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Preface

The present volume is dedicated to Bernhard Ruf on the occasion of his sixtieth
birthday. It contains articles by participants of the IX Workshop on Nonlinear
Differential Equations, which took place at the Federal University of Paraiba in
Joao Pessoa, Brazil in September 2012. The meeting belongs to a bilateral project
between Brazil and Italy, which started in 1993 as an initiative of Bernhard Ruf
and Carlo Pagani on the Italian side. From the beginning these events have been
gathering mathematicians from all over the world.

Bernhard Ruf



x Preface

Bernhard Ruf obtained his PhD in 1980 at the University of Ziirich under
the guidance of Peter Hess, and as a student he made his first contacts with the
Brazilian community. His connections were intensified through the realization of
a series of workshops, scientific collaborations and joint papers. On the side, he
interlaced his research with scientists from several South American countries, USA,
Canada, most European countries, India, China, Japan, Australia and Russia.

Since 1994, Bernhard has been Full Professor at the Universita degli Studi
di Milano, where he is a leading figure not only as a teacher and researcher, but
also as an adviser of PhD students and supervisor of post-docs. His talent and
dedication in mentoring young researchers is well known, and by now Bernhard
has raised more than one generation of young mathematicians.

Bernhard has been director of the PhD School in Mathematics and the or-
ganizer of the Leonardo da Vinci Lectures since 1990, a series of conferences by
worldwide recognized mathematicians. He is a director of three editions of the
Riemann International School of Mathematics since 2009 and Founder and Man-
aging Editor since 2002 of the Milan Journal of Mathematics, formerly edited as
“Rendiconti del Seminario Matematico e Fisico di Milano”. He has participated in
scientific and organizing committees of a number of international congresses and
has been invited to deliver plenary lectures in major events.

Bernhard’s contribution to mathematics touches several fields of nonlinear
analysis and partial differential equations systems combining methods from topol-
ogy, geometry and analysis: singularity and bifurcation theory, where he obtained
the remarkable and optimal result that an elliptic operator with cubic nonlinearity
and a small linear term is a global cusp map between suitable Banach spaces; best
embedding constants and the existence of extremals; lower-order perturbations; ex-
istence and nonexistence of solutions to related partial differential equations and
systems; limiting cases in embedding inequalities, obtaining significant advances
in the understanding of the lack of compactness in Trudinger—Moser type inequal-
ities; periodic orbits of Hamiltonian systems, by means of a generalization of the
famous Lyapunov center theorem; existence theorems for superlinear elliptic equa-
tions. His results appeared in more than eighty papers, most of which published
in prestigious journals.

As recognition for his outstanding scientific career, in 2002, Bernhard has
been appointed member of the Academy of Sciences and Letters “Istituto Lom-
bardo”.
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Asymptotic Behavior of Sobolev
Trace Embeddings in Expanding Domains

Emerson Abreu, Joao Marcos do O and Everaldo Medeiros

Abstract. We investigate the asymptotic behavior of best constants in ex-
panding domains Q. = £7'Q (¢ > 0), for the Sobolev trace embedding
HY(Q:) < LP(09Q:), 1<p<2,:=2(N-1)/(N—2). We provide a detailed
description of the shape for extremal u. of the best constant and prove that
the maximum of u. is achieved on the boundary 92, and concentrates around
a maximum point of the mean curvature of the boundary. The nonexistence
of extremal is obtained for large .

Mathematics Subject Classification (2010). Primary 35J20; Secondary 35B40.

Keywords. Sobolev trace embedding, best constant, asymptotic behavior of
extremals.

1. Introduction

We begin recalling some well-known facts and definitions: Let H*(£2) denote the
Sobolev space over a smooth bounded domain Q@ C RY (N > 3) with norm
[ull ) = Jo (IVul® +u?) dz. The Sobolev trace embedding states that

HY Q) — LP(02), 1< p<2,, (1.1)

(where 2, = 2(N — 1)/(N — 2) is the critical Sobolev exponent), which can be
expressed as

CllullZoon) < llullfng), ¥ueH(Q).
The best constant for this inequality is the largest constant which the above in-
equality holds, namely

2

c(Q) = inf{ liline -, e H'Y(Q),u € LP(E)Q)\{O}} .
”u”Lp(aQ)

Research partially supported by the National Institute of Science and Technology of Mathematics
INCT-Mat, CAPES, CNPq and FAPEMIG.
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Related with this embedding Del Pino and Flores in [4] investigated the asymptotic
behavior of the best constant C'(2)) when Q) is an expanding bounded domain,
that is, Qy = A71Q. It is known that existence of extremals for C(Q,) is after
normalization equivalent to the existence of ground state solutions to the problem

—Au+u=0 in Q,,
gz = |[ulP"2u  on O%,. (1.2)
It is worth mentioning that the limit problem associated with (1.2)
Aw+w=0 in Rf
ow (1.3)

= |w/P2w on RN™!
on = ul

plays a crucial role on the study of the behavior of extremal functions to C'(€2y).
Motivated by [4], here we investigate the asymptotic behavior of the best constant

lull

S,(Q) = inf{ Tu € Hl(Q),u IS Lp(aQ)\{O}} ,

||U||2Lp(3Q)

associated to the Sobolev trace inequality

2/p
S (/ |ul? da) < (/ |Vul? dz+/ u? da> , Yue HY(Q), (14)
o Q oN

where we are considering in H'(£2) the equivalent norm |[ul|3 := [, [Vu|* dz +
Joq u? do. Thus a natural question is to investigate the behavior of S,(Q.) in
expanding domain Q. := ¢71Q = {e71z : 2 € Q}. Throughout this paper we
assume that 2 < p < 2,. In this case it is known that the embedding H!(Q) <
LP(0Q) is compact. So we have existence of extremals for S,(2) and one can see
that there is a one-to-one correspondence between extremal function to (1.4) on
the domain ). and the solutions of the rescaling problem

Au=0 in Q,,

Ou +u=|uP?u on 0Q.. (F)
an

Applying standard regularity theory and strong maximum principle we have that

solutions of (P:) is smooth up to the boundary and defined signed in Q.. Thus,

we assume from now on that our solutions are positive in (2.

Using a variational approach, more precisely, the mountain-pass theorem,
we show the existence of a least energy solution u. of (P.) for small e and then,
using energy estimates, we prove that the points where this solution u. attains its
maximum concentrate around a point of maximum for the mean curvature of 9€2.

The main characteristics of (P:) are the presence of the nonlinear boundary
condition and that it has exactly two constant solutions v = 0 and v = 1 (non-
negative) for all ¢ > 0. For the mountain-pass solution u. obtained in this setting,
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we will establish energy estimates that distinguish it from those constant solutions
for small . More precisely, we will prove that for small £ > 0

1

1
I, (1) < o, (1) = (5 = | ) e Vlosl, (1.5
where Iq_ is the associated functional to (P:). In order to obtain the estimate
(1.5), it is crucial, in our approaches, the study of positive ground state solutions

to the following limit problem
Aw =0 in RY,

ow

on

where RY = {(z,t) € RY ¢ > 0} and ORY = {(,0) : € R¥N~'}. We point out
that (Ps) appears naturally after blow-up when studying solutions of (P:). More
precisely, if we stand at a point on the boundary 99 and take ¢ — 0, then the
domain 2. becomes a half-space which, after a convenient rotation and translation,
may be assumed to be Rf . In [1] we proved the existence of a ground state solution
for (P ) which is radial and has exponential decay in the N — 1 variables and we
also prove a sharp polynomial decay in the last variable (see Proposition 3.1).
Moreover, considering the space

E={ueD"?RY) :ulgv-— € L* RV "1}, (1.6)

Py
+w=|wf 2w on IRY, (Feo)

(where u|g~-1 is understood in the sense of trace) we prove that C,(RY) (the least
energy level from the associated functional to (Ps)) is achieved and Cj(RY) =
p2—pQ Sp(RY)P/(P=2)  where

Sp(RY) = inf { Vel ey + a1y + 4 € Byl pogen—sy = 1}

We observe that, in contrast with the limit problems used in Ni-Takagi [11]
and Del Pino—Flores [5] where the ground state solutions have exponential decay,
in our case the ground state solutions w(x,t) of (P ) does not have exponential
decay in the t-variable. Thus, we have to perform a different analysis for this case
(see [9] for a related problem).

Now we are ready to state our main results.

Theorem 1.1. There exists €, > 0 such that for all € € (0,¢,), problem (P.) has a
nonconstant positive least energy solution ue.

After straightforward calculations one can see that C, (), the least energy
level associated to Iq_, satisfies

2

b= _
Cy(0) =", “5,(Q0/ . (17)

Since ). expands toward to a half-space depending on the choice of origin, it is
natural to relate the behavior of S,(Q.) and u. with S,(RY), the best constant
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and extremals of a suitable trace Sobolev embedding in Rf . For more details, we
refers to [1] where the authors studied some properties on the solutions of (Ps).

Next, if we denote by H(z) the mean curvature of the boundary at the point
z € 010, we have.

Theorem 1.2. Assume that N > 4 and let u. be the least energy solution of (P-:)
obtained in Theorem 1.1. If z. € 0¥ is a point where u. achieves its mazximum
value then

H(ez.) — max H(z), as € — 0.
z€00

Moreover, there are positive constants v = v(p, N) and ¥ = Y(p, N) such that:

(i) the associated critical value Cp(§2:) can be estimated as
Cp(2e) = Cp(RY) — ey max H(z) + o(e), as € — 0; (1.8)
(ii) the best constant Sp(£2:) can be estimated as

Sp(Q:) = Sp(RY) — &7 mgg?—l(z) +o(e), as e = 0. (1.9)
zE

Finally, we will study problem (P) for large €, for which the main result can
be stated as follows.

Theorem 1.3. There exists €* > 0 such that for each ¢ > €*, u = 1 is the unique
positive solution of (Pr).

Remark 1.4. In the light of Theorem 1.3, the ground state of (P.) is the constant

_ 2
function u. = 1, and the best constant Sp(2:) = Sp(Q) = (El_N\aQ\)l P oas
€ — 00, which implies that Sp(Qe) — 0 as € — o0, since p > 2.

Some related sharp inequalities involving Sobolev trace imbedding are given
by Bonder—Rossi [3], Adimurthi-Yadava [2], Escobar [7], and the references therein.
See also [2, 12]. Problems with nonlinear boundary conditions appear in a natural
way when one considers the Sobolev trace embedding, see for example [5], where
existence and qualitative behavior of solutions were investigated. When p = 2,,
Adimurthi-Yadava in [2, see proof of Theorem 2| proved that (P.) does not have
solution for e large. We quote that in their approach they used strongly the ex-
tremal function w of the critical Sobolev imbedding H'(R?) « L*~1(R"™1).
They also obtain similar existence result for ¢ small.

2. Existence of extremal

As we quote in the introduction, the existence of extremal is equivalent the ex-
istence of least energy solutions to (P:). For that we study critical points of the
associated functional to (P:),

1 1 1
Io, (u) := 2/ |Vu|? dz + 2/ u? do — / (u™)? do,
Q. Q. P Joq.
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defined on the Hilbert space H'(£2.) endowed with inner product
(u,v) :/ [VuVo +w] dx
Q

€

and the induced norm ||ulz1(q.) = (u,u)*/?. The energy functional Iq_ is well
defined and C* with
I (u / VuVp dz +/ up do — / (ut)P o do, pe H'(Q.). (2.1)
0. 09

Consequently, the weak solutions of (P.) are critical points of Io_ and conversely
(see [13]).

Lemma 2.1. The functional I, satisfies the following conditions:

(i) for each u € HY(Q.) such that the trace of u, is not identically zero on 9.,
we have limg_, o Ig_(su) = —oco.
(ii) there exist p, o > 0, such that Io, (u) > o if [|ul| g1 o) = p-

Proof. Let u € H'(€.) such that the trace of u, is not identically zero on 99)..

From
52 sP
In, (su) := {/ |Vul? dz —l—/ u? da} - / (ut)? do,
2 lJa. 20, D Jaq.

we see that (i) holds, because p > 2. By inequality (1.4) we get

Io, (u) = Cillulli o,y — Callullfp g,
which implies (ii), and this completes the proof. O
Lemma 2.2. Io_ satisfies the Palais—Smale condition.

Proof. Let (uy) in H(Q.) be a (PS)-sequence for the functional I_, that is,
[la, (ur)| < C and I (ug) — 0. Since

1 1 1
<2 - p> |:/Q |Vu1c‘2 dz + /ag ui d(f] = Io, (ug) — pIéE (ug)ug

< C1 + Collug|l g oy

using inequality (1.4), we get HukHHl a.) < C1+Chlluk 1 (q.), which implies that
(ug) is bounded. Thus, up to a subsequence we can assume that uj, — u in H(£2.)
and ur — u in Lp(aQE). Now observe that

/ IV (up — u)|? dz —l—/ (up — u)? do
o ofe (2.2)
= (g, (ur) = I, (u))(uk — u) + /39 ()P = @) (we — w) do

By Hoélder’s inequality, we have faﬂg((u;)p_1 — (ut)P~ Y (up — u) do — 0. Since
up, — wand I (u)(ur —u) — 0, we obtain (Ig_(ux) — I§_(u))(ur —u) — 0. Thus,
I, satisfies the (PS) condition. O
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As a consequence of Lemmas 2.1 and 2.2 we have.

Proposition 2.3. For each ¢ > 0, the functional I, has a positive critical point
us € HY(Q.) at the minimaz level

Cpl€2e) = inf max Io.(g(s)) > 0, (2.3)

where
e = {g € C([Ovl]le(QE)) :g(O) =0, g(l) = 6}7
with e € HY(Q.), e £ 0 and Io_(e) < 0.

Proof. The proof is a simple consequence of Lemmas 2.1, 2.2 and the mountain
pass theorem. Moreover, u. is nonnegative in 2. Indeed, taking ¢ = u_ as a test
function in (2.1) we have

/"\vu;sz+l/ (u;f(bf:/m ()P~ (us) do = 0.
Qe O 00

Consequently, uZ = 0. Finally, using standard elliptic regularity and maximum
principle we obtain u. > 0 in Q.. (]

Remark 2.4. As in [6] (see Lemma 3.1) we will use the equivalent characterization
of Cp(2) more adequate to the arguments developed in this paper, more precisely

Cp(Q) = In_(sv).

inf max
veH(Q:)\{0} s=>0
Furthermore, it is easy to check that for each non-negative v € H'(:)\{0} there

is a unique se = sc(v) > 0 such that
Cp(Qe) < I (sev) = max I, (sv). (2.4)

3. The limit problem

In this section we describe the asymptotic behavior of the ground state of the limit
problem (Ps), which will be crucial in order to get some estimates in the next
sections.

We consider the Hilbert space E defined in (1.6) endowed with the natural
inner product {u,v) = ng VuVv dz + [px_; uv dz and the corresponding norm

m%:/\wﬁ@+/ W2 dz. (3.1)
RY RN-1

We summarize the main result about the limit problem (P.) (see also [1], for
closed related result).

Proposition 3.1. Problem (Px) has a positive solution w € C*(RY)NC**(RY)NE
such that

(i) w = w(x,t) is radially symmetric with respect to the variable x € RN~ that
is, w(x,t) = w(r,t) if r = |z|. Moreover, w,(r,t) < 0 in (0,400) X [0, +00).
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(ii) w has exponential decay in the variable x and polynomial decay in the variable
t, that is, there exist c¢1,co > 0 such that
1
(14 12)(N=2)/2
(iii) The derivatives of w has exponential decay in the variable x and polynomial
decay in the variable t, that is, there exist c1,co > 0 such that
1
(1 + ¢2)(N=2)/2°
Proof. For the proof of (i) and (ii) see [1]. Now we sketch the proof of (iii). Notice
that v = (w, + Aw) is a solution to the problem

Av =0 in RY,

w(z) < ¢1 exp(—ca|z|) forall  z=(z,t) e RY.

[Vw(x,t)| < ¢ exp(—ca|z]) for all z= (z,t) e RY.

ov (3.2)

on
where A > 0 is a constant which will be chosen latter. Consider the function
p1 = (w, + Aw)_. Since w has uniform decay we can choose 79 > 0 such that

wP™2(r,0) < 1/2 if 7 > . (3.3)

+v=wP"2((p— Dw, + Aw) on ORY

Using that w,(r,t) < 0 for all (r,t) € (0,4+00) x [0,+00) we can choose A > 0
sufficiently large such that o3 =0 if [(r,t)] < R. Now, considering (; as a test
function in (3.2) and using estimate (3.3) we obtain

/ V1 |* dz +/ pide = / w2 ((p — D)w, + Aw)py dz
[z|>R |[z|>R |z|>R

which implies ¢1 =0 on RY and so
0 < —wp(r,t) < Aw(r,t). (3.4)
In order to establish the decay of the derivative of w in the variable ¢ we observe
that v = wy — w is a solution of
{ Av=0 in RY,

3.5
v=—wP ! onRNL (3:5)

Let us define ¢y = (w; —w) 4. Since —wP~!(z,0) < 0 on RV~ we have oy (x,0) =
0 on RN~! Once again taking ¢ as a test function in (3.5) we concluded that
@2 =0 on RY, and so wy(z) < w(z), Vz € RY. In particular, we obtain
(w)+(r,t) <w(r,t), forall (r,t)€[0,00)x[0,t). (3.6)
Now, let us fix A > 0 and observe that v = —w; — Aw is a solution of
{ Av =0 in RY,

v=w(w’ 2 - (A+1)) onRN"L 3.7
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Since w(r,0) — 0 as r — oo we get —w;(r, 0) — Aw(r,0) = w(r, 0)(wP=2(r,0)— (A+
1)) <0, r >rg. Thus, we can choose A > 0 such that ¢5(r,0) = (—w(r,0) —
Aw(r,0)) =0, Vr >0, where p3 = (—w; — Aw)4. It follows from (3.7), that

V(—wy — Aw)Vsdz = / I(—w; — Aw)

dx = 0.
RN-1 317 pade

N
R+

Notice that @3 = 0 on the set {w; > 0}. Thus, we have
0= / V(—w, — Aw)Vpsdz = / IV ((w) - — Aw)4 *dz,
Rﬂ\r]ﬂ{’wt<0} Rﬂr\]

which implies
(w)- < Aw, in RY. (3.8)
From (3.4), (3.6), and (3.8) we get the desired result. O

4. Upper estimate for C,(€2.)

In order to prove that the minimax solution u. is nonconstant for e sufficiently
small, we will obtain an upper bound estimate to the minimax level Cp(£2,) using
the characterization given in (2.4). In order to avoid technicalities we assume from
now on that € is a domain strictly convex. Let w be a positive solution of (Ps)
and fix zg € 0. After a translation and rotation of the coordinate system we
may assume that z is the origin and the inner normal to ) at zy is pointing in
the direction of the positive t-axis. On the other hand, there exists a C? function
G : By, — R defined in a ball B,, = {z = (21,...,2ny-1) € R¥71: |z| < 1o}, such
that G(0) = 0,VG(0) = 0. Since Q is strictly convex we consider the following
cylinder in RV:
U={(z,t) eRY : |z| <ry and 0<t <t}
where to = min|;—,, G(x) > 0. Notice that
oNU = {(z,t) : t = G(x)} i1

QNU = {(z,t): t > G(x)}. (41)

Using the minimax characterization of Cp(€):) given in (2.4) with vo(z,t) =
w(e(x, t) — zp) we obtain the following estimate.

Proposition 4.1. There exists a positive constant v, depending on N and p, such
that

Cp(2) < Cp(RY) — ey mgg?—l(z) +o(e), as e—0. (4.2)
ze

We split the proof of Proposition 4.1 into two lemmas. We set

g(z) = (D*G(0)x,z), =RV
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and

Ri(e) ::/Q |Vw|?* dz — /RN |Vw|? dz,

e +
2 D 2 P
RQ(E)::/ (“’ —w)da—/ (“’ —w>dx.
00, \ 2 P RN-1 \ 2 D
Choosing s. > 0 such that maxsso I, (svg) = In.(s:vg) we can state.

Lemma 4.2. The following estimates hold as € — 0,
Ryi(e) = —5/ |Vw(z,0)|?g(z)dz + o (e),
RN-1
Ry(e) = 5/ w?(x,0)g(z)dz + o (e).
RN-1

Moreover, sP=2 =1+ O (e).

Proof. Let U. = e~ U that is, U. = {(x,t) € RY : |ex| <rp and 0 < et <y},
where tg = min|;—,, G(x) > 0. Now observe that

“Rie) = /RN\Q Vo2 dz
+ >

:/ |Vwl? dz+/ |Vw|* dz —/ |Vw|* dz
BY\U. U\ (QeNUe) Q.N(ERY\Ue)

= Ai(e) + Az(e) + As(e).

By Proposition 3.1, there is a positive constant C = C'(N) such that

6—202@\
Ai(e) == / Vw|*dz < C dz
1(e) RV\U. | r\y, (1+12)N=2

+oo 1

7“()671
<C dt/ 202 N=2 gy
0

pyet1 12N

+oo 1 +oo
+ C'/ ) dt/ e~ 2e2rpN=2 qp
0 1+1¢ roe—1
+oo

+oo
dt+C e 2earpN=2 qp
t2N—4
t()E*l 7‘0571

=o(e). (4.3)

<C

Since (Q: N (RY \ U.)) € RY \ U., the last estimate implies

As(e) ::/ |Vw?dz = o (¢).
Q-NRY\U:)
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Setting D. = {(z,t) : |ex| < ro,to < et < G(ex)} C RY \ U, we have
As(e) == / |Vw|? dz
UN\(Q2NU:)

G(ex)e™ !
:/ / |Vw(x,t)\2dtdx—/ |Vw|*dz
|EZ‘S’I‘() 0 DE

G(ex)e™
:/ / V(e )2 dt dz + o (c) .
lex|<ro JO

| 2

Applying the mean value theorem there exists ¢ € (0,t) such that |Vw(z, )
|Vw(z,0)|? + 2 (Vw(z, c), Vw(z, c)) t, which together with the fact that G(x)
g(z) + o(]z|?) implies

Ag(E):E/ - |Vw(z,0)|?g(z) dz + o ()

= 5/RN71 [Vw(z,0)g(z) dz _€/|5er0 Vw(z, 0)2g(x) dz + 0 (c) .

As in estimate (4.3) one has fl |Vw(z,0)?g(z) dz = o (¢) . Thus,

ex|>ro
Ri(e) = —5/ |Vw(z,0)|2g(z) dz + o (e) . (4.4)
RN-1
To estimate Rqo(e) we write Rg(e) = I2(e) — I (€) where

2I5(e) = / w? do — / w?dr and pl,(e) = / wP do — / wP dz.
a9, RN -1 99 RN -1
If I'. = 0Q: NU- we have

215(e) = / w? do — / w?(x,0) dz + / w?do — / w?(z,0) d.
lex|<ro QNI lex|>ro

€

It follows from the exponential decay of w(x,t) in the variable x that
/ w?(z,0)dz = o/(¢). (4.5)
lex|>ro
Setting Q. = Q. \ (Q. NU.) it follows from [3, Lemma 1.3] that

/ W do < / w?do < () || g1
A0\, 99,

where S(Q.) is bounded independent of e. Thus, using the same approach as in
the proof to estimate R;(e), we obtain

/ w?do = o (). (4.6)
0Q\T.
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By estimates (4.5) and (4.6) it follows that

2L(e) = /FE w* do — /lsrqow (2,0)dx + o(e) .
N /| < (wQ(x”s_lG(’f?ﬁ))\/l +|VG(ex)]? - wQ(x,O)) dz + o(e).

Considering the function f.(r) = w?(z,re"'G(ez))\/1 + 2|V G (ex)|? one can see
that

F(1) = £(0) = w?(z,e7 ' G(ex))V/1 + [VG(ex) 2 = w?(z,0).
By the mean value theorem we obtain 0 < r. <1 such that
215(e) :2/ p w(z, ree  Glex))wi (z, 7.6 G (ex))
ez|<ro
x /14 72|VG(ex)2(e 7 G (ex)) dz + o(e).
Since e71G(ex)) = eg(z) + o(e) we get
L) = E/RN 1 w(zx, ree ' Glex))wy (z, 7. G (ex))
x /14 12|V G () 29 ()X {|eai<ro) da + 0(E)

—c /RM w(z, 0w (z,0)g(x) dz + o(c).

A similar argument, we obtain the following estimate to I,(¢),

L) =c /R w0, 0)g(e) e+ ofe).

Thus, we concluded that
Ry(e) = 5/ [w(z,0) — wP~ ! (z,0)] w(x,0)g(z) dz + o(e)
RN-1

(4.8)
—c /RM w2(z,0)g(x) dz + o(c).

The estimate for s. is now obvious in view of the estimates founded above. Indeed,
P fﬂs |Vw|? dz + fms w? do
€ fBQE wP do
Ri(e) + fRi’ [Vw|? dz + [on-1 w? dz 4 215(¢)
)+ [pn1 wP dz '

Since w is a solution of (Ps), it follows that s2=2 = 1 + O(g), which completes
the proof. O
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Proof of Proposition 4.1. As we are supposing that zop = 0, by estimate (2.4) with
vg = w(e(x,t)) we get
2

Cp(Qe) < b Vwl|? dz + Vw|? dz — Vw|? dz
P
2\ Jry Q RY

c +
2

Se 2 2 . 2
+2(/}1§N71w dx—l—/aﬂsw do /RN?lw dx)
p
—SE(/ wpd:s—l-/ w”da—/ wpd:c)},
p RN-1 0. RN-1

which together with the estimates obtained in Lemma 4.2 implies

2 P
Cp(Qe) < % / |Vwl? dz+/ w?dz | — °F / wP dx
2 Rf RN-1 P JrN-1

+ R12(€) + Ry(e) + ofe).

Since w is a least energy solution of (P ), using once again Lemma 4.2 and
Lemma 8.1 in the Appendix, we get

\Y% 0)|?
e <& e [ (V5O w00 gerao + ot
RN—1
= Cp(RY) — eH(2)y + o(e)
where (see Lemma 8.2)
0 2
= / (|Vw(x, I _ wf(az,O)) |z[?dz >0 (4.9)
RN-1 2
and this completes the proof of Proposition 4.1. O

5. L*° estimates for solutions of (P;)

Next we adapt the Nash—Moser iterative methods to obtain L estimate for weak
solutions of (P.) with uniform bounded energy.

Proposition 5.1. There exists €, > 0 and a positive constant C = C(,p, N) such
that for all nonnegative solution u. of (P:) with ¢ € (0,¢,), we have

1 <supuc(e~tz) < C. (5.1)
Q

Proof. Let z. be such that u-(2:) = maxq_uc(z). It follows from Hopf’s lemma
that

0< | “(2z) = uP 1 (2e) — ue(ze),

which implies the first inequality in (5.1) because p > 2. The second inequality in
(5.1) follows by one well-known Moser iteration method. O
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If A C RY is an open set we use the notation

1 1 1
Ja(u) = / |Vu|?dz + / u?do — / |u|Pdo.
2Ja 2 Joa P Jaa

Lemma 5.2. The function u. decay uniformly at infinity, namely, given n > 0 there
exists an R > 0 such that u.(z) < n, if |z— zf| > R, where z° denotes any
mazximum point of ue in Q.

Proof. By contradiction let us assume that for some n > 0, there are sequences
er — 0 and 2F € Q., (for short we denote Q.,, u., by Qj and uy respectively)
such that

|25 — 2F| > 400 and  up(2®) > 1. (5.2)
We claim that
20,(RY) < liminf Jo, (u) (5.3)

which is a contradiction, because Proposition 4.1 implies
lim sup Jo, (ug) < Cp(RY).

Thus it only remains to prove (5.3). Since (uy) is uniformly bounded in C1:®(£2)
we may assume up to a subsequence that wug(2°* 4+ z) — wu(z) uniformly over
compacts subsets of Rf and u satisfies

Au=0 in Rf,
ou (5.4)

on

+u=u? onRNL

Since 4(0) = limg— 00 ugk(2°%) > 1 we have that u > 0 and by the maximum prin-
ciple u > 0. Since u is a nontrivial solution of (5.4), we have C,(RY) < Jry (u) =
JBR(U)+JB;?(U). Now, using that limp— o J5s, (u)=0 and limp oo JB,(uk) =
Jpy, (u), given § > 0, for all R sufficiently large we get

. Cp(RY)
Icli)Holo JBR(ZEk)ﬁQk (’LLk,) Z P 2 + — (5
Similarly,
. Cp(RY)
nll_)H;o IBpyna, (ue) = 7 9 s

Let us consider R > 0 and a smooth cut-off function 77% with 0 < nf{ < 1 and
|Vnk| < C, where C is independent of R and k such that

ny =0 on Br_1(2°)N Br_1(z"),

and
k __ N €k k
ng = 1 on R+ \(BR—I(Z )UBR_l(Z ))
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Taking wy, = njuy as a test function to J/, (ux) = 0 we obtain
0 = Jb, (ur)wr, = Jo, nap, (W) wi + Jo, 0\ (ByUBy) (k) Wk

= Jopnar (W) wr +2Ja,0\ (B,0B,) (Uk) = 2,0\ (B,UB,) (Uk) + T, (B,UB,) (WE)WE

2
=F; — / uzngdﬁ =+ 2JQk\(BluBz)(uk) =+ ( — 1) / ’U,Zda
OQLNAR p 8Qk\(BlﬁBz)

where
E :/ Vukakdx—l-/ uinﬁda.
QrNAR OQNAR

Since p > 2 we conclude that 0 < Ey+2.Jg,\(B,uB,)(ur). Now, notice that F — 0.
Thus, Jo,\(B,uB,)(ux) > —0. On the other hand,

Joi (ur) = Jauns, (ur) + Jaunp. (k) + Jo\(B,uB,) (ur) = 2C,(RY) — 6 — 4,
which implies estimate (5.3) and this completes the proof. O
In order to establish the polynomial decay of u. we use U(z) = (1 + |z|?) "
solution of o
~AU=N(N-2)U~x-2 in RN

to build a suitable test function for our arguments in the next result.

Lemma 5.3. Let u. € C®(Q.) N CYP(Q.) be a positive solution of (P:). Then,
there is a positive constant Cy independent of € such that

Co
(1 + o) (V=22
Proof. Let us consider the function W, (z) = u.(z)/U(2) in Q.. We claim that W,
is uniformly bounded. For this, notice that W, is a solution to the problem

ue(2) < YV zeQ..

N
oW, )
—AW, — E bi(2) 0z, +a(z)W.=0 in Q.
i=1

(5.5)
a;z * g1 (Welz) — ga(=)WP L =0 on 0,
where
2 oU(z) | 2AN-2z _ N(N-2)
bi(z) = U(z) s = 14| (i=1,...,N), a(z)= (14 [2[2)2 z €,
) =14 oy @] < (1 L) ) =02

One can see that there exists C' > 0 independent of ¢ such that

all @), [1bill o< (@05 191l Lo 20y 192l Lo 02.) < C,

for all ¢ = 1,..., N. Assume by contradiction that there is a sequence z. € Q.
such that W.(z:) — 400. By the weak maximum principle we may assume that
ze € 09 for all € > 0. So, we define M. = W,(z.). We have two cases to consider:
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Case 1: (z.) is bounded. In this case let us consider

—~ We(ze + M22)

2 —
W.(z) = " P,
€

, zE(NZE::ME_a(QE—zE), a= ",

Lieberman [10], one can prove that

”WEHCLB(QE) < 07 (5.6)

Since HWEHLOC(QE) < C (independent of ¢), using the regularity result due to

for some 0 < 3 < 1 and C positive constant independent of . Therefore, straight-
ening out the boundary in a neighborhood of z., one can prove that . — Rf
as € — 0. Using (5.6), the Arzela—Ascoli theorem and the diagonal argument we

obtain a nonnegative function W € C1#/2(RY) such that

lim Wo(z)=W(z) >0 and W(0)=1. (5.7)

Since (z.) is bounded we can assume that lim.\ o 2. = 0 € 0. Then, one readily
deduces on any compact subset of Rf that

lim a(ze + M22) = a(0),  lim bi(ze + M22) = bi(0), i=1,....N, 655
lim g1 (2 + MS2) = g1(0), lim ga(z: + MS2) = g2(0). '
e—0 e—0

It follows from (5.5)(5.8), that the limit function W > 0 satisfies the following
limit problem
—AW =0 in RY,
OW (x,0)
ot
Since 2 < p < 2, — 1, we obtain by Theorem 1.2 in Hu [9] that W = 0, which is a

contradiction with the fact that W (0) = 1.
Case 2: There exists a sequence z, = z., such that |z;| — oo. In this case let us
consider

=—WP (2,00 on RN

Wi(zr + 2 ~
vp(z) = (Mk ) 2 € Q= e, — 2eps
where My, = Wi (zx) = 13((::)). Notice that My, — oo and ||| (g, ) < 1. More-
over, vy satisfies

N
—Avy — Z bi(zk + Z)avk +alzk+2)vp =0 in Q,
: 0z;
=1 (5.9)
0 _ ~
81;;6 + g1z + 2)vk(z) —ul (21 + 2)op(2) =0 on IQy.

Since u?~?(z), + z) — 0, similarly one can see that vy, — v € CLA2(RY),
li_>m ve(z) =v(z) >0, v(0)=1 (5.10)
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and
—-Av=0 in RY,
ov _ —v on RN!
on
On the other hand, using the Hopf lemma at zg = 0 we get 0 < g; = —-v <0,
which is a contradiction, and this conclude the proof. O

In order to obtain the exponential decay of u. let us consider the auxiliary
function v(z,t) = o (z)1o(t) where

L,Do(.’L') = e—a(|z|) and ’(/Jo(t) = <1it2> 2 7

and « are positive constants that will be selected below.
Lemma 5.4. There exists ¢ > 0 such that u.(z,t) < cv(x,t) for all |x| > 1,t > 0.

Proof. Notice that v satisfies —Av+c(z,t)v =0, x € RN=1\{0}, ¢ € R where
N=-2) 5, (N-2)

t)=—
c(z,t) « | +at+ (1 + ¢2)2

Let us consider V. = u./v. A straightforward calculation yields

(N —1)t* —1].

N-1

; 2N — 2)t
—AV. 420 Y |“";|(VE)M+ (N =2)
=1

(1+2) Vi —c(z,t)Ve =0, Q. \{0}.

Consider the set A. = {(z,t) € RY : [z] > 1, t >0} N .. We claim that there
exists C' > 0 independent of ¢ such that

[Vellzoe(any < C. (5.11)
Suppose that (5.11) does not hold, that is, there exists y. = (x.,t:) € A such
that Vz(ye) — +oo. From Lemma 5.3 we conclude that |y.| — +o00. Let 7. =
(m(e),...,nn—1(e),m.) € RY be the unit outward normal to dQ. at (z.,t.).

Then, using the Hopf lemma we have V. /9n.(y:) > 0. On the other hand, for e
sufficiently small,

?)XZ (ys) = 11) |:<vu5777€> - U;)E <VU,’I7€>:| < 0 (512)

which is impossible. Thus it remains to prove (5.12). Notice that

oV, t(N —2) ]
te

=V
8775 (yE) > 1 + tg

N-1
11 i nile
ub +a; |x|m( )+

t-(N —2)
2 e |-

1+¢2
Since 2 is strictly convex t. — oo as € — 0. Thus, taking ¢ sufficiently small, we
can choose o > 0 such that uP~* — 1+ o + “ﬂ;mms < — and this completes

the proof. O

<V {u§_1—1+a+
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6. Proof of Theorem 1.2

In this section we will complete the proof of Theorem 1.2, for that it will be crucial
in our argument the following lower bound estimate on the minimax level C,(£2;)
(see (6.1) below).

For any sequence e, — 0, let uj, = ue, be the solution of (Q., ) given in Propo-
sition 2.3. Let us choose zj := 2., € 09, , such that ug(z;) = max,cq ug(2) we
recall that since u is harmonic in €, , the maximum of w; in ., must be on
09, . With this notation we have the following estimate.

Proposition 6.1. There exists ko such that for k > kg, it holds
Cp(st) > Cp(Rf) - Ek’YH(Eka) + O(€k). (6.1)

Finalizing the proof of Theorem 1.2. Combining Propositions 4.1 and 6.1, we obtain
(1.8). From (1.7), (1.8) and Taylor’s theorem we obtain (1.9). Moreover, since y > 0
we conclude that H(z) > H(z), for all z € 9. Therefore, H(£z.) — max,con H(z),
which completes the proof of Theorem 1.2. O

6.1. Proof of Proposition 6.1

Up to a subsequence, we may assume that there exists z € 9 such that y; =
exzk — 2. Define uk(y) = ue, (y + yi), v € Q¢, — yx. Thus, after applying suitable
rotation and translation, we may assume that z = 0 and Q2 C Rf can be described
in a fixed neighborhood U of z as {(z,t) : t > Gi(x)} with G} smooth Gr(0) =0
and VG, (0) = 0. We can take Gy, such that Gy, converges in CZ,_-topology to G the

corresponding parametrization of 9Q at z. We define Qi = Q., and Uy, = &, U,
and we set

Vi o= {(z,t) €RY : |egx| < 1o and 0 <ept <t} C U

where t; = min|,—,, Gx(z) > 0. Since C, () = Iq, (ur) > I, (sux) for all s > 0,
using the decay of uy, we get Cp(2) > Iy, o, (sur) + o(ex) for all s > 0 where
' = Ve NI, and

1 1 1
Iy, (ug) = |Vug|? dz + lug|* do — |ug|P do.
2 2
Vi NQy Tk p Tk

Now we extend ug to Vi by defining wuy(z,t) in the following way:
ug(z,t) if ert > Gi(er),
up(z, 65 ' Gr(epz))

+(Gr(erx) — ext) if et < Gg(egz).

x [uf (z, G (erx)) — ur(z, Gr(ere)]

ug(z,t) =

Using again the decay of ux we have Cp(S2) > Iy, (sux) — Iy, (unvy) (Suk) +
o(k). Passing to a subsequence, we may assume that ux — w in H!, where w
is a least-energy solution of (Ps). Now, let s > 0 be such that Iy, (spur) =
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SUP4~¢ Iv, (sui). One can see that s — 1 and Iy, (spug) > Cp(RY) + o(k). From
these facts, it follows that

Cp(Q) > Cp(RY) — Ry (k) + Ra(k) + ofey,), (6.2)

where
1

Ryi(k) := / |sx Vug|? dz,
2 Vi\(2xNVy)
1 1

Rg(k) = / ‘Skuk|2 dr — / (skuk)p dx.
2 Jr, P JynrN-1

Thus we can proceed as in the proof of Proposition 4.1, to obtain the following
estimates:

2Ry (k) = —ek/ Vw(z, 0)[2g(x) dz + o(ex),

RN-1

Ro(k) = e /RN?I w?(z,0)g(x) dz + o{ex),

which together with (6.2) implies that estimate (6.1) holds. Thus, we obtain

Vw(z,0)[?
)= &Y e [ V5O 0] o) do +ofe
RN-1
This, together with Lemma 8.1 yields Cp () > Cp(RY) — exvH(erze,,) + 0(ek),
and this completes the proof. O

7. Proof of Theorem 1.3

In this section we prove the nonexistence of nonconstant positive solution of (P:),
for ¢ sufficiently large. Define u = |319| fagu do = average of u over 0f). Using
standard argument one can prove the following Poincaré inequality.

Lemma 7.1. There exists a constant C, depending only on N such that
Hu — uHLQ(ag) < CHVUHLQ(Q), Yu € Hl(Q)

Finalizing the proof of Theorem 1.3. We decompose u as u = u + ¢, where

1
u do and / pdo=0.
o0

u =
109 Jaq

Observing that uP~! —uP~! = (p — 1) (fol(u + tp)P~2 dt) ©, and using ¢ as test

function in (2.1), we obtain

1
5/ |Vl|? dz—|—/ ©* do = (p — 1)/ (/ (u+t<p)p_2dt)g02 do,
Q o0 a0 NJo

which together with Proposition 5.1 implies that

E/\V@\Q szs/\Vnp\Q dz+/ ¢*do < C ©? do.
Q Q a9 a9
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Using Lemma 7.1 we obtain that ¢ must be constant for e sufficiently large. Thus
0=/ o0 ¢ do = 10Q|p. Therefore p = 0 and the proof of Theorem 1.3 is complete.
O

8. Appendix (Mean curvature)

Given a positive solution w of (Px), as in [4] we define its restricted energy den-
sity as

Vwl|? -
E(w7y)=<| 2‘ —w?> (y,0), yeRNL

Then we define the generalized curvature at z = (x,t) € 9Q, with € R¥~! and
t € R fixed as the following number:

H(z) = Igf}gg/wf1 (D*G(x)y,y) E(w,y) dy,

where (, ) denotes the usual inner product in R¥=! and D?G(z) denotes the
Hessian matrix of G at x, and S denotes the set of positive solutions of (Py). In
[1], the authors have proved there exists a positive constant C such that for all
w € S we have [|w|| L) < C and w(y,0) is radially symmetric in the variable y.
Thus H does not depend on the particular choice of G, but only of z.

In order to relate the generalized curvature to the mean curvature of 052 at z
for sake of completeness we recall here a few important features about the mean
curvature (cf. Trudinger [8]). The eigenvalues of D2G(x), A1,...,An_1 are called
the principal curvatures of 0N) at z and the corresponding eigenvectors are called
the principal directions of 02 at z. Furthermore, the mean curvature of 90 at
z = (x,t) is given by

_ ot (GVe@ Y1
e —IZA (¢1+|VG<>|>‘N—1AG”’

whenever VG(z) = 0. On the other hand, by a rotation of coordinates we may

assume that the z1,...,zxy_1 axes lie along principal directions corresponding to
A1, ..., AN_1 at z. So, the Hessian matrix can be described as
) VRN | 0
0 Ay - 0
D*G(z)=| . . :
0 0 - An-1

Thus, at z = (0,0) we have

/szfl (D*G(0)y.y) E(w, Z /szfl iy B(w, y) dy.
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By the definition of the mass moment of inertia we have that the moment of inertia
about the y;-axis, ¢ = 1,..., N — 1, respectively the polar moment of inertia are
given by

N—
I, :/RN Y E(w,y)dy, Z Z/ E(w,y)dy,
. -

respectively Now, using the fact of F(w,y) is a symmetric function, we conclude
that I, =--- = I,,_,, which implies tha Iy = (N —1)I,,. With this notation we
have

Lemma 8.1. For w € S it holds,

/]RN*1 <D2G(0)yv y> E(w7 y) dy = H(O)WN_z I ‘E‘(/w7 T)TN dr.

0
Proof. Notice that

N—-1 N—-1 1
Nl =1 i = i | Io =H(0 2E(w,y)dy,

which implies the desired result. O

N-1

i=1

Lemma 8.2. The constant v defined in (4.9) is positive.

Proof. Here we proceed as in [5]. Taking o(z,t) = |x|2w,ge’\’m’:r as a test function
in (Py) we get

2
0= / [23:.V$wwt + |x)? (Vw| )
RY 2 t

+ AzPwy (VewVwy + wif (twyf + w?‘))] Ml dz

+/ |z|?w? dz,
RN-1

where we are using the notation w;” = (w;)* and w;}; = (w;"); in the weak sense.

Integrating by partes we can estimate v = fRNﬂ{wt<O}[2wtx - Vywldz 4+ o(N) as
+

A — —oo. Taking into account that = -V, = rw, < 0 we get v > 0, which implies
the desired result. O
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Multiplicity of Positive Solutions
for an Obstacle Problem in R

Claudianor O. Alves and Francisco Julio S.A. Corréa

Dedicated to Bernhard Ruf on the occasion of his 60th birthday

Abstract. In this paper we establish the existence of two positive solutions
for the obstacle problem

/ [W'(v—u)+ 1+ AV(2))u(v—u)] > / fw)(v —u),Vv € K
where f ]R;s a continuous function verifying some tﬂzchnical conditions and K is
the convex set given by
K= {ve H' (R);v> ¢},
with ¢ € H* (R) having nontrivial positive part with compact support in R.
Mathematics Subject Classification (2010). 34B18, 35A15, 46E39.

Keywords. Obstacle problem, variational methods, positive solutions.

1. Introduction

In this paper we will be concerned with the question of existence of positive solu-
tions of a kind of obstacle problem. This class of problems has been largely studied
due both its mathematical interest and its physical applications. For example, it
appears in mechanics, engineering, mathematical programming and optimization,
among other things. See, for instance, the classical books Kinderlehrer & Stam-
pacchia [12], Rodrigues [18] and Troianiello [24] and the references therein.

The typical obstacle problem is as follows: Let € be a domain in RY. Given
functions g : R — R and ¢ : Q — R, finding u € H}(Q) satisfying

/QVu.V(v—u)Z/Qg(u)(v—u) P)

The first author was partially supported by CNPq/Brazil 620150/2008-4 and 303080,/2009-4.
The second author was Partially supported by CNPq/Brazil 300561/2010-5.
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for all function v in the convex set
K := {v e Hy(Q);v(z) > p(z) ae Q} (1.1)

where ¢ is called the obstacle function.

Related to this kind of problem, the reader may consult Jianfu ([10], [11]),
where the author uses variational methods, Le [13] in which is used subsolution-
supersolution techniques, Chang [4] where it is considered an obstacle problem
related to discontinuous nonlinearities and Rodrigues [19] who considers combina-
tion of the obstacle problem with nonlocal equations in a class of free boundary
problems. For more recent references we may cite Matzeu & Servadei [16], in
which the authors adapt for inequalities the iterative technique contained in de
Figueiredo, Girardi & Matzeu [6] for elliptic equations, Matzeu & Servadei [17]
where the stability of solutions obtained in [16] are analized. Other results may be
found in Servadei & Valdinoci [22], Mancini & Musina [15], Servadei ([21], [20]),
Magrone, Mugnai & Servadei [14].

These works and the references therein show clearly the mathematical im-
portance and the wide variety of practical situations in which obstacle problems
may be found and applied.

Here we are interested in the unidimensional counterpart of problem (P).
More precisely, we consider the problem

/ [u' (v —u) 4+ (1+ AV (x))u(v —u)] > / fw)(v—u),Yv € K, (Py)
R R
where v is a nonnegative function belonging to the convex set K given by

K:= {UEHl(R);vch}, (K)

where ¢ € H'(R) is assumed to have nontrivial positive part, that is, ¢4 =
max {¢ ,0} £ 0. Moreover, A > 0 is a parameter and f : R — R is a nondecreasing
continuous function verifying the following assumptions:

fit)—>0as #] = 0 (F1)

and the Ambrosetti & Rabinowitz Condition, that is, there is 8 > 2 such that

0 < OF(t) < f(t)t YVt e R\ {0} (f2)

where F(t) = fot f(s)ds. We assume that V : R — R is a nonnegative continuous
function such that

O :=int (V7'({0}))) #0

is a bounded open set of R containing the support of ¢, that is, Supp (¢+) C O.
Here, Supp(p+ ) denotes the support of ¢4 and

VI({0}) = {z e R;V(2) = 0} .
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The present paper was motivated by recent works involving the following
class of problems

~Au+ (1+ AV (2))u = f(u) in RY
u(z) >0 in RY

where ) is a positive parameter, V : RV — R is a nonnegative function and f is
a continuous function satisfying some technical conditions. The reader may find
more details in the papers of Alves [1], Bartsch & Wang [3], Clapp & Ding [5],
Ding & Tanaka [7] and their references. Here, we adapt some approaches found in
these references to study the obstacle problem (Py).

Our main result is the following

Theorem 1.1. Suppose (f1)—(f2) hold, then there are r,\* > 0, such that if
o4l @) < 5, problem (Py) has two positive solutions for all X > X*.

One of the main difficulties to prove Theorem 1.1 is related to the fact that
the energy functional associated with the problem (Py) does not satisfy in general
the well-known Palais—Smale condition, once that we are working in whole R.
To overcome this difficulty, we adapt some ideas found in del Pino & Felmer
[8], modifying the function f outside the set O, in such way that the energy
functional of the modified obstacle problem satisfies the Palais-Smale condition.
Using variational methods, we prove the existence of two solutions for the modified
obstacle problem. After that, it is proved that under the hypotheses of Theorem
1.1, the solutions found are solutions of the original obstacle problem.

The structure of this paper is as follows: In Section 2 we introduce the mod-
ified obstacle problem, in Section 3 we establish the existence of a first solution
for the modified obstacle problem by minimization, in Section 4 we show the ex-
istence of a second solution for the modified obstacle problem by the Mountain
Pass Theorem and in Section 5 we prove Theorem 1.1.

2. The modified obstacle problem

From this time onwards, since we intend to find positive solution, we will assume,
without loss of generality, that

f(t)=0 vt <0.

To prove the existence of positive solutions for (Py), we will work with a
modified obstacle problem, following some ideas found in del Pino & Felmer [8].
To this end, we consider the function h : R — R as follows:

TR

ptoif t>a,

where k£ > max { 932,2} and a > 0 satisfy fla) _ i We now set

a

9(@, 1) = x(@) f(t) + (1 = x(2))h(D),
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where 0 C R is a bounded open set containing O and yx is the characteristic
function of the set €2, that is,

(2) = 1, z€Q
XM= 0, zeqe

Using the function g, we will show the existence of two positive solutions for
the obstacle problem

(Pa) /R [ (v—u) 4+ (14 AV (z))u(v —u)] > /Rg(x,u)(v —u), Yvek.

Remark 2.1. If u is a solution of (Pa) verifying
u(z) < a, Vo € Q°,

then w is a solution of the original obstacle problem. Indeed, if x € Q, we have
x(x) =1 and so

9(z, u(x)) = f(u(z)).
If £ ¢ Q (x € Q°), then x(z) =0 and so

9(z, u(x)) = h(u(z)) = f(u(z)),

because h(u(z)) = f(u(z)) since 0 < u(x) < a in Q°.

Let E)x C HY(R) be the subspace

Ey\ = {u € Hl(]Ra);/]Rx/(x)u2 < oo}

endowed with the norm

all = (| 10+ @+ 2v i)

Hereafter, we denote by || || the usual norm in H!(R).

Since we approach our problem by means of variational method, we consider
the energy functional associated with the obstacle problem (Pa), Ix : Ex — R,
given by

1
2

Iw) = gl = [ G + )
where
G(z,t) = /tg(:c,s)ds
and ¥ : E — (—o00, o] is the indicatrix fl(inction of the set K, i.e.,
U(u) =0, Yu € K and ¥(u) = +o0, Vu € K°. (2.1)

Proposition 2.1. The functional I satisfies the (PS) condition.
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Proof. Let d € R and (u,) C E\ be a (PS)s sequence for I. Then, there is
(zn) C E with 2z, — 0 such that

In(up) — d and I (un)(v — up) > (2n,v —up) Vn €N and v € K,
that is,

/ ul (v —un) + (1 + AV (2))un(v — uy) — / gz, un) (v —un) > (2n,v — up),
R R

for all v € K.

Claim 2.1. (u,,) is a bounded sequence in E).

We deal separately with the sequences (u, ) and (u,_), where u,,_ =max{—wu,,0}.
Since up = Upy — Up_, it is enough to show that (u,.) and (u,_) are bounded
in E). To show the boundedness of (u,_), we consider the test function v =
Uy + Un— € K. So,

/(u’n(un_)/ + (1 4+ AV (2))upun_) — / (T, U )t > (zp, Un_)
R R

Because /(1 + AV (2))un Uy = / g(x, up)u,, =0, we obtain
R R

_”un—Hi > (Zn,Un_) ,
which leads to
As z, — 0 in EY, we conclude that u,_ — 0 in Ej, and thus, (u,_) is bounded
in E)\.
With respect to (uy, ), fixing the test function v = u,, + u, € K, we derive
that

sl = [ oo = (oot (29)
leading to
— [ > e 1+ i) (2.3)
On the other hand, we know that
d= ylunl = [ )= [ Goum) + 0,00

Using the definition of g, it is easy to prove that
1
2G(x,t) < g(x, t)t < k(l + AV (2)[t]* Vo € Q° and t € R. (2.4)

Thereby, from (f2) and (2.4)

1 1
a2 gl =y [ Fudun— [ QV@E 40,1 (@25)
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Combining (2.3) and (2.5),

1 1 1
> - )= 3 - + :
d> {(2 9) %] ||Un+||,\ ||zn||||un+|| on(1)

Since k > 9f2 and z, — 0 in F}, the last inequality implies that (u,_ ) is bounded
in Ey. Therefore, (u,) is bounded in Ej.

Now, we will show that (u,) has a subsequence that converges strongly in E}.
Since (u,_) converges to 0 in E), without loss of generality, we will assume that
uy, > 0 for all n € N. We begin by fixing R > 0 so large in order that 2 C (— 1;, 1;”)
and a function n € C*(R, R) satisfying

o 0<n(t) <1,VteR;
o n(t) =0,]t) < 5

e n(t) =1,|t| > R;

o (1) < G VtER.

Claim 2.2. Given § > 0, there is R > 0 such that
[+ ) <.
|z|>R

Assuming that this claim is true, we continue with our proof. Considering
the test function v = u,, — n(un — @4) = Uy — Nuy, € K, it follows that

[ e + (4 AV @D untpun)] < [ gl n)un) + 0 (1)
R R

or, equivalently,
[+ [t [@eav@mlu? < [ gtwum + o.(1)
R R R \MZ’;‘
implying that
[l [t [ @ av@fn
|z|>R [t|[<R || > 5
1
< [ V@l + o (1),

EE

Because k > 2, it follows that

/ i 2 + / 1ty + / (14 AV (2))nfun ?
lz|>R [t|I<R |z|> &

1
|z|> & 2
and so,

1 C
[Py [ @@l < [l ) <+ o).
|z|>R |z|> 3 2| <R
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Thereby,

C
/ l? + / LAV (@)unl? < € + 00 (1),
|z|>R |z|>R R
showing that
C
R

timsup [ (i + ) <
|| >R

n—-+oo

Now, we choose R > 0 so large in order

limsup/ (Jul, |2 + |un|?) < 6,
|z|>R

n—-+oo

proving the Claim 2.2.
Recalling that for each R > 0, the Sobolev embedding

H'(R) = C([-R, R))
is compact, we have that
u, — u in C([—R, R]).
This limit, combined with the Claim 2.2, asserts that
/ (@, up )ty — / g(z,u)u (2.6)
R R
and

/Rg(x,un)v — /Rg(x,u)v Yo € K, (2.7)

where u € K is the weak limit of (u,,) in Ej.
Since (uy,) is a bounded Palais—Smale sequence for I, we have

/u;l(v—un)'—|—(1+)\V(x))un(v—un) Z/g(x,un)(v—un)+on(1) Yo e K (2.8)
R R
or equivalently
/R [ + (1 + AV (2) unt]
Z/RHUM + (1 +AV(2))|un| }+/Rg(x,un)(v—un)+on(1)

for all v € K. Taking the inferior limits on both sides of the above inequality and
using (2.6) and (2.7), we get

/R [W'v" + (1 + AV (z))uv]
> /R[\u’\ + (1 + AV (2))|ul?] + /Rg(:c,u)(v —u) + on(1)
that is,
/[u’(v —u) + (1 4+ AV (z))u(v —u)] > / g(z,u)(v—u), YoeK
R

R
from where it follows that w is a critical point of Ij.
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Using u as a test function in (2.8) and the limit (2.7), it follows that

limsup [Ju, |3 < [Jul3-
n——+00

Since FE) is a Hilbert space, the last inequality leads to u,, — u in E), finishing
the proof of proposition. O

3. First solution for (P,4)

The first positive solution of (P4) will be obtained via Ekeland’s Variational Prin-
ciple [9]. In this section, we denote by B, and K, the following sets

B, ={u€ Ey; |Jul]x<r} and K,=KnNB,.

Theorem 3.1. There is > 0, such that if |loi|mi®) < 5y/r, the variational
problem
m=inf{l\(u) : veK,} (3.1)

has a solution for all A > 0. Moreover, this solution is a positive solution of (Pa).

Proof. First of all, we observe that

/RG(x,u(x)):/QF(u)—i— o G(z,u(z)).

From (f1), if [|u||x = r and r is small enough, we have that

1 1
Flu) < / uf? < L full3.
A AT

[ 6@ < i+ [ G,

Hence

and so, by (2.4),

1 1
[ Gu@) < i+ g [ 0+ V@)

Thereby,
1 1
In(u) > lull - / (1 + AV (@) [ul® + U (u) (32)
4 2k Jqe
from where it follows that
1 1
I(u) > - lul]3 + ¥ (u),Vu € E. (3.3)
4 2k
Since k > 2,
1
I(u) > C[ul}, Vo € K. (3.4)

From the above study, we have that m is well defined and m € [0,400).
Therefore, there is (u,) C K, such that

In(un) = m.
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Once that (u,) is bounded, because (u,,) C B,-(0), we can assume, without loss of
generality, that

u, = u in By and wu,(xz) = u(z) ae. in R.

By Ekeland’s Variational Principle, we also assume that

1
m < Ix(up) <m+ , €N
n
and
1
I(u) > Ix(uy) — nHu—unH,\ Yu € K.

Observing that ¢4 € K., by (3.4),

1, 1 1 1 , 1
el < D) m+ | <hpa)+ o, < e+

leading to
limsup [[u,||3 < 4jp+]* <

n——+oo

Thus, there is ng € N such that
llunll2 <7 Vn > ne.

Now, repeating the same arguments found in [11], we have that (u,) is a (PS).,
sequence for Iy, that is,

Ii(up) = m and I§(un) (v — up) > (2, v —uy,) Yo €K (3.5)

with z, — 0 in E}. Using Proposition 2.1, there are a subsequence of (u,), still
denoted by (uy), and w in Ey such that

U, — u in F)y. (3.6)

From this, v € K, and Iy(u) = m, showing that u is a solution for (3.1). Now,
combining (3.5) and (3.6), it follows that

/R[u'(v —u) 4+ (1 4+ AV (z))u(v —u)] > / g(z,u)(v—u) Vv € K. (3.7)

R
Using the test function v = u+wu_ € K, a direct computation implies that u_ = 0,
consequently u is nonnegative. The positivity of u is obtained by applying the
maximum principle. O

4. Second solution for (P,)

In this section, we will apply the Mountain Pass Theorem due to Szulkin [23] to
get a second positive solution for problem (P,4). Here, we denote by uy the solution
obtained in Theorem 3.1.

Lemma 4.1. The energy functional Iy verifies the geometry of the Mountain Pass
Theorem.
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Proof. Note that, by Theorem 3.1,
In(u) > In(uy) Vu € K,.
Since ¥(u) = +oo for all u € K¢, it follows that
In(u) > Ix(uy) Yu € B,. (4.1)
Moreover, if p = §r%, (3.4) gives
I(u)>p>0, forall wedB,.

On the other hand, since |[p[|* < j7%, we have that ¢4 € K,, and so,

1
L(ua) < Dor) < llerl® <, (4.2)
from where it follows that
inf T I . 4.
uEI%BT ,\(u) > A(UA) ( 3)

We now observe that, for ¢t > 1, to € K. Then, U(tpy) =0 and
2

t
Do) =y [Qehl+leaP) - [ Fees)
2 Jr R
By (f2), there are A, B > 0 such that
F(s) > As? — B Vs> 0.

Consequently,

t2
D) <y [ F+les) =4 [ (o) + BD)

where D is a mensurable set with finite measure verifying D N Supp (p4) # 0.
From this,

I\(tpy) = —o0 as t — 400,
and thus, setting e =ty for t large enough, we derive that

lle]l > r and In(e) < Ix(uy). (4.4)

From (4.1)—(4.4), we deduce that I satisfies the mountain pass geometry, see [23,
Theorem 3.2]. O

Theorem 4.1. Under the assumptions of Theorem 3.1, Problem (Pa) has a positive
solution at the mountain pass level for all X > 0, that is, there is wy € K verifying

Li(wy) =cx and Ii(wy)(v—wy) >0 Vv € K,

where ¢y is the mountain pass level of Iy.
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Proof. Combining Lemma 4.1 and Proposition 2.1 with the Mountain Pass Theo-
rem, we have that the mountain pass level c) associated with I is a critical value,
hence there is w) € K such that

Iy(wy) = ¢x and I§(wy)(v —wy) >0 Vv e K.

Using the test function v = wy + wyx_ € K, a direct computation implies that
wy_ = 0, consequently w) is nonnegative. The positivity of w, is obtained by
applying maximum principle. O

Corollary 4.1. Under the assumptions of Theorem 3.1, problem (Pa) has two pos-
itive solutions for all A > 0.

Proof. From the previous study, we have two solutions denoted by u) and wy,
where u) was obtained by minimization and wy by Mountain Pass Theorem. More-
over, by (4.2),
m=1I\(ux)<p and I\(wy)=-cy>p.
Thus,
In(uy) < Ix(wy),

from where it follows that uy and w)y are different. Hence, problem (P4) has two
positive solutions. O

5. Proof of Theorem 1.1

In what follows, our main goal is to show that there is A* > 0 such that if A > \*,
the solutions u) and wy obtained in Corollary 4.1 satisfy

wy(z),ur(z) < a, Vo € Q°. (5.1)

From this, by using Remark 2.1, we will conclude that wy and u) are positive
solutions of (Py) if A > A*.

Hereafter, \,, — 400, u, = uy, and w, = wy,. From Theorem 3.1, we know

that u, € K, for all n € N, thus (u,) is bounded in H*(R). Next, we will show
that (w,,) is also bounded in H!(R).

Lemma 5.1. The sequence (wy,) is bounded in H'(R). More precisely, there is
M > 0 such that

lwnlla, <M ¥neN.

Proof. Since wy, is a solution of (Py, ), it follows that

/[w;(v—wn)’+(1+AnV(x))wn(v—wn)} Z/g(x,wn)(v—wn), W € K. (5.2)
R R

Repeating the same arguments used in the proof of Proposition 2.1, we derive that

1 1 1
> - )= 2 ) :
An<wn>_[(2 9) %}mnun Vn e N (5.3)
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Now, considering the path v(t) = tt*p4 for t € [0,1] and t* large enough and

setting

Y= J(v(t)) > 0,
Jnax (v(1))

I =y [+ = [ Pl

where

it follows that

I, (wyp) < max I, (7(t)) = max J(v(t)) =2 Vn € N,

te[o,1] " t€[0,1]
because I, (v(t)) = J(y(t)) for all n € N and ¢ € [0, 1].

This combined with (5.3) implies that (||wy]||x,) is bounded in R.

O

Lemma 5.2. There are subsequences of (up) and (wy,), still denoted by itself, which

are strongly convergent in H*(R).

Proof. In what follows, we will prove the lemma only for (u,), because the same
arguments can be applied to (w,,). Following the same arguments used in the proof

of Proposition 2.1, for each § > 0, there is R > 0 such that
limsup/ [Jul|? + |un|?] < 6.
n—+oo J|z|>R

The above limit yields

/Rg(x,un)un—)/Rg(x,u)u

/g(x,un)v — / glz,u)v Yv € K|
R R

where u € K is the weak limit of (u,) in H*(R).

and

Claim 5.1. The weak limit u is null in O¢, that is,
u(t) =0 Vt € O°.
Hence, u € H(0O).
In fact, for each m € N, we define
1
Am:{teR; V(t) > }
m
It is immediate to see that
P={teR; V(t)>0}= ] An.
m=1

Note that

m

/ \un\2 < ;n ||un\|§\n < ;nrz Vn,m e N
n n
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where r is the constant given in Theorem 3.1. The last inequality, together with
Fatou’s Lemma, lead to

/ lul* =0 ¥Ym € N.
Thereby, ©u = 0 a.e in A,, for all m € N implying that © = 0 a.e. in P. Now, the
claim follows using the continuity of w.

Using v = u as a test function in (3.7),

/\u 2 4 / (14 A V) un]2 < /R(l—i—)\nV)unu—l-/Ru;Lu’—/Rg(:s,un)(u—un).

(5.6)
Once that V(t) > 0 and u = 0 in ¢,

/\%\2 /\un|2§/u u +/unu—/ (@, un)(u — up).

Taking the limit of n — +o00 and using (5.4)—(

lirnsup/[|u/n|2 + Jun|?] < /Hu/‘2 + |ul?].
R R

n—-+oo

Since H'(R) is a Hilbert space and u,, — u in H!(R), the above limit implies that
Up, — uw in HY(R). O

As a consequence of the lemmas proved in this section, we have the following
results

Corollary 5.1. The sequences (uy) and (wy,) satisfy

An / z)|unl?* =0 as n — +oo (5.7)
and

)\n/ V(2)|wa]? = 0 as n — +oo, (5.8)
R

for some subsequence. Moreover, the weak limits u and w of (u,) and (w,) respec-
tively, belong to HL(O) and they are positive solutions of the obstacle problem

[ww=vr+oe-vlz [ fo) -0 wek (Po)
o o
where

K:= {ve Hj(O);v(z) > p(z) ae O}.

Proof. From now on, we will prove the lemma only for the sequence (u,,), because
the same arguments can be applied to (w,, ). Repeating the same type of arguments
explored in the proof of Claim 5.1, we get again an equality like (5.6), that is,

/\un\Q / L+ A W)|ug)? < /R(l-i-)\nV)unu-i-/Ru’nu/—/Rg(x,un)(u—un).
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Using the fact that V(¢)u(t) = 0 for all ¢t € R, it follows that

/R\u;|2—|—/R(1+)\nV)|un|2 §/Ru’nu’—l—/Runu—/Rg(x,un)(u—un). (5.9)

From Theorem 5.2, u, — u in H!(R) for some subsequence. Hence,

liminf [ (|ul,|? + |un|?) = /(|Ul|2 + [uf?),
R R

n—-+oo

lim [ (uy,u’ + upu) :/(|u'|2+IU\2)7
R

n—-+oo R

and

li n — Un) =Y.
Jlm Rg(:ﬁ,u ) —up) =0

The above limits combined with (5.9) yield
An/ V0un|? = 0.
R

To prove that (Pp) holds, we begin recalling that for all v € K
/[u’n(v i) (L AV (@)t (0 — )] / 92, ) (0 — ).
R R

Choosing v € ]IA{, we get
/ Ry (0 — )+ 11 (0 — ) — AnV (@) 2] > / 0@, 1) (0 — un).
R R

Taking the limit of n — co and using Lemma 5.2 and (5.7), we derive that

/ [u' (v —u) +u(v—u)] > / flw)(v—u) Yo ek,

o o

finishing the proof. O
Corollary 5.2. The sequences (uy) and (wy,) satisfy the following limits

wall o0y, [Uunll oo (oe) = 0 as n — 4o0.

Proof. These limits are an immediate consequence of the continuous embedding
HY(Q) — L®(0°) together with the limits u, — u and w, — w in H'(R) and
of the fact that v = w =0 in O°. O

Proof of Theorem 1.1. The study made in this section allows us to prove that (5.1)
holds for A large enough. We will show only (5.1) to (uy,), because the argument is
the same for (w,). Arguing by contradiction, we assume that there is A\, — +00
such that

|unl| oo () > a Vn €N, (5.10)

From Lemma 5.2, there is a subsequence of (uy), still denoted by itself, and u €
H}(O) such that
u, —u in H'(R).



Multiplicity of Positive Solutions 37

By Corollary 5.2, the below limit holds
[unllpoe(oey = 0 as n— 400,
which implies that there is ng € N such that
lunl ey < 5 Vn > mo,

obtaining a contradiction with (5.10). This way, it follows that there is A* > 0
such that the solution u) satisfies

ux(z) <a VoeQ and X > A"

Now, by Remark 2.1, we can conclude that uy is a positive solution for (Py) for
A >\ O
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Multiplicity Results for some Perturbed
and Unperturbed “Zero Mass”
Elliptic Problems in Unbounded Cylinders

Sara Barile and Addolorata Salvatore

Abstract. We study the following nonlinear elliptic problem

—Au = g(z,u) + f(z) in Q,
u=20 on 052,

on unbounded cylinders €2 = QxRN-™ ¢ RY, N—m > 2, m > 1, under suit-
able conditions on g and f. In the unperturbed case f(x) = 0, by means of the
Principle of Symmetric Criticality by Palais and some compact imbeddings
in spherically symmetric spaces, existence and multiplicity results are proved
by applying Mountain Pass Theorem and its Symmetric version. Multiplicity
results are also proved in the perturbed case f(x) # 0 by using Bolle’s Per-
turbation Methods and suitable growth estimates on min-max critical levels.
To this aim, we improve a classical estimate of the number N_(—A + V) of
the negative eigenvalues of the operator —A + V(z) when the potential V is
partially spherically symmetric.

Mathematics Subject Classification (2010). 35J20; 35J60; 46E35.

Keywords. Nonlinear elliptic equations, zero mass case, unbounded cylinders,
variational and perturbative methods, compact imbeddings.

1. Introduction

In this paper, we study the following semilinear elliptic problem

—Au = g(z,u)+ f(z) in Q,
{ u=20 on 01, (Py)

where g : @ X R —» R and f: Q — R are given functions with ¢’ (z,0) = 0 (“zero
mass case”) and € is an unbounded cylinder in RY, ie., @ = Q x R¥N-™ c RV,

The authors are supported by M.I.U.R. (research funds PRIN 2009 and ex 60%).
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N-m2>2 m>1, QcRm open smooth bounded. We restrict to the case
where g(z,u) behaves as a superlinear but subcritical power uP~! at infinity with

2 < p< 2% where 2* = 2N .

In bounded domains, many authors (see, e.g., Rabinowitz [27] and references
within) have looked for solutions of elliptic equations with zero Dirichlet boundary
conditions by variational methods.

In particular, if f = 0, Ambrosetti and Rabinowitz have proved the existence
of infinitely many solutions to (Pp) by means of the Symmetric Mountain Pass
Theorem (see [2]) exploiting the symmetry of the problem.

Always in the bounded case, if f # 0, some perturbative techniques have been
employed to find multiplicity results for values of p not much larger than 2 (see
[8, 9, 28, 30, 31]). Later on, when the symmetry of the problem is broken also by
the presence of non-homogeneous boundary conditions (see, e.g., [15, 18, 19]) more
restrictive assumptions for the exponent p have been found. Candela, Palmieri
and Salvatore in [17] have improved the previous results for problems with broken
symmetry by exploiting further radial symmetry assumption. In particular, in the
case of homogeneous boundary data, they state the existence of infinitely many
radial solutions in a ball for any p such that 2 < p < 2*.

On the other hand, if @ = RY, g = g(u) and f = 0, in [11, 12, 13] thanks
to the radial symmetry of the problem Berestycki and Lions overcome the lack of
compactness and find infinitely many radial solutions of (Py) if ¢ satisfies the so-
called double-power growth condition, namely g(u) behaves as a subcritical power
uP~! at infinity and a supercritical power u?~! near the origin, where 2 < p <
2* < q. This condition have allowed later Benci and Fortunato in [10] to introduce
as a natural framework the Orlicz spaces LP + L9 which have been used also in
more general cases by other authors such as Badiale, Pisani and Rolando in [7].

Recently, if f # 0, in [4] the authors have obtained, by Bolle’s perturbation
method and variational techniques, multiplicity results of radial solutions in RY
when g(z,u) = |u[P~2u for any p such that 2 < p < 2*. These results without
any difficulty can be proved for more general nonlinearities g(z, u), thus extending
to RY the results obtained in [17] for problems with zero Dirichlet boundary
conditions.

On the contrary, if 2 is an unbounded cylinder, to our knowledge, few existen-
ce and multiplicity results have been proved until now only for the unperturbed
problem (Py). Indeed, in [3] Azzollini and Pomponio have obtained existence and
multiplicity results to (Py), by exploiting compact imbeddings of cylindrical sym-
metric spaces in the Orlicz spaces LP + L7, in the three-dimensional autonomous
case. Indeed, they consider 2 = QxR?, 2 a bounded interval of R, and g € C(R,R)
and its primitive function G(s) = fos g(o)do verifying the following assumptions:

(g4) there exists > 2 such that for all s € R: uG(s) < g(s)s;
(¢5) for all 5 € R: |g(s)| < cmin(|s]a=", s
(g5) for all s € R: G(s) > ¢ min(]s]?, |s|P);
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with 2 < p < 6 < g and ¢, > 0, thus proving an existence result and, if in
addition g is odd, a multiplicity result.

Moreover, in [22] Fan and Zhao found multiple solutions for the p-Laplacian
problem on unbounded cylinders in R, N > 3; their results apply in particular
to problem (Py) (see [22, Remark 2]) but in their paper there aren’t the details of
the proof.

Anyway, up to now, no existence and multiplicity results have been stated
for problem (Py) with f # 0 on Q unbounded cylinder.

So, as concerns as the unperturbed case, the aim of this paper is to prove
that, by using some compactness imbeddings concerning “partially” spherically
symmetric Sobolev spaces and by means of Mountain Pass Theorem and its sym-
metric version, the results in [3] can be extended to dimensions N > 3 and to
more general non autonomous nonlinearities g (see Remark 1.2) without using the
Orlicz spaces LP + L1.

More in general, in this paper, we establish existence and multiplicity results
to (Py) on unbounded cylinders also in the perturbed case f # 0.

For the unperturbed case, we have the following result.
Theorem 1.1. Suppose that g € C(Q2 x R, R) verifies

(90) 9(F,y1,5) = g(&,y2,5) for every s € R, T € Q and y1,y> € RN™™, |yn| = [y,
i.e., g(Z,-,s) is spherically symmetric on RN=™;
(q1) there exists p > 2 such that

0 < pG(z,8) < g(x,8)s forallxz € Q and s € R\ {0},

where G(x, s) fo x,0)do;

(g2) tim 9%

s—0 S

(g93) there exist 2 < p < 2*, ag,a; > 0 such that
lg(z,5)| < aols|P~ " +ar forallz € Q and s € R. (1.1)

= 0 uniformly with respect to x € Q.

Then, problem (Pg) has at least one nontrivial weak solution. Moreover, if in ad-
dition

(94) g(z, ) is odd with respect to s

holds, then (Pg) has infinitely many weak solutions.

Remark 1.2. Let us point out that Theorem 1.1 extends the results in [3] to
dimensions N > 3 and to more general non autonomous nonlinearities g(z,u).
In fact, in the case g(x,u) = g(u), conditions (g}) and (g5) obviously imply (g1)
while condition (g5) implies (g2). Indeed, if |s|] < 1, by (¢5) and p < ¢ it is
lg(s)| < ¢ |s]97t. Thus for all s # 0, |s| < 1 we have
9(5)‘ < C‘S‘Q—Q

s

0<

and (gz2) follows since g > 2.
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Furthermore (g5) implies also (g3). Indeed, by (g2) and p < ¢ it is |g(s)] <
c|s]97t < ¢ |s|P~! when |s| < 1 while |g(s)| < ¢ | [P=! when |s| > 1 so that (g3) is
satisfied with ag = ¢ and a; = 0.

Remark 1.3. Tt is easy to prove (see [5]) that by (g1) and (g2), for any so > 0
small enough, there exists a function 7v,, € L>®(), vs,(x) > 0 for every z € Q,

such that
G(z,8) > vso(z)|s]t*  for all z € Q and s € R s.t. |s] > so. (1.2)
Indeed, from (g1), fixed sg > 0, we have that
G
G(z,s) > |(a: SO)| | forall z € Q and s € R s.t. |s| > so.
so|*
Setting s, (z) = G‘(S ¥ 50) for every x € ), it follows that 4, (x) > 0. Now, we prove

that vs, € L>®(Q) for s¢ sufficiently small. Indeed, from (g2) and 'Hopital’s rule,
we have that

G
lim (x2, 2 = 0, uniformly with respect to z, (1.3)
s—0 S

hence, fixing ¢ = 1, there exists 6; > 0 such that
G(x,s) <|s|* forevery z € Q and s € R s.t. |s| < §;.

Chosen sg < 61, it follows that G(z, sg) < 8% for every z € , so supess s, () is
finite and 75, € L>®(Q). :

As concerns as the perturbed case, we have the following result.
Theorem 1.4. Let N —m > 3 and g € C(Q x R,R) satisfying (9o)—(ga) and
(g5) there exists vo > 0 such that

G(z,s) > vls|*,  for every x € Q and s € R.

Taken any function f € L™ (Q) such that

(fo) (@ 1) = (@, y2) for every & € Q and y1,yo € RN™™, [y1] = [y, ice.,
f(z,) is spherically symmetric on RN=™,

problem (Py) has infinitely many weak solutions for all p verifying
2<p<PNm (1.4)
_ 4
where py , =2+ (N—m)(m+1)—2

Remark 1.5. Since py ,, < 2+ N 5, the result obtained above in the cylindrical
case extends in some sense the one obtained for problem (Py) when €2 is bounded
(see [9, 31]). Nevertheless, it doesn’t cover the whole interval (2,2*) as in the radial
case (see [17] for the bounded case and [4] for the unbounded case).

Remark 1.6. In the perturbed case, we need the further assumption (g5) which is
not guaranteed by (g1) and (g2) which imply only condition (1.2), as pointed out
in Remark 1.3.
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The paper is organized as follows: in Section 2, we introduce the variational
formulation of the problems and suitable “partially” spherically symmetric Sobolev
spaces. We overcome the lack of compactness of the problems by recalling some
compact Sobolev imbeddings for such spaces. Section 3 is devoted to the proof of
Theorem 1.1. In Section 4, we recall Bolle’s perturbation method and multiplicity
results for perturbed problems. In Section 5, we present some preliminary lemmas
and in Section 6, we prove Theorem 1.4. At last, in the Appendix 7, we improve a
classical estimate of the number N_(—A + V), useful in the proof of Theorem 1.4.

Notation

If z,y € RY, 2 -y denotes the Euclidean product in RY;

If X is a Banach space, || - ||x denotes its norm;

° L’f(Q)7 with 1 <t < 400, denotes the Lebesgue space with the usual norm
|- Lo

for all t > 1, ¢’ is its conjugate exponent, i.e., 1 + tl, =1;

a;, c;, C; denote suitable positive constants.

2. Variational framework

In order to prove that problem (P) and consequently (Py) has a variational struc-
ture, let us consider the space W, *(Q) endowed with the norm

]| = </Q |vu|2dgc>é . (2.1)

Let us point out that the norm in W12(Q) given by

(/ \Vu\Qd:U—F/ u|2dx>
Q Q

is equivalent to the norm || - ||. Indeed, as € is a subset of RV which lies between
two hyperplanes, by Poincaré inequality a constant k£ > 0 exists such that

/|Vu|2dx+/ |u\2dx§k/ \Vu|? dx
Q Q Q

(see [1, p. 159]). Hence, | -|| is equivalent to the classical norm in W, *(£2). For this
reason, even if we have a problem with “zero mass” we don’t use the space D1:2(£2)
but we study (Py) in VVO1 2(Q) as in the “positive mass case”, thus simplifying the
argument in [3]. From now on, we denote by F the space W, %(Q) endowed with
the norm given by (2.1) and by (E', | - ||g/) its dual space. Then, by the Sobolev
imbedding theorems (see [16, Corollary 9.14]) it follows

E< LY(Q) i 2 <t < 2% (2.2)

Let us point out that, since €2 is unbounded, the previous imbeddings are not
compact.
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Now, it is possible to state the following variational principle.

Proposition 2.1. Let g € C(Q x R,R) satisfying (g2) and (g3) and f € L* ().
Then, the weak solutions of (Py) (resp. (Po)) are the critical points of the energy
functional defined on E by

Ji(u) = ;/Q|Vu|2dx—/QG(x,u)dx—/qudx

<Tesp. To(u) = ; /Q Vul? de — /Q G(x,u)dx.)

More precisely, J, € CY(E) (resp. Jo) and its differential J| : E — E' (resp. J})
1s defined as

T[] = /Q V- V¢ — gla,u)C — f¢] de (2.3)

(resn. i) = [ (V- V¢ = gte 0] o)
for allu,¢ € E.

Proof. Tt is sufficient to prove the above proposition for the functional J;, namely
that the functional

Ji(u) = ;||u||2 —/QG(x,u)dx—/qudx, uek,

is well defined and its Fréchet differential given in (2.3) is a continuous operator
from F to E’. We study separately the maps

aolw) =yl ) = [ Geade patw) = [ fud

It is standard to prove that the map ¢y and @9 are of class C(E) with differentials

oo (u)[¢] :/QVu~V§dx and wé(u)[{]z/gf(dx for all u,¢ € E.

Now, we have to prove that also ¢ is well defined and C! in E and

o (u)[¢] = /Qg(:t:,u)Cdx for all u,¢ € E. (2.4)

Let us point out that, from (g2) and (gs3), it follows that fixing any € > 0 a constant
c. > 0 exists such that

lg(z,s)] < els|+ cels[P™! (2.5)

for all z € Q and s € R. Indeed, by (g2), for any ¢ > 0 there exists 6. > 0
such that for every |s| < d. it is |g(z,s)| < e|s| while by (g3) if |s| > 1 it is

lg(x,5)| < ao|s|P~! + a1 < (ap +a1)|s|P~! for all 2 € Q. If 5. < |s]| < 1, |g(z,s)| <
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g(,s)
sp—1

. Then, (2.5) easily follows with ¢, =
max{ M., ag + a1 }. Now, by integrating (2.5), it is

|G(x,5)] < e|s|® + ce|s|? (2.6)
for all z € 2 and s € R. Thus, by (2.2) with ¢ = 2 and ¢t = p, it follows that

01 € CY(E,R) and its Fréchet differential is as in (2.4) (see, e.g., [32, Theorem
1.22)). O

-1 : _
M.|s|P~" with M. = max&ﬁs‘gl‘

At this point, in order to overcome the lack of compactness of the problem,
we introduce a subspace Fg of F involving spherical symmetry such that Eqg is a
“natural constraint” for Ji (resp. Jy) and Eg is compactly imbedded in L!(£2) for
suitable ¢’s.

Definition 2.2. Let G be a subgroup of O(N) defined by G = idgm X O(N — m).
The action of G on the space F(,R) of the real functions defined on € is such
that, for all g = idgm X g1 € G,

gu(Z,y) = u(Z, g7 ty), for every (T,y) € Q x RN~
The subspace of the fixed points of G is defined by
Fix(G) ={ue F(Q,R): gu=wu forall ge G}.

Let E¢ = ENFix(G). In other words, a function u € E belongs to E¢ if and only
if u(Z,-) is spherically symmetric on RV=". Obviously, the action of G on Eg is
isometric, that is,

llgul] = ||lu|, for all g € G.

Clearly, Eg < E. We denote by (Eg, | - [|g,) the dual space of Eg. Moreover,
by (go) and (fo) (resp. by (go)) the functional J; (resp. Jy) is invariant under the
action of the group G, i.e., Jyog = J; (resp. Joog = Jy ) for all g € G. Hence, by
the Principle of Symmetric Criticality by Palais in [26], any critical point of Ji| g,
(resp. Jo|g.) is a “free” critical point of Jy (resp. Jy). Therefore, from now on, we
look for critical points of Jy (resp. Jp) constrained to Eg and, for simplicity, we
still denote Jy|g, (resp. Jo|g,) by J1 (resp. Jo).

In the following, we denote by W5*(Q) = Wh2(Q) N Fix(G). Let us recall
that the imbeddings of WéQ(Q) in L!(Q) spaces are compact as proved by P.L.
Lions in [25, Lemma II1.2] (see also [6] for related results).

Since Eg = Wy?(Q) NFix(G) < WE*(Q), it follows that

Eg <= L'(Q) for2 <t < 2% (2.7)

At this point, it is possible to prove the compactness of the Fréchet differential
of the functional ¢, introduced in Proposition 2.1.

Proposition 2.3. Under the same assumptions in Proposition 2.1, it follows that
dpy is compact from Eg in E,.
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Proof. Let us point out that there exists to > 1 such that

E < L@ D(Q) and L(Q) < E, ie., E < Lt-1(Q). (2.8)
Indeed, the system
2<t0(p—1)<27 <ty < ,
t i.e p—1 p-1
2<, 2y < L <ty <2
0— 9% _ 1 0 ’

is solvable because, as 2 < p < 2%,

2 2% ) 2%
max , < min , 2.
p—1 2¥—1 p—1

Since 2 < to(p — 1) < 2*, the conclusion follows by (2.7), (g3) and the fact that, if
[ —ul| Lrop-1) () — 0 asm — +o0, then [|g(-, un) —g(+, w)|[Lto (@) — 0 asm — +o0
(see [32, Lemma 1.20]). O

Remark 2.4. We cannot apply directly the last part of Theorem 1.22 in [32] as the
compact imbedding (2.7) does not hold for ¢ = 2.

3. Unperturbed case

Our aim is to find weak solutions of problem (Py) by applying the Mountain Pass
Theorem (see [2, Theorem 2.1]) and its symmetric version (see [2, Corollary 2.9])
to the functional Jy. In order to do this, we first recall the following Palais—Smale
condition, briefly (PS).

Definition 3.1. The functional Jy satisfies the (PS) condition if any sequence
(un)n C Eg such that
(Jo(un))n is bounded (3.1)
and
dJo(up) = 0 asn — +oo, (3.2)
converges in Fg, up to subsequences.

Proposition 3.2. Let g € C(2 x R,R) satisfying (go), (91), (g2) and (g3). Then,
the functional Jo satisfies the (PS) condition.

Proof. Let (up)n be a sequence verifying (3.1) and (3.2), then by (g1) and (2.3) it
follows
c1 +enllunll = pdo(un) — Jo(un)lun]

= (g - 1) [ unl|? + /Q (9(z, un)un — pG(z,up)) dz (3.3)

(5 1) luall?

Y
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where €,, — 0 as n — +o0 and ¢; is a suitable positive constant. Hence, by (3.3),
(un)r is bounded in Eg. So, u € E¢ exists such that, up to subsequences, u, — u
weakly in Eg and, from Proposition 2.3,

1 (un) — @1 (u) in Eg. (3:4)
Thus, (3.2) and (3.4) imply
(00 (un) = 0 (W) [un —u] = 0 if n — foo,
ie.,
/Q IV (4, — )2z — 0. (3.5)
and the conclusion follows. 0

Proof of Theorem 1.1. By Proposition 2.1 and by (go), the functional Jo € C*(Eg).
Proposition 3.2 implies that the functional Jy satisfies the (PS) condition in Fg.
Obviously, Jo(0) = 0; we claim that there exist «, o > 0 such that

Jo(u) > a ifue€ Eg, ||ul| =o. (3.6)
In fact, fixing any € > 0, from (2.6) and (2.2) two positive constants ¢ and c3
exist such that

1
Jo(u) > 5 (1 —ec) ||ul|? = csl|ul|P  for all u € Eg.

Thus, since p > 2, taking |lu|| = ¢ with ¢ and p small enough, (3.6) holds for a
suitable a > 0.

Now, fix u € Eg with u # 0 and sp > 0 with |sg| < 1. Denote s, = {z €
Q:Ju(z)| > so}- By (g1), (1.2) and p > 2, we have that

1
Jow) <l = [ @l do

Quso

1
=l = [ @l des [ @l de
Q Q

u,s0

IA

1
P = [ a@lal ot e [ fuda

u,sQ

1
Ml = [ @l do -+ =) [ Juf?da.
Q Q

Then, by Sobolev imbeddings (2.2) a positive constant ¢4 exists such that

Jo(u) < eaull? /Q oo (@)1l d. (37)

By (3.7), it follows that Jy(tu) — —oo as t — +00. Whence, the classical Mountain
Pass Theorem applies (see [2, Theorem 2.1]) and a non zero critical point of Jy
in Eg, hence a non trivial weak solution of system (Pp) exists. Furthermore, if
also condition (g4) holds, the functional Jy is even. Let V be a finite-dimensional

IA
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1
subspace of Eq. Now, it is easy to prove that the term (fQ Vso (@) |u|# dx) “isa

norm in Eg, hence by (3.7) and the equivalence of all norms in V', there exists a
positive constant R = R(V') such that

Jo(w) <0 ifueV, |l >R (3.8)

So the symmetric version of Mountain Pass Theorem applies (see [2, Corollary
2.9]) and T has an unbounded sequence of critical levels. 0

4. Bolle’s perturbation arguments

From now on, we will study the perturbation problem (Py) by applying the method
introduced by Bolle in [14] for dealing with problems with broken symmetry. First,
we recall the main abstract theorem as stated in [15]. Remark that the theorem
holds for C? functionals, but here we assume they are C* according to [20]. The idea
is to consider a continuous path of functionals starting from a symmetric functional
Jo and to prove a preservation result for min-max critical levels in order to get
critical points also for the end-point functional J; (which is the “true” functional
associated to the non-symmetric problem).

Let H be a Hilbert space equipped with the norm | - ||z. Assume that H =
H_ @ Hy, where dim(H_) < oo, and let (ex)r be an orthonormal basis of H.
Consider

Hy=H_, Hy41 = H, ®Repqg if ke N,

so (Hy)g is an increasing sequence of finite-dimensional subspaces of H.
Let J : [0,1] x H — R be a C!-functional and, taken 6 € [0, 1], let us set
Jo=J(,-): H— R and Jj(u) = 0J(0,u)/0u. Furthermore, let

I'={yeC(H,H) :~ odd and there exists L > 0 s.t. y(u) = w if ||u||g > L},

¢k = inf sup Jo(y(u)).
el ueHy,

Assume that:

(Ay) J satisfies the following weaker form of the classical Palais—-Smale condition:
any ((0n, un))n C [0,1] x H such that

(J (0, un))n is bounded, lim Jp (un) =0 (4.1)

converges up to a subsequence;
(Ag) for any b > 0 there exists C}, > 0 such that if (0, u) € [0,1] x H then

o] <5 = |9 0] < Collp L+ 1l 1)

(As3) there exist two continuous maps 71,7 : [0, 1] x R — R, Lipschitz continuous
with respect to the second variable, such that 71 (6, ) < n2(0,-) and if (6, u) €
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[0,1] x H then

Ty(u) =0 = (6, Jo(w) < 5 (6.4) < ma(6, Jo(w):

(A4) Jo is even and for each finite-dimensional subspace V of H it results
lim sup J(6,u) = —oc.
ueV  geo,1] (6,)
llull—+oo

For i € {1,2}, let ¥, : [0,1] x R — R be the flow associated to 7, i.e., the solution

of problem

ov
o (0.5) = (0, 0:(0.5)),

U,(0,8) =s
Note that ¥;(0,-) is continuous, non-decreasing on R and ¥4 (6,-) < Ua(6, ). Set
m(s) = sup [m(0,s)l, na(s) = sup |n2(0,5)|.
0€l0,1] 0€0,1]
In this framework, the following abstract result can be proved (see [14, Theorem

3] and [15, Theorem 2.2]).

Theorem 4.1. There exists C € R such that if k € N then
(i) either Jy has a critical level ¢ with Ua(1,¢) < V1(1, cpr1) < Ck,
(ii) or chy1 — cx < C(nylens1) +maler) +1).

Remark 4.2. If 13 > 0 in [0, 1] x R, the function W5 (-, s) is non-decreasing on [0, 1].
Hence, ¢, < ¢, for every ¢, satisfying case (7).

5. Preliminary lemmas

Now, in order to find multiple critical points of the non-even functional J; associ-
ated to (Py) (see Proposition 2.1), we want to apply Bolle’s perturbation method.
Thus, consider the family of functionals J : [0,1] X Eg — R defined as

J(G,u):;/ \Vu\de—/G(x,u)dx—G/fudx
Q Q Q
=J -0 dz.
(0, u) /qu x

Clearly, J(0,-) = Jp is an even functional while J(1,-) = J;. By Proposition 2.1
we have that J is a C'-functional with

/ fed,

Jy(u)[¢] = 8 /Vu VCdx—/Qg(x,u)Cdx—ﬁ/Qdex

for every 0 € [0,1] and u, ¢ € Eg.

(5.1)
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The following technical lemmas state that the functional J in (5.1) satisfies
assumptions (A;)—(A4) introduced in the previous section.

Lemma 5.1. Let g € C(QxR,R) satisfying (g0), (g1), (92) and (g3) and f € L* ().
Then, if (O, un)n C [0,1] X Eq is a sequence verifying (4.1), then it converges up
to a subsequence.

Proof. Let (0, un)n C [0,1] x Eg be a sequence satisfying (4.1), hence

/|Vun\2dx—/G:cun )dx — 0 /fund:z:<a1
and

‘Jén(un)[un]’ = ’/ |V, |* de — / (T, up ) p, dx—ﬁn/ fu, dz
Q Q Q

< enllual
where €, — 0 as n — oo0. As by (¢1)
I
a2+ 2allunll = el (1) = T ()] = (b =1) el = (e = )6, [ funda

> a3HunH2 — agllun|,

it follows that (u,), is bounded in E¢g; hence, it converges weakly in Eg up to a
subsequence. Thus, the proof follows easily by (2.7) and standard arguments. [

Lemma 5.2. Let g € C(Q x R, R) satisfying (g0), (92) and (g3) and f € L* ().
Then, for any b > 0 there exists Cy, > 0 such that if (0,u) € [0,1] X Eg it is

o] < b= | 30 @, < Collhwle + )l + )

Proof. The expression of g‘g (0, ), the Holder inequality and Sobolev embeddings
imply

(6, u)

oJ
5 00| < 11l < asllll - or al 6,1) € 0,1] e
so the conclusion follows. O

Since we want to determine the “control” functions 7;(6, s) in (As), we prove the
following

Lemma 5.3. Let g € C(Q x R, R) satisfying (g0), (91), (92), (g3) and (g5) and
f € L¥(Q). Then, there exists a constant C > 0 such that

(0,u) €[0,1] x Eg, Jy(u)=0= ‘gg(ﬁ,u) < C(J5(u) + 1)21u.
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Proof. Let (8,u) € [0,1] x Eg such that Jj(u) = 0. By (91), (g5) and f € L* (%),
we have that

Jo(u) = Jp(u) — ;Jé(u)[u] = / (;g(x,u)u — G(z,u)dr — Z /qudx

Q
> (g-l)/ﬂG(x,u)dx—g/qud:c

> gl gy — 1714, g Il o
> ar((fulltq) — D).
Then, by the Holder inequality

aJ 1
0 0,0) < 1l oy llulzagey < CL ) + 1)
and (A3) holds with 79(0,s) = —n1(0, s) = C(1 + s?) o 0

Lemma 5.4. Let g € C(QxR,R) satisfying (g0), (92), (93) and (gs) and f € L* ().
Then, for each finite-dimensional subspace V' of Eg it results

lim  sup Jyp(u) = —o0.
ueV  pelo,1] )
llull—+o0

Proof. Since by (g5) and the Holder inequality

1
T(0,u) <, lull* = vollull” + 111 a0y el 2o (0

then the conclusion follows by p > 2 and the equivalence of all norms in a finite-
dimensional space. O

Remark 5.5. Let us point out that, arguing as in Section 3, the proof of Lemma
5.4 holds again by using (g1) and (g2) instead of (g5). On the contrary, assumption
(g5) needs in the proof of Lemma 5.3.

6. Growth estimates and proof of Theorem 1.4

In order to apply Theorem 4.1, we consider a sequence of finite-dimensional sub-
spaces of E¢ as follows. Let us consider a Schauder basis (ug)i in Fg. Then, we
can define

1
Hy, = span{uq,...,ur}, Hji_; =span{uk, ukt1,...},
and a corresponding sequence of min-max levels as

¢, = inf sup Jo(v(w)), foreach k >1, (6.1)
yel weH,
where I' is as in Section 4 with H = Fg. By the lemmas in the previous Section
the path of functionals (Jg)ge(o,1) satisfies assumptions (A;)-(A4) of Theorem 4.1
with )
—11(0,5) = 12(0,5) = C(1 4 %) 2. (6.2)
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So, Theorem 4.1 applies. In order to state the existence of infinitely many
solutions of problem (Py), by Remark 4.2, we have to prove that alternative (i)
occurs for all k large enough. If, by contradiction, we assume that alternative (ii)
occurs for k large enough, by the form of 7;(6, s) in (6.2), it follows that

1 1
cey1 — e < Clefyy +op +1).

Therefore, arguing as in [8, Lemma 5.3, a constant C; and an integer ko exist
such that

ek < Crks™r for all k > ko. (6.3)
In order to have a contradiction, we need a suitable lower estimate of the growth
of ¢)s.
Following an idea of Tanaka in [31], let us point out that, by (2.6) for e = i,
a positive constant C' > 0 exists such that
1
Jofw) = Jul® = Cllull,
so it is
cL > by (6.4)
where

: 1 2 P
b= inf sup K(y()), K(w) = [l = Cllul} o)

Then, by (2.7), we can apply Theorem B in [31] so that, for all k£ € N there exists
a critical point uy € Fg of K such that
K(uk) < by, (6.5)

and its large Morse index is greater or equal than k, i.e., the operator

1
K" (ug) = —2A — Cp(p — D)|ugP~? or equivalently — A —2Cp(p — 1)|ug|P~2
has at least k£ non-positive eigenvalues.

Now, we deal with the case m > 2 so that m + 1 > 3. The case m = 1 can
be treated in a simpler way. Thanks to the partially spherically symmetry of w
for all integer k, we can apply Proposition 7.3 in Appendix 7 with the potential
V = —2Cp(p — 1)|ux|P~2, so we have

k< N_(=A—=2Cp(p — 1)|ux|"?)
p—2)(m - 6.6
<c., ue@. )" dzdp. (0
Qx[0,+00)
Moreover, since uy is a critical point of K, by (6.5) it follows that

-2
bk>p

p—2
> P Tl =" "l (6.7)
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Now, our aim is to estimate the last integral in (6.6). Then, arguing as in [17] (see
also [4]), by the Holder inequality, it follows that

/~ (@ p)| " dadp (6.8)
Qx[0,1]
2p—(p—2)(m+1) (p—2)(m+1)
2p 2p
<( [ i [ o G )l didp
Qx[0,1] Qx[0,1]
with [ = — N m=D@=2(m+1) 10t 45 point out that N — m > 2 implies that

2p—(p—2)(m+1)
2p— (p—2)(m+1) >0, for any p € (2,2*). Clearly, if

4

2 6.9
P2t N —m)m 1) -2 (6:9)
then [ > —1 and (6.7) and (6.8) imply
- (p—2)(m+1) ___ (p—2)(m+1) (p—2)(m+1)
/{~2 L @l < Gl <Cn”F 610)
X b

On the other hand, applying again the Holder inequality, for suitable r > 2, it is

20— (r—2)(m+1)

/ ur(@, p)| "2 didp < ( / p* dfdp>

Qx[1,4+00) Qx[1,400)

(r—2)(m+1) (6‘11)
2r
. / PN g (Z, p)| 2" didp
Qx[1,+00)
with L < —1 where L = — 5 D024 Hence, by (6.11)
Lo @l dwdp
Qx[1,400)
(7‘72)2(m+1)
S N A e (6.12)
Qx[1,400)

(p—2)(m+1)
< Oy fuwll -2
Lr—2"(Q

Let us point out that in the previous estimates we need to choose r such that

0 < 2r — (r —2i)(m—|—1) <1,
(N—m—-1)(r—-2)(m+1)

o (r—Ym+1)
< P2

2
_’/‘—QT

<p.
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From direct calculations, recalling that N > 4 and then 2 < p < 4, this system is
solvable if we choose 7 > 2 such that
2(N—m)(m+1) . 4 4
2 6.13
max{p’(N—m)(m—l-l)—Q SremmOy 0ttt (6.13)

and this is possible for all p verifying
4
2+ <p<2n. 6.14
(N —m)(m+1) 7 (6.14)
Clearly, if we assume p satisfying (6.9) and (6.14), condition (6.13) becomes

2N —m)(m +1) [ 4 4
2 . 6.15
(N_m)(m+1)_2<r<m1n 4y o1 (6.15)
So, if (6.14) holds, by (6.12), (6.7) and the Gagliardo—Nirenberg interpolation
inequality (see [16]) it follows that

[ ik (3, p)|
Qx[1,+00)
(p—2)(m+1)

a —a 2
< Cs (Jlurlaqoyllenl i) (6.16)

(p—2)(m+1)

1-a 2 (r=2)(m+1)
C(bb”) =Cgb, >

where 0 < a < 1 and § + (lpa) = (pr__;)r. Then, for p as in (6.9) and (6.14), by

(6.6), (6.10) and (6.16) for any integer k we have that
(p—2)(m+1) (r—2)(m+1)
k<Crb, * +Cg b, >
therefore by, — +00 and, since p < r, it follows that, for &k large,
(r—2)(m+1)

k<Cgb, =

(p— 2)(m+) (p— 2)(m+1)

dxdp<04\|uk\| b-3,
27(Q

and consequently by (6.4)

cr, > Cy ko2 if ks large enough.
Since 2) gy TN —mifr] %N;L;?%T;Sl_)z (see (6.15)), it follows that, if
p satisfies (6.9) and (6 14), for any § > 0 and k large, it is
cp > Cs kN9, (6.17)

Really, (6.17) holds for any 2 < p < 2+ (N_m)4

(mt1)—2° To this aim, we recall the
following result.

Lemma 6.1. Assume that 2 < p < 2+ (N_m‘)l(m+1). Then, for some p such that
2+ (N_m‘)l(mH) <p<2+ (N_m)(lm+1)_2, for all € > 0 a positive constant Az > 0
exists such that

/ \u|pdz§5/ |u\2d:£+A5/ |u|? dz, for all u € Eg.
RN RN RN
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Proof. Let s > 1 and a > 0 real numbers that will be fixed later. By applying
Young’s inequality, we have that

1 ’
P _ é o p—a as (p—a)s
1 |U > Elu + U .
|u‘ (55) lL| | ‘ < 5‘ | |

(¢5)

Our aim is to prove the existence of suitable o and s such that

s/

s'(es) s

as = 2,
4 s 4
2+ (N—m)(m+1) < (p - Oé) s—1 <2+ (N—m)(m+1)—2

or, equivalently, if 2 < p < 2 + (N_mz)’t(mﬂ)?

2
a="‘,
{ s 4 4 (6.18)

2p—(p=2)(N=m)(m+1) <5 S 4—(p=2)(N—m)(m-+1)"
Since it is easy to see that
< 1 < 1
2p—(p—-2)(N-m)(m+1) " 4—(p=-2)(N-—m)(m+1)’
S le,p= Sf__f. If

p=2+ (N_mal(m+1), the thesis follows from simpler arguments. (]

1

taking s as in (6.18), the proof concludes with p = (p — «)

The previous lemma implies that, if 2 <p <2+ ( N_m‘)l(
p such that

1) for a suitable

4 4
2Jr(N—m)(mH) <p<2+(N—m)(m+1)—2’

for € > 0 small enough two positive constants B, and C; exist such that, for all
u € Fg,

Jo(u) > K(u) with K(u) = B.|ul?* - C’EHuHip(Q).
So, denoting by by the min-max levels of K defined by (6.1), it follows that
cr > by (6.19)

On the other hand, by applying to the functional K Theorem B in [31],
Proposition 7.3 in Appendix 7 and the subsequent arguments, estimate (6.17)
holds also for the critical levels by of K and then, from (6.19) for the critical
levels ¢x of Jy. Hence, we conclude that (6.17) holds for all p between 2 and
2+ (N_m)(‘lm+1)_2. Finally, since

1
n—1
holds since N —m > 3, (6.17) is in contradiction with (6.3) for k large. So,
alternative (i) of Theorem 4.1 and Remark 4.2 occur for all k large enough and
the existence of infinitely many weak solutions of problem (Py) follows if p is such

that 2 <p < py ,, where py,, =2+ (N—m)(4m+1)—2'

<N-m
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7. Appendix

In this section, we give a suitable estimate of the number N_(—A + V(z)) of the
non-positive eigenvalues of the operator —A + V(z) in Eg. Let us recall that for
a general potential V the following proposition holds (see [21, 23, 24, 29, 31]).
Proposition 7.1. Let N > 2 and V : Q — R. Then,
(i) if N > 3, there is a constant 6’1\[ > 0 such that
N (A + V(@) < OnlV-@)l By
(ii) if N =2, for any € > 0 there is a constant C. > 0 such that
N (-84 V(@) < G V- @55 g
where V_(x) = min{0, V(z)}.
Now, assume that the potential V' : 2 — R is partially spherically symmetric, i.e.,
(Vo) V(Z,131) =V (Z,y2) for every T € Q and yy,ys € RV-™, ly1] = lya|-

Setting p = |y| with y € RV~ we state the following result useful for improving

the previous estimates of the number N_(—A 4 V(z)) when partially spherical
symmetry occurs.
Lemma 7.2. Let N—m >3 and V : Q — R verifying (Vo). Then, X is an eigenvalue
of —A+ V(x) in Eg with eigenfunction ¢ if and only if it is an eigenvalue of

2 (N—-m—1)(N-m-23) ~

_AE - Vv )

ot 40 +V(z,p)
in WE2(Q x (0, +00)) with eigenfunction G =@p " 5
Proof. By the partially spherical symmetry of the problem, A is an eigenvalue of
—A +V(z) in E¢ with eigenfunction ¢ if and only if A is an eigenvalue of

0? _N—m—l@

Az — V(z,
052 b o (@, p)
in Wy 2(Q2x (0, 400)) with eigenfunction . This is equivalent to study the equation
0% Ao ~
As ) =0 7.1
o+ op2 + p1(p) op + p2(T, p)g (7.1)
where p1(p) = Y™ and po(Z,p) = A — V(Z, p). By the classical change of

P
variable o = ge~2 J{P1(s)ds (7.1 is equivalent to

925 1 1
A~~ _ 2 _ / ~ ~ _
7P+ op2 + ( 4Pi(p) = ,pi(p) +p2(x,p)> p=0
namely

_ 9% 1/N-m-1\> 1N-m-1 _ _
Agtp+8p2+<—4< ) ) t, 2 + A=V (z,p) | ¢=0.
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Then, A is an eigenvalue of
0? N (N—m—1)(N—m—3)
dp2 4p2

in Wy %(Q x (0,400)) with eigenfunction & = @p

N—-—m-—1
2

Now, we are ready to prove the following result.

Proposition 7.3. Let N —m >3 and V : Q — R verifying (Vo).
1) Ifm>2andV € Lm’ (Q), there exists a constant Cp, > 0 such that
N-(=A+ V() <Cn Vo (@.p)| "2 dzdp.
Q% [0,+00)
(i) If m =1 and V € LETY(Q), for any e > 0 there is a constant C. > 0 such
that

N_(=A+V(z)) <C. | \V_(Z, p)|"* dzdp.
Qx[0,400)

Proof. (i) By Lemma 7.2 it is

0? n (N—m—-1)(N—-—m-3)

0p> 4p?

Hence, N —m > 3 and Proposition 7.1 (i) imply

7?2 (N—-m-—1)(N—-m-—3) ~
\%

o T 402 +V(z,p))

¥ v@Em)<C V@ )"
dp? ’ - Qx[0,+00) o

N_(=A+V(z)) = N_(~Az — + V(@ p)).

N_(—Az —

< N_(—A; — " dzdp.

(ii) Tt is enough to apply Lemma 7.2 and Proposition 7.1 (ii). O
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1. Introduction

In some recent papers the notion of ultrafunction has been introduced ([1], [2]).
Ultrafunctions are a particular class of functions defined on a non-Archimedean
field R* D R. We recall that a non-Archimedean field is an ordered field which
contain infinite and infinitesimal numbers.

To any continuous function f : RN — R we associate in a canonical way
an ultrafunction f : (R*)N — R* which extends f; more exactly, to any func-
tional vector space V(Q) C L?*(Q) N C(Q), we associate a space of ultrafunctions
‘7(9) The ultrafunctions are much more than the functions and among them we
can find solutions of functional equations which do not have any solutions among
the real functions or the distributions.

A typical example of this situation is analyzed in [2] where a simple Physical
model is studied. In this problem there is a material point interacting with a field
and, as it usually happens, the energy is infinite. Therefore the need to use infi-
nite numbers arises naturally. Other situations in which infinite and infinitesimal
numbers appear in a natural way are studied in [5], in [6] and in section 4.4.

In this paper we analyze systematically some basic properties of the spaces
of ultrafunctions V(). In particular we will show that:

e to any measurable function f we can associate an unique ultrafunction fsuch
that f(z) = f(x) if f is continuous in a neighborhood of x;
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to every distribution T we can associate an ultrafunction T'(x) such that
Vo € D, = [" T(2)@(x)dz where [* is a suitable extension of the
integral to the ultrafunctions

the vector space of ultrafunctions V() is hyperfinite, namely it shares many
properties of finite vector spaces (see Sect. 2.4);

the vector space of ultafunctions V(£2) has an hyperfinite basis {0a(2)} 4w
where 6, is the “Dirac ultrafunction in a” (see Def. 18) and ¥ C (R*)" is a
suitable set;

any ultrafunction uw can be represented as follows:

u(z) =Y ulg)oy(),
qeEX
where {04(2)},c5; is the dual basis of {d,(2)},c5
any operator F': V (2) — D’ (), can be extended to an operator
F:V(Q) = V(Q);
the extension of the derivative and the Fourier transform will be analyzed in
some detail.

The techniques on which the notion of ultrafunction is based are related to

non-Archimedean Mathematics (NAM) and to non-standard analysis (NSA). The
first section of this paper is devoted to a relatively elementary presentation of

the basic notions of NAM and NSA inspired by [3] and [4]. Some technicalities

have been avoided by presenting the matter in an axiomatic way. Of course, it is
necessary to prove the consistency of the axioms. This is done in the appendix;
however in the appendix we have assumed the reader to be familiar with NSA.

1.1. Notation
Let © be a subset of RY: then

e C () denotes the set of continuous functions defined on Q C R¥;

C* () denotes the set of functions defined on Q2 C RY which have continuous
derivatives up to the order k;

D (92) denotes the set of the infinitely differentiable functions with compact
support defined on © C RY; D’ (Q) denotes the topological dual of D (),
namely the set of distributions on €Q;

HYP(Q) is the usual Sobolev space defined as the set of functions in L? ()
such that Vu € LP (Q)N

3

e HY(Q) = HY2(Q);
e if V is a finite-dimensional vector space, V' will denote its dual; if V is a

Banach space, V' will denote its (topological) dual;

o supp(f) = {x € RN : f(x) #£0};
o mon(z) ={y eRY : 2 ~ y};

o gal(z) ={y e RN 1z ~j y}.
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2. A-theory

In this section we present the basic notions of non-Archimedean Mathematics and
of non-standard analysis following a method inspired by [3] (see also [1] and [2]).

2.1. Non-Archimedean fields

Here, we recall the basic definitions and facts regarding non-Archimedean fields,
namely fields that contain infinite and infinitesimal numbers. In the following, K
will denote an ordered field. We recall that such a field contains (a copy of) the
rational numbers. Its elements will be called numbers.

Definition 1. Let K be an ordered field. Let £ € K. We say that:
e ¢ is infinitesimal if, for all positive n € N, |¢| < rlﬁ
e ¢ is finite if there exists n € N such as [£| < n;
e ¢ is infinite if, for all n € N, [¢] > n (equivalently, if £ is not finite).

Definition 2. An ordered field K is called non-Archimedean if it contains an infin-
itesimal & # 0.

It is easily seen that all infinitesimal are finite, that the inverse of an infi-
nite number is a nonzero infinitesimal number, and that the inverse of a nonzero
infinitesimal number is infinite.

Definition 3. A superreal field is an ordered field K that properly extends R.

It is easy to show, due to the completeness of R, that there are nonzero
infinitesimal numbers and infinite numbers in any superreal field. Infinitesimal
numbers can be used to formalize a new notion of “closeness”:

Definition 4. We say that two numbers &, € K are infinitely close if £ — ( is
infinitesimal. In this case, we write £ ~ (. Moreover, we say that £, ( are finitely
close if £ — ( is finite. In this case, we write £ ~ (.

Clearly, the relation “~” of infinite closeness is an equivalence relation. This

leads to consider its equivalence classes:

Definition 5. Let K be a superreal field, and £ € K a number. The monad of £ is
the set of all numbers that are infinitely close to it:

mon(§) = {¢ € K: ¢~ (},
and the galaxy of £ is the set of all numbers that are finitely close to it:

gal(§) ={CeK:&~f ()

By definition, it follows that the set of infinitesimal numbers is mon(0) and
that the set of finite numbers is gal(0). In particular, given any infinitesimal number
&, € is infinitely near to a real number (the number 0). So we could argue that,
similarly, the monad of any number £ € K contains (exactly) one real number.
This is clearly false if we take £ infinite, but it is true whenever £ is finite:
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Theorem 6. If K is a superreal field, every finite number £ € K is infinitely close
to a unique real number r ~ &, called the shadow or the standard part of £&. The
number r is the only real number which determines the section

{reR:2<(},{zeR:z>(}

Theorem 6 is a well-known result in non-Archimedean analysis (see, e.g., [7]).
Basically, Theorem 6 shows that the finite part of every non-Archimedean superreal
field can be thought of as constructed starting from R and “surrounding” each real
number r with a cloud of numbers that are infinitely close to r.

From now on, given a finite number £ we will denote its shadow as sh(§),
and we put sh(€) = +oo (sh(€) = —o0) if £ € K is a positive (negative) infinite
number.

2.2. The A-limit
In this section we will introduce a superreal field K and we will analyze its main

properties by mean of the A-theory (see also [1], [2]).

To formalize the A-theory we need a “mathematical universe” U, i.e., a set
that contains all the usual objects of analysis such as real numbers, real functions
and so on. For our applications a good choice of U is given by the superstructure

on R:
U=|JU,
n=0
where U, is defined by induction as follows:
Uo = R;

Un+1 = Un up (Un) .

Here P (E) denotes the power set of E. Identifying the couples with the Kuratowski
pairs and the functions and the relations with their graphs, it follows that U
contains almost every usual mathematical object. Given the universe U, we denote
by F the family of finite subsets of U. Clearly (F, C) is a directed set. We recall
that a directed set is a partially ordered set (D, <) such that, VYa,b € D, 3¢ € D
such that

a<c and b=<c

A function ¢ : D — E, defined on a directed set will be called net (with values
in E). A net ¢ is the generalization of the notion of sequence and it has been
constructed in such a way that the Weierstrass definition of limit makes sense: if
©a is a real net, we have that

lim (\) =L

A—00

if and only if
Ve > 0,3\ > 0, such that YA > Ao, |p(\) — L] < e. (1)
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The key notion of the A-theory is the A-limit. Also the A-limit is defined for
real nets but differs from the limit defined by (1) mainly for the fact that there
exists a non-Archimedean field in which every real net admits a limit.

Now, we will present the notion of A-limit axiomatically:

Axioms of the A-limit
e (A-1) Existence Axiom. There is a superreal field K D R such that every net
¢ : F = R has a unique limit L € K (called the “A-limit” of ¢.) The A-limit
of @ will be denoted as
L =1i .
lim o(A)
Moreover we assume that every £ € K is the A-limit of some real function
p: F—=R.
e (A-2) Real numbers axiom. If () is eventually constant, namely Iy €
F,r € R such that VA D Ao, @(A) = r, then

lim p(\) = 7.
JT’%@() r

e (A-3) Sum and product Axiom. For all ¢, : F — R:
lim o(A) +1lim ¥ (A) = lim (0(A) + 9 (A);

lim p(A) - lim () = lim (o(A) - (A))

These axioms state in a precise way the properties of the A-limit that we
discussed before: (A-1) states that every net ¢ : 7 — R has a limit, and that every
number £ € K is the limit of some net; (A-2) are familiar notions which holds also
for the Weierstrass limit (1). The following theorem states that these axioms are
consistent.

Theorem 7. The set of axioms {(A-1), (A-2), (A-3)} is consistent.
Theorem 7 will be proved in the Appendix.

Now we want to extend the definition of the A-limit to any bounded net of
mathematical objects in U (a net ¢ : F — U is called bounded if there exists n
such that VA € F,¢()\) €U,,). To this aim, consider a net

p: F—=U,. (2)
We will define %\ITIPU ©(\) by induction on n. For n = 0, ngIPU ©(A) is defined by the
axioms (A-1), (A-2), (A-3); so by induction we may assume that the limit is defined
for n — 1 and we define it for the net (2) as follows:

lim p()\) = {%wu) |9 F = U,_y and YA € F, () € ¢(A)} .

Definition 8. A mathematical entity (number, set, function or relation) which is
the A-limit of a net is called internal.
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2.3. Natural extensions of sets and functions

Definition 9. The natural extension of a set £ C R is given by
B = timer) = {lmu0) | v(3) < B

where cg(A) is the net identically equal to E.

This definition, combined with axiom (A-1), entails that
K =R*.

Since a function f can be identified with its graph then the natural extension
of a function is defined by the above definition. Moreover we have the following
result:

Theorem 10. The natural extension of a function
f:E—F isa function f*:E*— F*
and for every net ¢ : FNP (E) = E, and every function f : E — F, we have that

i (o0 = 1 (1)

AU MU

When dealing with functions, sometimes the “x” will be omitted if the domain
of the function is clear from the context. For example, if € R* is an infinitesimal,
then clearly e denotes exp*(n).

The following theorem is a fundamental tool in using the A-limit:

Theorem 11 (Leibniz Principle). Let R be a relation in U, for some n > 0 and
let o, p: F — Uy. If

VA EF, o(NRY(A)  then <1Ai%1j<p(x)> R* (w{}w(m) .

When R is € or = we will not use the symbol * to denote their extensions,
since their meaning is unaltered in universe constructed over R*.

2.4. Hyperfinite extensions

Definition 12. An internal set is called hyperfinite if it is the A-limit of a net
p: F—>F.

So the hyperfinite sets are the A-limit of finite sets. There importance relies
on the fact that, by virtue of Theorem 11 they share many properties of finite set
even if, in general, they have a large cardinality.

Definition 13. Given any set E € U, the hyperfinite extension of E is defined as
follows:

E°:= lim(ENA).
MU
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All the internal finite sets are hyperfinite, but there are hyperfinite sets which
are not finite. For example the set

R°:= lim(RNA)
MU

is not finite. The hyperfinite sets are very important since they inherit many
properties of finite sets via Leibniz principle. For example, R°® has the maximum
and the minimum and every internal function

f:R° = R*

has the maximum and the minimum as well.
Also, it is possible to add the elements of an hyperfinite set of numbers or
vectors as follows: let

A= limA,\
MU

be a hyperfinite set; then the hyperfinite sum is defined in the following way:

Zaz g\iTIpUZa.

acA a€Ay
In particular, if Ay = {a1(\),...,a50)(A)} with B(A) € N, then setting
= 1. *
6 lim B(A) €N

we use the notation

2.5. Qualified sets
When we have a net ¢ : Q —U,, where @Q C F, we can define the A-limit of ¢ by
posing

Jim, p(A) = lim P(A)

where
- p(A) for AeQ;
¢(A) =
g for A\ ¢ Q.
As one can expect, if two nets ¢, are equal on a “large” or a “qualified” subset

of F then they share the same A-limit. The notion of “qualified” subset of F can
be precisely defined as follows:

Definition 14. We say that a set @ C F is qualified if for every bounded net ¢ we
have that

lim P(A) = Jim, P(A).
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By the above definition, we have that the A-limit of a net ¢ depends only on
the values that ¢ takes on a qualified set (it is in this sense that we could imagine
Q to be “large”). It is easy to see that (nontrivial) qualified sets exist. For example
by (A-2) we deduce that, for every Ao € F, the set

Q()\o):{)\e.}-‘)\og)\}

is qualified. In this paper, we will use the notion of qualified set via the following
theorem:

Theorem 15. Let R be a relation in U, for some n > 0 and let ¢, ¢ : F — U,.
Then the following statements are equivalent:

e there exists a qualified set QQ such that
VA€ Q, p(A)RY(N);

li |l .

(;{ﬁ}@@)) R (Algluib(A))

Proof. Tt is an immediate consequence of Theorem 11 and the definition of qualified
set. O

e we have

3. Ultrafunctions

In this section, we will introduce the notion of ultrafunction and we will analyze
its first properties.

3.1. Definition of ultrafunctions

By now, we just stated that “ultrafunctions are generalized functions”, but we
never stated which properties this space of generalized functions satisfy. The ques-
tion is: which properties would we like a space of generalized functions to have?
In what follows, Q denotes an open set in RY and by ultrafunctions we mean
ultrafunctions defined on Q*.

First of all, since we started by saying that one of the aims of ultrafunctions
is to generalize distributions, it is natural to request that every distribution is
an ultrafunction (or, more precisely, that the space of distributions D(2) can be
embedded into the space of ultrafunctions).

Moreover, we would like to have only “good” functions as ultrafunctions. Of
course, the notion of “good function” depends on the context. In this context,
a function is “good” if it is continuous on 2. So our second request is that the
ultrafunctions are in the space C(£2)*.

Also, we would like to have a scalar product. A natural scalar product in
functional analysis is (f, g) = [ f(z)g(x)dz. To be sure that (-, ) is, in fact, a scalar
product on the space of ultrafunctions, we require that the space of ultrafunctions
is a vector subspace of (L%(Q))".
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Finally, our last request is to have “enough compactness” to get existence
results in a very large class of problems. In order to satisfy this request, we con-
struct the space of ultrafunctions as a hyperfinite-dimensional vector space. One
would argue that this leads to a contradiction with our first request; as we will
show, our choice of the setting for generalized functions avoids this problem.

Now, let us formalize correctly our requests: let £ be a set in RV, and let
V() be a (real or complex) vector space such that D(Q) C V(Q) C L2(Q2)NC(Q).

Definition 16. Given the function space V(£2) we set
V(Q) := lim Vi () = Span*(V (Q)°),
AU
where
VA (92) = Span(V(Q2) N A).
V() will be called the space of ultrafunctions generated by V().

So, given any vector space of functions V' (), the space of ultrafunction gen-
erated by V() is a vector space of hyperfinite dimension that includes V' (£2), and
the ultrafunctions are A-limits of functions in V). Hence the ultrafunctions are
particular internal functions

w: (RN = C*.

Observe that, by definition, the dimension of V() (that we denote by f3)
is equal to the internal cardinality of any of its bases, and the following formula
holds:

8= g\lgl} dim(Vx(9)).
Since V() C [L2(R)]", it can be equipped with the following scalar product

(u,v) = /* u(z)v(z) dz,

where [ * is the natural extension of the Lebesgue integral considered as a func-
tional

/ (LY(Q) — C.

Notice that the Euclidean structure of YN/(Q) is the A-limit of the Euclidean struc-
ture of every V3, given by the usual L? scalar product. The norm of an ultrafunction

will be given by
full = ([ ut? az)

Remark 17. Notice that the natural extension f* of a function f is an ultrafunction
if and only if f € V().
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Proof. Let f € V(Q), and Q(f) = {A € F | f € A}. Since, for every A € Q(f),
f € Vi(Q) and, as we observed in Section 2.3, Q(f) is a qualified set, it follows by
Theorem 15 that f* € V().

Conversely, if f ¢ V() then by Leibniz Principle it follows that f* ¢ V*(Q)
and, since V(€2) € V*(€2), this entails the thesis. O

3.2. Delta-, Sigma- and Theta-basis

In this section we introduce three particular kinds of bases for V' () and we study
their main properties. We start by defining the Delta ultrafunctions:

Definition 18. Given a number ¢ € Q*, we denote by Jq(z) an ultrafunction in

V() such that
Vo € V(Q), /* v(x)d04(z)dx = v(q). (3)
dq(z) is called Delta (or the Dirac) ultrafunction centered in g.
Let us see the main properties of the Delta ultrafunctions:

Theorem 19. We have the following properties:

1. For every q € Q* there exists a unique Delta ultrafunction centered in g;
2. for every a, b € Q* §,(b) = dp(a);

2
3. 11641I” = d4(q)-

Proof. 1. Let {ej}le be an orthonormal real basis of V (), and set
B
Sq(x) = ej(a)e ().
j=1

Let us prove that d,(x) actually satisfies (3). Let v(z) = 327_
ultrafunction. Then '

j=1k=1
B 8 8
=3 vien(@)diq =Y veen(q) = v(g).
j=1k=1 Jj=1

So d4(z) is a Delta ultrafunction centered in g.
It is unique: if f,(z) is another Delta ultrafunction centered in ¢ then for
every y € 2* we have:

520~ 1) = [ (64(a) = ), ) = 6, ) = ,(0) = 0
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and hence d4(y) = f4(y) for every y € Q*.

2. 04 (b) = [* 6a(2)0p(x) dz = 6 (a).

2 *

3. 104117 = [ 0q(2)dq(x) = dq(q)- U

Now we will recall some basic facts of linear algebra which will be used later.
Given a basis {e;} in a finite-dimensional vector space V, the dual basis of {e;} is
the basis {e;} of the dual space V' defined by the following relation:

e [ex] = dj-
If V has a scalar product (- | -), then, V and V' can be identified and hence, the
dual basis {€} is characterized by the following relation:
(e;- | er) = 0jk.

The notion of dual basis allows to give the following definition:

Definition 20. A Delta-basis {da(7)},cx (X C QF) is a basis for V() whose

elements are Delta ultrafunctions. Its dual basis {0, (2)} ¢y, is called Sigma-basis.
The set X C Q* is called set of independent points.

So, a Sigma-basis is characterized by the fact that Va,b € X

/* 8o (z)op(z)dz = Sap- (4)

The existence of a Delta-basis is an immediate consequence of the following
fact:

Remark 21. The set {0,(z)|a € Q*} generates all V(). In fact, let G(Q) be the
vectorial space generated by the set {dq(z) | a € Q*} and suppose that G(Q) is
properly included in V(£2). Then the orthogonal G(Q2)+ of G() in V(€2) contains
a function f # 0. But, since f € G(Q)*, for every a € Q* we have

)= | " F(@)b(a)dz = 0,

50 fi,. = 0 and this is absurd. Thus the set {0,(z) | a € Q*} generates V(£2),
hence it contains a basis.

Let us see some properties of Delta- and Sigma-bases:

Theorem 22. A Delta-basis {64(2)} 5, and its dual basis {oq(2)} 5, satisfy the
following properties:

1. if u e V(Q), then

2. if ue V(Q), then
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3. if two ultrafunctions u and v coincide on a set of independent points then
they are equal;

4. if ¥ is a set of independent points and a,b € 3 then o,(b) = dap;

5. for any q € Q*, o4(x) is well defined.

Proof. 1. 1t is an immediate consequence of the definition of dual basis.
2. Since {04(2)}, oy, is the dual basis of {o(2)} .5, We have that

o) = 3 ([ aeruten) o) = 3 utapo o).

qeEX qeEX

3. It follows directly from 2.

4. If follows directly by equation (4)

5. Given any point ¢ € Q* clearly there is a Delta-basis {d,(2)},c5, With
q € ¥. Then o4(z) can be defined by mean of the basis {dq(x)},cy, . We have to

prove that, given another Delta-basis {dq(x)},cy, With ¢ € ¥, the corresponding
/

oy (z) is equal to o,(x). Using (2), with u(x) = oy (), we have that

oy () = Z og(a)oa(z).

a€s
Then, by (4), it follows that oy (z) = g4(x). O

Let ¥ be a set of independent points, and let Ly : V() — V() be the
linear operator such that
Lyo,(x) = 64(x)

for every a € X.

Proposition 23. Ly is selfadjoint, positive and

/* Lyu(x)v(x)dx = Z u(a)v(a).

a€x

Proof. Since u(z) = Y7, cxu(a)oq(z) and v(x) = >, .5, v(a)oa(x), then

/* Lyu(x)v(x)dx = /* Ly, (Z u(a)aa(:ﬁ)> (Z v(b)ab(:c)> dz

a€ex bex
=373 u(@yo(h) / Sa(@)on(2)ds = 3 u(a)o(a).
aEY bES aes
Hence, clearly, Ly, is selfadjoint and positive. O

From now on, we consider the set ¥ fixed once for all and we simply denote
the operator Ly, by L. Since L is a positive selfadjoint operator, A = L'/? is a
well-defined positive selfadjoint operator. For every a € ¥ we set

Oa(z) = Aoy ().
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Theorem 24. The following properties hold:

1. {04(2)},cx is an orthonormal basis;
2. for every a,b € &, 0,(b) = Oy(a);
3. for every ultrafunction u we have

u(z) = Z u(a)o,(x) = Z u(a)f,(x) = Z u(a)dq(x),

a€X acx acX
where we have set, for every a € 3,

o) = (4" )@ = [ " Ou(©yu()de:
o) = (A7 0)0) = (L)) = | oa(©)u(€)de:

4. for every ultrafunctions u,v we have

/* u(z)v(z)dr = Z u(a)v(a) = Z u(a)v(a);

a€X a€y
5. for every ultrafunction u we have

/ u(z)dz = (;Eu(a).

Proof. 1) {0a(x)},cy, is a basis since it is the image of the basis {0, ()}, ¢y, Tespect
to the invertible linear application L. It is orthonormal: for every a,b € ¥ we have

/* 0o (2)0p(z)dx = /* Aoy (z)Aoy(z)dx = /* Log(x)op(x) = agp(a) = dap.
2) We have

0 (b) = / 00 ()0 () — / 00 (2) Ay (2)d

_ / A0 (2)60(2)d / ()00 (2)dz = Bp(a).
3) The equality
u() = 3 u(@)oa(2)

a€X
has been proved in Theorem 22, (5); the equality

u(z) =Y u(a)fa(z),

acX

where u(a) = [* 0,(&)u(€)de, follows since {0a(2)} 45 is an orthonormal basis.
And

(@ = | 5u(©) A u(E)de = / A5, u(e)de = / Bu(©u(e)de

since A (and, so, A1) is selfadjoint.
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The equality

a€y
where u(a) = [* 0,(&)u(é)d, follows by point (1) in Theorem 22. And

o) = | " oa(€)ule)de = / LS, (€u(€)de = / S (OL u(€)de = (L u)(a).

4) We have that ["u(z)v(z)dz = 3,5 u(a)v(a) since {q(z)},c5 is an
orthonormal basis:

/ " u(@)o(w)ds = / * (Z u(a)@a(:ﬁ)> (Zv(b)ab(x)dx>

) bex
:ZZU( / 0o (2)0p(x dx—z u(a)v(a);
a€X bes a€s

the equality [ u(z)v(z)dr = > aex u(a)v(a) follows by expressing u(z) in the
Delta-basis and v(z) in the Sigma-basis:

/* u(z)v(z)dr = /* (Z u(a)5a(x)> (Z v(b)ab(:c)> dx
a€x bex
_ /5 Do)z = 3 u(a)o(a).
aEE bEZ a€y

5) This follows by expressing u(z) in the Delta-basis:
/ x)dx = / > w(a)dq(z)de = / Sa(x)dr = u(a). O
a€X aEE a€y

3.3. Canonical extension of a function

Let V'(Q2) denote the dual of V(2) and let 9t denote the set of measurable func-
tions in RY. If T € V/(Q) and if there is a function f € 9 such that

Yo e V(Q), (T,v) = /f(x)v(x)dx

then T and f will be identified, and with some abuse of notation we shall write
T = f € V'(Q) N M. With this identification, V() N9 C L?.

Definition 25. If T € [V/()]", there exists a unique ultrafunction 7T'(z) such that

Yo e V(Q), (T,v) = /* T(x)v(z)dz.

In particular, if u € [V/(Q)N9M]", @ will denote the unique ultrafunction such
that

Vo € T(9), / " u(@)o(z)de = / i(w)o(x) das
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Notice that V/(£2) N9 is a space of distributions which contains the delta
measures, so to every Delta distribution §, is associated an ultrafunction which,
by definition, is the Delta ultrafunction centered in ¢, as expected. Moreover, the
definition is well posed: in fact, if T € [V'(2)]", then the function fr : V(Q) — R*
such that for every ultrafunction u

fr(u) = (T, u)
~ ~ /
is a linear functional on V(). So fr € (V(Q)) and by Riesz’s Representation

Theorem it follows that there is one (and only one) element T(z) in V() such
that for every u € V() we have

fr(u) = /* T(x)v(z)dz.

Since fr(u) = (T,u), we have proved that the definition is well posed.

Definition 26. If f € V/(Q)NIM, (f*) is called the canonical extension of f. In the
following, since f and f* can be identified, we will write f instead of (f*).

Thus any function
f:RY R
can be extended to the function
RN SR
which is called the natural extension of f and if f € V'(£2) NN, we have also the
canonical extension of f given by

f:@®9HY 5 R
If f ¢ V(Q), by Remark 17, f # f*, thus f* ¢ V(Q).

Example: if Q = (—1,1), then |z|71/2 € V(—1,1) N 9M; the ultrafunction |z|~1/2
is different from (|z[~'/2)" since the latter is not defined for o = 0, while

(:c/) = [ e 200w
=0

Theorem 27. If T € [V(Q)']*, then
T(x) =Y (T,05) ()

qeEX

= Z (T,0q) 0q(x)

qeX

= Z (T, 04) 0q(z).

qeEX
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In particular, if f € [V'(Q) Nn9M]*

Proof. 1t is sufficient to prove that

Yo € V(R /ZT& Yo (z)v(z)de = (T, v).

qeES

We have that

/Z (T, 8,) oy (x)0(x)da = Z<T,5q>/aq(x)v(x)dx

qeXT geX
<TZ</ dI)5>=<T,U>.
qeS
The other equalities can be proved similarly. O

3.4. Ultrafunctions and distributions

In this section we will show that the space of ultrafunctions is reacher than the
space of distribution, in the sense that any distribution can be represented by an
ultrafunction and that the converse is not true.

Definition 28. Let D C ‘7(9) be a vector space. We say that two ultrafunctions u
and v are D-equivalent if

Yo e D, /* (u(x) — v(z)) p(z)dz = 0.

We say that two ultrafunctions u and v are distributionally equivalent if they are
D(Q)-equivalent.

Theorem 29. Given T € D', there exists an ultrafunction u such that
Yo e D), [ ule)e’ (@) = (T ). )

Proof. Let {e;(x)}
D(Q)* and take

jed be an orthonormal basis of the hyperfinite space YN/(Q) N

u(@) =Y (T",¢5) ¢(x).

jeJ
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Now take ¢ € D. Since ¢* € V() N D(2)*, we have that

@ =3 ([ v @) o,

jeJ
Thus
[ e @ar= [ S e e @i =3 (1 [ esere (@lar)
- <TZ ([ e wie) > () =Ty O

The following proposition shows that the ultrafunction u associated to the
distribution 7" by (9) is not unique:

Proposition 30. Take T' € D’(Q2) and let

Vr={ue ‘7(9) : Vo € D(Q), /* u(z)p*(x)dz = (T, )},

let uw € Vp and let v be any ultrafunction. Then

1. v € Vp if and only if v and v are D(Q2)-equivalent;

2. Vr is infinite.
Proof. 1) If v € Vi then Yo € D(Q), ["(u(z) — v(z))p* (x)dx = (T, p) — (T, ¢) =
0, so u and v are D(Q)-equivalent; conversely, if u and v are D-equivalent then
Vo € D(Q), [Tu(@)p*(z)dz = ["v(z)p*(x)dz. Since [*u(z)e*(x)dr = (T, )
then v € Vp.

2) Let v # 0 be any ultrafunction in the orthogonal (in V() of V(£2) N
D(R)*. Then u and u + v are D(Q)-equivalent, since [~ (u(z) + v(z))¢* (z)dr =
[Fu(x)p* (z)dz + [T v(z)p*(z)dr = [*u(z)¢*(x)dz + 0. Since the orthogonal of
V(Q) N D(Q)* is infinite, we obtain the thesis. O

Remark 31. There is a natural way to associate a unique ultrafunction to a dis-
tribution (see also [1]). In order to do this it is sufficient to split V(£2) in two
orthogonal component: V() N D()* and (V(Q) N D(Q)*)L . As we have seen
in the proof of the above theorem every ultrafunction in Vp can be spitted in
two components, v + v where v € (17(9) N D(Q)*)L and u € V(Q) N D(Q)* is
univocally determined. Then, we have an injective map

i:D'(Q) = V(Q)
given by i(T) = u where u € Vo N D(Q)*.
Remark 32. The space of ultrafunctions is richer than the space of distributions;
for example consider the function

u(z) := f(z)min (272, @)
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where o > 0 is an infinite number and f(x) is a function with compact support
such that f(0) = 1. Since u € [V/(Q) NIM]", u is well defined (see Def. 25). On
the other hand, u does not correspond to any distribution since

/ ()" (2)d = / " f*(@) min (22, ) ¢ (2)de

is infinite when ¢(x) > 0 and ¢(0) > 0. In [1] Section 6, it is presented an elliptic
problem which has a solution in the space of ultrafunctions, but no solution in the
space of distributions.

4. Operations with ultrafunctions

4.1. Extension of operators
Definition 33. Given the operator F : V () — D’ (Q2), the map

F:V(Q) —=V(Q)
defined by

F (u) = F* (u) (10)

is called canonical extension of F' (“~” is defined by Definition 25).

By the definition of F', we have that

Yo eV (Q), / F (u(z))v(z) de = / F* (u(x)) v(z)dx. (11)
Comparing Definition 33 with Theorem 27 we have that

Fu(z)) =) (F* (u),6,) 04(w)

geEY

=D {F"(u),8,) 6,(x)

qeS
= Z (F* (u),0q) q(2).
qgeX

In particular, if F': V (Q) — V/(Q) Nn9Ot* :

Fue) = X | [ 7 (o) 6q(£)d€] 04(a)
qeX -

=3 | [ F @] o0) (12)

qex ~

-S| [ P we)outerae] s

qex ~
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4.2. Derivative

A good generating space to define the derivative of an ultrafunction is the following
one:

VIQ) = HYY(Q) NC(Q) C L2(Q) NC(Q).

In order to simplify the exposition, we will assume that 2 C R. The general-
ization of the notions exposed in this section when 2 C RY is immediate.

Let u € ﬁ(Q) be a ultrafunction. Since V(Q)* C H*(Q)*, we have that the
derivative 9 = du = v/ is in L*(Q) C [(Vl(Q))/ N EIR} ’ , (here (V1(Q))" denotes
the topological dual of V1(Q)). Then we can apply Definition 33:

Definition 34. We set
Du = du = Ou.
The operator
D:VY(Q) — V(Q)
is called (generalized) derivative of the ultrafunction wu.

By (12) we have the following representation of the derivative:

Yu € VL(Q), Du(z) =Y U u’(ﬁ)%(ﬁ)df} oo(2).

qeES

If u' € V1(Q) C [V1(Q)]", we have that
Du(z) = Zu’(q)aq(x) =u/(z).
qgeX
In particular, if u € H?1(Q) N CY(Q), Du = v’ and so D extends the operator

4 HEH(Q) N CY(Q) — V(Q) to the operator D : V1(Q) — V1(€).

4.3. Fourier transform

In this section we will investigate the extension of the one-dimensional Fourier
transform. A good space to work with the Fourier transform is the space
VI(R) = H'(R) N L*(R, |zf*).
It is easy to see that the space V¥(R) can be characterized as follows:
VIR)={ue H'R):a € H'(R)}.

In fact, if & € H'(R), then [ |Vu(€)|* d€ < 400 and hence [ |u(z)[?|z]* dz < 4o0.
Then V3 (R) C L(R,|z|?), so V¥(R) € H(R)NL%(R, |z|?) which is a Hilbert
space equipped with the norm

Julfy s = [ TuCo) o+ [ lace)? ePde.
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Moreover

/\u<x>\dx=/|u<x>|<1+\x\>1j|x|dx

= (/ fu(o)l 1+ '""”')2‘“”) | (/ ( +1|x|>2d””) |

< const. (HU”Lz(R) + Hu||L2(R,|a:|2)) :

Thus, VS (R) C L}(R). Recalling that the functions in H!(R) are continuous, we
have that

VS(R) c C(R)n H'(R) N LY (R) N LA(R, |z|?).

We use the following definitions of the Fourier transform: if v € {/VS(R), we
set

sm =i = [ ul) e (13

F N (u)(x) = \/127r /* a(k) e da. (14)

Now, in order to deal with the Fourier transform in an easier way, we need a
new axiom whose consistency is easy to be verified (see Appendix):

Axiom 35 (FTA, Fourier Transform Axiom). If u € ‘%(R) then §*(u) € %(R)

and u € VS(R) (here @ is the complex conjugate of u).
It is immediate to see that, by this axiom, for every ultrafunction, u we have
F () = §(u)

and hence, since there is no risk of ambiguity, we will simply write F(u).
It is well known that in the theory of tempered distributions we have that:

e—mk

13:(611) = \/271_ ;

eiax
= J,.
s (\/QW)

In the theory of ultrafunctions an analogous result holds:

Proposition 36. We have that:

1§ (9an) = dalk);
2§ (Bux) = <0

3.5 f*e/:la etkr dy = 6,(k).
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Proof. 1. For every v € VS,

/* (3;) (k)dkz/* <217r /;ﬁ e”kdx> (k) dk
=, / / e—iak ¢ivky (k) dkdz

= \/27?/ e m’“& Lo(k))dr = v(a).
Hence, 1 holds.
2. We have

§ (6u(2)) = / Su(@)eode = [ 5u(z)e e dy = o ik,

3. We have

O I
iaxr p—ikx dr = iax _kad = 5(1 k). O
[ [ () s

By our definitions we have that:

oike — 3 {/ ei’“féq(g)df] oq();

qeX

eirh = q; [/ e”féq(f)df} oq(k).

Therefore it is not evident whether e?* = ek or not. The following corollary
answers this question.
Corollary 37. We have that:

Proof. By the previous proposition, we have that

e~k = /21§ (Bx(a / Oz ‘””kdk—/ 5o (k)e™ ™ dg = ik,

Replacing x with —x we get the result. O
Since F :VS(R) — VS(R) is an isomorphism, it follows that, for any Delta-
basis {04}, » the set

A IO
{ \/271- }QEZ N

is a basis and we get the following result:
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Theorem 38. If u € VS(R), then

L N
u(z) = Jor %u(k)e ke,

where we have set (see Theorem 24)
(k) = [ a(e)onle)ds

Proof. Since { f/;; } is a basis, any u € V5 (R) has the following representation:

kex
§ ukezkr

kGE

Let us compute the uy’s: we have

/6k(x)ab(x)dx = /5k(x)ab(x)dx =0y and so /&(x)@(x)dx = Okp

and by Proposition 36,

—

e—ikr
\/27.( b(:c)d:c = 5kb
Hence {0%(2)},cy is the dual basis of ‘3\/;’:} namely {oy(—x)}, ¢y, is the
dual basis of {f/l;” }k . Hence, since 9(z) = v(—z )7 we have:
™) ke

e = / W(€)F(—€)de = / ()7 (—€)de
- / A(E)ok (€)de = / A(E)on(€)de = alk). 0

4.4. A trivial example of generalized solution

For the applications of ultrafunctions theory we refer to [1] and [2]. Also we are
working with ultrafunctions in more sophisticated environments such as Morse
theory where it seems that we can get interesting results. In this section we will give
a (relatively) trivial result with the only purpose to make the reader to understand
how ultrafunctions provide generalized solutions to “classical problems”.

Let us consider a classical problem of calculus of variations: minimize the
functional

J(u) = /F(x,u,Vu)dx (15)
in the function space
Cgl(Q) ={ueC(Q)NCA)|Vzed, ulx)=gx)}, gecCON).

It is well known that in general this problem has no solution even when
F' is coercive and hence the infimum exists. However, if F' is convex and g is
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sufficiently smooth it is possible to find a minimizer in some Sobolev space (or in
some “Sobolev type” space such as Orlicz spaces).

If F' is not convex it is not possible to find a minimizer, not even among the
generalized functions of “Sobolev” type as the following example shows:

1 2
minimize Jl(u):/ {(vﬁ—l) —|—|u2} dr in CH0,1).  (16)
0

It is not difficult to realize that J; has a minimizing sequence w, which
converges uniformly to 0 and such that Jy(u,) — 0, but Ji(u) > 0 for any u €
C(0,1) (and also for any u € H(0,1)).

On the contrary, it is possible to show that these problems have minimizers
in spaces of ultrafunctions; a natural space to work in is

WHQ) = {u e W(Q) | Vz € 90", u(z) = g(x)}
where
W) =ct(Q) nc).
So our problem becomes

min  J*(u).
uEW s (£2)

Theorem 39. Assume that F is continuous and that
F(z,u,&) >a(§) — M (17)
where a(§) = +00 as € — 400 and M is a constant. Then

min J*(u)
ueW(Q)

exists.
Proof. Set
Wy = {ue W Q) | Vz € 9Q*, u(z) = g(z)} N Span(A).

If X is sufficiently large, then Wy # @. By (17), J|w, is coercive and, since it is
continuous, it has a minimizer; namely

Juy € Wy, Yo € Wy, J(ux) > J(v).
Now set . = l/'{% u) and apply Theorem 15 where
uRW :=Yv e W, J(u) > J(v)
Then, since WE(Q) = gi%W,\, the following relation holds:

Vo € WL(Q), J* (@) > J*(v). O

Example: By the above theorem, the functional J; (where J; is defined by (16))
has a minimizer @ in W{ (0, 1). It is not difficult to show that Va € (0,1)*, @(z) ~ 0
and that Ji(@) is a positive infinitesimal.
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5. Appendix

In this section we prove that the axiomatic construction of ultrafunctions is consis-
tent. We assume that the reader knows the key concepts in non-standard analysis

(see, e.g., [7]).
The following result has already been proved in [1]. Here we give an alterna-
tive proof of this result based on non-standard analysis:

Theorem 40. The set of azioms {(A-1), (A-2), (A-3)} is consistent.

Proof. Let U, V be mathematical universes and let (U,V,*) be a nonstandard
extension of U that is |U|*-saturated. We denote by F the set of finite subsets of
U and, for every A € F, we pose

Fy ={S C V| S is hyperfinite and \* C S}.

By saturation [,z Fa # 0. We take A € (¢ F.
For any given net ¢ : F — U we define its A-limit as

li =" (A
lim o(A) = ¢*(A)
and we pose
K=limR =<1 : R;.
lim {;Tlpr(A)lw F— }
With these choices the A-limit satisfies the axioms (A-1), (A-2), (A-3): the

only nontrivial fact is (A-2). Let ¢ be an eventually constant net, and let A\ €
F,r € R be such that VA € {n € F | Ao C n}

e(A) =r.
By transfer it follows that VA € {n € F | Ao Cn}* ={ne€ F* | N C n} we
have:
rA) =17
But r = r* and A§ C A by construction. So, since A € F*, ¢*(A) =r. O

Having defined the A-limit, from now on we use the symbol % to denote
the extensions of objects in U in the sense of A-limit (not to be confused with
the extensions obtained by applying the star map * : e.g., the field K = R" is a
subfield of R*).

We observe that, given a set S in U, its hyperfinite extension (in the sense of
the A-limit) is

S°=1lm(SNA)=S"NA
MU

and we use this observation to prove that, given a set of functions V' (Q), by posing
V() = Span(V(Q)°) = Span(V(Q2)* N A)

we obtain the set of ultrafunctions generated by V(€2).
The only nontrivial fact to prove is that, for every function f € V(Q), its
natural extension f* is an ultrafunction. First of all, we observe that, by definition,
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f* = f*. Also, since f € V(Q2), by transfer it follows that f* € V(Q)*. And, by our
choice of A, we also have that f* € A since, by construction, {f}* = {f*} C A.

It remains to prove the coherence of the axioms (A-1), (A-2), (A-3) combined
with the Fourier Transform Axiom (FTA).

Theorem 41. The set of axioms {(A-1), (A-2), (A-3),FTA} is consistent.

Proof. The basic idea is to chose an hyperfinite set A € [],.r Fx,where F is
defined in Theorem 40 (which automatically ensures the satisfaction of (A-1),
(A-2), (A-3)), with one more particular property that will ensure the satisfaction
of FTA.

We start by considering a generic hyperfinite set A’ € (], . Fx and we let

B ={e;(z)|i € I'}
be any hyperfinite basis for Span(V3(R)* N A’). Now we pose
B={§F(ei(z)):0<j<3,ielU{Fi(e;(x):0<j<3,iel},

where § denotes the Fourier transform. Since §* = id, we have that B is closed
by Fourier transform and complex conjugate. We now pose

A=ANUB

and it is immediate to prove that, with this choice, FTA is ensured, because B is

a set of generators for VS(R) closed by Fourier transform and complex conjugate.
O
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1. Introduction

This paper describes, comments and completes some results recently obtained
by the authors in [9], consisting in finding conditions upon A > 0, g : R —» R
continuous and h : [p, R] — R continuous, under which the Neumann problem

Vv
—div + AMo|™ 20 = g(v) — h(|z|]) in A(p, R
<\/1—Vv|2> |v] g(v) = h(lz|) (. R)
0
85 =0 on O0A(p,R),
has multiple solutions. Here 0 < p < R,
{x e RN :p<|z| < R} it p>0

A(p’R):{B(O,R):{xeRN:x<R} if  p=0.

The origin of such equations is discussed in the beginning of Section 3, and
the existence conditions for multiple solutions are motivated by similar results,
described in Section 2, for the case of semilinear elliptic boundary value problems or
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perturbations of the p-Laplacian, and usually described as conditions of multiplicity
NEear resonance.

Because of the radial symmetry, we look for radial solutions of the problem.
So, letting r = |x| and v(z) = u(r), we reduce it to the one-dimensional Neumann
problem

U
\/1—u’2

w'(p) =0=u'(R).

The results and proofs are given in Section 4. The approach is variational
and based upon Szulkin’s critical point theory [29] for smooth perturbations of
some convex functionals in a Banach space.

2. Multiplicity near resonance for semilinear elliptic problems

Let © C RY be a bounded domain, g : R — R be continuous and bounded,
h € L?(2), A\1 > 0 be the principal eigenvalue of —A with Dirichlet boundary
conditions on €, and let ¢; be the corresponding positive principal eigenfunction

normalized by
/ Y1 = 1.
Q

Let us consider the semilinear Dirichlet problem
—Au—XMu=g(u)—h(xz) in Q, v=0 on IN. (1)

If we assume in addition that

Jm g(u) = g(—c0) and  lim g(u):= g(+00) (2)
exist and that, for all u € R, either
g(—00) < g(u) < g(+00), (3)
or
g(+00) < g(u) < g(—00), (4)

then, multiplying both members of (1) by 1, integrating by parts, it is easy to see
that if conditions (2) together with (3) hold, a necessary condition for the existence
of a solution to (1) is that

g(—00) < / her < g(+00) (5)

and if conditions (2) together with (4) hold, a necessary condition for the existence
of a solution to (1) is that

g(+00) < /th01 < g(—00). (6)
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When g = 0, conditions (5) and (6) reduce to the usual orthogonality condition

/Q hpr =0 (7)

upon h to avoid resonance.

A famous result of 1970 by Landesman and Lazer [15] implies that when
condition (2) holds, the slightly strengthened condition (5)

o(=) < [ o1 < gloc) (8)
or the slightly strengthened condition (6)
o(+) < [ s < g(==0) 9)

is sufficient for the existence of a solution to problem (1). In other words, the
presence of a bounded nonlinearity g having a gap between its limiting values at
—o0 and 400 increases the range of the linear operator —A — A1 with Dirichlet
conditions on €2 from the co-dimensional one vector subspace of L?(Q)

L*(Q) = {h e L) : / hoy = o}
Q
to the open strip of L?(Q)

(9(—00), g(+00)) & L*() or (g(+00), g(~00)) @ L*(12).

This result was proved by a clever and technically involved used of Schauder’s
fixed point theorem. It has inspired a very large number of refinements, extensions
and of generalizations, and much more transparent proofs have been given using
Leray—Schauder’s degree. In 1976, Ahmad, Lazer and Paul [1] have shown, using
variational techniques, that condition (8) could be replaced by the more general one

lim [G(ccpl) — c/ hgpl] = 400, (10)
le]—o0 Q
and condition (9) by the more general one
lim {G(ccpl) — c/ hgpl] = —00, (11)
le]—o0 Q

where G is the indefinite integral of g defined by
G(u) :/ g(s) ds. (12)
0

In 1988, Schmitt and one of the authors [23] have considered the correspond-
ing parameter dependent problem

—Au—Mu+ I u=gu)—h(z) in Q v=0 on 09, (13)

and have shown as special case of a more general abstract result that if the
Landesman—Lazer condition (8) holds, there exists N\g > 0 such that (13) has at



90 C. Bereanu, P. Jebelean and J. Mawhin

least one solution for X € (—Xo,0] and at least three solutions for A € (0, Ao), and
if the Landesman—Lazer condition (9) holds, there exists Ao > 0 such that (13) has
at least three solutions for X € (—Xo,0) and at least one solution for X\ € [0, o).
The idea of the proof consists in using the Leray—Schauder degree to prove the
existence of at least one solution for || sufficiently small (and in particular for
A = 0, which is the Landesman—Lazer case), and obtaining the two other ones
using bifurcation from infinity at the eigenvalue \g based upon Krasnosel’skii’s
results [14].

When h € L>®(Q) and satisfies the orthogonality condition (7), de Figueiredo

and Ni [12] have shown in 1979 that the Landesman—Lazer conditions (8) and (9)
can be respectively replaced by the sign condition

gw)u >0, Yu#0. (14)
or the sign condition

gu)u <0, Yu#0. (15)
In 1989, Schmitt and one of the authors [24] have shown, by a similar combination
of Leray—Schauder degree and bifurcation from infinity, that if condition (14) holds,
there exists Ao > 0 such that (13) has at least one solution for X\ € (—Xg,0] and
at least three solutions for X € (0, o), and if condition (15) holds, there exists
Ao > 0 such that (13) has at least three solutions for A € (—Xg,0) and at least one
solution for X\ € [0, Ag).

If 0, u denotes the normal derivative of u, similar results hold for the Neumann
boundary value problem

—Au+du=g(u)—h(z) in Q, du=0 on 99, (16)

around the principal eigenvalue A\; = 0 with normalized constant principal eigen-
function ¢; = |Q|7!. In the statements, assumptions (8), (9), (10), (11), (7) have
to be respectively replaced by

g(—00) < [0 /Q h < g(+o0), (17)
g(+00) < [0 /Q h < g(~o0) (18)

lim {G(c) e /Q h] — to0, (19)

|e| =00

i {G(c) e /Q h] oo, (20)
/Qh =0. (21)

A first contribution in this direction was already given in 1973 in [20].

Results of this type are called multiplicity results near resonance. They have
been generalized or applied to more general equations, using similar topological
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techniques in [2, 3, 10, 11, 16, 22]. A wariational approach to study multiplicity
results near resonance was first introduced by Ma, Ramos and Sanchez in [28, 18]
for semilinear and quasilinear Dirichlet problems involving the p-Laplacian. See
also [19, 17, 25, 13, 27] for a similar variational treatment of various semilinear or
quasilinear equations, systems or inequalities with Dirichlet conditions, and [26]
for perturbations of the p-Laplacian with Neumann boundary conditions.

3. Quasilinear problems involving the mean
extrinsic curvature operator

In the Euclidian space RY, given an open bounded domain Q C RY, the graph of
a function u € C1(Q, R) can be seen as a hypersurface of RV*1. The corresponding
mean curvature operator is defined by
\Y
Clu):=V- “ ,
V1 + [ Vul?

and plays an important role in the study of minimal surfaces (zero mean curvature),
or more generally in the study of surfaces with prescribed mean curvature.

In a flat Minkowski space LY*! = {(z,t) : 2 € RV, ¢t € R}, with metric
Zé\le(dl’j)2 — (dt)?, given a bounded domain Q C {(z,t) € LN*!:¢ =0} ~ RV,
the graph of a function u € C1(Q,R) can be seen as a space-like hypersurface of
LN*1. The associated mean extrinsic curvature operator defined by

Vu
M(u) =V - ,
W V1 — [Vul?

plays an important role in various questions of geometry and relativity [4].

In recent papers [5, 6, 7, 8], the authors have obtained various existence and
multiplicity theorems for the radial solutions of quasilinear elliptic equations of
the form

—M(v) = f(lzl,v,0,v) in Ap, R), (22)

on an annulus or a ball A(p, R), where f : [p, R] x R x R — R is continuous. The
boundary conditions are either Dirichlet ones

v=0 on 0A(p,R), (23)

or Neumann ones
d,v =0 on JA(p, R). (24)
Viewing the radial symmetry, letting r = |z|, they searched for radial so-

lutions of the form v(x) = w(r), which reduces (22) to the ordinary differential
equation

- (rN—1 \/1“/ /2> =N () (25)
—u
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the Dirichlet boundary conditions (23) to
ulp) =0=u(R) if p>0, u(p)=0=u(R) if p=0 (26)
and the Neumann boundary conditions (24) to
u'(p) =0=1u'(R). (27)
Using a suitable reduction of (25)—(26) to a fixed point problem and Schau-
der’s fixed point theorem, the authors have proved in [5] that the Dirichlet problem

(25)—(26) has at least one solution for every continuous [ : [p, R] x Rx R — R. In
particular the Dirichlet problem

_pl=N (rN—l \/1u_/ u/2> + Ak(u) = h(r) in (p, R),

ulp)=0=u(R)if p>0, v'(p)=0=u(R)if p=0

(28)

has at least one solution for all A € R, and all continuous k : R — R and con-
tinuous h : [p, R] — R. By analogy with the Dirichlet problem for the classical
Laplacian, one can say that no “eigenvalues” exist for the radial Dirichlet problem
associated to the differential operator M. Consequently, the Landesman—Lazer
problem and the associated multiplicity result near resonance is meaningless for
the radial solutions of (22)—(23).

The situation is different for the Neumann problem. It is immediately seen, by
integrating both members over A(p, R) and integrating by parts that a necessary
condition for the existence of a radial solution to the problem

-V v = h(|z]) in A(p,R), O,v=0 on OA(p,R) (29)
V1=Vl
is that
R
/ h(lz])dz =0 or equivalently / h(ryr¥ =t dr = 0. (30)
A(p,R) P

This condition is also sufficient for radial solutions, because it can easily be shown
that, if condition (30) holds, the Neumann problem (29) for radial solutions

_p1-N (rN_l u’ ) = h(r) in (p, R),

has the one-dimensional linear manifold of solutions

u(r) =c+ ds, where H(r) =r'=V / h(s)sN"tds, ceR.
p

/T H(s)
o 1+ [H(s)P
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On the other hand, the authors have proved in [6], using a suitable fixed point re-
duction of the equivalent ordinary differential problem and Leray—Schauder degree,
that, for any continuous k : R — R such that either

li k(u) = — liminf k(u) =
im sup (u) = —oo, liminf k(u) = +o0
or
liminf k(u) = +o00, limsup k(u) = —oo,
U—>—00 U—~400

the Neumann problem

has a solution for any A\ # 0 and any continuous h : [p, R] — R. By analogy
with the Neumann problem for the classical Laplacian, we can say that zero is the
unique “eigenvalue” for the radial Neumann problem associated to the differential
operator M.

Consequently, the Landesman—Lazer problem and the associated multiplic-
ity result near resonance for the radial solutions of the Neumann problem (22)—
(24), or equivalently for the solutions of the Neumann problem (25)—(27) are only
meaningful near this zero “eigenvalue”. On the other hand, as far as we know,
no bifurcation from infinity results are known for nonlinear perturbations of the
operator —M, so that variational methods seem to be the way for trying to extend
the multiplicity results near resonance to the radial solutions of some classes of
Neumann problems of the form

—M(v) + Ak(v) = g(v) — h(lz]) in A(p, R), (31)
dyv =0 on 0A(p, R),

for a suitable choice of k and Landesman—Lazer or Ahmad—Lazer—Paul type as-

sumptions upon g and h.

In the case of the classical Laplacian, k(u) = u, and the first condition upon
g is its sublinearity with respect to u. Here, we shall take for & a mapping of the
type k(u) = |u|/™ 2u for some m > 1 and a perturbation term g which is of lower
order at infinity. Namely, we will consider Neumann problems of the form

Vo

o (ﬂ — Vol

) + Av[™ 0 = g(v) — h(|z[) in A(p, R), (32)

d,v =0 on 0A(p, R),
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and look for radial solutions of problem (32), i.e., letting r = |z| and v(z) = u(r),
to solutions of the one-dimensional Neumann problem

, !/
— (V) A T = eV g ()= A i (o, R),
\/1 —u? (33)
w'(p) =0=1'(R).
We assume the following hypotheses on the data.

(Hg) g:R =R and h: [p, R] = R are continuous, m > 2 is fized and X is a real
positive parameter.
(Hg) There exists ko € R, k1,ke > 0 and 0 < 0 < m such that
ko < G(z) < ki|x|” + ka2, for all x €R, (34)

where G is defined in (12).
(Hy) Either

R
‘ l‘im / NG (z) — h(r)z]dr = +o0. (35)
xTr|—0o0 o
or
Ge =g, G0
exist,
Gz) <Gy, Y20, Glx)<G-, Vz<O0, (36)

R
/ TN h(r)dr = 0. (37)
P
We recognize in (35) an Ahmad-Lazer—Paul condition and we immediately see
that condition (36) holds if
glu)u >0, Yu#D0.

As mentioned earlier, we approach the problem under those assumptions using a
variational method.

4. Variational framework

Letting

o(s) == \/18_ ;2 for s € (—1,1),
and

D(s):=1—+/1—s2 for se[-1,1],
so that

B(s) = ®'(s) for s (—1,1),
we see that ® is strictly convex and ®(x) > 0 for all z € [-1,1].
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We set
C:=Clp,R], L' := L*(p,R), L*™® := L>=(p, R), W := W'>(p, R).
The usual norm || - ||o is considered on C and L. The space W1 is endowed
with the norm
[oll = vlloc + 10'lloc, Vv € WH.
Each v € C can be written v(r) = v + o(r), with
N /R N-1
vi= v(r)r dr,
RN —pN |,
and
~ R
v1eC:=qvelC: v(r)rNtdr=03.
P

If v € W1 then © vanishes at some 7y € (p, R) and
R

[o(r)| = [o(r) = o(ro)l < [ [0'(D)]dt < (R = p)[[v"]|co,

s

s0, one has the inequality

llee < (B = p)[[0 ]| (38)
Putting

K:={veWwh>® : ||v] <1},
it is clear that K is a convex subset of W1,
Let ¥ : C' — (—00,400] be defined by
f N-1
r" o) dr, ifveK,
Y(v) = /p

+ o0, otherwise.

Obviously, ¥ is proper (i.e., D(¥) := {v € C : ¥(v) < +oo} # () and convex. On
the other hand, as shown in [7, 8], K C C'is closed and ¥ is lower semicontinuous
on C.

Next, we define F) : C'— IR by
Fa(u) = /R Nl [;;mm —Gu)+ h(r)u|dr, YueC.
P
A standard reasoning shows that F) is of class C* on C and
(Fi(u),v) = /R N A ™ — g(u) + k()] vdr, Yu,v e C,
p

The functional Iy : C' — (—o0, +00] defined by
Iy=F\+VY, (39)
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has the structure required by Szulkin’s critical point theory [29], that we now recall
briefly.

Let (X,] - ||) be a real Banach space and I be a functional of the type
I=F+,

where ¢ : X — (—o00, +00] is proper, convex, lower semicontinuous (in short, l.s.c.)
and F € C1(X;R). According to Szulkin [29], u € X is said to be a critical point
of I if it satisfies the inequality

(F'(u),v —u) +(v) =(u) 20, Yve X,

A number ¢ € R such that I~!(c) contains a critical point is called a critical value
of I. The functional I is said to satisfy the Palais—Smale (in short, (PS)) condition
if every sequence {u,} C X for which I'(u,) — ¢ € R and

<]:/(un)7” — Up) + 1/}(”) - w(un) > —enllv— unH> Vv € X,

where €, — 0, (called (PS)-sequence), possesses a convergent subsequence. The
following result is part of [29, Corollary 3.3].

Lemma 1. Suppose that I = F + ¢ satisfies the (PS)-condition. If I has two local
minima, then it has at least three critical points.

5. The multiplicity result

The search of solutions of problem (33) is reduced to finding critical points of the
energy functional Iy defined in (39) by the following proposition, which is proved
in [7, Proposition 1].

Proposition 1. If u € C is a critical point of I, then u is a solution of (33).

We now state and prove the multiplicity result for problem (33). The proof
is based upon two preliminary lemmas, the first one is proved in [7, Lemma 4].

Lemma 2. Let s > 1 be a real number. Then
lu(r)|® > |ul® = s(R— p)|ul*~!, Yu € K, Vr € [p,R]. (40)
The second lemma is inspired from [18, 28].

Lemma 3. Assume that conditions (Hg), (Hg) and (Hy) hold. Then there exists
Ar > 0 such that, for any 0 < XA < A4, problem (33) has at least one solution
uy > 0, which minimize Iy on Ct = {v € C : v > 0}. Moreover, uy is a local
minimum for Iy.
Proof. First, notice that from (38), we obtain
[lulloo < R—p Yu € K. (41)
This implies that
u—(R—p)<u(r)<u+(R—p) foral ueckK, (42)
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hence

u— 400  as ||ul|lee = 00, u€ CTNK. (43)
Also, it is clear that

lu(r)] < |u|+(R—p) Yue K, Vr € [p,R]. (44)
From (34) it follows that

R
ez [ [Num—knu”—kg—mmm dr,
o m

for all w € CT. Hence, using (40), (43), (44), and o < m, we deduce immediately
that

In(u) — +oo  whenever ||ul|oo — 00, u € CT, (45)

that is I is coercive on CT, and hence bounded from below on CT. Now, let
{un} € CT N K be a minimizing sequence for Iy (u,) on C*. Then, from (45) it
follows that {uy,} is bounded in C, and using the fact that {u,} C K, we infer that
{u,} is bounded in W1°° compactly embedded in C. Hence {u,,} has a convergent
subsequence in C to some uy € CT N K. The lower semicontinuity of I, implies
that
I)\(’LL)\) = ian)\.
C+

We claim that
uy — +oo as A —0. (46)

Assuming this for the moment, it follows from (42) and (46) that there exists
Ay > 0 such that uy > 0 for any 0 < A < A4, implying that u) is a local minimum
for I. Consequently, from [29, Proposition 1.1], uy is a critical point of I, and
hence a solution of (33) (by Proposition 1) for any 0 < A < Aj.

We prove the claim assuming that assumption (35) holds true, and refer to
[9] for the proof of this claim when assumption (36) is satisfied. Consider M > 0
and xp; > 0 such that

R
/ NG (zar) — h(r)zar) dr > 2M. (47)
P
On the other hand, one has that for all A > 0 and x € R,
N_ N R
1) = M P g /p rN1G() — h(r)aldr. (48)
So, choosing Ay > 0 such that
A (RN — p)

v < M
Nm M ’

and using (47), (48), it follows that
Iv(zpm) < —M forall 0< A< Ay
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Consequently,

infly, - —oco as A —0,
C+
which, together with (42) imply (46), as claimed. O

Theorem 1. Assume that conditions (Hg), (Hg) and (Hp) hold. Then there exists
some Ao > 0 such that, for any X € (0, o), problem (33) has at least three solutions.

Proof. From Lemma 3, it follows that there exists AL > 0 such that I, has a local
minimum at some uy,; > 0 for any 0 < A < A;. Using exactly the same strategy,
we can find A_ > 0 such that I, has a local minimum at some uy 2 < 0 for any
0 < A < A_. Taking Ao = min{A_, A\, } it follows that I, has two local minima
for any A € (0, ). On the other hand, from the proof of Lemma 3, it is easy to
see that I is coercive on C, implying that I satisfies the (PS) condition for any
A > 0. Hence, from Lemma 1, we infer that I has at least three critical points for
all A € (0, Ag), which are solutions of (33) by Proposition 1. O

Corollary 1. Under the assumptions of Theorem 1, there exists Ag > 0 such that
problem (32) has at least three radial solutions for any X € (0, \o).

The following examples are easy consequences of Theorem 1.

Example 1. For any m > 2, any ¢ € (1,m), and any h € C, there exists A\g > 0
such that the Neumann problem

~M(v) + A" v = [v]"?0 — h(|z]) in Blp, R),

49
d,v =0 on 9B(p,R) (49)

has at least three radial solutions when A € (0, Ag).

Remark 1. For any m > 2, any 0 € (1,m), and any h € C, problem (49) has at
least one solution for all A € R. This is a consequence of [6, Theorem 3.1].

Example 2. For any m > 2, and any h € C such that —1 < h < 1, there exists
Ao > 0 such that the Neumann problem

—M() + Ap|" v = 4o h(lz]) in B(p, R), (50)

d,v =0 on 9B(p,R)
has at least three radial solutions when A € (0, Ag).

Remark 2. For any m > 1, and any h € C, problem (50) has at least one solution
for all A € R\ {0}. If A = 0, problem (50) has at least one solution for any h € C
such that —1 < h < 1. This is a consequence of [6, Theorem 3.1].



Multiple Radial Solutions at Resonance for Neumann Problems 99

Example 3. For any m > 2, and any h € C, there exists Ao > 0 such that the
Neumann problem
v
_ Mo|™m 2y = h in B(p,R
M)+ A" o= o +h(e]) in Blp, R) (51)
d,v =0 on 9B(p,R)

has at least three radial solutions when A € (0, Ag).

Remark 3. For any m > 1, and any h € C, problem (51) has at least one solution
for all A € R\ {0}. If A =0, problem (51) has at least one solution for any h € C.
This is a consequence of [6, Theorem 3.1].
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Equivariant Bifurcation
in Geometric Variational Problems

Renato G. Bettiol, Paolo Piccione and Gaetano Siciliano

Abstract. We prove an extension of a celebrated equivariant bifurcation result
of J. Smoller and A. Wasserman [21], in an abstract framework for geometric
variational problems. With this purpose, we prove a slice theorem for continu-
ous affine actions of a (finite-dimensional) Lie group on Banach manifolds. As
an application, we discuss equivariant bifurcation of constant mean curvature
hypersurfaces, providing a few concrete examples and counter-examples.
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1. Introduction

Most geometric variational problems are invariant under a symmetry group, in
the sense that the geometric objects of interest are critical points of a functional
invariant under the action of a Lie group. For example, the rotation action of $*
on the space of loops of a Riemannian manifold M leaves invariant the energy
functional (whose critical points are closed geodesics on M). As a more interesting
example, the action of the isometry group of a Riemannian manifold M leaves
invariant the area functional (whose critical points with constrained volume are
constant mean curvature (CMC) submanifolds M < M). The aim of this paper is
to develop an abstract equivariant bifurcation theory for families of critical points
of variational problems as the above, tailored for geometric applications. In a

The first named author is supported by NSF, grant DMS-0941615, USA. The second named au-
thor is partially supported by Fapesp and by CNPq, Brazil. The third named author is supported
by CNPq and Fapesp, Brazil, grant n. 2011/01081-9, by M.I.U.R. — P.R.L.N. “Metodi variazionali
e topologici nello studio di fenomeni non lineari”, Italy, and by J. Andalucfa (FQM 116), Spain.
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certain sense, this problem is complementary to our study of an Implicit Function
Theorem for such variational problems, see [9], namely characterizing when it fails.

Equivariant bifurcation for a l-parameter family of gradient-like operators
invariant under the action of a Lie group on a Banach space was pioneered by the
work of J. Smoller and A. Wasserman [21]. They found sufficient conditions for
the existence of a bifurcation instant in a l-parameter family of zeros of such a
path of operators, when these zeros are fixed points of the action. The sufficient
condition is stated in terms of the induced isotropy representations on the negative
eigenspace of the linearized operators. This result was then successfully used to
obtain bifurcation of radial solutions to semilinear elliptic PDEs in a disk with
homogeneous linear boundary conditions, among other similar applications.

Nevertheless, in applications to geometric variational problems, it is too re-
strictive to assume that the starting 1-parameter family of solutions is formed
only by fized points of the action. Typically, variational problems involving maps
with values in Riemannian manifolds are invariant under the isometry group of
the target manifold, which acts by left-composition. It often is a natural situation
that the given family of critical points is only invariant under a smaller group of
isometries, i.e., the orbits of such points may not consist of single points, although
they may also have nontrivial isotropy. It is also important to observe that, in
many cases, the action of the symmetry group is not everywhere differentiable.
For instance, the (left-composition) action of the isometry group of M on the
space of C¥ unparameterized embeddings of a compact manifold M into M is only
continuous, and differentiable only at C*° embeddings, see [2]. This is the action
one has to consider when studying the CMC variational problem. Finally, it is also
common to have only a local action of a symmetry group (which is also the case
in the CMC variational problem).

In the present paper, we take into account all of the above observations
and extend the classic equivariant bifurcation result of J. Smoller and A. Wasser-
man [21] to this more general situation. Let us describe with more details our
main abstract bifurcation results, Theorems 4.3 and 4.5. Assume M is a Banach
manifold endowed with a connection and G is a compact Lie group acting! con-
tinuously by affine diffeomorphisms on M. Let f5: M — R be a family of smooth
G-invariant functionals, parameterized by A € [a, b], and A — x be a curve of crit-
ical points in M, i.e., dfy(zx) = 0, for all \. Under the appropriate Fredholmness
assumptions on the second derivative of fy at x), we prove that if the following
conditions are satisfied, there exists equivariant bifurcation at some A, € |a,b[:

e Constant isotropy: the isotropy group H of z) is a nice group? (in the sense
of [21]) and independent of \;

1To simplify our discussion, we suppose here that the action of G is globally defined, although
the results described in the sequel also hold for the more general case of local actions.

2e.g., this is satisfied if H is a closed subgroup of G with less than 5 connected components, see
Example 4.2.
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e Equivariant nondegeneracy: the kernel of the second derivatives d%f,(z,) and
d?fp(xp) coincides with the tangent space to the G-orbit of x, and of xy,
respectively;

e Jump of negative isotropy representation: the linear representations of H on
the “negative eigenspaces” of d2f,(x,) and d?f,(z}) are not equivalent.

In other words, the above three conditions imply that there exists a sequence (2, ),
in M and a sequence (\y,), in [a,b], with z, = x), and A, = A\, as n — oo, such
that for all n, dfy, (x,,) = 0 and the orbit G - x,, is disjoint from the orbit G - z,,,,
see also Definition 4.1. A particular case of the third condition above is when there
is a change of the Morse index (the sum of dimensions of the negative eigenspaces)
from z, to zp. Clearly, having the same dimension is a necessary condition for two
representations to be equivalent, so a jump of the Morse index also determines
existence of equivariant bifurcation.

The key idea for the proof of the above results is the construction of slices for
group actions, and the reduction of the variational problem to a given slice (where
a nonlinear formulation of the classic result of J. Smoller and A. Wasserman [21]
can be applied). Although slices for continuous group actions exist in a general
topological setting (see [11]), when using variational calculus, one needs a stronger
notion of slice (with some differentiability properties). Typically, differentiable
slices are constructed applying the exponential map to the normal space of an
orbit. This does not work in the general case of actions on Banach manifolds,
that may not admit a (complete) invariant inner product. Our central observation
is that, in a Banach manifold setting, a similar construction can be performed
using the exponential of any invariant connection, which exists naturally in many
interesting situations. This exponential is then applied to some invariant closed
complement of the tangent space to a differentiable group orbit. Invariant closed
complements always exist in the case of strongly continuous group actions on
Banach spaces (see Lemma 3.2). Thus, the core of the present paper consists in a
description of the main properties of connections on infinite-dimensional Banach
manifolds (or Banach vector bundles), and the construction of smooth slices for
continuous affine (local) actions.

As an example of application of this theory, we obtain bifurcation results for
families of CMC hypersurfaces, see Theorems 5.4 and 5.8. Those are then applied
to concrete families of Clifford tori in round and Berger spheres, and of rotationally
symmetric surfaces in R3. In those cases, a few recent bifurcation results by the
second named author and others are reobtained, see [3, 17, 19]. Other bifurcation
results obtained by the first and second named authors for geometric variational
problems with symmetries with a similar framework can be found in [6, 7, 8].

Some natural questions arise regarding further generalizations, e.g., when one
considers the case in which the isotropy group of x) depends on the parameter A,
described in Example 5.10. This is a topic of current research by the authors, as
well as the study of other geometric applications, e.g., to the variational problem
of constant anisotropic mean curvature hypersurfaces.
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The paper is organized as follows. Section 2 contains general facts about
connections on (infinite-dimensional) Banach vector bundles. Special emphasis is
given to Banach bundles of sections of finite-dimensional vector bundles, endowed
with an affine connection, over differentiable manifolds. This is the case of main
interest in applications. In this context, the two main results (Proposition 2.5
and Corollary 2.7) are that the map of right-composition with diffeomorphisms
of the base manifolds is affine, as well as the map of left-composition with an
affine map. Section 3 deals with the question of existence of slices for group ac-
tions on infinite-dimensional Banach manifolds. The main result of this section,
Theorem 3.4, gives the existence of a slice through a point x for affine actions,
under the assumption of compactness of the isotropy of x. The case of local group
actions is also discussed, see Subsection 3.1. Section 4 contains the main equivari-
ant bifurcation results (Theorems 4.3 and 4.5), which generalize [21, Thm. 2.1]
and [21, Thm. 3.3] respectively. Section 5 contains a geometric application of the
two abstract bifurcation results in the context of CMC embeddings, which was
the original motivation for the development of the theory. Concrete examples of
bifurcation of CMC embeddings recently discovered are briefly presented in the
end of this section. Finally, Appendix A describes the basic framework for the used
nonlinear formulation of the results of J. Smoller and A. Wasserman [21].

2. Connections on infinite-dimensional manifolds

We start by studying the notion of connection on a Banach vector bundle. Given
a connection on a finite-dimensional vector bundle 7¥: E — M and a smooth
manifold D (possibly with boundary), we describe the construction of a naturally
associated connection on the bundle 7€: & — M, where & = C*(D,E), M =
CF(D,M) and 7€ is the left composition with 7F. This is characterized as the
unique connection for which the evaluation maps ev,: £ — E are affine. We show
the invariance of this connection by the right action of the diffeomorphism group
of D. When E = TM and the connection on T'M is the Levi-Civita connection of
some semi-Riemannian metric tensor g on M, then the associated connection on
C*(D, M) is also invariant by the left action of the isometry group of g. A classic
reference on these topics is [13].

2.1. Banach vector bundles

Let M be a smooth Banach manifold, and 7€ : € — M be a smooth Banach vector
bundle on M. This means that & = (J, ¢ &z, With & = 771 (), is a collection of
vector spaces, and that it is given an atlas of compatible trivializations of £. Given
a Banach space &, write

Frgo(g) = U ISO(go,gm),
zeM

where Iso(&y, &) is the set of Banach space isomorphisms (bi-Lipschitz linear
isomorphisms) from & to &,. For a vector bundle 7€ : & — M with fibers of finite
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dimension n, we will write Fr(€) for Frg(€). A local trivialization of 7¢: & — M
with domain &/ C M and typical fiber & is a local section s: U — Frg,(£).
Two local trivializations s;, with domain i; C M and typical fibers &;, i = 1,2,
are compatible if the transition map 82_1812 Uy NUs — Tso(&1,E2) is smooth. A
collection (U, s;,&;)ier of local trivializations of £ is an atlas if the domains U;
cover M. For details on the structure of such Banach vector bundles, see [20].

2.2. Connections on Banach vector bundles

A connection on the Banach vector bundle 7€ : £ — M is a smooth map P¢: TE —
& such that:

(a) for all x € M and e € &, the restriction P = P¢|7, ¢ is a linear map with
values in &.;
(b) for any local trivialization s: U — Frg,(€), there exists a smooth map

USz—T, € Bil(TuM x &,&,)

such that, denoting by 5: &|yy — & the map 3(e) = s(7r(e))_1(e)7 the follow-
ing identity holds for all z € U, e € £, and n € T .E:

PE(n) = s(x)(d5e(n)) + T (dE (n), €).

A standard argument shows that it suffices to have property (b) satisfied only for
the set of local trivializations of an atlas.

A connection P¢ defines a distribution Hor(P¢) on the total space &, called
the horizontal distribution, given by Hor(P?), = Ker(P¢). A vector v € T.E will
be called horizontal if it belongs to Hor(P%)..

2.3. Connections and exponential maps on Banach manifolds

By a manifold with connection, we mean a Banach manifold M with a connection
on its tangent bundle 7: TM — M. If P is a connection on 7'M, one has a vector
field X (P) on TM, called geodesic field, defined by the following: for z € M and
v € T, M, X(P), is the unique horizontal vector in T, (T M) that projects onto
v € T, M (by the differential dm, ). A curve v: I — M is a P-geodesic if it is the
projection of an integral curve I': I — TM of X(P). If M is a manifold with
connection P, then one has an exponential map

exp?: Dom(exp?) Cc TM — M,

defined on an open subset Dom(exp?) C T'M containing the zero section, with
properties totally analogous to the exponential map of a connection on a finite-
dimensional manifold. In particular, for all x € M, A, = Dom(exp?) N T, M is a
star-shaped open neighborhood of 0 in 7, M, and, denoting by expZ the restriction
of exp” to A,, one has dexp?’(0) = Id. In particular, expZ is a diffeomorphism
from an open neighborhood of 0 in T, M onto an open neighborhood of = in M.
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2.4. Banach bundles of sections of a finite-dimensional vector bundle

We now describe an important example of the abstract setting of Subsection 2.2.
Consider a vector bundle 7¥: E — M over a finite-dimensional differentiable
manifold M, and let PP: TE — E be a connection in E. Let D be a compact
differentiable manifold (possibly with boundary), and for some k > 2, set M =
C*(D,M) and & = C*(D, E). There exists a natural map 7¢: & — M, namely
the map (7%), of left-composition with 7¥. The sets M and £ admit a natural
structure of Banach manifold, making 7€ : £ — M an infinite-dimensional Banach
vector bundle. More precisely, for f € M, the fiber £ is the Banach space of C*
sections of the pull-back bundle f*(E), also called sections of E along f,

& ={F eC*D,E): F(z) € Ey(,) for all z € D}.
There is also a natural identification of the tangent bundle of £ as
TE = C*(D,TE),

and if f is in M (which can be thought of as the zero section of £), there is a
canonical splitting T¢€ = Ty M & £ in horizontal and vertical parts respectively.
The horizontal subspace of T;& in this particular case is TyM = C¥(D,TM). To
have a notion of horizontal subspace at the tangent space to £ at points outside
the zero section, we need a connection on this Banach vector bundle.

A connection P¢: TE — £ can be defined as being the map (PF), of left-
composition with P¥. Let us show that this satisfies the axioms (a) and (b) de-
scribed in Subsection 2.2.

First, given f € M and F € &, we have that the restriction P& of P¢ to
TrE maps a section 1 of F*(TE) (i.e., an element of TrE) to the section P¥ o
of f*E (i.e., an element of £), see the commutative diagram below. This map P&
is clearly linear, since it is given by left-composition with P¥, proving that axiom

(a) holds.

TE
n p¥

\

E
/ .

f \

D " =M

Second, we observe that an atlas of trivializations of 7#€: & — M can be
constructed using smooth maps s: Dom(s) C D x M — Fr(E) such that 7F o
s(p,z) = x for all (p,z) € Dom(s), and such that s(p,-) is a local trivializa-
tion of 7¥: E — M. Once such a map s is given, a trivialization s: Dom(s) C
CH(D,M) — Fre, (C¥(D, E)), with & = C*(D,R"), is defined by setting, for all
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x € Dom(s) = {x € C¥(D, M) : Gr(z) C Dom(s)},?

s(z): C*(D,R") — C*(D, E),
s(z)(v)p = s(p, 2(p))v(p),
for all v € C¥(D,R"™) and p € D. Given p € D, F € £ and n € T,E, then:

P?(n)(p) = PFE(p) (77(10))
= s(p, 2(p) [d5, (F(0))n(p)] + U5, (A E ) (n(p), F(p))),

which says that the Christoffel symbol T of P€ associated to the trivialization s is
given by:

T,: C*(D, TM;z) x C*(D, E;z) — C*(D, E; x)
Ty (v,€)(p) = T4, (v(p), €(p)).

Here, C*(D,TM;zx) and C*(D, E; x) respectively denote the spaces of C* sections
of the pull-back bundles z* (T M) and z*(FE).

An interesting particular case of the above construction is when £ = TM
is the tangent bundle of M. Recall that D is a smooth manifold (possibly with
boundary), M is a manifold whose tangent bundle TM has a connection PT™ and
the Banach vector bundle & = C*(D,TM) is the tangent bundle of the Banach
manifold M = C¥(D, M), under the identification

(2.1)

E=CHD, TM)=TC*D,M)=TM.

Endowing TM with the naturally induced connection PT™ described above, the
PTM_geodesics in M are smooth curves s — x; € C¥(D, M) such that, for all
p € D, the curve s +— z4(p) € M is a PTM_geodesic in M. This is a manifestation
of the fact we will see next that the induced connection PTM is characterized by
every evaluation map ev,: M — M being affine, see Proposition 2.4.

2.5. Affine maps

Let us now consider two Banach vector bundles 7€: & — M and 7€ : & — M’
endowed with connections P¢ and P¢’ respectively. Let f: M — M’ be a smooth
map and T: £ — &’ a smooth Banach bundle morphism for which the following
diagram commutes.

e Tog
71'5 Trg/
\%
M =M

3Gr(x) denotes the graph of x € C*(D, E).
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Definition 2.1. T is said to be affine if the following diagram commutes

Te Tsrg
pE pE’
\ \
£ =&

T

It is easy to see that T is affine if and only if d7° maps horizontal spaces to
horizontal spaces.

Definition 2.2. If M and M’ are Banach manifolds endowed with connections P
and P’, a smooth map f: M — M’ is affine if df : TM — T M’ is affine.

Example 2.3. Consider a finite-dimensional vector bundle 7%: E — M endowed
with a connection PF | let D be a smooth manifold (possibly with boundary) and
consider the connection P defined on & = C¥(D, E), as in Subsection 2.4. For all
p € D denote by ev,, the evaluation at p maps C*(D, E) — E and C*(D, M) — M.
Clearly, the following diagram commutes

E=CHD,E) ™ =CHMD,M)=M,

CVp CVp
Y Y
E > M

7_{_E

and it is easy to check that ev, is affine. Conversely, we now prove that this
property characterizes the natural connection on £ constructed in Subsection 2.4.

Proposition 2.4 (Universal property of the natural connection). The natural con-
nection defined on w€: & — M as above is the unique connection for which ev, is
an affine map, for all p € D.

Proof. Tt follows readily from (2.1). The condition that ev,, is affine is the commu-
tativity of the following diagram:

d(evp)

C*(D,TE) ~TE
PE pPE
v v
C*(D,E) o, “F a

2.6. Invariance
We conclude this section with a few results on affine maps.
Proposition 2.5. Let 7%: E — M be a vector bundle with a connection PF, let

D and D' be manifolds (possibly with boundary), and set & = C*(D,E), & =
CH(D',E), and M = C*(D,M). Let «€: & — M and 7€ : &' — M be endowed
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with the associated connections P€ and PE . If ¢: D — D' is a diffeomorphism of
class C*, then the map

o E—¢&
of right-composition with ¢ is affine.

Proof. Tt follows from the universal property of the natural connection, Proposi-
tion 2.4 (or directly from the definition). O

Proposition 2.6. Let 72: E — M and nF : E' — M’ be vector bundles endowed

with connections P and PF’ respectively, D a smooth manifold (possibly with
boundary). Set M = CF¥(D, M), M' = C*(D',M") and let £ = C*¥(D,E), & =
CF(D, E") be endowed with the natural connections.

T,

E T-F b Yy

If is affine, then is affine.
\ v Y \
M / > M’ M ; > M’

Proof. Since the first diagram is affine, then the following diagram commutes

TE “Y~TE
pE pE’
\% Y
E > F'

T

Taking left-composition with the above maps, and observing that (d7T). = d(T%),
we get the following commutative diagram, which proves the desired result.

T ~ckD,TE) " ~chD,TE)=TE
(PF). (PE").
\ \
CH(D,E) . ~CH(D, E') 0

Corollary 2.7. If M, M’ are manifolds with connections and f: M — M’ is affine,
then the map of left-composition f.: C*(D, M) — C¥(D, M’) is affine.

3. Slices for continuous affine actions

In this section, we construct slices for continuous affine actions of a Lie group on
a Banach manifold. Let us consider the following setup:

(a) M is a smooth Banach manifold,
(b) G is a Lie group acting continuously by diffeomorphisms on M,
(¢) = € M is a point where the action of G is differentiable.
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When M is endowed with a connection, we will say that the group action is affine
if G acts by affine diffeomorphisms of M.
Define the auxiliary maps, with g € G, y € M,

Bt G— M Gyt M — M

. _ (3.1)
g—g-z y—g-y.

From assumption (b), ¢4 is a diffeomorphism for each ¢ € G. Assumption (c)
means that (5, is differentiable. In particular, the G-orbit of x is a submanifold of
M, whose tangent space at x is given by the image of dg,(1): g — T,M, where
g is the Lie algebra of G. Let us denote by G, the isotropy (or stabilizer) of x,
which is the closed subgroup of G given by G, = {g € G : ¢4(z) = z}.

Definition 3.1. A slice for the action of G on M at x is a smooth submanifold
S C M containing z, such that
1. the tangent space T,S C T, M is a closed complement to Im(dﬁ$(1)), ie.,
T, M =1m(dB, (1)) & T,.S;
2. G - § is a neighborhood of the orbit G - z, i.e., the orbit of every y € M
sufficiently close to  must intersect S;
3. S is invariant under the isotropy group G.

We will prove the existence of slices for affine actions of compact Lie groups.
Towards this goal, we need an auxiliary result on linear actions of compact groups.

Lemma 3.2. Let G be a compact Hausdorff topological group with a strongly con-
tinuous®* linear representation on a Banach space X. Then:

(a) if S C X is a closed G-invariant complemented subspace of X, then S admits
a G-invariant closed complement;

(b) the origin of X has a fundamental system of G-invariant neighborhoods.

Proof. First, observe that by the uniform boundedness principle, the linear op-
erators on X associated to the action of elements g € G have norm bounded by
a constant which is independent of g. By a simple argument, it follows that the
action defines a continuous function G x X — X. For part (a), let P: X — X be
a projector (i.e., bounded linear idempotent) with image S. Define P: X — X as
the Bochner integral P(z) = Jo 9Py~ 'z dg, where dg is the Haar measure of G. It

is easy to see that P is a well-defined bounded linear operator on X', with image
contained in S. Furthermore, it fixes the elements of S, and commutes with the
G-action. It follows that P is also a projector with image S, and its kernel is the
desired G-invariant closed complement to S.

As to part (b), let V' be an arbitrary neighborhood of the origin of X'. The
inverse image of V' by the action G x X — X is an open subset Z of the product
G x X that contains G x {0}. Since G is compact, there exists a neighborhood U
of 0 in X such that G x U is contained in Z, i.e., g-x € V forall g € G, x € U. The
union UgeG gU is a G-invariant open neighborhood of 0 in X', contained in V. [

4i.e., the maps G 3 g+ g - x € X are continuous for all 2 € X.
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We also observe the following interesting fact.

Lemma 3.3. Let p: G x X — X be a continuous action of a compact group G on
a topological space X. Assume xg € X is a fized point of G. Then o admits a
fundamental system of G-invariant (open) neighborhoods.

Proof. Let V be an arbitrary neighborhood of zq, and set W = ﬂgeG gV. Clearly
W is G-invariant, and W C V. Let us show that W is a neighborhood of xg.
The set p~!(V) is an open subset of G' x X' that contains G x {zo}, and by the
compactness of G, it also contains the product G x U, where U is some open
neighborhood of zg. Thus, U C W, and W is a neighborhood of zy. The interior
of W is also G-invariant. O

We can now prove our result on the existence of slices.

Theorem 3.4. In the above situation, assume that M is endowed with a connec-
tion which is G-invariant (i.e., each diffeomorhism ¢4 is affine), and that G, is
compact. Then there exists a slice S through x.

Proof. Consider the isotropy representation of G, on T, M, given by g — do,(z).
The finite-dimensional subspace Im(dﬁw(l)) is clearly invariant under this linear
action. By part (a) of Lemma 3.2, there exists a closed G, -invariant complement S
of Im(df3;(1)). Denote by exp, the exponential map of the G-invariant connection
at z, and let Uy C T, M be an open neighborhood of 0 on which exp, is a diffeo-
morphism. By part (b) of Lemma 3.2, there exists an open neighborhood [70 Cc Uy
of 0 such that [70 N S is G -invariant. Set

S :=exp,(UyNS).

We claim that S is a slice for the action of G at x. Property (1) of slices is
clearly satisfied, since d exp, (0) = Id, and S is a closed complement to Im(d3,(1)).
Property (2) would follow immediately from the transversality condition (1) under
the hypothesis of differentiability of the group action, which we do not assume.
A slightly more involved topological argument based on degree theory is required
for the continuous case, and this is discussed separately in Proposition 3.5, which
is to be applied with A = N = M, M =G, Q = S, x being the action, ag = =,
and mgo = 1. For property (3), observe that since the connection is G-invariant,
then ¢g o exp, = exp, (,)0dg,(z), for all g € G. Thus, given v € Uy N S and

g € Gy, dg(exp,(v)) = exp, (dgy(x)v) € S, because Uy N S is Gp-invariant, i.e.,
S is G -invariant. O

Proposition 3.5. Let M be a finite-dimensional manifold, N a (possibly infinite-
dimensional) Banach manifold, Q@ C N a Banach submanifold, and A a topological
space. Assume that x: Ax M — N is a continuous function such that there exists
ap € A and mg € M with:

(a) x(ap,mo) € Q; (b) x(ao,-): M — N is of class C*;

(C) 82)(((10, mo) (TmOM) + Tx(ao,mo)Q = TX(Go,Mo)N'
Then, for a € A near ag, x(a, M)NQ # 0.
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Proof. Let f: U C R — R be a C! function, defined on an open neighborhood U
of 0, such that f(0) = 0 and df(0) an isomorphism. The induced map f: $¢~1 —
§9-1 is defined by f(z) = || f(rz)||~' f(rz), where r > 0 is such that 0 is the unique
zero of f in the closed ball B(0,r) of R. This induced map must have topological
degree equal to +1.

If A is any topological space, f: A x U — R? is continuous, and ag € A is
such that f(ao,-) is of class Ct, f(ap,0) = 0 and d2f(ap,0) is an isomorphism,
for a near ag, and r > 0 sufficiently small, 0 € f(a,B(O,r)). This follows from
the continuity of the topological degree. The same conclusion holds for a function
f: Ax U — R? where now U is an open neighborhood of 0 in R*, with s > d,
under the assumption that f(ao, ) is of class C1, f(ao,0) = 0, and 92 f(ap,0) be
surjective. Namely, it suffices to apply the argument above to the function obtained
by restricting f to a d-dimensional subspace where 9> f(ag,0) is an isomorphism.

To finish the proof, use local coordinates adapted to @ in IV, and assume
that M, Q and N are Banach spaces, with N = Q ® R, d < s = dim(M) is
the codimension of @, and mg = 0. In this situation, the conclusion is obtained
applying the argument above to the function f: A x M — R? given by f(a,m) =
W(X(a,m)), where m: N — R? is the projection relative to the decomposition
N = Q@R Clearly, f(a,m) = 0 if and only if x(a, m) € Q. Assumption (a) gives
f(ap,0) =0, and assumption (c) implies that Oz f(ag,0) is surjective. O

3.1. Local actions

The existence of slices proved in Theorem 3.4 holds in the more general case of
local group actions. Let us briefly recall the definition and a few basic facts about
local actions.

Let G be a Lie group and M a topological manifold. By a local action of G
on M, we mean a continuous map p: Dom(p) C G x M — M, defined on an open
subset Dom(p) C G X M containing {1} x M satisfying:

(a) p(1,2) =z for all z € M;
(b) if (g2,2) € Dom(p) and (gl,p(gg,x)) € Dom(p), then (g192,2) € Dom(p),
and p(g1, p(g2, %)) = p(g192, ).

Usual group actions can be obtained as the particular case in which the domain
Dom(p) coincides with the entire G x M. Local actions can be restricted, in the
following sense. If N C M is a submanifold, then one has a local action p of G
on N by setting Dom(p) = {(g9,2) € (G x N') N Dom(p) : p(g,z) € N}, and
p = plpom(p)- In fact, the most natural occurrence® of local actions is when one
has a (global) action of a group G on a topological manifold X', and M is an open
(not necessarily G-invariant) subset of X’. The restriction of the action of G to M
in the above sense is a local action of G on M.

5In fact, local actions of groups are always restrictions of global actions. In the literature, these
are known as enveloping actions of the local action, see [1].
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Assumption (b) implies that for all € M, denoting by

Go={9€G:(g.2) € Dom(p), plg,x) =}
the isotropy of x, then G, is a closed subgroup of G.
Given a local action p of G on M, for g € G, let p, denote the map p(g, -),
defined on a (possibly empty) open set Dom(p,) = Dom(p) N {g} x M. The
following follow easily from the definition.

Lemma 3.6. Let p: Dom(p) C G x M — M be a local action of G on M. Then
(a) for all g € G, the map py: pg_l(Dom(pgfl)) — pg_,l1 (Dom(pg)) is a homeo-
morphism;
(b) the set {(g9,z) € Gx M : & € p;'(Dom(py-1))} is an open subset that
contains {1} x M; in particular:
(¢) for all x € M, there exists an open neighborhood U, of 1 in G such that for
allge Uy, x € pg_l(Dom(pgq)).

In view of (c¢) above, one can define a map S,: Dom(8,) C G — M on
a neighborhood Dom(f3,) of 1 in G, by B.(9) = p(g,x), compare with (3.1). In
particular, if £ € M is such that the map S, is differentiable (at 1), then one
has a well-defined linear map dS,(1): g — T, M. A subset C C M will be called
G-invariant if, given z € C, then p(g,x) € C for all g € Dom(f5;).

In view of the above, the definition of slice for local actions is totally analogous
to Definition 3.1. Furthermore, the statement and proof of Theorem 3.4 carry over
verbatim to the case of local affine actions.

4. Equivariant bifurcation

Let us define what we intend by equivariant bifurcation. To simplify our discussion,
we restrict to the case when there is a globally defined action (opposed to a local
action). Consider the same setup (a), (b) and (c) of Section 3. Let [a,b] 2 A — fy
be a continuous path of C*-functionals fy: M — R, k > 2, which are G-invariant,
ie., falg-y) = faly) for ally € M, g € G and X € [a,b]. We are interested in
studying bifurcation of solutions to the equation dfy(x) = 0.

Definition 4.1. Given )y € [a,b], we say that equivariant bifurcation of critical
points of the family (fa)xe[q,5) OCcurs at (zx,, Ao) if there is a sequence (2, \y) €
M X [a, b] such that

L lim (zn, M) = (Zx, Ao);

n—roo

2. dfa, () =0, for all n;
3. xp € G-y, for all n.

We now discuss our central result, which is a sufficient condition for equivari-
ant bifurcation in the above sense. It will be obtained by combining the slice theory
developed in the previous section with a nonlinear formulation of a celebrated bi-
furcation result of J. Smoller and A. Wasserman [21]. In order to deal with the
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important general case of functionals defined on Banach manifolds (rather than
Hilbert manifolds), we will need an appropriate framework described by a set of
assumptions on an auxiliary Hilbert/Fredholm structure of the problem.

Let By and By be Banach spaces and H be a Hilbert space with inner
product (-,-). To keep things in perspective, in our geometric applications to a
finite-dimensional manifold M, we will set By = C?>*(M), By = C%*(M) and
H = L?*(M). Assume that M is modelled on By and is endowed with an affine
G-invariant connection. Let [a,b] 5 A — x5 € M be a continuous path, such that
for all A, x) is a critical point of fy, which actually implies that the entire orbit
G-z consists of critical points of fy. Also, assume that a sufficiently small open set
U C M containing all x) admits continuous embeddings U C By C H, such that
the following are satisfied. First, the local G-action on U extends continuously to
a local G-action on By and on H. Second, there exists a continuous path A — 0fy
of G-equivariant C*~!-maps 0fy: U — By satisfying

dir(v)§ = @fa(y), £), (4.1)
forally e U, £ € T,U = By and \. In particular, we have

ofa(zx) =0, forall A € [a,b)].

The map 0fy plays the role of the gradient of f5, which does not exist in the usual
sense due to the lack of a complete inner product on Bs.

For all X € [a,b], let G be the isotropy of x, which is a closed subgroup of
G. Given € > 0, set

Ni(e) :==span{v € By : d(df)a, (v) = pv, for some p < e}. (4.2)
We define the generalized negative eigenspaceS of d(dfy)., to be
Ny := N,(0). (4.3)

Before stating the main result of this section, we briefly recall yet another
notion used by J. Smoller and A. Wasserman [21, p. 73]. A group G is said to
be nice if, given unitary representations w1 and ms of G on Hilbert spaces V;
and V5, respectively, such that B;(V7)/S1(V1) and By(V2)/S1(Vz2) have the same
(equivariant) homotopy type as G-spaces, then m; and 72 are equivalent. Here,
By and S; denote respectively the unit ball and the unit sphere in the specified
Hilbert space, and the quotient By (V;)/S1(V;) is meant in the topological sense.”

Example 4.2. Any compact connected Lie group G is nice. More generally, any
compact Lie group with less than 5 connected components is nice. Denoting by G°
the identity connected component of G, then G is nice if the discrete part G/G°
is either the product of a finite number of copies of Zs (e.g., the case G = O(n));
or the product of a finite number of copies of Zs; or if G/G° = Z4, see [18].

We are now ready to state and prove our main result.

6In the terminology of J. Smoller and A. Wasserman [21], this is the eigenspace of d(Ofx)a,y -
7i.e., it denotes the unit ball of V; with its boundary contracted to one point.
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Theorem 4.3. In the above setup, assume that

(a) there exists e > 0 such that dim(Ny(e)) < +oo, for all X € [a,b];

(b) for all X\, Gy is a fized compact nice subgroup Gy of G;

(c) Ker(d(dfa)s,) = Tw, (G - 24) and Ker(d(dfs)z,) = Tu, (G - 23);

(d) dim(N,) # dim(Ny).

Then, equivariant bifurcation of the family (xx)x of critical points of (fa)x occurs
at some (zxy, Ao), with Ao € |a, b].

Proof. Under the above hypotheses, Theorem 3.4 ensures the existence of a slice S
invariant under the action of Gy by diffeomorphisms. We have a family Ty = dfx
of Gy-equivariant sections of T'S. Note that, since fy is constant along the orbits
and by the transversality property (1) of the slice, we have that S is a natural
constraint. In other words, the constrained critical points of the restriction fA‘ s
of fy to S actually satisfy dfy(zx) = 0. Assumption (c¢) means that z, and
are (equivariantly) nondegenerate critical points. The result then follows from [21,
Thm 2.1], in its nonlinear formulation explained in Appendix A. O

Remark 4.4. Assumption (a) in Theorem 4.3 is satisfied, for instance, when A —
dofx(zy): Ba = By is a continuous path of Fredholm operators that are essentially
positive. By definition, this means that dofy(x)) are Fredholm operators of the
form Py + K, where Py: By — By is a symmetric isomorphism (relatively to the
inner product of H) and satisfies (Pyz,z) > 0 for all z € By \ {0}; and Ky: By —
By is a compact symmetric operator (also relatively to to the inner product of
H). In this situation, the space Ny(¢) is the direct sum of the eigenspaces of the
compact operator Py Ky (which is symmetric with respect to the inner product
defined by Py, hence diagonalizable) corresponding to eigenvalues less than or
equal to e —1 < 0. Assuming € < 1, the operator PA_lK,\ has only a finite number
of such eigenvalues, and each of them has finite multiplicity. By continuity, one
can give a uniform estimate on the dimension of Nj(¢g), for A € [a, b].

Assumption (d) in Theorem 4.3 means that there is a jump of the Morse index
of xy, as A goes from a to b. We now present a subtler criterion for equivariant
bifurcation, where this assumption is weakened. Recall the isotropy representation
7y of G on T, M is the linear representation defined by 7x(g) = d¢g (). Since
0fy is equivariant, it is easy to see that Nx(e) is invariant under 7y, for all € > 0.
Define the negative isotropy representation 7, to be the restriction

Ty = m|Nn,: Na — Na. (4.4)
Observe that dim Ny is the Morse index of ).

Theorem 4.5. Replace the assumption (d) of Theorem 4.3 with
(d") the negative isotropy representations w; and m, are not equivalent.’

8Two representations m; : H — GL(V;), i = 1,2, of the group H on the vector spaces V4 and
V> respectively, are equivalent if there exists a H-equivariant isomorphism 7' : Vi — V3, i.e., an
isomorphism satisfying T (71(k)v) = m2(h)(T(v)) for all h € H and all v € V1. In particular,
dim V7 = dim V5.
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Then, the same conclusion holds, i.e., equivariant bifurcation of (xx)xe[a,p) OCCUTS
at some (zx,, Xo), with Ao € |a, b].

Proof. The same proof of Theorem 4.3 applies, using [21, Thm 3.3], in its nonlinear
formulation (explained in Appendix A), to obtain the conclusion. O

Remark 4.6. All the results stated above carry over verbatim to the case of local
affine actions, using the same standard procedures mentioned before.

5. Geometric applications on CMC hypersurfaces

In this section, we apply our abstract equivariant bifurcation results (Theorems 4.3
and 4.5) to the geometric variational problem of constant mean curvature (CMC)
embeddings. Bifurcation phenomena for 1-parameter families of CMC embeddings
have been studied in the last years by several authors, see, e.g., [3, 6, 17, 19]. We will
state and prove general bifurcation results for CMC embeddings (Theorems 5.4
and 5.8) and discuss how some explicit bifurcation examples can be reobtained
from these general results.

5.1. Variational setup

The problem of finding constant mean curvature H embeddings of a compact
m-dimensional manifold M into a complete Riemannian manifold (M,g) with
dim(M) = m+1 is equivalent to finding critical points of the area functional with
a fixed volume constraint, where H is the Lagrange multiplier (which will play the
role of the parameter \). More precisely, assume for simplicity that M and M are
oriented, and consider the 1-parameter family of functionals (fg)g given by

fr(x) = Area(z) + mH Vol(x), (5.1)

where z: M — M is an embedding, Area(z) = [}, vol,«(4) is the volume of 2:(M) C
M, volg«(g) is the volume form of the pull-back metric 2*(g) and Vol(z) is the
volume enclosed® by x(M). Then x: M — M is a critical point of fz if and only if
it is an embedding of constant mean curvature H, see [4, 5]. As we will see later,
a convenient regularity assumption is that fz acts on the space of Holder C*¢
embeddings.

More precisely, assuming that the embedding x is transversely oriented (i.e.,
the normal bundle to z is oriented), we may parameterize embeddings close to x
by functions on M using the normal exponential map. An embedding z: M — M
that is C%*®-close to = can be written as

27 (p) = expy, (F(p) Na(p)), pE M, (5.2)

where exp' is the normal exponential map of (M) C M and N, is a unit normal
vector field along x. We thus identify z; with the function f € C**(M), which

9This notion will be clarified by the end of this subsection. For now, one may assume for simplicity
that 2(M) = 9Q is the boundary of an open bounded region Q C M, and then Vol(z) = [, vol,

is the volume of this enclosed region.
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is close to zero. This also gives an identification of the tangent space at x to the
space of C>% embeddings (which is formed by normal vector fields along z) with
the Banach space C%%(M). With this identification, the first variation formula for
(5.1) is given by

dfsr(2)(f) = /N m(H = W) fvole-gy. [ €C301), (5.3)
where H(z) is the mean curvature function of the embedding z. From (5.3), it
follows that x is a critical point of fg if and only if H(xz) = H (i.e., « has constant
mean curvature H), as we claimed above.

We will also need to consider the second variation of (5.1) at a critical point x,
which under the above identifications, is the symmetric bilinear form on C%%(M)
given by

iy (@) (fr, f2) = - /M To(f)favole(py,  frof2 €C3O(M),  (5.4)

where J, is the Jacobi operator
Jr = Ay + || Az || + mRic,, (N,), (5.5)

where A, is the Laplacian of the pull-back metric *(g) on M, ||A;| is the norm
of the second fundamental form of x, Ric,, is the (normalized) Ricci curvature of
the ambient space (M, g) and N, is a unit normal field along . Functions f in the
kernel of J,, are called Jacobi fields along x. The number of negative eigenvalues of
Jz (counted with multiplicity) is the Morse index of x, that we denote inorse(2)-

The ambient isometry group G = Iso(M, g) acts on the space of embeddings,
and composing a CMC embedding with an element of G trivially gives rise to
a new CMC embedding. Recall that from the Myers—Steenrod Theorem, G is a
Lie group, and is compact if M is compact (see [16]). In addition, since (M, g) is
complete, the Lie algebra of G is identified with the space of Killing vector fields of
(M, g). We are interested in G-equivariant bifurcation of CMC embeddings, i.e.,
getting new embeddings that are not merely obtained by composing a pre-existing
one with an isometry of the ambient manifold. Another way in which one could
trivially obtain a new CMC embedding is by reparameterizing it, i.e., composing
on the right with a diffeomorphism of M. Two CMC embeddings x;: M — M,
t = 1,2, are said to be isometrically congruent if there exists a diffeomorphism ¢
of M and an isometry ¢ of (M, g) such that zo =1 o 21 0 ¢.

Infinitesimally, the action of G provides some trivial Jacobi fields along any
critical point. Namely, if K is a Killing vector field of (M, g), then f = g(K, N,)
is a Jacobi field along x. Denote by Jac, the (finite-dimensional) vector space of
Jacobi fields along x, and by J acf the subspace of Jac, spanned by the functions
g(K, N.), where K is a Killing vector field of (M, g). The CMC embedding x will
be called nondegenerate if Jacf = Jacg, i.e., if every Jacobi field along = arises
from a Killing field of the ambient space.
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It is natural to expect that, with the above equivariant notion of nondegen-
eracy, an equivariant implicit function theorem should hold. Indeed, the following
is proved in [9, Prop 4.1].

Theorem 5.1. Let x: M — M be a nondegenerate CMC' embedding, with mean
curvature equal to Hy. Then, there exists € > 0 and a smooth map

|Hy —e,Hy +¢[ 3> H— xg € C>*(M, M),
such that for oll H, xgy: M — M is a CMC embedding of mean curvature H and
(a) zn, = x;
(b) ify: M — M is a CMC embedding sufficiently close to x in the C**-topology,

then there exists H € |Hyg — e, Hy + €[ such that y is isometrically congruent
to xp.

5.2. A few technicalities

Let us now deal with some technicalities we omitted in the above explanation of
the variational setup for the CMC problem.

First, we need to give a more precise definition of the space where (5.1) is
defined. For reasons'® that will later be clear, it is convenient to consider the space
of embeddings 2: M — M endowed with a C%®-topology. More precisely, consider
the set Emb®® (M, M) of embeddings of class C>® of M into M. This is an open
subset of the Banach manifold C2®(M, M), and hence inherits a natural differential
structure, becoming a Banach manifold. Since we want to identify embeddings
obtained by reparameterizations of a given embedding, we have to consider the
action of the group Diff (M) of diffeomorphisms of M by right-composition on
Emb®® (M, M). We denote the orbit space of this action by

E(M, M) = Emb>“(M, M)/Diff (M), (5.6)

and its elements are called unparameterized embeddings. This set has the struc-
ture of an infinite-dimensional topological manifold modelled on the Banach space
C%%(M). Tts geometry and local differential structure are studied in detail in [2].
Given x € C%®(M, M), we denote by [z] its class in (M, M ). Henceforth, we are
assuming for simplicity that 2:(M) is transversely oriented in M.

If we take z € Embz’a(M ,M) in the dense subset of smooth embeddings,
there exists an open neighborhood of [z] in £(M, M) and a bijection from this
neighborhood to a neighborhood of the origin of C%(M), whose image is identified
(using the normal exponential map) with C*>® embeddings equivalent to z under
the action of Diff(M). As x runs in the set of smooth embeddings, those maps
form an atlas for £(M, M) whose charts are continuously compatible. Moreover,
if a smooth functional defined in Emb®®(M, M) is invariant under Diff (M), then

10This choice has to do with the nature of the second variation of 5, which we will want to be
a Fredholm operator under the appropriate identification.
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the induced functional in £(M, M) is smooth!! in every local chart. Using these
charts, we also have an identification

T E(M, M) = C**(M) (5.7)

of this tangent space with the Banach space of (real-valued) C%® functions on M.
For more details on this standard construction, see [2].

Second, note that, if x: M — M is an embedding, unless z(M) C M is the
boundary of a bounded open set of M, then the enclosed volume Vol(z) is not well
defined. Moreover, it is not clear that such quantity should be invariant under the
action of G. To overcome these problems, we recall the notion of invariant volume
functionals for embeddings of M into M developed in [9, Appendix B].

Definition 5.2. Let & C C*>“(M, M) be an open subset of embeddings z: M —
M. An invariant volume functional on U is a real-valued function Vol: U — R
satisfying'

(a) Vol(z) = [, 2*(n), where 7 is an m-form defined on an open subset U C M
such that dn = Volg is the volume form of g in U;

(b) given z € U, for all ¢ € Iso(M, g) sufficiently close to the identity, Vol(¢oz) =
Vol(z).
If M has boundary, the invariance property (b) is required to hold only for isome-
tries ¢ near the identity that preserve z(OM), i.e., ¢(z(0M)) = z(0M). An em-
bedding will be called regular if it is contained in some open set U of C>(M, M)
which is the domain of some invariant volume functional.

Example 5.3. If x(M) is the boundary of a bounded open subset of M, then z
is regular. If M is non-compact, and Iso(M, g) is compact, then every embedding
into M is regular. If x: M — M has image contained in some open subset U C M
whose mth de Rham cohomology vanishes, then z is regular. In particular, if
M = R™! or M = $™*! then every embedding into M is regular, see [9, Ex 5].

Third, when considering an invariant volume functional as above (defined in
a neighborhood of a given embedding), the left-composition action of Iso(M, g) has
to be restricted to this domain, giving rise to a local action. As remarked above,
standard techniques apply to have the necessary results also in the case of local
actions.

With the above considerations on the (topological) manifold £(M, M) of
unparameterized embeddings of class C*“ and the local existence of an invariant
volume functional, we may study the CMC variational problem in this precise
global analytical setup. The functional (5.1) is then well defined and smooth in a
neighborhood of a smooth unparameterized regular embedding, and formulas (5.3)
and (5.4) hold with the appropriate identifications above mentioned.

1 As a map from a neighborhood of the origin in C%*(M) to R.
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5.3. Equivariant bifurcation using Morse index

We will now use our abstract equivariant bifurcation result to obtain a bifurcation
result for CMC embeddings when there is a jump of the Morse index. Let us recall
some basic terminology. Assume that [a,b] 3 r — z,, € C>*(M, M) is a continuous
family of CMC embeddings of M into M (which already implies that x,.: M — M
is smooth'?) and let H, denote the value of the mean curvature of z,.. An instant
4 € Ja, b is a bifurcation instant for the family (2, ),c[q,p) if there exists a sequence
ry, in [a, b] tending to r. as n — oo and a sequence z,, of CMC embeddings of M
into M, with the mean curvature of z,, equal to H,., such that z,, tends to x,, in
C%*(M, M) as n — oo, and, for every n, z,, is not isometrically congruent to . .

Given a CMC embedding x: M — M, let G, denote the closed subgroup
of Iso(M, g) consisting of isometries ¢ that leave z:(M) invariant, i.e., such that
¢(z(M)) C z(M). In other words, G, is the isotropy of z under the action of
G. Since M is compact and the action of G is proper, G, is compact. The Lie
algebra g, of G, is identified with the space of Killing vector fields of (M, g) that
are everywhere tangent to x(M). The codimension of G, in G is equal to the
dimension of JacX.

Theorem 5.4. Let [a,b] > r v x, € C>*(M, M) be a C*-map, where x,.: M — M
is a reqular CMC embedding for all r, having mean curvature equal to H,. Let
r« € la,b] be an instant where
(a) the derivative H]. of the map [a,b] > r — H, € R at 7, is nonzero;
(b) for e > 0 small enough:
(bl) z,,_c and x,, 4o are nondegenerate;

(b2) the identity connected component GO of the isotropy G, does not depend
onr, forr € [r. —e,re +¢l;

(b3) iMorse(xT*—E) 7é iMorse(xr*+5)~
Then, 1y is a bifurcation instant for the family ().

Proof. We first verify that the CMC variational problem satisfies the required
conditions and then use Theorem 4.3 to obtain the conclusion. In the notation of
Section 4, we have By = C**(M), By = C»*(M) and H = L*(M,v), where v is
an arbitrarily fixed volume form (or density) on M. It will be convenient to choose
v to be the volume form of the pull-back metric x} (g).

Let V be the Levi-Civita connection of (M,g). Using this connection, one
can define an associated natural connection on Emb*®(M, M), as in Example 2.3.
This connection is defined on the entire manifold C*“(M, M), and is characterized
by the fact that the evaluation maps ev,: C¥(M, M) — M, p € M, are affine
(Proposition 2.4).13

121t is well known that CMC hypersurfaces are the solution to a quasilinear elliptic PDE, hence
smoothness follows from usual elliptic regularity theory.

13 An explicit description of the horizontal distribution of this connection is given as follows.
The tangent bundle of C%®(M, M) can be naturally identified with C>% (M, TM); an element of
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Let G be the identity connected component of Iso(M, g), which is a (finite-
dimensional) Lie group, and consider the smooth action of G by left-composition
on C*>*(M,M). Clearly, Emb®“(M, M) is invariant by left-compositions with
diffeomorphisms of M, so we have an induced action of G on Emb®® (M, M).
Since isometries preserve the Levi—Civita connection, the actions of G on both
C>*(M, M) and Emb>*(M, M) are by affine diffeomorphisms, see Proposition
2.6. We observe furthermore that the left-action of G' on Emb®®(M, M) com-
mutes with the right-action of the diffecomorphism group Diff(M). This implies
that one can define a left-action of G on the quotient space (M, M). Finally,
we recall from Proposition 2.5 that the right-action of Diff (M) on Emb®®(M, M)
is by affine diffeomorphisms, so that one has an induced connection on £(M, M)
which is preserved by the action of G.

Let 2: M — M be a C*>“ embedding. Since the action of G on M is proper,
and M is compact, then the isotropy group G, is a compact subgroup of G.
We recall from [2] that there exists a natural (topological) atlas of continuously
compatible charts of £(M, M) such that, in these charts, the (local) action of G is
differentiable at the class [z] of every smooth embedding : M — M. In particular,
if 2 has constant mean curvature, then the action of G on £(M, M) is differentiable
at [z]. Moreover, by Lemma 3.3, [z] admits arbitrarily small neighborhoods in
E(M, M) that are invariant by G,. With this, we are in the variational framework
described in Axioms (a), (b) and (c) of Section 3.

By assumption (a), there exists a C! function H — r(H), defined in a neigh-
borhood of H, , with the property that the (constant) mean curvature of x, g is
equal to H, for all H in this neighborhood. Thus, we may assume that the CMC
embeddings x,., for r close to r,, are parameterized by their mean curvature H,
instead of r, and we write g, . Consider an invariant volume functional Vol de-
fined in a neighborhood U C C**(M, M) of zy, . For H near H,, consider the
one-parameter family of functional fg : U — R given by (5.1). The group G acts by
affine diffeomorphisms on the manifold C% (M, M) by left-composition; in particu-
lar, we have a local action on the open subset . Since both Area and Vol are invari-
ant under composition on the right with isometries of (M, g), then fg is invariant
under the local action of G. Moreover, Area and Vol are invariant under right-
composition with diffeomorphisms of M, so fg gives a well-defined smooth func-
tional on the quotient space E(M, M), as discussed before in Subsection 5.2. With
the appropriate identifications, the first variation formula for this functional is
given by (5.3), which means that the map 0fgy (z): U C By — By defined in (4.1) is

O () = m(H — H(x)) b, (5.8)

C%*(M,TM) is a map of class C>® from M to TM, which is a vector field of class C>* in M
along some function f: M — M of class C*®. The tangent space to C>(M, T M) at the point X
is the space of vector fields of class C%® in TM along X, i.e., maps n: M — T(T M) of class C%%
such that n(p) is a tangent vector to T'M at the point X (p), for all p € M. The vertical subspace
is given by those 7’s such that n(p) is vertical, for all x € M. The horizontal subspace is the
space of maps 7 such that n(p) is horizontal relatively to the connection V of M for all p € M.
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where ,: M — R* is the unique map satisfying 9, vol(z,, y«(
particular, wzH” =1.

g9) — Vle*(g), in

As mentioned above, if [z] € E(M, M) is a critical point of fz7, then the second
variation of fg at [z] is identified with the quadratic form (5.4) on Tj,)E(M, M) =
C%%(M). The differential d(dfy)(x,,): Ba — By is the linearization of the mean
curvature function, which is precisely the negative Jacobi operator —J,, u,., - This is
an essentially positive Fredholm operator from C%%(M) to C%%*(M), see [25, 26].14
Thus, assumption (a) of Theorem 4.3 is satisfied, see Remark 4.4. Assumptions
(b1), (b2) and (b3) respectively imply the hypotheses (b),'® (c) and (d) of Theo-
rem 4.3. The claimed result then follows immediately from Theorem 4.3. O

Remark 5.5. Theorem 5.4 uses the assumption that the mean curvature function
r +— H, has non-vanishing derivative at the bifurcation instant r.. Such assumption
is used in the proof in order to parameterize the trivial branch of CMC immersions
through the value of their mean curvature. A natural question is if this assumption
is necessary. The following simple examples show that it is indeed necessary, i.e.,
bifurcation may not occur otherwise.

Example 5.6. Consider the two-variable function f(x,y) = 4y3+6zy? + 32y — 322y
on the plane. We can regard it as a family of functions of y, parameterized by .
For each fixed x, we look at the critical points of the function y — f(x,y), i.e.,
we look for the zeros of the partial derivative gg’; = 12y2 + 122y — 3z + 322. Near

16

(0,0), the points (z,y) that solve gf = 0 form a smooth curve'® contained in the
y

half-plane & > 0, tangent to the y axis at (0, 0). Notice that the Implicit Function
Theorem cannot be used in this situation, as gi’; (0,0) = 0. Observe also that the
function x is not locally injective on the points of the curve near (0,0), since for
each x > 0 there are exactly two solutions of 12y? + 12zy — 3z + 322 = 0, one
with y > 0 and another with y < 0. At all points (z,y) on this curve with y > 0,

the second derivative gzj; = 24y + 12z is positive, while it is negative at all points

(z,y) on the curve with y < 0. Thus, there is a jump of the Morse index at the
point (0,0), but there is no bifurcation.

Example 5.7. An explicit counterexample to CMC bifurcation can be given when
assumption (a) of Theorem 5.4 is not satisfied. Consider the family [-1,1] > r —
x,, where x, is the embedding into R> of the spherical cap above the zy-plane
of the round sphere centered at (0,0,r) of radius V1 + 2. These spherical caps
have the same boundary, which is the circle C of radius 1 in the xy-plane centered

at the origin, see Figure 1. Both principal curvatures of x, are equal to \/1}‘_#,

hence also its mean curvature is H, = Notice that H, attains its maximum

1
V14r2®

4Indeed, observe that —Agy,, is a positive isomorphism from C2(M) to CO%(M).
5The group GY is nice in the sense of [21] because it is connected.
16By explicit calculation, the curve is the graph of the function = ; (1 — 4y —+/1— Sy).
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FIGURE 1. Family of spherical caps with the same boundary C, the
unit circle in the xy-plane.

Hy = 1 at the half-sphere, hence assumption (a) of Theorem 5.4 is not satisfied
when 7, = 0.

All other assumptions (b1), (b2) and (b3) are satisfied. Namely, the only
degeneracy instant!'” of (), is precisely 7. = 0. A jump of the Morse index can
be obtained applying an adequate version of the Morse Index Theorem to (z;),.
In fact, imorse(zr) can be written as the sum of degeneracy instants s € [—1,7]
(counted with multiplicity), and hence is a non-decreasing function of r that jumps
as r crosses r, = 0.

Finally, bifurcation does not happen at r, = 0. Since (z,), are embedded in
the half-space z > 0 of R? and meet the plane z = 0 transversely, along the circle
C, any bifurcating branch would satisfy the same properties for a short time. From
the a maximum principle type argument (the Alexander reflection method), any
such CMC surfaces must be spherical caps, see [12].

1"Note that when r = 0, there exists a Jacobi field f = (K, Ny,), where K = aaz and Ny, is the
unit normal field along xg. This Jacobi field is in Jacs, but not in Jacfo , since K is not tangent
to the half-sphere (but only to its boundary). Hence, zq is a degenerate CMC embedding.
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5.4. Equivariant bifurcation using representations

It is possible to use representation theory to prove a slight generalization of The-
orem 5.4, that gives a subtler criterion for equivariant bifurcation, without nec-
essarily having a jump of the Morse index. As we will see in Subsection 5.6, this
finer result is efficient in geometric applications where the direct computation of
the Morse index is not feasible.

As mentioned above, given a transversely oriented CMC embedding x: M —
M, we identify the tangent space Tj;E(M, M) (i.e., the space of normal vector
fields along x) with the Banach space C%®(M). Under this identification, we may
consider the isotropy representation at z, induced by the left-composition action
of Iso(M, g), as the representation m: G, — GL(T};€(M, M)) that maps ¢ € G,
to the operator of left-composition with di, i.e.,

W:GIXT[JC]E(M,M) — T[x]g(M,M)
W f) — dpof

In more elementary terms, 7(¢) acts as follows on a normal vector field f €
C>%(M) along x. Consider the variation of x induced by f, s = exp*(sfN,),
s €] —¢,el. Then 7(¢)f is the normal vector field (fsw SER |S:0 along x.

If f: M — R is an eigenfunction of the Jacobi operator J;, see (5.5), then
m(Y)f = di¢ o f is another eigenfunction with the same eigenvalue, for all ¢ €
Iso(M,g). This means that the isotropy representation 7w of G, restricts to a
representation of G, on each eigenspace of the Jacobi operator. More precisely, if
A is in the spectrum o(.J,) of J, and E} is the corresponding eigenspace, we let
721 Gy — GL(E}) be the representation defined as the restriction of 7 to E}, i.e.,

W) f =dvof, ¢ EG,, f€E).

Let us define the negative isotropy representation m; as the direct sum of all the
representations 77, as A varies in the set of negative eigenvalues of J,, i.e.,

x
— A
™= @B ™

A€o (Jg)
A<0

which is a representation of G, on E; = @Pireo(.,) Ea, compare to (4.4).
A<0
Observe that inorse(x) = dim(E, ). In Theorem 5.4, assumption (b3) can

be hence written as dim(E,, ) # dim(E,, ). Recall that two representations
mi: H — GL(V;), i = 1,2, of H are equivalent if there exists an H-equivariant
isomorphism from V; to V5, which in particular implies dim V; = dim V5. With
this notion, we can weaken (b3) and still obtain bifurcation.

Theorem 5.8. Replace the assumption (b3) of Theorem 5.4 with

(b3') the representations T, . andm, _ of GY are not equivalent.

Then, the same conclusion holds, i.e., T« is a bifurcation instant for the fam-
ily (zr)r-
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Proof. The same proof of Theorem 5.4 applies, where instead of Theorem 4.3, we
use Theorem 4.5 to obtain the conclusion. O

Remark 5.9. Theorems 5.4 and 5.8 hold verbatim in the case of CMC embeddings
of compact manifolds M with boundary. In this case, a fixed boundary condition
is necessary, namely, assume that the embeddings z, satisfy z,.(OM) = X, with ¥
a fixed codimension 2 submanifold of M. In this situation, the notion of nonde-
generacy requires a suitable modification. Given a CMC embedding z: M — M
satisfying x(OM) = X, the space Jac, is the set of Jacobi fields along x that van-
ish on M, and the space Jacf is defined to be the vector space spanned by all
functions of the form g(K, N, ), where K is a Killing vector field in (M, g) that is
tangent to (M) along 2:(OM). Then, z is said to be nondegenerate if JacX = Jac,.

Remark 5.10. As we saw in Example 5.6, assumption (a) cannot be omitted in
Theorems 5.4 and 5.8. However, it seems reasonable that assumption (b2) may
be weakened. Consider the more general case in which the identity connected
component G¥ of the isotropy of z, is a continuous family of Lie groups. This
means that the set Ure[a,b] GY has the structure of a topological groupoid over
the base [a,b], with source and range map given by the projection onto [a,b]. A
notion of continuity (in fact, smoothness) for families of Lie groups is given in
[23], and a CMC version of an equivariant implicit function theorem in the case
of varying isotropies is discussed in [24], where the authors prove the existence of
non-embedded CMC tori in spheres and hyperbolic spaces. Evidently, the validity
of an equivariant bifurcation result in the case of varying isotropies would employ a
theory of existence of slices for groupoid affine actions, along the lines of the results
discussed in Section 3. This is a topic of current research by the authors, see [10].

5.5. Clifford tori in round and Berger spheres

Let us discuss some bifurcation results for CMC hypersurfaces by the second named
author and others that can be reobtained as an application of Theorem 5.4.

The family z,: $7 x §™ — 7T *! of CMC Clifford tori in the round sphere,
defined by

oo (2,y) = (rx, \/1—7‘2y), relo, ], (5.9)

is studied in [3]. The central result gives the existence of two sequences r,, and
rl,, with lim, e 7, = 0 and lim,, o 7}, = 1, of degeneracy instants for the em-
beddings x,, with bifurcation at each such instant. In the case n = m = 1, an
explicit description of the bifurcating branches is given in [14]; such branches are
formed by rotationally symmetric embeddings of $! x $! that are analogous to the
classical unduloids in R3. The connected component of the identity of the isotropy
of every Clifford torus z, is the group SO(n + 1) x SO(m + 1), diagonally em-
bedded into the isometry group SO(n + m + 2) of the round sphere $"*™+1. The
Jacobi operator of Clifford tori has a simple form, due to the fact that the Ricci
curvature of the ambient and also the norm of the second fundamental form are
constant functions. Moreover, the induced metric is the standard product metric
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of §" x $™. Nondegeneracy and jumps of the Morse index are computed explicitly
in this situation using the eigenfunctions of the Laplacian on $" x $™.

A similar analysis is carried out in [19], in the case of embeddings z, - : gt x
$! — §2, as in (5.9), into the three-dimensional Berger sphere $2, with r € ]0,1[
and 7 > 0. In analogy with the standard round case (which corresponds to 7 =
1), also these embeddings are called Clifford tori, and they have constant mean
curvature. For 7 # 1, the identity connected component of the isometry group of
$3 is SU(2), and the isotropy of every Clifford torus z,, is $' x $!, diagonally
embedded in SU(2). The space of Killing—Jacobi fields along z, r has dimension 3
when 7 # 1, while the dimension is 4 in the round case 7 = 1. The induced metric
on the torus is flat, but not equal to the product metric. A spectral analysis of the
Jacobi operator, which is the sum of a multiple of the identity and the Laplacian
of a flat (but not product) metric on the torus, is carried out in [19], leading to
the following bifurcation result.

Theorem 5.11. For every T > 0, there exists a countable set A, C ]0,1[ with the
following properties:

(a) inf A, =0 and sup A, = 1;

(b) for all v, € A;, the family r — x, , bifurcates at r = r.
Furthermore, for every r € |0,1[ there exists a countable set B, C 0,1[J]1, +o0]
with the following properties:

(¢c) sup B, = +oo;

(d) given r €]0,1[, for all 7. € B, the family T — x, . bifurcates at T = Ty.

The above, as well as the bifurcation statement in the case of the round
sphere, can be proved as an application of Theorem 5.4.

5.6. Rotationally symmetric surfaces in R3

Both results discussed above of bifurcation for the families of Clifford tori in round
and Berger spheres can be obtained as an application of Theorem 5.4, given that
there is a jump of the Morse index at every degeneracy instant. However, an explicit
computation of the Morse index is not feasible in many situations, whereas the
weaker assumption of Theorem 5.8 on the jump of the isotropy representation may
actually be an easier task. An example of this situation is provided by rotationally
symmetric CMC surfaces in R3. This problem is studied in detail in [17].

For convenience of notation, write $' = [0,27]/{0,27}. Let us consider
the case of a family of fixed boundary CMC rotationally symmetric surfaces
xq: [0, L] x $¢ — R3, r € I C R, whose boundary in the union of two co-axial
circles lying in parallel planes of type z = const., see Figure 2. Assuming that the
rotation axis is the line z = y = 0, then x,(s, ) can be parameterized by

x(s) = zr(s)cosO, y(s) =x,(s)sinb, z(s) = z(s),

for some smooth functions x,, > 0 and z,, where s € [0, L,] is the arc-length
parameter of the plane curve v,(s) = (,(s), z(s)), and 6 € $'. A direct compu-
tation gives that the Laplacian of the induced Riemannian metric on the cylinder
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e

S

FIGURE 2. The boundary conditions considered for rotationally sym-
metric CMC surfaces in R?, and an example of such a surface, a nodoid
(viewed in half in the second picture and full in the third picture).

M =10,L,] x §' is
Ao o), 1
"z, Os 9 x2 902’

and the square norm of the second fundamental form is

M

Zr

A, 1* = (Erty = in2r)* +
T

)

where dot represents derivative with respect to s. The eigenvalue problem for the
Jacobi equation reads

J(F)=—AF— A, |?F=\F, F(0,0)=F(L,,0) =0.
Separation of variables F'(s,8) = S(s)T'(6) yields the following pair of boundary
value problems for ODE’s:

T" + kT =0, T(0)=T(2r), T'(0) = T'(27),
—(@r8") + (5 = 2l A ) S = A2pS, S(0) = S(Ly) =0.

x
The first problem has nontrivial solutions when s = n?, n € Z, n > 0, with
corresponding eigenfunctions cosnf and sinnf; substituting x = n? in the second
problem we get:

2
o Y, n
5+ (7

T

S(0) = S(L,) = 0.

Every (nontrivial) solution S, , of the Sturm-Liouville system (5.10) produces
two (nontrivial) eigenfunctions of the Jacobi operator along the CMC surface x,.,

— oA ?) S = Az, S,
wrll A ) . (5.10)
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given by S;.,, cosnf and S, ,, cosnf. The classical Sturm-Liouville theory gives the
existence of an unbounded sequence of eigenvalues of (5.10), and the corresponding
eigenfunctions are smooth and form a Hilbert basis of L*([0, L,]). Every solution
of the above system with n > 0 produces eigenfunctions that are not rotationally
symmetric. The rotationally symmetric solutions correspond to n = 0, in which
case the Sturm—Liouville equation reads:
—(2,8") — x| Ay, ||* S = Mz, S, (5.11)
S(0) = S(L,) =0. ’
We will say that r is a conjugate instant for the Sturm-Liouville problem if
(5.10), has a nontrivial solution with A = 0. Evidently, if r is a conjugate instant,
then the CMC embedding x, is degenerate. In this setting, Theorem 5.8 can be
applied to obtain the following bifurcation result.

Theorem 5.12. Consider the family r — x, of rotationally symmetric CMC sur-
faces in R3 having fired boundary described above. For every fized n > 0, let r,, be
the first conjugate instant of the Sturm—Liouville equation (5.10). Assume that 1y,
s an isolated degeneracy instant for the family x,., and that the derivative of the
mean curvature function H) is not zero. Then, ry, is a bifurcation instant for the
family of CMC surfaces (x,)r. Moreover, if r,, is not a conjugate instant also for
the Sturm-—Liouville problem (5.11), then break of symmetry occurs at the bifur-
cating branch, i.e., the bifurcating branch consists of fized boundary CMC surfaces
that are not rotationally symmetric.

Proof. Theorem 5.8 applies here in the following setup. The (identity connected
component of the) isotropy of x, is!® the group of rotations around the z axis.
Assumptions (a), (b1l) and (b2) of Theorem 5.4 hold at the instant 7, under our
hypotheses. Assumption (b3’) of Theorem 5.8 holds at the first instant at which
(5.10) admits a nontrivial solution. Namely, for r < r,,, the negative isotropy repre-
sentation 7 of the group of rotations has no vector whose isotropy is isomorphic
to Z,. On the other hand, for » > r,, with r — r,, sufficiently small, the two Ja-
cobi fields determined by the nontrivial solution of (5.10) belong to the negative
eigenspace of J,, and they have isotropy isomorphic to Z, . This implies that for
€ > 0 small enough, the representations 7, __ and m __ are not equivalent.
Thus, from Theorem 5.8, bifurcation occurs at 7. As to "the break of symmetry,
we observe that if r,, is not a conjugate instant for (5.11), then the symmetrized
CMC variational problem is nondegenerate at r,, and bifurcation by rotationally
symmetric CMC embeddings cannot occur. O

We observe that, under the assumptions of Theorem 5.12, jump of the Morse
index may not occur at r,,. An example where the above result applies is provided
by families of fixed boundary nodoids, see [17] and Figure 2.

18Namely, the subgroup of isometries of R? that preserve two co-axial circles lying in parallel
planes is generated by the group of rotation around the axis, and, if the two circles have same
radius, by the reflection about the plane equidistant to the two parallel planes.
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Appendix A. Nonlinear formulation of the bifurcation result

We consider a variational setup similar to that of Section 3, namely M is a smooth
Banach manifold, G is a Lie group acting continuously by diffeomorphisms on M
(recall the auxiliary maps (3.1)), and we also have

(a) &€ — M is a Banach vector bundle over M;

(b) [a,b] > A+ T\ € I'(§) is a continuous path of G-equivariant sections;

(¢) the action of G on M lifts to an action of G on &, which is linear on the
fibers;

(d) [a,b] 2 A= x) € M is a continuous path such that Ty (zy) = 0, for all \.

Analogously to Definition 4.1, an instant A, € [a, b] is an equivariant bifurca-
tion instant for the family (Tx, x)xe[a,p) if there is a sequence (2, An) € M x [a, b]
satisfying (1), (3) and T, (x,) = 0, for all n, which corresponds to (2). In order
to give an existence result for an equivariant bifurcation instant, let us consider
the following auxiliary!? structure

(e) i: TM — & is a G-equivariant continuous inclusion (i.e., an injective mor-
phism of vector bundles) with dense image;

(f) (-,-) is a G-invariant continuous (but not necessarily complete) positive-
definite inner product in the fibers of &;

(g) in: Exy — Ty, M* is the map jr(e)v = (e,i(v)), and the composition j o
(d¥'Ty)(zr): Ty, M — Ty, M* is symmetric for all A.

For all A € [a,b] and all n > 0, set
Ny = span{v € Tpy, M A" T (za)v = pi(v), p < 77},

and Ny := N o, compare with (4.2) and (4.3). If G C G is the isotropy of x, we
have the isotropy representation Gy 3 g — d¢g(zy) € GL(T;, M). For all n > 0,
the space N, is invariant by this action. Denote by 7 : Gy — GL(Ny) the re-
striction of such representation, which is called the negative isotropy representation
of G (compare with (4.4)).

We can now state the nonlinear formulation of the celebrated result of J.
Smoller and A. Wasserman [21, Thm. 3.3], whose proof follows its linear version,
using the above auxiliary structure.

Proposition A.1. In the above setup, assume that

(a) there exists € > 0 such that dim(Ny o) < +o0, for all A € [a,b];

(b) for all \, Gy = G;

(¢) ATy (zq): Ty, M — &y, and A Ty(ap): Tp, M — &, are isomorphisms;
(d) the negative isotropy representations m, and m, are not equivalent.

Then, there is an equivariant bifurcation instant in |a,b| for the family (Tx,zx)x-

19Compare with the structure employed in [9, Section 3].
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Abstract. We study a degenerate elliptic equation, proving existence results
of distributional solutions in some borderline cases.
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Bernardo, come vide li occhi miei . ..

(Dante, Paradiso XXXI)

1. Introduction

The Sobolev space W,">(Q) is the natural functional framework (see [10], [12]) to
find weak solutions of nonlinear elliptic problems of the following type

—di o(z)Vu > =f, in
Y <<1 uye) =7 W
u =0, on 0,

where the function f belongs to the dual space of WO1 2(Q), Q is a bounded, open
subset of RY, with N > 2, # is a real number such that

0<0<1, (2)
and a : Q — R is a measurable function satisfying the following conditions:
a<a(z) <p, (3)

This paper contains developments of the results presented by the first author at IX WNDE (Jodo
Pessoa, 18.9.2012).
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for almost every x € (), where a and (3 are positive constants. The main difficulty
to use the general results of [10], [12] is the fact that

. a(z)Vv
A(w) = —d
@ ==a (1Tl
is not coercive. Papers [7], [4] and [3] deal with the existence and summability of
solutions to problem (1) if f € L™(Q), for some m > 1.

Despite the lack of coercivity of the differential operator A(v) appearing in
problem (1), in the papers [7], [4] and [1], the authors prove the following existence
results of solutions of problem (1), under assumption (3):

A) a weak solution u € Wy'?(Q) N L>(Q), if m > ¥ and (2) holds true;
B) a weak solution u € Wy *(Q)NL™ (1=0)(Q), where m** = (m*)* = NN if

0<f<1 2N <m< N
CON42-O(N-—2) = 2’
Nm(1-6
C) a distributional solution u in W, %(Q), ¢ = N —mn(1(1 +)9) <2,if
<0 <1, N <m< 2N
N-1° N+1-6(N 1) N+2-6(N—-2)
D) an entropy solution u € M™ (=9 with |Vu| € M(Q), for 1 < m <
N

max L, yoq_gv_1)
The borderline case §# = 1 was studied in [3], proving the existence of a solution
u € Wy?(Q) N LP(Q) for every p < oo. The case where the source is ‘;4‘2 was

analyzed too.
About the different notions of solutions mentioned above, we recall that the
notion of entropy solution was introduced in [2]. Let

Tols) — s if |s| <k, A
k(s) = kg if s> k. (4)

Then u is an entropy solution to problem (1) if Ty (u) € Wy*(Q) for every k > 0
and

/(T(f)vp VT (u /ka (w—g), YeeWlAQ)NL=Q).

Moreover, we say that w is a distributional solution of (1) if

[ v /f% Y€ C(0). o)
Q

The figure on top of the next page can help to summarize the previous results,
where the name of a given region corresponds to the results that we have just
cited.
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m A
N/2
B
2N/(N+2) C
D
1/(N=1) 0

Our results are the following.

Theorem 1.1. Let f be a function in L™ (2). Assume (3) and

N
<f<1

1
"TNt1-0N-1) N-1 (6)

Then there exists a W' (Q) distributional solution to problem (1).

Observe that this case corresponds to the curve which separates the regions
C and D of the figure. Note that m > 1 if and only if § > Nl—l‘

Also in the following result, we will prove the existence of a W' (Q) solution.

Theorem 1.2. Let f be a function in L™(Q). Assume (3), flog(1 +|f|) € L*(£2)
and § = ' |. Then there exists a Wyt () distributional solution of (1).

We end our introduction just mentioning that a uniqueness result of solutions
to problem (1) can be found in [13].

Moreover, in [4, 5, 11, 6] it was showed that the presence of a lower-order
term has a regularizing effect on the existence and regularity of the solutions.

To prove our results, we will work by approximation, using the following
sequence of problems:

—div <(T(i)|3,j§9) =T,(f), inQ;

Up = O, on 39

(7)

The existence of weak solutions u,, € W, *(2)NL>®(Q) to problem (7) is due to [7].
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Wyt (Q) solutions

In the sequel C' will denote a constant depending on «, N, meas(2),0 and the
L™(Q) norm of the source f.

We are going to prove Theorem 1.1, that is, the existence of a solution to
problem (1) in the case where m = ) and < § < 1. Note that

m>1ifand0nlyif¢9>Nl1

N
N+1-6(N-1 Nl

Proof of Theorem 1.1. We consider T} (u,,) as a test function in (7): then

L+&) 1,
u/vn@m?s( Wl (8)
Q

«

by assumption (3) on a.
Choosing [(1 4 |un|)? — 1]sign(uy), for p =0 — ' |, as a test function in (7)
we have, by Holder’s inequality on the right-hand side and assumption (3) on the

left one
Vu,
ap/{ Ve } /U|1+WA )
(1 + a0t

<l gy | [ 10+ a1 | ™

Q

The Sobolev embedding used on the left-hand side implies

[/{(14— \un\)z(z\z(rizn _ 1}]3N2] . < C-/[(1+|un|)p_1]m’ "
Q o J

[

Q
We observe that ( - 1) 1\2,N2 pm’; moreover 22* > T:L,, since m < J;’ Therefore
the above inequality implies that
/\un\N]il <c (10)
Q

One deduces that

2
g (L fun[) v

from (10) and (9). Let 2AN-1 1 2V 1) — 1]si Esti 11) i
v = "o (14 |unl) |sign(uy,). Estimate (11) is

equivalent to say that {v,} is a bounded sequence in W, *(Q); therefore, up to a
subsequence, there exists v € Wol’z(Q) such that v,, — v weakly in Wol’z(Q) and

2(N—1)

a.e. in Q. If we define the function u = ( {25\,__21) lv] + 1} R 1)sign(v), the
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weak convergence of Vv, — Vv means that
Vg, \Y .
oo Y. weakly in L3(Q). (12)
(1 + )2 (1 fu) 2
Moreover, the Sobolev embedding for v,, implies that w, — u in L*(Q), for every
1<s< NJ\_’ 1
Holder’s inequality with exponent 2 applied to

Vun N
/|v o= / Venl 0 gy 2e
(14 [un]) 25

/|vun\ <c, (13)
Q

gives

due to (10) and (11). We are now going to estimate / |Vuy,|. By using [(1+

{k<|unl}
[un])P — (1 + k)P]Tsign(u,) as a test function in (7), we have

Vil sc[ / |fm]i[/<1+un>w”l}”l”,

14 |y, |) v-1
{kS\un\}( fenl) {l<lunl} Q

which implies, by (10),

<1+V|ZL||>2NNISC[ / f'mr (14)

{k<|unl} {k<|unl}

Holder’s inequality, estimates (10) and (14) on

1
v n 2m
Vua| = B T el AVl
(1 + fun[) 2v-=2
{k<lunl} {h<lunl} {k<|unl}
give
2m
Vua| = D o e I Y
(L4 |up|) 2=
{k<|un|} {r<lunl} {k<|un|} as)
15
Thus, for every measurable subset E, due to (8) and (15), we have
uy,
/ o /|wn\</|v:rk ()| + / V|
| {E=lunl}
(R R
< meas(F)> N +C / F™

{k<|unl}
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Now we are going to prove that u, weakly converges to u in W' (Q) following [5].
Estimates (16) and (10) imply that the sequence {%’;n} is equiintegrable. By the
Dunford-Pettis theorem, and up to subsequences, there exists Y; in L(Q) such
that %7;’; weakly converges to Y; in L(). Since %7;’; is the distributional partial

derivative of u,, we have, for every n in N,

Ou, Oy .
axigp——/unaxi, Ve Cy® ().
Q

We now pass to the limit in the above identities, using that d;u,, weakly converges
to Y; in LY(Q), and that u, strongly converges to u in L!(Q): we obtain

e
Yip=— , vV Cr ().
Q Q

This implies that Y; = g;f , and this result is true for every . Since Y; belongs to
LY(Q) for every i, u belongs to W, " (Q).
We are now going to pass to the limit in problems (7). For the limit of the

left-hand side, it is sufficient to observe that Vin o Vu o weakly
(It|up|) 2N =1 (1+|ul) 2N =1)
in L2(Q) due to (12) and that |a(x)Vp| is bounded. O

We prove Theorem 1.2, that is, the existence of a I/VO1 1(Q) solution in the

case where § = ' | and flog(1+|f]) € L'(Q).

Proof of Theorem 1.2. Let k > 0 and take [log(1+ |u,|) —log(1+ k)] "sign(uy,), as
a test function in problems (7). By assumption (3) on a one has

|V, |?
@ / (1 + |un|)9+1 S / ‘f| IOg(l + ‘un‘) .

{k<|unl} {k<|unl}

We now use the following inequality on the left-hand side:
a a
alog(l+b) < ) log (1 + p) + (1+0)” (17)

where a, b are positive real numbers and 0 < p < %j This gives, for any £ > 0

/ (V“”|2 < / |£10g(1+£|>+ / (1 + [un])?. (18)

14 |u,|)f+1
{k<|unl} {k<]unl} {k<|unl}

In particular, for £ > 1 we have

a [V, |2 £ £l
20+1 / fun o1 = / plog o 2 / funl?- (19)

{k<|un|} {k<|unl} {k<|unl}
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Writing the above inequality for £ = 1 and using the Sobolev inequality on the
left-hand side, one has

[/(lun|1f—1)i"] <c / 'J;log(uﬁ')w / ual”
Q {1<|unl} {1<|unl}

which implies that

|:/|un|(1 9)2 <C—|—C g<1+£|) +C /‘un‘p
Q

{1<\un\}

By using Hoélder’s inequality with exponent (1_2?2* on the last term of the right-
hand side, we get

[/ un(lgm*} <C+C / 1 log (1 + |f>
J P P

{1<]unl}

(—0)2* (1-ty2~
e / | " .
Q

By the choice of p, this inequality implies that
/ a2 < O (20)
Q

Inequalities (20) and (18) written for k = 0 imply that the sequence {v,}, v, =

{2,101+ |tn]) 2’ - 1]sign(u,)}, is a bounded sequence in W, (), as in the proof

of Theorem 1.1. Therefore, up to a subsequence there exists v € WO1 2(Q) such that
2

v, — v weakly in Wy ?(€2) and a.e. in . Let u = {['5% o] + 1] =% — 1}sign(v)

the weak convergence of Vv,, — Vv means that

Vug, Vu .
(1t ) - (1t )5 weakly in L2(Q). (21)
Moreover, the Sobolev embedding for v, implies that u, — w in L*(Q),s < Njil

By (8) one has

|V,
Jivwi= [rones [ owmisos [ T )
Q Q {(1<unl} (<lualy "

Holder’s inequality on the right-hand side, and estimates (19) written with k£ =1
and (20) imply that the sequence {uy,} is bounded in W' ().
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Moreover, due to (19)

|V, | 0+1
[ o= [
n

{k<|unl} {k<|unl}

<C / |£ log (1 + fj) + / [un|? .

{k<]unl} {k<|unl}

For every measurable subset F, the previous inequality and (8) imply

/ ouy,
axi
E

S/\Vun|§/|VTk(un)\+ / V|
E E {k<|un|}

< Cmeas(E)2(1+ k)2 +C / |,J(: log <1 + |Jpc> + / |[un P

{k<|un|} {k<|unl}
Since p < (1_29)2* , by using Holder’s inequality on the last term and estimate (20),
one has
3un 1 0
< Cmeas(E)2(1+k)z+
axi
E

+C / |,J(: log <1 + J;') + meas({|un| > k})l_(lfgﬂ* .
{k<|unl|}

One can argue as in the proof of Theorem 1.1 to deduce that u,, — u weakly in
1,1
W5 ().
To pass to the limit in problems (7), as in the proof of Theorem 1.1, it is suf-

ficient to observe that Vun o Vu o weakly in L%(Q), due to (21).
(T |un ) 2V =1 (1|u]) 2N =1
O
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Remarks on p-Laplacian Problems
Depending on the Gradient

H. Bueno and G. Ercole

Abstract. This paper collects and summarizes results of existence of positive
solutions for the p-Laplacian problem —A,u = w(z) f(u, |Vu|) with Dirichlet
boundary condition in a bounded domain Q@ C RY, where w is a weight
function and also for the problem in two positive parameters A and :

—Apu = Mz, u) + Bf(x,u, Vu) in Q
u =0 on 09.

Mathematics Subject Classification (2010). 35B09, 35J66, 35J70, 35J92.

Keywords. p-Laplacian, positive solution, sub- and super-solution method,
dependence on the gradient.

1. Introduction

Existence of positive solutions for p-Laplacian problems depending on the gradient
has been attracting considerable interest among researchers of elliptic PDE’s, but
no general method to deal with this kind of problem has been established. The
dependence on the gradient requests a priori bounds on the solutions and in their
derivatives, what brings additional difficulties. Since this problem is not suitable
for variational techniques, topological methods (as fixed-point or degree results)
and/or blow-up arguments are normally employed to solve it ([3] and references
therein).

Maybe because of the belief that the sub- and super-solution method does
not handle elliptic problems which are super-linear at the origin, such approach is
rare in the literature. One of the main purposes of this paper is to prove that this
belief is not true.

Both authors were supported in part by FAPEMIG and CNPg-Brazil.
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In this paper, we consider problems in the form
—Apu = f(z,u,Vu) in Q 1)
u =0 on 0f2

for various types of continuous nonlinearities f. Special attention is given to the
Dirichlet problem
—Apu = w(z)f(u,|Vul) in Q, 5
{ u=0 on 0f) @)
where Q C RY (N > 1) is a smooth, bounded domain, Ayu := div (|Vu[P~?Vu)
is the p-Laplacian, 1 < p < oo, w: Q — R is a continuous, nonnegative function
with isolated zeros (which we will call weight function) and the Cl-nonlinearity
f:10,00) x [0,00) — [0, 00) satisfies simple hypotheses.
Adapting methods and techniques developed in [7], where the nonlinearity
does not depend on Vu, we start by obtaining radial, positive solutions u for the
class of problem

~Ayu = wylle — zo)f(u, [Vul) in By, 5
u =20 on 0B,,

where B, is the ball with radius p centered at o and w, is a radial weight function.
The application of the Schauder Fixed Point Theorem yields a radial solution u of
(3) for a large class of functions f, including nonlinearities that are super-linear
both at the origin and at +oo. (The continuous function w has isolated zeroes only
to simplify the presentation. It is enough that w(xg) > 0 for some zy € Q.)

For this, no asymptotic behavior on f is assumed but, instead, simple local
hypotheses on the nonlinearity f. Our hypotheses on the nonlinearity f are not
usual in the literature: we assume that f has a local behavior satisfying hypotheses
of the type

(H1) 0 < f(u,|v]) < ki MP7L if 0<u< M, |v]| <M,

(H2) f(u,|v|) > ko671, if 0<d<u<M, |v] <yM,
where the constants ki, ko and v are defined later on in this paper and J§, M are
arbitrary. These constants depend strongly on the weight function w and it must be
stressed that they can be explicitly calculated in some special cases (for example,
if w = 1; see Example 9). In [4] it was proved that k1 < A1 < ko, where A; stands
for the first eigenvalue of the p-Laplacian.

Hypotheses (H1) and (H2) are geometrically interpreted in Figure 1. Observe
that, since no assumption is made both at the origin or at infinity, such a super-
linear behavior is permitted.

Hypotheses of this type will be considered in the scenarios of both the radial
problem (3) and the general problem (2).

In the case of the radial problem (3) no further hypotheses are necessary. It
will be considered in Section 3.

To apply the sub- and super-solution method to solve problem (2), a condition
of the Bernstein—Nagumo type is always assumed; in [2] the nonlinearity f is a
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UA/M

FIGURE 1. For t = |v|, the graph of f stays below k1 MP~1 in [0, M] x
[0,vM] and passes through the gray box.

Carathéodory function (i.e., measurable in the a-variable and continuous in the
(u, v)-variable) such that

(H3) f(z,u,v) < C(Jul)(1 + [v|P) (w,v) € R x RN, a.e. z € Q for some

u,
increasing function C': [0, co] — [0, o0].

This assumption is merely technical and can be chosen as any hypothesis
that guarantees the existence of a solution of (1) from an ordered sub- and super-
solution pair.

However, the acceptance of the growth condition (H3) poses another problem:
what happens in the case |Vul®, if b > p ? So, we also consider in this paper an
example where the exponent b in |[Vov|® is greater than p, see Section 6.

Our approach of problem (2) starts by considering the solution of (3) in a
subdomain B, C 2. A connection between both problem is achieved by defining
the weight w, in terms of w by

min w(z), if 0<s<p,

wp(s) = { |z —ao|=s (4)

w(xo), if s=0.

By choosing a ball B, C € and such a radialization of the weight function
w, we consider a problem in the radial form (3) in the sub-domain B,, which has
a solution u, as a consequence of our study of this problem. The chosen ball B,
determines the value of the constants k2 and y and the radial solution u,: B, = R
produces a sub-solution u of problem (2), when we consider the extension u of u,
defined by u(z) = 0, if z € Q\ B,,. So, the solution of (3) gives rise to a sub-solution
of problem (2).



148 H. Bueno and G. Ercole

In order to obtain a super-solution u for problem (2), we impose that

IVl _
fulle =7 ®)
an estimate that is suggested by hypothesis (H1). So, we look for a super-solution
of (2) satisfying (5) and defined in a (smooth, bounded) domain Qs O €, which
determines the value of the constant k1 needed to solve (2).
In the general setting of the domain 9, the super-solution v turns out to be
a multiple of the solution ¢q, of the problem

A0, = [l in Q. o
ba, =0 on 9y,

if ¢q, satisfies (5). In this setting, the existence of a positive solution for (2) is
stated in Section 4.

We give two applications of this result for general nonlinearities in Section
5. In the first application, given in Subsection 5.1, we choose a ball 2 = Bpg
such that 2 C Br and prove that, if R is large enough, it is possible to obtain a
super-solution for (2) satisfying (5).

The second application considers the case where 25 is the domain €2 itself. In
order to control the quotient (5), we assume 2 to be convex and apply a maximum
principle proved in Payne and Philippin [9]. In some cases, if we choose Q9 as the
convex hull of 2, the same method produces a better solution than considering
Q C Bpg for R large enough.

Inspired by the classical paper of Ambrosetti, Brezis and Cerami [1], in the
final Section 6 we consider a problem in two parameters, where |Vu| has an expo-
nent higher than p.

2. Preliminaries
Let D be a bounded, smooth domain in RY, N > 1.
We define
k(D) = || épl|PY (7)
where ¢p € CV*(D) N Wy (D) is the solution of

—AP¢D = Wp in l)7 (8)
¢D =0 on 3D,

where wp # 0 is any continuous, non-negative function. By the maximum princi-
ple, ¢p > 0 in D and kq(D) is well defined.

Remark 1. By applying the comparison principle in the domains ©; C Qo with
wq, < wq,, it follows immediately that

k1 (2) = [0, ll2P ™Y < [lda, |nP™ = ki ().
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In the special case D = B,, a ball of radius p centered at z¢ € £, let us
consider the Dirichlet problem

{ —Apd, = wp(|z — 20]) in By,

¢, =0 on 0B,, )

where w,: [0, p] = R.
It is straightforward to verify that the solution of (9) is given by

p 0 pil
¢p(x—xo|):/|_ (/O K(s,a)ds> do, |z — 20| < p, (10)

where

K(s,0) = (;)N_lwp(s). (11)

The solution ¢, satisfies ¢, € C*(B,) if 1 < p < 2 and ¢, € CH*(B,) if
p > 2, where @ = 1/(p — 1). (See [3], Lemma 2 for details.)
We also define another constant that will play an essential role in our tech-

nigque:
ko(B,) = th (/Ot K(s,&)ds) dal
_ [0?% / ’ < /0 TK(s,G)ds) & dO]

Since w, has isolated zeroes and the function

(12)

1-p

1

ﬂ%/ﬂp (/OﬂK(s,H)ds> a do

is nonnegative and vanishes both at § =0 and at 8 = p, we have ¢t > 0.

We now establish the relation between k(D) and k(B,), also valid in the
case D = B,,. Its proof follows by applying a comparison principle.

Lemma 2. Let D be a smooth domain in RN (N > 1), B, C D a ball of center
xo and radius p > 0 and ki1(D), ka(B,) the constants defined by (7) and (12),
respectively, where w, s a radial weight function such that wp > w, in B,.

Then, ki(D) < kao(B)).

3. Radial solutions

In this section we study the radial version of (2), that is
—Apu = wy(|lz = 2ol) f(u, [Vul) in By,
u=20 on 0B,,

where B, is a ball of radius p centered at zyp and w,: [0, p] = R.
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A solution of (3) will be obtained by applying the Schauder Fixed Point
Theorem in the space C'(B,). So, the hypothesis (H3) is not necessary; we only
need f to be continuous and to satisfy hypotheses (H1,) and (H2,) given below.

The radial boundary value problem equivalent to (3) is

g T e () = N lwp () f(u, [ ()]), 0 < <p
UI(O) =0, (13)
u(p) = 0,

where ¢p,(€) = [£[P72¢.
If g=p/(p—1) and u > 0, the function ¢,, inverse of ¢, is given by

oq(u) = |u|9 2y = u?™! = wrr ™t = gy,

It is not difficult to see that |[V¢,|lcc = maxo<,<, |9}, (r)]-
To prove the existence of solutions for problem (3), we suppose the existence
of § and M, with 0 < § < M, such that the nonlinearity f satisfies

(H1,) 0 < f(u,|v|) < ki(B,)MP~1 if 0 <u <M, |v| <~,M;

(H2,) f(u,|v]) > kg(Bp)(Sp_l, if §<u<M, |v] <v,M,

with k1(B,) and ka(B)) defined by (7) and (12), respectively, and v, defined by
Vol

léplloo (14)

Yo =
Note that

Véplloo 1/(p—1
= k(B =1 max
H¢p” 1( P) 0<r<p‘ ( )‘

ealia(8,) o oy ([ (o)
- s e (8 [ o).

We remark that ki1(B,), k2(B,) and ~, depend only on p and w,. The hy-
pothesis (H2,.) aims to discard u = 0 as a solution of (3), in the case f(0, |v]) = 0.
We also define the continuous functions ¥s, &5, and I'p; by

s, ifo<r<t,
_ p ¢
R I (zw(Bp) | K0 ds) @, itr<r<p 9
r 0

where ¢ is defined in (12),
vl ar &)
=M | ¢, k(B Ksﬁds df = L if0<r <p, (16)

||¢p\|oo

and

A
) = if r .
Ca(r) = Mcpq< / K(s, ) M||¢p||oo, O0<r<p (17)
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It is not difficult to prove!

Lemma 3. We have
(1) 0 S @1\/[(7') S M,'
(i) 0 <Tar(r) <7pM;
(111) 0 S \115(7“) S @1\/[(7').
The proof of Theorem 4 follows by applying Schauder’s fixed point theorem
and Lemma 3.

Theorem 4. Suppose that the continuous nonlinearity [ satisfies (H1,.) and (H2,.).
Then the problem

{ —Apu = wy(lz —xol) f(u, [Vul) in By,
u=20 on 0B,,
has at least one positive solution u,(|x — zo|) satisfying
Us <wu, <Py and |Vu,| <T'u
(and s0 § < |Juplloo < M and ||Vu,|o < 7o M).

(3)

4. Existence of solutions in general domains

In this section we state and prove our main result: the existence of a positive
solution for

{ —Apu = w(x)f(u, |Vul]) in Q, @)
u=20 on Jf).

We start by defining the parameters we need to formulate our hypotheses.

Let 5 be a bounded, smooth domain such that Q5 D € and define

ki (Q2) = [|a, 1557,
where ¢q, is the solution of
—Apda, = ||wlleo in Oz,
¢, =0 on 0€)s.
Now, for any ball B, C Q with center in zy € € and radius p > 0, let us to
denote by w, the radial function defined by (4). Thus, by using this function we
consider ka(B,) and v,, defined in accordance to the former definitions (12) and
(14), respectively.
At last, we fix p > 0 such that (see Remark 6, below)
Vool _
” ¢Q2 HOO
and then we set the parameters

]{11 = kl(Qg), ]CQ = kQ(Bp) and Y= Yp-

(18)

(19)

IFor both Lemma 3 and Theorem 4, see [3] for details.
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Theorem 5. Suppose that, for arbitrary §, M such that 0 < 0 < M, the nonlinearity
f satisfies:
(H1) 0 < f(u, [v]) < ke MP™Y f 0 S uw < M, v < yM;
(H2) f(u, |v]) = k26P™!, if 0 Su< M, [v| <yM;
(H3) f(u, |v]) < C(Ju]) (14 |v|P) for all (x,u,v), where C: [0,00) — [0,00) is
Increasing.
Then, problem (2) has a positive solution u such that
§ < ulloo £ M in Q.
Remark 6. We would like to observe that the inequality (19) always occurs, if p
is taken sufficiently small such that
Voo | 1
[6aallc — p

In fact, we have the gross estimate

(20)

1
<7, forany B, CQ

; _ IVéylleo
since vp = Yy and

p p
[@plloc = ¢ (0) = —/0 ¢, (s)ds = /0 ¢, (s)| ds < pl|[Vplloo-

We supposed that the weight function w has isolated zeroes. As mentioned,
this assumption is not necessary.

In Section 5 we give examples of Q3 and p satisfying (19). There, we consider
the cases 29 = Br D  and, supposing {2 convex, 25 = 2. Moreover, we present
better estimates than (20) to choose p.

The obtention of a sub-solution for problem (2) is based on the following
general result:

Lemma 7. Let Q and Q1 be smooth domains in RN (N > 1), with Q1 C Q. Let
uy € Che (Ql) be a positive solution of
—Apul = fl(x,ul,Vul) m Ql,
up =0 on 01,
where the nonnegative nonlinearity f1 is continuous.
Suppose also that
Z1 ={x € Q1 :Vu; =0}

s a finite set of points.
Then the extension

(2) = ui(z), if x€ Oy,
e = 0, if ze O\
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s a sub-solution of
—Apu = f(z,u,Vu) in Q,
u =20 on 02
for all continuous nonlinearities f >0 such that fi(x,u1,Vur) < f(z,u1,Vuy) in Q.

Proof. This proposition is a consequence of the Divergence Theorem combined
with the Hopf’s lemma. (See [3] for details.) O

Remark 8. The hypothesis on Z; can be obtained if we suppose, for instance,
0 < f(w,t,v) and that {(x,v) : f(z,t,v) = 0} is a finite set of points, for all ¢ > 0.
(Of course, the more interesting case occurs when f(z,0,v) = 0.)
Proof of the theorem. From Remark 1 follows that k1 (Q22) < k1(B,). So, if f sat-
isfies the hypotheses (H1) and (H2), it also satisfies the hypotheses of Theorem
4. By applying Theorem 4, there exists a positive radial function u, € C** (B,)
such that
—Apup = wp(lz — xol) f(up, [Vuyl|) in By(zo),

u, =0 on 9B,(xo).

Moreover, the only critical point of u, occurs at z = xo.
It follows from Lemma 7 that
() = { up,(z), %f r e B,
0, if v € Q\ B,

is a sub-solution of problem (2).

Define
u=M 0 .
[P, [l
Of course, u < M and ||Vul|s = MHHYZ;QQHLOC < 7,M, by hypothesis. So, it
follows from (H1) that f(u, |Vu|) < k1 (Q2)MP—L. Thus,
~agu= =, (M 2% ) < k@M el 2 f Va2
oo

and, since u > 0 on 9%, u is a super-solution of (2).
Moreover, the pair (u,u) is ordered. In fact, if x € Q\B, the result is imme-
diate. Otherwise we know that,

u:upeC:{uecl (Bp) :0<u< M, and HVUHOOS%M},
and therefore, by (H1), f(u,, |Vu,|) < k1(Q2)MP~! and then

—Apu = wp f (up, [Vup|) < ki (Q)MPHlwlloo = =4, (M Hdiﬂﬂ ) = A
We have p
u,=0< M Q2 _,
g [P oo

on 0B,. We are done, since follows from the comparison principle that © < w in
B, c Q. O
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5. Applications

In this section we choose two concrete domains 5 for application of Theorem 5.
In the first example, we consider a ball Br(z1) = Q2 so that @ C Bpg. In the
second, supposing ) convex, we consider 2o = € and use a result by Payne and
Philippin [9].

5.1. Radial supersolution
For all z € , let d(x) = dist(z, 09Q). We denote by r, = sup,c d(x). Let B,, be
a ball with center at xg € 2 such that B, C Q.

Choose R such that Q C Bgr, where Bg is a ball with center at x; € Q and
let ¢ € CV*(Bg(x1)) N Wy (Br(z1)) be the unique positive solution of

{_Ap¢R = [|wl in Br(z1), (22)
¢R =0 on aBR(xl),
and consider the positive constant k1(s) = k1(Bgr) = HQSRH;(p_l).
We define, as in Theorem 5,
u:=M R e ohe (BR(l‘l)) N WOLP(BR(:L‘l)).
[6Rloo
Of course, 0 < u < M. We have
N R 1 0
on(r) = w5 / #q (aN_l / s”‘1d8> df
r 0 (23)

1
p—1 ([wllec)"" ( i »
= Rr—1 — p*l) .
p ( N '

On the other hand, we have Vogr(z) = ¢R(r)* ", from what follows
IVér(z)| = |¢%(r)|. Thus,

R N-1 p i1
||v¢R|oo=¢9%<R>|:</0 (5) ||w|oods> = () e

and
IVorlo _ p gty _ 0 (24)
[ R
So, we need to choose p > 0 such that B, C £ and
q
R <Yp»
in order to have
IVor| IVorlle _ a
0< |Vul =M <M = M <~,M.
I¢Rlloo lorllec R g

To choose p, let us consider the possibilities
(i) re < }; (< R).
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We choose p = r,, because

IVorle _a (1 _1__
||¢RH00 R T'x P
(i) ¥ <r. (<R).

We choose p = I;, since

IVonlle _a _1
I6rllc R p
In the special case w, = 1, we can always choose p = r,, since

IVorlloo _a _a _q _
= < =  =%:
||¢RH00 R T P

This value of p corresponds to the smallest values of k2(B,) and ~y,. The best value
for k1(Bgr) is obtained when R is the smallest radius such that Br(x1) D € for
r1 € Q.

< Y-

Example 9. We consider the problem

{ —Apu = du(z)H1+ [Vu(z)P) on Q,

u = 0 on 01, (25)

where Q is a smooth, bounded domain in RY, 1 < ¢ < p, and X\ a positive
parameter. Problem (25) is sub-linear at the origin.

To solve problem (25) we consider B, as the largest open ball contained in
Q and Bpr such that Q C Bpg. Since w(xz) = 1 in the case of the nonlinearity
Au(z)? (1 + |Vu(x)|P), the constants in hypotheses (H1) and (H2) are given by

p—1\""
by k1<BR>:||¢R||;<p-”:< ) ) NR, (26)
1-p
p—1/p\n~" N
{ (N)Np} p ENFp,
ky :=ky(B,) = p 1p (27)
p—1 PN
p’ 1 _p7
ep p
and L
p
’Y:’Yp:p_lp' (28)

From now on, k; and ko denote the constants (26) and (27), respectively.
According to Lemma 2, we have k1 < ks.

Of course, the nonlinearity Au(x)?~1(1+|Vu(x)|P) satisfies (H3) for any value
of A.

By defining the function H: [0,00) — [0,00] by H(M) = M97P(1 + p? MP),
we see that condition (H1) is satisfied if H(M) < k/\l It is not difficult to verify
that H has a unique critical point M,, given by

Hpr: P _1a
q
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where H assumes its minimum value

- L (p PP\ _ Py
H(M,) = M97P(1 + pP MP) = < —1> (): MPa. 29
(M) = [ h)=" (20)
So, taking M := M, and defining
e k
A = H(M,)' (30)

hypothesis (H1) is verified for any 0 < A < A*. The choice M = M, makes \* to
be the best possible value of the parameter such that Theorem 5 guarantees the
existence of a positive solution for problem (25).

Now, for any fixed A € (0, A*], we try to verify (H2). For this, we consider
the function G: (0,00) — [0, 00) given by

G(x) = 2977, (31)
We clearly have G(z) < H(x) for any x € (0,00) and (H2) is verified if
AG(8y) > ko, (32)

8y < <22) (33)

So, for any A € (0, A*], (H2) is satisfied if we take 0\ > 0 verifying the above
inequality. Observe that the same value of ) is valid for any A € [\, \*].

that is,

>«|?r
* =

\J

(5)\ 5)\* M*

FIGURE 2. The graphs of H and G.
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Since 0 < A < \*, the largest value of §) is attained at A*. So, by (29), the
condition §) < M, always holds:

\* plq \* plq 1 plq q plq
oy < < = = M, < M,.
e (’@) - (kl) (H(M*)) (p)

5.2. Applying a maximum principle of Payne and Phillipin
If we choose 25 = 2, we need to suppose that 2 is convex to control the quo-
tient (19).
To handle this case, we consider the torsional creep problem
—Ap’(/JQ =1in Q,
{ o = 0 on OS.

In order to estimate the quotient (19), we state a maximum principle of Payne
and Philippin [9], which was proved for non-degenerate operators.

(34)

Theorem 10 (Payne—Philippin). Let Q C RY be a convexr domain such that O is
a C%% surface. If u = const. on 9%, then

-1
o) =27 [Vyal” + 200 (35)
takes its mazimum value at a critical point of 1q.

Regularization methods and the results of Lieberman [8] permit us to apply
it to the p-Laplacian:?

Lemma 11. If the bounded, smooth domain ) is convez, then

IViballeo < (gllvalle)”
what yields
IVonle @
N A

An immediate consequence of Lemma 11 is an estimate of the quotient (19)
in the case ) convex by taking £ = s: we have

IVéalle _ (Q||W\|o<i)‘l’_ (36)
léallee — I balld

We observe that the quotient (19) was controlled for any convex domain
Q2 D Q. So, for instance, we can take Qo = co(€2), the convex hull of Q.

As in the Subsection 5.1, let B,, be a ball with larger radius such that
B,., C Q. We consider the solution ¢, of the problem

—Apps = |wlleo in By,
¢ =0 on 0B, .

2See [3] for details.
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Since B,., C €, from the comparison principle follows that ||¢.||ec < [|¢alleo- But

||¢*|oo:('””°0> /9 <||w|m)qrj’

IOoslie  Ghll)? otz (Y )’1’ _ynt

< < [[wl]
||¢QH00 ||¢QH§0 T > o*)”00 T

thus yielding

We now choose p given by
T« _ D— 1

gUN ~ pUN' (<re).

p:

Then, we have
V0l _ 1

< <.
Ialle —p = 7

In the special case w = 1, we can take p such that

q q¥YN
por
since v, = q/p. It follows
p= <7y and <t =4,
YN [¢lloo .

6. Fast growing gradient

In this section we consider the existence of positive solutions for the following

problem in two positive parameters in the bounded, smooth domain Q@ C RY,
N >2:

{ —Apu = Mh(z,u) + Bf(z,u,Vu) in Q (37)

u = 0 on 0f),

where Ayu = div(|Vu|p_2 Vu) is the p-Laplacian operator, p > 1, and h, f are
continuous nonlinearities satisfying

(H4) 0 < wi(z)u?! < h(z,u) < wa(x)u?™", 1< g <p;

(H5) 0 < f(x,u,v) < ws(x)u®|v]’, a,b >0,

and w;: Q — [0,00), 1 < i < 3, are positive continuous weights.

The combined effects of the sublinear and superlinear terms make possible
the definition of a fixed point operator for each (A, 8) in a region D of the A3-plane
and use a global estimate for the solution of the Poisson equation —A,u = g with
homogeneous Dirichlet boundary conditions on 2 to obtain an invariant subset
by this operator. Hence, by applying Schauder’s fixed point theorem we prove
the existence of at least one positive solution for the Dirichlet problem above if
(A, B) € D. Details of this result can be found in [5].
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We now state a consequence of the global regularity results by Lieberman
(see [8]).

Lemma 12. Let Q be a bounded, smooth domain of RN and g € L>(Q). Assume
that u € W(}’p(Q) is a weak solution of

—Apu =g in Q,
38
{ uw =0 on 0. (38)
Then there exists a positive constant IC, depending only on p, N and 2, such that
1
IVull o < K(llglls) 7 (39)

To solve problem (37) we define

ri=a+b+1, w(x):= max w;(z)
i€{1,2,3}

and denote by A1 and u; the first eigenpair of the p-Laplacian with weight wy,
that is,

u; =0 on 01},
with u; positive satisfying ||ui||,, = 1.
Let also ¢ € W, P(Q) N C*(Q) be the solution of the problem

—App =win Q
¢ =0 on 09

1 .
{—Apul = Mwiu)” in Q,

and define )
7= K lwlzg)/ el
where K satisfies (39). We stress that v depends only on w, p, N and Q.
Lemma 13. There exists a region D in the A3-plane such that, if (\,3) € D then
AMT™! o+ By M < (M [|¢] )", (40)
for some positive constant M.
Proof. The inequality (40) can be written as
O(M):=ANAMI™P + BBM"™™P <1,

where the coefficients A = [|¢[|”>" and B := K |||’ ' 7" Hw||g§1 clearly depend
only on w, p and (.

In order to determine an adequate value for M, we consider the possibilities

for the sign of r — p.
In the case r — p > 0, ® has an unique critical point and (40) is satisfied if

—p ap— r—=p\ P(p-q¢\"? 1 .
e qg( A ) ( B ) (r—gy-s “

Thus, if the positive parameters A\ and [ satisfy (41), we conclude that u :=
(M/ |6l )¢ is a super-solution for (46), where M is the minimum value of ®.
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In the case r —p = 0, to have ®(M) < 1 for some M > 0 it is necessary that

BB < 1, that is

if \>0and 8 < B! (42)
we can take M > 0 such that ®(M) = 1. Thus, if A and g satisfy (42) then
u=(M/|¢| )¢, where M is the solution of (M) = 1.

If r — p < 0, for any positive parameters A and 3, there always exists M > 0
such that ®(M) = MAM? P 4+ BBM" P = 1 and for such an M the function
u=(M/|¢|, )¢ is a super-solution of (46).

Summarizing, there exists a positive constant M satisfying (40) whenever the
pair (A, 8) belongs to the set D defined by:

(MB>0: NP4 <K} if r—p>0,

D=¢ {N\B>0:8<B7'} if r—p=0, (43)
{\,8>0} if r—p<O0,
where K is given by (41). O

For each u € C'(Q) we define the continuous nonlinearity F* : 2 x R — R by
FU(x,€) = Mo €171+ A (h(x,u(x)) — wlu(x)q_l) + Bf(z,u(z), Vu(x)) (44)

and observe that F"(z,u) = M(z,u) + Bf(z,u, Vu).
Our main result of existence of solution for problem (37) is given by

Theorem 14. Assume that h and f are continuous and satisfy (H1) and (H2).
There exists a region D in the AB-plane such that if (A, 3) € D the Dirichlet prob-
lem (37) has at least one positive solution u satisfying, for some positive constants
€ and M:

e <u< (M/6])¢ and [Vull, <M.

Proof. Let (A, 8) € D where the region D is defined by (43) and take M > 0
satisfying (40) from Lemma 13. Let us define the subset

Fi={ueC'(Q):en <u< (M/ |6l )¢ and [Vull, <yM} C CH(Q) (45)

where 0 < ¢ < min {M)plq o) ||¢||oo}-

It is not difficult to see that, for each u € F, there exists a unique positive
solution U of the problem

(46)

—AU = F¥(z,U) in Q
U=0 on Of)

satisfying eu; < u < (M/ ||¢],)¢. Uniqueness follows directly from [6]. Existence
follows from the fact that the functions u := eu; and u := (M/ ||¢[| )¢ constitute
an ordered pair of sub- and super-solutions of (46). This fact implies, by applying
a standard iteration process, that there exists a weak solution U of (46) satisfying
u<U<u.

By proving that |VU| < yM, we see that U € F.
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The regularity U € C1%(Q) for some 0 < o < 1 uniform with respect to
u € F follows from the uniform boundedness of both U and |VU|. We emphasize
that the bounds for U and |VU]| are determined by the positive constant M which,
in its turn, is fixed according with the pair (X, 8) € D.

So, it follows that the operator

T:FcCYQ) — CY*(Q)NW, " (Q) c CY(Q)
u — U,

is well defined, U being the unique positive solution of (46). Moreover, the com-
pactness of the immersion C1*(Q) — C(Q) implies that T is continuous and
compact. Thus, since T' leaves invariant the set F defined by (45) and this set
is bounded and convex we can apply Schauder’s fixed point theorem to obtain a
fixed point u for T. Of course, such a fixed point u satisfies (37) since —A,u =
FY(x,u) = M(z,u) + Bf(x,u, Vu) in Q. O
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1. Introduction: the state of the art

The classical Trudinger—Moser inequality concerns the limiting case p = N of the
well-known Sobolev embeddings

WhP(Q) — LP (Q) p* =

where  is a bounded smooth domain in RY.
Here we denote by W1P(Q) the usual Sobolev space of LP-functions with

derivatives in L? endowed by the norm |[|ull1, = ([, [ulPdz + [, \Vu\pdx)l/p
and by Wy (Q) the completion of C§°(§2) in the norm ||u||1 .

If p = N, p* becomes infinity, the Sobolev space WO1 () embeds into any
LI(Q), but Wy N (Q) € L>=(Q) as the following simple example shows
Example 1. N = 2, Q = By(0). Then u(z) = log(l — log|z|) belongs to
HL(Q) = W, 7*(Q) but u is not bounded.

The question is to find the maximal growth function ¢ : R — RT such that

if ue Wy (Q), then / ¢(u)dz is finite.
Q
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Roughly speaking one can express this fact in terms of an embedding by
introducing the Orlicz space (which is a generalization of L?): find a continuous
convex function ¢ such that if

Ly := vector space generated by {u: [, ¢(u) < +oo}
then
WOLN(Q) — L¢.

S.I. Pohozaev (1965, [12]) and N. Trudinger (1967, [14]) showed independently

that this maximal growth is given by

N
o(t) = etV — 1.

This growth is optimal in the sense that for any higher growth the integral
may become infinite. The proof is based upon an expansion in power series of the
exponential function, and on a control of the LP norm of each term of the series.
This result was improved in 1970 by Moser ([11]), who showed that the supremum
on the unitary ball in Wol’N(Q)

N
sup / e N dg
Jo IVu|Ndz<1/Q

is bounded if and only if a < ay = Nw No1 , where wy_1 is the N — 1-dimensional
surface of the unit sphere. The integral on the left actually is finite for any positive
«, but if @ > apn it can be made arbitrarily large by a suitable choice of u.

From now on we will consider the two-dimensional case. Let us recall Moser’s
result in this case

Theorem 2 (Moser 1970 [11], N = 2).

(TM)  swp / e <
Jo IVul?2dz<1/Q

{ clQ if a<dn W

+oo if a>4m.

The proof relies in an essential way on symmetrization. Indeed, one can sub-
stitute u by a radial function u* on the ball Br(0) whose sub-levels are balls with
the same measure of the corresponding sub-levels of |u|. One has the following
properties: the “mass” doesn’t change, i.e., for all continuous functions G

/BR(O) G(u*)dx:/QG(u)dx

and for the gradient there is the Pdlya—Szeg6 inequality

/ |Vu*|2da:§/ |Vu|?dx
Br(0) Q

which implies

2 * 2
sup /ealu‘ < sup / el
Jo IVul?2dz<1JQ fBR |[Vu*|2dz<1J Br

and hence it is sufficient to consider the radial case.
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Let u be a radial function. By the change of variable

|z| = Re™/? u(z) = Varw(t)

+oo
/ |Vu*\2dx:/ ! (4)|2dt
Bpr 0

“+oo
/ el gy = 271'R2/ edn WO =t gy
Br 0

one has
and

So the problem reduces to

400 5
sup / ear YOI =gt « 400,
JoF ™ Jw![2dt<1 /0

For every C!-functions w such that f0+°° |w'|?2dt <1 and w(0) = 0 one has
that w is controlled by t'/2; indeed

wiol = | | ()] < o2 ( / t |w’<t>|2)1/2 <o,

Therefore if o < 47 it is easy to prove that the supremum is finite and if o > 47
it is sufficient to test the functional on the Moser sequence

tl t<k
k2 t>k

to obtain that the supremum goes to infinity. The critical case a = 4x is more
complicated and we will return to it later in a more general case.

2. Weighted TM inequalities

We point out that, beginning from the celebrated work of Caffarelli-Kohn—Niren-
berg [3], the weighted Poincaré-Sobolev inequalities and fundamental questions
concerning these inequalities (such as best embedding constants, existence/non-
existence, symmetry properties of extremal functions) have attracted a lot of at-
tention in the literature. Only recently limiting embeddings with weights have
been considered. We mention for instance [9], [7], [6], [8]. These papers threat em-
beddings of Sobolev spaces in weighted Orlicz spaces: they consider the weight
only acting on the functional and they are principally interested in characteriz-
ing weights which do not change an exponential Orlicz space up to equivalence of
norms.

On the other hand, we consider a weighted version of Moser’ s theorem, for
which the presence of the weight can change the range of the exponent for which
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the supremum is still finite. More precisely: let w = w(x) and v(z) two radial
weights on the unitary ball (let’s say two nonnegative L!-functions).

Let Q = B the unitary ball in R? centered in the origin. We denote with
H}(B,w) the Sobolev space given by the completion of C§°(B) with respect to

the weighted norm
1/2
lullw = ( [ 196 wia) dx) @)

and with H(:Jl,rad(B ,w) the corresponding subspace of radial functions.

Consider the following problem: find the best exponential maximal growth
F(t) for which

sup / v(z) F(u)dz is finite.
llullw<1J/B

Quite recently M. Calanchi and E. Terraneo [4] investigated this problem in
the case w = 1 and v(z) = |#|° with § > 0 (Hénon weight). They concentrated the
attention on the following functional F, : Hj(B) — R

Fw) = [ fal? (M 1= plaf7) o 3)

where § > 0, p > 0 and 1 < v < 2. They were first interested in understanding for
which values of 7, p and 6 the supremum of F(u) on the set {u € H{ : [ull gy < 1}
is finite and attained, and secondly their purpose was essentially prove a symmetry
breaking result.

They proved that for 0 < v < 2, or v = 2 and 0 < p < 4w 4 276 the
supremum over the subspace of radial functions in H} is finite.

Then they analysed the case v = 2 and p > 4r (supercritical), and they
showed that the supremum over the whole space H{ is not finite. It is enough
to evaluate the functional F' on a suitable family of Moser type functions that
concentrate on the boundary. In this way the effect of the weight |2|® becomes
negligible. In fact they established the following result:

Theorem 3 (M. Calanchi-E. Terraneo, [4]). Let
Sfp = sup / |z|° (e’”‘“l2 -1 —p\u|2) dx
u radial,||Vul|2<1JB
the supremum taken on the subspace of radial functions and
Ssp=sup / |2|° (eplu‘2 -1 —p|u\2) dx
[1Vul|2<1J/B
the supremum taken on the whole space. Then
i) Sé?p <H4o00 = p<4r+2m6 and ii) S5, < oo <= p<drm

Moreover if p < 4x there exists 69 > 0 such that

S5t < Ssp V6 > do.
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This second result says that if the problem is subcritical, the so-called ground
state solution (the solution that maximizes the functional) is not radial. This is
an extension to the case of exponential growth of a result due to Smets, Su and
Willem ([13]) related to the Hénon equation. In order to prove this they give the
asymptotic behavior of the radial level S é"?”p as § = +0o, and test the level on the
whole space along functions which concentrate near the boundary.

To prove part i) the transformation

(et = [ 2 wial) (@

is considered. By an easy computation one has

1) p\u|2_1_ 2) dr = 2 / 524:72|w|"’_1_ 2p Y d:
[ tal* (e ) o= 2 [ (e St do

and
/ V(@) do = / V()2 do < 1.
B B

So one obtains

R _ 2 52102|w|2 — 1 — 2p 2)
o St Ry a6+ 2 /B <e ' Pl
and one can conclude using the standard Trudinger—-Moser inequality.

A similar argument is used by Adimurthy and Sandeep (see [2]) in order to
check the critical exponent in the singular case (Hardy weight). Their starting point
is to establish some interpolation inequalities between the Hardy inequality and
the Sobolev inequality in the limit case. Even if the authors consider the problem
in general dimension, for simplicity we describe here only the two-dimensional
case. They consider an embedding of the form

v /Q 2] (log(e/[2]))* ™

and the sharpness of constants «, §, « for which the supremum (on the unitary
ball) of the functional on the right is finite. They first observe that v = 0 is the
optimal choice and prove the following

Theorem 4 (Adimurthi-K. Sandeep, 2007, [2]). Let u € Hi(Q). Then for every
a>0andd €0,2)

Oéu2
/ “ s dr < +oo0. (5)
o |zl
Moreover )
sup /e sdr < +oo &= a<d4dm—2m0. (6)
Ivull.<1 /o [2]

Since in this case the radial weight is decreasing, they can reduce the problem
to a radial one, by standard Schwartz symmetrization. Moreover by the same
transformation as in (4) they can use Moser’s result.
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3. Trudinger—-Moser inequality with weighted Sobolev spaces

In this section we deal with some results concerning Trudinger—Moser type in-
equalities with logarithmic weights.

B B
Let w(x) = wy(x) = (log (‘;‘)) , or w(x) = wo(x) = (log (‘i‘)) ,v(x) =
z|®, § > —2 and the functional G5 : H}(B) — R
0

Gs(u) :/ |l2|® e da.
B

Consider the following problem: find v, §, « such that

sup / |z]® el da < 400
B

lullw<1

(we recall that ||ull, = ([5 |Vu|2w(x)dx)1/2).

In a previous paper we considered the case v(z) =1 (i.e., § = 0), and proved
B
Theorem 5 (M. Calanchi-B. Ruf [5]). Let 8 € [0,1) and wo(x) = (log ‘i‘) or

wy(x) = <log |Z|)ﬁ. Then

2
/ el"de < +oo, forall uwe H, 4(Bi,w), iff y<~:= ,
B1(0) ’ 1-5

and ,
sup / el dy < 400
B1(0)

lullw<1,rad
if and only if
a<ag=272n(1-7) 18 (eritical growth).

Here, considering a Hardy or Hénon weight in the functional, we prove the
following
Theorem 6. Let 6 > —2, and w as in the previous theorem. Then

’ 2
(1) / |x|5e\u| dx < 400, for all u € H&md(Bl,w) L iff y< = c
B1(0) 1-3

and

2
(ii) sup / 2% el gz < oo
[lul|w<1,rad J B(0,1)

if and only if
) 0 1 .
a< |14 o ) 8= 1+ 5 2[27(1 — B)]*-#  (critical growth).

Remark 7. For 8 = 0 one has the same exponent as in [4] for the Hénon case and
as in [2] for the Hardy case.
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We first prove this preliminary result (Radial Lemma).

Lemma 8 ([5]). Let u a radially symmetric C function on B = B1(0). Then one
has for w = wo(z) = |log |z||?

1-8
[log |z|| >
V2r(1-B)
while for w = wy(z) = |log(e/|z|)|?
[tog (e/[a)]' " = 1|
V271 - 8]
Proof. Since u is radial, let v(|z|) =u(z). Then we have (for w(z)= [log(e/|z|)|?,

(i) Ju(z)] < lullw, VB <1,

(i) Ju(z)| < u|w, B #1.

B#1)
1 1/2
lullo = (2 [ WO Poge/iar)
0
Moreover
2]
@) = e~ o] = | [ v)an
1
g/ W ()12 [log e/t//2 1=1/2 | log e/t ~#/2dt
Ja]
1 vz, 1 1/2
< ()2 t | loge/t|Pdt / dt
< ([ woreoserar) ([0 )
_ 1/2
llog (e/|z]))' ™7 — 1
< | | [lullw, B #1.
V21— B
For w(x) = |log|z|| the procedure is similar. O

Proof of Theorem 6. We first consider the case w = wq(z) = |log |z||”.
We may assume that u > 0 (one can replace u by |u]). Since the problem is radially

symmetric we introduce the variable ¢ by
‘x‘ = e_t/Q’

and set

W(t) =2"2" 2r(1 - )% u(x). (7)

/ it = / Vul?|log ||| da | . (8)
o 1-5 B1(0)

It is sufficient to estimate

—+o00 B 1
ay?—(1+3)t dt = / ) ozu"’d 9
e z|%e T,
/o m(B) B‘ | ®)

Then
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where

2 [2m(1 - B)]=o

@:

We first prove that the condition v < v = 13 s is necessary. Let v = v + ¢,
with e > 0. It is sufficient to test the first integral in equation (9) on the following

function
B

i =¢ 2 >

3TN =t =2

Py (t) = B
t 0<t<1

where 77 > 0 can be chosen such that

(7+d<i—n>=<136+f)<1;ﬂ—n>:1+n>L

It is not difficult to prove that

+oo w?tﬁ “+o00 . s
/ T dt < C and / e®n—(+2)t gt — 4o,
o 1-5 0

+o00 1 +00 2
. 1-65-2
/ﬁ ¢%#3dt:l/)t5+:/) ( p ") t7172 dt < +o0
0 0 1 2

+oo +oo _
/ eawg—(1+g)t dt > / eat1+"—(1+g)t dt = +oo.
0 1

Indeed

and

Again from (8) and (9), the sufficient condition can be rewritten as

+oo — 13/3 5 oo ‘¢/‘2tﬁ
/ elWI? =420t gt « 400, for all 4 such that / dt < +o00.

0 o L1-=p
We proceed as in [11]. For all ¢ > 0 there exists ' = T'(¢) such that

+oo 11248
4
/ |11/} | 3 dt < 2. Hence, for the Cauchy-Schwarz inequality
- —

w0 =00+ [0 ds=u(m)+ [ WP
<o+ ([ (s ds)m( [

t / 1/2
= (T) + (/T wl(‘?;sﬁ ds) G —T1‘5)1/2

1/2
< (T) + a(tl-ﬂ - Tl-ﬁ) forall t > T .
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This implies that there exists T such that ay s (t) < (1 + 9)t for all t > T, and
this is sufficient to guarantee the existence of the integral

+oo 2
/ B8 (1 gy
0

We proceed with giving an idea of proof for (ii). By the Radial Lemma we
know that

+oo j
/ P <o vty <t':. (10)
o 1-8

Then if v < 135 or y= 13[% and @ < 14 6/2 it easily follows that

+o0 +oo
/ eV =42t gy < / e =0+2)t gy ~+00.
0 0

The proof of (ii) for the critical exponent is much more delicate and it is an
adapted version of Moser’s proof. The result of Moser is based on the observation
that relation (10) is actually a rather strong inequality. We refer the reader to [5]
for a complete proof.

This concludes the case of wy. In order to prove the assertion for wy(z) =
(log(e/|x])) it is sufficient to observe that, for 3 € [0, 1)

Hi(B,w;) < H} (B, wp).

(Sharpness) Now we prove that the theorem is sharp in the sense that if « >
(1406/2)2[2m(1 — B)] 125 then the supremum is infinite.

It is sufficient to consider the case w(z) = |log (e/|z])|?.

Now it is sufficient to test

/ T Gt gy o 2
0 1-p
on the family of functions (here the change of variables is t = 2 — 2log |z|)
{1=B _91-8
du(t) = { (k21— 21-)172
(k+2)'8 —2=A)1/2 ¢ >F42

2<t<k+2

Foo =1 § al(k 1-8 1-8 11/3 teo S
/ (@] —(148/2)8) gy > cal(k+2)! =7 =217 / o~ (/208 gy
2 k+2

1 & 1-8_ol—p1t 5
= {a[(k+2)t 77 =21 7P 1=6 —(146/2)(k+2)} fas1 . 0
1+5/26 — 4o if a > +2
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3.1. Remark: the weight is not effective

In this section we consider all the functions in Hg(Bjp). We observe that in the
supercritical case with respect to the Moser inequality, i.e., v = 2, a > 4m, the
weight is not effective and the supremum in the whole space Hg(B1) is infinite.

Proposition 9. Suppose that o > 4w. Then

2
sup / e’ d — oo
{ueH} (B1),l|ullw<1} /By

Proof. Case I) w(x) = |log|z||”. In tho case we evaluate the functional on some
particular functions obtained by a suitable translation and dilation of Moser’s
functions in a region of B(0,1) far from the origin and far from the boundary

where the presence of ‘ log |z ‘5 can be “neglected”.

Consider the following family of functions

V9og k \x—x0|<z
b [ dog(), %)

o(z) = ja—ao| a 11
Okal?) = Vlogh g Sle—wol<a )
0 |z —zo| > a

where 2o = (3,0) and a < } will be chosen later.
Since a > 47, we can write o = 47 (1 + €)?, with ¢ > 0. Let

1

-B/2
9~ a)‘ W,a(T) .

U,a(T) = ‘log (

Then, since |z| > } — a in Bq (7o) and |log |z|| is decreasing, one has

1/2 lo B 1/2
(/ |Vuk7a\2| log|x||ﬂdx) = (/ |Vwg, o | | g1|x|| 8 dx) <1
B1(0) Ba(x0) ‘ log|; — aH

We evaluate the functional on this sequence and obtain

—B
/ |x|564”(1+5)ﬁ“i7adﬂc:/ \:E\ée%uﬁ)ﬂlog(é_“)‘ ke g,
B1(0) B1(0)

Now, choosing 0 <a < 5 — }., we have | 1T . > 1.
‘1og (;—a)|
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Let £ = (1+¢)” |log (5 — a)|_5 — 1> 0, we can conclude, as k — 400

/ |x|5€4ﬂ(l+s)ﬁuiv“dl‘
B1(0)

o) ),

> 5 ¢ 8
1 - 1 _
( + a) / AW o oy — ( + a) na*k* — +oo, (6 <0).
2 Ba (z0) 2

5
_ 1 &
6477(1+5)wi,ad1; = <2 — a> 7'('(12]€2E — +OO, (5 Z O)a
(z0)

B
Case II) w(z) = (log ‘;‘) . For this case it is necessary to “concentrate” Moser’s
sequence near the boundary where the weight is almost 1. Let

Viog k \x—xa|<z
L) log(,% 1)
Zka(T) = EEE a . (12)
Vo | gk g Sl <a
0 |z —z4| > a

where z, = (1—a,0),0 < a < 1/2, k > 2. Here it is sufficient to choose a < (53— 1)
and test the following sequence

e -B/2
Uka(T) = ’ log (1 - 2a) ’ Wha()
on the functional. O
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Abstract. The aim of this paper is studying the asymptotically p-linear prob-
lem

—div(A(z, w)[Vul"2Vu) + ;At(az, w)|Vul?

= MulP"2u 4+ g(x,u) in Q,
u=0 on 0,

where @ C RY is an open bounded domain and p > N > 2. Suitable as-
sumptions both at infinity and in the origin on the even function A(z,-) and
the odd map g(z,-) allow us to prove the existence of multiple solutions by

means of variational tools and the pseudo-index theory related to the genus
. 1,P
in Wy ?(2).
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1. Introduction

Let us consider the Dirichlet problem

1
—div(A(z, u)|VulP 2 Vu) + pAt(x,u)\Vu\p = f(x,u) inQ,
u=0 on 0,

(P)

Partially supported by Research Funds PRIN2009 and Fondi d’Ateneo 2011.
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where Q C RY is an open bounded domain, N > 2, and A4, f: Q@ x R — R are

given functions such that the partial derivative A¢(z,t) = %‘? (z,t) exists for a.e.
reQ altelR
If we assume F(z,t) fo x,s)ds, at problem (P) we can associate the

functional 7 : D C Wl’p(Q) — R defined as

1
= /A(x,u)|Vu|pdx - /F(x,u)daj
b Ja Q

In general, 7 is not C! in the Sobolev space WO1 "P(Q) but, under the following
conditions:

(Hp) A, A; are Carathéodory functions on £ x R such that
sup |A(-, )] € L=(Q), sup |A(-,t)] € L=(Q) for any r > 0;

[t|<r [t|<r
(ho) f is a Carathéodory function on 2 x R such that

sup | f(-,t)] € L>(2) for any r > 0;
[t|<r

it is surely well defined in the Banach space
X:=WoP(@)NLX(Q),  fullx = ull + |ul,

with | - ||, respectively | - |o, classical norm of W, ?(Q), respectively L>(€2),
i.e.,

JullP = / VaPde, |ule = esssuplu(z).
Q e

Here, our aim is investigating the existence of multiple weak (bounded) so-
lutions of (P) when it is an elliptic asymptotically p-linear problem, i.e., A and f
satisfy the following hypotheses:

(H,) there exists g > 0 such that
A(z,t) > ap ae. inQ, for all t € R;
(Ha) there exists A> € L>°(f2) such that

lim A(z,t) = A*(x) uniformly a.e. in Q;
[t]|—=+o0

(h1) there exist A € R and g : Q x R — R such that
f(z,t) = MNt|P~%t+g(x,t) forae zcQ, foraltecR,

g(x,t)
[t|—+o0 [t[P72¢

If conditions (Hp)—(Hz), (ho)—(h1) hold, problem (P) reduces to

= 0 uniformly a.e. in . (1.1)

1
—div(A(z, u)|Vu|P~2Vu) + pAt (z,u)|VulP

(P3) = MulP72u + g(x,u) in Q,
u=20 on 0,
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and J is a C' functional on X (see [10, Proposition 3.1]); whence, (Py) has a
variational structure and its weak bounded solutions are critical points of J in
the Banach space X. Then, variational and topological tools may be applied but
the presence of the L°°-norm makes it difficult. In fact, if N > p, the classical
Palais—Smale condition may not occur as it requires the convergence not only in
the VVO1 P-norm but also in the L> one. Thus, some weak versions of the Palais—
Smale condition are required so to obtain a suitable version of the Deformation
Lemma; anyway they are not enough for distinguishing multiple critical points at
the same critical level so multiplicity results follow from the existence of multiple
distinct critical levels (see [8, 9]).

This problem does not arise if N < p as the embedding I/VO1 P(Q) — L>(Q)
implies X = VVO1 P(Q), so we can consider the usual VVO1 P-norm and the Palais—
Smale condition can be proved (see Section 2).

On the other hand, in the hypotheses (hg) and (hy), if p = 2 and A(z,t) =1
problem (P)) reduces to the asymptotically linear one which has been widely
investigated (see [1, 4] and references therein). On the contrary, in spite of the
large amount of papers dealing with this kind of nonlinearities in the semilinear
case, only a few results have been obtained when p # 2. Namely, some existence
results can be found in [2, 3, 5, 11, 12, 14, 15, 17, 18] if A(z,t) = 1, but, to
our knowledge, there is no result of this kind with a coefficient A(z,t), which
depends on ¢, up to [10]. If p > 1 is any, the main difficulty is that, while the
structure of the spectrum of —A in HJ () is known, the full spectrum of —A,, is
still unknown, even if various authors have introduced different characterizations
of eigenvalues and definitions of quasi-eigenvalues. Furthermore, in our setting we
have also to consider the asymptotic behaviour both at the origin and at infinity
of the coefficient A(z,t), namely the operators A9, A2 : WP () — Wo_l’p/(Q)
defined as Afu = —div(A°(2)|Vu[P~2Vu), AXu = —div(A®(z)|Vul[P~2Vu),
with A%(x) = A(z,0) and A= as in (Hz) (see Section 2) as it is made in [10] but
using a cohomological index.

Here, considering the particular case p > N > 2 and by means of the pseudo-
index theory related to the genus in W, (2), our aim is investigating the existence
of multiple solutions of (Py) when the parameter \ in (h;) interacts with sequences
of quasi-eigenvalues related to the operators Ag and Ap° which are defined accord-
ing to the approach in [7] and [16]. Thus, essentially following the ideas in [5], we
are able to prove our main result (for the complete statement, see Theorem 3.1).

Main Theorem. Assume that p > N > 2, (Ho)—(Hz), (ho)—(h1) hold and the
parameter \ is not an eigenvalue of the operator Ay°. If, furthermore, A(x,-) is
even and g(z,-) is odd and they satisfy further suitable assumptions in  x R,
then the number of the weak solutions of (Py) depends on the interaction of \, the
asymptotic behaviour of g in the origin and the quasi-eigenvalues related to the
operators AY and A in W, P ().
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2. Abstract tools and some technical remarks

In order to state the abstract multiplicity theorem we will apply to our problem,
we recall some main definitions on the pseudo-index theory related to the genus
on a Banach space B for a C' even functional J : B — R with symmetry group
Zs = {id, —id}. Here, we denote N = {1,2,...}.
Define
Y =3%(B) = {AC B: A closed and symmetric with respect

to the origin, i.e., —u € Aif u € A}

and X = {h € C(B,B) : h odd}.
Taking A € 3, A # (), the genus of A is

v(A) = inf{k € N: 3 € C(A,R¥\ {0}) s.t. ¥(—u) = —¢(u) for all u € A},

if such an infimum exists, otherwise y(A) = 4+o00. Assume v(0) = 0.

The index theory (3, H, ) related to Zs is also called genus (for more details,
we refer to [19, Section 1] or [21, Section II.5]).

According to [6], the pseudo-index related to the genus and to a symmetric
subset S € ¥ is the triplet (S, H*,v*) such that H* is a group of odd homeomor-
phisms, eventually related to an even functional J, and v* : ¥ — N U {400} is
the map defined by

7'(4) = min y(h(4)NS) = min v(ANA(S)).

The following mini-maz theorem can be proved (see [4, Theorem 2.9] in the
setting of Hilbert spaces; but the same proof holds on Banach spaces, just taking
into account [20, Theorem A.4]).

Theorem 2.1. Let J : B+ R be a C' even functional on a Banach space B and,
taking a, b, co, oo ER, —00 < a < ¢p < Coo < b < 400, consider the pseudo-index
theory (S, H*,~v*) related to the genus (X,H,v) on B, the functional J and the
subset S € X, with
H* = {h € H : h bounded homeomorphism s.t. h(u) = u if u & J~*(Ja,b[)}.

Assume that:

(i) the functional J satisfies the Palais—Smale condition in ]a,b[;

(i) J(u)>co forallueS;

(iii) there exist k € N and A € ¥ such that

J(u) < oo forallue A and 7 (A) > k.

Then the numbers

; = inf J(u), e {1,....k},
o= e i€

with ¥ = {A € ¥ : v*(A) > i}, are critical values for J and

co<ep << £ Coo-
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Furthermore, if ¢ = ¢; = - -+ = Cipr, with i > 1 and i+r < k, then Y(K.) >r+1,
with K. ={u € B: J(u) =¢, dJ(u) =0}.

In order to apply the theorem above, we need the following result, which
allows us to obtain a lower bound for the pseudo-index of a suitable A as in (iii)
(for more details, see [4, Theorem A.2] or [5, Theorem 2.7]).

Proposition 2.2. Let (3,H,v) be the genus theory on B and V,W two closed sub-
spaces of B. Assume that

dimV < 40  and codimW < +oo.

Then, for every odd bounded homeomorphism h on B and every open bounded
symmetric neighbourhood N of 0 in B, it results

YV ARON NW)) > dimV — codimW. (2.1)

Till the end of this section, assume that (Hy), (ho) and (hi) hold, thus g in
(h1) is a Carathéodory function on Q x R such that

sup |g(-,t)] € L*>(R?) for any r > 0. (2.2)
|t <r

Then, if G(z,t) fo x, 8)ds, the functional J reduces to
Ia(u) = 1 /(A(x,u)|Vu|p—)\|u\p)dx - /G(az,u)dw
Q Q

p

As already remarked, in the hypothesis p > N the functional .J, is C' on WO1 P(Q)
and for all u, ¢ € Wy'P(Q) it results

(dJx(u) /A (z,u)|Vu[P"2Vu - Ve dv + /At z,u)@|VulPdz

- )\/ lulP~2up do — /g(az,u)ap dx.
Q Q

In the further assumptions (H;) and (Hz), we can consider the function
A>® € L*(Q) such that A (z) > ap a.e. in Q; hence, the functional

I*°(u / A% (x)|Vu|Pdz
is a weighted norm equivalent to the usual one in WO’ (Q) and its differential is
the operator A5° : WP () — Wy "7 (Q) so that
(Ayu, ) = / A% (2)|VulP~2Vu - Vo dz for all u, p € W, P(Q).
Q

Let o(A;°) denote the set of the eigenvalues of the elliptic operator A7°, i.e., of
the parameters ;1 € R such that the Dirichlet problem

—div(A®(2)|Vu|P™?Vu) = plulP"?u in Q,
u=20 on 0f),

admits non-trivial weak solutions in W, ().
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Now, let us consider the following further conditions on A(x,t):
(Hj) there exists

lim Az, t)t = 0 uniformly a.e. in €

[t]|—=+o0

(Hy) there exists a1 > 0 such that
1
Az, t) +  Ai(z,t)t > aqA(z,t) a.e.in Q, for all t € R.
p

Then the following result can be proved (for all the details, see [10, Proposi-
tion 3.5]).

Proposition 2.3. Assume that the hypotheses (Hy)—(Hy), (ho)—(h1) hold and p >
N. Then if X & o(AyX) the functional Jx satisfies the Palais-Smale condition in
WP ().

Taking A°(x) = A(z,0), from (Hp) and (Hy) it follows A° € L>°(Q) and
A%(x) > ap a.e. in ; hence, also the functional

) = /Q AY(2)[VulPdz

is a weighted norm equivalent to the usual one in WO1 P(Q) and its differential is
the operator AY : WP () — Wy "7 (Q) so that

<A2u, ©) = / A%(2)|VulP~2Vu - Vo dz for all u, o € WyP(Q).
Q

Furthermore, from (Hs) it follows
|[Ay(z,t)] < by ae in €, forallteR,
for a suitable positive constant by; hence,

thn(l) A(z,t) = A%z) uniformly a.e. in Q. (2.3)
e

Now, taking § = 0 or § = oo, we introduce the definitions of sequences of
pseudo-eigenvalues related to Af,, or equivalently its potential I*, that we need in
the statement of our main result.

Firstly, taking S = {u € Wy ?(Q) : |ul, = 1}, with lulp = [, lulPdz, we
define

¥ = inf [ AF P
i = it [ A@)Vura.

By assumptions, 0 < agh; < 17? < M| Af| o, with Ay first (positive, simple, iso-
lated) eigenvalue of the p-Laplacian —A, in VVO1 P(Q). Standard arguments allow
us to prove the existence of ﬂ € S such that I ﬁ(wﬁ) = nﬁ. Thus, reasoning as in
[7, Section 5], but replacing I(u) = ||u||P with I* and starting from 77? at the place
of A1, we can prove the existence of a sequence (nlﬁ)  of positive real numbers with

corresponding functions (¢,§)k such that:
(@) 0 <l < mh <o <nf <o with gl oo
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(b) i #9f if i#;
(c) (1/),11) , generates the whole space W,?(€) and
WP () = Vi @W}! forall heN, (2.4)
where V,f = span{1/;§, . ,z/JfL} and its complement W,g can be explicitly de-
scribed. By definition, codimW}i = dim V,f = h.

Moreover, for all h € N on the infinite-dimensional subspace Wﬁ the following
inequality holds:

772_1_1/ |lwPde < /Aﬂ(x)|Vw\pd:U for allwveL (2.5)
Q o

(cf. [7, Lemma 5.4]).

On the contrary, in order to have a reversed inequality on finite-dimensional
subspaces, we reason according to the arguments introduced in [16] but, also in this
case, replacing I with I* and making wﬁ play the role of the “first” eigenfunction
of —A, in WyP(€2). More precisely, for all k € N we consider

Wi = {V: V is a subspace of W} ?(Q), ¢! € V and dimV > k} (2.6)

and

V}i = inf sup /Aﬁ(x)|Vu|p dx. (2.7)
Vewt uevns Ja

At last let us remark that, starting from the genus (X, H,~) defined on the

Banach space B = W,"”(2), we can define a sequence of eigenvalues (A)x of
—A, as

A = inf sup /\Vu\p dz,
A€Zk yeAns Jo

with 3, = {A € X: y(A) >k}, and Ay 7 400 (see [13]).
Thus, from the properties of the genus, for all £ € N it is

(VnS:vewiycy,y

and then ag\; < V]g; whence, V}i S +oo.

3. The main result
Now, we can state our main result.
Theorem 3.1. Taking p > N > 2, assume that (Hy)—(Hy), (ho)—(h1) hold and
A & a(Ap°). Moreover, suppose that
(Hs) Az, —t) = A(x,t) for allt € R, a.e. x € 8);
(ha) there exist \° € R such that
g 9@ 1)
t—0 |¢[P—2¢

(hs) g(z,—t) = —g(x,t) for allt €R, a.e. x € Q.

= X uniformly a.e. in Q;
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If \° < 0 and there exist k, h € N, k > h, such that
A0 <o) < o<, (3.1)
then problem (Py) has at least k—h+1 distinct pairs of weak non-trivial solutions.

Proof. From the hypotheses and Proposition 2.3 it follows that Jy is a C' even
functional which satisfies the Palais—-Smale condition in WO1 P(Q).

Now, in order to apply Theorem 2.1, we have to prove the “geometric” as-
sumptions related to the genus theory (X,H,y) defined on Wol’p(Q).

To this aim, let us point out that from (1.1) it follows

G(z,t)

im = 0 uniformly a.e. in €,
[t|=+o00 |E[P

while from (he) we have

0
lim G(z,t) _ A

uniformly a.e. in £;
t—0 |t‘i”

whence, fixing any o > 0, there exist R, d, > 0 (without loss of generality R, > 1)
such that

g

|G(x,t)] < ) |t|P if |t| > Ry, for a.e. z € Q, (3.2)
A0 o )
G(z,t) — ) [t|P] < ) |t|P if |t| < b, for a.e. z € Q. (3.3)

Moreover, by (Hp), taking any s > 0, there exists a1 > 0, depending on ¢ and s,
such that,

|G(z,t)] < ag1|t|°*P if 0, < |t| < Ry, for a.e. x € Q. (3.4)
On the other hand, (Hz) and (2.3) imply that RS, §2 > 0 exist such that
|A(z,t) — A®(2)| < o if |t| > R, for a.e. z € Q, (3.5)
|A(x,t) — A%(2)| < & if [t] < &2, for a.e. x € Q. (3.6)
As A% < 0 then (3.2)—(3.4) imply

o+ X0

G(Ia t) S ‘t|p + Ag,2 t|p+s
p

for a suitable positive constant a, > depending also on |A\°|. Hence, by the Sobolev
Embedding Theorem we have

o+ X\ +s 1,p
G(z,u) dz < lulPdz + aq||ul|” for all u € Wy (Q).
Q p Q
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Then, taking any u € W, (), we have

1 A+ N\
‘“”Zp/AwmwwwH T g =
Q

1 0 Py 1 z,u) — A%(2))|VulPdz
_p/QA(x)|Vu|d +p/Q(A(,) Al(z))|VulPd

A A +o s
- Jul} — aq[u] "7,
where from (3.6), (H1), p > N and direct computations it follows

1 — A%z u|Pdx
Ammw A0(2))|VulPd

p
> —“/ VulPda — 1/ A9 ()| VulP de
2NQY

0|<x> |u\ °
> - /|V [Pdx — / ( 0) |VulPdx
Q\QY 50
AOOO o0 s
> _C /Ao(x)|Vu|pdx—| | <“|0 ) /\vu\m
aop Jq p (50 Q
> - 0 [ R@IVapds - d
aop Jo

with Q0 = {z € Q: |u(z)| < 62}, for a suitable positive constant a’, = a’ (o, s).

Whence,
1 A+ X0
nwz (1= 0 [ e@wdras- 0 - gl 6)
b @op Q p

with ] = as +al,.
Now, from (3.1), fixing o > 0 such that

0
A+/\°+<1+Z’;)a < Y, (3.8)

from (2.4) and (2.5) referred to W_,, we have codimW? _, = h — 1 and, for all
uwe WP |, (3.7) and (H;) imply

1 0

T (u) 1= 7 AN o) Tupde — o ful7t

0 o
p QQ h Q

o o A+ +o o
Q— CAFXEON e = ol
p Qo Ui

Thus, if o > 0 is small enough there exists ¢y > 0 such that
In(u) > co forallu e S,NWP_,, (3.9)

Y

v

with S, = {u € WyP(Q) : |u] = o}
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On the other hand, (2.2) implies

sup |G(-,t)| € L™(Q) for any r >0,
[t|<r

then from (3.2) a constant L, > 0 exists such that
|G(z,t)] < J\t|p + L, forae xz€Q,allteR,;
p

whence,

< ;wg +b, for all ue WOP(Q),

/G(x,u) dx
Q
with b, = L,meas(Q) (here, meas(-) is the Lebesgue measure in RY). Thus,
1 A—
Ia(u) < / Az, u)|Vu|Pdx — J\u|£+bg
pJa p
From (2.6) and (2.7) there exists V7 € Wg° such that
/ A% (2)|VulPde < (v° +o)lulb for allu e V7,
Q

where, without loss of generality, we can assume dim VY = k. Hence, as all the
norms are equivalent on a finite-dimensional space, from the compactness of SNV)7
and the assumptions on A it follows

/ Az, w)|VulPdz < agolul? + / A% ()| VulPda
Q Q

for all w € V,7 with |u|, large enough, where aq is a suitable positive constant
independent of o and w (for more details, see [10]). Thus, if A — o > 0, for all
u € V7 with ||u| large enough, we have

1 A— 1
Ia(u) < (1 - f)ffo + )“> / A% (2)|VulPdz + by. (3.10)
p v, +o Q
From (3.1), there exists o small enough such that
— 1
oA ((j" Do, (3.11)
v +o

whence (3.10) implies
Ja(u) = —oo ifue V7, |lul| = 4o0.
Thus, ¢ > ¢p exists such that
I(u) < e forallue V. (3.12)

At last, if o € )0, A[ is such that both (3.8) and (3.11) are satisfied, then both
(3.9) and (3.12) hold and, considered the pseudo-index theory (S, NW)_ , H*, v*)

related to the genus theory (3,H,~) on W, *(Q) with
H* = {h € H : h bounded homeomorphism},
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from (2.1) in Proposition 2.2 it follows v*(V¢) > k — h + 1, thus Theorem 2.1
applies and J, admits at least k — h + 1 distinct pairs of critical points whose
critical levels are strictly positive (while J,(0) = 0). O

Finally, here we give an example which points out as some inequalities in
(3.1) can be always true.

Example 3.2. Let us define
Az, t) = (1+ arctg(a(x)tQ))a fora.e. x € Q, allt € R,
with o > 0 and a : Q2 — R is a measurable function such that
ko < a(z) < ki forae ze€Q

for some kg, k1 > 0. By direct computations for a.e. z €  and all t € R we have
1 < A(z,t) < (14 7)* and

2a(x)t*
1+ (a(x)t2)2’
hence, conditions (Hp)—(Hs) hold with A(z,0) = 1 and

|t\1—i>IEooA(x’t) - (1 + g)a

uniformly a.e. in Q. Thus, if (9,), and (vg)r represent the sequences of quasi-
eigenvalues of the p-Laplacian —A, in W, P (), i.e., such that (2.5) and (2.7) hold
with A* = 1, then in this setting we have

Az, t)t = a1+ arctg(a(a)t?) !

n = forallheN and V;;O:(Hg) v for all k € N.

Thus, the inequality ) < v£° is not an assumption but holds for all k > h as
Nk < vy for all k € N (see [5, Proposition 2.9]).
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Abstract. We establish existence and regularity results for a time dependent
fourth-order integro-differential equation with a possibly singular nonlinear-
ity which has applications in designing MicroElectroMechanicalSystems. The
key ingredient in our approach, besides basic theory of hyperbolic equations
in Hilbert spaces, exploits the Near Operators Theory introduced by Cam-
panato.
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1. Introduction

In this paper we study a time dependent nonlocal fourth-order equation which is
a model for describing electrostatic actuation in MEMS devices. From the math-
ematical point of view, we can think of a plate problem set on a micro-scale in
which usual first-order approximations, acceptable in the standard “visible” scale,
loose their validity and where one needs to take into account nonlocal effects which
in this context are not negligible. Precisely, we consider the following problem

A?u+ ez, t)u +u”" = G(B,v,u) + HA®), x, p(x),u), in Q x [0,T]
0<u(z,t)<1l, inQx(0,T)
u(z,0) =ug, x € (1)
W' (z,0) =0, z€Q

Ou(x,t)

u(z,t) =0, Au(z,t)—d L, = 0, ondQx][0,T)
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where Q ¢ RV, 1 < N < 3, is a bounded domain with sufficiently smooth bound-
ary (v denotes the outward pointing normal to 9 whereas the derivative with
respect to time is denoted by /) and

G(B, ) = {ﬂ/ﬂ Vu(z, )2 dz H} Au

A(t)p(x)
1 -

1 —u(z,t)]° {1 + X/Q 1 — u(a, )71 dx

We assume o > 2 (in the case of a Coulomb potential in the capacitor one has o =
2, see [19, 15, 20, 16]), for constants 3,~, x > 0 which are respectively connected
to self-stretching forces, tension forces and capacitance properties of the MEMS
device, and for bounded real functions ¢, p, A\ which are respectively related to
anisotropic damping phenomena, permittivity profile of the constitutive material
and the drop voltage applied between the ground plate at height one and the
plate whose displacement is governed by the function u(x,t): we refer to [19, 6]
and reference therein for the physical aspects and deduction of (1). We assume
in (1) Steklov boundary conditions, with nonnegative parameter d, accordingly to
applications which demand more flexible conditions than Navier’s, corresponding
to d = 0 and Dirichlet conditions u = u, = 0, obtained formally by setting d = co.

Existence of steady states for problem (1) have been established in [5] for drop
voltage A\ below the so-called pull-in voltage A\*, a critical value which accordingly
to the Euclidean space dimension may produce instability, namely solutions u*
such that ||[u*||oc = 1, which corresponds to the physical situation in which the
deflecting MEMS’ plate touches the ground plate, and this actually occurs in di-
mension higher than the so-called critical dimension N*, see [4, 7]. As far as we
know, for the dynamic version (1) no results in this direction are available at the
moment and this work is a first step towards a deeper understanding of those prob-
lems. In [6] the dynamic is considered from the point of view of the inverse problem
of identifying unknown coefficients under additional information on the solution
(which therefore is assumed to exist). Here we consider a variant of the nonlocal
contribution due to x > 0, which generalizes the first-order approximation model
(in Taylor’s expansion, see [15]), in case of non-constant capacitance, correspond-
ing to 0 = 2. However, we will see that our approach allows more general nonlocal
effects than the one considered here and in previous works [5, 6, 16, 20, 13, 14]. We
mention that evolution MEMS equations have been previously handled by differ-
ent methods in [18, 11, 12], where existence results are obtained avoiding nonlocal
contributions. More recently, results for nonlocal parabolic problems are obtained
in [13] whereas the second-order hyperbolic nonlocal MEMS equation is studied
in the one-dimensional case in [14].

For 8,x > 0, nonlocal perturbations destroy the variational structure of
problem (1) and we investigate existence of weak solutions by exploiting in Sections
3 and 4 a near operator theorem in the sense of Campanato [3, 22]. This approach

HA®), x, p(x),u) =
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enables us to prove existence and uniqueness of the solution locally in time but
globally in the physical parameters involved in the problem: a key ingredient in our
approach relies on a penalization technique. Differently from the stationary case
covered in [5] here the problem is somehow delicate as it manifests itself through
an hyperbolic nature. Then we are concerned with proving regularity of solutions
by adapting and further developing abstract results of [1] and [10]. In this respect,
it is worth to mention that standard interpolation theory does not suite optimal
regularity results even with the aid of higher-order (operator) perturbations.

Our main results are the following:

Theorem 1. Let Q C RN, 1 < N < 3, be a bounded domain with sufficiently small
diameter, o > 2, nonnegative constants 3,7v,x and 0 < d < dy, where dy is the
first boundary eigenvalue of the biharmonic operator subject to Steklov boundary
conditions. Let also p,c be bounded functions and X € C1((0,T); L*(Q)) such that
Moo < A*, ugp € H? N H(Q) (satisfying suitable compatibility conditions) and
uy € L2(Q). Then, problem (1) possesses a unique solution u € C°([0,T]; H*(Q))N
CL([0,T]; L*(Q)). The same conclusion holds if d = co and Q is a ball.

Theorem 2. Let u € C°([0,T]; HZ(2))NC([0,T]; L*(2)) be the solution to problem
(1) given by Theorem 1. Assume ug,u1 € H?*NHJ () and c € WH°((0,T); L*(Q)).
Then, the solution enjoys the following reqularity:

u € C°[0,T]; HY(Q)) N C([0,T); H* N HY (Q)) N C%([0, T); L*(K2)).

2. Preliminaries

Next we recall some basic facts in the abstract setting which will be used in the
sequel. Let V, H be Hilbert spaces such that V — H < V' with continuous and
dense embeddings. Let A be a linear operator such that A : V — V' and which
enjoys the following properties:

Jv > 0 such that (Au,u) > vul|}, YueV (2)
I M; > 0 such that |[(Au,v)| < M ||ullv [|v]v/, VueV,YveV'  (3)
(Au,v) = (Av,u), Yu,v € V. (4)

Here we denote by (-, -) the duality pairing.
Let T'> 0 and for all ¢ € [0, let R(t) : V — H be a linear operator such
that R € L*°(0,T) and there exists My > 0 such that

(R(O)w,v)| < Mo |lully o, Ve € [0,T], YueV,ve . (5)

Let C(t) : H — H be a linear operator such that C € L>°(0,T) and there exists
M3 > 0 such that

[(C)u,v)u| < Msllullullvlm, Vtel0,T], Vu,ve H. (6)
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Consider the following Cauchy problem

Au(t) + R)u(t) + CH)w' (t) +u"(t) = f(t), t€]0,T]
u(0) = ug (7)
u'(0) = uy

where f € L%((0,T); H).
Definition 1. As a solution of problem (7) we mean

we L*((0,T); V)N H'((0,T); H) N H*((0,T); V')
such that the following holds

T
QA (Au(t), o()) + R(Eu(), o(t) i + (CH (), v(t)) g
T
wammw=4«mmwmw
u(0) = ug
for all v € L2((0,T); V) N H((0,T); H) such that v(T) = 0.

Remark 1. Notice that
T " _ r d / r / /
| wrowa= [ L wom) - [ .o
T
= (/1) (1) = W (0).0(0)) ~ [ (W (o) v (0
0

T

:4w@w@m—/<wmmeﬁ

0
T
— (w1, v(0)) —/O (W (8), 0 (8)) dt.

Hence (8) is equivalent to requiring

T
/O [(Au(t),v(t)) + (R(t)u(t),v(t))r + (CH)'(t), v(t))m
T

(0. (@)a) dt = [ (@), 0(0)r de+ r,v(0))
u(0) = ug '
for all v € L2((0,7); V)N HY((0,T); H) such that v(T) = 0.
As a consequence of [17, Chap. 3.8] and [1], we have the following

Theorem 3 ([17, 1]). Let f € L'((0,T); H), up € V and uy € H, then there exists
a unique solution u € L*((0,T); V)NH((0,T); H)YNH?((0,T); V') to problem (7).
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Moreover, the solution u € C°([0,T]; V)N CY((0,T); H) and the following energy
identity holds

(Au(t), u(t)) +/0 [(R(s)u(s),u'(s))m + (C(s)u' (), u'(s)u] ds + [/ ()3
= (A(0)uo, uo) + HmH?{ﬂL/O (A'(s)u(s), u(s)) ds 9)

+/0t(f(s),u/(8))Hds, te[0,T].

Remark 2. Notice that in particular if we set
Ou = (Au+ R(t)u + C(t)u" + u”,u(0),u'(0))
and
Y = {u|ue 0, T];V)NCY[0,T]; H), Ou € L'((0,T); V') x V x H}
then ©|_ is an isomorphism of Y onto L'(0,T, L%(Q)) x V x H; see also Remark
4.4 in [1].
Define the function space Hq as the Sobolev space H?(2) N H} () endowed

with the scalar product

(v,w)q := / AvAwdzr — d vyw, dS
Q a0

which induces on H2N H} () a norm which is equivalent to the standard Sobolev
norm, provided d < dy, the first simple boundary eigenvalue of the biharmonic
operator subject to Steklov boundary conditions, see [9]:

. fQ |Au|? da
do = inf .
H2OHLQ\HZ(Q) [5q, [uy|? dS

In particular, the operator A? yields an isomorphism of Hy4 onto L2(£2). In the
case d = oo in which the Dirichlet boundary condition v = u,, = 0 is considered,
we set Hoo 1= HZ(Q) endowed with the scalar product

(0, W) 00 := / AvAwdz.
o
Problem (1) enters this abstract framework by choosing V = H4, H = L2,

(Au,v) = / Au(z, t)Av(z,t) dx—d/ uy (2, t)v, (z,t) dS
C(t) := c&,t)[ ”
f(z,t) == G(x,t) + H(z,t)
where I : H — H is the identity map, so that
u € L*((0,T); Ha) N H'((0,T); L*(2)) N H*((0,T); Hy)
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is a solution of (1) provided

T
/ / [Au(z, ) Av(z, t) + c(x, t)u'(z, )v(z,t) — o' (z, )0 (2, t)] d
uy(z, t)v, (x,t) dS dt

/ / (B, v, u(z, t)) + HA®), x, p(x), u(z, t)]v(z,t) dx dt
/ul( Yu(z,0)dx
Q

0<u(zt)<l, inQx][0,T]
w(z,0) =ug € H*NH(Q), 0<up<1

for all v € L2((0,T); Ha(Q))NHL((0,T); L3(2)) such that v(x,T) = 0 (notice that
in the case d = oo it is enough to assume ug € Hq). Moreover, from the energy
identity (9) we have

/ Az, D)2 do — d/ luy |2 dS
Q o
t
+/ /c(x,s)|u'(x,s)\2dxds —|—/ |u'(x,t)|* dx
0 Q Q
:/ Ao (@) dor — d/ \(uo)y\2d5+/ fun ()2 dx
Q o0 Q
t
+/ /f(x,s)u’(x,s)dmds,
0 Q

from which we get
/ |Au(z, t)|* do — d/ lu,, |> dS +/ lu' (z, )| da
Q 89 Q
g/ \Auo(x)\de—d/ \(uo)y\2d5+/ fuy ()2 dr
Q 89 Q
t 3 2
+/ (/ |f(x,s)|2dx> </ u’(:ﬁ,s)de> ds
0o \Ja Q
t
+ ||c||oo/ / lu'(x, 5)|? dx ds.
0o Ja

Remark 3. Note that condition 0 < u < 1 holds pointwise, if N < 4, by Sobolev’s
embedding of H? into the space of continuous functions.

(10)

Remark 4. The second-order boundary condition involved in (1) needs to be legiti-
mated since in the Sobolev space H? N HE () second-order derivatives do not have,
in general, trace on 0€). However, by elliptic regularity theory, the weak solution
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to the problem

A%y = f, in
u=0and u, =g, on Jf)
belongs to H*(2) provided f,g € L?. Let us rewrite (1) in the following form
Azu = —C(.’IJ, t) u' —u” + G(ﬁv’% ’LL) + H(A(t% Xap(x)v u) (11)

so that, for all ¢ € [0,T], the trace of the Laplacian Au(x,t) turns out to be well
defined on 9N once that the right-hand side in (11) belongs to L2. This will be a
consequence of the a priori estimate proved in Theorem 2.

The following version of Gronwall’s lemma (proved in [21] actually for § =1
but the argument trivially extends to any § > 0) will be used in the next section.

Lemma 1. Let w € C°([0,T)), w(t) >0 for all t € [0,T] and w(0) = wo > 0 such
that the following holds

w(t) < dwy + /0 [h(s) + g(s)wP(s)] ds, Yt € [0,T)

with § > 0, B € [0,1) and g,h € L*(0,T) such that h,g > 0, for almost all
t €10,T]. Then the following inequality holds

w <y (s [ra) + ([aa) e

Lemma 1 applied to (10) with

w(t):/ Az, )2 dz — d/ luy|? dS +/ o (z, )| da
Q o0 Q

woz/ Auo(@)2de — d [ |(uo)w|2dS +/ fur ()2 da
Q Q

o0

20 =l [ 1 0P o, o0 = ( [ f<x,t>|2dx)é, f=,06=1

/ |Au(z,t)|? de — d/ lu, | dS +/ |u'(z,t)|? dz
Q a0 Q
< 2/ |Au0(aj)|2 — d/ |(u0)l,\2dS + |u1(x)|2 dx
Q o0

+/Ot/92|c|oou/(x,t)2dxdt+{/ot [/Qf(x,t)ﬁdxr dt}2,
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Finally by the classical Gronwall inequality we get

/ Az, D)2 do — d/ luy |2 dS +/ ()2 da
Q o0 Q
< 2Tlell <2/ |Auo(@)]? — d/ (o) P dS + [ (@)Fde (12)
Q o0

AL [l o)

3. Existence via Campanato’s method: a penalization approach

The proof of existence in Theorem 1 is achieved by extending to the dynamic
setting the idea introduced in [5]. We buy the line of the stationary case whose
key-ingredient is an abstract result of [22]. The argument belongs to the so-called
Near Operators Theory introduced by S. Campanato in [3] within the framework
of non-variational nonlinear elliptic systems and which we will use in the following
form due to the third named author:

Theorem 4 (Theorem 2.1 in [22]). Let X be a topological space, Y a set, Z a
Banach space and the following mappings F: X XY — Z B :Y — Z. Assume
that:

(i) there exists (Xxo,y0) € X X Y such that F(xo,y0) = 0;
(ii) the map x — F(x,y0) is continuous at Xo;
(iii) there exist k1 > 0,ko € (0,1) and a neighborhood of x¢, U(xo) C X, such
that for all y1,y2 € Y and for all x € U(xg) we have
IB(y1) = B(y2) — k1[F(x,91) — F(x,2)]llz < k2[|B(y1) — B(y2)| z-
(iv) B is injective;
(v) B(Y) is a neighborhood of zo = B(yo).
Then, there exists a ball S(zg,r) C B(Y) and a neighborhood of x¢, V (x¢) C
U(xo), such that the following problem:
{ F(x,y(x)) =0, Vxe€V(xo)
y(x0) = wo
possesses a unique solution y : V(xq) — B71(S(z0,7)). Moreover, if con-

dition (iii) holds for all x € X, then the solution y = y(x) turns out to be
defined in the whole X .

In our context we choose X = RT x Rt x RT x & x A where
O={fecL>®Q) : |z : f(x)>0]#0}
and
A={AeL®[0,T]: 0< A< X, X eR*}

Here we take the opportunity to better explain one of the argument used in
[5] and for which we realized the need of giving more details. Indeed, in order to
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verify condition (v) in Theorem 4 we need to perform a penalization procedure.
Namely let € > 0 and consider the following penalized problem

A u + ez, t)ul +u? = G(B,vy,ue) + Ho (A, x, p(), ue), in Q x [0,7T]

0 <wue(z,t) <1, inQx[0,T]

d@us(:ﬁ, t) (13)

ue(x,t) =¢, Aue(z,t) — =0, ondQx][0,T]

ov
ue(x,0) = up + ¢, u.(z,0)=0, on Q.

where

H (M) X, p(a), u) = At p(a, ) 1 =

1+e— e [1+ d
[ € u(x, )] [ X/Q [1 u(x,t)}a—l X
For problem (13) the following holds

Lemma 2. Let ¢g = supg ve where v. is the solution to the stationary problem.
Under the assumption of Theorem 1, for all € € (0, '7°) problem (13) admits a
unique solution u. € C°([0,T]; H*()) N CL([0,T]; L*(Q)).

Define Y: as the set of functions y € C°([0,T]; Ha,-(Q2)) N C1([0,T]; L3(R)),
where Hq,.(€2) is the set of function y such that y — € belongs to H4(£2), such that:

A%y(x,t) + c(a,t)y' (z,t) +y" (z,t) € L*((0,T); L*(2)) (14)

0<y(z,t) <1, inQx[0,7], ¥ (z,0)=0inQ (15)
1

/Q e 4 <M e 0.T) (16)

/ |Ay(x,t)|* de < My, Yt€[0,T] (17)
Q

for positive constants M, M. Set also Z = L'((0,T); L*(Q)) x Ha, and finally
set x = (8,7, X,p, \) to denote an element of the space X. Define

Fo(x,y) := (Fe(2,9),y(2,0),y/ (2, 0))
= (A% 1) + e, Oy (,6) + 4" (1)
— G(B,7,y(x, 1)) — He (A1), X, p(2), y (2, 1)),
(y(,0) = = w)|A(®) = hol.¥/(x,0) ).
B(y) = (B(y),y(z,0))
= (A%y(z,t) + c(z, )y (2,t) + ¥ (2, 1), y(2,0)) .

Remark 5. For parameters 3, x,7 = 0, the existence of the solution v. to the
stationary problem related to (13), follows from the existence of the solution wvg
corresponding to e = 0, obtained in [4, 2], by taking 0 < & < (1 —¢¢)/2 and setting
Ve = Vg + €.
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4. Nearness estimates: proof of Lemma 2 and Theorem 1

In this section we show that assumptions (i)—(v) of Theorem 4 are fulfilled for
the penalized problem (13). As a consequence of [5] we have proved that for any
(8o, Y0, X0,P0) € RT x RT x RT x & and for any ¢y € [0, 7] and A\ € (0, \*), there
exists a unique stationary solution v.(z,ty) € Hq(Q) N H*(Q) to the problem
obtained from (13) by freezing the time variable at ¢ = t¢, which satisfies 0 <
ve(m,t9) < 1 together with

1
/Q (1 — v (2, o) ()] Ae—D) dx < My, /Q |Ave (2, t0) (z)|*de < My
provided the diameter of Q is sufficiently small and either 0 < d < dg, the first
simple boundary eigenvalue of the biharmonic operator subject to Steklov bound-
ary conditions, or d = co and €2 is a ball. Both conditions on the parameter d are
required in order to have a positive preserving property to hold for the biharmonic
operator (see [9]) and which is used to prove the existence of A\*, the so-called
pull-in voltage; estimates on A* can be found in [4, 2].

Remark 6. Actually the nonlocal contribution due to x > 0 considered here is
slight different from the one in [5]: however it is readily seen that calculations adapt
to this case with minor changes and moreover that, beyound physical motivations,
our argument allows quite general nonlocal “capacitance” effects.

Thus we set

xo0 = (Bo,70, X0,P0, Ao) and  yo. = v(x,to)

to have
F.(x0,¥0,c) = 0.
Let us verify (ii):

||FE(Xa yO,E) - FE(XO7 yO,E) HZ

T
- / / FL(B.7, %0 p(2), A(t), ve (. o)

- F ﬂO?WOaXO7p0( ) >\07U6(x7t0))‘2 dz dt

< [/3 [ Vet s + v} Ave(,to)
2
- [ﬁo /Q |V, (z,t0)|* do + ’YO] Ave(z,to)| dxdt
A(t)p()
2 1+ e— (e o)l 1+ xh(v))"

2

Ao po(x) dadi

- [1 +e— ”s(x7t0)]g [1 + Xo h(vs)]g
=L+ 1
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where we set for simplicity
h() = / ! d
Y7o b=l

We have

2
L<4T | 18- Bo2 ( / Vva<x,to>2dx) =0l | T [ 10 o) do
Q Q

whereas the second integral can be estimated as follows

fa= 4/0T/Q lte— Uls(z,to)]za ’A(tmx) P ‘2

1+ xh(ve))7
’[)\(t) — Xolpo(@) |?
1+ x h(ve)])7
dopo(@) _ dopola) | (18)
ol ™ ol ]d .

< C(T, 9, M1) (N)? [lp = pol|fs o
+ C(T’ Q, Ml)’ ”pOH%OO(Q) ”)‘ - )‘OH%N(O,T)
+C(T, 9, My, 0)[pol| Z 0 Aol Z0 0 IX — X0
where we have used in the last term of (18) the elementary inequality: |a® — b%| <
s(a +b)*"ta — b|, which is valid for a,b > 0 and s > 1.
Next we prove the nearness estimate (iii) of Theorem 4 in the global form,

that is we have to prove that there exists k1 > 0 and ko € (0,1) such that for all
x € X, y1,y2 € Y, the following inequality holds

T
| [ 1= k1B - )
+ kl[G(B7 v yl(xat)) - HE()‘(t)a X p(il?), yl(xat))]
—[G(B, 7, y2(w, 1)) — He(A(t), X, p(x), y2(z, t))]* dz dt
+ (1= k)?IAE) = M2 0.9 191 (2, 0) = 2 (2, 0) |13, (19)
T

sk /0 /Q‘Azyl(x7t) + C(:L',t) y/l(xﬂt) + yll/(x’t)
— [A%y2(2,1) + cla,t)ys(x,t) + ys (z,0)][* da dt
+ k2Hy1(x7 0) - y2(x7 0)||’2Hd‘

Observe that initial data comply (19) provided we chose (1 — k1) < ko.
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Next we evaluate the integral part and begin to estimate

T
/O / IG(B, 7, (@, 8)) — C(B, v, yale,t))|? dar di

T
[ﬁ [ w0 s + v] Ay (a, 1)
Q Q

2

- {6/ |Vy2(x,t)2dx+v] Ays(x,t)| dadt
Q

T 2
<2 [/3 [ 1o de + w} Ay (2,1) — Dya(e,0)]| dadt
0 Q Q
T 2
+2ﬂ2/ /‘Ayg(x,t)‘/QWyl(x,t)Fd:ﬁ —/Q|Vy2(:s,t)|2 dr| dodt
2
<2 { / |V (x,t)|? do + 7} [Ayi(z,t) — Aya(z,t)]| dzdt

+252/0 [ 13nGoR | | [ 90 - Tnwop

. UQ Vo (2,1) + Vyg(x,t)de] dt

§2/0T{62 {/QVyl(x,t)|2dxr/ﬂ|Ay1(x,t)—Ayg(x,t)de

+2m[ / |vy1<x,t>|2d4 [ 13m0 = At ) d

92 / Ay (1) — Ays (e, ]2 da } it
Q

+24° {/OT {/ﬂ Ayz(x,t)2dx]2 dt}é
| {/T om0 - vy2(x’t)|2d$rdt}i
. {/T 7m0 + V@/2<ﬂw>|2docrdt}i

=7IG, + IGy + IG5 + IGy.

Remark 7. By the Poincaré inequality and elliptic regularity theory one has (see,
e.g., Chap. 2 of [9] and also the Appendix in [6]) the following gradient estimate

sup /|Vy1 z,t)*de < Cd% sup /\Ayl(:ﬁ,t)|2dx.
t€[0,T) t€[0,T]

where dq denotes the diameter of €2.
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Next by Remark 7 and the Gronwall type estimate (12) we have
T
TG, <2C? 3% M3 df, / / |Ay(x,t) — Aya(z,t)|? do
0o Ja

T
< 202 62 M22 d?) 62T|C|cx>{ |:/ (A ‘A2y1($,t) _ A2y2($,t)
0

1

T el O, (1) — gl D) + W (@) — ol D) dx)zdt] "
20

Tl 0) y2<x,o>||id}

3 2
= 20?32 M3 dj, €2T|C|°°{ {/ (/ |B(y1) — yg)de) dt]

T iy, 0) — y2<x,o>||id}.

Similarly one has

5 2
IazgzcmMQdae”'C'w{[/ (/ [B(y1) — B(ys)| drc) dt]
(21)

Tl (0) - y2<x,o>|%d}

s el [ ([ oo of

+ s (,0) - yz(I,O)ﬁ{d}.

Finally the last integral can be estimated as follows
T 4 H
TGy < 2C? 3% M, dé{/ {/ |Ayy(z,t) — Aya(z,t)]? dx} dt}
0 Q

| {/T Uﬂ At AyQ(Iat)FdIrdt}i
§40262M3d§26m0|x”/ (/ [B(yr) - Blye)? dfc>édtr

+ llgs (2, 0) — y2($,0)||3_ld}.

(23)
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Joining estimates (20), (21), (22), (23) we get
T
| [ 160 ) = G, 7. vl dads
0o Ja

< C(B,7, M2, dq) 62T|C|°°{ U (/ [B(y1) y2)2dl“) ; dtr (24)

+ s (,0) - yz(I,O)ﬁ{d}.

Let us resume nearness estimate (19) and evaluate

/ / VM), v F(@), 1(@0)] — Ho D), X, (@), ol )] da dt
At f ()
14—l L+ Xl
A 1)

dx dt

C [L4e—ya(z,0)]7 1 + xh(y2)]”
* 1+€—y2 (1+€—y1)g
< 2(\%) HfHLoo(Q)/ /‘ 1+5—y2 )71+ —y1)o
‘ (L4 xh(y2)]” — [1 + xh(y1)]”
(1 +€—y2)"
=2\ fl| () (TH1 + TH2).

dx dt

Let us estimate separately the integrals ZH, and ZH> as follows

T2 +e) =y, t) — oz, ) PO Dy (2, ) — ya(a, )2
TH., < 2/ / | 1L,y 2\4y 14y 2\4y dz dt
L=9 [1+¢e—yi(x,t)]2 [1+e—ya(z,t)]?° *

(o [y1(z, t) — yo(x, 1)]?
< 36070 / / [1+e—yi(2, )7 [L + & — ya(,1)]2 dudt

<36 Vo MY T [lyr — y2ll 2 (0. x02)
<36 Vo? MET Cds™ |A(yr — v2)l[ 701,020

é 2
< 36(0—1>02M12T0dg—Ne2T|clx{ U (/ |B(y1) y2)2dx> dt}
T lya(a,0) — y2<x,o>||%d} (25)

where we have used the Sobolev embedding inequality for y € H? N Hg (£2)

2_N
[9llec < Cdg * | Ayll2
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which holds as long as 1 < N < 4.

r h(yz) — h(y1)[?
TH, < o2 2/ / 2+ v(h h 2(0-1) (w2
2 <ot | Q\ +x(h(y2) + h(y1))[* (14 c— o) dx di
< 0?1+ XM Q]2
T 2
/ / v 20 ! o—1 ! o—1 dx dt
0 Q [1 + € —y2(337t)] Q [1 _y2(xat)] [1 _yl('r’t)]

< 02240711 +XM131|Q‘Z)2(U—1)
/T/ dx [1—yi(a, )] = [1 = ya(z, )]
o Jo e @ 0P | Jo -y 0ot [1— e, o1
< C(x, 0, My, Q)T ||y1 — y2||2Loo((o,T)xQ)

by means of the following bound which is a consequence of condition (16) and
Holder’s inequality

/oT UQ [1+e —Z(fc,t)]%r {/Q [1- yl(fv,t)]”‘fg[:l — ya(z, )]71 }2 *

Finally, we may argue as in previous cases to get

IH, < C(x,0, My, QT3 | Alyr — volll 2o~ 0.1): 120

3 2
< C(X,a,Ml,m)nge?Tlclw{[/ (/ |B(y1) — B(y2)|? dx) dt]

T iy, 0) y2<x,o>||%ld}

2

dr| dt

which together with (25) proves the nearness estimate (19) provided dg is suffi-
ciently small.

It remains to show that condition (v) of Theorem 4 is satisfied, namely we
have to exhibit n > 0 such that for all g € L1((0,T); L?(2)) which satisfies

T
/ / lg — By075|2dxdt < 7’
o Jo

we can find u. € Yz such that Bu. = g. Since yo . € Y-NH*(Q) and y6 . = yO =0
we have Byo . = A%y . € L?(9). From what recalled in Section (3), we know that
the Cauchy—Steklov problem

Bu. = A?u (x,t) + c(z,t)ul(z,t) + u(x,t) = g(z,t), q.o.in Qx[0,T],
ue(7,0) = yo,e, in Q
ul(z,0) =uy, q.o0.in
us(z,t) = ¢, Auc —d%'s =0, in9Q x [0, 7]
possesses a unique solution u. € C°((0,7); Ha,e) N CH((0,T); L3(9)).
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We next verify the remaining conditions for functions with membership in
the set Y.. From the energy estimate (12) applied to u. — yo.. we get for t € [0, 7]

(1= o) [ 1ucent) - (o) o

< [ 1wt Awewar—a [ [T
<[ ([ 15 - o) ]}

/ |Ayo.(2)>dz < Ma, Vte|[0,T]
Q

2

aus 3240,5 ds

Since

we have also
/ |Aug(x,t)|*de < My, Vte[0,T]
Q

provided 7 is small enough; this yields condition (17).
Recalling that 1 < N < 4, by the Sobolev embedding theorem we have

sup [ue (2, 1) — Yo, ()|
“ (26)

N N
2 2—

< Oy 2 )| Alus(z,t) — yoe ()]l 2(0) < Cldg * ).

Since 0 < ypo(x) < 1, for all x € Q, there exists m1 > 0 such that for 0 < n <
we have also 0 < u.(x,t) < 1 and condition (15) is satisfied.
Finally from the following inequality

1 [1—u5}”—[1—y05]‘7’ / 1
dx < / i dx + dx
/Q [1— ue(z, 1)) ol 1 —voel”[l —uel” o [1—voe(@)]”
and arguments similar to those used in verifying condition (i), we have
[T —uel” = [1 —yo.el”

/Q [1- yo@]_"[l — Ue)?

and by (26) there exists 12 > 0 such that for 0 <7 < 12

’ dz < C'sup [u —yo e
Q

1
de < My, Vtelo,T
Jy 1oy 22 < ¥ e 0T

and hence condition (16). This concludes the proof of Lemma 2.
We next prove Theorem 1 by showing that the solution of the penalized
problem converges, as € — 0 to the solution of the original problem (1). In order

to do this we prove that the family of penalized solutions yields a Cauchy sequence
in C°([0, T); Ha) N CL([0,T]; L*(Q)). Indeed, consider two penalized solutions u.
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and u., corresponding to parameters € and e; respectively and evaluate

A% (ue —ue,) + ez, t)(ul —ul,) +ul —ul, = G(B,7v,us) — G(B, 7, e, )
+ HE()\,X“D( ) ¢) — He, ()‘>X7p(x)7u51)7 in O x [07T]
ue(z,t) — ue, (x,t) =€ — ey, (27)
Olue(z,t) — ue, (z,1)]
v
u. )(x,0) =0, on Q.

Alue(z,t) — ue, (x,t)] — d =0, ondQx][0,T],

us(z,0) = —ey, (ul—

Arguing as in previous cases we have

t
[ 16670 = 667w P
< C/Ot/QA[us(x,t) — g, (x,0)]?dzdt, te]0,T)]

t
/ / (O p(@), 1) — Hoy O p(@), e, )| 2da dt
0 Q

t
< Ci(e— e 2T|O) + 02/ / Alue (2, 1) — e, (x, £)] 2da dt.
0o Jo
Then applying inequality (12) to problem (27) we get for all ¢ € (0,7

/ |Aluc(x,t) — ue, (2,1)]|*dx
Q

t
< Cie—=)2 T + 02/ / Al (2,1) — e, (2, )] 2da dt
0 Q
from which Gronwall’s lemma yields
[ 18fus(at) = ey ) Pde < e~ 222 T
Q

and the proof is now complete. O

Remark 8. We point out that the limiting procedure as € — 0 carried out so far,
has to be used also in the stationary case [5], by following step by step the above
calculations.

5. An abstract result towards regularity: proof of Theorem 2
We have proved so far that problem (1) possesses a unique solution
u e C°([0, T H*(Q2)) N C([0, T); L*(2))

and in particular, since v = 0 on 9S2 we have, regardless of higher-order boundary
conditions,
u € C°((0, 7] H? 1 Hy () N C* ([0, T); L*(%)).
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In order to prove the regularity Theorem 2 for the MEMS problem, we need
to prove that the nonlocal term [, [Vu(z, t)|*dz belongs to C*([0,T7]). This issue
is somehow delicate, as one may think of applying interpolation theory via penal-
ization techniques but this would yield just u € C'2([0,T]; HL(Q)). Let us prove
the following

Lemma 3. Let u € C°([0,T); H?> N HY(Q)) N CL([0,T]; L*(Q)), then the map
t— / \Vu(z,t)|*dx
Q

belongs to HV>°(0,T).

Proof. Consider the following problem
— Au(z, t) + v (z,t) = f(z,t),
u(z,0) = u(z,0)
u(z,t) =0, on 9Q x [0,T]

where by assumption f € C°([0,T]; L?(£2)) and for which the energy identity reads
as follows

2, 2 ' / 2
/Q|Vu(x,t)| dx /Q|Vu(x,s)\ dx + 2/5 /Q\u (x,&)|“dx d
t
= ! d .
2/5 /Qﬂx,f)u(f,t) €, s<t

Hence we get

/|Vu(:s,t)|2d:s _ / Vu(z, s)2de
Q Q

<9 / | Wi +2 | t [ 1ol € o) de

<20t —s| | sup ||/ (z,1)[|72(q) + sup || (2, 8)l|l L2 () sup [[u' (2, )]l L2 (o)
[0,7] [0,7] [0,7]

)

and thus the claim is proved. O

Let us resume equation of problem (1) written in the following form
A%u+ {—B/ |Vu(z,t)|?dr + 7} Au+ c(z, t)u' +u” = HA(®), x,p(z),u) (28)
Q

As a consequence of Theorem 1 the right-hand side in (28) belongs to the space
CH([0,T); L3(Q)), provided A € C*([0,T]; L*(£2)), whence by Lemma 3

t o —5/ Ve, )Pz +
Q

belongs to H*(0,T).
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Now we are in a situation where the following abstract result due to G. Gilardi
applies:

Theorem 5. Let f € WHL((0,T); H), uo,u; € V and Aug € H. Let R(t) and C(t)
belong to WH1(0,T). Moreover for any v € V we have |R/(t)v||g < c||v||v and
for any v € H we have ||C'(t)v||g < c||v||g. Then the solution u of problem 7 is
in C°((0,T); D(A))NCL(0,T); V)N C?((0,T); H).

which is straightforward from [10, Teorema 4.5], to obtain
u € C°([0, T]; HY(2)) N C*((0, T]; H* N Hy () 0 C*((0, T]; L*(9))
provided ¢ € H>°((0,T); L?(£2)).
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Existence and Multiplicity Results
for Some Scalar Fields Equations

Giovanna Cerami

Abstract. In this paper the results of some researches concerning Scalar Field
Equations are summarized. The interest is focused on the question of existence
and multiplicity of stationary solutions, so the model equation

—Au+a(z)u= |[uff'u inRY,

is considered. The difficulties and the ideas introduced to face them as well as
some well known results are discussed. Some recent advances concerning ex-
istence and multiplicity of multi-bump solutions are described in more detail.

Mathematics Subject Classification (2010). primary 35J20, secondary 35J60.

Keywords. Elliptic equations in RY, variational methods, multi-bump solu-
tions, infinitely many positive and nodal solutions.

1. Introduction and survey on well-known and more recent results

The aim of this paper is to describe some recent advances concerning the equation

(E) —Au+ a(z)u = [ulP~'u in RY,
where N > 2,p>1, p<2*—1= V2 if N > 3, and the potential a(z) is a

positive function that is not required to possess any symmetry property.

It is well known that a strong motivation for studying such equation is due to
its connection with Mathematical Physics. For instance, the search of certain kind
of solitary waves (stationary states) in nonlinear equations of the Klein—-Gordon
or Schrédinger type leads to look for solutions of (F) (see, e.g., [5] and [8] for a
detailed discussion of this fact). Moreover, Euclidean scalar fields equations, like
(E), appear in several other context of Physics (nonlinear optics, laser propagation,
constructive field theory, etc.).

Work supported by the Italian national research project “Metodi Variazionali e topologici nello
studio di fenomeni non lineari” and by GNAMPA of INDAM..
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On the other hand, it is worth stressing that, besides the importance in the
applications, another considerable reason which motivates the researchers interest
is the presence, in equations like (E), of some specific mathematical difficulties
that make their study challenging.

Therefore, it is easy to understand why this type of equations has been object
of extensive studies during last thirty years.

Equation (E) is variational in nature: its finite energy solutions can be
searched as critical points of the ‘action’ functional defined in H'(RY) by

1

1
2/ (|Vu|* + a(x)u?)dx — / Ju|PTtda.
RN RN

Iw) = p+1

However, the usual variational methods cannot be applied in a standard way be-
cause of a lack of compactness. The origin of the trouble is, essentially, the in-
variance of RY under the action of the non compact group of the translations
and, technically, appears as the non-compactness, whatever p is, of the embedding
j: HY(RYN) — LP(RY), and as a failure of the basic Palais—Smale condition at
some energy levels.

This difficulty can be overcome when a(z) enjoys some symmetry.

Indeed, first known results (see [6], [14], [15], [19], [21], [5]) have been obtained
assuming either a(z) = a € R or a(z) = a(|z|). Actually, radial symmetry was for-
merly used to reduce (F) to one dimension, so that ordinary differential equations
methods could be applied. However, the crucial role of symmetry was clear after
the observation (due essentially to Strauss [21]) that H!(RY), the subspace of
H'(RY) consisting of radially symmetric functions, embeds compactly in LP(RY).
This device, together with the Palais Symmetric Criticality Principle, allows to
prove, by usual variational arguments, the existence of a positive (ground state if
a(x) = a € R) solution and of infinitely many, radially symmetric, changing sign
solutions to (E) [5]. Moreover, it must be mentioned that, still under assumption
a(x) = a(|z]), one can also show the existence of infinitely many nonradial, chang-
ing sign, solutions of (F), under suitable restrictions on the dimension N (see [3],
[8] and references therein), and, furthermore, that the existence of infinitely many
non radial positive solutions can be proved if, in addition, the assumption that
a(|z]) decays at infinity with a prescribed polynomial rate is imposed (see [22]).

When a(z) has no symmetry properties, even the existence question becomes
a quite difficult matter, the loss of compactness is severe. Most researches have
been concerned with the case in which

lim a(z) = aoo >0
|| =00

exists (for some existence and nonexistence results when this condition is not
required see, e.g., [20],[9], [10]).

Considering the non symmetric case, the first observation is that, looking for
critical points of the functional I, the topological situation appears quite different
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according that,
a(r) = o, as |z| = oo, from below (1.1)

or not.

Actually, when (1.1) is true, using concentration-compactness arguments
it is possible to show (see [17], [20]) that a positive, ground state, solution of
(E) exists either when ao, € R, either when as, = 400 and can be found,
for instance, by minimizing the functional I on the Nehari natural constraint
M:={ue H(RY): I'(u)[u] =0}.

On the contrary, if (1.1) does not hold, (E) may not have a least energy
solution. This is the case when

a(r) > as, Yz € RY, and a(x) # ax  on a positive measure set.
(1.2)

Indeed, when (1.2) holds, denoting the functional related to the limit equation

(Fso) —Au+ asou = |ulPtu in RY,

by

1 1
Io(u) := N /]RN(\VU\2 + aoou?)dz — sl /]RN |u|PTdx,

and by my, the value I, takes at the ground state solution w of (Ex), it is not
difficult to show the equalities

inf {7(u) : u € M} = min {Ioo(u) : u € H'(RY), I, (w)[u] =0 } =mo  (1.3)

and that the infimum cannot be achieved (see, e.g., [8], Prop. 3.1).

Nevertheless, this fact does not mean that when (1.1) is not verified there is
no hope of finding positive solutions to (E). When (1.2) is true, the existence of a
positive, not ground state, solution has been proved in [2] (Sect. VII, see also [1])
when the additional decay condition

/RN (a(z)—aoo ) exp(o(ase ) /?|x))|z| e LY(RY) for some o >0 (1.4)

is satisfied. The idea of the proof is to look for critical points of I at higher energy
levels, using subtle topological tools and minimax methods, and taking advantage
of a deep study of the nature of the obstacles to the compactness ([4], [2]).

The subsequent natural question to investigate is under which conditions (E)
admits multiple solutions, eventually infinitely many, as in the radially symmetric
case. However, facing this question, it is not difficult to guess that the strategy of
trying to construct critical levels of I, avoiding the ‘bad levels’ for the compactness,
probably is not the most appropriate. Indeed, the representation theorem of the
non-compact Palais—-Smale sequences of I (see [4]) supplies the information that
‘bad’ levels of I can be located by critical values of the limit functional. There-
fore, since by the Berestycki—Lions result ([5]) (Ew) has infinitely many solutions,
infinitely many ‘dangerous’ levels exist.
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The existence of infinitely many changing sign solutions to (E), when (1.1)
holds, has been proved in [9], using a quite natural approach, under the decay
condition

da T
lim (z)e1*l = 00, VYo >0, where x= |,
|z]—+o00 ox ‘LL"
assuming, in addition, some stability of the value gi (z) with respect to small

perturbations of the direction. The proof is based on the idea of approximating
the equation in the whole space R by a sequence of problems in balls, B, (0),
centered at the origin and whose radius r, is increasing to +oo, as n — 4o0.
Clearly, by using standard arguments, it is possible to construct for any such
approximating problem in B, (0) infinitely many solutions (u})s. Then, using
such families of solutions, infinitely many sequences consisting of approximate
solutions having the same topological nature can be built. Finally, the fact that,
passing to the limit, these sequences give the desired infinitely many solutions of
(E), and do not give rise to non compact sequences, is obtained by very delicate
estimates involving Pohozaev type inequalities and Morse index arguments.

The possibility of proving the existence of infinitely many ‘multi-bump’ posi-
tive solutions for (F) has been firstly successfully explored in the pioneering paper
[16], under periodicity assumptions on the coefficients. This property, of course,
plays a crucial role in realizing the project of getting multi-bump solutions by
‘gluing’ positive bumps of the same nature.

Subsequently, as already mentioned, the existence of infinitely many positive
multi-bump solutions has been proved in [22], in a radially symmetric framework,
imposing on the potential the decay condition a(|z]) = o + |, + O( |m|,}z+6 ), as
|x] — +o0, with a suitable choice of m and o.

On the other hand, considering the semi-classical equation

—2Au + a(z)u = |ulP~u, in RY, (1.5)

where ¢ is a small parameter, it is worth recalling that a lot of work has been done
on the question of the positive solutions multiplicity and that (1.5) is strongly
related to (F), because, by a change of variables, it becomes

—Au+ a(ex)u = |ulP~ u, in RV,

The number of solutions of (1.5) has been related to the number and/or the
type of critical points of a(z) and, also, to the topology of the sublevel sets of
a(z). The method mostly used in the proofs has been the so-called method of
the ‘projections’ and a Lyapunov—Schmidt reduction of the problem to a finite-
dimensional one. Since it is very difficult to cite all the interesting contributions in
this direction without forgetting something, we just refer the interested reader to
the latest ones [7] [18] and to references therein. With respect to (1.5), it must be
pointed out that even the best results one can obtain in this setting sound, more
or less, as follows: under suitable assumptions on the nature (of critical points) of
a, for any fixed integer k, there exists e > 0 such that, when ¢ € (0, &), there are
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at least k positive (possibly multi-bump) solutions. So, it is not difficult to realize
that i goes to 0 as the number k of the desired solutions tends to infinity. Thus,
there is no hope of obtaining, by this approach, the existence of infinitely many
solutions to (F).

Recently some contributions to the settlement of the question of the existence
of infinitely many ‘multi-bump’ solutions to (F), when no symmetry assumptions
on a(x) are available, have been given in [12], [13], [11]. All these results concern
the case

a(x) # oo, a(r) = aso, as|z| = oo, from above (1.6)

and are proved by using purely variational methods.
The rest of the present work is devoted to describe these results, providing
some insight on the main ideas.

The first result (see [12]) is stated as follows:

Theorem 1.1. Let assumptions

(h1) a(z) — a0o >0 as |z] — oo,

(h) a(z) >ao >0 VzeRY,

(hs) a € Lig,*(RY),

(ha) 37 € (0, yaso) + limpy s 4o0(a(z) — ass)e™®l = +oo
be satisfied.

Then, there exists a positive constant, A = A(N, 1, a9,a00) € R, such that,

when

(*) la(x) — aco| vz == sup |a(x) — acolLn/2(B, (y)) < A
loc ZIERN

equation (E) has infinitely many positive solutions belonging to H'(RY).

It is worth making at once some remarks on the above theorem assumptions.
These comments are also helpful to understand the reasons of the development of
the researches we discuss in this paper.

First of all, let notice that regularity assumption (hs) on a is very mild and,
moreover, that neither inf,cg~y a(z) = ao, nor a(z) > as for all 2 € RY are
required.

Assumption (hy) is a ‘slow decay’ condition, it can be satisfied when a(x)
decays very slowly, although, unlike [22], a suitable exponential decay is allowed.
It is interesting to observe that (h4) is almost complementary of the ‘fast decay’
condition (1.4) imposed to a(z) in [2] and in [1]). The role played by (hy4) is basic:
it is the deep motivation for which the variational argument works. Indeed, as we
shall see, the solutions are found by a max-min argument on the action functional I
and the procedure is successful because the attractive effect of a(x) on the ‘bumps’
is dominating on the repulsive disposition, which is of a specified exponential type,
of positive masses with respect to each other.

On the contrary, the ‘small oscillation’ condition (*) on a appears less natural,
hence, reasonably, one wonders whether it is necessary or not.
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The answer to this question is contained in a theorem, proved in [11], in which
the same claim of Theorem 1.1 is obtained without imposing any ‘small oscillation’
condition on the potential, but asking that the potential has a, suitably large and
suitably far away, ‘pit around the origin’:

Theorem 1.2. Let a(x) satisfy (hy), (h2), (h3), and (hy). Let A C RN be an open,
bounded set such that 0 € A. Let N be a bounded neighborhood of A, and let
b: N — R be a continuous function, having compact support, such that

xlenafA b(z) =by > 0, S}\lfp b(x) < ag.

Let us consider the equation
(E:) —Au+ ac(z)u = [ulP"Lu in RY,

where a.(z) = a(z) — be(z) and b. : RN — R is defined by b.(r) = b(ex) if
reN/e b(x) =0ifr ¢ Nje (N/e={z eRN :ex e N'}).

Then, there exists € > 0 such that, for all ¢ € (0,8), equation (E.) has
infinitely many positive solutions belonging to H'(RY).

It is worth stressing that equations (E.) are exactly of the type (F) for any
choice of € and that the claim, unlike the above quoted results for semi-classical
equations, gives for all € suitably small infinitely many positive solutions to (E.).

It is an open question if (*) can be merely dropped.

A further question coming in a quite natural way, thinking out the attractive
effect of a(z), is to investigate whether the multi-bump solutions, found in Theorem
1.1, can converge to a solution of (E), when the number of the bumps tends to
infinity.

The study of this question has been object of [13] and the positive answer is
contained in the following

Theorem 1.3. Let assumptions of Theorem 1.1 be satisfied.

Then, there exists a solution of (E), u € H (RN, which has infinitely many
positive bumps.

More precisely, @ is emerging (in the sense specified in first step of Sect. 2)
around an unbounded sequence of points (Tp)n, Tn € RN (%, # Ty for m # n).

Furthermore 4 and (Z,,), have the following properties:

li_>m min {|Z, — Tm| : m €N, m#n} = +oo (1.7)

lim @(x + Z,) = w(z)  uniformly on all compact subsets of RY.
n—roo

We observe that relation (1.7) indicates the bumps of @ rarefy, as the distance
from the origin increases, giving rise to a quite new phenomenon. Indeed, for
instance, multi-bump positive solutions, obtained in [22], when a(x) is radially
symmetric, cannot converge as the number of the bumps increases, and, on the
contrary the bumps, as their number increases, spread out, going far away each
other and far away from the origin in a uniform way.
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We remark that the same conclusion of the above theorem can be shown true
also for equation (E.), for all £ for which the claim of Theorem 1.2 holds (see [11]).

The last question, that naturally appears, is to investigate the possibility, of
obtaining infinitely many multi-bump changing sign solutions, when (1.6) holds,
complementing, in some sense, the result of [9]. A positive answer has been given
in [11]:

Theorem 1.4. Let a(x) satisfy (h1), (h2), (hs), and (hs). Let A €@ B C RN, be
open, bounded sets such that 0 € A. Let Ny and N be bounded neighborhoods of
OA and OB respectively, such that NaNNg = 0. Let beb: N — R, N = NaUNB,
a continuous function, having compact support, such that
ze@lggaB b(x) = by > 0, Eg\){b(x) < ap.

Let N'/e, be, a. and E., be defined as in Theorem 1.2.

Then, there exist € > 0 such that for all € € (0,&) equation (E.) has infinitely
many nodal solutions belonging to H'(R™N).

The remainder part of the paper is organized as follows. Section 2 contains
a description of the main steps necessary to prove Theorem 1.1: the new method
for finding critical points, that can be called ‘of multiple baricenters and multiple
local Nehari constraints’, is displayed in details, making an attempt of emphasizing
the ideas and avoiding technicalities. Section 3 is devoted to an outline of the
construction of a solution to (E) having infinitely many bumps. In Section 4 a
sketch of the way of proving Theorems 1.2 and 1.4 is exposed, skipping the points
in which the arguments are similar to those of Theorem 1.1 and stressing the
differences.

2. Infinitely many multi-bump positive solutions

In this section we describe main ideas and arguments used to prove Theorem 1.1;
for sake of simplicity in what follows, instead of (hq), (h2), we assume (1.2).

Solutions of (E) are searched, by using purely variational methods, as critical
points of the functional I in special classes of ‘k-bump’ functions. This program is
carried out in several steps.

First Step: Classes of admissible multi-bump functions

We start by considering a positive number § > 0 and by defining, for any function
u € HY(RY), its emerging part above §
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Then, fixing a suitably small § and a large p (p = p(d) chosen so large that
w(z) < 6 outside B,/5(0)), we say that u € H'(RY) is emerging (above 8) around
the points x1, %2, . ..,xx (in k balls of radius p) if

k
W) = Y ul(a)
i=1

where, for all i € {1,2,...,k}, ud > 0, ud # 0, v} € HE(B,(z;)), By(x;) N
Bp(l'j) = [Z) if 4 7é j

Setting
K1 =R"Y;
Ky = {(1‘1,1‘2,...,$k) € (RN)k e — ] > 3p, 4,5 =1,2,...,k, z;é]}
Vk > 1,
we now define, for all (21, z3,...,2) € Kj, the classes:
S0 = {u € H'RYN):u >0, u emerging around (z1,z2,...,zx) € Kk,
and I'(w)[ul] =0, Bi(u) =0V i=1,2,...,k}
where
B0 = | [ (- @) (21)

are barycenter type maps.

The sets Sy, z,....z, defined above are not empty. Indeed, assumptions (hy),
(h2), and (h3) guarantee that, for all u € H'(RY) such that u® # 0, the function
T, : [0,+00) — R defined as Z,(t) = I(us + tu’) has a unique maximum point
t, € (0,400), so it makes sense to call the function us + tyul the projection of u
on the natural nonsmooth constraint {u € H'(RY) : I'(u)[u’] = 0}. Then, given
(z1,22,...,25) € Ki, an example of function belonging to Sy, z,, ..z, is provided
considering:

N k )
wo= {0 JrE e U ),
where 0;(z) is, for all i € {1,2,...,k}, the projection on
{ue H RN): I'(w)[u’] = 0}
of the function v;(z) = v(x — x;), v € C§°(B,(0)) being a positive, radially sym-

metric (around the origin), function such that v(z) > § on a positive measure
subset of B, (0).

Second step: Minimization between functions emerging around a given set of points

A choice of § suitably small and assumptions (h1), (h2), and (h3) allow to show
that, for all kK € N\ {0} and for all (z1,22,...,25) € Kk, the relation

UE Spyza,ze = (1) > I(us) >0
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holds. Thus, obviously,

w(xy, xa, ... xg) = inf  I(u) >0,

and, the following proposition states that more is true:

Proposition 2.1. Let assumptions (h1), (he), (hs) be satisfied. Then, for all k €
N\ {0}, for all (x1,22,...,25) € Ky, there exists @ € Sy, p,,...,5, Such that
Iw)= inf I(u)=p(x,ze,...,28).
Sz .wo...zp

The method used for proving Proposition 2.1 is in the spirit of known ar-
guments exploited to show that some functionals, satisfying suitable assumptions,
possess a minimum on their natural Nehari constraint. Nevertheless, the situation,
in this setting, is more delicate, because, when we work in Sy, 4,.... ), We deal with
functions satisfying ‘natural constraints’ that are only local. Therefore, the proof
is not standard.

An important effect of the above considered minimization procedure is some
remarkable feature, described by two propositions, of any minimizing function.
First statement provides a decay estimate on the submerged part of a minimizing
function and ensures that such minimizing function solves (£) on RY except the
points of the support of its emerging part:

Proposition 2.2. Let assumptions (h1), (he), (hs), and (hy) be satisfied. Let k, @,
and (x1,xa,...,2r) be as in Proposition 2.1. Then s solves

~Au+a(z)u =uP in RN\ supp @°,
(Ps) u=20 on supp @’
u>0 in RN,

Moreover, setting d(x) = dist(z,supp @°), the relation
0 < as(x) < Coe M) (2.2)
holds, with C > 0 depending only on 7, Goo,N.

Latter proposition makes clear the equations that a minimizer (actually its
emerging part), being a constrained critical point of I, must satisfy:

Proposition 2.3. Let assumptions (h1), (h2), and (hs) be satisfied. Then, for all
k € N\ {0}, for all (z1,22,...,2) € Ki, for all @ € Sy, 4,5, Such that I(7) =
w(x1, e, ... k), for alli € {1,2,....k}, a \; € RN emists so that the relation

= [ S@e@c e e HBe)  23)

holds true.
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Third step: Mazximization among minimal functions

The purpose is, now, to show that, when we make the k-tuples (z1,z2,...,zk)
vary in the set Iy, the supremum, on the set of minima (1, 22,...,2x) of I on
the admissible classes, is a maximum. We remark that, unlike the previous step,
where assumption (hy) was only used to prove the decay estimate (2.2), now this
assumption plays a crucial role.

Setting

e = suppu(z1,za,...,x,) =sup  min  I(u),
Kk K Szl,zz ,,,,, Ty

the desired result is stated in the following:

Proposition 2.4. Let assumptions (h1), (ha), (hs), (hs) be satisfied. Then, for all
k e N\ {0}:

1) H(i'l,i'g,...,:i‘k)EK:k :/J,kzlu(i'l,i'g,...,:i‘k);

y (2.4)
11) Pk + Moo < Uit1-

The idea underlying the above proposition can be explained, in a rough way,
as follows: in order to maximize the functional I among functions having a fixed
number of bumps, one needs that the functions (and especially the bumps) feel as
much as possible the attractive effect of a(z). On the other hand, the interaction
between the ‘bumps’ let the value of I on a multi-bump function decrease as much
as closer the bumps are, giving rise to a tendency of the bumps to escape to infinity.
Therefore, the possibility of finding a maximizer is strongly connected to a delicate
balance of these two opposite effects and, more precisely, to the possibility that
the attractive force of a(x), because of the slow decay, imposed by (h4), prevails
over the repulsive interaction between the bumps (that, by Proposition 2.2, is of
exponential type).

The proof of Proposition 2.4 follows an inductive argument, we give here an
outline of it when k=1 and k = 2.

Case k = 1. Writing

I(u) = Ino(u) + ;/}RN (a(x) — aco)u?(z)dx

it is easy to realize that, being a(x) — ax > 0 on a positive measure set, for all
z € RN

holds true.

To show that w4 is achieved, main point is proving that any sequence (yn,)n,
yn € RV such that limy, - 4 oo p(Yn) = p1, must be bounded. Intuitively, this fact
is true because as |y,| — oo the interaction of minimizing functions w,, ‘centered’
at y, with the potential a decreases going to zero, hence I(u,) approaches more
and more I, (uy), and, then, mq,. Technically, denoting by (u,), a sequence of
functions such that w,, € Sy, and I(u,) = u(y,) and by (@y, )» the sequence of the
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projections on the local Nehari constraint of w(- — y,,), w(z) being the function
realizing (1.3), the idea is formalized by the relations

) = 1,) < T(,) = I(,) + [ (ale) = ase) (@, (2) s

1 (2.5)
Sty [ (ala) = a)(in(w) *da,

2 Jn

and
. 1 - 2
Jim [ (0 = o) @@ =0
Case k = 2. To show the inequality
H2 > p1 + Moo, (2.6)

we consider a sequence of pairs (Z,0,7),, with 0, € R, oy, 7. too, T €
n-— oo

RN, |7| = 1,z € RY such that g3 = u(z), and a sequence (uy), of functions
so that u, € Sz 6,7, I(un) = p(Z, 0nT).

For large n, the emerging parts of u,, (emerging around z and o, 7 respec-
tively) are on opposite hyperspaces with respect to the strip

zn:{xeRN:";—1<(x~7)<02”+1}.

By using a suitable cut-off function, one can set, for all n, u, equal to 0 on X,,.
Evaluating I on the sequence, (vy,),, obtained cutting the functions u,,, one gets:

I(vg) < I(up) + ;El/ ((un)5)2dx+62/ ((un)s)Pdx

<pp+ 0 (e (2.7)

On the other hand, for large n, v, can be written as the sum of two functions
vl €Sz, and v2 € S, ., for which the relations:

1
)2 p@) =, and T zmact ) [ (a(e) - ax)0d)?
RN
hold true. Therefore,
1
I(vy) > p1 + Mmoo + / (a(z) — as)(v2)2. (2.8)
2 Jun

Hence, thanks to (hy), (2.7) together with (2.8) gives (2.6).

Now, proving that po is achieved is not a difficult matter. Again the main
point is showing that a maximizing sequence ((y.,42))n, is bounded.

The argument can be carried out by contradiction. Denoting by (uy)n, a
sequence of functions so that u, € Sy1 2 and I(un,) = p(yh,yz2) assume, for
instance, |y2| — oo. Then, considering (s, )n, and (25, )n, two sequences of functions
so that s, € Sy1, and I(s,) = p(ys), 2n € Sy2, and I(z,) = p(yz), one deduces as
in (2.5) that I(z,) < Mmoo + 0(1). Moreover, s, V 2, € Sy1 2 and, being s, A 2, <
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0 using the convexity and coercivity of I on functions having small L° norm,
I(sp A z,) > 0 can be obtained. Thus,

po = I(un) +0(1) <I(spV2zn)=1(sn)+ I(zn) — I(sn A zn) +0(1)
< I(sn) +1(zn) +0(1) < p1 + Mmoo + 0(1)

follows, contradicting (2.6).

Last step: Constrained critical points are free critical points

The functions uy, found by the above-described max-min procedure are ‘good
candidates’ to be critical points. Since we already know that the submerged parts
of such functions are solutions of (E) in R"V except the supports of their emerging
parts, to complete the argument, what is left to show is that the emerging parts
too satisfy (F).

First of all, we need to be sure that, at least when |a — aoo\LlN/z is small, the

k-tuples, around which the maximizers are emerging, are contained in the interior
part of K and that the supports of the emerging parts do not touch the boundary
of the balls in which they are contained. To this end, a deep inspection of the
maximizing functions asymptotic properties, as |a — aoo] LN 0, is in order.

A careful energy balance, again strongly depending on assumption (hy), shows
that, if the distance of the centers of the emerging parts would not go over any
fixed quantity, when |a — a| N loc decreases going to 0, then, the energy lowering,
due to the interaction of the bumps, could exceed the attractive effect of a, yielding
a contradiction with relation (2.6) (that holds for all k¥ € N and for all a satisfying
(h1)~(ha)).

Denoting by F the family of functions a satisfying (h1)—(h4), for each a € F
by I%, S%, uf the corresponding functional, classes, max-min values, and consider-
ing functions uf emerging around points (z¢, 2%, ..., 2¢) such that uf € Sg%,___’zg,

and I*(u}) = p§ the above reasoning is summarized by the relation:
min {|z§ —z§|:i#j, 4,j=1,2,...,k} = 400 as|a— ace| ne — 0. (2.9)
loc

Furthermore, taking advantage of the uniqueness (up to translations) of the ground
state solution w of (E), it is possible to describe the asymptotic shape of the
solutions emerging parts:

sup {|ug(z +27) —w(@)|: i =1,2,...,k, [z| <7} =0 as|a— aco|, n2 = 0,
loc
(2.10)
for all > 0.
So, as consequence of the exponential decay of w(x) and of the choice of p
the desired relation:

supp (uf)? € B,(x$) Vie{l,2,...,k}, forsmall |a— aco|,n/2
loc

can be deduced, thanks to the choice of p.
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Now, the proof is completed as the following claim is shown true: when |a —
oo | L2 is small enough, for all k¥ € N\ {0}, the Lagrange multipliers appearing

in relations (2.3) are equal to zero.

Here the arguments become quite delicate and technical, nevertheless the
underlying idea is simple and can be roughly summarized as follows: if some La-
grange multiplier related to a maximizing k-tuple would be nonzero, then, moving
the points of that k-tuple, a little bit, along the directions of the nonzero Lagrange
multipliers, we could get a contradiction proving that the energy of minimizers re-
lated to the ‘new’ k-tuple is greater than the energy of the minimizer related to
the maximizing k-tuple.

Technically one argues as follows: if the claim is false, a sequence (a, ), of
potentials satisfying (h1)—(h4), a sequence of natural numbers (k, ), and a sequence
of functions (uy,, ), exist so that (denoting by I,,, K} , S, pu the corresponding
functional, sets, classes, max-min values. .. )

lan—aoo| v —> 05 up, €S} P I(uk,) = pg and I (ug,) #0.

n n
loc  n—+oo T15To T

Therefore, according to Proposition 2.3, some A" # 0 exists for which
Lol = [l @) 0@ aie e B (B,60)
By (x}

holds true. We can assume, e.g., that |[A?| # 0, for all n and, up to a subsequence,
limy,— 400 AT/|AT| = A. Then, we build, for all n € N\ {0}, another k-tuple of
points in RN (y2, 4%, ... yYp.) €Ki, setting
n_ | i#1
YT atrenh i=1,

((en)n being a sequence of real, positive, suitably small numbers).

To (y1',y%, - - -, Yk, ) there corresponds a sequence of functions (v, ),, made up
by minimizers of I,, in SZ?,yQ,wy};”n’ which, by construction, satisfy the inequalities
Iy(ve) < py, = In(ug,) Vn € N. (2.11)

On the other hand, writing the variation of I, passing from ug, to vy, by means
of a Taylor expansion we obtain

1
(o) = Tnun,) = Tl )lon = e, ]+ [ (90— ) Pda
RN
1
+ / (an)(vn — ug, )2dz — p/ [ug, + On (Un — up, )P (vp — up, )?da
2 RN 2 RN

where @, (z) € [0,1].
Very careful estimates of the expansion terms, involving relations (2.9) and
(2.10) and other consequences of assumption (), show that, for large n,

I,(vy) — In(uk,) >0
contradicting (2.11) and completing the proof.
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3. A solution with infinitely many bumps

This section is devoted to describe how the existence of a positive solution to (E)
having infinitely many bumps can be obtained.

This kind of solution is searched as limit, as the number k of the bumps
goes to 400, of a sequence () of multi-bumps solutions given by Theorem
1.1. Therefore, unlike the functions @y, this new solution has no a variational
characterization.

To carry out this program, in view of what seen in Section 2, it is useful to
complete the statement of Theorem 1.1 as follows:

Theorem 3.1. Let assumptions of Theorem 1.1 be satisfied. Then, for all k € N\
{0}, there exists (at least) one solution @y of (E) which is emerging around k
points (z¥,...,2F) € Ky.
Moreover, uy, is found as critical point of I and is characterized as
I(ag) = 5 min  I(u) = max min [ (u).

The proof of Theorem 1.3 is divided in two steps.

Step 1. We begin constructing a sequence (i), whose elements ay, are, for all k,
solutions of (E) having exactly k bumps and, then, proving a relation that, in
some sense, provides a bound from below to the number of emerging parts that
can be contained in balls centered at the origin:

Proposition 3.2. Let (i), be a sequence of solutions to (E) obtained as described
in Theorem 3.1. For all real number r > 0, let us denote by v(uk,r) the number of
points around which @y is emerging and that are contained in B;-(0).
Then, for all h € N there exist a real number rp, > 0 and a number kp, € N
such that
I/(ﬂk,’rh) > h, Vk > kp. (31)

Relation (3.1) is a basic ingredient for getting the desired result; its truth
is founded on the slow decay assumption (h4). The proof follows this scheme:
assuming false (3.1) means admitting the possibility of constructing a sequence of
solutions to (E), increasing with respect to the number of bumps, and a sequence
of ‘bumps’, belonging to these solutions, centered at points that go to infinity.
Then, one shows this construction is, for large n, in contrast with the tendency of
the bumps of solutions not to go too far away from origin, in order to maximize
the energy, feeling the effect of the potential a.

Technically, one assumes there exist h € N and sequences of numbers (7,,)y,
rn € RT\ {0}, (kn)n, kn € N, such that

rn — 400, kn — 400, asn — 400, and v(ug, ,r,) < h, ¥n € N.

Then, denoting by (z7,...,7} ) the points around which u, is emerging and
passing, if necessary, to a subsequence, one can assume that for some j < h,
z v Vi<j, and ZV ., T Vi > j.
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Now, in view of the fact that |z}, ;| —> <00, keeping in mind the arguments to
n—+oo

obtain (2.5), one can prove the inequality

limsup [p(z, ..., 57 ) — w(@ g, T8 )] < p(@1,. .., Z5) + meo, (3.2)

n—-+oo

and, on the other hand, developing an argument similar to that used to prove
(2.6), the strict inequality

_ _ Tjt1 _ _
max pu(Z1,...,T5,m A ) > w(Z1, ... Tj) + Moo,
meR+ %541

can be shown true. Therefore, the existence follows of some § = ml?ﬂl, so that
J
the estimate

T o B ) )]
Zﬂ(i‘l,...,f]‘,g) >,u(:E1,...,:Ej) + Moo,

hold true, for large n.
Then the desired contradiction is reached combining (3.2) and (3.3), because
one gets, for large n, the relation
/.L(f?, te 7i‘zn) < /.L(,f?, s 73_3?7?775'?4-27 . 'ajzn)7
which contradicts the maximality of p(z7,...,77 ).

Once obtained (3.1) one observes that, for all h, an upper bound to v(ayg, ry) is
also available, because points around which any g is emerging have interdistances
greater or equal than 3p.

Thus, for all h € N\ {0}, r4, kn, and Hy, exist so that

h < V(ﬂk,rh) < Hp, Vk> k.
The above inequalities, clearly, imply,

lim r, = +o0,
h— 400

furthermore, up to a subsequence, r, < rp41, for all h € N, can be assumed.

Step 2. A family of subsequences of () is defined as follows:

(i}, )n is a subsequence of (uy)x such that, Vn, v(u, ,r1) = hi,
with 1 S hl S H1

(4} )n is a subsequence of (i, ), such that, Vn, v(uj ,r2) = hs,

(@ )n is a subsequence of (ﬂkmn_l)n so that Vn, v(up ,rm) = hp,
with m < h,,, < H,,,
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and, after that, the ‘diagonal’ sequence
-1 -2 _
Upgy s Upyy -5 Uy 5o - - (3.4)

(definitively) subsequence of (" )n, for all m, is considered.

The desired solution of (E) will be obtained as limit, in a suitable sense, of
the sequence (3.4).

Indeed, first of all we observe that, for all m € N, the sequences of h,,—
tuples ((z7)™,...,(Z} )™)n, consisting of points, contained in B, (0), around
which the functions of the sequence (ﬂﬁ)n are emerging, are bounded and, then,
up to subsequences, converging as n goes to +oo. Thus, the sequences consisting
of points, around which the functions of uj are emerging, are converging as n
goes to infinity. Furthermore, the interdistances between these limit points are
greater or equal than 3p, because the interdistances between the centers of bumps
of functions uj, ~are greater or equal than 3p. As consequence, these limit points
form an unbounded numerable subset L := {Z, : n € N} of RV,

On the other hand, for all h, By, (0), contains only a finite number of ‘emerg-
ing parts’ of the functions u; , hence a control from above can be obtained on
I((ay, )5, (0)) and, this yields the boundedness of |4}, ||m1 (5., (0)), by using reg-
ularity arguments.

Therefore, we are in position to conclude. Indeed, being, for all n, up a
solution of (FE), since r, — +o00 as h — 400, we can infer that, up to a sub-
sequence, (uy ), uniformly converges on every compact set of RY to a function
@ € HE (RY), which is a solution of (E) and has, for all h, at least h emerging
parts around points belonging to B, (0).

We end this section giving an idea of the way in which relation (1.7) can
be proved. Once again the cause of this rarefaction phenomenon is the attractive
effect of the potential, due to (h4), and the nature of energy maximizers that the
solutions u have.

Actually, if relation (1.7) would be false, two subsequences of (Z,)n, (bn)n
and (by)n, would exist so that, for all n, b, # b, and (|b, — by|), would be
bounded. This fact would imply the existence of a sequence (&g, )n, of solutions of

(E), emerging around k;, points (Z7,..., 7} ), so that
1
I(ug,) = pk, , sup |ug, —@| < for some fixed R (3.5)
Br(b,)UBR(bn) n

and, moreover, possessing two sequences of centers of bumps, for instance (%),
and (Z%),, having bounded interdistances.

Now, in computing I(y,, ), the effect of the interaction between the masses
corresponding to (Z}), and (Z%),, could exceed, for large n, the attractive effect
of the potential producing an energy drop described by

limsup[p(zy, ..., 75 ) — m(Zy, ..., 2y )] < Moo. (3.6)

n——+oo
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But, this relation contrasts the maximizers character of functions g, . Indeed,
similarly to what already seen proving (3.3), for any n a y,, can be found such that
the relation

=N =N =N =N 1
,u(yn,xz,...,xkn)Zu(xQ,...,xkn)+moo—n (3.7)
holds. Hence, combining (3.5), (3.6), and (3.7), for large n, the impossible relation
would follow
Kk, = I(ﬁkn) = N(i'?7 cee vi‘zn) < N(ymjg’ .- ‘wizn) < Pk,

yielding the desired conclusion.

4. Multiple solutions when the potential has a ‘pit’

In this section a sketch of the proof of Theorems 1.2 and 1.4 is proposed. Theorem
1.2 is considered in part A of section, while part B is concerned with Theorem 1.4.
A) Infinitely many positive solutions

We start observing that the continuity of b allows to find a real number o > 0 such
that, setting N := {z € R : dist(z,04) <o}, N C N follows and inf & b(z) >
bo /2.
The variational framework to prove Theorem 1.2 is similar to that considered
for Theorem 1.1. Solutions of (E.) are searched as critical points of
1 1
I.(u) = 2/]RN(|VU|2 + ac(z)u?)dx — ot 1/RN|u\p+1dx

on suitable classes of multi-bump functions.
Setting A/e = {z e RN :ex € A}, H{ =RV \ (4/e), and, Vk > 1

k
HE = {(x1,20,...,2x) € (RY)" : |2y — x| > 3p,
Iia:ﬂjéA/Ev iv.j:172""’k7 Z#J}’

we define for all (z1,z9,...,21) € HS, the classes:
e {ue H'(RY):u >0, u emerging around (z1,22,...,z)) € Hj,

and IL(u)[ud] =0, Bi(u) =0Vi=1,2,... k},

where §;(u) are barycenter type maps defined as in (2.1).

Working, for all €, with the functional I. on the classes S5, , . and using
arguments similar to those displayed in the second step of Section 2, it is possible
to show that

pe(T1, T, ..., T)) 1= « inf I (u) >0,
1,22,
and that it is achieved. Furthermore, defining

Pek = Suppie(T1,T2,...,25) =sup _ min I (u).
He HE Sayza,...z)
k k E20 0Tk
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the existence of (Z1¢,Z2y,...,Tke) € HE so that

/'LE,/C = NE(-’ELE) j2757 A 7§7k,5)7

follows as in the third step of Section 2.

Once the max-min procedure has been accomplished, some work is still
needed to show that, at least for small e, the k-tuples around which the maxi-
mizers are emerging are contained in the interior part of Hj7. This means to show
that, for all ¢ € {1,...,k}, the relation Z; . ¢ 9(A/e) holds true.

Keeping in mind the max-min variational method used to produce candidate
critical points and the definition of a., one understands that the possibility that
some point of the maximizing k-tuple could belong to the boundary of A/e is ex-
cluded, when ¢ is small, by the presence of the potential ‘pit’ around the boundary
of A/e. Indeed, when a component of a k-tuple comes in A//e, the interaction of the
potential with the bump, corresponding to this component, makes the functional
I. loose energy.

We give, now, a little more detailed, even if simplified, outline of the proof
of this fact. Arguing by contradiction, the existence is assumed of a sequence
(En)ns €n > 0, €, — 0, a sequence (ky)n, kn € N, a sequence of functions (ue,, k, )n,
emerging around (Z1,¢,,, ..., %k, e, ), realizing pe, k., (e, Ie, (e, kn)) = ten k)
and such that, for all n, a j, € {1,...,k,} exists for which z;, ., € 9(A/ey).

For sake of simplicity, we consider only the case k, = 1, for all n € N. So,
we denote by (u, ), a sequence consisting of functions emerging around one point,
xn € 0(A/en), realizing the values ., ;. Denoting by @, the sequence made up
projections of wy,(z) := w(x — x,) on the sets {u € H'(RY): I (u)[u’] =0},
arguing as in (2.5), we infer:

1
Pen s = Ie, (un) < Ie, (W0n) = oo (W) + / (ae, — aooan)zdx
: 2 RN

<M + C’/ (ae, — aoo)(wn)zdx,
]RN

C > 0 constant. Now, writing

/RN (e, — Goo)(wy,)?*dx

_ /RN\B ( )(asn — a0)(wn)?da +/ (., — avo)(wn)?d,
R(Tn

BR(zn)

the first integral in the right-hand side of (4.1) becomes as small as one wants as
R increases, namely, for all 7 > 0 a real positive number R, suitably big and not
depending on &, can be found so that, for large n,

/ (ae, — aoo)(wn)2dx <.
RN\BRr(n)

On the other hand, the second addend in right-hand side of (4.1) can be controlled
from above by a negative quantity depending neither on n nor on R. Indeed, for

(4.1)
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large n, the inclusion Bg(z,) C (N/ey), allows to obtain:

/ (ac, — as0)(wn)*dx < - / (w(x))*da.
Br(zn) 4 JB,(0)

As a consequence, one gets

He, 1 < Moo
contradicting the relation

He, 1 > Moo,

that is nothing but a particular case of (2.4).

The final step is, as in section 2, to show that the functions u. j, realizing the
values f. ;, and ‘candidates’ to be critical points of I., are actually critical points
when ¢ is suitably small. Here, instead of working with potentials having ‘smaller
and smaller oscillation’, we consider potentials a.(x) having a pit around the origin
that becomes larger and larger and more and more far away as € becomes small.
As effect of this behaviour and of the definition of Hj, when € goes to zero, the
emerging parts of the candidate solutions are ‘pushed’ in regions of R in which
a:(T) — Ao, is smaller and smaller.

The asymptotic properties of the maximizing functions u. j are investigated
and the results are summarized by two relations, the first concerning the points
around which they are emerging, the latter concerning the asymptotic shape of
the emerging parts and showing that it approaches the ground state solution of
the limit problem (Fo) :

min{|z.; — ;|1 # 74, 4,7=12,...,k} > +o0 ase — 0, (4.2)
and

sup {|ue p(x +2.;) —w(x)|: i =1,2,....k, [z <r} -0 ase—0, (4.3)
for all r > 0.

Hence
supp(u&k)f € By(z-,5), Vi=1,2,...,k for small ¢

can be deduced. Thus, considering the equations which must be satisfied by a
function u.  (obtained by the max-min procedure)

I (ue )y = - )u?de(w)(Ai(w +.))dw Vi € Hy (B, (x:)),
p\Ze,i
to complete the proof one has to show that the Lagrange multipliers \; € RY, are
equal to zero.

This last information is obtained by a quite analogous method to that indi-
cated in the last step of Section 2. Of course, in this case the analysis must be
based on relations (4.2) and (4.3) and on the smallness of a.(x) — an, outside A/e,
when ¢ is small.
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B) Infinitely many multi-bump nodal solutions
As for Theorem 1.2, we look for critical points of functionals I, (with a. as de-
scribed in Theorem 1.4). Nevertheless, since the desired solutions are changing
sign, we need to define new classes of functions having different features with
respect to those considered in the proofs of Theorems 1.1 and 1.3.
For fixed § > 0, suitably small, we write any function u € H'(R") as
w=us+ (uF)? — (u)°
where
(wh)? = (u—6)*

is the positive emerging part of u,

()’ =(~u—3)*
is the mnegative emerging part of u, and

us = (uA )V (=9)

is the middle part of u.
Then, fixed a suitably small 6 > 0 and a large p > 0 (depending on § ),

we say that a function u € H'(RY) is positively emerging around 1, ...,x) and
negatively emerging around yi,. ..,y in balls of radius p if
h
W2 =>"wh)’, ()’ € Hy(By(z:), ()’ >0, (uf)’#0, Vie{l,...,h}
i=1
k
W)’ => (), (u)’ € Hy(By(y:), (u;)° >0, (u;)° #0, Vie{l,....k}
i=1

where By (i) N By(zm) = 0, By(y;)NBy(y) =0, Bo(xi)NBy(y;) =0, i #m, j#
I, Yiome{l,...,h}, Vjle{l,... k}.

The solutions whose existence is claimed in Theorem 1.4 are searched fixing
h € N and looking for solutions of (E.), in special classes of functions having
at most h positive emerging parts and an arbitrarily large number of negative
emerging parts. In this framework, Theorem 1.4 can be more precisely stated as
follows:

Theorem 4.1. Let assumptions of Theorem 1.4 be satisfied. Then, for all h € N
there exists e, > 0 such that for all € € (0,ey), for all k € N\ {0}, and for all
Jj €N, 0<j <min(h,k), there exists a solution of (F.) having j positive emerging
parts and k — j negative emerging parts.

Remark 4.2. We remark that Theorem 4.1 setting h = 0 yields a result analogous
to that of Theorem 1.2: the existence of infinitely many multi-bump negative
solutions for (E).

We, also, notice that the statement of Theorem 4.1 holds true exchanging
the roles of positive and negative emerging parts.
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In order to prove the above theorem, we set
Hi=[(B\A)/e)], Ki=RY\(B/e);
and, for all m > 1

Hey = {(z1,22,...,2m) € (RN)m e — 2| > 3p,
z, 11 € (B/e)\ (A/e), i,1=1,2,...,m, i#l},
and
Kso={(1,y2.- .., ym) € (RN)m yi =yl > 3p,
dist(y;, B/e) > 3p, i,0=1,2,...,m, L#i}.

Obviously, for all m € N\ {0}, there exists e; = €1(m) such that ¢ € (0,¢1)
implies HS, # (), moreover, from HE, # 0, HE #0, Vi=1,2,...,m, follows.

In view of Remark 4.2, in what follows we suppose h € N, A > 1. We define
for all h, k € N\ {0} and for 0 < j < min(h, k), the classes:

St sy = {u € H'(RY) : u positively emerging around
(z1,...,2;) € H, negatively emerging around
(yla v ayk—j) € ,Ci—ja /Bl(u) = Oa /BJ-H(U) = 07
L@)[uf]’ =0, LW ]" =0, i=1,...,j,
l=1,....k—j}

and

S ={ue H'(R"): u positively emerging around

L1y--y Ty
(1, 25) € HS, Bi(u) =0, IL(w)[uf]° =0, i=1,....5.}

Working as indicated in Step 1 of Section 2 it is not difficult to see that
the above-defined classes are not empty. Furthermore, arguments similar to those
described in the second step of Section 2, allow us to conclude that

inf  I.(u)>0; inf I.(u) >0
. Sy v
and the infima are achieved.

The middle part of any (changing sign) minimizer 4. of l.on 57 . . .
has good properties. Next proposition states that it solves (E.) in RV except the
points belonging to the supports of the (positive and negative) emerging parts of
ie, and that its decay can be estimated:

Proposition 4.3. Let assumptions of Theorem 1.4 be satisfied. Let h and k € N\
{0}, j € {1,...,min(h,k)}, € € (0,e1), and let 4. be a minimizer for I. on
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Se . Then (ic)s solves

L1yeesTj Y150 3Yk—j

—Au+ ac(z)u = |[ulP~tu in RN\ (supp (aF)° Usupp (a7)?)
(Ps) u=7 on supp (aF)°

u=—90 on supp (a7 )°.
Moreover, setting d.(z) = dist(z, [supp (aF)° Usupp(aZ)?], the relation
()5 ()| < Coe™ () (4.4)
holds, with C' > 0 depending only on 7, ax, and N.
Now, we first define

p5 =sup min I (u),
' HE Say,ns
J Ty

and we observe that, thanks to the compactness of the set 5 and to the continuity

of the map (z1,...,x;) = ming: I.(u) on H$,, the existence of (Z1e,..., %)
such that p$ = min {Ie(u) tu € 621757___@].75} , easily follows. We then set
Mk—; = sup __ min I (u).
HEXKE_, Sarmgwns v

The fact that u5,_; are realized is stated in the following:

Proposition 4.4. Let assumptions of Theorem 1.4 be satisfied. Let k, h, j, €1 be
as in Proposition 4.3. Then for all € € (0,e1) the following relation holds

€ >4
'uj,k—j > /“Lj,k—j—l + Moo (45)
and (T1,e,. .-, Tje) € H5, (Jre,- -1 Un—je) € Kj_; ewist so that
W5 p—j =  max min I(u) = min I (w).
b € = '€
Hjxlck—j Srl ,,,,, Tyl Yk—j Sfi,l,g ..... TjerUl,er s Th—j,e

The proof of the crucial energy estimate (4.5), as well as the maximizer
existence are obtained by an inductive method similar to that used in third step
of Section 2. We remark that in this proof the slow decay of the potential and the
decay estimate (4.4) have a decisive role. Nevertheless, once proved Proposition 4.4,
some work is still needed to show that the found functions are ‘good’ candidates
to be critical points of I. and to be able to control the interaction between the
positive and the negative bumps.

Arguments similar to that displayed in Part A of this section show that an
€9 < g7 exists so that, for e € (0, e2), the k-tuples around which the maximizers are
emerging are such that #; . ¢ 9[(B\A)/¢] and §,. ¢ B/e,foralli € {1,...,5}, 1€
{1,...,k — j}. Then the proof can be completed as in Subsection A, after proving
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the ‘candidate’ critical points . ; the asymptotic relations:
min {|Z.; — Tey| s #L ,0=1,2,...,j} = 400 ase —0,
min {|ge; — Jeg| 11 # 1, 4,1=1,2,...,k—j} = 400 ase —0,
min{|Zc; — Jeul :i=1,2,...,4, 1=1,2,....k—j} > 400 ase—0,

and, for all » > 0,

sup {|te k(@ + Ze;) —w(x)|: i =1,2,...,7, || <r} =0 ase — 0,
sup {|te k(x + i) —w(x)| : i =1,2,...;k—j, |[z]| <r} =0 as e — 0.
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Abstract. We consider the problem

—Au=|uf?u inQ, wu=0 ond,
where Q := {(y,2) ER™ xRN "™ 1. 0<a< |y <b<oo},0<m< N—1
and N > 2. Let 2% ,,, := 2(N —m)/(N —m —2) if m < N—2and 2%, := o0
if m =N —2or N — 1. We show that 2}, is the true critical exponent for

this problem, and that there exist nontrivial solutions if 2 < p < 2y, but
there are no such solutions if p > 2% ,,.

Mathematics Subject Classification (2010). 35J61, 35J20, 35B33, 35B07.

Keywords. Nonlinear elliptic equation, supercritical nonlinearity, unbounded
domain.

1. Introduction

Consider the Lane-Emden—Fowler problem
—Au=|uf"?u inD, u=0 on JD, (1.1)

where D is a smooth domain in RV and p > 2.

If D is bounded it is well known that this problem has at least one positive
solution and infinitely many sign changing solutions when p is smaller than the
critical Sobolev exponent 2*, defined as 2* := 131_V2 if N > 3 and as 2* := oo if
N =1 or 2. In contrast, the existence of solutions for p > 2* is a delicate issue.
Pohozhaev’s identity [12] implies that problem (1.1) has no nontrivial solution

if the domain D is strictly starshaped. On the other hand, Bahri and Coron [2]

This research is partially supported by CONACYT grant 129847, UNAM-DGAPA-PAPIIT grant
IN106612 (México), and the Swedish Research Council.
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proved that a positive solution to (1.1) exists if p = 2* and D is bounded and has
nontrivial reduced homology with Z/2 coefficients.

One may ask whether this last statement is also true for p > 2*. Passaseo
showed in [10, 11] that this is not so: for each 1 < m < N — 2 he exhibited a
bounded smooth domain D which is homotopy equivalent to the m-dimensional
sphere, in which problem (1.1) has infinitely many solutions if p < 2%, = %fn_f_"%
and does not have a nontrivial solution if p > 27 . Examples of domains with
richer homology were recently given by Clapp, Faya and Pistoia in [3]. Wei and Yan
established in [17] the existence of infinitely many positive solutions for p = 2},
in some bounded domains. For p slightly below 2%, solutions concentrating along
an m-dimensional manifold were recently obtalned in [1, 4]. Note that 2%, is the
critical Sobolev exponent in dimension N — m. It is called the (m + 1)-st critical
exponent for problem (1.1).

The purpose of this note is to exhibit unbounded domains in which this
problem has the behavior described by Passaseo.

We consider the problem

—Au=|uf"u in Q,
u=0 on 09, (1.2)
Vul*, |ul” € L}(9),
in a cylindrical shell

Q:={z=(y,2) e R xRVN=""1. ¢ < |y| < b}, 0<a<b< oo,
for p > 2.

It m=N—-1or N -2, weset 2§, := oo. First note that it m = N —1
then Q = {z € RY : a < |z| < b}, and a well-known result by Kazdan and
Warner [9] asserts that (1.2) has infinitely many radial solutions for any p > 2. In
the other extreme case, where m = 0, the domain 2 is the union of two disjoint
strips (a,b) x RV~ and (—b, —a) x RV~1. Each of them is starshaped, so there
are no solutions for p > 23 ; = 2*. Esteban showed in [5] that there are infinitely
many solutions in (a,b) x R¥~1 if N > 3 and p < 2*, and one positive solution
if N = 2 (in fact, she considered a more general problem). These solutions are
axially symmetric, i.e., u(y, 2) = u(y, |2|) for all (y,z) € Q.

Here we study the remaining cases, i.e., 1 < m < N — 2. Our first result
states the nonexistence of solutions other than v =0, if p > 2%,

Theorem 1.1. If1 <m < N —2 and p > 2} ,, then problem (1.2) does not have
any nontrivial solution u € C2(Q) NCH().

Our next result shows that solutions u # 0 do exist if 2 <p < 2%,

As usual, we write O(k) for the group of linear isometries of R* (represented
by orthogonal k x k-matrices). Recall that if G is a closed subgroup of O(N) then
a subset X of RV is G-invariant if gX = X for every g € G, and a function
u: X — R is called G-invariant provided u(gx) = u(x) for all g € G, z € X.
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Note that © is [O(m + 1) x O(N —m — 1)]-invariant for the obvious action
given by (g, h)(y, z) = (gy, hz) forallg € O(m+1), h € O(N —m—1), y € R™*H
z € RN-m—1,

Theorem 1.2.

(i) f1<m<N-=2and2<p<2y,,, then problem (1.2) has infinitely many
[O(m + 1) x O(N —m — 1)]-invariant solutions and one of these solutions is
positive.

(i) If 1 <m = N—-2and 2 < p < oo, then problem (1.2) has a positive
[O(N — 1) x O(1)]-invariant solution.

In Section 2 we prove Theorem 1.1. Theorem 1.2 is proved in Section 3. We
conclude the paper with a multiplicity result and an open question in Section 4.

2. A Pohozaev identity and the proof of Theorem 1.1

We prove Theorem 1.1 by adapting Passaseo’s argument in [10, 11], see also [3].
The proof relies on the following special case of a Pohozaev type identity due to
Pucci and Serrin [13].

For (u,v) € R x RY we set

P(u,v) = _ [v]” =
Lemma 2.1. If u € C?(Q) satisfies —Au = |u\p_2u in Q then, for every x €
CH(Q,RY), the equality
(div x) ¢(u, Vu) — Dx [Vu] - Vu = div [¢(u, Vu)x — (x - Vu)Vu) (2.1)
holds true.

Proof. Put x = (x1,.-.,xn), denote the partial derivative with respect to xj, by
Ok and let LHS and RHS denote the left- and the right-hand side of (2.1). Then

LHS = (div x) ¢(u, Vi) = Y dkx; Oju Ogu

j.k
and
RHS = (div x) ¢(u, Vu) + Z Xk Oju 8]2,€u — |ulP~2uVu - x
Jik
— (Vu - x)Au — Z Ok X 0ju Opu — Z X; Oru B?ku
3k gk
= (divx) ¢(u, Vu) = (Vu - x) (Au+ [u]P">u) =Y 9k Oju Oy
Jik
Since —Au = |u[’~? u, the conclusion follows. O

Using a well-known truncation argument, we can now prove the following
result.
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Proposition 2.2. Assume that x € C1(Q,RY) has the following properties:

(a) x - v is bounded on O, where v(s) is the outer unit normal at s € 012,
(b) |x(2)| < |z| for every x € Q,

(c) div x is bounded in ,

() [Dx(2)€ €] < [¢° for all z € Q, € €RY.
Then every solution u € C2(Q) NCH(Q) of (1.2) satisfies

1 2 =— iv u, Vu u] - Vu
y IVl xr == [ @i e+ [ Duival- Ve (22)

Proof. Choose ¢ € C*°(R) such that 0 < ¢(t) <1,9(t) =1if [¢| <1land ¢(t) =0
if |t| > 2. For each k € N define

|

mm%=w<y> and  x*(2) = ¢p(z)x ().

Note that there is a constant ¢y > 0 such that

|z] | Vi (2)] < co for all z € RN, k€ N. (2.3)
Next, choose a sequence of bounded smooth domains 2 C € such that
Q. DN ng(O). (2.4)

Integrating (2.1) with y := x* in Q and using the divergence theorem and Lemma
2.1 we obtain

/ (div xk) o(u, Vu) — Dx* [Vu] - Vu
Q. Qe

= [T () = 68 V) (V)]
oy,

where v is the outer unit normal to . Property (2.4) implies that x* = 0 in
Q~ Q, so we may replace Q by Q, 99, by 9Q and v* by v in the previous
identity. Moreover, since u = 0 on 0f2, we have that

Vu= (Vu-v)v on 9.
Therefore,

/ (le Xk) ¢(u’ VU) _ / DXk [Vu] -Vu
o Q
_ / [3(u, Vu) (X" - v) = (¢* - V) (Vu-v)]
o
:/ [¢(U,VU)—|VU|2} (x*-v)
o

1
==y [ IVl ().
o0
Since div x* = 9y div x + V¥, - x, using (2.3) and properties (b) and (c) we obtain
|divxk| < |div x| + [Vi| |x] < [divx|+co < e¢1 in Q. (2.6)
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Similarly, since
Dx*(2)€ - € = vi(2)Dx(2)& - € + (Vb - €) (x - €)
property (d) yields
IDxF(2)€- €| < (14 co)|¢fF  forallz e, ¢ € RV, (2.7)

Inequalities (2.6), (2.7) and property (a) allow us to apply Lebesgue’s dominated
convergence theorem to the left- and the right-hand side of (2.5) to obtain

/ (div x) qi)(u,Vu)—/ Dx [Vu] - Vu = ! / Vul® (x - v),
Q Q 2 Joq
as claimed. O

Proof of Theorem 1.1. Let o(t) = 1, [1—(%)™"] be the solution to the bound-
ary value problem

{ Pt +(m+1)pt)=1, te(0,00),

p(a) = 0.
Define
Xy, 2) = (e(ly])y, 2). (2.8)
Then, if v denotes the outer unit normal on 0f2,
0 if |y‘ =a,
X vV)\y,z)= avm . 2.9
Oc-v) (v:2) {mlﬂp_(b) ] i Jy| = b, 29)

So property (a) of Proposition 2.2 holds. Clearly, (b) holds. Now,
divx(y,2) = [¢'(lyD) [yl + (m + De(jyh)] + N =m -1 =N —m. (2.10)
In particular, (c¢) holds. To prove (d) notice that x is O(m + 1)-equivariant, i.e.,
x(9y,2) = gx(y,z)  for every g € O(m +1).
Therefore, g o Dx(y, z) = Dx(gy, z) o g and, hence,

(Dx (y,2) [€],€) = (9 (Dx (y,2) [€]), 9€) = (Dx (g9y, ?) [9¢], 9€)

for all ¢ € RN. Thus, it suffices to show that the inequality (d) holds for y =
(t,0,...,0) with ¢ € (a,b). A straightforward computation shows that, for such y,
Dx(y) is a diagonal matrix whose diagonal entries are a11 = 1 —m(t), a;; = ¢(t)
for j=2,...,m+1, and a;; =1 for j =m+2,..., N. Since a;; € (0,1],

0<(Dx(y,2)[¢],&) < |¢f* for all € € RV {0} (2.11)
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and (d) follows. From (2.9), (2.2), (2.11) and (2.10) we obtain
1
0< / [Vul* x - v
2 Jog
= —/ (div x) ¢(u, Vu) +/ Dx [Vu] - Vu
Q Q
1, 1 2 2
< (N —m) ul” = [Vul"| + [ [Vul
QLP 2 Q

= (N —m) (;—;+Nim>/9|Vu|2.

The first (strict) inequality follows from the unique continuation property [8, 7).
This immediately implies that p < 2% . O

3. The proof of Theorem 1.2

An O(m+ 1)-invariant function u(y, z) = v(|y|, z) solves problem (1.2) if and only
if v = v(r, z) solves

—Av—"% =P~y in (a,b) x RNN—:R—_llzz S, (3.1)
v=0 on {a,b} x RVN="~1 =38,
and |Vv|?, [v|P € L1(S). Problem (3.1) can be rewritten as
—div(r™Vov) = r"v|P"%v in S, v=0 ondS. (3.2)

By Poincaré’s inequality (see Lemma 3 in [5]) and since a < r < b, the norms

1/2 1/p
Ivll,, == (/ r’m |Vv2> and V] p = (/ r’m |v|p) (3.3)
s ' s

are equivalent to those of H}(S) and LP(S) respectively.
Consider the functional I(v) := ||v||?, restricted to

M :={ve H}(S): V] = 1}

Then M is a C?-manifold, and v is a critical point of |, if and only if v € H}(S)

and Hv||3,{(p_2)v is a nontrivial solution to (3.2). Note that I|ys is bounded below
by a positive constant.

Proof of Theorem 1.2 (i). Assume that 1 <m < N —2 and 2 < p < 2% ,. Set
G := O(N —m — 1) and denote by H}(S)¢ and LP(S)¢ the subspaces of H}(S)
and LP(8) respectively, consisting of functions v such that v(r, gz) = v(r, z) for all
g € G. Esteban and Lions showed in [6] that, for these values of m and p, H}(S)¢
is compactly embedded in LP(S)“ (see also Theorem 1.24 in [18]). So H}(S)% is
compactly embedded in LP(S)¢ for the norms (3.3) as well.
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Let
MY :={ve H}(S)® : |v| =1}

m,p

It follows from the principle of symmetric criticality [18, Theorem 1.28] that the
critical points of I|ysc are also critical points of I|3;. The manifold M¢ is radially
diffeomorphic to the unit sphere in H{(S)%, so its Krasnoselskii genus is infinite. A
standard argument, using the compactness of the embedding H}(S)¢ — LP(S)¢
for the norms (3.3), shows that I|;;¢ satisfies the Palais—Smale condition. Hence
I|js¢ has infinitely many critical points (see, e.g., Theorem I1.5.7 in [15]). It can
also be shown by a well-known argument that the critical values of I|j;¢ tend to
infinity (see, e.g., Proposition 9.33 in [14]).

It remains to show that (3.2) has a positive solution. The argument is again
standard: since I|,;c satisfies the Palais—Smale condition,

c§ = inf{I(v):v e MY}

is attained at some vg. Since I(v) = I(|v]) and |v| € M€ if v € MY, we have that
I(|vg|) = ¢§ and we may assume vy > 0. The maximum principle applied to the
corresponding solution wug of (1.2) implies ug > 0. O

If m = N — 2, then G = O(1) and it is easy to see that the space H{(S)%
is not compactly embedded in LP(S)“. So part (ii) of Theorem 1.2 requires a
different argument.

Proof of Theorem 1.2 (ii). Assume that 1 <m =N —2 and 2 < p < co. We shall
show that

co = inf{I(v):ve M}

is attained. Clearly, a minimizing sequence (v,) is bounded, so we may assume
that v, — v weakly in H}(S). According to P.-L. Lions’ lemma [18, Lemma 1.21]
either v, — 0 strongly in LP(S), which is impossible because v, € M, or there
exist § > 0 and (ry, 2,) € [a,b] X R such that, after passing to a subsequence if

necessary,
/ vZ > 6. (3.4)
By (Tn,2n)

Here B (ry, z,) denotes the ball of radius 1 and center at (7, z,,). Since the prob-
lem is invariant with respect to translations along the z-axis, replacing vy, (r, z) by
vn(r, 2+ 2, ), we may assume the center of the ball above is (r,,,0). It follows that
for this — translated — sequence the weak limit v cannot be zero due to (3.4) and
the compactness of the embedding of Hi(S) in L? (S). Passing to a subsequence
once more, we have that v, (x) — v(z) a.e. It follows from the Brezis—Lieb lemma
[18, Lemma 1.32] that

1= ‘fvnmz,p = nh—>nc1<> |’Un - /U‘;fmp + |’U|£"L,p‘
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Using this identity and the definition of ¢y we obtain
o 2 _ 2 2
co= lim [Jugl2 = lim (o, — ]2 + oll%
> co ((lim [va = vf2,, +[vf2,,)
= o (1= [0l )7 + (1ol )7
> co(1 = [vff, ,, + [0l )" = co.
Since v # 0, it follows that |v, — v|mp — 0 and |v|mp = 1. So v € M and, as
co = limy, 00 I(vy,) > I(v), we must have I(v) = co.
So the infimum is attained at v and using the moving plane method [18,
Appendix C], we may assume, after translation, that v(r, —z) = v(r, 2), i.e., v €

H}(S)°M. As in the preceding proof, replacing v by |v|, we obtain a positive
solution. (]

4. Further solutions and an open question

If1<m=N-2andpe€ (2,2y,,), the method we have used to prove Theorem
1.2 only guarantees the existence of two solutions to problem (1.2), one positive
and one negative, up to translations along the z-axis. However, if p € (2,2*%), then
it is possible to show that there are infinitely many solutions, which are not radial
in y, but have other prescribed symmetry properties.

Write y = (y%,y?) € R?Z x R™~1 = R™*! and identify R? with the complex
plane C. Following [16], we denote by Gy, k > 3, the subgroup of O(2) generated
by two elements «, 8 which act on C by

ay! = e2mi/kyl Byt = e2ilky1

i.e., a is the rotation in C by the angle 27 /k and S is the reflection in the line
ys = tan(m/k)yi, where y' =y} + iyl € C. Observe that a, 3 satisfy the relations
af = B2 = e, aBa = B. Let Gy act on RY by gz = (gy',4?, 2).

Theorem 4.1. If 1 < m < N — 2 and 2 < p < 2% then, for each k > 3, problem
(1.2) has a solution uy which satisfies

ug () = det(g)ur(g™ ) for all g € Gy, (4.1)
and uy # u; if k # j.

Proof. Since the approach is taken from [16], we give only a brief sketch of the
proof here and refer to Section 2 of [16] for more details.
The group Gy, acts on Hi(Q) by

(gu)(z) = det(g)u(g~x),
where det(g) is the determinant of g. Let
HY () = {u € HYQ) : u(gz) = det(g)u(z) for all g € G1.}
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be the fixed point space of this action, and define I(u) := [, |Vul® and
M = {u € HF ()" : |ul, = 1}.

By the principle of symmetric criticality the critical points of 1|, are nontrivial
solutions to problem (1.2) which satisfy (4.1). Now we can see as in the proof of part
(i) of Theorem 1.2 that there exists a minimizer uy for I on the manifold MS*.
Moreover, we may assume that uy has exactly 2k nodal domains, see Corollary 2.7
in [16]. So in particular, uy # u; if k # j. d

The question whether problem (1.2) has infinitely many solutions when 1 <
m=N—2and p € [2%, Rm) remains open. We believe that the answer is yes,
but the proof would require different methods.

References

[1] N. ACKERMANN, M. CLAPP, A. PI1sTOIA, Boundary clustered layers near the higher
critical exponents, J. Differential Equations 254 (2013), 4168-4183.

[2] A. BaHRI, J.M. CORON, On a nonlinear elliptic equation involving the critical
Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl.
Math. 41 (1988), 253-294.

[3] M. CLAPP, J. Faya, A. Pistoia, Nonexistence and multiplicity of solutions to ellip-
tic problems with supercritical exponents, Calc. Var. Partial Differential Equations
48 (2013), 611-623.

[4] M. pEL PINO, M. MUsSO, AND F. PACARD, Bubbling along boundary geodesics near
the second critical exponent, J. Eur. Math. Soc. (JEMS) 12 (2010), 1553-1605.

[5] M.J. ESTEBAN, Nonlinear elliptic problems in strip-like domains: symmetry of pos-
itive vortex rings, Nonlinear Anal. 7 (1983), 365-379.

[6] M.J. ESTEBAN, P.-L. LIONS, A compactness lemma, Nonlinear Anal. 7 (1983), 381
385.

[7] N. GAROFALO, F.-H. LIN, Unique continuation for elliptic operators: a geometric-
variational approach, Comm. Pure Appl. Math. 40 (1987), 347-366.

[8] D. JERIsON, C.E. KENIG, Unique continuation and absence of positive eigenvalues
for Schrodinger operators, Annals of Math. 121 (1985), 463-494.

[9] J.L. KazDpAN, F.W. WARNER, Remarks on some quasilinear elliptic equations,
Comm. Pure Appl. Math. 28 (1975), 567-597.

[10] D. PAssaseEo, Nonexistence results for elliptic problems with supercritical nonlin-
earity in nontrivial domains, J. Funct. Anal. 114 (1993), 97-105.

[11] D. Passaseo, New nonexistence results for elliptic equations with supercritical non-
linearity, Differential Integral Equations 8 (1995), 577-586.

[12] S.I. PoHOZAEV, Eigenfunctions of the equation Au + A\f(u) = 0, Soviet Math. Dokl.
6 (1965), 1408-1411.

[13] P. Pucct, J. SERRIN, A general variational identity, Indiana Univ. Math. J. 35
(1986), 681-703.



240 M. Clapp and A. Szulkin

[14] P.H. RABINOWITZ, “Minimax Methods in Critical Point Theory with Applications
to Differential Equations”, CBMS 65, Amer. Math. Soc., Providence, R.I. 1986.

[15] M. STRUWE, “Variational Methods”, Springer-Verlag, Berlin-Heidelberg-New York
1990.

[16] A. SZULKIN, S. WALIULLAH, Sign-changing and symmetry-breaking solutions to sin-
gular problems, Complex Variables Elliptic Eq. 57 (2012), 1191-1208.

[17] J. WEL, S. YAN, Infinitely many positive solutions for an elliptic problem with critical
or supercritical growth, J. Math. Pures Appl. 96 (2011), 307-333.

[18] M. WILLEM, “Minimax Theorems”, PNLDE 24, Birkhauser, Boston-Basel-Berlin
1996.

Mobnica Clapp

Instituto de Matematicas

Universidad Nacional Auténoma de México
Circuito Exterior, C.U.

04510 México D.F., Mexico

e-mail: monica.clapp@im.unam.mx

Andrzej Szulkin
Department of Mathematics
Stockholm University

106 91 Stockholm, Sweden

e-mail: andrzejs@math.su.se


mailto:monica.clapp@im.unam.mx
mailto:andrzejs@math.su.se

Progress in Nonlinear Differential Equations
and Their Applications, Vol. 85, 241-266
(© 2014 Springer International Publishing Switzerland

The Geometric Microlocal Analysis of
Generalized Kimura and Heston Diffusions

C.L. Epstein and Rafe Mazzeo

Abstract. In this paper we show how to use geometric microlocal analysis
techniques to construct the heat kernel for a class of degenerate diffusions,
called Kimura diffusions, which arise as continuum limits of the Wright—Fisher
model in Population Genetics. We restrict our attention to the case of a
Kimura diffusion on a manifold with boundary, and show that, by changing
variables and scaling, we can employ the O-calculus to construct a parametrix
for the heat kernel.
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35A27.

Keywords. Degenerate diffusion operators, heat kernel, Kimura diffusion,
Wright—Fisher model, population genetics, Vp-calculus.

1. Introduction

Our recent work [6], [7] contains a thorough analysis of the existence and regularity
theory for solutions of a certain class of degenerate diffusion operators d; — L on
a compact manifold with corners M, for data in anisotropic Holder spaces. The
operators we consider arise naturally in applications to population genetics and
mathematical finance, and to acknowledge some of the early and influential work
on special operators operators of this form, we call these generalized Kimura dif-
fusions; we also use the moniker Wright—Fisher since the original discrete Markov
chain model in population genetics is known as the Wright—Fisher model.

Let p be a point on the boundary of M and let (r1,...,7%,y1,-..,y¢) be a
local coordinate system near a point p. Here each ry > 0 and (y1, ..., y¢) lies in an
open ball in R, with p corresponding to the origin. (If such coordinates exist, we

The research of the first author was partially supported by NSF grant DMS12-05851 and ARO
grant W911NF-12-1-0552.

The research of the second author was partially supported by NSF grant DMS11-05050.
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say that p lies on a corner of codimension k). We say that L is of general Kimura
type if it takes the form

L= Zr,@z + Z GpqTpTq fprq —i—Zb Or,

p,q=1
52
+ZZem hs T Z ¢js0y, +Zfs
p=1j=1 j,s=1

where all coefficients apq, b;, €p;, ¢;s and fs are smooth functions of (r,y). It is
elliptic in this setting provided these coefficients (with the prefactors of r removed)
satisfy a certain definiteness condition which we explain below. The dependence of
the coefficients b; on (r,y) is worthy of special note since this dependence causes
many of the technical difficulties in our analysis.

Although the aforementioned references do not explicitly treat other types of
degenerate diffusions, we observed in the course of that research that our methods
and results can be adapted easily to another interesting class of operators which
generalize the so-called Heston operator, a useful model in mathematical finance.
The elliptic operators L associated to these generalized Heston diffusions are nearly
of the same form as the Kimura operators above except that the coefficients c,¢
associated to the tangential second-order terms also vanish to first order at the
boundaries and corners of M. As in the Kimura setting, there is an adapted notion
of ellipticity here.

The monograph [7] discusses a number of approaches that have been used
successfully in the past to treat these two types of degenerate parabolic problems;
we draw attention in particular to [4], [5] which analyze special cases of these types
of operators from a geometric point of view.

Our goal in this paper is to indicate how an analysis of generalized Kimura
and Heston operators and their associated heat operators can be addressed us-
ing the methods of geometric microlocal analysis. This approach comprises a very
robust set of tools, pioneered by Melrose and extensively developed by him and
many others, building from the elliptic and parabolic parametrix constructions of
classical microlocal analysis with a particular focus on the polyhomogeneous struc-
ture of the Schwartz kernels of these parametrices. The advantage of this over the
more customary focus on symbol classes, etc., is that parametrices of degenerate
operators must incorporate information not only about interior singularities (e.g.,
along the diagonal) but along the boundaries and corners as well, since that is
where the effects of the degeneracy appear. These new boundary singularities are
best described using the geometric language of blowups of manifolds with corners
and the systematic use of spaces of conormal and polyhomogeneous distributions.
There are now quite a few detailed treatments of special cases of this method-
ology, though unfortunately no general expository source. We refer to [12], [15]
and [11] for very detailed explanations of the constructions for particular classes
of degenerate elliptic operators; the first and last paper treat operators similar to
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those considered here. For treatments of the parabolic problems associated to such
operators see [1], [13] and the forthcoming expository survey [2].

To keep this exposition brief, we consider only the restricted setting where M
is a manifold with boundary. This reduces the complexity of the analysis substan-
tially. It will be possible to handle the general case, allowing corners of arbitrary
codimension, using extensions of these methods, but this will take substantial fur-
ther work.

There is at least one compelling reason to pursue this alternate development
to the results of [7], since there is a lacuna in the technical results obtained by
those earlier methods, as we now describe. In the original applications to pop-
ulation biology which drew us to these problems, it is important to understand
Kimura diffusions as semigroups on the function space C°(M). Indeed, this is natu-
ral because the dual problem (“Kolmogorov’s forward equation”) acts on measures.
Using the earlier approach, we gave a complete analysis of the semigroup on C°,
and specifically the precise and sharp estimates for the smoothing effect of this
diffusion, only for two special cases: the one-dimensional case handled in [6], and
the invariant model case (the key building block in the parametrix construction) in
[7]. This is possible because there are explicit formulee for the heat kernels in these
model cases, from which the regularity of solutions can be deduced quite easily.
In the one-dimensional case one can change variables to put the operator exactly
into model form near each boundary point. In higher dimensions this analysis also
suffices when the second-order part of the operator agrees exactly with the model.

Zj 0%+ ;. (1.1)

In the general higher-dimensional case, however, a more elaborate perturbation
analysis is required, and these arguments are structured with respect to a given
Holder space, hence precluding direct consideration of C°. That approach does
allow one to deduce precise regularity estimates at times ¢ > 0 if the initial data
lies in one of these Holder spaces, but to pass from there to initial data in C°
requires a limiting argument using the maximum principle, which loses a lot of
information. By contrast, the geometric microlocal approach developed here allows
us to complete the C° semigroup theory for generalized Kimura diffusions, at least
in the case of manifolds with boundary but no higher codimensional corners.

Let us now turn to the specific results proved here. Consider the parabolic
operator 0; — L on a manifold with boundary M where L falls into one of the
two following classes of degenerate elliptic operators, the generalized Kimura-type
diffusion:

Lyim = 7“83 + Z Cj (T7 y)raTayj

J

+ Z aij (T, y)@i% + bo (’I’, y)ar + Z bj (T7 y)ayj + 6(7“, y)>

©,J J

(1.2)

where (a;;) is a positive definite (n — 1)-by-(n — 1) matrix, and where we require
that Lik;n, is elliptic, in the ordinary sense, in the interior of M, and the generalized
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Heston-type diffusion:

Lyes = 207 + Z cj(x,y)x0,0y,

J
(1.3)
+a ) ai(@,y)02, +bo(z,y)0: + Y bi(x,y)dy, + e(x,y).
%, 1

J

We have normalized Lkin, by requiring the coefficient of 92 to equal r; sim-
ilarly, Lpes is normalized by requiring that the coefficient of 92 equals x. With
these normalizations, the value of the coefficient by is invariantly defined at r =0
(or £ = 0). We then define

B(Lkim) or B(Lyes) = inf{bo(0,y) : y € OM}; (1.4)

this number is often just denoted by §. In what follows we restrict attention to
the case that § > 0. The character of the Schwartz kernel of the inverse is quite
different when 8 = 0, with an interior term and a term localized on the boundary,
see [7, 17].

The reason for labeling the normal variable r in (1.2) and z in (1.3) will
become apparent momentarily. Ellipticity now requires that the symmetric matrix

1 C1 Cp—1
C1 a1 a1,n—1
. (1.5)
Cp—1 Q4p-11 ... Q(Qp—1n-1

is positive definite, and in addition that Lyes is elliptic in the interior of M. Notice
that the requirements of positive definiteness of the boundary operator along with
the ordinary (but nonuniform) ellipticity in the interior together fix the notions of
degenerate ellipticity in each setting.

The starting point for our work is the observation that operators in both
classes can be transformed into the well-understood class of elliptic uniformly
degenerate operators (also called 0-operators; we use these two monikers inter-
changeably). By definition, an operator £ is said to be uniformly degenerate if it
takes the form

L=2%0>+ Z cj(z, y)xzagyj + Z ai;(z, y)x28§iyj
! I (1.6)
+ bo(x,y)x0, + Z bi(x,y)x0y, + e(x,y).

J

Just as for Heston operators, 0-ellipticity requires that the same matrix (1.5) be
positive definite and that L is elliptic in the standard sense in the interior.

The relationships between these types of operators is not difficult to explain.
First, after a change of variables, an elliptic Kimura operator Lkiy, is equivalent to
a multiple of an elliptic uniformly degenerate operator. Indeed, replace the defining
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function r by a new variable x = /r; observing that
1 1 1
Vroy = _0p = 1rd? = 02— "0, ),
2 4 T
we obtain the equivalent expression

1 2 1 2
Lxim = 4835-1- QZC]‘:L‘@

zy;
, 1 N (1.7)
+ Zaijé‘yiyj + 9 (bo - 2) X 8m + ijﬁyj +e.
This is smooth and nondegenerate if and only if by = ;; in general, however,

L = 22 Ly is an elliptic uniformly degenerate operator. Similarly, if Lies is an
elliptic Heston operator, then £ = x Ly, is again elliptic and uniformly degenerate,
without need to change variables.

What these transformations show is that elliptic operators of Kimura or He-
ston type differ only mildly from elliptic uniformly degenerate operators; further-
more, an uniformly degenerate operator which arises in this way has lowest-order
term, e(z,y), which vanishes at © = 0. We assume that this last condition holds
for all the uniformly degenerate operators we consider below since this simplifies
several points in the exposition. In other words, we restrict attention to uniformly
degenerate operators of the form

L=2a"97+ Z cj(z, y)'rzagyj + Z ai;(z, y)x26§iyj
’ v (1.8)
+bo(x,y)xds + > bj(w, )20y, .

J

The advantage of these transformations is that one has available the calculus
of 0-pseudodifferential operators, as defined and developed in [11], which leads to
detailed understanding of uniformly degenerate operators. These same techniques
may therefore be brought to bear, to deduce mapping properties, fine regularity
statements, etc., for elliptic Kimura and Heston operators.

It is less obvious how to use this relationship when studying the associated
heat operators, however. For example, multiplying 0; — Lkim by r and then setting
r = 2 produces the rather difficult looking operator 29, — £, where £ is an
elliptic 0-operator, which is (rather seriously) non-parabolic at M. A completely
analogous issue occurs for Heston operators. Thus the new contribution of this
paper is to explain how to adapt the geometric microlocal parametrix methods
to these new types of degenerate parabolic operators. As a prelude to this, the
next section contains a somewhat abridged review of the elliptic parametrix con-
struction. This is important in its own right, but the methods provide a very good
warm-up to the slightly more complicated constructions needed for the parabolic
problem. That parabolic parametrix construction is explained in §4, and following
this we explain in §5 how to use this parametrix to deduce the sharp regularity
properties of solutions.
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2. A review of the elliptic theory

As explained above, we begin with a review of the elliptic parametrix construction
for elliptic uniformly degenerate operators. Amongst other things, this provides
a clear indication of the role of boundary conditions. In this section we identify
the space of pseudodifferential operators acting on functions defined on M which
contains the partial inverses of a generalized Kimura and Heston operators, Ly,
and Ly, as the calculus of uniformly degenerate operators on a manifold with
boundary.

It is shown in [7] that under the assumption that 8(Lkim) > 0, the equation
LKimu = f (21)

is solvable for all f in a subspace, of codimension 1, defined by a linear functional
of the form

of) = /fde. (2.2)

Here ¢dV is the solution to the adjoint equation, Li; ¢ = 0, and ¢ is an integrable,
non-negative function which is smooth in the interior of M. There is a similar
statement about the solvability of Lyesu = f which can be proved based on the
theory developed in this section.

Our main results in the elliptic case are summarized in the two following
theorems.

Theorem 2.1. Let Lyin, be a generalized Kimura operator on a manifold with
boundary M, for which the inward pointing part of the first-order term is nowhere
vanishing. The partial inverse operator L;iilm belongs to the space of 0-pseudo-

differential operators Wy >**2P~Y (M), where 8 = B(Lxim) is defined in (1.4).

Remark 2.2. We explain the notation \1152’2’0’25_1(M) below, but note here that the
superscripts denote orders of vanishing of the Schwartz kernels at various boundary
faces of the 0-double space ME introduced below. Since we have changed variables,
setting r = x%, we should note that these orders of vanishing are with respect to

the (z,y) rather than the (r,y) coordinate system, and the non-degenerate measure
dx'dy’.

Theorem 2.3. Let Lyes be a generalized Heston operator on a manifold with bound-
ary M, for which the inward pointing part of the first-order term is nowhere vanish-
ing. The partial inverse operator Lﬁ;s belongs to the space of 0-pseudo-differential
operators W33 0PN, with B = B(Lues) defined in (1.4).

In the remainder of this section we denote by L any second-order elliptic
uniformly degenerate operator (1.6); for simplicity, assume that £ is scalar, though
the generalization of all the material below to systems is straightforward (see [11]).
We refer to this paper for further details on all of the notation and ideas discussed
in this section. At the end of this section we indicate why the results discussed
here imply Theorems 2.1 and 2.3.
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2.1. Model operators

One of the first invariants associated to £ is its indicial operator. This is an or-
dinary differential operator, parameterized by points y € M, and given in local
coordinates by
I(L), = 5202 + by(0,)s0s.

This is obtained by formally replacing the local variable z by a global variable
s € RT — there is an invariant way of regarding s as lying in the inward-pointing
b-normal bundle to OM at y — and then setting all other occurrences of x to 0.
In particular, we evaluate the coefficient by at (0,y) € OM and because we are
assuming that the lowest-order term e vanishes at x = 0, this term disappears
in this model operator. The indicial operator is a regular singular operator and
can be analyzed by classical methods. Its indicial roots are the values v such that
I(L)ysY = 0; since L is second-order scalar, there are only two such values, 79 =0
and 1 =1 —bo(y), and so

I(L)y(a(y)s” + By)s' W) =0

for all y, at least so long as by (y) avoids the non-negative integers. We shall assume
for the rest of this paper that by(y) > 0 for all y; it is possible to treat the
case bo(y) = 0 by essentially the same methods, though the final result is rather
different. The general mixed case, where by may vanish on some closed subset of
OM presents many technical difficulties. The main applications from biology and
finance prohibit by < 0, and in fact often require that 0 < by < 1; we do not
insist on this latter restriction, however. Thus we assume only that by > 0. The
compactness of M implies that S(Lkim ) defined in (1.4) as the infimum of by (0, y)
over y € OM is positive.

This family of indicial operators and indicial roots indicates what we should
expect of more general solutions of Lu = 0. For example, in the special case where
by remains constant on dM, then one of the main results of [11] states that an
arbitrary (local) solution u to Lu = 0 has an asymptotic expansion as ¢ — 0 of
the form

ul,y) ~ 3 atuoily) + 37w (). 23)

This expansion must be interpreted properly since in many cases it only holds in
a weak, or distributional sense. This means simply that if x(y) € C*(0M), then
it is always true that

(ule () = [

oM

u(z, y)x(y) dy ~ Z a*(uos, X) + Z 2P (w5, x)

is an asymptotic expansion in the usual (strong) sense, but (2.3) need not hold
in this same pointwise strong sense. Actually, it is known that if the leading co-
efficients ugg and w19 are both smooth, then all coefficients in the expansion are
smooth and (2.3) is a classical asymptotic expansion. It is still possible to work
with weak expansions, with some important caveats which are noted below.
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Two issues complicate the problems of interest to us. The first is that it is
more natural in applications to allow the indicial root 1 —bg(y) to vary smoothly as
a function on 0M. This leads to a more complicated regularity theory for general
solutions of Lu = 0 (or Lu = f), see [10] for some recent work on this. The choice
of boundary condition we shall impose circumvents this to some extent. Namely,
we select only the (unique) solution for which w19 = 0, and hence which contains
no term ulj(y)xl_bO(y) in its expansion. This is tantamount to choosing a solution
u € C®°(M) to Lu = f, where f € C®(M). Of course part of the problem is
to show that such a solution exists and is unique, which is proved in [7]. This
choice of boundary condition is of Neumann type, in the sense that, at least when
bo(y) € (0,1), we are requiring a non-leading term in the expansion for u at
OM to vanish. This introduces another complication, familiar even in the classical
nondegenerate case with Neumann boundary conditions, that the construction of
a solution operator requires some extra global considerations, compared to the
solution for the Dirichlet problem.

One further model operator is needed in the analysis of £: the normal operator

N(L)y = 5702+ ci(0,9)(505)(50u,) + D ai5(0,9)5 Dy,
7 i
+b0(0,9)505 + ¥ b;(0,4)50u,-

J

This acts on a half-space RY x R%~! which can be naturally identified as the
inward pointing half of T, M at each y € dM. Since N (L) is translation invariant
in w and jointly dilation invariant in (s,w), it can be analyzed by first passing
to the Fourier transform in w and then rescaling, setting o = s|n|, where 7 is the
Fourier transform variable dual to w. This leads to an ordinary differential opera-
tor, depending parametrically on y and 77 = n/|n|. Because L is second order and
scalar, there is a standard classical procedure for writing down the corresponding
Green function of this ODE; this Green function may then be rescaled and Fourier
transformed back to a Green function for N (L), itself. This should be regarded
as the ‘infinitesimal inverse’ for £ at y € dM, and is the key new building block
in the construction for the actual (generalized) inverse for L.

To understand this in a somewhat broader sense, observe that the standard
parametrix construction for approximate inverses of nondegenerate elliptic differ-
ential operators in microlocal analysis is simply an elegant way to ‘glue together’
the family of inverses to each of the constant coeflicient models obtained by freez-
ing the coefficients of the differential operator at each point. (More broadly still,
many proofs of the classical Schauder estimates proceed by some sort of perturba-
tive argument starting from the exact inverses of these model constant coefficient
operators.) In the O-calculus we can proceed very similarly once we allow that
there is a different way to make sense of freezing the coefficients at a boundary
point y, thus leading to the normal operator N(L£),, and that there is a good way
to describe the inverses of the model operators obtained in this way. Both in the
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standard setting and for the 0-calculus, these considerations eventually lead to
one of the first main qualitative results: if £ is fully elliptic in the sense that its
model operator at each point p € M (in the extended sense described above if £ is
uniformly degenerate) is invertible, then there exists right and left parametrices,
G, and Gy, for £ such that the remainder terms Id — Gy£L, Id — LG,., are com-
pact smoothing operators. The existence of such parametrices can then be used to
deduce global Fredholm mapping properties and fine regularity theory.

2.2. The 0-double space

Before describing the parametrix construction itself, we first describe an auxiliary
geometric object, which we call the O-double space, written as Mg, which is the
actual setting for the parametrix construction. This space is an ‘enhancement’ of
the simple product M? in the sense that there is a smooth surjection Mg — M?,
which is the identity over the interior (and indeed over most of the boundary points
of Mg). The geometric microlocal approach is distinguished by its insistence on
the Schwartz kernel of the parametrix as the primary object.

The class of 0-pseudodifferential operators is defined by the requirement that
the Schwartz kernel of any such operator enjoys specific and rather simple regu-
larity properties only when lifted to Mg. In other words, this double space allows
one to efficiently encode the asymptotic properties of these Schwartz kernels in
various regimes near the boundary. Said differently, the O-double-space, Mg, gives
singular coordinates near the boundary of M? in which the asymptotic behavior
of the Schwartz kernel is transparent.

The space Mg is obtained by blowing up M? along the diagonal in 9M x
OM, which we denote diag((0M)?). In the notation used in [15] this space is
denoted M3 = [M?;diag((0M)?)]. This blowup corresponds to replacing each

If

diag

rf

FIGURE 1. A schematic diagram of the 0-double space M¢.
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point of diag(9M )? with its inward-pointing spherical normal bundle; equivalently,
introduce polar Fermi coordinates around this submanifold and then regard the
‘r = 0’ face as a new boundary hypersurface of the blown up space. If (z1, y1; 2, y2)
are coordinates near a boundary point of M?, then

r? =23+ 23+ |y1 —vel?, and 7, xl, 3:27 - y27 along with (2.4)
ror r

provide local coordinates near the new boundary component of M.

Thus M¢ is a manifold with corners, just like M?, but has one extra boundary
hypersurface, called its front face, ff, which is the r = 0 face mentioned above, and
which ‘blows down’ to diag(0M)2. It has two other boundary hypersurfaces, the
left and right faces, If and rf, corresponding to OM x M and M x QM , respectively;
the other distinguished submanifold is the closure of the lift of the diagonal in
int M x int M, which is denoted by diag,. An important advantage of MZ over
M? is that diag, meets only the interior of ff and the intersection is transversal.
It does not intersect any other boundary faces, whereas the ordinary diagonal
diag intersects the corner of M?2. The Schwartz kernels of the pseudodifferential
operators we consider are singular both along diag, and along other components of
the boundary of M?2. The blow-up operation physically separates these singularities
making their description in Mg much simpler than in M?2.

The class of 0-pseudodifferential operators ¥{"***(M) consists of operators
A which are pseudodifferential operators over the interior of M in the classical
sense, but which have certain behavior at the boundaries. We require that the
Schwartz kernel K 4 of any such A, which is a distribution on M?2, lifts to a dis-
tribution k4 on Mg that has the following properties: first, x4 has a standard
classical pseudodifferential singularity along diag,, and at ff, this conormal singu-
larity is required to be smoothly extendible across ff in the following sense. Namely,
(after removing some fixed and explicit singular density factor), we require that
k4 is the restriction from the space obtained by doubling Mg across ff of a distri-
bution which is smooth away from the doubled diagonal and which has a classical
pseudodifferential singularity of fixed order uniformly across the ‘interface’ ff of
this double.

We also require that k4 is conormal at the other two boundary faces, If and
rf; in many cases which arise in applications, it may be polyhomogeneous at one or
both of these faces. The indices m, p, a, b indicate the orders of vanishing at these
various submanifolds and boundary faces: thus m denotes the pseudodifferential
order, or (roughly) the rate of blowup of k4 on approach to diag,; p denotes the
rate of vanishing at ff (since we are requiring k4 to be smooth up to this face,
p must be a nonnegative integer); finally, a and b are rates of vanishing for the
conormal orders along the rf and If respectively. If k4 is polyhomogeneous at
these faces, then these are lower bounds for the vanishing order of all terms in the
expansions. We represent these kernels using the non-degenerate density dz’dy’ on
the incoming face.
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diag,

ff
rf

FIGURE 2. A schematic diagram of the double across the ff of Mg.

2.3. The elliptic parametrix construction

Having defined the space M@, we now outline the parametrix construction for
an elliptic uniformly degenerate operator £. This construction is in two steps: it
starts with a ‘rough’ approximate inverse which is precisely chosen at each of the
main boundary faces of MZ and at diag,, but then extended smoothly away these
regions in a fairly arbitrary manner; the second step involves showing that it can
be corrected so that the error term is as small as possible. A large part of the
work involves showing that this correction preserves certain desirable features of
the parametrix, e.g., its conormal or polyhomogeneous structure.

To be definite, suppose that the indicial root structure of £ is as in the
discussion above, so one root is identically 0 and the other may vary smoothly
but remains strictly less than 1. The first step is to choose an element Gog €
w5208 (M), where

B = 2B(Lkim) — 3,
defined in (1.4). This shift in the order of vanishing at If (where 2 — 0) can be
explained as follows. In the = coordinates, Lkim = 2L where £ is uniformly
degenerate. Suppose that G is an inverse (or partial inverse, or at least a suffi-
ciently good parametrix) for £. The order of vanishing of the Schwartz kernel of
G is an indicial root for the adjoint problem with respect to the measure dzdy.
More specifically, working just with indicial operators because these determine
the indicial roots,
I(L), = (#0;)* + (2b — 2)20,,
hence its adjoint (with respect to this measure) equals

I(L); = (—0,7)° + (2b — 2)(—0px) = (20,)* + (4 — 2b)x0, + 3 — 2b.



252 C.L. Epstein and R. Mazzeo

The indicial roots of this equation satisfy
24 (4—2b)s+(3—-2b) = (s+1)(s—(2b—3)) =0,

hence these two indicial roots are s = —1 and 2b — 3. The latter corresponds to
the order of vanishing of G along If. Finally, rewriting LkinG = I as

e LG = 0(x —a")o(y —y),

we see that G = G(2)%. This means that G vanishes or blows up like 2by — 1 along
If (left face). Of course, since by may vary with y, we must take the infimum of
this over all y € OM.

Similar considerations apply for Lyes = 71 L, where I(L), = (x0;)* + (bo —
1)20,. The order of vanishing of the inverse for £ at ' = 0 is by — 2 and hence
including the extra factor ’ on the right of G shows that the parametrix for Lies
vanishes like (z/)%~1 at If.

Denoting the lift of the Schwartz kernel of Gy to Mg by kg, then this distri-
bution has a complete classical expansion along diag, which is determined using
the standard symbol calculus in such a way that £LGo = Id — Qo, where kg, is
C™ across diag, and up to ff. As part of this, we are also able to demand that the
restriction of Gy to ff equals the inverse to the normal operator N (L), over each
point y € M. It is precisely at this last step, in choosing the specific inverse of the
normal operator family, where we incorporate the choice of boundary conditions.
The dual requirements for Gy along diag, and ff are compatible because of the
rubric: “the symbol of the normal operator of £ equals the restriction to diag, Nff
of the symbol of L.

We make a few observations which expand on this. First, ff is the total space
of a fibration: the base is OM (via its identification with diag((0M)?)), while the
fiber is a closed n-dimensional quarter-sphere (i.e., where two of the coordinates
are restricted to be nonnegative). This quarter-sphere is the compactification of
the stereographic projection of the half-space which we already encountered as the
(s, w)-half plane. The key technical fact that must be proved is that the integral
kernel N(G), for (N(L),)~! has a nice structure on this compactification. More
specifically, as we already indicated, we can obtain N(G), in rather concrete terms
as the inverse Fourier transform of a rescaling (s = o/|n|) of the Green function
of a simple second-order ODE. A priori this is a function of (s, s’,w,w’), and still
depends parametrically on y. The restriction of G to ff should be chosen on that
fiber to equal this function evaluated at (s’,w’) = (1,0), which corresponds to the
point of intersection of diag, with that fiber. This function is C*>° on the interior of
this fiber except at (1,0) and has a classical expansion at that point. What must
be proved, however, is that it extends as a conormal distribution to the closed
quarter-sphere and is smooth up to ff N1f and conormal with vanishing rate 3’ at
ffNrf (and at the corners).

From the way that G is chosen, we deduce that the initial error term Qo =

Id —LG) lies in xpg""’lvw’, i.e., kg, is smooth across diag, and vanishes to order
1 at ff. It turns out to be easy to add a correction term G; to this parametrix so
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that the resulting error term @, = Id —£(Go + G1) lies in \Ilgoo’l’oo’ﬁ/. In other
words, we can also remove the entire expansion of the error term at rf. To see how,
note that if we let £ act on the formal expansion of Gy at rf, then the leading
part of this operator is the indicial operator I(£),. Thus we can successively solve
away the terms in the expansion of @, at this face using the inverse I(£); . This
step is infinitesimal at each point of rf.

To complete the construction, we would ideally like to remove the error term
altogether by multiplying each side of the equation £L(Gp 4+ G1) = Id —@Q1 by the
inverse (Id —Q1)~!. Of course, this operator need not be invertible, so instead
we multiply ‘formally’ by the Neumann series Z;’O:O Q{, or in other words, by the
operator Id +R where R is an asymptotic Borel summation of this Neumann series.
The key fact needed to make sense of this Borel sum is the composition law for
0-pseudodifferential operators, which implies in particular that Q) € Uy 00.4,00,8 /,
or in other words, K vanishes to increasingly higher order at ff. Having formed
such an R, we now multiply as intended by Id+R to obtain an operator G =
(Go + G1) o (Id +R) that satisfies

LG=1d-S5, where &€ Wy ().

The parametrix G itself continues to lie in \1152’0’0’5/(M).

The Schwartz kernel of this final error term is ‘very smoothing’, since it is
smooth in the interior and vanishes rapidly both along ff and If. It is straightfor-
ward to conclude that this S is compact on all reasonable function spaces. This
parametrix G and the structure of S can then be used to deduce not only the global
mapping properties of £ on weighted Sobolev and Holder spaces (and many other
natural spaces as well), but also the precise local regularity theory for solutions of
Lu = f, again in a variety of function spaces. All of this is recorded in detail in
[11], to which we refer for complete details of the parametrix construction and its
analytic consequences.

To prove Theorem 2.1, we recall what was already described in an earlier part
of this proof: namely, if LG = I, then the (partial) inverse G for Lkim = 272L
is equal to G(2')?. Similarly, the partial inverse G for Lyes equals G(z'). This
completes the proofs of Theorems 2.1 and 2.3.

We have admittedly marched through the steps of this elliptic parametrix
construction swiftly, but have done so since this construction is recorded carefully
elsewhere. These steps are all mirrored in the heat kernel parametrix construction,
which is our main goal below.

3. The Kimura and Heston heat kernels

We turn now to the parametrix construction for the heat operators associated to
the classes of elliptic Kimura and Heston type operators.

The geometric microlocal construction of parametrices for heat operators is
similar to the corresponding construction in the elliptic setting. We refer to [15],
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[16], [14], [2], for heat kernel constructions for several other degenerate parabolic
equations; the heat kernels for conic and edge problems discussed in all but the first
of these sources are analogous to the construction here. In any case, the procedure
we follow is substantially the same as in those papers: namely, we focus on the
conormal structure of H(t,z,2’) on a double heat space which is obtained as a
resolution by blowup of Rt x M?2. This resolution is constructed to capture the
singular structure of H, which occurs along the interior diagonal of M? at t = 0,
the submanifold of the corner at {0} x diag(9M)? and (to a lesser extent) along
(RT x M x OM) U (Rt x M x M). Thus we first define Kimura and Heston heat
spaces, M 2_Kim and M 2_Hes, respectively. As a test, we then show that the explicit
solution kernels for the model heat operators are polyhomogeneous on these spaces;
this is both useful in the full ‘curved’ construction, but also indicates that the
heat spaces are sufficiently intricate to capture the various types of asymptotic
singularities. We then proceed with the iterative parametrix construction. Key
components of this analysis, beyond the use of the blown up heat spaces, include
a composition formula for the operators represented by Schwartz kernels on these
spaces.

Before we begin, recall that our primary objective is to find the solution
operators for the Kimura and Heston heat equations. Henceforth we systematically
identify these operators with their Schwartz kernels H(t, z, z’), the so-called heat
kernels. These satisfy

(0 —L)H =0, where t >0, and H|,_, = d(z — 2'),

and are unique provided we require that solutions of this problem also satisfy the
Neumann-type boundary condition introduced above: namely, w = H¢ must be
smooth up to x = 0. The delta-function on the right side of the second equation
requires some explanation: as an integral kernel, it must be integrated against a
density on M, and so it may need an extra factor to compensate for factors on
this density. For example, it suffices merely to multiply by a nonvanishing smooth
function of 2’ if we use a density which itself is a nonvanishing smooth function
of dz = dxdy; on the other hand, if using drdy = 2zdxdy, it would be necessary
to replace the right side by 6(z — 2')d(y — »')(z') ™!, and so on. We shall therefore
agree to fix the volume form dzdy (where z = /r in the Kimura case).

Note that these two defining equations for H remain valid when we multiply
the heat operator (not H!) by a prefactor or change variables, provided we compen-
sate with the appropriate Jacobian factor. As already noted in the introduction, it
is advantageous to multiply the heat operators by a vanishing prefactor to make
the elliptic parts uniformly degenerate. However, at variance with the suggestion
there, we multiply here by ¢ rather than 2?2 or z.

3.1. Heat spaces

We first review the definition of the blowup of a manifold with corners X along
a p-submanifold Y, which was already used (albeit informally) in the last section,
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and the modification of this definition needed to define blowups with respect to a
different homogeneity structure along Y.

Let X be a manifold with corners and Y C X a p-submanifold, which means
simply that it is a submanifold with the property that for any ¢ € Y, there is a
neighborhood U of ¢ in X which is a product, U’ x U”, where U’ is a relatively
open neighborhood in Y and U” is a neighborhood of 0 in a manifold with corners
of complementary dimension (invariantly, a neighborhood of the 0-section of the
normal bundle of Y in X). The blowup [X;Y] is the union of X \ Y and the
interior spherical normal bundle of Y in X. This union is given the unique minimal
differentiable structure so that the lifts of smooth functions on X and polar Fermi
coordinates around Y in X are both smooth. It is called the normal blowup of
X around Y because it respects the homogeneous dilation structure in directions
normal to Y in X. If Y7 C Y5 C X is an inclusion of p-submanifolds, we define the
iterated blowup [X;Y2;Y1] in a straightforward way.

Next, considering only a special case of a more general inhomogeneous blowup
construction, suppose that Y C {0} x X € R; x X. The parabolic blowup of Y in
R x X, denoted [RT x X;Y;dt], consists of equivalence classes of curves where
two curves are equivalent if they are tangent to higher order than expected with
respect to the parabolic dilations (¢, z,y) — (A%t, \z,y), where z lies in the normal
bundle to Y C X and y € Y. We refer to [8] for the precise definition, see also [15],
[2]. This has C*° structure which can be defined using ‘parabolic polar coordinates’
(see below) around 0 x Y. That the homogeneities in the time and spatial directions
should differ is essentially a consequence of the fact that the Euclidean heat kernel
is a function of |z — a’|?/t; if 2 is identified with # — 2/, then this quantity is
invariant under the parabolic dilations defined above.

We now define the Kimura and Heston heat spaces using a sequence of two
blowups:

M? i = [RT x M?:{0} x diag(0M)?, dt; {0} x diag(M?), dt], (3.1)
M} .. = [RT x M?:{0} x diag(0M)?; {0} x diag(M?), dt]. (3.2)

Thus the only difference between these spaces is that {0} x ddiag is blown up
parabolically in the first case, but only normally in the second; this reflects the
different relative homogeneities of ¢t and x in the two settings. However, on a
qualitative level, the two spaces are almost identical.

Each of these spaces has five boundary hypersurfaces: there is the original
‘bottom face’ tb at ¢ = 0 (away from the diagonal and corner), the lifts of the left
and right faces If and rf, corresponding to R™ x M x OM and RT x OM x M,
respectively, the ‘temporal face’ tf which is the lift of the diagonal in M? at t =0,
and finally the front face ff, which is the lift of the diagonal of the corner at ¢t = 0.

To get a better feeling for the geometry of these spaces, it is helpful to in-
troduce various coordinate systems. To be specific, consider first M7 ;... Near
tf, but away from the corner, we are near the diagonal in M?, hence can use
two copies w and w’ of the same interior coordinate system; we then introduce
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FIGURE 3. A schematic diagram of the blown up heat space M?_y;,..

parabolic polar coordinates

t w—w
R:\/t+‘w_w/|27 9:<R27 R )7

to fill out a complete nonsingular coordinate system (R, 6, w’) near this face (but
away from ff). It is not simple to make computations in these coordinates however,
and so we define a convenient set of projective coordinates:

w—w
Vit
Thus 7 > 0 and W € R”™. It is quite important that the submanifold described by
7 =0 at a fixed w’ is identified in this way with R”, with Euclidean coordinate
W, and in fact this choice of Euclidean coordinate is projectively natural (and
W = 0 corresponds to the intersection of tf with the diagonal {w = w'} at t = 0).
In particular, tf is the total space of a fibration over diag(M?), where each fiber is
identified with a ‘parabolic’ hemisphere, and its interior is projectively identified
with R™. The projective naturality means that a different choice of local coordinate

T=Vt, W= (3.3)

w leads to a new projective coordinate W which is projectively equivalent to
W. These projective coordinates are singular near tb; this turns out not to be
important since the kernels vanish to infinite order at this bottom face anyway.
Finally, let us point out that the structure of these heat spaces near tf is ‘universal’
in the sense that it is insensitive to the degeneracies of L at the boundary and
captures the standard interior, local, short-time structure of any nondegenerate
heat kernel.

There are similar types of polar and projective coordinates near ff as well.
We begin with coordinates (¢;z,y;2’,5y’) for M? x R ; in which the boundaries
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are v = 0,2 = 0 and ¢ = 0. We are blowing up the submanifold where z = 2’ =
0,y =% and t = 0. We do not use the polar coordinates at all, so let us consider
immediately the projective coordinate system (T, s, u,2’,y’), where
t _
T = S = x u = y y .

(z')2’ o ! (3.4)

This coordinate system is singular near 1f, where ' = 0, but there is an alternate
good projective coordinate system near that face which is obtained by dividing
by x rather than z’. A third useful projective coordinate system is obtained by
dividing by v/#: thus, introduce (¢,¢’,0,v,%’), where

/ /

a:\/t, v:y_y.

Vit

x
Vit
These are valid away from tf Uth.

Just as for tf, the front face ff is also the total space of a fibration; this
time the base space is diag(0M)? and the fiber is a parabolic quarter-sphere,
parabolically blown up at a boundary point. Using the first projective coordinate
system, there is a projectively natural identification of the interior of each of these
quarter-sphere fibers with a quarter-space (T, s,u) where T,s > 0 and u € R*~L,

The Heston heat space M7y, differs from M? 1. only in that the blowup
of diag(OM)? at t = 0 is normal rather than parabolic. This changes the local co-
ordinate systems near ff in an obvious way: specifically, we replace the coordinates
above by

T

52\/15’

£= (3-5)

t —
r= s:x/, u:y /y, and

T T T

v oy (36)
E = t’ E/ = t ) O- = \/t7 U = *

We leave it to the reader to track the corresponding minor changes.

3.2. Model operators

The calculation which justifies the introduction of these heat spaces is the fact
that the restrictions of the lifts of the Kimura or Heston heat operators to the
boundary faces tf and ff of the corresponding heat spaces are comprehensible
model operators.

The model operators on the fibers of tf are, as noted earlier, universal in
that away from xz = 0 there is nothing to distinguish Lk, from Lyes or any other
nondegenerate elliptic operator in the interior. The lift of J;, for example, near
this face is singular, so to compensate for this, we premultiply the entire operator
0y — L by the factor t. This yields an operator which lifts to be nonsingular on
M7 (we omit the Kim or Hes subscript for the moment) near ff. In fact, as local
computations show, this lift is an operator which acts tangentially on this face.

To be clear in these computations, we consider td; —tL acting on R} and the
first (left) factor of M in M2, and then lift to the blown up heat space. Working
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in the projective coordinate system (7, W, w'), we see that

- 1
DS (T (8 + ) 0w, + ﬁjk&%) = _(Ow, +7Vj)
k
where V; is smooth up to tf. Since we can always choose the local coordinate w
so that the second-order part of L is the standard Euclidean Laplacian at a given
point p, which we take as w’ = 0, we then compute that the lift of L equals

S 0k, + TR+ > WP,
j=1

where the P; are second-order differential operators on the blown up space which
are smooth up to tf. A similar computation, which can either be done in the par-
abolic polar coordinate system above, or a different suitable projective coordinate
system, shows that these are smooth at tf Ntb too. On the other hand, we also
have

1 1<
t0, = ;0. — zzwjawj.
J=

Putting these together, we see that the ‘error terms’ vanish when restricting the
lift of t0; — tL to the fiber of tf over p, and so this restricted operator equals
1
2
Note, in particular, that this acts tangent to the hemisphere fibers of tf. Slightly
more generally, if we apply t0; —tL to any term of the form 7% H), and then restrict
to 7 =0, we get

T@T—Aw—l-;W'aw. (37)

2

The operators we have identified here are the model problems for ¢(9; — L) at order
k along ff. These are shifts of operators equivalent to the harmonic oscillator, and
hence are invertible (for certain values of k only off a finite rank subspace) on the
Schwartz space S(Rj},). The solvability of these model problems has been dealt
with even in the earliest papers on heat trace expansions, starting with the work of
Minakshisundaram and Pleijel in the 1950s. We refer to [3] for a modern treatment
of this.

Now consider the lift of t0; —tL near ff. To be definite, let us focus on Kimura
operators. Using the projective coordinates (T, s, u, z’,y'),

0y =Tor, 107 =T, Tx '0,=Ts s, and 1d;, =TJ,

u;u "

7"c (Aw— ;Waw— k) Hk (38)

Suppose that Lkin as expressed in (1.7), and choose local coordinates y on OM
so that the matrix a;;(0,y) = d;; at y = yo. Then

O — Licim) = TO7 — T<i852 F AL+ ;(bo(o, vo) — ;)5_16‘5 + o@;’)). (3.9)
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After removing the overall factor T', the restriction of this to ff (i.e., setting 2’ = 0)
is simply the heat operator corresponding to s™?N (z*Lkim)y,. Abusing language
slightly, we call this latter object the normal operator for Lkip,.

The minor modifications of these statements for Lyes are straightforward and
left to the reader

To summarize, what we have achieved is that these heat spaces have the
property that the lifts of the Kimura and Heston heat operators (multiplied by t),
restricted to either tf or ff, act tangentially to the fibers of these spaces, and these
restrictions are naturally associated with the model heat problems: the model at
each fiber of ff is the heat operator associated to the normal operator, while the
model along each fiber of tf is a universal elliptic operator (of Ornstein—Uhlenbeck
type) on a projectively equivalent Euclidean space.

3.3. Model heat kernels

A preliminary test for whether these heat spaces are suitable for describing the pre-
cise asymptotic structure of the Kimura and Heston heat kernels is to see whether
the heat kernels of the model operators of each of these types is polyhomogeneous
on the associated heat space. We shall do this in the Kimura setting using an
explicit formula for the Kimura heat kernel taken from [6]. We do not do this here
for Heston operators simply because we do not know a similar explicit expression
(although it is highly likely that such an expression exists).
In any case, consider the model operator, written in terms of z = /7 as

1 1 1\ _
O — <4a§ +, (bo - 2) 710, +Ay>, (3.10)

where by > 0 is a constant. Then according to (6.13) in [6], the heat kernel for this
operator which corresponds to the choice of boundary condition which omits the
term 7% in the expansion of solutions is given by

o 1 1/r 172b0 ! rr! _lv=v'I?
HKim(t,T,yﬂ"vy):(47Tt)(n_1)/2t(r/) R 12 c B

= (47)~(n=D/24=(n+1)/2 (;)1_% o Toy—1 (2:6:/) A (3.11)
Here, I, —1(2) is the modified Bessel (or Macdonald) function, which is asymptotic
to czP~! for z \, 0 and which grows exponentially like e*/\/z as z  co. In
addition, 3,7’ € R”~! and the contribution from these variables is the standard
Gaussian because the heat kernel is multiplicative with respect to Riemannian
products.

To check that this kernel lifts to a polyhomogeneous function on M7 ..,
we first observe that

HKim()\Qt> >\x7 >\y7 )‘xl7 )‘y/) = A_n_lHKim(t x,Y, xl7 y/)

The fact that Hgk;y, is homogeneous under this dilation could have been predicted
from the fact that (3.10) is homogeneous of degree —1 and the boundary condition
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is also invariant under this dilation. However, the boundary condition, that Hgkim
equals 6(z — 2/)d(y — ') (2’) "1 at t = 0, is homogeneous of degree —n — 1, which
implies that Hxkiy, inherits this same degree of homogeneity. The upshot is that
Hxim can be written as (z') ="~ 1H where H is homogeneous of degree 0, and hence
smooth, up to ff.

We can see directly, using the asymptotics of the Bessel function as z — 0,
that Hxg;iy is smooth up to rf, i.e., as = N\, 0, and is smooth up to If as well
provided we remove the factor (z/)2*~1. To understand its behavior near tf, use
the coordinates (,¢’,0,v,y’) to get

1—-bg /
Higom = (47)1=)/25-n-1 ({) @D (255 ) ool
Using the Bessel asymptotics as z \, oo shows that Hkin, vanishes to infinite order
along tb and blows up like 0~ on tf. Looking closer, it is also apparent that the
restriction of the leading coefficient at o = 0 is (up to a constant) e~ (E+lo)/2 =
e~WI*/2 which is in the nullspace of (3.8).

Again, it should be possible to understand the Heston heat kernel in similarly
explicit terms, but we do not pursue this here. Note that a posteriori from the
construction below, since the heat kernel for any Heston-type operator must live
as a reasonable distribution on M ,f_Hes, the same is obviously true for the model
Heston operator, and using homogeneity considerations, we can conclude that this
model Heston heat kernel is polyhomogeneous on this Heston heat space.

3.4. The heat parametrix construction

Following the definitions and calculations above, we now proceed with the con-
struction of heat kernel parametrices. As usual, we explain this carefully only for
the Kimura case, since the Heston case is completely analogous.

The first approximation to the parametrix is a Schwartz kernel Hy which
will be chosen carefully so that its asymptotic structure is correct to all orders
along tf and to first order at ff. More specifically, we wish to choose Hy so that
t(0: — Lkim)Ho vanishes to infinite order at tf and blows up only to order —n + 1
at fI (which is better than expected since t(9; — L) is homogeneous of degree 0
and we shall choose Hy to blow up to order —n at ff.

To arrange matters along tf, it suffices to observe that if we expand Hy ~
S 77 R Hop as 7 N\, 0, then t9; — tL acts as the model operator (3.8) of order
k on Hoy. As already noted there (and proved carefully in [3], see also [2]), this
operator is invertible for £ > 0 and has a one-dimensional nullspace when £ = 0
consisting of the function e~IWI*/2_ Thus if we choose Hyp to equal this Gaussian,
then the expansion of ¢(0; — L)7~"Hgo (and later t(8; — L)7~"" Hy;) produces
error terms which blow up or decay like 77"** for k > 0. We then regard these as
inhomogeneous terms and choose Hyy to solve away all such inhomogeneous terms
produced by earlier steps of the construction. We can then take a Borel sum of all
of these Taylor coefficients. This determines Hy near tf. While this is described
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in rather different language, what we are doing here is no more nor less than the
classical interior parametrix construction for heat kernels.

One aspect of this behavior at tf worth mentioning explicitly is the fact that
the leading term is, up to a dimensional constant, 7~ e~ IWI*/2 = ¢=n/2¢=ly=v'I*/2t
This guarantees that H has the correct initial condition,

. / /! !/ / !/ /
Jim MH(tyxyy,x Yo y) da'dy’ = ¢(x,y).
Indeed, this is true for the Euclidean heat kernel, which is equal in its entirety
to this leading term, and the higher order (in 7) terms in the expansion of more
general heat kernels do not contribute to this small ¢ limit.

On the other hand, near ff we solve away only the first term. Specifically,
writing Hy = (2/)""H{, and applying t(d; — L) to this, the leading term of the
resulting function on any fiber of ff is simply the model heat operator for L at
the corresponding boundary point y € M applied to the restriction of H| to this
face. We should clearly choose this restriction to equal the model heat kernel, and
so we do.

The only thing to check is that the singularity in this model heat kernel at
ff Ntf is the same as the rate of blowup of Hy along tf, but a moment’s thought
shows that this is indeed true. This simply reflects the fact that the singularity at
T = 0 of the model heat operator is the limit of the singularities at 7' = 0 of the
family of nearby interior problems (transverse to the diagonal) which limit to it.

To recapitulate, then, we choose Hy so that ¢(9; — Lkim ) Ho vanishes to infinite
order along tf Utb, and blows up to order —n + 1 at ff.

We have not yet discussed the behavior of Hy along the side faces rf and If.
These are governed by the behavior of the model heat kernel along the intersections
ffNrf and ffN1f. The first of these corresponds to letting s — 0 for T > 0,
and the boundary condition we are imposing dictates precisely that this model
heat kernel is smooth at this face. On the other hand, over each fiber of ff along
the corner ff N1f, the model heat kernel is polyhomogeneous with leading order
(s')b0 = (2’ /x)%. Unfortunately this exponent may vary with y € M, and so the
cumulative regularity of this family of model heat kernels is only conormal with
vanishing order §, but not polyhomogeneous (unless by is constant in y).

Denote by \Ifi’g’fzim the space of all Schwartz kernels on M7? 4 = which are
smooth in the interior and up to rf, and conormal of order § at 1If, vanish to all
orders at tf Utb, and which blow up (or decay) like —n + £ at ff. At this stage we
make a slight shift and consider these Schwartz kernels acting on functions f (¢, w),
rather than functions depending only on w, via the usual formula

Hx f(t,w) = /Ot /MH(t —s,w,w) f(s,w") dsdw’,

with the same choice of volume forms as we used before. The point of doing
this is to be able to write the other main technical ingredient of this parametrix



262 C.L. Epstein and R. Mazzeo

construction, which is the composition formula
Hy € USP 5 =12, = Hy * Hy € Uot208" (3.12)

for any 8 € R, and ¢;,¢5 € N. When thinking of these as operators in (f,w) in
this way, we write H as Hx.

Notice that the true heat kernel satisfies (9; — Likim)Hxkim* = Id, while the
parametrix we have now chosen satisfies only

t(@t — LKim)HO* =1d-Kx (313)

for some K € \Il}l_oélﬂn? ! The explanation for the rate of vanishing or blow-up at the

left face 2’ = 0 is explained using the initial condition H|,_, = é(z —2")0(y — ).
We argue just as in the elliptic case that this vanishing order is determined by a
(slight shift of a) indicial root of a related uniformly degenerate operator. Using the
composition formula we see that (Kx)7 € %2 or in other words, its Schwartz
kernel vanishes like —n+j at ff. Hence we can build the Borel sum of the Neumann

series
oo

(Id—Kx)"" ~ Y (K#)) =Td+K .
j=0

The proof of the composition formula is somewhat laborious, and can be done
by fairly direct computation. There is a quicker and more elegant way to do this
using the pushforward theorem of Melrose. The formula above can be derived in
precisely the same manner as the corresponding composition formula in [14], for
example.

In any case, we now compose (3.13) on the right with Id 4+, to get

t(@t — LKim)Ho(Id +]C*) =1d+S,

where S € \IIZO_’(I);iﬁ_l.

It is now standard that because of its very rapid vanishing at all faces ast ~\ 0,
(Id +S*)~! has a Neumann series which converges in the appropriate conormal or
polyhomogeneous topology.

We now appeal to the uniqueness of the solution operator for 9; — Lkiy, which
satisfies the boundary condition of smoothness at the outgoing (z = 0) face and

the initial condition

}i\r}) y H(t,z,2p(2") dz' = ¢(z).

This means that we can identify

Hyim = Hp (Id +IC*) (Id +S*),
and from this we conclude finally that Hkin, € \Ilz_oéﬁg 1, which is the main struc-
tural theorem we are after.
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Theorem 3.1. Let Lkin be a generalized Kimura operator on a manifold with
boundary M, for which the inward pointing part of the first-order term is nowhere
vanishing. The Schwartz kernel for the solution operator of the heat equation

0w = LKimw (3.14)

defines an element of the space of pseudodifferential operators \Il%_oﬁiﬂn?l(RJr x M).

Here B is defined in (1.4).

We have not stated the corresponding theorem for the heat operator 0; — Ljes
because we have not yet determined a specific formula for the corresponding model
heat kernel. If this were available, the structure of Hyes could then be determined
using the methods of this section.

4. Mapping properties and regularity theory

In this final section we exploit the structure of Kimura and Heston heat kernels
to extend some of the regularity properties of solutions of the homogeneous and
inhomogeneous heat equations

(0 — L)w =0, w,_o=¢ (4.1)
(0 — L)u = f, ul,_g =0, (4.2)

where L = Lkim Or Lies.

As explained in the introduction, the nature of the perturbative arguments
used in [7] made it necessary to work there with functions ¢, f, w and u lying
in two scales of anisotropic Holder spaces C’\jv% and Cé‘}z;a (defined either over M
or R x M). These spaces reflect the homogeneity structure of Lkin. The space
CS‘}% is the standard Holder space with respect to the variables (1/r,y). (The other
spaces have a hybrid nature so this simple coordinate transformation does not
provide a complete characterization.) There is a simple technical reason for the
need to work on spaces for which one has good elliptic or parabolic estimates: the
difference FE between a general Kimura operator Lk, and the ‘constant coefficient’
model Kimura operator at a point p € OM is an operator where the coefficients
of the second-order terms are small in a small neighborhood of p. If we use the
model heat kernel H(t, z, z’) as an initial parametrix in that neighborhood, then
we require estimates of the norm of the error term EHY. But one can only show
that the operator norm of this term is bounded, let alone small, if one has some
form of parabolic Schauder estimates for the problem, and these fail for data lying
in C°. However, for data in the appropriate Hélder spaces, these local parametrices
can be patched together to obtain a global approximation to the heat inverse for
which the error term does have small norm. From this the true heat kernel can be
obtained by a (convergent!) Volterra series.

These arguments are supplemented by the robust collection of maximum
principles proved in [7]. If ¢ € C°(M), for example, and if ¢; € Cyh(M) is a
sequence of functions converging to ¢ uniformly, then the homogeneous solutions
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w;j = H¢; converge uniformly to a continuous function w. Unfortunately, without
a better understanding of the a priori parabolic regularity theory, it is impossible
to conclude that this limit w is smooth near M when t > 0.

These arguments have only been written out for Kimura heat operators, but
we claim that this same chain of reasoning applies mutatis mutandis for Heston
operators. The necessary maximum principles are contained in [9]. The one gap
is that, as remarked earlier, we do not know explicit expressions for the model
Heston heat kernels. However, given these, it would be straightforward to develop
results paralleling all those in [7] for general Heston heat equations on manifolds
with corners.

Our aim in this final section is to point out that the geometric microlocal
parametrices constructed here accomplish the perturbation theory in a more re-
fined way and make evident the full parabolic smoothing effect for initial data in
CO. Tt is possible to use the structure theory of these parametrices to recapture
the full regularity theory for the Kimura heat kernel on the ‘WF’-Holder spaces,
as developed in [7]. This would require sufficient extra space that we defer this to
elsewhere.

One of the key strengths of the geometric microlocal method is that it ex-
pedites the passage from the model solution operator to the solution operator for
the more general variable coefficient problem. The method from [7] outlined above
accomplishes this partly at the level of solution operators but partly on the level
of solutions. However, the insistence of considering only solution operators and
their parametrices has significant advantages: namely, one can do the perturba-
tion analysis on the solution kernels directly, and since these objects are (at least
when viewed correctly) fundamentally smooth (or at least polyhomogeneous) ob-
jects, the issues above about the difference between C&’,F and C° dissolve. More
specifically, the Neumann series argument used to pass from the parametrix to
the exact heat kernel relies on the composition calculus for the 0 heat calculus
recorded in (3.12), and the proof of this formula, in turn, is simplified by the
infinite regularity of the factors.

To illustrate this, consider the heat kernel Hy;,, constructed in the last sec-
tion, and fix ¢ € C°(M). Let w be the unique solution to (4.1) satisfying the
natural (smooth) boundary condition at 9M; thus

w(t,z,y) = | Hgim(t, z,y, 2", 9oz, y) o' dx’dy’ .
M

We have shown that Hgim (¢, z,y,2',y") is smooth as  \, 0 when ¢ > 0, uniformly
in all other variables (and in any compact interval 0 < to < ¢ < ¢1). From this
it is clear that this integral produces a function which is also smooth in x > 0
for ¢ > 0. The final thing to check is that w — ¢ uniformly as t \, 0. This can
be done by standard arguments involving this integral formula. Since w solves
the equation 0w = Liijnmw, it is also an immediate consequence of the maximum
principle proved in [7] for the Kimura-type operators. This completes the proof of
the following theorem:
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Theorem 4.1. Let M be a compact manifold with boundary and Lkinm a general-
ized Kimura operator for which the inward pointing part of the first-order term is
nowhere vanishing. If f € C°(M), then the unique reqular solution to the homoge-
neous initial value problem

Oyw = Lkimw n (0,00) X M

Jm w(t,z,y) = ¢(z,y) - for (z,y) € M (43)

belongs to C°([0,00) x M) NC>®((0,00) x M).

We have discussed this only for Kimura operators. However, the Heston heat
kernel is also smooth as  — 0 for ¢ > 0, so we deduce the smoothing effect for
Heston operators with initial data in C° in exactly the same way. There are many
further regularity theorems for these equations, including the precise mapping
properties of Hkin, and Hyes on various types of adapted Holder spaces. We hope
to address these elsewhere.
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On a Resonant Lane—Emden Problem

Grey Ercole

Abstract. We study the asymptotic behavior, as ¢ — p, of the positive solu-
tions of the Lane-Emden problem —Apu = A, [u|? *u in Q, v = 0 on 99,
where Q C RY is a bounded and smooth domain, N > 2 and ), is the first
eigenvalue of the p-Laplacian operator A,, p > 1. We prove that any family
of positive solutions of this problem converges in C*(Q2) to the function 6,e,
when g — p, where e, is the positive and L°°-normalized first eigenfunction

of the p-Laplacian and 6, := exp (HepHZf(m Jo eb ey dx) .
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states, Lane-Emden, Picone’s inequality, p-Laplacian.

1. Introduction

Consider the Lane—Emden problem

{ —Apu = A|u|"?u in Q,

1
u =0 on 0€, (1)

where A > 0, @ C RY is a bounded and smooth domain, N > 2, Aju :=
div (|Vu|p_2 Vu) is the p-Laplacian operator, p > 1, and 1 < ¢ < p*, with p*
denoting the Sobolev critical exponent defined by p* = Np/ (N — p),if 1 < p < N,
and p* = o0, if p > N.

The existence of positive weak solutions for this problem is a well-known fact.
Moreover, such solutions are bounded (in the L® norm) and hence (as consequence
of classical regularity results) belong to C1* () for some 0 < a < 1.

When ¢ = p we have the eigenvalue problem for the p-Laplacian, whose first
eigenvalue )\, is positive, isolated and simple. Moreover, associated eigenfunctions
do not change sign in 2.

The author thanks the support of FAPEMIG and CNPq, Brazil.
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In the sub-linear case 1 < ¢ < p, the positive weak solutions are unique (see
[6]). However, in the super-linear case p < ¢ < p* this fact does not happen, in
general. Non-uniqueness of positive weak solutions of (1) occurs for ring-shaped
domains when ¢ is close to p* (see [7, 10]) or when ¢ > p and Q is a sufficiently
thin annulus (see [14]). On the other hand, when € is a ball, (1) has a unique
positive weak solution (see [1]). For the Laplacian (p = 2) and a general bounded
domain, uniqueness happens if ¢ is sufficiently close to 2 (see [5, Lemma 1]).

With different goals, asymptotics of solutions of the Lane-Emden problem (1)
have been studied by many authors since the 1990s. For example, in [10] for p < N,
A=1and ¢ — p*; orin [15] for p = N, A = 1 and ¢ — oo. Recently, in [11], the
asymptotic behavior in VVO1 P(Q) of the ground state solutions (i.e., positive weak
solutions that minimize the energy functional among all possible weak solutions)
as ¢ — pT, was described for all positive values of \. More recently, the asymptotic
behavior with ¢ — p~ in W, ?(Q) was described in [3]. Some these asymptotics
had already appeared in [12], for A # A,.

However, up to our knowledge, only in [11] and [3] the resonant problem,
that is, when A = A,, was dealt with, but the asymptotic behavior of its positive
solutions was not fully determined. Indeed, although the families of solutions were
known to have a subsequence converging in Wol’p (Q) to a first eigenfunction, the
correct first eigenfunction was unknown; in principle, distinct first eigenfunctions
(each one multiple of the other, of course) could be obtained as limits of different
subsequences of these families. Moreover, in the super-linear case, the known re-
sults are valid only for ground state families. Therefore, nothing was known about
the asymptotic behavior (as ¢ — p*) of other (eventually existing) families of
positive solutions.

In the present work we first consider the resonant Lane-Emden problem

(2)

—Apu = A [u|"u in Q,
u=20 on 0,

and an arbitrary family {u,} of positive solutions of this problem (not

q€[1,p)U(p,p*)
necessarily ground states, in the super-linear case). Our main result is the conver-

gence u, — Ope, in C1(Q), as ¢ — p, where

Jo€bline,| dx
Jq epdx

and ey, is the first positive eigenfunction such that |[e, | = 1. (From now on |[v||,
stands for the usual L™ norm of v.)

By a scaling argument this result also determines the exact asymptotic be-
havior, as ¢ — p, of positive solutions of the Lane-Emden problem (1), for
any A > 0. Moreover, it implies the differentiability at ¢ = p of the function
q € [1,p*) = A\, € R, where ), denotes the minimum on W, ?(Q)\{0} of the
Rayleigh quotient R, defined by Ry(u) := [[Vull} / [|ull} -

0, :=exp (
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A third consequence of our main result is that, for each A > 0,1 < s <
and for any sequence g, — p one has:
_ U e
lim ()\||u>\7qn\|z” p) =\ and Aan P
=P lung.lls — llepll
the last convergence being in the C'(Q) space. This might be useful for numerical
computation of the first eigenvalue of the p-Laplacian (see [4]) taking into account
that A does not need to be close to A, and that the sequence g,, tending to p can
be arbitrarily chosen.

2. Asymptotic behavior of the resonant problem

In this section we consider the resonant Lane—Emden problem

—Ayu = X [u|" P u in Q 3)
u =20 on Jf.

Our goal is to completely determine the asymptotic behavior of the weak positive
solutions of this problem, as ¢ — p. (Some proofs in this section were omitted or
just sketched, but all of them are available in [8].)

The weak solutions of (3) are the critical points of the energy functional
I, : Wy'? (Q) — R defined by

1
I (u) = p/ |Vu|’ do — ):Ip / |u|? d.
o o

Furthermore, a family {”q}qe[l 2)U(ppe) Of Positive weak solutions of (3) is obtained
from minimizers of the Rayleigh quotient

Vul|’d
Rq(u) = fQ| u| xp
(Jo lul® dz)
in Wy7 () \ {0}.
In fact, as it is well known, the compactness of the immersion VVO1 PQ) —

LI(Q) for 1 < ¢ < p* implies that R, : Wy” () \ {0} — R attains a positive
minimum at a positive and L%-normalized function w, € Wy (Q) N CH* (Q) :

lwgll, =1 and A, = min {Rq(u) s u € W™ () \{0}} = Ry(uwy).  (4)

(We remark that this notation is coherent with the case ¢ = p, since the first
eigenvalue ), is also characterized as the minimum of R, on Wy* (Q) \ {0}.)
It is straightforward to verify that w, is a weak solution of

—Apu = Ag[u" P u in Q
u=20 on 0N
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A qip
Vg = <)\q> Wq (5)
4

is a positive weak solution of (3) for each ¢ € [1,p) U (p, p*).

Since [|wgl|, =1 one has
et = (37 - )
qllq )\p .

In the sub-linear case 1 < ¢ < p the function v, is the only critical point of
I,. Moreover, this function minimizes the energy functional I, on W,"* (Q) \ {0},
that is

and hence that

1,(v,) = min {Iq(v) v e WEP(Q)\ {0}} . (7)

This property can also be directly proved using (4) and (6).

In the super-linear case 1 < p < ¢ < p* the energy functional is not bounded
from below. However, the weak positive solution v, minimizes both, the energy
functional I, and the L7 norm, in the Nehari manifold

N, = {v e WP (Q)\ {0} : /Q Vol dz = )\p/Q|U|qu}.

Therefore, since any nontrivial solution of (3) belongs to Ny, it follows that v, € N
and also that v, is a ground state.

Since no general uniqueness result is known for the super-linear case, the
existence of multiple ground states for (3) is possible, at least in principle, for each
fixed ¢ € (p,p*). However, all of them must have the same energy and also the
same L? norm.

In the remaining of this section we denote by v, the function defined by (5)
and by wu, any positive solution of the resonant Lane-Emden (2). Obviously, in
the sub-linear case we must have ug, = vg.

Lemma 1. Let {uq}qe[l,p)u(pm*) be a family of positive solutions of the Lane—Emden

problem (3). One has
0<C1 < g7 < Gy

for all ¢ € [1,p) U (p,p + €), where € > 0 and the constants C1 and Cy do not
depend on q € [1,p) U (p,p + €).

In the sub-linear case C; is obtained after testing (7) with the function e,,
while C5 is obtained from a simple comparison principle involving the p-torsion
function ¢, € Wy (Q), that is, —A,¢, = 1 in Q.

In the super-linear case, C; can be taken as 1 and the constant Cs follows
after combining a blow-up argument with Picone’s inequality (as in Lemma 2.1
of [13]).



On a Resonant Lane-Emden Problem 271

Lemma 2. Let {u,} be a family of positive solutions of the Lane—Emden

q€[1,p)U(p,p*)

problem (3) and define, for each q € [1,p) U (p,p*), the function U, := H u(‘ll .
Uq o)
Then U, converges to e, in C*(Q) as ¢ — p. Moreover,
Ur — s
/ ? qu—)/eg\lneﬂd:s as q — p. (8)
o 4—0Pp Q

Proof. 1t is easy to verify that

{—ApUq = Ay [lug |57 U in Q, o)

U, =0 on 99,

It follows from Lemma 1 that the right-hand side of the equation in (9) is
uniformly bounded with respect to ¢ € [1,p) U (p, p + €). Therefore, global Holder
regularity implies that U, converges in C' (Q2) to a function U > 0 (as ¢ — p)
with ||U]|, = 1. It also holds A, [|ug[|?" — ¢ € (A\,C1, A, Ca).

Taking the limit ¢ — p in the weak formulation of (9) with A = X, [Jug[|?. ",
one obtains

/ IVU|P* VU - Vda :c/ U2 Updx
Q Q

for any test function ¢ € Wy (), which proves that U is a nonnegative eigen-
function associated with the eigenvalue ¢ and such that ||U]|,, = 1. But this fact
necessarily implies that ¢ = A, and U = e,. Thus, the uniqueness of the limits

Ap [ugl|EZP — Ay and Uy, — ep, show that these convergences do not depend on

subsequences. Therefore, |luy||?.” — 1 and U, — e, in C* (Q).

p_ U4

q q

In order to prove (8) we first observe that is uniformly bounded

with respect to ¢ close to p with

Ur — U4 1 q—p 1
lim sup ‘ 4 71 < lim <p> = .
g=p | 4P a—=pp \ g pexp(l)

Now, taking into account the convergence U, — e, in C1(£2), (8) follows from
Lebesgue’s dominated convergence theorem if we prove that

1—ya»
¢ —lne,| asqg—p" ae inQ
q—p
and
Ur-a 1
qq — [lney| asg—p~ ae. in Q.

So, let K C ©Q compact and 0 < § < mKi:n ep. Then

0<n}1cinep—5<ep—5§Uq§ep+5 in
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for all ¢ sufficiently close to p. Hence, in K one has

1-U3g» 1-U3""
—In(ep +9) < liminf 7 <limsup 1 < —lIn(e, —4), (10)
q—pt q—p q—pt q—p
since
1— q=p 1— (e, — §)2—P
lim (ep +9) = —In(e, +6) and lim (ep =) = —In(e, — 0).
g—pt q—0p q—pt a—p
Therefore, making § — 07 in (10) we conclude that
1-U03""
lim 7 = —Ine,=|lne,| inK.

g—=pt  q—DP

Analogously we prove that

p—q _
lim ¢ =|lne,| in K. O
¢=p” g —P

Lemma 3. Let {uq}qe[l,p)u(pm*)
Emden problem (3). Then,

be a family of positive weak solutions of the Lane—

Jo b [Ine,| dx)
lim sup ||u <ex P < liminf ||u . 11
msup ., < exo Do) < it (1)
Proof. Applying Picone’s inequality (see [2]) to Uy = ||uU(|Z| and e, one has
qllco
2 Uy
/|VUq|pdx2/ Ve, [P~ ve,,.v< pfl>dx. (12)
Q Q €p

(Hopf’s boundary lemma implies that U?/eb~! € W, P(£2).) Therefore, it follows
from (9) that

A ugl =P | Uddx > X P*l@d =\, [ UPd
p 1 Uqll oo q@T Z Ap €p p—1 x P q T
Q Q €p Q

and from this we obtain

-p _ 4 Uur -Ug
9-r Jo o 4P
and
-p _ 4 Uur -Ug
llugllo /Ugdxg/ 1 Yde if 1<q<p.
9-r Jo o 4P

Let us suppose, in the case ¢ — p*, that there exist L < 6, and a sequence
¢n — pT such that [|lug, || . < L. Then (13) and Lemma 2 yield

Ur — an
/ eb[lney|dr = lim/ o " dx
Q Q Gn—Pp

Lan—D _ 1
< lim / Ug:dx =In L/ egd:r,
dn — P Q Q
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that is, 0, < L, thus reaching a contradiction. We have proved the second inequal-
ity in (11).
The case ¢ — p~ is analogous. O

Lemma 4. Let {ug} e )uppm)
Emden problem (3). Then,

be a family of positive weak solutions of the Lane—

Jo€blne,| dx

lim sup [Jugl|, < exp < ) < liminf [lug|| . -
q=p~

q—p+ Jq epdx
Proof. By applying Picone’s inequality again, but interchanging U, with e, in (12),
the lemma follows similarly. O

Theorem 5. Let {Uq}qe[Lp)U(pm*)

Lane—Emden problem (3). Then u, converges in C*(Q) to O,e, as ¢ — p, where

Jo€b|ne,| dx
Jo ebda '

be a family of positive weak solutions of the

0, :=exp (

Proof. Lemmas 3 and 4 imply that

li — 0. 14
lim [, |, 0, (14)

Thus, the right-hand side of (3) is bounded for all ¢ sufficiently close to p. This fact,
combined with the global Holder regularity ensures that u, converges in C* ()
to a positive first eigenfunction v € C(Q) N W(}’p(Q) when ¢ — p. Thus, u = ke,
for some &k > 0. But, according to (14) k = 6,, implying that the limit function is
always 0pe, (that is, it does not depend on subsequences). Therefore, u, — Ope,
in C1(Q) as ¢ — p. O

3. Applications

A consequence of Theorem 5 is the differentiability of the function ¢ € [1,p*) —
A at ¢ = p, where )\, is defined by (4). We remark that this function is, in
fact, differentiable almost everywhere since the function ¢ € [1, p*) — |Q\Z Aq I8
strictly decreasing (see [9]).

Corollary 6. It holds
. Ag— A
lim

P _
asp g—p Ap In(6p HepHp)- (15)

Proof. We recall that for each ¢ € [1,p) U (p,p*) the function v, = (:\\Z) .

a positive weak solution of the resonant Lane-Emden problem (3)), where w, €
Wy? (Q) N OV (Q) satisfies [wgll, =1 and Ry(wg) = Ag.

P .
wy is
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Thus, it follows from Theorem 5 that

1
et L Ag\ P . InX;—In),
6y leyll, = tim Lol = tim (30) ™" = esp (1 0 7).

But this is equivalent to differentiability of A\, at ¢ = p with ddq [)\q]qu given by
(15). O

Another consequence of Theorem 5 is the complete description, in the C*(Q)
space, of the asymptotic behavior for the positive solutions of the non-resonant
problem (0 < XA # Ap):

(16)

—Apu = A"y in Q
u=20 on 0f).

Corollary 7. Let {uy 4} be a family of positive solutions of (16). Then

lim [Jus ] 0 if A<X
mm  ||u 1= .
gp— | mallC 0o if A> A

q€[1,p)U(p,p*)

and

ql_lglJr [[ua,q

o i A<y,
CETL0 i A,

Proof. The proof follows directly from Theorem 5 after noticing that

1

A p—q
Un,g i= <>\ ) Ug, (17)
p

where u, is a positive solution of the resonant Lane-Emden problem (3). O

These results generalize those in [3] and in [11] to C! norm. Note that in the
super-linear case, our results are really more general than those in [11] since they
do apply to arbitrary families of positive solutions and not only for ground states,
as in [11].

A third consequence of Theorem 5 is that it provides a theoretical method
for obtaining approximations for a first eigenpair of the p-Laplacian by solving a
non-resonant problem (16) with A > 0 arbitrary and ¢ close to p. In fact, we have
the following corollary.

UN,q

Corollary 8. For 1 < s < oo and A > 0 fized let Uy 4 := I I
U)\7q s

and [y.q =

. Then, as q — p:

Mluxglls™

Hag — Ap and U; — in CH(Q).

€p
|| ep Hs
Proof. The proof follows directly from Theorem 5 after noticing from (17) that
A

|z_p =A ; Huqu_p =X Huq”g_p- U

Urg =

Uq
and = Al|u
||uq||s lu’)\7q || Aq



On a Resonant Lane-Emden Problem 275

Corollary 8 provides a method for obtaining numerical approximations of the
first eigenpair (A, ”;: ). In fact, in a first step one can compute a numerical

Il

solution of problem (16) with ¢ close to p and hence, after L*-normalization, one
obtains approximations for A\, and H:”H simultaneously.
P

s

Of course, a numerical solution of the nonlinear problem (16), for some A > 0
fixed, is easier to obtain than directly compute the first eigenpair of the p-Laplacian
(by solving the corresponding eigenvalue problem). As previously mentioned, the
advantage here is that A can be chosen arbitrarily in computational implementa-
tions of (16) and does not need to be close to \,. A similar approach was recently
used in [4], where the iterative sub- and super-solution method was applied to
compute the positive solutions of the sub-linear problem.

We emphasize that this approach is well supported by the results in this
work also for the super-linear case, since it does apply to any family of positive
solutions. It is worth noticing that since the previously known results are valid
only for ground state families, the application of this method (up to now) would
be unviable if one takes into account the necessity of proving that a numerical
solution of the super-linear problem is in fact a ground state.
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Solution for a Non-autonomous
Schrodinger—Poisson System

Marcelo F. Furtado, Liliane A. Maia and Everaldo S. Medeiros

Abstract. We consider the system

—Au+V(z)u+ K(z)p(z)u = a(z)|[ulP"tu, xR s)
—A¢ = K(x)u?, z € R3,
where 3 < p < 5 and the potentials K(z),a(z) and V(z) has finite limits as
|x| = 4+o00. By imposing some conditions on the decay rate of the potentials
we obtain the existence of a ground state solution. In the proof we apply
variational methods.
Mathematics Subject Classification (2010). 35J20, 35J60, 35B38.

Keywords. Schrodinger—Poisson system; ground state solution; variational
methods.

1. Introduction

In this note we are concerned with the existence of a positive solution for the
nonlinear system

{ —Au+V(z)u+ K(z)p(x)u = a(z)|ulP~lu, z€R3, ()
—A¢ = K(x)u?, xr € R3,

where 3 < p < 5 and the potentials K(z),a(z) and V(x) satisfy some basic
assumptions.

As quoted in the paper [4], this system arises in many interesting physical
context. According to a classical model, the interaction of a charge particle with
an electromagnetic field can be described by coupling the nonlinear Schrédinger
and the Maxwell equations. In particular, if one is looking for electrostatic-type

The three authors were partially supported by CNPq/Brazil. The first two authors were partially
supported by PROEX/CAPES, UnB..
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solutions, it is natural to solve (S). In many papers the potential V' has been
supposed constant or radial (see for instance [1, 2, 8] and references therein). Here,
motivated by the recent results by G. Cerami and G. Vaira [6] we will assume the
following hypotheses:

(Hq) there exist cx, @ > 0 such that
0< K(x) < cre %l for ae. x € R3;
(Hs) a, V € C(R3,R) are positive continuous functions such that
lim V(z)=Vyx >0, lim a(zr) = as > 0. (1.1)

|z|—+o0 |z|—=+o0
Furthermore, it is necessary to have some control on the asymptotic behavior
of the potentials V' and a. So, we also assume that

(H3) there exist cy, cq, 7, 6 > 0 such that, for each x € R3, there hold
V(z) < Ve + eye M=l a(x) > aso + cae 1, (1.2)
with § < min{y, a} < max{y,a} < 2y/Vx.
Our main result can be stated as follows:

Theorem 1.1. If (Hy)—(Hs) hold, then the system (S) has a positive ground state
solution.

For the proof, we use an approach similar to that of [6]. It consists in apply-
ing the Mountain Pass Theorem together with some sort of Splitting Lemma. This
former result enables us to overcome the lack of compactness of the Sobolev em-
beddings caused by the fact the problem is set in whole space R . Hence, we need
to perform a careful investigation of the behavior of the Palais—Smale sequences for
the energy functional associated with system (S). Actually, we identify the levels
in which the Palais—Smale condition can fail, giving a representation theorem for
such sequences, and showing that the only obstacle to prove compactness are the
solutions of the limit problem

—Aw + Voow = aoo|wP ™ w, x € R, (Pso)

In [6] the authors considered the same problem with V' = 1 and some inte-
grability conditions on the function a(x) — as. By assuming that the L2-norm of
the weight K is smaller than a number related with the least energy level of two
limit problems, they obtained the existence of a positive ground state solution. On
the other hand, in [10] G. Vaira supposed that V' =1, a(z) = a0, K(z) = K as
|x] = 400, with any, Ko > 0. Under some integrability conditions on a(x) — ano
and K (z) — Ko, and some other mild conditions on the potentials, she also ob-
tained a positive solution. Our Theorem 1.1 complements (and is not comparable
with) the existence results of [6, 10].

We finally point out that a slight modification of our approach allows us to
drop condition (H3) by the following one (see Remark 3.3):
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(E),) there exist cy, cq, 7, @ > 0 such that, for each z € R3, there hold
Viz) < Ve — cve_”lzl, a(r) > aoo — cae_em,

with v < min{6, a} < max{f, a} < 2y/Vx.

The paper is organized as follows: in the next section we present the varia-
tional setting of the problem and state the compactness lemma that we shall use.
In Section 3 we prove the main theorem.

2. The variational setting

Throughout the paper we write [ u instead of [y, u(x)dz. For each u € Wh2(R3)

we define s
Julli= ([ 09 + vian)

It follows from (Hz) that || - || is a norm which is equivalent to the usual one of
W12(R3). For any A C R® and u € LP(A) we denote |[u|zo(a) == ([, [u[Pdz)'/P.
If A = R? we write only ||ul|,. Moreover, in what follows, without any loss of
generality, we assume that a., = 1.

Since K € L?(R?), a straightforward application of the Lax—Milgram theorem
implies that, for any given u € W12(R3), there exists a unique ¢ = ¢, € DV2(R3)
such that

/quu -Vo = /K(x)uzv, for all v € DM?(R3).
Actually, the function ¢, weakly solves —A¢ = K(z)u? and we can construct
the application ¢ : W12(R?) — D12(R?) which associates to each u € W12(R?)
the function ¢(u) as above. From simplicity we write only ¢, to denote ¢(u). We
collect below some properties of the map ¢ (see [6, Lemma 2.1]).
Lemma 2.1. The following hold:

1. ¢ s continuous and maps bounded sets into bounded sets;
2. ¢p = t2¢y, for any u € WH2(R3), t > 0;
3. if uy, — u weakly in WH2(R3) then ¢, — ¢, weakly in DV2(R3?).

We shall use the following technical result.

Lemma 2.2. If (u,) C WH2(R3) is such that u, — u weakly in WH2(R3), then
lim K(x)py, u? = / K(z)puu?

and

lim [ K(z)py, unp = /K(x)qbuwp,

n—oo

for all o € WH2(R3).
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Proof. We have that

[ K@ w2 - o) = [ K@ou, (2~ u?)+ [ K@nl, - 6.

It follows from Lemma 2.1 that ¢,, — ¢, weakly in D12(R3), and therefore the
last term above goes to zero. Hence, in order to prove the first statement of the
lemma, it suffices to check that

lim [ K(2)pu, (u2 —u®)=0. (2.1)

n—-+oo

By using the Holder and Sobolev inequality we get

‘/K(I)%n(ui — )| < [|$u, Il </K($)gui —u2?>5/6

6 o (2.2)
< Slhunlors ([ K@)Fad ~a2l%)
where S is related with the embedding D*2(R3) — L%(R3).
For any given p > 0, we can use the Holder inequality twice to obtain
2/5
/ K(.’L') ‘ 2‘5d.’1,'< ||KHL2 R3\BP(0)) </|ui—u2|3> .
R3\ B, (0)
The Hoélder inequality and the boundedness of (uy,) in LS(R?) provide ¢; > 0 such
that
2/5
([ —u2|3) < Jtm — ¥ + S < . (2.3

Moreover, since the condition (H;) implies K € L*(R?), we can choose p > 0 large
in such a way that || K||z2(r3\B,(0)) < €. Thus, we infer from the above inequalities
that

/ K(:t:)g lu? — uz\gdx < ce. (2.4)
R3\ B, (0)
For any M > 0 we define the set Qs := {z € B,(0) : K(z) > M}. Since

K € L?(R3), the Lebesgue measure of Qy; goes to zero as M — co. So, for some
M > 0 sufficiently large, we have that

3/5
( K(x)zdx> <e.
Qnr

Then we can use the Holder inequality and (2.3) again to get

/ K(x)g|ui—u2|gdx: K(x)g|ui—u2|gdx
B 0) Qs
+/ K(x)g\ui —u2\gdx (2.5)
B, (0\Qm
§025+Mg/ |ui—u2|gdx.
B, (0\Qnm
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On the other hand

g 6/5 6/5
/B (0\Q i = )" do < Jun + u||L/12/5(Bp(0))H“" o “HL/12/5(BP(0))'
P M

Since u,, — u strongly in L5 (B,(0)), we obtain
lim lu? —uz\gdsz,
"By (0\2m

and therefore it follows from (2.5) that

/ K(z)%|u? — u?|3dz < cae + o (1),
B,(0)

where 0,,(1) stands for a quantity approaching zero as n — co. The above ex-
pression, (2.4) and (2.2) imply (2.1) and the proof of the first statement of the
lemma is concluded. The second one can be proved in the same way. We omit the
details. (]
The main interest in function ¢ comes from the fact that it enables us dealing
with system (P) as a single equation. Actually, it can be proved that (u,¢) €
WH2(R3) x DL2(R3) is a solution of (P) if, and only if, u € W1H2(R?) is a non-
negative critical point of the C*-functional I : WH2(R3?) — R given by
— 1 2 2 _ 1 +)\p+1
1) =l + [ K@ouend = 1 e,

where uT(x) := max{u(z),0}. Since we intend to apply critical point theory to
find such critical points, we need to prove some kind of compactness properties
for the functional I. In this setting, the limit problem (P.) plays an important
role. We observe that weak solutions of (P,) are precisely the critical points of
the functional

1

1 2 2y _
Iolw) = (V0P 4 Veu?) =L
Let N, be the Nehari manifold of I, that is
No = {w € WH(R*\ {0} : I'_(w)w = 0}

and consider the related minimization problem

/(w+)p+1, w € WH2(R?).

o = inf Iy (w).
o i LB )
The proof of the next result can be found in Berestycki-Lions [5].

Proposition 2.3. Problem (Ps,) has a positive and radially symmetrical solution
w € WH2(R3) such that I(w) = coo. Moreover, for any 0 < § < \/Vi, there
exists a constant C = C(§) > 0 such that

w(z) < Ce for all x € R, (2.6)

In order to prove that the functional I satisfies a local Palais—Smale condition
we shall use the following version of a result due to Struwe [9] (see also [3]).
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Lemma 2.4. Let (u,) C WH2(R3) be such that
I(uy) = ¢, I'(up) —0
and u, — u weakly in WH2(R3). Then I'(u) = 0 and we have either

(a) un — u strongly in WH2(R3), or
(b) there exists k € N, (yl) € R® with |yl| — oo, j = 1,...,k, and nontrivial
solutions w, ..., wk € WH2(R3) of the problem (Ps), such that

k
I(un) — I(u) + Z Too (w”) (2.7)

and

‘—>O.

k
U —u = w(-—yh)
j=1

Proof. To prove this result one can use Lemma 2.2 and similar arguments to that
of [6]. Hence we omit the details. O

Corollary 2.5. If (u,) C WH2(R?) is such that I(u,) — ¢ < coo and I'(u,) — 0,
then (uy,) has a convergent subsequence.

Proof. Let (u,) C WH2(R3) be as in the previous statement. Since p > 3 by a
standard argument it follows that (u,) is bounded. Hence, up to a subsequence,
up, — up weakly in WH2(R?). By Lemma 2.4 we have I'(ug) = 0 and therefore

T(uo) = I(ug) — -1 (ug)up = <1 ! ) /a(x)(ua')p"'l > 0.

2 2 p+1
If u, 4 up in WH2(R3), we can invoke Lemma 2.4 again to obtain k € N and
nontrivial solutions w!, ..., w* of (Py) satisfying
k
: I J
nh_)n;o I(un) = ¢ = I(ug) + Zfoo(w ) > kCoo > Coo,
j=1
contrary to the hypothesis. Hence u,, — uq strongly in W12(R3). O

3. The proof of Theorem 1.1

We devote this section to the proof of our main theorem. The idea is looking
for critical points of the functional I by considering the following minimization
problem

= inf [
co := Jnf I(u),

where N is the Nehari manifold of I, namely
N = {ue WR*\{0}: I'(w)u =0} .
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From now on we denote by w a positive ground state solution of the problem
(Ps). For &, :==(0,...,n) we also set

wn(2) = w(x — ).

Since p > 3 we can easily check that, for each n € N, there exists ¢,, > 0 such that
tnwn € N. Moreover, the following holds

Lemma 3.1. The sequence (t,) satisfies lim t, = 1.
n—-+oo

Proof. Since I’ (tpwn)(tnwy) = 0, we can use item 2 of Lemma 2.1 to get

0= th /(\an|2 + V(x)wfl) + tﬁ/K(Cﬂ)(bwan — tﬁ“ /a(m)wffl. (3.1)

By using (1.1), a change o variables and the Lebesgue Theorem we get

n
n—roo n— oo

lim [ V(z)w? = lim [ V(z+ z,)w® = /Voow2

and

lim [ a(x)w?™ = lim [ a(z 4+ z,)wP™ = /w”“.
n— o0 n—oo

Moreover, by item 1 of Lemma 2.1, we also have that

[ K@, @i

< 1K l2lldw, ll6llwlls < c1,

for some ¢; > 0.

We claim that (¢,) is bounded. Indeed, if this is not the case, we can divide
equation (3.1) by 2! take the limit as n — oo and use p +1 > 4 and the
above statements to conclude that f wPtl = 0, which is a contradiction. Hence
(t,) is bounded. Moreover, for some ¢ > 0, there holds ¢, > ¢ > 0. Otherwise,
since ||tnwnllwi2@s) = tnllwl|w12ms), we would have dist(N,0) = 0, which is
impossible.

The above reasoning shows that, up to a subsequence, t,, — ty > 0. We claim
that

lim [ K(z)¢w, (z)w2 = 0. (3.2)

Assuming the claim and taking the limit in (3.1) we obtain
0=1t2 /(\Vw|2 + Voow?) — B! /wp'H = I/ (tow)(tow).

Since w € N, we conclude that ¢y = 1.

It remains to prove the claim. First notice that, by item 1 of Lemma 2.1, we
have that ||@w, |6 < c2, for some co > 0. Given € > 0 we choose p > 0 such that
HK||L2(R3\BP(0)) < e. Thus,

/ K (2)¢u, (@)wndz| < K| 72@s\p,0)) 6w lslwl§ < c2llwllee.  (3.3)
R3\ B, (0)
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On the other hand, Holder’s inequality and a change of variables provide

1/3
< 1K 2l|¢w, lls (/ dex) = on(1),
Bp(wn)

since w € LS(R3) and |z,| — oo, as n — oo. The above inequality and (3.3)
establishes (3.2). The proof is finished. O

The following result contains the core estimate for the proof of our main
theorem.

/ K(2)u, ()w2de
B,(0)

Proposition 3.2. If (Hy)—(Hs) hold, then 0 < ¢y < Coo-

Proof. Let w, w, and t,, > 0 be as in the beginning of this section. Since t,w, € N,
a straightforward calculation provides

t2 t4 tp+1
2 4 p+1
) i i1 (3.4)
< 00 nAn nDn " En7
< Coo + 9 + A + 1
where
Ani= [V) Ve D= [ K@ (002
and

Byim [ (1= a@)t™.

Now we need to estimate the decay rate of each of the above terms. It follows
from the first estimate in (1.2) that

A, = /(V(x) — Vo )w? < ey /e_“’l“’lwfl = cv/e_""””'“:”lwz.
Since |z + x| > |zn| — |2| = n — |2|, we obtain
A, < cve_”"/e'ym 2=Cye ™, (3.5)

with Cy > 0, where we have used in the last equality the exponential decay of w
given in Proposition 2.3 and that v < 2y/Vi, which implies that [ e~7/*lw? < co.
In order to estimate D,, we use Holder’s inequality, o < 2v/Va and argue as above
to get

D, = / K (@), (@)02 < [|6u, 1 ( / K(w)gwif)s/ﬁ

5/6 3.6
< </€—6§xr+zn|w152) ( )

S CKe_anv
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with Cx > 0. We now use the second inequality in (1.2) to estimate F,, as follows
E, = /(1 —a(z))wkt < —ca/e_e‘w‘wﬁ"‘l = —ca/e_alx“'w"‘wpﬂ.
Since |x + x| < n+ |z|, we obtain C, > 0 such that
E, < —cae_en/e_elzlwm'l = —C,e " (3.7)

By replacing (3.5)—(3.7) in (3.4) we obtain,
& & bt
co < oo+ e ( 5 Cvel?™0m 4 1 O — o lca)

= Coo + e_en(on(l) —Ca),

where we have used in the last equality that ¢, — 1 and 6 < min{«,~}. Since

C, > 0 we can take n large enough to conclude that ¢y < ¢o. The proposition is

proved. O
We are now ready to obtain the ground state solution of (5).

Proof of Theorem 1.1. Let (u,) C N be such that I(u,) — co. Since N is a
C' regular manifold and is closed (see [6, Lemma 3.1]), we can use Ekeland’s
Variational Principle to obtain that

I(up) = co and I'(uy) — 0.

Proposition 3.2 and Corollary 2.5 imply that the sequence (u,,) strongly converges
to a function ug € W12(R3) such that I(ug) = co > 0 and I’(ug) = 0. Setting

ug (x) = max{—ug(x),0}, we can use 0 = I'(ug)uo~ = —||lug || to conclude that
ug > 0 a.e. in R3. Tt follows from elliptic regularity and the strong maximum
principle that u > 0 in R?. The theorem is proved. O

Remark 3.3. A simple inspection of the proof of Proposition 3.2 shows that we
can drop the condition (Hs) by the hypotheses (H3) stated in the introduction.
Indeed, with this dual condition what happens is that term A, of the proof of
the proposition becomes negative while the term FE, is positive. The choices of
the numbers «, v and 6 guarantee that the desired inequality also holds in this
setting.
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Abstract. We show that the number of positive solutions of Schrédinger—
Maxwell system on a smooth bounded domain Q C R*® depends on the topo-
logical properties of the domain. In particular we consider the Lusternik—
Schnirelmann category and the Poincaré polynomial of the domain.
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1. Introduction

Given real numbers ¢ > 0, w > 0 we consider the following Schrédinger—-Maxwell
system on a smooth bounded domain  C R3:

—&2Au+u+wuv = |ulP72u  in Q
—Av = qu? in (1)
u,v =0 on 0f)

This paper deals with the semiclassical limit of the system (1), i.e., it is
concerned with the problem of finding solutions of (1) when the parameter ¢ is
sufficiently small. This problem has some relevance for the understanding of a
wide class of quantum phenomena. We are interested in the relation between the
number of positive solutions of (1) and the topology of the bounded set Q. In
particular we consider the Lusternik—Schnirelmann category cat ) of Q in itself
and its Poincaré polynomial P;().

Our main results are the following.

Theorem 1. Let 4 < p < 6. For ¢ small enough there exist at least cat() positive
solutions of (1).
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Theorem 2. Let 4 < p < 6. Assume that for € small enough all the solutions
of problem (1) are non-degenerate. Then there are at least 2Py () — 1 positive
solutions.

Schrédinger—Maxwell systems recently received considerable attention from
the mathematical community. In the pioneering paper [9] Benci and Fortunato
studied system (1) when ¢ = 1, ||ul|pz = 1 and without nonlinearity. Regarding
the system in a semiclassical regime Ruiz [18] and D’Aprile-Wei [11] showed the
existence of a family of radially symmetric solutions respectively for Q = R3 or a
ball. D’Aprile-Wei [12] also proved the existence of clustered solutions in the case
of a bounded domain Q in R3.

Recently, Siciliano [19] relates the number of solution with the topology of
the set 2 when ¢ = 1, and the nonlinearity is a pure power with exponent p
close to the critical exponent 6. Moreover, in the case ¢ = 1, many authors proved
results of existence and non existence of solution of (1) in presence of a pure power
nonlinearity |u|P~2u, 2 < p < 6 or more general nonlinearities [1, 2, 3, 4, 10, 14,
15, 17, 20].

In a forthcoming paper [13], we aim to use our approach to give an esti-
mate on the number of low energy solutions for Klein—-Gordon-Maxwell systems
on a Riemannian manifold in terms of the topology of the manifold and some
information on the profile of the low energy solutions.

In the following we always assume 4 < p < 6.

2. Notations and definitions

In the following we use the following notations.

e B(z,r) is the ball in R3 centered in = with radius 7.
e The function U(x) is the unique positive spherically symmetric function in

R3 such that

~AU+U =U"""inR?

we remark that U and its first derivative decay exponentially at infinity.
e Given £ > 0 we define U.(z) = U (7).
e We denote by supp ¢ the support of the function .
o We define

1 1
o = inf / Vol? + 0®)dx — " |ul?
Jas \Vv\2+v2dx_| ‘LP(]R3) 2 ]R3(| ‘ ) p| |LP(R3)

e We also use the following notation for the different norms for u € H}():

1 1
ull2 = / E\Vul® +udr |ul?, /\u|pdx
Jul; = / Vulds uly = / s

and we denote by H. the Hilbert space H} () endowed with the || - || norm.
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Definition 3. Let X a topological space and consider a closed subset A C X. We
say that A has category k relative to X (catx A = k) if A is covered by k closed
sets A;, j =1,...,k, which are contractible in X, and k is the minimum integer
with this property. We simply denote cat X = catx X.

Remark 4. Let X7 and X5 be topological spaces. If g1 : X1 — Xs and g2 : Xo — X3
are continuous operators such that g» 0 g1 is homotopic to the identity on X7, then
cat X7 < cat Xs.

Definition 5. Let X be any topological space and let Hi(X) denotes its kth homol-
ogy group with coefficients in Q. The Poincaré polynomial P;(X) of X is defined
as the following power series in ¢

Py(X) = (dimH(X))t*
k>0
Actually, if X is a compact space, we have that dimHy(X) < oo and this
series is finite; in this case, P;(X) is a polynomial and not a formal series.

Remark 6. Let X and Y be topological spaces. If f: X — Y andg:Y — X
are continuous operators such that g o f is homotopic to the identity on X, then
P.(Y) = P.(X) + Z(t) where Z(t) is a polynomial with non-negative coefficients.

These topological tools are classical and can be found, e.g., in [16] and in [5].

3. Preliminary results

Using an idea in a paper of Benci and Fortunato [9] we define the map v : H}(Q) —
H(£2) defined by the equation

—A¢(u) = qu? in Q (2)
Lemma 7. The map v : H3(2) — H}(Q) is of class C? with derivatives
¥ ()] = i"(2que) (3)
V' (W)e1, 2] = i (2q0102) (4)
where the operator it : (L, |-|.,) — H. is the adjoint operator of the immersion
operator i. : He — (LP,| - |e.p).
Proof. The proof is standard. O

Lemma 8. The map T : H}(Q) — R given by
T(u) = / w1 (u)da
Q
is a C? map and its first derivative is

T (u)[y] = 4 /Q ot ().
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Proof. The regularity is standard. The first derivative is
T (wle =2 [upw() + [0 )l
By (3) and (2) we have
2 [upii) = - [ AW @@ =~ [ ¢l
- [ vl
and the claim follows. O

At this point we consider the following functional I. € C?(H}(Q),R)

1 w 1
w) =, ul + 5 Getw) = 2, 5)

where

e3

Ge(u) = ;]3 / u?th(u)de = ¢ T(u).
Q
By Lemma 8 we have

Lwel = s [ 900+ up+ wubluyp - (e
e Ja
()] = ol + wGefa) = a2,

then if v is a critical point of the functional I. the pair of positive functions
(u,(u)) is a solution of (1).

4. Nehari manifold
We define the following Nehari set
N ={ue Hj(Q)~0 : N.(u):=I(u)[u] =0}.

In this section we give an explicit proof of the main properties of the Nehari
manifold, although standard, for the sake of completeness

Lemma 9. N. is a C? manifold and inf . ||ul. > 0.
Proof. 1f u € N, using that N.(u) =0, and p > 4 we have
N (u)lu] = 2”“”? +4wGe(u) — p|u+|5,p = (2 —p)llulls + (4 — p)wGe(u) <0

so M. is a C? manifold.
We prove the second claim by contradiction. Take a sequence {u,}, € N:

with [Juy|le — 0 while n — +o0. Thus, using that N (u) =0,

pe < Cllunli2,

Hun\lf + wGe(uy) = |u;~; pe >
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SO o
| <14 @G

”uan

and this is a contradiction. O

Remark 10. If v € N;, then
11 11
= (5= ) Il v~ ) Gt

1 1 w
= (2 — p) |u+|£75 - 4G,g(u).

Lemma 11. [t holds the Palais—Smale condition for the functional I. on N.

< Cllun|27 =0

Proof. We start proving the PS condition for I.. Let {u,}, € H}(2) such that
I.(up) — ¢ | (un)[0]| < onll¢lle where o, — 0

We prove that ||u,||- is bounded. Suppose ||uy,||c — co. Then, by PS hypothesis
I (un) — IL(up)|un n
[[unl|< 2 4 [[unl|<

and this is a contradiction because p > 4.
At this point, up to subsequence u,, — u weakly in HJ(f2) and strongly in
L'(Q) for each 2 < t < 6. Since u,, is a PS sequence

U, + Wik (Y (un)un) — i ((u)P~") = 0in Hy ()

we have only to prove that % (¢ (up)un) — i*(¢¥(uw)u) in HE (), then we have to
prove that
Y (up )ty — Y(u)u in LY

We have [1(un)un — Y(w)uler < |h(u)(un —u)|_ 0+ |(¥(un) — () unl_ .. We

thus we can conclude easily.
Now we prove the PS condition for the constrained functional. Let {u,}, €
N such that

I (un) = ¢
|Ié(un)[@] - )‘nN/(un)[@H < onl¢lle with o, — 0.

In particular
Un

llnlle

Un

J=aun) [ | o

m%ﬂ
Then

An {(p—Z) Huan + (p—4)wG5(un)} 50

lunlle
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thus A\, — 0 because p > 4. Since N’ (up,) = up — i* (4wp(up )y ) — pit(Juf|P~1) is
bounded we obtain that {u,}, is a PS sequence for the free functional I, and we
get the claim. O

Lemma 12. For all w € H}(Q) such that |wt|., = 1 there exists a unique positive
number t. = te(w) such that t.(w)w € N;.

Proof. We define, for t > 0
