
Chapter 5
Three-Dimensional Multi-Scale
and Multi-Method Inversion to Determine
the Electrical Conductivity Distribution
of the Subsurface (Multi-EM)
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Abstract Combining different electromagnetic (EM) methods in joint inversion
approaches can enhance the overall resolution power. Every method is associated
with a particular sensitivity pattern. By assembling complementary patterns, subsur-
face imaging becomes more complete and reliable. We describe different paths to
obtain multi-EM inversions. First, a joint inversion approach using finite difference
forward operators is outlined that formulates the problem of minimizing the objec-
tive function using different weights for each individual method. Then we address
a sequential approach using finite element methods on unstructured grids to cycle
through the different EMmethods iteratively. Bothmethods are based on a traditional
parametrization using piecewise constant model parameters whichmay be inefficient
when describing the usually rather coarse models. Therefore, we investigate wavelet-
based model representations as an alternative.
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5.1 Introduction

Geophysicalmethods are applied to investigate the Earth’s interior.We obtainmodels
of the Earth by imaging physical parameters such as density, electrical conductivity,
or elastic properties using a variety of techniques. Here, we consider geophysical
methods exploiting electric currents generated by electromagnetic (EM) induction
or galvanic coupling to sense the electrical conductivity structure at depth. During the
last years, these techniques have experienced rapid development for exploration pur-
poses of the drillable subsurface. For instance, active controlled-source electromag-
netic (CSEM) techniques are now frequently used together with seismic techniques
to characterize resistive hydrocarbon reservoirs in offshore petroleum exploration.
Deep saline aquifers exhibit high electrical conductivities and constitute one of the
prime targets for electrical imaging methods, making these techniques one of the
most important geophysical tools to characterize target horizons for CO2 storage or
geothermal reservoirs.

We attempt to enhance the reconstruction capabilities of geoelectric potential
field and electromagnetic diffusion methods covering a wide range of scales from
boreholes to regional and lithospheric dimensions. To reach these goals, we have
developed an interdisciplinary concept integrating working groups from applied and
numerical geophysics, information technology and numerical mathematics.

At first, we describe a joint inversion approach that uses data misfit and reg-
ularization in one objective function with different weights for each method. The
implementation is based on the existing inversion frameworkModEM by Egbert and
Kelbert (2012) and Meqbel (2009) and incorporates CSEM, magnetotellurics (MT),
and direct current (DC) (Spitzer 1995) finite difference (FD) forward operators. The
parametrization is based on rectangular blocks. The second approach uses unstruc-
tured tetrahedral meshes for both the finite element forward (FE) operator and the
parametrization. Rectangular grids are easy to construct and handle, but they are
incapable of discretizing more complicated geometries such as steep surface topog-
raphy or known subsurface structures like mining galleries. Keeping this in mind,
we restrict ourselves here, however, to very simple geometries to make our results
comparable.

A final section deals with a new method to parameterize the model in a more effi-
cient way using wavelets. The idea behind is to compress the information describing
coarse model structures by using a limited subset of wavelet coefficients. Inverting
for these coefficients yields a less underdetermined problem and, thus, a potentially
less biased solution.

5.2 Finite Difference Approach

In this section, we describe a joint inversion of theMT, CSEM and DC data using FD
operators. The EM methods under consideration differ in their sensitivities towards
resistive and conductive structures as well as in their exploration depths. While the
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MT method generally resolves conductive structures up to depths of the Earth’s
upper mantle, CSEM and DC resistivity methods are sensitive to resistive layers
in the uppermost crust. Thus, a proper weighting between different EM data sets is
essential for a joint inversion. Herewe present recently developedweighting schemes
used for joint inversion of MT, CSEM and DC resistivity data. In addition, invert-
ing multi-EM methods jointly requires the different forward modeling codes to be
implemented in a common framework. For this purpose, we made use of the EM
modular systemModEM of Egbert and Kelbert (2012) which uses the parallelization
schemes described byMeqbel (2009). This package was initially developed to invert
only MT data. For our joint inversion approach, we extended ModEM to include the
forward modeling operators of CSEM using a secondary field formulation with a 1D
analytic solution of Key (2009) and a DC resistivity solver by Spitzer (1995). All
three solvers are capable of handling a three-dimensional distribution of electrical
conductivity in the subsurface. Our proposed joint inversion scheme is based mainly
on weighting the individual components of the total data gradient after each model
update. Norms of each data residual are used to assess how much weight the individ-
ual components of the total data gradient must be given to result in a homogeneous
contribution of all data sets to the inverse solution.

To demonstrate the efficiency of the proposed weighting schemes and to explore
the contribution of each method we used synthetic data sets computed from a 3D
synthetic model consisting of a shallow resistive thin block and a conductive and
resistive larger block further below (Fig. 5.1a). These structures are embedded in a
homogeneous background resistivity of 10�m. To demonstrate the resolution power
of theMT and CSEMmethods, we first inverted these two data sets separately.When
fitting only the MT data, the inversion result in Fig. 5.1b shows that the conductive
block is well resolved while the shallow and the deeper resistivity blocks are barely
seen. In contrary, fitting the CSEM data separately results in a model in which the
shallow thin resistive block is better resolved while only the tops of the deeper
conductive and resistive blocks are imaged. As a next step, we inverted the MT and
CSEM data jointly to test the new weighting scheme.

Figure5.1d shows that combining MT and CSEM data and using an appropriate
weighting results in a better image of the shallow thin resistive block as well as the
deeper resistive and conductive blocks. The DC resistivity data are collected along
three (synthetic) boreholes penetrating to a depth of about 700m. Joint inversion
of CSEM and DC resistivity data results in a more accurate reconstruction of the
resistivity of the shallow thin block and a better definition of its lower and upper
edges (Fig. 5.1e). In the last inversion experiment, we inverted all three data sets
(MT, CSEM and DC resistivity) jointly. The model in Fig. 5.1f clearly demonstrates
that joint 3D inversion is feasible. More importantly it shows, that a combination of
these three methods results in a much better image of the subsurface than what can
be achieved with any of the individual methods.

An additional thread of our developments on the basis of FD involves a fully
distributed parallel three-dimensional CSEM inversion algorithm (Grayver et al.
2013). Ideas presented in Streich (2009) were further elaborated and incorporated
into this new code. The inversion algorithm is based on Gauss-Newton minimization
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Fig. 5.1 a Cross section (y-axis) through a 3D model used to compute the synthetic data. b and
c show inversion results when fitting MT and CSEM data separately. d–e show joint 3D inversion
results using the new weighting scheme d MT and CSEM, e CSEM and DC resistivity and f MT,
CSEM and DC resistivity data. The inversion model in f resembles most closely the structures of
the original model shown in a

and uses a parallel distributed direct-solver for FD forward modeling. The forward
modeling implements efficient routines to handle realistic source geometries accu-
rately (Streich and Becken 2011). This inversion scheme has been used to invert
real CSEM data collected across the Ketzin CO2 storage formation, 15km west of
Berlin (Grayver 2013). Figure5.2 shows resistivities obtained from the 3D inver-
sion along the receiver line. The image contains several prominent conductive and
resistive horizontally continuous structures that also appeared nearly identically for
different inversion setups. The regional geology is well constrained, with an anticline
structure of sediments overlying a salt pillow ( Förster et al. 2009). The top of the
anticline is at a depth of approximately 2km near the center of our survey line. The
electrical conductivity structures recovered by 3D CSEM inversion correlate well
with the main geological units (Klapperer et al. 2011).

5.3 Finite Element Approach

The joint inversion schemes introduced above are based on classical FD forward
operators using structured grids, which are limited with respect to discretizing com-
plex structures such as topography, bathymetry or generally curved objects. As a
part of Multi-EM we have therefore developed 3D forward modeling and inversion
schemes based on FE on unstructured tetrahedral grids. These approaches allow for
an easy incorporation of complicated, more realistic model geometries, which are
encountered in the geosciences. A further major difference to the inversion concept
described above is the sequential mode of cycling through the individual inversion
of each EM method using the output of the previous scheme as the reference model



5 Three-Dimensional Multi-Scale and Multi-Method Inversion 87

Fig. 5.2 Vertical section extracted from the 3D inversion model along the receiver line. Lines and
triangles indicate transmitters and receivers, respectively. The star shows the position of the CO2
injection well

for the following one. In this way, we do not have to determine the full set of reg-
ularization parameters all at once which is a major difficulty due to their inherent
uncertainty. In order to achieve a solid and unified software base for our FE meth-
ods, we have implemented all new forward and inverse operators in MATLAB. The
resulting code is modularized and the interfaces between model geometry, grid gen-
erator and inverse operator are being standardized so that the individual EM method
may conveniently access the model and pass the inversion output over to the subse-
quent program. The EM methods we are reporting on are DC and TEM. However,
FE solutions for CSEM and MT (Franke-Börner et al. 2012) are near completion
ultimately providing the capability of joint inversion of all four EM methods.

The DC resistivity code by Weißflog et al. (2012) enables us to model complex
topography and to extract the derivatives, which are crucial for the inversion while
retaining full control over the assembly process of the system matrix. For simplicity,
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we apply a regularized Gauss-Newton method. To stabilize the inversion procedure
and provide additional information to avoid ambiguities, a suitable regularization
strategy is necessary. As our inversion approach is based on a FE discretization of
the equation of continuity using a piecewise constant representation of the conduc-
tivity model, a regularization operator is required that is applicable to piecewise
constant model parameters on unstructured grids. We have therefore implemented a
smoothness regularization by (Schwarzbach and Haber 2013) in which the penalty
function measures the norm of a weak gradient of the conductivity field. The latter is
evaluated using duality techniques with H(div)-conforming Raviart-Thomas vector
elements of lowest order.

For solving the 3D transient electromagnetic (TEM) problem we have developed
two different approaches. Both use Nédélec finite elements to discretize the spa-
tial part of the curl-curl equation for the electric field. In the first method, the time
evolution of electromagnetic fields is propagated forward in time, whereas in the
latter the Fourier components of these fields are computed for a suitable set of fre-
quencies, which are then transformed numerically into the time domain. Each of
these methods is numerically challenging if not, as in the case of explicit time step-
ping, prohibitively expensive. We have therefore employed rational Krylov subspace
techniques (RKST) to reduce the numerical costs both in the time and the frequency
domain. In the timedomain,RKSTare used in conjunctionwith a geometricmultigrid
method to solve the resulting linear system of ordinary differential equations. In this
way, the initial electric field is advanced to only a small set of selected times of interest
(Afanasjewet al. 2013). In the frequency domain,RKSTare applied as amodel reduc-
tion technique where the resulting systemmatrix is projected onto a low-dimensional
subspace retaining the information of the main eigenvalues (Börner et al. 2013).

In the following experiments we limit ourselves to two dimensions. However,
the methodology applies to 3D scenarios in the same manner. To demonstrate the
advantage of a joint TEM/DC approach and showcase the respective properties of the
different methods, the model (Fig. 5.3a) consists of two smaller bodies of high con-
ductivity close to the surface and a larger structure of high resistivity buried at greater
depth within a 100�m background. First, the synthetic data for TEM and DC were
independently calculated on different grids. Then the inversion process was started
for TEM and DC using a homogeneous reference model on a common inversion
mesh (i.e., parametrization) resulting in inverse models displayed in Fig. 5.3b, c,
respectively. It is easy to see that the TEM configuration (with receivers located
between −200m and +200m and two sources on the surface) is not able to resolve
the deeper structure while being able to distinguish the two shallow bodies quite
clearly. Our DC setup is a pole-pole configuration with four sources on the Earth’s
surface and one borehole source at a depth of 350m. The receivers are located along
the surface between ±600m. The DC inversion reconstructs the large structure at
depth while failing to separate the smaller objects to our satisfaction. Figure5.3d
shows the DC inversion result using the same configuration as described above and
the TEM solution (Fig. 5.3b) as the reference model. Combining the individual res-
olution properties of these two methods yields a better image of the two conductive
blocks as well as of the resistive body at greater depth.
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Fig. 5.3 a The true model used to compute the synthetic data. b and c are the inversion results for
only TEM and DC data, respectively. d Using the TEM solution as the reference model, we then
inverted the DC resistivity data to obtain a joint inversion result, which recovers the three anomalous
bodies well

5.4 Sparse Inversion in Wavelet Domain

The preceding inversion examples relied on a parametrization of the subsurface into
disjoint blocks of piecewise constant resistivity. In such bases, complex structures are
most conveniently represented byusing a large number of smallmodel blocks to allow
for the needed degree of detail and flexibility to describe the resistivity distribution.
This approach introduces a large solution null-space, and the commonly applied
smoothing regularization techniques result in heavily biased model estimates.

Here, we investigate alternative bases to represent resistivity that allow for a sparse
representation of the resistivity distribution. The term sparse is used here to indicate
that the model is described with as little as possible non-zero coefficients. Sparse
image recovery has in the last years become a rapidly developing field in compressed
sensing, and has proven particularly successful in medical imaging. Here, we apply
these concepts for the first time to electromagnetic geophysical imaging problems by
transforming the resistivity image into wavelet domain and estimating the significant
wavelet coefficients.

A wavelet multi-resolution basis admits the approximation of a function with
different levels of details on various scales. Because many of the details contained
in images are unimportant, the corresponding coefficients can be threshold from the
decomposition in order to obtain a compressed version of the original image. We
attempt to exploit these compression capabilities of wavelets in the framework of the
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Fig. 5.4 Sparse Inversion. a Solution simplicity, expressed in the L2 and L1 norms of model
parameters for a simple two-parameter problem. Among all possible solutions (solid line), the
objective of minimal L1 norm yields a sparse solution (open dot, with m1 = 0), whereas the
minimal L2 norm is found for a smooth solution with m1 ≈ m2. Figure modified after Loris et al.
(2007). b Inversion examples for a two-blob model. True model (upper panel) used to generate
synthetic data and db4 (middle panel) and bior2.2 (lower panel) inversion models that fit the data to
within their randomly generated errors. Both inversion models require only a fraction of non-zero
coefficients when compared to standard block parametrizations

inverse magnetotelluric problem. We formulate the following objective: determine
the few non-zerowavelet coefficientswhich are required to represent amodel that can
explain the observed data. Accordingly, the approach falls into the class of sparsity-
constrained inversion schemes. These schemes minimize the combination of the data
misfit in a least squares (L2) sense and of a model coefficient norm in a L1 sense (L1-
L2 minimization). The minimal L1 coefficient norm renders the solution sparse, in
contrast to an L2 norm minimization that renders the solution smooth (cf. Fig. 5.4a).

The minimization of a L1-L2 objective is problematic, because the function is
non-convex and non-differentiable. We applied a primal-dual-interior point method
which has shown to be efficient for L1-L2-norm minimization (Borsic and Adler
2012). The algorithm inverts for a differentiable approximation of the L1-norm. The
formulation seeks tominimize the gap between a primal and a dual objective function
and is iteratively solved for with a Newton method.

The appearance of sparse wavelet models is dependent on the particular choice
of wavelets. We have focused on smooth wavelets that result in smooth resistivity
models, similar to those generated with the notably different smoothing regularized
inversion scheme. However, only a fraction of coefficients is required to represent
the model. Figure5.4b depicts, as an example, inversion models estimated from syn-
thetically generated, noise-contaminated data using a five-level db4 (middle panel)
and bior2.2 wavelet representation (lower panel). The true model used to generate
the data is depicted in the upper panel. We find that about 60 wavelet coefficients are
sufficient to describe a model that fits the data.
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For the example in the Fig. 5.4, the forward solutions were obtained with a FE
approach (Lee et al. 2009) that solves the induction problem for the uncompressed
resistivity distribution reconstructed from the wavelet representation. Rectangular
elements were employed. The wavelet sensitivities were evaluated by projecting the
space domain sensitivities into wavelet domain.

Our results demonstrate that over-parametrization of the model region can be
eliminated by projecting the model domain into a sparsifying basis. This proposed
approach results in an alternative class of models by invoking sparsity based regular-
ization; it may furthermore yield computational benefits provided that sparsity could
be exploited in the evaluation of the Jacobian. Our approach could also be beneficial
for model appraisal when evaluating resolution and covariances for a limited set of
coefficients.

5.5 Conclusions

This project has given us the possibility to explore various strategies of joining dif-
ferent EMmethods in common inversion schemes. The outcome is clear: combining
two or more EM techniques in a complementary way may enhance the ability to
reconstruct subsurface conductivity structures. However, the way to achieve this aim
is multifaceted. The existing inversion framework ModEM offers a practical envi-
ronment to rapidly incorporate existing forward modeling software. With respect to
the inversion strategy the main problem is the determination of a set of regularization
parameters all at the same time. We have therefore begun to investigate a sequential
mode where the inversion result of one method serves as a reference model for the
next. Using synthetic models, both approaches have demonstrated that the combina-
tion of EM methods may produce enhanced images of the subsurface compared to
individual inversions.

Moreover, we have learned in the course of the project that mixing FD and FE
approaches is unrewarding because the strengths of each approach are diminished.
Whereas the FDmethod takes advantage of its simplicity, the sparsity of the resulting
system matrix and the relatively small efforts of administering rectangular Cartesian
grids, theFEmethod stands out due to its enormousflexibilitywith respect to adapting
any given geometry using unstructured meshes. At first glance, FD might be the
method of choice if it comes to inversion because the structures to be reconstructed
are initially not known and, thus, grid adaptivity does not play an important role.
However, given topography, subsurface structures as caves or voids, and a-priori
information from, e.g., seismics may put high requirements on the future inversion
software. The price to pay is the increased administrational effort for FE.

We have also acquired first experiences with alternative model parametrization
techniques in the wavelet domain. We apply for the first time compressed sensing
concepts to the inversion of magnetotelluric data and recover a sparse solution by
minimizing a mixed L1-L2 norm objective function.
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Finally, we have extensively used massively distributed computations for 3D
inversions. In fact, working with real-world problems and in general with large
model domains and comprehensive data sets requires adequate computer hardware
that continuously offers an increasing number of computing cores, at least for the
foreseeable, middle-term future. High-performance computing on a moderate or
large number of nodes goes therefore hand in hand with innovative mathematical
and numerical concepts. Thus, this project marks a starting point for a wide variety
of further research efforts in EM inversion based on the research results at hand.
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