent if

∀ϕ ∈ D,

∫ ∗
(u(x)− v(x))ϕ(x)dx = 0.

We say that two ultrafunctions u and v are distributionally equivalent if they are
D(Ω)-equivalent.

Theorem 29. Given T ∈ D′, there exists an ultrafunction u such that

∀ϕ ∈ D(Ω),

∫ ∗
u(x)ϕ∗(x)dx = 〈T, ϕ〉 . (9)

Proof. Let {ej(x)}j∈J be an orthonormal basis of the hyperfinite space Ṽ (Ω) ∩
D(Ω)∗ and take

u(x) =
∑
j∈J

〈T ∗, ej〉 ej(x).
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Now take ϕ ∈ D. Since ϕ∗ ∈ Ṽ (Ω) ∩ D(Ω)∗, we have that

ϕ∗(x) =
∑
j∈J

(∫ ∗
ϕ∗(ξ)ej(ξ)dξ

)
ej(x).

Thus∫ ∗
u(x)ϕ∗(x)dx =

∫ ∗∑
j∈J

〈T ∗, ej〉 ej(x)ϕ
∗(x)dx =

∑
j∈J

〈
T ∗, ej

∫ ∗
ej(x)ϕ

∗(x)dx
〉

=

〈
T ∗,

∑
j∈J

(∫ ∗
ej(x)ϕ

∗(x)dx
)
ej

〉
= 〈T ∗, ϕ∗〉 = 〈T, ϕ〉 . �

The following proposition shows that the ultrafunction u associated to the
distribution T by (9) is not unique:

Proposition 30. Take T ∈ D′(Ω) and let

VT = {u ∈ Ṽ (Ω) : ∀ϕ ∈ D(Ω),

∫ ∗
u(x)ϕ∗(x)dx = 〈T, ϕ〉},

let u ∈ VT and let v be any ultrafunction. Then

1. v ∈ VT if and only if u and v are D(Ω)-equivalent;
2. VT is infinite.

Proof. 1) If v ∈ VT then ∀ϕ ∈ D(Ω),
∫ ∗

(u(x)− v(x))ϕ∗(x)dx = 〈T, ϕ〉 − 〈T, ϕ〉 =
0, so u and v are D(Ω)-equivalent; conversely, if u and v are D-equivalent then
∀ϕ ∈ D(Ω),

∫ ∗
u(x)ϕ∗(x)dx =

∫ ∗
v(x)ϕ∗(x)dx. Since

∫ ∗
u(x)ϕ∗(x)dx = 〈T, ϕ〉

then v ∈ VT .
2) Let v �= 0 be any ultrafunction in the orthogonal (in Ṽ (Ω)) of Ṽ (Ω) ∩

D(Ω)∗. Then u and u + v are D(Ω)-equivalent, since
∫ ∗

(u(x) + v(x))ϕ∗(x)dx =∫ ∗
u(x)ϕ∗(x)dx +

∫ ∗
v(x)ϕ∗(x)dx =

∫ ∗
u(x)ϕ∗(x)dx + 0. Since the orthogonal of

Ṽ (Ω) ∩ D(Ω)∗ is infinite, we obtain the thesis. �

Remark 31. There is a natural way to associate a unique ultrafunction to a dis-

tribution (see also [1]). In order to do this it is sufficient to split Ṽ (Ω) in two

orthogonal component: Ṽ (Ω) ∩ D(Ω)∗ and
(
Ṽ (Ω) ∩ D(Ω)∗

)⊥
. As we have seen

in the proof of the above theorem every ultrafunction in VT can be spitted in

two components, u + v where v ∈
(
Ṽ (Ω) ∩ D(Ω)∗

)⊥
and u ∈ Ṽ (Ω) ∩ D(Ω)∗ is

univocally determined. Then, we have an injective map

i : D′(Ω)→ Ṽ (Ω)

given by i(T ) = u where u ∈ VT ∩ D(Ω)∗.

Remark 32. The space of ultrafunctions is richer than the space of distributions;
for example consider the function

u(x) := f(x)min
(
x−2, α

)
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where α > 0 is an infinite number and f(x) is a function with compact support
such that f(0) = 1. Since u ∈ [V ′(Ω) ∩M]

∗
, ũ is well defined (see Def. 25). On

the other hand, ũ does not correspond to any distribution since∫ ∗
ũ(x)ϕ∗(x)dx =

∫ ∗
f∗(x)min

(
x−2, α

)
ϕ∗(x)dx

is infinite when ϕ(x) ≥ 0 and ϕ(0) > 0. In [1] Section 6, it is presented an elliptic
problem which has a solution in the space of ultrafunctions, but no solution in the
space of distributions.

4. Operations with ultrafunctions

4.1. Extension of operators

Definition 33. Given the operator F : V (Ω)→ D′ (Ω), the map

F̃ : Ṽ (Ω)→ Ṽ (Ω)

defined by

F̃ (u) = F̃ ∗ (u) (10)

is called canonical extension of F (“∼” is defined by Definition 25).

By the definition of F̃ , we have that

∀v ∈ Ṽ (Ω) ,

∫ ∗
F̃ (u(x)) v(x) dx =

∫ ∗
F ∗ (u(x)) v(x)dx. (11)

Comparing Definition 33 with Theorem 27 we have that

F̃ (u(x)) =
∑
q∈Σ

〈F ∗ (u) , δq〉σq(x)

=
∑
q∈Σ

〈F ∗ (u) , θq〉 θq(x)

=
∑
q∈Σ

〈F ∗ (u) , σq〉 δq(x).

In particular, if F : V (Ω)→ V ′(Ω) ∩M∗ :

F̃ (u(x)) =
∑
q∈Σ

[∫
F ∗ (u(ξ)) δq(ξ)dξ

]
σq(x)

=
∑
q∈Σ

[∫
F ∗ (u(ξ)) θq(ξ)dξ

]
θq(x)

=
∑
q∈Σ

[∫
F ∗ (u(ξ))σq(ξ)dξ

]
δq(x).

(12)
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4.2. Derivative

A good generating space to define the derivative of an ultrafunction is the following
one:

V 1(Ω) = H1,1(Ω) ∩ C(Ω) ⊆ L2(Ω) ∩ C(Ω).
In order to simplify the exposition, we will assume that Ω ⊆ R. The general-

ization of the notions exposed in this section when Ω ⊆ RN is immediate.

Let u ∈ Ṽ 1(Ω) be a ultrafunction. Since V 1(Ω)∗ ⊂ H1(Ω)∗, we have that the

derivative du
dx = ∂u = u′ is in L2(Ω) ⊂

[(
V 1(Ω)

)′ ∩M
]∗

, (here
(
V 1(Ω)

)′
denotes

the topological dual of V 1(Ω)). Then we can apply Definition 33:

Definition 34. We set

Du = ∂̃u = ∂̃u.

The operator

D : Ṽ 1(Ω)→ Ṽ 1(Ω)

is called (generalized) derivative of the ultrafunction u.

By (12) we have the following representation of the derivative:

∀u ∈ Ṽ 1(Ω), Du(x) =
∑
q∈Σ

[∫ ∗
u′(ξ)δq(ξ)dξ

]
σq(x).

If u′ ∈ Ṽ 1(Ω) ⊂ [
V 1(Ω)

]∗
, we have that

Du(x) =
∑
q∈Σ

u′(q)σq(x) = u′(x).

In particular, if u ∈ H2,1(Ω) ∩ C1(Ω), Du = u′ and so D extends the operator
d
dx : H2,1(Ω) ∩ C1(Ω)→ V 1(Ω) to the operator D : Ṽ 1(Ω)→ Ṽ 1(Ω).

4.3. Fourier transform

In this section we will investigate the extension of the one-dimensional Fourier
transform. A good space to work with the Fourier transform is the space

V F(R) = H1(R) ∩ L2(R, |x|2).
It is easy to see that the space V F(R) can be characterized as follows:

V F(R) =
{
u ∈ H1(R) : û ∈ H1(R)

}
.

In fact, if û ∈ H1(R), then
∫ |∇u(ξ)|2 dξ < +∞ and hence

∫ |u(x)|2|x|2 dx < +∞.

Then V F(R) ⊂ L2(R, |x|2), so V F(R) ⊂ H1(R)∩L2(R, |x|2) which is a Hilbert
space equipped with the norm

‖u‖2V F(R) =

∫
|u(x)|2 |x|2dx+

∫
|û(ξ)|2 |ξ|2dξ.
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Moreover∫
|u(x)| dx =

∫
|u(x)| (1 + |x|) 1

1 + |x|dx

≤
(∫

|u(x)|2 (1 + |x|)2dx
) 1

2
(∫

1

(1 + |x|)2 dx
) 1

2

≤ const.
(
‖u‖L2(R) + ‖u‖L2(R,|x|2)

)
.

Thus, V F(R) ⊂ L1(R). Recalling that the functions in H1(R) are continuous, we
have that

V F(R) ⊂ C (R) ∩H1(R) ∩ L1(R) ∩ L2(R, |x|2).
We use the following definitions of the Fourier transform: if u ∈ Ṽ F(R), we

set

F(u)(k) = û(k) =
1√
2π

∫ ∗
u(x) e−ikx dx; (13)

F−1(u)(x) =
1√
2π

∫ ∗
û(k) eikx dx. (14)

Now, in order to deal with the Fourier transform in an easier way, we need a
new axiom whose consistency is easy to be verified (see Appendix):

Axiom 35 (FTA, Fourier Transform Axiom). If u ∈ Ṽ F(R) then F∗(u) ∈ Ṽ F(R)
and ū ∈ Ṽ F(R) (here ū is the complex conjugate of u).

It is immediate to see that, by this axiom, for every ultrafunction, u we have

F∗(u) = F̃(u)

and hence, since there is no risk of ambiguity, we will simply write F(u).

It is well known that in the theory of tempered distributions we have that:

F(δa) =
e−iak

√
2π

;

F

(
eiax√
2π

)
= δa.

In the theory of ultrafunctions an analogous result holds:

Proposition 36. We have that:

1. F
(

ẽiax√
2π

)
= δa(k);

2. F (δa(x)) =
ẽ−iak√

2π
;

3. 1
2π

∫ ∗
ẽ−iax ẽikx dx = δa(k).
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Proof. 1. For every v ∈ V F,∫ ∗
F

(
ẽiax√
2π

)
v(k)dk =

∫ ∗( 1

2π

∫ ∗
ẽ−iak eixkdx

)
v(k)dk

=
1

2π

∫ ∗ ∫ ∗
ẽ−iak eixkv(k)dkdx

=
1√
2π

∫ ∗
ẽ−iakF−1(v(k))dx = v(a).

Hence, 1 holds.

2. We have

F (δa(x)) =

∫ ∗
δa(x)e

−ikxdx =

∫ ∗
δa(x)ẽ−ikxdx = ẽ−ika.

3. We have

1

2π

∫ ∗
ẽiax ẽ−ikx dx =

1

2π

∫ ∗
ẽiax e−ikxdx = F

(
ẽiax√
2π

)
= δa(k). �

By our definitions we have that:

ẽikx =
∑
q∈Σ

[∫ ∗
eikξδq(ξ)dξ

]
σq(x);

ẽixk =
∑
q∈Σ

[∫ ∗
eixξδq(ξ)dξ

]
σq(k).

Therefore it is not evident whether ẽikx = ẽixk or not. The following corollary
answers this question.

Corollary 37. We have that:

ẽikx = ẽixk.

Proof. By the previous proposition, we have that

ẽ−ikx =
√
2πF (δk(x)) =

∫ ∗
δk(x)e

−ixkdk =

∫ ∗
δx(k)e

−ixkdx = ẽ−ixk.

Replacing x with −x we get the result. �

Since F :V F(R) → V F(R) is an isomorphism, it follows that, for any Delta-
basis {δa}a∈Σ , the set {

ẽiax√
2π

}
a∈Σ

= {F (δ−a)}a∈Σ

is a basis and we get the following result:
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Theorem 38. If u ∈ V F(R), then

u(x) =
1√
2π

∑
k∈Σ

û(k)ẽikx.

where we have set (see Theorem 24)

û(k) =

∫ ∗
û(ξ)σk(ξ)dξ.

Proof. Since
{

ẽikx√
2π

}
k∈Σ

is a basis, any u ∈ V F(R) has the following representation:

u(x) =
1√
2π

∑
k∈Σ

ukẽikx.

Let us compute the uk’s: we have∫
δk(x)σb(x)dx =

∫
δk(x)σb(x)dx = δkb and so

∫
δ̂k(x)σ̂b(x)dx = δkb

and by Proposition 36, ∫
ẽ−ikx

√
2π

σ̂b(x)dx = δkb.

Hence {σ̂k(x)}k∈Σ is the dual basis of
{

ẽ−ikx√
2π

}
k∈Σ

,namely {σ̂k(−x)}k∈Σ is the

dual basis of
{

ẽikx√
2π

}
k∈Σ

. Hence, since ̂̂v(x) = v(−x), we have:

uk =

∫
u(ξ)σ̂k(−ξ)dξ =

∫
u(ξ)̂̂σk(−ξ)dξ

=

∫
û(ξ)σk(ξ)dξ =

∫
û(ξ)σk(ξ)dξ = û(k). �

4.4. A trivial example of generalized solution

For the applications of ultrafunctions theory we refer to [1] and [2]. Also we are
working with ultrafunctions in more sophisticated environments such as Morse
theory where it seems that we can get interesting results. In this section we will give
a (relatively) trivial result with the only purpose to make the reader to understand
how ultrafunctions provide generalized solutions to “classical problems”.

Let us consider a classical problem of calculus of variations: minimize the
functional

J(u) =

∫
F (x, u,∇u)dx (15)

in the function space

C1g(Ω) =
{
u ∈ C1(Ω) ∩ C(Ω) | ∀x ∈ ∂Ω, u(x) = g(x)

}
, g ∈ C(∂Ω).

It is well known that in general this problem has no solution even when
F is coercive and hence the infimum exists. However, if F is convex and g is
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sufficiently smooth it is possible to find a minimizer in some Sobolev space (or in
some “Sobolev type” space such as Orlicz spaces).

If F is not convex it is not possible to find a minimizer, not even among the
generalized functions of “Sobolev” type as the following example shows:

minimize J1(u) =

∫ 1

0

[(
|∇u|2 − 1

)2

+ |u|2
]
dx in C10(0, 1). (16)

It is not difficult to realize that J1 has a minimizing sequence un which
converges uniformly to 0 and such that J1(un) → 0, but J1(u) > 0 for any u ∈
C10(0, 1) (and also for any u ∈ H1

0 (0, 1)).
On the contrary, it is possible to show that these problems have minimizers

in spaces of ultrafunctions; a natural space to work in is

W̃ 1
g (Ω) =

{
u ∈ W̃ 1(Ω) | ∀x ∈ ∂Ω∗, u(x) = g(x)

}
where

W 1(Ω) = C1(Ω) ∩ C(Ω).
So our problem becomes

min
u∈W̃ 1

g (Ω)

J∗(u).

Theorem 39. Assume that F is continuous and that

F (x, u, ξ) ≥ a(ξ)−M (17)

where a(ξ)→ +∞ as ξ → +∞ and M is a constant. Then

min
u∈W̃ 1

g (Ω)

J∗(u)

exists.

Proof. Set

Wλ =
{
u ∈W 1(Ω) | ∀x ∈ ∂Ω∗, u(x) = g(x)

} ∩ Span(λ).

If λ is sufficiently large, then Wλ �= ∅. By (17), J |Wλ
is coercive and, since it is

continuous, it has a minimizer; namely

∃uλ ∈Wλ, ∀v ∈Wλ, J(uλ) ≥ J(v).

Now set ū = lim
λ↑U

uλ and apply Theorem 15 where

uRW := ∀v ∈W, J(u) ≥ J(v)

Then, since W̃ 1
g (Ω) = lim

λ↑U
Wλ, the following relation holds:

∀v ∈ W̃ 1
g (Ω), J∗(ū) ≥ J∗(v). �

Example: By the above theorem, the functional J∗
1 (where J1 is defined by (16))

has a minimizer ū in W̃ 1
0 (0, 1). It is not difficult to show that ∀x ∈ (0, 1)∗, ū(x) ∼ 0

and that J1(ū) is a positive infinitesimal.
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5. Appendix

In this section we prove that the axiomatic construction of ultrafunctions is consis-
tent. We assume that the reader knows the key concepts in non-standard analysis
(see, e.g., [7]).

The following result has already been proved in [1]. Here we give an alterna-
tive proof of this result based on non-standard analysis:

Theorem 40. The set of axioms {(Λ-1), (Λ-2), (Λ-3)} is consistent.

Proof. Let U, V be mathematical universes and let 〈U,V, �〉 be a nonstandard
extension of U that is |U|+-saturated. We denote by F the set of finite subsets of
U and, for every λ ∈ F , we pose

Fλ = {S ⊂ V| S is hyperfinite and λ� ⊂ S}.
By saturation

⋂
λ∈F Fλ �= ∅. We take Λ ∈ ⋂

λ∈F Fλ.
For any given net ϕ : F → U we define its Λ-limit as

lim
λ↑U

ϕ(λ) = ϕ�(Λ)

and we pose

K = lim
λ↑U

R =

{
lim
λ↑U

ϕ(λ) | ϕ : F → R
}
.

With these choices the Λ-limit satisfies the axioms (Λ-1), (Λ-2), (Λ-3): the
only nontrivial fact is (Λ-2). Let ϕ be an eventually constant net, and let λ0 ∈
F , r ∈ R be such that ∀λ ∈ {η ∈ F | λ0 ⊂ η}

ϕ(λ) = r.

By transfer it follows that ∀λ ∈ {η ∈ F | λ0 ⊂ η}� = {η ∈ F� | λ�
0 ⊂ η} we

have:
ϕ�(λ) = r�.

But r = r� and λ�
0 ⊂ Λ by construction. So, since Λ ∈ F�, ϕ�(Λ) = r. �

Having defined the Λ-limit, from now on we use the symbol ∗ to denote
the extensions of objects in U in the sense of Λ-limit (not to be confused with
the extensions obtained by applying the star map � : e.g., the field K = R∗ is a
subfield of R�).

We observe that, given a set S in U, its hyperfinite extension (in the sense of
the Λ-limit) is

S◦ = lim
λ↑U

(S ∩ λ) = S� ∩ Λ

and we use this observation to prove that, given a set of functions V (Ω), by posing

Ṽ (Ω) = Span(V (Ω)◦) = Span(V (Ω)� ∩ Λ)

we obtain the set of ultrafunctions generated by V (Ω).
The only nontrivial fact to prove is that, for every function f ∈ V (Ω), its

natural extension f∗ is an ultrafunction. First of all, we observe that, by definition,
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f∗ = f�. Also, since f ∈ V (Ω), by transfer it follows that f� ∈ V (Ω)�. And, by our
choice of Λ, we also have that f� ∈ Λ since, by construction, {f}� = {f�} ⊂ Λ.

It remains to prove the coherence of the axioms (Λ-1), (Λ-2), (Λ-3) combined
with the Fourier Transform Axiom (FTA).

Theorem 41. The set of axioms {(Λ-1), (Λ-2), (Λ-3),FTA} is consistent.

Proof. The basic idea is to chose an hyperfinite set Λ ∈ ⋂
λ∈F Fλ,where Fλ is

defined in Theorem 40 (which automatically ensures the satisfaction of (Λ-1),
(Λ-2), (Λ-3)), with one more particular property that will ensure the satisfaction
of FTA.

We start by considering a generic hyperfinite set Λ′ ∈ ⋂
λ∈F Fλ and we let

B′ = {ei(x)|i ∈ I}
be any hyperfinite basis for Span(V F(R)� ∩ Λ′). Now we pose

B = {Fj(ei(x)) : 0 ≤ j ≤ 3, i ∈ I} ∪ {Fj(ei(x)) : 0 ≤ j ≤ 3, i ∈ I},
where F denotes the Fourier transform. Since F4 = id, we have that B is closed
by Fourier transform and complex conjugate. We now pose

Λ = Λ′ ∪B

and it is immediate to prove that, with this choice, FTA is ensured, because B is

a set of generators for Ṽ F(R) closed by Fourier transform and complex conjugate.
�
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1. Introduction

This paper describes, comments and completes some results recently obtained
by the authors in [9], consisting in finding conditions upon λ > 0, g : R → R
continuous and h : [ρ,R]→ R continuous, under which the Neumann problem

−div
(

∇v√
1− |∇v|2

)
+ λ|v|m−2v = g(v)− h(|x|) in A(ρ,R)

∂v

∂ν
= 0 on ∂A(ρ,R),

has multiple solutions. Here 0 ≤ ρ < R,

A(ρ,R) =

{ {x ∈ RN : ρ < |x| < R} if ρ > 0

B(0, R) = {x ∈ RN : |x| < R} if ρ = 0.

The origin of such equations is discussed in the beginning of Section 3, and
the existence conditions for multiple solutions are motivated by similar results,
described in Section 2, for the case of semilinear elliptic boundary value problems or

Switzerland
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perturbations of the p-Laplacian, and usually described as conditions ofmultiplicity
near resonance.

Because of the radial symmetry, we look for radial solutions of the problem.
So, letting r = |x| and v(x) = u(r), we reduce it to the one-dimensional Neumann
problem

−
(
rN−1 u′√

1− u′2

)′
+ λrN−1|u|m−2u = rN−1[g(u)− h(r)] in (ρ,R),

u′(ρ) = 0 = u′(R).

The results and proofs are given in Section 4. The approach is variational
and based upon Szulkin’s critical point theory [29] for smooth perturbations of
some convex functionals in a Banach space.

2. Multiplicity near resonance for semilinear elliptic problems

Let Ω ⊂ RN be a bounded domain, g : R → R be continuous and bounded,
h ∈ L2(Ω), λ1 > 0 be the principal eigenvalue of −Δ with Dirichlet boundary
conditions on Ω, and let ϕ1 be the corresponding positive principal eigenfunction
normalized by ∫

Ω

ϕ1 = 1.

Let us consider the semilinear Dirichlet problem

−Δu− λ1u = g(u)− h(x) in Ω, u = 0 on ∂Ω. (1)

If we assume in addition that

lim
u→−∞ g(u) := g(−∞) and lim

u→+∞ g(u) := g(+∞) (2)

exist and that, for all u ∈ R, either

g(−∞) ≤ g(u) ≤ g(+∞), (3)

or

g(+∞) ≤ g(u) ≤ g(−∞), (4)

then, multiplying both members of (1) by ϕ1, integrating by parts, it is easy to see
that if conditions (2) together with (3) hold, a necessary condition for the existence
of a solution to (1) is that

g(−∞) ≤
∫
Ω

hϕ1 ≤ g(+∞) (5)

and if conditions (2) together with (4) hold, a necessary condition for the existence
of a solution to (1) is that

g(+∞) ≤
∫
Ω

hϕ1 ≤ g(−∞). (6)
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When g ≡ 0, conditions (5) and (6) reduce to the usual orthogonality condition∫
Ω

hϕ1 = 0 (7)

upon h to avoid resonance.

A famous result of 1970 by Landesman and Lazer [15] implies that when
condition (2) holds, the slightly strengthened condition (5)

g(−∞) <

∫
Ω

hϕ1 < g(+∞), (8)

or the slightly strengthened condition (6)

g(+∞) <

∫
Ω

hϕ1 < g(−∞) (9)

is sufficient for the existence of a solution to problem (1). In other words, the
presence of a bounded nonlinearity g having a gap between its limiting values at
−∞ and +∞ increases the range of the linear operator −Δ− λ1I with Dirichlet
conditions on Ω from the co-dimensional one vector subspace of L2(Ω)

L̃2(Ω) :=

{
h ∈ L2(Ω) :

∫
Ω

hϕ1 = 0

}
to the open strip of L2(Ω)

(g(−∞), g(+∞))⊕ L̃2(Ω) or (g(+∞), g(−∞))⊕ L̃2(Ω).

This result was proved by a clever and technically involved used of Schauder’s
fixed point theorem. It has inspired a very large number of refinements, extensions
and of generalizations, and much more transparent proofs have been given using
Leray–Schauder’s degree. In 1976, Ahmad, Lazer and Paul [1] have shown, using
variational techniques, that condition (8) could be replaced by the more general one

lim
|c|→∞

[
G(cϕ1)− c

∫
Ω

hϕ1

]
= +∞, (10)

and condition (9) by the more general one

lim
|c|→∞

[
G(cϕ1)− c

∫
Ω

hϕ1

]
= −∞, (11)

where G is the indefinite integral of g defined by

G(u) =

∫ u

0

g(s) ds. (12)

In 1988, Schmitt and one of the authors [23] have considered the correspond-
ing parameter dependent problem

−Δu− λ1u+ λu = g(u)− h(x) in Ω, u = 0 on ∂Ω, (13)

and have shown as special case of a more general abstract result that if the
Landesman–Lazer condition (8) holds, there exists λ0 > 0 such that (13) has at
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least one solution for λ ∈ (−λ0, 0] and at least three solutions for λ ∈ (0, λ0), and
if the Landesman–Lazer condition (9) holds, there exists λ0 > 0 such that (13) has
at least three solutions for λ ∈ (−λ0, 0) and at least one solution for λ ∈ [0, λ0).
The idea of the proof consists in using the Leray–Schauder degree to prove the
existence of at least one solution for |λ| sufficiently small (and in particular for
λ = 0, which is the Landesman–Lazer case), and obtaining the two other ones
using bifurcation from infinity at the eigenvalue λ0 based upon Krasnosel’skii’s
results [14].

When h ∈ L∞(Ω) and satisfies the orthogonality condition (7), de Figueiredo
and Ni [12] have shown in 1979 that the Landesman–Lazer conditions (8) and (9)
can be respectively replaced by the sign condition

g(u)u > 0, ∀u �= 0. (14)

or the sign condition

g(u)u < 0, ∀u �= 0. (15)

In 1989, Schmitt and one of the authors [24] have shown, by a similar combination
of Leray–Schauder degree and bifurcation from infinity, that if condition (14) holds,
there exists λ0 > 0 such that (13) has at least one solution for λ ∈ (−λ0, 0] and
at least three solutions for λ ∈ (0, λ0), and if condition (15) holds, there exists
λ0 > 0 such that (13) has at least three solutions for λ ∈ (−λ0, 0) and at least one
solution for λ ∈ [0, λ0).

If ∂νu denotes the normal derivative of u, similar results hold for the Neumann
boundary value problem

−Δu+ λu = g(u)− h(x) in Ω, ∂νu = 0 on ∂Ω, (16)

around the principal eigenvalue λ1 = 0 with normalized constant principal eigen-
function ϕ1 ≡ |Ω|−1. In the statements, assumptions (8), (9), (10), (11), (7) have
to be respectively replaced by

g(−∞) < |Ω|−1

∫
Ω

h < g(+∞), (17)

g(+∞) < |Ω|−1

∫
Ω

h < g(−∞) (18)

lim
|c|→∞

[
G(c)− c

∫
Ω

h

]
= +∞, (19)

lim
|c|→∞

[
G(c)− c

∫
Ω

h

]
= −∞, (20)∫

Ω

h = 0. (21)

A first contribution in this direction was already given in 1973 in [20].

Results of this type are called multiplicity results near resonance. They have
been generalized or applied to more general equations, using similar topological
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techniques in [2, 3, 10, 11, 16, 22]. A variational approach to study multiplicity
results near resonance was first introduced by Ma, Ramos and Sanchez in [28, 18]
for semilinear and quasilinear Dirichlet problems involving the p-Laplacian. See
also [19, 17, 25, 13, 27] for a similar variational treatment of various semilinear or
quasilinear equations, systems or inequalities with Dirichlet conditions, and [26]
for perturbations of the p-Laplacian with Neumann boundary conditions.

3. Quasilinear problems involving the mean
extrinsic curvature operator

In the Euclidian space RN , given an open bounded domain Ω ⊂ RN , the graph of
a function u ∈ C1(Ω,R) can be seen as a hypersurface of RN+1. The corresponding
mean curvature operator is defined by

C(u) := ∇ · ∇u√
1 + |∇u|2 ,

and plays an important role in the study of minimal surfaces (zero mean curvature),
or more generally in the study of surfaces with prescribed mean curvature.

In a flat Minkowski space LN+1 = {(x, t) : x ∈ RN , t ∈ R}, with metric∑N
j=1(dxj)

2 − (dt)2, given a bounded domain Ω ⊂ {(x, t) ∈ LN+1 : t = 0} � RN ,

the graph of a function u ∈ C1(Ω,R) can be seen as a space-like hypersurface of
LN+1. The associated mean extrinsic curvature operator defined by

M(u) := ∇ · ∇u√
1− |∇u|2 ,

plays an important role in various questions of geometry and relativity [4].

In recent papers [5, 6, 7, 8], the authors have obtained various existence and
multiplicity theorems for the radial solutions of quasilinear elliptic equations of
the form

−M(v) = f(|x|, v, ∂νv) in A(ρ,R), (22)

on an annulus or a ball A(ρ,R), where f : [ρ,R]× R× R→ R is continuous. The
boundary conditions are either Dirichlet ones

v = 0 on ∂A(ρ,R), (23)

or Neumann ones

∂νv = 0 on ∂A(ρ,R). (24)

Viewing the radial symmetry, letting r = |x|, they searched for radial so-
lutions of the form v(x) = u(r), which reduces (22) to the ordinary differential
equation

−
(
rN−1 u′√

1− u′2

)′
= rN−1f(r, u, u′) (25)
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the Dirichlet boundary conditions (23) to

u(ρ) = 0 = u(R) if ρ > 0, u′(ρ) = 0 = u(R) if ρ = 0 (26)

and the Neumann boundary conditions (24) to

u′(ρ) = 0 = u′(R). (27)

Using a suitable reduction of (25)–(26) to a fixed point problem and Schau-
der’s fixed point theorem, the authors have proved in [5] that the Dirichlet problem
(25)–(26) has at least one solution for every continuous f : [ρ,R]×R×R→ R. In
particular the Dirichlet problem

−r1−N

(
rN−1 u′√

1− u′2

)′
+ λk(u) = h(r) in (ρ,R),

u(ρ) = 0 = u(R) if ρ > 0, u′(ρ) = 0 = u(R) if ρ = 0

(28)

has at least one solution for all λ ∈ R, and all continuous k : R → R and con-
tinuous h : [ρ,R] → R. By analogy with the Dirichlet problem for the classical
Laplacian, one can say that no “eigenvalues” exist for the radial Dirichlet problem
associated to the differential operator M. Consequently, the Landesman–Lazer
problem and the associated multiplicity result near resonance is meaningless for
the radial solutions of (22)–(23).

The situation is different for the Neumann problem. It is immediately seen, by
integrating both members over A(ρ,R) and integrating by parts that a necessary
condition for the existence of a radial solution to the problem

−∇ ·
(

∇v√
1− |∇v|2

)
= h(|x|) in A(ρ,R), ∂νv = 0 on ∂A(ρ,R) (29)

is that ∫
A(ρ,R)

h(|x|) dx = 0 or equivalently

∫ R

ρ

h(r)rN−1 dr = 0. (30)

This condition is also sufficient for radial solutions, because it can easily be shown
that, if condition (30) holds, the Neumann problem (29) for radial solutions

−r1−N

(
rN−1 u′√

1− u′2

)′
= h(r) in (ρ,R),

u′(ρ) = 0 = u′(R)

has the one-dimensional linear manifold of solutions

u(r) = c+

∫ r

ρ

H(s)√
1 + |H(s)|2 ds, where H(r) = r1−N

∫ r

ρ

h(s)sN−1 ds, c ∈ R.
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On the other hand, the authors have proved in [6], using a suitable fixed point re-
duction of the equivalent ordinary differential problem and Leray–Schauder degree,
that, for any continuous k : R→ R such that either

lim sup
u→−∞

k(u) = −∞, lim inf
u→+∞ k(u) = +∞

or

lim inf
u→−∞ k(u) = +∞, lim sup

u→+∞
k(u) = −∞,

the Neumann problem

−r1−N

(
rN−1 u′√

1− u′2

)′
+ λk(u) = h(r) in (ρ,R),

u′(ρ) = 0 = u′(R)

has a solution for any λ �= 0 and any continuous h : [ρ,R] → R. By analogy
with the Neumann problem for the classical Laplacian, we can say that zero is the
unique “eigenvalue” for the radial Neumann problem associated to the differential
operator M.

Consequently, the Landesman–Lazer problem and the associated multiplic-
ity result near resonance for the radial solutions of the Neumann problem (22)–
(24), or equivalently for the solutions of the Neumann problem (25)–(27) are only
meaningful near this zero “eigenvalue”. On the other hand, as far as we know,
no bifurcation from infinity results are known for nonlinear perturbations of the
operator −M, so that variational methods seem to be the way for trying to extend
the multiplicity results near resonance to the radial solutions of some classes of
Neumann problems of the form

−M(v) + λk(v) = g(v)− h(|x|) in A(ρ,R),

∂νv = 0 on ∂A(ρ,R),
(31)

for a suitable choice of k and Landesman–Lazer or Ahmad–Lazer–Paul type as-
sumptions upon g and h.

In the case of the classical Laplacian, k(u) = u, and the first condition upon
g is its sublinearity with respect to u. Here, we shall take for k a mapping of the
type k(u) = |u|m−2u for some m > 1 and a perturbation term g which is of lower
order at infinity. Namely, we will consider Neumann problems of the form

−∇ ·
(

∇v√
1− |∇v|2

)
+ λ|v|m−2v = g(v)− h(|x|) in A(ρ,R),

∂νv = 0 on ∂A(ρ,R),

(32)
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and look for radial solutions of problem (32), i.e., letting r = |x| and v(x) = u(r),
to solutions of the one-dimensional Neumann problem

−
(
rN−1 u′√

1− u′2

)′
+ λrN−1λ|u|m−2u = rN−1[g(u)− h(r)] in (ρ,R),

u′(ρ) = 0 = u′(R).

(33)

We assume the following hypotheses on the data.

(HR) g : R→ R and h : [ρ,R]→ R are continuous, m ≥ 2 is fixed and λ is a real
positive parameter.

(HG) There exists k0 ∈ R, k1, k2 > 0 and 0 < σ < m such that

k0 ≤ G(x) ≤ k1|x|σ + k2, for all x ∈ R, (34)

where G is defined in (12).
(HL) Either

lim
|x|→∞

∫ R

ρ

rN−1[G(x) − h(r)x]dr = +∞. (35)

or

G± := lim
x→±∞G(x)

exist,

G(x) < G+, ∀x ≥ 0, G(x) < G−, ∀x ≤ 0, (36)∫ R

ρ

rN−1h(r)dr = 0. (37)

We recognize in (35) an Ahmad–Lazer–Paul condition and we immediately see
that condition (36) holds if

g(u)u > 0, ∀u �= 0.

As mentioned earlier, we approach the problem under those assumptions using a
variational method.

4. Variational framework

Letting

φ(s) :=
s√

1− s2
for s ∈ (−1, 1),

and

Φ(s) := 1−
√
1− s2 for s ∈ [−1, 1],

so that

φ(s) = Φ′(s) for s ∈ (−1, 1),
we see that Φ is strictly convex and Φ(x) ≥ 0 for all x ∈ [−1, 1].
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We set

C := C[ρ,R], L1 := L1(ρ,R), L∞ := L∞(ρ,R), W 1,∞ := W 1,∞(ρ,R).

The usual norm ‖ · ‖∞ is considered on C and L∞. The space W 1,∞ is endowed
with the norm

‖v‖ = ‖v‖∞ + ‖v′‖∞, ∀ v ∈W 1,∞.

Each v ∈ C can be written v(r) = v + ṽ(r), with

v :=
N

RN − ρN

∫ R

ρ

v(r) rN−1 dr,

and

ṽ ∈ C̃ :=

{
v ∈ C :

∫ R

ρ

v(r) rN−1 dr = 0

}
.

If v ∈ W 1,∞ then ṽ vanishes at some r0 ∈ (ρ,R) and

|ṽ(r)| = |ṽ(r) − ṽ(r0)| ≤
∫ R

ρ

|v′(t)| dt ≤ (R− ρ)‖v′‖∞,

so, one has the inequality

||ṽ||∞ ≤ (R− ρ)‖v′‖∞. (38)

Putting

K := {v ∈W 1,∞ : ‖v′‖∞ ≤ 1},
it is clear that K is a convex subset of W 1,∞.

Let Ψ : C → (−∞,+∞] be defined by

Ψ(v) =

⎧⎪⎨⎪⎩
∫ R

ρ

rN−1Φ(v′) dr, if v ∈ K,

+∞, otherwise.

Obviously, Ψ is proper (i.e., D(Ψ) := {v ∈ C : Ψ(v) < +∞} �= ∅) and convex. On
the other hand, as shown in [7, 8], K ⊂ C is closed and Ψ is lower semicontinuous
on C.

Next, we define Fλ : C → IR by

Fλ(u) =

∫ R

ρ

rN−1

[
λ

m
|u|m −G(u) + h(r)u

]
dr, ∀u ∈ C.

A standard reasoning shows that Fλ is of class C1 on C and

〈F ′
λ(u), v〉 =

∫ R

ρ

rN−1
[
λ|u|m−2u− g(u) + h(r)

]
v dr, ∀u, v ∈ C,

The functional Iλ : C → (−∞,+∞] defined by

Iλ = Fλ +Ψ, (39)
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has the structure required by Szulkin’s critical point theory [29], that we now recall
briefly.

Let (X, ‖ · ‖) be a real Banach space and I be a functional of the type

I = F + ψ,

where ψ : X → (−∞,+∞] is proper, convex, lower semicontinuous (in short, l.s.c.)
and F ∈ C1(X ;R). According to Szulkin [29], u ∈ X is said to be a critical point
of I if it satisfies the inequality

〈F ′(u), v − u〉+ ψ(v)− ψ(u) ≥ 0, ∀ v ∈ X.

A number c ∈ R such that I−1(c) contains a critical point is called a critical value
of I. The functional I is said to satisfy the Palais–Smale (in short, (PS)) condition
if every sequence {un} ⊂ X for which I(un)→ c ∈ R and

〈F ′(un), v − un〉+ ψ(v)− ψ(un) ≥ −εn‖v − un‖, ∀v ∈ X,

where εn → 0, (called (PS)-sequence), possesses a convergent subsequence. The
following result is part of [29, Corollary 3.3].

Lemma 1. Suppose that I = F + ψ satisfies the (PS)-condition. If I has two local
minima, then it has at least three critical points.

5. The multiplicity result

The search of solutions of problem (33) is reduced to finding critical points of the
energy functional Iλ defined in (39) by the following proposition, which is proved
in [7, Proposition 1].

Proposition 1. If u ∈ C is a critical point of Iλ, then u is a solution of (33).

We now state and prove the multiplicity result for problem (33). The proof
is based upon two preliminary lemmas, the first one is proved in [7, Lemma 4].

Lemma 2. Let s ≥ 1 be a real number. Then

|u(r)|s ≥ |u|s − s(R− ρ)|u|s−1, ∀u ∈ K, ∀ r ∈ [ρ,R]. (40)

The second lemma is inspired from [18, 28].

Lemma 3. Assume that conditions (HR), (HG) and (HL) hold. Then there exists
λ+ > 0 such that, for any 0 < λ < λ+, problem (33) has at least one solution
uλ > 0, which minimize Iλ on C+ = {v ∈ C : v ≥ 0}. Moreover, uλ is a local
minimum for Iλ.

Proof. First, notice that from (38), we obtain

||ũ||∞ ≤ R− ρ ∀u ∈ K. (41)

This implies that

u− (R− ρ) ≤ u(r) ≤ u+ (R− ρ) for all u ∈ K, (42)
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hence

u→ +∞ as ||u||∞ →∞, u ∈ C+ ∩K. (43)

Also, it is clear that

|u(r)| ≤ |u|+ (R− ρ) ∀u ∈ K, ∀ r ∈ [ρ,R]. (44)

From (34) it follows that

Iλ(u) ≥
∫ R

ρ

rN−1

[
λ

m
|u|m − k1|u|σ − k2 − ||h||∞|u|

]
dr,

for all u ∈ C+. Hence, using (40), (43), (44), and σ < m, we deduce immediately
that

Iλ(u)→ +∞ whenever ||u||∞ →∞, u ∈ C+, (45)

that is Iλ is coercive on C+, and hence bounded from below on C+. Now, let
{un} ⊂ C+ ∩K be a minimizing sequence for Iλ(un) on C+. Then, from (45) it
follows that {un} is bounded in C, and using the fact that {un} ⊂ K, we infer that
{un} is bounded in W 1,∞, compactly embedded in C. Hence {un} has a convergent
subsequence in C to some uλ ∈ C+ ∩ K. The lower semicontinuity of Iλ implies
that

Iλ(uλ) = inf
C+

Iλ.

We claim that

uλ → +∞ as λ→ 0. (46)

Assuming this for the moment, it follows from (42) and (46) that there exists
λ+ > 0 such that uλ > 0 for any 0 < λ < λ+, implying that uλ is a local minimum
for Iλ. Consequently, from [29, Proposition 1.1], uλ is a critical point of Iλ, and
hence a solution of (33) (by Proposition 1) for any 0 < λ < λ+.

We prove the claim assuming that assumption (35) holds true, and refer to
[9] for the proof of this claim when assumption (36) is satisfied. Consider M > 0
and xM > 0 such that∫ R

ρ

rN−1[G(xM )− h(r)xM ] dr > 2M. (47)

On the other hand, one has that for all λ > 0 and x ∈ R,

Iλ(x) =
λ(RN − ρN)

Nm
|x|m −

∫ R

ρ

rN−1[G(x) − h(r)x]dr. (48)

So, choosing λM > 0 such that

λM (RN − ρN )

Nm
xm
M < M,

and using (47), (48), it follows that

Iλ(xM ) < −M for all 0 < λ < λM .
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Consequently,

inf
C+

Iλ → −∞ as λ→ 0,

which, together with (42) imply (46), as claimed. �

Theorem 1. Assume that conditions (HR), (HG) and (HL) hold. Then there exists
some λ0 > 0 such that, for any λ ∈ (0, λ0), problem (33) has at least three solutions.

Proof. From Lemma 3, it follows that there exists λ+ > 0 such that Iλ has a local
minimum at some uλ,1 > 0 for any 0 < λ < λ+. Using exactly the same strategy,
we can find λ− > 0 such that Iλ has a local minimum at some uλ,2 < 0 for any
0 < λ < λ−. Taking λ0 = min{λ−, λ+} it follows that Iλ has two local minima
for any λ ∈ (0, λ0). On the other hand, from the proof of Lemma 3, it is easy to
see that Iλ is coercive on C, implying that Iλ satisfies the (PS) condition for any
λ > 0. Hence, from Lemma 1, we infer that Iλ has at least three critical points for
all λ ∈ (0, λ0), which are solutions of (33) by Proposition 1. �

Corollary 1. Under the assumptions of Theorem 1, there exists λ0 > 0 such that
problem (32) has at least three radial solutions for any λ ∈ (0, λ0).

The following examples are easy consequences of Theorem 1.

Example 1. For any m ≥ 2, any σ ∈ (1,m), and any h ∈ C, there exists λ0 > 0
such that the Neumann problem

−M(v) + λ|v|m−2v = |v|σ−2v − h(|x|) in B(ρ,R),

∂νv = 0 on ∂B(ρ,R)
(49)

has at least three radial solutions when λ ∈ (0, λ0).

Remark 1. For any m ≥ 2, any σ ∈ (1,m), and any h ∈ C, problem (49) has at
least one solution for all λ ∈ R. This is a consequence of [6, Theorem 3.1].

Example 2. For any m ≥ 2, and any h ∈ C such that −1 < h < 1, there exists
λ0 > 0 such that the Neumann problem

−M(v) + λ|v|m−2v =
v√

1 + v2
− h(|x|) in B(ρ,R),

∂νv = 0 on ∂B(ρ,R)
(50)

has at least three radial solutions when λ ∈ (0, λ0).

Remark 2. For any m > 1, and any h ∈ C, problem (50) has at least one solution
for all λ ∈ R \ {0}. If λ = 0, problem (50) has at least one solution for any h ∈ C

such that −1 < h < 1. This is a consequence of [6, Theorem 3.1].
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Example 3. For any m ≥ 2, and any h ∈ C̃, there exists λ0 > 0 such that the
Neumann problem

−M(v) + λ|v|m−2v =
v

1 + v2
+ h(|x|) in B(ρ,R)

∂νv = 0 on ∂B(ρ,R)
(51)

has at least three radial solutions when λ ∈ (0, λ0).

Remark 3. For any m > 1, and any h ∈ C, problem (51) has at least one solution

for all λ ∈ R \ {0}. If λ = 0, problem (51) has at least one solution for any h ∈ C̃.
This is a consequence of [6, Theorem 3.1].
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in Geometric Variational Problems

Renato G. Bettiol, Paolo Piccione and Gaetano Siciliano

Abstract. We prove an extension of a celebrated equivariant bifurcation result
of J. Smoller and A. Wasserman [21], in an abstract framework for geometric
variational problems. With this purpose, we prove a slice theorem for continu-
ous affine actions of a (finite-dimensional) Lie group on Banach manifolds. As
an application, we discuss equivariant bifurcation of constant mean curvature
hypersurfaces, providing a few concrete examples and counter-examples.
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1. Introduction

Most geometric variational problems are invariant under a symmetry group, in
the sense that the geometric objects of interest are critical points of a functional
invariant under the action of a Lie group. For example, the rotation action of S1

on the space of loops of a Riemannian manifold M leaves invariant the energy
functional (whose critical points are closed geodesics on M). As a more interesting
example, the action of the isometry group of a Riemannian manifold M leaves
invariant the area functional (whose critical points with constrained volume are
constant mean curvature (CMC) submanifolds M ↪→M). The aim of this paper is
to develop an abstract equivariant bifurcation theory for families of critical points
of variational problems as the above, tailored for geometric applications. In a
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certain sense, this problem is complementary to our study of an Implicit Function
Theorem for such variational problems, see [9], namely characterizing when it fails.

Equivariant bifurcation for a 1-parameter family of gradient-like operators
invariant under the action of a Lie group on a Banach space was pioneered by the
work of J. Smoller and A. Wasserman [21]. They found sufficient conditions for
the existence of a bifurcation instant in a 1-parameter family of zeros of such a
path of operators, when these zeros are fixed points of the action. The sufficient
condition is stated in terms of the induced isotropy representations on the negative
eigenspace of the linearized operators. This result was then successfully used to
obtain bifurcation of radial solutions to semilinear elliptic PDEs in a disk with
homogeneous linear boundary conditions, among other similar applications.

Nevertheless, in applications to geometric variational problems, it is too re-
strictive to assume that the starting 1-parameter family of solutions is formed
only by fixed points of the action. Typically, variational problems involving maps
with values in Riemannian manifolds are invariant under the isometry group of
the target manifold, which acts by left-composition. It often is a natural situation
that the given family of critical points is only invariant under a smaller group of
isometries, i.e., the orbits of such points may not consist of single points, although
they may also have nontrivial isotropy. It is also important to observe that, in
many cases, the action of the symmetry group is not everywhere differentiable.
For instance, the (left-composition) action of the isometry group of M on the
space of Ck unparameterized embeddings of a compact manifold M into M is only
continuous, and differentiable only at C∞ embeddings, see [2]. This is the action
one has to consider when studying the CMC variational problem. Finally, it is also
common to have only a local action of a symmetry group (which is also the case
in the CMC variational problem).

In the present paper, we take into account all of the above observations
and extend the classic equivariant bifurcation result of J. Smoller and A. Wasser-
man [21] to this more general situation. Let us describe with more details our
main abstract bifurcation results, Theorems 4.3 and 4.5. Assume M is a Banach
manifold endowed with a connection and G is a compact Lie group acting1 con-
tinuously by affine diffeomorphisms on M. Let fλ : M→ R be a family of smooth
G-invariant functionals, parameterized by λ ∈ [a, b], and λ �→ xλ be a curve of crit-
ical points in M, i.e., dfλ(xλ) = 0, for all λ. Under the appropriate Fredholmness
assumptions on the second derivative of fλ at xλ, we prove that if the following
conditions are satisfied, there exists equivariant bifurcation at some λ∗ ∈ ]a, b[ :

• Constant isotropy: the isotropy group H of xλ is a nice group2 (in the sense
of [21]) and independent of λ;

1To simplify our discussion, we suppose here that the action of G is globally defined, although
the results described in the sequel also hold for the more general case of local actions.
2e.g., this is satisfied if H is a closed subgroup of G with less than 5 connected components, see
Example 4.2.
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• Equivariant nondegeneracy : the kernel of the second derivatives d2fa(xa) and
d2fb(xb) coincides with the tangent space to the G-orbit of xa and of xb,
respectively;

• Jump of negative isotropy representation: the linear representations of H on
the “negative eigenspaces” of d2fa(xa) and d2fb(xb) are not equivalent.

In other words, the above three conditions imply that there exists a sequence (xn)n
in M and a sequence (λn)n in [a, b], with xn → xλ∗ and λn → λ∗ as n→∞, such
that for all n, dfλn(xn) = 0 and the orbit G · xn is disjoint from the orbit G · xλn ,
see also Definition 4.1. A particular case of the third condition above is when there
is a change of the Morse index (the sum of dimensions of the negative eigenspaces)
from xa to xb. Clearly, having the same dimension is a necessary condition for two
representations to be equivalent, so a jump of the Morse index also determines
existence of equivariant bifurcation.

The key idea for the proof of the above results is the construction of slices for
group actions, and the reduction of the variational problem to a given slice (where
a nonlinear formulation of the classic result of J. Smoller and A. Wasserman [21]
can be applied). Although slices for continuous group actions exist in a general
topological setting (see [11]), when using variational calculus, one needs a stronger
notion of slice (with some differentiability properties). Typically, differentiable
slices are constructed applying the exponential map to the normal space of an
orbit. This does not work in the general case of actions on Banach manifolds,
that may not admit a (complete) invariant inner product. Our central observation
is that, in a Banach manifold setting, a similar construction can be performed
using the exponential of any invariant connection, which exists naturally in many
interesting situations. This exponential is then applied to some invariant closed
complement of the tangent space to a differentiable group orbit. Invariant closed
complements always exist in the case of strongly continuous group actions on
Banach spaces (see Lemma 3.2). Thus, the core of the present paper consists in a
description of the main properties of connections on infinite-dimensional Banach
manifolds (or Banach vector bundles), and the construction of smooth slices for
continuous affine (local) actions.

As an example of application of this theory, we obtain bifurcation results for
families of CMC hypersurfaces, see Theorems 5.4 and 5.8. Those are then applied
to concrete families of Clifford tori in round and Berger spheres, and of rotationally
symmetric surfaces in R3. In those cases, a few recent bifurcation results by the
second named author and others are reobtained, see [3, 17, 19]. Other bifurcation
results obtained by the first and second named authors for geometric variational
problems with symmetries with a similar framework can be found in [6, 7, 8].

Some natural questions arise regarding further generalizations, e.g., when one
considers the case in which the isotropy group of xλ depends on the parameter λ,
described in Example 5.10. This is a topic of current research by the authors, as
well as the study of other geometric applications, e.g., to the variational problem
of constant anisotropic mean curvature hypersurfaces.
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The paper is organized as follows. Section 2 contains general facts about
connections on (infinite-dimensional) Banach vector bundles. Special emphasis is
given to Banach bundles of sections of finite-dimensional vector bundles, endowed
with an affine connection, over differentiable manifolds. This is the case of main
interest in applications. In this context, the two main results (Proposition 2.5
and Corollary 2.7) are that the map of right-composition with diffeomorphisms
of the base manifolds is affine, as well as the map of left-composition with an
affine map. Section 3 deals with the question of existence of slices for group ac-
tions on infinite-dimensional Banach manifolds. The main result of this section,
Theorem 3.4, gives the existence of a slice through a point x for affine actions,
under the assumption of compactness of the isotropy of x. The case of local group
actions is also discussed, see Subsection 3.1. Section 4 contains the main equivari-
ant bifurcation results (Theorems 4.3 and 4.5), which generalize [21, Thm. 2.1]
and [21, Thm. 3.3] respectively. Section 5 contains a geometric application of the
two abstract bifurcation results in the context of CMC embeddings, which was
the original motivation for the development of the theory. Concrete examples of
bifurcation of CMC embeddings recently discovered are briefly presented in the
end of this section. Finally, Appendix A describes the basic framework for the used
nonlinear formulation of the results of J. Smoller and A. Wasserman [21].

2. Connections on infinite-dimensional manifolds

We start by studying the notion of connection on a Banach vector bundle. Given
a connection on a finite-dimensional vector bundle πE : E → M and a smooth
manifold D (possibly with boundary), we describe the construction of a naturally
associated connection on the bundle πE : E → M, where E = Ck(D,E), M =
Ck(D,M) and πE is the left composition with πE . This is characterized as the
unique connection for which the evaluation maps evp : E → E are affine. We show
the invariance of this connection by the right action of the diffeomorphism group
of D. When E = TM and the connection on TM is the Levi–Civita connection of
some semi-Riemannian metric tensor g on M , then the associated connection on
Ck(D,M) is also invariant by the left action of the isometry group of g. A classic
reference on these topics is [13].

2.1. Banach vector bundles

LetM be a smooth Banach manifold, and πE : E →M be a smooth Banach vector
bundle onM. This means that E =

⋃
x∈M Ex, with Ex = π−1(x), is a collection of

vector spaces, and that it is given an atlas of compatible trivializations of E . Given
a Banach space E0, write

FrE0(E) :=
⋃

x∈M
Iso(E0, Ex),

where Iso(E0, Ex) is the set of Banach space isomorphisms (bi-Lipschitz linear
isomorphisms) from E0 to Ex. For a vector bundle πE : E →M with fibers of finite
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dimension n, we will write Fr(E) for FrRn(E). A local trivialization of πE : E →M
with domain U ⊂ M and typical fiber E0 is a local section s : U → FrE0(E).
Two local trivializations si, with domain Ui ⊂ M and typical fibers Ei, i = 1, 2,
are compatible if the transition map s−1

2 s1 : U1 ∩ U2 → Iso(E1, E2) is smooth. A
collection (Ui, si, Ei)i∈I of local trivializations of E is an atlas if the domains Ui

cover M. For details on the structure of such Banach vector bundles, see [20].

2.2. Connections on Banach vector bundles

A connection on the Banach vector bundle πE : E →M is a smooth map P E : TE →
E such that:

(a) for all x ∈ M and e ∈ Ex, the restriction P E
e = P E |TeE is a linear map with

values in Ex;
(b) for any local trivialization s : U → FrE0(E), there exists a smooth map

U  x �−→ Γx ∈ Bil(TxM×Ex, Ex)

such that, denoting by s̃ : E|U → E0 the map s̃(e) = s
(
π(e)

)−1
(e), the follow-

ing identity holds for all x ∈ U , e ∈ Ex and η ∈ TeE :
P E(η) = s(x)

(
ds̃e(η)

)
+ Γx

(
dπE

e (η), e
)
.

A standard argument shows that it suffices to have property (b) satisfied only for
the set of local trivializations of an atlas.

A connection PE defines a distribution Hor(P E) on the total space E , called
the horizontal distribution, given by Hor(P E)e = Ker(P E

e ). A vector v ∈ TeE will
be called horizontal if it belongs to Hor(P E)e.

2.3. Connections and exponential maps on Banach manifolds

By a manifold with connection, we mean a Banach manifold M with a connection
on its tangent bundle π : TM→M. If P is a connection on TM, one has a vector
field X(P ) on TM, called geodesic field, defined by the following: for x ∈ M and
v ∈ TxM, X(P )v is the unique horizontal vector in Tv(TM) that projects onto
v ∈ TxM (by the differential dπv). A curve γ : I →M is a P -geodesic if it is the
projection of an integral curve Γ: I → TM of X(P ). If M is a manifold with
connection P , then one has an exponential map

expP : Dom(expP ) ⊂ TM−→M,

defined on an open subset Dom(expP ) ⊂ TM containing the zero section, with
properties totally analogous to the exponential map of a connection on a finite-
dimensional manifold. In particular, for all x ∈ M, Ax = Dom(expP ) ∩ TxM is a
star-shaped open neighborhood of 0 in TxM, and, denoting by expPx the restriction
of expP to Ax, one has d expPx (0) = Id. In particular, expPx is a diffeomorphism
from an open neighborhood of 0 in TxM onto an open neighborhood of x in M.
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2.4. Banach bundles of sections of a finite-dimensional vector bundle

We now describe an important example of the abstract setting of Subsection 2.2.
Consider a vector bundle πE : E → M over a finite-dimensional differentiable
manifold M , and let PE : TE → E be a connection in E. Let D be a compact
differentiable manifold (possibly with boundary), and for some k ≥ 2, set M =
Ck(D,M) and E = Ck(D,E). There exists a natural map πE : E → M, namely
the map (πE)∗ of left-composition with πE . The sets M and E admit a natural
structure of Banach manifold, making πE : E →M an infinite-dimensional Banach
vector bundle. More precisely, for f ∈ M, the fiber Ef is the Banach space of Ck
sections of the pull-back bundle f∗(E), also called sections of E along f ,

Ef =
{
F ∈ Ck(D,E) : F (x) ∈ Ef(x) for all x ∈ D

}
.

There is also a natural identification of the tangent bundle of E as

TE ∼= Ck(D,TE),

and if f is in M (which can be thought of as the zero section of E), there is a
canonical splitting TfE ∼= TfM⊕ Ef in horizontal and vertical parts respectively.
The horizontal subspace of TfE in this particular case is TfM ∼= Ck(D,TM). To
have a notion of horizontal subspace at the tangent space to E at points outside
the zero section, we need a connection on this Banach vector bundle.

A connection P E : TE → E can be defined as being the map (PE)∗ of left-
composition with PE . Let us show that this satisfies the axioms (a) and (b) de-
scribed in Subsection 2.2.

First, given f ∈ M and F ∈ Ef , we have that the restriction P E
F of P E to

TFE maps a section η of F ∗(TE) (i.e., an element of TFE) to the section PE ◦ η
of f∗E (i.e., an element of Ef ), see the commutative diagram below. This map P E

F

is clearly linear, since it is given by left-composition with PE , proving that axiom
(a) holds.

TE

PE

��
E

πE

��
D

f ��

F

����������

η

��

M

Second, we observe that an atlas of trivializations of πE : E → M can be
constructed using smooth maps s : Dom(s) ⊂ D ×M → Fr(E) such that πE ◦
s(p, x) = x for all (p, x) ∈ Dom(s), and such that s(p, ·) is a local trivializa-
tion of πE : E → M . Once such a map s is given, a trivialization s : Dom(s) ⊂
Ck(D,M) → FrE0

(Ck(D,E)
)
, with E0 = Ck(D,Rn), is defined by setting, for all
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x ∈ Dom(s) =
{
x ∈ Ck(D,M) : Gr(x) ⊂ Dom(s)

}
,3

s(x) : Ck(D,Rn) −→ Ck(D,E),

s(x)(v)p = s
(
p, x(p)

)
v(p),

for all v ∈ Ck(D,Rn) and p ∈ D. Given p ∈ D, F ∈ E and η ∈ TeE , then:
P E
F (η)(p) = PE

F (p)

(
η(p)

)
= s

(
p, x(p)

)[
ds̃p

(
F (p)

)
η(p)

]
+ ΓPE

x(p)

(
dπE

F (p)

(
η(p), F (p)

))
,

which says that the Christoffel symbol Γ̃ of P E associated to the trivialization s is
given by:

Γ̃x : Ck(D,TM ;x)× Ck(D,E;x) −→ Ck(D,E;x)

Γ̃x(v, e)(p) = ΓP
x(p)

(
v(p), e(p)

)
.

(2.1)

Here, Ck(D,TM ;x) and Ck(D,E;x) respectively denote the spaces of Ck sections
of the pull-back bundles x∗(TM) and x∗(E).

An interesting particular case of the above construction is when E = TM
is the tangent bundle of M . Recall that D is a smooth manifold (possibly with
boundary), M is a manifold whose tangent bundle TM has a connection PTM and
the Banach vector bundle E = Ck(D,TM) is the tangent bundle of the Banach
manifold M = Ck(D,M), under the identification

E = Ck(D,TM) ∼= TCk(D,M) = TM.

Endowing TM with the naturally induced connection PTM described above, the
PTM-geodesics in M are smooth curves s �→ xs ∈ Ck(D,M) such that, for all
p ∈ D, the curve s �→ xs(p) ∈M is a PTM -geodesic in M . This is a manifestation
of the fact we will see next that the induced connection PTM is characterized by
every evaluation map evp : M→M being affine, see Proposition 2.4.

2.5. Affine maps

Let us now consider two Banach vector bundles πE : E → M and πE′
: E ′ → M′

endowed with connections P E and P E′
respectively. Let f : M→M′ be a smooth

map and T : E → E ′ a smooth Banach bundle morphism for which the following
diagram commutes.

E T ��

πE

��

E ′

πE′

��
M

f
�� M′.

3Gr(x) denotes the graph of x ∈ Ck(D,E).
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Definition 2.1. T is said to be affine if the following diagram commutes

TE dT ��

PE

��

TE ′

PE′

��
E

T
�� E ′.

It is easy to see that T is affine if and only if dT maps horizontal spaces to
horizontal spaces.

Definition 2.2. If M and M′ are Banach manifolds endowed with connections P
and P ′, a smooth map f : M→M′ is affine if df : TM→ TM′ is affine.

Example 2.3. Consider a finite-dimensional vector bundle πE : E → M endowed
with a connection PE , let D be a smooth manifold (possibly with boundary) and
consider the connection P E defined on E = Ck(D,E), as in Subsection 2.4. For all
p ∈ D denote by evp the evaluation at p maps Ck(D,E)→ E and Ck(D,M)→M .
Clearly, the following diagram commutes

E = Ck(D,E)
πE

��

evp

��

Ck(D,M) =M
evp

��
E

πE

�� M

,

and it is easy to check that evp is affine. Conversely, we now prove that this
property characterizes the natural connection on E constructed in Subsection 2.4.

Proposition 2.4 (Universal property of the natural connection). The natural con-
nection defined on πE : E →M as above is the unique connection for which evp is
an affine map, for all p ∈ D.

Proof. It follows readily from (2.1). The condition that evp is affine is the commu-
tativity of the following diagram:

Ck(D,TE)
d(evp) ��

PE

��

TE

PE

��
Ck(D,E) evp

�� E. �

2.6. Invariance

We conclude this section with a few results on affine maps.

Proposition 2.5. Let πE : E → M be a vector bundle with a connection PE, let
D and D′ be manifolds (possibly with boundary), and set E = Ck(D,E), E ′ =

Ck(D′, E), and M = Ck(D,M). Let πE : E → M and πE′
: E ′ → M be endowed
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with the associated connections P E and P E′
. If φ : D → D′ is a diffeomorphism of

class Ck, then the map

φ∗ : E −→ E ′

of right-composition with φ is affine.

Proof. It follows from the universal property of the natural connection, Proposi-
tion 2.4 (or directly from the definition). �

Proposition 2.6. Let πE : E → M and πE′
: E′ → M ′ be vector bundles endowed

with connections PE and PE′
respectively, D a smooth manifold (possibly with

boundary). Set M = Ck(D,M), M′ = Ck(D′,M ′) and let E = Ck(D,E), E ′ =
Ck(D,E′) be endowed with the natural connections.

If

E
T ��

��

E′

��
M

f
�� M ′

is affine, then

E T∗ ��

��

E ′

��
M

f∗
�� M′

is affine.

Proof. Since the first diagram is affine, then the following diagram commutes

TE
dT ��

PE

��

TE′

PE′

��
E

T
�� E′

Taking left-composition with the above maps, and observing that (dT )∗ = d(T∗),
we get the following commutative diagram, which proves the desired result.

TE ∼= Ck(D,TE)
(dT )∗ ��

(PE)∗
��

Ck(D,TE′) ∼= TE ′

(PE′
)∗

��
Ck(D,E)

T∗
�� Ck(D,E′) �

Corollary 2.7. If M , M ′ are manifolds with connections and f : M →M ′ is affine,
then the map of left-composition f∗ : Ck(D,M)→ Ck(D,M ′) is affine.

3. Slices for continuous affine actions

In this section, we construct slices for continuous affine actions of a Lie group on
a Banach manifold. Let us consider the following setup:

(a) M is a smooth Banach manifold,
(b) G is a Lie group acting continuously by diffeomorphisms on M,
(c) x ∈ M is a point where the action of G is differentiable.
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When M is endowed with a connection, we will say that the group action is affine
if G acts by affine diffeomorphisms of M.

Define the auxiliary maps, with g ∈ G, y ∈ M,

βx : G −→M φg : M−→M
g �−→ g · x y �−→ g · y. (3.1)

From assumption (b), φg is a diffeomorphism for each g ∈ G. Assumption (c)
means that βx is differentiable. In particular, the G-orbit of x is a submanifold of
M, whose tangent space at x is given by the image of dβx(1) : g → TxM, where
g is the Lie algebra of G. Let us denote by Gx the isotropy (or stabilizer) of x,
which is the closed subgroup of G given by Gx =

{
g ∈ G : φg(x) = x

}
.

Definition 3.1. A slice for the action of G on M at x is a smooth submanifold
S ⊂M containing x, such that

1. the tangent space TxS ⊂ TxM is a closed complement to Im
(
dβx(1)

)
, i.e.,

TxM = Im
(
dβx(1)

)⊕ TxS;
2. G · S is a neighborhood of the orbit G · x, i.e., the orbit of every y ∈ M

sufficiently close to x must intersect S;
3. S is invariant under the isotropy group Gx.

We will prove the existence of slices for affine actions of compact Lie groups.
Towards this goal, we need an auxiliary result on linear actions of compact groups.

Lemma 3.2. Let G be a compact Hausdorff topological group with a strongly con-
tinuous4 linear representation on a Banach space X . Then:

(a) if S ⊂ X is a closed G-invariant complemented subspace of X , then S admits
a G-invariant closed complement;

(b) the origin of X has a fundamental system of G-invariant neighborhoods.

Proof. First, observe that by the uniform boundedness principle, the linear op-
erators on X associated to the action of elements g ∈ G have norm bounded by
a constant which is independent of g. By a simple argument, it follows that the
action defines a continuous function G× X → X . For part (a), let P : X → X be

a projector (i.e., bounded linear idempotent) with image S. Define P̃ : X → X as

the Bochner integral P̃ (x) =
∫
G gPg−1xdg, where dg is the Haar measure of G. It

is easy to see that P̃ is a well-defined bounded linear operator on X , with image
contained in S. Furthermore, it fixes the elements of S, and commutes with the

G-action. It follows that P̃ is also a projector with image S, and its kernel is the
desired G-invariant closed complement to S.

As to part (b), let V be an arbitrary neighborhood of the origin of X . The
inverse image of V by the action G×X → X is an open subset Z of the product
G×X that contains G× {0}. Since G is compact, there exists a neighborhood U
of 0 in X such that G×U is contained in Z, i.e., g ·x ∈ V for all g ∈ G, x ∈ U . The
union

⋃
g∈G gU is a G-invariant open neighborhood of 0 in X , contained in V . �

4i.e., the maps G � g �→ g · x ∈ X are continuous for all x ∈ X .
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We also observe the following interesting fact.

Lemma 3.3. Let ρ : G × X → X be a continuous action of a compact group G on
a topological space X . Assume x0 ∈ X is a fixed point of G. Then x0 admits a
fundamental system of G-invariant (open) neighborhoods.

Proof. Let V be an arbitrary neighborhood of x0, and set W =
⋂

g∈G gV . Clearly
W is G-invariant, and W ⊂ V . Let us show that W is a neighborhood of x0.
The set ρ−1(V ) is an open subset of G × X that contains G × {x0}, and by the
compactness of G, it also contains the product G × U , where U is some open
neighborhood of x0. Thus, U ⊂ W , and W is a neighborhood of x0. The interior
of W is also G-invariant. �

We can now prove our result on the existence of slices.

Theorem 3.4. In the above situation, assume that M is endowed with a connec-
tion which is G-invariant (i.e., each diffeomorhism φg is affine), and that Gx is
compact. Then there exists a slice S through x.

Proof. Consider the isotropy representation of Gx on TxM, given by g �→ dφg(x).
The finite-dimensional subspace Im

(
dβx(1)

)
is clearly invariant under this linear

action. By part (a) of Lemma 3.2, there exists a closed Gx-invariant complement S
of Im

(
dβx(1)

)
. Denote by expx the exponential map of the G-invariant connection

at x, and let U0 ⊂ TxM be an open neighborhood of 0 on which expx is a diffeo-

morphism. By part (b) of Lemma 3.2, there exists an open neighborhood Ũ0 ⊂ U0

of 0 such that Ũ0 ∩ S is Gx-invariant. Set

S := expx(Ũ0 ∩ S).

We claim that S is a slice for the action of G at x. Property (1) of slices is
clearly satisfied, since d expx(0) = Id, and S is a closed complement to Im

(
dβx(1)

)
.

Property (2) would follow immediately from the transversality condition (1) under
the hypothesis of differentiability of the group action, which we do not assume.
A slightly more involved topological argument based on degree theory is required
for the continuous case, and this is discussed separately in Proposition 3.5, which
is to be applied with A = N = M, M = G, Q = S, χ being the action, a0 = x,
and m0 = 1. For property (3), observe that since the connection is G-invariant,

then φg ◦ expx = expφg(x) ◦ dφg(x), for all g ∈ G. Thus, given v ∈ Ũ0 ∩ S and

g ∈ Gx, φg

(
expx(v)

)
= expx

(
dφg(x)v

) ∈ S, because Ũ0 ∩ S is Gx-invariant, i.e.,
S is Gx-invariant. �
Proposition 3.5. Let M be a finite-dimensional manifold, N a (possibly infinite-
dimensional) Banach manifold, Q ⊂ N a Banach submanifold, and A a topological
space. Assume that χ : A×M → N is a continuous function such that there exists
a0 ∈ A and m0 ∈M with:

(a) χ(a0,m0) ∈ Q; (b) χ(a0, ·) : M → N is of class C1;
(c) ∂2χ(a0,m0)

(
Tm0M

)
+ Tχ(a0,m0)Q = Tχ(a0,m0)N .

Then, for a ∈ A near a0, χ(a,M) ∩Q �= ∅.
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Proof. Let f : U ⊂ Rd → Rd be a C1 function, defined on an open neighborhood U

of 0, such that f(0) = 0 and df(0) an isomorphism. The induced map f̃ : Sd−1 →
Sd−1 is defined by f̃(x) = ‖f(rx)‖−1f(rx), where r > 0 is such that 0 is the unique

zero of f in the closed ball B(0, r) of Rd. This induced map must have topological
degree equal to ±1.

If A is any topological space, f : A × U → Rd is continuous, and a0 ∈ A is
such that f(a0, ·) is of class C1, f(a0, 0) = 0 and ∂2f(a0, 0) is an isomorphism,

for a near a0, and r > 0 sufficiently small, 0 ∈ f
(
a,B(0, r)

)
. This follows from

the continuity of the topological degree. The same conclusion holds for a function
f : A × U → Rd, where now U is an open neighborhood of 0 in Rs, with s ≥ d,
under the assumption that f(a0, ·) is of class C1, f(a0, 0) = 0, and ∂2f(a0, 0) be
surjective. Namely, it suffices to apply the argument above to the function obtained
by restricting f to a d-dimensional subspace where ∂2f(a0, 0) is an isomorphism.

To finish the proof, use local coordinates adapted to Q in N , and assume
that M , Q and N are Banach spaces, with N = Q ⊕ Rd, d ≤ s = dim(M) is
the codimension of Q, and m0 = 0. In this situation, the conclusion is obtained
applying the argument above to the function f : A×M → Rd given by f(a,m) =
π
(
χ(a,m)

)
, where π : N → Rd is the projection relative to the decomposition

N = Q⊕Rd. Clearly, f(a,m) = 0 if and only if χ(a,m) ∈ Q. Assumption (a) gives
f(a0, 0) = 0, and assumption (c) implies that ∂2f(a0, 0) is surjective. �

3.1. Local actions

The existence of slices proved in Theorem 3.4 holds in the more general case of
local group actions. Let us briefly recall the definition and a few basic facts about
local actions.

Let G be a Lie group and M a topological manifold. By a local action of G
onM, we mean a continuous map ρ : Dom(ρ) ⊂ G×M→M, defined on an open
subset Dom(ρ) ⊂ G×M containing {1} ×M satisfying:

(a) ρ(1, x) = x for all x ∈M;
(b) if (g2, x) ∈ Dom(ρ) and

(
g1, ρ(g2, x)

) ∈ Dom(ρ), then (g1g2, x) ∈ Dom(ρ),

and ρ
(
g1, ρ(g2, x)

)
= ρ(g1g2, x).

Usual group actions can be obtained as the particular case in which the domain
Dom(ρ) coincides with the entire G ×M. Local actions can be restricted, in the
following sense. If N ⊂ M is a submanifold, then one has a local action ρ̃ of G
on N by setting Dom(ρ̃) =

{
(g, x) ∈ (G × N ) ∩ Dom(ρ) : ρ(g, x) ∈ N}

, and

ρ̃ = ρ|Dom(ρ̃). In fact, the most natural occurrence5 of local actions is when one
has a (global) action of a group G on a topological manifold X , and M is an open
(not necessarily G-invariant) subset of X . The restriction of the action of G to M
in the above sense is a local action of G on M.

5In fact, local actions of groups are always restrictions of global actions. In the literature, these
are known as enveloping actions of the local action, see [1].
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Assumption (b) implies that for all x ∈M , denoting by

Gx =
{
g ∈ G : (g, x) ∈ Dom(ρ), ρ(g, x) = x

}
the isotropy of x, then Gx is a closed subgroup of G.

Given a local action ρ of G on M, for g ∈ G, let ρg denote the map ρ(g, ·),
defined on a (possibly empty) open set Dom(ρg) = Dom(ρ) ∩ {g} × M. The
following follow easily from the definition.

Lemma 3.6. Let ρ : Dom(ρ) ⊂ G×M→M be a local action of G on M . Then

(a) for all g ∈ G, the map ρg : ρ
−1
g

(
Dom(ρg−1 )

) → ρ−1
g−1

(
Dom(ρg)

)
is a homeo-

morphism;
(b) the set

{
(g, x) ∈ G × M : x ∈ ρ−1

g

(
Dom(ρg−1)

)}
is an open subset that

contains {1} ×M; in particular:
(c) for all x ∈ M, there exists an open neighborhood Ux of 1 in G such that for

all g ∈ Ux, x ∈ ρ−1
g

(
Dom(ρg−1)

)
.

In view of (c) above, one can define a map βx : Dom(βx) ⊂ G → M on
a neighborhood Dom(βx) of 1 in G, by βx(g) = ρ(g, x), compare with (3.1). In
particular, if x ∈ M is such that the map βx is differentiable (at 1), then one
has a well-defined linear map dβx(1) : g → TxM. A subset C ⊂ M will be called
G-invariant if, given x ∈ C, then ρ(g, x) ∈ C for all g ∈ Dom(βx).

In view of the above, the definition of slice for local actions is totally analogous
to Definition 3.1. Furthermore, the statement and proof of Theorem 3.4 carry over
verbatim to the case of local affine actions.

4. Equivariant bifurcation

Let us define what we intend by equivariant bifurcation. To simplify our discussion,
we restrict to the case when there is a globally defined action (opposed to a local
action). Consider the same setup (a), (b) and (c) of Section 3. Let [a, b]  λ �→ fλ
be a continuous path of Ck-functionals fλ : M→ R, k ≥ 2, which are G-invariant,
i.e., fλ(g · y) = fλ(y) for all y ∈ M, g ∈ G and λ ∈ [a, b]. We are interested in
studying bifurcation of solutions to the equation dfλ(x) = 0.

Definition 4.1. Given λ0 ∈ [a, b], we say that equivariant bifurcation of critical
points of the family (fλ)λ∈[a,b] occurs at (xλ0 , λ0) if there is a sequence (xn, λn) ∈
M× [a, b] such that

1. lim
n→∞(xn, λn) = (xλ0 , λ0);

2. dfλn(xn) = 0, for all n;

3. xn �∈ G · xλn , for all n.

We now discuss our central result, which is a sufficient condition for equivari-
ant bifurcation in the above sense. It will be obtained by combining the slice theory
developed in the previous section with a nonlinear formulation of a celebrated bi-
furcation result of J. Smoller and A. Wasserman [21]. In order to deal with the
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important general case of functionals defined on Banach manifolds (rather than
Hilbert manifolds), we will need an appropriate framework described by a set of
assumptions on an auxiliary Hilbert/Fredholm structure of the problem.

Let B2 and B0 be Banach spaces and H be a Hilbert space with inner
product 〈·, ·〉. To keep things in perspective, in our geometric applications to a
finite-dimensional manifold M , we will set B2 = C2,α(M), B0 = C0,α(M) and
H = L2(M). Assume that M is modelled on B2 and is endowed with an affine
G-invariant connection. Let [a, b]  λ �→ xλ ∈ M be a continuous path, such that
for all λ, xλ is a critical point of fλ, which actually implies that the entire orbit
G·xλ consists of critical points of fλ. Also, assume that a sufficiently small open set
U ⊂M containing all xλ admits continuous embeddings U ⊂ B0 ⊂ H , such that
the following are satisfied. First, the local G-action on U extends continuously to
a local G-action on B0 and on H . Second, there exists a continuous path λ �→ dfλ
of G-equivariant Ck−1-maps dfλ : U → B0 satisfying

dfλ(y)ξ = 〈dfλ(y), ξ〉, (4.1)

for all y ∈ U , ξ ∈ TyU ∼= B2 and λ. In particular, we have

dfλ(xλ) = 0, for all λ ∈ [a, b].

The map dfλ plays the role of the gradient of fλ, which does not exist in the usual
sense due to the lack of a complete inner product on B2.

For all λ ∈ [a, b], let Gλ be the isotropy of xλ, which is a closed subgroup of
G. Given ε > 0, set

Nλ(ε) := span
{
v ∈ B2 : d(dfλ)xλ

(v) = μv, for some μ ≤ ε
}
. (4.2)

We define the generalized negative eigenspace6 of d(dfλ)xλ
to be

Nλ := Nλ(0). (4.3)

Before stating the main result of this section, we briefly recall yet another
notion used by J. Smoller and A. Wasserman [21, p. 73]. A group G is said to
be nice if, given unitary representations π1 and π2 of G on Hilbert spaces V1

and V2 respectively, such that B1(V1)/S1(V1) and B1(V2)/S1(V2) have the same
(equivariant) homotopy type as G-spaces, then π1 and π2 are equivalent. Here,
B1 and S1 denote respectively the unit ball and the unit sphere in the specified
Hilbert space, and the quotient B1(Vi)/S1(Vi) is meant in the topological sense.7

Example 4.2. Any compact connected Lie group G is nice. More generally, any
compact Lie group with less than 5 connected components is nice. Denoting by G0

the identity connected component of G, then G is nice if the discrete part G/G0

is either the product of a finite number of copies of Z2 (e.g., the case G = O(n));
or the product of a finite number of copies of Z3; or if G/G0 = Z4, see [18].

We are now ready to state and prove our main result.

6In the terminology of J. Smoller and A. Wasserman [21], this is the eigenspace of d(dfλ)xλ .
7i.e., it denotes the unit ball of Vi with its boundary contracted to one point.
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Theorem 4.3. In the above setup, assume that

(a) there exists ε > 0 such that dim
(
Nλ(ε)

)
< +∞, for all λ ∈ [a, b];

(b) for all λ, Gλ is a fixed compact nice subgroup G0 of G;
(c) Ker

(
d(dfa)xa

)
= Txa(G · xa) and Ker

(
d(dfb)xb

)
= Txb

(G · xb);
(d) dim(Na) �= dim(Nb).

Then, equivariant bifurcation of the family (xλ)λ of critical points of (fλ)λ occurs
at some (xλ0 , λ0), with λ0 ∈ ]a, b[.

Proof. Under the above hypotheses, Theorem 3.4 ensures the existence of a slice S
invariant under the action of G0 by diffeomorphisms. We have a family Tλ = dfλ
of G0-equivariant sections of TS. Note that, since fλ is constant along the orbits
and by the transversality property (1) of the slice, we have that S is a natural
constraint. In other words, the constrained critical points of the restriction fλ

∣∣
S

of fλ to S actually satisfy dfλ(xλ) = 0. Assumption (c) means that xa and xb

are (equivariantly) nondegenerate critical points. The result then follows from [21,
Thm 2.1], in its nonlinear formulation explained in Appendix A. �
Remark 4.4. Assumption (a) in Theorem 4.3 is satisfied, for instance, when λ �→
d dfλ(xλ) : B2 → B0 is a continuous path of Fredholm operators that are essentially
positive. By definition, this means that dd fλ(xλ) are Fredholm operators of the
form Pλ +Kλ, where Pλ : B2 → B0 is a symmetric isomorphism (relatively to the
inner product of H) and satisfies 〈Pλx, x〉 > 0 for all x ∈ B2 \ {0}; and Kλ : B2 →
B0 is a compact symmetric operator (also relatively to to the inner product of
H). In this situation, the space Nλ(ε) is the direct sum of the eigenspaces of the
compact operator P−1

λ Kλ (which is symmetric with respect to the inner product
defined by Pλ, hence diagonalizable) corresponding to eigenvalues less than or
equal to ε− 1 < 0. Assuming ε < 1, the operator P−1

λ Kλ has only a finite number
of such eigenvalues, and each of them has finite multiplicity. By continuity, one
can give a uniform estimate on the dimension of Nλ(ε), for λ ∈ [a, b].

Assumption (d) in Theorem 4.3 means that there is a jump of the Morse index
of xλ, as λ goes from a to b. We now present a subtler criterion for equivariant
bifurcation, where this assumption is weakened. Recall the isotropy representation
πλ of Gλ on Txλ

M is the linear representation defined by πλ(g) = dφg(xλ). Since
dfλ is equivariant, it is easy to see that Nλ(ε) is invariant under πλ, for all ε > 0.
Define the negative isotropy representation π−

λ to be the restriction

π−
λ := πλ|Nλ

: Nλ −→ Nλ. (4.4)

Observe that dimNλ is the Morse index of xλ.

Theorem 4.5. Replace the assumption (d) of Theorem 4.3 with

(d′) the negative isotropy representations π−
a and π−

b are not equivalent.8

8Two representations πi : H → GL(Vi), i = 1, 2, of the group H on the vector spaces V1 and
V2 respectively, are equivalent if there exists a H-equivariant isomorphism T : V1 → V2, i.e., an
isomorphism satisfying T

(
π1(h)v

)
= π2(h)

(
T (v)

)
for all h ∈ H and all v ∈ V1. In particular,

dimV1 = dimV2.
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Then, the same conclusion holds, i.e., equivariant bifurcation of (xλ)λ∈[a,b] occurs
at some (xλ0 , λ0), with λ0 ∈ ]a, b[.

Proof. The same proof of Theorem 4.3 applies, using [21, Thm 3.3], in its nonlinear
formulation (explained in Appendix A), to obtain the conclusion. �
Remark 4.6. All the results stated above carry over verbatim to the case of local
affine actions, using the same standard procedures mentioned before.

5. Geometric applications on CMC hypersurfaces

In this section, we apply our abstract equivariant bifurcation results (Theorems 4.3
and 4.5) to the geometric variational problem of constant mean curvature (CMC)
embeddings. Bifurcation phenomena for 1-parameter families of CMC embeddings
have been studied in the last years by several authors, see, e.g., [3, 6, 17, 19]. We will
state and prove general bifurcation results for CMC embeddings (Theorems 5.4
and 5.8) and discuss how some explicit bifurcation examples can be reobtained
from these general results.

5.1. Variational setup

The problem of finding constant mean curvature H embeddings of a compact
m-dimensional manifold M into a complete Riemannian manifold (M, g) with
dim(M) = m+1 is equivalent to finding critical points of the area functional with
a fixed volume constraint, where H is the Lagrange multiplier (which will play the
role of the parameter λ). More precisely, assume for simplicity that M and M are
oriented, and consider the 1-parameter family of functionals (fH)H given by

fH(x) = Area(x) +mH Vol(x), (5.1)

where x : M →M is an embedding, Area(x) =
∫
M

volx∗(g) is the volume of x(M) ⊂
M , volx∗(g) is the volume form of the pull-back metric x∗(g) and Vol(x) is the

volume enclosed9 by x(M). Then x : M →M is a critical point of fH if and only if
it is an embedding of constant mean curvature H , see [4, 5]. As we will see later,
a convenient regularity assumption is that fH acts on the space of Hölder C2,α
embeddings.

More precisely, assuming that the embedding x is transversely oriented (i.e.,
the normal bundle to x is oriented), we may parameterize embeddings close to x
by functions on M using the normal exponential map. An embedding xf : M →M
that is C2,α-close to x can be written as

xf (p) = exp⊥x(p)
(
f(p)Nx(p)

)
, p ∈M, (5.2)

where exp⊥ is the normal exponential map of x(M) ⊂M and Nx is a unit normal
vector field along x. We thus identify xf with the function f ∈ C2,α(M), which

9This notion will be clarified by the end of this subsection. For now, one may assume for simplicity
that x(M) = ∂Ω is the boundary of an open bounded region Ω ⊂ M , and then Vol(x) =

∫
Ω
volg

is the volume of this enclosed region.
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is close to zero. This also gives an identification of the tangent space at x to the
space of C2,α embeddings (which is formed by normal vector fields along x) with
the Banach space C2,α(M). With this identification, the first variation formula for
(5.1) is given by

dfH(x)(f) =

∫
M

m
(
H −H(x)

)
f volx∗(g), f ∈ C2,α(M), (5.3)

where H(x) is the mean curvature function of the embedding x. From (5.3), it
follows that x is a critical point of fH if and only if H(x) = H (i.e., x has constant
mean curvature H), as we claimed above.

We will also need to consider the second variation of (5.1) at a critical point x,
which under the above identifications, is the symmetric bilinear form on C2,α(M)
given by

d2fH(x)(f1, f2) = −
∫
M

Jx(f1)f2 volx∗(g), f1, f2 ∈ C2,α(M), (5.4)

where Jx is the Jacobi operator

Jx = Δx + ‖Ax‖2 +mRicM (Nx), (5.5)

where Δx is the Laplacian of the pull-back metric x∗(g) on M , ‖Ax‖ is the norm
of the second fundamental form of x, RicM is the (normalized) Ricci curvature of

the ambient space (M, g) and Nx is a unit normal field along x. Functions f in the
kernel of Jx are called Jacobi fields along x. The number of negative eigenvalues of
Jx (counted with multiplicity) is the Morse index of x, that we denote iMorse(x).

The ambient isometry group G = Iso(M, g) acts on the space of embeddings,
and composing a CMC embedding with an element of G trivially gives rise to
a new CMC embedding. Recall that from the Myers–Steenrod Theorem, G is a
Lie group, and is compact if M is compact (see [16]). In addition, since (M, g) is
complete, the Lie algebra of G is identified with the space of Killing vector fields of
(M, g). We are interested in G-equivariant bifurcation of CMC embeddings, i.e.,
getting new embeddings that are not merely obtained by composing a pre-existing
one with an isometry of the ambient manifold. Another way in which one could
trivially obtain a new CMC embedding is by reparameterizing it, i.e., composing
on the right with a diffeomorphism of M . Two CMC embeddings xi : M → M ,
i = 1, 2, are said to be isometrically congruent if there exists a diffeomorphism φ
of M and an isometry ψ of (M, g) such that x2 = ψ ◦ x1 ◦ φ.

Infinitesimally, the action of G provides some trivial Jacobi fields along any
critical point. Namely, if K is a Killing vector field of (M, g), then f = g(K,Nx)
is a Jacobi field along x. Denote by Jacx the (finite-dimensional) vector space of

Jacobi fields along x, and by JacKx the subspace of Jacx spanned by the functions
g(K,Nx), where K is a Killing vector field of (M, g). The CMC embedding x will

be called nondegenerate if JacKx = Jacx, i.e., if every Jacobi field along x arises
from a Killing field of the ambient space.
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It is natural to expect that, with the above equivariant notion of nondegen-
eracy, an equivariant implicit function theorem should hold. Indeed, the following
is proved in [9, Prop 4.1].

Theorem 5.1. Let x : M → M be a nondegenerate CMC embedding, with mean
curvature equal to H0. Then, there exists ε > 0 and a smooth map

]H0 − ε,H0 + ε[  H �−→ xH ∈ C2,α(M,M),

such that for all H, xH : M →M is a CMC embedding of mean curvature H and

(a) xH0 = x;

(b) if y : M →M is a CMC embedding sufficiently close to x in the C2,α-topology,
then there exists H ∈ ]H0 − ε,H0 + ε[ such that y is isometrically congruent
to xH .

5.2. A few technicalities

Let us now deal with some technicalities we omitted in the above explanation of
the variational setup for the CMC problem.

First, we need to give a more precise definition of the space where (5.1) is
defined. For reasons10 that will later be clear, it is convenient to consider the space
of embeddings x : M →M endowed with a C2,α-topology. More precisely, consider
the set Emb2,α(M,M) of embeddings of class C2,α of M into M . This is an open
subset of the Banach manifold C2,α(M,M), and hence inherits a natural differential
structure, becoming a Banach manifold. Since we want to identify embeddings
obtained by reparameterizations of a given embedding, we have to consider the
action of the group Diff(M) of diffeomorphisms of M by right-composition on

Emb2,α(M,M). We denote the orbit space of this action by

E(M,M) = Emb2,α(M,M)/Diff(M), (5.6)

and its elements are called unparameterized embeddings. This set has the struc-
ture of an infinite-dimensional topological manifold modelled on the Banach space
C2,α(M). Its geometry and local differential structure are studied in detail in [2].
Given x ∈ C2,α(M,M), we denote by [x] its class in E(M,M). Henceforth, we are
assuming for simplicity that x(M) is transversely oriented in M .

If we take x ∈ Emb2,α(M,M) in the dense subset of smooth embeddings,
there exists an open neighborhood of [x] in E(M,M) and a bijection from this
neighborhood to a neighborhood of the origin of C2,α(M), whose image is identified
(using the normal exponential map) with C2,α embeddings equivalent to x under
the action of Diff(M). As x runs in the set of smooth embeddings, those maps
form an atlas for E(M,M) whose charts are continuously compatible. Moreover,

if a smooth functional defined in Emb2,α(M,M) is invariant under Diff(M), then

10This choice has to do with the nature of the second variation of fH , which we will want to be
a Fredholm operator under the appropriate identification.
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the induced functional in E(M,M) is smooth11 in every local chart. Using these
charts, we also have an identification

T[x]E(M,M) ∼= C2,α(M) (5.7)

of this tangent space with the Banach space of (real-valued) C2,α functions on M .
For more details on this standard construction, see [2].

Second, note that, if x : M → M is an embedding, unless x(M) ⊂ M is the
boundary of a bounded open set of M , then the enclosed volume Vol(x) is not well
defined. Moreover, it is not clear that such quantity should be invariant under the
action of G. To overcome these problems, we recall the notion of invariant volume
functionals for embeddings of M into M developed in [9, Appendix B].

Definition 5.2. Let U ⊂ C2,α(M,M) be an open subset of embeddings x : M →
M . An invariant volume functional on U is a real-valued function Vol : U → R

satisfying:

(a) Vol(x) =
∫
M x∗(η), where η is an m-form defined on an open subset U ⊂M

such that dη = volg is the volume form of g in U ;

(b) given x ∈ U , for all φ ∈ Iso(M, g) sufficiently close to the identity, Vol(φ◦x) =
Vol(x).

If M has boundary, the invariance property (b) is required to hold only for isome-
tries φ near the identity that preserve x(∂M), i.e., φ

(
x(∂M)

)
= x(∂M). An em-

bedding will be called regular if it is contained in some open set U of C2,α(M,M)
which is the domain of some invariant volume functional.

Example 5.3. If x(M) is the boundary of a bounded open subset of M , then x
is regular. If M is non-compact, and Iso(M, g) is compact, then every embedding
into M is regular. If x : M →M has image contained in some open subset U ⊂M
whose mth de Rham cohomology vanishes, then x is regular. In particular, if
M = Rm+1 or M = Sm+1, then every embedding into M is regular, see [9, Ex 5].

Third, when considering an invariant volume functional as above (defined in
a neighborhood of a given embedding), the left-composition action of Iso(M, g) has
to be restricted to this domain, giving rise to a local action. As remarked above,
standard techniques apply to have the necessary results also in the case of local
actions.

With the above considerations on the (topological) manifold E(M,M) of
unparameterized embeddings of class C2,α and the local existence of an invariant
volume functional, we may study the CMC variational problem in this precise
global analytical setup. The functional (5.1) is then well defined and smooth in a
neighborhood of a smooth unparameterized regular embedding, and formulas (5.3)
and (5.4) hold with the appropriate identifications above mentioned.

11As a map from a neighborhood of the origin in C2,α(M) to R.
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5.3. Equivariant bifurcation using Morse index

We will now use our abstract equivariant bifurcation result to obtain a bifurcation
result for CMC embeddings when there is a jump of the Morse index. Let us recall
some basic terminology. Assume that [a, b]  r �→ xr ∈ C2,α(M,M) is a continuous
family of CMC embeddings of M into M (which already implies that xr : M →M
is smooth12) and let Hr denote the value of the mean curvature of xr. An instant
r∗ ∈ ]a, b[ is a bifurcation instant for the family (xr)r∈[a,b] if there exists a sequence
rn in [a, b] tending to r∗ as n→∞ and a sequence xn of CMC embeddings of M
into M , with the mean curvature of xn equal to Hrn , such that xn tends to xr∗ in
C2,α(M,M) as n→∞, and, for every n, xn is not isometrically congruent to xrn .

Given a CMC embedding x : M → M , let Gx denote the closed subgroup
of Iso(M, g) consisting of isometries ψ that leave x(M) invariant, i.e., such that
ψ
(
x(M)

) ⊂ x(M). In other words, Gx is the isotropy of x under the action of
G. Since M is compact and the action of G is proper, Gx is compact. The Lie
algebra gx of Gx is identified with the space of Killing vector fields of (M, g) that
are everywhere tangent to x(M). The codimension of Gx in G is equal to the

dimension of JacKx .

Theorem 5.4. Let [a, b]  r �→ xr ∈ C2,α(M,M) be a C1-map, where xr : M → M
is a regular CMC embedding for all r, having mean curvature equal to Hr. Let
r∗ ∈ ]a, b[ be an instant where

(a) the derivative H ′
r∗ of the map [a, b]  r �→ Hr ∈ R at r∗ is nonzero;

(b) for ε > 0 small enough:

(b1) xr∗−ε and xr∗+ε are nondegenerate;

(b2) the identity connected component G0
r of the isotropy Gxr does not depend

on r, for r ∈ [r∗ − ε, r∗ + ε];

(b3) iMorse(xr∗−ε) �= iMorse(xr∗+ε).

Then, r∗ is a bifurcation instant for the family (xr)r.

Proof. We first verify that the CMC variational problem satisfies the required
conditions and then use Theorem 4.3 to obtain the conclusion. In the notation of
Section 4, we have B2 = C2,α(M), B0 = C0,α(M) and H = L2(M, ν), where ν is
an arbitrarily fixed volume form (or density) on M . It will be convenient to choose
ν to be the volume form of the pull-back metric x∗

r∗(g).

Let ∇ be the Levi–Civita connection of (M, g). Using this connection, one
can define an associated natural connection on Emb2,α(M,M), as in Example 2.3.
This connection is defined on the entire manifold C2,α(M,M), and is characterized
by the fact that the evaluation maps evp : Ck(M,M) → M , p ∈ M , are affine
(Proposition 2.4).13

12It is well known that CMC hypersurfaces are the solution to a quasilinear elliptic PDE, hence
smoothness follows from usual elliptic regularity theory.
13An explicit description of the horizontal distribution of this connection is given as follows.
The tangent bundle of C2,α(M,M) can be naturally identified with C2,α(M,TM); an element of
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Let G be the identity connected component of Iso(M, g), which is a (finite-
dimensional) Lie group, and consider the smooth action of G by left-composition

on C2,α(M,M). Clearly, Emb2,α(M,M) is invariant by left-compositions with
diffeomorphisms of M , so we have an induced action of G on Emb2,α(M,M).
Since isometries preserve the Levi–Civita connection, the actions of G on both
C2,α(M,M) and Emb2,α(M,M) are by affine diffeomorphisms, see Proposition
2.6. We observe furthermore that the left-action of G on Emb2,α(M,M) com-
mutes with the right-action of the diffeomorphism group Diff(M). This implies
that one can define a left-action of G on the quotient space E(M,M). Finally,

we recall from Proposition 2.5 that the right-action of Diff(M) on Emb2,α(M,M)
is by affine diffeomorphisms, so that one has an induced connection on E(M,M)
which is preserved by the action of G.

Let x : M →M be a C2,α embedding. Since the action of G on M is proper,
and M is compact, then the isotropy group Gx is a compact subgroup of G.
We recall from [2] that there exists a natural (topological) atlas of continuously
compatible charts of E(M,M) such that, in these charts, the (local) action of G is
differentiable at the class [x] of every smooth embedding x : M →M . In particular,
if x has constant mean curvature, then the action of G on E(M,M) is differentiable
at [x]. Moreover, by Lemma 3.3, [x] admits arbitrarily small neighborhoods in
E(M,M) that are invariant by Gx. With this, we are in the variational framework
described in Axioms (a), (b) and (c) of Section 3.

By assumption (a), there exists a C1 function H �→ r(H), defined in a neigh-
borhood of Hr∗ , with the property that the (constant) mean curvature of xr(H) is
equal to H , for all H in this neighborhood. Thus, we may assume that the CMC
embeddings xr, for r close to r∗, are parameterized by their mean curvature Hr

instead of r, and we write xHr . Consider an invariant volume functional Vol de-
fined in a neighborhood U ⊂ C2,α(M,M) of xHr∗ . For H near Hr∗ consider the
one-parameter family of functional fH : U → R given by (5.1). The groupG acts by
affine diffeomorphisms on the manifold C2,α(M,M) by left-composition; in particu-
lar, we have a local action on the open subset U . Since both Area and Vol are invari-
ant under composition on the right with isometries of (M, g), then fH is invariant
under the local action of G. Moreover, Area and Vol are invariant under right-
composition with diffeomorphisms of M , so fH gives a well-defined smooth func-
tional on the quotient space E(M,M), as discussed before in Subsection 5.2. With
the appropriate identifications, the first variation formula for this functional is
given by (5.3), which means that the map dfH(x) : U ⊂ B2 → B0 defined in (4.1) is

dfH(x) = m
(
H −H(x)

)
ψx, (5.8)

C2,α(M,TM) is a map of class C2,α from M to TM , which is a vector field of class C2,α in M

along some function f : M → M of class C2,α. The tangent space to C2,α(M,TM) at the point X

is the space of vector fields of class C2,α in TM along X, i.e., maps η : M → T (TM) of class C2,α

such that η(p) is a tangent vector to TM at the point X(p), for all p ∈ M . The vertical subspace
is given by those η’s such that η(p) is vertical, for all x ∈ M . The horizontal subspace is the

space of maps η such that η(p) is horizontal relatively to the connection ∇ of M for all p ∈ M .
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where ψx : M → R+ is the unique map satisfying ψx vol(xHr∗ )∗(g) = volx∗(g), in

particular, ψxHr∗
≡ 1.

As mentioned above, if [x] ∈ E(M,M) is a critical point of fH , then the second
variation of fH at [x] is identified with the quadratic form (5.4) on T[x]E(M,M) ∼=
C2,α(M). The differential d(dfH)(xr∗) : B2 → B0 is the linearization of the mean
curvature function, which is precisely the negative Jacobi operator −JxHr∗

. This is

an essentially positive Fredholm operator from C2,α(M) to C0,α(M), see [25, 26].14

Thus, assumption (a) of Theorem 4.3 is satisfied, see Remark 4.4. Assumptions
(b1), (b2) and (b3) respectively imply the hypotheses (b),15 (c) and (d) of Theo-
rem 4.3. The claimed result then follows immediately from Theorem 4.3. �

Remark 5.5. Theorem 5.4 uses the assumption that the mean curvature function
r �→ Hr has non-vanishing derivative at the bifurcation instant r∗. Such assumption
is used in the proof in order to parameterize the trivial branch of CMC immersions
through the value of their mean curvature. A natural question is if this assumption
is necessary. The following simple examples show that it is indeed necessary, i.e.,
bifurcation may not occur otherwise.

Example 5.6. Consider the two-variable function f(x, y) = 4y3+6xy2+3xy−3x2y
on the plane. We can regard it as a family of functions of y, parameterized by x.
For each fixed x, we look at the critical points of the function y �→ f(x, y), i.e.,

we look for the zeros of the partial derivative ∂f
∂y = 12y2 + 12xy − 3x+ 3x2. Near

(0, 0), the points (x, y) that solve ∂f
∂y = 0 form a smooth curve16 contained in the

half-plane x ≥ 0, tangent to the y axis at (0, 0). Notice that the Implicit Function

Theorem cannot be used in this situation, as ∂2f
∂y2 (0, 0) = 0. Observe also that the

function x is not locally injective on the points of the curve near (0, 0), since for
each x > 0 there are exactly two solutions of 12y2 + 12xy − 3x + 3x2 = 0, one
with y > 0 and another with y < 0. At all points (x, y) on this curve with y > 0,

the second derivative ∂2f
∂y2 = 24y+12x is positive, while it is negative at all points

(x, y) on the curve with y < 0. Thus, there is a jump of the Morse index at the
point (0, 0), but there is no bifurcation.

Example 5.7. An explicit counterexample to CMC bifurcation can be given when
assumption (a) of Theorem 5.4 is not satisfied. Consider the family [−1, 1]  r �→
xr, where xr is the embedding into R3 of the spherical cap above the xy-plane
of the round sphere centered at (0, 0, r) of radius

√
1 + r2. These spherical caps

have the same boundary, which is the circle C of radius 1 in the xy-plane centered
at the origin, see Figure 1. Both principal curvatures of xr are equal to 1√

1+r2
,

hence also its mean curvature is Hr = 1√
1+r2

. Notice that Hr attains its maximum

14Indeed, observe that −ΔxHr
is a positive isomorphism from C2,α(M) to C0,α(M).

15The group G0
r is nice in the sense of [21] because it is connected.

16By explicit calculation, the curve is the graph of the function x = 1
2

(
1− 4y −√

1− 8y
)
.
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Figure 1. Family of spherical caps with the same boundary C, the
unit circle in the xy-plane.

H0 = 1 at the half-sphere, hence assumption (a) of Theorem 5.4 is not satisfied
when r∗ = 0.

All other assumptions (b1), (b2) and (b3) are satisfied. Namely, the only
degeneracy instant17 of (xr)r is precisely r∗ = 0. A jump of the Morse index can
be obtained applying an adequate version of the Morse Index Theorem to (xr)r.
In fact, iMorse(xr) can be written as the sum of degeneracy instants s ∈ [−1, r]
(counted with multiplicity), and hence is a non-decreasing function of r that jumps
as r crosses r∗ = 0.

Finally, bifurcation does not happen at r∗ = 0. Since (xr)r are embedded in
the half-space z > 0 of R3 and meet the plane z = 0 transversely, along the circle
C, any bifurcating branch would satisfy the same properties for a short time. From
the a maximum principle type argument (the Alexander reflection method), any
such CMC surfaces must be spherical caps, see [12].

17Note that when r = 0, there exists a Jacobi field f = 〈K,Nx0〉, where K = ∂
∂z

and Nx0 is the

unit normal field along x0. This Jacobi field is in Jacx0 but not in JacKx0
, since K is not tangent

to the half-sphere (but only to its boundary). Hence, x0 is a degenerate CMC embedding.
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5.4. Equivariant bifurcation using representations

It is possible to use representation theory to prove a slight generalization of The-
orem 5.4, that gives a subtler criterion for equivariant bifurcation, without nec-
essarily having a jump of the Morse index. As we will see in Subsection 5.6, this
finer result is efficient in geometric applications where the direct computation of
the Morse index is not feasible.

As mentioned above, given a transversely oriented CMC embedding x : M →
M , we identify the tangent space T[x]E(M,M) (i.e., the space of normal vector

fields along x) with the Banach space C2,α(M). Under this identification, we may
consider the isotropy representation at x, induced by the left-composition action
of Iso(M, g), as the representation π : Gx → GL

(
T[x]E(M,M)

)
that maps ψ ∈ Gx

to the operator of left-composition with dψ, i.e.,

π : Gx × T[x]E(M,M) −→ T[x]E(M,M)

(ψ, f) �−→ dψ ◦ f
In more elementary terms, π(ψ) acts as follows on a normal vector field f ∈
C2,α(M) along x. Consider the variation of x induced by f , xs = exp⊥(sfNx),
s ∈ ]− ε, ε[. Then π(ψ)f is the normal vector field d

dsψ ◦ xs

∣∣
s=0

along x.

If f : M → R is an eigenfunction of the Jacobi operator Jx, see (5.5), then
π(ψ)f = dψ ◦ f is another eigenfunction with the same eigenvalue, for all ψ ∈
Iso(M, g). This means that the isotropy representation π of Gx restricts to a
representation of Gx on each eigenspace of the Jacobi operator. More precisely, if
λ is in the spectrum σ(Jx) of Jx and Eλ

x is the corresponding eigenspace, we let
πλ
x : Gx → GL(Eλ

x ) be the representation defined as the restriction of π to Eλ
x , i.e.,

πλ
x(ψ)f = dψ ◦ f, ψ ∈ Gx, f ∈ Eλ

x .

Let us define the negative isotropy representation π−
x as the direct sum of all the

representations πλ
x , as λ varies in the set of negative eigenvalues of Jx, i.e.,

π−
x =

⊕
λ∈σ(Jx)

λ<0

πλ
x ,

which is a representation of Gx on E−
x =

⊕
λ∈σ(Jx)

λ<0

Eλ
x , compare to (4.4).

Observe that iMorse(x) = dim(E−
x ). In Theorem 5.4, assumption (b3) can

be hence written as dim(E−
xr∗−ε

) �= dim(E−
xr∗+ε

). Recall that two representations

πi : H → GL(Vi), i = 1, 2, of H are equivalent if there exists an H-equivariant
isomorphism from V1 to V2, which in particular implies dim V1 = dimV2. With
this notion, we can weaken (b3) and still obtain bifurcation.

Theorem 5.8. Replace the assumption (b3) of Theorem 5.4 with

(b3′) the representations π−
xr∗−ε

and π−
xr∗−ε

of G0
r are not equivalent.

Then, the same conclusion holds, i.e., r∗ is a bifurcation instant for the fam-
ily (xr)r.
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Proof. The same proof of Theorem 5.4 applies, where instead of Theorem 4.3, we
use Theorem 4.5 to obtain the conclusion. �

Remark 5.9. Theorems 5.4 and 5.8 hold verbatim in the case of CMC embeddings
of compact manifolds M with boundary. In this case, a fixed boundary condition
is necessary, namely, assume that the embeddings xr satisfy xr(∂M) = Σ, with Σ
a fixed codimension 2 submanifold of M . In this situation, the notion of nonde-
generacy requires a suitable modification. Given a CMC embedding x : M → M
satisfying x(∂M) = Σ, the space Jacx is the set of Jacobi fields along x that van-

ish on ∂M , and the space JacKx is defined to be the vector space spanned by all
functions of the form g(K,Nx), where K is a Killing vector field in (M, g) that is

tangent to x(M) along x(∂M). Then, x is said to be nondegenerate if JacKx = Jacx.

Remark 5.10. As we saw in Example 5.6, assumption (a) cannot be omitted in
Theorems 5.4 and 5.8. However, it seems reasonable that assumption (b2) may
be weakened. Consider the more general case in which the identity connected
component G0

r of the isotropy of xr is a continuous family of Lie groups. This
means that the set

⋃
r∈[a,b]G

0
r has the structure of a topological groupoid over

the base [a, b], with source and range map given by the projection onto [a, b]. A
notion of continuity (in fact, smoothness) for families of Lie groups is given in
[23], and a CMC version of an equivariant implicit function theorem in the case
of varying isotropies is discussed in [24], where the authors prove the existence of
non-embedded CMC tori in spheres and hyperbolic spaces. Evidently, the validity
of an equivariant bifurcation result in the case of varying isotropies would employ a
theory of existence of slices for groupoid affine actions, along the lines of the results
discussed in Section 3. This is a topic of current research by the authors, see [10].

5.5. Clifford tori in round and Berger spheres

Let us discuss some bifurcation results for CMC hypersurfaces by the second named
author and others that can be reobtained as an application of Theorem 5.4.

The family xr : S
n×Sm → Sn+m+1 of CMC Clifford tori in the round sphere,

defined by

xr(x, y) =
(
r x,

√
1− r2 y

)
, r ∈ ]0, 1[ , (5.9)

is studied in [3]. The central result gives the existence of two sequences rn and
r′n, with limn→∞ rn = 0 and limn→∞ r′n = 1, of degeneracy instants for the em-
beddings xr, with bifurcation at each such instant. In the case n = m = 1, an
explicit description of the bifurcating branches is given in [14]; such branches are
formed by rotationally symmetric embeddings of S1×S1 that are analogous to the
classical unduloids in R3. The connected component of the identity of the isotropy
of every Clifford torus xr is the group SO(n + 1) × SO(m + 1), diagonally em-
bedded into the isometry group SO(n+m+ 2) of the round sphere Sn+m+1. The
Jacobi operator of Clifford tori has a simple form, due to the fact that the Ricci
curvature of the ambient and also the norm of the second fundamental form are
constant functions. Moreover, the induced metric is the standard product metric
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of Sn×Sm. Nondegeneracy and jumps of the Morse index are computed explicitly
in this situation using the eigenfunctions of the Laplacian on Sn × Sm.

A similar analysis is carried out in [19], in the case of embeddings xr,τ : S
1 ×

S1 → S3τ , as in (5.9), into the three-dimensional Berger sphere S3τ , with r ∈ ]0, 1[
and τ > 0. In analogy with the standard round case (which corresponds to τ =
1), also these embeddings are called Clifford tori, and they have constant mean
curvature. For τ �= 1, the identity connected component of the isometry group of
S3τ is SU(2), and the isotropy of every Clifford torus xr,τ is S1 × S1, diagonally
embedded in SU(2). The space of Killing–Jacobi fields along xr,τ has dimension 3
when τ �= 1, while the dimension is 4 in the round case τ = 1. The induced metric
on the torus is flat, but not equal to the product metric. A spectral analysis of the
Jacobi operator, which is the sum of a multiple of the identity and the Laplacian
of a flat (but not product) metric on the torus, is carried out in [19], leading to
the following bifurcation result.

Theorem 5.11. For every τ > 0, there exists a countable set Aτ ⊂ ]0, 1[ with the
following properties:

(a) inf Aτ = 0 and supAτ = 1;
(b) for all r∗ ∈ Aτ , the family r �→ xr,τ bifurcates at r = r∗
Furthermore, for every r ∈ ]0, 1[ there exists a countable set Br ⊂ ]0, 1[

⋃
]1,+∞[

with the following properties:

(c) supBr = +∞;
(d) given r ∈ ]0, 1[, for all τ∗ ∈ Br the family τ �→ xr,τ bifurcates at τ = τ∗.

The above, as well as the bifurcation statement in the case of the round
sphere, can be proved as an application of Theorem 5.4.

5.6. Rotationally symmetric surfaces in R3

Both results discussed above of bifurcation for the families of Clifford tori in round
and Berger spheres can be obtained as an application of Theorem 5.4, given that
there is a jump of the Morse index at every degeneracy instant. However, an explicit
computation of the Morse index is not feasible in many situations, whereas the
weaker assumption of Theorem 5.8 on the jump of the isotropy representation may
actually be an easier task. An example of this situation is provided by rotationally
symmetric CMC surfaces in R3. This problem is studied in detail in [17].

For convenience of notation, write S1 = [0, 2π]/{0, 2π}. Let us consider
the case of a family of fixed boundary CMC rotationally symmetric surfaces
xr : [0, Lr] × S1 → R3, r ∈ I ⊂ R, whose boundary in the union of two co-axial
circles lying in parallel planes of type z = const., see Figure 2. Assuming that the
rotation axis is the line x = y = 0, then xr(s, θ) can be parameterized by

x(s) = xr(s) cos θ, y(s) = xr(s) sin θ, z(s) = zr(s),

for some smooth functions xr > 0 and zr, where s ∈ [0, Lr] is the arc-length
parameter of the plane curve γr(s) =

(
xr(s), zr(s)

)
, and θ ∈ S1. A direct compu-

tation gives that the Laplacian of the induced Riemannian metric on the cylinder
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Figure 2. The boundary conditions considered for rotationally sym-
metric CMC surfaces in R3, and an example of such a surface, a nodoid
(viewed in half in the second picture and full in the third picture).

M = [0, Lr]× S1 is

Δr =
1

xr

∂

∂s

(
xr

∂

∂s

)
+

1

x2
r

∂2

∂θ2
,

and the square norm of the second fundamental form is

‖Axr‖2 = (ẋr z̈r − ẍr żr)
2 +

ż2r
x2
r

,

where dot represents derivative with respect to s. The eigenvalue problem for the
Jacobi equation reads

Jr(F ) = −ΔrF − ‖Axr‖2 F = λF, F (0, θ) = F (Lr, θ) ≡ 0.

Separation of variables F (s, θ) = S(s)T (θ) yields the following pair of boundary
value problems for ODE’s:

T ′′ + κT = 0, T (0) = T (2π), T ′(0) = T ′(2π),
−(xrS

′)′ +
(

κ
xr
− xr‖Axr‖2

)
S = λxrS, S(0) = S(Lr) = 0.

The first problem has nontrivial solutions when κ = n2, n ∈ Z, n ≥ 0, with
corresponding eigenfunctions cosnθ and sinnθ; substituting κ = n2 in the second
problem we get: ⎧⎪⎨⎪⎩−(xrS

′)′ +
(
n2

xr
− xr‖Axr‖2

)
S = λxrS,

S(0) = S(Lr) = 0.

(5.10)

Every (nontrivial) solution Sr,n of the Sturm–Liouville system (5.10) produces
two (nontrivial) eigenfunctions of the Jacobi operator along the CMC surface xr,
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given by Sr,n cosnθ and Sr,n cosnθ. The classical Sturm–Liouville theory gives the
existence of an unbounded sequence of eigenvalues of (5.10), and the corresponding
eigenfunctions are smooth and form a Hilbert basis of L2([0, Lr]). Every solution
of the above system with n > 0 produces eigenfunctions that are not rotationally
symmetric. The rotationally symmetric solutions correspond to n = 0, in which
case the Sturm–Liouville equation reads:{

−(xrS
′)′ − xr‖Axr‖2 S = λxrS,

S(0) = S(Lr) = 0.
(5.11)

We will say that r is a conjugate instant for the Sturm–Liouville problem if
(5.10), has a nontrivial solution with λ = 0. Evidently, if r is a conjugate instant,
then the CMC embedding xr is degenerate. In this setting, Theorem 5.8 can be
applied to obtain the following bifurcation result.

Theorem 5.12. Consider the family r �→ xr of rotationally symmetric CMC sur-
faces in R3 having fixed boundary described above. For every fixed n > 0, let rn be
the first conjugate instant of the Sturm–Liouville equation (5.10). Assume that rn
is an isolated degeneracy instant for the family xr, and that the derivative of the
mean curvature function H ′

rn is not zero. Then, rn is a bifurcation instant for the
family of CMC surfaces (xr)r. Moreover, if rn is not a conjugate instant also for
the Sturm–Liouville problem (5.11), then break of symmetry occurs at the bifur-
cating branch, i.e., the bifurcating branch consists of fixed boundary CMC surfaces
that are not rotationally symmetric.

Proof. Theorem 5.8 applies here in the following setup. The (identity connected
component of the) isotropy of xr is18 the group of rotations around the z axis.
Assumptions (a), (b1) and (b2) of Theorem 5.4 hold at the instant rn under our
hypotheses. Assumption (b3′) of Theorem 5.8 holds at the first instant at which
(5.10) admits a nontrivial solution. Namely, for r < rn, the negative isotropy repre-
sentation π−

xr
of the group of rotations has no vector whose isotropy is isomorphic

to Zn. On the other hand, for r > rn, with r − rn sufficiently small, the two Ja-
cobi fields determined by the nontrivial solution of (5.10) belong to the negative
eigenspace of Jr, and they have isotropy isomorphic to Zn. This implies that for
ε > 0 small enough, the representations π−

xrn−ε
and π−

xrn+ε
are not equivalent.

Thus, from Theorem 5.8, bifurcation occurs at rn. As to the break of symmetry,
we observe that if rn is not a conjugate instant for (5.11), then the symmetrized
CMC variational problem is nondegenerate at rn, and bifurcation by rotationally
symmetric CMC embeddings cannot occur. �

We observe that, under the assumptions of Theorem 5.12, jump of the Morse
index may not occur at rn. An example where the above result applies is provided
by families of fixed boundary nodoids, see [17] and Figure 2.

18Namely, the subgroup of isometries of R3 that preserve two co-axial circles lying in parallel

planes is generated by the group of rotation around the axis, and, if the two circles have same
radius, by the reflection about the plane equidistant to the two parallel planes.
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Appendix A. Nonlinear formulation of the bifurcation result

We consider a variational setup similar to that of Section 3, namelyM is a smooth
Banach manifold, G is a Lie group acting continuously by diffeomorphisms on M
(recall the auxiliary maps (3.1)), and we also have

(a) E →M is a Banach vector bundle over M;
(b) [a, b]  λ �→ Tλ ∈ Γ(E) is a continuous path of G-equivariant sections;
(c) the action of G on M lifts to an action of G on E , which is linear on the

fibers;
(d) [a, b]  λ �→ xλ ∈M is a continuous path such that Tλ(xλ) = 0, for all λ.

Analogously to Definition 4.1, an instant λ∗ ∈ [a, b] is an equivariant bifurca-
tion instant for the family (Tλ, xλ)λ∈[a,b] if there is a sequence (xn, λn) ∈ M× [a, b]
satisfying (1), (3) and Tλn(xn) = 0, for all n, which corresponds to (2). In order
to give an existence result for an equivariant bifurcation instant, let us consider
the following auxiliary19 structure

(e) i : TM → E is a G-equivariant continuous inclusion (i.e., an injective mor-
phism of vector bundles) with dense image;

(f) 〈·, ·〉 is a G-invariant continuous (but not necessarily complete) positive-
definite inner product in the fibers of E ;

(g) jλ : Exλ
→ Txλ

M∗ is the map jλ(e)v = 〈e, i(v)〉, and the composition jλ ◦
(dverTλ)(xλ) : Txλ

M→ Txλ
M∗ is symmetric for all λ.

For all λ ∈ [a, b] and all η ≥ 0, set

Nλ,η := span
{
v ∈ Txλ

M : dverTλ(xλ)v = μ i(v), μ ≤ η
}
,

and Nλ := Nλ,0, compare with (4.2) and (4.3). If Gλ ⊂ G is the isotropy of xλ, we
have the isotropy representation Gλ  g �→ dφg(xλ) ∈ GL(Txλ

M). For all η ≥ 0,

the space Nλ,η is invariant by this action. Denote by π−
λ : Gλ → GL(Nλ) the re-

striction of such representation, which is called the negative isotropy representation
of Gλ (compare with (4.4)).

We can now state the nonlinear formulation of the celebrated result of J.
Smoller and A. Wasserman [21, Thm. 3.3], whose proof follows its linear version,
using the above auxiliary structure.

Proposition A.1. In the above setup, assume that

(a) there exists ε > 0 such that dim(Nλ,ε) < +∞, for all λ ∈ [a, b];
(b) for all λ, Gλ = G;
(c) dverTa(xa) : TxaM→ Exa and dverTb(xb) : Txb

M→ Exb
are isomorphisms;

(d) the negative isotropy representations π−
a and π−

b are not equivalent.

Then, there is an equivariant bifurcation instant in ]a, b[ for the family (Tλ, xλ)λ.

19Compare with the structure employed in [9, Section 3].
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[2] L.J. Aĺıas and P. Piccione, On the manifold structure of the set of unparameter-
ized embeddings with low regularity, Bull. Braz. Math. Soc., New Series 42 (2) (2011),
171–183.
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Rua do Matão, 1010
São Paulo, SP, 05508-090, Brazil

e-mail: piccione@ime.usp.br
sicilian@ime.usp.br

mailto:rbettiol@nd.edu
mailto:piccione@ime.usp.br
mailto:sicilian@ime.usp.br


Progress in Nonlinear Differential Equations
and Their Applications, Vol. 85, 135–143
c© 2014 Springer International Publishing

W 1,1
0 Solutions in Some Borderline Cases of

Elliptic Equations with Degenerate Coercivity
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Abstract. We study a degenerate elliptic equation, proving existence results
of distributional solutions in some borderline cases.

Mathematics Subject Classification (2010). 35J61, 35J70, 35J75.

Keywords. Elliptic equations; W 1,1 solutions; degenerate equations.

Bernardo, come vide li occhi miei . . .
(Dante, Paradiso XXXI)

1. Introduction

The Sobolev space W 1,2
0 (Ω) is the natural functional framework (see [10], [12]) to

find weak solutions of nonlinear elliptic problems of the following type⎧⎪⎪⎨⎪⎪⎩
−div

(
a(x)∇u

(1 + |u|)θ
)

= f, in Ω;

u = 0, on ∂Ω,

(1)

where the function f belongs to the dual space of W 1,2
0 (Ω), Ω is a bounded, open

subset of RN , with N > 2, θ is a real number such that

0 ≤ θ ≤ 1 , (2)

and a : Ω→ R is a measurable function satisfying the following conditions:

α ≤ a(x) ≤ β , (3)

This paper contains developments of the results presented by the first author at IX WNDE (João
Pessoa, 18.9.2012).

Switzerland
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for almost every x ∈ Ω, where α and β are positive constants. The main difficulty
to use the general results of [10], [12] is the fact that

A(v) = −div
(

a(x)∇v

(1 + |v|)θ
)
,

is not coercive. Papers [7], [4] and [3] deal with the existence and summability of
solutions to problem (1) if f ∈ Lm(Ω), for some m ≥ 1.

Despite the lack of coercivity of the differential operator A(v) appearing in
problem (1), in the papers [7], [4] and [1], the authors prove the following existence
results of solutions of problem (1), under assumption (3):

A) a weak solution u ∈ W 1,2
0 (Ω) ∩ L∞(Ω), if m > N

2 and (2) holds true;

B) a weak solution u ∈W 1,2
0 (Ω)∩Lm∗∗(1−θ)(Ω), where m∗∗ = (m∗)∗ = mN

N−2m , if

0 < θ < 1,
2N

N + 2− θ(N − 2)
≤ m <

N

2
;

C) a distributional solution u in W 1,q
0 (Ω), q =

Nm(1− θ)

N −m(1 + θ)
< 2 , if

1

N − 1
≤θ < 1,

N

N + 1− θ(N − 1)
< m <

2N

N + 2− θ(N − 2)
.

D) an entropy solution u ∈ Mm∗∗(1−θ), with |∇u| ∈ M q(Ω), for 1 ≤ m ≤
max

{
1, N

N+1−θ(N−1)

}
.

The borderline case θ = 1 was studied in [3], proving the existence of a solution

u ∈ W 1,2
0 (Ω) ∩ Lp(Ω) for every p < ∞. The case where the source is A

|x|2 was

analyzed too.
About the different notions of solutions mentioned above, we recall that the

notion of entropy solution was introduced in [2]. Let

Tk(s) =

{
s if |s| ≤ k,

k s
|s| if |s| > k.

(4)

Then u is an entropy solution to problem (1) if Tk(u) ∈ W 1,2
0 (Ω) for every k > 0

and∫
Ω

a(x)∇u

(1 + |u|)θ · ∇Tk(u− ϕ) ≤
∫
Ω

f Tk(u− ϕ) , ∀ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω) .

Moreover, we say that u is a distributional solution of (1) if∫
Ω

a(x)∇u

(1 + |u|)θ · ∇ϕ =

∫
Ω

f ϕ , ∀ ϕ ∈ C∞
0 (Ω) . (5)

The figure on top of the next page can help to summarize the previous results,
where the name of a given region corresponds to the results that we have just
cited.
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Our results are the following.

Theorem 1.1. Let f be a function in Lm(Ω). Assume (3) and

m =
N

N + 1− θ(N − 1)
,

1

N − 1
< θ < 1 (6)

Then there exists a W 1,1
0 (Ω) distributional solution to problem (1).

Observe that this case corresponds to the curve which separates the regions
C and D of the figure. Note that m > 1 if and only if θ > 1

N−1 .

Also in the following result, we will prove the existence of a W 1,1
0 (Ω) solution.

Theorem 1.2. Let f be a function in Lm(Ω). Assume (3), f log(1 + |f |) ∈ L1(Ω)

and θ = 1
N−1 . Then there exists a W 1,1

0 (Ω) distributional solution of (1).

We end our introduction just mentioning that a uniqueness result of solutions
to problem (1) can be found in [13].

Moreover, in [4, 5, 11, 6] it was showed that the presence of a lower-order
term has a regularizing effect on the existence and regularity of the solutions.

To prove our results, we will work by approximation, using the following
sequence of problems:⎧⎪⎪⎨⎪⎪⎩

−div
(

a(x)∇un

(1 + |un|)θ
)

= Tn(f), in Ω;

un = 0, on ∂Ω.

(7)

The existence of weak solutions un ∈ W 1,2
0 (Ω)∩L∞(Ω) to problem (7) is due to [7].
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2. W 1,1
0 (Ω) solutions

In the sequel C will denote a constant depending on α,N,meas(Ω), θ and the
Lm(Ω) norm of the source f .

We are going to prove Theorem 1.1, that is, the existence of a solution to
problem (1) in the case where m = N

N+1−θ(N−1) and 1
N−1 < θ < 1. Note that

m > 1 if and only if θ > 1
N−1 .

Proof of Theorem 1.1. We consider Tk(un) as a test function in (7): then∫
Ω

|∇Tk(un)|2 ≤
(1 + k)θ ‖f‖

L1(Ω)

α
(8)

by assumption (3) on a.

Choosing [(1 + |un|)p − 1]sign(un), for p = θ− 1
N−1 , as a test function in (7)

we have, by Hölder’s inequality on the right-hand side and assumption (3) on the
left one

αp

∫
Ω

{ |∇un|
(1 + |un|)

N
2(N−1)

}2

≤
∫
Ω

|f |[(1 + |un|)p − 1]

≤ ‖f‖
Lm(Ω)

[∫
Ω

[(1 + |un|)p − 1]m
′
] 1

m′
.

(9)

The Sobolev embedding used on the left-hand side implies[ ∫
Ω

{
(1 + |un|)

N−2
2(N−1) − 1

} 2N
N−2

] 2
2∗

≤ C

[ ∫
Ω

[(1 + |un|)p − 1]m
′
] 1

m′
.

We observe that N−2
2(N−1)

2N
N−2 = pm′; moreover 2

2∗ > 1
m′ , since m < N

2 . Therefore

the above inequality implies that∫
Ω

|un| N
N−1 ≤ C. (10)

One deduces that ∫
Ω

|∇un|2
(1 + |un|) N

N−1

≤ C (11)

from (10) and (9). Let vn = 2(N−1)
N−2 [(1 + |un|)

N−2
2(N−1) − 1]sign(un). Estimate (11) is

equivalent to say that {vn} is a bounded sequence in W 1,2
0 (Ω); therefore, up to a

subsequence, there exists v ∈ W 1,2
0 (Ω) such that vn ⇀ v weakly in W 1,2

0 (Ω) and

a.e. in Ω. If we define the function u =
( [

N−2
2(N−1) |v|+ 1

] 2(N−1)
N−2 − 1

)
sign(v), the
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weak convergence of ∇vn ⇀ ∇v means that

∇un

(1 + |un|)
N

2(N−1)

⇀
∇u

(1 + |u|) N
2(N−1)

weakly in L2(Ω) . (12)

Moreover, the Sobolev embedding for vn implies that un → u in Ls(Ω), for every
1 ≤ s < N

N−1 .
Hölder’s inequality with exponent 2 applied to∫

Ω

|∇un| =
∫
Ω

|∇un|
(1 + |un|) N

2N−2

(1 + |un|) N
2N−2

gives ∫
Ω

|∇un| ≤ C, (13)

due to (10) and (11). We are now going to estimate

∫
{k≤|un|}

|∇un|. By using [(1 +

|un|)p − (1 + k)p]+sign(un) as a test function in (7), we have∫
{k≤|un|}

|∇un|2
(1 + |un|) N

N−1

≤ C

[ ∫
{k≤|un|}

|f |m
] 1

m
[ ∫
Ω

(1 + |un|) N
N−1

] 1
m′

,

which implies, by (10),∫
{k≤|un|}

|∇un|2
(1 + |un|) N

N−1

≤ C

[ ∫
{k≤|un|}

|f |m
] 1

m

. (14)

Hölder’s inequality, estimates (10) and (14) on∫
{k≤|un|}

|∇un| =
∫

{k≤|un|}

|∇un|
(1 + |un|) N

2N−2

(1 + |un|) N
2N−2 ≤ C

[ ∫
{k≤|un|}

|f |m
] 1

2m

,

give∫
{k≤|un|}

|∇un| =
∫

{k≤|un|}

|∇un|
(1 + |un|) N

2N−2

(1 + |un|) N
2N−2 ≤ C

[ ∫
{k≤|un|}

|f |m
] 1

2m

.

(15)
Thus, for every measurable subset E, due to (8) and (15), we have∫

E

∣∣∣∣∂un

∂xi

∣∣∣∣ ≤ ∫
E

|∇un| ≤
∫
E

|∇Tk(un)|+
∫

{k≤|un|}

|∇un|

≤ meas(E)
1
2

⎡⎣ (1 + k)θ ‖f‖
L1(Ω)

α

⎤⎦
1
2

+ C

[ ∫
{k≤|un|}

|f |m
] 1

2m

.

(16)
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Now we are going to prove that un weakly converges to u in W 1,1
0 (Ω) following [5].

Estimates (16) and (10) imply that the sequence {∂un

∂xi
} is equiintegrable. By the

Dunford–Pettis theorem, and up to subsequences, there exists Yi in L1(Ω) such

that ∂un

∂xi
weakly converges to Yi in L1(Ω). Since ∂un

∂xi
is the distributional partial

derivative of un, we have, for every n in N,∫
Ω

∂un

∂xi
ϕ = −

∫
Ω

un
∂ϕ

∂xi
, ∀ ϕ ∈ C∞

0 (Ω) .

We now pass to the limit in the above identities, using that ∂iun weakly converges
to Yi in L1(Ω), and that un strongly converges to u in L1(Ω): we obtain∫

Ω

Yi ϕ = −
∫
Ω

u
∂ϕ

∂xi
, ∀ ϕ ∈ C∞

0 (Ω) .

This implies that Yi =
∂u
∂xi

, and this result is true for every i. Since Yi belongs to

L1(Ω) for every i, u belongs to W 1,1
0 (Ω).

We are now going to pass to the limit in problems (7). For the limit of the
left-hand side, it is sufficient to observe that ∇un

(1+|un|)
N

2(N−1)

⇀ ∇u

(1+|u|)
N

2(N−1)

weakly

in L2(Ω) due to (12) and that |a(x)∇ϕ| is bounded. �

We prove Theorem 1.2, that is, the existence of a W 1,1
0 (Ω) solution in the

case where θ = 1
N−1 and f log(1 + |f |) ∈ L1(Ω).

Proof of Theorem 1.2. Let k ≥ 0 and take [log(1+ |un|)− log(1+ k)]+sign(un), as
a test function in problems (7). By assumption (3) on a one has

α

∫
{k≤|un|}

|∇un|2
(1 + |un|)θ+1

≤
∫

{k≤|un|}

|f | log(1 + |un|) .

We now use the following inequality on the left-hand side:

a log(1 + b) ≤ a

ρ
log

(
1 +

a

ρ

)
+ (1 + b)ρ (17)

where a, b are positive real numbers and 0 < ρ < N−2
N−1 . This gives, for any k ≥ 0

α

∫
{k≤|un|}

|∇un|2
(1 + |un|)θ+1

≤
∫

{k≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+

∫
{k≤|un|}

(1 + |un|)ρ . (18)

In particular, for k ≥ 1 we have

α

2θ+1

∫
{k≤|un|}

|∇un|2
|un|θ+1

≤
∫

{k≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+ 2ρ

∫
{k≤|un|}

|un|ρ . (19)
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Writing the above inequality for k = 1 and using the Sobolev inequality on the
left-hand side, one has[∫

Ω

(|un| 1−θ
2 − 1)2

∗
+

] 2
2∗
≤ C

∫
{1≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+ C

∫
{1≤|un|}

|un|ρ ,

which implies that[ ∫
Ω

|un|
(1−θ)2∗

2

] 1
2∗

≤ C + C

√√√√ ∫
{1≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+ C

√√√√ ∫
Ω

|un|ρ .

By using Hölder’s inequality with exponent (1−θ)2∗

2ρ on the last term of the right-

hand side, we get[∫
Ω

|un|
(1−θ)2∗

2

] 1
2∗

≤ C + C

√√√√ ∫
{1≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)

+ C

[ ∫
Ω

|un|
(1−θ)2∗

2

] ρ
(1−θ)2∗

.

By the choice of ρ, this inequality implies that∫
Ω

|un|
(1−θ)2∗

2 ≤ C . (20)

Inequalities (20) and (18) written for k = 0 imply that the sequence {vn}, vn =

{ 2
1−θ [(1+ |un|) 1−θ

2 −1]sign(un)}, is a bounded sequence in W 1,2
0 (Ω), as in the proof

of Theorem 1.1. Therefore, up to a subsequence there exists v ∈W 1,2
0 (Ω) such that

vn ⇀ v weakly in W 1,2
0 (Ω) and a.e. in Ω. Let u =

{[
1−θ
2 |v| + 1

] 2
1−θ − 1

}
sign(v);

the weak convergence of ∇vn ⇀ ∇v means that

∇un

(1 + |un|) θ+1
2

⇀
∇u

(1 + |u|) θ+1
2

weakly in L2(Ω) . (21)

Moreover, the Sobolev embedding for vn implies that un → u in Ls(Ω), s < N
N−1 .

By (8) one has∫
Ω

|∇un| =
∫
Ω

|∇T1(un)|+
∫

{1≤|un|}

|∇un| ≤ C +

∫
{1≤|un|}

|∇un|
|un| θ+1

2

|un| θ+1
2 .

Hölder’s inequality on the right-hand side, and estimates (19) written with k = 1

and (20) imply that the sequence {un} is bounded in W 1,1
0 (Ω).
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Moreover, due to (19)∫
{k≤|un|}

|∇un| =
∫

{k≤|un|}

|∇un|
|un| θ+1

2

|un| θ+1
2

≤ C

√√√√ ∫
{k≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+

∫
{k≤|un|}

|un|ρ .

For every measurable subset E, the previous inequality and (8) imply∫
E

∣∣∣∣∂un

∂xi

∣∣∣∣ ≤ ∫
E

|∇un| ≤
∫
E

|∇Tk(un)|+
∫

{k≤|un|}

|∇un|

≤ Cmeas(E)
1
2 (1 + k)

θ
2 + C

√√√√ ∫
{k≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+

∫
{k≤|un|}

|un|ρ .

Since ρ < (1−θ)2∗

2 , by using Hölder’s inequality on the last term and estimate (20),
one has∫

E

∣∣∣∣∂un

∂xi

∣∣∣∣ ≤ Cmeas(E)
1
2 (1 + k)

θ
2+

+ C

√√√√ ∫
{k≤|un|}

|f |
ρ

log

(
1 +

|f |
ρ

)
+meas({|un| ≥ k})1− 2ρ

(1−θ)2∗ .

One can argue as in the proof of Theorem 1.1 to deduce that un → u weakly in
W 1,1

0 (Ω).
To pass to the limit in problems (7), as in the proof of Theorem 1.1, it is suf-

ficient to observe that ∇un

(1+|un|)
N

2(N−1)

⇀ ∇u

(1+|u|)
N

2(N−1)

weakly in L2(Ω), due to (21).

�
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Remarks on p-Laplacian Problems
Depending on the Gradient

H. Bueno and G. Ercole

Abstract. This paper collects and summarizes results of existence of positive
solutions for the p-Laplacian problem −Δpu = ω(x)f(u, |∇u|) with Dirichlet
boundary condition in a bounded domain Ω ⊂ RN , where ω is a weight
function and also for the problem in two positive parameters λ and β:{

−Δpu = λh(x, u) + βf(x, u,∇u) in Ω

u = 0 on ∂Ω.

Mathematics Subject Classification (2010). 35B09, 35J66, 35J70, 35J92.

Keywords. p-Laplacian, positive solution, sub- and super-solution method,
dependence on the gradient.

1. Introduction

Existence of positive solutions for p-Laplacian problems depending on the gradient
has been attracting considerable interest among researchers of elliptic PDE’s, but
no general method to deal with this kind of problem has been established. The
dependence on the gradient requests a priori bounds on the solutions and in their
derivatives, what brings additional difficulties. Since this problem is not suitable
for variational techniques, topological methods (as fixed-point or degree results)
and/or blow-up arguments are normally employed to solve it ([3] and references
therein).

Maybe because of the belief that the sub- and super-solution method does
not handle elliptic problems which are super-linear at the origin, such approach is
rare in the literature. One of the main purposes of this paper is to prove that this
belief is not true.

Both authors were supported in part by FAPEMIG and CNPq-Brazil.

Switzerland
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In this paper, we consider problems in the form{−Δpu = f(x, u,∇u) in Ω

u = 0 on ∂Ω
(1)

for various types of continuous nonlinearities f . Special attention is given to the
Dirichlet problem {−Δpu = ω(x)f(u, |∇u|) in Ω,

u = 0 on ∂Ω
(2)

where Ω ⊂ RN (N > 1) is a smooth, bounded domain, Δpu := div
(|∇u|p−2∇u

)
is the p-Laplacian, 1 < p < ∞, ω : Ω → R is a continuous, nonnegative function
with isolated zeros (which we will call weight function) and the C1-nonlinearity
f : [0,∞)× [0,∞)→ [0,∞) satisfies simple hypotheses.

Adapting methods and techniques developed in [7], where the nonlinearity
does not depend on ∇u, we start by obtaining radial, positive solutions u for the
class of problem {−Δpu = ωρ(|x− x0|)f(u, |∇u|) in Bρ,

u = 0 on ∂Bρ,
(3)

where Bρ is the ball with radius ρ centered at x0 and ωρ is a radial weight function.
The application of the Schauder Fixed Point Theorem yields a radial solution u of
(3) for a large class of functions f , including nonlinearities that are super-linear
both at the origin and at +∞. (The continuous function ω has isolated zeroes only
to simplify the presentation. It is enough that ω(x0) > 0 for some x0 ∈ Ω.)

For this, no asymptotic behavior on f is assumed but, instead, simple local
hypotheses on the nonlinearity f . Our hypotheses on the nonlinearity f are not
usual in the literature: we assume that f has a local behavior satisfying hypotheses
of the type

(H1) 0 ≤ f(u, |v|) ≤ k1M
p−1, if 0 ≤ u ≤M, |v| ≤ γM ,

(H2) f(u, |v|) ≥ k2δ
p−1, if 0 < δ ≤ u ≤M, |v| ≤ γM ,

where the constants k1, k2 and γ are defined later on in this paper and δ,M are
arbitrary. These constants depend strongly on the weight function ω and it must be
stressed that they can be explicitly calculated in some special cases (for example,
if ω ≡ 1; see Example 9). In [4] it was proved that k1 < λ1 < k2, where λ1 stands
for the first eigenvalue of the p-Laplacian.

Hypotheses (H1) and (H2) are geometrically interpreted in Figure 1. Observe
that, since no assumption is made both at the origin or at infinity, such a super-
linear behavior is permitted.

Hypotheses of this type will be considered in the scenarios of both the radial
problem (3) and the general problem (2).

In the case of the radial problem (3) no further hypotheses are necessary. It
will be considered in Section 3.

To apply the sub- and super-solution method to solve problem (2), a condition
of the Bernstein–Nagumo type is always assumed; in [2] the nonlinearity f is a
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Figure 1. For t = |v|, the graph of f stays below k1M
p−1 in [0,M ]×

[0, γM ] and passes through the gray box.

Carathéodory function (i.e., measurable in the x-variable and continuous in the
(u, v)-variable) such that

(H3) f(x, u, v) ≤ C(|u|)(1 + |v|p) (u, v) ∈ R × RN , a.e. x ∈ Ω for some
increasing function C : [0,∞]→ [0,∞].

This assumption is merely technical and can be chosen as any hypothesis
that guarantees the existence of a solution of (1) from an ordered sub- and super-
solution pair.

However, the acceptance of the growth condition (H3) poses another problem:
what happens in the case |∇u|b, if b > p ? So, we also consider in this paper an
example where the exponent b in |∇v|b is greater than p, see Section 6.

Our approach of problem (2) starts by considering the solution of (3) in a
subdomain Bρ ⊂ Ω. A connection between both problem is achieved by defining
the weight ωρ in terms of ω by

ωρ(s) =

{
min

|x−x0|=s
ω(x), if 0 < s ≤ ρ,

ω(x0), if s = 0.
(4)

By choosing a ball Bρ ⊂ Ω and such a radialization of the weight function
ω, we consider a problem in the radial form (3) in the sub-domain Bρ, which has
a solution uρ as a consequence of our study of this problem. The chosen ball Bρ

determines the value of the constants k2 and γ and the radial solution uρ : Bρ → R
produces a sub-solution u of problem (2), when we consider the extension u of uρ

defined by u(x) = 0, if x ∈ Ω\Bρ. So, the solution of (3) gives rise to a sub-solution
of problem (2).
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In order to obtain a super-solution u for problem (2), we impose that

‖∇u‖∞
‖u‖∞ ≤ γ, (5)

an estimate that is suggested by hypothesis (H1). So, we look for a super-solution
of (2) satisfying (5) and defined in a (smooth, bounded) domain Ω2 ⊃ Ω, which
determines the value of the constant k1 needed to solve (2).

In the general setting of the domain Ω2, the super-solution u turns out to be
a multiple of the solution φΩ2 of the problem{−ΔpφΩ2 = ‖ω‖∞ in Ω2,

φΩ2 = 0 on ∂Ω2,
(6)

if φΩ2 satisfies (5). In this setting, the existence of a positive solution for (2) is
stated in Section 4.

We give two applications of this result for general nonlinearities in Section
5. In the first application, given in Subsection 5.1, we choose a ball Ω2 = BR

such that Ω ⊂ BR and prove that, if R is large enough, it is possible to obtain a
super-solution for (2) satisfying (5).

The second application considers the case where Ω2 is the domain Ω itself. In
order to control the quotient (5), we assume Ω to be convex and apply a maximum
principle proved in Payne and Philippin [9]. In some cases, if we choose Ω2 as the
convex hull of Ω, the same method produces a better solution than considering
Ω ⊂ BR for R large enough.

Inspired by the classical paper of Ambrosetti, Brezis and Cerami [1], in the
final Section 6 we consider a problem in two parameters, where |∇u| has an expo-
nent higher than p.

2. Preliminaries

Let D be a bounded, smooth domain in RN , N > 1.
We define

k1(D) := ‖φD‖−(p−1)
∞ (7)

where φD ∈ C1,α(D) ∩W 1,p
0 (D) is the solution of{−ΔpφD = ωD in D,

φD = 0 on ∂D,
(8)

where ωD �≡ 0 is any continuous, non-negative function. By the maximum princi-
ple, φD > 0 in D and k1(D) is well defined.

Remark 1. By applying the comparison principle in the domains Ω1 ⊂ Ω2 with
ωΩ1 ≤ ωΩ2 , it follows immediately that

k1(Ω2) = ‖φΩ2‖−(p−1)
∞ ≤ ‖φΩ1‖−(p−1)

∞ = k1(Ω1).
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In the special case D = Bρ, a ball of radius ρ centered at x0 ∈ Ω, let us
consider the Dirichlet problem{−Δpφρ = ωρ(|x− x0|) in Bρ,

φρ = 0 on ∂Bρ,
(9)

where ωρ : [0, ρ]→ R.
It is straightforward to verify that the solution of (9) is given by

φρ(|x− x0|) =
∫ ρ

|x−x0|

(∫ θ

0

K(s, θ)ds

) 1
p−1

dθ, |x− x0| ≤ ρ, (10)

where

K(s, θ) =
(s
θ

)N−1

ωρ(s). (11)

The solution φρ satisfies φρ ∈ C2(Bρ) if 1 < p ≤ 2 and φρ ∈ C1,α(Bρ) if
p > 2, where α = 1/(p− 1). (See [3], Lemma 2 for details.)

We also define another constant that will play an essential role in our tech-
nique:

k2(Bρ) =

[∫ ρ

t

(∫ t

0

K(s, θ)ds

) 1
p−1

dθ

]1−p

=

[
max
0≤r≤ρ

∫ ρ

r

(∫ r

0

K(s, θ)ds

) 1
p−1

dθ

]1−p

.

(12)

Since ωρ has isolated zeroes and the function

β →
∫ ρ

β

(∫ β

0

K(s, θ)ds

) 1
p−1

dθ

is nonnegative and vanishes both at β = 0 and at β = ρ, we have t > 0.

We now establish the relation between k1(D) and k2(Bρ), also valid in the
case D = Bρ. Its proof follows by applying a comparison principle.

Lemma 2. Let D be a smooth domain in RN (N > 1), Bρ ⊆ D a ball of center
x0 and radius ρ > 0 and k1(D), k2(Bρ) the constants defined by (7) and (12),
respectively, where ωρ is a radial weight function such that ωD ≥ ωρ in Bρ.

Then, k1(D) < k2(Bρ).

3. Radial solutions

In this section we study the radial version of (2), that is{−Δpu = ωρ(|x− x0|)f(u, |∇u|) in Bρ,

u = 0 on ∂Bρ,
(2)

where Bρ is a ball of radius ρ centered at x0 and ωρ : [0, ρ]→ R.
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A solution of (3) will be obtained by applying the Schauder Fixed Point
Theorem in the space C1(Bρ). So, the hypothesis (H3) is not necessary; we only
need f to be continuous and to satisfy hypotheses (H1r) and (H2r) given below.

The radial boundary value problem equivalent to (3) is⎧⎪⎨⎪⎩
d

dr

(−rN−1ϕp(u
′(r))

)
= rN−1ωρ(r)f(u, |u′(r)|), 0 < r < ρ

u′(0) = 0,

u(ρ) = 0,

(13)

where ϕp(ξ) = |ξ|p−2ξ.
If q = p/(p− 1) and u > 0, the function ϕq, inverse of ϕp, is given by

ϕq(u) = |u|q−2u = uq−1 = u
p

p−1−1 = u
1

p−1 .

It is not difficult to see that ‖∇φρ‖∞ = max0≤r≤ρ |φ′
ρ(r)|.

To prove the existence of solutions for problem (3), we suppose the existence
of δ and M , with 0 < δ < M , such that the nonlinearity f satisfies

(H1r) 0 ≤ f(u, |v|) ≤ k1(Bρ)M
p−1, if 0 ≤ u ≤M, |v| ≤ γρM ;

(H2r) f(u, |v|) ≥ k2(Bρ)δ
p−1, if δ ≤ u ≤M, |v| ≤ γρM ,

with k1(Bρ) and k2(Bρ) defined by (7) and (12), respectively, and γρ defined by

γρ =
‖∇φρ‖∞
‖φρ‖∞ . (14)

Note that

‖∇φρ‖∞
‖φρ‖∞ = k1(Bρ)

1/(p−1) max
0≤r≤ρ

|φ′
ρ(r)|

= ϕq(k1(Bρ)) max
0≤r≤ρ

ϕq

(∫ r

0

K(s, r)ds

)
= max

0≤r≤ρ
ϕq

(
k1(Bρ))

∫ r

0

K(s, r)ds

)
.

We remark that k1(Bρ), k2(Bρ) and γρ depend only on ρ and ωρ. The hy-
pothesis (H2r) aims to discard u ≡ 0 as a solution of (3), in the case f(0, |v|) = 0.

We also define the continuous functions Ψδ, ΦM and ΓM by

Ψδ(r) =

⎧⎨⎩
δ, if 0 ≤ r ≤ t,

δ

∫ ρ

r

ϕq

(
k2(Bρ)

∫ t

0

K(s, θ) ds

)
dθ, if t < r ≤ ρ,

(15)

where t is defined in (12),

ΦM (r) = M

∫ ρ

r

ϕq

(
k1(Bρ)

∫ θ

0

K(s, θ) ds

)
dθ = M

φρ(r)

‖φρ‖∞ , if 0 < r ≤ ρ, (16)

and

ΓM (r) = Mϕq

(
k1(Bρ)

∫ r

0

K(s, r) ds

)
= M

|φ′
ρ(r)|

‖φρ‖∞ , if 0 < r ≤ ρ. (17)
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It is not difficult to prove1

Lemma 3. We have

(i) 0 ≤ ΦM (r) ≤M ;
(ii) 0 ≤ ΓM (r) ≤ γρM ;
(iii) 0 ≤ Ψδ(r) ≤ ΦM (r).

The proof of Theorem 4 follows by applying Schauder’s fixed point theorem
and Lemma 3.

Theorem 4. Suppose that the continuous nonlinearity f satisfies (H1r) and (H2r).
Then the problem {−Δpu = ωρ(|x − x0|)f(u, |∇u|) in Bρ,

u = 0 on ∂Bρ,
(3)

has at least one positive solution uρ(|x − x0|) satisfying
Ψδ ≤ uρ ≤ ΦM and |∇uρ| ≤ ΓM

(and so δ ≤ ‖uρ‖∞ ≤M and ‖∇uρ‖∞ ≤ γρM).

4. Existence of solutions in general domains

In this section we state and prove our main result: the existence of a positive
solution for {−Δpu = ω(x)f(u, |∇u|) in Ω,

u = 0 on ∂Ω.
(2)

We start by defining the parameters we need to formulate our hypotheses.
Let Ω2 be a bounded, smooth domain such that Ω2 ⊃ Ω and define

k1(Ω2) := ‖φΩ2‖1−p
∞ ,

where φΩ2 is the solution of{−ΔpφΩ2 = ‖ω‖∞ in Ω2,

φΩ2 = 0 on ∂Ω2.
(18)

Now, for any ball Bρ ⊂ Ω with center in x0 ∈ Ω and radius ρ > 0, let us to
denote by ωρ the radial function defined by (4). Thus, by using this function we
consider k2(Bρ) and γρ, defined in accordance to the former definitions (12) and
(14), respectively.

At last, we fix ρ > 0 such that (see Remark 6, below)

‖∇φΩ2‖∞
‖φΩ2‖∞

≤ γρ (19)

and then we set the parameters

k1 := k1(Ω2), k2 := k2(Bρ) and γ = γρ.

1For both Lemma 3 and Theorem 4, see [3] for details.
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Theorem 5. Suppose that, for arbitrary δ,M such that 0 < δ < M , the nonlinearity
f satisfies:

(H1) 0 ≤ f(u, |v|) ≤ k1M
p−1, if 0 ≤ u ≤M , |v| ≤ γM ;

(H2) f(u, |v|) ≥ k2δ
p−1, if δ ≤ u ≤M, |v| ≤ γM ;

(H3) f(u, |v|) ≤ C(|u|) (1 + |v|p) for all (x, u, v), where C : [0,∞) → [0,∞) is
increasing.

Then, problem (2) has a positive solution u such that

δ ≤ ‖u‖∞ ≤M in Ω.

Remark 6. We would like to observe that the inequality (19) always occurs, if ρ
is taken sufficiently small such that

‖∇φΩ2‖∞
‖φΩ2‖∞

≤ 1

ρ
. (20)

In fact, we have the gross estimate

1

ρ
≤ γρ, for any Bρ ⊂ Ω

since γρ =
‖∇φρ‖∞
‖φρ‖∞ and

‖φρ‖∞ = φρ(0) = −
∫ ρ

0

φ′
ρ(s) ds =

∫ ρ

0

|φ′
ρ(s)| ds ≤ ρ‖∇φρ‖∞.

We supposed that the weight function ω has isolated zeroes. As mentioned,
this assumption is not necessary.

In Section 5 we give examples of Ω2 and ρ satisfying (19). There, we consider
the cases Ω2 = BR ⊃ Ω and, supposing Ω convex, Ω2 = Ω. Moreover, we present
better estimates than (20) to choose ρ.

The obtention of a sub-solution for problem (2) is based on the following
general result:

Lemma 7. Let Ω and Ω1 be smooth domains in RN (N > 1), with Ω1 ⊂ Ω. Let
u1 ∈ C1,α

(
Ω1

)
be a positive solution of{−Δpu1 = f1(x, u1,∇u1) in Ω1,

u1 = 0 on ∂Ω1,

where the nonnegative nonlinearity f1 is continuous.
Suppose also that

Z1 = {x ∈ Ω1 : ∇u1 = 0}
is a finite set of points.

Then the extension

u(x) =

{
u1(x), if x ∈ Ω1,

0, if x ∈ Ω \ Ω1
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is a sub-solution of {−Δpu = f(x, u,∇u) in Ω,

u = 0 on ∂Ω

for all continuous nonlinearities f≥0 such that f1(x,u1,∇u1)≤f(x,u1,∇u1) in Ω1.

Proof. This proposition is a consequence of the Divergence Theorem combined
with the Hopf’s lemma. (See [3] for details.) �
Remark 8. The hypothesis on Z1 can be obtained if we suppose, for instance,
0 ≤ f(x, t, v) and that {(x, v) : f(x, t, v) = 0} is a finite set of points, for all t > 0.
(Of course, the more interesting case occurs when f(x, 0, v) = 0.)

Proof of the theorem. From Remark 1 follows that k1(Ω2) ≤ k1(Bρ). So, if f sat-
isfies the hypotheses (H1) and (H2), it also satisfies the hypotheses of Theorem
4. By applying Theorem 4, there exists a positive radial function uρ ∈ C1,α

(
Bρ

)
such that {−Δpuρ = ωρ(|x − x0|)f(uρ, |∇uρ|) in Bρ(x0),

uρ = 0 on ∂Bρ(x0).

Moreover, the only critical point of uρ occurs at x = x0.
It follows from Lemma 7 that

u(x) =

{
uρ(x), if x ∈ Bρ,

0, if x ∈ Ω \Bρ

is a sub-solution of problem (2).
Define

u = M
φΩ2

‖φΩ2‖∞
.

Of course, u ≤ M and ‖∇u‖∞ = M
‖∇φΩ2‖∞
‖φΩ2‖∞

≤ γρM , by hypothesis. So, it

follows from (H1) that f(u, |∇u|) ≤ k1(Ω2)M
p−1. Thus,

−Δpu = −Δp

(
M

φΩ2

‖φΩ2‖∞

)
= k1(Ω2)M

p−1‖ω‖∞ ≥ f(u, |∇u|)ω, (21)

and, since u > 0 on ∂Ω, u is a super-solution of (2).
Moreover, the pair (u, u) is ordered. In fact, if x ∈ Ω\Bρ the result is imme-

diate. Otherwise we know that,

u = uρ ∈ C =
{
u ∈ C1

(
Bρ

)
: 0 ≤ u ≤M, and ‖∇u‖∞ ≤ γρM

}
,

and therefore, by (H1), f(uρ, |∇uρ|) ≤ k1(Ω2)M
p−1 and then

−Δpu = ωρf(uρ, |∇uρ|) ≤ k1(Ω2)M
p−1‖ω‖∞ = −Δp

(
M

φΩ2

‖φΩ2‖∞

)
= −Δpu.

We have

uρ = 0 ≤M
φΩ2

‖φΩ2‖∞
= u

on ∂Bρ. We are done, since follows from the comparison principle that u ≤ u in
Bρ ⊂ Ω. �
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5. Applications

In this section we choose two concrete domains Ω2 for application of Theorem 5.
In the first example, we consider a ball BR(x1) = Ω2 so that Ω ⊂ BR. In the
second, supposing Ω convex, we consider Ω2 = Ω and use a result by Payne and
Philippin [9].

5.1. Radial supersolution

For all x ∈ Ω, let d(x) = dist(x, ∂Ω). We denote by r∗ = supx∈Ω d(x). Let Br∗ be
a ball with center at x0 ∈ Ω such that Br∗ ⊂ Ω.

Choose R such that Ω ⊂ BR, where BR is a ball with center at x1 ∈ Ω and

let φR ∈ C1,α(BR(x1)) ∩W 1,p
0 (BR(x1)) be the unique positive solution of{−ΔpφR = ‖ω‖∞ in BR(x1),

φR = 0 on ∂BR(x1),
(22)

and consider the positive constant k1(Ω2) = k1(BR) = ‖φR‖−(p−1)
∞ .

We define, as in Theorem 5,

u := M
φR

‖φR‖∞ ∈ C1,α
(
BR(x1)

)
∩W 1,p

0 (BR(x1)).

Of course, 0 < u ≤M . We have

φR(r) = ‖ω‖
1

p−1∞
∫ R

r

ϕq

(
1

θN−1

∫ θ

0

sN−1ds

)
dθ

=
p− 1

p

(‖ω‖∞
N

) 1
p−1 (

R
p

p−1 − r
p

p−1

)
.

(23)

On the other hand, we have ∇φR(x) = φ′
R(r)

x−x0

r , from what follows
|∇φR(x)| = |φ′

R(r)|. Thus,

‖∇φR‖∞ = |φ′
R(R)| =

(∫ R

0

( s

R

)N−1

‖ω‖∞ds

) 1
p−1

=

(‖ω‖∞
N

) 1
p−1

R
1

p−1

and
‖∇φR‖∞
‖φR‖∞ =

p

p− 1
R

1
p−1− p

p−1 =
q

R
. (24)

So, we need to choose ρ > 0 such that Bρ ⊂ Ω and

q

R
< γρ,

in order to have

0 ≤ |∇u| = M
|∇φR|
‖φR‖∞ ≤M

‖∇φR‖∞
‖φR‖∞ =

q

R
M ≤ γρM.

To choose ρ, let us consider the possibilities

(i) r∗ ≤ R
q (< R).
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We choose ρ = r∗, because
‖∇φR‖∞
‖φR‖∞ =

q

R
≤ 1

r∗
=

1

ρ
≤ γρ.

(ii) R
q ≤ r∗ (< R).

We choose ρ = R
q , since

‖∇φR‖∞
‖φR‖∞ =

q

R
=

1

ρ
≤ γρ.

In the special case ωρ ≡ 1, we can always choose ρ = r∗, since

‖∇φR‖∞
‖φR‖∞ =

q

R
≤ q

r∗
=

q

ρ
= γρ.

This value of ρ corresponds to the smallest values of k2(Bρ) and γρ. The best value
for k1(BR) is obtained when R is the smallest radius such that BR(x1) ⊃ Ω for
x1 ∈ Ω.

Example 9. We consider the problem{ −Δpu = λu(x)q−1(1 + |∇u(x)|p) on Ω,
u = 0 on ∂Ω,

(25)

where Ω is a smooth, bounded domain in RN , 1 < q < p, and λ a positive
parameter. Problem (25) is sub-linear at the origin.

To solve problem (25) we consider Bρ as the largest open ball contained in
Ω and BR such that Ω ⊆ BR. Since ω(x) ≡ 1 in the case of the nonlinearity
λu(x)q−1(1 + |∇u(x)|p), the constants in hypotheses (H1) and (H2) are given by

k1 := k1(BR) = ‖φR‖−(p−1)
∞ =

(
p− 1

p

)1−p

NR−p, (26)

k2 := k2(Bρ) =

⎧⎪⎪⎨⎪⎪⎩
[
p− 1

p

( p

N

) N
N−p

]1−p
N

ρp
, if N �= p,(

p− 1

ep

)1−p
p

ρp
, if N = p,

(27)

and

γ = γρ =
p

p− 1

1

ρ
. (28)

From now on, k1 and k2 denote the constants (26) and (27), respectively.
According to Lemma 2, we have k1 < k2.

Of course, the nonlinearity λu(x)q−1(1+|∇u(x)|p) satisfies (H3) for any value
of λ.

By defining the function H : [0,∞) → [0,∞] by H(M) = M q−p(1 + μpMp),
we see that condition (H1) is satisfied if H(M) ≤ k1

λ . It is not difficult to verify
that H has a unique critical point M∗, given by

μpMp
∗ =

p

q
− 1,



156 H. Bueno and G. Ercole

where H assumes its minimum value

H(M∗) = M q−p
∗ (1 + μpMp

∗ ) =
1

μq−p

(
p

q
− 1

) q−p
p

(
p

q

)
=

p

q
Mp−q

∗ . (29)

So, taking M := M∗ and defining

λ∗ =
k1

H(M∗)
, (30)

hypothesis (H1) is verified for any 0 < λ ≤ λ∗. The choice M = M∗ makes λ∗ to
be the best possible value of the parameter such that Theorem 5 guarantees the
existence of a positive solution for problem (25).

Now, for any fixed λ ∈ (0, λ∗], we try to verify (H2). For this, we consider
the function G : (0,∞)→ [0,∞) given by

G(x) = xq−p. (31)

We clearly have G(x) ≤ H(x) for any x ∈ (0,∞) and (H2) is verified if

λG(δλ) ≥ k2, (32)

that is,

δλ ≤
(

λ

k2

) 1
p−q

. (33)

So, for any λ ∈ (0, λ∗], (H2) is satisfied if we take δλ > 0 verifying the above

inequality. Observe that the same value of δλ is valid for any λ̃ ∈ [λ, λ∗].

Figure 2. The graphs of H and G.
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Since 0 < λ ≤ λ∗, the largest value of δλ is attained at λ∗. So, by (29), the
condition δλ < M∗ always holds:

δλ ≤
(
λ∗

k2

) 1
p−q

≤
(
λ∗

k1

) 1
p−q

=

(
1

H(M∗)

) 1
p−q

= M∗

(
q

p

) 1
p−q

< M∗.

5.2. Applying a maximum principle of Payne and Phillipin

If we choose Ω2 = Ω, we need to suppose that Ω is convex to control the quo-
tient (19).

To handle this case, we consider the torsional creep problem{−ΔpψΩ = 1 in Ω,

ψΩ = 0 on ∂Ω.
(34)

In order to estimate the quotient (19), we state a maximum principle of Payne
and Philippin [9], which was proved for non-degenerate operators.

Theorem 10 (Payne–Philippin). Let Ω ⊂ RN be a convex domain such that ∂Ω is
a C2,α surface. If u = const. on ∂Ω, then

Φ(x) = 2
p− 1

p
|∇ψΩ|p + 2ψΩ (35)

takes its maximum value at a critical point of ψΩ.

Regularization methods and the results of Lieberman [8] permit us to apply
it to the p-Laplacian:2

Lemma 11. If the bounded, smooth domain Ω is convex, then

‖∇ψΩ‖∞ ≤ (q‖ψΩ‖∞)
1
p ,

what yields

‖∇ψΩ‖∞
‖ψΩ‖∞ ≤ q

1
p

‖ψΩ‖
1
q∞
.

An immediate consequence of Lemma 11 is an estimate of the quotient (19)
in the case Ω convex by taking Ω = Ω2: we have

‖∇φΩ‖∞
‖φΩ‖∞ ≤ (q‖ω‖∞)

1
p

‖φΩ‖
1
q∞

. (36)

We observe that the quotient (19) was controlled for any convex domain
Ω2 ⊃ Ω. So, for instance, we can take Ω2 = co(Ω), the convex hull of Ω.

As in the Subsection 5.1, let Br∗ be a ball with larger radius such that
Br∗ ⊂ Ω. We consider the solution φ∗ of the problem{−Δpφ∗ = ‖ω‖∞ in Br∗ ,

φ∗ = 0 on ∂Br∗ .

2See [3] for details.
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Since Br∗ ⊂ Ω, from the comparison principle follows that ‖φ∗‖∞ ≤ ‖φΩ‖∞. But

‖φ∗‖∞ =

(‖ω‖∞
N

) 1
p−1

∫ r∗

0

θ
1

p−1 dθ =

(‖ω‖∞
N

) q
p rq∗

q
,

thus yielding

‖∇φΩ‖∞
‖φΩ‖∞ ≤ (q‖ω‖∞)

1
p

‖φΩ‖
1
q∞

≤ q
1
p+

1
q

r∗
‖ω‖

1
p∞

(
N

‖ω‖∞

) 1
p

=
p
√
N

q

r∗
.

We now choose ρ given by

ρ =
r∗

q p
√
N

=
p− 1

p p
√
N

r∗ (< r∗).

Then, we have
‖∇φΩ‖∞
‖φΩ‖∞ ≤ 1

ρ
≤ γρ.

In the special case ω ≡ 1, we can take ρ such that

q

ρ
=

q p
√
N

r∗
,

since γρ = q/ρ. It follows

ρ =
r∗
p
√
N

< r∗ and
‖∇φΩ‖∞
‖φΩ‖∞ ≤ q

ρ
= γρ.

6. Fast growing gradient

In this section we consider the existence of positive solutions for the following
problem in two positive parameters in the bounded, smooth domain Ω ⊂ RN ,
N ≥ 2 : { −Δpu = λh(x, u) + βf(x, u,∇u) in Ω

u = 0 on ∂Ω,
(37)

where Δpu := div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, and h, f are
continuous nonlinearities satisfying

(H4) 0 ≤ ω1(x)u
q−1 ≤ h(x, u) ≤ ω2(x)u

q−1, 1 < q < p;

(H5) 0 ≤ f(x, u, v) ≤ ω3(x)u
a|v|b, a, b > 0,

and ωi : Ω→ [0,∞), 1 ≤ i ≤ 3, are positive continuous weights.
The combined effects of the sublinear and superlinear terms make possible

the definition of a fixed point operator for each (λ, β) in a region D of the λβ-plane
and use a global estimate for the solution of the Poisson equation −Δpu = g with
homogeneous Dirichlet boundary conditions on Ω to obtain an invariant subset
by this operator. Hence, by applying Schauder’s fixed point theorem we prove
the existence of at least one positive solution for the Dirichlet problem above if
(λ, β) ∈ D. Details of this result can be found in [5].
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We now state a consequence of the global regularity results by Lieberman
(see [8]).

Lemma 12. Let Ω be a bounded, smooth domain of RN and g ∈ L∞(Ω). Assume

that u ∈ W 1,p
0 (Ω) is a weak solution of{−Δpu = g in Ω,

u = 0 on ∂Ω.
(38)

Then there exists a positive constant K, depending only on p,N and Ω, such that

‖∇u‖∞ ≤ K( ‖g‖∞)
1

p−1 . (39)

To solve problem (37) we define

r := a+ b+ 1, ω(x) := max
i∈{1,2,3}

ωi(x)

and denote by λ1 and u1 the first eigenpair of the p-Laplacian with weight ω1,
that is, {

−Δpu1 = λ1ω1u
p−1
1 in Ω,

u1 = 0 on ∂Ω,

with u1 positive satisfying ‖u1‖∞ = 1.

Let also φ ∈W 1,p
0 (Ω) ∩ C1,α(Ω) be the solution of the problem{−Δpφ = ω in Ω

φ = 0 on ∂Ω

and define
γ := (K ‖ω‖ 1

p−1∞ )/ ‖φ‖∞ ,

where K satisfies (39). We stress that γ depends only on ω, p, N and Ω.

Lemma 13. There exists a region D in the λβ-plane such that, if (λ, β) ∈ D then

λM q−1 + βγbMa+b ≤ (M/ ‖φ‖∞)p−1, (40)

for some positive constant M.

Proof. The inequality (40) can be written as

Φ(M) := λAM q−p + βBM r−p ≤ 1,

where the coefficients A = ‖φ‖p−1
∞ and B := Kb ‖φ‖p−1−b

∞ ‖ω‖ b
p−1∞ clearly depend

only on ω, p and Ω.
In order to determine an adequate value for M , we consider the possibilities

for the sign of r − p.
In the case r − p > 0, Φ has an unique critical point and (40) is satisfied if

λr−pβp−q ≤
(
r − p

A

)r−p(
p− q

B

)p−q
1

(r − q)r−q
=: K. (41)

Thus, if the positive parameters λ and β satisfy (41), we conclude that u :=
(M/ ‖φ‖∞)φ is a super-solution for (46), where M is the minimum value of Φ.



160 H. Bueno and G. Ercole

In the case r− p = 0, to have Φ(M) ≤ 1 for some M > 0 it is necessary that
βB < 1, that is

if λ > 0 and β < B−1 (42)

we can take M > 0 such that Φ(M) = 1. Thus, if λ and β satisfy (42) then
u = (M/ ‖φ‖∞)φ, where M is the solution of Φ(M) = 1.

If r− p < 0, for any positive parameters λ and β, there always exists M > 0
such that Φ(M) = λAM q−p + βBM r−p = 1 and for such an M the function
u = (M/ ‖φ‖∞)φ is a super-solution of (46).

Summarizing, there exists a positive constant M satisfying (40) whenever the
pair (λ, β) belongs to the set D defined by:

D =

⎧⎪⎨⎪⎩
{λ, β > 0 : λr−pβp−q ≤ K} if r − p > 0,{
λ, β > 0 : β < B−1

}
if r − p = 0,

{λ, β > 0} if r − p < 0,

(43)

where K is given by (41). �

For each u ∈ C1(Ω) we define the continuous nonlinearity Fu : Ω×R→ R by

Fu(x, ξ) := λω1ξ
q−1 + λ

(
h(x, u(x)) − ω1u(x)

q−1
)
+ βf(x, u(x),∇u(x)) (44)

and observe that Fu(x, u) = λh(x, u) + βf(x, u,∇u).
Our main result of existence of solution for problem (37) is given by

Theorem 14. Assume that h and f are continuous and satisfy (H1) and (H2).
There exists a region D in the λβ-plane such that if (λ, β) ∈ D the Dirichlet prob-
lem (37) has at least one positive solution u satisfying, for some positive constants
ε and M :

εu1 ≤ u ≤ (M/ ‖φ‖∞)φ and ‖∇u‖∞ ≤ γM.

Proof. Let (λ, β) ∈ D where the region D is defined by (43) and take M > 0
satisfying (40) from Lemma 13. Let us define the subset

F :=
{
u ∈ C1(Ω) : εu1 ≤ u ≤ (M/ ‖φ‖∞)φ and ‖∇u‖∞ ≤ γM

} ⊂ C1(Ω) (45)

where 0 < ε ≤ min

{
(λ/λ1)

1
p−q , (Mλ

− 1
p−1

1 )/ ‖φ‖∞
}
.

It is not difficult to see that, for each u ∈ F , there exists a unique positive
solution U of the problem{−ΔpU = Fu(x, U) in Ω

U = 0 on ∂Ω
(46)

satisfying εu1 ≤ u ≤ (M/ ‖φ‖∞)φ. Uniqueness follows directly from [6]. Existence
follows from the fact that the functions u := εu1 and u := (M/ ‖φ‖∞)φ constitute
an ordered pair of sub- and super-solutions of (46). This fact implies, by applying
a standard iteration process, that there exists a weak solution U of (46) satisfying
u ≤ U ≤ u.

By proving that |∇U | ≤ γM , we see that U ∈ F .
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The regularity U ∈ C1,α(Ω) for some 0 < α < 1 uniform with respect to
u ∈ F follows from the uniform boundedness of both U and |∇U |. We emphasize
that the bounds for U and |∇U | are determined by the positive constant M which,
in its turn, is fixed according with the pair (λ, β) ∈ D.

So, it follows that the operator

T : F ⊂ C1(Ω) −→ C1,α(Ω) ∩W 1,p
0 (Ω) ⊂ C1(Ω)

u −→ U,

is well defined, U being the unique positive solution of (46). Moreover, the com-
pactness of the immersion C1,α(Ω) ↪→ C1(Ω) implies that T is continuous and
compact. Thus, since T leaves invariant the set F defined by (45) and this set
is bounded and convex we can apply Schauder’s fixed point theorem to obtain a
fixed point u for T. Of course, such a fixed point u satisfies (37) since −Δpu =
Fu(x, u) = λh(x, u) + βf(x, u,∇u) in Ω. �
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1. Introduction: the state of the art

The classical Trudinger–Moser inequality concerns the limiting case p = N of the
well-known Sobolev embeddings

W 1,p(Ω) ↪→ Lp∗
(Ω) p∗ =

pN

N − p

where Ω is a bounded smooth domain in RN .
Here we denote by W 1,p(Ω) the usual Sobolev space of Lp-functions with

derivatives in Lp endowed by the norm ||u||1,p :=
(∫

Ω |u|pdx +
∫
Ω |∇u|pdx)1/p

and by W 1,p
0 (Ω) the completion of C∞

0 (Ω) in the norm ||u||1,p.
If p = N , p∗ becomes infinity, the Sobolev space W 1,N

0 (Ω) embeds into any

Lq(Ω), but W 1,N
0 (Ω) � L∞(Ω) as the following simple example shows

Example 1. N = 2, Ω = B1(0). Then u(x) = log(1 − log |x|) belongs to

H1
0 (Ω) = W 1,2

0 (Ω) but u is not bounded.

The question is to find the maximal growth function φ : R→ R+ such that

if u ∈W 1,N
0 (Ω), then

∫
Ω

φ(u)dx is finite.

Switzerland



164 M. Calanchi

Roughly speaking one can express this fact in terms of an embedding by
introducing the Orlicz space (which is a generalization of Lp): find a continuous
convex function φ such that if

Lφ := vector space generated by {u :
∫
Ω
φ(u) < +∞}

then
W 1,N

0 (Ω) ↪→ Lφ.

S.I. Pohozaev (1965, [12]) and N. Trudinger (1967, [14]) showed independently
that this maximal growth is given by

φ(t) = e|t|
N

N−1 − 1.

This growth is optimal in the sense that for any higher growth the integral
may become infinite. The proof is based upon an expansion in power series of the
exponential function, and on a control of the Lp norm of each term of the series.
This result was improved in 1970 by Moser ([11]), who showed that the supremum

on the unitary ball in W 1,N
0 (Ω)

sup∫
Ω
|∇u|Ndx≤1

∫
Ω

eαu
N

N−1
dx

is bounded if and only if α ≤ αN = Nω
1

N−1 , where ωN−1 is the N −1-dimensional
surface of the unit sphere. The integral on the left actually is finite for any positive
α, but if α > αN it can be made arbitrarily large by a suitable choice of u.

From now on we will consider the two-dimensional case. Let us recall Moser’s
result in this case

Theorem 2 (Moser 1970 [11], N = 2).

(TM) sup∫
Ω
|∇u|2dx≤1

∫
Ω

eαu
2 ≤

{
C|Ω| if α ≤ 4π

+∞ if α > 4π.
(1)

The proof relies in an essential way on symmetrization. Indeed, one can sub-
stitute u by a radial function u∗ on the ball BR(0) whose sub-levels are balls with
the same measure of the corresponding sub-levels of |u|. One has the following
properties: the “mass” doesn’t change, i.e., for all continuous functions G∫

BR(0)

G(u∗)dx =

∫
Ω

G(u)dx

and for the gradient there is the Pólya–Szegö inequality∫
BR(0)

|∇u∗|2dx ≤
∫
Ω

|∇u|2dx

which implies

sup∫
Ω
|∇u|2dx≤1

∫
Ω

eα|u|
2 ≤ sup∫

BR
|∇u∗|2dx≤1

∫
BR

eα|u
∗|2 ,

and hence it is sufficient to consider the radial case.
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Let u be a radial function. By the change of variable

|x| = Re−t/2 u(x) =
√
4πw(t)

one has ∫
BR

|∇u∗|2dx =

∫ +∞

0

|w′(t)|2dt
and ∫

BR

eα|u
∗|2dx = 2πR2

∫ +∞

0

e
α
4π |w(t)|2−tdt.

So the problem reduces to

sup∫ +∞
0

|w′|2dt≤1

∫ +∞

0

e
α
4π |w(t)|2−tdt < +∞.

For every C1-functions w such that
∫ +∞
0 |w′|2dt ≤ 1 and w(0) = 0 one has

that w is controlled by t1/2; indeed

|w(t)| =
∣∣∣ ∫ t

0

w′(t)dt
∣∣∣ ≤ t1/2

(∫ t

0

|w′(t)|2
)1/2

≤ t1/2.

Therefore if α < 4π it is easy to prove that the supremum is finite and if α > 4π
it is sufficient to test the functional on the Moser sequence

wk(t) =

⎧⎨⎩
t

k
1
2

t ≤ k

k
1
2 t ≥ k

to obtain that the supremum goes to infinity. The critical case α = 4π is more
complicated and we will return to it later in a more general case.

2. Weighted TM inequalities

We point out that, beginning from the celebrated work of Caffarelli–Kohn–Niren-
berg [3], the weighted Poincaré–Sobolev inequalities and fundamental questions
concerning these inequalities (such as best embedding constants, existence/non-
existence, symmetry properties of extremal functions) have attracted a lot of at-
tention in the literature. Only recently limiting embeddings with weights have
been considered. We mention for instance [9], [7], [6], [8].These papers threat em-
beddings of Sobolev spaces in weighted Orlicz spaces: they consider the weight
only acting on the functional and they are principally interested in characteriz-
ing weights which do not change an exponential Orlicz space up to equivalence of
norms.

On the other hand, we consider a weighted version of Moser’ s theorem, for
which the presence of the weight can change the range of the exponent for which
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the supremum is still finite. More precisely: let w = w(x) and v(x) two radial
weights on the unitary ball (let’s say two nonnegative L1-functions).

Let Ω = B the unitary ball in R2 centered in the origin. We denote with
H1

0 (B,w) the Sobolev space given by the completion of C∞
0 (B) with respect to

the weighted norm

||u||w :=

(∫
B

|∇u|2 w(x) dx

)1/2

(2)

and with H1
0,rad(B,w) the corresponding subspace of radial functions.

Consider the following problem: find the best exponential maximal growth
F (t) for which

sup
||u||w≤1

∫
B

v(x) F (u)dx is finite.

Quite recently M. Calanchi and E. Terraneo [4] investigated this problem in
the case w ≡ 1 and v(x) = |x|δ with δ > 0 (Hénon weight). They concentrated the
attention on the following functional Fγ : H1

0 (B)→ R

Fγ(u) =

∫
B

|x|δ
(
ep|u|

γ − 1− p|u|γ
)

dx (3)

where δ > 0, p > 0 and 1 < γ ≤ 2. They were first interested in understanding for
which values of γ, p and δ the supremum of F (u) on the set {u ∈ H1

0 : ‖u‖H1
0
≤ 1}

is finite and attained, and secondly their purpose was essentially prove a symmetry
breaking result.

They proved that for 0 < γ < 2, or γ = 2 and 0 < p ≤ 4π + 2πδ the
supremum over the subspace of radial functions in H1

0 is finite.
Then they analysed the case γ = 2 and p > 4π (supercritical), and they

showed that the supremum over the whole space H1
0 is not finite. It is enough

to evaluate the functional F on a suitable family of Moser type functions that
concentrate on the boundary. In this way the effect of the weight |x|δ becomes
negligible. In fact they established the following result:

Theorem 3 (M. Calanchi–E. Terraneo, [4]). Let

SR
δ,p = sup

u radial,||∇u||2≤1

∫
B

|x|δ
(
ep|u|

2 − 1− p|u|2
)

dx

the supremum taken on the subspace of radial functions and

Sδ,p = sup
||∇u||2≤1

∫
B

|x|δ
(
ep|u|

2 − 1− p|u|2
)

dx

the supremum taken on the whole space. Then

i) SR
δ,p < +∞ ⇐⇒ p ≤ 4π + 2πδ and ii) Sδ,p < +∞ ⇐⇒ p ≤ 4π

Moreover if p < 4π there exists δ0 > 0 such that

SR
δ,p < Sδ,p ∀δ ≥ δ0.
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This second result says that if the problem is subcritical, the so-called ground
state solution (the solution that maximizes the functional) is not radial. This is
an extension to the case of exponential growth of a result due to Smets, Su and
Willem ([13]) related to the Hénon equation. In order to prove this they give the
asymptotic behavior of the radial level SR

δ,p as δ → +∞, and test the level on the
whole space along functions which concentrate near the boundary.

To prove part i) the transformation

u(|x| 2
δ+2 ) =

√
2

δ + 2
w(|x|) (4)

is considered. By an easy computation one has∫
B

|x|δ
(
ep|u|

2 − 1− p|u|2
)

dx =
2

δ + 2

∫
B

(
e

2p
δ+2 |w|γ − 1− 2p

δ + 2
|w|γ

)
dx;

and ∫
B

|∇u(x)|2 dx =

∫
B

|∇w(x)|2 dx ≤ 1.

So one obtains

SR
δ,p = sup

‖w‖≤1, w rad

2

δ + 2

∫
B

(
e

2p
δ+2 |w|2 − 1− 2p

δ + 2
|w|2

)
dx

and one can conclude using the standard Trudinger–Moser inequality.
A similar argument is used by Adimurthy and Sandeep (see [2]) in order to

check the critical exponent in the singular case (Hardy weight). Their starting point
is to establish some interpolation inequalities between the Hardy inequality and
the Sobolev inequality in the limit case. Even if the authors consider the problem
in general dimension, for simplicity we describe here only the two-dimensional
case. They consider an embedding of the form

u→
∫
Ω

eαu
2

|x|δ(log(e/|x|))γ dx

and the sharpness of constants α, δ, γ for which the supremum (on the unitary
ball) of the functional on the right is finite. They first observe that γ = 0 is the
optimal choice and prove the following

Theorem 4 (Adimurthi–K. Sandeep, 2007, [2]). Let u ∈ H1
0 (Ω). Then for every

α > 0 and δ ∈ [0, 2) ∫
Ω

eαu
2

|x|δ dx < +∞. (5)

Moreover

sup
||∇u||2≤1

∫
Ω

eαu
2

|x|δ dx < +∞ ⇐⇒ α ≤ 4π − 2πδ. (6)

Since in this case the radial weight is decreasing, they can reduce the problem
to a radial one, by standard Schwartz symmetrization. Moreover by the same
transformation as in (4) they can use Moser’s result.
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3. Trudinger–Moser inequality with weighted Sobolev spaces

In this section we deal with some results concerning Trudinger–Moser type in-
equalities with logarithmic weights.

Let w(x) = w1(x) =
(
log

(
e
|x|
))β

, or w(x) = w0(x) =
(
log

(
1
|x|
))β

, v(x) =

|x|δ, δ > −2 and the functional Gδ : H
1
0 (B)→ R

Gδ(u) =

∫
B

|x|δ eα|u|
γ

dx.

Consider the following problem: find γ, δ, α such that

sup
||u||w≤1

∫
B

|x|δ eα|u|
γ

dx < +∞

(we recall that ||u||w =
(∫

B
|∇u|2w(x)dx)1/2).

In a previous paper we considered the case v(x) ≡ 1 (i.e., δ ≡ 0), and proved

Theorem 5 (M. Calanchi–B. Ruf [5]). Let β ∈ [0, 1) and w0(x) =
(
log 1

|x|
)β

or

w1(x) =
(
log e

|x|
)β

. Then∫
B1(0)

e|u|
γ

dx < +∞, for all u ∈ H1
0,rad(B1, w) , iff γ ≤ γ :=

2

1− β
,

and

sup
‖u‖w≤1,rad

∫
B1(0)

eα|u|
2

1−β
dx < +∞

if and only if

α ≤ αβ = 2 [2π(1− β)]
1

1−β (critical growth).

Here, considering a Hardy or Hénon weight in the functional, we prove the
following

Theorem 6. Let δ > −2, and w as in the previous theorem. Then

(i)

∫
B1(0)

|x|δe|u|γdx < +∞, for all u ∈ H1
0,rad(B1, w) , iff γ ≤ γ :=

2

1− β
,

and

(ii) sup
||u||w≤1,rad

∫
B(0,1)

|x|δ eα|u|
2

1−β
dx < +∞

if and only if

α ≤
(
1 +

δ

2

)
αβ =

(
1 +

δ

2

)
2 [2π(1− β)]

1
1−β (critical growth).

Remark 7. For β = 0 one has the same exponent as in [4] for the Hénon case and
as in [2] for the Hardy case.
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We first prove this preliminary result (Radial Lemma).

Lemma 8 ([5]). Let u a radially symmetric C1
0 function on B = B1(0). Then one

has for w = w0(x) = | log |x||β

(i) |u(x)| ≤ |log |x|| 1−β
2√

2π(1− β)
||u||w, ∀β < 1,

while for w = w1(x) = | log(e/|x|)|β

(ii) |u(x)| ≤
∣∣[log (e/|x|)]1−β − 1

∣∣1/2√
2π|1− β| ||u||w, β �= 1.

Proof. Since u is radial, let v(|x|)=u(x). Then we have (for w(x)= |log(e/|x|)|β ,
β �= 1)

||u||w =

(
2π

∫ 1

0

|v′(t)|2 t | log e/t|βdt
)1/2

.

Moreover

|u(x)| = ∣∣v(|x|) − v(1)
∣∣ = ∣∣∣∣ ∫ |x|

1

v′(t)dt
∣∣∣∣

≤
∫ 1

|x|
|v′(t)|t1/2 |log e/t|β/2 t−1/2 | log e/t|−β/2dt

≤
(∫ 1

|x|
|v′(t)|2 t | log e/t|βdt

)1/2( ∫ 1

|x|

1

t| log e/t|β dt
)1/2

≤
∣∣[log (e/|x|)]1−β − 1

∣∣1/2√
2π|1− β| ||u||w, β �= 1.

For w(x) = | log |x|| the procedure is similar. �

Proof of Theorem 6. We first consider the case w = w0(x) = | log |x||β .
We may assume that u ≥ 0 (one can replace u by |u|). Since the problem is radially
symmetric we introduce the variable t by

|x| = e−t/2,

and set

ψ(t) = 2
1−β
2 [2π(1− β)]

1/2
u(x). (7)

Then ∫ +∞

0

ψ̇2tβ

1− β
dt =

(∫
B1(0)

|∇u|2| log |x||β dx

)
. (8)

It is sufficient to estimate∫ +∞

0

eᾱψ
γ−(1+ δ

2 )t dt =
1

m(B)

∫
B

|x|δeαuγ

dx, (9)



170 M. Calanchi

where

ᾱ =
α

2 [2π(1− β)]
1

1−β

.

We first prove that the condition γ ≤ γ = 2
1−β is necessary. Let γ = γ + ε,

with ε > 0. It is sufficient to test the first integral in equation (9) on the following
function

ψη(t) =

{
t

1
γ̄ −η = t

1−β
2 −η t ≥ 1

t 0 ≤ t ≤ 1

where η > 0 can be chosen such that

(γ + ε)

(
1

γ̄
− η

)
=

(
2

1− β
+ ε

)(
1− β

2
− η

)
=: 1 + η̄ > 1.

It is not difficult to prove that∫ +∞

0

ψ̇2
ηt

β

1− β
dt < C and

∫ +∞

0

eᾱψ
γ
η−(1+ δ

2 )t dt = +∞.

Indeed ∫ +∞

0

ψ̇2
ηt

β dt =

∫ 1

0

tβ +

∫ +∞

1

(
1− β − 2η

2

)2

t−1−2η dt < +∞

and ∫ +∞

0

eᾱψ
γ
η−(1+ δ

2 )t dt ≥
∫ +∞

1

eᾱt
1+η̄−(1+ δ

2 )t dt = +∞.

Again from (8) and (9), the sufficient condition can be rewritten as∫ +∞

0

eᾱ|ψ|
2

1−β −(1+ δ
2 )t dt < +∞, for all ψ such that

∫ +∞

0

|ψ′|2tβ
1− β

dt < +∞.

We proceed as in [11]. For all ε > 0 there exists T = T (ε) such that∫ +∞

T

|ψ′|2tβ
1− β

dt < ε2. Hence, for the Cauchy–Schwarz inequality

ψ(t) = ψ(T ) +

∫ t

T

ψ′(s) ds = ψ(T ) +

∫ t

T

|ψ′(s)|2 sβ/2s−β/2ds

≤ ψ(T ) +

(∫ t

T

|ψ′(s)|2 sβ ds

)1/2(∫ t

T

s−β ds
)1/2

= ψ(T ) +

(∫ t

T

|ψ′(s)|2 sβ
1− β

ds

)1/2(
t1−β − T 1−β

)1/2

≤ ψ(T ) + ε
(
t1−β − T 1−β

)1/2

for all t ≥ T .
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This implies that there exists T̄ such that ᾱψ
2

1−β (t) ≤ (1 + δ
2 )t for all t ≥ T̄ , and

this is sufficient to guarantee the existence of the integral∫ +∞

0

eᾱ|ψ|
2

1−β −(1+ δ
2 )t dt.

We proceed with giving an idea of proof for (ii). By the Radial Lemma we
know that ∫ +∞

0

ψ̇2tβ

1− β
dt ≤ 1⇒ ψ(t) ≤ t

1−β
2 . (10)

Then if γ < 2
1−β or γ = 2

1−β and ᾱ < 1 + δ/2 it easily follows that∫ +∞

0

eᾱψ
γ−(1+ δ

2 )t dt ≤
∫ +∞

0

eᾱt−(1+ δ
2 )t dt < +∞.

The proof of (ii) for the critical exponent is much more delicate and it is an
adapted version of Moser’s proof. The result of Moser is based on the observation
that relation (10) is actually a rather strong inequality. We refer the reader to [5]
for a complete proof.

This concludes the case of w0. In order to prove the assertion for w1(x) =(
log(e/|x|)) it is sufficient to observe that, for β ∈ [0, 1)

H1
0 (B,w1) ↪→ H1

0 (B,w0).

(Sharpness) Now we prove that the theorem is sharp in the sense that if α >

(1 + δ/2)2 [2π(1− β)]
1

1−β , then the supremum is infinite.

It is sufficient to consider the case w(x) = | log (e/|x|)|β.
Now it is sufficient to test∫ +∞

0

e(ᾱψ
γ−(1+δ/2)t) dt, γ =

2

1− β

on the family of functions (here the change of variables is t = 2− 2 log |x|)

ψk(t) =

⎧⎪⎨⎪⎩
t1−β − 21−β

((k + 2)1−β − 21−β)1/2
2 ≤ t ≤ k + 2

((k + 2)1−β − 21−β)1/2 t ≥ k + 2

∫ +∞

2

e(ᾱψ
γ
k−(1+δ/2)t) dt ≥ eᾱ[(k+2)1−β−21−β ]

1
1−β

∫ +∞

k+2

e−(1+δ/2)t dt

=
1

1 + δ/2
e{ᾱ[(k+2)1−β−21−β ]

1
1−β −(1+δ/2)(k+2)} → +∞ if ᾱ > 1 +

δ

2
. �
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3.1. Remark: the weight is not effective

In this section we consider all the functions in H1
0 (B1). We observe that in the

supercritical case with respect to the Moser inequality, i.e., γ = 2, α > 4π, the
weight is not effective and the supremum in the whole space H1

0 (B1) is infinite.

Proposition 9. Suppose that α > 4π. Then

sup
{u∈H1

0 (B1),‖u‖w≤1}

∫
B1

|x|δeα|u|2dx = +∞.

Proof. Case I) w(x) = | log |x||β . In tho case we evaluate the functional on some
particular functions obtained by a suitable translation and dilation of Moser’s
functions in a region of B(0, 1) far from the origin and far from the boundary

where the presence of
∣∣ log |x|∣∣β can be “neglected”.

Consider the following family of functions

wk,a(x) =
1√
2π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
log k |x− x0| < a

k
log( a

|x−x0| )√
log k

a

k
≤ |x− x0| < a

0 |x− x0| ≥ a

(11)

where x0 = (12 , 0) and a < 1
2 will be chosen later.

Since α > 4π, we can write α = 4π(1 + ε)β , with ε > 0. Let

uk,a(x) =
∣∣∣ log(1

2
− a

)∣∣∣−β/2

wk,a(x) .

Then, since |x| ≥ 1
2 − a in Ba(x0) and

∣∣ log |x|∣∣ is decreasing, one has

(∫
B1(0)

|∇uk,a|2
∣∣ log |x|∣∣β dx)1/2

=

(∫
Ba(x0)

|∇wk,a|2
∣∣ log |x|∣∣β∣∣ log | 12 − a|∣∣β dx

)1/2

≤ 1.

We evaluate the functional on this sequence and obtain∫
B1(0)

|x|δe4π(1+ε)βu2
k,adx =

∫
B1(0)

|x|δe4π(1+ε)β
∣∣∣log

(
1
2−a

)∣∣∣−β
w2

k,adx.

Now, choosing 0 < a < 1
2 − 1

e1+ε , we have 1+ε∣∣∣log
(

1
2−a

)∣∣∣ > 1.
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Let ε̄ = (1 + ε)β
∣∣log ( 1

2 − a
)∣∣−β − 1 > 0, we can conclude, as k → +∞∫

B1(0)

|x|δe4π(1+ε)βu2
k,adx

≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1

2
− a

)δ ∫
B a

k
(x0)

e4π(1+ε̄)w2
k,adx =

(
1

2
− a

)δ

πa2k2ε̄ → +∞, (δ ≥ 0),

(
1

2
+ a

)δ ∫
B a

k
(x0)

e4π(1+ε̄)w2
k,adx =

(
1

2
+ a

)δ

πa2k2ε̄ → +∞, (δ < 0).

Case II) w(x) =
(
log e

|x|
)β

. For this case it is necessary to “concentrate” Moser’s

sequence near the boundary where the weight is almost 1. Let

zk,a(x) =
1√
2π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
log k |x− xa| < a

k
log( a

|x−xa| )√
log k

a

k
≤ |x− xa| < a

0 |x− xa| ≥ a

(12)

where xa = (1−a, 0), 0 < a < 1/2, k > 2. Here it is sufficient to choose a <
(
1
2− 1

eε

)
and test the following sequence

uk,a(x) =
∣∣∣ log( e

1− 2a

)∣∣∣−β/2

wk,a(x) .

on the functional. �
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Abstract. The aim of this paper is studying the asymptotically p-linear prob-
lem ⎧⎪⎨⎪⎩

−div(A(x, u)|∇u|p−2∇u) +
1

p
At(x, u)|∇u|p

= λ|u|p−2u+ g(x, u) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN is an open bounded domain and p > N ≥ 2. Suitable as-
sumptions both at infinity and in the origin on the even function A(x, ·) and
the odd map g(x, ·) allow us to prove the existence of multiple solutions by
means of variational tools and the pseudo-index theory related to the genus
in W 1,p

0 (Ω).
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Keywords. p-Laplacian type problem, asymptotically p-linear problem, genus,
pseudo-index theory, quasi-eigenvalue.

1. Introduction

Let us consider the Dirichlet problem

(P )

⎧⎨⎩ −div(A(x, u)|∇u|p−2∇u) +
1

p
At(x, u)|∇u|p = f(x, u) in Ω,

u = 0 on ∂Ω,
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where Ω ⊂ RN is an open bounded domain, N ≥ 2, and A, f : Ω × R → R are
given functions such that the partial derivative At(x, t) =

∂A
∂t (x, t) exists for a.e.

x ∈ Ω, all t ∈ R.
If we assume F (x, t) =

∫ t

0 f(x, s)ds, at problem (P ) we can associate the

functional J : D ⊂W 1,p
0 (Ω)→ R defined as

J (u) =
1

p

∫
Ω

A(x, u)|∇u|pdx −
∫
Ω

F (x, u)dx.

In general, J is not C1 in the Sobolev space W 1,p
0 (Ω) but, under the following

conditions:

(H0)A, At are Carathéodory functions on Ω× R such that

sup
|t|≤r

|A(·, t)| ∈ L∞(Ω), sup
|t|≤r

|At(·, t)| ∈ L∞(Ω) for any r ≥ 0;

(h0) f is a Carathéodory function on Ω× R such that

sup
|t|≤r

|f(·, t)| ∈ L∞(Ω) for any r ≥ 0;

it is surely well defined in the Banach space

X := W 1,p
0 (Ω) ∩ L∞(Ω), ‖u‖X := ‖u‖+ |u|∞,

with ‖ · ‖, respectively | · |∞, classical norm of W 1,p
0 (Ω), respectively L∞(Ω),

i.e.,

‖u‖p =

∫
Ω

|∇u|pdx, |u|∞ = ess sup
x∈Ω

|u(x)|.
Here, our aim is investigating the existence of multiple weak (bounded) so-

lutions of (P ) when it is an elliptic asymptotically p-linear problem, i.e., A and f
satisfy the following hypotheses:

(H1) there exists α0 > 0 such that

A(x, t) ≥ α0 a.e. in Ω, for all t ∈ R;

(H2) there exists A∞ ∈ L∞(Ω) such that

lim
|t|→+∞

A(x, t) = A∞(x) uniformly a.e. in Ω;

(h1) there exist λ ∈ R and g : Ω× R→ R such that

f(x, t) = λ|t|p−2t+ g(x, t) for a.e. x ∈ Ω, for all t ∈ R,

lim
|t|→+∞

g(x, t)

|t|p−2t
= 0 uniformly a.e. in Ω. (1.1)

If conditions (H0)–(H2), (h0)–(h1) hold, problem (P ) reduces to

(Pλ)

⎧⎪⎨⎪⎩
−div(A(x, u)|∇u|p−2∇u) +

1

p
At(x, u)|∇u|p

= λ|u|p−2u+ g(x, u) in Ω,
u = 0 on ∂Ω,



Multiple Solutions for p-Laplacian Type Problems 177

and J is a C1 functional on X (see [10, Proposition 3.1]); whence, (Pλ) has a
variational structure and its weak bounded solutions are critical points of J in
the Banach space X . Then, variational and topological tools may be applied but
the presence of the L∞-norm makes it difficult. In fact, if N ≥ p, the classical
Palais–Smale condition may not occur as it requires the convergence not only in
the W 1,p

0 -norm but also in the L∞ one. Thus, some weak versions of the Palais–
Smale condition are required so to obtain a suitable version of the Deformation
Lemma; anyway they are not enough for distinguishing multiple critical points at
the same critical level so multiplicity results follow from the existence of multiple
distinct critical levels (see [8, 9]).

This problem does not arise if N < p as the embedding W 1,p
0 (Ω) ↪→ L∞(Ω)

implies X = W 1,p
0 (Ω), so we can consider the usual W 1,p

0 -norm and the Palais–
Smale condition can be proved (see Section 2).

On the other hand, in the hypotheses (h0) and (h1), if p = 2 and A(x, t) ≡ 1
problem (Pλ) reduces to the asymptotically linear one which has been widely
investigated (see [1, 4] and references therein). On the contrary, in spite of the
large amount of papers dealing with this kind of nonlinearities in the semilinear
case, only a few results have been obtained when p �= 2. Namely, some existence
results can be found in [2, 3, 5, 11, 12, 14, 15, 17, 18] if A(x, t) ≡ 1, but, to
our knowledge, there is no result of this kind with a coefficient A(x, t), which
depends on t, up to [10]. If p > 1 is any, the main difficulty is that, while the
structure of the spectrum of −Δ in H1

0 (Ω) is known, the full spectrum of −Δp is
still unknown, even if various authors have introduced different characterizations
of eigenvalues and definitions of quasi-eigenvalues. Furthermore, in our setting we
have also to consider the asymptotic behaviour both at the origin and at infinity

of the coefficient A(x, t), namely the operators A0
p, A

∞
p : W 1,p

0 (Ω) → W−1,p′
0 (Ω)

defined as A0
pu = −div(A0(x)|∇u|p−2∇u), A∞

p u = −div(A∞(x)|∇u|p−2∇u),

with A0(x) = A(x, 0) and A∞ as in (H2) (see Section 2) as it is made in [10] but
using a cohomological index.

Here, considering the particular case p > N ≥ 2 and by means of the pseudo-
index theory related to the genus in W 1,p

0 (Ω), our aim is investigating the existence
of multiple solutions of (Pλ) when the parameter λ in (h1) interacts with sequences
of quasi-eigenvalues related to the operators A0

p and A∞
p which are defined accord-

ing to the approach in [7] and [16]. Thus, essentially following the ideas in [5], we
are able to prove our main result (for the complete statement, see Theorem 3.1).

Main Theorem. Assume that p > N ≥ 2, (H0)–(H2), (h0)–(h1) hold and the
parameter λ is not an eigenvalue of the operator A∞

p . If, furthermore, A(x, ·) is
even and g(x, ·) is odd and they satisfy further suitable assumptions in Ω × R,
then the number of the weak solutions of (Pλ) depends on the interaction of λ, the
asymptotic behaviour of g in the origin and the quasi-eigenvalues related to the
operators A0

p and A∞
p in W 1,p

0 (Ω).
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2. Abstract tools and some technical remarks

In order to state the abstract multiplicity theorem we will apply to our problem,
we recall some main definitions on the pseudo-index theory related to the genus
on a Banach space B for a C1 even functional J : B → R with symmetry group
Z2 = {id,−id}. Here, we denote N = {1, 2, . . .}.

Define

Σ = Σ(B) = {A ⊆ B : A closed and symmetric with respect

to the origin, i.e., −u ∈ A if u ∈ A}
and H = {h ∈ C(B,B) : h odd}.

Taking A ∈ Σ, A �= ∅, the genus of A is

γ(A) = inf{k ∈ N : ∃ψ ∈ C(A,Rk \ {0}) s.t. ψ(−u) = −ψ(u) for all u ∈ A},
if such an infimum exists, otherwise γ(A) = +∞. Assume γ(∅) = 0.

The index theory (Σ,H, γ) related to Z2 is also called genus (for more details,
we refer to [19, Section 1] or [21, Section II.5]).

According to [6], the pseudo-index related to the genus and to a symmetric
subset S ∈ Σ is the triplet (S,H∗, γ∗) such that H∗ is a group of odd homeomor-
phisms, eventually related to an even functional J , and γ∗ : Σ −→ N ∪ {+∞} is
the map defined by

γ∗(A) = min
h∈H∗

γ(h(A) ∩ S) = min
h∈H∗

γ(A ∩ h(S)).

The following mini-max theorem can be proved (see [4, Theorem 2.9] in the
setting of Hilbert spaces; but the same proof holds on Banach spaces, just taking
into account [20, Theorem A.4]).

Theorem 2.1. Let J : B → R be a C1 even functional on a Banach space B and,
taking a, b, c0, c∞ ∈ R̄, −∞ ≤ a < c0 < c∞ < b ≤ +∞, consider the pseudo-index
theory (S,H∗, γ∗) related to the genus (Σ,H, γ) on B, the functional J and the
subset S ∈ Σ, with

H∗ = {h ∈ H : h bounded homeomorphism s.t. h(u) = u if u �∈ J−1(]a, b[)}.
Assume that:

(i) the functional J satisfies the Palais–Smale condition in ]a, b[;
(ii) J(u) ≥ c0 for all u ∈ S;

(iii) there exist k̃ ∈ N and Ã ∈ Σ such that

J(u) ≤ c∞ for all u ∈ Ã and γ∗(Ã) ≥ k̃.

Then the numbers

ci = inf
A∈Σ∗

i

sup
u∈A

J(u), i ∈ {1, . . . , k̃},

with Σ∗
i = {A ∈ Σ : γ∗(A) ≥ i}, are critical values for J and

c0 ≤ c1 ≤ · · · ≤ ck̃ ≤ c∞.
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Furthermore, if c = ci = · · · = ci+r, with i ≥ 1 and i+ r ≤ k̃, then γ(Kc) ≥ r+ 1,
with Kc = {u ∈ B : J(u) = c, dJ(u) = 0}.

In order to apply the theorem above, we need the following result, which
allows us to obtain a lower bound for the pseudo-index of a suitable Ã as in (iii)
(for more details, see [4, Theorem A.2] or [5, Theorem 2.7]).

Proposition 2.2. Let (Σ,H, γ) be the genus theory on B and V,W two closed sub-
spaces of B. Assume that

dimV < +∞ and codimW < +∞.

Then, for every odd bounded homeomorphism h on B and every open bounded
symmetric neighbourhood N of 0 in B, it results

γ(V ∩ h(∂N ∩W )) ≥ dim V − codimW. (2.1)

Till the end of this section, assume that (H0), (h0) and (h1) hold, thus g in
(h1) is a Carathéodory function on Ω× R such that

sup
|t|≤r

|g(·, t)| ∈ L∞(Ω) for any r ≥ 0. (2.2)

Then, if G(x, t) =
∫ t

0
g(x, s)ds, the functional J reduces to

Jλ(u) =
1

p

∫
Ω

(A(x, u)|∇u|p − λ|u|p)dx −
∫
Ω

G(x, u)dx.

As already remarked, in the hypothesis p > N the functional Jλ is C1 on W 1,p
0 (Ω)

and for all u, ϕ ∈ W 1,p
0 (Ω) it results

〈dJλ(u), ϕ〉 =
∫
Ω

A(x, u)|∇u|p−2∇u · ∇ϕ dx +
1

p

∫
Ω

At(x, u)ϕ|∇u|pdx

− λ

∫
Ω

|u|p−2uϕ dx −
∫
Ω

g(x, u)ϕ dx.

In the further assumptions (H1) and (H2), we can consider the function
A∞ ∈ L∞(Ω) such that A∞(x) ≥ α0 a.e. in Ω; hence, the functional

I∞(u) =

∫
Ω

A∞(x)|∇u|pdx

is a weighted norm equivalent to the usual one in W 1,p
0 (Ω) and its differential is

the operator A∞
p : W 1,p

0 (Ω)→W−1,p′
0 (Ω) so that

〈A∞
p u, ϕ〉 =

∫
Ω

A∞(x)|∇u|p−2∇u · ∇ϕ dx for all u, ϕ ∈W 1,p
0 (Ω).

Let σ(A∞
p ) denote the set of the eigenvalues of the elliptic operator A∞

p , i.e., of
the parameters μ ∈ R such that the Dirichlet problem{ −div(A∞(x)|∇u|p−2∇u) = μ|u|p−2u in Ω,

u = 0 on ∂Ω,

admits non-trivial weak solutions in W 1,p
0 (Ω).
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Now, let us consider the following further conditions on A(x, t):

(H3) there exists

lim
|t|→+∞

At(x, t)t = 0 uniformly a.e. in Ω;

(H4) there exists α1 > 0 such that

A(x, t) +
1

p
At(x, t)t ≥ α1A(x, t) a.e. in Ω, for all t ∈ R.

Then the following result can be proved (for all the details, see [10, Proposi-
tion 3.5]).

Proposition 2.3. Assume that the hypotheses (H0)–(H4), (h0)–(h1) hold and p >
N . Then if λ �∈ σ(A∞

p ) the functional Jλ satisfies the Palais–Smale condition in

W 1,p
0 (Ω).

Taking A0(x) = A(x, 0), from (H0) and (H1) it follows A0 ∈ L∞(Ω) and
A0(x) ≥ α0 a.e. in Ω; hence, also the functional

I0(u) =

∫
Ω

A0(x)|∇u|pdx

is a weighted norm equivalent to the usual one in W 1,p
0 (Ω) and its differential is

the operator A0
p : W 1,p

0 (Ω)→W−1,p′
0 (Ω) so that

〈A0
pu, ϕ〉 =

∫
Ω

A0(x)|∇u|p−2∇u · ∇ϕ dx for all u, ϕ ∈ W 1,p
0 (Ω).

Furthermore, from (H3) it follows

|At(x, t)| ≤ b0 a.e. in Ω, for all t ∈ R,

for a suitable positive constant b0; hence,

lim
t→0

A(x, t) = A0(x) uniformly a.e. in Ω. (2.3)

Now, taking � = 0 or � = ∞, we introduce the definitions of sequences of
pseudo-eigenvalues related to A�

p, or equivalently its potential I�, that we need in
the statement of our main result.

Firstly, taking S = {u ∈ W 1,p
0 (Ω) : |u|p = 1}, with |u|pp =

∫
Ω |u|pdx, we

define

η�1 = inf
u∈S

∫
Ω

A�(x)|∇u|pdx.

By assumptions, 0 < α0λ1 ≤ η�1 ≤ λ1|A�|∞, with λ1 first (positive, simple, iso-

lated) eigenvalue of the p-Laplacian −Δp in W 1,p
0 (Ω). Standard arguments allow

us to prove the existence of ψ�
1 ∈ S such that I�(ψ�

1) = η�1. Thus, reasoning as in

[7, Section 5], but replacing I(u) = ‖u‖p with I� and starting from η�1 at the place

of λ1, we can prove the existence of a sequence (η�k)k of positive real numbers with

corresponding functions (ψ�
k)k such that:

(a) 0 < η�1 ≤ η�2 ≤ · · · ≤ η�k ≤ · · · with η�k ↗ +∞;
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(b) ψ�
i �= ψ�

j if i �= j;

(c) (ψ�
k)k generates the whole space W 1,p

0 (Ω) and

W 1,p
0 (Ω) = V �

h ⊕W �
h for all h ∈ N, (2.4)

where V �
h = span{ψ�

1, . . . , ψ
�
h} and its complement W �

h can be explicitly de-

scribed. By definition, codimW �
h = dimV �

h = h.

Moreover, for all h ∈ N on the infinite-dimensional subspace W �
h the following

inequality holds:

η�h+1

∫
Ω

|w|pdx ≤
∫
Ω

A�(x)|∇w|pdx for all w ∈W �
h (2.5)

(cf. [7, Lemma 5.4]).
On the contrary, in order to have a reversed inequality on finite-dimensional

subspaces, we reason according to the arguments introduced in [16] but, also in this

case, replacing I with I� and making ψ�
1 play the role of the “first” eigenfunction

of −Δp in W 1,p
0 (Ω). More precisely, for all k ∈ N we consider

W�
k = {V : V is a subspace of W 1,p

0 (Ω), ψ�
1 ∈ V and dimV ≥ k} (2.6)

and

ν�k = inf
V ∈W

�
k

sup
u∈V ∩S

∫
Ω

A�(x)|∇u|p dx. (2.7)

At last let us remark that, starting from the genus (Σ,H, γ) defined on the

Banach space B = W 1,p
0 (Ω), we can define a sequence of eigenvalues (λk)k of

−Δp as

λk = inf
A∈Σk

sup
u∈A∩S

∫
Ω

|∇u|p dx,

with Σk = {A ∈ Σ : γ(A) ≥ k}, and λk ↗ +∞ (see [13]).
Thus, from the properties of the genus, for all k ∈ N it is

{V ∩ S : V ∈W�
k} ⊂ Σk

and then α0λk ≤ ν�k; whence, ν
�
k ↗ +∞.

3. The main result

Now, we can state our main result.

Theorem 3.1. Taking p > N ≥ 2, assume that (H0)–(H4), (h0)–(h1) hold and
λ �∈ σ(A∞

p ). Moreover, suppose that

(H5) A(x,−t) = A(x, t) for all t ∈ R, a.e. x ∈ Ω;
(h2) there exist λ0 ∈ R such that

lim
t→0

g(x, t)

|t|p−2t
= λ0 uniformly a.e. in Ω;

(h3) g(x,−t) = −g(x, t) for all t ∈ R, a.e. x ∈ Ω.
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If λ0 < 0 and there exist k, h ∈ N, k ≥ h, such that

λ+ λ0 < η0h ≤ ν∞k < λ, (3.1)

then problem (Pλ) has at least k−h+1 distinct pairs of weak non-trivial solutions.

Proof. From the hypotheses and Proposition 2.3 it follows that Jλ is a C1 even
functional which satisfies the Palais–Smale condition in W 1,p

0 (Ω).

Now, in order to apply Theorem 2.1, we have to prove the “geometric” as-
sumptions related to the genus theory (Σ,H, γ) defined on W 1,p

0 (Ω).

To this aim, let us point out that from (1.1) it follows

lim
|t|→+∞

G(x, t)

|t|p = 0 uniformly a.e. in Ω,

while from (h2) we have

lim
t→0

G(x, t)

|t|p =
λ0

p
uniformly a.e. in Ω;

whence, fixing any σ > 0, there existRσ, δσ > 0 (without loss of generalityRσ ≥ 1)
such that

|G(x, t)| ≤ σ

p
|t|p if |t| > Rσ, for a.e. x ∈ Ω, (3.2)∣∣∣∣G(x, t)− λ0

p
|t|p

∣∣∣∣ ≤ σ

p
|t|p if |t| < δσ, for a.e. x ∈ Ω. (3.3)

Moreover, by (H0), taking any s > 0, there exists aσ,1 > 0, depending on σ and s,
such that,

|G(x, t)| ≤ aσ,1|t|s+p if δσ ≤ |t| ≤ Rσ, for a.e. x ∈ Ω. (3.4)

On the other hand, (H2) and (2.3) imply that R∞
σ , δ0σ > 0 exist such that

|A(x, t)−A∞(x)| < σ if |t| > R∞
σ , for a.e. x ∈ Ω, (3.5)

|A(x, t)−A0(x)| < σ if |t| < δ0σ, for a.e. x ∈ Ω. (3.6)

As λ0 < 0 then (3.2)–(3.4) imply

G(x, t) ≤ σ + λ0

p
|t|p + aσ,2|t|p+s

for a suitable positive constant aσ,2 depending also on |λ0|. Hence, by the Sobolev
Embedding Theorem we have∫

Ω

G(x, u) dx ≤ σ + λ0

p

∫
Ω

|u|pdx+ aσ‖u‖p+s for all u ∈ W 1,p
0 (Ω).
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Then, taking any u ∈ W 1,p
0 (Ω), we have

Jλ(u) ≥ 1

p

∫
Ω

A(x, u)|∇u|pdx− λ+ λ0 + σ

p
|u|pp − aσ‖u‖s+p

=
1

p

∫
Ω

A0(x)|∇u|pdx+
1

p

∫
Ω

(A(x, u) −A0(x))|∇u|pdx

− λ+ λ0 + σ

p
|u|pp − aσ‖u‖s+p,

where from (3.6), (H1), p > N and direct computations it follows

1

p

∫
Ω

(A(x, u) −A0(x))|∇u|pdx

≥ −σ

p

∫
Ω0

σ

|∇u|pdx− 1

p

∫
Ω\Ω0

σ

A0(x)|∇u|pdx

≥ −σ

p

∫
Ω

|∇u|pdx− |A0|∞
p

∫
Ω\Ω0

σ

( |u|
δ0σ

)s

|∇u|pdx

≥ − σ

α0p

∫
Ω

A0(x)|∇u|pdx− |A0|∞
p

( |u|∞
δ0σ

)s ∫
Ω

|∇u|pdx

≥ − σ

α0p

∫
Ω

A0(x)|∇u|pdx− a′σ‖u‖p+s,

with Ω0
σ = {x ∈ Ω : |u(x)| ≤ δ0σ}, for a suitable positive constant a′σ = a′σ(σ, s).

Whence,

Jλ(u) ≥
(
1

p
− σ

α0p

)∫
Ω

A0(x)|∇u|pdx− λ+ λ0 + σ

p
|u|pp − a′′σ‖u‖p+s, (3.7)

with a′′σ = aσ + a′σ.
Now, from (3.1), fixing σ > 0 such that

λ+ λ0 +

(
1 +

η0h
α0

)
σ < η0h, (3.8)

from (2.4) and (2.5) referred to W 0
h−1, we have codimW 0

h−1 = h − 1 and, for all

u ∈W 0
h−1, (3.7) and (H1) imply

Jλ(u) ≥ 1

p

(
1− σ

α0
− λ+ λ0 + σ

η0h

)∫
Ω

A0(x)|∇u|pdx− a′′σ‖u‖p+s

≥ α0

p

(
1− σ

α0
− λ+ λ0 + σ

η0h

)
‖u‖p − a′′σ‖u‖p+s.

Thus, if � > 0 is small enough there exists c0 > 0 such that

Jλ(u) ≥ c0 for all u ∈ S� ∩W 0
h−1, (3.9)

with S� = {u ∈ W 1,p
0 (Ω) : ‖u‖ = �}.
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On the other hand, (2.2) implies

sup
|t|≤r

|G(·, t)| ∈ L∞(Ω) for any r ≥ 0,

then from (3.2) a constant Lσ > 0 exists such that

|G(x, t)| ≤ σ

p
|t|p + Lσ for a.e. x ∈ Ω, all t ∈ R;

whence, ∣∣∣∣∫
Ω

G(x, u) dx

∣∣∣∣ ≤ σ

p
|u|pp + bσ for all u ∈ W 1,p

0 (Ω),

with bσ = Lσmeas(Ω) (here, meas(·) is the Lebesgue measure in RN ). Thus,

Jλ(u) ≤ 1

p

∫
Ω

A(x, u)|∇u|pdx− λ− σ

p
|u|pp + bσ

From (2.6) and (2.7) there exists V σ
k ∈W∞

k such that∫
Ω

A∞(x)|∇u|pdx ≤ (ν∞k + σ)|u|pp for all u ∈ V σ
k ,

where, without loss of generality, we can assume dimV σ
k = k. Hence, as all the

norms are equivalent on a finite-dimensional space, from the compactness of S∩V σ
k

and the assumptions on A it follows∫
Ω

A(x, u)|∇u|pdx ≤ a0σ|u|pp +
∫
Ω

A∞(x)|∇u|pdx

for all u ∈ V σ
k with |u|p large enough, where a0 is a suitable positive constant

independent of σ and u (for more details, see [10]). Thus, if λ − σ > 0, for all
u ∈ V σ

k with ‖u‖ large enough, we have

Jλ(u) ≤ 1

p

(
1− λ− (a0 + 1)σ

ν∞k + σ

)∫
Ω

A∞(x)|∇u|pdx+ bσ. (3.10)

From (3.1), there exists σ small enough such that

1− λ− (a0 + 1)σ

ν∞k + σ
< 0, (3.11)

whence (3.10) implies

Jλ(u) → −∞ if u ∈ V σ
k , ‖u‖ → +∞.

Thus, c∞ > c0 exists such that

Jλ(u) ≤ c∞ for all u ∈ V σ
k . (3.12)

At last, if σ ∈ ]0, λ[ is such that both (3.8) and (3.11) are satisfied, then both
(3.9) and (3.12) hold and, considered the pseudo-index theory (S�∩W 0

h−1,H∗, γ∗)
related to the genus theory (Σ,H, γ) on W 1,p

0 (Ω) with

H∗ = {h ∈ H : h bounded homeomorphism},
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from (2.1) in Proposition 2.2 it follows γ∗(V σ
k ) ≥ k − h + 1, thus Theorem 2.1

applies and Jλ admits at least k − h + 1 distinct pairs of critical points whose
critical levels are strictly positive (while Jλ(0) = 0). �

Finally, here we give an example which points out as some inequalities in
(3.1) can be always true.

Example 3.2. Let us define

A(x, t) =
(
1 + arctg(a(x)t2)

)α
for a.e. x ∈ Ω, all t ∈ R,

with α ≥ 0 and a : Ω→ R is a measurable function such that

k0 ≤ a(x) ≤ k1 for a.e. x ∈ Ω

for some k0, k1 > 0. By direct computations for a.e. x ∈ Ω and all t ∈ R we have
1 ≤ A(x, t) ≤ (1 + π

2 )
α and

At(x, t)t = α
(
1 + arctg(a(x)t2)

)α−1 2a(x)t2

1 + (a(x)t2)2
;

hence, conditions (H0)–(H5) hold with A(x, 0) = 1 and

lim
|t|→+∞

A(x, t) =
(
1 +

π

2

)α

uniformly a.e. in Ω. Thus, if (ηh)h and (νk)k represent the sequences of quasi-

eigenvalues of the p-Laplacian −Δp in W 1,p
0 (Ω), i.e., such that (2.5) and (2.7) hold

with A� ≡ 1, then in this setting we have

η0h = ηh for all h ∈ N and ν∞k =
(
1 +

π

2

)α

νk for all k ∈ N.

Thus, the inequality η0h ≤ ν∞k is not an assumption but holds for all k ≥ h as
ηk ≤ νk for all k ∈ N (see [5, Proposition 2.9]).
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Abstract. We establish existence and regularity results for a time dependent
fourth-order integro-differential equation with a possibly singular nonlinear-
ity which has applications in designing MicroElectroMechanicalSystems. The
key ingredient in our approach, besides basic theory of hyperbolic equations
in Hilbert spaces, exploits the Near Operators Theory introduced by Cam-
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1. Introduction

In this paper we study a time dependent nonlocal fourth-order equation which is
a model for describing electrostatic actuation in MEMS devices. From the math-
ematical point of view, we can think of a plate problem set on a micro-scale in
which usual first-order approximations, acceptable in the standard “visible” scale,
loose their validity and where one needs to take into account nonlocal effects which
in this context are not negligible. Precisely, we consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2 u+ c(x, t)u′ + u′′ = G(β, γ, u) +H(λ(t), χ, p(x), u), in Ω× [0, T ]

0 ≤ u(x, t) < 1, in Ω× (0, T ]

u(x, 0) = u0, x ∈ Ω

u′(x, 0) = 0, x ∈ Ω

u(x, t) = 0, Δu(x, t)− d
∂u(x, t)

∂ν
= 0, on ∂Ω× [0, T ]

(1)

Switzerland
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where Ω ⊂ RN , 1 ≤ N ≤ 3, is a bounded domain with sufficiently smooth bound-
ary (ν denotes the outward pointing normal to ∂Ω whereas the derivative with
respect to time is denoted by ′) and

G(β, γ, u) :=

[
β

∫
Ω

|∇u(x, t)|2 dx + γ

]
Δu

H(λ(t), χ, p(x), u) :=
λ(t)p(x)

[1− u(x, t)]σ
[
1 + χ

∫
Ω

1

[1− u(x, t)]σ−1
dx

]σ .
We assume σ ≥ 2 (in the case of a Coulomb potential in the capacitor one has σ =
2, see [19, 15, 20, 16]), for constants β, γ, χ ≥ 0 which are respectively connected
to self-stretching forces, tension forces and capacitance properties of the MEMS
device, and for bounded real functions c, p, λ which are respectively related to
anisotropic damping phenomena, permittivity profile of the constitutive material
and the drop voltage applied between the ground plate at height one and the
plate whose displacement is governed by the function u(x, t): we refer to [19, 6]
and reference therein for the physical aspects and deduction of (1). We assume
in (1) Steklov boundary conditions, with nonnegative parameter d, accordingly to
applications which demand more flexible conditions than Navier’s, corresponding
to d = 0 and Dirichlet conditions u = uν = 0, obtained formally by setting d =∞.

Existence of steady states for problem (1) have been established in [5] for drop
voltage λ below the so-called pull-in voltage λ∗, a critical value which accordingly
to the Euclidean space dimension may produce instability, namely solutions u∗

such that ‖u∗‖∞ = 1, which corresponds to the physical situation in which the
deflecting MEMS’ plate touches the ground plate, and this actually occurs in di-
mension higher than the so-called critical dimension N∗, see [4, 7]. As far as we
know, for the dynamic version (1) no results in this direction are available at the
moment and this work is a first step towards a deeper understanding of those prob-
lems. In [6] the dynamic is considered from the point of view of the inverse problem
of identifying unknown coefficients under additional information on the solution
(which therefore is assumed to exist). Here we consider a variant of the nonlocal
contribution due to χ > 0, which generalizes the first-order approximation model
(in Taylor’s expansion, see [15]), in case of non-constant capacitance, correspond-
ing to σ = 2. However, we will see that our approach allows more general nonlocal
effects than the one considered here and in previous works [5, 6, 16, 20, 13, 14]. We
mention that evolution MEMS equations have been previously handled by differ-
ent methods in [18, 11, 12], where existence results are obtained avoiding nonlocal
contributions. More recently, results for nonlocal parabolic problems are obtained
in [13] whereas the second-order hyperbolic nonlocal MEMS equation is studied
in the one-dimensional case in [14].

For β, χ > 0, nonlocal perturbations destroy the variational structure of
problem (1) and we investigate existence of weak solutions by exploiting in Sections
3 and 4 a near operator theorem in the sense of Campanato [3, 22]. This approach
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enables us to prove existence and uniqueness of the solution locally in time but
globally in the physical parameters involved in the problem: a key ingredient in our
approach relies on a penalization technique. Differently from the stationary case
covered in [5] here the problem is somehow delicate as it manifests itself through
an hyperbolic nature. Then we are concerned with proving regularity of solutions
by adapting and further developing abstract results of [1] and [10]. In this respect,
it is worth to mention that standard interpolation theory does not suite optimal
regularity results even with the aid of higher-order (operator) perturbations.

Our main results are the following:

Theorem 1. Let Ω ⊂ RN , 1 ≤ N ≤ 3, be a bounded domain with sufficiently small
diameter, σ ≥ 2, nonnegative constants β, γ, χ and 0 ≤ d < d0, where d0 is the
first boundary eigenvalue of the biharmonic operator subject to Steklov boundary
conditions. Let also p, c be bounded functions and λ ∈ C1((0, T );L2(Ω)) such that
‖λ‖∞ < λ∗, u0 ∈ H2 ∩ H1

0 (Ω) (satisfying suitable compatibility conditions) and
u1 ∈ L2(Ω). Then, problem (1) possesses a unique solution u ∈ C0([0, T ];H2(Ω))∩
C1([0, T ];L2(Ω)). The same conclusion holds if d =∞ and Ω is a ball.

Theorem 2. Let u ∈ C0([0, T ];H2
0 (Ω))∩C1([0, T ];L2(Ω)) be the solution to problem

(1) given by Theorem 1. Assume u0, u1 ∈ H2∩H1
0 (Ω) and c ∈W 1,∞((0, T );L2(Ω)).

Then, the solution enjoys the following regularity:

u ∈ C0([0, T ];H4(Ω)) ∩ C1([0, T ];H2 ∩H1
0 (Ω)) ∩ C2([0, T ];L2(Ω)).

2. Preliminaries

Next we recall some basic facts in the abstract setting which will be used in the
sequel. Let V,H be Hilbert spaces such that V ↪→ H ↪→ V ′ with continuous and
dense embeddings. Let A be a linear operator such that A : V −→ V ′ and which
enjoys the following properties:

∃ ν > 0 such that 〈Au, u〉 ≥ ν‖u‖2V , ∀u ∈ V (2)

∃M1 > 0 such that |〈Au, v〉| ≤M1 ‖u‖V ‖v‖V ′ , ∀u ∈ V, ∀v ∈ V ′ (3)

〈Au, v〉 = 〈Av, u〉, ∀u, v ∈ V. (4)

Here we denote by 〈 · , · 〉 the duality pairing.

Let T > 0 and for all t ∈ [0, T ] let R(t) : V −→ H be a linear operator such
that R ∈ L∞(0, T ) and there exists M2 > 0 such that

|(R(t)u, v)H | ≤ M2 ‖u‖V ‖v‖H , ∀t ∈ [0, T ], ∀u ∈ V, v ∈ H. (5)

Let C(t) : H −→ H be a linear operator such that C ∈ L∞(0, T ) and there exists
M3 > 0 such that

|(C(t)u, v)H | ≤ M3 ‖u‖H‖v‖H , ∀t ∈ [0, T ], ∀u, v ∈ H. (6)
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Consider the following Cauchy problem⎧⎪⎨⎪⎩
Au(t) +R(t)u(t) +C(t)u′(t) + u′′(t) = f(t), t ∈ [0, T ]

u(0) = u0

u′(0) = u1

(7)

where f ∈ L2((0, T );H).

Definition 1. As a solution of problem (7) we mean

u ∈ L2((0, T );V ) ∩H1((0, T );H) ∩H2((0, T );V ′)

such that the following holds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ T

0

〈Au(t), v(t)〉+ (R(t)u(t), v(t))H + (C(t)u′(t), v(t))H

+〈u′′(t), v(t)〉 dt =
∫ T

0

(f(t), v(t))H dt

u(0) = u0

(8)

for all v ∈ L2((0, T );V ) ∩H1((0, T );H) such that v(T ) = 0.

Remark 1. Notice that∫ T

0

〈u′′(t), v(t)〉 dt =
∫ T

0

d

dt
〈u′(t), v(t)〉 −

∫ T

0

〈u′(t), v′(t)〉 dt

= 〈u′(T ), v(T )〉 − 〈u′(0), v(0)〉 −
∫ T

0

〈u′(t), v′(t)〉 dt

= −(u′(0), v(0))H −
∫ T

0

(u′(t), v′(t))H dt

= −(u1, v(0))H −
∫ T

0

(u′(t), v′(t))H dt.

Hence (8) is equivalent to requiring⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ T

0

[〈Au(t), v(t)〉+ (R(t)u(t), v(t))H + (C(t)u′(t), v(t))H

−(u′(t), v′(t))H ] dt =

∫ T

0

(f(t), v(t))H dt+ (u1, v(0))H

u(0) = u0

for all v ∈ L2((0, T );V ) ∩H1((0, T );H) such that v(T ) = 0.

As a consequence of [17, Chap. 3.8] and [1], we have the following

Theorem 3 ([17, 1]). Let f ∈ L1((0, T );H), u0 ∈ V and u1 ∈ H, then there exists
a unique solution u ∈ L2((0, T );V )∩H1((0, T );H)∩H2((0, T );V ′) to problem (7).



Nonlocal Dynamic Problems 191

Moreover, the solution u ∈ C0([0, T ];V ) ∩ C1((0, T );H) and the following energy
identity holds

〈Au(t), u(t)〉+
∫ t

0

[(R(s)u(s), u′(s))H + (C(s)u′(s), u′(s))H ] ds+ ‖u′(t)‖2H

= 〈A(0)u0, u0〉+ ‖u1‖2H +

∫ t

0

〈A′(s)u(s), u(s)〉 ds

+

∫ t

0

(f(s), u′(s))H ds, t ∈ [0, T ].

(9)

Remark 2. Notice that in particular if we set

Θu = (Au +R(t)u+C(t)u′ + u′′, u(0), u′(0))

and

Ỹ = {u |u ∈ C0([0, T ];V ) ∩ C1([0, T ];H), Θu ∈ L1((0, T );V ′)× V ×H}
then Θ|Ỹ is an isomorphism of Ỹ onto L1(0, T, L2(Ω)) × V ×H ; see also Remark

4.4 in [1].

Define the function space Hd as the Sobolev space H2(Ω) ∩H1
0 (Ω) endowed

with the scalar product

(v, w)d :=

∫
Ω

ΔvΔw dx− d

∫
∂Ω

vνwν dS

which induces on H2 ∩H1
0 (Ω) a norm which is equivalent to the standard Sobolev

norm, provided d < d0, the first simple boundary eigenvalue of the biharmonic
operator subject to Steklov boundary conditions, see [9]:

d0 := inf
H2∩H1

0(Ω)\H2
0 (Ω)

∫
Ω |Δu|2 dx∫
∂Ω
|uν |2 dS .

In particular, the operator Δ2 yields an isomorphism of Hd onto L2(Ω). In the
case d = ∞ in which the Dirichlet boundary condition u = uν = 0 is considered,
we set H∞ := H2

0 (Ω) endowed with the scalar product

(v, w)∞ :=

∫
Ω

ΔvΔw dx.

Problem (1) enters this abstract framework by choosing V = Hd, H = L2,

〈Au, v〉 :=
∫
Ω

Δu(x, t)Δv(x, t) dx − d

∫
∂Ω

uν(x, t)vν(x, t) dS

C(t) := c(x, t)I

f(x, t) := G(x, t) +H(x, t)

where I : H −→ H is the identity map, so that

u ∈ L2((0, T );Hd) ∩H1((0, T );L2(Ω)) ∩H2((0, T );H′
d)
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is a solution of (1) provided⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫
Ω

[Δu(x, t)Δv(x, t) + c(x, t)u′(x, t)v(x, t) − u′(x, t)v′(x, t)] dx

−d
∫
∂Ω

uν(x, t)vν (x, t) dS dt

=

∫ T

0

∫
Ω

[G(β, γ, u(x, t)) +H(λ(t), χ, p(x), u(x, t))]v(x, t) dx dt

+

∫
Ω

u1(x) v(x, 0) dx

0 ≤ u(x, t) < 1, in Ω× [0, T ]

u(x, 0) = u0 ∈ H4 ∩Hd(Ω), 0 < u0 < 1

for all v ∈ L2((0, T );Hd(Ω))∩H1((0, T );L2(Ω)) such that v(x, T ) = 0 (notice that
in the case d = ∞ it is enough to assume u0 ∈ Hd). Moreover, from the energy
identity (9) we have∫

Ω

|Δu(x, t)|2 dx − d

∫
∂Ω

|uν |2 dS

+

∫ t

0

∫
Ω

c(x, s)|u′(x, s)|2 dx ds +

∫
Ω

|u′(x, t)|2 dx

=

∫
Ω

|Δu0(x)|2 dx − d

∫
∂Ω

|(u0)ν |2 dS +

∫
Ω

|u1(x)|2 dx

+

∫ t

0

∫
Ω

f(x, s)u′(x, s) dx ds,

from which we get∫
Ω

|Δu(x, t)|2 dx − d

∫
∂Ω

|uν |2 dS +

∫
Ω

|u′(x, t)|2 dx

≤
∫
Ω

|Δu0(x)|2 dx − d

∫
∂Ω

|(u0)ν |2 dS +

∫
Ω

|u1(x)|2 dx

+

∫ t

0

(∫
Ω

|f(x, s)|2 dx
) 1

2
(∫

Ω

|u′(x, s)|2 dx
) 1

2

ds

+ ‖c‖∞
∫ t

0

∫
Ω

|u′(x, s)|2 dx ds.

(10)

Remark 3. Note that condition 0 ≤ u < 1 holds pointwise, if N < 4, by Sobolev’s
embedding of H2 into the space of continuous functions.

Remark 4. The second-order boundary condition involved in (1) needs to be legiti-
mated since in the Sobolev spaceH2∩H1

0 (Ω) second-order derivatives do not have,
in general, trace on ∂Ω. However, by elliptic regularity theory, the weak solution
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to the problem {
Δ2u = f, in Ω

u = 0 and uν = g, on ∂Ω

belongs to H4(Ω) provided f, g ∈ L2. Let us rewrite (1) in the following form

Δ2u = −c(x, t)u′ − u′′ +G(β, γ, u) +H(λ(t), χ, p(x), u) (11)

so that, for all t ∈ [0, T ], the trace of the Laplacian Δu(x, t) turns out to be well
defined on ∂Ω once that the right-hand side in (11) belongs to L2. This will be a
consequence of the a priori estimate proved in Theorem 2.

The following version of Gronwall’s lemma (proved in [21] actually for δ = 1
but the argument trivially extends to any δ ≥ 0) will be used in the next section.

Lemma 1. Let w ∈ C0([0, T ]), w(t) ≥ 0 for all t ∈ [0, T ] and w(0) = w0 ≥ 0 such
that the following holds

w(t) ≤ δ w0 +

∫ t

0

[h(s) + g(s)wβ(s)] ds, ∀t ∈ [0, T ]

with δ ≥ 0, β ∈ [0, 1) and g, h ∈ L1(0, T ) such that h, g ≥ 0, for almost all
t ∈ [0, T ]. Then the following inequality holds

w(t) ≤ 1

1− β

(
δ w0 +

∫ t

0

h(s) ds

)
+

(∫ t

0

g(s) ds

) 1
1−β

, ∀t ∈ [0, T ].

Lemma 1 applied to (10) with

w(t) =

∫
Ω

|Δu(x, t)|2 dx − d

∫
∂Ω

|uν |2 dS +

∫
Ω

|u′(x, t)|2 dx

w0 =

∫
Ω

|Δu0(x)|2 dx − d

∫
∂Ω

|(u0)ν |2 dS +

∫
Ω

|u1(x)|2 dx

h(t) = ‖c‖∞
∫
Ω

|u′(x, t)|2 dx, g(t) =

(∫
Ω

|f(x, t)|2 dx
) 1

2

, β =
1

2
, δ = 1

∫
Ω

|Δu(x, t)|2 dx − d

∫
∂Ω

|uν |2 dS +

∫
Ω

|u′(x, t)|2 dx

≤ 2

∫
Ω

|Δu0(x)|2 − d

∫
∂Ω

|(u0)ν |2 dS + |u1(x)|2 dx

+

∫ t

0

∫
Ω

2‖c‖∞|u′(x, t)|2 dx dt+
{∫ t

0

[∫
Ω

|f(x, t)|2 dx
] 1

2

dt

}2

.
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Finally by the classical Gronwall inequality we get∫
Ω

|Δu(x, t)|2 dx − d

∫
∂Ω

|uν |2 dS +

∫
Ω

|u′(x, t)|2 dx

≤ e2T‖c‖∞

(
2

∫
Ω

|Δu0(x)|2 − d

∫
∂Ω

|(u0)ν |2 dS + |u1(x)|2 dx

+

{∫ t

0

[∫
Ω

|f(x, t)|2 dx
] 1

2

dt

}2)
.

(12)

3. Existence via Campanato’s method: a penalization approach

The proof of existence in Theorem 1 is achieved by extending to the dynamic
setting the idea introduced in [5]. We buy the line of the stationary case whose
key-ingredient is an abstract result of [22]. The argument belongs to the so-called
Near Operators Theory introduced by S. Campanato in [3] within the framework
of non-variational nonlinear elliptic systems and which we will use in the following
form due to the third named author:

Theorem 4 (Theorem 2.1 in [22]). Let X be a topological space, Y a set, Z a
Banach space and the following mappings F : X×Y −→ Z, B : Y −→ Z. Assume
that:

(i) there exists (x0, y0) ∈ X × Y such that F(x0, y0) = 0;
(ii) the map x �→ F(x, y0) is continuous at x0;
(iii) there exist k1 > 0, k2 ∈ (0, 1) and a neighborhood of x0, U(x0) ⊂ X, such

that for all y1, y2 ∈ Y and for all x ∈ U(x0) we have

‖B(y1)−B(y2)− k1[F(x, y1)− F(x, y2)]‖Z ≤ k2‖B(y1)−B(y2)‖Z .
(iv) B is injective;
(v) B(Y ) is a neighborhood of z0 = B(y0).

Then, there exists a ball S(z0, r) ⊂ B(Y ) and a neighborhood of x0, V (x0) ⊂
U(x0), such that the following problem:{

F(x, y(x)) = 0, ∀x ∈ V (x0)
y(x0) = y0

possesses a unique solution y : V (x0) −→ B−1(S(z0, r)). Moreover, if con-
dition (iii) holds for all x ∈ X, then the solution y = y(x) turns out to be
defined in the whole X.

In our context we choose X = R+ × R+ × R+ × Φ× Λ where

Φ = {f ∈ L∞(Ω) : |x : f(x) > 0| �= 0}
and

Λ = {λ ∈ L∞[0, T ] : 0 < λ < λ∗, λ∗ ∈ R+}
Here we take the opportunity to better explain one of the argument used in

[5] and for which we realized the need of giving more details. Indeed, in order to
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verify condition (v) in Theorem 4 we need to perform a penalization procedure.
Namely let ε > 0 and consider the following penalized problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ2 uε + c(x, t)u′
ε + u′′

ε = G(β, γ, uε) +Hε(λ, χ, p(x), uε), in Ω× [0, T ]

0 < uε(x, t) < 1, in Ω× [0, T ]

uε(x, t) = ε, Δuε(x, t)− d
∂uε(x, t)

∂ν
= 0, on ∂Ω× [0, T ]

uε(x, 0) = u0 + ε, u′
ε(x, 0) = 0, on Ω.

(13)

where

Hε(λ(t)χ, p(x), u) :=
λ(t) p(x, t)

[1 + ε− u(x, t)]σ
[
1 + χ

∫
Ω

1

[1− u(x, t)]σ−1
dx

]σ .
For problem (13) the following holds

Lemma 2. Let ε0 = supΩ vε where vε is the solution to the stationary problem.
Under the assumption of Theorem 1, for all ε ∈ (0, 1−ε0

2 ) problem (13) admits a

unique solution uε ∈ C0([0, T ];H2(Ω)) ∩ C1([0, T ];L2(Ω)).

Define Yε as the set of functions y ∈ C0([0, T ];Hd,ε(Ω)) ∩ C1([0, T ];L2(Ω)),
where Hd,ε(Ω) is the set of function y such that y−ε belongs to Hd(Ω), such that:

Δ2y(x, t) + c(x, t)y′(x, t) + y′′(x, t) ∈ L1((0, T );L2(Ω)) (14)

0 < y(x, t) < 1, in Ω× [0, T ], y′(x, 0) = 0 in Ω (15)∫
Ω

1

[1− y(x, t)]4(σ−1)
dx < M1, ∀ t ∈ [0, T ] (16)∫

Ω

|Δy(x, t)|2 dx < M2, ∀ t ∈ [0, T ] (17)

for positive constants M1,M2. Set also Z = L1((0, T );L2(Ω)) × Hd,ε and finally
set x = (β, γ, χ, p, λ) to denote an element of the space X . Define

Fε(x, y) := (Fε(x, y), y(x, 0), y
′(x, 0))

=
(
Δ2y(x, t) + c(x, t)y′(x, t) + y′′(x, t)

−G(β, γ, y(x, t))−Hε(λ(t), χ, p(x), y(x, t)),

(y(x, 0)− ε− u0)|λ(t) − λ0|, y′(x, 0)
)
,

B(y) := (B(y), y(x, 0))

=
(
Δ2y(x, t) + c(x, t)y′(x, t) + y′′(x, t), y(x, 0)

)
.

Remark 5. For parameters β, χ, γ = 0, the existence of the solution vε to the
stationary problem related to (13), follows from the existence of the solution v0
corresponding to ε = 0, obtained in [4, 2], by taking 0 < ε < (1−ε0)/2 and setting
vε = v0 + ε.
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4. Nearness estimates: proof of Lemma 2 and Theorem 1

In this section we show that assumptions (i)–(v) of Theorem 4 are fulfilled for
the penalized problem (13). As a consequence of [5] we have proved that for any
(β0, γ0, χ0, p0) ∈ R+×R+×R+×Φ and for any t0 ∈ [0, T ] and λ0 ∈ (0, λ∗), there
exists a unique stationary solution vε(x, t0) ∈ Hd(Ω) ∩ H4(Ω) to the problem
obtained from (13) by freezing the time variable at t = t0, which satisfies 0 <
vε(x, t0) < 1 together with∫

Ω

1

[1− vε(x, t0)(x)]4(σ−1)
dx < M1,

∫
Ω

|Δvε(x, t0)(x)|2dx < M2

provided the diameter of Ω is sufficiently small and either 0 ≤ d < d0, the first
simple boundary eigenvalue of the biharmonic operator subject to Steklov bound-
ary conditions, or d =∞ and Ω is a ball. Both conditions on the parameter d are
required in order to have a positive preserving property to hold for the biharmonic
operator (see [9]) and which is used to prove the existence of λ∗, the so-called
pull-in voltage; estimates on λ∗ can be found in [4, 2].

Remark 6. Actually the nonlocal contribution due to χ > 0 considered here is
slight different from the one in [5]: however it is readily seen that calculations adapt
to this case with minor changes and moreover that, beyound physical motivations,
our argument allows quite general nonlocal “capacitance” effects.

Thus we set

x0 = (β0, γ0, χ0, p0, λ0) and y0,ε = vε(x, t0)

to have

Fε(x0, y0,ε) = 0.

Let us verify (ii):

‖Fε(x, y0,ε)− Fε(x0, y0,ε)‖Z

=

∫ T

0

∫
Ω

|Fε(β, γ, χ, p(x), λ(t), vε(x, t0))

− Fε(β0, γ0, χ0, p0(x), λ0, vε(x, t0))|2 dx dt

≤ 2

∫ T

0

∫
Ω

∣∣∣∣[β ∫
Ω

|∇vε(x, t0)|2 dx + γ

]
Δvε(x, t0)

−
[
β0

∫
Ω

|∇vε(x, t0)|2 dx + γ0

]
Δvε(x, t0)

∣∣∣∣2 dx dt
+ 2

∫ T

0

∫
Ω

∣∣∣∣ λ(t)p(x)

[1 + ε− vε(x, t0)]σ [1 + χh(vε)]σ

− λ0 p0(x)

[1 + ε− vε(x, t0)]σ [1 + χ0 h(vε)]σ

∣∣∣∣2 dx dt

= I1 + I2
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where we set for simplicity

h(u) =

∫
Ω

1

[1− u(x, t)]σ−1
dx.

We have

I1 ≤ 4T

[
|β − β0|2|Ω|

(∫
Ω

|∇vε(x, t0)|2 dx
)2

+ |γ − γ0|2
]
T

∫
Ω

|Δvε(x, t0)|2 dx

whereas the second integral can be estimated as follows

I2 ≤ 4

∫ T

0

∫
Ω

1

[1 + ε− vε(x, t0)]2σ

[∣∣∣∣λ(t)[p(x) − p0(x)]

[1 + χh(vε)]σ

∣∣∣∣2
+

∣∣∣∣ [λ(t) − λ0]p0(x)

[1 + χh(vε)]σ

∣∣∣∣2
+

∣∣∣∣ λ0p0(x)

[1 + χh(vε)]σ
− λ0p0(x)

[1 + χ0 h(vε)]σ

∣∣∣∣2
]
dx dt

≤ C(T,Ω,M1) (λ
∗)2 ‖p− p0‖2L∞(Ω)

+ C(T,Ω,M1), ‖p0‖2L∞(Ω) ‖λ− λ0‖2L∞(0,T )

+ C(T,Ω,M1, σ)‖p0‖2L∞(Ω) ‖λ0‖2L∞(Ω)|χ− χ0|2

(18)

where we have used in the last term of (18) the elementary inequality: |as − bs| ≤
s(a+ b)s−1|a− b|, which is valid for a, b ≥ 0 and s ≥ 1.

Next we prove the nearness estimate (iii) of Theorem 4 in the global form,
that is we have to prove that there exists k1 > 0 and k2 ∈ (0, 1) such that for all
x ∈ X , y1, y2 ∈ Yε, the following inequality holds∫ T

0

∫
Ω

|(1− k1)[B(y1)−B(y2)]

+ k1[G(β, γ, y1(x, t)) − Hε(λ(t), χ, p(x), y1(x, t))]

− [G(β, γ, y2(x, t)) − Hε(λ(t), χ, p(x), y2(x, t))]|2 dx dt

+ (1− k1)
2‖λ(t)− λ‖2∞,[0,T ] ‖y1(x, 0)− y2(x, 0)‖2Hd

≤ k2

∫ T

0

∫
Ω

|Δ2y1(x, t) + c(x, t) y′1(x, t) + y′′1 (x, t)

− [Δ2y2(x, t) + c(x, t) y′2(x, t) + y′′2 (x, t)]|2 dx dt

+ k2‖y1(x, 0)− y2(x, 0)‖2Hd
.

(19)

Observe that initial data comply (19) provided we chose (1− k1) ≤ k2.
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Next we evaluate the integral part and begin to estimate∫ T

0

∫
Ω

|G(β, γ, y1(x, t)) − G(β, γ, y2(x, t))|2 dx dt

=

∫ T

0

∫
Ω

∣∣∣∣[β ∫
Ω

|∇y1(x, t)|2 dx + γ

]
Δy1(x, t)

−
[
β

∫
Ω

|∇y2(x, t)|2 dx + γ

]
Δy2(x, t)

∣∣∣∣2 dx dt

≤ 2

∫ T

0

∫
Ω

∣∣∣∣[β ∫
Ω

|∇y1(x, t)|2 dx + γ

]
[Δy1(x, t) − Δy2(x, t)]

∣∣∣∣2 dx dt
+ 2 β2

∫ T

0

∫
Ω

∣∣∣∣Δy2(x, t)

∣∣∣∣∫
Ω

|∇y1(x, t)|2 dx −
∫
Ω

|∇y2(x, t)|2
∣∣∣∣ dx∣∣∣∣2 dx dt

≤ 2

∫ T

0

∫
Ω

∣∣∣∣[β ∫
Ω

|∇y1(x, t)|2 dx + γ

]
[Δy1(x, t) − Δy2(x, t)]

∣∣∣∣2 dx dt
+ 2 β2

∫ T

0

[∫
Ω

|Δy2(x, t)|2 dx
] [∫

Ω

|∇y1(x, t) − ∇y2(x, t)|2 dx
]

·
[∫

Ω

|∇y1(x, t) + ∇y2(x, t)|2 dx
]
dt

≤ 2

∫ T

0

{
β2

[∫
Ω

|∇y1(x, t)|2 dx
]2 ∫

Ω

|Δy1(x, t)−Δy2(x, t)|2 dx

+ 2 β γ

[∫
Ω

|∇y1(x, t)|2 dx
] ∫

Ω

|Δy1(x, t)−Δy2(x, t)|2 dx

+ γ2

∫
Ω

|Δy1(x, t)−Δy2(x, t)|2 dx
}
dt

+ 2 β2

{∫ T

0

[∫
Ω

|Δy2(x, t)|2dx
]2

dt

} 1
2

·
{∫ T

0

[∫
Ω

|∇y1(x, t) − ∇y2(x, t)|2dx
]4

dt

} 1
4

·
{∫ T

0

[∫
Ω

|∇y1(x, t) + ∇y2(x, t)|2dx
]4

dt

} 1
4

= IG1 + IG2 + IG3 + IG4.

Remark 7. By the Poincaré inequality and elliptic regularity theory one has (see,
e.g., Chap. 2 of [9] and also the Appendix in [6]) the following gradient estimate

sup
t∈[0,T ]

∫
Ω

|∇y1(x, t)|2 dx ≤ C d2Ω sup
t∈[0,T ]

∫
Ω

|Δy1(x, t)|2 dx.

where dΩ denotes the diameter of Ω.
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Next by Remark 7 and the Gronwall type estimate (12) we have

IG1 ≤ 2C2 β2 M2
2 d4Ω

∫ T

0

∫
Ω

|Δy1(x, t) − Δy2(x, t)|2 dx

≤ 2C2 β2 M2
2 d4Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

∣∣Δ2y1(x, t) − Δ2y2(x, t)

+ c(x, t)[y′1(x, t) − y′2(x, t)] + [y′′1 (x, t) − y′′2 (x, t)]|2 dx

) 1
2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}

= 2C2 β2 M2
2 d4Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1) − B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
.

(20)

Similarly one has

IG2 ≤ 2C β γM2 d
2
Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1)−B(y2)|2dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

} (21)

IG3 ≤ γ2 e2T‖c‖∞
{[∫ T

0

(∫
Ω

|B(y1)−B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
.

(22)

Finally the last integral can be estimated as follows

IG4 ≤ 2C2 β2 M2 d
4
Ω

{∫ T

0

[∫
Ω

|Δy1(x, t) − Δy2(x, t)|2 dx
]4

dt

} 1
4

·
{∫ T

0

[∫
Ω

|Δy1(x, t) + Δy2(x, t)|2 dx
]4

dt

} 1
4

≤ 4C2 β2 M2
2 d4Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1)−B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
.

(23)
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Joining estimates (20), (21), (22), (23) we get∫ T

0

∫
Ω

|G(β, γ, y1(x, t)) − G(β, γ, y2(x, t))|2 dx dt

≤ C(β, γ,M2, dΩ) e
2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1)− B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
.

(24)

Let us resume nearness estimate (19) and evaluate∫ T

0

∫
Ω

|Hε(λ(t), χ, f(x), y1(x, t))] − Hε(λ(t), χ, f(x), y2(x, t))|2 dx dt

=

∫ T

0

∫
Ω

∣∣∣∣ λ(t)f(x)

[1 + ε− y2(x, t)]σ [1 + χh(y1)]σ

− λ(t) f(x)

[1 + ε− y2(x, t)]σ [1 + χh(y2)]σ

∣∣∣∣2 dx dt

≤ 2(λ∗)2‖f‖2L∞(Ω)

∫ T

0

∫
Ω

∣∣∣∣(1 + ε− y2)
σ − (1 + ε− y1)

σ

(1 + ε− y2)σ(1 + ε− y1)σ

∣∣∣∣2
+

∣∣∣∣ [1 + χh(y2)]
σ − [1 + χh(y1)]

σ

(1 + ε− y2)σ

∣∣∣∣2 dx dt

= 2(λ∗)2‖f‖2L∞(Ω) (IH1 + IH2) .

Let us estimate separately the integrals IH1 and IH2 as follows

IH1 ≤ σ2

∫ T

0

∫
Ω

|2(1 + ε)− y1(x, t)− y2(x, t)|2(σ−1)|y1(x, t)− y2(x, t)|2
[1 + ε− y1(x, t)]2σ [1 + ε− y2(x, t)]2σ

dx dt

≤ 36(σ−1)σ2

∫ T

0

∫
Ω

[y1(x, t)− y2(x, t)]
2

[1 + ε− y1(x, t)]2σ [1 + ε− y2(x, t)]2σ
dx dt

≤ 36(σ−1)σ2 M2
1 T ‖y1 − y2‖2L∞((0,T )×Ω)

≤ 36(σ−1)σ2 M2
1 T Cd4−N

Ω ‖Δ(y1 − y2)‖2L∞(0,T,L2(Ω))

≤ 36(σ−1)σ2M2
1TCd4−N

Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1)−B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
(25)

where we have used the Sobolev embedding inequality for y ∈ H2 ∩H1
0 (Ω)

‖y‖∞ ≤ Cd
2−N

2

Ω ‖Δy‖2
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which holds as long as 1 ≤ N < 4.

IH2 ≤ σ2χ2

∫ T

0

∫
Ω

|2 + χ(h(y2) + h(y1))|2(σ−1) |h(y2)− h(y1)|2
(1 + ε− y2)2σ

dx dt

≤ σ2χ24σ−1(1 + χM
1
4
1 |Ω|

3
4 )2(σ−1)∫ T

0

∫
Ω

dx

[1 + ε− y2(x, t)]2σ

∣∣∣∣∫
Ω

1

[1− y2(x, t)]σ−1
− 1

[1− y1(x, t)]σ−1
dx

∣∣∣∣2 dt

≤ σ2χ24σ−1(1 + χM
1
4
1 |Ω|

3
4 )2(σ−1)∫ T

0

∫
Ω

dx

[1 + ε− y2(x, t)]2σ

∣∣∣∣ ∫
Ω

[1− y1(x, t)]
σ−1 − [1− y2(x, t)]

σ−1

[1− y1(x, t)]σ−1 [1− y2(x, t)]σ−1
dx

∣∣∣∣2 dt

≤ C(χ, σ,M1, |Ω|)T ‖y1 − y2‖2L∞((0,T )×Ω)

by means of the following bound which is a consequence of condition (16) and
Hölder’s inequality∫ T

0

[∫
Ω

dx

[1 + ε− y2(x, t)]2σ

]2{∫
Ω

dx

[1− y1(x, t)]σ−1 [1− y2(x, t)]σ−1

}2

dt

≤ TC(M1, |Ω|).
Finally, we may argue as in previous cases to get

IH2 ≤ C(χ, σ,M1, |Ω|)Td2Ω ‖Δ[y1 − y2]‖2L∞((0,T );L2(Ω))

≤ C(χ, σ,M1, |Ω|)T d2Ω e2T‖c‖∞

{[∫ T

0

(∫
Ω

|B(y1)−B(y2)|2 dx
) 1

2

dt

]2
+ ‖y1(x, 0) − y2(x, 0)‖2Hd

}
which together with (25) proves the nearness estimate (19) provided dΩ is suffi-
ciently small.

It remains to show that condition (v) of Theorem 4 is satisfied, namely we
have to exhibit η > 0 such that for all g ∈ L1((0, T );L2(Ω)) which satisfies∫ T

0

∫
Ω

|g − By0,ε|2 dx dt < η2

we can find uε ∈ Yε such that Buε = g. Since y0,ε ∈ Yε∩H4(Ω) and y′0,ε = y′′0,ε = 0

we have By0,ε = Δ2y0,ε ∈ L2(Ω). From what recalled in Section (3), we know that
the Cauchy–Steklov problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Buε = Δ2 uε(x, t) + c(x, t)u′
ε(x, t) + u′′

ε (x, t) = g(x, t), q.o. in Ω× [0, T ],

uε(x, 0) = y0,ε, in Ω

u′
ε(x, 0) = u1, q.o. in Ω

uε(x, t) = ε, Δuε − d∂uε

∂ν = 0, in ∂Ω× [0, T ]

possesses a unique solution uε ∈ C0((0, T );Hd,ε) ∩ C1((0, T );L2(Ω)).
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We next verify the remaining conditions for functions with membership in
the set Yε. From the energy estimate (12) applied to uε − y0,ε we get for t ∈ [0, T ](

1− d

d0

)∫
Ω

|Δuε(x, t)−Δy0,ε(x)|2 dx

≤
∫
Ω

|Δuε(x, t) −Δy0,ε(x)|2 dx− d

∫
∂Ω

∣∣∣∣∂uε

∂ν
− ∂y0,ε

∂ν

∣∣∣∣2 dS

≤ e2t‖c‖∞

{[∫ T

0

(∫
Ω

|B(uε)−B(y0,ε)|2 dx
) 1

2

dt

]2}
.

Since ∫
Ω

|Δy0,ε(x)|2 dx < M2, ∀t ∈ [0, T ]

we have also ∫
Ω

|Δuε(x, t)|2 dx < M2, ∀t ∈ [0, T ]

provided η is small enough; this yields condition (17).

Recalling that 1 ≤ N < 4, by the Sobolev embedding theorem we have

sup
Ω
|uε(x, t)− y0,ε(x)|

≤ C(d
2−N

2

Ω )‖Δ[uε(x, t)− y0,ε(x)]‖L2(Ω) < C(d
2−N

2

Ω )η.
(26)

Since 0 < y0,ε(x) < 1, for all x ∈ Ω, there exists η1 > 0 such that for 0 < η < η1
we have also 0 < uε(x, t) < 1 and condition (15) is satisfied.

Finally from the following inequality∫
Ω

1

[1− uε(x, t)]σ
dx ≤

∫
Ω

∣∣∣∣ [1− uε]
σ − [1− y0,ε]

σ

[1− y0,ε]σ[1− uε]σ

∣∣∣∣ dx+

∫
Ω

1

[1− y0,ε(x)]σ
dx

and arguments similar to those used in verifying condition (ii), we have∫
Ω

∣∣∣∣ [1− uε]
σ − [1− y0,ε]

σ

[1− y0,ε]σ[1− uε]σ

∣∣∣∣ dx ≤ C sup
Ω
|u− y0,ε|

and by (26) there exists η2 > 0 such that for 0 < η < η2∫
Ω

1

[1− uε(x, t)]4(σ−1)
dx < M1, ∀t ∈ [0, T ]

and hence condition (16). This concludes the proof of Lemma 2.

We next prove Theorem 1 by showing that the solution of the penalized
problem converges, as ε → 0 to the solution of the original problem (1). In order
to do this we prove that the family of penalized solutions yields a Cauchy sequence
in C0([0, T ];Hd) ∩ C1([0, T ];L2(Ω)). Indeed, consider two penalized solutions uε
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and uε1 corresponding to parameters ε and ε1 respectively and evaluate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2 (uε − uε1) + c(x, t)(u′
ε − u′

ε1) + u′′
ε − u′′

ε1 = G(β, γ, uε)−G(β, γ, uε1)

+Hε(λ, χ, p(x), uε)−Hε1(λ, χ, p(x), uε1 ), in Ω× [0, T ]

uε(x, t)− uε1(x, t) = ε− ε1,

Δ[uε(x, t)− uε1(x, t)]− d
∂[uε(x, t)− uε1(x, t)]

∂ν
= 0, on ∂Ω× [0, T ],

uε(x, 0) = ε− ε1, (u′
ε − u′

ε1)(x, 0) = 0, on Ω.

(27)

Arguing as in previous cases we have∫ t

0

∫
Ω

|G(β, γ, uε)−G(β, γ, uε1)|2dx dt

≤ C

∫ t

0

∫
Ω

|Δ[uε(x, t)− uε1(x, t)]|2dx dt, t ∈ [0, T ]

∫ t

0

∫
Ω

|Hε(λ, χ, p(x), uε)−Hε1(λ, χ, p(x), uε1 )|2dx dt

≤ C1(ε− ε1)
2 T |Ω| + C2

∫ t

0

∫
Ω

|Δ[uε(x, t)− uε1(x, t)]|2dx dt.

Then applying inequality (12) to problem (27) we get for all t ∈ (0, T ]∫
Ω

|Δ[uε(x, t) − uε1(x, t)]|2dx

≤ C1(ε− ε1)
2 T |Ω| + C2

∫ t

0

∫
Ω

|Δ[uε(x, t) − uε1(x, t)]|2dx dt

from which Gronwall’s lemma yields∫
Ω

|Δ[uε(x, t)− uε1(x, t)]|2dx ≤ C(ε− ε1)
2 T |Ω|

and the proof is now complete. �

Remark 8. We point out that the limiting procedure as ε → 0 carried out so far,
has to be used also in the stationary case [5], by following step by step the above
calculations.

5. An abstract result towards regularity: proof of Theorem 2

We have proved so far that problem (1) possesses a unique solution

u ∈ C0([0, T ];H2(Ω)) ∩ C1([0, T ];L2(Ω))

and in particular, since u = 0 on ∂Ω we have, regardless of higher-order boundary
conditions,

u ∈ C0([0, T ];H2 ∩H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).
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In order to prove the regularity Theorem 2 for the MEMS problem, we need
to prove that the nonlocal term

∫
Ω
|∇u(x, t)|2dx belongs to C1([0, T ]). This issue

is somehow delicate, as one may think of applying interpolation theory via penal-
ization techniques but this would yield just u ∈ C

1
2 ([0, T ];H1

0 (Ω)). Let us prove
the following

Lemma 3. Let u ∈ C0([0, T ];H2 ∩H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), then the map

t �→
∫
Ω

|∇u(x, t)|2dx

belongs to H1,∞(0, T ).

Proof. Consider the following problem⎧⎪⎨⎪⎩
−Δu(x, t) + u′(x, t) = f(x, t),

u(x, 0) = u(x, 0)

u(x, t) = 0, on ∂Ω× [0, T ]

where by assumption f ∈ C0([0, T ];L2(Ω)) and for which the energy identity reads
as follows∫

Ω

|∇u(x, t)|2dx −
∫
Ω

|∇u(x, s)|2dx + 2

∫ t

s

∫
Ω

|u′(x, ξ)|2dx dξ

= 2

∫ t

s

∫
Ω

f(x, ξ)u′(ξ, t) dξ, s < t.

Hence we get∣∣∣∣∫
Ω

|∇u(x, t)|2dx −
∫
Ω

|∇u(x, s)|2dx
∣∣∣∣

≤ 2

∫ t

s

∫
Ω

|u′(x, ξ)|2dx dξ + 2

∫ t

s

∫
Ω

|f(x, ξ)| |u′(ξ, t)| dξ

≤ 2|t− s|
(
sup
[0,T ]

‖u′(x, t)‖2L2(Ω) + sup
[0,T ]

‖f(x, t)‖L2(Ω) sup
[0,T ]

‖u′(x, t)‖L2(Ω)

)
and thus the claim is proved. �

Let us resume equation of problem (1) written in the following form

Δ2u+

[
−β

∫
Ω

|∇u(x, t)|2dx+ γ

]
Δu + c(x, t)u′ + u′′ = H(λ(t), χ, p(x), u) (28)

As a consequence of Theorem 1 the right-hand side in (28) belongs to the space
C1([0, T ];L2(Ω)), provided λ ∈ C1([0, T ];L2(Ω)), whence by Lemma 3

t �→ −β
∫
Ω

|∇u(x, t)|2dx+ γ

belongs to H1,∞(0, T ).
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Now we are in a situation where the following abstract result due to G. Gilardi
applies:

Theorem 5. Let f ∈W 1,1((0, T );H), u0, u1 ∈ V and Au0 ∈ H. Let R(t) and C(t)
belong to W 1,1(0, T ). Moreover for any v ∈ V we have ‖R′(t)v‖H ≤ c‖v‖V and
for any v ∈ H we have ‖C′(t)v‖H ≤ c‖v‖H . Then the solution u of problem 7 is
in C0((0, T );D(A)) ∩ C1((0, T );V ) ∩ C2((0, T );H).

which is straightforward from [10, Teorema 4.5], to obtain

u ∈ C0([0, T ];H4(Ω)) ∩ C1([0, T ];H2 ∩H1
0 (Ω)) ∩C2([0, T ];L2(Ω))

provided c ∈ H1,∞((0, T );L2(Ω)).

References

[1] C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni
differenzilai astratte del secondo ordine in spazi di Hilbert, Ricerche Mat. 16 (1967),
27–95.

[2] E. Berchio, D. Cassani and F. Gazzola, Hardy–Rellich inequalities with boundary
remainder terms and applications, Manuscripta Math. 131 (2010), 427–458.

[3] S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura
Appl. 167 (1994), 243–256.
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Existence and Multiplicity Results
for Some Scalar Fields Equations

Giovanna Cerami

Abstract. In this paper the results of some researches concerning Scalar Field
Equations are summarized. The interest is focused on the question of existence
and multiplicity of stationary solutions, so the model equation

−Δu+ a(x)u = |u|p−1u in RN ,

is considered. The difficulties and the ideas introduced to face them as well as
some well known results are discussed. Some recent advances concerning ex-
istence and multiplicity of multi-bump solutions are described in more detail.

Mathematics Subject Classification (2010). primary 35J20, secondary 35J60.

Keywords. Elliptic equations in RN , variational methods, multi-bump solu-
tions, infinitely many positive and nodal solutions.

1. Introduction and survey on well-known and more recent results

The aim of this paper is to describe some recent advances concerning the equation

(E) −Δu+ a(x)u = |u|p−1u in RN ,

where N ≥ 2, p > 1, p < 2∗ − 1 = N+2
N−2 , if N ≥ 3, and the potential a(x) is a

positive function that is not required to possess any symmetry property.
It is well known that a strong motivation for studying such equation is due to

its connection with Mathematical Physics. For instance, the search of certain kind
of solitary waves (stationary states) in nonlinear equations of the Klein–Gordon
or Schrödinger type leads to look for solutions of (E) (see, e.g., [5] and [8] for a
detailed discussion of this fact). Moreover, Euclidean scalar fields equations, like
(E), appear in several other context of Physics (nonlinear optics, laser propagation,
constructive field theory, etc.).

Work supported by the Italian national research project “Metodi Variazionali e topologici nello
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On the other hand, it is worth stressing that, besides the importance in the
applications, another considerable reason which motivates the researchers interest
is the presence, in equations like (E), of some specific mathematical difficulties
that make their study challenging.

Therefore, it is easy to understand why this type of equations has been object
of extensive studies during last thirty years.

Equation (E) is variational in nature: its finite energy solutions can be
searched as critical points of the ‘action’ functional defined in H1(RN ) by

I(u) =
1

2

∫
RN

(|∇u|2 + a(x)u2)dx− 1

p+ 1

∫
RN

|u|p+1dx.

However, the usual variational methods cannot be applied in a standard way be-
cause of a lack of compactness. The origin of the trouble is, essentially, the in-
variance of RN under the action of the non compact group of the translations
and, technically, appears as the non-compactness, whatever p is, of the embedding
j : H1(RN ) → Lp(RN ), and as a failure of the basic Palais–Smale condition at
some energy levels.

This difficulty can be overcome when a(x) enjoys some symmetry.

Indeed, first known results (see [6], [14], [15], [19], [21], [5]) have been obtained
assuming either a(x) = a ∈ R or a(x) = a(|x|). Actually, radial symmetry was for-
merly used to reduce (E) to one dimension, so that ordinary differential equations
methods could be applied. However, the crucial role of symmetry was clear after
the observation (due essentially to Strauss [21]) that H1

r (RN ), the subspace of
H1(RN ) consisting of radially symmetric functions, embeds compactly in Lp(RN ).
This device, together with the Palais Symmetric Criticality Principle, allows to
prove, by usual variational arguments, the existence of a positive (ground state if
a(x) = a ∈ R) solution and of infinitely many, radially symmetric, changing sign
solutions to (E) [5]. Moreover, it must be mentioned that, still under assumption
a(x) = a(|x|), one can also show the existence of infinitely many nonradial, chang-
ing sign, solutions of (E), under suitable restrictions on the dimension N (see [3],
[8] and references therein), and, furthermore, that the existence of infinitely many
non radial positive solutions can be proved if, in addition, the assumption that
a(|x|) decays at infinity with a prescribed polynomial rate is imposed (see [22]).

When a(x) has no symmetry properties, even the existence question becomes
a quite difficult matter, the loss of compactness is severe. Most researches have
been concerned with the case in which

lim
|x|→∞

a(x) = a∞ > 0

exists (for some existence and nonexistence results when this condition is not
required see, e.g., [20],[9], [10]).

Considering the non symmetric case, the first observation is that, looking for
critical points of the functional I, the topological situation appears quite different
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according that,

a(x)→ a∞, as |x| → ∞, from below (1.1)

or not.

Actually, when (1.1) is true, using concentration-compactness arguments
it is possible to show (see [17], [20]) that a positive, ground state, solution of
(E) exists either when a∞ ∈ R, either when a∞ = +∞ and can be found,
for instance, by minimizing the functional I on the Nehari natural constraint
M :=

{
u ∈ H1(RN ) : I ′(u)[u] = 0

}
.

On the contrary, if (1.1) does not hold, (E) may not have a least energy
solution. This is the case when

a(x) ≥ a∞, ∀x ∈ RN , and a(x) �= a∞ on a positive measure set.
(1.2)

Indeed, when (1.2) holds, denoting the functional related to the limit equation

(E∞) −Δu+ a∞u = |u|p−1u in RN ,

by

I∞(u) :=
1

2

∫
RN

(|∇u|2 + a∞u2)dx − 1

p+ 1

∫
RN

|u|p+1dx,

and by m∞ the value I∞ takes at the ground state solution w of (E∞), it is not
difficult to show the equalities

inf {I(u) : u ∈M} = min
{
I∞(u) : u ∈ H1(RN ), I ′∞(u)[u] = 0

}
= m∞ (1.3)

and that the infimum cannot be achieved (see, e.g., [8], Prop. 3.1).
Nevertheless, this fact does not mean that when (1.1) is not verified there is

no hope of finding positive solutions to (E). When (1.2) is true, the existence of a
positive, not ground state, solution has been proved in [2] (Sect. VII, see also [1])
when the additional decay condition∫

RN

(a(x)−a∞) exp(σ(a∞)1/2|x|)|x|N−1
2 ∈ L1(RN ) for some σ > 0 (1.4)

is satisfied. The idea of the proof is to look for critical points of I at higher energy
levels, using subtle topological tools and minimax methods, and taking advantage
of a deep study of the nature of the obstacles to the compactness ([4], [2]).

The subsequent natural question to investigate is under which conditions (E)
admits multiple solutions, eventually infinitely many, as in the radially symmetric
case. However, facing this question, it is not difficult to guess that the strategy of
trying to construct critical levels of I, avoiding the ‘bad levels’ for the compactness,
probably is not the most appropriate. Indeed, the representation theorem of the
non-compact Palais–Smale sequences of I (see [4]) supplies the information that
‘bad’ levels of I can be located by critical values of the limit functional. There-
fore, since by the Berestycki–Lions result ([5]) (E∞) has infinitely many solutions,
infinitely many ‘dangerous’ levels exist.
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The existence of infinitely many changing sign solutions to (E), when (1.1)
holds, has been proved in [9], using a quite natural approach, under the decay
condition

lim
|x|→+∞

∂a

∂x
(x)eσ|x| = +∞, ∀σ > 0, where x =

x

|x| ,

assuming, in addition, some stability of the value ∂a
∂x (x) with respect to small

perturbations of the direction. The proof is based on the idea of approximating
the equation in the whole space RN by a sequence of problems in balls, Brn(0),
centered at the origin and whose radius rn is increasing to +∞, as n → +∞.
Clearly, by using standard arguments, it is possible to construct for any such
approximating problem in Brn(0) infinitely many solutions (un

k )k. Then, using
such families of solutions, infinitely many sequences consisting of approximate
solutions having the same topological nature can be built. Finally, the fact that,
passing to the limit, these sequences give the desired infinitely many solutions of
(E), and do not give rise to non compact sequences, is obtained by very delicate
estimates involving Pohozaev type inequalities and Morse index arguments.

The possibility of proving the existence of infinitely many ‘multi-bump’ posi-
tive solutions for (E) has been firstly successfully explored in the pioneering paper
[16], under periodicity assumptions on the coefficients. This property, of course,
plays a crucial role in realizing the project of getting multi-bump solutions by
‘gluing’ positive bumps of the same nature.

Subsequently, as already mentioned, the existence of infinitely many positive
multi-bump solutions has been proved in [22], in a radially symmetric framework,
imposing on the potential the decay condition a(|x|) = a∞ + c1

|x|m +O( 1
|x|m+σ ), as

|x| → +∞, with a suitable choice of m and σ.
On the other hand, considering the semi-classical equation

−ε2Δu+ a(x)u = |u|p−1u, in RN , (1.5)

where ε is a small parameter, it is worth recalling that a lot of work has been done
on the question of the positive solutions multiplicity and that (1.5) is strongly
related to (E), because, by a change of variables, it becomes

−Δu+ a(εx)u = |u|p−1u, in RN .

The number of solutions of (1.5) has been related to the number and/or the
type of critical points of a(x) and, also, to the topology of the sublevel sets of
a(x). The method mostly used in the proofs has been the so-called method of
the ‘projections’ and a Lyapunov–Schmidt reduction of the problem to a finite-
dimensional one. Since it is very difficult to cite all the interesting contributions in
this direction without forgetting something, we just refer the interested reader to
the latest ones [7] [18] and to references therein. With respect to (1.5), it must be
pointed out that even the best results one can obtain in this setting sound, more
or less, as follows: under suitable assumptions on the nature (of critical points) of
a, for any fixed integer k, there exists εk > 0 such that, when ε ∈ (0, εk), there are
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at least k positive (possibly multi-bump) solutions. So, it is not difficult to realize
that εk goes to 0 as the number k of the desired solutions tends to infinity. Thus,
there is no hope of obtaining, by this approach, the existence of infinitely many
solutions to (E).

Recently some contributions to the settlement of the question of the existence
of infinitely many ‘multi-bump’ solutions to (E), when no symmetry assumptions
on a(x) are available, have been given in [12], [13], [11]. All these results concern
the case

a(x) �= a∞, a(x)→ a∞, as |x| → ∞, from above (1.6)

and are proved by using purely variational methods.
The rest of the present work is devoted to describe these results, providing

some insight on the main ideas.

The first result (see [12]) is stated as follows:

Theorem 1.1. Let assumptions

(h1) a(x)−→ a∞ > 0 as |x| → ∞,
(h2) a(x) ≥ a0 > 0 ∀x ∈ RN ,

(h3) a ∈ L
N/2
loc (RN ),

(h4) ∃ η̄ ∈ (0,
√
a∞) : lim|x|→+∞(a(x) − a∞)eη̄|x| = +∞

be satisfied.
Then, there exists a positive constant, A = A(N, η̄, a0, a∞) ∈ R, such that,

when

(∗) |a(x) − a∞|LN/2
loc

:= sup
y∈RN

|a(x)− a∞|LN/2(B1(y)) < A,

equation (E) has infinitely many positive solutions belonging to H1(RN ).

It is worth making at once some remarks on the above theorem assumptions.
These comments are also helpful to understand the reasons of the development of
the researches we discuss in this paper.

First of all, let notice that regularity assumption (h3) on a is very mild and,
moreover, that neither infx∈RN a(x) = a∞, nor a(x) ≥ a∞ for all x ∈ RN are
required.

Assumption (h4) is a ‘slow decay’ condition, it can be satisfied when a(x)
decays very slowly, although, unlike [22], a suitable exponential decay is allowed.
It is interesting to observe that (h4) is almost complementary of the ‘fast decay’
condition (1.4) imposed to a(x) in [2] and in [1]). The role played by (h4) is basic:
it is the deep motivation for which the variational argument works. Indeed, as we
shall see, the solutions are found by a max-min argument on the action functional I
and the procedure is successful because the attractive effect of a(x) on the ‘bumps’
is dominating on the repulsive disposition, which is of a specified exponential type,
of positive masses with respect to each other.

On the contrary, the ‘small oscillation’ condition (∗) on a appears less natural,
hence, reasonably, one wonders whether it is necessary or not.
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The answer to this question is contained in a theorem, proved in [11], in which
the same claim of Theorem 1.1 is obtained without imposing any ‘small oscillation’
condition on the potential, but asking that the potential has a, suitably large and
suitably far away, ‘pit around the origin’:

Theorem 1.2. Let a(x) satisfy (h1), (h2), (h3), and (h4). Let A ⊂ RN be an open,
bounded set such that 0 ∈ A. Let N be a bounded neighborhood of ∂A, and let
b : N → R be a continuous function, having compact support, such that

inf
x∈∂A

b(x) = b0 > 0, sup
N

b(x) < a0.

Let us consider the equation

(Eε) −Δu+ aε(x)u = |u|p−1u in RN ,

where aε(x) = a(x) − bε(x) and bε : RN → R is defined by bε(x) = b(εx) if
x ∈ N/ε, bε(x) = 0 if x /∈ N/ε (N/ε =

{
x ∈ RN : εx ∈ N}

).
Then, there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄), equation (Eε) has

infinitely many positive solutions belonging to H1(RN ).

It is worth stressing that equations (Eε) are exactly of the type (E) for any
choice of ε and that the claim, unlike the above quoted results for semi-classical
equations, gives for all ε suitably small infinitely many positive solutions to (Eε).

It is an open question if (*) can be merely dropped.
A further question coming in a quite natural way, thinking out the attractive

effect of a(x), is to investigate whether the multi-bump solutions, found in Theorem
1.1, can converge to a solution of (E), when the number of the bumps tends to
infinity.

The study of this question has been object of [13] and the positive answer is
contained in the following

Theorem 1.3. Let assumptions of Theorem 1.1 be satisfied.
Then, there exists a solution of (E), ū ∈ H1

loc(R
N ), which has infinitely many

positive bumps.
More precisely, ū is emerging (in the sense specified in first step of Sect. 2)

around an unbounded sequence of points (x̄n)n, x̄n ∈ RN (x̄n �= x̄m for m �= n).
Furthermore ū and (x̄n)n have the following properties:

lim
n→∞min {|x̄n − x̄m| : m ∈ N, m �= n} = +∞ , (1.7)

lim
n→∞ ū(x+ x̄n) = w(x) uniformly on all compact subsets of RN .

We observe that relation (1.7) indicates the bumps of ū rarefy, as the distance
from the origin increases, giving rise to a quite new phenomenon. Indeed, for
instance, multi-bump positive solutions, obtained in [22], when a(x) is radially
symmetric, cannot converge as the number of the bumps increases, and, on the
contrary the bumps, as their number increases, spread out, going far away each
other and far away from the origin in a uniform way.
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We remark that the same conclusion of the above theorem can be shown true
also for equation (Eε), for all ε for which the claim of Theorem 1.2 holds (see [11]).

The last question, that naturally appears, is to investigate the possibility, of
obtaining infinitely many multi-bump changing sign solutions, when (1.6) holds,
complementing, in some sense, the result of [9]. A positive answer has been given
in [11]:

Theorem 1.4. Let a(x) satisfy (h1), (h2), (h3), and (h4). Let A � B ⊂ RN , be
open, bounded sets such that 0 ∈ A. Let NA and NB be bounded neighborhoods of
∂A and ∂B respectively, such that NA∩NB = ∅. Let be b : N → R, N = NA∪NB ,
a continuous function, having compact support, such that

inf
x∈∂A∪∂B

b(x) = b0 > 0, sup
x∈N

b(x) < a0.

Let N/ε, bε, aε and Eε, be defined as in Theorem 1.2.

Then, there exist ε̄ > 0 such that for all ε ∈ (0, ε̄) equation (Eε) has infinitely
many nodal solutions belonging to H1(RN ).

The remainder part of the paper is organized as follows. Section 2 contains
a description of the main steps necessary to prove Theorem 1.1: the new method
for finding critical points, that can be called ‘of multiple baricenters and multiple
local Nehari constraints’, is displayed in details, making an attempt of emphasizing
the ideas and avoiding technicalities. Section 3 is devoted to an outline of the
construction of a solution to (E) having infinitely many bumps. In Section 4 a
sketch of the way of proving Theorems 1.2 and 1.4 is exposed, skipping the points
in which the arguments are similar to those of Theorem 1.1 and stressing the
differences.

2. Infinitely many multi-bump positive solutions

In this section we describe main ideas and arguments used to prove Theorem 1.1;
for sake of simplicity in what follows, instead of (h1), (h2), we assume (1.2).

Solutions of (E) are searched, by using purely variational methods, as critical
points of the functional I in special classes of ‘k-bump’ functions. This program is
carried out in several steps.

First Step: Classes of admissible multi-bump functions

We start by considering a positive number δ > 0 and by defining, for any function
u ∈ H1(RN ), its emerging part above δ

uδ(x) := (u− δ)+(x)

and its submerged part under δ.

uδ(x) := u(x)− uδ(x).



214 G. Cerami

Then, fixing a suitably small δ and a large ρ (ρ = ρ(δ) chosen so large that
w(x) < δ outside Bρ/2(0)), we say that u ∈ H1(RN ) is emerging (above δ) around
the points x1, x2, . . . , xk (in k balls of radius ρ) if

uδ(x) =

k∑
i=1

uδ
i (x)

where, for all i ∈ {1, 2, . . . , k} , uδ
i ≥ 0, uδ

i �≡ 0, uδ
i ∈ H1

0 (Bρ(xi)), Bρ(xi) ∩
Bρ(xj) = ∅ if i �= j.

Setting

K1 = RN ;

Kk =
{
(x1, x2, . . . , xk) ∈

(
RN

)k
: |xi − xj | ≥ 3ρ, i, j = 1, 2, . . . , k, i �= j

}
∀k > 1,

we now define, for all (x1, x2, . . . , xk) ∈ Kk, the classes:

Sx1,x2,...,xk
=
{
u ∈ H1(RN ) : u ≥ 0, u emerging around (x1, x2, . . . , xk) ∈ Kk,

and I ′(u)[uδ
i ] = 0, βi(u) = 0 ∀ i = 1, 2, . . . , k

}
where

βi(u) =
1

|uδ
i |22

∫
RN

(x− xi)(u
δ
i (x))

2dx (2.1)

are barycenter type maps.
The sets Sx1,x2,...,xk

defined above are not empty. Indeed, assumptions (h1),
(h2), and (h3) guarantee that, for all u ∈ H1(RN ) such that uδ �= 0, the function
Iu : [0,+∞)−→R defined as Iu(t) = I(uδ + tuδ) has a unique maximum point
tu ∈ (0,+∞), so it makes sense to call the function uδ + tuu

δ the projection of u
on the natural nonsmooth constraint

{
u ∈ H1(RN ) : I ′(u)[uδ] = 0

}
. Then, given

(x1, x2, . . . , xk) ∈ Kk, an example of function belonging to Sx1,x2,...,xk
is provided

considering:

u(x) =

{
0 ∀ x ∈ RN \ (⋃k

i=1 supp vi)

ṽi(x) ∀ x ∈ supp vi, i = 1, 2, . . . , k

where ṽi(x) is, for all i ∈ {1, 2, . . . , k} , the projection on{
u ∈ H1(RN ) : I ′(u)[uδ] = 0

}
of the function vi(x) = v(x − xi), v ∈ C∞0 (Bρ(0)) being a positive, radially sym-
metric (around the origin), function such that v(x) > δ on a positive measure
subset of Bρ(0).

Second step: Minimization between functions emerging around a given set of points

A choice of δ suitably small and assumptions (h1), (h2), and (h3) allow to show
that, for all k ∈ N \ {0} and for all (x1, x2, . . . , xk) ∈ Kk, the relation

u ∈ Sx1,x2,...,xk
=⇒ I(u) > I(uδ) > 0
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holds. Thus, obviously,

μ(x1, x2, . . . , xk) := inf
Sx1,x2,...,xk

I(u) ≥ 0,

and, the following proposition states that more is true:

Proposition 2.1. Let assumptions (h1), (h2), (h3) be satisfied. Then, for all k ∈
N \ {0} , for all (x1, x2, . . . , xk) ∈ Kk, there exists ū ∈ Sx1,x2,...,xk

such that

I(ū) = inf
Sx1,x2,...,xk

I(u) = μ(x1, x2, . . . , xk).

The method used for proving Proposition 2.1 is in the spirit of known ar-
guments exploited to show that some functionals, satisfying suitable assumptions,
possess a minimum on their natural Nehari constraint. Nevertheless, the situation,
in this setting, is more delicate, because, when we work in Sx1,x2,...,xk

, we deal with
functions satisfying ‘natural constraints’ that are only local. Therefore, the proof
is not standard.

An important effect of the above considered minimization procedure is some
remarkable feature, described by two propositions, of any minimizing function.
First statement provides a decay estimate on the submerged part of a minimizing
function and ensures that such minimizing function solves (E) on RN except the
points of the support of its emerging part :

Proposition 2.2. Let assumptions (h1), (h2), (h3), and (h4) be satisfied. Let k, ū,
and (x1, x2, . . . , xk) be as in Proposition 2.1. Then ūδ solves

(Pδ)

⎧⎪⎨⎪⎩
−Δu+ a(x)u = up in RN \ supp ūδ,

u = δ on supp ūδ

u > 0 in RN .

Moreover, setting d(x) = dist(x, supp ūδ), the relation

0 < ūδ(x) < Cδe−η̄d(x) (2.2)

holds, with C > 0 depending only on η̄, a∞, N .

Latter proposition makes clear the equations that a minimizer (actually its
emerging part), being a constrained critical point of I, must satisfy:

Proposition 2.3. Let assumptions (h1), (h2), and (h3) be satisfied. Then, for all
k ∈ N \ {0}, for all (x1, x2, . . . , xk) ∈ Kk, for all ū ∈ Sx1,x2,...,xk

such that I(ū) =
μ(x1, x2, . . . , xk), for all i ∈ {1, 2, . . . , k} , a λi ∈ RN exists so that the relation

I ′(ū)[ψ] =
∫
Bρ(xi)

ūδ(x)ψ(x)(λi · (x− xi))dx ∀ψ ∈ H1
0 (Bρ(xi)) (2.3)

holds true.
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Third step: Maximization among minimal functions

The purpose is, now, to show that, when we make the k-tuples (x1, x2, . . . , xk)
vary in the set Kk, the supremum, on the set of minima μ(x1, x2, . . . , xk) of I on
the admissible classes, is a maximum. We remark that, unlike the previous step,
where assumption (h4) was only used to prove the decay estimate (2.2), now this
assumption plays a crucial role.

Setting

μk = sup
Kk

μ(x1, x2, . . . , xk) = sup
Kk

min
Sx1,x2,...,xk

I(u),

the desired result is stated in the following:

Proposition 2.4. Let assumptions (h1), (h2), (h3), (h4) be satisfied. Then, for all
k ∈ N \ {0}:

i) ∃ (x̄1, x̄2, . . . , x̄k) ∈ Kk : μk = μ(x̄1, x̄2, . . . , x̄k);
(2.4)

ii) μk +m∞ < μk+1.

The idea underlying the above proposition can be explained, in a rough way,
as follows: in order to maximize the functional I among functions having a fixed
number of bumps, one needs that the functions (and especially the bumps) feel as
much as possible the attractive effect of a(x). On the other hand, the interaction
between the ‘bumps’ let the value of I on a multi-bump function decrease as much
as closer the bumps are, giving rise to a tendency of the bumps to escape to infinity.
Therefore, the possibility of finding a maximizer is strongly connected to a delicate
balance of these two opposite effects and, more precisely, to the possibility that
the attractive force of a(x), because of the slow decay, imposed by (h4), prevails
over the repulsive interaction between the bumps (that, by Proposition 2.2, is of
exponential type).

The proof of Proposition 2.4 follows an inductive argument, we give here an
outline of it when k = 1 and k = 2.

Case k = 1. Writing

I(u) = I∞(u) +
1

2

∫
RN

(a(x) − a∞)u2(x)dx

it is easy to realize that, being a(x) − a∞ > 0 on a positive measure set, for all
x ∈ RN

μ1 ≥ μ(x) > m∞,

holds true.
To show that μ1 is achieved, main point is proving that any sequence (yn)n,

yn ∈ RN such that limn→+∞ μ(yn) = μ1, must be bounded. Intuitively, this fact
is true because as |yn| → ∞ the interaction of minimizing functions un ‘centered’
at yn with the potential a decreases going to zero, hence I(un) approaches more
and more I∞(un), and, then, m∞. Technically, denoting by (un)n a sequence of
functions such that un ∈ Syn and I(un) = μ(yn) and by (w̃yn)n the sequence of the
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projections on the local Nehari constraint of w(· − yn), w(x) being the function
realizing (1.3), the idea is formalized by the relations

μ(yn) = I(un) ≤ I(w̃n) = I∞(w̃n) +
1

2

∫
RN

(a(x) − a∞)(w̃n(x))
2dx

≤ m∞ +
1

2

∫
RN

(a(x) − a∞)(w̃n(x))
2dx,

(2.5)

and

lim
n→+∞

1

2

∫
RN

(a(x) − a∞)(w̃n(x))
2 = 0.

Case k = 2. To show the inequality

μ2 > μ1 +m∞, (2.6)

we consider a sequence of pairs (x̄, σnτ)n, with σn ∈ R, σn −→
n→+∞

+∞, τ ∈
RN , |τ | = 1, x̄ ∈ RN such that μ1 = μ(x̄), and a sequence (un)n of functions
so that un ∈ Sx̄,σnτ , I(un) = μ(x̄, σnτ).

For large n, the emerging parts of un (emerging around x̄ and σnτ respec-
tively) are on opposite hyperspaces with respect to the strip

Σn =
{
x ∈ RN :

σn

2
− 1 < (x · τ) < σn

2
+ 1

}
.

By using a suitable cut-off function, one can set, for all n, un equal to 0 on Σn.
Evaluating I on the sequence, (vn)n, obtained cutting the functions un, one gets:

I(vn) ≤ I(un) +
1

2
c̄1

∫
Σn

((un)δ)
2dx+ c̄2

∫
Σn

((un)δ)
p+1dx

≤ μ2 +O
(
e−η̄σn

)
. (2.7)

On the other hand, for large n, vn can be written as the sum of two functions
v1n ∈ Sx̄, and v2n ∈ Sσnτ , for which the relations:

I(v1n) ≥ μ(x̄) = μ1, and I(v2n) ≥ m∞ +
1

2

∫
RN

(a(x)− a∞)(v2n)
2

hold true. Therefore,

I(vn) ≥ μ1 +m∞ +
1

2

∫
RN

(a(x) − a∞)(v2n)
2. (2.8)

Hence, thanks to (h4), (2.7) together with (2.8) gives (2.6).
Now, proving that μ2 is achieved is not a difficult matter. Again the main

point is showing that a maximizing sequence ((y1n, y
2
n))n, is bounded.

The argument can be carried out by contradiction. Denoting by (un)n, a
sequence of functions so that un ∈ Sy1

n,y
2
n

and I(un) = μ(y1n, y
2
n) assume, for

instance, |y2n| → ∞. Then, considering (sn)n, and (zn)n, two sequences of functions
so that sn ∈ Sy1

n
, and I(sn) = μ(y1n), zn ∈ Sy2

n
, and I(zn) = μ(y2n), one deduces as

in (2.5) that I(zn) ≤ m∞ + o(1). Moreover, sn ∨ zn ∈ Sy1
n,y

2
n
and, being sn ∧ zn <
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δ using the convexity and coercivity of I on functions having small L∞ norm,
I(sn ∧ zn) > 0 can be obtained. Thus,

μ2 = I(un) + o(1) ≤ I(sn ∨ zn) = I(sn) + I(zn)− I(sn ∧ zn) + o(1)

≤ I(sn) + I(zn) + o(1) ≤ μ1 +m∞ + o(1)

follows, contradicting (2.6).

Last step: Constrained critical points are free critical points

The functions uk, found by the above-described max-min procedure are ‘good
candidates’ to be critical points. Since we already know that the submerged parts
of such functions are solutions of (E) in RN except the supports of their emerging
parts, to complete the argument, what is left to show is that the emerging parts
too satisfy (E).

First of all, we need to be sure that, at least when |a− a∞|LN/2
loc

is small, the

k-tuples, around which the maximizers are emerging, are contained in the interior
part of Kk and that the supports of the emerging parts do not touch the boundary
of the balls in which they are contained. To this end, a deep inspection of the
maximizing functions asymptotic properties, as |a− a∞|LN/2

loc

→ 0, is in order.

A careful energy balance, again strongly depending on assumption (h4), shows
that, if the distance of the centers of the emerging parts would not go over any
fixed quantity, when |a− a∞|N

2 ,loc decreases going to 0, then, the energy lowering,

due to the interaction of the bumps, could exceed the attractive effect of a, yielding
a contradiction with relation (2.6) (that holds for all k ∈ N and for all a satisfying
(h1)–(h4)).

Denoting by F the family of functions a satisfying (h1)–(h4), for each a ∈ F
by Ia, Sa, μa

k the corresponding functional, classes, max-min values, and consider-
ing functions ua

k emerging around points (xa
1 , x

a
2 , . . . , x

a
k) such that ua

k ∈ Saxa
1 ,...,x

α
k
,

and Ia(ua
k) = μa

k the above reasoning is summarized by the relation:

min
{|xa

i − xa
j | : i �= j, i, j = 1, 2, . . . , k

}→ +∞ as |a− a∞|LN/2
loc

→ 0. (2.9)

Furthermore, taking advantage of the uniqueness (up to translations) of the ground
state solution w of (E∞), it is possible to describe the asymptotic shape of the
solutions emerging parts:

sup {|ua
k(x+ xa

i )− w(x)| : i = 1, 2, . . . , k, |x| ≤ r} → 0 as |a− a∞|LN/2
loc

→ 0,

(2.10)
for all r > 0.

So, as consequence of the exponential decay of w(x) and of the choice of ρ
the desired relation:

supp (ua
k)

δ
i � Bρ(x

a
i ) ∀i ∈ {1, 2, . . . , k} , for small |a− a∞|LN/2

loc

can be deduced, thanks to the choice of ρ.
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Now, the proof is completed as the following claim is shown true: when |a−
a∞|LN/2

loc

is small enough, for all k ∈ N \ {0}, the Lagrange multipliers appearing

in relations (2.3) are equal to zero.
Here the arguments become quite delicate and technical, nevertheless the

underlying idea is simple and can be roughly summarized as follows: if some La-
grange multiplier related to a maximizing k-tuple would be nonzero, then, moving
the points of that k-tuple, a little bit, along the directions of the nonzero Lagrange
multipliers, we could get a contradiction proving that the energy of minimizers re-
lated to the ‘new’ k-tuple is greater than the energy of the minimizer related to
the maximizing k-tuple.

Technically one argues as follows: if the claim is false, a sequence (an)n of
potentials satisfying (h1)–(h4), a sequence of natural numbers (kn)n and a sequence
of functions (ukn)n exist so that (denoting by In, Kn

kn
, Sn, μn

kn
the corresponding

functional, sets, classes, max-min values. . . )

|an−a∞|LN/2
loc

−→
n→+∞

0 ; ukn ∈ S n
xn
1 ,x

n
2 ,...,x

n
kn
; In(ukn) = μn

kn
and I ′n(ukn) �= 0.

Therefore, according to Proposition 2.3, some λn
i �= 0 exists for which

I ′n(ukn)[ψ] =

∫
Bρ(xn

i )

uδ
kn
(x)ψ(x) (λn

i · (x− xn
i ))dx ∀ψ ∈ H1

0 (Bρ(x
n
i ))

holds true. We can assume, e.g., that |λn
1 | �= 0, for all n and, up to a subsequence,

limn→+∞ λn
1/|λn

1 | = λ. Then, we build, for all n ∈ N \ {0} , another k-tuple of
points in RN , (yn1 , y

n
2 , . . . , y

n
kn
) ∈ Kn

kn
, setting

yni =

{
xn
i i �= 1

xn
1 + εnλ i = 1,

((εn)n being a sequence of real, positive, suitably small numbers).
To (yn1 , y

n
2 , . . . , y

n
kn
) there corresponds a sequence of functions (vn)n, made up

by minimizers of In in Snyn
1 ,yn

2 ,...,yn
kn
, which, by construction, satisfy the inequalities

In(vn) ≤ μn
kn

= In(ukn) ∀n ∈ N. (2.11)

On the other hand, writing the variation of I, passing from ukn to vn, by means
of a Taylor expansion we obtain

In(vn)− In(ukn) = I ′n(ukn)[vn − ukn ] +
1

2

∫
RN

|∇(vn − ukn)|2dx

+
1

2

∫
RN

(an)(vn − ukn)
2dx− p

2

∫
RN

[ukn + ω̃n (vn − ukn)]
p−1(vn − ukn)

2dx

where ω̃n(x) ∈ [0, 1].
Very careful estimates of the expansion terms, involving relations (2.9) and

(2.10) and other consequences of assumption (∗), show that, for large n,

In(vn)− In(ukn) > 0

contradicting (2.11) and completing the proof.



220 G. Cerami

3. A solution with infinitely many bumps

This section is devoted to describe how the existence of a positive solution to (E)
having infinitely many bumps can be obtained.

This kind of solution is searched as limit, as the number k of the bumps
goes to +∞, of a sequence (ūk)k of multi-bumps solutions given by Theorem
1.1. Therefore, unlike the functions ūk, this new solution has no a variational
characterization.

To carry out this program, in view of what seen in Section 2, it is useful to
complete the statement of Theorem 1.1 as follows:

Theorem 3.1. Let assumptions of Theorem 1.1 be satisfied. Then, for all k ∈ N \
{0} , there exists (at least) one solution ūk of (E) which is emerging around k
points (x̄k

1 , . . . , x̄
k
k) ∈ Kk.

Moreover, ūk is found as critical point of I and is characterized as

I(ūk) = min
S
x̄k
1
,...,x̄k

k

I(u) = max
Kk

min
Sx1,...,xk

I(u).

The proof of Theorem 1.3 is divided in two steps.

Step 1. We begin constructing a sequence (ūk)k whose elements ūk are, for all k,
solutions of (E) having exactly k bumps and, then, proving a relation that, in
some sense, provides a bound from below to the number of emerging parts that
can be contained in balls centered at the origin:

Proposition 3.2. Let (ūk)k be a sequence of solutions to (E) obtained as described
in Theorem 3.1. For all real number r > 0, let us denote by ν(ūk, r) the number of
points around which ūk is emerging and that are contained in Br(0).

Then, for all h ∈ N there exist a real number rh > 0 and a number kh ∈ N
such that

ν(ūk, rh) ≥ h, ∀k > kh. (3.1)

Relation (3.1) is a basic ingredient for getting the desired result; its truth
is founded on the slow decay assumption (h4). The proof follows this scheme:
assuming false (3.1) means admitting the possibility of constructing a sequence of
solutions to (E), increasing with respect to the number of bumps, and a sequence
of ‘bumps’, belonging to these solutions, centered at points that go to infinity.
Then, one shows this construction is, for large n, in contrast with the tendency of
the bumps of solutions not to go too far away from origin, in order to maximize
the energy, feeling the effect of the potential a.

Technically, one assumes there exist h ∈ N and sequences of numbers (rn)n,
rn ∈ R+ \ {0}, (kn)n, kn ∈ N, such that

rn → +∞, kn → +∞, as n→ +∞, and ν(ūkn , rn) < h, ∀n ∈ N.

Then, denoting by (x̄n
1 , . . . , x̄

n
kn
) the points around which ūkn is emerging and

passing, if necessary, to a subsequence, one can assume that for some j < h,

x̄n
i −→

n→+∞
x̄i ∀i ≤ j, and x̄n

i −→
n→+∞

+∞ ∀i > j.
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Now, in view of the fact that |x̄n
j+1| −→

n→+∞
+∞, keeping in mind the arguments to

obtain (2.5), one can prove the inequality

lim sup
n→+∞

[
μ(x̄n

1 , . . . , x̄
n
kn
)− μ(x̄n

j+2, . . . , x̄
n
kn
)
] ≤ μ(x̄1, . . . , x̄j) +m∞, (3.2)

and, on the other hand, developing an argument similar to that used to prove
(2.6), the strict inequality

max
m∈R+

μ(x̄1, . . . , x̄j ,m
x̄j+1

|x̄j+1| ) > μ(x̄1, . . . , x̄j) +m∞,

can be shown true. Therefore, the existence follows of some ȳ = m̄
x̄j+1

|x̄j+1| , so that

the estimate

lim
n→+∞

[
μ(x̄n

1 , . . . , x̄
n
j , ȳ, x̄

n
j+2, . . . , x̄

n
kn
)− μ(x̄n

j+2, . . . , x̄
n
kn
)
]

= μ(x̄1, . . . , x̄j , ȳ) > μ(x̄1, . . . , x̄j) +m∞,
(3.3)

hold true, for large n.

Then the desired contradiction is reached combining (3.2) and (3.3), because
one gets, for large n, the relation

μ(x̄n
1 , . . . , x̄

n
kn
) < μ(x̄n

1 , . . . , x̄
n
j , ȳ, x̄

n
j+2, . . . , x̄

n
kn
),

which contradicts the maximality of μ(x̄n
1 , . . . , x̄

n
kn
).

Once obtained (3.1) one observes that, for all h, an upper bound to ν(ūk, rh) is
also available, because points around which any ūk is emerging have interdistances
greater or equal than 3ρ.

Thus, for all h ∈ N \ {0} , rh, kh, and Hh exist so that

h ≤ ν(ūk, rh) ≤ Hh, ∀k > kh.

The above inequalities, clearly, imply,

lim
h→+∞

rh = +∞,

furthermore, up to a subsequence, rh ≤ rh+1, for all h ∈ N, can be assumed.

Step 2. A family of subsequences of (ūk)k is defined as follows:

(ū1
kn
)n is a subsequence of (ūk)k such that, ∀n, ν(ū1

kn
, r1) = h1,

with 1 ≤ h1 ≤ H1

(ū2
kn
)n is a subsequence of (ū1

kn
)n such that, ∀n, ν(ū2

kn
, r2) = h2,

with 2 ≤ h2 ≤ H2

· · · · · ·
(ūm

kn
)n is a subsequence of (ūm−1

kn
)n so that ∀n, ν(ūm

kn
, rm) = hm

with m ≤ hm ≤ Hm

· · · · · ·
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and, after that, the ‘diagonal’ sequence

ū1
k1
, ū2

k2
, . . . , ūn

kn
, . . . (3.4)

(definitively) subsequence of (ūm
kn
)n, for all m, is considered.

The desired solution of (E) will be obtained as limit, in a suitable sense, of
the sequence (3.4).

Indeed, first of all we observe that, for all m ∈ N, the sequences of hm−
tuples ((x̄n

1 )
m, . . . , (x̄n

hm
)m)n, consisting of points, contained in Brm(0), around

which the functions of the sequence (ūm
kn
)n are emerging, are bounded and, then,

up to subsequences, converging as n goes to +∞. Thus, the sequences consisting
of points, around which the functions of ūn

kn
are emerging, are converging as n

goes to infinity. Furthermore, the interdistances between these limit points are
greater or equal than 3ρ, because the interdistances between the centers of bumps
of functions ūn

kn
are greater or equal than 3ρ. As consequence, these limit points

form an unbounded numerable subset L := {x̄n : n ∈ N} of RN .

On the other hand, for all h, Brh(0), contains only a finite number of ‘emerg-
ing parts’ of the functions ūn

kn
, hence a control from above can be obtained on

I((ūn
kn
)|B rh

(0)) and, this yields the boundedness of ‖ūn
kn
‖H1(B rh

(0)), by using reg-

ularity arguments.

Therefore, we are in position to conclude. Indeed, being, for all n, ūn
kn

a
solution of (E), since rh → +∞ as h → +∞, we can infer that, up to a sub-
sequence, (ūn

kn
)n uniformly converges on every compact set of RN to a function

ū ∈ H1
loc(R

N ), which is a solution of (E) and has, for all h, at least h emerging
parts around points belonging to Brh(0).

We end this section giving an idea of the way in which relation (1.7) can
be proved. Once again the cause of this rarefaction phenomenon is the attractive
effect of the potential, due to (h4), and the nature of energy maximizers that the
solutions ūk have.

Actually, if relation (1.7) would be false, two subsequences of (x̄n)n, (bn)n
and (b̄n)n, would exist so that, for all n, b̄n �= bn and (|b̄n − bn|)n would be
bounded. This fact would imply the existence of a sequence (ūkn)n, of solutions of
(E), emerging around kn points (x̄n

1 , . . . , x̄
n
kn
), so that

I(ūkn) = μkn , sup
BR(bn)∪BR(b̄n)

|ūkn − ū| < 1

n
for some fixed R (3.5)

and, moreover, possessing two sequences of centers of bumps, for instance (x̄n
1 )n

and (x̄n
2 )n, having bounded interdistances.

Now, in computing I(ūkn), the effect of the interaction between the masses
corresponding to (x̄n

1 )n and (x̄n
2 )n, could exceed, for large n, the attractive effect

of the potential producing an energy drop described by

lim sup
n→+∞

[μ(x̄n
1 , . . . , x̄

n
kn
)− μ(x̄n

2 , . . . , x̄
n
kn
)] < m∞. (3.6)
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But, this relation contrasts the maximizers character of functions ūkn . Indeed,
similarly to what already seen proving (3.3), for any n a yn can be found such that
the relation

μ(yn, x̄
n
2 , . . . , x̄

n
kn
) ≥ μ(x̄n

2 , . . . , x̄
n
kn
) +m∞ − 1

n
(3.7)

holds. Hence, combining (3.5), (3.6), and (3.7), for large n, the impossible relation
would follow

μkn = I(ūkn) = μ(x̄n
1 , . . . , x̄

n
kn
) < μ(yn, x̄

n
2 , . . . , x̄

n
kn
) ≤ μkn ,

yielding the desired conclusion.

4. Multiple solutions when the potential has a ‘pit’

In this section a sketch of the proof of Theorems 1.2 and 1.4 is proposed. Theorem
1.2 is considered in part A of section, while part B is concerned with Theorem 1.4.

A) Infinitely many positive solutions

We start observing that the continuity of b allows to find a real number σ > 0 such
that, setting Ñ :=

{
x ∈ RN : dist(x, ∂A) ≤ σ

}
, Ñ ⊂ N follows and infÑ b(x) ≥

b0/2.

The variational framework to prove Theorem 1.2 is similar to that considered
for Theorem 1.1. Solutions of (Eε) are searched as critical points of

Iε(u) =
1

2

∫
RN

(|∇u|2 + aε(x)u
2)dx− 1

p+ 1

∫
RN

|u|p+1dx

on suitable classes of multi-bump functions.
Setting A/ε =

{
x ∈ RN : εx ∈ A

}
, Hε

1 = RN \ (A/ε), and, ∀k > 1

Hε
k =

{
(x1, x2, . . . , xk) ∈

(
RN

)k
: |xi − xj | ≥ 3ρ,

xi, xj /∈ A/ε, i, j = 1, 2, . . . , k, i �= j
}
,

we define for all (x1, x2, . . . , xk) ∈ Hε
k, the classes:

Sε
x1,x2,...,xk

=
{
u ∈ H1(RN ) : u ≥ 0, u emerging around (x1, x2, . . . , xk) ∈ Hε

k ,

and I ′ε(u)[u
δ
i ] = 0, βi(u) = 0 ∀ i = 1, 2, . . . , k

}
,

where βi(u) are barycenter type maps defined as in (2.1).
Working, for all ε, with the functional Iε on the classes S ε

x1,x2,...,xk
and using

arguments similar to those displayed in the second step of Section 2, it is possible
to show that

με(x1, x2, . . . , xk) := inf
Sε
x1,x2,...,xk

Iε(u) > 0,

and that it is achieved. Furthermore, defining

με,k = sup
Hε

k

με(x1, x2, . . . , xk) = sup
Hε

k

min
Sε
x1,x2,...,xk

Iε(u).
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the existence of (x̄1,ε, x̄2,ε, . . . , x̄k,ε) ∈ Hε
k so that

με,k = με(x̄1,ε, x̄2,ε, . . . , x̄k,ε),

follows as in the third step of Section 2.
Once the max-min procedure has been accomplished, some work is still

needed to show that, at least for small ε, the k-tuples around which the maxi-
mizers are emerging are contained in the interior part of Hε

k. This means to show
that, for all i ∈ {1, . . . , k} , the relation x̄i,ε /∈ ∂(A/ε) holds true.

Keeping in mind the max-min variational method used to produce candidate
critical points and the definition of aε, one understands that the possibility that
some point of the maximizing k-tuple could belong to the boundary of A/ε is ex-
cluded, when ε is small, by the presence of the potential ‘pit’ around the boundary
of A/ε. Indeed, when a component of a k-tuple comes in Ñ/ε, the interaction of the
potential with the bump, corresponding to this component, makes the functional
Iε loose energy.

We give, now, a little more detailed, even if simplified, outline of the proof
of this fact. Arguing by contradiction, the existence is assumed of a sequence
(εn)n, εn > 0, εn → 0, a sequence (kn)n, kn ∈ N, a sequence of functions (uεn,kn)n,
emerging around (x1,εn , . . . , xkn,εn), realizing μεn,kn (i.e., Iεn((uεn,kn)) = μεn,kn)
and such that, for all n, a jn ∈ {1, . . . , kn} exists for which xjn,εn ∈ ∂(A/εn).

For sake of simplicity, we consider only the case kn = 1, for all n ∈ N. So,
we denote by (un)n a sequence consisting of functions emerging around one point,
xn ∈ ∂(A/εn), realizing the values μεn,1 . Denoting by w̃n the sequence made up

projections of wn(x) := w(x − xn) on the sets
{
u ∈ H1(RN ) : I ′εn(u)[u

δ] = 0
}
,

arguing as in (2.5), we infer:

μεn,1 = Iεn(un) ≤ Iεn(w̃n) = I∞(w̃n) +
1

2

∫
RN

(aεn − a∞)(w̃n)
2dx

≤ m∞ + C

∫
RN

(aεn − a∞)(wn)
2dx,

C > 0 constant. Now, writing∫
RN

(aεn − a∞)(wn)
2dx

=

∫
RN\BR(xn)

(aεn − a∞)(wn)
2dx+

∫
BR(xn)

(aεn − a∞)(wn)
2dx,

(4.1)

the first integral in the right-hand side of (4.1) becomes as small as one wants as
R increases, namely, for all η > 0 a real positive number R, suitably big and not
depending on εn, can be found so that, for large n,∫

RN\BR(xn)

(aεn − a∞)(wn)
2dx ≤ η.

On the other hand, the second addend in right-hand side of (4.1) can be controlled
from above by a negative quantity depending neither on η nor on R. Indeed, for
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large n, the inclusion BR(xn) ⊂ (Ñ /εn), allows to obtain:∫
BR(xn)

(aεn − a∞)(wn)
2dx ≤ −b0

4

∫
B1(0)

(w(x))2dx.

As a consequence, one gets

μεn,1 < m∞

contradicting the relation

μεn,1 > m∞,

that is nothing but a particular case of (2.4).

The final step is, as in section 2, to show that the functions uε,k, realizing the
values με,k and ‘candidates’ to be critical points of Iε, are actually critical points
when ε is suitably small. Here, instead of working with potentials having ‘smaller
and smaller oscillation’, we consider potentials aε(x) having a pit around the origin
that becomes larger and larger and more and more far away as ε becomes small.
As effect of this behaviour and of the definition of Hε

k, when ε goes to zero, the
emerging parts of the candidate solutions are ‘pushed’ in regions of RN in which
aε(x) − a∞, is smaller and smaller.

The asymptotic properties of the maximizing functions uε,k are investigated
and the results are summarized by two relations, the first concerning the points
around which they are emerging, the latter concerning the asymptotic shape of
the emerging parts and showing that it approaches the ground state solution of
the limit problem (E∞) :

min {|xε,i − xε,j | : i �= j, i, j = 1, 2, . . . , k} → +∞ as ε→ 0, (4.2)

and

sup {|uε,k(x+ xε,i)− w(x)| : i = 1, 2, . . . , k, |x| ≤ r} → 0 as ε→ 0, (4.3)

for all r > 0.

Hence

supp(uε,k)
δ
i � Bρ(xε,j), ∀i = 1, 2, . . . , k for small ε

can be deduced. Thus, considering the equations which must be satisfied by a
function uε,k (obtained by the max-min procedure)

I ′ε(uε,k)ψ =

∫
Bρ(xε,i)

uδ
ε,kψ(x)(λi(x+ xε,i))dx ∀ψ ∈ H1

0 (Bρ(xi)),

to complete the proof one has to show that the Lagrange multipliers λi ∈ RN , are
equal to zero.

This last information is obtained by a quite analogous method to that indi-
cated in the last step of Section 2. Of course, in this case the analysis must be
based on relations (4.2) and (4.3) and on the smallness of aε(x)−a∞ outside A/ε,
when ε is small.
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B) Infinitely many multi-bump nodal solutions

As for Theorem 1.2, we look for critical points of functionals Iε (with aε as de-
scribed in Theorem 1.4). Nevertheless, since the desired solutions are changing
sign, we need to define new classes of functions having different features with
respect to those considered in the proofs of Theorems 1.1 and 1.3.

For fixed δ > 0, suitably small, we write any function u ∈ H1(RN ) as

u = uδ + (u+)δ − (u−)δ

where

(u+)δ = (u− δ)+

is the positive emerging part of u,

(u−)δ = (−u− δ)+

is the negative emerging part of u, and

uδ = (u ∧ δ) ∨ (−δ)
is the middle part of u.

Then, fixed a suitably small δ > 0 and a large ρ > 0 (depending on δ ),
we say that a function u ∈ H1(RN ) is positively emerging around x1, . . . , xh and
negatively emerging around y1, . . . , yk in balls of radius ρ if

(u+)δ =

h∑
i=1

(u+
i )

δ, (u+
i )

δ ∈ H1
0 (Bρ(xi)), (u+

i )
δ ≥ 0, (u+

i )
δ �≡ 0, ∀i ∈ {1, . . . , h}

(u−)δ =

k∑
i=1

(u−
i )

δ, (u−
i )

δ ∈ H1
0 (Bρ(yi)), (u−

i )
δ ≥ 0, (u−

i )
δ �≡ 0, ∀i ∈ {1, . . . , k}

where Bρ(xi)∩Bρ(xm) = ∅, Bρ(yj)∩Bρ(yl) = ∅, Bρ(xi)∩Bρ(yj) = ∅, i �= m, j �=
l, ∀ i,m ∈ {1, . . . , h} , ∀ j, l ∈ {1, . . . , k} .

The solutions whose existence is claimed in Theorem 1.4 are searched fixing
h ∈ N and looking for solutions of (Eε), in special classes of functions having
at most h positive emerging parts and an arbitrarily large number of negative
emerging parts. In this framework, Theorem 1.4 can be more precisely stated as
follows:

Theorem 4.1. Let assumptions of Theorem 1.4 be satisfied. Then, for all h ∈ N
there exists εh > 0 such that for all ε ∈ (0, εh), for all k ∈ N \ {0} , and for all
j ∈ N, 0 ≤ j ≤ min(h, k), there exists a solution of (Eε) having j positive emerging
parts and k − j negative emerging parts.

Remark 4.2. We remark that Theorem 4.1 setting h = 0 yields a result analogous
to that of Theorem 1.2: the existence of infinitely many multi-bump negative
solutions for (Eε).

We, also, notice that the statement of Theorem 4.1 holds true exchanging
the roles of positive and negative emerging parts.
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In order to prove the above theorem, we set

Hε
1 = [(B̄ \A)/ε)], Kε

1 = RN \ (B/ε);

and, for all m > 1

Hε
m =

{
(x1, x2, . . . , xm) ∈ (

RN
)m

: |xi − xl| ≥ 3ρ,

xi, xl ∈ (B̄/ε) \ (A/ε), i, l = 1, 2, . . . ,m, i �= l
}
,

and

Kε
m =

{
(y1, y2, . . . , ym) ∈ (

RN
)m

: |yi − yl| ≥ 3ρ,

dist(yi, B/ε) ≥ 3ρ , i, l = 1, 2, . . . ,m, l �= i
}
.

Obviously, for all m ∈ N \ {0} , there exists ε1 = ε1(m) such that ε ∈ (0, ε1)
implies Hε

m �= ∅, moreover, from Hε
m �= ∅, Hε

i �= ∅, ∀i = 1, 2, . . . ,m, follows.

In view of Remark 4.2, in what follows we suppose h ∈ N, h ≥ 1. We define
for all h, k ∈ N \ {0} and for 0 ≤ j ≤ min(h, k), the classes:

Sε
x1,...,xj ,y1,...,yk−j

=
{
u ∈ H1(RN ) : u positively emerging around

(x1, . . . , xj) ∈ Hε
j , negatively emerging around

(y1, . . . , yk−j) ∈ Kε
k−j , βi(u) = 0, βj+l(u) = 0,

I ′ε(u)[u
+
i ]

δ = 0, I ′ε(u)[u
−
l ]

δ = 0, i = 1, . . . , j,

l = 1, . . . , k − j
}

and

Sε
x1,...,xj

=
{
u ∈ H1(RN ) : u positively emerging around

(x1, . . . , xj) ∈ Hε
j , βi(u) = 0, I ′ε(u)[u

+
i ]

δ = 0, i = 1, . . . , j.
}

Working as indicated in Step 1 of Section 2 it is not difficult to see that
the above-defined classes are not empty. Furthermore, arguments similar to those
described in the second step of Section 2, allow us to conclude that

inf
S ε

x1,...,xj

Iε(u) > 0 ; inf
S ε

x1,...,xj,y1,...,yk−j

Iε(u) > 0

and the infima are achieved.

The middle part of any (changing sign) minimizer ûε of Iεon Sε
x1,...,xj,y1,...,yk−j

has good properties. Next proposition states that it solves (Eε) in RN except the
points belonging to the supports of the (positive and negative) emerging parts of
ûε, and that its decay can be estimated:

Proposition 4.3. Let assumptions of Theorem 1.4 be satisfied. Let h and k ∈ N \
{0} , j ∈ {1, . . . ,min(h, k)} , ε ∈ (0, ε1), and let ûε be a minimizer for Iε on
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S ε
x1,...,xj ,y1,...,yk−j

. Then (ûε)δ solves

(Pδ)

⎧⎪⎨⎪⎩
−Δu+ aε(x)u = |u|p−1u in RN \ (supp (û+

ε )
δ ∪ supp (û−

ε )
δ)

u = δ on supp (û+
ε )

δ

u = −δ on supp (û−
ε )

δ.

Moreover, setting dε(x) = dist(x, [supp (û+
ε )

δ ∪ supp(û−
ε )

δ], the relation

|(ûε)δ(x)| < Cδe−η̄dε(x) (4.4)

holds, with C > 0 depending only on η̄, a∞, and N .

Now, we first define

με
j := sup

Hε
j

min
Sε
x1,...,xj

Iε(u),

and we observe that, thanks to the compactness of the setHε
j and to the continuity

of the map (x1, . . . , xj)→ minSε
x1,...,xj

Iε(u) onHε
m, the existence of (x̄1,ε, . . . , x̄j,ε)

such that με
j = min

{
Iε(u) : u ∈ Sε

x̄1,ε,...,x̄j,ε

}
, easily follows. We then set

με
j,k−j = sup

Hε
j×Kε

k−j

min
Sε
x1,...,xj,y1,...,yk−j

Iε(u).

The fact that με
j,k−j are realized is stated in the following:

Proposition 4.4. Let assumptions of Theorem 1.4 be satisfied. Let k, h, j, ε1 be
as in Proposition 4.3. Then for all ε ∈ (0, ε1) the following relation holds

με
j,k−j > με

j,k−j−1 +m∞ (4.5)

and (x̃1,ε, . . . , x̃j,ε) ∈ Hε
j , (ỹ1,ε, . . . , ỹk−j,ε) ∈ Kε

k−j exist so that

με
j,k−j = max

Hε
j×Kε

k−j

min
Sε
x1,...,xj,y1,...,yk−j

Iε(u) = min
Sε
x̃1,ε,...,x̃j,ε,ỹ1,ε,...,ỹk−j,ε

Iε(u).

The proof of the crucial energy estimate (4.5), as well as the maximizer
existence are obtained by an inductive method similar to that used in third step
of Section 2. We remark that in this proof the slow decay of the potential and the
decay estimate (4.4) have a decisive role. Nevertheless, once proved Proposition 4.4,
some work is still needed to show that the found functions are ‘good’ candidates
to be critical points of Iε and to be able to control the interaction between the
positive and the negative bumps.

Arguments similar to that displayed in Part A of this section show that an
ε2 ≤ ε1 exists so that, for ε ∈ (0, ε2), the k-tuples around which the maximizers are
emerging are such that x̃i,ε /∈ ∂[(B̄\A)/ε] and ỹl,ε /∈ B̄/ε, for all i ∈ {1, . . . , j} , l ∈
{1, . . . , k − j} . Then the proof can be completed as in Subsection A, after proving
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for the ‘candidate’ critical points ũε,k the asymptotic relations:

min {|x̃ε,i − x̃ε,l| : i �= l, i, l = 1, 2, . . . , j} → +∞ as ε→ 0,

min {|ỹε,i − ỹε,l| : i �= l, i, l = 1, 2, . . . , k − j} → +∞ as ε→ 0,

min {|x̃ε,i − ỹε,l| : i = 1, 2, . . . , j, l = 1, 2, . . . , k − j} → +∞ as ε→ 0,

and, for all r > 0,

sup {|ũε,k(x+ x̃ε,i)− w(x)| : i = 1, 2, . . . , j, |x| ≤ r} → 0 as ε→ 0,

sup {|ũε,k(x+ ỹε,i)− w(x)| : i = 1, 2, . . . , k − j, |x| ≤ r} → 0 as ε→ 0.
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Abstract. We consider the problem

−Δu = |u|p−2 u in Ω, u = 0 on ∂Ω,

where Ω := {(y, z) ∈ Rm+1×RN−m−1 : 0 < a < |y| < b < ∞}, 0 ≤ m ≤ N−1
and N ≥ 2. Let 2∗N,m := 2(N −m)/(N −m− 2) if m < N − 2 and 2∗N,m := ∞
if m = N − 2 or N − 1. We show that 2∗N,m is the true critical exponent for
this problem, and that there exist nontrivial solutions if 2 < p < 2∗N,m but
there are no such solutions if p ≥ 2∗N,m.
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1. Introduction

Consider the Lane–Emden–Fowler problem

−Δu = |u|p−2
u in D, u = 0 on ∂D, (1.1)

where D is a smooth domain in RN and p > 2.
If D is bounded it is well known that this problem has at least one positive

solution and infinitely many sign changing solutions when p is smaller than the
critical Sobolev exponent 2∗, defined as 2∗ := 2N

N−2 if N ≥ 3 and as 2∗ := ∞ if
N = 1 or 2. In contrast, the existence of solutions for p ≥ 2∗ is a delicate issue.
Pohozhaev’s identity [12] implies that problem (1.1) has no nontrivial solution
if the domain D is strictly starshaped. On the other hand, Bahri and Coron [2]
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IN106612 (México), and the Swedish Research Council.
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proved that a positive solution to (1.1) exists if p = 2∗ and D is bounded and has
nontrivial reduced homology with Z/2 coefficients.

One may ask whether this last statement is also true for p > 2∗. Passaseo
showed in [10, 11] that this is not so: for each 1 ≤ m < N − 2 he exhibited a
bounded smooth domain D which is homotopy equivalent to the m-dimensional

sphere, in which problem (1.1) has infinitely many solutions if p < 2∗N,m := 2(N−m)
N−m−2

and does not have a nontrivial solution if p ≥ 2∗N,m. Examples of domains with

richer homology were recently given by Clapp, Faya and Pistoia in [3]. Wei and Yan
established in [17] the existence of infinitely many positive solutions for p = 2∗N,m

in some bounded domains. For p slightly below 2∗N,m solutions concentrating along

an m-dimensional manifold were recently obtained in [1, 4]. Note that 2∗N,m is the

critical Sobolev exponent in dimension N −m. It is called the (m+ 1)-st critical
exponent for problem (1.1).

The purpose of this note is to exhibit unbounded domains in which this
problem has the behavior described by Passaseo.

We consider the problem⎧⎪⎨⎪⎩
−Δu = |u|p−2

u in Ω,

u = 0 on ∂Ω,

|∇u|2 , |u|p ∈ L1(Ω),

(1.2)

in a cylindrical shell

Ω := {x = (y, z) ∈ Rm+1 × RN−m−1 : a < |y| < b}, 0 < a < b <∞,

for p > 2.
If m = N − 1 or N − 2, we set 2∗N,m := ∞. First note that if m = N − 1

then Ω = {x ∈ RN : a < |x| < b}, and a well-known result by Kazdan and
Warner [9] asserts that (1.2) has infinitely many radial solutions for any p > 2. In
the other extreme case, where m = 0, the domain Ω is the union of two disjoint
strips (a, b) × RN−1 and (−b,−a) × RN−1. Each of them is starshaped, so there
are no solutions for p ≥ 2∗N,0 = 2∗. Esteban showed in [5] that there are infinitely

many solutions in (a, b) × RN−1 if N ≥ 3 and p < 2∗, and one positive solution
if N = 2 (in fact, she considered a more general problem). These solutions are
axially symmetric, i.e., u(y, z) = u(y, |z|) for all (y, z) ∈ Ω.

Here we study the remaining cases, i.e., 1 ≤ m ≤ N − 2. Our first result
states the nonexistence of solutions other than u = 0, if p ≥ 2∗N,m.

Theorem 1.1. If 1 ≤ m < N − 2 and p ≥ 2∗N,m, then problem (1.2) does not have

any nontrivial solution u ∈ C2(Ω) ∩ C1(Ω).
Our next result shows that solutions u �= 0 do exist if 2 < p < 2∗N,m.

As usual, we write O(k) for the group of linear isometries of Rk (represented
by orthogonal k× k-matrices). Recall that if G is a closed subgroup of O(N) then
a subset X of RN is G-invariant if gX = X for every g ∈ G, and a function
u : X → R is called G-invariant provided u(gx) = u(x) for all g ∈ G, x ∈ X.
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Note that Ω is [O(m + 1)×O(N −m− 1)]-invariant for the obvious action
given by (g, h)(y, z) := (gy, hz) for all g ∈ O(m+1), h ∈ O(N −m−1), y ∈ Rm+1,
z ∈ RN−m−1.

Theorem 1.2.

(i) If 1 ≤ m < N − 2 and 2 < p < 2∗N,m, then problem (1.2) has infinitely many

[O(m+ 1)×O(N −m− 1)]-invariant solutions and one of these solutions is
positive.

(ii) If 1 ≤ m = N − 2 and 2 < p < ∞, then problem (1.2) has a positive
[O(N − 1)×O(1)]-invariant solution.

In Section 2 we prove Theorem 1.1. Theorem 1.2 is proved in Section 3. We
conclude the paper with a multiplicity result and an open question in Section 4.

2. A Pohožaev identity and the proof of Theorem 1.1

We prove Theorem 1.1 by adapting Passaseo’s argument in [10, 11], see also [3].
The proof relies on the following special case of a Pohožaev type identity due to
Pucci and Serrin [13].

For (u, v) ∈ R× RN we set

φ(u, v) :=
1

2
|v|2 − 1

p
|u|p .

Lemma 2.1. If u ∈ C2(Ω) satisfies −Δu = |u|p−2
u in Ω then, for every χ ∈

C1(Ω,RN ), the equality

(divχ)φ(u,∇u)−Dχ [∇u] · ∇u = div [φ(u,∇u)χ− (χ · ∇u)∇u] (2.1)

holds true.

Proof. Put χ = (χ1, . . . , χN ), denote the partial derivative with respect to xk by
∂k and let LHS and RHS denote the left- and the right-hand side of (2.1). Then

LHS = (divχ)φ(u,∇u)−
∑
j,k

∂kχj ∂ju ∂ku

and

RHS = (divχ)φ(u,∇u) +
∑
j,k

χk ∂ju ∂
2
jku− |u|p−2u∇u · χ

− (∇u · χ)Δu−
∑
j,k

∂kχj ∂ju ∂ku−
∑
j,k

χj ∂ku ∂
2
jku

= (divχ)φ(u,∇u)− (∇u · χ)(Δu + |u|p−2u)−
∑
j,k

∂kχj ∂ju ∂ku.

Since −Δu = |u|p−2 u, the conclusion follows. �
Using a well-known truncation argument, we can now prove the following

result.
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Proposition 2.2. Assume that χ ∈ C1(Ω,RN ) has the following properties:

(a) χ · ν is bounded on ∂Ω, where ν(s) is the outer unit normal at s ∈ ∂Ω,
(b) |χ(x)| ≤ |x| for every x ∈ Ω,
(c) divχ is bounded in Ω,

(d) |Dχ(x)ξ · ξ| ≤ |ξ|2 for all x ∈ Ω, ξ ∈ RN .

Then every solution u ∈ C2(Ω) ∩ C1(Ω) of (1.2) satisfies

1

2

∫
∂Ω

|∇u|2 χ · ν = −
∫
Ω

(divχ)φ(u,∇u) +

∫
Ω

Dχ [∇u] · ∇u. (2.2)

Proof. Choose ψ ∈ C∞(R) such that 0 ≤ ψ(t) ≤ 1, ψ(t) = 1 if |t| ≤ 1 and ψ(t) = 0
if |t| ≥ 2. For each k ∈ N define

ψk(x) := ψ

(
|x|2
k2

)
and χk(x) := ψk(x)χ(x).

Note that there is a constant c0 > 0 such that

|x| |∇ψk(x)| ≤ c0 for all x ∈ RN , k ∈ N. (2.3)

Next, choose a sequence of bounded smooth domains Ωk ⊂ Ω such that

Ωk ⊃ Ω ∩B2k(0). (2.4)

Integrating (2.1) with χ := χk in Ωk and using the divergence theorem and Lemma
2.1 we obtain ∫

Ωk

(
divχk

)
φ(u,∇u)−

∫
Ωk

Dχk [∇u] · ∇u

=

∫
∂Ωk

[
φ(u,∇u)

(
χk · νk)− (χk · ∇u)

(∇u · νk)] ,
where νk is the outer unit normal to Ωk. Property (2.4) implies that χk = 0 in
Ω� Ωk, so we may replace Ωk by Ω, ∂Ωk by ∂Ω and νk by ν in the previous
identity. Moreover, since u = 0 on ∂Ω, we have that

∇u = (∇u · ν) ν on ∂Ω.

Therefore, ∫
Ω

(
divχk

)
φ(u,∇u)−

∫
Ω

Dχk [∇u] · ∇u

=

∫
∂Ω

[
φ(u,∇u)

(
χk · ν)− (χk · ∇u) (∇u · ν)]

=

∫
∂Ω

[
φ(u,∇u)− |∇u|2

] (
χk · ν)

= −1

2

∫
∂Ω

|∇u|2 ψk(x) (χ · ν) .

(2.5)

Since divχk = ψk divχ+∇ψk ·χ, using (2.3) and properties (b) and (c) we obtain∣∣divχk
∣∣ ≤ |divχ|+ |∇ψk| |χ| ≤ |divχ|+ c0 ≤ c1 in Ω. (2.6)
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Similarly, since

Dχk(x)ξ · ξ = ψk(x)Dχ(x)ξ · ξ + (∇ψk · ξ) (χ · ξ) ,
property (d) yields∣∣Dχk(x)ξ · ξ∣∣ ≤ (1 + c0) |ξ|2 for all x ∈ Ω, ξ ∈ RN . (2.7)

Inequalities (2.6), (2.7) and property (a) allow us to apply Lebesgue’s dominated
convergence theorem to the left- and the right-hand side of (2.5) to obtain∫

Ω

(divχ)φ(u,∇u)−
∫
Ω

Dχ [∇u] · ∇u = −1

2

∫
∂Ω

|∇u|2 (χ · ν) ,

as claimed. �

Proof of Theorem 1.1. Let ϕ(t) = 1
m+1

[
1− (at )

m+1
]
be the solution to the bound-

ary value problem {
ϕ′(t)t+ (m+ 1)ϕ(t) = 1, t ∈ (0,∞),

ϕ(a) = 0.

Define

χ(y, z) := (ϕ(|y|)y, z). (2.8)

Then, if ν denotes the outer unit normal on ∂Ω,

(χ · ν) (y, z) =
{

0 if |y| = a,
1

m+1

[
1− (ab )

m+1
]
b if |y| = b.

(2.9)

So property (a) of Proposition 2.2 holds. Clearly, (b) holds. Now,

divχ(y, z) = [ϕ′(|y|) |y|+ (m+ 1)ϕ(|y|)] +N −m− 1 = N −m. (2.10)

In particular, (c) holds. To prove (d) notice that χ is O(m+ 1)-equivariant, i.e.,

χ(gy, z) = gχ(y, z) for every g ∈ O(m + 1).

Therefore, g ◦Dχ(y, z) = Dχ(gy, z) ◦ g and, hence,

〈Dχ (y, z) [ξ] , ξ〉 = 〈g (Dχ (y, z) [ξ]) , gξ〉 = 〈Dχ (gy, z) [gξ], gξ〉
for all ξ ∈ RN . Thus, it suffices to show that the inequality (d) holds for y =
(t, 0, . . . , 0) with t ∈ (a, b). A straightforward computation shows that, for such y,
Dχ(y) is a diagonal matrix whose diagonal entries are a11 = 1−mϕ(t), ajj = ϕ(t)
for j = 2, . . . ,m+ 1, and ajj = 1 for j = m+ 2, . . . , N. Since ajj ∈ (0, 1],

0 < 〈Dχ (y, z) [ξ] , ξ〉 ≤ |ξ|2 for all ξ ∈ RN � {0} (2.11)
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and (d) follows. From (2.9), (2.2), (2.11) and (2.10) we obtain

0 <
1

2

∫
∂Ω

|∇u|2 χ · ν

= −
∫
Ω

(divχ)φ(u,∇u) +

∫
Ω

Dχ [∇u] · ∇u

≤ (N −m)

∫
Ω

[
1

p
|u|p − 1

2
|∇u|2

]
+

∫
Ω

|∇u|2

= (N −m)

(
1

p
− 1

2
+

1

N −m

)∫
Ω

|∇u|2 .

The first (strict) inequality follows from the unique continuation property [8, 7].
This immediately implies that p < 2∗N,m. �

3. The proof of Theorem 1.2

An O(m+1)-invariant function u(y, z) = v(|y| , z) solves problem (1.2) if and only
if v = v(r, z) solves{ −Δv − m

r
∂v
∂r = |v|p−2v in (a, b)× RN−m−1 =: S,

v = 0 on {a, b} × RN−m−1 = ∂S, (3.1)

and |∇v|2, |v|p ∈ L1(S). Problem (3.1) can be rewritten as

− div(rm∇v) = rm|v|p−2v in S, v = 0 on ∂S. (3.2)

By Poincaré’s inequality (see Lemma 3 in [5]) and since a < r < b, the norms

‖v‖m :=

(∫
S
rm |∇v|2

)1/2

and |v|m,p :=

(∫
S
rm |v|p

)1/p

(3.3)

are equivalent to those of H1
0 (S) and Lp(S) respectively.

Consider the functional I(v) := ‖v‖2m restricted to

M := {v ∈ H1
0 (S) : |v|m,p = 1}.

Then M is a C2-manifold, and v is a critical point of I|M if and only if v ∈ H1
0 (S)

and ‖v‖2/(p−2)
m v is a nontrivial solution to (3.2). Note that I|M is bounded below

by a positive constant.

Proof of Theorem 1.2 (i). Assume that 1 ≤ m < N − 2 and 2 < p < 2∗N,m. Set

G := O(N −m− 1) and denote by H1
0 (S)G and Lp(S)G the subspaces of H1

0 (S)
and Lp(S) respectively, consisting of functions v such that v(r, gz) = v(r, z) for all
g ∈ G. Esteban and Lions showed in [6] that, for these values of m and p, H1

0 (S)G
is compactly embedded in Lp(S)G (see also Theorem 1.24 in [18]). So H1

0 (S)G is
compactly embedded in Lp(S)G for the norms (3.3) as well.
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Let

MG := {v ∈ H1
0 (S)G : |v|m,p = 1}.

It follows from the principle of symmetric criticality [18, Theorem 1.28] that the
critical points of I|MG are also critical points of I|M . The manifold MG is radially
diffeomorphic to the unit sphere in H1

0 (S)G, so its Krasnoselskii genus is infinite. A
standard argument, using the compactness of the embedding H1

0 (S)G ↪→ Lp(S)G
for the norms (3.3), shows that I|MG satisfies the Palais–Smale condition. Hence
I|MG has infinitely many critical points (see, e.g., Theorem II.5.7 in [15]). It can
also be shown by a well-known argument that the critical values of I|MG tend to
infinity (see, e.g., Proposition 9.33 in [14]).

It remains to show that (3.2) has a positive solution. The argument is again
standard: since I|MG satisfies the Palais–Smale condition,

cG0 := inf{I(v) : v ∈MG}
is attained at some v0. Since I(v) = I(|v|) and |v| ∈MG if v ∈MG, we have that
I(|v0|) = cG0 and we may assume v0 ≥ 0. The maximum principle applied to the
corresponding solution u0 of (1.2) implies u0 > 0. �

If m = N − 2, then G = O(1) and it is easy to see that the space H1
0 (S)G

is not compactly embedded in Lp(S)G. So part (ii) of Theorem 1.2 requires a
different argument.

Proof of Theorem 1.2 (ii). Assume that 1 ≤ m = N − 2 and 2 < p <∞. We shall
show that

c0 := inf{I(v) : v ∈M}
is attained. Clearly, a minimizing sequence (vn) is bounded, so we may assume
that vn ⇀ v weakly in H1

0 (S). According to P.-L. Lions’ lemma [18, Lemma 1.21]
either vn → 0 strongly in Lp(S), which is impossible because vn ∈ M , or there
exist δ > 0 and (rn, zn) ∈ [a, b] × R such that, after passing to a subsequence if
necessary, ∫

B1(rn,zn)

v2n ≥ δ. (3.4)

Here B1(rn, zn) denotes the ball of radius 1 and center at (rn, zn). Since the prob-
lem is invariant with respect to translations along the z-axis, replacing vn(r, z) by
vn(r, z + zn), we may assume the center of the ball above is (rn, 0). It follows that
for this – translated – sequence the weak limit v cannot be zero due to (3.4) and
the compactness of the embedding of H1

0 (S) in L2
loc(S). Passing to a subsequence

once more, we have that vn(x)→ v(x) a.e. It follows from the Brezis–Lieb lemma
[18, Lemma 1.32] that

1 = |vn|pm,p = lim
n→∞ |vn − v|pm,p + |v|pm,p.
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Using this identity and the definition of c0 we obtain

c0 = lim
n→∞ ‖vn‖2m = lim

n→∞ ‖vn − v‖2m + ‖v‖2m
≥ c0

(
lim
n→∞ |vn − v|2m,p + |v|2m,p

)
= c0

(
(1− |v|pm,p)

2/p + (|v|pm,p)
2/p

)
≥ c0(1− |v|pm,p + |v|pm,p)

2/p = c0.

Since v �= 0, it follows that |vn − v|m,p → 0 and |v|m,p = 1. So v ∈ M and, as
c0 = limn→∞ I(vn) ≥ I(v), we must have I(v) = c0.

So the infimum is attained at v and using the moving plane method [18,
Appendix C], we may assume, after translation, that v(r,−z) = v(r, z), i.e., v ∈
H1

0 (S)O(1). As in the preceding proof, replacing v by |v|, we obtain a positive
solution. �

4. Further solutions and an open question

If 1 ≤ m = N − 2 and p ∈ (2, 2∗N,m), the method we have used to prove Theorem

1.2 only guarantees the existence of two solutions to problem (1.2), one positive
and one negative, up to translations along the z-axis. However, if p ∈ (2, 2∗), then
it is possible to show that there are infinitely many solutions, which are not radial
in y, but have other prescribed symmetry properties.

Write y = (y1, y2) ∈ R2 × Rm−1 ≡ Rm+1 and identify R2 with the complex
plane C. Following [16], we denote by Gk, k ≥ 3, the subgroup of O(2) generated
by two elements α, β which act on C by

αy1 := e2πi/ky1, βy1 := e2πi/ky1,

i.e., α is the rotation in C by the angle 2π/k and β is the reflection in the line
y12 = tan(π/k)y11 , where y1 = y11 + iy12 ∈ C. Observe that α, β satisfy the relations
αk = β2 = e, αβα = β. Let Gk act on RN by gx = (gy1, y2, z).

Theorem 4.1. If 1 ≤ m ≤ N − 2 and 2 < p < 2∗ then, for each k ≥ 3, problem
(1.2) has a solution uk which satisfies

uk(x) = det(g)uk(g
−1x) for all g ∈ Gk, (4.1)

and uk �= uj if k �= j.

Proof. Since the approach is taken from [16], we give only a brief sketch of the
proof here and refer to Section 2 of [16] for more details.

The group Gk acts on H1
0 (Ω) by

(gu)(x) := det(g)u(g−1x),

where det(g) is the determinant of g. Let

H1
0 (Ω)

Gk := {u ∈ H1
0 (Ω) : u(gx) = det(g)u(x) for all g ∈ Gk}
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be the fixed point space of this action, and define I(u) :=
∫
Ω
|∇u|2 and

MGk := {u ∈ H1
0 (Ω)

Gk : |u|p = 1}.
By the principle of symmetric criticality the critical points of I|MGk are nontrivial
solutions to problem (1.2) which satisfy (4.1). Now we can see as in the proof of part
(ii) of Theorem 1.2 that there exists a minimizer uk for I on the manifold MGk .
Moreover, we may assume that uk has exactly 2k nodal domains, see Corollary 2.7
in [16]. So in particular, uk �= uj if k �= j. �

The question whether problem (1.2) has infinitely many solutions when 1 ≤
m = N − 2 and p ∈ [2∗, 2∗N,m) remains open. We believe that the answer is yes,
but the proof would require different methods.
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The Geometric Microlocal Analysis of
Generalized Kimura and Heston Diffusions

C.L. Epstein and Rafe Mazzeo

Abstract. In this paper we show how to use geometric microlocal analysis
techniques to construct the heat kernel for a class of degenerate diffusions,
called Kimura diffusions, which arise as continuum limits of the Wright–Fisher
model in Population Genetics. We restrict our attention to the case of a
Kimura diffusion on a manifold with boundary, and show that, by changing
variables and scaling, we can employ the 0-calculus to construct a parametrix
for the heat kernel.
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Keywords. Degenerate diffusion operators, heat kernel, Kimura diffusion,
Wright–Fisher model, population genetics, V0-calculus.

1. Introduction

Our recent work [6], [7] contains a thorough analysis of the existence and regularity
theory for solutions of a certain class of degenerate diffusion operators ∂t − L on
a compact manifold with corners M, for data in anisotropic Hölder spaces. The
operators we consider arise naturally in applications to population genetics and
mathematical finance, and to acknowledge some of the early and influential work
on special operators operators of this form, we call these generalized Kimura dif-
fusions; we also use the moniker Wright–Fisher since the original discrete Markov
chain model in population genetics is known as the Wright–Fisher model.

Let p be a point on the boundary of M and let (r1, . . . , rk, y1, . . . , y�) be a
local coordinate system near a point p. Here each rk ≥ 0 and (y1, . . . , y�) lies in an
open ball in R�, with p corresponding to the origin. (If such coordinates exist, we
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say that p lies on a corner of codimension k). We say that L is of general Kimura
type if it takes the form

L =

k∑
i=1

ri∂
2
ri +

k∑
p,q=1

apqrprq∂
2
rprq +

k∑
i=1

bi∂ri

+
k∑

p=1

�∑
j=1

epjrp∂
2
rpyj

+
�∑

j,s=1

cjs∂
2
yjys

+
�∑

s=1

fs∂ys ,

where all coefficients apq, bi, epj , cjs and fs are smooth functions of (r, y). It is
elliptic in this setting provided these coefficients (with the prefactors of r removed)
satisfy a certain definiteness condition which we explain below. The dependence of
the coefficients bi on (r, y) is worthy of special note since this dependence causes
many of the technical difficulties in our analysis.

Although the aforementioned references do not explicitly treat other types of
degenerate diffusions, we observed in the course of that research that our methods
and results can be adapted easily to another interesting class of operators which
generalize the so-called Heston operator, a useful model in mathematical finance.
The elliptic operators L associated to these generalized Heston diffusions are nearly
of the same form as the Kimura operators above except that the coefficients crs
associated to the tangential second-order terms also vanish to first order at the
boundaries and corners of M . As in the Kimura setting, there is an adapted notion
of ellipticity here.

The monograph [7] discusses a number of approaches that have been used
successfully in the past to treat these two types of degenerate parabolic problems;
we draw attention in particular to [4], [5] which analyze special cases of these types
of operators from a geometric point of view.

Our goal in this paper is to indicate how an analysis of generalized Kimura
and Heston operators and their associated heat operators can be addressed us-
ing the methods of geometric microlocal analysis. This approach comprises a very
robust set of tools, pioneered by Melrose and extensively developed by him and
many others, building from the elliptic and parabolic parametrix constructions of
classical microlocal analysis with a particular focus on the polyhomogeneous struc-
ture of the Schwartz kernels of these parametrices. The advantage of this over the
more customary focus on symbol classes, etc., is that parametrices of degenerate
operators must incorporate information not only about interior singularities (e.g.,
along the diagonal) but along the boundaries and corners as well, since that is
where the effects of the degeneracy appear. These new boundary singularities are
best described using the geometric language of blowups of manifolds with corners
and the systematic use of spaces of conormal and polyhomogeneous distributions.
There are now quite a few detailed treatments of special cases of this method-
ology, though unfortunately no general expository source. We refer to [12], [15]
and [11] for very detailed explanations of the constructions for particular classes
of degenerate elliptic operators; the first and last paper treat operators similar to
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those considered here. For treatments of the parabolic problems associated to such
operators see [1], [13] and the forthcoming expository survey [2].

To keep this exposition brief, we consider only the restricted setting where M
is a manifold with boundary. This reduces the complexity of the analysis substan-
tially. It will be possible to handle the general case, allowing corners of arbitrary
codimension, using extensions of these methods, but this will take substantial fur-
ther work.

There is at least one compelling reason to pursue this alternate development
to the results of [7], since there is a lacuna in the technical results obtained by
those earlier methods, as we now describe. In the original applications to pop-
ulation biology which drew us to these problems, it is important to understand
Kimura diffusions as semigroups on the function space C0(M). Indeed, this is natu-
ral because the dual problem (“Kolmogorov’s forward equation”) acts on measures.
Using the earlier approach, we gave a complete analysis of the semigroup on C0,
and specifically the precise and sharp estimates for the smoothing effect of this
diffusion, only for two special cases: the one-dimensional case handled in [6], and
the invariant model case (the key building block in the parametrix construction) in
[7]. This is possible because there are explicit formulæ for the heat kernels in these
model cases, from which the regularity of solutions can be deduced quite easily.
In the one-dimensional case one can change variables to put the operator exactly
into model form near each boundary point. In higher dimensions this analysis also
suffices when the second-order part of the operator agrees exactly with the model.∑

j
xj∂

2
xj

+
∑

k
∂2
yk
. (1.1)

In the general higher-dimensional case, however, a more elaborate perturbation
analysis is required, and these arguments are structured with respect to a given
Hölder space, hence precluding direct consideration of C0. That approach does
allow one to deduce precise regularity estimates at times t > 0 if the initial data
lies in one of these Hölder spaces, but to pass from there to initial data in C0
requires a limiting argument using the maximum principle, which loses a lot of
information. By contrast, the geometric microlocal approach developed here allows
us to complete the C0 semigroup theory for generalized Kimura diffusions, at least
in the case of manifolds with boundary but no higher codimensional corners.

Let us now turn to the specific results proved here. Consider the parabolic
operator ∂t − L on a manifold with boundary M where L falls into one of the
two following classes of degenerate elliptic operators, the generalized Kimura-type
diffusion:

LKim = r∂2
r +

∑
j

cj(r, y)r∂r∂yj

+
∑
i,j

aij(r, y)∂
2
yiyj

+ b0(r, y)∂r +
∑
j

bj(r, y)∂yj + e(r, y),
(1.2)

where (aij) is a positive definite (n− 1)-by-(n− 1) matrix, and where we require
that LKim is elliptic, in the ordinary sense, in the interior ofM , and the generalized
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Heston-type diffusion:

LHes = x∂2
x +

∑
j

cj(x, y)x∂x∂yj

+ x
∑
i,j

aij(x, y)∂
2
yiyj

+ b0(x, y)∂x +
∑
j

bj(x, y)∂yj + e(x, y).
(1.3)

We have normalized LKim by requiring the coefficient of ∂2
r to equal r; sim-

ilarly, LHes is normalized by requiring that the coefficient of ∂2
x equals x. With

these normalizations, the value of the coefficient b0 is invariantly defined at r = 0
(or x = 0). We then define

β(LKim) or β(LHes) = inf{b0(0, y) : y ∈ ∂M}; (1.4)

this number is often just denoted by β. In what follows we restrict attention to
the case that β > 0. The character of the Schwartz kernel of the inverse is quite
different when β = 0, with an interior term and a term localized on the boundary,
see [7, 17].

The reason for labeling the normal variable r in (1.2) and x in (1.3) will
become apparent momentarily. Ellipticity now requires that the symmetric matrix⎛⎜⎜⎜⎝

1 c1 . . . cn−1

c1 a11 . . . a1,n−1

...
...

cn−1 an−1,1 . . . an−1,n−1

⎞⎟⎟⎟⎠ (1.5)

is positive definite, and in addition that LHes is elliptic in the interior of M . Notice
that the requirements of positive definiteness of the boundary operator along with
the ordinary (but nonuniform) ellipticity in the interior together fix the notions of
degenerate ellipticity in each setting.

The starting point for our work is the observation that operators in both
classes can be transformed into the well-understood class of elliptic uniformly
degenerate operators (also called 0-operators; we use these two monikers inter-
changeably). By definition, an operator L is said to be uniformly degenerate if it
takes the form

L = x2∂2
x +

∑
j

cj(x, y)x
2∂2

xyj
+
∑
i,j

aij(x, y)x
2∂2

yiyj

+ b0(x, y)x∂x +
∑
j

bj(x, y)x∂yj + e(x, y).
(1.6)

Just as for Heston operators, 0-ellipticity requires that the same matrix (1.5) be
positive definite and that L is elliptic in the standard sense in the interior.

The relationships between these types of operators is not difficult to explain.
First, after a change of variables, an elliptic Kimura operator LKim is equivalent to
a multiple of an elliptic uniformly degenerate operator. Indeed, replace the defining
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function r by a new variable x =
√
r; observing that

√
r ∂r =

1

2
∂x =⇒ r∂2

r =
1

4

(
∂2
x −

1

x
∂x

)
,

we obtain the equivalent expression

LKim =
1

4
∂2
x +

1

2

∑
cjx∂

2
xyj

+
∑

aij∂
2
yiyj

+
1

2

(
b0 − 1

2

)
x−1∂x +

∑
bj∂yj + e.

(1.7)

This is smooth and nondegenerate if and only if b0 ≡ 1
2 ; in general, however,

L := x2LKim is an elliptic uniformly degenerate operator. Similarly, if LHes is an
elliptic Heston operator, then L = xLHes is again elliptic and uniformly degenerate,
without need to change variables.

What these transformations show is that elliptic operators of Kimura or He-
ston type differ only mildly from elliptic uniformly degenerate operators; further-
more, an uniformly degenerate operator which arises in this way has lowest-order
term, e(x, y), which vanishes at x = 0. We assume that this last condition holds
for all the uniformly degenerate operators we consider below since this simplifies
several points in the exposition. In other words, we restrict attention to uniformly
degenerate operators of the form

L = x2∂2
x +

∑
j

cj(x, y)x
2∂2

xyj
+
∑
i,j

aij(x, y)x
2∂2

yiyj

+ b0(x, y)x∂x +
∑
j

bj(x, y)x∂yj .
(1.8)

The advantage of these transformations is that one has available the calculus
of 0-pseudodifferential operators, as defined and developed in [11], which leads to
detailed understanding of uniformly degenerate operators. These same techniques
may therefore be brought to bear, to deduce mapping properties, fine regularity
statements, etc., for elliptic Kimura and Heston operators.

It is less obvious how to use this relationship when studying the associated
heat operators, however. For example, multiplying ∂t−LKim by r and then setting
r = x2 produces the rather difficult looking operator x2∂t − L, where L is an
elliptic 0-operator, which is (rather seriously) non-parabolic at ∂M . A completely
analogous issue occurs for Heston operators. Thus the new contribution of this
paper is to explain how to adapt the geometric microlocal parametrix methods
to these new types of degenerate parabolic operators. As a prelude to this, the
next section contains a somewhat abridged review of the elliptic parametrix con-
struction. This is important in its own right, but the methods provide a very good
warm-up to the slightly more complicated constructions needed for the parabolic
problem. That parabolic parametrix construction is explained in §4, and following
this we explain in §5 how to use this parametrix to deduce the sharp regularity
properties of solutions.
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2. A review of the elliptic theory

As explained above, we begin with a review of the elliptic parametrix construction
for elliptic uniformly degenerate operators. Amongst other things, this provides
a clear indication of the role of boundary conditions. In this section we identify
the space of pseudodifferential operators acting on functions defined on M which
contains the partial inverses of a generalized Kimura and Heston operators, L−1

Kim

and L−1
Hes, as the calculus of uniformly degenerate operators on a manifold with

boundary.
It is shown in [7] that under the assumption that β(LKim) > 0, the equation

LKimu = f (2.1)

is solvable for all f in a subspace, of codimension 1, defined by a linear functional
of the form

�(f) =

∫
M

fϕdV. (2.2)

Here ϕdV is the solution to the adjoint equation, L′
Kimϕ = 0, and ϕ is an integrable,

non-negative function which is smooth in the interior of M. There is a similar
statement about the solvability of LHesu = f which can be proved based on the
theory developed in this section.

Our main results in the elliptic case are summarized in the two following
theorems.

Theorem 2.1. Let LKim be a generalized Kimura operator on a manifold with
boundary M, for which the inward pointing part of the first-order term is nowhere
vanishing. The partial inverse operator L−1

Kim belongs to the space of 0-pseudo-

differential operators Ψ−2,2,0,2β−1
0 (M), where β = β(LKim) is defined in (1.4).

Remark 2.2. We explain the notation Ψ−2,2,0,2β−1
0 (M) below, but note here that the

superscripts denote orders of vanishing of the Schwartz kernels at various boundary
faces of the 0-double space M2

0 introduced below. Since we have changed variables,
setting r = x2, we should note that these orders of vanishing are with respect to
the (x, y) rather than the (r, y) coordinate system, and the non-degenerate measure
dx′dy′.

Theorem 2.3. Let LHes be a generalized Heston operator on a manifold with bound-
ary M, for which the inward pointing part of the first-order term is nowhere vanish-
ing. The partial inverse operator L−1

Hes belongs to the space of 0-pseudo-differential

operators Ψ−2,1,0,β−1
0 (M), with β = β(LHes) defined in (1.4).

In the remainder of this section we denote by L any second-order elliptic
uniformly degenerate operator (1.6); for simplicity, assume that L is scalar, though
the generalization of all the material below to systems is straightforward (see [11]).
We refer to this paper for further details on all of the notation and ideas discussed
in this section. At the end of this section we indicate why the results discussed
here imply Theorems 2.1 and 2.3.
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2.1. Model operators

One of the first invariants associated to L is its indicial operator. This is an or-
dinary differential operator, parameterized by points y ∈ ∂M , and given in local
coordinates by

I(L)y = s2∂2
s + b0(0, y)s∂s.

This is obtained by formally replacing the local variable x by a global variable
s ∈ R+ – there is an invariant way of regarding s as lying in the inward-pointing
b-normal bundle to ∂M at y – and then setting all other occurrences of x to 0.
In particular, we evaluate the coefficient b0 at (0, y) ∈ ∂M and because we are
assuming that the lowest-order term e vanishes at x = 0, this term disappears
in this model operator. The indicial operator is a regular singular operator and
can be analyzed by classical methods. Its indicial roots are the values γ such that
I(L)ysγ = 0; since L is second-order scalar, there are only two such values, γ0 = 0
and γ1 = 1− b0(y), and so

I(L)y(α(y)s0 + β(y)s1−b0(y)) = 0

for all y, at least so long as b0(y) avoids the non-negative integers. We shall assume
for the rest of this paper that b0(y) > 0 for all y; it is possible to treat the
case b0(y) ≡ 0 by essentially the same methods, though the final result is rather
different. The general mixed case, where b0 may vanish on some closed subset of
∂M presents many technical difficulties. The main applications from biology and
finance prohibit b0 < 0, and in fact often require that 0 ≤ b0 ≤ 1; we do not
insist on this latter restriction, however. Thus we assume only that b0 > 0. The
compactness of ∂M implies that β(LKim) defined in (1.4) as the infimum of b0(0, y)
over y ∈ ∂M is positive.

This family of indicial operators and indicial roots indicates what we should
expect of more general solutions of Lu = 0. For example, in the special case where
b0 remains constant on ∂M , then one of the main results of [11] states that an
arbitrary (local) solution u to Lu = 0 has an asymptotic expansion as x → 0 of
the form

u(x, y) ∼
∑
i

xiu0i(y) +
∑
j

x1−b0u1j(y). (2.3)

This expansion must be interpreted properly since in many cases it only holds in
a weak, or distributional sense. This means simply that if χ(y) ∈ C∞(∂M), then
it is always true that

〈u(x, ·), χ(·)〉 =
∫
∂M

u(x, y)χ(y) dy ∼
∑
i

xi〈u0i, χ〉+
∑
j

x1−b0〈u1j , χ〉

is an asymptotic expansion in the usual (strong) sense, but (2.3) need not hold
in this same pointwise strong sense. Actually, it is known that if the leading co-
efficients u00 and u10 are both smooth, then all coefficients in the expansion are
smooth and (2.3) is a classical asymptotic expansion. It is still possible to work
with weak expansions, with some important caveats which are noted below.
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Two issues complicate the problems of interest to us. The first is that it is
more natural in applications to allow the indicial root 1−b0(y) to vary smoothly as
a function on ∂M . This leads to a more complicated regularity theory for general
solutions of Lu = 0 (or Lu = f), see [10] for some recent work on this. The choice
of boundary condition we shall impose circumvents this to some extent. Namely,
we select only the (unique) solution for which u10 ≡ 0, and hence which contains
no term u1j(y)x

1−b0(y) in its expansion. This is tantamount to choosing a solution

u ∈ C∞(M) to Lu = f , where f ∈ C∞(M). Of course part of the problem is
to show that such a solution exists and is unique, which is proved in [7]. This
choice of boundary condition is of Neumann type, in the sense that, at least when
b0(y) ∈ (0, 1), we are requiring a non-leading term in the expansion for u at
∂M to vanish. This introduces another complication, familiar even in the classical
nondegenerate case with Neumann boundary conditions, that the construction of
a solution operator requires some extra global considerations, compared to the
solution for the Dirichlet problem.

One further model operator is needed in the analysis of L: the normal operator

N(L)y = s2∂2
s +

∑
i

ci(0, y)(s∂s)(s∂wi ) +
∑
ij

aij(0, y)s
2∂wiwj

+ b0(0, y)s∂s +
∑
j

bj(0, y)s∂wj .

This acts on a half-space R+
s × Rn−1

w , which can be naturally identified as the
inward pointing half of TyM at each y ∈ ∂M . Since N(L) is translation invariant
in w and jointly dilation invariant in (s, w), it can be analyzed by first passing
to the Fourier transform in w and then rescaling, setting σ = s|η|, where η is the
Fourier transform variable dual to w. This leads to an ordinary differential opera-
tor, depending parametrically on y and η̂ = η/|η|. Because L is second order and
scalar, there is a standard classical procedure for writing down the corresponding
Green function of this ODE; this Green function may then be rescaled and Fourier
transformed back to a Green function for N(L)y itself. This should be regarded
as the ‘infinitesimal inverse’ for L at y ∈ ∂M , and is the key new building block
in the construction for the actual (generalized) inverse for L.

To understand this in a somewhat broader sense, observe that the standard
parametrix construction for approximate inverses of nondegenerate elliptic differ-
ential operators in microlocal analysis is simply an elegant way to ‘glue together’
the family of inverses to each of the constant coefficient models obtained by freez-
ing the coefficients of the differential operator at each point. (More broadly still,
many proofs of the classical Schauder estimates proceed by some sort of perturba-
tive argument starting from the exact inverses of these model constant coefficient
operators.) In the 0-calculus we can proceed very similarly once we allow that
there is a different way to make sense of freezing the coefficients at a boundary
point y, thus leading to the normal operator N(L)y, and that there is a good way
to describe the inverses of the model operators obtained in this way. Both in the
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standard setting and for the 0-calculus, these considerations eventually lead to
one of the first main qualitative results: if L is fully elliptic in the sense that its
model operator at each point p ∈M (in the extended sense described above if L is
uniformly degenerate) is invertible, then there exists right and left parametrices,
Gr and G�, for L such that the remainder terms Id − G�L, Id − LGr, are com-
pact smoothing operators. The existence of such parametrices can then be used to
deduce global Fredholm mapping properties and fine regularity theory.

2.2. The 0-double space

Before describing the parametrix construction itself, we first describe an auxiliary
geometric object, which we call the 0-double space, written as M2

0 , which is the
actual setting for the parametrix construction. This space is an ‘enhancement’ of
the simple product M2 in the sense that there is a smooth surjection M2

0 →M2,
which is the identity over the interior (and indeed over most of the boundary points
of M2

0 ). The geometric microlocal approach is distinguished by its insistence on
the Schwartz kernel of the parametrix as the primary object.

The class of 0-pseudodifferential operators is defined by the requirement that
the Schwartz kernel of any such operator enjoys specific and rather simple regu-
larity properties only when lifted to M2

0 . In other words, this double space allows
one to efficiently encode the asymptotic properties of these Schwartz kernels in
various regimes near the boundary. Said differently, the 0-double-space, M2

0 , gives
singular coordinates near the boundary of M2 in which the asymptotic behavior
of the Schwartz kernel is transparent.

The space M2
0 is obtained by blowing up M2 along the diagonal in ∂M ×

∂M, which we denote diag((∂M)2). In the notation used in [15] this space is
denoted M2

0 = [M2; diag((∂M)2)]. This blowup corresponds to replacing each

Figure 1. A schematic diagram of the 0-double space M2
0 .
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point of diag(∂M)2 with its inward-pointing spherical normal bundle; equivalently,
introduce polar Fermi coordinates around this submanifold and then regard the
‘r = 0’ face as a new boundary hypersurface of the blown up space. If (x1, y1;x2, y2)
are coordinates near a boundary point of M2, then

r2 = x2
1 + x2

2 + |y1 − y2|2, and r,
x1

r
,
x2

r
,
y1 − y2

r
, along with y1 (2.4)

provide local coordinates near the new boundary component of M2
0 .

ThusM2
0 is a manifold with corners, just likeM2, but has one extra boundary

hypersurface, called its front face, ff, which is the r = 0 face mentioned above, and
which ‘blows down’ to diag(∂M)2. It has two other boundary hypersurfaces, the
left and right faces, lf and rf, corresponding to ∂M×M and M×∂M , respectively;
the other distinguished submanifold is the closure of the lift of the diagonal in
intM × intM, which is denoted by diag0 . An important advantage of M2

0 over
M2 is that diag0 meets only the interior of ff and the intersection is transversal.
It does not intersect any other boundary faces, whereas the ordinary diagonal
diag intersects the corner of M2. The Schwartz kernels of the pseudodifferential
operators we consider are singular both along diag, and along other components of
the boundary ofM2. The blow-up operation physically separates these singularities
making their description in M2

0 much simpler than in M2.

The class of 0-pseudodifferential operators Ψm,ρ,a,b
0 (M) consists of operators

A which are pseudodifferential operators over the interior of M in the classical
sense, but which have certain behavior at the boundaries. We require that the
Schwartz kernel KA of any such A, which is a distribution on M2, lifts to a dis-
tribution κA on M2

0 that has the following properties: first, κA has a standard
classical pseudodifferential singularity along diag0, and at ff, this conormal singu-
larity is required to be smoothly extendible across ff in the following sense. Namely,
(after removing some fixed and explicit singular density factor), we require that
κA is the restriction from the space obtained by doubling M2

0 across ff of a distri-
bution which is smooth away from the doubled diagonal and which has a classical
pseudodifferential singularity of fixed order uniformly across the ‘interface’ ff of
this double.

We also require that κA is conormal at the other two boundary faces, lf and
rf; in many cases which arise in applications, it may be polyhomogeneous at one or
both of these faces. The indices m, ρ, a, b indicate the orders of vanishing at these
various submanifolds and boundary faces: thus m denotes the pseudodifferential
order, or (roughly) the rate of blowup of κA on approach to diag0; ρ denotes the
rate of vanishing at ff (since we are requiring κA to be smooth up to this face,
ρ must be a nonnegative integer); finally, a and b are rates of vanishing for the
conormal orders along the rf and lf respectively. If κA is polyhomogeneous at
these faces, then these are lower bounds for the vanishing order of all terms in the
expansions. We represent these kernels using the non-degenerate density dx′dy′ on
the incoming face.
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Figure 2. A schematic diagram of the double across the ff of M2
0 .

2.3. The elliptic parametrix construction

Having defined the space M2
0 , we now outline the parametrix construction for

an elliptic uniformly degenerate operator L. This construction is in two steps: it
starts with a ‘rough’ approximate inverse which is precisely chosen at each of the
main boundary faces of M2

0 and at diag0, but then extended smoothly away these
regions in a fairly arbitrary manner; the second step involves showing that it can
be corrected so that the error term is as small as possible. A large part of the
work involves showing that this correction preserves certain desirable features of
the parametrix, e.g., its conormal or polyhomogeneous structure.

To be definite, suppose that the indicial root structure of L is as in the
discussion above, so one root is identically 0 and the other may vary smoothly
but remains strictly less than 1. The first step is to choose an element G0 ∈
Ψ−2,0,0,β′

0 (M), where

β′ = 2β(LKim)− 3,

defined in (1.4). This shift in the order of vanishing at lf (where x′ → 0) can be
explained as follows. In the x coordinates, LKim = x−2L where L is uniformly
degenerate. Suppose that G is an inverse (or partial inverse, or at least a suffi-
ciently good parametrix) for L. The order of vanishing of the Schwartz kernel of
G is an indicial root for the adjoint problem with respect to the measure dxdy.
More specifically, working just with indicial operators because these determine
the indicial roots,

I(L)y = (x∂x)
2 + (2b− 2)x∂x,

hence its adjoint (with respect to this measure) equals

I(L)∗y = (−∂xx)2 + (2b− 2)(−∂xx) = (x∂x)
2 + (4− 2b)x∂x + 3− 2b.
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The indicial roots of this equation satisfy

s2 + (4 − 2b)s+ (3 − 2b) = (s+ 1)(s− (2b− 3)) = 0,

hence these two indicial roots are s = −1 and 2b − 3. The latter corresponds to
the order of vanishing of G along lf. Finally, rewriting LKimG = I as

x−2LG = δ(x− x′)δ(y − y′),

we see that G = G(x′)2. This means that G vanishes or blows up like 2b0− 1 along
lf (left face). Of course, since b0 may vary with y, we must take the infimum of
this over all y ∈ ∂M .

Similar considerations apply for LHes = x−1L, where I(L)y = (x∂x)
2 + (b0−

1)x∂x. The order of vanishing of the inverse for L at x′ = 0 is b0 − 2 and hence
including the extra factor x′ on the right of G shows that the parametrix for LHes

vanishes like (x′)b0−1 at lf.
Denoting the lift of the Schwartz kernel of G0 to M2

0 by κG, then this distri-
bution has a complete classical expansion along diag0 which is determined using
the standard symbol calculus in such a way that LG0 = Id − Q0, where κQ0 is
C∞ across diag0 and up to ff. As part of this, we are also able to demand that the
restriction of G0 to ff equals the inverse to the normal operator N(L)y over each
point y ∈ ∂M . It is precisely at this last step, in choosing the specific inverse of the
normal operator family, where we incorporate the choice of boundary conditions.
The dual requirements for G0 along diag0 and ff are compatible because of the
rubric: “the symbol of the normal operator of L equals the restriction to diag0 ∩ff
of the symbol of L”.

We make a few observations which expand on this. First, ff is the total space
of a fibration: the base is ∂M (via its identification with diag((∂M)2)), while the
fiber is a closed n-dimensional quarter-sphere (i.e., where two of the coordinates
are restricted to be nonnegative). This quarter-sphere is the compactification of
the stereographic projection of the half-space which we already encountered as the
(s, w)-half plane. The key technical fact that must be proved is that the integral
kernel N(G)y for (N(L)y)−1 has a nice structure on this compactification. More
specifically, as we already indicated, we can obtain N(G)y in rather concrete terms
as the inverse Fourier transform of a rescaling (s = σ/|η|) of the Green function
of a simple second-order ODE. A priori this is a function of (s, s′, w, w′), and still
depends parametrically on y. The restriction of G0 to ff should be chosen on that
fiber to equal this function evaluated at (s′, w′) = (1, 0), which corresponds to the
point of intersection of diag0 with that fiber. This function is C∞ on the interior of
this fiber except at (1, 0) and has a classical expansion at that point. What must
be proved, however, is that it extends as a conormal distribution to the closed
quarter-sphere and is smooth up to ff ∩ lf and conormal with vanishing rate β′ at
ff ∩ rf (and at the corners).

From the way that G0 is chosen, we deduce that the initial error term Q0 =

Id−LG0 lies in Ψ−∞,1,0,β′
0 , i.e., κQ0 is smooth across diag0 and vanishes to order

1 at ff. It turns out to be easy to add a correction term G1 to this parametrix so
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that the resulting error term Q1 = Id−L(G0 + G1) lies in Ψ−∞,1,∞,β′
0 . In other

words, we can also remove the entire expansion of the error term at rf. To see how,
note that if we let L act on the formal expansion of G1 at rf, then the leading
part of this operator is the indicial operator I(L)y . Thus we can successively solve
away the terms in the expansion of Q1 at this face using the inverse I(L)−1

y . This
step is infinitesimal at each point of rf.

To complete the construction, we would ideally like to remove the error term
altogether by multiplying each side of the equation L(G0 +G1) = Id−Q1 by the
inverse (Id−Q1)

−1. Of course, this operator need not be invertible, so instead

we multiply ‘formally’ by the Neumann series
∑∞

j=0 Q
j
1, or in other words, by the

operator Id+R where R is an asymptotic Borel summation of this Neumann series.
The key fact needed to make sense of this Borel sum is the composition law for

0-pseudodifferential operators, which implies in particular that Qj
1 ∈ Ψ−∞,j,∞,β′

0 ,
or in other words, κQj

1
vanishes to increasingly higher order at ff. Having formed

such an R, we now multiply as intended by Id+R to obtain an operator G =
(G0 +G1) ◦ (Id+R) that satisfies

LG = Id−S, where S ∈ Ψ−∞,∞,∞,β′
0 (M).

The parametrix G itself continues to lie in Ψ−2,0,0,β′
0 (M).

The Schwartz kernel of this final error term is ‘very smoothing’, since it is
smooth in the interior and vanishes rapidly both along ff and lf. It is straightfor-
ward to conclude that this S is compact on all reasonable function spaces. This
parametrixG and the structure of S can then be used to deduce not only the global
mapping properties of L on weighted Sobolev and Hölder spaces (and many other
natural spaces as well), but also the precise local regularity theory for solutions of
Lu = f , again in a variety of function spaces. All of this is recorded in detail in
[11], to which we refer for complete details of the parametrix construction and its
analytic consequences.

To prove Theorem 2.1, we recall what was already described in an earlier part
of this proof: namely, if LG = I, then the (partial) inverse G for LKim = x−2L
is equal to G(x′)2. Similarly, the partial inverse G for LHes equals G(x′). This
completes the proofs of Theorems 2.1 and 2.3.

We have admittedly marched through the steps of this elliptic parametrix
construction swiftly, but have done so since this construction is recorded carefully
elsewhere. These steps are all mirrored in the heat kernel parametrix construction,
which is our main goal below.

3. The Kimura and Heston heat kernels

We turn now to the parametrix construction for the heat operators associated to
the classes of elliptic Kimura and Heston type operators.

The geometric microlocal construction of parametrices for heat operators is
similar to the corresponding construction in the elliptic setting. We refer to [15],
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[16], [14], [2], for heat kernel constructions for several other degenerate parabolic
equations; the heat kernels for conic and edge problems discussed in all but the first
of these sources are analogous to the construction here. In any case, the procedure
we follow is substantially the same as in those papers: namely, we focus on the
conormal structure of H(t, z, z′) on a double heat space which is obtained as a
resolution by blowup of R+ ×M2. This resolution is constructed to capture the
singular structure of H , which occurs along the interior diagonal of M2 at t = 0,
the submanifold of the corner at {0} × diag(∂M)2 and (to a lesser extent) along
(R+×M × ∂M)∪ (R+× ∂M ×M). Thus we first define Kimura and Heston heat
spaces,M2

h−Kim andM2
h−Hes, respectively. As a test, we then show that the explicit

solution kernels for the model heat operators are polyhomogeneous on these spaces;
this is both useful in the full ‘curved’ construction, but also indicates that the
heat spaces are sufficiently intricate to capture the various types of asymptotic
singularities. We then proceed with the iterative parametrix construction. Key
components of this analysis, beyond the use of the blown up heat spaces, include
a composition formula for the operators represented by Schwartz kernels on these
spaces.

Before we begin, recall that our primary objective is to find the solution
operators for the Kimura and Heston heat equations. Henceforth we systematically
identify these operators with their Schwartz kernels H(t, z, z′), the so-called heat
kernels. These satisfy

(∂t − L)H = 0, where t > 0, and H |t=0 = δ(z − z′),

and are unique provided we require that solutions of this problem also satisfy the
Neumann-type boundary condition introduced above: namely, w = Hφ must be
smooth up to x = 0. The delta-function on the right side of the second equation
requires some explanation: as an integral kernel, it must be integrated against a
density on M , and so it may need an extra factor to compensate for factors on
this density. For example, it suffices merely to multiply by a nonvanishing smooth
function of z′ if we use a density which itself is a nonvanishing smooth function
of dz = dxdy; on the other hand, if using drdy = 2xdxdy, it would be necessary
to replace the right side by δ(x− x′)δ(y− y′)(x′)−1, and so on. We shall therefore
agree to fix the volume form dxdy (where x =

√
r in the Kimura case).

Note that these two defining equations for H remain valid when we multiply
the heat operator (notH !) by a prefactor or change variables, provided we compen-
sate with the appropriate Jacobian factor. As already noted in the introduction, it
is advantageous to multiply the heat operators by a vanishing prefactor to make
the elliptic parts uniformly degenerate. However, at variance with the suggestion
there, we multiply here by t rather than x2 or x.

3.1. Heat spaces

We first review the definition of the blowup of a manifold with corners X along
a p-submanifold Y , which was already used (albeit informally) in the last section,
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and the modification of this definition needed to define blowups with respect to a
different homogeneity structure along Y .

Let X be a manifold with corners and Y ⊂ X a p-submanifold, which means
simply that it is a submanifold with the property that for any q ∈ Y , there is a
neighborhood U of q in X which is a product, U ′ × U ′′, where U ′ is a relatively
open neighborhood in Y and U ′′ is a neighborhood of 0 in a manifold with corners
of complementary dimension (invariantly, a neighborhood of the 0-section of the
normal bundle of Y in X). The blowup [X ;Y ] is the union of X \ Y and the
interior spherical normal bundle of Y in X . This union is given the unique minimal
differentiable structure so that the lifts of smooth functions on X and polar Fermi
coordinates around Y in X are both smooth. It is called the normal blowup of
X around Y because it respects the homogeneous dilation structure in directions
normal to Y in X . If Y1 ⊂ Y2 ⊂ X is an inclusion of p-submanifolds, we define the
iterated blowup [X ;Y2;Y1] in a straightforward way.

Next, considering only a special case of a more general inhomogeneous blowup
construction, suppose that Y ⊂ {0}×X ⊂ R+

t ×X . The parabolic blowup of Y in
R+ ×X , denoted [R+ ×X ;Y ; dt], consists of equivalence classes of curves where
two curves are equivalent if they are tangent to higher order than expected with
respect to the parabolic dilations (t, z, y) �→ (λ2t, λz, y), where z lies in the normal
bundle to Y ⊂ X and y ∈ Y . We refer to [8] for the precise definition, see also [15],
[2]. This has C∞ structure which can be defined using ‘parabolic polar coordinates’
(see below) around 0×Y . That the homogeneities in the time and spatial directions
should differ is essentially a consequence of the fact that the Euclidean heat kernel
is a function of |x − x′|2/t; if z is identified with x − x′, then this quantity is
invariant under the parabolic dilations defined above.

We now define the Kimura and Heston heat spaces using a sequence of two
blowups:

M2
h−Kim = [R+ ×M2; {0} × diag(∂M)2, dt; {0} × diag(M2), dt], (3.1)

M2
h−Hes = [R+ ×M2; {0} × diag(∂M)2; {0} × diag(M2), dt]. (3.2)

Thus the only difference between these spaces is that {0} × ∂ diag is blown up
parabolically in the first case, but only normally in the second; this reflects the
different relative homogeneities of t and x in the two settings. However, on a
qualitative level, the two spaces are almost identical.

Each of these spaces has five boundary hypersurfaces: there is the original
‘bottom face’ tb at t = 0 (away from the diagonal and corner), the lifts of the left
and right faces lf and rf, corresponding to R+ ×M × ∂M and R+ × ∂M ×M ,
respectively, the ‘temporal face’ tf which is the lift of the diagonal in M2 at t = 0,
and finally the front face ff, which is the lift of the diagonal of the corner at t = 0.

To get a better feeling for the geometry of these spaces, it is helpful to in-
troduce various coordinate systems. To be specific, consider first M2

h−Kim. Near

tf, but away from the corner, we are near the diagonal in M2, hence can use
two copies w and w′ of the same interior coordinate system; we then introduce
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Figure 3. A schematic diagram of the blown up heat space M2
h−Kim.

parabolic polar coordinates

R =
√
t+ |w − w′|2, θ =

(
t

R2
,
w − w′

R

)
,

to fill out a complete nonsingular coordinate system (R, θ, w′) near this face (but
away from ff). It is not simple to make computations in these coordinates however,
and so we define a convenient set of projective coordinates:

τ =
√
t, W =

w − w′
√
t

. (3.3)

Thus τ ≥ 0 and W ∈ Rn. It is quite important that the submanifold described by
τ = 0 at a fixed w′ is identified in this way with Rn, with Euclidean coordinate
W , and in fact this choice of Euclidean coordinate is projectively natural (and
W = 0 corresponds to the intersection of tf with the diagonal {w = w′} at t = 0).
In particular, tf is the total space of a fibration over diag(M2), where each fiber is
identified with a ‘parabolic’ hemisphere, and its interior is projectively identified
with Rn. The projective naturality means that a different choice of local coordinate

w leads to a new projective coordinate W̃ which is projectively equivalent to
W . These projective coordinates are singular near tb; this turns out not to be
important since the kernels vanish to infinite order at this bottom face anyway.
Finally, let us point out that the structure of these heat spaces near tf is ‘universal’
in the sense that it is insensitive to the degeneracies of L at the boundary and
captures the standard interior, local, short-time structure of any nondegenerate
heat kernel.

There are similar types of polar and projective coordinates near ff as well.
We begin with coordinates (t;x, y;x′, y′) for M2 × R+; in which the boundaries
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are x = 0, x′ = 0 and t = 0. We are blowing up the submanifold where x = x′ =
0, y = y′ and t = 0. We do not use the polar coordinates at all, so let us consider
immediately the projective coordinate system (T, s, u, x′, y′), where

T =
t

(x′)2
, s =

x

x′ , u =
y − y′

x′ . (3.4)

This coordinate system is singular near lf, where x′ = 0, but there is an alternate
good projective coordinate system near that face which is obtained by dividing
by x rather than x′. A third useful projective coordinate system is obtained by
dividing by

√
t: thus, introduce (ξ, ξ′, σ, υ, y′), where

ξ =
x√
t
, ξ′ =

x′
√
t
, σ =

√
t, υ =

y − y′√
t

. (3.5)

These are valid away from tf ∪ tb.

Just as for tf, the front face ff is also the total space of a fibration; this
time the base space is diag(∂M)2 and the fiber is a parabolic quarter-sphere,
parabolically blown up at a boundary point. Using the first projective coordinate
system, there is a projectively natural identification of the interior of each of these
quarter-sphere fibers with a quarter-space (T, s, u) where T, s > 0 and u ∈ Rn−1.

The Heston heat space M2
h−Hes differs from M2

h−Kim only in that the blowup

of diag(∂M)2 at t = 0 is normal rather than parabolic. This changes the local co-
ordinate systems near ff in an obvious way: specifically, we replace the coordinates
above by

T =
t

x′ , s =
x

x′ , u =
y − y′

x′ , and

ξ =
x

t
, ξ′ =

x′

t
, σ =

√
t, υ =

y − y′

t
.

(3.6)

We leave it to the reader to track the corresponding minor changes.

3.2. Model operators

The calculation which justifies the introduction of these heat spaces is the fact
that the restrictions of the lifts of the Kimura or Heston heat operators to the
boundary faces tf and ff of the corresponding heat spaces are comprehensible
model operators.

The model operators on the fibers of tf are, as noted earlier, universal in
that away from x = 0 there is nothing to distinguish LKim from LHes or any other
nondegenerate elliptic operator in the interior. The lift of ∂t, for example, near
this face is singular, so to compensate for this, we premultiply the entire operator
∂t − L by the factor t. This yields an operator which lifts to be nonsingular on
M2

h (we omit the Kim or Hes subscript for the moment) near ff. In fact, as local
computations show, this lift is an operator which acts tangentially on this face.

To be clear in these computations, we consider t∂t− tL acting on R+
t and the

first (left) factor of M in M2, and then lift to the blown up heat space. Working
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in the projective coordinate system (τ,W,w′), we see that

∂wj =
∑
k

(
τ−1(δjk + αjk)∂Wk

+ βjk∂w′
k

)
=

1

τ
(∂Wj + τVj)

where Vj is smooth up to tf. Since we can always choose the local coordinate w
so that the second-order part of L is the standard Euclidean Laplacian at a given
point p, which we take as w′ = 0, we then compute that the lift of tL equals

n∑
j=1

∂2
Wj

+ τP0 +
∑

w′
jPj ,

where the Pi are second-order differential operators on the blown up space which
are smooth up to tf. A similar computation, which can either be done in the par-
abolic polar coordinate system above, or a different suitable projective coordinate
system, shows that these are smooth at tf ∩ tb too. On the other hand, we also
have

t∂t =
1

2
τ∂τ − 1

2

n∑
j=1

Wj∂Wj .

Putting these together, we see that the ‘error terms’ vanish when restricting the
lift of t∂t − tL to the fiber of tf over p, and so this restricted operator equals

1

2
τ∂τ −ΔW +

1

2
W · ∂W . (3.7)

Note, in particular, that this acts tangent to the hemisphere fibers of tf. Slightly
more generally, if we apply t∂t− tL to any term of the form τkHk and then restrict
to τ = 0, we get

τk
(
ΔW − 1

2
W∂W − k

2

)
Hk. (3.8)

The operators we have identified here are the model problems for t(∂t−L) at order
k along ff. These are shifts of operators equivalent to the harmonic oscillator, and
hence are invertible (for certain values of k only off a finite rank subspace) on the
Schwartz space S(Rn

W ). The solvability of these model problems has been dealt
with even in the earliest papers on heat trace expansions, starting with the work of
Minakshisundaram and Pleijel in the 1950s. We refer to [3] for a modern treatment
of this.

Now consider the lift of t∂t−tL near ff. To be definite, let us focus on Kimura
operators. Using the projective coordinates (T, s, u, x′, y′),

t∂t = T∂T , t∂2
x = T∂2

s , T x−1∂x = Ts−1∂s, and t∂2
yiyj

= T∂2
uiuj

.

Suppose that LKim as expressed in (1.7), and choose local coordinates y on ∂M
so that the matrix aij(0, y) = δij at y = y0. Then

t(∂t − LKim) = T∂T − T

(
1

4
∂2
s +Δu +

1

2
(b0(0, y0)− 1

2
)s−1∂s +O(x′)

)
. (3.9)
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After removing the overall factor T , the restriction of this to ff (i.e., setting x′ = 0)
is simply the heat operator corresponding to s−2N(x2LKim)y0 . Abusing language
slightly, we call this latter object the normal operator for LKim.

The minor modifications of these statements for LHes are straightforward and
left to the reader

To summarize, what we have achieved is that these heat spaces have the
property that the lifts of the Kimura and Heston heat operators (multiplied by t),
restricted to either tf or ff, act tangentially to the fibers of these spaces, and these
restrictions are naturally associated with the model heat problems: the model at
each fiber of ff is the heat operator associated to the normal operator, while the
model along each fiber of tf is a universal elliptic operator (of Ornstein–Uhlenbeck
type) on a projectively equivalent Euclidean space.

3.3. Model heat kernels

A preliminary test for whether these heat spaces are suitable for describing the pre-
cise asymptotic structure of the Kimura and Heston heat kernels is to see whether
the heat kernels of the model operators of each of these types is polyhomogeneous
on the associated heat space. We shall do this in the Kimura setting using an
explicit formula for the Kimura heat kernel taken from [6]. We do not do this here
for Heston operators simply because we do not know a similar explicit expression
(although it is highly likely that such an expression exists).

In any case, consider the model operator, written in terms of x =
√
r as

∂t −
(
1

4
∂2
x +

1

2

(
b0 − 1

2

)
x−1∂x +Δy

)
, (3.10)

where b0 > 0 is a constant. Then according to (6.13) in [6], the heat kernel for this
operator which corresponds to the choice of boundary condition which omits the
term r1−b0 in the expansion of solutions is given by

HKim(t, r, y, r
′, y′) =

1

(4πt)(n−1)/2

1

t

( r

r′
) 1−b0

2

e−
r+r′

t Ib0−1

(
2

√
rr′

t2

)
e−

|y−y′ |2
2t

= (4π)−(n−1)/2t−(n+1)/2
( x

x′
)1−b0

e−
x2+(x′)2

t Ib0−1

(
2
xx′

t

)
e−

|y−y′ |2
2t . (3.11)

Here, Ib0−1(z) is the modified Bessel (or Macdonald) function, which is asymptotic
to czb0−1 for z ↘ 0 and which grows exponentially like ez/

√
z as z ↗ ∞. In

addition, y, y′ ∈ Rn−1 and the contribution from these variables is the standard
Gaussian because the heat kernel is multiplicative with respect to Riemannian
products.

To check that this kernel lifts to a polyhomogeneous function on M2
h−Kim,

we first observe that

HKim(λ
2t, λx, λy, λx′, λy′) = λ−n−1HKim(t, x, y, x

′, y′).

The fact that HKim is homogeneous under this dilation could have been predicted
from the fact that (3.10) is homogeneous of degree −1 and the boundary condition
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is also invariant under this dilation. However, the boundary condition, that HKim

equals δ(x− x′)δ(y − y′)(x′)−1 at t = 0, is homogeneous of degree −n− 1, which
implies that HKim inherits this same degree of homogeneity. The upshot is that
HKim can be written as (x′)−n−1H where H is homogeneous of degree 0, and hence
smooth, up to ff.

We can see directly, using the asymptotics of the Bessel function as z → 0,
that HKim is smooth up to rf, i.e., as x ↘ 0, and is smooth up to lf as well
provided we remove the factor (x′)2b0−1. To understand its behavior near tf, use
the coordinates (ξ, ξ′, σ, v, y′) to get

HKim = (4π)(1−n)/2σ−n−1

(
ξ

ξ′

)1−b0

e−(ξ2+(ξ′)2)Ib0−1

(
2
ξξ′

σ

)
e−|v|2/2.

Using the Bessel asymptotics as z ↘∞ shows that HKim vanishes to infinite order
along tb and blows up like σ−n on tf. Looking closer, it is also apparent that the

restriction of the leading coefficient at σ = 0 is (up to a constant) e−(ξ2+|σ|2)/2 =

e−|W |2/2, which is in the nullspace of (3.8).

Again, it should be possible to understand the Heston heat kernel in similarly
explicit terms, but we do not pursue this here. Note that a posteriori from the
construction below, since the heat kernel for any Heston-type operator must live
as a reasonable distribution on M2

h−Hes, the same is obviously true for the model
Heston operator, and using homogeneity considerations, we can conclude that this
model Heston heat kernel is polyhomogeneous on this Heston heat space.

3.4. The heat parametrix construction

Following the definitions and calculations above, we now proceed with the con-
struction of heat kernel parametrices. As usual, we explain this carefully only for
the Kimura case, since the Heston case is completely analogous.

The first approximation to the parametrix is a Schwartz kernel H0 which
will be chosen carefully so that its asymptotic structure is correct to all orders
along tf and to first order at ff. More specifically, we wish to choose H0 so that
t(∂t −LKim)H0 vanishes to infinite order at tf and blows up only to order −n+ 1
at ff (which is better than expected since t(∂t − L) is homogeneous of degree 0
and we shall choose H0 to blow up to order −n at ff.

To arrange matters along tf, it suffices to observe that if we expand H0 ∼∑
τ−n+kH0k as τ ↘ 0, then t∂t − tL acts as the model operator (3.8) of order

k on H0k. As already noted there (and proved carefully in [3], see also [2]), this
operator is invertible for k > 0 and has a one-dimensional nullspace when k = 0

consisting of the function e−|W |2/2. Thus if we choose H00 to equal this Gaussian,
then the expansion of t(∂t − L)τ−nH00 (and later t(∂t − L)τ−n+jH0j) produces
error terms which blow up or decay like τ−n+k for k > 0. We then regard these as
inhomogeneous terms and choose H0k to solve away all such inhomogeneous terms
produced by earlier steps of the construction. We can then take a Borel sum of all
of these Taylor coefficients. This determines H0 near tf. While this is described
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in rather different language, what we are doing here is no more nor less than the
classical interior parametrix construction for heat kernels.

One aspect of this behavior at tf worth mentioning explicitly is the fact that

the leading term is, up to a dimensional constant, τ−ne−|W |2/2 = t−n/2e−|y−y′|2/2t.
This guarantees that H has the correct initial condition,

lim
t→0+

∫
M

H(t, x, y, x′, y′)φ(x′, y′) dx′dy′ = φ(x, y).

Indeed, this is true for the Euclidean heat kernel, which is equal in its entirety
to this leading term, and the higher order (in τ) terms in the expansion of more
general heat kernels do not contribute to this small t limit.

On the other hand, near ff we solve away only the first term. Specifically,
writing H0 = (x′)−nH ′

0 and applying t(∂t − L) to this, the leading term of the
resulting function on any fiber of ff is simply the model heat operator for L at
the corresponding boundary point y ∈ ∂M applied to the restriction of H ′

0 to this
face. We should clearly choose this restriction to equal the model heat kernel, and
so we do.

The only thing to check is that the singularity in this model heat kernel at
ff ∩ tf is the same as the rate of blowup of H0 along tf, but a moment’s thought
shows that this is indeed true. This simply reflects the fact that the singularity at
T = 0 of the model heat operator is the limit of the singularities at T = 0 of the
family of nearby interior problems (transverse to the diagonal) which limit to it.

To recapitulate, then, we chooseH0 so that t(∂t−LKim)H0 vanishes to infinite
order along tf ∪ tb, and blows up to order −n+ 1 at ff.

We have not yet discussed the behavior of H0 along the side faces rf and lf.
These are governed by the behavior of the model heat kernel along the intersections
ff ∩ rf and ff ∩ lf. The first of these corresponds to letting s → 0 for T > 0,
and the boundary condition we are imposing dictates precisely that this model
heat kernel is smooth at this face. On the other hand, over each fiber of ff along
the corner ff ∩ lf , the model heat kernel is polyhomogeneous with leading order
(s′)b0 = (x′/x)b0 . Unfortunately this exponent may vary with y ∈ ∂M , and so the
cumulative regularity of this family of model heat kernels is only conormal with
vanishing order β, but not polyhomogeneous (unless b0 is constant in y).

Denote by Ψ�,0,β
h−Kim the space of all Schwartz kernels on M2

h−Kim which are
smooth in the interior and up to rf, and conormal of order β at lf, vanish to all
orders at tf ∪ tb, and which blow up (or decay) like −n+ � at ff. At this stage we
make a slight shift and consider these Schwartz kernels acting on functions f(t, w),
rather than functions depending only on w, via the usual formula

H � f(t, w) =

∫ t

0

∫
M

H(t− s, w,w′)f(s, w′) dsdw′,

with the same choice of volume forms as we used before. The point of doing
this is to be able to write the other main technical ingredient of this parametrix
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construction, which is the composition formula

Hj ∈ Ψ
�j,0,β

′

h−Kim, j = 1, 2,=⇒ H1 � H2 ∈ Ψ�1+�2,0,β
′

h−Kim . (3.12)

for any β′ ∈ R, and �1, �2 ∈ N. When thinking of these as operators in (t, w) in
this way, we write H as H�.

Notice that the true heat kernel satisfies (∂t − LKim)HKim� = Id, while the
parametrix we have now chosen satisfies only

t(∂t − LKim)H0� = Id−K� (3.13)

for someK ∈ Ψ1,0,2β−1
h−Kim . The explanation for the rate of vanishing or blow-up at the

left face x′ = 0 is explained using the initial condition H |t=0 = δ(x− x′)δ(y− y′).
We argue just as in the elliptic case that this vanishing order is determined by a
(slight shift of a) indicial root of a related uniformly degenerate operator. Using the

composition formula we see that (K�)j ∈ Ψj,0,β
h−Kim, or in other words, its Schwartz

kernel vanishes like −n+j at ff. Hence we can build the Borel sum of the Neumann
series

(Id−K�)−1 ∼
∞∑
j=0

(K�)j = Id+K � .

The proof of the composition formula is somewhat laborious, and can be done
by fairly direct computation. There is a quicker and more elegant way to do this
using the pushforward theorem of Melrose. The formula above can be derived in
precisely the same manner as the corresponding composition formula in [14], for
example.

In any case, we now compose (3.13) on the right with Id+K�, to get

t(∂t − LKim)H0(Id+K�) = Id+S,
where S ∈ Ψ∞,0,2β−1

h−Kim .

It is now standard that because of its very rapid vanishing at all faces as t↘ 0,
(Id+S�)−1 has a Neumann series which converges in the appropriate conormal or
polyhomogeneous topology.

We now appeal to the uniqueness of the solution operator for ∂t−LKim which
satisfies the boundary condition of smoothness at the outgoing (x = 0) face and
the initial condition

lim
t↘0

∫
M

H(t, z, z′)φ(z′) dz′ = φ(z).

This means that we can identify

HKim = H0(Id+K�)(Id+S�),
and from this we conclude finally that HKim ∈ Ψ0,0,2β−1

h−Kim , which is the main struc-
tural theorem we are after.
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Theorem 3.1. Let LKim be a generalized Kimura operator on a manifold with
boundary M, for which the inward pointing part of the first-order term is nowhere
vanishing. The Schwartz kernel for the solution operator of the heat equation

∂tw = LKimw (3.14)

defines an element of the space of pseudodifferential operators Ψ0,0,2β−1
h−Kim (R+×M).

Here β is defined in (1.4).

We have not stated the corresponding theorem for the heat operator ∂t−LHes

because we have not yet determined a specific formula for the corresponding model
heat kernel. If this were available, the structure of HHes could then be determined
using the methods of this section.

4. Mapping properties and regularity theory

In this final section we exploit the structure of Kimura and Heston heat kernels
to extend some of the regularity properties of solutions of the homogeneous and
inhomogeneous heat equations

(∂t − L)w = 0, w|t=0 = φ (4.1)

(∂t − L)u = f, u|t=0 = 0, (4.2)

where L = LKim or LHes.
As explained in the introduction, the nature of the perturbative arguments

used in [7] made it necessary to work there with functions φ, f , w and u lying

in two scales of anisotropic Hölder spaces Ck,αWF and Ck,2+α
WF (defined either over M

or R+ ×M). These spaces reflect the homogeneity structure of LKim. The space

C0,γWF is the standard Hölder space with respect to the variables (
√
r, y). (The other

spaces have a hybrid nature so this simple coordinate transformation does not
provide a complete characterization.) There is a simple technical reason for the
need to work on spaces for which one has good elliptic or parabolic estimates: the
difference E between a general Kimura operator LKim and the ‘constant coefficient’
model Kimura operator at a point p ∈ ∂M is an operator where the coefficients
of the second-order terms are small in a small neighborhood of p. If we use the
model heat kernel H0(t, z, z′) as an initial parametrix in that neighborhood, then
we require estimates of the norm of the error term EH0. But one can only show
that the operator norm of this term is bounded, let alone small, if one has some
form of parabolic Schauder estimates for the problem, and these fail for data lying
in C0. However, for data in the appropriate Hölder spaces, these local parametrices
can be patched together to obtain a global approximation to the heat inverse for
which the error term does have small norm. From this the true heat kernel can be
obtained by a (convergent!) Volterra series.

These arguments are supplemented by the robust collection of maximum
principles proved in [7]. If φ ∈ C0(M), for example, and if φj ∈ C0,γWF(M) is a
sequence of functions converging to φ uniformly, then the homogeneous solutions
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wj = Hφj converge uniformly to a continuous function w. Unfortunately, without
a better understanding of the a priori parabolic regularity theory, it is impossible
to conclude that this limit w is smooth near ∂M when t > 0.

These arguments have only been written out for Kimura heat operators, but
we claim that this same chain of reasoning applies mutatis mutandis for Heston
operators. The necessary maximum principles are contained in [9]. The one gap
is that, as remarked earlier, we do not know explicit expressions for the model
Heston heat kernels. However, given these, it would be straightforward to develop
results paralleling all those in [7] for general Heston heat equations on manifolds
with corners.

Our aim in this final section is to point out that the geometric microlocal
parametrices constructed here accomplish the perturbation theory in a more re-
fined way and make evident the full parabolic smoothing effect for initial data in
C0. It is possible to use the structure theory of these parametrices to recapture
the full regularity theory for the Kimura heat kernel on the ‘WF’-Hölder spaces,
as developed in [7]. This would require sufficient extra space that we defer this to
elsewhere.

One of the key strengths of the geometric microlocal method is that it ex-
pedites the passage from the model solution operator to the solution operator for
the more general variable coefficient problem. The method from [7] outlined above
accomplishes this partly at the level of solution operators but partly on the level
of solutions. However, the insistence of considering only solution operators and
their parametrices has significant advantages: namely, one can do the perturba-
tion analysis on the solution kernels directly, and since these objects are (at least
when viewed correctly) fundamentally smooth (or at least polyhomogeneous) ob-

jects, the issues above about the difference between C0,γWF and C0 dissolve. More
specifically, the Neumann series argument used to pass from the parametrix to
the exact heat kernel relies on the composition calculus for the 0 heat calculus
recorded in (3.12), and the proof of this formula, in turn, is simplified by the
infinite regularity of the factors.

To illustrate this, consider the heat kernel HKim constructed in the last sec-
tion, and fix φ ∈ C0(M). Let w be the unique solution to (4.1) satisfying the
natural (smooth) boundary condition at ∂M ; thus

w(t, x, y) =

∫
M

HKim(t, x, y, x
′, y′)φ(x′, y′)x′dx′dy′.

We have shown that HKim(t, x, y, x
′, y′) is smooth as x↘ 0 when t > 0, uniformly

in all other variables (and in any compact interval 0 < t0 ≤ t ≤ t1). From this
it is clear that this integral produces a function which is also smooth in x ≥ 0
for t > 0. The final thing to check is that w → φ uniformly as t ↘ 0. This can
be done by standard arguments involving this integral formula. Since w solves
the equation ∂tw = LKimw, it is also an immediate consequence of the maximum
principle proved in [7] for the Kimura-type operators. This completes the proof of
the following theorem:
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Theorem 4.1. Let M be a compact manifold with boundary and LKim a general-
ized Kimura operator for which the inward pointing part of the first-order term is
nowhere vanishing. If f ∈ C0(M), then the unique regular solution to the homoge-
neous initial value problem

∂tw = LKimw in (0,∞)×M

lim
t→0+

w(t, x, y) = φ(x, y) for (x, y) ∈M
(4.3)

belongs to C0([0,∞)×M) ∩ C∞((0,∞)×M).

We have discussed this only for Kimura operators. However, the Heston heat
kernel is also smooth as x → 0 for t > 0, so we deduce the smoothing effect for
Heston operators with initial data in C0 in exactly the same way. There are many
further regularity theorems for these equations, including the precise mapping
properties of HKim and HHes on various types of adapted Hölder spaces. We hope
to address these elsewhere.
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On a Resonant Lane–Emden Problem

Grey Ercole

Abstract. We study the asymptotic behavior, as q → p, of the positive solu-
tions of the Lane–Emden problem −Δpu = λp |u|q−2 u in Ω, u = 0 on ∂Ω,
where Ω ⊂ RN is a bounded and smooth domain, N ≥ 2 and λp is the first
eigenvalue of the p-Laplacian operator Δp, p > 1. We prove that any family
of positive solutions of this problem converges in C1(Ω) to the function θpep
when q → p, where ep is the positive and L∞-normalized first eigenfunction

of the p-Laplacian and θp := exp
(
‖ep‖−p

Lp(Ω)

∫
Ω
epp |ln ep| dx

)
.

Mathematics Subject Classification (2010). 35B35, 35B40, 35J92.

Keywords. Asymptotic behavior, blow-up technique, first eigenpair, ground
states, Lane–Emden, Picone’s inequality, p-Laplacian.

1. Introduction

Consider the Lane–Emden problem{
−Δpu = λ |u|q−2

u in Ω,

u = 0 on ∂Ω,
(1)

where λ > 0, Ω ⊂ RN is a bounded and smooth domain, N ≥ 2, Δpu :=

div
(
|∇u|p−2∇u

)
is the p-Laplacian operator, p > 1, and 1 < q < p�, with p�

denoting the Sobolev critical exponent defined by p� = Np/ (N − p), if 1 < p < N,
and p� =∞, if p � N.

The existence of positive weak solutions for this problem is a well-known fact.
Moreover, such solutions are bounded (in the L∞ norm) and hence (as consequence
of classical regularity results) belong to C1,α

(
Ω
)
for some 0 < α < 1.

When q = p we have the eigenvalue problem for the p-Laplacian, whose first
eigenvalue λp is positive, isolated and simple. Moreover, associated eigenfunctions
do not change sign in Ω.

The author thanks the support of FAPEMIG and CNPq, Brazil.

Switzerland
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In the sub-linear case 1 < q < p, the positive weak solutions are unique (see
[6]). However, in the super-linear case p < q < p� this fact does not happen, in
general. Non-uniqueness of positive weak solutions of (1) occurs for ring-shaped
domains when q is close to p� (see [7, 10]) or when q > p and Ω is a sufficiently
thin annulus (see [14]). On the other hand, when Ω is a ball, (1) has a unique
positive weak solution (see [1]). For the Laplacian (p = 2) and a general bounded
domain, uniqueness happens if q is sufficiently close to 2 (see [5, Lemma 1]).

With different goals, asymptotics of solutions of the Lane–Emden problem (1)
have been studied by many authors since the 1990s. For example, in [10] for p < N,
λ = 1 and q → p�; or in [15] for p = N, λ = 1 and q → ∞. Recently, in [11], the

asymptotic behavior in W 1,p
0 (Ω) of the ground state solutions (i.e., positive weak

solutions that minimize the energy functional among all possible weak solutions)
as q → p+, was described for all positive values of λ. More recently, the asymptotic
behavior with q → p− in W 1,p

0 (Ω) was described in [3]. Some these asymptotics
had already appeared in [12], for λ �= λp.

However, up to our knowledge, only in [11] and [3] the resonant problem,
that is, when λ = λp, was dealt with, but the asymptotic behavior of its positive
solutions was not fully determined. Indeed, although the families of solutions were
known to have a subsequence converging in W 1,p

0 (Ω) to a first eigenfunction, the
correct first eigenfunction was unknown; in principle, distinct first eigenfunctions
(each one multiple of the other, of course) could be obtained as limits of different
subsequences of these families. Moreover, in the super-linear case, the known re-
sults are valid only for ground state families. Therefore, nothing was known about
the asymptotic behavior (as q → p+) of other (eventually existing) families of
positive solutions.

In the present work we first consider the resonant Lane–Emden problem{
−Δpu = λp |u|q−2

u in Ω,

u = 0 on ∂Ω,
(2)

and an arbitrary family {uq}q∈[1,p)∪(p,p�) of positive solutions of this problem (not

necessarily ground states, in the super-linear case). Our main result is the conver-
gence uq → θpep in C1(Ω), as q → p, where

θp := exp

(∫
Ω
epp |ln ep| dx∫
Ω
eppdx

)
and ep is the first positive eigenfunction such that ‖ep‖∞ = 1. (From now on ‖v‖r
stands for the usual Lr norm of v.)

By a scaling argument this result also determines the exact asymptotic be-
havior, as q → p, of positive solutions of the Lane–Emden problem (1), for
any λ > 0. Moreover, it implies the differentiability at q = p of the function
q ∈ [1, p�) �→ λq ∈ R, where λq denotes the minimum on W 1,p

0 (Ω)\{0} of the
Rayleigh quotient Rq defined by Rq(u) := ‖∇u‖pp / ‖u‖pq .
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A third consequence of our main result is that, for each λ > 0, 1 ≤ s ≤ ∞
and for any sequence qn → p one has:

lim
qn→p

(
λ ‖uλ,qn‖qn−p

s

)
= λp and

uλ,qn

‖uλ,qn‖s
→ ep

‖ep‖s
the last convergence being in the C1(Ω) space. This might be useful for numerical
computation of the first eigenvalue of the p-Laplacian (see [4]) taking into account
that λ does not need to be close to λp and that the sequence qn tending to p can
be arbitrarily chosen.

2. Asymptotic behavior of the resonant problem

In this section we consider the resonant Lane–Emden problem{
−Δpu = λp |u|q−2 u in Ω

u = 0 on ∂Ω.
(3)

Our goal is to completely determine the asymptotic behavior of the weak positive
solutions of this problem, as q → p. (Some proofs in this section were omitted or
just sketched, but all of them are available in [8].)

The weak solutions of (3) are the critical points of the energy functional

Iq : W 1,p
0 (Ω) −→ R defined by

Iq(u) :=
1

p

∫
Ω

|∇u|p dx− λp

q

∫
Ω

|u|q dx.

Furthermore, a family {vq}q∈[1,p)∪(p,p�) of positive weak solutions of (3) is obtained

from minimizers of the Rayleigh quotient

Rq(u) :=

∫
Ω
|∇u|p dx(∫

Ω |u|q dx
) p

q

in W 1,p
0 (Ω) \ {0}.
In fact, as it is well known, the compactness of the immersion W 1,p

0 (Ω) ↪→
Lq(Ω) for 1 ≤ q < p� implies that Rq : W 1,p

0 (Ω) \ {0} −→ R attains a positive

minimum at a positive and Lq-normalized function wq ∈ W 1,p
0 (Ω) ∩C1,α

(
Ω
)
:

‖wq‖q = 1 and λq := min
{
Rq(u) : u ∈ W 1,p

0 (Ω) \ {0}
}
= Rq(wq). (4)

(We remark that this notation is coherent with the case q = p, since the first

eigenvalue λp is also characterized as the minimum of Rp on W 1,p
0 (Ω) \ {0}.)

It is straightforward to verify that wq is a weak solution of{
−Δpu = λq |u|q−2

u in Ω

u = 0 on ∂Ω
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and hence that

vq =

(
λq

λp

) 1
q−p

wq (5)

is a positive weak solution of (3) for each q ∈ [1, p) ∪ (p, p�).

Since ‖wq‖q = 1 one has

‖vq‖q =

(
λq

λp

) 1
q−p

. (6)

In the sub-linear case 1 ≤ q < p the function vq is the only critical point of

Iq. Moreover, this function minimizes the energy functional Iq on W 1,p
0 (Ω) \ {0},

that is

Iq(vq) = min
{
Iq(v) : v ∈ W 1,p

0 (Ω) \ {0}
}
. (7)

This property can also be directly proved using (4) and (6).

In the super-linear case 1 < p < q < p� the energy functional is not bounded
from below. However, the weak positive solution vq minimizes both, the energy
functional Iq and the Lq norm, in the Nehari manifold

Nq :=

{
v ∈ W 1,p

0 (Ω) \ {0} :
∫
Ω

|∇v|p dx = λp

∫
Ω

|v|q dx
}
.

Therefore, since any nontrivial solution of (3) belongs toNq, it follows that vq ∈ Nq

and also that vq is a ground state.

Since no general uniqueness result is known for the super-linear case, the
existence of multiple ground states for (3) is possible, at least in principle, for each
fixed q ∈ (p, p�). However, all of them must have the same energy and also the
same Lq norm.

In the remaining of this section we denote by vq the function defined by (5)
and by uq any positive solution of the resonant Lane–Emden (2). Obviously, in
the sub-linear case we must have uq = vq.

Lemma 1. Let {uq}q∈[1,p)∪(p,p�) be a family of positive solutions of the Lane–Emden

problem (3). One has

0 < C1 ≤ ‖uq‖q−p
∞ ≤ C2

for all q ∈ [1, p) ∪ (p, p + ε), where ε > 0 and the constants C1 and C2 do not
depend on q ∈ [1, p) ∪ (p, p+ ε).

In the sub-linear case C1 is obtained after testing (7) with the function ep,
while C2 is obtained from a simple comparison principle involving the p-torsion
function φp ∈W 1,p

0 (Ω), that is, −Δpφp = 1 in Ω.

In the super-linear case, C1 can be taken as 1 and the constant C2 follows
after combining a blow-up argument with Picone’s inequality (as in Lemma 2.1
of [13]).
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Lemma 2. Let {uq}q∈[1,p)∪(p,p�) be a family of positive solutions of the Lane–Emden

problem (3) and define, for each q ∈ [1, p) ∪ (p, p�), the function Uq :=
uq

‖uq‖∞
.

Then Uq converges to ep in C1(Ω) as q → p. Moreover,∫
Ω

Up
q − U q

q

q − p
dx→

∫
Ω

epp |ln ep| dx as q → p. (8)

Proof. It is easy to verify that{
−ΔpUq = λp ‖uq‖q−p

∞ U q−1
q in Ω,

Uq = 0 on ∂Ω.
(9)

It follows from Lemma 1 that the right-hand side of the equation in (9) is
uniformly bounded with respect to q ∈ [1, p) ∪ (p, p+ ε). Therefore, global Hölder
regularity implies that Uq converges in C1

(
Ω
)
to a function U ≥ 0 (as q → p)

with ‖U‖∞ = 1. It also holds λp ‖uq‖q−p
∞ → c ∈ (λpC1, λpC2).

Taking the limit q → p in the weak formulation of (9) with λ = λp ‖uq‖q−p
∞ ,

one obtains ∫
Ω

|∇U |p−2∇U · ∇ϕdx = c

∫
Ω

|U |p−2
Uϕdx

for any test function ϕ ∈ W 1,p
0 (Ω), which proves that U is a nonnegative eigen-

function associated with the eigenvalue c and such that ‖U‖∞ = 1. But this fact
necessarily implies that c = λp and U = ep. Thus, the uniqueness of the limits

λp ‖uq‖q−p
∞ → λp and Uq → ep show that these convergences do not depend on

subsequences. Therefore, ‖uq‖q−p
∞ → 1 and Uq → ep in C1

(
Ω
)
.

In order to prove (8) we first observe that
Up
q − U q

q

q − p
is uniformly bounded

with respect to q close to p with

lim sup
q→p

∣∣∣∣Up
q − U q

q

q − p

∣∣∣∣ ≤ lim
q→p

1

p

(
p

q

) q
q−p

=
1

p exp(1)
.

Now, taking into account the convergence Uq → ep in C1(Ω), (8) follows from
Lebesgue’s dominated convergence theorem if we prove that

1− U q−p
q

q − p
→ |ln ep| as q → p+ a.e. in Ω

and
Up−q
q − 1

q − p
→ |ln ep| as q → p− a.e. in Ω.

So, let K ⊂ Ω compact and 0 < δ < min
K

ep. Then

0 < min
K

ep − δ < ep − δ ≤ Uq ≤ ep + δ in K
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for all q sufficiently close to p. Hence, in K one has

− ln(ep + δ) ≤ lim inf
q→p+

1− U q−p
q

q − p
≤ lim sup

q→p+

1− U q−p
q

q − p
≤ − ln(ep − δ), (10)

since

lim
q→p+

1− (ep + δ)q−p

q − p
= − ln(ep + δ) and lim

q→p+

1− (ep − δ)q−p

q − p
= − ln(ep − δ).

Therefore, making δ → 0+ in (10) we conclude that

lim
q→p+

1− U q−p
q

q − p
= − ln ep = |ln ep| in K.

Analogously we prove that

lim
q→p−

Up−q
q − 1

q − p
= |ln ep| in K. �

Lemma 3. Let {uq}q∈[1,p)∪(p,p�) be a family of positive weak solutions of the Lane–

Emden problem (3). Then,

lim sup
q→p−

‖uq‖∞ ≤ exp

(∫
Ω epp |ln ep| dx∫

Ω eppdx

)
≤ lim inf

q→p+
‖uq‖∞ . (11)

Proof. Applying Picone’s inequality (see [2]) to Uq =
uq

‖uq‖∞
and ep one has∫

Ω

|∇Uq|p dx ≥
∫
Ω

|∇ep|p−2∇ep · ∇
(

Up
q

ep−1
p

)
dx. (12)

(Hopf’s boundary lemma implies that Up
q /e

p−1
p ∈ W 1,p

0 (Ω).) Therefore, it follows
from (9) that

λp ‖uq‖q−p
∞

∫
Ω

U q
q dx ≥ λp

∫
Ω

ep−1
p

Up
q

ep−1
p

dx = λp

∫
Ω

Up
q dx

and from this we obtain

‖uq‖q−p
∞ − 1

q − p

∫
Ω

U q
q dx ≥

∫
Ω

Up
q − U q

q

q − p
dx if p < q < p� (13)

and

‖uq‖q−p
∞ − 1

q − p

∫
Ω

U q
q dx ≤

∫
Ω

Up
q − U q

q

q − p
dx if 1 < q < p.

Let us suppose, in the case q → p+, that there exist L < θp and a sequence
qn → p+ such that ‖uqn‖∞ ≤ L. Then (13) and Lemma 2 yield∫

Ω

epp |ln ep| dx = lim

∫
Ω

Up
qn − U qn

qn

qn − p
dx

≤ lim
Lqn−p − 1

qn − p

∫
Ω

U qn
qn dx = lnL

∫
Ω

eppdx,
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that is, θp ≤ L, thus reaching a contradiction. We have proved the second inequal-
ity in (11).

The case q → p− is analogous. �

Lemma 4. Let {uq}q∈[1,p)∪(p,p�) be a family of positive weak solutions of the Lane–

Emden problem (3). Then,

lim sup
q→p+

‖uq‖∞ ≤ exp

(∫
Ω epp |ln ep| dx∫

Ω eppdx

)
≤ lim inf

q→p−
‖uq‖∞ .

Proof. By applying Picone’s inequality again, but interchanging Uq with eq in (12),
the lemma follows similarly. �

Theorem 5. Let {uq}q∈[1,p)∪(p,p�) be a family of positive weak solutions of the

Lane–Emden problem (3). Then uq converges in C1(Ω) to θpep as q → p, where

θp := exp

(∫
Ω epp |ln ep| dx∫

Ω eppdx

)
.

Proof. Lemmas 3 and 4 imply that

lim
q→p

‖up‖∞ → θp. (14)

Thus, the right-hand side of (3) is bounded for all q sufficiently close to p. This fact,
combined with the global Hölder regularity ensures that uq converges in C1

(
Ω
)

to a positive first eigenfunction u ∈ C1(Ω) ∩W 1,p
0 (Ω) when q → p. Thus, u = kep

for some k > 0. But, according to (14) k = θp, implying that the limit function is
always θpep (that is, it does not depend on subsequences). Therefore, uq → θpep
in C1(Ω) as q → p. �

3. Applications

A consequence of Theorem 5 is the differentiability of the function q ∈ [1, p�) �→
λq at q = p, where λq is defined by (4). We remark that this function is, in

fact, differentiable almost everywhere since the function q ∈ [1, p�) �−→ |Ω| pq λq is
strictly decreasing (see [9]).

Corollary 6. It holds

lim
q→p

λq − λp

q − p
= λp ln(θp ‖ep‖p). (15)

Proof. We recall that for each q ∈ [1, p) ∪ (p, p�) the function vq =
(

λq

λp

) 1
q−p

wq is

a positive weak solution of the resonant Lane–Emden problem (3)), where wq ∈
W 1,p

0 (Ω) ∩ C1,α
(
Ω
)
satisfies ‖wq‖q = 1 and Rq(wq) = λq.
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Thus, it follows from Theorem 5 that

θp ‖ep‖p = lim
q→p

‖vq‖q = lim
q→p

(
λq

λp

) 1
q−p

= exp

(
lim
q→p

lnλq − lnλp

q − p

)
.

But this is equivalent to differentiability of λq at q = p with d
dq [λq]q=p given by

(15). �

Another consequence of Theorem 5 is the complete description, in the C1(Ω)
space, of the asymptotic behavior for the positive solutions of the non-resonant
problem (0 < λ �= λp): {

−Δpu = λ |u|q−2 u in Ω

u = 0 on ∂Ω.
(16)

Corollary 7. Let {uλ,q}q∈[1,p)∪(p,p�) be a family of positive solutions of (16). Then

lim
q→p−

‖uλ,q‖C1 =

{
0 if λ < λp

∞ if λ > λp

and

lim
q→p+

‖uλ,q‖C1 =

{ ∞ if λ < λp

0 if λ > λp.

Proof. The proof follows directly from Theorem 5 after noticing that

uλ,q :=

(
λ

λp

) 1
p−q

uq, (17)

where uq is a positive solution of the resonant Lane–Emden problem (3). �

These results generalize those in [3] and in [11] to C1 norm. Note that in the
super-linear case, our results are really more general than those in [11] since they
do apply to arbitrary families of positive solutions and not only for ground states,
as in [11].

A third consequence of Theorem 5 is that it provides a theoretical method
for obtaining approximations for a first eigenpair of the p-Laplacian by solving a
non-resonant problem (16) with λ > 0 arbitrary and q close to p. In fact, we have
the following corollary.

Corollary 8. For 1 ≤ s ≤ ∞ and λ > 0 fixed let Uλ,q :=
uλ,q

‖uλ,q‖s
and μλ,q :=

λ ‖uλ,q‖q−p
s . Then, as q → p :

μλ,q → λp and Uq → ep
‖ep‖s

in C1(Ω).

Proof. The proof follows directly from Theorem 5 after noticing from (17) that

Uλ,q =
uq

‖uq‖s
and μλ,q := λ ‖uλ,q‖q−p

s = λ
λp

λ
‖uq‖q−p

s = λp ‖uq‖q−p
s . �
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Corollary 8 provides a method for obtaining numerical approximations of the
first eigenpair (λp,

ep
‖ep‖s

). In fact, in a first step one can compute a numerical

solution of problem (16) with q close to p and hence, after Ls-normalization, one
obtains approximations for λp and

ep
‖ep‖s

simultaneously.

Of course, a numerical solution of the nonlinear problem (16), for some λ > 0
fixed, is easier to obtain than directly compute the first eigenpair of the p-Laplacian
(by solving the corresponding eigenvalue problem). As previously mentioned, the
advantage here is that λ can be chosen arbitrarily in computational implementa-
tions of (16) and does not need to be close to λp. A similar approach was recently
used in [4], where the iterative sub- and super-solution method was applied to
compute the positive solutions of the sub-linear problem.

We emphasize that this approach is well supported by the results in this
work also for the super-linear case, since it does apply to any family of positive
solutions. It is worth noticing that since the previously known results are valid
only for ground state families, the application of this method (up to now) would
be unviable if one takes into account the necessity of proving that a numerical
solution of the super-linear problem is in fact a ground state.
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Abstract. We consider the system{
−Δu+ V (x)u+K(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−Δφ = K(x)u2, x ∈ R3,
(S)

where 3 < p < 5 and the potentials K(x), a(x) and V (x) has finite limits as
|x| → +∞. By imposing some conditions on the decay rate of the potentials
we obtain the existence of a ground state solution. In the proof we apply
variational methods.
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1. Introduction

In this note we are concerned with the existence of a positive solution for the
nonlinear system{ −Δu+ V (x)u +K(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−Δφ = K(x)u2, x ∈ R3,
(S)

where 3 < p < 5 and the potentials K(x), a(x) and V (x) satisfy some basic
assumptions.

As quoted in the paper [4], this system arises in many interesting physical
context. According to a classical model, the interaction of a charge particle with
an electromagnetic field can be described by coupling the nonlinear Schrödinger
and the Maxwell equations. In particular, if one is looking for electrostatic-type

The three authors were partially supported by CNPq/Brazil. The first two authors were partially
supported by PROEX/CAPES, UnB..
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solutions, it is natural to solve (S). In many papers the potential V has been
supposed constant or radial (see for instance [1, 2, 8] and references therein). Here,
motivated by the recent results by G. Cerami and G. Vaira [6] we will assume the
following hypotheses:

(H1) there exist cK , α > 0 such that

0 ≤ K(x) ≤ cKe−α|x|, for a.e. x ∈ R3;

(H2) a, V ∈ C(R3,R) are positive continuous functions such that

lim
|x|→+∞

V (x) = V∞ > 0, lim
|x|→+∞

a(x) = a∞ > 0. (1.1)

Furthermore, it is necessary to have some control on the asymptotic behavior
of the potentials V and a. So, we also assume that

(H3) there exist cV , ca, γ, θ > 0 such that, for each x ∈ R3, there hold

V (x) ≤ V∞ + cV e
−γ|x|, a(x) ≥ a∞ + cae

−θ|x|, (1.2)

with θ < min{γ, α} ≤ max{γ, α} < 2
√
V∞.

Our main result can be stated as follows:

Theorem 1.1. If (H1)–(H3) hold, then the system (S) has a positive ground state
solution.

For the proof, we use an approach similar to that of [6]. It consists in apply-
ing the Mountain Pass Theorem together with some sort of Splitting Lemma. This
former result enables us to overcome the lack of compactness of the Sobolev em-
beddings caused by the fact the problem is set in whole space RN . Hence, we need
to perform a careful investigation of the behavior of the Palais–Smale sequences for
the energy functional associated with system (S). Actually, we identify the levels
in which the Palais–Smale condition can fail, giving a representation theorem for
such sequences, and showing that the only obstacle to prove compactness are the
solutions of the limit problem

−Δw + V∞w = a∞|w|p−1w, x ∈ R3. (P∞)

In [6] the authors considered the same problem with V ≡ 1 and some inte-
grability conditions on the function a(x)− a∞. By assuming that the L2-norm of
the weight K is smaller than a number related with the least energy level of two
limit problems, they obtained the existence of a positive ground state solution. On
the other hand, in [10] G. Vaira supposed that V ≡ 1, a(x)→ a∞, K(x)→ K∞ as
|x| → +∞, with a∞, K∞ > 0. Under some integrability conditions on a(x) − a∞
and K(x) − K∞, and some other mild conditions on the potentials, she also ob-
tained a positive solution. Our Theorem 1.1 complements (and is not comparable
with) the existence results of [6, 10].

We finally point out that a slight modification of our approach allows us to
drop condition (H3) by the following one (see Remark 3.3):
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(H̃3) there exist cV , ca, γ, θ > 0 such that, for each x ∈ R3, there hold

V (x) ≤ V∞ − cV e
−γ|x|, a(x) ≥ a∞ − cae

−θ|x|,

with γ < min{θ, α} ≤ max{θ, α} < 2
√
V∞.

The paper is organized as follows: in the next section we present the varia-
tional setting of the problem and state the compactness lemma that we shall use.
In Section 3 we prove the main theorem.

2. The variational setting

Throughout the paper we write
∫
u instead of

∫
R3 u(x)dx. For each u ∈W 1,2(R3)

we define

‖u‖ :=
(∫

(|∇u|2 + V (x)u2)

)1/2

.

It follows from (H2) that ‖ · ‖ is a norm which is equivalent to the usual one of
W 1,2(R3). For any A ⊂ R3 and u ∈ Lp(A) we denote ‖u‖Lp(A) := (

∫
A |u|pdx)1/p.

If A = R3 we write only ‖u‖p. Moreover, in what follows, without any loss of
generality, we assume that a∞ = 1.

SinceK ∈ L2(R3), a straightforward application of the Lax–Milgram theorem
implies that, for any given u ∈W 1,2(R3), there exists a unique φ = φu ∈ D1,2(R3)
such that ∫

∇φu · ∇v =

∫
K(x)u2v, for all v ∈ D1,2(R3).

Actually, the function φu weakly solves −Δφ = K(x)u2 and we can construct
the application φ : W 1,2(R3) → D1,2(R3) which associates to each u ∈ W 1,2(R3)
the function φ(u) as above. From simplicity we write only φu to denote φ(u). We
collect below some properties of the map φ (see [6, Lemma 2.1]).

Lemma 2.1. The following hold:

1. φ is continuous and maps bounded sets into bounded sets;
2. φtu = t2φu, for any u ∈ W 1,2(R3), t > 0;
3. if un ⇀ u weakly in W 1,2(R3) then φun ⇀ φu weakly in D1,2(R3).

We shall use the following technical result.

Lemma 2.2. If (un) ⊂W 1,2(R3) is such that un ⇀ u weakly in W 1,2(R3), then

lim
n→∞

∫
K(x)φunu

2
n =

∫
K(x)φuu

2

and

lim
n→∞

∫
K(x)φununϕ =

∫
K(x)φuuϕ,

for all ϕ ∈W 1,2(R3).
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Proof. We have that∫
K(x)(φunu

2
n − φuu

2) =

∫
K(x)φun (u

2
n − u2) +

∫
K(x)u2(φun − φu).

It follows from Lemma 2.1 that φun ⇀ φu weakly in D1,2(R3), and therefore the
last term above goes to zero. Hence, in order to prove the first statement of the
lemma, it suffices to check that

lim
n→+∞

∫
K(x)φun (u

2
n − u2) = 0. (2.1)

By using the Hölder and Sobolev inequality we get∣∣∣∣∫ K(x)φun(u
2
n − u2)

∣∣∣∣ ≤ ‖φun‖6
(∫

K(x)
6
5 |u2

n − u2| 65
)5/6

≤ S‖un‖D1,2

(∫
K(x)

6
5 |u2

n − u2| 65
)5/6

,

(2.2)

where S is related with the embedding D1,2(R3) ↪→ L6(R3).
For any given ρ > 0, we can use the Hölder inequality twice to obtain∫

R3\Bρ(0)

K(x)
6
5 |u2

n − u2| 65dx ≤ ‖K‖6/5L2(R3\Bρ(0))

(∫
|u2

n − u2|3
)2/5

.

The Hölder inequality and the boundedness of (un) in L6(R3) provide c1 > 0 such
that (∫

|u2
n − u2|3

)2/5

≤ ‖un − u‖6/56 ‖un + u‖6/56 ≤ c1. (2.3)

Moreover, since the condition (H1) implies K ∈ L2(R3), we can choose ρ > 0 large
in such a way that ‖K‖L2(R3\Bρ(0)) < ε. Thus, we infer from the above inequalities
that ∫

R3\Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx ≤ c1ε. (2.4)

For any M > 0 we define the set ΩM := {x ∈ Bρ(0) : K(x) ≥ M}. Since
K ∈ L2(R3), the Lebesgue measure of ΩM goes to zero as M → ∞. So, for some
M > 0 sufficiently large, we have that(∫

ΩM

K(x)2dx

)3/5

≤ ε.

Then we can use the Hölder inequality and (2.3) again to get∫
Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx =

∫
ΩM

K(x)
6
5 |u2

n − u2| 65dx

+

∫
Bρ(0)\ΩM

K(x)
6
5 |u2

n − u2| 65 dx

≤ c2ε+M
6
5

∫
Bρ(0)\ΩM

|u2
n − u2| 65dx.

(2.5)
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On the other hand∫
Bρ(0)\ΩM

|u2
n − u2|

6
5 dx ≤ ‖un + u‖6/5

L12/5(Bρ(0))
‖un − u‖6/5

L12/5(Bρ(0))
.

Since un → u strongly in L
12
5 (Bρ(0)), we obtain

lim
n→∞

∫
Bρ(0)\ΩM

|u2
n − u2| 65 dx = 0,

and therefore it follows from (2.5) that∫
Bρ(0)

K(x)
6
5 |u2

n − u2| 65dx ≤ c2ε+ on(1),

where on(1) stands for a quantity approaching zero as n → ∞. The above ex-
pression, (2.4) and (2.2) imply (2.1) and the proof of the first statement of the
lemma is concluded. The second one can be proved in the same way. We omit the
details. �

The main interest in function φ comes from the fact that it enables us dealing
with system (P ) as a single equation. Actually, it can be proved that (u, φ) ∈
W 1,2(R3) ×D1,2(R3) is a solution of (P ) if, and only if, u ∈ W 1,2(R3) is a non-
negative critical point of the C1-functional I : W 1,2(R3)→ R given by

I(u) :=
1

2
‖u‖2 +

∫
K(x)φu(x)u

2 − 1

p+ 1

∫
a(x)(u+)p+1,

where u+(x) := max{u(x), 0}. Since we intend to apply critical point theory to
find such critical points, we need to prove some kind of compactness properties
for the functional I. In this setting, the limit problem (P∞) plays an important
role. We observe that weak solutions of (P∞) are precisely the critical points of
the functional

I∞(w) :=
1

2

∫
(|∇w|2 + V∞w2)− 1

p+ 1

∫
(w+)p+1, w ∈ W 1,2(R3).

Let N∞ be the Nehari manifold of I∞, that is

N∞ := {w ∈ W 1,2(R3) \ {0} : I ′∞(w)w = 0}
and consider the related minimization problem

c∞ := inf
w∈N∞

I∞(w).

The proof of the next result can be found in Berestycki–Lions [5].

Proposition 2.3. Problem (P∞) has a positive and radially symmetrical solution
ω ∈ W 1,2(R3) such that I∞(ω) = c∞. Moreover, for any 0 < δ <

√
V∞, there

exists a constant C = C(δ) > 0 such that

ω(x) ≤ Ce−δ|x|, for all x ∈ R3. (2.6)

In order to prove that the functional I satisfies a local Palais–Smale condition
we shall use the following version of a result due to Struwe [9] (see also [3]).
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Lemma 2.4. Let (un) ⊂W 1,2(R3) be such that

I(un)→ c, I ′(un)→ 0

and un ⇀ u weakly in W 1,2(R3). Then I ′(u) = 0 and we have either

(a) un → u strongly in W 1,2(R3), or
(b) there exists k ∈ N, (yjn) ∈ R3 with |yjn| → ∞, j = 1, . . . , k, and nontrivial

solutions w1, . . . , wk ∈W 1,2(R3) of the problem (P∞), such that

I(un)→ I(u) +

k∑
j=1

I∞(wj) (2.7)

and ∥∥∥∥un − u−
k∑

j=1

wj(· − yjn)

∥∥∥∥→ 0.

Proof. To prove this result one can use Lemma 2.2 and similar arguments to that
of [6]. Hence we omit the details. �

Corollary 2.5. If (un) ⊂ W 1,2(R3) is such that I(un) → c < c∞ and I ′(un) → 0,
then (un) has a convergent subsequence.

Proof. Let (un) ⊂ W 1,2(R3) be as in the previous statement. Since p > 3 by a
standard argument it follows that (un) is bounded. Hence, up to a subsequence,
un ⇀ u0 weakly in W 1,2(R3). By Lemma 2.4 we have I ′(u0) = 0 and therefore

I(u0) = I(u0)− 1

2
I ′(u0)u0 =

(
1

2
− 1

p+ 1

)∫
a(x)(u+

0 )
p+1 ≥ 0.

If un �→ u0 in W 1,2(R3), we can invoke Lemma 2.4 again to obtain k ∈ N and
nontrivial solutions w1, . . . , wk of (P∞) satisfying

lim
n→∞ I(un) = c = I(u0) +

k∑
j=1

I∞(wj) ≥ kc∞ ≥ c∞,

contrary to the hypothesis. Hence un → u0 strongly in W 1,2(R3). �

3. The proof of Theorem 1.1

We devote this section to the proof of our main theorem. The idea is looking
for critical points of the functional I by considering the following minimization
problem

c0 := inf
u∈N

I(u),

where N is the Nehari manifold of I, namely

N :=
{
u ∈W 1,2(R3) \ {0} : I ′(u)u = 0

}
.
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From now on we denote by ω a positive ground state solution of the problem
(P∞). For xn := (0, . . . , n) we also set

ωn(x) := ω(x− xn).

Since p > 3 we can easily check that, for each n ∈ N, there exists tn > 0 such that
tnωn ∈ N . Moreover, the following holds

Lemma 3.1. The sequence (tn) satisfies lim
n→+∞ tn = 1.

Proof. Since I ′(tnωn)(tnωn) = 0, we can use item 2 of Lemma 2.1 to get

0 = t2n

∫
(|∇ωn|2 + V (x)ω2

n) + t4n

∫
K(x)φωnω

2
n − tp+1

n

∫
a(x)ωp+1

n . (3.1)

By using (1.1), a change o variables and the Lebesgue Theorem we get

lim
n→∞

∫
V (x)ω2

n = lim
n→∞

∫
V (x+ xn)ω

2 =

∫
V∞ω2

and

lim
n→∞

∫
a(x)ωp+1

n = lim
n→∞

∫
a(x+ xn)ω

p+1 =

∫
ωp+1.

Moreover, by item 1 of Lemma 2.1, we also have that∣∣∣∣∫ K(x)φωn(x)ω
2
n

∣∣∣∣ ≤ ‖K‖2‖φωn‖6‖ω‖6 ≤ c1,

for some c1 > 0.
We claim that (tn) is bounded. Indeed, if this is not the case, we can divide

equation (3.1) by tp+1
n , take the limit as n → ∞ and use p + 1 > 4 and the

above statements to conclude that
∫
ωp+1 = 0, which is a contradiction. Hence

(tn) is bounded. Moreover, for some t̄ > 0, there holds tn ≥ t̄ > 0. Otherwise,
since ‖tnωn‖W 1,2(R3) = tn‖ω‖W 1,2(R3), we would have dist(N , 0) = 0, which is
impossible.

The above reasoning shows that, up to a subsequence, tn → t0 > 0. We claim
that

lim
n→∞

∫
K(x)φωn(x)ω

2
n = 0. (3.2)

Assuming the claim and taking the limit in (3.1) we obtain

0 = t20

∫
(|∇ω|2 + V∞ω2)− tp+1

0

∫
ωp+1 = I ′∞(t0ω)(t0ω).

Since ω ∈ N∞ we conclude that t0 = 1.
It remains to prove the claim. First notice that, by item 1 of Lemma 2.1, we

have that ‖φωn‖6 ≤ c2, for some c2 > 0. Given ε > 0 we choose ρ > 0 such that
‖K‖L2(R3\Bρ(0)) < ε. Thus,∣∣∣∣∣

∫
R3\Bρ(0)

K(x)φωn(x)ω
2
ndx

∣∣∣∣∣ ≤ ‖K‖2L2(R3\Bρ(0))
‖φωn‖6‖ω‖26 ≤ c2‖ω‖6ε. (3.3)
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On the other hand, Hölder’s inequality and a change of variables provide∣∣∣∣∣
∫
Bρ(0)

K(x)φωn(x)ω
2
ndx

∣∣∣∣∣ ≤ ‖K‖2‖φωn‖6
(∫

Bρ(xn)

ω6dx

)1/3

= on(1),

since ω ∈ L6(R3) and |xn| → ∞, as n → ∞. The above inequality and (3.3)
establishes (3.2). The proof is finished. �

The following result contains the core estimate for the proof of our main
theorem.

Proposition 3.2. If (H1)–(H3) hold, then 0 < c0 < c∞.

Proof. Let ω, ωn and tn > 0 be as in the beginning of this section. Since tnωn ∈ N ,
a straightforward calculation provides

c0 ≤ I(tnωn) = I∞(tnω) +
t2n
2
An +

t4n
4
Dn +

tp+1
n

p+ 1
En

≤ c∞ +
t2n
2
An +

t4n
4
Dn +

tp+1
n

p+ 1
En,

(3.4)

where

An :=

∫
(V (x) − V∞)ω2

n, Dn :=

∫
K(x)φωn(x)ω

2
n

and

En :=

∫
(1− a(x))ωp+1

n .

Now we need to estimate the decay rate of each of the above terms. It follows
from the first estimate in (1.2) that

An =

∫
(V (x) − V∞)ω2

n ≤ cV

∫
e−γ|x|ω2

n = cV

∫
e−γ|x+xn|ω2.

Since |x+ xn| ≥ |xn| − |x| = n− |x|, we obtain

An ≤ cV e
−γn

∫
eγ|x|ω2 = CV e

−γn, (3.5)

with CV > 0, where we have used in the last equality the exponential decay of ω
given in Proposition 2.3 and that γ < 2

√
V∞, which implies that

∫
e−γ|x|ω2 <∞.

In order to estimate Dn we use Hölder’s inequality, α < 2
√
V∞ and argue as above

to get

Dn =

∫
K(x)φωn(x)ω

2
n ≤ ‖φωn‖6

(∫
K(x)

6
5ω

12
5
n

)5/6

≤ c1

(∫
e−

6α
5 |x+xn|ω

12
5

)5/6

≤ CKe−αn,

(3.6)
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with CK > 0. We now use the second inequality in (1.2) to estimate En as follows

En =

∫
(1− a(x))ωp+1

n ≤ −ca
∫

e−θ|x|ωp+1
n = −ca

∫
e−θ|x+xn|ωp+1.

Since |x+ xn| ≤ n+ |x|, we obtain Ca > 0 such that

En ≤ −cae−θn

∫
e−θ|x|ωp+1 = −Cae

−θn. (3.7)

By replacing (3.5)–(3.7) in (3.4) we obtain,

c0 ≤ c∞ + e−θn

(
t2n
2
CV e

(θ−γ)n +
t4n
4
CKe(θ−α)n − tp+1

n

p+ 1
Ca

)
= c∞ + e−θn(on(1)− Ca),

where we have used in the last equality that tn → 1 and θ < min{α, γ}. Since
Ca > 0 we can take n large enough to conclude that c0 < c∞. The proposition is
proved. �

We are now ready to obtain the ground state solution of (S).

Proof of Theorem 1.1. Let (un) ⊂ N be such that I(un) → c0. Since N is a
C1 regular manifold and is closed (see [6, Lemma 3.1]), we can use Ekeland’s
Variational Principle to obtain that

I(un)→ c0 and I ′(un)→ 0.

Proposition 3.2 and Corollary 2.5 imply that the sequence (un) strongly converges
to a function u0 ∈ W 1,2(R3) such that I(u0) = c0 > 0 and I ′(u0) = 0. Setting
u−
0 (x) := max{−u0(x), 0}, we can use 0 = I ′(u0)u0

− = −‖u−
0 ‖ to conclude that

u0 ≥ 0 a.e. in R3. It follows from elliptic regularity and the strong maximum
principle that u > 0 in R3. The theorem is proved. �
Remark 3.3. A simple inspection of the proof of Proposition 3.2 shows that we

can drop the condition (H3) by the hypotheses (H̃3) stated in the introduction.
Indeed, with this dual condition what happens is that term An of the proof of
the proposition becomes negative while the term En is positive. The choices of
the numbers α, γ and θ guarantee that the desired inequality also holds in this
setting.
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Abstract. We show that the number of positive solutions of Schrödinger–
Maxwell system on a smooth bounded domain Ω ⊂ R3 depends on the topo-
logical properties of the domain. In particular we consider the Lusternik–
Schnirelmann category and the Poincaré polynomial of the domain.
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1. Introduction

Given real numbers q > 0, ω > 0 we consider the following Schrödinger–Maxwell
system on a smooth bounded domain Ω ⊂ R3:⎧⎪⎨⎪⎩

−ε2Δu+ u+ ωuv = |u|p−2u in Ω

−Δv = qu2 in Ω

u, v = 0 on ∂Ω

(1)

This paper deals with the semiclassical limit of the system (1), i.e., it is
concerned with the problem of finding solutions of (1) when the parameter ε is
sufficiently small. This problem has some relevance for the understanding of a
wide class of quantum phenomena. We are interested in the relation between the
number of positive solutions of (1) and the topology of the bounded set Ω. In
particular we consider the Lusternik–Schnirelmann category catΩ of Ω in itself
and its Poincaré polynomial Pt(Ω).

Our main results are the following.

Theorem 1. Let 4 < p < 6. For ε small enough there exist at least cat(Ω) positive
solutions of (1).

Switzerland
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Theorem 2. Let 4 < p < 6. Assume that for ε small enough all the solutions
of problem (1) are non-degenerate. Then there are at least 2P1(Ω) − 1 positive
solutions.

Schrödinger–Maxwell systems recently received considerable attention from
the mathematical community. In the pioneering paper [9] Benci and Fortunato
studied system (1) when ε = 1, ‖u‖L2 = 1 and without nonlinearity. Regarding
the system in a semiclassical regime Ruiz [18] and D’Aprile–Wei [11] showed the
existence of a family of radially symmetric solutions respectively for Ω = R3 or a
ball. D’Aprile–Wei [12] also proved the existence of clustered solutions in the case
of a bounded domain Ω in R3.

Recently, Siciliano [19] relates the number of solution with the topology of
the set Ω when ε = 1, and the nonlinearity is a pure power with exponent p
close to the critical exponent 6. Moreover, in the case ε = 1, many authors proved
results of existence and non existence of solution of (1) in presence of a pure power
nonlinearity |u|p−2u, 2 < p < 6 or more general nonlinearities [1, 2, 3, 4, 10, 14,
15, 17, 20].

In a forthcoming paper [13], we aim to use our approach to give an esti-
mate on the number of low energy solutions for Klein–Gordon–Maxwell systems
on a Riemannian manifold in terms of the topology of the manifold and some
information on the profile of the low energy solutions.

In the following we always assume 4 < p < 6.

2. Notations and definitions

In the following we use the following notations.

• B(x, r) is the ball in R3 centered in x with radius r.
• The function U(x) is the unique positive spherically symmetric function in
R3 such that

−ΔU + U = Up−1 in R3

we remark that U and its first derivative decay exponentially at infinity.
• Given ε > 0 we define Uε(x) = U

(
x
ε

)
.

• We denote by supp ϕ the support of the function ϕ.
• We define

m∞ = inf∫
R3

|∇v|2+v2dx=|v|p
Lp(R3)

1

2

∫
R3

(|∇v|2 + v2)dx− 1

p
|v|pLp(R3)

• We also use the following notation for the different norms for u ∈ H1
0 (Ω):

‖u‖2ε =
1

ε3

∫
Ω

ε2|∇u|2 + u2dx |u|pε,p =
1

ε3

∫
Ω

|u|pdx

‖u‖2H1
0
=

∫
Ω

|∇u|2dx |u|pp =

∫
Ω

|u|pdx

and we denote by Hε the Hilbert space H1
0 (Ω) endowed with the ‖ · ‖ε norm.
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Definition 3. Let X a topological space and consider a closed subset A ⊂ X . We
say that A has category k relative to X (catX A = k) if A is covered by k closed
sets Aj , j = 1, . . . , k, which are contractible in X , and k is the minimum integer
with this property. We simply denote catX = catX X .

Remark 4. LetX1 andX2 be topological spaces. If g1 : X1 → X2 and g2 : X2 → X1

are continuous operators such that g2 ◦g1 is homotopic to the identity on X1, then
catX1 ≤ catX2.

Definition 5. Let X be any topological space and let Hk(X) denotes its kth homol-
ogy group with coefficients in Q. The Poincaré polynomial Pt(X) of X is defined
as the following power series in t

Pt(X) :=
∑
k≥0

(dimHk(X)) tk

Actually, if X is a compact space, we have that dimHk(X) < ∞ and this
series is finite; in this case, Pt(X) is a polynomial and not a formal series.

Remark 6. Let X and Y be topological spaces. If f : X → Y and g : Y → X
are continuous operators such that g ◦ f is homotopic to the identity on X , then
Pt(Y ) = Pt(X) + Z(t) where Z(t) is a polynomial with non-negative coefficients.

These topological tools are classical and can be found, e.g., in [16] and in [5].

3. Preliminary results

Using an idea in a paper of Benci and Fortunato [9] we define the map ψ : H1
0 (Ω)→

H1
0 (Ω) defined by the equation

−Δψ(u) = qu2 in Ω (2)

Lemma 7. The map ψ : H1
0 (Ω)→ H1

0 (Ω) is of class C2 with derivatives

ψ′(u)[ϕ] = i∗(2quϕ) (3)

ψ′′(u)[ϕ1, ϕ2] = i∗(2qϕ1ϕ2) (4)

where the operator i∗ε : (Lp′
, | · |ε,p′)→ Hε is the adjoint operator of the immersion

operator iε : Hε → (Lp, | · |ε,p).
Proof. The proof is standard. �

Lemma 8. The map T : H1
0 (Ω)→ R given by

T (u) =

∫
Ω

u2ψ(u)dx

is a C2 map and its first derivative is

T ′(u)[ϕ] = 4

∫
Ω

ϕuψ(u)dx.
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Proof. The regularity is standard. The first derivative is

T ′(u)[ϕ] = 2

∫
uϕψ(u) +

∫
u2ψ′(u)[ϕ].

By (3) and (2) we have

2q

∫
uϕψ(u) = −

∫
Δ(ψ′(u)[ϕ])ψ(u) = −

∫
ψ′(u)[ϕ]Δψ(u)

=

∫
ψ′(u)[ϕ]qu2

and the claim follows. �

At this point we consider the following functional Iε ∈ C2(H1
0 (Ω),R)

Iε(u) =
1

2
‖u‖2ε +

ω

4
Gε(u)− 1

p
|u+|pε,p (5)

where

Gε(u) =
q

ε3

∫
Ω

u2ψ(u)dx =
q

ε3
T (u).

By Lemma 8 we have

I ′ε(u)[ϕ] =
1

ε3

∫
Ω

ε2∇u∇ϕ+ uϕ+ ωuψ(u)ϕ− (u+)p−1ϕ

I ′ε(u)[u] = ‖u‖2ε + ωGε(u)− |u+|pε,p
then if u is a critical point of the functional Iε the pair of positive functions
(u, ψ(u)) is a solution of (1).

4. Nehari manifold

We define the following Nehari set

Nε =
{
u ∈ H1

0 (Ω)� 0 : Nε(u) := I ′ε(u)[u] = 0
}
.

In this section we give an explicit proof of the main properties of the Nehari
manifold, although standard, for the sake of completeness

Lemma 9. Nε is a C2 manifold and infNε ‖u‖ε > 0.

Proof. If u ∈ Nε, using that Nε(u) = 0, and p > 4 we have

N ′
ε(u)[u] = 2‖u‖2ε + 4ωGε(u)− p|u+|ε,p = (2− p)‖u‖ε + (4− p)ωGε(u) < 0

so Nε is a C2 manifold.
We prove the second claim by contradiction. Take a sequence {un}n ∈ Nε

with ‖un‖ε → 0 while n→ +∞. Thus, using that Nε(u) = 0,

‖un‖2ε + ωGε(un) = |u+
n |pp,ε ≤ C‖un‖pε,
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so

1 < 1 +
ωGε(u)

‖un‖ε ≤ C‖un‖p−2
ε → 0

and this is a contradiction. �

Remark 10. If u ∈ Nε, then

Iε(u) =

(
1

2
− 1

p

)
‖u‖2ε + ω

(
1

4
− 1

p

)
Gε(u)

=

(
1

2
− 1

p

)
|u+|pp,ε −

ω

4
Gε(u).

Lemma 11. It holds the Palais–Smale condition for the functional Iε on Nε.

Proof. We start proving the PS condition for Iε. Let {un}n ∈ H1
0 (Ω) such that

Iε(un)→ c |I ′ε(un)[ϕ]| ≤ σn‖ϕ‖ε where σn → 0

We prove that ‖un‖ε is bounded. Suppose ‖un‖ε →∞. Then, by PS hypothesis

pIε(un)− I ′ε(un)[un]

‖un‖ε =
(p
2
− 1

)
‖un‖ε +

(p
4
− 1

) Gε(un)

‖un‖ε → 0

and this is a contradiction because p > 4.
At this point, up to subsequence un → u weakly in H1

0 (Ω) and strongly in
Lt(Ω) for each 2 ≤ t < 6. Since un is a PS sequence

un + ωi∗ε(ψ(un)un)− i∗ε
(
(u+

n )
p−1

)→ 0 in H1
0 (Ω)

we have only to prove that i∗ε(ψ(un)un) → i∗ε(ψ(u)u) in H1
0 (Ω), then we have to

prove that

ψ(un)un → ψ(u)u in Lt′

We have |ψ(un)un − ψ(u)u|ε,t′ ≤ |ψ(u)(un − u)|ε,t′ + |(ψ(un)− ψ(u))un|ε,t′ . We
get∫

Ω

|ψ(un)− ψ(u)| t
t−1 |un| t

t−1 ≤
(∫

Ω

|ψ(un)− ψ(u)|t
) 1

t−1
(∫

Ω

|un| t
t−2

) t−2
t−1

→ 0,

thus we can conclude easily.
Now we prove the PS condition for the constrained functional. Let {un}n ∈

Nε such that

Iε(un)→ c

|I ′ε(un)[ϕ]− λnN
′(un)[ϕ]| ≤ σn‖ϕ‖ε with σn → 0.

In particular

I ′ε(un)

[
un

‖un‖ε

]
− λnN

′(un)

[
un

‖un‖ε

]
→ 0.

Then

λn

{
(p− 2) ‖un‖ε + (p− 4)ω

Gε(un)

‖un‖ε

}
→ 0
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thus λn → 0 because p > 4. Since N ′(un) = un − i∗ε(4ωψ(un)un)− pi∗ε(|u+
n |p−1) is

bounded we obtain that {un}n is a PS sequence for the free functional Iε, and we
get the claim. �

Lemma 12. For all w ∈ H1
0 (Ω) such that |w+|ε,p = 1 there exists a unique positive

number tε = tε(w) such that tε(w)w ∈ Nε.

Proof. We define, for t > 0

H(t) = Iε(tw) =
1

2
t2‖w‖2ε +

t4

4
ωGε(w) − tp

p
.

Thus

H ′(t) = t
(‖w‖2ε + t2ωGε(w) − tp−2

)
(6)

H ′′(t) = ‖w‖2ε + 3t2ωGε(w)− (p− 1)tp−2 (7)

By (6) there exists tε > 0 such that H ′(tε). Moreover, by (6), (7) and because
p > 4 we have that H ′′(tε) < 0, so tε is unique. �

5. Main ingredient of the proof

We sketch the proof of Theorem 1. First of all, since the functional Iε ∈ C2

is bounded below and satisfies PS condition on the complete C2 manifold Nε,
we have, by well-known results, that Iε has at least cat Idε critical points in the
sublevel

Idε =
{
u ∈ H1 : Iε(u) ≤ d

}
.

We prove that, for ε and δ small enough, it holds

catΩ ≤ cat
(Nε ∩ Im∞+δ

ε

)
where

m∞ := inf
N∞

1

2

∫
R3

(|∇v|2 + v2)dx− 1

p

∫
R3

|v|pdx

N∞ =

{
v ∈ H1(R3)� {0} :

∫
R3

(|∇v|2 + v2)dx =

∫
R3

|v|pdx
}
.

To get the inequality catΩ ≤ cat
(Nε ∩ Im∞+δ

ε

)
we build two continuous operators

Φε : Ω− → Nε ∩ Im∞+δ
ε

β : Nε ∩ Im∞+δ
ε → Ω+.

where

Ω− = {x ∈ Ω : d(x, ∂Ω) < r}
Ω+ =

{
x ∈ R3 : d(x, ∂Ω) < r

}
with r small enough so that cat(Ω−) = cat(Ω+) = cat(Ω).
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Following an idea in [7], we build these operators Φε and β such that β ◦Φε :
Ω− → Ω+ is homotopic to the immersion i : Ω− → Ω+. By the properties of
Lusternik–Schinerlmann category we have

catΩ ≤ cat
(Nε ∩ Im∞+δ

ε

)
which ends the proof of Theorem 1.

Concerning Theorem 2, we can re-state classical results contained in [5, 8] in
the following form.

Theorem 13. Let Iε be the functional (5) on H1(Ω) and let Kε be the set of its
critical points. If all its critical points are non-degenerate then∑

u∈Kε

tμ(u) = tPt(Ω) + t2(Pt(Ω)− 1) + t(1 + t)Q(t) (8)

where Q(t) is a polynomial with non-negative integer coefficients and μ(u) is the
Morse index of the critical point u.

By Remark 6 and by means of the maps Φε and β we have that

Pt(Nε ∩ Im∞+δ
ε ) = Pt(Ω) + Z(t) (9)

where Z(t) is a polynomial with non-negative coefficients. Set mε = infNε Iε, we
get that infε mε =: α > 0, because lim

ε→0
mε = m∞ (see (20)), and we have the

following relations [5, 8]

Pt(I
m∞+δ
ε , Iα/2ε ) = tPt(Nε ∩ Im∞+δ

ε ) (10)

Pt(H
1
0 (Ω), I

m∞+δ
ε )) = t(Pt(I

m∞+δ
ε , Iα/2ε )− t) (11)∑

u∈Kε

tμ(u) = Pt(H
1
0 (Ω), I

m∞+δ
ε )) + Pt(I

m∞+δ
ε , Iα/2ε ) + (1 + t)Q̃(t) (12)

where Q̃(t) is a polynomial with non-negative integer coefficients. Hence, by (9),
(10), (11), (12) we obtain (8). At this point, evaluating equation (8) for t = 1 we
obtain the claim of Theorem 2

6. The map Φε

For every ξ ∈ Ω− we define the function

Wξ,ε(x) = Uε(x− ξ)χ(|x − ξ|)
where χ : R+ → R+ where χ ≡ 1 for t ∈ [0, r/2), χ ≡ 0 for t > r and |χ′(t)| ≤ 2/r.

We can define a map

Φε : Ω− → Nε

Φε(ξ) = tε(Wξ,ε)Wξ,ε
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Remark 14. We have that the following limits hold uniformly with respect to ξ ∈ Ω

‖Wε,ξ‖ε → ‖U‖H1(R3),

|Wε,ξ|ε,t → ‖U‖Lt(R3) for all 2 ≤ t ≤ 6.

Lemma 15. There exists ε̄ > 0 and a constant c > 0 such that

Gε(Wε,ξ) =
1

ε3

∫
Ω

qW 2
ε,ξ(x)ψ(Wε,ξ)dx < cε2.

Proof. It holds

‖ψ(Wε,ξ)‖2H1
0 (Ω) =

∫
Ω

qW 2
ε,ξ(x)ψ(Wε,ξ)dx ≤ q‖ψ(Wε,ξ)‖L6(Ω)

(∫
Ω

W
12/5
ε,ξ dx

)5/6

≤ c‖ψ(Wε,ξ)‖H1
0 (Ω)

(
1

ε3

∫
Ω

W
12/5
ε,ξ dx

)5/6

ε5/2.

By Remark 14 we have that ‖ψ(Wε,ξ)‖H1
0 (Ω) ≤ ε5/2 and the claim follows by

applying again the Cauchy–Schwartz inequality. �

Proposition 16. For all ε > 0 the map Φε is continuous. Moreover for any δ > 0
there exists ε0 = ε0(δ) such that, if ε < ε0 then Iε (Φε(ξ)) < m∞ + δ.

Proof. It is easy to see that Φε is continuous because tε(w) depends continuously
on w ∈ H1

0 .

At this point we prove that tε(Wε,ξ) → 1 uniformly with respect to ξ ∈ Ω.
In fact, by Lemma 12 tε(Wε,ξ) is the unique solution of

‖Wε,ξ‖2ε + t2ωGε(Wε,ξ)− tp−2|Wε,ξ|pε,p = 0.

By Remark 14 and Lemma 15 we have the claim.

Now, we have

Iε (tε(Wε,ξ)Wε,ξ) =

(
1

2
− 1

p

)
‖Wε,ξ‖2εt2ε + ω

(
1

4
− 1

p

)
t4εGε(Wε,ξ).

Again, by Remark 14 and Lemma 15 we have

Iε (tε(Wε,ξ)Wε,ξ)→
(
1

2
− 1

p

)
‖U‖2H1(R3) = m∞

that concludes the proof. �

Remark 17. We set

mε = inf
Nε

Iε.

By Proposition 16 we have that

lim sup
ε→0

mε ≤ m∞. (13)
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7. The map β

For any u ∈ Nε we can define a point β(u) ∈ R3 by

β(u) =

∫
Ω
x|u+|pdx∫

Ω
|u+|pdx .

The function β is well defined in Nε because, if u ∈ Nε, then u+ �= 0.

We have to prove that, if u ∈ Nε ∩ Im∞+δ
ε then β(u) ∈ Ω+.

Let us consider partitions of Ω. For a given ε > 0 we say that a finite partition
Pε =

{
P ε
j

}
j∈Λε

of Ω is a “good” partition if: for any j ∈ Λε the set P ε
j is closed;

P ε
i ∩ P ε

j ⊂ ∂P ε
i ∩ ∂P ε

j for any i �= j; there exist r1(ε), r2(ε) > 0 such that there
are points qεj ∈ P ε

j for which B(qεj , ε) ⊂ P ε
j ⊂ B(qεj , r2(ε)) ⊂ B(qεj , r1(ε)), with

r1(ε) ≥ r2(ε) ≥ Cε for some positive constantC; lastly, there exists a finite number
ν ∈ N such that every x ∈ Ω is contained in at most ν balls B(qεj , r1(ε)), where ν
does not depends on ε.

Lemma 18. There exists a constant γ > 0 such that, for any δ > 0 and for any
ε < ε0(δ) as in Proposition 16, given any “good” partition Pε =

{
P ε
j

}
j
of the

domain Ω and for any function u ∈ Nε ∩ Im∞+δ
ε there exists, for an index j̄ a set

P ε
j̄
such that

1

ε3

∫
P ε

j̄

|u+|pdx ≥ γ.

Proof. Taking in account that I ′ε(u)[u] = 0 we have

‖u‖2ε = |u+|pε,p −
1

ε3

∫
Ω

ωu2ψ(u) ≤ |u+|pε,p =
∑
j

1

ε3

∫
Pj

|u+|p

=
∑
j

|u+
j |pε,p =

∑
j

|u+
j |p−2

ε,p |u+
j |2ε,p ≤ max

j

{|u+
j |p−2

ε,p

}∑
j

|u+
j |2ε,p

where u+
j is the restriction of the function u+ on the set Pj .

At this point, arguing as in [6, Lemma 5.3], we prove that there exists a
constant C > 0 such that∑

j

|u+
j |2ε,p ≤ Cν‖u+‖2ε, thus max

j

{|u+
j |p−2

ε,p

} ≥ 1

Cν

that concludes the proof. �

Proposition 19. For any η ∈ (0, 1) there exists δ0 < m∞ such that for any δ ∈
(0, δ0) and any ε ∈ (0, ε0(δ)) as in Proposition 16, for any function u ∈ Nε∩Im∞+δ

ε

we can find a point q = q(u) ∈ Ω such that

1

ε3

∫
B(q,r/2)

(u+)p > (1− η)
2p

p− 2
m∞.
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Proof. First, we prove the proposition for u ∈ Nε ∩ Imε+2δ
ε .

By contradiction, we assume that there exists η ∈ (0, 1) such that we can
find two sequences of vanishing real number δk and εk and a sequence of functions
{uk}k such that uk ∈ Nεk ,

mεk ≤ Iεk (uk) =

(
1

2
− 1

p

)
‖uk‖2εk +ω

(
1

4
− 1

p

)
Gεk(uk) ≤ mεk +2δk ≤ m∞+3δk

(14)
for k large enough (see Remark 17), and, for any q ∈ Ω,

1

ε3k

∫
B(q,r/2)

(u+
k )

p ≤ (1− η)
2p

p− 2
m∞.

By Ekeland’s principle and by definition of Nεk we can assume∣∣I ′εk(uk)[ϕ]
∣∣ ≤ σk‖ϕ‖εk where σk → 0. (15)

By Lemma 18 there exists a set P εk
k ∈ Pεk such that

1

ε3k

∫
P

εk
k

|u+
k |pdx ≥ γ.

We choose a point qk ∈ P εk
k and we define, for z ∈ Ωεk := 1

εk
(Ω− qk)

wk(z) = uk(εkz + qk) = uk(x).

We have that wk ∈ H1
0 (Ωεk) ⊂ H1(R3). By equation (14) we have

‖wk‖2H1(R3) = ‖uk‖2εk ≤ C.

So wk → w weakly in H1(R3) and strongly in Lt
loc(R

3).

We set ψ(uk)(x) := ψk(x) = ψk(εkz+qk) := ψ̃k(z) where x ∈ Ω and z ∈ Ωεk .
It is easy to verify that

−Δzψ̃k(z) = ε2kqw
2
k(z).

With abuse of language we set

ψ̃k(z) = ψ(εkwk).

Thus

Iεk(uk) =
1

2
‖uk‖2εk −

1

p
|u+

k |pεk,p +
ω

4

1

ε3k

∫
Ω

qu2
kψ(uk)

=
1

2
‖wk‖2H1(R3) −

1

p
‖w+

k ‖pLp(R3) +
ω

4

∫
Ωεk

qw2
kψ(εkwk) (16)

=
1

2
‖wk‖2H1(R3) −

1

p
‖w+

k ‖pLp(R3) + ε2k
ω

4

∫
R3

qw2
kψ(wk) := Eεk(wk).

By definition of Eεk : H1(R3)→ R, we get Eεk(wk)→ m∞.
Given any ϕ ∈ C∞

0 (R3) we set ϕ(x) = ϕ(εkz + qk) := ϕ̃k(z). For k large
enough we have that suppϕ̃k ⊂ Ω and, by (15), that E′

εk (wk)[ϕ] = I ′εk(uk)[ϕ̃k]→ 0.
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Moreover, by definition of Eεk and by Lemma 8 we have

E′
εk
(wk)[ϕ] = 〈wk, ϕ〉H1(R3) −

∫
R3

|w+
k |p−1ϕ+ ωε2k

∫
R3

qwkψ(wk)ϕ

→ 〈w,ϕ〉H1(R3) −
∫
R3

|w+|p−1ϕ.

Thus w is a weak solution of

−Δw + w = (w+)p−1 on R3.

By Lemma 18 and by the choice of qk we have that w �= 0, so w > 0.
Arguing as in (16), and using that uk ∈ Nεk we have

Iεk(uk) =

(
1

2
− 1

p

)
‖uk‖2εk + ω

(
1

4
− 1

p

)
1

ε3k

∫
Ω

qu2
kψ(uk) (17)

=

(
1

2
− 1

p

)
‖wk‖2H1(R3) + ε2kω

(
1

4
− 1

p

)∫
R3

qw2
kψ(wk)→ m∞

and

Iεk(uk) =

(
1

2
− 1

p

)
|u+

k |pp,εk −
ω

4

1

ε3k

∫
Ω

qu2
kψ(uk) (18)

=

(
1

2
− 1

p

)
|w+

k |pp − ε2k
ω

4

∫
R3

qw2
kψ(wk)→ m∞.

So, by (17) we have that ‖w‖2H1(R3) = 2p
p−2m∞ and that

(
1
2 − 1

p

)
‖wk‖2H1(R3) →

m∞ and we conclude that wk → w strongly in H1(R3).
Given T > 0, by the definition of wk we get, for k large enough

|w+
k |pLp(B(0,T )) =

1

ε3k

∫
B(qk,εkT )

|u+
k |pdx ≤

1

ε3k

∫
B(qk,r/2)

|u+
k |pdx

≤ (1− η)
2p

p− 2
m∞. (19)

Then we have the contradiction. In fact, by (18) we have
(

1
2 − 1

p

)
|w+

k |pp → m∞ and

this contradicts (19). At this point we have proved the claim for u ∈ Nε ∩ Imε+2δ
ε .

Now, by the conclusion for u ∈ Nε ∩ Imε+2δ
ε and by (18) we have

Iεk (uk) =

(
1

2
− 1

p

)
|u+

k |pp,εk +O(ε2) ≥ (1− η)m∞ +O(ε2)

and, passing to the limit,
lim inf
k→∞

mεk ≥ m∞.

This, combined by (13) gives us that

lim
ε→0

mε = m∞. (20)

Hence, when ε, δ are small enough, Nε ∩ Im∞+δ
ε ⊂ Nε ∩ Imε+2δ

ε and the general
claim follows. �
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Proposition 20. There exists δ0 ∈ (0,m∞) such that for any δ ∈ (0, δ0) and any
ε ∈ (0, ε(δ0) (see Proposition 16), for every function u ∈ Nε ∩ Im∞+δ

ε it holds
β(u) ∈ Ω+. Moreover the composition

β ◦ Φε : Ω
− → Ω+

is homotopic to the immersion i : Ω− → Ω+

Proof. By Proposition 19, for any function u ∈ Nε ∩ Im∞+δ
ε , for any η ∈ (0, 1) and

for ε, δ small enough, we can find a point q = q(u) ∈ Ω such that

1

ε3

∫
B(q,r/2)

(u+)p > (1− η)
2p

p− 2
m∞.

Moreover, since u ∈ Nε ∩ Im∞+δ
ε we have

Iε(u) =

(
p− 2

2p

)
|u+|pp,ε −

ω

4

1

ε3

∫
Ω

qu2ψ(u) ≤ m∞ + δ.

Now, arguing as in Lemma 15 we have that

‖ψ(u)‖2H1(Ω) = q

∫
Ω

ψ(u)u2 ≤ C‖ψ(u)‖H1(Ω)

(∫
Ω

u12/5

)5/6

,

so ‖ψ(u)‖H1(Ω) ≤
(∫

Ω u12/5
)5/6

, then

1

ε3

∫
ψ(u)u2 ≤ 1

ε3
‖ψ‖H1(Ω)

(∫
Ω

u12/5

)5/6

≤ C
1

ε3

(∫
Ω

u12/5

)5/3

≤ Cε2|u|412/5,ε ≤ Cε2‖u‖4ε ≤ Cε2

because ‖u‖ε is bounded since u ∈ Nε ∩ Im∞+δ
ε .

Hence, provided we choose ε(δ0) small enough, we have(
p− 2

2p

)
|u+|pp,ε ≤ m∞ + 2δ0.

So,
1
ε3

∫
B(q,r/2)

(u+)p

|u+|pp,ε >
1− η

1 + 2δ0/m∞
.

Finally,

|β(u)− q| ≤
∣∣ 1
ε3

∫
Ω(x− q)(u+)p

∣∣
|u+|pp,ε

≤

∣∣∣ 1
ε3

∫
B(q,r/2)

(x− q)(u+)p
∣∣∣

|u+|pp,ε +

∣∣∣ 1
ε3

∫
Ω�B(q,r/2)

(x− q)(u+)p
∣∣∣

|u+|pp,ε
≤ r

2
+ 2diam(Ω)

(
1− 1− η

1 + 2δ0/m∞

)
,

so, choosing η, δ0 and ε(δ0) small enough we proved the first claim. The second
claim is standard. �
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Abstract. An elementary proof of the existence of multiple solutions of non-
linear operator equations is given. We show the existence, depending on a
parameter in the equation, of either exactly two or at least four solutions for
these equations.
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An abstract result

This paper is based on a long series of results on the nonlinear boundary value
problem

Δu+ bu+ = φ1(x) x ∈ Ω

u = 0 x ∈ ∂Ω
(1)

where Ω is a bounded region in Rn and φ1 denoted the first eigenfunction of the
Laplacian with Dirichlet boundary conditions. The real number λ1 is the first of
the infinite sequence of eigenvalues λn → +∞. The nonlinearity bu+ is a model
nonlinearity for a nonlinearity of the form f(u) where f ′(+∞) = b and f ′(−∞) =
0. More generally, we can take f ′(−∞) = a if we replace bu+ by bu+ − au−.

Since φ1(x) ≥ 0, it is an elementary calculation that equation (1) has two
obvious solutions if λ1 < b < +∞. These are given by u1 = −φ1/λ1(≤ 0) and
u2 = φ1/(b− λ1)(≥ 0).

Generally, the literature can be summarized by the following two statements:
if the interaction of the nonlinearity with the spectrum of the Laplacian is small,
by which we mean λ1 < b < λ2, then the two “obvious” solutions are the only
ones. One the other hand if there is more interaction with the spectrum, that is, if
b > λ2, then more “non-obvious” solutions appear. Let us make this more precise.

For the rest of this section, we will be working in a closed subspace H of
the Hilbert space L2(Ω), where Ω is a bounded region in Rn. The unbounded
selfadjoint linear operator L : D(L)→ H will satisfy the following hypotheses

Switzerland
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1. L has an infinite sequence of eigenvalues ln with 0 < l1 < l2 < l3 ≤ l4 · · · ≤
ln · · · with the convention that Lφn + lnφn = 0,

2. The associated eigenfunctions φn are an orthonormal basis forH with φ1(x) >
0 for all x ∈ Ω.

3. There exists ε > 0 such that φ1(x) > ε‖φ2(x)‖,∨x ∈ Ω.

Typically, the space H will either be all of L2(Ω), or a subspace defined by
certain symmetries. We will also assume that the map u→ bu+ leavesH invariant,
which will usually be satisfied if the symmetries are even.

The reader will immediately notice that the Laplacian, with Dirichlet bound-
ary conditions of equation (1) satisfies these hypotheses. Of course, they apply to
a much wider class than just this operator.

The reader will also notice, after following the proof, that the operatorL could
be allowed to have continuous spectrum, so long as that spectrum is contained in
the interval (l3,+∞)

We shall now study the operator equation in H :

Lu+ bu+ = sφ1. (2)

Most of our results would also apply to more general equations with the
nonlinearity replaced by f(u) with appropriate assumptions on f (see Section 1)
and the right-hand side replaced by sφ1 with s sufficiently large.

Our two main theorems are

Theorem 1. If l1 < b < l2, equation (3) has exactly two solutions for s > 0, the
zero solution for s = 0, and no solutions for s < 0.

Theorem 2. If l2 < b < l3, equation (3) has at least four solutions for s > 0, the
zero solution for s = 0, and no solutions for s < 0.

We start with the easy part.

Lemma 1. If b > l1, the equations

Lu+ bu+ = sφ1 (3)

has no solutions for s < 0 and only u ≡ 0 for s = 0.

Proof. Suppose Lu + bu+ = sφ1. Re-write this as (L − l1I)u + bu+ − l1u = φ1.
Now take the inner product with φ1, and observe that since < (L− l1I)u, φ1 >= 0
and for suitable α > 0, we have bu+ − l1u ≥ α | u |, we conclude that

∫
Ω
α | u |

φ1dV ≤ s
∫
Ω φ2

1dV . Since φ1 > 0, this immediately implies that for s < 0, we have
a contradiction, and for s = 0, we have u ≡ 0. �
Proof of Theorem 1. We shall use the classical method of Lyapunov–Schmidt.
Write H = V ⊕ W where V is the span of φ1 and W = V ⊥. Let P be the
orthogonal projection on V . Write u = v + w, where v = Pu and w = (I − P )u.
Then, equation (3) is equivalent to the system of equations

Lw + (I − P )b(v + w)+ = 0, (4)

Lv + P (v + w)+ = sφ1, (5)
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or equivalently,

w = −L−1(I − P )b(v + w)+, (6)

−l1v + Pb(v + w)+ = sφ1. (7)

Now consider equation (7). If we fix v ∈ V , then a solution of equation (7)
is a fixed point of the map Tv(w) = −L−1(I − P )b(v + w)+, with Tv : W → W .
Since the operator norm || (L−1(I − P ) ||= 1/λ2, it follows that Tv : W → W is
a contraction and therefore for each v ∈ V , there exists a unique w(v) ∈ W that
satisfies (7). Furthermore, w(v) depends in Lipschitz-continuously on v. Thus the
system (7) and (8) is equivalent to the single one-dimensional equation

−l1v + Pb(v + w(v))+ = sφ1. (8)

Finally, we remark that since v is a multiple of φ1, then v is satisfies v ≥ 0 or
v ≤ 0. In either case, we can verify that w(v) ≡ 0 satisfies equation (7) since if
v ≤ 0, then v+ = 0 and if v ≥ 0 then v+ = v and then (I −P )v = 0. Thus, letting
v = cφ1, equation (9) becomes −cl1φ1 = sφ1 if c ≤ 0 or −cl1φ1 + bcφ1 = sφ1 if
c ≥ 0. Thus equation (3) has exactly two solutions for s > 0; u1 = −sφ1/l1 and
u2 = sφ1/(b− l1). �

Proof of Theorem 2. First a remark. If

Lu+ bu+ = sφ1

has a solution for s = s1 > 0, then it has a solution for s = s2, for any other
s2 > 0. (Just multiply equation across by s2/s1, using homogeneity under positive
multiplication of u+.)

This proof begins in a similar fashion to that of Theorem 1. WriteH = V ⊕W
where V is span{φ1, φ2} and W = V ⊥. Let P be the orthogonal projection on V .
Write u = v+w, where v = Pu and w = (I−P )u. Then, equation (3) is equivalent
to the system of equations

Lw + (I − P )b(v + w)+ = 0, (9)

Lv + Pb(v + w)+ = sφ1, (10)

or equivalently,

w = −L−1(I − P )b(v + w)+, (11)

Lv + Pb(v + w)+ = sφ1. (12)

Now consider equation (7). If we fix v ∈ V , then a solution of equation (7) is
a fixed point of the map Tv = −L−1(I−P )b(v+w)+, with Tv : W →W . Since the
operator norm || L−1(I−P ) ||= 1/λ3, it follows that Tv : W →W is a contraction
and therefore for each v ∈ V , there exists a unique w(v) ∈ W that satisfies (7).
Furthermore, w(v) depends in Lipschitz-continuously on v. Thus the system (11)
and (12) is equivalent to the single two-dimensional equation on V ;

Lv + Pb(v + w(v))+ = sφ1. (13)
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The difference here is that since v ∈ V , the two-dimensional space spanned
by φ1 and φ2, we cannot expect v to be of one sign. So the implicitly defined
w(v) will play an important role in our analysis of the two-dimensional equation
(14). To analyse equation (14) more carefully, let us write v = c1φ1 + c2φ2. Then
equation (14) can be written

−l1c1φ1 − l2c2φ2 + Pb(c1φ1 + c2φ2 + w(c1φ1 + c2φ2))
+ = sφ1. (14)

Now let us divide the plane V into four cones. Let C1 = {c1φ1 + c2φ2, c1 ≥
0, | c2 |≤ εc1}, C2 = {c1φ1 + c2φ2, c2 > 0, c2 ≥ ε | c1 |}, C3 = {c1φ1 + c2φ2, c1 ≤
0, | c2 |≤ −εc1}, and C4 = {c1φ1 + c2φ2, c2 ≤ 0, c2 ≤ −ε | c1 |}.

Thus, we have divided V into four cones, the first, C1 a narrow cone centered
on the positive φ1-axis, C2, a relatively broad cone centered on the positive φ2-
axis, C3, a narrow cone centered on the negative φ1-axis, and C4, a relatively broad
cone centered on the negative φ2-axis.

Furthermore, by hypothesis (3) at the beginning of this section, if u ∈ C1,
then u ≥ 0 and if u ∈ C3, then u ≤ 0. Therefore, in C1 and C3, by our previous
reasoning, w(c1φ1 + c2φ2) ≡ 0 and so equation (18) becomes linear. For example,
in C1, equation (15) becomes

−l1c1φ1 − l2c2φ2 + b(c1φ1 + c2φ2) = sφ1 (15)

with a linear diagonal operator on C1 with positive entries on the diagonal on the
left hand side. Thus, one can see that the cone C1 contains the positive solution
v2 already described in Theorem 2. Similarly, the cone C3, contains the negative
solution v1.

Now, we need to show that C2 and C4 also contain solutions. Let us define a
line segment in C2 by

L2 = {c1φ1 + c2φ2,−1 ≤ c1 ≤ 1, C2 = ε} (16)

and consider its image under the map Tv = Lv+Pb(v+w(v))+. One endpoint of
L2 is −φ1 + εφ2 which is also in C3. Thus, its image under T is P = l1φ1 − l2εφ2.
Similarly, the other endpoint of L2 is φ1 + εφ2 and its image under T is Q =
(b− l1)φ1 + (b− l2)εφ2. Therefore the continuous curve T (L2) begins in the lower
half-plane of V (c2 < 0) and ends in the upper half-plane of V . Therefore it must
cross the φ1-axis at some point s1, thereby giving a solution of equation (14) (and
therefore (3)) for s = s1. By Lemma 1, s1 must be positive. By multiplication by
s2/s1, equation (3) has a solution in C2 for any s2 > 0.

The proof that there is a solution in C4 is similar. Thus we can conclude that
equation(3) has at least four distinct solutions for l2 < b < l3.

Now consider equation (7). if we fix v ∈ V , then a solution of equation (7)
is a fixed point of the map Tv = −L−1(I − P )b(v + w)+, with Tv : W → W .
Since the operator norm || (L−1(I − P ) ||= 1/λ3, it follows that Tv : W → W
is a contraction and therefore for each v ∈ V , there exists a unique w(v) ∈ W
that satisfies (7). Furthermore, w(v) depends Lipschitz-continuously on v. Thus
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the system (7) and (8) is equivalent to the single two-dimensional equation on V ;

Lv + Pb(v + w(v))+ = sφ1. (17)

�
The difference here is that since v ∈ V , the two dimensional space spanned

by φ1 and φ2, we cannot expect v to be of one sign. So the implicitly defined w(v)
will play an important role in our analysis of the two-dimensional equation (13).
To analyse equation more carefully, let us write v = c1φ1 + c2φ2. Then equation
(13) can be written

−l1c1φ1 − l2c2φ2 + Pb(c1φ1 + c2φ2 + w(c1φ1 + c2φ2))
+ = sφ1. (18)

Remark 1. More is known in the case of L the Laplacian with Dirichlet bounday
conditions. In particular, in [34], the existence of exactly four solutions is know.
There, it is also proved that there exists an ε > 0 such that if l3 < b < l3 + ε then
at least six solutions exist. In these proofs, essential use is made of the maximum
principle and eigenvalue comparison theorem. At the level, of generality of this
paper, these techniques do not apply. This naturally leads to a series of questions.

Question 1. Can one prove that in Theorem 2, there are exactly four solutions?

Question 2. Can one say anything along the lines of Theorem 2 when b > l3?

(In this case, the base space V would be more than two dimensional.) Can
one still prove the existence of at least four solutions in this generality? (Again,
this is known in the case of the Laplacian, [19], also making use of the maximum
principle.)

Question 3. What are the correct general conditions for the right hand side for
equation (3)?

It is easy to think of other right-hand sides ψ for which Theorem 2 might
work. The main ingredients might be ψ > 0, and Lu+ bu = ψ > 0 implies u > 0,
with ψ ⊥ φ2.

Question 4. Can one say more about the global structure of the natures of the map
in terms of folds and cusps? Interesting results occur in [8].
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Abstract. We present some recent results on the existence of positive solution
for the equation

−Δu+ λu = a(x)
u3

1 + u2
.

Using concentration compactness arguments and a general Pohozaev manifold
P , we find a bound state solution via a linking theorem. Moreover, we show
that a minimizing problem, related to the existence of a ground state, has no
solution.
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1. Introduction and main result

In this paper we study the following Schrödinger equation:

−Δu+ λu = a(x)
u3

1 + u2
in RN , (1.1)

for N ≥ 3, λ > 0 and a(x) > 0. We observe that the function f(s) =
s3

1 + s2
is

asymptotically linear at infinity and is include in the class of functions considered
in the work [8] of D. Costa and H. Tehrani. In their work, they used concentration
compactness arguments together with comparison between energy levels in order to
obtain the strong convergence of the Cerami sequence and apply the Mountain Pass
Theorem to obtain a positive solution. In that case, the functional I, associated
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with equation (1.1) and the functional I∞ associated with the limit problem, satisfy
the relation I(u) < I∞(u), ∀u ∈ H1(RN ) \ {0}. In our study, we impose conditions
on the function a such that these functionals now have the reverse relation I∞ < I,
and the comparison of the energy levels is not a useful tool any more.

In the asymptotically linear case at infinity it is natural to use instead of
the traditional Palais–Smale condition, the Cerami condition [6] (see [7, 4] among
many others):

(Ce) the functional I satisfies the Cerami condition if, for any sequence (un) in
H1(RN ) such that I(un) is bounded and ‖I ′(un)‖(1+ ‖un‖)→ 0, then there
exists a convergent subsequence .

We will assume the following conditions on the function a:

(A1) a ∈ C2(RN ,R+), with inf
x∈RN

a(x) > 0;

(A2) lim
|x|→∞

a(x) = a∞ > λ ;

(A3) ∇a(x) · x ≥ 0, for all x ∈ RN , with the strict inequality holding on a subset
of positive Lebesgue measure of RN ;

(A4) a(x) +
∇a(x) · x

N
< a∞, for all x ∈ RN ;

(A5) ∇a(x) · x+
x ·H(x) · x

N
≥ 0, for all x ∈ RN , where H represents the Hessian

matrix of the function a.

Later in this paper we will also assume yet another condition (A6), requiring
that the supremum of |a∞ − a(x)| is not large; (see Lemma 3.11).

Remark 1.1. A model function for a is given by a(x) = a∞− 1

|x|+ k
with k >

1

a∞
.

The functional associated to (1.1) is given by

I(u) =
1

2

∫
RN

|∇u|2 + λu2dx−
∫
RN

a(x)F (u)dx,

where

F (u) =

∫ u

0

s3

1 + s2
ds =

u2

2
− 1

2
ln(1 + u2).

Remark 1.2. As proved in [12], the function F (u) satisfies the non quadraticity
condition (NQ), i.e.,

lim
|u|→∞

(
1

2
f(u)u− F (u)

)
= +∞ and

(
1

2
f(u)u− F (u)

)
> 0; ∀ u ∈ R \ {0} .

Our main existence result is the following:

Theorem 1.3. Assume (A1–A6). Then equation (1.1) has a positive solution u in
H1(RN ).

Furthermore, we will also prove the following non existence theorem:
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Theorem 1.4. Assume (A1–A4). Then, p = inf
u∈P

I(u) is not a critical level for the

functional I, with the Pohozaev manifold P defined by (2.2). In particular, the
infimum p is not achieved.

Remark 1.5. Since we are looking for positive solutions, as in [8], we take f(s)
defined on all s ∈ R, by making f(s) = 0 if s ≤ 0. Thus, since the critical points of
the functional associated with equation (1.1) are weak solutions of the equation,
if u is a critical point of I then

0 = I ′(u)u− =

∫
RN

∇u∇u− + λuu−dx−
∫
RN

a(x)f(u)u−dx

=

∫
RN

|∇u−|2 + λ|u−|2dx = ‖u−‖2λ,

where u− := min {u, 0}. Hence, necessarily we have u ≥ 0; here we use the norm

‖u‖2λ :=

∫
RN

|∇u|2 + λu2 dx in H1(RN ).

Moreover, as in [12], we have that given ε > 0, there exists C = C(ε) > 0
such that

|F (s)| ≤ ε

2
|s|2 + C|s|p, 2 < p < 2∗ . (1.2)

With this estimative and condition (A1), we can prove that the functional I
satisfies the geometric conditions on the Mountain Pass Theorem.

2. Non existence result

In [10], Proposition 2.1, we proved that any solution of (1.1) satisfies the Pohozaev
identity:

N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

G(x, u)dx +

∫
RN

∇a(x) · xF (u)dx (2.1)

where G(x, u) = a(x)F (u) − λ
u2

2
. We can also define the Pohozaev manifold by

P :=
{
u ∈ H1(RN ) \ {0} ; J(u) = 0

}
, (2.2)

where

J(u) =
N − 2

2

∫
RN

|∇u|2dx−N

∫
RN

G(x, u)dx −
∫
RN

∇a(x) · xF (u)dx.

Some properties of this manifold can be found in [10], Lemma 2.2.
We now begin presenting some relations between the Pohozaev manifold P

associated with the non-autonomous problem (1.1), and the Pohozaev manifold
P∞ associated with the autonomous problem at infinity

−Δu+ λu = a∞
u3

1 + u2
in RN . (2.3)
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The Pohozaev identity for this equation is given by

N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

G∞(u)dx (2.4)

with G∞(u) := a∞F (u)− λ
u2

2
, and the Pohozaev manifold in given by

P∞ =
{
u ∈ H1(RN ) \ {0} ;u satisfies (2.4)

}
.

We also need to consider the functional I∞ associated with (2.3) and given by

I∞(u) =
1

2

∫
RN

|∇u|2 + λu2dx−
∫
RN

a∞F (u)dx

and the set of paths Γ∞ =
{
γ ∈ C([0, 1], H1(RN ))|γ(0) = 0, I∞(γ(1)) < 0

}
. In

this way, we can define the min-max mountain pass level (see [2])

c∞ := min
γ∈Γ∞

max
0≤t≤1

I∞(γ(t)).

Note that the hypotheses (A3) and (A4) imply that I∞(u) < I(u) for all u in
H1(RN ). Inspired by the work [3] of A. Azzolini and A. Pomponio, we will show
by the end of this section that

p := inf
u∈P

I(u) = c∞,

and that this level is not achieved, i.e., this is not a critical level for the functional I.

Lemma 2.1. Suppose that

∫
RN

G∞(u)dx > 0. Then there exist unique θ1 > 0 and

θ2 > 0 such that u(x/θ1) ∈ P and u(x/θ2) ∈ P∞. Moreover, let

O =

{
u ∈ H1(RN ) \ {0} ;

∫
RN

G∞(u)dx > 0

}
be an open subset of H1(RN ). The function θ1 : O → R+ defined by u �→ θ1(u),
such that u(x/θ1(u)) ∈ P, is continuous.

Proof. The case of projecting on P∞ can be found in Lemma 3.1 of [12]. For the
case of P and the continuity of the function θ1, we refer to [10], Lemmas 3.1 and
3.3. �
Lemma 2.2. If u ∈ P∞, then there exists θ > 0 such that u(·/θ) ∈ P and θ > 1.

Proof. If u ∈ P∞, then

∫
RN

G∞(u)dx > 0 and Lemma 2.1 asserts the existence of

a unique θ such that u(./θ) ∈ P . Now, considering the expression J(u(./θ)) = 0
and recalling that θ > 0 we obtain

N − 2

2N

∫
RN

|∇u|2dx = θ2
∫
RN

{
a(θx) +

∇a(θx) · (θx)
N

}
F (u)− λ

u2

2
dx.

By condition (A4) we get
N − 2

2N

∫
RN

|∇u|2dx < θ2
∫
RN

G∞(u)dx. Since u ∈ P∞,

the inequality above is true if and only if θ > 1. �
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Lemma 2.3. If u ∈ P, then there exists θ > 0 such that u(·/θ) ∈ P∞ and θ < 1.

Proof. First, by (A4) we have that if u ∈ P then

N − 2

2N

∫
RN

|∇u|2dx <

∫
RN

G∞(u)dx,

and since

∫
RN

|∇u|2dx > 0, we have by Lemma 2.1 the existence of θ. Also, if

u(./θ) ∈ P∞, then θ satisfies

θ2 =

(N − 2)

∫
RN

|∇u|2dx

2N

∫
RN

G∞(u)dx

<

∫
RN

G∞(u)dx∫
RN

G∞(u)dx

= 1.

Therefore θ < 1 and the lemma is proved. �
The proofs of the following three lemmas can be found in [10], Lemmas 3.7,

3.8 and 3.9 respectively.

Lemma 2.4. If u ∈ P∞, then u(·− y) ∈ P∞, for all y ∈ RN . Moreover, there exists

θy > 1 such that u

( · − y

θy

)
∈ P and lim

|y|→∞
θy = 1.

Lemma 2.5. sup
y∈RN

θy = θ̄ <∞ and θ̄ > 1.

Lemma 2.6. There exists a real number σ̂ > 0 such that inf
u∈P

‖∇u‖2 ≥ σ̂.

Lemma 2.7. p =: inf
u∈P

I(u) > 0.

Proof. Let u ∈ P , then I(u) satisfies

I(u) =
1

N

(∫
RN

∇a(x) · xF (u)dx+

∫
RN

|∇u|2dx
)

≥ 1

N

∫
RN

|∇u|2dx ≥ 1

N
σ̂2 > 0 ,

where we have used Lemma 2.6 and condition (A3). It follows that p > 0. �
Remark 2.8. We recall that L. Jeanjean and K. Tanaka have shown in [9] that

inf
u∈P∞

I∞(u) = c∞.

Remark 2.9. If u ∈ H1(RN ), with

∫
RN

G∞(u)dx > 0 and θ > 0 is such that

u(·/θ) ∈ P∞, then we may write

I∞(u(x/θ)) =
θN−2

N

∫
RN

|∇u|2dx . (2.5)

Lemma 2.10. p = c∞.



314 R. Lehrer and L.A. Maia

Proof. Let w ∈ H1(RN ) be the ground state solution (which is positive and radially
symmetric) of the problem at infinity, w ∈ P∞ and I∞(w) = c∞. Given any
y ∈ RN , we define wy := w(x−y). From the translation invariance of the integrals,
we get wy ∈ P∞ and I∞(wy) = c∞. From Lemma 2.4, for any y ∈ RN , there exists
a θy > 1 such that w̃y = wy(·/θy) ∈ P . Therefore, we have

|I(w̃y)− c∞| ≤
|θN−2

y − 1|
2

∫
RN

|∇w|2dx+ |θNy − 1|
∫
RN

λw2

2
dx

+

∫
RN

|F (w)| ∣∣a∞ − θNy a(xθy + y)
∣∣ dx.

Since θy → 1, if |y| → ∞, we obtain lim
|y|→∞

I(w̃y) = c∞. Therefore, p =

inf
u∈P

I(u) ≤ c∞.

On the other hand, consider u ∈ P and 0 < θ < 1 such that u(·/θ) ∈ P∞.
Since u ∈ P , then u satisfies

I(u) =
1

N

∫
RN

|∇u|2dx+
1

N

∫
RN

∇a(x) · xF (u)dx

>
1

N

∫
RN

|∇u|2dx ≥ θN−2

N

∫
RN

|∇u|2dx = I∞(u(x/θ)) ≥ c∞

where we have used (2.5) and (A3). Thus, for any u ∈ P , I(u) > c∞ and hence
inf
u∈P

I(u) ≥ c∞. We conclude that p = c∞. �

Now we are ready to prove Theorem 1.4, which is the main result in this
section.

Proof. Suppose, by contradiction, that there exists z ∈ H1(RN ), a critical point
of the functional I at level p, i.e., z ∈ P and I(z) = p. Let θ ∈ (0, 1) be such that
z(x/θ) ∈ P∞. Then

p = I(z) =
1

N

∫
RN

|∇z|2dx+
1

N

∫
RN

∇a(x) · xF (z)dx

>
1

N

∫
RN

|∇z|2dx >
θN−2

N

∫
RN

|∇z|2dx = I∞(z(x/θ)) ≥ c∞ ,

using (A3) and (2.5). Therefore p > c∞, which contradicts the previous lemma.
�

As a consequence of the fact that p is not a critical level of the functional
I, if P is a natural constraint of the functional I, the infimum p is not achieved.
This is the case in our next result. Its proof can be found in [10], Lemma 3.14 and
is based on the arguments found in [14], where a similar lemma is proved for an
autonomous equation.

Lemma 2.11. Assume (A1) and (A5). Then P is a natural constraint of problem
(1.1).
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3. Existence of a positive solution

By the previous section, we are motivated to search for solutions in higher levels of
energy of the functional I. More precisely, in this section we show that there exists
a critical point of the functional I in the range of energies (c∞, 2c∞), and therefore
a positive solution of the equation (1.1). In order to find such a solution we will
apply ideas similar to those employed by A. Ambrosetti, G. Cerami and D. Ruiz in
[1]. Their argument uses linking together with the barycenter function (also used
by G.S. Spradlin ([16], [17])), restricted to the Nehari manifold associated to their
problem. In our case, as before, we use the Pohozaev manifold P instead.

We start by noting that the min-max levels of the Mountain Pass Theorem
for the functionals I and I∞ are equal, i.e., if c is the min-max mountain pass level
for the functional I given by

c = min
γ∈Γ

max
0≤t≤1

I(γ(t)) , (3.1)

where Γ :=
{
γ ∈ C([0, 1], H1(RN ))|γ(0) = 0, I(γ(1)) < 0

}
, then c∞ = c and this

proof can be found in [10], Lemma 4.1.

Lemma 3.1. p = c.

Proof. Define p∞ = inf
u∈P∞

I∞(u). We already know that c∞ = p∞ by [9]. Moreover,

in Lemma 2.10 we have shown that p = c∞. Therefore p = c∞ = c. �
We recall that a sequence (un) is said to be a Cerami sequence for the func-

tional I at level d in R, denoted by (Ce)d, if I(un)→ d and ‖I ′(un)‖(1+‖un‖λ)→
0. Now we show that, if d > 0, then any (Ce)d sequence for the functional I is
bounded, up to a subsequence.

Lemma 3.2. If (un) is a (Ce)d sequence with d > 0, then it has a bounded subse-
quence.

The proof involves the Lemma of Lions [11], the non quadraticity (NQ) of the
function F (as done in [19]), and Fatou’s Lemma together with condition (A1).

The next step is to show the existence of a Cerami sequence for the functional
I at level c.

Lemma 3.3. Let c be as in (3.1), then there exists a (Ce)c sequence (un) ⊂ H1(RN ).

The proof of this lemma can be found in [10], Lemma 4.5.

Lemma 3.4. (Splitting) Let (un) ∈ H1(RN ) be a bounded sequence such that

I(un)→ d > 0 and ‖I ′(un)‖(1 + ‖un‖λ)→ 0 .

Replacing (un) by a subsequence, if necessary, there exists a solution ū of (1.1), a
number k ∈ N ∪ {0}, k functions u1, u2, . . . , uk and k sequences of points (yjn) ∈
RN , 1 ≤ j ≤ k, satisfying:

a) un → ū in H1(RN ) or
b) uj are nontrivial solutions of (2.3);
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c) |yjn| → ∞ and |yjn − yin| → ∞, i �= j;

d) un −
k∑

i=1

ui(x− yin)→ ū;

e) I(un)→ I(ū) +

k∑
i=1

I∞(ui).

Remark 3.5. Nowadays the proof of this lemma is standard and is a version of
the concentration compactness of P.L. Lions [11] and found in [18]. The main
ingredients are the Lions Lemma and the Brezis–Lieb Lemma [5].

Corollary 3.6. If I(un) → c∞ and ‖I ′(un)‖(1 + ‖un‖λ) → 0, then either (un) is
relatively compact or the splitting lemma holds with k = 1 and ū = 0.

Lemma 3.7. The functional I satisfies condition (Ce) at level d ∈ (c∞, 2c∞).

Proof. Consider d ∈ (c∞, 2c∞) and a Cerami sequence (un)d ∈ H1(RN ) which, by
Lemma 3.2, is bounded. Applying Lemma 3.4, up to subsequences, we have

un −
k∑

j=1

uj(x− yjn)→ ū, in H1(RN ) ,

where uj is a weak solution of the problem at infinity, |yjn| → ∞ and ū is a weak
solution of equation (1.1). Moreover,

I(un) = I(ū) +

k∑
j=1

I∞(uj) + on(1).

Since d < 2c∞, then k < 2. If k = 1, we have two cases to distinguish:

1) ū �= 0, which implies I(ū) ≥ c∞ and therefore I(un) ≥ 2c∞.
2) ū = 0, which implies I(un)→ I∞(w), since w is the unique positive solution

of 2.3

Since d ∈ (c∞, 2c∞), we get a contradiction in both cases. Therefore, we must have
k = 0 and the strong convergence un → ū. �

Now, we will introduce the barycenter function.

Definition 3.8. Define the barycenter function of a given function u �= 0 ∈ H1(RN )
as follows: let

μ(u)(x) =
1

|B1|
∫
B1(x)

|u(y)|dy,

with μ(u) ∈ L∞(RN ) and is a continuous function. Subsequently, take

û(x) =

[
μ(u)(x)− 1

2
maxμ(u)

]+
.
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It follows that û ∈ C0(RN ). Now define the barycenter of u by

β(u) =
1

|û|L1

∫
RN

xû(x)dx ∈ RN .

Since û has compact support, by definition, β(u) is well defined. The function
β satisfies the following properties:

(a) β is a continuous function in H1(RN ) \ {0}.
(b) If u is radial, then β(u) = 0.
(c) Given y ∈ RN and defining uy(x) := u(x− y), then β(uy) = β(u) + y.

With this barycenter function, we define the level

b := inf {I(u); u ∈ P and β(u) = 0} . (3.2)

It is clear that b ≥ c∞. Moreover, we have that

Lemma 3.9. b > c∞.

Proof. Suppose, by contradiction, that b = c∞. By the definition of b, there exists
a (minimizing) sequence {un} ∈

{
u ∈ H1(RN )| u ∈ P , β(u) = 0

}
such that

I(un)→ b > 0.

By Lemma 4.10 from [10], the sequence un is bounded. Since b = p by Lemmas
4.1 from [10] and Lemma 3.1, then {un} is also a minimizing sequence of I on P .
By the Ekeland Variational Principle (Theorem 8.5 in [20]) there exists another
sequence {ũn} ⊂ P such that:

i) I(ũn)→ p ;
ii) I ′|P(ũn)→ 0;
iii) ‖ũn − un‖ → 0.

The Pohozaev manifold is a natural constraint, hence in fact I ′(ũn)→ 0. Indeed,
suppose I ′(ũn) does not go to zero. That means there exists ε0 > 0 and a subse-
quence {ũnj}, with nj →∞, such that

‖I ′(ũnj )‖ > ε0 .

Since f is Lipschitz continuous,

|(I ′(ũnj )− I ′(v))ϕ|

=

∣∣∣∣∫ (∇ũnj −∇v)ϕdx + λ

∫
(ũnj − v)ϕdx −

∫
(f(ũnj )− f(v))ϕ

∣∣∣∣
≤ ‖ũnj − v‖‖ϕ‖+K‖ũnj − v‖‖ϕ‖
= (1 +K)‖ũnj − v‖‖ϕ‖ .

Thus, if

‖ũnj − v‖ < δ̃

1 +K
:= 3δ

then

‖I ′(ũnj )− I ′(v)‖ < δ̃.
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This yields,

ε0 − δ̃ < ‖I ′(ũnj )‖ − δ̃ < ‖I ′(v)‖ .
For δ̃ > 0 sufficiently small, we have λ := ε0 − δ̃ > 0 and for all nj ,

for all v ∈ B3δ(ũnj ), then ‖I ′(v)‖ > λ .

Let ε := min{p
2
,
λδ

8
} and S := {ũnj}. By Lemma 2.3 in [20], there is a deformation

η on the level p, taking all the points of Sδ to the level p− ε.

I(η(1, u)) ≤ I(u) for all u ∈ H1(RN ) .

Moreover, for nj sufficiently large,

max
t>0

I(η(1, ũnj (
·
t
)) ≤ p− ε

because {ũnj} is a minimizing sequence, I(ũnj ) < p+ ε
2 , for nj sufficiently large,

and since ũnj ∈ P ,
max
t>0

I(ũnj (
·
t
)) = I(ũnj )→ p .

On the other hand, γ0(t) = η(1, ũnj (
·
t )) is a path in Γ and hence

c ≤ max
t>0

γ0(t) ≤ p− ε < p .

But this is a contradiction, because we have proved that p = c. Moreover, since
f is Lipschitz continuous, I ′(ũn) → 0 and ‖ũn − un‖ → 0 imply I ′(un) → 0, as
n → ∞. Therefore, the sequence {un} satisfies the assumptions of Corollary 3.6
and since p = c∞ and is not attained, then the splitting lemma holds with k = 1.
This yields

un(x)→ u1(x− yn) , (3.3)

where yn ∈ RN , |yn| → ∞ and u1 is a solution of the problem at infinity. By
making a translation, we obtain

un(x+ yn) = u1(x) + on(1).

Calculating the barycenter function on both sides, we have

β(un(x+ yn)) = β(un)− yn ,

with β(un) = 0 and

β(u1(x) + on(1))→ β(u1(x)),

since β is a continuous function. On one side, β(u1(x)) = 0 and, on the other,
|yn| → ∞ so we arrive at a contradiction. Therefore, we must have b > c∞. �

Let us consider again the positive, radially symmetric, ground state solution
w ∈ H1(RN ) of the autonomous problem at infinity. We define the operator Π :
RN → P by

Π[y](x) = w

(
x− y

θy

)
,
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where θy is exactly the real number θ which projects w(· − y) onto the Pohozaev
manifold P . Π is a continuous function of y because θy is unique and θy(w(· − y))
is a continuous function of w(· − y).

The proofs of the following properties of this operator Π can be found in [10],
Lemmas 4.13 and 4.14.

Lemma 3.10. (a) β(Π[y](x)) = y; (b) I(Π[y])→ c∞, if |y| → ∞;

Lemma 3.11. Assume

(A6) sup
RN

|a∞ − a(x)| < 2c∞
θ̄N‖w‖22

,

where θ̄ = sup
y∈RN

θy. Then I(Π[y]) < 2c∞.

Proof. Since I∞ is translation invariant, the maximum of t �→ I∞ (w(·/t)) is at-
tained at t = 1. Also, recalling that θy > 1 and using (A6), we obtain

I(Π[y]) = I∞(Π[y]) + I(Π[y])− I∞(Π[y]) ≤ I∞(w) +

∫
RN

(a∞ − a(x))F (Π[y])dx

< c∞ +
2c∞

θ̄N‖w‖22

∫
RN

1

2
w2

(
x− y

θy

)
dx = c∞ +

c∞θNy

θ̄N‖w‖22
‖w‖22 = c∞ + c∞

where we used that F (u) =
1

2

(
u2 − ln(1 + u2)

)
<

1

2
u2. This yields I(Π[y]) <

2c∞. �

We will need a version of the Linking Theorem with the Cerami condition
by P. Bartolo, V. Benci and D. Fortunato in [4] (see Theorem 2.3). We also refer
to the works of E.A.B. Silva [15] and M. Schechter [13] for similar versions of the
Linking Theorem with the Cerami condition.

Now we are ready to prove our main existence result, Theorem 1.3.

Proof. We have I∞(Π[y]) < I(Π[y]), for any y ∈ RN , due to condition (A4). Since
from Lemma 3.9 we have b > c∞ and I(Π[y])→ c∞ if |y| → ∞, from Lemma 3.10
(b), then there exists ρ̄ > 0 such that for every ρ ≥ ρ̄,

c∞ < max
|y|=ρ

I(Π[y]) < b. (3.4)

In order to apply the Linking Theorem, we take

Q := Π(Bρ̄(0)) and S :=
{
u ∈ H1(RN )| u ∈ P , β(u) = 0

}
.

Since β(Π[y]) = y, from Lemma 3.10 (a), we have that ∂Q∩ S = ∅ (if u ∈ S,
then β(u) = 0, and if u ∈ ∂Q, then β(u) = y �= 0). Now we need to show that
h(Q) ∩ S �= ∅, for any h ∈ H, where

H = {h ∈ C(Q,P);h|∂Q = id} .
Given h ∈ H, let us define T : Bρ̄(0) → RN for T (y) = β ◦ h ◦ Π[y]. The function
T is continuous and for any |y| = ρ̄, we have that Π[y] ∈ ∂Q, thus h ◦Π[y] = Π[y],
because h|∂Q = id, and hence from Lemma 3.10 (a) T (y) = y. By the Fixed Point
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Theorem of Brouwer, we conclude that there exists ỹ ∈ Bρ̄(0) such that T (ỹ) = 0,
which implies h(Π[ỹ]) ∈ S. Therefore h(Q) ∩ S �= ∅ and S and ∂Q “link”.

Furthermore, from the definitions of b and Q and the inequalities (3.4), we
may write

b = inf
S

I > max
∂Q

I .

Let us define

d = inf
h∈H

max
u∈Q

I(h(u)).

Then we have d ≥ b. In particular, it follows that d > c∞, because from Lemma
3.9 we know that b > c∞. Furthermore, if we take h = id, then

inf
h∈H

max
u∈Q

I(h(u)) < max
u∈Q

I(u) < 2c∞,

by Lemma 3.11. This implies d < 2c∞. The two inequalities give d ∈ (c∞, 2c∞),
thus from Lemma 3.7 the (Ce) condition is satisfied at level d. Therefore, we
can apply the Linking Theorem and conclude that d is a critical level for the
functional I. This guarantees the existence of a nontrivial solution u ∈ H1(RN )
of the equation (1.1). Reasoning as usual, because of the hypotheses on f , and
using the maximum principle we may conclude that u is positive, which implies
the proof of the theorem. �
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Bubble Concentration on Spheres
for Supercritical Elliptic Problems

Filomena Pacella and Angela Pistoia

Abstract. We consider the supercritical Lane–Emden problem

(Pε) −Δv = |v|pε−1v in A, v = 0 on ∂A
where A is an annulus in R2m, m ≥ 2 and pε = (m+1)+2

(m+1)−2
− ε, ε > 0.

We prove the existence of positive and sign changing solutions of (Pε)
concentrating and blowing-up, as ε → 0, on (m − 1)-dimensional spheres.
Using a reduction method ([18, 14]) we transform problem (Pε) into a non-
homogeneous problem in an annulus D ⊂ Rm+1 which can be solved by a
Ljapunov–Schmidt finite-dimensional reduction.

Mathematics Subject Classification (2010). 35J61, 35B25, 35B40.

Keywords. Supercritical problem, concentration on manifolds.

1. Introduction

In this paper we address the question of finding solutions concentrated on mani-
folds of positive dimension of supercritical elliptic problems of the type

−Δv = |v|p−1v in A, v = 0 on ∂A, (1)

where A := {y ∈ Rd : a < |y| < b}, a > 0, is an annulus in Rd, d > 2 and p > d+2
d−2

is a supercritical exponent.

We remark that the critical and supercritical Lane–Emden problems are very
delicate due to topological and geometrical obstruction enlightened by the Po-
hozaev’s identity ([16]). We also point out that in the supercritical case a result
of Bahri–Coron type ([2]) cannot hold in general nontrivially topological domains
as shown by a nonexistence result of Passaseo ([15]), obtained exploiting critical
exponents in lower dimensions. Using similar ideas, some results for exponents p
which are subcritical in dimension n < d and instead supercritical in dimension d
have been obtained in different kind of domains in [1, 4, 6, 8, 9, 10, 11, 13].

Switzerland
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Here we consider annuli in even dimension d = 2m, m ≥ 2 and obtain results
about the existence of solutions, both positive and sign changing, of different type,
concentrated on (m− 1)-dimensional spheres. More precisely, we have

Theorem 1.1 (Case of positive solutions). Let A ⊂ R2m, m ≥ 2 and define
(∂A)a := {y ∈ ∂A : |y| = a} . There exists ε0 > 0 such that for any ε ∈ (0, ε0),
the following supercritical problem

−Δv = |v|pε−1v in A, v = 0 on ∂A, (2)

with pε =
(m+1)+2
(m+1)−2 − ε has:

i) a positive solution vε which concentrates and blows-up on a (m − 1)-dimen-
sional sphere Γ ⊂ (∂A)a as ε→ 0,

ii) a positive solution vε which concentrates and blows-up on two (m − 1)-dim-
ensional orthogonal spheres Γ1 ⊂ (∂A)a and Γ2 ⊂ (∂A)a as ε→ 0,

Theorem 1.2 (Case of sign changing solutions). Let A ⊂ R2m, m ≥ 2 and define
(∂A)a := {y ∈ ∂A : |y| = a} . There exists ε0 > 0 such that for any ε ∈ (0, ε0),

the supercritical problem (2) with pε =
(m+1)+2
(m+1)−2 − ε has:

i) a sign changing solution vε such that v+ε and v−ε concentrate and blow-up on
two (m − 1)-dimensional orthogonal spheres Γ+ ⊂ (∂A)a and Γ− ⊂ (∂A)a,
respectively, as ε→ 0,

ii) a sign changing solution vε such that v+ε and v−ε concentrate and blow up on
the same (m− 1)-dimensional sphere Γ ⊂ (∂A)a, as ε→ 0,

iii) two sign changing solutions v1ε and v2ε each one is such that (viε)
+ and

(viε)
− concentrate and blow up on two (m−1)-dimensional orthogonal spheres

(Γi)+ ⊂ (∂A)a and (Γi)− ⊂ (∂A)a, respectively, as ε→ 0, i = 1, 2.

We remark that the exponent (m+1)+2
(m+1)−2 − ε which is almost critical in dimen-

sion (m+ 1) is obviously supercritical for problem (2).

To prove our results we use the reduction method introduced in [14] which
allows to transform symmetric solutions to (2) into symmetric solutions of a similar
nonhomogeneous problem in an annulus D ⊂ Rm+1. This method was inspired by
the paper [18] where a reduction approach was used to pass from a singularly
perturbed problem in an annulus in R4 to a singularly perturbed problem in an
annulus in R3.

More precisely let us consider the annulus D ⊂ Rm+1 D := {x ∈ Rm+1 :
a2/2 < |x| < b2/2}, and, write a point y ∈ R2m as y = (y1, y2), yi ∈ Rm, i = 1, 2.
Then we consider functions v in A ⊂ R2m which are radially symmetric in y1
and y2, i.e., v(y) = w(|y1|, |y2|) and functions u in D ⊂ Rm+1 which are radially

symmetric about the xm+1-axis, i.e., u(x) = h(|x|, ϕ) with ϕ = arccos
(

x
|x| · em+1

)
where em+1 = (0, . . . , 0, 1). We also set

X =
{
v ∈ C2,α(A) : v is radially symmetric

}
Y =

{
u ∈ C2,α(D) : u is axially symmetric

}
.



Bubble Concentration on Spheres. . . 325

Then, as corollary of Theorem 1.1 of [14] we have

Proposition 1.3. There is a bijective correspondence h between solutions v of (2)
in X and solutions u = h(v) in Y of the following reduced problem

−Δu =
1

2|x| |u|
pε−1u in D ⊂ Rm+1, u = 0 on ∂D. (3)

As a consequence of this result we can obtain solutions of problem (2) by con-
structing axially symmetric solutions of the lower-dimensional problem (3). This
has the immediate advantage of transforming the supercritical problem (2) into the

subcritical problem (3) if the exponent pε is taken as (m+1)+2
(m+1)−2 − ε. Indeed we will

prove Theorem 1.1 and Theorem 1.2 by constructing axially symmetric solutions
of (3), positive or sign changing, which blow-up and concentrate in points of the
annulus D ⊂ Rm+1. These solutions will give rise to solutions of (2) concentrating
on (m−1)-dimensional spheres, because, as a consequence of the proof of Theorem
1.1 of [14] and of Remark 3.1 of [14] it holds

Proposition 1.4. If uε is an axially symmetric solution of (2) concentrating, as
ε → 0, on a point ξ which belongs to the x(m+1)-axis, i.e., ξ = (0, . . . , 0, t) for

t ∈ R \ {0}, then the corresponding solution vε = h−1(uε) concentrates on a
(m− 1)-dimensional sphere in R2m.

This is because, by symmetry considerations and by the change of variable
performed in [14] to prove Theorem 1.1 any point ξ on the x(m+1)-axis in D ⊂
Rm+1 is mapped into a (m− 1)-dimensional sphere in A ⊂ R2m. We refer to [14]
for all details.

Thus let Ω := {x ∈ Rn : 1 < |x| < r} be an annulus in Rn, n ≥ 3, and
consider the problem

−Δu =
1

2|x| |u|
p−1−εu in Ω, u = 0 on ∂Ω, (4)

where p = n+2
n−2 and ε is a small positive parameter. Let Uδ,ξ(x) := αn

δ
n−2
2

(δ2+|x−ξ|2)n−2
2

with δ > 0 and x, ξ ∈ Rn, be the solutions to the critical problem −Δu = up in

Rn. Here αn := [n(n− 2)]
n−2
4 . We have

Theorem 1.5. There exists ε0 > 0 such that, for each ε ∈ (0, ε0), problem (4) has

(i) an axially symmetric positive solution uε with one simple positive blow-up
point which converge to ξ0 as ε goes to zero, i.e.,

uε(x) = Uδε,ξε(x) + o(1) in H1
0 (Ω),

with

ε−
n−1
n−2 δε → d > 0, ξε → ξ0;
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(ii) an axially symmetric positive solution uε with two simple positive blow-up
points which converge to ξ0 and −ξ0 as ε goes to zero, i.e.,

uε(x) = Uδε,ξε(x) + Uδε,−ξε(x) + o(1),

with

ε−
n−1
n−2 δε → d > 0, ξε → ξ0;

(iii) an axially symmetric sign-changing solution uε with one simple positive and
one simple negative blow-up points which converge to ξ0 and −ξ0 as ε goes
to zero, i.e.,

uε(x) = Uδε,ξε(x) − Uδε,−ξε(x) + o(1),

with

ε−
n−1
n−2 δε → d > 0, ξε → ξ0;

(iv) an axially symmetric sign-changing solution uε with one double nodal blow-up
point which converge to ξ0 as ε goes to zero, i.e.,

uε(x) = Uδ1ε,ξ1ε
(x) − Uδ2ε,ξ2ε

(x) + o(1),

with

ε−
n−1
n−2 δiε → di > 0, ξiε → ξ0

for i = 1, 2.
(v) two axially symmetric sign-changing solutions uε with two double nodal blow-

up points which converge to ξ0 and −ξ0 as ε goes to zero, i.e.,

uε(x) =
[
Uδ1ε,ξ1ε

(x)− Uδ2ε,ξ2ε
(x)

]
+
[
Uδ1ε,−ξ1ε

(x)− Uδ2ε,−ξ2ε
(x)

]
+ o(1)

and

uε(x) =
[
Uδ1ε,ξ1ε

(x)− Uδ2ε,ξ2ε
(x)

] − [
Uδ1ε,−ξ1ε

(x)− Uδ2ε,−ξ2ε
(x)

]
+ o(1)

with

ε−
n−1
n−2 δiε → di > 0, ξiε → ξ0

for i = 1, 2.

Obviously Theorem 1.1 and Theorem 1.2 derive from Theorem 1.5 for n =
m+ 1 using Proposition 1.3 and Proposition 1.4.

The proof of Theorem 1.5 relies on a very well-known Ljapunov–Schmidt
finite-dimensional reduction. We omit many details on the finite-dimensional re-
duction because they can be found, up to some minor modifications, in the lit-
erature. In Section 2 we write the approximate solution, we sketch the proof of
the Ljapunov–Schmidt procedure and we prove Theorem 1.5. In Section 3 we only
compute the expansion of the reduced energy, which is crucial in this framework.
In the Appendix we recall some well-known facts.
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2. The Ljapunov–Schmidt procedure

We equip H1
0(Ω) with the inner product (u, v) =

∫
Ω

∇u∇vdx and the corresponding

norm ‖u‖2 = ∫
Ω

|∇u|2dx. For r ∈ [1,∞) and u ∈ Lr(Ω) we set ‖u‖rr =
∫
Ω

|u|rdx.

Let us rewrite problem (4) in a different way. Let i∗ : L
2n

n+2 (Ω) → H1
0(Ω) be

the adjoint operator of the embedding i : H1
0(Ω) ↪→ L

2n
n−2 (Ω), i.e.,

i∗(u) = v ⇔ (v, ϕ) =

∫
Ω

u(x)ϕ(x)dx ∀ ϕ ∈ H1
0(Ω).

It is clear that there exists a positive constant c such that

‖i∗(u)‖ ≤ c‖u‖ 2n
n+2

∀ u ∈ L
2n

n+2 (Ω).

Setting fε(s) := |s|p−1−εs and using the operator i∗, problem (4) turns out to be
equivalent to

u = i∗
[

1

2|x|fε(u)
]
, u ∈ H1

0(Ω). (5)

Let Uδ,ξ(x) := αn
δ

n−2
2

(δ2+|x−ξ|2)n−2
2

, with αn := [n(n− 2)]
n−2
4 be the positive

solutions to the limit problem

−Δu = up in Rn.

Set

ψ0
δ,ξ(x) :=

∂Uδ,ξ

∂δ
(x) = αn

n− 2

2
δ

n−4
2

|x− ξ|2 − δ2

(δ2 + |x− ξ|2)n/2
and for any j = 1, . . . , n

ψj
δ,ξ(x) :=

∂Uδ,ξ

∂ξj
(x) = αn(n− 2)δ

n−2
2

xj − ξj
(δ2 + |x− ξ|2)n/2 .

It is well known that the space spanned by the (n+ 1) functions ψj
δ,ξ is the set of

the solutions to the linearized problem

−Δψ = pUp−1
δ,ξ ψ in Rn.

We also denote by PW the projection onto H1
0(Ω) of a functionW ∈D1,2(Rn),

i.e.,

ΔPW = ΔW in Ω, PW = 0 on ∂Ω.

Set ξ0 := (0, . . . , 0, 1). We look for two different types of solutions to problem
(5). The solutions of the type (i), (ii) and (iii) of Theorem 1.5 will be of the form

uε = PUδ,ξ + λPUμ,η + φ (6)

where λ ∈ {−1, 0,+1} (λ = 0 in case (i), λ = +1 in case (ii) and λ = −1 in case
(iii)) and the concentration parameters are

μ = δ and δ := ε
n−1
n−2 d for some d > 0 (7)
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while the concentration points satisfy

η = −ξ and ξ = (1 + τ)ξ0, with τ := εt, t > 0. (8)

On the other hand, the solutions of the type (iv) and (v) of Theorem 1.5 will be
of the form

uε = PUδ1,ξ1 − PUδ2,ξ2 + λ (PUμ1,η1 − PUμ2,η2) + φ, (9)

where λ ∈ {−1, 0,+1} (λ = 0 in case (iv), λ = +1 in the first case (v) and λ = −1
in the second case (v)) and the concentration parameters are

μi = δi and δi := ε
n−1
n−2di with di > 0 (10)

while the concentration points are aligned along the xn-axes and satisfy

ηi = −ξi and ξi = (1 + τi)ξ0 with τi := εti, ti > 0. (11)

Next, we introduce the configuration space Λ where the concentration pa-
rameters and the concentration points lie. For solutions of type (6) we set d = d ∈
(0,+∞) and t = t ∈ (0,+∞) and so

Λ := {(d, t) ∈ (0,+∞)× (0,+∞)} ,
while for solutions of type (9) we set d = (d1, d2) ∈ (0,+∞)2 and t = (t1, t2) ∈
(0,+∞)2 and so

Λ := {(d, t) ∈ (0,+∞)4 : t1 < t2}.
In each of these cases we write

Vd,t := PUδ,ξ + λPUμ,η or Vd,t := PUδ1,ξ1 − PUδ2,ξ2 + λ (PUμ1,η1 − PUμ2,η2) .

The remainder term φ in both cases (6) and (9) belongs to a suitable space
which we now define.

We introduce the spaces

Kd,t := span{Pψj
δi,ξi

, Pψ�
μκ,ξκ : i, κ = 1, 2, j, � = 0, 1, . . . , n}

(we agree that if λ = 0 then Kd,t is only generated by the Pψj
δi,ξi

’s) and

K⊥
d,t := {φ ∈ Hλ : (φ, ψ) = 0 ∀ ψ ∈ Kd,t} ,

where the space Hλ depends on λ ∈ {−1, 0,+1} and is defined by

H0 := {φ ∈ H1
0(Ω) : φ is axially symmetric with respect to the xn-axes },

H+1 := {φ ∈ H0 : φ(x1, . . . , xn) = φ(x1, . . . ,−xn},
H−1 := {φ ∈ H0 : φ(x1, . . . , xn) = −φ(x1, . . . ,−xn}.

Then we introduce the orthogonal projection operators Πd,t and Π⊥
d,t in H1

0 (Ω),
respectively.

As usual for this reduction method, the approach to solve problem (4) or (5)
will be to find a pair (d, t) and a function φ ∈ K⊥

d,t such that

Π⊥
d,t

{
Vd,t + φ− i∗

[
1

2|x|fε (Vd,t + φ)

]}
= 0 (12)
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and

Πd,t

{
Vd,t + φ− i∗

[
1

2|x|fε (Vd,t + φ)

]}
= 0. (13)

First, we shall find for any (d, t) and for small ε, a function φ ∈ K⊥
d,t such

that (12) holds. To this aim we define a linear operator Ld,t : K
⊥
d,t → K⊥

d,t by

Ld,tφ := φ−Π⊥
d,ti

∗ [f ′
0 (Vd,t)φ] .

Proposition 2.1. For any compact sets C in Λ there exists ε0, c > 0 such that for
any ε ∈ (0, ε0) and for any (d, t) ∈ C the operator Ld,t is invertible and

‖Ld,tφ‖ ≥ c‖φ‖ ∀ φ ∈ K⊥
d,t.

Proof. We argue as in Lemma 1.7 of [12]. �

Now, we are in position to solve equation (12).

Proposition 2.2. For any compact sets C in Λ there exists ε0, c, σ > 0 such that
for any ε ∈ (0, ε0) and for any (d, t) ∈ C there exists a unique φε

d,t ∈ K⊥
d,t such

that

Π⊥
d,t

{
Vd,t + φε

d,t − i∗
[

1

2|x|fε
(
Vd,t + φε

d,t

)]}
= 0.

Moreover ∥∥φε
d,t

∥∥ ≤ cε
1
2+σ.

Proof. First, we estimate the rate of the error term

Rd,t := Π⊥
d,t

{
Vd,t − i∗

[
1

|x|fε (Vd,t)

]}
as

‖Rd,t‖ 2n
n+2

= O
(
ε

1
2+σ

)
for some σ > 0. We argue as in Appendix B of [1] using estimates of Section 3.
Then we argue exactly as in Proposition 2.3 of [5]. �

Now, we introduce the energy functional Jε : H
1
0(Ω)→ R defined by

Jε(u) :=
1

2

∫
Ω

|∇u|2dx− 1

p+ 1− ε

∫
Ω

1

2|x| |u|
p+1−εdx,

whose critical points are the solutions to problem (4). Let us define the reduced

energy J̃ε : Λ→ R by

J̃ε(d, t) = Jε
(
Vd,t + φε

d,t

)
.

Next, we prove that the critical points of J̃ε are the solution to problem (13).

Proposition 2.3. The function Vd,t + φε
d,t is a critical point of the functional Jε if

and only if the point (d, t) is a critical point of the function J̃ε.

Proof. We argue as in Proposition 1 of [3]. �



330 F. Pacella and A. Pistoia

The problem is thus reduced to the search for critical points of J̃ε, so it is

necessary to compute the asymptotic expansion of J̃ε.

Proposition 2.4. It holds true that

J̃ε(d, t) = c1 + c2ε+ c3ε log ε+ ε(1 + |λ|)Φ(d, t) + o(ε),

C0-uniformly on compact sets of Λ, where

(i) in case (6)

Φ(d, t) := c4

(
d

2t

)n−2

+ c5t− c6 ln d

(ii) in case (9)

Φ(d, t) := c4

[(
d1
2t1

)n−2

+

(
d2
2t2

)n−2

+ 2 (d1d2)
n−2
2

(
1

|t1 − t2|n−2
− 1

|t1 + t2|n−2

)]
+ c5 (t1 + t2)− c6 (ln d1 + ln d2) .

Here ci’s are constants and c4, c5 and c6 are positive.

Proof. The proof is postponed to Section 3. �
Proof of Theorem 1.5. It is easy to verify that the function Φ of Proposition 2.4
in both cases has a minimum point which is stable under uniform perturbations.
Therefore, if ε is small enough there exists a critical point (dε, tε) of the reduced

energy J̃ε. Finally, the claim follows by Proposition 2.3. �

3. Expansion of the reduced energy

It is standard to prove that

J̃ε(d, t) = Jε (Vd,t) + o(ε)

(see for example [3, 5]). So the problem reduces to estimating the leading term
Jε (Vd,t) . We will estimate it in case (9) with |λ| = 1, because in the other cases
its expansion is easier and can be deduced from that. Proposition 2.4 will follow
from Lemma 3.1, Lemma 3.2 and Lemma 3.3.

For future reference we define the constants

γ1 = αp+1
n

∫
Rn

1

(1 + |y|2)n dy, (14)

γ2 = αp+1
n

∫
Rn

1

(1 + |y|2)n+2
2

dy, (15)

γ3 = αp+1
n

∫
Rn

1

(1 + |y|2)n log
1

(1 + |y|2)n−2
2

dy. (16)
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For sake of simplicity, we set Ui := Uδi,ξi and Vi := Vμi,ηi .

Lemma 3.1. It holds true that

1

2

∫
Ω

|∇Vd,t|2dx = 2γ1 − γ2ε

[(
d1
2t1

)n−2

+

(
d2
2t2

)n−2

+ (d1d2)
n−2
2

(
1

|t1 − t2|n−2
− 1

|t1 + t2|n−2

)]
+ o(ε).

Proof. We have∫
Ω

|∇Vd,t|2dx =

∫
Ω

|∇PU1|2dx+

∫
Ω

|∇PU2|2dx − 2

∫
Ω

∇PU1∇PU2dx (17)

+

∫
Ω

|∇PV1|2dx+

∫
Ω

|∇PV2|2dx− 2

∫
Ω

∇PV1∇PV2dx

+ 2

2∑
i,j=1

λ

∫
Ω

∇PUi∇PVjdx

= 2

⎛⎝∫
Ω

|∇PU1|2dx+

∫
Ω

|∇PU2|2dx− 2

∫
Ω

∇PU1∇PU2dx

⎞⎠+ o(ε),

because of the symmetry (see (10) and (11)) and the fact that∫
Ω

∇PUi∇PVjdx = O
(
δ

n−2
2

i μ
n−2
2

j

)
= o(ε).

Let us estimate the first term in (17). The estimate of the second term is similar.
We set

τ := min

{
d(ξ1, ∂Ω), d(ξ2, ∂Ω),

|ξ1 − ξ2|
2

}
= min

{
τ1, τ2,

|τ1 − τ2|
2

}
. (18)

We get∫
Ω

|∇PU1|2dx =

∫
Ω

Up
1PU1dx =

∫
B(ξ1,τ)

Up
1PU1dx+

∫
Ω\B(ξ1,τ)

Up
1PU1dx.

By Lemma A.1 we deduce∫
Ω\B(ξ1,τ)

Up
1PU1dx = O

((
δ1
τ

)n)
= o(ε)

∫
B(ξ1,τ)

Up
1PU1dx =

∫
B(ξ1,τ)

Up+1
1 dx+

∫
B(ξ1,τ)

Up
1 (PU1 − U1) dx, (19)
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with ∫
B(ξ1,τ)

Up+1
1 = γ1 +O

((
δ1
τ1

)n)
= γ1 + o(ε).

The second term in (19) is estimated in (i) of Lemma 3.4.

It remains only to estimate the third term in (17).∫
Ω

∇PU1∇PU2dx =

∫
Ω

Up
1PU2dx =

∫
B(ξ1,τ)

Up
1PU2dx+

∫
Ω\B(ξ1,τ)

Up
1PU2dx. (20)

We have∫
Ω\B(ξ1,τ)

Up
1PU2dx = O

⎛⎜⎝δ
n+2
2

1 δ
n−2
2

2

∫
Ω\B(ξ1,τ)

1

|x− ξ1|n+2

1

|x− ξ2|n−2
dx

⎞⎟⎠
= O

⎛⎜⎝δ
n+2
2

1 δ
n−2
2

2

τn

∫
Rn\B(0,1)

1

|y|n+2

1

|y + ξ1−ξ2
τ |n−2

dy

⎞⎟⎠ = O

(
δ

n+2
2

1 δ
n−2
2

2

τn

)
= o(ε).

The first term in (20) is estimated in (ii) of Lemma 3.4.

The claim then follows collecting all the previous estimates and taking into
account the choice of δ′is and τ ′is made in (10) and (11). �

Lemma 3.2. It holds true that

1

p+ 1

∫
Ω

1

|x| |Vd,t|p+1dx = 2

[
2

p+ 1
γ1 − 1

p+ 1
γ1ε (t1 + t2)

]

− 2γ2ε

[(
d1
2t1

)n−2

+

(
d2
2t2

)n−2

+ 2 (d1d2)
n−2
2

(
1

|t1 − t2|n−2
− 1

|t1 + t2|n−2

)]
+ o(ε).

Proof. We have∫
Ω

1

|x| |Vd,t|p+1dx =

∫
Ω

1

|x| |PU1 − PU2 + λ (PV1 − PV2) |p+1dx (21)

=

∫
Ω

1

|x|
(|PU1 − PU2 + λ (PV1 − PV2) |p+1

− |U1|p+1 − |U2|p+1 − |V1|p+1 − |V2|p+1
)
dx

+

∫
Ω

1

|x|
(|U1|p+1 + |U2|p+1 + |V1|p+1 + |V2|p+1

)
dx
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=

∫
Ω

1

|x|
(|PU1 − PU2 + λ (PV1 − PV2) |p+1

− |U1|p+1 − |U2|p+1 − |V1|p+1 − |V2|p+1
)
dx

+ 2

∫
Ω

1

|x|
(|U1|p+1 + |U2|p+1

)
dx,

because of the symmetry (see (10) and (11)).

The last two terms in (21) are estimated in (v) of Lemma 3.4. Let τ as in (18).

We split the first integral as∫
Ω

1

|x|
(|PU1 − PU2 + λ (PV1 − PV2) |p+1 (22)

− |U1|p+1 − |U2|p+1 − |V1|p+1 − |V2|p+1
)
dx

=

∫
B(ξ1,τ)

+ · · ·+
∫

B(ξ2,τ)

+ · · ·+
∫

B(−ξ1,τ)

+ · · ·+
∫

B(−ξ2,τ)

+ · · ·

· · ·+
∫

Ω\(B(ξ1,τ)∪B(ξ2,τ)∪B(−ξ1,τ)∪B(−ξ2,τ))

. . .

By Lemma A.1 we deduce∫
Ω\(B(ξ1,τ)∪B(ξ2,τ)∪B(−ξ1,τ)∪B(−ξ2,τ))

· · ·

= O

⎛⎜⎝ ∫
Ω\(B(ξ1,τ)∪B(ξ2,τ)∪B(−ξ1,τ)∪B(−ξ2,τ))

(
Up+1
1 + Up+1

2 + V p+1
1 + V p+1

2

)
dx

⎞⎟⎠
= O

(
δn1
τn

+
δn2
τn

)
= o(ε).

We now estimate the integral over B(ξ1, τ) in (22).∫
B(ξ1,τ)

1

|x|
(|PU1 − PU2 + λ (PV1 − PV2) |p+1 (23)

− |U1|p+1 − |U2|p+1 − |V1|p+1 − |V2|p+1
)
dx

= (p+ 1)

∫
B(ξ1,τ)

1

|x|U
p
1 (PU1 − U1 − PU2 + λ (PV1 − PV2)) dx

+
p(p+ 1)

2

∫
B(ξ1,τ)

1

|x| |U1 + θρ|p−1ρ2dx
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−
∫

B(ξ1,τ)

1

|x|
(|U2|p+1 + |V1|p+1 − |V2|p+1

)
dx

= (p+ 1)

∫
B(ξ1,τ)

1

|x|U
p
1 (PU1 − U1) dx− (p+ 1)

∫
B(ξ1,τ)

1

|x|U
p
1PU2dx+ o(ε),

where ρ := PU1 − U1 − PU2 + λ (PV1 − PV2). Indeed, by Lemma A.1 one can
easily deduce that∫

B(ξ1,τ)

1

|x|U
p
1 (PV1 − PV2) dx,

∫
B(ξ1,τ)

1

|x| |U2|p+1dx,

∫
B(ξ1,τ)

1

|x| |Vi|p+1dx = o(ε)

and also

p(p+ 1)

2

∫
B(ξ1,τ)

1

|x| |U1 + θρ|p−1ρ2dx ≤ c

∫
B(ξ1,τ)

|U1|p−1ρ2dx+

∫
B(ξ1,τ)

|ρ|p+1dx

≤ c

∫
B(ξ1,τ)

Up−1
1 (PU1 − U1)

2 dx+ c

∫
B(ξ1,τ)

Up−1
1 (PU2)

2 dx

+ c

∫
B(ξ1,τ)

Up−1
1 (PV1 − PV2)

2 dx+ c

∫
B(ξ1,τ)

|PU1 − U1|p+1dx

+ c

∫
B(ξ1,τ)

|U2|p+1dx+ c

∫
B(ξ1,τ)

(|V1|p+1 + |V2|p+1
)
dx

= o(ε).

The first term and the second term in (23) are estimated in (iii) and (iv) of
Lemma 3.4, respectively.

Therefore, the claim follows. �

Lemma 3.3. It holds true that

1

p+ 1− ε

∫
Ω

1

|x| |Vd,t|p+1−ε =
1

p+ 1

∫
Ω

1

|x| |Vd,t|p+1

+ (1 + |λ|)
[

γ1
(p+ 1)2

− αn
γ1

(p+ 1)
− γ3

(p+ 1)
+

n− 2

2(p+ 1)
(ln δ1 + ln δ2)

]
ε+ o(ε).

Proof. We argue exactly as in Lemma 3.2 of [7]. �

Lemma 3.4. Let τ as in (18). It holds true that

(i) ∫
B(ξ1,τ)

Up
1 (PU1 − U1) dx = −γ2

(
δ1
2τ1

)n−2

+ o(ε)
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(ii) ∫
B(ξ1,τ)

Up
1PU2dx = γ2 (δ1δ2)

n−2
2

(
1

|τ1 − τ2|n−2
− 1

|τ1 + τ2|n−2

)
+ o(ε)

(iii) ∫
B(ξ1,τ)

1

|x|U
p
1 (PU1 − U1) dx = −γ2

(
δ1
2τ1

)n−2

+ o(ε)

(iv) ∫
B(ξ1,τ)

1

|x|U
p
1PU2dx = −γ2

(
δ1
2τ1

)n−2

+ o(ε)

(v) ∫
Ω

1

|x|U
p+1
1 dx = γ1 − γ1τ1 + o(ε).

Proof. Proof of (i) By Lemma A.1 we get∫
B(ξ1,τ)

Up
1 (PU1 − U1) dx =

∫
B(ξ1,τ)

Up
1

(
−αnδ

n−2
2

1 H(x, ξ1) +Rδ1,ξ1

)
dx

= −αnδ
n−2
2

1

∫
B(ξ1,τ)

Up
1H(x, ξ1)dx+

∫
B(ξ1,τ)

Up
1Rδ1,ξ1dx,

with ∫
B(ξ1,τ)

Up
1Rδ1,ξ1dx = O

((
δ1
τ1

)n)
.

By Lemma 3.5 we get

αnδ
n−2
2

1

∫
B(ξ1,τ)

Up
1H(x, ξ1)dx = αp+1

n δn−2
1

∫
B(0,τ/δ1)

H(δ1y + ξ1, ξ1)
1

(1 + |y|2)n+2
2

dy

= αp+1
n

(
δ1
τ1

)n−2 ∫
B(0,τ/δ1)

τn−2
1 H(δ1y + ξ1, ξ1)

1

(1 + |y|2)n+2
2

dy

= αp+1
n

(
δ1
τ1

)n−2

⎡⎢⎣ 1

2n−2

∫
Rn)

1

(1 + |y|2)n+2
2

dy + o(1)

⎤⎥⎦ .
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Proof of (ii). By Lemma A.1 and Lemma 3.5 we get∫
B(ξ1,τ)

Up
1PU2dx =

∫
B(ξ1,τ)

Up
1

(
U2 − αnδ

n−2
2

2 H(x, ξ2) +Rδ2,ξ2

)
dx

= αp+1
n (δ1δ2)

n−2
2

∫
B(0,τ/δ1)

1

(1 + |y|2)n+2
2

1

(δ22 + |δ1y + ξ1 − ξ2|2)n−2
2

dy

− αp+1
n (δ1δ2)

n−2
2

∫
B(0,τ/δ1)

1

(1 + |y|2)n+2
2

H(δ1y + ξ1, ξ2)dy

+ αp+1
n (δ1δ2)

n−2
2

∫
B(0,τ/δ1)

1

(1 + |y|2)n+2
2

Rδ2,ξ2(δ1y + ξ1)dy

= αp+1
n

(δ1δ2)
n−2
2

|τ1 − τ2|n−2

∫
B(0,τ/δ1)

1

(1 + |y|2)n+2
2

|τ1 − τ2|n−2

(δ22 + |δ1y + ξ1 − ξ2|2)n−2
2

dy

− αp+1
n

(δ1δ2)
n−2
2

|τ1 + τ2|n−2

∫
B(0,τ/δ1)

|τ1 + τ2|n−2

(1 + |y|2)n+2
2

H(δ1y + ξ1, ξ2)dy

+O

(
(δ1δ2)

n−2
2

δ
n+2
2

2

τn2

)

= αp+1
n

(δ1δ2)
n−2
2

|τ1 − τ2|n−2

⎡⎣∫
Rn

1

(1 + |y|2)n+2
2

dy + o(1)

⎤⎦
− αp+1

n

(δ1δ2)
n−2
2

|τ1 + τ2|n−2

⎡⎣∫
Rn

1

(1 + |y|2)n+2
2

dy + o(1)

⎤⎦
+ o

(
(δ1δ2)

n−2
2

τn−2
2

)
.

Proof of (iii) and (iv) We argue as in the proof of (i) and (ii) using estimates (25)
and (26).

Proof of (v). We have∫
Ω

1

|x|U
p+1
1 dx =

∫
B(ξ1,τ)

1

|x|U
p+1
1 dx+

∫
Ω\B(ξ1,τ)

1

|x|U
p+1
1 dx, (24)

with ∫
Ω\B(ξ1,τ)

1

|x|U
p+1
1 dx = O

(
δn1
τn

)
,
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So, we only have to estimate the first term in (24). We split it as∫
B(ξ1,τ)

1

|x|U
p+1
1 dx =

∫
B(ξ1,τ)

Up+1
1 dx+

∫
B(ξ1,τ)

(
1

|x| − 1

)
Up+1
1 dx.

We have ∫
B(ξ1,τ)

Up+1
1 dx = γ1 +O

(
δn1
τn

)
.

Since ξ1 = ξ0(1 + τ1) and |ξ0| = 1, by the mean value theorem we get

1

|δ1y + τ1ξ0 + ξ0| − 1 = −τ1 − δ1 〈y, ξ0〉+R(y), (25)

where R satisfies the uniform estimate

|R(y)| ≤ c
(
δ21 |y|2 + δ1τ1|y|+ τ21

)
for any y ∈ B(0, τ/δ1). (26)

Therefore we conclude∫
B(ξ1,τ)

(
1

|x| − 1

)
Up+1
1 dx = αp+1

n

∫
B(0,τ/δ1)

(
1

|δ1y + τ1ξ0 + ξ0| − 1

)
1

(1 + |y|2)n dy

= αp+1
n

∫
B(0,τ/δ1)

(−τ1 − δ1τ1 〈y, ξ0〉+R(y))
1

(1 + |y|2)n dy = −γ1τ1 + o(τ).

Collecting all the previous estimates we get the claim. �

Lemma 3.5. Let τ as in (18). It holds true that

(i)∫
B(0,τ/δ1)

τn−2
1 H(δ1y + ξ1, ξ1)

1

(1 + |y|2)n+2
2

dy =
1

2n−2

∫
Rn

1

(1 + |y|2)n+2
2

dy + o(1),

(ii) ∫
B(0,τ/δ1)

|τ1 + τ2|n−2

(1 + |y|2)n+2
2

H(δ1y + ξ1, ξ2)dy =

∫
Rn

1

(1 + |y|2)n+2
2

dy + o(1),

(iii)∫
B(0,τ/δ1)

1

(1 + |y|2)n+2
2

|τ1 − τ2|n−2

(δ22 + |δ1y + ξ1 − ξ2|2)n−2
2

dy =

∫
Rn

1

(1 + |y|2)n+2
2

dy + o(1).

Proof. We are going to use Lebesgue’s dominated convergence theorem together
with Lemma A.2. First of all, taking into account that ξ1 = (1 + τ1)ξ0 and ξ̄1 =
(1− τ1)ξ0 we deduce that

τn−2
1 H(δ1y + ξ1, ξ1)

1

(1 + |y|2)n+2
2

→ 1

2n−2

1

(1 + |y|2)n+2
2

a.e. in Rn
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and also that

H(δ1y + ξ1, ξ1) ≤ C2
1

|δ1y + ξ1 − ξ̄1|n−2
= C2

1

|δ1y + 2τ1ξ0|n−2
≤ C2

1

τn−2
1

,

since
|δ1y + 2τξ0| ≥ 2τ1 − |δ1y| ≥ τ1 for any y ∈ B(0, τ/δ1).

That proves (i).
In a similar way, taking into account that ξ1 = (1+ τ1)ξ0 and ξ̄2 = (1− τ2)ξ0

we get

(τ2 + τ1)
n−2H(δ1y + ξ1, ξ2)

1

(1 + |y|2)n+2
2

→ 1

(1 + |y|2)n+2
2

a.e. in Rn

and also that

H(δ1y + ξ1, ξ2) ≤ C2
1

|δ1y + ξ1 − ξ̄2|n−2
= C2

1

|δ1y + (τ1 + τ2)ξ0|n−2
≤ C2

1

τn−2
2

,

since

|δ1y + (τ1 + τ2)ξ0| ≥ τ1 + τ2 − |δ1y| ≥ τ2 for any y ∈ B(0, τ/δ1).

That proves (ii).
Finally, we have

1

(1 + |y|2)n+2
2

|τ1 − τ2|n−2

(δ22 + |δ1y + ξ1 − ξ2|2)n−2
2

→ 1

(1 + |y|2)n+2
2

a.e. in Rn

and also that

1

(δ22 + |δ1y + ξ1 − ξ2|2)n−2
2

≤ 1

|δ1y + ξ1 − ξ2|n−2
≤ 2n−2

|τ1 − τ2|n−2

since

|δ1y + ξ1 − ξ2| ≥ |ξ1 − ξ2| − |δ1y| ≥ |ξ1 − ξ2|
2

for any y ∈ B(0, τ/δ1).

That proves (iii). �

Appendix

Here we recall some well-known facts which are useful to get estimates in Section 3.
We denote by G(x, y) the Green’s function associated to −Δ with Dirichlet

boundary condition and H(x, y) its regular part, i.e.,

−ΔxG(x, y) = δy(x) for x ∈ Ω, G(x, y) = 0 for x ∈ ∂Ω,

and

G(x, y) = γn

(
1

|x− y|n−2
−H(x, y)

)
where γn =

1

(n− 2)|Sn−1|
(|Sn−1| = (2πn/2)/ Γ(n/2) denotes the Lebesgue measure of the (n−1)-dimensional
unit sphere).
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The following lemma was proved in [17].

Lemma A.1. It holds true that

PUδ,ξ(x) = Uδ,ξ(x) − αnδ
n−2
2 H(x, ξ) +O

(
δ

n+2
2

dist(ξ, ∂Ω)n

)
for any x ∈ Ω.

Since Ω is smooth, we can choose small ε > 0 such that, for every x ∈ Ω with
dist(x, ∂Ω) ≤ ε, there is a unique point xν ∈ ∂Ω satisfying dist(x, ∂Ω) = |x − xν |.
For such x ∈ Ω, we define x̄ = 2xν−x the reflection point of x with respect to ∂Ω.

The following two lemmas are proved in [1].

Lemma A.2. It holds true that∣∣∣∣H(x, y)− 1

|x̄− y|n−2

∣∣∣∣ = O

(
dist(x, ∂Ω)n

|x̄− y|n−2

)
and ∣∣∣∣∇x

(
H(x, y)− 1

|x̄− y|n−2

)∣∣∣∣ = O

(
1

|x̄− y|n−2

)
for any x ∈ Ω with dist(x, ∂Ω) ≤ ε.
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Dedicated to Prof. Bernhard Ruf in occasion of his 60th birthday

Abstract. In this paper we study the existence of normalized standing wave
solutions for a Schrödinger–Poisson system in a bounded domain of R3. We
assign a Dirichlet boundary condition for the wave function and a Neumann
boundary condition for the potential φ. In particular this last condition has
some interesting consequences which force us to consider the case in which
the interaction “constant” q is merely a constant function or not. However
with very mild assumption on q we are able to find infinitely many solutions
in both cases. The result presented here can be found with all the details in
the papers [14, 16].

Mathematics Subject Classification (2010). 35J50, 35J57, 35Q55.

Keywords. Standing waves, electrostatic field, bounded domain, variational
methods, Krasnoselskii genus.

1. Introduction

In this paper we summarize and compare two results obtained in the papers [14,
16]. They are concerned with the following Schrödinger–Poisson type system in a
bounded and smooth domain Ω ⊂ R3:{ −Δu+ qφu = ωu in Ω

−Δφ = qu2 in Ω
(1)

with the boundary conditions{
u = 0 on ∂Ω,
∂φ
∂n = h on ∂Ω

(2)

where h is a smooth function defined on ∂Ω.

Switzerland
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For a physical interpretation and a rigorous derivation of the above system we
refer the reader to [6, 7] or [12]. Here we simply say that the equations (1) arise from
the search of stationary solutions ψ(x, t) = e−iωtu(x) for a Schrödinger equation
coupled with the Maxwell equations in the purely electrostatic case: E = −∇φ(x),
A = 0. The interaction is governed by the charge density q, which is a datum of
the problem and satisfies a suitable condition that will be presented in a while. The
physical meaning of the boundary conditions is that the particle is constrained “to
live” in Ω and that the normal component of the electric field E is assigned on the
boundary of Ω; in other words, h prescribes the flux F = − ∫

∂Ω
hds of the electric

field through the boundary ∂Ω.

The equations above are known in the literature under the names Schrödin-
ger–Maxwell or Schrödinger–Poisson.

The unknown of the problem are the real functions u, φ and the real num-
ber ω, so in our case the wave function is completely unknown: we have to find
the modulus and the frequency; consequently a solution of the system is a triple
(u, ω, φ).

We are interested in normalized wave functions, so we impose on u to satisfy
the condition ∫

Ω

u2dx = 1 (3)

which makes sense from a physical and probabilistic point of view.

Note that the Neumann datum imposes a further constraint (compatibility
condition) on u: every solution has to satisfy

F =

∫
Ω

qu2 dx. (4)

Now we distinguish two cases.

1.1. The case q ∈ C(Ω) and not constant

In this case we are in presence of a density of charge varying from point to point
in Ω. The interested reader is referred to [1, 9] and references therein for the
derivation of the system.

We set qmin := min q(Ω) and qmax := max q(Ω).

We have the two constraints

S :=

{
u ∈ H1

0 (Ω) :

∫
Ω

u2dx = 1

}
, (5)

N :=

{
u ∈ H1

0 (Ω) :

∫
Ω

qu2 = F

}
, (6)

different in nature: the first one is due to the fact that we have imposed the
normalizing condition, the second one is imposed by the Neumann condition. We
define M := S ∩N. Of course, any (eventual) solution u is in M and is such that

qmin ≤ F ≤ qmax.
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So it makes sense to consider the set q−1(F); actually a major role is played by its
measure, indeed

1) if |q−1(F)| = 0, then M is not a differentiable manifold;
2) if |q−1(F)| �= 0 and F ∈ {qmin, qmax} then M = ∅.

Point 2) is easy to see, while point 1) requires some technicalities, on which we
will return.

Our result, obtained in [16], is the following

Theorem 1.1. Assume

qmin < F < qmax (7)

and

|q−1(F)| = 0. (8)

Then there exists a solution (u, ω, φ) ∈ H1
0 (Ω)×R×H1(Ω) of system (1)–(2)–(3)

such that u ≥ 0.
Moreover there exist infinitely many solutions (un, ωn, φn) ∈ H1

0 (Ω) × R ×
H1(Ω) with

∫
Ω |∇un|2dx→ +∞.

The assumptions of Theorem 1.1 are immediately satisfied if F is a regular
value of q.

Note that (7) implies that q cannot be constant, and it cannot have constant
value F on any open subset of Ω, due to condition (8).

1.2. The case q constant and different from zero

Now we have a uniform distribution of charge in the domain Ω. Then the compat-
ibility condition (4) becomes

F = q

∫
Ω

u2dx = q �= 0. (9)

This implies that a necessary condition in order to have solutions simply reduces
to assign h such that the relation above is satisfied.

In this case the value ω plays no role in the existence of solutions, indeed the
problem enjoys some invariance: (u, 0, φ) is a solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δu+ qφu = 0 in Ω,

−Δφ = qu2 in Ω,∫
Ω
u2dx = 1

u = 0 on ∂Ω,

∂φ
∂n = h on ∂Ω,

(10)

if and only if (u, ω, φ − ω/q) is a solution of (1)–(2). In other words, if we find
ψ(x, t) = u(x), a static solution of the Schrödinger–Maxwell equations, then we
have also the stationary solutions u(x)e−iωt with any frequency ω ∈ R. All these
solutions are associated to the same electric field, indeed the change of variable
φ �→ φ− ω/q has no effect on E.
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Now our result is the following.

Theorem 1.2. Assume condition (9). Then there exists a solution (u, φ) ∈ H1
0 (Ω)×

H1(Ω) of system (10) such that u ≥ 0.
Moreover there exist infinitely many solutions (un, φn) ∈ H1

0 (Ω) ×H1(Ω) of
(10) with

∫
Ω
|∇un|2dx→ +∞ and

∫
Ω
φndx→∞.

It is worth to note that the invariance of the problem by the shift (u, 0, φ)→
(u, ω, φ − ω/q) can be used to reduce the problem to find solutions with

∫
Ω φdx

given (see the remarks at the end of the paper).

Many authors have studied this kind of systems; here we recall [1, 2, 3, 6, 8,
9, 10, 11, 13, 15, 17, 18, 19] and the reference therein. However these authors do
not consider the case with given L2-norm. The case with fixed L2-norm on u has
also been considered in the recent papers [4, 5].

The next two sections are devoted to prove, by variational methods, Theorem
1.1 and Theorem 1.2. Note that, as usual in this kinds of problems, we can also add
a nonlinearity satisfying some growth condition and everything works (see [14, 16]
for more details).

1.3. Notations

As a matter of notations, we endow the Sobolev space H1
0 (Ω) with the usual norm

‖∇u‖2 where ‖u‖p is the Lp-norm. For an integrable function v, we will use also
the notation v̄ = |Ω|−1

∫
Ω v dx. Finally, we will use the letter c to denote a generic

positive constant (independent of u) whose value may change also from line to
line.

2. Proof of Theorem 1.1

Our analysis in this case begins by studying the constraint M which is evidently
symmetric with respect to the origin and weakly closed in H1

0 (Ω). The first step
is to show that, under condition (7), M is not empty. To this aim, it is useful to
state a general fact like the next proposition. Of course by taking A = Ω we will
deduce that M is not vacuus.

Proposition 2.1. Let A be an open subset of Ω. If F ∈ (inf q(A), sup q(A)) then
there exists u ∈ H1

0 (A) such that∫
A

u2 dx = 1 and

∫
A

qu2 dx = F.

For the proof we refer the reader to the paper [16].

To obtain the multiplicity result stated in Theorem 1.1, we will use the the-
ory of genus of Krasnoselskii, so some topological properties of M have to be
investigated. We first recall the definition of genus: for every C closed and sym-
metric subset of a topological space, the genus of C, denoted by γ(C), is defined
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as the smallest integer k ∈ N for which there exists an odd and continuous map
h : C → Rk\ {0}. If there is no finite such k, we set γ (C) = +∞ and, finally,
γ (∅) = 0.

Theorem 2.2. Let u1, . . . , uk ∈ M be functions with disjoint supports. Then the
genus of M is at least k.

Proof. Denoting with Vk the k-dimensional space generated by u1, . . . , uk, it hap-
pens that M ∩ Vk = S ∩ Vk, that is the unit sphere in Vk. Indeed, it is obvious

that M ∩ Vk ⊂ S ∩ Vk. On the other hand, if u =
∑k

i=1 αiui ∈ S ∩ Vk, then

1 = ‖u‖22 =
∑k

i=1 α
2
i which implies that∫

Ω

qu2dx =

∫
Ω

q

k∑
i=1

α2
iu

2
i dx =

k∑
i=1

α2
i

∫
Ω

qu2
i dx = F

k∑
i=1

α2
i = F,

and so u ∈M . �

The key fact now is that we can find infinitely many functions in M with
disjoint support.

Theorem 2.3. Assume (7). Then, for every k ≥ 2, there exist k functions u1, u2,
. . . , uk ∈M having disjoint supports. Hence γ(M) = +∞.

Proof. By (7), the subsets

Ω+ = {x ∈ Ω : q(x) > F} , Ω− = {x ∈ Ω : q(x) < F}
are open and not empty. We can choose 2k disjoint balls {Y1, . . . , Yk} ⊂ Ω−,
{Z1, . . . , Zk} ⊂ Ω+, then we set Ai = Yi ∪ Zi , i = 1, . . . , k. It follows by construc-
tion that

inf q(Ai) < F < sup q(Ai).

Therefore we apply Proposition 2.1 and we find ui ∈ H1
0 (Ai) such that∫

Ω

u2
i dx =

∫
Ai

u2
i dx = 1 and

∫
Ω

qu2
i dx =

∫
Ai

qu2
i dx = F

(identifying a function in H1
0 (Ai) with its trivial extension). All these functions

u1, u2, . . . , uk ∈M have disjoint supports. �

Remark 2.4. It is easy to see that just under condition

|q−1(F)| �= 0

the set M is not empty; indeed we can consider functions u whose support is
contained in q−1(F); analogously, using Theorem 2.2, the set M has infinite genus,
too.
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We will see now that the measure of q−1(F) concerns with the differential
structure of M . Define

G1 : u ∈ H1
0 (Ω) �→

∫
Ω

u2dx− 1 ∈ R

G2 : u ∈ H1
0 (Ω) �→

∫
Ω

qu2dx− F ∈ R

then we set G = (G1, G2), so that M =
{
u ∈ H1

0 (Ω) : G1(u) = G2(u) = 0
}

=

G−1(0).

The next task now is to show that G defined above is a submersion and so
M a submanifold in H1

0 (Ω) of codimension 2.

Proposition 2.5. Assume that M is not empty. For every u ∈ M the differentials
G′

1(u) and G′
2(u) are linearly independent if and only if condition (8) holds, i.e.,

|q−1(F)| = 0.

In this case M is a differentiable manifold of codimension 2 and for every u ∈M
the tangent space at u is

TuM = kerG′(u) =
{
v ∈ H1

0 (Ω) :

∫
Ω

uv dx =

∫
Ω

quv dx = 0

}
.

We prove here just the sufficiency of condition (8) in order to be M a smooth
manifold of codimension 2. For the proof of the necessity see [16].

Proof. Assume (8) and consider

αG′
1(u) + βG′

2(u) = 0 in H−1(Ω) (α, β ∈ R). (11)

Evaluating (11) on u ∈ M we obtain α + βF = 0. So it is sufficient to prove that
β = 0. Now (11) becomes

β

(
−F

∫
Ω

uv dx+

∫
Ω

quv dx

)
= 0 ∀ v ∈ H1

0 (Ω)

that is

β

∫
Ω

(q − F)uv dx = 0 ∀ v ∈ H1
0 (Ω).

If it were β �= 0, then (q − F)u = 0 a.e. and, by (8), it would be u = 0: a
contradiction. �

In particular we see that the condition (8) is responsible for S and N to be
“tangential” or “transversal” (see [16]).

Now we can proceed with the proof of the theorem, by describing the varia-
tional framework and defining a suitable functional whose critical points will give
the solutions of our problem.
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We first introduce the unique function χ which solves the auxiliary problem⎧⎪⎪⎨⎪⎪⎩
Δχ = −F/ |Ω| in Ω,∫
Ω
χdx = 0

∂χ
∂n = h on ∂Ω

(12)

and then we perform the change of variables

μ =
1

|Ω|
∫
Ω

φdx and ϕ = φ− χ− μ (13)

so that ϕ = 0. We define H̃ =
{
η ∈ H1 (Ω) : η = 0

}
and note thatH1 (Ω) = H̃⊕R.

With the new variables (u, ω, ϕ, μ), our problem (1) with conditions (2) and
(3), becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu+ q (χ+ ϕ) u = ωu− μqu in Ω

−Δϕ = qu2 − F/|Ω| in Ω∫
Ω u2 dx = 1

ϕ ∈ H̃

u = 0 on ∂Ω

∂ϕ

∂n
= 0 on ∂Ω.

(14)

The compatibility condition due to the Neumann condition reads again as u ∈ N ,
where N has been defined in (6).

Consider the C1 functional F : H1
0 (Ω)×H1(Ω) −→ R defined as follows

F (u, ϕ) =
1

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

q(ϕ+ χ)u2dx− 1

4

∫
Ω

|∇ϕ|2dx− F

2|Ω|
∫
Ω

ϕdx.

so that, for every u ∈ H1
0 (Ω) and ϕ ∈ H1(Ω) we have

〈F ′
u (u, ϕ) , v〉 =

∫
Ω

(∇u∇v + q (ϕ+ χ)uv) dx ∀ v ∈ H1
0 (Ω),〈

F ′
ϕ (u, ϕ) , ξ

〉
=

1

2

∫
Ω

qξu2dx− 1

2

∫
Ω

∇ϕ∇ξ dx− F

2|Ω|
∫
Ω

ξ dx ∀ ξ ∈ H1(Ω).

Under our conditions (7) and (8) we know thatM is not empty and a manifold
of codimension 2 (Proposition 2.1 and Proposition 2.5) so that an application of
the Lagrange Multipliers Theorem gives

Theorem 2.6. Let (u, ϕ) ∈ H1
0 (Ω) × H1(Ω). Then there exist ω, μ ∈ R such that

(u, ϕ, ω, μ) is a solution of (14) if and only if (u, ϕ) is a critical point of F con-

strained on M × H̃; the real constants ω and μ are the two Lagrange multipliers
with respect to F ′

u.

Note that the restriction H̃ is a natural constraint with respect to F ′
ϕ so no

Lagrange multipliers appear with respect to this derivative.
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The functional F constrained on M × H̃ is unbounded from above and from
below, even modulo compact perturbations.

For this kind of problem the usual strategy to proceed is the following:

1. for every fixed u, one find the unique solution ϕ = Φ(u) of the equation
F ′
ϕ (u, ϕ) = 0,

2. so a correspondence u �→ Φ(u) is defined and it is usually C1,
3. the graph of Φ is a manifold and it is a natural constraint for finding critical

points of F ; in concrete terms we are reduced to study the functional J(u) =
F (u,Φ(u)), possibly constrained.

It is immediately seen, in our case, that the equation F ′
ϕ (u, ϕ) = 0, with ϕ ∈ H̃ is

just ⎧⎪⎪⎨⎪⎪⎩
Δϕ+ qu2 − F/|Ω| = 0 in Ω,

∂ϕ

∂n
= 0 on ∂Ω,∫

Ω ϕdx = 0 .

(15)

When we try to apply the procedure described above, we find two obstacles. First,
this problem (15) has a unique solution if and only if u ∈ N . The second difficulty

concerns with the regularity of the map Φ : N → H̃ ; indeed, since N is not a
manifold (unless we make the further assumption F �= 0), we cannot require this
map to be C1 (in a classical sense).

To address these problems, we use an idea, already introduced in [14], of
extending the map Φ. This is done by using the next two results, whose prove is
standard.

Proposition 2.7. For every w ∈ L6/5(Ω) there exists a unique L(w) ∈ H̃ solution of⎧⎪⎪⎨⎪⎪⎩
Δϕ+ w − w̄ = 0 in Ω,

∂ϕ

∂n
= 0 on ∂Ω,∫

Ω ϕdx = 0.

The map L : L6/5(Ω)→ H̃ is linear and continuous, hence C∞. Moreover we have

‖∇L(w)‖2 ≤ c ‖w‖6/5
Furthermore kerL = R and if w ∈ L2(Ω), then ‖L(w)‖H2 ≤ c ‖w − w‖2

Proposition 2.8. The map u ∈ L6(Ω) �−→ qu2 ∈ L6/5(Ω) is of class C1.

As a consequence of these facts, we can define the C1 map on all H1
0 (Ω)

Φ : u ∈ H1
0 (Ω) �→ L(qu2) ∈ H̃.

Clearly, Φ(u) = Φ(−u) = Φ(|u|) and for every (u, ϕ) ∈ H1
0 (Ω) × H̃, we have

ϕ = Φ(u) if and only if, for every η ∈ H̃∫
Ω

∇ϕ∇η dx =

∫
Ω

qu2η dx. (16)
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In particular, by taking η = Φ(u) we infer that∫
Ω

|∇Φ (u)|2 dx =

∫
Ω

qu2Φ (u) dx, (17)

from which we deduce ‖∇Φ (u)‖22 ≤ c‖q‖∞ ‖u‖24 ‖∇Φ (u)‖2 or equivalently

‖∇Φ (u)‖2 ≤ c ‖∇u‖22 (18)

for some positive constant c. In other words, we have proved that the map Φ is
bounded on bounded sets. By standard computations we can prove more:

Lemma 2.9. The map Φ is compact. Moreover, if un ⇀ u in H1
0 (Ω) then∫

Ω

qu2
nΦ(un)dx→

∫
Ω

qu2Φ(u)dx.

Note that Φ(u) ∈ H̃ is the unique solution of (15) whenever u ∈ N , hence, for
every u ∈ N , we have F ′

ϕ(u,Φ(u)) = 0. Now we can define the “reduced” functional
which depends on the single variable u:

J : H1
0 (Ω)→ R such that J(u) = F (u,Φ(u)).

From now on, we will use the notation ϕu = Φ(u), hence explicitly J is given by

J(u) =
1

2

∫
Ω

|∇u|2dx +
1

4

∫
Ω

|∇ϕu|2dx+
1

2

∫
Ω

qχu2dx (19)

and is C1 and even. Moreover, for every u ∈ M ⊂ N , the differential of J is
given by

〈J ′(u), v〉 = 〈F ′
u(u, ϕu), v〉 + 〈Fϕ(u, ϕu),Φ

′(u)v〉
= 〈F ′

u(u, ϕu), v〉 ∀ v ∈ H1
0 (Ω)

so we deduce, by an application of the Implicit Function Theorem, the following

Theorem 2.10. The pair (u, ϕ) ∈ M × H̃ is a critical point of F constrained on

M × H̃ if and only if u is a critical point of J|M and ϕ = Φ(u).

Recalling that M is weakly closed, the first part of Theorem 1.1 is now a
consequence of the following lemma.

Lemma 2.11. The functional J on M is weakly lower semicontinuous and coercive.
In particular it has a minimum u.

Proof. Indeed by (19), J(u) ≥ 1
2

∫
Ω |∇u|2dx − c so it is bounded from below and

coercive on M . By Lemma 2.9 we deduce the weakly lower semicontinuity. �

Note that we can assume that the minimum is positive since J(u) = J(|u|).



350 L. Pisani and G. Siciliano

2.1. Multiplicity of solutions

A basic tool to prove the existence of (many) critical points is the well-known
Palais–Smale condition. We recall, in general, that if J is a C1 functional defined
on a smooth manifold M , a sequence {un} ⊂ M is a Palais–Smale sequence for
J if {J(un)} is bounded and J ′

|M (un) → 0. Moreover, the functional J is said

to satisfy the Palais–Smale condition on M if every Palais–Smale sequence has a
convergent subsequence to an element of M.

Proposition 2.12. The functional J satisfies the Palais–Smale condition on M .

We will not prove the proposition: the details can be found in [16]. The
existence of infinitely many critical points {un} for J on M is a consequence of
Lemma 2.11, Proposition 2.12 and Theorem 2.3 (see, e.g., Corollary 4.1 of [20]). To
the critical points {un}n are associated the Lagrange multipliers {ωn} and {μn}
and then, via (13), infinitely many solutions (un, ωn, φn) ∈ H1

0 (Ω) × R ×H1(Ω)
of (1)–(2)–(3).

Finally, the sublevels of the functional have finite genus (it is standard, for
a general proof of this fact see, e.g., [6], Lemma 9). On the other hand, M has
infinite genus hence, the critical levels have to be divergent, i.e.,

J(un) =
1

2

∫
Ω

|∇un|2dx+
1

4

∫
Ω

|∇ϕn|2dx+
1

2

∫
Ω

qχu2
ndx→ +∞.

Consequently, since
{∫

Ω
qχu2

ndx
}
n
is bounded and ‖∇ϕn‖2 ≤ c‖∇un‖22 we infer

that necessarily ‖∇un‖2 → +∞, concluding the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We will just present a sketch of the proof since it follows the same lines of the
proof in the previous case (the details can be found in [14]). Actually this case is
simpler since we only need to work with the single constrained N defined in (6), or
equivalently, with S (they differ for an insignificant constant, recall condition (9)).
This constrained is, as well, a smooth manifold of codimension one, is symmetric
with respect to the origin and weakly closed in H1

0 (Ω). Moreover the genus is
infinite, and, as in the previous section, the main steps to prove Theorem 1.2 are:

Step 1: One introduces a function χ as in (12) and makes a change of variables
to have a homogeneous boundary Neumann condition on the potential φ; observe
that this change of variable introduces a Lagrange multiplier in the problem (10)
and we arrive to system (14) with ω = 0: this time we have a unique Lagrange
multiplier which is μ (the average of φ on Ω) “acting” on S.

Step 2: The problem is reduced to find critical points of a functional of two variables
F on the constraint S × H̃ , which is strongly unbounded.

Step 3: Again there is a technicality to define a global map Φ : H1
0 (Ω) → H̃ , but

after that, a functional of a single variable J(u) = F (u,Φ(u)) can be defined. Note
that the expression of the functional J is essentially the same of the previous case.
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Step 4: One is then reduced to find the critical points of J on the sphere S, and
an easy computation gives μn = 〈F ′

u (un,Φ (un)) , un〉 = 〈J ′ (un) , un〉;
Step 5: Since J is bounded from below on S and satisfies the Palais–Smale con-
dition, an application of the Ljusternik–Schnirelmann Theory gives the desired
result. Finally it is easy to see that the divergence of the μk is deduced by the
divergence of ‖∇uk‖.

To conclude we note two facts:

1) In both cases (q constant or not) appears a hidden Lagrange multiplier: the
average of φ on Ω. This multiplier is not evident in the original system and
appears when dealing with the Neumann condition.

2) In the case q constant the shift invariance can be also formulated in the
following way: (u, ω, φ) is a solution of (1)–(2) if and only if (u, ω+q μ, φ+μ)
is a solution too, for every μ ∈ R. As a consequence, instead of fixing the
value ω = 0 as we have done, we can study the problem by fixing the value
of

∫
Ω
φdx, let us say zero, and allowing ω �= 0. In this case the theorem we

arrive states the existence of infinitely many solutions of type (un, ωn, φn)
with

∫
Ω
φndx = 0. Of course the two approaches are equivalent, but now the

constraint on φ will appear since the beginning. The proof follows with very
minor changes.
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On Singular Liouville Systems

A. Poliakovsky and G. Tarantello

Abstract. We discuss a class of planar systems of Liouville type in presence of
singular sources. When the coupling matrix admits positive entries, we provide
necessary and sufficient conditions for the existence of radial solutions and
corresponding uniqueness. For this purpose we point out a log HLS inequality
in system’s form that involves weights and holds in the radial setting.

Mathematics Subject Classification (2010). 35J47, 35J61, 34A34, 47J20.

Keywords. Liouville systems with Dirac measures, cooperative systems, radial
solutions, logarithm HLS inequalities for systems.

1. Introduction

Motivated by the study of vortex configurations in several self-dual gauge field
theories (see, e.g., [T], [Y], [D]), in this note we consider a class of planar ‘singular’
Liouville systems in presence of Dirac measures supported at a given point (say
the origin). In the ‘regular’ situation, where the Dirac measures are neglected,
a similar class of systems have emerged in various area of Physics and Applied
Mathematics, as discussed for example in [CK1], [CK2], [Ki1], [Ki2], [Wo], [CSW],
[CLMP1], [CLMP2], [SW1], [SW2], [JoW1], [JoW2] [W], [LZ1] see also references
therein. More precisely, we are concerned with the following problem:{−ΔUi =

∑m
j=1 aije

bjUj − 4πniδ0∫
R2 e

bjUj <∞ (1.1)

where: bj > 0, Nj := njbj > −1, j = 1, . . . ,m and δ0 denotes the Dirac measure
with pole at the origin. The coupling matrix A = (ai,j) is assumed to be symmetric
and irreducible. We can allow the matrix A to be degenerate, in order to include
in our analysis also a model arising from the study of self-gravitating strings (see
[Y], [CGS] and [PT]).

The research of the second author was supported by Firb–Ideas Program: “Analysis and Beyond”
and by PRIN Program: “Nonlinear elliptic problems in the study of vortices and related topics”.

Switzerland
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Concerning the simpler case m = 1, where (1.1) reduces to the well-known
‘singular’ Liouville equation, we refer to [PrT] for a complete characterization of
the corresponding solutions (see also [ChL] for previous results), and to [T] for
a discussion on related analytical aspects (e.g., blow-up analysis, Harnack-type
inequalities etc). In this direction we like to mention a non-trivial classification
result that covers systems. It has been established recently in [LWY] for solutions
of the ‘singular’ Toda system, where the coupling matrix in (1.1) is given by
the Cartan matrix of the group SU(m + 1). See also [JoW2] for an analogous
classification of solutions for the Toda system in absence of Dirac measures.

We shall focus on the radial problem, and when the coupling matrix admits
non-negative entries, we provide necessary and sufficient conditions for the exis-
tence and uniqueness of a radial solution for (1.1). See Theorem 3.1, Corollary
3.2 and Theorem 4.1 for the precise statements. Our results extend and complete
those of Chipot–Shafrir–Wolansky [CSW] and Lin–Zhang [LZ1] concerning (1.1)
in absence of Dirac measures, and with a non-degenerate coupling matrix A. Note
that, while for the “regular” problem (i.e., ni = 0, for every i = 1, . . . ,m,) every
solution can be shown to be radially symmetric (about some point) (see [CK1],
[CSW]), this is no longer the case when ni > 0 for some i= 1, . . . ,m. To this
purpose, see the non-radial solutions obtained in [PrT] for the single equation, or
in [PT] for a degenerate system and in [LWY] for the Toda system.

Here we exploit in a crucial way the radial framework, and identify a sharp
Log HLS inequality in R2 for systems involving weights, see (3.66) and (3.67).
Notice that our Log HLS inequality holds only for radial functions, while it fails in
general. It is used to prove coerciveness of the free energy functional associated to
the (radial) system (1.1). Hence it allows us to obtain a solution via minimization.
A similar approach was successfully used in [CSW] to handle the “regular” system,
whose free energy functional can be controlled by a convenient sharp Log-HLS
inequality (without weights), that always holds. See also [W] and [SW1], [SW2]
and [SW3] for further extensions of the Log-HLS inequality in system’s form,
also considered over compact Riemannian manifolds and in connection with the
Moser–Trudinger inequality (see [Mo], [Au] and [F]). This line of work follows the
‘dual’ approach of Carlen–Loss [CL], which concerns the single Liouville equation
in relation with the associated free energy functional and Onofri inequality in S2

(cfr. [On]). See Beckner [B] for stronger results in this direction, including higher
dimensions, and [Do] for recent developments on Log-HLS inequalities.

As already mentioned, our (radial) inequality, (see (3.66) below) involves
weights and follows by using ad-hoc one-dimensional arguments. In general, it
does not hold for non-radial functions, as one can check by arguing as in Lemma
2.2 in [CSW]. For the single equation similar observations are contained in [DET1],
see also [Tr] in connection to surfaces with conical singularities.

According to our results, we have a rather complete understanding of radial
solutions for (1.1), when the entries of the matrix A are non-negative, (the so-
called ‘cooperative’ case, in the language of population dynamics). We hope to use
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such information together with a “perturbation” approach to treat more complex
systems arising in the study of non-abelian Chern–Simons vortices.

On the contrary, non-radial solutions for (1.1) are far from being understood,
and at this point it is not clear when to look for their existence or when to expect
their non-existence.

Recent contributions for ‘conflicting’ systems involving coupling matrix with
negative off diagonal entries can be found in [FT].

2. Preliminaries

Throughout this paper we let I = {1, . . . ,m} and consider A = {aij}1≤i,j≤m ∈
Rm×m a symmetric and irreducible matrix that is:

aij = aji ∀i, j ∈ I; ∀∅ �= J � I there exist i ∈ J and j ∈ I \ J such that aij �= 0.

For bi > 0 and Ni > −1, i ∈ I, we are interested to identify the m-ple
β =

(
β1, . . . , βm

)
with βi > 0 i ∈ I, so that the following elliptic system:{−Δui =

∑m
j=1 aij |x|2Njebjuj in R2

1
2π

∫
R2 |x|2Niebiuidx = βi

i ∈ I (2.1)

admits a radial solution u(r) =
(
u1(r), . . . , um(r)

)
. Clearly by setting: Ni = nibi

and Ui(x) = ui(x) + 2ni ln |x|, i ∈ I we see that problem (2.1) is equivalent
to problem (1.1) of the Introduction. Actually, by using the change of variable
r = et, and the unknowns:

vi(t) := ui

(
et
)

i ∈ I, (2.2)

we reduce to consider the following boundary value problem:⎧⎪⎪⎨⎪⎪⎩
d2vi
dt2 +

∑m
i=1 aije

2(Nj+1)t+bjvj = 0 for t ∈ R
dvi
dt (−∞) = 0, vi(−∞) ∈ R∫
R
e2(Ni+1)t+bividt = βi

i ∈ I. (2.3)

For a solution (v1, . . . , vm) of (2.3), we define the function:

fi(t) :=

∫ t

−∞
e2(Ni+1)s+bivi(s)ds, i ∈ I; (2.4)

so that,

dvi
dt

(t) +

m∑
i=1

aijfj(t) = 0 ∀t ∈ R, i ∈ I. (2.5)

Furthermore, for a non-empty subset J ⊆ I, we let,

ΨJ(t) :=
∑
i∈J

{
1

bi
e2(Ni+1)t+bivi(t) − 2(Ni + 1)

bi
fi(t) +

∑
j∈J

1

2
aijfi(t)fj(t)

}
, (2.6)
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which satisfies:

ΨJ(−∞) = 0, ΨJ(+∞) =
(∑

i∈J

∑
j∈J

1

2
aijβiβj

)
−
∑
i∈J

2(Ni + 1)

bi
βi;

and

dΨJ

dt
(t) =

∑
i∈J

{
e2(Ni+1)t+bivi(t)

dvi
dt

(t) +
dfi
dt

(t)
∑
j∈J

aijfj(t)

}

=
∑
i∈J

{
e2(Ni+1)t+bivi(t)

(
dvi
dt

(t) +
∑
j∈I

aijfj(t)

)
− e2(Ni+1)t+bivi(t)

∑
j∈I\J

aijfj(t)

}

= −
∑
i∈J

∑
j∈I\J

aije
2(Ni+1)t+bivi(t)

∫ t

−∞
e2(Nj+1)s+bjvj(s)ds. (2.7)

Therefore, if for some h ∈ {−1, 1} we suppose that haij ≥ 0 for every i �= j, then
by using the fact that A is irreducible, we find that,

dΨI

dt
(t) = 0 and h

dΨJ

dt
(t) < 0 for t ∈ R and ∅ �= J � I. (2.8)

Thus we conclude the following:

Proposition 2.1. Assume that the symmetric matrix A is irreducible and for fixed
h ∈ {−1, 1} there holds: haij ≥ 0 for every i �= j. Then the following conditions
are necessary for the existence of a radial solution to (2.1):⎧⎪⎪⎪⎨⎪⎪⎪⎩

βi > 0 ∀i ∈ I(∑
i∈I

∑
j∈I

1
2aijβiβj

)
−∑

i∈I
2(Ni+1)

bi
βi = 0

h

{(∑
i∈J

∑
j∈J

1
2aijβiβj

)
−∑

i∈J
2(Ni+1)

bi
βi

}
< 0 if ∅ �= J 	 I.

(2.9)

We shall focus here to the case where the matrix A =
{
aij

}
i,j=1,...,m

admits

non-negative entries, so that (2.9) holds with h = 1. We aim to show that actually
in this case (2.9) provides also sufficient conditions for the solvability of (2.3).
Results about the case h = −1, can be found in [FT].

We start to observe the following:

Lemma 2.1. Assume Ni > −1, bi > 0, i ∈ I and suppose that A =
{
aij

}
i,j=1,...,m

is a symmetric matrix with

aii ≥ 0 ∀i ∈ I. (2.10)

If (2.9) holds with h = 1, then for every ∅ �= J 	 I, we have:⎧⎪⎨⎪⎩
(∑

i∈J

∑
j∈I\J aijβiβj

)
+
(∑

i∈J

∑
j∈J

1
2aijβiβj

)
−∑

i∈J
2(Ni+1)

bi
βi > 0(∑

i∈J

∑
j∈I\J aijβiβj

)
> 0. (2.11)
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In particular A must be irreducible, and∑
j∈I

aijβj ≥ 1

2
aiiβi +

∑
j∈I\{i}

aijβj >
2(Ni + 1)

bi
, for every i ∈ I. (2.12)

Proof. Let ∅ �= J 	 I, then

0 =
(∑

i∈I

∑
j∈I

1

2
aijβiβj

)
−
∑
i∈I

2(Ni + 1)

bi
βi

=

(∑
i∈J

{∑
j∈J

1

2
aijβiβj

}
−
∑
i∈J

2(Ni + 1)

bi
βi

)

+

( ∑
i∈I\J

{ ∑
j∈I\J

1

2
aijβiβj

}
−

∑
i∈I\J

2(Ni + 1)

bi
βi

)

+
∑
i∈J

{ ∑
j∈I\J

1

2
aijβiβj

}
+

∑
i∈I\J

{∑
j∈J

1

2
aijβiβj

}

<

(∑
i∈J

{∑
j∈J

1

2
aijβiβj

}
−
∑
i∈J

2(Ni + 1)

bi
βi

)
+
∑
i∈J

{ ∑
j∈I\J

aijβiβj

}

<
∑
i∈J

{ ∑
j∈I\J

aijβiβj

}
.

(2.13)

and (2.11) is established. Thus from the second inequality in (2.11) we get that A
is irreducible. Furthermore, by using the first inequality in (2.11) with J = {i} we
find:∑

j∈I

aijβiβj ≥ 1

2
aiiβ

2
i +

∑
j∈I\{i}

aijβiβj >
2(Ni + 1)

bi
βi for every i ∈ I;

and also (2.12) follows. �

3. Variational Formulation and a (radial) LogHLS inequality

Fix

Ni > −1 and bi > 0, i ∈ I. (3.1)

If the symmetric matrix A =
{
aij

}
i,j=1,...,m

satisfies (2.10) and the m-ple β =(
β1, . . . , βm

)
satisfies (2.9) with h = 1, then in this section we show that problem

(2.3) admits a variational formulation. Furthermore a solution of (2.3) may be
obtained via a minimization procedure.

To this purpose for β = (β1, β2, . . . , βm) ∈ Rm with βi > 0 i ∈ I, we consider
the set,

Dβ :=
{
r = (r1, . . . , rm) ∈ Rm : 0 ≤ ri ≤ βi ∀i ∈ I

}
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and for δ ≥ 0, ∅ �= J ⊆ I, we set,

Φδ,β,J(r) :=
∑
i∈J

{
− δ

2
ri(βi − ri) +

2(Ni + 1)

bi
ri −

∑
j∈J

1

2
aijrirj

}
. (3.2)

In particular, for J = I we let Φδ,β ≡ Φδ,β,I.

Lemma 3.1. Assume (3.1), and let A = {aij} be a symmetric matrix satisfying
(2.10). If β = (β1, . . . , βm) ∈ Rm, satisfies:⎧⎪⎪⎨⎪⎪⎩

βi > 0 i ∈ I(∑
i∈I

∑
j∈I

1
2aijβiβj

)
−∑

i∈I
2(Ni+1)

bi
βi = 0(∑

i∈J

∑
j∈J

1
2aijβiβj

)
−∑

i∈J
2(Ni+1)

bi
βi < 0 if ∅ �= J 	 I;

(3.3)

then, for every ∅ �= J ⊆ I, there holds:

Φ0,β,J(r) ≥ 0, ∀ r ∈ Dβ ; (3.4)

and

Φ0,β(r) = 0 if and only if either r = 0 or r = β. (3.5)

Furthermore there exists δ0 > 0, such that for δ ∈ [0, δ0), there holds:

Φδ,β(r) ≥ 0 ∀ r ∈ Dβ . (3.6)

Proof. It is clear that the functions Φ0,β,J(r) and Φ0,β(r) correspond to (3.2) with
δ = 0. Hence,

∂Φ0,β,J

∂ri
(r) =

2(Ni + 1)

bi
−
∑
j∈J

aij rj ∀i ∈ J. (3.7)

Denote by r̃(J) =
(
r̃
(J)
1 , . . . , r̃

(J)
m

) ∈ Dβ , a point where Φ0,β,J attains its absolute

minimum value in Dβ, and set Φ0,β,J

(
r̃(J)

)
= H(J). Since Φ0,β,J

(
0
)
= 0 we see

that, H(J) ≤ 0 ∀ ∅ �= J ⊆ I.

Claim.

H(J) = 0 ∀ ∅ �= J ⊆ I, (3.8)

and if J � I, then Φ0,β,J(r) = 0 for some r ∈ Dβ , if and only if ri = 0 ∀i ∈ J.
While if J = I then Φ0,β(r) = 0 if and only if r = 0 or r = β.

We prove our claim by induction on |J | = card (J) ∈ {1, . . . ,m}. If |J | = 1,
say J = {i}, then the last condition in (3.3) implies that Φ0,β,J(r) ≥ 0 and
Φ0,β,J(r) = 0 if and only if ri = 0.

Next, for k ∈ {1, . . . ,m − 1} assume that, for ∅ �= J ⊂ I such that |J | ≤ k,
we have:

H(J) = 0 (3.9)

and if Φ0,β,J(r) = 0 for some r ∈ Dβ, then ri = 0, ∀i ∈ J.
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Let J ⊆ I be such that |J | = k + 1 and let r̃(J) be a point of absolute

minimum for Φ0,β,J in Dβ. If for some index i ∈ J , we suppose that r̃
(J)
i ∈ (0, βi),

then
∂Φβ,J

∂ri
(r̃(J)) =

2(Ni + 1)

bi
−
∑
j∈J

aij r
(J)
j = 0. (3.10)

Observe that,

Φ0,β,J(r) :=

{
2(Ni + 1)

bi
ri −

∑
j∈J

1

2
aijrirj

}

+
∑

l∈J\{i}

{
2(Nl + 1)

bl
rl −

∑
j∈J\{i}

1

2
aljrlrj

}
−

∑
l∈J\{i}

1

2
alirlri

=

{
2(Ni + 1)

bi
ri −

∑
j∈J

aijrirj

}
+

1

2
aiir

2
i +Φ0,β,J\{i}(r). (3.11)

So, by (2.10), (3.10) and (3.11), we obtain:

0 ≥ Φ0,β,J

(
r̃(J)

) ≥ 1

2
aii

(
r̃
(J)
i

)2
+Φ0,β,J\{i}

(
r̃(J)

) ≥ H
(
J \ {i}) = 0, (3.12)

that is: aiir̃
(J)
i = 0 and Φ0,β,J\{i}

(
r̃(J)

)
= 0. Therefore by the induction assump-

tion, we get that, r̃
(J)
j = 0 for every j ∈ J \ {i}, this yields a contradiction in view

of(3.11) and (3.10). Thus, there exists J0 ⊂ J such that r̃
(J)
i = βi if i ∈ J0 and

r̃
(J)
i = 0 if i ∈ J \ J0. This implies that,

0 ≥ Φ0,β,J(r̃
(J)) = 0 +

∑
i∈J0

2(Ni + 1)

bi
βi −

(∑
i∈J0

∑
j∈J0

1

2
aijβiβj

)
, (3.13)

and if J � I by (3.3), we conclude that J0 = ∅ and r̃
(J)
i = 0 for every i ∈ J . In

case J = I, then we have that, either J0 = ∅ or I \ J0 = ∅. Therefore we find that
either r(I) ≡ 0 or r(I) = β as claimed. In any case H(J) = Φ0,β,J

(
r̃(J)

)
= 0, and

(3.4), (3.5) follow.

Next, to establish (3.6) with δ > 0 small, we argue by contradiction, and
assume there exists δn ↓ 0 as n → +∞, such that, at a minimum point r̃(n) =(
r̃
(n)
1 , . . . , r̃

(n)
m

) ∈ Dβ, we have Φδn,β

(
r̃(n)

)
< 0. We claim that, for every n ∈ N

there exists in ∈ I such that r̃
(n)
in

∈ (
0, βin

)
. As otherwise, we would find Jn ⊂ I

such that if i ∈ Jn then r̃
(n)
i = 0 and if i ∈ I \ Jn then r̃

(n)
i = βi. But this would

imply that Φδn,β

(
r̃(n)

) ≥ 0, which is impossible. Thus, we can find a subsequence

nk ↑ +∞ as k → +∞ and a fixed i ∈ I, such that r̃
(nk)
i ∈ (

0, βi

)
and r̃(nk) →

r̃ = (r̃1, . . . , r̃m) ∈ Dβ as k → +∞. Since, Φδnk
,β

(
r̃(nk)

)
< 0, as k → +∞ we find:

Φ0,β(r̃) ≤ 0. So by (3.5), we deduce that either r̃ = 0 or r̃ = β. On the other hand,
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since r̃
(nk)
i ∈ (

0, βi

)
, we also have

∂Φδnk
,β

∂ri

(
r̃(nk)

)
= δnk

r̃
(nk)
i − δnk

βi/2 +
2(Ni + 1)

bi
−
∑
j∈I

aij r̃
(nk)
j = 0. (3.14)

By letting k → +∞, we get 2(Ni+1)
bi

−∑
j∈I aij r̃j = 0. Whence r̃j = βj ∀j ∈ I,

and so,
∑

j∈I aij βj − 2(Ni+1)
bi

= 0, in contradiction with (2.12). �

To proceed further, for every β0 > 0, we consider the set

W ′
β0

:=
{
ϕ ∈ L1(R−,R),

(
β0 − ϕ

) ∈ L1(R+,R),

ϕ′ ∈ L1(R,R) and ϕ′(t) ≥ 0 for a.e t ∈ R.
}
,

(3.15)

and its subset,

Wβ0 :=
{
ϕ ∈ W ′

β0
: ϕ′(t)

(
ln
(
ϕ′(t)

))+

∈ L1(R,R)
}
, (3.16)

where, as usual ψ± := max {±ψ, 0} denotes the positive and negative part of ψ.

Lemma 3.2. The sets W ′
β0

and Wβ0 are convex. Moreover, for every ϕ ∈ W ′
β0

we
have:

(i) ϕ ∈ C0
(
R,R

)
is nondecreasing and lim

t→−∞ tϕ(t) = lim
t→+∞ t

(
β0 − ϕ(t)

)
= 0. In

particular, ϕ(−∞) := limt→−∞ ϕ(t) = 0 and ϕ(+∞) := limt→+∞ ϕ(t) = β0,
and 0 ≤ ϕ(t) ≤ β0.

(ii) tϕ′(t) ∈ L1(R,R) and,∫
R

∣∣tϕ′(t)
∣∣dt = ∫ 0

−∞
ϕ(t)dt+

∫ +∞

0

(
β0 − ϕ(t)

)
dt. (3.17)

(iii) ∫ ∞

−∞
ϕ′(t)

(
ln
(
ϕ′(t)

))−
dt ≤ 2 +

∫ 0

−∞
ϕ(t)dt+

∫ +∞

0

(
β0 − ϕ(t)

)
dt. (3.18)

(iv) For every t > 0 there holds:

ϕ(−t) + (
β0 − ϕ(t)

) ≤ 1

t

(∫ 0

−∞
ϕ(s)ds+

∫ +∞

0

(
β0 − ϕ(s)

)
ds

)
. (3.19)

(v) If ϕ(t) ∈ Wβ0 , then
∣∣ϕ′(t) ln

(
ϕ′(t)

)∣∣ ∈ L1(R,R).

Proof. Clearly, the set W ′
β0

is convex. Moreover by the convexity of the func-

tion h(ρ) := ρ
(
ln (ρ)

)+
in [0,+∞), we see also that Wβ0 is convex. Next notice

that W ′
β0
⊂ W 1,1

loc (R) so for ϕ ∈ W ′
β0

and t1 < t2 there holds: ϕ(t2) − ϕ(t1) =∫ t2
t1

ϕ′(s)ds ≥ 0. Hence ϕ(t) is continuous and non-decreasing. Furthermore, as

ϕ(t) ∈ L1(R−,R), then we find a sequence Mn ↑ +∞ as n ↑ +∞, such that
lim

n→+∞Mnϕ(−Mn) = 0. Similarly, as
(
β0 − ϕ(t)

) ∈ L1(R+,R), we find a sequence
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Ln ↑ +∞ as n ↑ +∞ such that lim
n→+∞Ln

(
β0 − ϕ(Ln)

)
= 0. For every M > 0, we

use integration by parts and find:∫ 0

−M

∣∣tϕ′(t)
∣∣dt = −

∫ 0

−M

tϕ′(t)dt = −Mϕ(−M) +

∫ 0

−M

ϕ(t)dt ≤
∫ 0

−∞
ϕ(t)dt.

(3.20)
Therefore, (t)−ϕ′(t) ∈ L1(R,R), and by choosingM := Mn in (3.20) and by letting
n ↑ +∞, we obtain ∫ 0

−∞

∣∣tϕ′(t)
∣∣dt = ∫ 0

−∞
ϕ(t)dt. (3.21)

Consequently, by (3.20) and (3.21) we deduce: lim
M→+∞

Mϕ(−M) = 0. Similarly,

for every L > 0, integration by parts gives:∫ L

0

∣∣tϕ′(t)
∣∣dt = ∫ L

0

tϕ′(t)dt = L
(
ϕ(L)− β0

)
+

∫ L

0

(
β0 − ϕ(t)

)
dt

≤
∫ +∞

0

(
β0 − ϕ(t)

)
dt.

(3.22)

Therefore, (t)+ϕ′(t) ∈ L1(R,R) and by choosing L := Ln, and letting n ↑ +∞, we
find that, ∫ +∞

0

∣∣tϕ′(t)
∣∣dt = ∫ +∞

0

(
β0 − ϕ(t)

)
dt, (3.23)

and also that, lim
L→+∞

L
(
β0 − ϕ(L)

)
= 0. Therefore, (i) and (ii) are established.

Next, we recall the trivial inequality a
(
ln (a) − 1

) ≥ a ln (b) − b, valid for every
a ≥ 0 and every b > 0. We use it to deduce the following:∫

{t∈R :ϕ′(t)≤1}
ϕ′(t) ln

(
ϕ′(t)

)
dt

=

∫
{t∈R :ϕ′(t)≤1}

ϕ′(t)dt+
∫
{t∈R :ϕ′(t)≤1}

ϕ′(t)
(
ln
(
ϕ′(t)

)− 1
)
dt

≥
∫
{t∈R :ϕ′(t)≤1}

ϕ′(t)dt+
∫
{t∈R :ϕ′(t)≤1}

ϕ′(t) ln
(
e−|t|)dt− ∫

{t∈R :ϕ′(t)≤1}
e−|t|dt

≥ −
∫
R

∣∣tϕ′(t)
∣∣dt− ∫

R

e−|t|dt = −
∫
R

∣∣tϕ′(t)
∣∣dt− 2. (3.24)

Thus (3.18) follows from (3.17) and (3.24). At this point (3.19) can be easily
established, as for t > 0, we have:

ϕ(−t) + (
β0 − ϕ(t)

)
=

∫ −t

−∞
ϕ′(s)ds+

∫ +∞

t

ϕ′(s)ds ≤ 1

t

∫ ∞

−∞
|s|ϕ′(s)ds.

Finally if ϕ ∈ Wβ0 , then by (3.18) we conclude that
∣∣ϕ′(t) ln

(
ϕ′(t)

)∣∣ ∈ L1(R,R).
�

By the same argument of (3.24), we also find:
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Lemma 3.3. There exists M0 > 0, such that ∀M ≥M0 and ϕ ∈ W ′
β0

there holds:∫
{t∈R : |t|≥M}

ϕ′(t)
(
ln
(
ϕ′(t)

))−
dt (3.25)

≤ ln (1 +M2)

M

(∫ 0

−∞
ϕ(t)dt+

∫ +∞

0

(
β0 − ϕ(t)

)
dt

)
+ 2

(
π

2
− arctan (M)

)
.

Proof. It suffices to use the above-mentioned inequality: a
(
ln (a)−1

) ≥ a ln (b)−b

with a = ϕ′(t) and b = 1
1+t2 to derive the following:∫

{t∈R : |t|≥M}
ϕ′(t)

(
ln
(
ϕ′(t)

))−
dt

= −
∫
{t∈R : ϕ′(t)≤1, |t|≥M}

ϕ′(t) ln
(
ϕ′(t)

)
dt

≤ −
∫
{t∈R : ϕ′(t)≤1, |t|≥M}

ϕ′(t)dt +
∫
{t∈R : |t|≥M}

ϕ′(t) ln (1 + t2)dt

+

∫
{t∈R : |t|≥M}

dt

1 + t2

≤ ln (1 +M2)

M

∫
{t∈R : |t|≥M}

|t|ϕ′(t)dt+ 2

(
π

2
− arctan (M)

)
, (3.26)

for sufficiently large M > 0, where we have used the fact that
log(1 + t2)

t
is

definitively monotonic decreasing. At this point the conclusion follows using (3.17).
�

Next, we point out a useful “compactness” result valid in the space Wβ0 .

Lemma 3.4. Let β0 > 0, and {ϕn}+∞
n=1 ⊂ Wβ0 be a sequence satisfying:

a) ϕn(0) = β0/2,

b)

∫ +∞

−∞
ϕn(t)

(
β0 − ϕn(t)

)
dt+

∣∣∣∣ ∫ +∞

−∞
ϕ′
n(t) ln

(
ϕ′
n(t)

)
dt

∣∣∣∣ ≤ C, (3.27)

with a suitable constant C > 0. Then, there exists ϕ ∈ Wβ0 and a subsequence
of {ϕn} (denoted the same way), such that: ϕn → ϕ uniformly in R,∫

R

ϕ(t)
(
β0 − ϕ(t)

)
dt ≤ lim

n→+∞

∫
R

ϕn(t)
(
β0 − ϕn(t)

)
dt. (3.28)

Moreover, ϕ′
n ⇀ ϕ′ weakly in L1(R,R) and,∫

R

ϕ′(t)
(
ln
(
ϕ′(t)

)− 1
)
dt ≤ lim

n→+∞

∫
R

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

)− 1
)
dt. (3.29)
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Proof. Observe that for ϕn ∈ Wβ0 we have:∥∥ϕ′
n(·)

∥∥
L1(R,R)

=

∫
R

ϕ′
n(t)dt = β0, (3.30)

and since ϕn(0) = β0/2 we get,

β0

2

0∫
−∞

ϕn(t)dt+
β0

2

+∞∫
0

(
β0 − ϕn(t)

)
dt ≤

+∞∫
−∞

ϕn(t)
(
β0 − ϕn(t)

)
dt ≤ C. (3.31)

Thus, as a consequence of (3.18), (3.19) and (3.31) we find:

ϕn(−t) +
(
β0 − ϕn(t)

)
≤ C

t
, ∀ t > 0 and

∫ +∞

−∞
ϕ′
n(t)

∣∣∣ ln (ϕ′
n(t)

)∣∣∣dt ≤ C.

(3.32)
Next, we use the convexity of the function h(ρ) := ρ · ln (ρ) (extended by zero at
ρ = 0), together with Jensen’s inequality, to obtain that for any Borel set A with
0 < L1(A) < +∞, there holds:(

1

L1(A)

∫
A

ϕ′
n(t)dt

)
ln

(
1

L1(A)

∫
A

ϕ′
n(t)dt

)
≤ 1

L1(A)

∫
A

ϕ′
n(t) ln

(
ϕ′
n(t)

)
dt.

(3.33)
Since, ρ ln (ρ) ≥ − 1

e for every ρ ∈ [0,+∞), we can use (3.32) to obtain:(∫
A

ϕ′
n(t)dt

)
ln

(
1

L1(A)

)

≤
∫
A

ϕ′
n(t) ln

(
ϕ′
n(t)

)
dt−

(∫
A

ϕ′
n(t)dt

)
ln

(∫
A

ϕ′
n(t)dt

)
≤ C.

(3.34)

In particular, if we take A a small interval (t1, t2) ⊂ R, using (3.33), we obtain,∣∣∣ϕn(t2)− ϕn(t1)
∣∣∣ ≤ C

− ln (t2 − t1)
. (3.35)

Hence, the sequence
{
ϕn(t)

}+∞
n=1

is equicontinuous, and also equibounded: 0 ≤
ϕn ≤ β0. Thus by the Arzelà–Ascoli theorem, up to a subsequence, we have:

ϕn(t)→ ϕ(t) pointwise in R and uniformly on compact sets. (3.36)

In particular, ϕ is continuous non-decreasing and satisfies: 0 ≤ ϕ ≤ β0. Further-
more, by (3.31) and Fatou’s Lemma, we obtain (3.28) and we also find:

0∫
−∞

ϕ(t)dt +

+∞∫
0

(
β0 − ϕ(t)

)
dt ≤ C. (3.37)

Therefore, ϕ(−t) + (
β0−ϕ(t)

)→ 0 as t→ +∞, and by the first uniform estimate
in (3.32) we find that actually ϕn → ϕ uniformly in R.
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Next, by means of (3.17) and (3.31) we obtain that,∫
R\[−M,M ]

∣∣ϕ′
n(t)

∣∣dt ≤ 1

M

∫
R\[−M,M ]

|t|ϕ′
n(t)dt ≤

C

M
, ∀M > 1. (3.38)

Consequently, for any Borel set B ⊂ R, and for every M > 1 we have:∫
B

∣∣ϕ′
n(t)

∣∣dt ≤ ∫
B∩[−M,M ]

ϕ′
n(t)dt+

C

M

≤ 1

ln (M)

∫{
t :ϕ′

n(t)≥M
} ϕ′

n(t) ln
(
ϕ′
n(t)

)
dt

+ML1
(
B ∩ [−M,M ]

)
+

C

M

≤ C

ln (M)
+ML1

(
B ∩ [−M,M ]

)
+

C

M
.

(3.39)

Therefore, using the Dunford–Pettis theorem (see, e.g., [DS], p. 292), we find
γ(t) ∈ L1(R,R) such that (along a subsequence) we have: ϕ′

n(t) ⇀ γ(t) weakly
in L1(R,R). Since ϕn(t) → ϕ(t) uniformly in R, we deduce that necessarily ϕ ∈
W 1,1

loc (R,R) and ϕ′ = γ ≥ 0 a.e. in R. In other words, ϕ ∈ W ′
β0
. To show that

actually, ϕ ∈ Wβ0 we consider the functional Φ : L1(R,R) → [0,+∞] defined as
follows:

Φ(ψ) :=

∫ +∞

−∞

∣∣ψ(t)∣∣( ln
∣∣ψ(t)∣∣)+

dt.

Clearly Φ is convex and (by Fatou’s lemma) Φ is strongly lower semicontinuous.
Hence Φ is weakly lower semicontinuous, and we conclude:∫

R

ϕ′(t)
(
ln
(
ϕ′(t)

))+

dt ≤ lim
n→+∞

∫
R

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))+

dt ≤ C, (3.40)

that is ϕ ∈ Wβ0 as claimed.
At this point we are left to establish (3.29). To this purpose, we use again

the fact that the function: ρ ln (ρ) is convex and bounded from below. Therefore,
as above, we see that, for every M > 0 there holds:

M∫
−M

ϕ′(t)
(
ln
(
ϕ′(t)

))
dt ≤ lim

n→+∞

M∫
−M

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))
dt. (3.41)

At this point, for ϕn we can use (3.25) together with (3.31), and for ϕ we can use
(3.40), in order to show that:

∀ ε > 0 there exists Mε > 0 sufficiently large such that,∫
{t∈R: |t|≥Mε}

ϕ′(t)
(
ln
(
ϕ′(t)

))+

dt+

∫
{t∈R: |t|≥Mε}

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))−
dt ≤ ε, ∀n ∈ N.
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Consequently,

+∞∫
−∞

ϕ′(t)
(
ln
(
ϕ′(t)

))
dt

≤
Mε∫

−Mε

ϕ′(t)
(
ln
(
ϕ′(t)

))
dt+

∫
{t∈R: |t|≥Mε}

ϕ′(t)
(
ln
(
ϕ′(t)

))+

dt

≤ lim
n→+∞

Mε∫
−Mε

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))
dt+

∫
{t∈R: |t|≥Mε}

ϕ′(t)
(
ln
(
ϕ′(t)

))+

dt

≤ lim
n→+∞

{ +∞∫
−∞

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))
dt+

∫
{t∈R: |t|≥Mε}

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))−
dt

}

+

∫
{t∈R: |t|≥Mε}

ϕ′(t)
(
ln
(
ϕ′(t)

))+

dt

≤ lim
n→+∞

+∞∫
−∞

ϕ′
n(t)

(
ln
(
ϕ′
n(t)

))
dt+ ε ∀ε > 0

and (3.29) follows. �

Next we analyze what happens, when we remove condition a) in Lemma 3.4.

Lemma 3.5. Let β0 > 0, {ϕn}+∞
n=1 ⊂ Wβ0 be a sequence of functions satisfying

(3.27) and let τn ∈ R be such that ϕn(τn) = β0/2. Then along a suitable subse-
quences the following holds:

• if {τn}+∞
n=1 is bounded, then the conclusion of Lemma 3.4 holds;

• if lim
n→+∞ τn = +∞, then ϕn(t) → 0 pointwise and uniformly in sets bounded

from above;
• if lim

n→+∞ τn = −∞ then ϕn(t)→ β0 pointwise and uniformly in sets bounded

from below.

In the latter cases: ϕ′
n ⇀ 0 weakly∗, in the sense of measures.

Proof. Let gn ∈ Wβ0 be defined as follows:

gn(t) := ϕn(t+ τn), ∀t ∈ R. (3.42)

Hence, Lemma 3.4 applies to gn, and we find g ∈ Wβ0 such that (up to a sub-
sequence) gn → g uniformly in R and g′n ⇀ g′ weakly in L1(R,R). Furthermore,
(3.29) and (3.28) hold for (a subsequence of) gn and for g. In case {τn}+∞

n=1 is
bounded, then (up to a subsequence) we can assume that τn → τ ∈ R, and for
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ϕ(t) := g(t− τ) we have: ϕ(t) ∈ Wβ0 , ϕn → ϕ uniformly in R, ϕ′
n ⇀ ϕ′ weakly in

L1(R,R) and (3.29) and (3.28) hold.
Next assume that (along a subsequence) limn→+∞ τn = +∞. Thus, for

ϕn(t) = gn(t − τn) we find that, ϕn(t) → 0 ∀t ∈ R. Moreover, since ϕn is
nondecreasing, for arbitrary fixed s ∈ R we have

0 ≤ ϕn(t) ≤ ϕn(s)→ 0 ∀t ≤ s.

So the convergence is uniform in sets which are bounded from above.
Similarly, if limn→+∞ τn = −∞, then ϕn(t) → β0, ∀t ∈ R. As above for

fixed s ∈ R, we find:

β0 ≥ ϕn(t) ≥ ϕn(s)→ β0 ∀t ≥ s,

So that the convergence is uniform in sets bounded from below.

Finally, using (3.38) for gn, we easily check that in the latter cases: ϕ′
n ⇀ 0

weakly∗ in the sense of measures. �

For β = (β1, . . . , βm) ∈ Rm satisfying (3.3) we consider the set Uβ :=Wβ1 ×
Wβ2 × · · · ×Wβm , and we define the functional (free energy):

Yβ

(
g
)
:=

∫
R

∑
i∈I

{
1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
+

2(Ni + 1)

bi
gi(t)−

∑
j∈I

1

2
aijgi(t)gj(t)

}
dt,

(3.43)
for g = (g1, . . . , gm) ∈ Uβ .

Observe that, the second condition in (3.3) is necessary and sufficient to
ensure that Yβ is well defined in Uβ . Also note that,

Yβ

(
g
)
=

∫
R

∑
i∈I

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt

+

∫
R

∑
i∈I

δ

2
gi(t)

(
βi − gi(t)

)
dt+

∫
R

Φδ,β

(
g(t)

)
dt,

(3.44)

whith Φδ,β defined by (3.2).
We are going to show that Yβ is bounded from below and coercive in Uβ .
To this end, observe that for i ∈ I and gi ∈ Wβi there exist −∞ ≤ si < τi ≤

+∞ such that 0 < gi(t) < βi ∀t ∈ (si, τi) and g′i ≡ 0 in R \ [si, τi]. In particular,
gi(t) = 0 for t ≤ si and gi(t) = βi for t ≥ τi. By means of the already mentioned
inequality: a

(
ln (a)− 1

)
+ b ≥ a ln (b), with a ≥ 0, b > 0; we can estimate:∫

R

{
1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
+

δ

2
gi(t)

(
βi − gi(t)

)}
dt

=

τi∫
si

{
1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
+

δ

2
gi(t)

(
βi − gi(t)

)}
dt
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≥ 1

bi

τi∫
si

g′i(t) ln
(
biδ

2
gi(t)

(
βi − gi(t)

))
dt

=
1

bi

βi∫
0

ln

(
biδ

2
s
(
βi − s

))
ds =

βi

bi
ln
(biδ

2

)
+

2βi

bi

(
ln (βi)− 1

)
:= Ci(βi, δ).

As a consequence, by Lemma 3.1, for 0 < δ < δ0 and every J ⊆ I, we have:

Yβ

(
g
)
=

∫
R

∑
i∈J

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt+

∫
R

∑
i∈J

δ

2
gi(t)

(
βi − gi(t)

)
dt

+

∫
R

Φδ,β

(
g(t)

)
dt

+

∫
R

∑
i∈I\J

{
1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
+

δ

2
gi(t)

(
βi − gi(t)

)}
dt

≥
∫
R

∑
i∈J

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt+

∫
R

∑
i∈J

δ

2
gi(t)

(
βi − gi(t)

)
dt

+

∫
R

Φδ,β

(
g(t)

)
dt+

∑
i∈I\J

Ci(βi, δ)

≥
∫
R

∑
i∈J

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt+

∫
R

∑
i∈J

δ

2
gi(t)

(
βi − gi(t)

)
dt

+
∑

i∈I\J
Ci(βi, δ).

(3.45)

Using (3.45) with J := ∅, we obtain that Yβ(g) is bounded from below on Uβ .
Furthermore, if we take 0 ≤ 2δ < δ0, and set C0 :=

∑
i∈I Ci(βi, δ), then from

(3.45) we find also that,

Yβ

(
g
) ≥ ∫

R

Φδ,β

(
g(t)

)
dt+ C0

=

∫
R

Φ2δ,β

(
g(t)

)
dt+

∫
R

∑
i∈I

δ

2
gi(t)

(
βi − gi(t)

)
dt+ C0

≥
∑
i∈I

∫
R

δ

2
gi(t)

(
βi − gi(t)

)
dt+ C0.

(3.46)

While, by using (3.45) with J = {i} we deduce

Yβ

(
g
) ≥ ∫

R

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt+

∫
R

δ

2
gi(t)

(
βi − gi(t)

)
dt+ C̄i, (3.47)
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where,

C̄i :=
∑

j∈I\{i}
Cj(βi, δ) ∀i ∈ I.

By the above estimates, we can prove:

Proposition 3.1. Assume (3.1) and let the symmetric matrix A = {aij} ∈ Rm×m

satisfy (2.10). For any β = (β1, . . . , βm) ∈ Rm satisfying (3.3), the functional
Yβ(g) is bounded from below and attains its minimum in Uβ.

Proof. Let g(n)(t) :=
(
g
(n)
1 (t), . . . , g

(n)
m (t)

) ∈ Uβ be a minimizing sequence for Yβ .
Namely,

γ0 := inf
g(t)∈Uβ

Yβ(g) = lim
n→+∞Yβ(g

(n)), (3.48)

and let τ
(n)
i ∈ R be such that

g
(n)
i (τ

(n)
i ) = βi/2 ∀ i ∈ I, ∀n ∈ N. (3.49)

Without loss of generality, we may assume (after a suitable translation) that,

τ
(n)
1 = 0, i.e., g

(n)
1 (0) = β1/2, ∀n ∈ N. (3.50)

We fix 0 < δ < δ0/2, (δ0 > 0 as given in Lemma 3.1) and use (3.45), (3.46) and
(3.47) to obtain:

0 ≤
∫
R

Φδ,β

(
g(n)(t)

)
dt ≤ Yβ(g

(n))− C0 ≤ C, (3.51)

0 ≤
∑
i∈I

∫
R

δ

2
g
(n)
i (t)

(
βi − g

(n)
i (t)

)
dt ≤ Yβ(g

(n))− C0 ≤ C, (3.52)

and

Ci(β, δ) ≤
∫
R

1

bi

(
g
(n)
i

)′
(t)

(
ln
((

g
(n)
i

)′
(t)

)
− 1

)
dt+

∫
R

δ

2
g
(n)
i (t)

(
βi − g

(n)
i (t)

)
dt

≤ Yβ

(
g(n)

)− C̄i ≤ C, ∀i ∈ I. (3.53)

From (3.52) and (3.53) we check that, g
(n)
i (t) ∈ Wβi satisfies the assumptions of

Lemma 3.5, ∀i ∈ I. So we need to see what happens to the sequence {τ (n)i } ∈ R,
∀i ∈ I. In general, we may claim that there exist three disjoint sets J1, J2, J3 ⊂ I,
such that J1 ∪ J2 ∪ J3 = I and (along a suitable subsequence) there holds:

lim
n→+∞ τ

(n)
i =

⎧⎨⎩
τi ∈ R if i ∈ J1

+∞ if i ∈ J2

−∞ if i ∈ J3.

(3.54)

Since, by our assumptions τ
(n)
1 = 0, then J1 �= ∅. Moreover by Lemma 3.5, for

every i ∈ J1, there exists gi ∈ Wβi , such that (up to a subsequence) g
(n)
i → gi as
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n→ +∞ uniformly in R. Moreover,∫
R

g′i(t)
(
ln
(
g′i(t)

)− 1
)
dt ≤ lim

n→+∞

∫
R

(
g
(n)
i

)′
(t)

(
ln
((

g
(n)
i

)′
(t)

)
− 1

)
dt, (3.55)

and ∫
R

gi(t)
(
β0 − gi(t)

)
dt ≤ lim

n→+∞

∫
R

g
(n)
i (t)

(
β0 − g

(n)
i (t)

)
dt, (3.56)

while,

lim
n→+∞ g

(n)
i (t) = 0 ∀t ∈ R, ∀ i ∈ J2, (3.57)

and

lim
n→+∞ g

(n)
i (t) = βi ∀ t ∈ R, ∀ i ∈ J3. (3.58)

Recalling that,

0 ≤ Φδ,β(r) :=
∑
i∈I

{
− δ

2
ri(βi − ri) +

2(Ni + 1)

bi
ri −

∑
j∈I

1

2
aijrirj

}
, (3.59)

we can use (3.51) together with Fatou’s Lemma, to deduce that,

0 ≤
∫
R

Φδ,β

(
ψ(t)

)
dt ≤ C, (3.60)

with

ψ(t) :=

⎧⎨⎩
gi(t) ∈ R if i ∈ J1

0 if i ∈ J2

βi if i ∈ J3.

(3.61)

In particular, by (3.60) we must have Φδ,β

(
ψ(−∞)

)
= 0 and Φδ,β

(
ψ(+∞)

)
= 0.

This gives: ∑
i∈J3

{
2(Ni + 1)

bi
βi −

∑
j∈J3

1

2
aijβiβj

}
= 0 (3.62a)

and ∑
i∈J1∪J3

{
2(Ni + 1)

bi
βi −

∑
j∈J1∪J3

1

2
aijβiβj

}
= 0. (3.62b)

Since J1 �= ∅, from (3.3) we see that necessarily J3 = ∅, J1 = I and so also J2 = ∅.
So, for every i ∈ I we have: limn→+∞ τ

(n)
i = τi ∈ R, ∀ i ∈ I. Consequently,

g
(n)
i (t)→ gi(t) uniformly in R; (3.63)∑

i∈I

∫
R

g′i(t)
(
ln
(
g′i(t)

)− 1
)
dt ≤

∑
i∈I

lim
n→+∞

∫
R

(
g
(n)
i

)′
(t)

(
ln
((

g
(n)
i

)′
(t)

)
− 1

)
dt,

(3.64)
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with g(t) :=
(
g1(t), . . . , gm(t)

) ∈ Uβ. Furthermore, by Fatou’s Lemma we also get,

0 ≤
∫
R

Φ0,β

(
g(t)

)
dt ≤ lim

n→+∞

∫
R

Φ0,β

(
g(n)(t)

)
dt. (3.65)

Therefore,

Yβ

(
g
)
:=

∑
i∈I

∫
R

1

bi
g′i(t)

(
ln
(
g′i(t)

)− 1
)
dt+

∫
R

Φ0,β

(
g(t)

)
dt

≤ lim
n→+∞ Yβ

(
g(n)

)
= inf

σ(t)∈Uβ

Yβ

(
σ
)
.

and we conclude that g is the desired minimizer for Yβ . �

Remark 3.1. The fact that Yβ is bounded from below in Uβ can be formulated
in terms of a Logarithm-HLS inequality (for systems), in presence of weights.
Notice however that in general such inequality holds only for radial functions.
More precisely, assuming (3.1) and (2.10), we have proved that, if β = (β1, . . . , βm)
satisfies (3.3), then the inequality:∑

i∈I

∫
R2

(
1

bi
ρi(x) ln(ρi(x))− 2Ni

bi
ρi(x) ln |x|

)
dx

+
1

4π

∑
i,j∈I

aij

∫
R2

∫
R2

ρi(x) ln |x− y| ρj(y)dxdy ≥ −C
(3.66)

holds (with a suitable C > 0), over the radial set

Γβ,rad := {ρ = (ρ1, . . . , ρm) : ρ = ρ(|x|), ρ ∈ Γβ}
where,

Γβ =

{
ρ = (ρ1, . . . , ρm) : ρi ≥ 0 a.e ρi ln ρi ∈ L1(R2),

ρi ln(1 + |x|2) ∈ L1(R2) and
1

2π

∫
R2

ρi = βi, ∀i ∈ I

}
.

(3.67)

Furthermore, the optimal constant in (3.66) is attained in Γβ,rad. To this

respect, we refer to [CSW] and [SW2], where such inequality is established when
Ni = 0, (and bi = 1), ∀i ∈ I, which extends to systems results established for the
single equation (m = 1) in [CL] and [B].

If we do not worry about the existence of extremals for (3.66), but aim only
to find the best conditions on the m-ple β = (β1, . . . , βm) so that (3.66) holds in
Γβ,rad, then, as in [SW2], we can allow the equal sign in the last condition in (3.3).

More precisely, for ∅ �= J ⊂ I, letting:

FJ(β) =
∑
i,j∈J

1

2
aijβiβj −

∑
j∈J

2(Ni + 1)

bi
βi, (3.68)

we can check that,
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Corollary 3.1. The inequality (3.66) holds in Γβ,rad if and only if

i) FI(β) = 0
ii) for ∅ �= J ⊂ I, FJ(β) ≤ 0 and when FJ(β) = 0 then necessarily:

FJ\{i}(β)− 1

2
aiiβ

2
i < 0, ∀i ∈ J (3.69)

To interpret (3.69), we observe that, if FJ (β) = 0 then we can argue as in
Lemma 2.1, to deduce that (2.12) holds with I replaced by J , which yields to
(3.69).

Geometrically the role of (3.69) is explained in Lemma 4.1 and 4.2 of [SW2].

When Ni ≤ 0, ∀i ∈ I then by means of Schwarz symmetrization, one sees
that the right-hand side of (3.66) actually increases when tested over non-radial
functions. Hence, in this case, inequality (3.66) holds over the whole set Γβ .

On the contrary, when Ni > 0 for some i ∈ I, then the symmetrization
argument no longer works and in fact (3.66) fails in general for non-radial functions,
as one can check by arguing as in Lemma 2.2 in [CSW]. See also [DET1], where a
similar issue is discussed for the single equation m = 1.

As in [CSW], [W], [JoW1], [SW1], [SW2], [SW3], [CL] and [B], it would
be interesting to see when the inequality (3.66) could be linked (via a duality
principle) to a Moser–Trudinger type inequality, within the framework of radially
symmetric functions.

In this respect one could analyze, for m = 1, also the non-radial setting, by
keeping in mind the presence of non-radial optimal minimizers for the (improved)
Moser–Trudinger inequality valid for radial functions.

More precisely such optimal minimizers correspond to the regular part of
the (well-known) non-radial solutions of the singular Liouville equation (1.1) with
m = 1 and n1 = n ∈ N, as identified in [PrT] and given (in complex notation) as
follows:

v(z) = log
λ(

1 + λγn |zn+1 + z0|2
)2 , (3.70)

for every λ > 0, z0 ∈ C and explicit γn > 0 depending on n ∈ N only. They
have been an inspiration for the recent results of Bartolucci–Malchiodi [BM], who
identified a set of suitable conditions on non-radial functions, according to which
the Moser–Trudinger inequality holds with the improved constant of the radial
setting.

It seems a challenging task to extend those results to system (cf. [LWY]), or
interpret them in the framework of a duality principle.

Next we establish some regularity properties for the minimizer.

Lemma 3.6. Under the assumptions of Proposition 3.1, a minimizer f ∈ Uβ of Yβ

satisfies f ′
i > 0 a.e. in R, ∀i ∈ I.
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More precisely for every R > 0, there exists a constant Ci = Ci(R) > 0, i ∈
I such that: such that

f ′
i(t) ≥ Cie

−bi

(∑
j∈I aijβj− 2(Ni+1)

bi

)
t
, for a.e. t ∈ [−R, 0] (3.71)

f ′
i(t) ≥ Cie

−2(Ni+1)|t|, for a.e. t ∈ [0, R]. (3.72)

Remark 3.2. Recall that, by (2.12) the exponent in (3.71):
∑
j∈I

aijβj− 2(Ni+1)
bi

> 0.

Proof. Fix δ(t) =
(
δ1(t), . . . , δm(t)

) ∈ Uβ and for every s = (s1, s2, . . . , sm) ∈
[0, 1]m define ψ

(s)
i (t) := (1 − si)fi(t) + siδi(t) ∀t ∈ R, ∀i ∈ I, so that ψ(s)(t) :=(

ψ
(s)
1 (t), . . . , ψ

(s)
m (t)

) ∈ Uβ .

Thus, for fixed i ∈ I, τ ∈ (0, 1) and s = τei, (ei the ith element of the
standard orthonormal basis in Rm) we have:

0 ≤ 1

τ

(
Yβ(ψ

(s))− Yβ(f)
)

≤
∫
R

{
1

bi

(
δ′i(t)− f ′

i(t)
)
ln
((

ψ
(s)
i

)′
(t)

)
+
(
δi(t)− fi(t)

)(2(Ni + 1)

bi
−
∑
j∈I

1

2
aij

(
ψ
(s)
j (t) + fj(t)

))}
dt.

(3.73)

Let,

Fi :=

+∞∫
−∞

1

bi
f ′
i(t) ln

(
f ′
i(t)

)
dt+

2(Ni + 1)

bi

(∫ 0

−∞
fi(t)dt+

∫ +∞

0

(
fi(t)− βi

)
dt

)

−
∑
j∈I

aij

(∫ 0

−∞
fi(t)fj(t)dt +

∫ +∞

0

fi(t)
(
fi(t)− βi

)
dt

)
.

In view of (3.3) and (3.73), by straightforward calculations we find:

+∞∫
−∞

1

bi
δ′i(t) ln

(
f ′
i(t) + τδ′i

)
dt+

2(Ni + 1)

bi

( 0∫
−∞

δi(t)dt+

+∞∫
0

(
δi(t)− βi

)
dt

)

−
∑
j∈I

aij

( 0∫
−∞

δi(t)fj(t)dt+

+∞∫
0

fj(t)
(
δi(t)− βi

)
dt

)
− τaii

2

+∞∫
−∞

(
δi(t)− fi(t)

)2

dt

≥ Fi − τaii
2

∫ +∞

−∞

(
δi(t)− fi(t)

)2

dt > −∞. (3.74)



On Singular Liouville Systems 373

Thus, we can use the monotone convergence theorem and by letting τ → 0+,
conclude:

+∞∫
−∞

1

bi
δ′i(t) ln

(
f ′
i(t)

)
dt+

2(Ni + 1)

bi

( 0∫
−∞

|t|δ′i(t)dt −
+∞∫
0

tδ′i(t)dt

)

−
∑
j∈I

aij

+∞∫
0

βj

(
δi(t)− βi

)
dt

≥
∑
j∈I

aij

( 0∫
−∞

δi(t)fj(t)dt+

+∞∫
0

(
δi(t)− βi

)(
fj(t)− βj

)
dt

)
+ Fi

≥ −
∑
j∈I

∣∣aij ∣∣βi

( 0∫
−∞

fj(t)dt+

+∞∫
0

(
βj − fj(t)

)
dt

)
+ Fi := −Ai. (3.75)

In other words, for every δi ∈ Wβi i ∈ I, the following holds:

0∫
−∞

δ′i(t)

{
1

bi
ln
(
f ′
i(t)

)
+

2(Ni + 1)

bi
|t|+ Ai

βi

}
dt

+

+∞∫
0

δ′i(t)

{
1

bi
ln
(
f ′
i(t)

)
−
(
2(Ni + 1)

bi
−
∑
j∈I

aijβj

)
t+

Ai

βi

}
dt ≥ 0.

(3.76)

Next, for every bounded Borel set B ⊂ R with L1(B) > 0, denote by χB be the

characteristic function of B. If we take δi(t) =
βi

L1(B)

∫ t

−∞ χB(s) ds ∈ Wβi ∀i ∈ I

in (3.76), then we can easily derive the estimates in (3.71) and (3.72). �

As a consequence of Lemma 3.6 and (3.73), we may conclude that every
minimizer f = (f1, . . . , fm) of Yβ in Uβ satisfies:

d

dt

{
1

bi
ln
(
f ′
i(t)

)− 2(Ni + 1)t

bi

}
+
∑
j∈I

aijfj(t) = 0 ∀t ∈ R, ∀ i ∈ {1, . . . ,m}.

(3.77)
Therefore, if we set

vi(t) :=
1

bi

(
ln
(
f ′
i(t)

)− 2(Ni + 1)t

)
, i ∈ I; (3.78)

then,

fi(t) =

∫ t

−∞
ebivi(s)+2(Ni+1)sds ∀ t ∈ R, ∀ i ∈ I, (3.79)



374 A. Poliakovsky and G. Tarantello

and v = (v1, . . . , vm) satisfies:⎧⎪⎨⎪⎩
v′′i (t) +

∑
j∈I aije

bivi(t)+2(Ni+1)t = 0 ∀ t ∈ R, ∀ i ∈ I,

v′i(−∞) = 0 ∀i ∈ I,∫
R
ebivi(s)+2(Ni+1)sds = βi ∀i ∈ I.

(3.80)

In conclusion, we have established the following:

Theorem 3.1. Let the symmetric matrix A = {aij} ∈ Rm×m satisfy aii ≥ 0, and
let Ni > −1, bi > 0 ∀i ∈ I. If there exists a m-ple (β1, . . . , βm) satisfying (3.3),
then A must be irreducible and problem (2.3) admits a solution.

By combining Theorem 3.1 with Proposition 2.1 we conclude:

Corollary 3.2. If A = {aij} ∈ Rm×m is symmetric, irreducible with aij ≥ 0 for
i, j ∈ I. For any fixed Ni > −1, bi > 0 i ∈ I, the condition (3.3) on (β1, . . . , βm)
is necessary and sufficient for the existence of a solution for (2.3).

In the following section we complete the statement of Corollary 3.2, by show-
ing that actually the m-ple β = (β1, . . . , βm) uniquely determines the correspond-

ing solution of (2.3), up to the natural (translation) invariance of the system (2.3),
as explicitly stated in (4.2) below.

4. Uniqueness

In this Section we show that it is possible to extend the uniqueness result of [LZ1]
to the case where the coupling matrix A may fail to be invertible and under the
more general assumption (2.10). In this way, we can treat a degenerate system
arising in the study of selfgravitating strings, and complete the uniqueness result
established in [PT], as shown in Section 5 below.

Thus, throughout this section, we assume that:

A = {aij}i,j∈I is irreducible and aij = aji ≥ 0, ∀ i, j ∈ I. (4.1)

By straightforward calculations it is easy to check that problem (2.3) is in-
variant under the transformation:

vi(t) → vi,λ(t) = vi
(
t+ λ

)
+

2(Ni + 1)

bi
λ, ∀i ∈ I; λ ∈ R. (4.2)

We prove:

Theorem 4.1. Let A satisfy (4.1) and assume (2.10). For given β = (β1, . . . , βm)
satisfying (3.3), problem (2.3) admits a unique solution, modulo the transformation
(4.2).

In order to prove Theorem 4.1, we start to observe that, as a consequence of
(4.2), the function: ζ(t) =

(
ζ1(t), . . . , ζm(t)

)
, given by

ζi(t) :=
2(Ni + 1)

bi
+ v′i(t), ∀t ∈ R, i ∈ I, (4.3)
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satisfies the following linearized problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d2wi

dt2 +
∑m

i=1 aijbje
2(Nj+1)t+bjvjwj = 0 for t ∈ R ∀1 ≤ i ≤ m

wi(−∞) ∈ R ∀1 ≤ i ≤ m

wi(+∞) ∈ R ∀1 ≤ i ≤ m∫
R
e2(Nj+1)t+bjvj(t)wj(t) dt = 0 ∀1 ≤ i ≤ m.

(4.4)

Following [LZ1], we prove the following:

Lemma 4.1. If w(t) satisfies (4.4), then w(t) = Cζ(t), for all t ∈ R, and C ∈ R.

Proof. We argue by contradiction, and assume that w(t) and ζ(t) are linearly
independent. Since,

ζi(−∞) =
2(Ni + 1)

bi
, ∀i ∈ I,

we may assume, without any loss of generality, that w1(−∞) = 0 and w2(−∞) < 0.
For α ∈ R, let,

w(α)(t) =
(
w

(α)
1 (t), . . . , w(α)

m (t)
)
:= αw(t) + ζ(t), ∀t ∈ R;

and consider the set,

F :=

{
α ∈ R :

∫ t

−∞
w

(α)
i (s)e2(Ni+1)s+bivi(s)ds > 0 ∀t ∈ R, ∀i ∈ I

}
. (4.5)

Clearly 0 ∈ F , as we have:∫ t

−∞
w

(0)
i (s)e2(Ni+1)s+bivi(s)ds

=
1

βi

∫ t

−∞

(
2(Ni + 1) + biv

′
i(s)

)
e2(Ni+1)s+bivi(s)ds =

1

βi
e2(Ni+1)t+bivi(t) > 0.

Moreover, the condition: w2(−∞) < 0, ensures that F is bounded from above. Set
α̃ := supF , so that by a simple limiting process there holds:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ t

−∞ w
(α̃)
i (s)e2(Ni+1)s+bivi(s)ds ≥ 0 ∀t ∈ R, ∀i ∈ I∫

R
w

(α̃)
i (s)e2(Ni+1)s+bivi(s)ds = 0 ∀t ∈ R, ∀i ∈ I

w
(α̃)
i (−∞) ≥ 0 ∀i ∈ I(
w

(α̃)
i

)′
(t) = −∑

j∈I

∫ t

−∞ aijbjw
(α̃)
j (s)e2(Nj+1)s+bjvj(s)ds ≤ 0 ∀t ∈ R, ∀i ∈ I.

(4.6)
Let,

J̃ :=
{
i ∈ I : w

(α̃)
i (−∞) > 0

}
.

Since w
(α̃)
1 (−∞) = 2(N1+1)

b1
, we see that 1 ∈ J̃ and so J̃ �= ∅. We claim that actually

J̃ = I. Indeed, if this was not the case, then by the irreducibility of A, we would
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find j0 ∈ J̃ and i0 ∈ I \ J̃ such that ai0j0 > 0. Since j0 ∈ J̃ , there exists t0 ∈ R
such that ∫ t

−∞
ai0j0b1w

(α̃)
j0

(s)e2(Nj0+1)s+bj0vj0 (s)ds > 0, ∀t < t0.

As a consequence,(
w

(α̃)
i0

)′
(t) = −

∑
j∈I\{j0}

∫ t

−∞
ai0jbjw

(α̃)
j (s)e2(Nj+1)s+bjvj(s)ds

−
∫ t

−∞
ai0j0bj0w

(α̃)
j0

(s)e2(Nj0+1)s+bj0vj0 (s)ds < 0, ∀t < t0.

(4.7)

But since i0 ∈ I \ J̃ , then w
(α̃)
i0

(−∞) = 0 and together with (4.7), we obtain a
contradiction to the first condition in (4.6).

So J̃ = I, and by our assumptions on A, we conclude that actually all in-
equalities in (4.6) hold with the strict sign. More precisely, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

−∞ w
(α̃)
i (s)e2(Ni+1)s+bivi(s)ds > 0 ∀t ∈ R, ∀i ∈ I∫

R
w

(α̃)
i (s)e2(Ni+1)s+bivi(s)ds = 0 ∀t ∈ R, ∀i ∈ I

w
(α̃)
i (−∞) > 0 ∀i ∈ I

w
(α̃)
i (+∞) < 0 ∀i ∈ I(
w

(α̃)
i

)′
(t) = −∑

j∈I

∫ t

−∞ aijbjw
(α̃)
j (s)e2(Nj+1)s+bjvj(s)ds < 0 ∀t ∈ R, ∀i ∈ I,

(4.8)
that implies α̃ ∈ F . By means of (4.8) and the fact that w ∈ L∞(R), we
can find ε0 > 0 sufficiently small and M0 > 0 sufficiently large, such that,

∀ i ∈ I we have: w
(α̃+ε0)
i (t) > 0, for t ≤ −M0; w

(α̃+ε0)
i (t) < 0 for t ≥ M0 and∫ t

−∞ w
(α̃+ε0)
i (s)e2(Ni+1)s+bivi(s)ds > 0, for t ∈ [−M0,M0]. But those conditions

imply that (α̃+ ε) ∈ F , in contradiction to the fact that α̃ = supF . �

Still concerning the solutions of the linearized equation in (4.4) we have:

Lemma 4.2. If (w1, . . . , wm) is a solution of the linearized equation in (4.4), then
wi(t) = O(t) as t→ +∞, ∀ i ∈ I.

Proof. It follows exactly as in Lemma 2.1 of [LZ1], with the obvious modifications.
�

Remark 4.1. By combining Lemma 4.2 with the decay property (2.12), we eas-
ily check that the condition wi(+∞) ∈ R in (4.4) is actually equivalent to the
condition w′

i(+∞) = 0, ∀ i ∈ I.

Remark 4.2. By a direct inspection of Lemma 2.1 of [LZ1], it is possible to check
that the estimate in Lemma 4.2 holds uniformly, whenever the coupling matrix A
varies in a compact set of the space of m×m symmetric matrices.
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Going back to the proof of Theorem 4.1, we notice that in view of the in-
variance (4.2), it suffices to show that (2.3) admits a unique solution (v1, . . . , vm)
satisfying:

vm(−∞) = 0. (4.9)

To pursue this goal, we work first under the additional assumption that,

aii > 0, ∀ i ∈ I. (4.10)

We have:

Lemma 4.3. Let A satisfy (4.1) and (4.10). Then for every τ = (τ1, . . . , τm−1) ∈
Rm−1, the initial value problem:⎧⎪⎨⎪⎩

d2vi
dt2 +

∑m
i=1 aije

2(Nj+1)t+bjvj = 0, ∀ i ∈ I

vi(−∞) = τi,
dvi
dt (−∞) = 0, i = 1, . . . ,m− 1

vm(−∞) = 0 = dvm
dt (−∞)

(4.11)

admits a unique solution v(t, τ) =
(
v1(t, τ), . . . , vm(t, τ)

)
defined for every t ∈ R

and satisfying:

βi(τ) :=

∫
R

e2(Ni+1)t+bivi(t,τ)dt < +∞, ∀ i ∈ I. (4.12)

Proof. Under the given assumptions, we see that both vi and v′i are decreasing in
their interval of existence. Moreover, using (2.8) with J = {i} (and h = 1) we get,

1

bi
e2(Ni+1)t+bivi(t) + fi(t)

(
1

2
aiifi(t)− 2(Ni + 1)

bi

)
≤ 0. (4.13)

Since, fi(t) :=
∫ t

−∞ e2(Ni+1)s+bivi(s)ds, from (4.13) we find that the (unique) solu-

tion v(t, τ) of (4.11) is defined for all t ∈ R and (4.12) holds. �

In view of the uniform estimates provided by (4.13), we see that,

w(l)(t) =
∂v

∂τl
(t, τ) and

∂βi

∂τl
(τ) l = 1, . . . ,m− 1, i ∈ I

are well defined, and there holds:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d2wi

dt2 +
∑m

i=1 aijbje
2(Nj+1)t+bjvj(t,τ)wj = 0 for t ∈ R ∀i ∈ I

wi(−∞) = δli, w′
i(−∞) = 0, ∀i ∈ I

w′
i(+∞) = −∑

j∈I aijbj
∂
∂τl

(
βj(τ)

)
, ∀i ∈ I∫

R
e2(Nj+1)t+bjvj(t,τ)wj(t) dt =

∂
∂τl

(
βi(τ)

)
, ∀i ∈ I.

(4.14)

Set,

∂β

∂τ
:=

⎛⎜⎝
∂β1

∂τ1
, . . . , ∂β1

∂τm−1

. . . , . . . , . . .
∂βm

∂τ1
, . . . , ∂βm

∂τm−1

⎞⎟⎠ (4.15)
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Lemma 4.4. Under the assumption of Lemma 4.3, the matrix ∂β
∂τ admits maximal

rank m− 1, for every τ ∈ Rm−1.

Proof. By contradiction, for some τ0 ∈ Rm−1, we assume that there exists

(s1, . . . , sm−1) ∈ Rm−1 \ {0} :
m−1∑
l=1

sl
∂βi

∂τl
(τ0) = 0, ∀i ∈ I.

Setting w(t) =
∑m−1

l=1 slw
(l)(t, τ0), then by (4.14), we see that w(t) =

(
w1(t), . . . ,

wm(t)
)
gives a non trivial solution of (4.4) and also satisfies: wm(−∞) = 0, in

contradiction with Lemma 4.1. �

Lemma 4.5. Under the assumption of Lemma 4.3, the set

Π =
{
β = (β1, . . . , βm) ∈ Rm : (3.3) holds

}
is simply connected.

Proof. For any ∅ �= J ⊆ I and βi > 0, i = 1, . . . ,m, we recall from (3.68) that

FJ

(
β1, . . . , βm

)
=
∑
i∈J

(∑
j∈J

1

2
aijβiβj − 2(Ni + 1)

bi
βi

)
, and also we set F∅ ≡ 0.

We start with the following:

Claim. The set

Ω−
I :=

{(
β1, . . . , βm

)
: βi > 0 for i ∈ I and FJ

(
β1, . . . , βm

)
< 0 for ∅ �= J ⊆ I

}
is simply connected.

We prove the claim by induction on the cardinality m = |I| of the set I.

If m = 1, then I = {1} and Ω−
I =

(
0, 4(N1+1)

b1a11

)
, which is clearly simply

connected.

Next, for every ∅ �= J ⊂ I: |J | = m − 1, we suppose that Ω−
J is simply

connected. Notice that, for ∅ �= J ⊆ I and l ∈ J we have:

FJ

(
β1, . . . , βm

)
=

1

2
allβ

2
l −

(
2(Nl + 1)

bl
−

∑
j∈J\{l}

aljβj

)
βl+FJ\{l}

(
βJ\{l}

)
, (4.16)

where we have set βJ̃ =
(
βi

)
i∈J̃

, ∀J̃ ⊂ I.

Hence, by (4.16), we see that,(
β1, . . . , βm

) ∈ Ω−
I if and only if βJ\{l} ∈ Ω−

J\{l}

and 0 < βl < γ
(J)
l

(
βJ\{l}

) ∀ J ⊆ I ∀l ∈ I,
(4.17)
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with,

γ
(J)
l

(
βJ\{l}

)
=

1

all

{
2(Nl + 1)

bl
−

∑
j∈J\{l}

aljβj (4.18)

+

√√√√(
2(Nl + 1)

bl
−

∑
j∈J\{l}

aljβj

)2

− 2allFJ\{l}
(
βJ\{l}

)}
.

By the induction assumption, from (4.18) we easily deduce that Ω−
I is simply

connected as claimed.
Next, for any given l ∈ I, consider the set:

Πl =

{(
β1, . . . , βm

)
: βI\{l} ∈ Ω−

I\{l}, βl = γl
(
βJ\{l}

)}
(4.19)

with γl ≡ γ
(I)
l . Since Ω−

I\{l} is simply connected, we derive that Πl is simply

connected as well, ∀l ∈ I. At this point, we conclude easily that Π is simply
connected, as Π = ∩l∈IΠl. �

Proof of Theorem 4.1 under assumption (4.10). We consider the (smooth) map:

ψ : Rm−1 → Π

τ → (
β1(τ), . . . , βm(τ)

)
:= β(τ)

with βi(τ) defined in (4.12). Observe that, by Corollary 3.2, the map ψ is onto.
Furthermore, ψ is a proper map, since uniform estimates on the βi’s, i ∈ I

imply uniform decay estimates for vi and uniform estimates for
v′
i(t)
t ; as t→ +∞.

In addition, by Lemma 4.4 we can show that the map ψ is locally invertible.

Indeed, for given τ0 ∈ Rm−1, by re-arranging the coordinates if necessary, we may
suppose that,

∂β

∂τ
:= det

⎛⎜⎝
∂β1

∂τ1
, . . . , ∂β1

∂τm−1

. . . , . . . , . . .
∂βm−1

∂τ1
, . . . , ∂βm−1

∂τm−1

⎞⎟⎠ �= 0 for τ = τ0. (4.20)

Hence, by setting β̂0 =
(
β1(τ0), . . . , βm−1(τ0)

)
, we find a neighborhoods V (τ0) of

τ0 and U(β̂0) ⊂ Rm−1 of β̂0, such that the map:

V (τ0)→ U(β̂0)

τ → (
β1(τ), . . . , βm−1(τ)

)
is invertible, with smooth inverse. On the other hand, since β(τ) ∈ Π, then neces-
sarily:

βm(τ) = γm
(
β1(τ), . . . , βm−1(τ)

)
with γm = γ

(I)
m given in (4.18), and we deduce the local invertibility of ψ. Con-

sequently, by virtue of Lemma 4.5, we can conclude the global invertibility of ψ
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between Rm−1 and Π, (e.g., see Theorem 1.8 of [AP]). Consequently, the unique-
ness property as stated in Theorem 4.1, follows by the uniqueness of the solution
for problem (4.11). �

Next we use the uniqueness property valid under the assumption (4.10), in
order to complete the proof of Theorem 4.1.

Proof of Theorem 4.1 (completed). First of all observe that, if (4.10) is removed
then (4.13) still ensures that the solution v(t, τ) of (4.11) is defined ∀ t ∈ R,
but now we cannot guarantee any longer the integrability in R of the function
e2(Nj+1)t+bjvj(t,τ), j ∈ {1, . . . ,m}. Furthermore, we can only ensure that Π is
connected. Moreover, if we let,

Π1 =
{
τ ∈ Rm−1 : e2(Nj+1)t+bjvj(t,τ) ∈ L1(R,R), ∀j ∈ I

}
,

then by Corollary 3.2, we see that Π1 is not empty. Clearly Π1 is open, and the
map ψ(τ) := β(τ) is well defined proper and locally invertible over Π1, since the

matrix ∂β
∂τ in (4.20) admits maximal rank when if τ ∈ Π1. By Corollary 3.2 we

also know that ψ is onto over the set Π. Thus, to conclude the proof of Theorem
4.1 it suffices to show that ψ : Π1 → Π is (globally) one to one.

To this purpose, we argue by contradiction and assume that there exist τ (1) �=
τ (2) ∈ Π1 such that ψ

(
τ (1)

)
= ψ

(
τ (2)

)
.

For ε close to zero, let Aε = A+ ε2Id, and denote by v(ε)(t, τ) =
(
v
(ε)
1 (t, τ),

. . . , v
(ε)
m (t, τ)

)
the unique solution of (4.11) with the matrix A replaced by Aε, and

let

βj(ε, τ) :=

∫
R

e2(Nj+1)t+bjv
(ε)
j (t,τ)dt < +∞, j ∈ I. (4.21)

By the uniform decay estimates of vε, as t → +∞ and those of the solutions of
the linearized problem (see Remark 4.1), we can show the smooth dependence

of βi(ε, τ) and ∂βi

∂τl
(ε, τ) with respect to ε ∈ R and τ ∈ Rm−1. Furthermore for

τ ∈ Π1, we have:

βj(ε, τ)→ βj(τ), as ε→ 0; j ∈ I

∂βj

∂τl
(ε, τ)→ ∂βj

∂τl
(ε, τ), as ε→ 0; j ∈ I, l ∈ {1, . . . ,m− 1}.

Without loss of generality, we can assume that (4.20) holds with τ = τ (1).
Therefore, we can apply the Implicit Function Theorem (e.g., see [AP]) to

the function:

F (τ, ε) =
(
β1(ε, τ)−β1(ε, τ

(2)), β2(ε, τ)−β2(ε, τ
(2)), . . . , βm−1(ε, τ)−βm−1(ε, τ

(2))
)

at the point τ = τ (1) and ε = 0, and obtain a function τ = τ(ε) : (−ε0, ε0) →
Br0(τ

(1)), with r0 > 0, ε0 > 0 sufficiently small, such that,

τ(0) = τ (1), βj(ε, τ(ε)) = βj(ε, τ
(2)) ∀ j = 1, . . . ,m− 1. (4.22)
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Then necesarily:

βm

(
ε, τ(ε)

)
= γm

(
β1

(
ε, τ(ε)

)
, . . . , βm−1

(
ε, τ(ε)

))
= γm

(
β1

(
ε, τ (2)

)
, . . . , βm−1

(
ε, τ (2)

))
= βm

(
ε, τ (2)

)
.

(with γm = γ
(I)
m defined in (4.18))

In conclusion,

βj

(
ε, τ(ε)

)
= βj

(
ε, τ (2)

)
, ∀j ∈ {1, . . . ,m}.

Moreover, by virtue of (4.22), for ε sufficiently close to zero, we see that, τ(ε) �=
τ (2), in contradiction with our previous uniqueness result that applies to the matrix
Aε = A+ ε2Id for ε �= 0. This completes the proof of Theorem 4.1. �

5. Application to a degenerate system

Motivated by the study of selfgravitating strings, in [PT] we have analyzed the
range of β > 0 such that, the problem:{

−Δu = eau + |x|2Neu in R2

1
2π

∫
R2

(
eau + |x|2Neu

)
dx = β ,

(5.1)

admits a radial solution, providedN > −1 and a > 0. Clearly, (5.1) can be thought
as a degenerate system of the type (2.1), with u1 = u = u2 and m = 2, aij = 1
∀i, j ∈ {1, 2}, b1 = a, b2 = 1, N1 = 0, N2 = N . By setting,

βj =
1

2π

∫
R2

|x|Njebjujdx j = 1, 2,

then the conditions in (3.3) can be stated as follows:

0 < β1 <
4

a
, 0 < β2 < 4(N + 1) (5.2)

1

2

(
β1 + β2

)2 − 2

a
β1 − 2(N + 1)β2 = 0. (5.3)

In terms of β = β1 + β2, condition (5.2) can be stated as as follows:

β
(
β−4(N+1)

)
+4

(
(N+1)− 1

a

)
β1 = 0 = β

(
β− 4

a

)
−4

(
(N+1)− 1

a

)
β2. (5.4)

Thus if a = 1
N+1 then β = 4(N + 1) and in this case the equation (5.1) becomes

invariant under the scaling: u(x)→ uλ(x) := u(λx)+ 2(N +1) lnλ, and under the
Kelvin transform. We refer to [CGS] for a discussion of this situation. Here, we
focus to the case a �= 1

N+1 . If a > 1
N+1 , then necessarily 4

a < β < 4(N + 1). In
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addition, from (5.4) it follows that:(
β − 2(N + 1)

)2

−
(
2(N + 1)− 4

a

)2

= β
(
β − 4(N + 1)

)
+ 4

(
(N + 1)− 1

a

)
· 4
a

> β
(
β − 4(N + 1)

)
+ 4

(
(N + 1)− 1

a

)
β1 = 0.

(5.5)

Thus (5.5) implies also that: β > 4(N + 1)− 4
a . In other words,

if a >
1

N + 1
then max

{
4

a
, 4(N + 1)− 4

a

}
< β < 4(N + 1). (5.6)

Similarly one finds that,

if 0 < a <
1

N + 1
then max

{
4(N + 1) ,

4

a
− 4(N + 1)

}
<

4

a
. (5.7)

Clearly (5.6) and (5.7) provide necessary conditions for the existence of a radial
solution for (5.1). As a matter of fact, in [PT] was shown that actually (5.6) and
(5.7) are also sufficient to guarantee the existence of a radial solution for (5.1),
consistently with the results obtained in the previous sections for more general
systems.

We can also extend our uniqueness result to hold for problem (5.1), when
a �= 1

N+1 .

Indeed for τ ∈ R, let v(t, τ) be the unique solution of the Cauchy problem:{
v′′(t) + e2t+av(t) + e2(N+1)t+v(t) = 0 for t ∈ R
v(−∞) = τ, v′(−∞) = 0.

(5.8)

We know that, v(t, τ) is well defined for all t ∈ R, depends smoothly on τ and
satisfies:

β1(τ) =

∫ +∞

−∞
e2t+av(t,τ)dt < +∞ and β2(τ) =

∫ +∞

−∞
e2(N+1)t+v(t,τ)dt < +∞

β(τ) = β1(τ) + β2(τ) =

∫ +∞

−∞

(
e2t+av(t,τ) + e2(N+1)t+v(t,τ)

)
dt < +∞.

Furthermore, w(t, τ) := ∂v
∂τ (t, τ) is a well-defined solution of the following linearized

problem, which satisfies:⎧⎪⎨⎪⎩
w′′(t) + ae2t+av(t,τ)w(t) + e2(N+1)t+v(t,τ)w(t) = 0 for t ∈ R
w(−∞) = 1, w′(−∞) = 0 and w′(+∞) = β′(τ)∫ +∞
−∞ e2t+av(t,τ)w(t)dt = β′

1(τ) and
∫ +∞
−∞ e2(N+1)t+v(t,τ)w(t)dt = β′

2(τ).

All those properties were also checked in [PT]. We claim that,

β′(τ) �= 0 ∀τ ∈ R.
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Indeed, if by contradiction, we suppose there exists τ0 such that β′(τ0) = 0, then
by (5.4) (since a �= 1

N+1 ), we see that also β′
1(τ0) = 0 = β′

2(τ0). Thus, we would

find a solution v(t) = v(t, τ0) of the equation in (5.8), such that its linearized
problem admits a bounded solution w(t) = w(t, τ0). By viewing the equation as
a degenerate 2 × 2 system, then from Lemma 4.1 we find a constant C �= 0 such
that, simultaneously must hold

w(t) = C
(
2(N + 1) + v′(t)

)
and w(t) = C

(2
a
+ v′(t)

)
.

Clearly, this is possible if and only if a = 1/(N +1). Hence, for a �= 1/(N +1), we
see that β′(τ) �= 0 ∀τ ∈ R. So β(τ) is strictly monotone and onto, and it implies
the uniqueness for the radial solution of (5.1). In conclusion, we can complete the
result of [PT] as follows:

Theorem 5.1. Let N > −1 and 0 < a �= 1/(N + 1). Then (5.6) and (5.7) are
necessary and sufficient conditions for the existence of a radial solution for (5.1).
Furthermore, for such β’s the corresponding radial solution is unique.

It is interesting to compare the uniqueness result of Theorem (5.1) with the
multiplicity result in [DET2].
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Multiple Positive Solutions for a
Nonsymmetric Elliptic Problem
with Concave Convex Nonlinearity

C. Saccon

Abstract. We consider a semilinear elliptic problem, with principal part pos-
sibly non symmetric, having a singular nonlinear term which is convex near
zero and concave at infinity. We prove the existence of two positive solutions
when a suitable parameter is small and a nonexistence result when the pa-
rameter is large. These results are closely related to a well known paper by
Ambrosetti, Brezis, Cerami, where the principal part is the Laplace operator
and the non linearity has no singularity. We use monotonicity arguments to
get rid of the singular term. Since the problem has no variational structure,
we use degree arguments to exploit the topological features of the problem;
in particular, to use continuation arguments, we prove a global bound for all
positive solutions.

Mathematics Subject Classification (2010). 35J75, 35J87, 47H05, 47H11.

Keywords. Elliptic semilinear singular problems, multiple positive solutions,
variational inequalities, degree theory.

1. Introduction

We study the multiplicity of positive solutions to problem

Lu = uq + λup in W 1,2
0 (Ω) (P)

where q < 0 and where Lu is a second-order differential operator in divergence
form, not necessarily symmetric. In the case L is the Laplace operator and 0 <
q < 1 a well-known result of Ambrosetti, Brezis, Cerami’s (see [1]) shows that
(P) has (at least) two solutions for λ > 0 small and no solutions for λ large.
The singular version, i.e., the case with a negative q, has been treated in several
papers (see the references of [9] for an exhaustive list); to the author’s knowledge
the most complete result is proved in [9], where it is shown that, in the case

Switzerland
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L = −Δ, the above-mentioned result holds for −3 < q < 0 and also for q ≤ −3
if solutions are searched for in a wider space than W 1,2

0 (Ω). The proof relies on
a variational approach which leads to a study of the topological properties of the
energy functional

I(u) =
1

2

∫
Ω

|∇u|2 dx− 1

q + 1
uq+1 dx− λ

p+ 1

∫
Ω

up+1 dx

(which in the singular case poses some problems) combined with a clever usage
of the order properties of the Laplace operator. Such an approach can be easily
extended to allow more general linear operators in the principal part, provided
they are symmetric.

There seem to be not so many results concerning semilinear singular problems
in the nonsymmetric case, where the variational approach cannot be used. We refer
the reader to the pionering papers [4, 13], to [7] and to [2] (for the first solution). In
this work we extend to a non variational framework the “monotonicity techniques”
used in [9] (where subdifferentials of convex functions were used) and use degree
arguments to prove a two solutions theorem for λ > small. To be precise we shall
prove the following theorem. For the meaning of solution we refer to the next
section, notice however that solutions are taken in W 1,2

0 (Ω).

1.1. Theorem. Let Ω be a bounded open subset of RN with boundary of class C2.
Assume that ai,j ∈ C1(Ω̄) and bi ∈ L∞(Ω), i, j = 1, . . . , N , are such that the
differential operator Lu := −div[a(x) · ∇u] + b(x) · ∇u is uniformly elliptic and
coercive. Let −3 < q < 0 and 1 < p < 2∗ − 1. Then there exists λ̄ > 0 such that
Problem (P)

• has at least two solutions u1 ≤ u2 for 0 < λ < λ̄;
• has at least one solution for λ = λ̄;
• has no solutions for λ > λ̄.

2. Assumptions for the general setting

Let N ≥ 3 (for simplicity) and Ω be a bounded open subset of RN with C2
boundary. We denote by ‖·‖ and 〈·, ·〉 the norm and the inner product, respectively,

in the Sobolev space W 1,2
0 (Ω), while ‖ · ‖p will indicate the norm in Lp(Ω). In the

case p = 2 〈·, ·〉2 will denote the L2(Ω) inner product. We shall denote by L∞
c (Ω)

the set of bounded functions with compact support.

We remind that 2∗ =
2N

N − 2
. We shall also denote by i∗ : L2(Ω)→W 1,2

0 (Ω)

the adjoint of the embedding of W 1,2
0 (Ω) into L2(Ω), that is the map such that∫

Ω

uv dx = 〈i∗(u), v〉 ∀v ∈W 1,2
0 (Ω). (1)

As is well known i∗(= (−Δ)−1) is a compact linear map.
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We consider aij ∈ L∞(Ω), bi, ci ∈ LN (Ω), d ∈ LN/2(Ω) such that (ellipticity):∑
ij

aijξiξj ≥ ν‖ξ‖2 ∀ξ ∈ RN , (A.0)

with ν > 0. We also define the bilinear form α : W 1,2
0 (Ω)×W 1,2(Ω)→ R by:

α(u, v) :=
∑
ij

∫
Ω

[(aij(x)Dju+ ci(x)u)Div + (bi(x)Diu+ d(x)u) v] dx, (2)

for u, v ∈W 1,2(Ω), and the linear operator A : W 1,2
0 (Ω)→W 1,2

0 (Ω) by:

α(u, v) = 〈Au, v〉 ∀v ∈W 1,2
0 (Ω).

We can also think as α(u, v) =
∫
Ω
Luv dx, where the differential operator L is

defined by:

Lu = −div[a · ∇u+ cu] + b · ∇u + du.

Actually in the application 1.1 we consider much stronger regularity assump-
tions on the coefficients of L, which make the presence of c, d unnecessary. However,
since such regularity is not needed in the framework we are going to introduce in
Section 3, we maintain the general setting for as long as possible.

As usual we say that α (or A/L) is coercive if there exists ν1 > 0 such that

α(u, u) ≥ ν1‖u‖2 ∀u ∈ W 1,2
0 (Ω). (A.1)

2.1. Remark. It is well known (see, e.g., [12]) that (A.0) implies:

α(u, u) ≥ ν1‖u‖2 − C̄‖u‖22 ∀u ∈W 1,2
0 (Ω) (3)

for suitable ν1 > 0 and C̄ ∈ R (so (A.1) corresponds to C̄ = 0). It is also clear
that (A.1) corresponds to requiring that the first eigenvalue of the symmetrized
operator L∗u = −div [a · ∇u+ b+c

2 u
]
+ b+c

2 · ∇u+ du be positive.

We also consider two functions G : Ω × R →] −∞,∞] and f : Ω × R → R
and the following conditions on G, f .⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for all s ∈ R G(·, s) is measurable, for almost all x ∈ Ω

G(x, ·) is convex and C1(]α(x), β(x)[) where

]α(x), β(x)[:= int ({s :G(x, s) < +∞}) ;
there exists u0 ∈W 1,2

0 (Ω) such that G(·, u0) ∈ L1(Ω));

(G.0)

⎧⎪⎨⎪⎩
for all s ∈ R f(·, s) is measurable,

for almost all x ∈ Ω f(x, ·) is C1(Ω), ∃ a, b ≥ 0, p < 2∗ − 1 such that:

|f ′(x, s)| ≤ a+ b|s|p−1.

(f.0)

In the following we denote (for a.e. x ∈ Ω):

g(x, s) :=
∂

∂s
G(x, s) if s ∈]α(x), β(x)[, F (x, s) :=

∫ s

0

f(x, σ) dσ
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and we agree that g(x, s) = −∞, if z < α(x), g(x, s) = +∞, if z > β(x); we also
agree that g(α(x)) = lim

s→α(x)+
g(x, s) and g(β(x)) = lim

s→β(x)−
g(x, s).

2.2. Definition. Let λ ∈ R. We say that u is a weak subsolution (resp. supersolu-
tion) to the problem: {

Lu+ g(x, u) = f(x, u) on Ω

u = 0 on ∂Ω
(P )

if u ∈W1,2
loc(Ω), u

+ ∈ W 1,2
0 (Ω) (resp. u− ∈ W 1,2

0 (Ω)), g(·, u) ∈ L1
loc(Ω), and for all

ψ ∈ W 1,2(Ω) ∩ L∞
c (Ω) with ψ ≥ 0 one has:

α(u, ψ) +

∫
Ω

g(x, u)ψ dx ≤
∫
Ω

f(x, u)ψ dx (resp. ≥ 0). (4)

We say that u is a strict weak subsolution/supersolution if the above inequalities
are strict whenever ψ �= 0.

We say that u is a weak solution of (P ), if u is both a sub and a supersolution
to (P ).

2.3. Remark. u is a subsolution (a supersolution) to (P ) if and only if (4) holds with
for all ψ in C∞0 (Ω) (with ψ ≥ 0); this can be easily proved via a density argument.
If in addition u ∈W 1,2(Ω) and we have either g(x, u) ≥ 0 or g(x, u) ≤ 0, then:

∀v ∈W 1,2
0 (Ω) with v ≥ 0 g(·, u)+v ∈ L1(Ω) (g(·, u)−v ∈ L1(Ω)),

and α(u, v) +

∫
Ω

(g(x, u)− f(x, u))v dx ≤ 0 (≥ 0).
(5)

To prove this it suffices to approximate v in W 1,2
0 (Ω) with a sequence (ψn) in

W 1,2
0 (Ω) ∩ L∞

c (Ω), such that 0 ≤ ψn ≤ ψn+1 ≤ v ∀n (see, e.g., [8, Lemma A.1]),
plug ψn in (4), and pass to the limit using the Monotone Convergence Theorem
in the integral containing g(x, u)ψn. With the same monotonicity argument one
can show that, if u is a strict subsolution (supersolution), then (5) holds with the

strict inequality for all v ∈ W 1,2
0 (Ω) \ {0}.

Notice that the integral
∫
Ω
g(x, u)v dx in (5) is allowed to be +∞ (resp. −∞).

Also notice that in the previous argument we can replace g(x, s) by g(x, s)−f0(x, s)
where f0(x, s) is a function verifying (f.0).

As a consequence of the above, if either g(x, s) ≥ 0 or g(x, s) ≤ 0, then u is

a solution of (P ) if and only if u ∈ W 1,2
0 (Ω) and for all v ∈W 1,2

0 (Ω):

g(·, u)v ∈ L1(Ω), α(u, v) +

∫
Ω

g(x, u)v dx =

∫
Ω

f(x, u)v dx. (6)

3. A variational inequalities approach

In this section we provide a framework for problem (P) in terms of variational
inequalities. This will allow to derive existence theorems as well as to deal with sub
and super solutions as natural constraints (see Theorem 3.11). In this section we
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always assume the validity of (A.0), (G.0), and (f.0); unless explicitely mentioned
(in the existence theorems) (A.1) will not be assumed. We omit most of the proofs
in this section, since they can be easily deduced by imitating the analogous ones
of [11, Sections 3,4].

For the proof of the following lemma see [9, Lemma 2].

3.1. Lemma. For any measurable function u the compositions G(u) and g(u) are
measurable.

Let G : W 1,2
0 (Ω) → [−∞,+∞] be defined by G(u) :=

∫
Ω

G(x, u) dx. We

denote by Kg the domain of G, that is Kg :=
{
u ∈W 1,2

0 (Ω) :G(u) ∈ L1(Ω)
}
.

The following result is simple to prove (see also [11, Lemma 3.3]).

3.2. Lemma. G is convex, lower semicontinuous and proper (i.e., Kg �= ∅).
We remind that the subdifferential of G, in the sense of convex analysis, is

the (multivalued) operator ∂G defined by:

w ∈ ∂G(u)⇔ u ∈ Kg, G(v) ≥ G(u) + 〈w, v − u〉 ∀v ∈ Kg. (7)

As is well known (see [3, Exemple 2.3.4]) ∂G is a maximal monotone operator.

Let Ag : W 1,2
0 (Ω)→ 2W

1,2
0 (Ω) be the (multivalued) operator:

Ag := A+ ∂G.
3.3. Theorem. Assume that (A.0), (A.1), and (G.0) hold. Then Ag is a maximal
monotone operator. Moreover Ag admits a Lipschitz continuous inverse with Lip-

schitz constant equal to 1/ν1. This means that for any w ∈ W 1,2
0 (Ω) there exists a

unique u ∈W 1,2
0 (Ω) such that w ∈ Ag(u), and that:

wi ∈ Ag(ui) i = 1, 2 ⇒ ‖u1 − u2‖ ≤ 1

ν1
‖w1 − w2‖.

Sketch of proof. (For more details see [11, Theorem 3.7].) Since A is monotone and
Lipschitz continuous and ∂G is maximal monotone, then Ag is maximal monotone
by [3, Lemme 2.4]. Using (7) and the definition of Ag (taking v = u0 as test) we
can find a constant k such that:

〈w, u − u0〉 ≥ ν1
2
‖u‖2 − k ∀u ∈ Kg, ∀w ∈ Ag(u).

By [3, Corollaire 2.4] this implies thatAg is surjective, that is w ∈ Ag(u) is solvable

in u for every w ∈ W 1,2
0 (Ω). Lipschitz continuity is a standard fact. �

We now estabilish a connection between Ag and the solutions of (P) in terms
of a suitable variational inequality. This is done in the following lemmas whose
proofs can be carried on by adaptating those in [11, Section 3].

3.4. Lemma. Let u,w ∈ W 1,2
0 (Ω). The following facts are equivalent

(a) u ∈ Kg, w ∈ Ag(u);
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(b) the following variational inequality holds⎧⎨⎩
u ∈ Kg, g(·, u)(v − u) ∈ L1(Ω) ∀v ∈ Kg,

α(u, v − u) +

∫
Ω

g(u)(v − u) dx ≥ 〈w, v − u〉 ∀v ∈ Kg.
(8)

3.5. Remark. If u, v ∈ Kg then

g(x, u)(v − u) ≤ G(x, v) −G(x, u) ∈ L1(Ω) (9)

so the integral
∫
Ω

g(u)(v − u) dx in (8) always makes sense, possibly being −∞.

3.6. Lemma.

(a) If u is a solution of (P), then i∗(f(·, u)) ∈ Ag(u), that is:⎧⎨⎩
u ∈ Kg, g(·, u)(v − u) ∈ L1(Ω) ∀v ∈ Kg,

α(u, v − u) +

∫
Ω

g(x, u)(v − u) dx ≥
∫
Ω

f(x, u)(v − u) dx ∀v ∈ Kg.
(10)

(b) Let u ∈ W 1,2
0 (Ω) verify the variational inequality (10). Suppose that there

exist a subsolution ϕ1 (a supersolution ϕ2) for (P) such that ϕ1 ≤ u (u ≤ ϕ2).
Then u is a weak subsolution (supersolution) to (P).

From now on we consider two mesurable functions ϕ1, ϕ2 : Ω → [−∞,+∞]
such that ϕ1 ≤ ϕ2 a.e. in Ω.

3.7. Definition. We set

Kϕ2
ϕ1

:= {u ∈ W 1,2
0 (Ω) :ϕ1 ≤ u ≤ ϕ2 a.e. in Ω}.

For the sake of brevity we write Kϕ := K+∞
ϕ and Kϕ := Kϕ

−∞.
In the following we denote by IE the “indicator function” relative to a subset

E of W 1,2
0 (Ω), defined by IE(u) = 0 whenever u ∈ E and IE(u) = +∞ otherwise.

We then define:

Gϕ2
ϕ1

:= G + IKϕ2
ϕ1
, Aϕ2

g,ϕ1
:= A+ ∂Gϕ2

ϕ1
.

Again for brevity we write Ag,ϕ := A+∞
g,ϕ and Aϕ

g := Aϕ
g,−∞.

The following results are analogous to the previously considered ones.

3.8. Lemma. Gϕ2
ϕ1

is convex and lower semicontinuous.

3.9. Theorem. If (A.1) holds and Kg ∩Kϕ2
ϕ1
�= ∅, then Aϕ2

g,ϕ1
is maximal monotone

and coercive, so Aϕ2
g,ϕ1

is surjective and its inverse is Lipschitz continuous with

constant
1

ν1
(irrespective of ϕ1, ϕ2).

3.10. Lemma. Let u,w ∈W 1,2
0 (Ω). The following facts are equivalent:

(a) u ∈ Kg ∩Kϕ2
ϕ1
, w ∈ Aϕ2

g,ϕ1
(u);
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(b) the following variational inequality holds:⎧⎨⎩
u ∈ Kg ∩Kϕ2

ϕ1
, g(·, u)(v − u) ∈ L1(Ω) ∀v ∈ Kg ∩Kϕ2

ϕ1
,

α(u, v − u) +

∫
Ω

g(x, u)(v − u) dx ≥ 〈w, v − u〉 ∀v ∈ Kg ∩Kϕ2
ϕ1
.

(V.I.)ϕ2
ϕ1

Again for convenience we shall use (V.I)ϕ1 (resp. (V.I)ϕ2 ) to refer to the
variational inequality (V.I.)ϕ2

ϕ1
when ϕ1 = −∞ (resp. ϕ2 = +∞) and simply (V.I.)

in the case both the obstacles are infinite (in this case Aϕ2
g,ϕ1

= Ag).
The following theorem shows that sub and super solutions can be used as

“natural contraints”.

3.11. Theorem. The following facts are true:

• if ϕ1 is a subsolution for (P) and u ∈ Kg ∩Kϕ2
ϕ1
, then:

i∗(f(·, u)) ∈ Aϕ2
g,ϕ1

(u)⇔ i∗(f(·, u)) ∈ Aϕ2
g (u);

• if ϕ2 is a supersolution for (P) and u ∈ Kg ∩Kϕ2
ϕ1
, then:

i∗(f(·, u)) ∈ Aϕ2
g,ϕ1

(u)⇔ i∗(f(·, u)) ∈ Ag,ϕ1(u);

Sketch of the proof. We consider the “⇒” implication in the first claim. Let u
verify (V.I.)ϕ2

ϕ1
with w = i∗(h(u)) and let v ∈ Kg ∩ Kϕ2 . Given t > 0 we set

vt := (u+ t(v− u))∨ϕ1 = u+ t(v− u) +wt with wt = (ϕ1− u− t(v− u))+. Then
vt ∈ Kg ∩Kϕ2

ϕ1
and can be used as a test in (V.I.)ϕ2

ϕ1
. This yieds:

t

(
α(u, v − u) +

∫
Ω

(g(x, u)− f(x, u))(v − u) dx

)
≥ α(wt, wt) + tα(v − u,wt)− α(ϕ1, wt)−

∫
Ω

(g(x, u)− f(x, u))wt dt

≥ α(wt, wt) + tα(v − u,wt) +

∫
Ω

(g(x, ϕ1)− g(x, u)− f(x, ϕ1) + f(x, u))wt dt

≥ ν1‖wt‖2 − C̄t2‖v − u‖22 − t‖α‖‖v − u‖‖wt‖

+ t

∫
{t(v−u)<ϕ1−u}

(g(x, u)− g(x, ϕ1)) (v − u) dx

− t

∫
Ω

|f(x, ϕ1)− f(x, u)| |v − u| dt

(we have used the fact that ϕ1 is a subsolution). Letting t → 0 yields ‖wt‖ → 0.
Dividing by t and letting t→ 0+ gives the conclusion:

α(u, v − u) +

∫
Ω

(g(x, u)− f(x, u))(v − u) dx ≥ 0. �

3.12. Lemma. Let ϕ ∈W 1,2
loc (Ω) with ϕ+ ∈ W 1,2

0 (Ω) (ϕ− ∈W 1,2
0 (Ω)) and g(·, ϕ) ∈

L1
loc(Ω). Then ϕ is a subsolution (a supersolution) for (P) if and only if for every
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M ∈ R there exists εM > 0 such that:

α(ϕ, v) +

∫
Ω

(g(x, ϕ)− f(x, ϕ)) v dx ≤ εM‖v‖2 (≥ εM‖v‖2) (11)

for all v ∈W 1,2(Ω) ∩ L∞
c (Ω) with v ≥ 0 and ‖v‖ ≤M‖v‖2.

Proof. We prove the “only if” part, which is the nontrivial one. By contradiction
suppose that there exists M ∈ R and a sequence (vn) in W 1,2

0 (Ω) ∩ L∞
c (Ω) with

vn ≥ 0, ‖vn‖2 = 1, ‖vn‖ ≤M , and

0 > Λ(vn) := α(ϕ, vn) +

∫
Ω

(g(x, ϕ)− f(x, ϕ)) vn dx→ 0.

Up to a subsequence we can suppose that vn ⇀ v for v ∈ W 1,2
0 (Ω), v ≥ 0,

and ‖v‖2 = 1. We can take η ∈ C∞0 (Ω) and K > 0 such that 0 ≤ η ≤ 1 and
‖(ηv) ∧K‖2 ≥ 1/2. Setting wn := (ηvn) ∧K and w := (ηv) ∧K it is clear that
wn ⇀ w, w �= 0, and 0 ≤ wn ≤ vn, so that 0 ≤ Λ(wn) ≤ Λ(vn) → 0. Since
g(·, ϕ)η ∈ L1(Ω) it follows from weak convergence that:

α(ϕ,w) +

∫
Ω

(g(x, ϕ)− f(x, ϕ))w dx = 0

which contradicts that fact that ϕ is a strict subsolution. �

3.13. Proposition. Let ϕ1 be a strict subsolution (ϕ2 be a strict supersolution) for
(P). Let K > 0. There exist δ > 0 such that for any convex and closed set if K in

W 1,2
0 (Ω) with Kϕ2

ϕ1
⊂ K ⊂ Kϕ2 (Kϕ2

ϕ1
⊂ K ⊂ Kϕ1), if

w ∈ K∩Kg, α(w, v−w)+

∫
Ω

(g(x,w)−f(x,w))(v−w) dx ≥ 0 ∀v ∈ K∩Kg, (12)

(remind Remark 3.5) ‖w‖ ≤ K, and distL2

(
w,Kϕ2

ϕ1

)
< δ, then w ∈ Kϕ2

ϕ1
.

Sketch of proof. We prove the supersolution case. Let K an w be as above. Let
π(w) := w ∧ ϕ2: since π(w) ∈ Kϕ2

ϕ1
⊂ K, we can use v = π(w) in (12). Let

h(x, u) := g(x, u)− f(x, u). Doing some manipulations this yields:

0 ≥ α(w − π(w), w − π(w)) +

∫
Ω

(h(x,w) − h(x, π(w)) (w − π(w)) dx

+ α(π(w), w − π(w)) +

∫
Ω

h(x, π(w))(w − π(w) dx

≥ ν‖w − π(w)‖2 − C̄‖w − π(w)‖22
for a suitable C̄ (g is nondecreasing; f verifies (f.0),‖w‖ ≤ K); moreover if w(x) >
π(w)(x) then π(w)(x) = ϕ2(x), so we can replace π(w) with ϕ2. Since ϕ2 is a strict
supersolution we can take ε := εM with M = C̄/ν, as in Lemma 3.12, so:

2C̄‖w − π(w)‖22 ≥ ν‖w − π(w)‖2 + ε̄‖w − π(w)‖2
which implies that ‖w − π(w)‖2 = 0 if ‖w − π(w)‖2 < δ is small enough. �
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We introduce now the map Φϕ2
ϕ1

: W 1,2
0 (Ω)→W 1,2

0 (Ω):

Φϕ2
ϕ1

:= (Aϕ2
g,ϕ1

)−1 ◦ i∗ ◦ Nf ◦ i (13)

where i : W 1,2
0 (Ω) → L2(Ω) is the embedding and Nf is the Nemytskii operator

associated with f . We have:

i∗(f(·, u)) ∈ Aϕ2
g,ϕ1

(u)⇔ u = Φϕ2
ϕ1
(u). (14)

As before we also consider Φϕ1 , Φ
ϕ2 , and Φ replacing Aϕ2

g,ϕ1
by Ag,ϕ1 , Aϕ2

g ,
and Ag in the definition. It is clear that Φϕ2

ϕ1
is compact, therefore it makes sense

to consider the Leray–Schauder degree of Id − Φϕ2
ϕ1
, relative to 0 in any bounded

open subset U ⊂W 1,2
0 (Ω) such that 0 /∈ (Id− Φϕ2

ϕ1
)−1(∂U). Such a degree will be

denoted by:
deg(Id− Φϕ2

ϕ1
, U, 0).

3.14. Theorem (degree inheritance). Assume that u is an isolated solution of
u = Φϕ2

ϕ1
(u).

1. If ϕ1 is a strict subsolution, then u is an isolated solution of u = Φϕ2(u), and
for δ > 0 small:

deg(Id− Φϕ2
ϕ1
, B(u, δ), 0) = deg(Id− Φϕ2 , B(u, δ), 0),

where B(u, δ) is the ball centered at u with radius δ;
2. if ϕ2 is a strict supersolution, then u is an isolated solution of u = Φϕ1(u),

and for δ > 0 small:

deg(Id− Φϕ2
ϕ1
, B(u, δ), 0) = deg(Id− Φϕ1 , B(u, δ), 0).

Sketch of proof. We prove the supersolution case. For t ∈ [0, 1] let: ϕ2,t(x) :=

ϕ2(x) +
t

1− t
so ϕ2,0 = ϕ2 and ϕ2,1 = +∞. It can be proved (for the details

see [11, Section 5]) that the map Φt := (Aϕ2,t
g,ϕ1)

−1 ◦ i∗ ◦ Nf ◦ i is compact for all
t ∈ [0, 1], (u, t) �→ Φt(u) is continuous, Φ0 = Φϕ2

ϕ1
, and Φ1 = Φϕ1 . It is therefore

possible to use the continuation property of the Leray–Schauder degree.
Let B(u, ρ) be a ball such that u is the only fixed point of Φϕ2

ϕ1
in B(u, ρ); up

to shrinking ρ > 0 we have B(u, ρ) ⊂ B2(u, δ), where δ > 0 is as from Proposition
(3.13). Using Proposition (3.13) (with K = Kϕ2,t

ϕ1 ) we get that for any t ∈ [0, 1] u

is the unique fixed point for Φt(v) in B(u, ρ). By the continuation property of the
degree we get the conclusion. �

4. Problems with concave-convex nonlinearities

4.1. Theorem. Let aij ∈ L∞(Ω), bi, ci ∈ Ls(Ω), d ∈ Ls/2(Ω) with s > N ; assume
that (A.0) and (A.1) hold, and that

d− div(c) ≥ 0 (A.2)

in the sense of distributions. Let q < 0 and let a0 : Ω → R be such that a0 ≥ 0,
a0 �= 0, and there exists u0 ∈W 1,2

0 (Ω) with a0u
q+1
0 ∈ L1(Ω).
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Then there exists a unique weak solution ũ in W 1,2
0 (Ω) of

(Lu :=)− div(a · ∇u + bu) + c · ∇u + du = a0(x)u
q. (15)

Such a ũ is continuous and positive in Ω, and a0ũ
qv ∈ L1(Ω)∀v ∈ W 1,2

0 (Ω)
(in particular ũq+1 ∈ L1(Ω)). Moreover ũ(x) ≥ εu(x), for ε > 0 small, where

u ∈W 1,2
0 (Ω) is a solution of −div(a · ∇u+ bu) + c · ∇u+ du = a0(x) ∧ 1.

If in addition a0 ∈ Ls(Ω) with s > N/2, then we can take as u the solution

of −div(a · ∇u+ bu) + c · ∇u+ du = a0(x) and we also have ũ ≤ ū
1

1−q where ū is
a solution of Lu = (1 − q)a0.

Proof. Notice that the functions u and ū (if defined) are positive in Ω by the strong
maximum principle (see, e.g., [14, Corollary 5.1] or [6, Theorem 8.19] in the case
of bounded coefficients) and are continuous in Ω̄ (see, e.g., [12, Theorem 7.3] or
[6, Theorem 8.31]). Let:

G(x, s) :=

⎧⎪⎪⎨⎪⎪⎩
−a0(x)s

q+1

q + 1
if q �= −1 and s > 0,

−a0(x) ln(s) if q = −1 and s > 0,

+∞ if s < 0;

it is clear that (g.0) holds and that g(x, s) = −a0(x)sq for s > 0. By Theorem
3.3 there exists a unique solution ũ of 0 ∈ Ag(u). Notice that a0(x)ũ

q+1 ∈ L1(Ω),
hence for every ψ ∈ C∞0 (Ω) with ψ ≥ 0 we have a0(x)(ũ + ψ)q+1 ∈ L1(Ω). Using
v = ũ + ψ in (8) shows that ũ is a supersolution. Now let ϕ1 := εū. Simple
computations show that (in the sense of distributions)

Lϕ1 − a0(x)ϕ
q
1 = εa0(x) ∧ 1− εq0a0(x)u

q ≤ εa0(x) ∧ 1(1− εq−1uq) < 0

for 0 < ε < ‖u‖
q

1−q∞ , which implies that ϕ1 is a subsolution. By Theorem 3.9 we
can find ũ1 such that 0 ∈ Ag,ϕ1(ũ1); by Theorem 3.11 we have 0 ∈ Ag(ũ1) and by
uniqueness of ũ we have ũ = ũ1. We have thus proved that ũ ≥ ϕ1 > 0. By (b)
of Lemma 3.6 it follows that ũ is a subsolution, so it is a solution to (P). Since
ϕ1 is continuous in Ω it follows that ũ is locally bounded away from zero in Ω
and by regularity theory ũ is continuous in Ω. Using Remark 2.3 we have that
a0u

qv ∈ L1(Ω)∀v ∈W 1,2
0 (Ω).

It is clear that, if a0 ∈ Ls(Ω) with s > N/2, then we can replace a0 ∧ 1 by
a0. In this case it is also possible to define ū as above. Taking ϕ2 := ūβ, with

β :=
1

1− q
, then ϕ2 ∈W1,2

loc(Ω) and:

Lϕ2 − a0ϕ
q
2 = − β(β − 1)ūβ−2(a · ∇ū) · ∇ū+ βuβ−1Lū

+ (1− β)uβ(d− div c)− a0ū
βq ≥ a0ū

q
1−q + a0ū

q
q−1 = 0.

(again in the sense of distributions – notice that β − 1 = βq = q
1−q ). So ϕ2 is a

supersolution. Repeating the previous argument shows that ũ ≤ ϕ2. �
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4.2. Remark. If further regularity is assumed on the coefficients one could improve
the regularity of the solution ũ, by using the property ũ ≥ ϕ1.

4.3. Theorem. Suppose that (A.0), (A.1), (A.2), (f.0) hold, that q < 0, a0 ∈ Lr(Ω)

with r > N/2, inf
Ω

a0 > 0, that there exists u0 ∈W 1,2
0 (Ω) such that a0u

q+1
0 ∈ L1(Ω),

and that f(x, s) > 0, whenever x ∈ Ω and s > 0. There exists λ̄ with 0 < λ̄ ≤ +∞
such that the problem

−div [a · ∇u+ c u] + b · ∇u+ du− a0u
q = λf(·, u) (Pλ)

has at least one solution for 0 < λ < λ̄ and has no solutions for λ > λ̄.

Proof. Let ϕ1 be the solution ũ found in Theorem 4.1. It is clear that ϕ2 is a
subsolution for the problem (Pλ). Let ū be constructed as in Theorem 4.1 taking

2a0 instead of a0 and let ϕ2 := ū
1

1−q . Arguing as in the proof of 4.1:

Lϕ2 − a0ϕ
q
2 − λf(·, ϕ2) ≥ a0 ū

q
1+q − λ

(
a+ bū

p
1−q

)
> 0

for λ > 0 small enough. Let Φϕ2
ϕ1

be defined as in (13). Since Φϕ2
ϕ1
⊂ Kϕ2

ϕ1
is bounded

it follows that, for R > 0 large enough, there are no fixed points for Φϕ2
ϕ1

lying on

∂BR, where BR =
{
u ∈W 1,2

0 (Ω) : ‖u‖ < R
}
, and that

deg(Id− Φϕ2
ϕ1
, BR, 0) = 1.

It follows that there exists u ∈ W 1,2
0 (Ω) such that u = Φϕ2

ϕ1
, that is, by (14)

i∗(f(·, u)) ∈ Aϕ2
g,ϕ1

(u). Since ϕ1 is a subsolution and ϕ2 is a supersolution, we
deduce from Theorem 3.11 that i∗(f(·, u)) ∈ Ag(u) and from Lemma 3.6 that u is
a solution for (Pλ).

Finally we prove that, if (Pλ) has a solution, then (Pμ) has a solution for all
μ < λ; if this is true then the last conclusion follows taking λ̄ := sup{μ > 0 : (Pμ)
has a solution}. This is easily seen since, if u solves (Pλ) and 0 < μ < λ, then u is
a supersolution for (Pμ) �
4.4. Remark. Looking at the previous proof it is clear that inf

Ω
a0 > 0 is only

needed to construct the supersolution ϕ2. This could be obtained under weaker
condition, specifying a suitable rate with which the function a0 grows away from
zero (provided some regularity on the coefficients of L is added).

From now on we consider a more regular setting: we assume

a ∈ C1(Ω̄), b ∈ C0(Ω̄), c = d = 0, a0 ∈ R, a0 > 0. (16)

In particular the regularity of a implies that the weak solutions of the linear
problem Lu = h ∈ L2(Ω) are actually strong solutions, which in turn implies the
validity of the Hopf maximum principle (see, e.g., [10]). Such a principle will be
intensively used in the following; moreover the regularity of the coefficients is also
needed in Theorem 4.9. A first consequence of the above assumptions is a more
accurate estimate of the rate of growth away from zero of the solution ũ. In the
following we set: Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}, where δ > 0.
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4.5. Lemma. Assume that (16) holds, let −3 < q < −1, and let ũ a solution of
Lu− a0u

q = 0, as from Theorem 4.1. Then there exists ε̄ > 0 such that

ũ(x) ≥ ε̄dist(x, ∂Ω)
2

1−q ∀x ∈ Ω. (17)

Proof. Let u0 be the solution of Lu = 1. By regularity theory (see [6, Theorem
8.34]) and the Hopf maximum principle there exist k0 ≥ ε0 > 0, δ0 > 0 such that

|∇u0| ≤ k0 in Ω and |∇u0| ≥ ε0 in Ωδ. Let ϕ1 := εu
2

1−q

0 , then

Lϕ1 − a0ϕ
q
1 = −2ε(1 + q)

(1− q)2
u

2q
1−q

0 a(x)∇u0∇u0 +
2ε

1− q
u

1+q
1−q

0 − εqu
2q

1−q

0 < 0

if ε > 0 is small enough. Arguing as in the proof of Theorem 4.1 we get ũ ≥ ϕ1,
which implies (17). �

The proof of the following lemma is just a matter of computations.

4.6. Lemma. Let A > 0, B > 0 in R and consider the o.d.e. problem

−χ′′(s) = Aχ(s)q +Bχ(s)p χ(0) = 0.

Such a problem has a family of increasing, positive solutions χM : [0, sM ]→ [0,M ]
defined by χM (s) = Γ−1

M (s), where ΓM : [0,M ]→ [0, sM ] is given by

ΓM (ξ) =

∫ ξ

0

dζ√
H(ζ)−H(M)

H(ζ) =

⎧⎪⎪⎨⎪⎪⎩
−A ζq+1

q + 1
−B

ζp+1

p+ 1
if q �= 1

−A ln(ζ) −B
ζp+1

p+ 1
if q = 1,

as M varies in ]0,+∞[. In particular

χ′
M (sM ) = 0 and sM = ΓM (M)⇔ χM (sM ) = M.

Moreover (by the change of variable ξ = Mθ):

ΓM (ξ) =

∫ ξ/M

0

Mdθ√
AM q+1Hq(θ) +BMp+1Hp(θ)

,

where

Hr(θ) =

⎧⎨⎩
1− θr+1

r + 1
if r �= 1,

− ln(θ) if r = 1.

As a consequence, if 0 ≤ ξ ≤M :

MΓ(ξ/M)√
AM q+1 +BMp+1

≤ ΓM (ξ) ≤ MΓ(ξ/M)√
AM q+1 +BMp+1

(18)

where

Γ(s) :=

∫ s

0

dθ√
Hq(θ) ∨Hp(θ)

, Γ(s) :=

∫ s

0

dθ√
Hq(θ) ∧Hp(θ)

. (19)

The following lemma is a standard consequence of the regularity of ∂Ω.
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4.7. Lemma. There exist δ0 > 0 and a constant k̃ such that∫
Ωδ

|∇w|2 dx ≥ k̃2

δ2

∫
Ωδ

w2 dx ∀w ∈W1,2
0 (Ωδ), ∀δ ≤ δ0.

4.8. Lemma. Assume that (16), (A.0), and (A.1) hold. Let −3 < q < 0 and λ > 0,

1 < p < 2∗ − 1, and let ũ be the solution of L̃u − a0ũ
q = 0 as in Theorem 4.1. If

u is a (positive) weak solution of Lu− a0u
q − λup = 0 such that u ≥ ũ, then u is

bounded. Morever there exist constants M0, C0 and C1 such that:

u(x) ≤ C0(1 + ‖u‖∞)Γ−1
(
C1

(
1 + ‖u‖q−1 + (1 + λ)‖u‖p−1

∞
) 1

2dist(x, ∂Ω)
)

(20)

where Γ is as in (19) (we can agree that Γ−1(s) = 1, for s > Γ(1)).

Proof. Since u ≥ ũ, then u is continuous on Ω. To see that u is bounded one
can use the same arguments of [9, Lemmata 13, 14]. To prove (20) let u0 be
the solution of Lu0 = 1: as already seen there exist k0 ≥ ε0 > 0, δ0 > 0 such

that ε0 ≤ |∇u0(x)| ≤ k0 for x ∈ Ωδ0 . Let A :=
a0
ε20ν1

, B :=
λ

ε20ν1
and let χM ,

ΓM be defined as in Lemma 4.6. By (18), since p > 1, we have sM < ε0δ0 if

M > M0 :=
(

ν1Γ(1)
λδ20

) 1
p−1

. Let C̄ :=
(

ε0Γ(1)

k0k̃

) 2
p−1

and M := p
1

p−1 C̄‖u‖∞ ∨M0.

Then ū(x) := χM (u0(x)) is well defined in ΩδM , where δM := sM/k0, and

Lū− a0ū
q − λūp = −χ′′

M (u0)a(x)∇u0∇u0 + χ′
M (u0)Lu0 − a0ū

q − λūp

≥ ν1ε
2
0 (−χ′′

m(u0)−AχM (u0)
q −BχM (u0)

p) = 0,

in ΩδM . We can also set ū = M on Ω \ ΩM ; in this way ū ∈ W 1,2
0 (Ω). Using

w := (u − ū)+(w ≥ 0, w = 0 outside ΩδM ) as test function (cf. Remark 2.3):

0 = α(u,w)−
∫
Ω

(a0u
q + λup)w dx

= α(ū, w)−
∫
ΩδM

(a0ū
q + λūp)w dx+ α(u− ū, w)

− a0

∫
ΩδM

(uq − ūq)w dx− λ

∫
ΩδM

(up − ūp)w dx

≥ ν1

∫
ΩδM

|∇w|2 dx− λp‖u‖p−1
∞

∫
ΩM

w2 dx

≥
(
ν1k̃

2

δ2M
− λpMp−1

pC̄p−1

)∫
ΩM

w2 dx ≥
(

k20 k̃
2

ε20Γ(1)
2
− 1

C̄p−1

)
λMp−1

∫
ΩM

w2 dx

since, by Lemma 4.6, δM = k−1
0 sM = k−1

0 ΓM (M) ≤ ε0Γ(1)
√
ν1

k0

√
λ

M− p−1
2 . By the way

we have choosen C̄ we have w = (u− ū)+ = 0, that is u ≤ ū. By the definition of
ū (18) follows. �
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4.9. Theorem. Assume that (16) holds, −3 < q < 0, 1 < p < 2∗ − 1. Let λn be

a sequence of positive numbers with +∞ > λ := supn λn ≥ λ := infn λn > 0. Let
un be a sequence of weak solutions of Lu − a0u

q − λnu
p = 0 with un ≥ ũ, where

ũ is the unique solution of Lun − a0u
q
b = 0, as provided by Theorem 4.1. Then

supn ‖un‖∞ < +∞.

Proof. We follow the idea of [5]. Let xn be such that un(xn) = ‖un‖∞ and suppose
by contradiction that ‖un‖∞ → +∞. Using (20) we have, for n large

‖un‖∞ = un(xn) ≤ 2C0‖un‖∞Γ−1
((

C1(2 + λ))‖un‖p−1
∞

) 1
2dist(xn, ∂Ω)

)
which implies that, for a suitable ε1 > 0, we have:

dist(xn, ∂Ω) ≥ ε1‖un‖
2

p−1∞ . (21)

Let μn := un(xn)
2

p−1 and set vn(y) := μ
− 2

p−1
n un

(
xn + μ−1

n y
)
, so un(x) =

μ
2

p−1
n vn(μn(x− xn)) and vn(0) = 1. It follows that vn is a weak solution of

Lnvn = a0μ
2(q−p)
p−1

n vqn + λnv
p
n (22)

in W1,2
0 (Ω∗

n), where Lnv = −div[an(y)∇v] + bn(y)∇v with

an(y) := a(xn + μ−1
n y), bn(y) := μ−1

n b(xn + μ−1
n y),

and where Ω∗
n :=

{
y ∈ RN :xn + μ−1

n y ∈ Ω
}

= μn (Ω− xn). From the property
un ≥ ũ and (17), we get:

vn(y) ≥ μ
− 2

p−1
n ũ(xn + μ−1

n y) ≥ ε̄μ
2 q−p

(p−1)(1−q)
n dist(y,Ω∗

n)
2

1−q (23)

Let x′
n ∈ ∂Ω be such that |xn − x′

n| = dist(xn, ∂Ω). Up to subsequences we can
suppose that δn := μn|xn − x′

n| → δ ∈ [0,+∞] and λn → λ ∈]0,+∞[. By (21), we
have δ > ε1 > 0. We distinguish the cases δ < +∞ and δ = +∞.

Case 0 < δ < +∞. In this case both xn and x′
n converge to a point x0 ∈ ∂Ω.

Moreover y′n := μn(x
′
n − xn) → −δn(x0) =: y′. Performing a translation and a

rotation we can suppose that y′n = (0,−δn) (we are writing y = (ŷ, yN) with
ŷ ∈ RN−1).

Given R > 0 let ηR : RN → [0, 1] be a smooth function such that ηR(x) = 1
if |x| ≤ R, η(x) = 0 for |x| ≥ R+ 1 and |∇ηR| ≤ 2. Multiplying the equation (22)
by ηRvn the equation for vn and integrating on Ω∗

n yields:

αn(vn, ηRvn) = μ
2 q−p

p−1
n

∫
Ω∗

n

a0v
q+1
n ηR(y) dy + λn

∫
Ω∗

n

vp+1
n ηR(y) dy. (24)

The second term on the right is clearly bounded (since vn ≤ 1). By (23):

μ
2 q−p

p−1
n

∫
Ω∗

n

vq+1
n ηR(y) dy ≤ ε̄q+1μ

4(q−p)
(p−1)(1−q)
n

∫
Ω∗

n∩B(0,R+1)

dist(y, ∂Ω∗
n)

2(q+1)
1−q dy.
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Since q > −3, we have
2(q + 1)

1− q
> −1 so the integrals above are finite; it is then

clear that the integrals converge and the above expression tends to zero as n→∞.
Therefore the right-hand side of (24) is bounded. Consider vn = 0 outside Ω∗

n; it
is simple to check that, for n large:

αn(vn, ηRvn) ≥ ν

2

∫
B(0,R)

|∇vn|2 dy

so (24) implies that vn are bounded in W1,2(B(0, R)). We can therefore suppose
that vn ⇀ v in W1,2(B(0, R)); moreover considering a sequence of Rk with Rk →
+∞ and using a diagonalization argument we see that v is defined on the whole
RN and that vn ⇀ v in W1,2(B(0, R)) for every R > 0.

Now let y0, R be such that B(y0, R) ⊂ H− := {y = (ŷ, yN ) : yN < −δ}. It
is clear that for n large B(y0, R) ∩ Ω∗

n = ∅ so n = 0 on B(y0, R). This implies
that v = 0 (a.e.) in H−. Due to the regularity of ∂H− this implies that v = 0 on

∂H− in the sense of H1: indeed v is the W1,2
loc limit of suitable mollifications of

v(ŷ, yn − 1/n), which are zero on ∂H−.
Let H+ := {y = (ŷ, yN) : yN > −δ} and let ϕ ∈ C∞0 (H+). It is clear that

there exists ρ > 0 such that for n large we have dist(x,RN \ Ω∗
n) ≥ ρ for any x

with ϕ(x) �= 0; in particular ϕ ∈ C∞0 (Ω∗
n). By (23):∫

Ω∗
n

μ
2(q−p)
p−1

n vqn(y)ϕ(y) dy ≤ μ
2(q−p)

(p−1)(1−q)
n ε̄qρ

2q
1−q

∫
RN

|ϕ(y)| dy → 0

as n→∞. Hence, multiplying (22) by ϕ, integrating on Ω∗
n, and letting n→∞:∫

RN

a(x0)∇v∇ϕdy = λ

∫
Ω

vpϕdy ∀ϕ ∈ C∞0 (H+),

v ∈ W1, 2loc(H
+), and v = 0 on ∂H+ (in the sense of H1). By [5] v must be

zero. But if δ > δ1 > 0 we have that the right-hand side of (22) is uniformly
bounded in B(0, δ1): use again (23) and the fact that dist(B(0, δ1),RN \ Ω∗

n) ≥
(δ − δ1)/2 > 0 for n large. Then vn verifies an equation of the form Lnvn = hn

with Ln uniformly elliptic and with equibounded coefficients and with equibouned
data hn. This implies that vn are equi-Lipschitz continuous in B(0, δ1/2) so they
converge uniformly to v in B(0, δ1/2). In particular v(0) = 1 which contradicts
v = 0.

Case 0 < δ = +∞. This case can be treated with analogous arguments, following
the idea of [5], the difference being that the limit v would be a nontrivial solution
of L∞v − λvp = 0 in the whole RN : also this is impossible so un(xn) has to be
bounded. �

Proof of Theorem 1.1. Let ϕ1 := ũ (the solution of Lu = a0u
q): it is clear that ϕ1

is a subsolution for the problem Lu− aou
q − λup, for all λ > 0. Let:

λ̄ := sup {λ > 0 : there exists a supersolution ϕ2 with ϕ2 ≥ ϕ1} .
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Since ϕ1 > 0 it is clear that a supersolution ϕ2 ≥ ϕ1 for Lu − aou
q − λup is a

strict supersolution for Lu−aou
q−μup whenever 0 < μ < λ. So for every λ ∈]0, λ̄[

there exists a strict supersolution ϕ2,λ ≥ ϕ1. By Theorem 4.3 we know that λ̄ > 0
and that for every λ ∈]0, λ̄[ there exists a solution u1,λ with ϕ1 ≤ u1,λ ≤ ϕ2,λ.
Moreover, looking at the proof of 4.3, we see that, if u1,λ is unique among all
u ∈ Kϕ2,λ

ϕ1 which solve Lu = a0u
q + λup, then

deg
(
Id− Φ

ϕ2,λ
ϕ1 , B(u1,λ, ρ), 0

)
= 1.

for all ρ > 0 (by the excision property of the degree). By Theorem 3.14 there exists
ρλ > 0 such that u1,λ is the unique solution in Kϕ1 ∩B(u1,λ, ρλ) and

deg (Id− Φϕ1 , B(u1,λ, ρλ), 0) = 1. (25)

We claim that Lu = a0u
q+λup has no solutions for λ large; in particular λ̄ < +∞.

Indeed by coerciveness L has a positive eigenvalue λ1 with positive eigenfunction
e1. If u is a solution of Lu = a0u

q + λup, then:∫
Ω

(λ1u− a0u
q − λup) e1 dx = 0.

Since the function s �→ λ1 − a0s
q−1 − λsp−1 is negative in ]0,+∞[ for λ large the

above equality is impossible for such λ’s. In particular we have:

deg (Id− Φϕ1 , B(0, R), 0) = 0 ∀λ > λ̄, ∀R > 0.

Let 0 < λ′ < λ̄ < λ′′ < +∞. By Theorem 4.9 there exist R̄ > 0 such that for
all λ ∈ [λ′, λ′′] the problem Lu = a0u

q + λup has no solutions u outside the ball
B(0, R̄). By continuation:

deg
(
Id− Φϕ1 , B(0, R̄), 0

)
= 0 ∀λ ∈ [λ′, λ′′].

Along with (25), this implies that for λ′ ≤ λ < λ̄ u1,λ cannot be the unique solu-
tion, so there exists another solution u2,λ. Replacing ϕ1 with u1,λ in the previous
argument, it is clear that u2,λ ≥ u1,λ. Since λ′ > 0 is arbitrary, then we can find
u2,λ for all λ ∈]0, λ̄[.

Finally, taking λn < λ̄ with λn → λ̄, it follows from Theorem 4.9 that u1,λn

is bounded, thus providing, at the limit, a solution for the case λ = λ̄. �
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Nonuniqueness for the Dirichlet Problem
for Fully Nonlinear Elliptic Operators
and the Ambrosetti–Prodi Phenomenon

Boyan Sirakov

Abstract. We study the uniformly elliptic fully nonlinear PDE

F (D2u,Du, u, x) = f(x) in Ω,

where F is a convex positively 1-homogeneous operator and Ω ⊂ RN is a
regular bounded domain. We prove non-existence and multiplicity results for
the Dirichlet problem, when the two principal eigenvalues of F are of different
sign. Our results extend to more general cases, for instance, when F is not
convex, and explain in a new light the classical results of Ambrosetti–Prodi
type in elliptic PDE.

Mathematics Subject Classification (2010). 35J25, 35B34, 35P30.

Keywords. Bellman operator, Dirichlet problem, fully nonlinear, principal
eigenvalue, nonuniqueness, Ambrosetti–Prodi.

1. Introduction and main results

This paper is devoted to the study of the existence and the uniqueness of solutions
of the Dirichlet boundary value problem{

H(D2u,Du, u, x) = f(x) in Ω

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN is a bounded domain with C1,1-boundary, f ∈ L∞(Ω), and
H(M,p, u, x) is an uniformly elliptic fully nonlinear operator, globally Lipschitz
in (M,p) and locally Lipschitz in u. A particular type of operators to which our
results apply are Isaacs and Hamilton–Jacobi–Bellman operators. Boundary value
problems of this type have been very extensively studied in the framework of clas-
sical, strong and viscosity solutions, see for example [35], [24], [28], [19], [14], [17].
Most work on fully nonlinear problems concerns proper operators, that is, the case

Switzerland



406 B. Sirakov

when H is nonincreasing in u. Recently nonproper problems of type (1) have been
studied in [36] and [37], see also the references in these papers. The present work
continues a study started in [37].

For all M ∈ SN (R), p ∈ RN , define the extremal operators L−,L+ by

L−(M,p) =M−
λ,Λ(M)− γ |p|, L+(M,p) =M+

λ,Λ(M) + γ |p|,
for some positive constants λ,Λ, γ. Here M+,M− denote the Pucci operators
M+

λ,Λ(M) = supA∈A tr(AM), M−
λ,Λ(M) = infA∈A tr(AM), where A ⊂ SN de-

notes the set of matrices whose eigenvalues lie in the interval [λ,Λ].
We suppose that H in (1) satisfies the following hypothesis: for all M ∈

SN (R), p ∈ RN , u ∈ R, x ∈ Ω, and for some constants A0, c, δ,

F (M,p, u, x)−A0 ≤ H(M,p, u, x) ≤ L+(M,p) + c|u|+A0, (2)

where F (M,p, u, x) is some nonlinear operator, such that⎧⎪⎨⎪⎩
L−(M,p)− δ|u| ≤ F (M,p, u, x) ≤ L+(M,p) + δ|u|

F (tM, tp, tu, x) = tF (M,p, u, x) for t ≥ 0

F is convex in (M,p, u), F (M, 0, 0, x) ∈ C(SN (R)× Ω,R).
(3)

We assume that H is Lipschitz continuous and uniformly elliptic, in the following
sense: for each R ∈ R there exists cR ∈ R such that for all M,N ∈ SN (R),
p, q ∈ RN , x ∈ Ω, u, v ∈ [−R,R],{

H(M,p, u, x)−H(N, q, v, x) ≥ L−(M −N, p− q)− cR|u− v|
H(M,p, u, x)−H(N, q, v, x) ≤ L+(M −N, p− q) + cR|u− v|. (4)

Note that (3) implies (4) with H = F and cR = δ, see [37] (or inequalities (7)
below). Our final standing assumption is that the proper operator

Hv[u] := H(D2u,Du, v(x), x)− u (5)

satisfies the comparison principle for each v ∈ C(Ω), in the sense that if Hv[u1] ≥
f ≥ Hv[u2] in Ω, and v1 = v2 = 0 on ∂Ω then v1 ≤ v2 in Ω. This is satisfied for
instance when H is Hölder continuous in x with a sufficiently large Hölder constant
or when H is convex in M and H(M, 0, 0, x) is uniformly continuous. Many other
conditions which ensure uniqueness for proper equations can be found in [19], [31],
[14], [32].

For instance, F can be a Hamilton–Jacobi–Bellman (HJB) operator, that
is, a supremum of linear second-order operators with bounded coefficients and
continuous second-order coefficients – see [37] for examples and discussions. HJB
operators are basic in control theory. On the other hand, H can be an Isaacs
operator, that is, a sup-inf of linear operators (these operators are essential in
game theory). The Dirichlet problem for such operators has been widely studied
in the proper case, and still many open question subsist, see the references above.
Of course H can be a semilinear or quasilinear operator satisfying the hypotheses
we made.
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It was shown in [34], [9], [37] (see also [11], [5] for related results) that un-
der hypothesis (3) F has two principal eigenvalues λ+

1 (F,Ω) ≤ λ−
1 (F,Ω), which

correspond to a positive and a negative eigenfunction, such that (1) with H = F
has a unique solution for all f if λ+

1 > 0, while if λ−
1 > 0 ≥ λ+

1 then (1) has a
solution for f ≥ 0 but (1) does not have solutions for f ≤ 0, f �≡ 0. The question
of uniqueness in the last case was left open, since λ−

1 > 0 alone does not imply a
comparison principle. It is this question that we address in the present article. We
will show that uniqueness fails when only one of the two eigenvalues is positive.

We will use the following decomposition of the right-hand side f(x) in (1)

f(x) = −tφ(x) + h(x),

where t ∈ R, φ = ϕ+
1 (F0,Ω) is the first positive eigenfunction of the operator

F0(M,p, x) = F (M,p, 0, x), normalized so that maxΩ φ = 1. The existence of

φ ∈W 2,p
loc (Ω)∩C(Ω), p <∞, φ > 0 in Ω, F0(D

2φ,Dφ, x) = −λ+
0 φ in Ω was shown

in [37]. Since F0 is proper, we have λ+
0 = λ+

1 (F0,Ω) > 0, see [37].

Whenever we speak of a solution of (1) we shall mean a function in C(Ω)
which satisfies (1) in the LN -viscosity sense. See [14] for definitions and properties

of these solutions. Note that u ∈ W 2,N
loc (Ω) ∩C(Ω) satisfies (1) almost everywhere

in Ω if and only if it is a LN -viscosity solution of (1).

Here is our main result.

Theorem 1. Suppose F and H verify (2)–(5), and

λ+
1 (F,Ω) < 0 < λ−

1 (F,Ω). (6)

Then for each h ∈ L∞(Ω) there exists a number t∗(h) ∈ R such that:

(1) if t < t∗(h) then (1) has at least two solutions;
(2) if t = t∗(h) then (1) has at least one solution;
(3) if t > t∗(h) then (1) has no solutions.

The map h→ t∗(h) is continuous from L∞(Ω) to R.

Remark 1. If H(M,p, u, x) is convex in M then the solutions obtained in Theorem

1 belong to W 2,p
loc (Ω) ∩ C(Ω), for all p <∞.

The acknowledged reader may have noticed that the conclusion in Theorem 1
is similar to results obtained in the framework of the so-called Ambrosetti–Prodi
problem, classical in the theory of semilinear elliptic PDE’s. We shall quote here the
original work [3], as well as the subsequent developments [10], [33], [20], [29], [23],
[38], [16], [22]. Quasilinear operators were recently considered in [4], [7]. Here is the
most typical Ambrosetti–Prodi type result: given the operator HL(M,p, u, x) =
tr(A(x)M) + b(x).p + g(x, u), if g is a Lipschitz function such that g(x, u) ≥
c1u

+ − c2u
− − c0, and if c1 > λ1 > c2, where λ1 is the usual first eigenvalue of

the linear operator L(M,p, x) = tr(A(x)M) + b(x).p, then the same conclusion as
in Theorem 1 holds for (1) with H = HL. Actually, this statement is nothing but
Theorem 1 applied to H = HL and F = FL, where

FL(M,p, u, x) = tr(A(x)M) + b(x).p+ c1u
+ − c2u

−.
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Here u+ = max{u, 0}, u− = −min{u, 0}, A ∈ C(Ω) is a positive definite matrix, b
is a bounded vector, and c1 > c2. Then λ+

1 (FL,Ω) (resp. λ
−
1 (FL,Ω)) is obviously

equal to λ1 − c1 (resp. λ1 − c2).

In other words, and this is the second main conclusion of the paper, the
Ambrosetti–Prodi phenomenon turns out to be due to nonuniqueness of solutions
of the Dirichlet problem for a convex nonlinear operator with one positive and one
negative principal eigenvalue.

Remark 2. Many of the quoted papers on the Ambrosetti–Prodi problem contain
results also for systems of equations or for the case when g(x, u) in HL does not
have a linear but rather a power growth in u. Such extensions for fully nonlinear
equations and systems of type (1) might be the subject of a future work.

Remark 3. It is only a matter of technicalities to show the results extend to the
case when h(x) in (1) and A0 in (2) belong to Lp(Ω), p > N .

The next section contains the proof of Theorem 1. Its overall scheme (that
is, the statements of the steps of the proof) is similar to the classical one used
to prove the Ambrosetti–Prodi type results quoted above. It combines Perron’s
method with a priori bounds and degree theory, see the next section for more
details. Of course, the proofs of some steps are rather different, and require a
specific nonlinear approach. We find it quite remarkable how naturally the theory
of viscosity solutions and eigenvalues for fully nonlinear operators permit to carry
out these proofs. We begin the next section by an overview.

Remark. The results of this paper first appeared as a preprint in 2008. This
preprint was later used a basis for the more detailed study of resonance prob-
lems in [26], as well as for the result of the same type in [21] on more general fully
nonlinear operators modeled on |∇u|γM+

λ,Λ(D
2u). Other related results can be

found in [6], [27].

2. Proof of Theorem 1

From now on h ∈ L∞(Ω) will be fixed and we shall refer to (1) as problem (Pt) or
(Pt,h), when we need to stress the dependence on t or h.

We first give the plan of the proof of Theorem 1.

1. prove an a priori upper bound on t, such that (Pt) has a solution;
2. prove an a priori bound on u, for t ≥ −C;
3. prove subsolutions of (Pt) exist for all t, supersolutions exist for sufficiently

small t, deduce by Perron’s method that solutions of (Pt) exist for t ∈
(−∞, t∗);

4. prove for each t ∈ (−∞, t∗) there exists a subsolution of (Pt) which is smaller
than all solutions of (Pt);

5. use fixed point theorems and degree theory to conclude.
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Let us review the main points and the difficulties in the proofs. Steps 1 and 2
above are rather classical for operators in divergence form, that is, for cases when
(1) has an equivalent formulation in terms of integrals. Then one can prove Step
1 by testing the equation with the first eigenfunction of F0 and after that carry
out a contradiction (blow-up) argument to obtain the statement in Step 2. This is
not possible for operators in non-divergence form. Recently a different method was
developed in [22], for the semilinear operators FL, HL, which gives a simultaneous
proof of Steps 1 and 2, and which applies to operators with power growth in u.
The proof in [22] depends on the linearity of L = F0. We will show here that it
is actually the nonlinear structure of F and H , as described in our hypotheses,
which provides for such a method to be applicable.

Further, Step 3 above is proved with the help of an one-sided Alexandrov–
Bakelman–Pucci (ABP) inequality combined with an existence result, both ob-
tained in [37], for operators with only one positive principal eigenvalue, which we
recall below.

Another important difference with the semilinear case appears in proving
Step 4. If F = FL then it is automatic that the restriction of FL to the cone
{(M,p, u, x) : u ≤ 0} satisfies a comparison principle in this cone (since FL

is linear and coercive there). In the nonlinear case this is not clear; however we
manage to prove that subsolutions can be chosen to satisfy properties which permit
to us to use a more restrictive comparison result, which we establish, based on the
fraction rather than the difference between the two functions that we compare –
see Lemma 2.5 and the comments there.

Finally, the multiplicity result (Step 5) relies on an argument which uses the
properties of the Leray–Schauder degree of compact maps.

We next list several preliminary results, mostly from [37]. It was shown in
[37] that hypothesis (3) implies{

F (M −N, p− q, u− v, x) ≥ F (M,p, u, x)− F (N, q, v, x)

F (M +N, p+ q, u+ v, x) ≤ F (M,p, u, x) + F (N, q, v, x),
(7)

for all M,N ∈ SN (R), p, q ∈ RN , u, v ∈ R, x ∈ Ω.

We recall that the principal eigenvalues of F are defined by

λ+
1 (F,Ω) = sup {λ ∈ R | ∃ψ > 0 in Ω, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in Ω},

λ−
1 (F,Ω) = sup {λ ∈ R | ∃ψ < 0 in Ω, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in Ω}.

In the sequel we shall need the following one-sided ABP estimate, obtained in
[37]. A complete version of the Alexandrov–Bakelman–Pucci inequality for proper
operators can be found in [14] (an ABP inequality for the Pucci operator was first
proved in [13]). We recall that λ+

1 , λ
−
1 are bounded above and below by constants

which depend only on N, λ,Λ, γ, δ,Ω, and that both principal eigenvalues of any
proper operator are positive, see [37].
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Theorem 2 ([37]). Suppose the operator F satisfies (3).

I. If λ−
1 (F,Ω) > 0 then for any u ∈ C(Ω), f ∈ LN(Ω), the inequality F (D2u,

Du, u, x) ≤ f implies

sup
Ω

u− ≤ C(sup
∂Ω

u− + ‖f+‖LN(Ω)),

where C depends on Ω, N, λ,Λ, γ, δ.

II. In addition, if λ+
1 (F,Ω) > 0 then F (D2u,Du, u, x) ≥ f implies

sup
Ω

u ≤ C(sup
∂Ω

u+ + ‖f−‖LN (Ω)).

Set Ep = W 2,p
loc (Ω)∩C(Ω), p ≥ N . We shall use the following existence result.

Theorem 3 ([37]). Suppose the operator F satisfies (3).

I. If λ−
1 (F,Ω) > 0 then for any f ∈ Lp(Ω), p ≥ N , such that f ≥ 0 in Ω, there

exists a solution u ∈ Ep of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω, such
that u ≤ 0 in Ω.

II. In addition, if λ+
1 (F,Ω) > 0 then for any f ∈ Lp(Ω), p ≥ N , there exists a

unique solution u ∈ Ep of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω.

We will actually need to apply parts II in the above two theorems only to
the proper operator F0(M,p, x) = F (M,p, 0, x).

We now move to the proof of Theorem 1. First we will show that solutions of
(Pt) admit an a priori bound, which is uniform in t ∈ (m,∞), for each m ∈ R. In
the sequel C will denote a constant which may change from line to line and which
depends on N, λ,Λ, γ, δ, A0, c, Ω, and ‖h‖L∞(Ω).

The next proposition realizes Steps 1 and 2 (see the beginning of this section)
of the proof of Theorem 1.

Proposition 2.1. For each m0 ∈ R+ there exists a constant C such that for any
t ≥ −m0 and any solution u of (Pt) we have

‖u‖L∞(Ω) ≤ C and t ≤ C.

In particular, there do not exist solutions of (Pt) for large t.

Proof. We divide the proof in three steps.

Claim 1. For each m0 ∈ R+ there exists a constant C = C(m0) such that for any
t ≥ −m0 and any solution u of (Pt) with this t we have

‖u−‖L∞(Ω) ≤ C.

Proof. This is an immediate consequence of (2), (6), and Theorem 2 I with f
replaced by m0φ+ h. �
Claim 2. There exists a constant C such that for solution u of (Pt) we have

t ≤ C(1 + ‖u‖L∞(Ω)).
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Proof. By (2) and the definition of φ we have

F (D2u,Du, u, x)− t

λ+
0

F (D2φ,Dφ, 0, x) ≤ h(x) +A0. (8)

By (7) and (3) we have (recall we have set F0(M,p, x) = F (M,p, 0, x))

F (M,p, u, x) ≥ F (M,p, 0, x)− F (0, 0,−u, x)
≥ F0(M,p, x)− δ|u|.

Hence, by (7), (8), and the homogeneity of F

−F0

(
D2

(
−u+

t

λ+
0

φ

)
, D

(
−u+

t

λ+
0

φ

)
, x

)
≤ h(x) +A0 + δ|u|.

Then the second part of Theorem 2 implies that for all x ∈ Ω

−u(x) + t

λ+
0

φ(x) ≤ C‖h(x) +A0 + δ|u|‖L∞(Ω).

Taking x such that φ(x) = maxΩ φ = 1 finishes the proof of Claim 2. �

Conclusion. Suppose the a priori bound on u in the statement of Proposition 2.1 is
false, that is, there exist sequences {tn}, {un} such that tn ≥ −m0, ‖un‖L∞(Ω) →
∞, and

H(D2un, Dun, un, x) = −tnφ+ h.

By (2), (3) and Claim 2 we have

L−(D2un, Dun) ≤ δ‖un‖L∞(Ω) +m0 +A0 + h

L+(D2un, Dun) ≥ −C(1 + ‖un‖L∞(Ω)) + h.

Hence, setting vn = un/‖un‖ (so that ‖vn‖L∞(Ω) = 1),

L−(D2vn, Dvn) ≤ C and L+(D2vn, Dvn) ≥ −C.
We now use the following result from the general theory of viscosity solutions

of fully nonlinear PDE (it is a particular case, for instance, of Proposition 4.2
in [17]).

Proposition 2.2. For any given M ∈ R the set of functions u ∈ C(Ω) such that

‖u‖L∞(Ω) ≤M, L−(D2u,Du) ≤M, and L+(D2u,Du) ≥ −M
is precompact in C(Ω).

Hence a subsequence of {vn} converges uniformly to a function v in Ω. Note
that v ≥ 0 in Ω, by Claim 1, and ‖v‖L∞(Ω) = 1.

Again by (2) F (D2un, Dun, un, x) ≤ m0+A0+h, so, by the homogeneity of F

F (D2vn, Dvn, vn, x) ≤ o(1).

By viscosity solutions theory (see Theorem 3.8 in [14]) we can pass to the limit in
this inequality, obtaining

F (D2v,Dv, v, x) ≤ 0. (9)
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We recall the following strong maximum principle (Hopf lemma), a consequence
from the results in [8].

Proposition 2.3 ([8]). Let O ⊂ RN be a regular domain and let γ ∈ R, δ ≤ 0.
Suppose w ∈ C(O) is a viscosity solution of

M−
λ,Λ(D

2w)− γ|Dw| − δw ≤ 0 in O,

and w ≥ 0 in O. Then either w ≡ 0 in O or w > 0 in O and at any point x0 ∈ ∂O
at which w(x0) = 0 we have

lim inf
t↘0

w(x0 + tν)− w(x0)

t
> 0,

where ν is the interior normal to ∂O at x0.

Therefore v > 0 in Ω. Using (9), the existence of such function contradicts
the definition of λ+

1 (F,Ω) and the hypothesis λ+
1 (F,Ω) < 0.

Hence ‖u‖L∞(Ω) is bounded, and, by Claim 2, t is bounded as well. �
We turn to existence of subsolutions and supersolutions of (Pt). We shall

need the following boundary Lipschitz estimate for fully nonlinear equations (for
a proof see Proposition 4.9 in [37]).

Proposition 2.4. Suppose H satisfies (4) and Ω satisfies a uniform exterior sphere
condition. Suppose u ∈ C(Ω) satisfies H(D2u,Du, u, x) = h, u = 0 on ∂Ω,
where h ∈ L∞(Ω). Then there exists a constant k depending on N, λ,Λ, γ, δ,
diam (Ω), ‖u‖L∞(Ω), ‖h‖L∞(Ω), and the radius of the exterior spheres, such that
for each x0 ∈ ∂Ω

|u(x)| ≤ k|x− x0| for each x ∈ Ω.

First we deal with the existence of supersolutions.

Lemma 2.1. There exists t0 ∈ R, depending on the constants in (2)–(4) and on
‖h‖L∞(Ω), such that for each t ≤ t0 there exists a supersolution u of (Pt), such
that u ≥ 0 in Ω, u ∈ Ep, p <∞.

Proof. Let u be the unique solution of the Dirichlet problem (see Theorem 3 above,
or Corollary 3.10 in [14]){L+(D2u,Du) = −h−(x) in Ω

u = 0 on ∂Ω,
(10)

The ABP inequality shows that u ≥ 0 in Ω, ‖u‖L∞(Ω) ≤ C and u satisfies the
boundary inequality in Proposition 2.4. On the other hand, the Hopf lemma and
the inequality F0(D

2φ,Dφ, x) ≤ 0 imply that there exists a constant α > 0 such
that for all x0 ∈ ∂Ω

lim inf
t↘0

φ(x0 + tν)− φ(x0)

t
≥ α,

where ν is the inner normal to ∂Ω. Therefore there exists t0 < 0 such that −t0φ ≥
δu in Ω. Hence by (2) we have H(D2u,Du, u, x) ≤ −tφ + h, for all t ≤ t0, which
is the required result. �
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The next lemma concerns the existence of subsolutions.

Lemma 2.2. For any t ∈ R there exists a subsolution u ≤ 0 in Ω, u ∈ Ep, p <∞,
of (Pt). In addition, given a compact interval I ⊂ R, u can be chosen so that u ≤ u
in Ω, for all solutions u of (Pt), t ∈ I.

The difficulty in Lemma 2.2 is in the second statement. As a step in its
proof, we will obtain the following uniform boundary Hopf lemma, which is of
independent interest.

Lemma 2.3. Assume Ω satisfies an uniform interior sphere condition. Suppose
F satisfies (3), λ−

1 (F,Ω) > 0, and f �≡ 0, 0 ≤ f ≤ M in Ω. Then there exists
α0 > 0 depending only on λ,Λ, ν, δ, Ω, and M , such that for any solution of
F (D2u,Du, u, x) = f in Ω, u ≤ 0 in Ω, u = 0 on ∂Ω, and all x0 ∈ ∂Ω we have

Vx0(u) := lim inf
t↘0

u(x0)− u(x0 + tν)

t
≥ α0.

Proof. Suppose the lemma is false, that is, there is a sequence of solutions un ≤ 0
in Ω and points xn ∈ ∂Ω (we can suppose xn → x ∈ ∂Ω) such that Vxn(un) → 0.
Note that ‖un‖L∞(Ω) ≤ C, by Theorem 2. From (3) we have

L−(D2un, Dun) ≤ C and L+(D2un, Dun) ≥ −C.
By Proposition 2.2 a subsequence of {un} converges uniformly to a function u in
Ω, and F (D2u,Du, u, x) = f in Ω. Note that, by the strong maximum principle,
un < 0 and u < 0 in Ω (since f �≡ 0 excludes un ≡ 0 or u ≡ 0).

By (3) and properties of Pucci operators (M−(M) = −M+(−M)), the pos-
itive functions vn = −un satisfy

M−
λ,Λ(D

2vn)− ν|Dvn| − δvn ≤ 0 (11)

in Ω. Let ρ be the radius of the interior spheres. Fix p ∈ ∂Ω and let Bρ ⊂ Ω be a
ball tangent to ∂Ω at p. Introduce the (standard) barrier function, defined in Bρ,

z(r) = e−βr2 − e−βρ2

,

where r is the distance to the center of Bρ and β is a positive constant yet to be
chosen. We recall the following fact.

Lemma 2.4. Suppose u ∈ C2(B) is a radial function, defined on a ball B, say
u(x) = g(|x|). Then the matrix D2u(x) has g′′(|x|) as a simple eigenvalue, and
|x|−1g′(|x|) as an eigenvalue of multiplicity N − 1.

Using this lemma and the fact that

M−
λ,Λ(M) = λ

∑
{ei>0}

ei + Λ
∑

{ei<0}
ei, M+

λ,Λ(M) = Λ
∑

{ei>0}
ei + λ

∑
{ei<0}

ei,

where ei denote the eigenvalues of M , an elementary computation shows that

M−
λ,Λ(D

2z)− ν|Dz| − δz ≥ 0 (12)
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in the annulus Bρ \ Bρ/2, if β = β(ρ) is chosen sufficiently large. Let the point
qn ∈ ∂Bρ/2 be such that vn(qn) = min∂Bρ/2

vn and set

σn =
vn(qn)

e−β(ρ/2)2 − e−βρ2 .

Then σnz ≤ vn on ∂(Bρ \ Bρ/2) and, by the comparison principle for proper
operators (see [14] or [37], note that the operator which appears in (11),(12) is
proper), σnz ≤ vn in Bρ \Bρ/2. Hence

σn
∂z

∂ν
(p) ≤ −Vp(vn) = Vp(un),

which implies

min
∂Bρ/2

vn ≤ a0Vp(un)

for some a0 > 0, which depends on the appropriate quantities, and for all p ∈ ∂Ω.
Therefore, there exists a sequence of points yn ∈ Ω such that dist(yn, ∂Ω) ≥
ρ/2 and vn(yn) → 0. Hence there exists a point y ∈ Ω such that v(y) = 0, a
contradiction. �

Proof of Lemma 2.2. Set M = A0 + supt∈I ‖−tφ+ h‖L∞(Ω). By Theorem 3, there

exists a solution u < 0 in Ω of F (D2u,Du, u, x) = M in Ω, u = 0 on ∂Ω. Hence u
is a subsolution of (Pt) for t ∈ I, by (2).

Next, note that if u is a solution of (Pt) for some t ∈ I, then both functions
ψ = u and ψ = 0 are solutions of the inequality

F (D2ψ,Dψ, ψ, x) ≤ F (D2u,Du, u, x).

Since −u− = min{u, 0} and the minimum of two viscosity supersolutions is a
viscosity supersolution, we have

F (D2(−u−), D(−u−),−u−, x) ≤ F (D2u,Du, u, x).

Observe we cannot directly infer from this inequality that u ≤ −u− ≤ u since
F does not satisfy a comparison principle (λ+

1 (F,Ω) < 0). However, as we will
show now, we can gain enough information on these functions in order to prove
the inequality by considering their quotient instead of their difference.

By Proposition 2.4 and Lemma 2.3 we can fix k sufficiently large so that for
any solution u of (Pt), t ∈ I, and any x0 ∈ ∂Ω we have

lim sup
t↘0

−u−(x0 + tν)

ku(x0 + tν)
≤ 1

4

Note that ku is a subsolution of (Pt) for k ≥ 1 and t ∈ I, by (2) and (3).
Fix a solution u of (Pt), t ∈ I. Then there exists d > 0 sufficiently small, so

that, setting Ωd = {x ∈ Ω : dist(x, ∂Ω) > d}, we have

0 < w :=
−u−

ku
≤ 1

2
in Ω \ Ωd.
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The proof of Lemma 2.2 is finished with the help of the following comparison
result.

Lemma 2.5. Suppose v1, v2 are such that v1 ≤ 0, v2 < 0 in Ω, v2 ∈ Ep, p <∞,

F (D2v1, Dv1, v1, x) ≤ F (D2v2, Dv2, v2, x) in Ω, (13)

0 < F (D2v2, Dv2, v2, x) in Ω, (14)

and, for some d > 0, w :=
v1
v2

<
1

2
in Ω \ Ωd. Then v1 > v2 in Ω.

Remark. Considering the quotient rather than the difference of two functions can
often be a successful technique when proving comparison results for a nonlinear
operator. For fully nonlinear equations this has been used, in a different setting,
for instance in [11].

Proof of Lemma 2.5. For any two vectors p, q ∈ RN we denote the symmetric
tensorial product by p⊗ q = 1

2 (piqj + pjqi)
N
i,j=1 ∈ SN . By replacing v1 by wv2 in

(13) and by using (7) and the homogeneity of F we get

wF (Dv2, Dv2, v2, x) + v2F (D2w + 2
Dv2
v2

⊗Dw,Dw, 0, x)

= F (wDv2, wDv2, wv2, x)− F (−v2D2w − 2Dv2 ⊗Dw,−v2Dw, 0, x)

≤ F (D2v1, Dv1, v1, x) ≤ F (D2v2, Dv2, v2, x),

(15)

where we have used the equality

D2(u1u2) = u1Du2 + 2Du1 ⊗Du2 + u2Du1,

valid for u1, u2 ∈ Ep. In case u1 is only continuous, we use test functions in Ep to
prove (15) – this is very standard, so we shall omit it.

We obtain from (15)

F̃ (D2(w − 1), D(w − 1), x) + c(x)(w − 1) ≥ 0 in Ωd/2, (16)

where we have set

F̃ (M,p, x) = F (M + 2b(x)⊗ p, p, 0, x),

b(x) =
Dv2(x)

v2(x)
∈ L∞(Ωd/2),

c(x) =
F (D2v2(x), Dv2(x), v2(x), x)

v2(x)
< 0,

by (14). Note that w − 1 < 0 in a neighbourhood of ∂Ωd/2. Then the existence of
a point in Ωd/2 at which w− 1 attains a positive maximum would contradict (16)
– just test (16) with a constant function. So w − 1 ≤ 0. Finally, w − 1 < 0 is a
consequence of the strong maximum principle. �

The following existence result is an easy consequence from the previous lem-
mas.
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Proposition 2.5. There exists a number t∗ such that problem (Pt) has a solution
for t ≤ t∗ and does not have a solution for t > t∗.

Proof. We use the following lemma which is based on Perron’s method. This type
of result in the viscosity setting goes back at least to Ishii [30] – recall we assumed
in the introduction that the operator Hv[u] satisfies the comparison principle.

Lemma 2.6. Suppose u0 ∈ EN is a subsolution and v0 ∈ EN is a supersolution
of H(D2u,Du, u, x) = f , where f ∈ L∞(Ω), H satisfies (4). Suppose in addition
that u0 ≤ v0 in Ω, u0 ≤ 0 on ∂Ω, and v0 ≥ 0 on ∂Ω. Then there exists a solution
u of {

H(D2u,Du, u, x) = f in Ω

u = 0 on ∂Ω.

For a proof of this lemma see for example Lemma 4.3 in [37].

Next, set

t∗ = sup{t ∈ R : (Pt) has a supersolution}.
It follows from Lemmas 2.6 and 2.2 that if for some t problem (Pt) has superso-
lution then it has a solution. It is obvious that if u is a supersolution for (Pt0)
then it is also a supersolution for all (Pt), t < t0. By Lemma 2.1 t∗ is well defined
and by Proposition 2.1 t∗ is finite. The existence of solution for t = t∗ follows
from a passage to the limit tn → t∗, thanks to Proposition 2.2 and Theorem 3.8
in [14]. �

Now we can move to the realization of Step 5 of the proof of Theorem 1. The
argument which follows is inspired by a classical reasoning of Amann [1], [2]. We
refer for instance to [15] for a systematic treatment of existence results based on
degree theory.

In what follows we shall use the following global C1,α-estimate, proved in
[40], [39], [41].

Theorem 4. Suppose H satisfies (4), Ω is a C1,1-domain and u is a solution of (1).
Then there exists α,C0 > 0 depending on N, λ,Λ, γ, δ,Ω, such that u ∈ C1,α(Ω),
and

‖u‖C1,α(Ω) ≤ C0

(‖u‖L∞(Ω) + ‖f‖L∞(Ω)

)
.

Let t1 be such that there exists a solution u for (Pt1). Fix t < t1. Then u is
a strict supersolution of (Pt). By Lemma 2.2 there is a subsolution u of (Pt) such
that u < u in Ω. By the choice of u, u and Hopf’s lemma, we can also ensure that
∂u
∂ν < ∂u

∂ν on ∂Ω.

Let cR0 is the constant from hypothesis (4), with

R0 = max{‖u‖L∞(Ω), ‖u‖L∞(Ω)}.
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For any v ∈ C(Ω) we define Hv(M,p, x) = H(M,p, v(x), x). For each v ∈
C(Ω) we denote with u = Kt(v) the solution of the Dirichlet problem{

Hv(D
2u,Du, x)− cR0u = f(x)− cR0v in Ω

u = 0 on ∂Ω.
(17)

This problem has a unique solution, by hypothesis (5), Theorem 3, and Perron’s
method. By the ABP inequality Kt maps bounded sets in C(Ω) into bounded sets
in C(Ω). Hence, by Proposition 2.2 and Theorem 4 (recall C1,α(Ω) ↪→ C1(Ω) is
compact) the map Kt sends bounded sets in C1(Ω) into precompact sets in C1(Ω),
that is, Kt : C1(Ω) → C1(Ω) is a compact map. Note that solutions of (1) are
fixed points of Kt and vice versa.

Define

O =

{
v ∈ C1(Ω) : u < v < u in Ω and

∂u

∂ν
<

∂v

∂ν
<

∂u

∂ν
on ∂Ω

}
.

Note the set O is open in C1(Ω).

Claim. Kt(O) ⊂ O. In particular, Kt(O) ∩ ∂O = ∅.
To prove this claim it is sufficient to show that if u ≤ v ≤ u in Ω then

u < Kt(v) < u in Ω and ∂u
∂ν < ∂Kt(v)

∂ν < ∂u
∂ν on ∂Ω.

So let v ∈ C(Ω) be such that u ≤ v ≤ u and set u = Kt(v). Then we have,
by (4),

H(D2u,Du, u(x), x) = H(D2u,Du, u(x), x) + cRu− cRu

≥ H(D2u,Du, v(x), x) + cRv − cRu

= f(x) + cRu− cRu

> H(D2u,Du, u(x), x) + cR(u− u).

This implies, again by (4),

L+(D2(u− u), D(u− u))− cR(u − u) > 0

in Ω, and u − u = 0 on ∂Ω. It follows from the maximum principle for proper
operators (or from Theorem 2) and from the strong maximum principle that u < u

in Ω and ∂u
∂ν < ∂u

∂ν on ∂Ω. In the same way we obtain the inequality for u. �

To finish the proof of our main theorem we shall use the following lemma,
concerning the Leray–Schauder degree of the compact map I−Kt. It is well known
how to prove this type of result, we give a proof for completeness.

Lemma 2.7. For any t0 ∈ (−∞, t∗) there exist R1, R2 ∈ R such that R1 < R2 and

deg(I −Kt0 ,O ∩ BR1 , 0) = 1 and deg(I −Kt0 ,BR2 , 0) = 0, (18)

where BR = {u ∈ C1(Ω) : ‖u‖C1(Ω) < R}.
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Proof. Let R̄ be an upper bound (given by Theorem 4) for C1(Ω)-norms of solutions
of (17) with ‖v‖L∞(Ω) ≤R0. Set R1 =max{R̄, ‖u‖C1(Ω),‖u‖C1(Ω)} +1. To prove

the first equality in (18), fix w ∈ O ∩ BR1 and consider the compact homotopy
H(s, v) = Hs(v) = sKt0(v) + (1 − s)w, for s ∈ [0, 1], v ∈ C(Ω). By the choice of
R1 and the claim above we have (I −Hs)(u) �= 0 for all u ∈ ∂(O ∩ BR1) and all
s ∈ [0, 1]. Hence

deg(I −H1,O ∩ BR1 , 0) = deg(I −H0,O ∩ BR1 , 0) = 1,

since H0 is a constant mapping.

By combining Proposition 2.1 with Theorem 4 we see that for each m0 there
exists an uniform bound C̃(m0) for the C1(Ω)-norms of the solutions of (Pt) with

t ≥ m0. Then we take R2 = max{C̃+1, R1+1}, where C̃ = C̃(t0). Set t1 = t∗+1.
Clearly the mapping K(t, u) = Kt(u), t ∈ [t0, t1], is a compact homotopy linking
Kt0 to Kt1 . Further, we have (I −Kt)(u) �= 0 for all u ∈ ∂BR2 and all t ∈ [t0, t1],
by Proposition 2.1 and the choice of R2. Hence

deg(I −Kt0 ,BR2 , 0) = deg(I −Kt1 ,BR2 , 0).

But the last degree is zero, since Kt1 has no fixed points at all, by Proposition 2.5.
This proves the second equality in (18). �

So, to complete the proof of the multiplicity result in Theorem 1 we can
use the excision property of the degree together with Lemma 2.7, which leads to
deg(I−Kt0 ,BR2 \ (O ∩ BR1), 0) = −1, hence problem (1) (i.e., problem (Pt0)) has
a second solution in BR2 \ (O ∩ BR1), apart from the solution in O ∩ BR1 , given
by Proposition 2.5.

Finally, let us show the mapping h → t∗(h) is continuous. Suppose that
hn ⇒ h in Ω. Set t∗n = t∗(hn), t

∗ = t∗(h). Note t∗n is bounded above, by Proposition
2.1. Furthermore, we have t∗n ≥ t∗(−‖h‖L∞(Ω) − 1) for large n, since any solution
of (1) with h replaced by −‖h‖L∞(Ω) − 1 is a supersolution of (Pt∗n,hn). So t∗n is
bounded. Take a subsequence of t∗n and let a be the limit of some subsequence of
this subsequence (which we denote by t∗n again). Let un be a solution of (Pt∗n,hn)
(we already know such a solution exists). By Proposition 2.1 {un} is bounded
in L∞(Ω). Hence, by the equation satisfied by un, (4) and Proposition 2.2, some
subsequence of un converges to a solution of (Pa,h). Hence a ≤ t∗.

Suppose a < a + 3ε < t∗, for some ε > 0. Let u be a positive supersolution
of (Pa+3ε,h) – we already know such supersolutions exist. Let wn be the solution
of the Dirichlet problem{L+(D2wn, Dwn) = hn − h in Ω

wn = 0 on ∂Ω.

By the ABP inequality and the boundary estimate (Theorem 2 and Proposition
2.4), we have wn ⇒ 0 and cR|wn| ≤ εφ in Ω for large n, where cR is the constant
from (4), with R = ‖u‖L∞(Ω) + 1.
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Set vn = u+ wn. Then, by (4), if n is sufficiently large,

H(D2vn, Dvn, vn, x) ≤ H(D2vn, Dvn, vn, x)−H(D2u,Du, u, x)

− (a+ 3ε)φ+ h

≤ L+(D2wn, Dwn) + cRwn − (t∗n + 2ε)φ+ h

≤ − (t∗n + ε)φ+ hn,

Hence vn is a positive supersolution of (Pt∗n+ε,hn) which implies that this problem
has a solution as well (we know subsolutions always exist). This is a contradiction
with the definition of t∗n.
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Bifurcation at Isolated Eigenvalues
for Some Elliptic Equations on RN

C.A. Stuart

Abstract. This paper concerns the bifurcation of bound states u ∈ L2(RN )
for a class of second-order nonlinear elliptic eigenvalue problems that includes
cases which are already known to exhibit some surprising behaviour. By treat-
ing a larger class of nonlinearities we cover new cases such as a situation where
there is no bifurcation at a simple isolated eigenvalue lying at the bottom of
the spectrum of the linearization. As an application of recent work on bifur-
cation for problems that are only Hadamard differentiable, we also establish
bifurcation at all isolated eigenvalues of odd multiplicity which are sufficiently
far from the essential spectrum.
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1. Introduction

As has already been shown in several earlier contributions [3, 15, 17], the study
of bifurcation for bound states u ∈ L2(RN ) of simple looking elliptic equations
such as

−Δu+ V u+
u3

ξ2 + u2
= λu, (1.1)

where V ∈ L∞(RN ) and ξ ∈ L2(RN )∩C(RN ) with ξ > 0 on RN , reveals a number
of surprising phenomena. For example, there are potentials V for which bifurcation
can occur at points not belonging to the spectrum of the linearized problem

−Δu+ V u = λu.

On the other hand, as one might expect there is bifurcation at all eigenvalues of
−Δ + V lying below the essential spectrum. However, it is shown in Section 5

Switzerland



424 C.A. Stuart

below that this is no longer the case for the equation

−Δu+ V u− u3

ξ2 + u2
= λu, (1.2)

for some choices of V and ξ and the results in [3, 15, 17] do not apply to (1.2).
The occurence of the unusual phenomena mentioned above has nothing to do with
a lack of smoothness of the functions V and ξ since the conclusions are the same
even if the assumption that V and ξ are infinitely differentiable is added.

The purpose of the present paper is to study bifurcation at isolated eigenval-
ues of the linearization for a class of equation that includes both (1.1) and (1.2),
namely

−Δu+ V (x)u + g(x, u) + h(x,∇u) + ξ(x)f(η(x)u) = λu (1.3)

where V, ξ and η : RN → R and the nonlinear functions g : RN × R → R,
h : RN × RN → R and f : R → R are such that g(x, 0) = h(x, 0) = f(0) = 0 and
define terms of order higher than linear near u ≡ 0. The precise hypotheses are
formulated in Section 3 and the main result is Theorem 4.1. Taking g ≡ 0, h ≡
0, η = 1/ξ and f(s) = ±s3/(1 + s2), we recover (1.1), respectively (1.2). We seek
solutions (λ, u) where λ ∈ R and u �≡ 0 lies in the usual Sobolev space H2(RN )
since any distributional solution u ∈ L2(RN ) of equations (1.1) or (1.2) lies in this
space.

Under our hypotheses, the equations (1.1) to (1.3) can all be written in the
form M(u) = λu where M : H2(RN ) → L2(RN ) is a continuous mapping such
that M(0) = 0. However,M is not Fréchet differentiable at 0 and consequently the
classical results about bifurcation cannot be applied in the cases of interest here.
(See parts (2) and (3) of Theorem 3.4.) Nonetheless, M is Gâteaux differentiable
at 0 and it is also Lipschitz continuous in an open neighbourhood of 0. These
properties imply that M is actually Hadamard differentiable at 0. By exploiting
this, new conclusions about bifurcation of bound states for (1.3) are obtained in
Theorem 4.1 by using a recent abstract result about bifurcation for such problems
proved in [19]. The relevant parts of the abstract theory are set out in Section 2.
These results provide information about bifurcation at points which are not too
close to the essential spectrum of the linearised operator −Δ + V and, for such
points, the conclusions resemble those for smooth situations.

The other main contribution of this paper is to show that this restriction
cannot be avoided without introducing new restrictions on the behaviour of the
term ξf(ηu) in (1.3). A situation of this kind is treated in Section 5 where we show
that there may be no bifurcation at a simple eigenvalue Λ lying at the bottom of the
spectrum of −Δ+V and below its essential spectrum, if Λ is too near the essential
spectrum. It is important to note that all the other hypotheses of Theorem 4.1
are satisfied and yet the conclusions (ii) and (iii) fail. Thus this situation serves to
show that the restriction involving the distance from the essential spectrum in the
abstract result is also necessary since all the other hypotheses are satisfied there
too.
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Exploiting bifurcation theory for Hadamard differentiable mappings is not
the only way to deal with problems like (1.1) to (1.3). Rabier [10, 11] has shown
that, for an appropriate class of weights ξ and η, the equations can be treated in
weighted Sobolev spaces where Fréchet differentiability of the relevant operators
holds. It then follows that bifurcation occurs at every isolated eigenvalue of odd
multiplicity of −Δ+ V . The situation discussed in Section 5 shows that there are
choices of ξ and η for which this method cannot be used.

2. Bifurcation without Fréchet differentiability

For real Banach spaces X and Y ,

• B(X,Y ) = {L : X → Y : L is linear and bounded}
• Iso(X,Y ) = {L ∈ B(X,Y ) : L : X → Y is an isomorphism}
• Φ0(X,Y ) = {L ∈ B(X,Y ) : L is a Fredholm operator of index zero}.
Let X and Y be real Banach spaces and consider the equation F (λ, u) = 0

where F : R × X → Y with F (λ, 0) = 0 for all λ ∈ R. Setting S = {(λ, u) ∈
R×X : F (λ, u) = 0 and u �= 0}, λ0 is called a bifurcation point for the equation
F (λ, u) = 0 if there exists a sequence {(λn, un)} ⊂ S such that λn → λ0 and
‖un‖ → 0 as n → ∞. There is continuous bifurcation at λ0 if there exists a
bounded connected subset C of S such that C ∩ [R × {0}] = {(λ0, 0)}. In these
statements, S is treated as a metric space with the metric inherited from R×X .

In this paper, we only deal with the situation where X and Y are Hilbert
spaces with X ⊂ Y and F (λ, u) = M(u)− λu for a mapping M : X → Y .

Let (H, 〈·, ·〉, ‖ · ‖) be a real Hilbert space. For a self-adjoint operator S :
D(S) ⊂ H → H acting in H , the graph norm of S on D(S) is defined by

‖u‖S = {‖u‖2 + ‖Su‖2}1/2 for u ∈ D(S).

Recall that since S is closed, the graph space (D(S), ‖ · ‖S) is a Hilbert space. The
following result, which is an easy consequence of the closed graph theorem (see
Section 5 of [18]), provides a useful way of identifying the associated topology in
concrete situations.

Proposition 2.1. Let S : D(S) ⊂ H → H and T : D(T ) ⊂ H → H be two self-
adjoint operators having the same domain X = D(S) = D(T ). Then ‖ · ‖S and
‖·‖T are equivalent norms on the subspace X and S, T ∈ B(X,H) for any of these
norms.

For a self-adjoint operator S : D(S) ⊂ H → H , the spectrum and essential
spectrum are denoted by σ(S) and σe(S), respectively. If X denotes the graph
space of S then (see, for example, [2])

• σ(S) = {λ ∈ R : S − λI �∈ Iso(X,H)} and Λ = inf σ(S)
• σe(S) = {λ ∈ σ(S) : S − λI �∈ Φ0(X,H)} and Λe = inf σe(S)
• S − λI ∈ Φ0(X,H)⇔ λ �∈ σe(S)
• σd(S) = σ(S)\σe(S) consists of isolated eigenvalues of finite multiplicity.
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The following result concerning bifurcation for an equation of the form
M(u) = λu appears as Corollary 6.6 in [19]. Most of [19] is devoted to the more
general equation F (λ, u) = 0 in the setting of Banach spaces.

Proposition 2.2. Let (Y, 〈·, ·〉, ‖ · ‖) be a real Hilbert space and let (X, ‖ · ‖X) be the
graph space of some self-adjoint operator acting in Y . For δ > 0, BX(0, δ) = {u ∈
X : ‖u‖X < δ}. Consider the equation M(u) = λu where the function M : X → Y
has the following properties.

(H1) M(0) = 0.

(H2) M is Gâteaux differentiable at 0 and M ′(0) ∈ B(X,Y ) is also a self-adjoint
operator acting in Y with domain X.

(H3) For some δ > 0, M = M1 +M2 where M1 ∈ C1(BX(0, δ), Y ) with M ′
1(0) =

M ′(0) and there exists a constant L such that ‖M2(u)−M2(v)‖Y ≤ L‖u−v‖Y
for all u, v ∈ BX(0, δ). Let

LY (M2) = lim
δ→0

sup
u,v∈BX(0,δ)

u�=v

‖M2(u)−M2(v)‖Y
‖u− v‖Y <∞.

Then, for λ0 such that d(λ0, σe(M
′(0))) > LY (M2) we have the following

conclusions.

(i) If ker{M ′(0)− λ0I} = {0}, λ0 is not a bifurcation point.

(ii) If dimker{M ′(0)− λ0I} is odd, λ0 is a bifurcation point and there is contin-
uous bifurcation at λ0.

(iii) If ker{M ′(0) − λ0I} = span{φ} where ‖φ‖Y = 1, λ0 is a bifurcation point
and, for any sequence {(λn, un)} ⊂ S such that λn → λ0 and ‖un‖X → 0,
we have that un = 〈un, φ〉{φ+ wn} where 〈wn, φ〉 = 0 and ‖wn‖X → 0.

Remark. There is an example at the end of Section 6 in [19] in which X = Y =
L2(0, 1) and (H1) to (H3) are satisfied withM1 = 0 and LY (M2) = 1. The mapping
M is the Nemytskii operator defined byM(u)(x) = u(x)2/(1+|u(x)|) for u ∈ Y and
it is shown that the set of bifurcation points for the equation Mu = λu is [−1, 1].
Since M ′(0) = 0, σ(M ′(0)) = σe(M

′(0)) = 0 and so for λ0 = 1, we have bifurcation
at a point where ker(M ′(0)−λ0I) = {0} and d(λ0, σe(M

′(0))) = LY (M2), showing
that the conclusion (i) can fail if d(λ0, σe(M

′(0))) �> LY (M2). In Corollary 5.2
we see that parts (ii) and (iii) can also fail when (H1) to (H3) are satisfied but
d(λ0, σe(M

′(0))) �> LY (M2).

3. An elliptic equation on RN

In this section we present and prove our main results concerning bound states
u ∈ L2(RN ) of the equation (1.3). In the following subsections we introduce our
hypotheses term by term and discuss their main consequences.
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3.1. The linear term −Δu+ V u

Instead of restricting attention to bounded potentials, we deal with a larger class
which allows for singularities. We suppose that the potential V belongs to the
Kato-Rellich class TN(q) for some q ≥ 2 with q > N/2. This means that

(V) V = P +Q where P ∈ L∞(RN ) and Q ∈ Lr(RN ) for all r ∈ [1, q] for some
q ≥ 2 with q > N/2.

Clearly (V) is satisfied when V ∈ L∞(RN ), but V (x) = |x|−α is also allowed
provided that 0 ≤ α < min{2, N/2}.

An important consequence of condition (V) is that S = −Δ + V : D(S) ⊂
L2(RN ) → L2(RN ) is a self-adjoint operator with domain D(S) = H2(RN ), see
[1, 14, 12] for example. Furthermore, elementary Fourier analysis shows that the
graph norm of S = −Δ is equivalent to the usual Sobolev norm on H2(RN ), [16]
for example. Then by Proposition 2.1 this is also true for S = −Δ+ V whenever
V satisfies the condition (V). In particular, S ∈ B(H2(RN ), L2(RN )).

3.2. The term g(x, u)

The first nonlinear term in (1.3) is required to satisfy the following condition.

(G) g : RN × R → R is a Carathéodory function such that, for all x ∈ RN ,
g(x, 0) = 0 and g(x, ·) ∈ C1(R) with

|∂sg(x, s)| ≤ A{|s|α + |s|β} for all (x, s) ∈ R× RN

for some constant A and exponents α, β satisfying 0 < α ≤ β <∞ for N ≤ 4
and 0 < α ≤ β ≤ 4

N−4 for N > 4.

Theorem 3.1. Let g satisfy (G) and set G(u)(x) = g(x, u(x)) for u ∈ H2(RN ).
Then G ∈ C1(H2(RN ), L2(RN )) with DG(u)v = ∂sg(x, u)v for all u, v ∈ H2(RN ).
In particular, G(0) = 0 and DG(0) = 0.

Proof. The restrictions on α and β in condition (G) ensure that the following
intervals AN and BN are non-empty:

for N ≤ 4,

AN =
(
0, α

2

] ∩ (
0, 2

N

] ∩ (
0, 12

)
and BN =

(
0, β

2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
and for N > 4,

AN =
[
α(N−4)

2N , α
2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
and BN =

[
β(N−4)

2N , β
2

]
∩ (

0, 2
N

] ∩ (
0, 12

)
.

Note that for N > 4, AN ∩ BN = ∅ if α < β(N−4)
N . For this reason, we

decompose ∂sg in the following way.
Let ψ ∈ C∞(R) be such that 0 ≤ ψ(s) ≤ 1 for all s with ψ(s) ≡ 1 for |s| ≤ 1

and ψ(s) ≡ 0 for |s| ≥ 2.
Set γ1(x, s) = ψ(s)∂sg(x, s) and γ2(x, s) = {1 − ψ(s)}∂sg(x, s) so that

∂sg(x, s) = γ1(x, s) + γ2(x, s) where

|γ1(x, s)| ≤ C1|s|α and |γ2(x, s)| ≤ C2|s|β for all (x, s) ∈ RN × R.
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Noting that (G) implies that γ1 and γ2 are Carathéodory functions, set
Γi(u)(x) = γi(x, u(x)) for i = 1, 2.

Choosing p such that 1/p ∈ AN , we have that p > 2, αp ≥ 2 and, for N > 4,
αp and 2p/(p− 2) ≤ 2N/(N − 4).

By the fundamental result concerning Nemytskii operators, we have that
Γ1 : Lαp(RN ) → Lp(RN ) is a bounded continuous mapping. For u ∈ Lαp(RN ),
Hölder’s inequality then shows that T1(u)v = Γ1(u)v defines a bounded linear

operator T1(u) : L
r1(RN )→ L2(RN ) where r1 = 2p

p−2 and that

T1 ∈ C(Lαp(RN ), B(Lr1(RN ), L2(RN ))).

Recalling that H2(RN ) is continuously embedded in Lt(RN ) for 2 ≤ t < ∞
if N ≤ 4 and for 2 ≤ t ≤ 2N/(N − 4) for N > 4, this implies that T1 ∈
C(H2(RN ), B(H2(RN ), L2(RN ))).

Choosing q such that 1/q ∈ BN , the same arguments show that Γ2 ∈
C(Lβq(RN ), Lq(RN )) and T2 ∈ C(Lβq(RN ), B(Lr2(RN ), L2(RN ))) where T2(u) =

Γ2(u)v and r2 = 2q
q−2 . Hence T2 ∈ C(H2(RN ), B(H2(RN ), L2(RN ))).

We now have that T = T1 + T2 ∈ C(H2(RN ), B(H2(RN ), L2(RN ))) where
T (u)v(x) = ∂sg(x, u(x))v(x) for u, v ∈ H2(RN ).

From condition (G), it follows that |g(x, s)| ≤ A
α+1{|s|α+1 + |s|β+1} where

1 < α+ 1 ≤ β + 1 <∞ for N ≤ 4 and 1 < α+ 1 ≤ β + 1 ≤ N
N−4 for N > 4. Also

g = g1 + g2 where

|g1(x, s)| = |ψ(s)g(x, s)| ≤ K1|s|α+1

and

|g2(x, s)| = |{1− ψ(s)}g(x, s)| ≤ K2|s|β+1,

so we have thatG1 ∈ C(L(α+1)2(RN ), L2(RN )) andG2 ∈ C(L(β+1)2(RN ), L2(RN ))
where G1(u)(x) = g1(x, u(x)) and G2(u)(x) = g2(x, u(x)). Hence G1 and G2 ∈
C(H2(RN ), L2(RN )) and therefore G = G1 +G2 ∈ C(H2(RN ), L2(RN )).

Now we show that G : H2(RN ) → L2(RN ) is Fréchet differentiable at u
with DG(u) = T (u) where T = T1 + T2, so that DG(u)v = ∂sg(x, u)v. For
u, v ∈ H2(RN ),∫

RN

{G(u+ v)−G(u)− T (u)v}2dx

=

∫
RN

{∫ 1

0

d

dt
g(x, u+ tv) dt− ∂sg(x, u)v

}2

dx

=

∫
RN

{∫ 1

0

∂sg(x, u+ tv)− ∂sg(x, u)dt v

}2

dx

≤
∫
RN

∫ 1

0

{∂sg(x, u+ tv)− ∂sg(x, u)}2dt v2dx

=

∫ 1

0

‖[T (u+ tv)− T (u)]v‖2L2dt ≤
∫ 1

0

‖T (u+ tv)− T (u)‖2B(H2,L2)dt‖v‖2H2 .
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Since T ∈ C(H2(RN ), B(H2(RN ), L2(RN ))), for all ε > 0, there exists δ > 0 such
that ‖T (u+ w)− T (u)‖2B(H2,L2) < ε whenever ‖w‖H2 < δ. Hence∫ 1

0

‖T (u+ tv)− T (u)‖2B(H2,L2)dt ≤ ε when ‖v‖H2 < δ,

proving the Fréchet differentiability of G : H2(RN )→ L2(RN ) at u with DG(u) =
T (u). Hence G ∈ C1(H2(RN ), L2(RN )). �

3.3. The term h(x,∇u)

The nonlinear function of the gradient in (1.3) is required to satisfy the following
conditions.

(H) h : RN × RN → R is a Carathéodory function such that, for all x ∈ RN ,
h(x, 0) = 0 and h(x, ·) ∈ C1(RN ) with

|∇ξh(x, ξ)| ≤ A{|ξ|α + |ξ|β} for all x, ξ ∈ RN

for some constant A and exponents α, β satisfying 0 < α ≤ β <∞ for N ≤ 2
and 0 < α ≤ β ≤ 2

N−2 for N > 2.

Theorem 3.2. Let h satisfy (H) and set H(u)(x) = h(x,∇u(x)) for u ∈ H2(RN ).
Then H ∈ C1(H2(RN ), L2(RN )) with DH(u)v = ∇ξh(x,∇u) · ∇v for all u, v ∈
H2(RN ). In particular, H(0) = 0 and DH(0) = 0.

Proof. Setting Ju = ∇u, we have that J ∈ B(H2(RN ), [H1(RN )]N ) and H(u) =
N(Ju) where N : [H1(RN )]N → L2(RN ) is defined by N(w)(x) = h(x,w(x)) for
w ∈W = [H1(RN )]N . Hence it is enough to prove that N ∈ C1(W,L2(RN )) with
DN(w)z = ∇ξh(x,w) · z for all w, z ∈W . This can be done by following the same
approach as was used to prove Theorem 3.1 so we need only mention a few crucial
points. First of all, ∇ξh is decomposed using a radial cut-off function ψ. For the
continuity of the resulting Nemytskii operators from [Lαp(RN )]N into Lp(RN ),
see [8] for example. Recall that H1(RN ) is continuously embedded in Lt(RN ) for
2 ≤ t < ∞ if N ≤ 2 and for 2 ≤ t ≤ 2N/(N − 2) for N > 2. In the present case,
the intervals AN and BN are given by

AN =
(
0, α

2

] ∩ (
0, 1

N

] ∩ (
0, 12

)
and BN =

(
0, β

2

]
∩ (

0, 1
N

] ∩ (
0, 12

)
for N ≤ 2 and

AN =
[
α(N−2)

2N , α
2

]
∩ (

0, 1
N

] ∩ (
0, 1

2

)
and BN =

[
β(N−2)

2N , β
2

]
∩ (

0, 1
N

] ∩ (
0, 1

2

)
for N > 2. The restrictions on α and β in (H) ensure that these intervals are
non-empty. �
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3.4. The term ξ(x)f(η(x)u)

We now come to the term in (1.3) which is not Fréchet differentiable in many
interesting cases. The following basic assumption is assumed to hold throughout
the discussion and is sufficient for our main result about bifurcation

(F) (i) f ∈ C(R) with lims→0
f(s)
s = 0 and |f(s)− f(t)| ≤ �|s− t| for all s, t ∈ R.

(ii) ξ and η are real-valued measurable functions on RN such that ξη ∈ L∞(RN ).

Under the hypothesis (F), we have that |ξ(x)f(η(x)s)| ≤ |ξ(x)|�|η(x)s| ≤
�‖ξη‖L∞|s| for all x ∈ RN and s ∈ R. Setting F (u)(x) = ξ(x)f(η(x)u(x)) for
u ∈ L2(RN ), it follows that F (u) ∈ L2(RN ) and then in the same way, that

F (0) = 0 and ‖F (u)− F (v)‖L2 ≤ �‖ξη‖L∞‖u− v‖L2 for all u, v ∈ L2(RN ).

Theorem 3.3. Let the condition (F) be satisfied.
Then F : L2(RN ) → L2(RN ) is Gâteaux differentiable at 0 with F ′(0) = 0

and it is also Lipschitz continuous with Lipschitz constant �‖ξη‖L∞. Hence F :
L2(RN )→ L2(RN ) is also Hadamard differentiable at 0.

‘A fortiori’, the same conclusions hold for F : H2(RN )→ L2(RN ).

Proof. For v ∈ L2(RN ) and t ∈ R, we have that |F (tv)(x)| ≤ �‖ξη‖L∞|tv(x)| and
the dominated convergence theorem shows that∥∥∥∥F (tv)

t

∥∥∥∥
L2

→ 0 as t→ 0.

This proves that F : L2(RN ) → L2(RN ) is Gâteaux differentiable at 0 with
F ′(0) = 0.

The Lipschitz continuity of F is already established in the remarks follow-
ing (F). �

The main result about bifurcation only requires F to satisfy the condition (F).
As we now show, additional restrictions are required in order to obtain properties
of F : H2(RN ) → L2(RN ) such as Fréchet differentiability at 0 or compactness.
To facilitate the discussion of these results we formulate some extra properties of
the weights ξ and η.

(W1) For some R > 0, η ∈ C2(|x| > R) with

η(x) > 0 and ∂αη/η ∈ L∞(|x| > R) for all multi-indices with |α| ≤ 2.

Furthermore

1

η
∈ L2(|x| > R) and lim inf

n→∞

∫
|x|>n+1

ξ(x)2dx/

∫
|x|>n

1

η(x)2
dx > 0.

Here are some typical examples of weights satisfying (F) and (W1)

Examples

(i) For some R,K > 0, η(x) = |x|t where t > N/2 and |ξ(x)| ≥ K|x|−t for
|x| > R. Note that by (F) we must also have that |ξ(x)| ≤ C|x|−t for |x| > R.
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(ii) For some R,K > 0, η(x) = ec|x| where c > 0 and |ξ(x)| ≥ Ke−c|x| for |x| > R.
By (F) we also have that |ξ(x)| ≤ Ce−c|x| for |x| > R.

(W2) For some R > 0, ξ ∈ L2(|x| > R) and there exists δ > 0 such that
|ξ(x)η(x)| ≥ δ a.e. on {x ∈ RN : |x| > R}.

Theorem 3.4. Let the condition (F) be satisfied.

(1) If (W1) is also satisfied, then F : H2(RN )→ L2(RN ) is Fréchet differentiable
at 0 if and only if f ≡ 0.

(2) If (W2) is satisfied and lim|s|→∞
f(s)
s = A ∈ R exists, then F : H2(RN ) →

L2(RN ) is compact if and only if A = 0. If A �= 0, then F : H2(RN ) →
L2(RN ) is not Fréchet differentiable at 0.

(3) If lim|s|→∞
f(s)
s = B ∈ R and |x|−N/2η(x) → ∞ as |x| → ∞, then

L(F ) ≥ |B| lim inf |x|→∞ |ξη(x)|, where L(F ) is the Lipschitz modulus of

F : H2(RN )→ L2(RN ) defined by

L(F ) = lim
δ→0

sup
u,v∈BH2(0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖H2

<∞

and ‘a fortiori’, we have the same lower bound for the L2-Lipschitz modulus

LL2

(F ) = lim
δ→0

sup
u,v∈BH2 (0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖L2

<∞,

which will be used in applying Proposition 2.2 to (1.3).

Remarks. The hypotheses (F)(ii) and (W1) imply that ξ ∈ L2(|x| > R) for some

R > 0. As the proof shows, in part (2) the property lims→0
f(s)
s = 0 in (F)(i) can

be weakened to f(0) = 0.

Combining Theorem 3.3 and part (3) we see that, if (F) holds with

lim
|s|→∞

f(s)

s
= ±�, lim

|x|→∞
|x|−N/2η(x) =∞

and

lim inf
|x|→∞

|ξη(x)| = ‖ξη‖L∞ , then L(F ) = LL2

(F ) = �‖ξη‖L∞

for F : H2(RN )→ L2(RN ).

Proof. (1) It follows from Theorem 3.3 that, if F is Fréchet differentiable at 0,
then F ′(0) = 0. Suppose that there exists T �= 0 such that f(T ) �= 0. It suffices
to show that there exists a sequence {un} ⊂ H2(RN )\{0} such that ‖un‖H2 → 0
and ‖F (un)‖L2/‖un‖H2 �→ 0. We construct such a sequence as follows.

Let ϕ ∈ C∞(R) have the following properties:

ϕ(s) = 0 for s ≤ 0, 0 ≤ ϕ(s) ≤ 1 for 0 < s < 1, ϕ(s) = 1 for s ≥ 1.
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For n > R, where R is the radius given in (W1), set un(x) =
Tϕ(|x|−n)

η(x) for |x| ≥ n

and un(x) = 0 for |x| ≤ n. Then un ∈ C2(RN ) and, for |x| = r > n,

∂iun(x) =
T

η(x)

{
ϕ′(r − n)xi

r
− ϕ(r − n)∂iη(x)

η(x)

}
and

∂2
ijun(x) = − T∂iη(x)

η(x)2

{
ϕ′(r − n)xi

r
− ϕ(r − n)∂iη(x)

η(x)

}
+

T

η(x)

{
ϕ′′(r − n)xixj

r2
+

ϕ′(r − n)δij
r

− ϕ′(r − n)xixj

r3

− ϕ′(r − n)xi∂iη(x)

rη(x)
− ϕ(r − n)∂2

ijη(x)

η(x)
+

ϕ(r − n)∂iη(x)∂jη(x)

η(x)2

}
.

Using (W1), these formulae show that there is a constant C such that, for |α| ≤ 2,
|∂αun(x)| ≤ C| 1

η(x) | for |x| > R and all n > R. Therefore it follows from (W1)

that un ∈ H2(RN ) and there is a constant C such that ‖un‖H2 ≤ C‖ 1
η‖L2(|x|>n).

Hence ‖un‖H2 → 0 as n→∞. Furthermore,

‖F (un)‖2L2 =

∫
RN

ξ2f(ηun)
2dx ≥

∫
|x|>n+1

ξ(x)2f(T )2dx

and so

‖F (un)‖2L2

‖un‖2H2

≥ f(T )2

∫
|x|>n+1

ξ(x)2dx

C2‖ 1
η‖2L2(|x|>n)

.

Thus lim infn→∞
‖F (un)‖L2

‖un‖H2
> 0 by (W1) and F : H2(RN ) → L2(RN ) is not

Fréchet differentiable at 0.

(2) Suppose first that A = 0. Then, for every ε > 0, there exists Aε > 0
such that |f(s)| ≤ Aε + ε|s| for all s ∈ R. Let {un} be a bounded sequence in
H2(RN ). Passing to subsequence, we can suppose that un ⇀ u weakly in H2(RN )
and we now show that ‖F (un)−F (u)‖L2 → 0, which establishes the compactness
of F : H2(RN )→ L2(RN ).

For any r > R,∫
|x|>r

F (un)
2dx ≤ 2

∫
|x|>r

ξ2{A2
ε + ε2η2u2

n}dx ≤ 2A2
ε

∫
|x|>r

ξ2dx + 2ε2‖ξη‖2L∞M2

where ‖un‖L2 ≤ M for all n, and the same estimate hold for
∫
|x|>r

F (u)2dx. On

the other hand,∫
|x|≤r

{F (un)−F (u)}2dx ≤
∫
|x|≤r

ξ2�2η2(un−u)2dx ≤ �2‖ξη‖2L∞

∫
|x|≤r

(un−u)2dx
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and hence∫
RN

{F (un)− F (u)}2dx

≤ 2

∫
|x|>r

F (un)
2dx+ 2

∫
|x|>r

F (u)2dx +

∫
|x|≤r

{F (un)− F (u)}2dx

≤ 8A2
ε

∫
|x|>r

ξ2dx + 8ε2‖ξη‖2L∞M2 + �2‖ξη‖2L∞

∫
|x|≤r

(un − u)2dx.

Since H2(|x| < r) is compactly embedded in L2(|x| < r), this shows that

lim sup
n→∞

‖F (un)− F (u)‖2L2 ≤ 8A2
ε

∫
|x|>r

ξ2dx+ 8ε2‖ξη‖2L∞M2.

But
∫
|x|>r

ξ2dx→ 0 as r →∞, so

lim sup
n→∞

‖F (un)− F (u)‖2L2 ≤ 8ε2‖ξη‖2L∞M2 for all ε > 0,

proving that ‖F (un)− F (u)‖L2 → 0 as required.

Suppose now that A �= 0. Setting g(s) = f(s)−As and then G(u) = ξg(ηu),
the preceding argument shows that G : H2(RN ) → L2(RN ) is compact. Choose
w ∈ C∞

0 (RN ) such that w �≡ 0 and suppw ⊂ B(0, 1/2). Consider the sequence
defined by un(x) = w(x − ne1) where e1 = (1, 0, . . . , 0) ∈ RN . It is easily seen
that un ⇀ 0 weakly in H2(RN ) and hence, by the argument just used to prove
the compactness of F when A = 0, we have ‖G(un)‖L2 → 0 since G(0) = 0. But,
for m,n ≥ R + 1 and m �= n,

‖F (un)− F (um)‖L2 ≥ ‖Aξη(un − um)‖L2 − ‖G(un)−G(um)‖L2

where

‖Aξη(un − um)‖2L2 ≥ A2δ2
∫
RN

(un − um)2dx = 2A2δ2
∫
RN

w2dx

since supp un ∩ supp um = ∅ and

‖G(un)−G(um)‖L2 → 0 as n,m→∞.

Thus {F (un)} has no convergent subsequence and consequently, F : H2(RN ) →
L2(RN ) is not compact.

Furthermore, since G(u) = ξg(ηu) = F (u)− Aξηu, it follows from Theorem
3.3 that G : H2(RN ) → L2(RN ) is Hadamard differentiable at 0 with G′(0)u =

−Aξηu. But we have just shown that ‖G′(0)(un−um)‖L2 ≥ √
2Aδ‖w‖L2 > 0 for all

m,n ≥ R+1 and m �= n, from which it follows that G′(0) : H2(RN )→ L2(RN ) is
not a compact linear operator. Since the Fréchet derivative of a compact operator
is always compact (see [9], for example), this implies that G : H2(RN )→ L2(RN )
is not Fréchet differentiable at 0. But the bounded linear operator u �→ Aξηu is
Fréchet differentiable from H2(RN ) to L2(RN ). Hence F : H2(RN ) → L2(RN )
cannot be Fréchet differentiable at 0.
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(3) Choose some u ∈ C∞
0 (RN ) such that u ≥ 0 on RN and ‖u‖L2 = 1. Then,

for δ > 0 and n ∈ N, define uδ
n by

uδ
n(x) =

δ

2nN/2
u

(
x− ne1

n

)
where e1 = (1, 0, . . . , 0).

Then, using the change of variable z = x−ne1
n in the integrals, we have that

‖uδ
n‖L2 =

δ

2
‖u‖L2, ‖∂iuδ

n‖L2 =
δ

2n
‖∂iu‖L2, ‖∂i∂juδ

n‖L2 =
δ

2n2
‖∂i∂ju‖L2

for 1 ≤ i, j ≤ N . Hence uδ
n ∈ BL2(0, δ) for all n and there exists n0 such that

uδ
n ∈ BH2 (0, δ) for all n ≥ n0. Also

‖F (uδ
n)‖2L2 =

∫
RN

ξ(x)2f

(
η(x)

δ

2nN/2
u

(
x− ne1

n

))2

dx

=

∫
RN

ξ(n[z + e1])
2f

(
η(n[z + e1])

δ

2nN/2
u(z)

)2

nNdz

=

∫
{z:u(z)>0}

ξ(n[z + e1])
2

{
f(wn(z))

wn(z)

}2

η(n[z + e1])
2

{
δu(z)

2

}2

dz

where

wn(z) ≡ η(n[z + e1])
δ

2nN/2
u(z)→∞ as n→∞

for all z �= −e1 such that u(z) > 0. Hence

lim inf
n→∞ ξ(n[z + e1])

2

{
f(wn(z))

wn(z)

}2

η(n[z + e1])
2

{
δu(z)

2

}2

≥ B2

{
δu(z)

2

}2

lim inf
|x|→∞

(ξη)2(x)

for almost all z ∈ RN . By Fatou’s Lemma,

lim inf
n→∞ ‖F (uδ

n)‖2L2 ≥
[
Bδ

2

]2
lim inf
|x|→∞

[ξη(x)]2
∫
RN

u(z)2dz

and hence

lim inf
n→∞ ‖F (uδ

n)‖L2 ≥ |B|δ
2
‖u‖L2 lim inf

|x|→∞
|ξη(x)|.

For all δ > 0, this implies that

sup
u,v∈BH2 (0,δ)

u�=v

‖F (u)− F (v)‖L2

‖u− v‖H2

≥ sup
n≥n0

‖F (uδ
n)‖L2

‖uδ
n‖H2

≥ lim inf
n→∞

‖F (uδ
n)‖L2

‖uδ
n‖H2

= lim inf
n→∞

‖F (uδ
n)‖L2

‖uδ
n‖L2

‖uδ
n‖L2

‖uδ
n‖H2

≥ |B| lim inf
|x|→∞

|ξη(x)|,

since ‖uδ
n‖L2 = δ

2‖u‖L2 and
‖uδ

n‖L2

‖uδ
n‖H2

→ 1 as n→∞.

Thus L(F ) ≥ |B| lim inf |x|→∞ |ξη(x)| for F : H2(RN )→ L2(RN ). �
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4. Results about bifurcation for (1.3)

Under the hypotheses (V), (G), (H) and (F), we can now treat (1.3) as a special
case of Proposition 2.2 and hence of the more general Theorem 6.3 in [19]. For this
we choose

X = H2(RN ), Y = L2(RN ) and M = S +G+H + F : X → Y

where S,G,H and F are defined in Sections 3.1 to 3.4.
In Subsection 3.1, we have already noted that S = −Δ+ V : X ⊂ Y → Y is

self-adjoint and that its graph norm on X is equivalent to the usual Sobolev norm
for H2(RN ).

It follows from Theorems 3.1 to 3.3 that M ∈ C(X,Y ) with M(0) = 0 and
that M : X → Y is Gâteaux differentiable at 0 with M ′(0)u = Su for all u ∈ X .
Setting M1 = S+G+H and M2 = F , these results also show that M1 ∈ C1(X,Y )
with M ′

1(0) = S and that LY (M2) ≤ �‖ξη‖L∞. Thus the conditions (H1) to (H3)
of Proposition 2.2 are satisfied. Furthermore, setting

F (λ, u) = M(u)− λu for (λ, u) ∈ R×X,

we have that conditions (B1) to (B5) of [19] are satisfied for all λ0 �∈ σe(S). In
particular, for λ0 �∈ σe(S), Proposition 2.2 can be applied to (1.3) provided that
d(λ0, σe(S)) > �‖ξη‖L∞ . In Section 5 we shall provide examples, see Corollary 5.2
in particular, with G = H = 0, where 0 < d(λ0, σ(S)) < LY (M2) = �‖ξη‖L∞

and the conclusions of Proposition 2.2 fail. These examples also show that the
hypothesis (6.1) in Theorem 6.3 of [19] plays an essential role since the other
assumptions are satisfied yet the conclusion (6.1) fails.

In the present context, λ0 is a bifurcation point for the equation M(u) = λu
if and only if there exists a sequence {(λn, un)} ⊂ R×H2(RN ) of solutions of (1.3)
with un �≡ 0 such that λn → λ0 and ‖un‖H2 → 0.

From the preceding remarks, as an immediate consequence of Proposition
2.2 we obtain the following result. By the methods used in Section 3.2 and 3.3 a
nonlinearity of the form k(x, u(x),∇u(x)) could be treated instead of the separated
case g(x, u) + h(x,∇u) adopted here.

Theorem 4.1. Consider the equation (1.3) under the hypotheses (V), (G), (H) and
(F) and λ0 such that d(λ0, σe(S)) > �‖ξη‖L∞ where S = −Δ+ V .

(i) If ker{S − λ0I} = {0}, then λ0 is not a bifurcation point.
(ii) If dimker{S − λ0I} is odd, then there is continuous bifurcation at λ0.
(iii) If ker{S − λ0I} = span{φ} where ‖φ‖ = 1 there is continuous bifurcation at

λ0 and, for any sequence {(λn, un)} ⊂ R×H2(RN ) of solutions of (1.3) with
un �≡ 0 such that λn → λ0 and ‖un‖H2 → 0, we have that un = 〈un, φ〉L2{φ+
wn} where 〈wn, φ〉L2 = 0 and ‖wn‖H2 → 0.

Remarks. If f ≡ 0, the result applies to all points λ0 �∈ σe(S) and the conclusions
follow from standard bifurcation theory since M ∈ C1(X,Y ). For f �≡ 0, previous
work deals with the case g ≡ h ≡ 0 under much more restrictive assumptions the
term F . The following proposition summarises most of the earlier contributions. Its
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hypotheses imply that (V), (G), (H) and (F) are all satisfied with G = H = 0 and
η = 1/ξ. Hence in Proposition 4.2 we are discussing bifurcation for a special case of
(1.3), which includes (1.1) but not (1.2). As pointed out in [17], any distributional
solution u ∈ L2(RN ) lies in W 2,p(RN ) for all p ∈ [2,∞) and bifurcation for (4.1)
with respect to the H2-norm, as is discussed in Theorem 4.1, is equivalent to
bifurcation with respect to the L2-norm.

Proposition 4.2. Consider the equation

−Δu+ V u+ ξf

(
u

ξ

)
= λu for u ∈ H2

(
RN

)
(4.1)

under the following hypotheses: V ∈ L∞(RN ), ξ ∈ L2(RN ) with ξ > 0 a.e. and
f ∈ C1(RN ) is an odd function such that

(i) � = sups∈R |f ′(s)| <∞, f ′(0) = 0 and
(

f(s)
s

)′
> 0 for all s > 0,

(ii) there exists A > 0 such that sups>0 |As− f(s)| <∞.

We have the following conclusions about bifurcation for (4.1), where S =
−Δ+ V . Recall that Λ = inf σ(S) and Λe = inf σe(S).

(a) If ker(S−λ0I) = {0} and either d(λ0, σe(S)) > A or λ0 < Λe, then λ0 is not
a bifurcation point.

(b) If ker(S − λ0I) �= {0} and λ0 < Λe, then λ0 is a bifurcation point.
(c) Suppose that N ≤ 3 and that η = 1/ξ has the following properties:

η ∈ W 2,∞
loc (RN ), inf η > 0 and for

some t > 0, ∂αηt ∈ L∞(RN ) for 1 ≤ |α| ≤ 2.

If λ0 �∈ σe(S) and dimker(S − λ0I) is odd, then λ0 is a bifurcation point.

(d) If A > Λe − Λ and λ0 ∈ [Λe,Λ +A], then λ0 is a bifurcation point.
(e) Suppose that V ≡ 0 and ξ(x) = (1 + |x|2)t for some t > N/4. If λ0 >

A[1 + 4t−N
2 ], then λ0 is not a bifurcation point and λ0 > A = Λ + A since

Λ = Λe = 0.

Remark 1. Since f(0) = 0, it follows from (i) and (ii) that

lim
s→0

f(s)

s
= 0 <

f(s)

s
< A = lim

s→∞
f(s)

s
for all s > 0.

Also f ′(s) > f(s)
s for all s > 0, so � ≥ A and in some case the inequality is

strict. For example, f(s) = |s|2σs/(1 + s2)σ satisfies (i) and (ii) for all σ > 0, but
� = sups>0 f

′(s) = f ′(
√
2σ + 1) > 1 = A. On the other hand, f(s) = s − tanh s

also satisfies (i) and (ii) and in this case � = A = 1.

Remark 2. With η = 1/ξ and g = h = 0, we see that (4.1) is a special case of
(1.3) satisfying the conditions (V), (G), (H), (F) and (W2). Therefore Theorem 4.1
applies and yields information not contained in the conclusions (a) to (e). Notice
however that if f satisfies the hypotheses of Proposition 4.2, −f does not. Of
course, −f still satisfies (F) and so Theorem 4.1 can treat this case too, but as is
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shown in Section 5, the conclusions (b) and (d) of the proposition fail in this case,
as does part (c) for ξ(x) = e−α|x| with large positive α. Theorem 4.1 places much
weaker restrictions on the weights ξ and η.

Proof. Defining h by h(0) = 0 and h(s) = f(s)/(As) for s �= 0, our hypotheses on
f imply that h satisfies the conditions (H3) to (H5) of [17] and our equation (4.1)
is just (1.1) of [17] with q = V . Noting Proposition 2.1 of [17], the conclusions
(a), (b) and (d) are consequences of statements (R1) to (R3) in Section 3 of [17],
whereas (e) is just a restatement of the example following Theorem 3.1 in that
paper.

The hypotheses on η made in part (c) mean that η is a transference weight of
order 2 in the sense introduced by P.J. Rabier in [10, 11]. They ensure that ξ = 1/η
satisfies the condition (H2)∗ of Section 4 of [17], where the results of [10] are applied
to (4.1). In particular, the weighted Sobolev space W 2,2

η is continuously embedded

in H2(RN ) so bifurcation at λ0 in W 2,2
η implies that λ0 is a bifurcation point for

(4.1) in the sense of the present paper. Thus part (c) follows from statement (C2)
in Section 4.2 of [17]. In fact, as (C2) shows, Rabier’s work provides a stronger
statement about bifurcation at such points. �

Commentaries on the conclusions

(1) Since A ≤ �, the conclusion (a) is sharper than (i) of Theorem 4.1 for the
equation (4.1).

(2) Under the hypotheses of the proposition, consider a potential V such that
Λ = Λe and such that there exist b > a > Λe such that (a, b) ∩ σ(S) = ∅.
Then choose f with A > b − Λe. We now have that (a, b) ⊂ [Λe,Λ + A] and
hence every λ0 ∈ (a, b) is a bifurcation point by part (d) despite the fact that
λ0 �∈ σ(S). Note that at these points, d(λ0, σe(S)) ≤ λ0−Λe < b−Λe < A ≤
�‖ξη‖L∞ since ξη ≡ 1.

(3) In the next section we show that there are functions f satisfying (F) and
weights ξ for which statement (b) of the proposition fails even when λ0 = Λ
is a simple eigenvalue.

(4) The approach devised by Rabier can be used to establish bifurcation for (4.1)
at eigenvalues of odd multiplicity of S under much weaker hypotheses on f
provided that η = 1/ξ is a transference weight. See Section 5 of [10].

5. A case where there is no bifurcation at a simple eigenvalue

In this section we consider a special case of (1.3) in which the hypotheses (V),(G),
(H) and (F) are satisfied and Λ = inf σ(S) < inf σe(S) is a simple eigenvalue of S.
Consider the equation

−u′′ + V u+ e−α|x|f(eα|x|u) = λu on R, (5.1)

where α is a positive constant,

(V0) V ∈ C0(R) with V ≤ 0 but V �≡ 0 on R,
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and

(K) f ∈ C1(R) is an odd function with f ′(0) = 0, ( f(s)s )′ ≤ 0 for s > 0 and
� ≡ sups>0 |f ′(s)| <∞.

Clearly V ∈ L∞(R) and so V ∈ T1(q) for all q ≥ 2. Thus Su = −u′′ + V u
defines a self-adjoint operator S : H2(R) ⊂ L2(R) → L2(R). It follows from (V0)
that Λ ≡ inf σ(S) < 0 = inf σe(S) and that Λ is a simple eigenvalue of S with an
eigenfunction φ ∈ C2(R) which is strictly positive on R with ‖φ‖L2 = 1. Note that
d(Λ, σe(S)) = |Λ|.

For the ensuing calculations it is convenient to write f in the form f(s) =
k(s)s with k(0) = 0, where (K) ensures that k ∈ C(R) is an even function having
the properties

k ∈ C1((0,∞)) with k′ ≤ 0 on (0,∞) and − L ≤ k ≤ 0 on R,

where L ≡ − lims→∞ k(s) ∈ [0, �]. Note that if a function f satisfies the hy-
potheses of Proposition 4.2, then −f satisfies the condition (K). In particular,
f(s) = −|s|2σs/(1 + s2)σ satisfies (K) for all σ > 0.

Recall that H2(R) is continuously embedded in C1(R). Since V and k are
continuous, u ∈ C2(R) for any solution (λ, u) ∈ R×H2(RN ) of (5.1). This equation
can then be written as

−u′′ + {V + k(eα|x|u)}u = λu. (5.2)

Let Z > 0 be such that V (x) = 0 for |x| ≥ Z. Note that on R\(−Z,Z), for λ < 0,
the equation can be written as

u′′ = {k(eα|x|u) + |λ|}u. (5.3)

Theorem 5.1. Suppose that the conditions (V0) and (K) are satisfied and set L ≡
− lims→∞

f(s)
s . Note that 0 ≤ L ≤ �.

(i) If |Λ| > �, there is continuous bifurcation at Λ. Furthermore, for any sequence
{(λn, un)} ⊂ R×H2(R) of solutions of (5.1) with un �≡ 0 such that λn → Λ
and ‖un‖H2 → 0, we have that un = 〈un, φ〉L2{φ+ wn} where 〈wn, φ〉L2 = 0
and ‖wn‖H2 → 0. Also, for n large enough, un ∈ C2(R) has no zeros and so
there is a sequence {(λn, un)} ⊂ R×H2(R) of solutions of (5.1) with un > 0
on R and λn ≤ Λ such that λn → Λ and ‖un‖H2 → 0.

(ii) If |Λ| < L and α > |Λ|1/2, then Λ is not a bifurcation point for (5.1). Indeed,
setting ε = min{(L−|Λ|)/2, α2−|Λ|, |Λ|}, u ≡ 0 is the only solution of (5.1)
in H2(R) for λ ∈ (Λ− ε,Λ + ε).

Remark 1. Inspecting the proof of part (i), we observe that λn < Λ provided that
f(s) < 0 for all s > 0, since

Λ =

∫
R

(φ′)2 + V φ2dx >

∫
R

(φ′)2 +Wnφ
2dx ≥ inf σ(Sn) = λn,

in this case.
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Remark 2. In part (ii), the proof in fact shows that u ≡ 0 is the only solution with
u(x)→ 0 as x→∞ for λ ∈ (Λ−ε,Λ+ε). Note that in Step 1, the monotonicity of
J implies that limx→∞ u′(x)2 exists, and hence u′(x) → 0 if u(x) → 0 as x→ ∞.
The rest of the proof is the same.

Proof. (i) The first part of the conclusion is a special case of Theorem 4.1(iii),
so we only need to justify the claims about the signs of un and λn − Λ. Using
the oddness of f , we can suppose that there is a sequence of solutions converging
to (Λ, 0) in R × H2(R) and, in addition, that 〈un, φ〉L2 > 0 for all n. Let Z be
such that suppV ⊂ [−Z,Z]. Since m ≡ inf |x|≤Z φ(x) > 0 and ‖wn‖L∞ → 0, there
exists n0 such that φ + wn ≥ m/2 on [−Z,Z] for all n ≥ n0. By increasing n0 if
necessary, we can also suppose that λn < 0 and |λn − Λ| < |Λ| − � for all n ≥ n0.
But, for |x| ≥ Z, by (5.3) we have that

u′′
n = {k(eα|x|un)− λn}un ≤ {−�+ |Λ| − |λn − Λ|}un < 0

at points where un < 0 since −� ≤ −L ≤ k(s) ≤ 0 for all s ∈ R. Hence un

cannot have a negative minimum in the set (−∞,−Z] ∪ [Z,∞). Since un(−Z) >
0, un(Z) > 0 and lim|x|→∞ un(x) = 0, it follows that un ≥ 0 on (−∞,−Z]∪ [Z,∞)
and hence on R. Thus any zero of un is at least a double zero and the existence of
such a value implies that u ≡ 0, by the uniqueness of the solution of (5.1) with the
conditions un(x0) = u′

n(x0) = 0. Hence we have that un > 0 on R for all n ≥ n0.
Setting Wn(x) = V (x) + k(eα|x|un(x)), we see from (5.2) that un ∈ H2(R)

is a positive eigenfunction with eigenvalue λn of the operator Snu = −u′′ +Wnu.
Since k(s) ≥ −L for all s ∈ R, we have that Wn(x) ≥ −L for |x| ≥ Z and
so inf σe(Sn) ≥ −L. On the other hand, k ≤ 0 on R and hence inf σ(Sn) ≤
inf σ(S) = Λ < −� ≤ −L. This implies that inf σ(Sn) is a simple eigenvalue of
Sn with a positive eigenfunction and consequently λn = inf σ(Sn), showing that
λn ≤ Λ.

(ii) Let (λ, u) be a non-trivial solution with λ ∈ (Λ−ε,Λ+ε) and u ∈ H2(R).
We show that this leads to a contradiction.

Step 1, in which we show that u cannot change sign in (Z,∞).
For x, s ∈ R, let

L(x, s) = e−2αxΦ(eαxs) where Φ(t) =

∫ t

0

f(s)ds =

∫ t

0

k(s)s ds.

Then L(·, ·) ∈ C2(R2) with

∂xL(x, s) = αe−2αxψ(eαxs) where ψ(t) = f(t)t− 2Φ(t)

and
∂sL(x, s) = e−αxf(eαxs) = k(eαxs)s.

We observe that

ψ(t) = k(t)t2 − 2

∫ t

0

k(s)sds =

∫ t

0

k′(s)s2ds ≤ 0 for all t ∈ R

by (K).
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Consider now the function J : R→ R defined by

J(x) =
1

2
{u′(x)2 + λu(x)2} − L(x, u(x)).

Clearly, J ∈ C1(R) and, for x > Z,

d

dx
J(x) = u′(x){u′′(x) + λu(x)} − ∂xL(x, u(x)) − ∂sL(x, u(x))u

′(x)

= u′(x){u′′(x) + λu(x)− k(eαxu(x))u(x)} − ∂xL(x, u(x))

= −∂xL(x, u(x) = −αe−2αxψ(eαxu(x)) ≥ 0.

We also have that |f(s)| ≤ �|s| for all s ∈ R and so |Φ(s)| ≤ 1
2�s

2 and then

|L(x, s)| ≤ 1
2�s

2, too.

Since u ∈ H2(R) implies that limx→∞ u(x) = limx→∞ u′(x) = 0, it follows
that J(x) → 0 as x →∞ and then from the monotonicity of J that J(x) ≤ 0 for
all x > Z.

Suppose that u(x0) = 0 for some x0 > Z. Then 0 ≥ J(x0) =
1
2u

′(x0)
2 since

L(x0, 0) = 0. By the uniqueness of the solution of (5.1) satisfying the conditions
u(x0) = u′(x0) = 0, this implies that u ≡ 0 on R, whereas we have supposed that
u is a non-trivial solution. Hence u has no zeros in the interval (Z,∞).

Step 2, in which we prove that limx→∞ eαxu(x) =∞ or −∞.
In view of step 1 and the oddness of f , we can suppose that u > 0 on

(Z,∞). Since |λ| − α2 = −λ − α2 < (−Λ + ε) − α2 = |Λ| − α2 + ε ≤ 0 we
can choose β ∈ (|λ|1/2, α) and then set w(x) = ce−βx where c = 1

2u(R)eβR and
R = Z + 1. Then c > 0 and we consider the function z = u − w. Since β > 0
and u ∈ H2(R), z(x) → 0 as x → ∞. By the choice of c, z(R) = 1

2u(R) > 0. Let

Ω = {x > R : z(x) < 0} and suppose that Ω �= ∅. Then z ∈ C2(R) and there
exists a point x0 ∈ Ω such that z(x0) = min{z(x) : x ∈ Ω} < 0 and z′′(x0) ≥ 0.
But, on Ω,

z′′ = u′′ − w′′ = {k(eαxu) + |λ|}u− β2w ≤ |λ|u− β2u < 0

since k ≤ 0 on R, w > u > 0 on Ω and |λ| < β2. In particular, z′′(x0) < 0
contradicting the fact that z attains its minimum at z0. Hence Ω = ∅ and we have
proved that u(x) ≥ ce−βx for all x > R = Z +1. But then, eαxu(x) ≥ ce(α−β)x for
all x > R, where c > 0 and α− β > 0. Thus limx→∞ eαxu(x) =∞, as required.

Step 3, in which we obtain a contradiction to the conclusion of Step 1.
As in Step 2, we can assume without loss of generality that eαxu(x)→∞ as

x→∞ and hence k(eαxu(x))→ −L as x→∞. But

k(eαxu(x)) + |λ| = {k(eαxu(x)) + L} − L+ |λ|
≤ {k(eαxu(x)) + L} − L+ |Λ|+ |λ− Λ| < {k(eαxu(x)) + L} − ε

since L − |Λ| ≥ 2ε and |λ − Λ| < ε. Hence there exists R1 > Z + 1 such that
k(eαxu(x)) + |λ| < −ε/2 for all x > R1.
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Setting v(x) = sin
√

ε
2x, we have that v′′ = − ε

2v and the zeros of v are

xn =
√

2
εnπ for n ∈ Z. For n even, v > 0 on (xn, xn+1). Now consider an even

integer n such that xn > R1. Then∫ xn+1

xn

uv′′ − u′′vdx = uv′|xn+1
xn

= −
√

ε

2
{u(xn) + u(xn+1)} < 0.

On the other hand,∫ xn+1

xn

uv′′ − u′′v dx =

∫ xn+1

xn

−uε
2
v + {λ− k(eαxu)}uv dx

= −
∫ xn+1

xn

{ε
2
+ |λ|+ k(eαx)}uv dx > 0,

since uv > 0 on (xn, xn+1) by step 1 and k(eαxu(x)) + |λ| < −ε/2 by the choice
of R1. �

It is natural to look for a result similar to Theorem 5.1 for N ≥ 2. This can
easily be done for part (i), but for part (ii) which is the main point of Theorem
5.1 it is not so clear how to proceed. For the approach used here, the obstacle at
present is generalizing Step 1. Steps 2 and 3 can be extended to higher dimensions
so one could obtain the conclusion that there is no bifurcation of positive solutions
at Λ for potentials V having compact support and for which Λ < inf σe(−Δ+ V ).

Returning to the case N = 1, minor modifications of the proof of part (ii)
yield the same conclusion for other types of potential. For example (V0) could be
replaced by

(V1) V ∈ L∞(R) with V ≤ 0 a.e. on R and there exists a < b < Z such that
V ∈ C((a, b)) with V (x) < 0 for x ∈ (a, b) and V (x) = 0 for |x| > Z.

or

(V2) V ∈ L∞(R) with lim|x|→∞ V (x) = 0 and there exists Z > 0 such that

V ∈ C1((Z,∞)) and V ′(x) ≤ 0 for all x > Z.

Unlike (V0) and (V1), (V2) does not ensure that inf σ(S) < 0 so this condition
has to be added in that case.

Finally, to draw some important information from Theorem 5.1 we specify a
class of nonlinearities f which satisfy (K) and for which L = �.

(Q) f ∈ C1(R) is an odd function with f ′(0) = 0 which is concave on [0,∞) with
f ′(∞) ≡ lims→∞ f ′(s) > −∞.

Examples of functions satisfying (Q) are given by f(s) = �{arctan s− s} and
f(s) = �{tanh s− s} for any � > 0.

As already noted, functions of the form f(s) = −|s|2σs/(1 + s2)σ satisfy (K)
for all σ > 0, but they do not satisfy (Q) since L = − lims→∞ f ′(s) = 1 and
� = sups∈R |f ′(s)| = −f ′(

√
2σ + 1) > 1 for all σ > 0. On the other hand, for

functions of the form f(s) = −|s|γs/(1 + |s|γ), we find that (K) is satisfied for all
γ > 0 whereas (Q) is satisfied if and only if 0 < γ ≤ 1.
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The hypothesis (Q) implies that f ′ ≤ 0 on R and that sups∈R |f ′(s)| = �

where � = −f ′(∞) = − lims→∞
f(s)
s . Setting

ξ(x) = e−α|x| and η(x) = eα|x| and then F (u) = ξf(ηu),

it follows that the hypotheses (F), (W1) and (W2) of Section 4 are satisfied and
hence from Theorem 3.3 that F : H2(R)→ L2(R) is Hadamard differentiable at 0
with F ′(0) = 0. However, except in the trivial case f ≡ 0, Theorem 3.4 shows that
this mapping is not Fréchet differentiable at 0 and it is not compact. Furthermore,

L(F ) = LL2

(F ) = �.

Corollary 5.2. Consider the equation (5.1) under the hypotheses (V0) and (Q).

(i) If |Λ| > �, there is continuous bifurcation at Λ.

(ii) If |Λ| < � and α > |Λ|1/2, then Λ is not a bifurcation point. Indeed, setting
ε = min{(� − |Λ|)/2, α2 − |Λ|, |Λ|}, u ≡ 0 is the only solution of (5.1) in
H2(R) for λ ∈ (Λ− ε,Λ + ε).

Remark 1. Noting that d(Λ, σe(S)) = |Λ| and L(F ) = LL2

(F ) = �, we see that
d(Λ, σe(S)) < L(F ) in part (ii) and that in this case, Λ is not a bifurcation point for
(5.1). The other hypotheses of Theorem 4.1 are satisfied in both parts (i) and (ii).
Hence, under the assumptions (V0) and (Q), (5.1) is a special case of (1.3) which
satisfies the hypotheses (H1) to (H3) of Proposition 2.2 and so also the conditions
(B1) to (B5) of Theorem [19], as discussed at the beginning of Section 4.

Remark 2. Equation (5.1) is just (4.1) with ξ(x) = e−α|x| but the assumption (K)
means that f does not satisfy the hypotheses of Proposition 4.2 and (ii) shows
that the statement (b) of that proposition does not hold for λ0 = Λ in the present
situation. Of course, statement (c) also fails for (5.1) but it should be realized that
this happens solely because η(x) = 1/ξ(x) = eα|x| is not a transference weight.
See commentary 4 in Section 4.
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Abstract. Let the function u satisfy Dirichlet boundary conditions on a bound-
ed domain Ω. What happens to the critical set of the Ambrosetti–Prodi oper-
ator F (u) = −Δu− f(u) if the nonlinearity is only a Lipschitz map? It turns
out that many properties which hold in the smooth case are preserved, despite
of the fact that F is not even differentiable at some points. In particular, a
global Lyapunov–Schmidt decomposition of great convenience for numerical
solution of F (u) = g is still available.
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1. Introduction

A familiar set of hypotheses for the celebrated Ambrosetti–Prodi theorem is the
following. Let Ω ⊂ Rn be an open, bounded, connected domain with smooth
boundary ∂Ω and denote by 0 < λ1 < λ2 ≤ · · · the eigenvalues of the free Dirichlet
Laplacian −Δ on Ω. Let f : R → R be a smooth, strictly convex function, with
asymptotically linear derivative so that

Ran f ′ = (a, b) , a < λ1 < b < λ2 .

Under such hypotheses, the theorem states that the equation

F (u) = −Δu− f(u) = g, u|∂Ω = 0 (1)

for, say, g ∈ C0,α(Ω), has (exactly) zero, one or two solutions in C2,α(Ω).
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1.1. A first approach – locating C and F (C)

In the original arguments ([1], [11]), a fundamental role is played by the critical set

C of F : X = C2,α
D (Ω)→ Y = C0,α(Ω). Here C2,α

D (Ω) is the subspace of functions
of C2,α(Ω) satisfying Dirichlet boundary conditions. The proof follows a few steps,
which follow from the inverse function theorem and the characterization of fold
points.

1. The critical set C ⊂ X is a hypersurface; every critical point is a fold.
2. F is proper, its restriction to C is injective and F−1(F (C)) = C.
3. The spaces X −C and Y − F (C) have two components. Each component of

X − C is taken injectively to the same component of Y − F (C).

1.2. A global Lyapunov–Schmidt decomposition

Berger and Podolak came up with a different approach [2], which is easier to phrase
for F : X → Y between Sobolev spaces, X = H1

0 (Ω) and Y = H−1(Ω) � H1
0 (Ω).

Their main result is the construction of a global Lyapunov–Schmidt decomposition
for F . Let ϕ1 be the (positively normalized) eigenfunction associated to the ground
state λ1, set VX = VY = 〈ϕ1〉 and consider the orthogonal decompositions

X = VX ⊕WX and Y = VY ⊕WY

into vertical and horizontal subspaces. With a different vocabulary, their proof
essentially goes through the verification of the following properties, by making use
of spectral estimates on the Jacobians DF (u) : X → Y .

1. Horizontal affine subspaces of X are taken by F to sheets.
2. The inverse under F of vertical affine subspaces of Y are fibers.
3. Sheets are essentially flat, fibers are essentially steep.

An affine horizontal subspace of X is a set of the form x + WX , for a fixed
x ∈ X ; an affine vertical subspace of Y is of the form y + VY , for y ∈ Y . Sheets
are graphs of smooth functions from WY to VY and fibers are graphs of smooth
functions from VX to WX . The third property states that the inclination of the
tangent spaces to sheets, with respect to horizontal subspaces, and to fibers, with
respect to vertical subspaces, is uniformly bounded from above.

In the words of [4], F is a flat map. In the Ambrosetti–Prodi case, vertical
spaces and fibers are one-dimensional. More generally, the dimension equals the
number k of eigenvalues of −ΔD in the set f ′(R) (we suppose non-resonance, i.e.,
the extreme values of Ranf ′ are not eigenvalues) and similar results still hold.

1.3. Sheets and fibers allow for weaker hypotheses

There is an interesting bonus obtained from considering this global Lyapunov–
Schmidt decomposition. For many nonlinearities f , the related nonlinear map

F : X → Y, F (u) = −Δu− f(u)

is not proper, and part of the technology related to degree theory simply breaks
down. The Ambrosetti–Prodi hypotheses yield properness of F , but it is not really
essential to most of what we want to do. The first section of the paper is dedicated
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to explicit examples of Lipschitz nonlinearities for which properness does not occur
– there are functions g ∈ Y for which F−1(g) contains a full half-line of functions
in X . From such examples, we may obtain smooth nonlinearities with the same
property, but we give no details.

The results in the paper indicate that in most directions, properness holds.
What we mean by this is something similar to the fact that even when a map
F does not have an invertible Jacobian DF (u) at a point u, it may still have a
subspace L(u) on which the restriction of DF (u) acts injectively – this is how
bifurcation equations come up: they concentrate in a possibly small subspace S(u)
transversal to L(u) the difficulties which are not resolved by the linearization at u.
What we shall see is that the domain X of F splits into special (nonlinear) surfaces
of finite dimension k, on which properness may break down, which have for tangent
spaces the subspaces S(u) when u is critical, but on transversal directions to these
surfaces, the horizontal affine subspaces, properness is always present. As we shall
see, counting or computing solutions of the differential equation F (u) = g boils
down to a finite-dimensional problem, simplifying both (abstract) analysis and
numerics.

1.4. A related numerical algorithm to solve the PDE F (u) = g

Smiley and Chun ([12],[13]) showed that an analogous global Lyapunov–Schmidt
decomposition exists for appropriate non-autonomous nonlinearities f(x, u(x)) and
emphasized its relevance for numerical analysis: one might solve F (u) = g by
restricting F to the fiber αg containing F−1(g). In [4], this project is accomplished:
given a right-hand side g, one first obtains numerically a point in αg, which in
the Ambrosetti–Prodi case is a curve, and then proceeds to search for solutions
by moving along it. The algorithm is sufficiently robust to handle more flexible
nonlinearities: it does not require convexity of f or properness of F , and the range
of f ′ may include other (finite) sets of eigenvalues of −ΔD.

1.5. Lipschitz nonlinearities

Now, what happens when f is not smooth anymore, but, say, Lipschitz? In partic-
ular, this is the scenario considered in the proof of the so-called one-dimensional
Lazer-McKenna conjecture ([9], [10]) by Costa, Figueiredo and Srikanth in [3]. We
state the result, for the reader’s convenience. Let X = H2([0, π]) ∩ H1

0 ([0, π]) be
the Sobolev space of functions satisfying Dirichlet boundary conditions with square
integrable second derivatives. Recall that u �→ −u′′ acting on X to Y = L2([0, π])
has eigenvalues λk = k2, k = 1, 2, . . . with corresponding eigenfunctions sin(kx).
Take f : R → R, a strictly convex smooth function f with asymptotic values a
and b for its derivative f ′ satisfying

a < 1, λk = k2 < b < (k + 1)2 = λk+1.

Then the equation F (u) = −u′′ − f(u) = −t sinx, u(0) = u(π) = 0, has exactly
2k solutions for t > 0 sufficiently large.
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The argument in [3] considers the nonlinearity f̃ given by f̃ ′(x) = a or b,

depending if x < 0 or x > 0. The related operator F̃ (u) = −u′′− f̃(u) now requires
some care: it stops being differentiable everywhere and the usual differentiable
normal forms at regular points and folds break down.

In this paper, we show that when f is merely Lipschitz, for appropriate
conditions on the boundary of Ω, the operator F is still flat, in the sense that
the global Lyapunov–Schmidt decomposition still holds, and sheets and fibers are
still available as graphs of Lipschitz functions. A word of caution: piecewise linear
nonlinearities may yield continua of points on which the map F takes a unique
value. Such sets necessarily lie in a single fiber. More, the numerical analysis of
the PDE F (u) = g presented in [4] is still valid, after minor modifications.

We take this material to be an intermediate step towards a more geomet-
ric description of the operators of Hamilton–Jacobi–Bellman type, as studied by
Felmer, Quaas and Sirakov in [7].

2. Some cautionary examples

For a box Ω ⊂ Rn, we consider again the differential equation

F (u) = −Δu− f(u) = g, u|∂Ω = 0 (2)

with a Lipschitz nonlinearity f(x). Once f is piecewise linear, there may be whole
(straight line) segments on the domain restricted to which F is actually constant.
This happens already for the one-dimensional case. Let ϕ1 be the (positive) ground
state associated to eigenvalue λ1 and take a < λ1 < b. Suppose that Ran ϕ1 =
[0,M ] and define f(x) to be continuous, with derivatives equal to a, λ1 and b in
the intervals [−∞, 0], [0,M ] and [M,∞]: clearly, F (tϕ1) = 0, for t ∈ [0, 1].

2.1. Nonlinearities f with derivatives taking two values, n = 1

In a similar vein, we now provide examples of segments on which F is constant for
the nonlinearity f(x) = ax or bx, for x < 0 or x > 0, with the property that, for
special values of a and b, there are right-hand sides g (g ≡ 0 is an example) with
the property that F−1(g) contains a (straight) half-line of solutions. In particular,
the map F : X = H2(Ω) ∩ H1

0 (Ω) → L2(Ω) is not proper and the equation has
solutions which are not isolated.

We begin with the one-dimensional case, n = 1. Set Ω = I = [0, π]. Split I
into k closed intervals Ii, i = 1, . . . , k joined at their ends, of two different lengths,
Iodd i = β, Ieven i = α. In the figure, k = 4. The smallest eigenvalues for the

Figure 1. A half-line of solutions
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operator u �→ −u′′ with Dirichlet conditions in an interval of sizes β and α are
respectively

λβ = (π/β)
2

and λα = (π/α)
2
,

with positive (normalized) eigenfunctions ϕβ and ϕα. We set b = λβ and a = λα

and construct a solution ψ by juxtaposing multiples of ϕβ and ϕα as shown in
the figure. On I1, one may take pϕβ , for arbitrary p > 0. On I2, the (negative)
multiple of ϕα is determined by matching the first derivative – recall that ψ ∈
X = H2(I) ∩ H1

0 (I), so ψ′ is absolutely continuous. The procedure extends to
the remaining intervals in a unique fashion. We have to make sure that the total
length of the intervals Ii equals π. Thus, for example, in the simplest case k = 2,
we must have

β + α = π ⇐⇒
(
1/
√
b
)
+
(
1/
√
a
)
= 1.

For any value a ∈ (1, 4), there is a (unique) b, which turns out to be in (4,∞)
which solves this equation. Said differently: any interval [a, b] containing λ2 = 4
for which a, b are not eigenvalues of the free problem admits a half-line of solutions
of the equation above. For different numbers of intervals, one shows half-lines of
solutions for any a ∈ (λk, λk+1) and appropriate b ∈ (λk+1,∞).

Alas, the only situation for which this argument does not provide a half-
line of solutions F−1(0) is a < λ1, the Ambrosetti–Prodi case. There are strong
evidences that in this case there are no continua of solutions F−1(g), but we have
no proof.

Clearly, one may replace g ≡ 0 by any g defined piecewise on intervals Ii
as functions in the range of u �→ −u′′ − f(u) (Dirichlet conditions on Ii) acting
on positive functions restricted to Ii. Thus, for k intervals, the set of such g is a
vector subspace of L2(I) of codimension k. This construction ascertains that g is
in the range of F (now considered in the full interval I), so that g = F (u0). By
linearity on each interval Ii, adding a homogeneous solution ψ ∈ F−1(0) gives rise
to u0 + ψ ∈ F−1(g).

These ideas also suffice to prove that there is no nontrivial function in [0, π]
which is taken to 0 if a < λ1 < b.

2.2. The case of arbitrary n

We now consider the case n = 2, the general situation being similar. We now have
Ω = I × I (rectangles would work also): just separate variables and proceed. Let
ψ(y) as before, solving −ψyy − f(ψ) = 0, where f is constructed from appropriate
a and b, and let ϕ(x) ≥ 0 be the ground state for Dirichlet conditions on I, so that

−ϕxx = ϕ(x). The product ψ̃(x, y) = ϕ(x)ψ(y) satisfies

−ψ̃xx − ψ̃yy − f(ψ̃) = ψ̃ + ϕ(x)(−ψyy − f(ψ)) = ψ̃

so that ψ̃ and its positive multiples solve

−uxx − uyy − f̃(u) = 0, u|∂Ω = 0,

for f̃(x) = f(x) + x.
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3. Geometry of Lipschitz maps

Set Y = L2(Ω) with inner product 〈u, v〉0 =
∫
Ω uv and norm ‖u‖0. Also let X =

H2(Ω) ∩H1
0 (Ω), with inner product 〈u, v〉 = 〈−Δu , −Δv〉0 and norm ‖u‖2.

We always consider sets Ω for which −Δ : X ⊂ Y → Y is a self-adjoint
isomorphism – we call such domains Ω appropriate. Also the same operator should
have C∞

0 (Ω) as a core, i.e., it is essentially self-adjoint in this domain. From the
spectral theorem, there is an orthonormal basis of (Dirichlet) eigenfunctions ϕi ∈
X, ‖ϕi‖0 = 1, satisfying −Δϕi = λiϕi. Eigenfunctions associated to different
eigenvalues are orthogonal with respect to both inner products. Concretely, one
might take Ω to be a convex set or require ∂Ω to be C1,1 ([12], [6]). Notice that,
from standard results in spectral theory, operators

T : X ⊂ Y → Y, Tu = −Δu− qu,

for bounded real potentials q, are still self-adjoint with an orthonormal basis of
eigenfunctions.

We assume that the nonlinearity f : R→ R is Lipschitz, and f ′ takes values
in an interval [a, b] with the property that the bounds a and b are not eigenvalues
λi. For this part of the paper, we make no assumptions about convexity for f .
Notice that a and b do not have to be the asymptotic values of f ′, a degree of
freedom which is convenient for numerical analysis.

For starters, F : X → Y given by F (u) = −Δu− f(u) is a well defined map
– it suffices to check that f(u) ∈ Y . This follows from the easy lemma below.

Lemma 1. Say f : R → R is Lipschitz. Then the map f̂ : Y = L2(Ω) → Y given

by f̂(u) = f ◦ u is also well defined and Lipschitz with the same constant.

Proof. Take first u, v continuous functions. Since f is M -Lipschitz, it is absolutely
continuous, so that

|f(u(x))| = |f(0) + u(x)

∫ 1

0

f ′(tu(x))dt | ≤ |f(0)|+M |u(x)|, x ∈ Ω,

and, since Ω is bounded, we have f(u) ∈ Y . Similarly, applying the fundamental
theorem of calculus to the function ϕ(t) = f(tu(x) + (1− t)v(x)), one obtains

‖f(u(x))− f(v(x))‖0 ≤
∫ 1

0

|f ′(tu(x) + (1− t)v(x))|dt ‖u(x)− v(x)‖0.

Now take Cauchy sequences of continuous functions converging to arbitrary func-
tions in Y : the estimates above extend to the required L2 estimates. �

3.1. The main result: Fv : WX → WY is a homeomorphism

We now describe an orthogonal decomposition of X and Y . Take Ω ⊂ Rn to be a
bounded appropriate domain and let Λf = {λi}i∈I be the set of eigenvalues λi in
(a, b). The vertical subspaces VX = VY equal the invariant subspace associated to
Λf and VX ⊂ X,VY ⊂ Y . The horizontal subspaces are WX = V ⊥

X ⊂ X and WY =
V ⊥
Y ⊂ Y where orthogonality takes into account the (different) inner products inX
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and Y . These induce orthogonal decompositions X = WX ⊕ VX , Y = WY ⊕ VY

and corresponding orthogonal projections PY and QY from Y to WY and VY .
Finally, we consider affine horizontal subspaces in X , which are sets of the form
x+WX , for a fixed x, and affine vertical subspaces in Y , of the form y + VY .

We need a label for this construction: a nonlinearity f induces an I-decompo-
sition X = WX ⊕ VX , Y = WY ⊕ VY associated to bounds a and b.

Theorem 1. Let Ω be an appropriate domain, f : R→ R Lipschitz, Ranf ′ ⊂ [a, b],
where a and b are not eigenvalues λi. and X = WX ⊕ VX , Y = WY ⊕ VY be
the I-decomposition specified above. For v ∈ VX , let Fv : WX → WY be the
horizontal projection of the restriction of F to the affine subspace v+WX , Fv(w) =
PY F (w + v). Then Fv is a bi-Lipschitz homeomorphism. The Lipschitz constants
for Fv and F−1

v are independent of v.

Proof. For γ = (a + b)/2, set f̃(x) = f(x) − γx. Then T : WX → WY given by
u→ −Δu− γu is well defined and invertible, with eigenvalues λj − γ with j /∈ I.
Let λm − γ be the eigenvalue of T of smallest absolute value: clearly,

||T−1|| = |λm − γ|−1 < |a− γ|−1 = (b− γ)−1

For u = w + v, w ∈ WX , v ∈ VX , we have

Fv(w) = PY [−Δ(w + v)− f(w + v)] = Tw − PY f̃(w + v).

The composition Fv ◦ T−1 : WY → WY is of the form I − Kv, where Kv(w) =

PY f̃(T
−1w + v). We show that Kv : WY → WY is a contraction with constant

uniformly bounded away from 1. For w, w̃ ∈WY ⊂ L2(Ω),

‖Kv(w) −Kv(w̃)‖0 ≤ ‖f̃(T−1w + v)− f̃(T−1w̃ + v)‖0
≤ (b− γ)‖T−1(w − w̃)‖0 ≤ b− γ

|λm − γ| ‖w − w̃‖0 = c ‖w − w̃‖0.
Since b is not an eigenvalue λj , the Lipschitz constant c is uniformly bounded away
from 1. From the Banach contraction theorem, Fv : WX → WY is a homeomor-
phism. From the standard arguments bounding iterations by convergent geometric
progressions, (I −Kv)

−1 is also Lipschitz, with constant (1− c)−1, hence indepen-
dent of v. �

In particular, if [a, b] does not contain eigenvalues λi, the result above recovers
the Dolph–Hammerstein theorem for Lipschitz nonlinearities ([5], [8]).

3.2. Sheets and fibers make sense for Lipschitz nonlinearities

We are ready to extend to the Lipschitz context the global Lyapunov–Schmidt
decomposition which is known for the smooth case, from the works of Berger and
Podolak and Smiley. Consider the following diagram.

X = WX ⊕ VX
F ��

Φ−1=(Fv,Id) �����
����

����
Y = WY ⊕ VY

Y = WY ⊕ VY

F̃=F◦Φ=(Id,φ)

�������������
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Thus the change of variables Φ yields F̃ (w, v) = F ◦ Φ(w, v) = (w, φ(w, v)),
from which we will derive some convenient geometric properties. We first clarify a
technicality: Φ is indeed a global change of variables in the Lipschitz category. In
WX ⊕ VX , we use the norm obtained by adding the norms in each coordinate.

Figure 2. The change of variables

Proposition 1. The map Φ = ((Fv)
−1, Id) : Y = WY ⊕ VY → X = WX ⊕ VX is a

bi-Lipschitz homeomorphism.

Proof. The invertibility of Φ follows from the previous theorem. We use some
elementary facts. The identity map Id : (VX , ‖.‖2) → (VY , ‖.‖0) between normed
spaces of the same finite dimension is bi-Lipschitz. Also, since WX and VX are
orthogonal (in L2 and H2), ‖w‖2 + ‖v‖2 ≤ 2‖w± v‖2 for w ∈WX and v ∈ VX . To

show that Φ−1 is Lipschitz, take w+v, w̃+ ṽ ∈ X . For appropriate constants C, C̃,

‖Φ−1(w + v)− Φ−1(w̃ + ṽ)‖0 = ‖Fv(w) − Fṽ(w̃)‖0 + ‖v − ṽ‖0
≤ ‖ −Δ(w − w̃)− PY (f(w + v)− f(w̃ + ṽ))‖0 + C‖v − ṽ‖2
≤ ‖w − w̃‖2 + ‖f(w + v)− f(w̃ + ṽ)‖0 + C‖v − ṽ‖2 ≤ C̃‖w + v − (w̃ + ṽ)‖2,

where the last inequality follows from Lemma 1.
We obtain a Lipschitz estimate for Φ = ((Fv)

−1, Id) : WY ⊕VY →WX ⊕VX .
Take z + v, z̃ + ṽ ∈ Y = WY ⊕ VY . Then

‖Φ(z + v)− Φ(z̃ + ṽ)‖2 ≤ ‖F−1
v (z)− F−1

ṽ (z)‖2 + ‖F−1
ṽ (z)− F−1

ṽ (z̃)‖2 + ‖v − ṽ‖2
Again from finite dimensionality of VX = VY , there is an estimate of the form

‖v − ṽ‖2 ≤ C‖v − ṽ‖0. We also have ‖F−1
ṽ (z) − F−1

ṽ (z̃)‖2 ≤ C‖z − z̃‖0 from the
proof of the previous theorem. The first term is handled in a similar fashion. �

The picture should help putting pieces together. Here, dimVX = dim VY = 1,
as in the Ambrosetti–Prodi theorem: the convex span of Ranf ′ (f is Lipschitz!)
contains only the eigenvalue λ1. The map F takes an affine horizontal subspace
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v+WX to a sheet, and the inverse of the vertical affine subspace g+VY is a fiber,
which crosses WX at w(0) and v +WX at v + w(v), in the notation of the proof
above. Clearly, sheet and fiber are graphs, as stated above. The change of variables
Φ preserves horizontal affine subspaces and F̃ preserves affine vertical subspaces.

We are ready to prove the fundamental geometric property of such F : X →
Y : there are uniformly flat sheets and uniformly steep fibers.

Proposition 2. Let F : X = WX⊕VX → Y = WY ⊕VY with the hypotheses given in
the beginning of the section. The image of each horizontal affine space v+WX ⊂ X
under F is the graph of a Lipschitz function σv : WY → VY . Similarly, the inverse
of each vertical affine subspace g + VY ⊂ Y under F is the graph of a Lipschitz
function αg : VX → WX . The Lipschitz constant can be taken to be the same, for
all v ∈ VX , g ∈WY .

Proof. We prove the result for fibers F−1(g+VY ): the statement for sheets F (v+

WX) is easier. Clearly, F̃−1(g + VY ) ⊂ g + VY , which is taken by the change of
variables Φ to a set of the form αg = {(Fv)

−1(g) + v, v ∈ VX} ⊂ X . From the
theorem, for every v ∈ VX , there is a unique w(v) ∈ WX for which PY F (w(v)+v) =
g – thus F−1(g + VY ) = {(Fv)

−1(g) + v, v ∈ VX}. Said differently, w(v) + v ∈ αg:
the set {(w(v), v), v ∈ VX} ⊂ X is the graph of a Lipschitz map.

The uniformity (on g) of the Lipschitz constant of the maps v �→ w(v) is
responsible for the uniform steepness of the fibers. �

In opposition to the arguments in [2], [13] and [4] for the smooth case, the
geometric statements follow without recourse to implicit function theorems. Notice
also that the uniform flatness of sheets and steepness of fibers are a counterpart
to (differential) transversality between fibers and horizontal affine spaces in the
domain and between sheets and vertical affine spaces in the counterdomain.

The restriction of F to horizontal affine subspaces is injective but the restric-
tion to fibers α is not. In particular, in the standard Ambrosetti–Prodi case, F
restricted to each fiber is simply the map x ∈ R �→ −x2 ∈ R, after global changes
of variables. The theorem becomes evident from this fact, first proved in [2].

Vertical lines may be taken by F to the horizontal plane, indicating yet
another relevant transversality property of the fibers. To see this, take Ω =
[−π/2, π/2] and F (u) = −u′′−f(u), so that λ2 = 4 and the corresponding eigenvec-
tor ϕ2 is odd. Set a = 3 and b = 5, split X = WX⊕〈ϕ2〉 and take f(x) = e(x)+4x,
where e(x) is even (convexity is not necessary!) and Ranf ′ = (a, b). By symmetry,
we have

〈 F (tϕ2) , ϕ2 〉 =
∫
Ω

(−tΔϕ2 − e(tϕ2)− 4t ϕ2) ϕ2 = 0.

4. Geometry and numerics

The statements in the previous section are exactly what we need to mimic the
numerical algorithms in [4] for solving F (u) = g, i.e., the differential equation (2).
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This section emphasizes the points where some alterations are needed, but most
details common to the smooth and Lipschitz scenarios, which are provided in [4],
will not be presented.

4.1. Finding the right fiber

To solve F (u) = g, first find any point u = w + v ∈ αg, the fiber associated to g.
Said differently, find u so that PY F (u) = PY g. In order to do this, notice that,
from the results of the previous section, each fiber αg intersects each horizontal
affine space v + WX at a single point. Thus each horizontal point PY g ∈ WY

corresponds to a unique w(g) ∈WX for which Fv(w(g)) = PY g.
Said differently, each bi-Lipschitz map Fv : WX → WY takes a point w(g)

in the fiber αg to a point PY g, which is the only point in the vertical affine space
g + VY in the horizontal subspace WY . In words: there is a bi-Lipschitz map
between the set of all fibers (represented by points in WX) to the set of vertical
affine spaces (represented by points in WY ).

Now the good (numerical) news: to invert each map Fv, simply invert the
(bi-Lipschitz) homeomorphism Fv ◦ T−1 = I − K, where K is a contraction, as
shown in the proof of Theorem 1! So the approximation of F−1

v (PY G) is amenable
to standard numerical algorithms. In the differentiable case, we could do somehow
better: we could invert by continuation where local steps are given by Newton
iterations. In the strictly Lipschitz context, we lose quadratic convergence – some
acceleration techniques are still available, but we provide no details.

4.2. Moving along a fiber

Once a point in αg is identified, we need to learn to walk along the fiber, or more
precisely, we have to compute the point in the fiber with a given height v ∈ VX .
This in turn is the main piece of information for a finite-dimensional inversion
algorithm for the restriction F : αg → g + VY , which is done by continuation
starting from a given point in the fiber u ∈ αg.

Clearly small perturbations of a point u1 ∈ αg leave the fiber. But the previ-
ous algorithm – more precisely, the inversion of each map Fv – makes it possible
to change u1 = w1 + v1 to a point ũ = w̃+ v2 and then using ũ as a starting point
to solve Fv2(w2) = PY g, giving rise to a point u2 = w2 + v2 ∈ αg.

4.3. Stability of the decomposition, a numerical necessity

The uniformity on the flatness of sheets and the steepness of fibers has a relevant
consequence for numerics, which has been detailed in [4]. In a nutshell, whatever
algorithm we use requires an approximation for the projection PY : Y → Y . This
is usually accomplished by computing (approximate) eigenfunctions associated to
the eigenvalues of −ΔD in the interval (a, b). A concrete possibility is to approx-
imate functions by finite elements. The upshot is that the numerics handles an
approximation ṼX = ṼY of VX = VY and its orthogonal complement. However,
from the uniformities, such spaces, for sufficiently close approximations, still in-
duce global Lyapunov–Schmidt decompositions giving rise to sheets and fibers,
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for which the algorithms described in the previous paragraphs hold and provide
robust approximations to the real answers.

Figure 3. Irrelevant perturbations for numerical purposes

In the figure, we sketch fibers and their perturbations; there is an analogous
reasoning for sheets. In the figure, ṼY changes slightly the affine vertical subspace
through the point g, which in turn, when inverted, gives rise to a slightly different
fiber α̃g. Still, α̃g is a Lipschitz graph of a function from ṼX to W̃X = (ṼX)⊥. The
(geometric) thing to notice is the fact that it is the steepness of the fibers which
ascertain the robustness of the global Lyapunov–Schmidt decomposition.
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Abstract. Consider the infinite-dimensional dynamical system provided by
the (forward) heat semi-flow on the loop space of a closed Riemannian mani-
fold M . We use the recently discovered backward λ-Lemma and elements of
Conley theory to construct a Morse filtration of the loop space whose cellular
filtration complex represents the Morse complex associated to the downward
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1. Introduction

Consider a closed smooth manifold M of dimension n ≥ 1 equipped with a
Riemannian metric and the Levi-Civita connection ∇. Pick a smooth function
V : S1×M , called the potential energy, and set Vt(q) := V (t, q). Here and through-
out we identify S1 = R/Z.

For smooth maps R× S1 →M : (s, t) �→ u(s, t) consider the heat equation

∂su−∇t∂tu−∇Vt(u) = 0. (1)

It corresponds to the downward L2-gradient equation of the action functional
given by

SV (γ) =
∫ 1

0

(
1

2
|γ̇(t)|2 − V (t, γ(t))

)
dt

for any element γ of the free loop space ΛM := W 1,2(S1,M) consisting of abso-
lutely continuous loops in M whose derivative is square integrable. The critical
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points of SV are the closed orbits of the Euler–Lagrange flow associated to the me-
chanical Lagrangian given by kinetic minus potential energy, that is the solutions
x ∈ ΛM of the ODE −∇tẋ −∇Vt(x) = 0. For constant potential V these are the
closed geodesics. Throughout this paper we fix a regular value a of SV and assume
that the Morse–Smale condition holds true below level a. Consider the sublevel
set

ΛaM := {γ ∈W 1,2(S1,M) | SV (γ) < a}.
In this case the action is a Morse function on ΛaM and the set of solutions to (1)
that converge to critical points x± ∈ ΛaM , as s → ±∞, carries the structure
of a smooth manifold whose dimension is given by the Morse index difference
indV (x

−) − indV (x
+). Moreover, the set Crit of critical points of SV in ΛaM

is finite. By m = m(a) we denote the maximal Morse index among them. By
Critk ⊂ Crit we denote the critical points of Morse index k. For each x ∈ Crit pick
an orientation of the subspace Ex of the Hilbert space

X := TxΛM = W 1,2(S1, x∗TM)

which is spanned by the eigenvectors corresponding to negative eigenvalues of the
Hessian of SV at x. (The dimension of Ex is finite and called the Morse index of x.)

Heat flow homology [4]. By definition the Morse chain groups CMk = CMk(Λ
aM ,

SV ;Z) are the free abelian groups generated by the (perturbed) closed geodesics
x of Morse index k and below level a, that is ZCritk . Set CMk = {0} in case of
the empty set. The chosen orientations provide the characteristic sign nu ∈ {±1}
for each heat flow solution u of (1) between critical points of index difference one.
Up to shift in the time variable s, there are only finitely many such u. Counting
them with signs nu provides the Morse boundary operator ∂k : CMk → CMk−1.
By HMk we denote the corresponding homology groups.

Main result: The natural isomorphism to singular homology [6]. The idea to use
cellular filtrations to calculate Morse homology goes back at least to Milnor [3]. One
needs to construct a cellular filtration F of ΛaM whose cellular filtration complex
(C∗F , ∂∗) precisely represents the Morse complex, up to natural identification. In
this case we are done, since

HMk ≡ H∗ ((C∗F , ∂∗)) � H∗(ΛaM) (2)

where the isomorphism is provided by algebraic topology given any cellular filtra-
tion of ΛaM (related to the Morse complex or not); see, e.g., [2].

2. Morse filtrations and Conley pairs

Definition 2.1 (Cellular filtration and homology). Assume F = (F−1 ⊂ F0 ⊂
F1 ⊂ · · · ⊂ Fμ = ΛaM) is a nested sequence of open subsets of ΛaM such
that relative singular homology H�(Fk, Fk−1) is trivial for any elements � �= k
of the set {0, 1, . . . , μ} and where F−1 := ∅. In this case F is (a special case of)
a cellular filtration of ΛaM . For the algebraic topology used in this section, see,



The Backward λ-Lemma and Morse Filtrations 459

e.g., [2]. The cellular chain complex consists of the cellular chain groups CkF :=
Hk(Fk, Fk−1) together with the triple boundary operators ∂k : Hk(Fk, Fk−1) →
Hk−1(Fk−1, Fk−2). A cellular filtration F is called a Morse filtration, if CkF =
CMk for every k, that is each relative homology group Hk(Fk, Fk−1) is generated
precisely by the critical points of Morse index k.

Remark 2.2. To establish (2) we need a) to construct a Morse filtration F of ΛaM
and b) to show that the associated triple boundary operator counts heat flow lines
according to their characteristic signs between critical points of index difference
one. How to solve these two problems is known for flows; cf. [3] or [1, Thm. 2.11].
The solution to b) carries over to our semi-flow situation, essentially since the
semi-flow turns into a flow when restricted to the (finite-dimensional) unstable
manifolds. It remains to construct a Morse filtration F of ΛaM .

The Abbondandolo–Majer construction for flows [1]. In their construction of a
Morse filtration F ′ of ΛaM openness of the sets F ′

k follows from openness of the
time-T-map and the Morse property is a consequence of forward flow invariance of
the open sets F ′

k. Start by setting N0 equal to the union of open local sublevel sets,
one for each local minimum x0. Set F

′
0 := N0. Next choose a small open ball about

each index one critical point and denote their (disjoint) union by N ′
1. Then take

the union of F ′
0 and the whole forward flow of N ′

1 and call it F ′
1 := F ′

0 ∪ϕ[0,∞)N
′
1.

Similarly define F ′
2 and F ′

3, . . . , F
′
m.

A construction for semi-flows using Conley pairs [6]. The Cauchy problem asso-
ciated to the heat equation (1) for maps [0,∞) → ΛaM : s �→ us = u(s, ·) is well
posed and leads to the continuous semi-flow

ϕ : [0,∞)× ΛaM → ΛaM

called the heat flow. In fact ϕ is of class C1 on (0,∞)×ΛaM . A characteristic fea-
ture of the heat flow is its extremely regularizing nature, namely ϕsγ ∈ C∞(S1,M)
whenever γ ∈ ΛM and s > 0. Observe that the set of nonsmooth elements is dense1

in ΛM . Hence ϕs is not an open map for s > 0 and the Abbondandolo–Majer
method does not work. Instead we propose the following construction.

It is a very simple – but far reaching – observation that by continuity of ϕs

preimages of open sets are open. Define N0 as above. Observe that the preimage
ϕT

−1N0 is open and semi-flow invariant. Assume x1 is a critical point of Morse
index one. The (one-dimensional) unstable manifoldWu(x1) necessarily

2 intersects
N0. Consequently our preimage gets very close to x1 for T very large, however, it
never contains x1. To get over the barrier x1 assume we had an open neighborhood
Nx1 of x1 containing no other critical points and a closed subset Lx1 ⊂ Nx1 which
does not contain x1. Assume further that Lx1 is semi-flow invariant in Nx1 and
every element leaving Nx1 under the semi-flow necessarily runs through Lx1 first.

1Pick γ ∈ ΛM and a nonsmooth ξ ∈ W 1,2(S1, x∗TM). For large integers j consider expγ(
1
j
ξ).

2By Palais–Smale and SV being Morse γ∞ := lims→∞ ϕsγ always exists and lies in Crit. If
γ ∈ Wu(x1) and γ �= x1, then γ∞ ∈ Crit0 by Morse–Smale.
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x1

x0 L0 = ∅

N1

N0

exit set L1 ⊂ ϕT1
−1 (N0 ∪ F

−1) =: F0

∅ =: F
−1

Figure 1. Morse filtration F = (∅ ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fm = ΛaM)

Such a pair (Nx, Lx) is called a Conley pair for x ∈ Crit and Lx is called an exit
set for the Conley set Nx.

Pick x ∈ Crit and set c := SV (x). For ε > 0 small and τ > 0 large the sets

Nx = Nε,τ
x :=

{
γ ∈ Λc+εM | SV (ϕτγ) > c− ε

}
x

Lx = Lε,τ
x := {γ ∈ Nx | SV (ϕ2τγ) ≤ c− ε} (3)

form a Conley pair for x. Here {. . .}x indicates the path connected component of
the set {. . .} that contains x. By Theorem 3.2 d) below the sets Nx corresponding
to different critical points x are pairwise disjoint. For k ∈ {0, . . . ,m} we define

Nk :=
⋃

x∈Critk

Nx, Lk :=
⋃

x∈Critk

Lx,

where m = m(a) is the maximal Morse index below level a. Consider the preimages

Fk := ϕTk+1

−1 (Nk ∪ Fk−1) ⊃ Lk+1, k = 0, . . . ,m− 1, (4)

where the constant Tk+1 is chosen sufficiently large3 such that the inclusion holds
true; see Figure 1. Note that if there are no critical points whose Morse index is k
or k+1, then Fk = Fk−1 and Fk+1 = ϕTk+2

−1(Fk−1). Moreover, because there are
no critical points in the complement of Nm ∪ Fm−1 in ΛaM , there is a constant
Tm+1 such that ΛaM is equal to Fm := ϕTm+1

−1 (Nm ∪ Fm−1). Observe that each
set Fk is open, because Nk and Fk−1 are. Furthermore, although Nk is not semi-
flow invariant the union Nk∪Fk−1 is, because the exit set Lk of Nk is contained in
Fk−1. Openness and semi-flow invariance heavily enter the calculation (5) in the
proof of the Morse filtration property.

Morse filtration property. Constructing suitable homotopy equivalences and using
excision one shows that

H�(Fk, Fk−1) � H�(Nk, Lk) �
⊕

x∈Critk

H�(Nx, Lx). (5)

3Here Palais–Smale, Morse–Smale on neighborhoods, and SV being bounded below enter.
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γ ∈ Su
ε
(x)

τ = time to reachτ 2τ 2τ
{S

V
= c − ε}

W s(x)

Lx ⊂ Nx

Wu(x)

D(x)

{S
V

= c+ ε}

xDγ(x)

∞

Figure 2. Conley pair (Nx, Lx) foliated by equal time disks ϕT
−1Dγ(x)

Here the final step uses that Nk is a union of pairwise disjoint sets Nx. So in order
to prove that the nested sequence F consisting of the open semi-flow invariant sets
Fk defined by (4) is a Morse filtration of ΛaM – thereby concluding the proof of
the main result (2) via Remark 2.2 – it remains to show that

H�(Nx, Lx) � H�(D
k, ∂Dk) �

{
Z , � = k,

0 , otherwise,
(6)

for every x ∈ Critk. To prove the first isomorphism was precisely the problem
which inspired us to come up with the backward λ-Lemma in [5]: Since the part of
Nx in the unstable manifold Wu(x) is a k-disk bounded by the (relatively) closed
annulus Lx ∩Wu(x) it remains to deformation retract (Nx, Lx) onto its part in
Wu(x). A simple, but crucial, observation is that the semi-flow ϕs does the job on
the ascending disk

W s
ε (x) := W s(x) ∩ Λc+εM = W s(x) ∩Nx, W s(x) :=

{
γ ∈ ΛM | ϕsγ

s→∞−→ x
}
.

Indeed it moves the elements of W s
ε (x) asymptotically to x ∈ Nx ∩ Wu(x), as

s→∞. This fails on the complement Nx \W s
ε (x). Note that W

s
ε (x) is a C1 graph

over its tangent space, say X+. The idea is to foliate all of Nx by copies of W s
ε (x)

(C1 graphs over X+), then extend ϕs artificially to all of Nx using the graph maps ;
see (8) and Figure 4.

To understand the foliation structure assign to each point of Nx the time T
at which it hits the level surface {SV = c− ε}; see Figure 2. This suggests that Nx

is foliated by the equal time hypersurfaces ϕT
−1{SV = c − ε} where T ∈ (τ,∞).

But for T = ∞ one obtains the codimension k ascending disk W s
ε (x). Because

all leaves should be of the same codimension, consider the tubular neighborhood
D(x) → Su

ε (x) associated to a (sufficiently small) radius r normal disk bundle of
the descending sphere Su

ε (x) := Wu(x) ∩ {SV = c − ε} in the Hilbert manifold
{SV = c − ε}. Then each fiber Dγ(x) is a codimension k disk and so are the
preimages Nx ∩ ϕT

−1Dγ(x) which foliate Nx.
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3. Backward λ-Lemma and stable foliations

Fix x ∈ Critk and set c := SV (x). Because Nx = Nε,τ
x fits into any neighborhood

of x for ε > 0 small and τ > 0 large, we will use local coordinates about x ∈ ΛM .

Local coordinates about x ∈ ΛM . The nonlinear part of the heat equation (1)
determines a closed radius ρ0 ball Bρ0 about 0 ∈ X such that the following is
true. Paths s �→ u(s) in ΛM near x and s �→ ξ(s) in Bρ0 uniquely correspond to
each other via the identity u(s) = expx ξ(s) pointwise for every t ∈ S1. In the
new coordinates ξ the Cauchy problem associated to (1) turns into the equivalent
Cauchy problem

ζ ′(s) +Aζ(s) = f(ζ(s)), ζ(0) = z ∈ Bρ0 , (7)

for maps ζ : [0, T ]→ Bρ0 ⊂ X . Here A = Ax is the Jacobi operator associated to
the (perturbed) closed geodesic x. The semi-flow ϕ turns into the local semi-flow
φ on Bρ0 ⊂ X . The nondegenerate critical point x corresponds to the hyperbolic
fixed point 0 of φ. Furthermore, there is the orthogonal splitting

X := TxΛM � TxW
u(x) ⊕ TxW

s(x) =: X− ⊕X+.

Here X− is of finite dimension k = indV (x) and consists of smooth loops along x.
By π± : X → X± we denote the associated orthogonal projections. For coordinate
representatives of global objects we shall use the global notation omitting x, for
example Wu(x) becomes Wu. By S we denote the representative of SV . Via a
change of coordinates one achieves that locally near zero Wu is contained in X−.
By B+

R we denote the closed ball of radius R about 0 ∈ X+. The spectral gap d > 0
is the distance between 0 and the spectrum of Ax.

Theorem 3.1 (Backward λ-Lemma, [5]). Pick μ ∈ (0, d) and a hypersurface D ⊂
Bρ0 of the form Su

ε ×B+
κ . Then the following is true (see Figure 3). There is a ball

B+ about 0 ∈ X+, a constant T0 > 0, and a Lipschitz continuous map

G : (T0,∞)× Su
ε × B+ →Wu × B+ ⊂ Bρ0

(T, γ, z+) �→
(
GT

γ (z+), z+
)
=: GT

γ (z+)

of class C1. Each map GT
γ : B+ → X is bi-Lipschitz, a diffeomorphism onto its

image, and GT
γ (0) = φ−T γ =: γT . The graph of GT

γ consists of those z ∈ Bρ0 which

satisfy π+z ∈ B+ and reach the fiber Dγ = {γ} × B+
κ at time T , that is

GT
γ (B+) = φT

−1Dγ ∩
(
X− × B+

)
.

Furthermore, the graph map GT
γ converges uniformly, as T → ∞, to the stable

manifold graph map G∞. More precisely, the estimates∥∥GT
γ (z+)− G∞(z+)

∥∥
W 1,4 ≤ e−T μ

16 ,
∥∥dGT

γ (z+)v
∥∥
2
≤ 2 ‖v‖2 ,∥∥dGT

γ (z+)v − dG∞(z+)v
∥∥
2
≤ e−T μ

16 ‖v‖2
hold true for all T > T0, γ ∈ Su

ε , z+ ∈ B+, and v in the L2 closure of X+.
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γT := φ
−T γ

W s

G∞

γ ∈ Su
ε

B+

T→∞

←− φT
−1Dγ ∩ (X− × B+)

0

Dγ

X− ⊃ Wu

GT
γ

Figure 3. Backward λ-Lemma

Theorem 3.1 is based on the observation that the Cauchy problem for a heat
flow line ξ : [0, T ] → X with ξ(0) = z is equivalent to a mixed Cauchy problem
with data (T, γ, z+). Namely, there is a unique heat flow line ξ : [0, T ] → X with
π+ξ(0) = z+ and π−ξ(T ) = γ.

That the (k-dimensional) unstable manifolds carry backward time informa-
tion is evident from their definition. In contrast, Theorem 3.1 provides backward
time information on open sets.

Stable foliation of Conley set. Theorem 3.1 foliates coordinate neighborhoods of
x by (globally meaningless) codimension k disks. The next result provides global
information in various directions. By definition the descending disk Wu

ε (x) is given
by Wu(x) ∩ {SV > c− ε}.
Theorem 3.2 ([6]). Given μ ∈ (0, d) there are constants ε0, τ0, r > 0 such that the
following is true. Assume τ > τ0 and ε ∈ (0, ε0) and consider the radius r tubular
neighborhood D(x) → Su

ε (x) defined in the paragraph preceding Section 3.

a) The Conley set Nx = Nε,τ
x carries the structure of a C0 foliation of codimen-

sion k. Its leaves are parametrized by the disk ϕτ
−1Wu

ε (x). It is of class C1

away from the leaf over x, that is the ascending disk W s
ε (x). The other leaves

are the disks

Nx(γT ) =
(
ϕT

−1Dγ(x) ∩ {S < c+ ε})
γT

, γT := ϕ−T γ,

where T > τ and γ ∈ Su
ε (x). Here (. . .)γ is the path connected component of γ.

b) Leaves and semi-flow are compatible in the sense that

z ∈ Nx(γT ) ⇒ ϕσz ∈ Nx(ϕσγT ), ∀σ ∈ [0, T − τ).

c) The leaves converge uniformly to the ascending disk in the sense that

distW 1,2 (Nx(γT ),W
s
ε (x)) ≤ e−T μ

16

for all T > τ and γ ∈ Su
ε (x). Furthermore, if U is a neighborhood of W s

ε (x)
in ΛM , then Nε,τ∗

x ⊂ U for some constant τ∗.
d) Assume U is a neighborhood of x in ΛM . Then there are constants ε∗ and

τ∗ such that Nε∗,τ∗
x ⊂ U .
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N(0) = W s
ε
⊂ imG∞

γT

GT
γ

π+
φs

γ ∈ Su
ε

{S = c+ ε}

N

N(γT ) ⊂ imGT
γ

G∞

∂NX+

Wu

θsz

z+ z

∂N

0

γτ

z+(s)

X−

Figure 4. The induced flow θs on N

4. Strong deformation retract

Pick x ∈ Critk. It remains to prove (6). If k = 0, then Lx = ∅ and {x} = Wu(x) =
Nx ∩Wu(x) is a strong deformation retract of W s

ε (x) = Nx where the retraction
is provided by the semi-flow ϕs. So we are done. Now assume k > 0. Consider the
local setup of Section 3 and denote the representative of Nx by N and similarly
for other quantities. Fix ρ0 > 0 so small that the only critical point in Bρ0 is the
origin of X .

Definition 4.1. By Theorem 3.2 each z ∈ N lies on a leaf N(γT ) for some time
T > 0 and some point γ in the descending disk Su

ε where γT := φ−Tγ. The
continuous leaf preserving map θ : [0,∞)×N → N defined by the composition of
maps

θsz := GT
γ π+φsG∞π+z (8)

is called the induced semi-flow on N ; see Figure 4. It is of class C1 in s ∈ (0,∞).

That θs preserves the central leaf N(0) = W s
ε is due to the downward L2-

gradient nature of the heat equation. The proof for a general leaf N(γT ) turns out
to be surprisingly complex although the idea is once more simple: Show that the
map s �→ S(θsz) strictly decreases whenever z lies in the (topological) boundary
of a leaf. This implies preservation of leaves as follows. Firstly, note that θ is ac-
tually defined on a neighborhood of N(γT ) in GT

γ (B+). Secondly, the (topological)
boundary of a leaf lies on action level c + ε whereas the leaf itself lies strictly
below that level. Thus the induced semi-flow points inside along the boundary of
each leaf – which is a disk by Theorem 3.2. So θs preserves leaves, thus N and
L by Theorem 3.2. Moreover, it continuously deforms both topological spaces to
their respective part in the unstable manifold and this concludes the proof of (6).
Therefore F defined by (4) is indeed a Morse filtration for ΛaM and by Remark 2.2
this establishes the desired natural isomorphism (2).



The Backward λ-Lemma and Morse Filtrations 465

0

{S = c+ ε}

{S = c+ ε/2}
W

N Bρ0

Figure 5. The neighborhood W of 0 used to define α > 0

It remains to show that d
dsS(θsz) < 0 whenever z lies in the (topological)

boundary of a leaf. Note that the L2-gradient gradS is only defined on loops whose
regularity is at least W 2,2. Consider the neighborhood W := Bρ0 ∩ {S ≤ c+ ε/2}
of 0 ∈ X illustrated by Figure 5. By Palais–Smale the constant defined by

α := inf
z∈(Bρ0∩W 2,2)\W

‖gradS(z)‖2 > 0

is strictly positive. A rather technical argument, see [6], involving a long calculation
which uses heavily the estimates provided by Theorem 3.1 shows that for all ε > 0
small and τ > 0 large the following is true. If T > τ and γ ∈ Su

ε , then

d

ds
S(θsz) = dS|θsz dGT

γ |z+(s) π+
d
ds (φsG∞π+z)

= − 〈
gradS|θsz, dGT

γ |z+(s)π+gradS|φsq

〉
L2

≤ − 1
4α

2

for all z ∈ ∂N(γT ) and s > 0 small. It is precisely this calculation where we need
convergence in W 1,4 and the extension to L2 of the linearized graph map dGT

γ (z+)

in Theorem 3.1. (The nonlinear part f of (1) maps W 1,4 into L2.)
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