
Two Applications of the ASP-Prolog System:
Decomposable Programs and Multi-context Systems

Tran Cao Son, Enrico Pontelli, and Tiep Le

Department of Computer Science, New Mexico State University
{tson,epontell,tile}@cs.nmsu.edu

Abstract. This paper presents two applications of the ASP-Prolog system, one
of the earliest modular logic programming frameworks for integrating ASP and
traditional Prolog/CLP reasoning. Both applications represent significant chal-
lenges to existing ASP technologies and share some common traits—mostly re-
lated to the inadequacy of the ground-and-solve approach. The first application
stems from several practical experiences in using state-of-the-art Answer Set Pro-
gramming (ASP) solvers to tackle combinatorial problems in different domains
(e.g., bioinformatics, distributed constraint problem solving). A recurrent issue is
the presence of computationally tractable subproblems that turn out to be chal-
lenging, or even practically infeasible, for current ASP technologies. The second
application of ASP-Prolog is its use to compute the equilibrium semantics of
Multi-Context Systems (MCS).

1 Introduction and Motivation

Answer Set Programming (ASP) [15,13] is a declarative programming paradigm that
has gained a prominent role in a variety of application domains, especially in domains
with knowledge-intensive applications and combinatorial problems in high complexity
classes. An important driving force behind the success of ASP is the continuous devel-
opment and improvement of state-of-the-art ASP solvers, that has led to several highly
competitive ASP solvers (e.g., CLASP1). The majority of ASP solvers employ heuristic
search in computing answer sets. To facilitate the use of variables in ASP programs,
ASP solvers use a two-stage approach, referred to as ground-and-solve, in computing
answer sets of programs with variables. The program is first grounded—by replacing
variables with all possible variable-free terms—and the ground program is used for the
computation of solutions. ASP solvers require the program resulting from grounding
to be finite. In order to accomplish this, ASP solvers impose different syntactical re-
strictions on programs with variables. These restrictions may disallow certain problem
encodings: such encodings might represent natural ASP representations of problems,
but violate some of the syntactical restrictions imposed by the ASP solvers.

There have been attempts to integrate ASP with other programming environments
for different purposes (see [7] for a discussion), including early attempts to integrate
ASP and Prolog (e.g., [7,4]). The ASP-Prolog system [7,17] represents one of the first

1 http://potassco.sourceforge.net/

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 87–103, 2014.
c© Springer International Publishing Switzerland 2014

http://potassco.sourceforge.net/

88 T.C. Son, E. Pontelli, and T. Le

systems proposed to provide an embedding of ASP within Prolog. ASP-Prolog is an ex-
tension of a modular Prolog system, which enables the integration of Prolog-style rea-
soning with ASP. The overarching goal of ASP-Prolog is to provide a platform for the
integration of heterogeneous knowledge bases and an alternative computation paradigm
to ASP (goal-oriented computation vs. model computation). In general, an ASP-Prolog
program is a collection of modules, where each module can be declared to contain ei-
ther Prolog code or ASP code. Each module provides an interface which allows the
module to export predicate definitions and import definitions from other modules. In
the current implementation, the root of the module hierarchy is expected to be a Prolog
module, that can be interacted with using the traditional Prolog-style query-answering
mechanism. ASP-Prolog has been used in several applications (e.g., [14,21]).

The objective of this paper is twofold. On one hand, we intend to identify a class of
interesting problems that are challenging for existing ASP systems—and ASP-Prolog
is used to illustrate a technique that can address such problems. On the other hand, the
paper shows how the relatively simple features of ASP-Prolog can provide elegant and
effective solutions in challenging domains.

2 Background: Logic Programming, ASP-Prolog, and MCS

Logic Programming. A logic program Π is a set of rules of the form
c ← a1, . . . , am, not am+1, . . . , not an

where 0≤m≤n, each ai is a literal of a propositional language2 and not aj , m<j≤n,
is called a negation-as-failure literal (or naf-literal). c can be a literal or omitted. When
n = 0, the rule is called a fact. When c is omitted, the rule is a constraint. For a rule
r, pos(r) denotes the set {a1, . . . , am} and neg(r) is the set {am+1, . . . , an}. A set of
literals X is consistent if there is no atom a s.t. {a,¬a}⊆X . A rule r is satisfied by X
if (i) neg(r) ∩X �= ∅, (ii) pos(r) \X �= ∅, or (iii) c ∈ X .

Let Π be a program. For a consistent set of literals S, the reduct of Π w.r.t. S,
denoted by ΠS , is the program obtained from the set of all rules of Π by deleting (i)
each rule that has a naf-literal not a in its body with a ∈ S, and (ii) all naf-literals in the
bodies of the remaining rules. S is an answer set of Π [10] if it satisfies the following
conditions: (i) If Π does not contain any naf-literal then S is the minimal set of literals
satisfying all rules in Π ; and (ii) If Π contains some naf-literal then S is an answer
set of Π if S is the answer set of ΠS . For convenience of notation, we will use some
extensions of ASP that have been proposed—such as choice atoms as defined in [20],
that can occur in a rule wherever a literal can, and aggregate literals.

We will focus on programs that admit a splitting sequence3 [11]. For a program Π ,
a set of literals S is a splitting set of Π if for every rule r of Π , if head(r) ∈ S then
pos(r) ∪ neg(r) ⊆ S. A sequence of splitting sets 〈Si〉∞i=0 of Π is a splitting sequence
of Π , if Si ⊆ Sj for i ≤ j and

⋃∞
i=0 Si is the set of literals occurring in Π .

ASP-Prolog. The ASP-Prolog system, used in this paper, has been originally described
in [7,17]. It provides a modular structure and a set of predicates to enable the interaction

2 A rule with variables is viewed as a shorthand of the set of its ground instances.
3 For simplicity of the presentation, we consider only splitting sequences with ordinal ω.

Two Applications of the ASP-Prolog System 89

between Prolog modules and ASP modules. Among the various components (see [17]),
ASP-Prolog’s interface includes:

• use asp(+ASPModule, +PModule, +Parameters): The Prolog module
PModule is created, providing predicates to access the answer sets of the ASP
program ASPModule with the parameters specified in Parameters. The new
module contains the literals entailed by the skeptical semantics of ASPModule
and has sub-modules which encode the answer sets of ASPModule. PModule
provides the names of the models containing the answer sets through atoms of the
form model/1. PModule and the Parameters arguments are optional.

• assertnb(ASPModule, Progs) and retractnb(ASPModule, Progs): these
two predicates are extended versions of the assert and retract predicates
of Prolog, designed to operate on modules associated to ASP programs. Their ef-
fects are to add and remove, respectively, the clauses specified in Progs to the
ASPModule and create new modules analogously to use asp(ASPModule).

Multi-context Systems (MCS). Heterogeneous nonmonotonic multi-context systems
(MCS) have been introduced in [3]. A logic is a tuple L = (KBL, BSL, ACCL)
where KBL is the set of well-formed knowledge bases of L—each being a set of
formulae. BSL is the set of possible belief sets; each element of BSL is a set of
syntactic elements representing the beliefs L may adopt. Finally, ACCL : KBL →
2BSL is a function specifying the “semantics” of L by assigning to each element of
KBL a set of acceptable sets of beliefs.

Using the concept of logic, we can introduce the notion of multi-context sys-
tem. A Multi-Context System (MCS) M = (C1, · · · , Cn) consists of contexts Ci =
(Li, kbi, bri), (1 ≤ i ≤ n), where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi

is a knowledge base, and bri is a set of Li-bridge rules of the form:
s ← (c1 : p1), · · · , (cj : pj), not (cj+1 : pj+1), · · · , not (cm : pm)

where 1≤ck≤n, pk is an element of some belief set of Lck , 1≤k≤m, and kb ∪
{s}∈KBi for each kb ∈ KBi. Intuitively, a bridge rule r allows us to add s to a
context, depending on the beliefs in the other contexts. Given a bridge rule r, we will
denote by head(r) the part s of r. The semantics of MCS is described by the no-
tion of belief states. Let M = (C1, · · · , Cn) be a MCS. A belief state is a sequence
S = (S1, · · · , Sn) where each Si is an element of BSi.

Given a belief state S = (S1, · · · , Sn) and a bridge rule r, we say that r is applicable
in S if pi ∈ Sci for each 1 ≤ i ≤ j and pk �∈ Sck for each j + 1 ≤ k ≤ m.

The semantic of a MCS M is defined in terms of particular belief states (S1, · · · , Sn)
that take into account the bridge rules that are applicable with respect to the given belief
sets. A belief state S = (S1, · · · , Sn) of M is an equilibrium if, for all 1 ≤ i ≤ n, we
have that Si ∈ ACCi(kbi ∪ {head(r)|r ∈ bri is applicable in S}).

Example 2.1. Let M1 = (C1, C2) where Ci = (Li, kbi, bri) for i = 1, 2, where Li is
the logic of programming under answer set semantics with kb1 = {a ← not b; b ←
not a} and br1 = {a ← (2 : d)}; and kb2 = {c ← not d; d ← not c} and br2 = {d ←
(1 : b)}. It is possible to show that M1 has two equilibria ({a}, {c}) and ({a}, {d}).

90 T.C. Son, E. Pontelli, and T. Le

3 Decomposable Programs

3.1 Use Cases

Use Case #1: Optimal Communication Orders between Constraint Nodes. Let
us consider a distributed constraint satisfaction problem (DisCSP) [22]. A DisCSP
is a tuple (X ,D, C,A), where X = {x1, . . . , xn} is a finite set of variables, D =
{D1, . . . , Dn} is a corresponding set of finite domains, C is a set of binary constraints
Ci,j (on the variables xi and xj) and A = {A1, . . . , Ak} is a set of agents. Each agent
Ai owns a subset XAi of the variables of X , s.t. XA1 , . . . ,XAk

is a partition of X . A
solution to a DisCSP is a complete variable assignment satisfying all constraints.

A large number of DisCSP algorithms rely on implementing an asynchronous depth-
first search (DFS). Each agent is placed in an ordering relation; the DFS is reproduced
by having each agent communicate their variable instantiations towards the children
agents, and in case of failure propagate backtracking to their parent agent. This assumes
an ordering ≺ among agents—where Au≺Av denotes that agent Au is the parent of Av

in the DFS tree. The ordering should ensure that if there is a constraint Ci,j such that
xi∈XAu and xj∈XAv , then either Au≺∗Av or Av≺∗Au (≺∗ is the transitive closure of
≺). Algorithms (e.g., [23]) have been proposed to compute such orderings.

A more complex, but realistic, scenario originates from the assumption that the com-
munications among agents have non-uniform costs. Let us denote with ω(Au, Av) the
communication cost between agents Au and Av. In this case, the goal is to determine
an ordering that will minimize the maximum communication cost among agents. The
communication cost between agents Au and Av with respect to an agent order ≺, de-
noted by ζ≺(Au, Av), such that ζ≺(Au, Au) = 0 for any agent Au, and ζ≺(Au, Av) =
max{ω(Au, x) + ζ≺(x,Av) | Au ≺ x, x ≺∗ Av} for any two agents Au �= Av such
that Au ≺∗ Av. The overall cost is ζ(≺) = max{ζ≺(Au, Av) | Au ≺∗ Av}.

The problem admits an elegant encoding in ASP. Let us assume that the facts of
the form edge(X,Y) are used to describe the constraint graph of a DisCSP—where
edge(X,Y) states that there exists a constraint containing variables owned by X and
Y . Similarly, let comm(X,Y,C) denote that the non-negative cost of communication
between agents X,Y is C. The ordering ≺ and the DFS tree can be generated by:4

1{root(X) : node(X)}1. {order(X,Y)} ← node(X), node(Y), X �=
Y, not root(Y).

The ≺∗ relation can be described by a simple transitive closure:
order s(X,Y) ← order(X,Y). order s(X,Z) ← order(X,Y), order s(Y,Z).

The following constraints guarantee the DFS conditions:
← order(X,Y), order(Y,X). ← node(Y), 2{order(X,Y) : node(X)}.
← node(X), not root(X), not has ancestor(X).

← edge(X,Y), {order s(X,Y), order s(Y,X)}0.
We can associate costs to agents based on their distance from the root of the DFS:

cost node(X, 0) ← root(X).

cost node(Y,C1 + C2) ← not root(Y), order(X, Y), comm(X, Y,C1), cost node(X,C2).

leaf cost(X,C) ← cost node(X,C), leaf (X).

4 We omit the definition of trivial predicates like leaf.

Two Applications of the ASP-Prolog System 91

and the cost of the resulting DFS tree is
tree cost(C1) ← C1 = #max[leaf cost(, C) = C], C1 > 0.

Note that the definition of tree cost makes use of an aggregate (#max). Our objective is
to determine DFSs with certain properties, e.g., with minimal cost. Observe that this
program has a splitting sequence S0, S1, S2 where:

(i) S0 consists of literals of the form node(X), edge(X,Y), leaf (X), root(X),
order(X,Y), and order s(X,Y);

(ii) S1 consists of S0 and the literals relating to the cost (cost node(X,Y) and
leaf cost(X,Y)); and

(iii) S3 consists of S2 and the other literals.

Intuitively, this splitting sequence represents the steps involved in the process of solving
the problem: (i) create an ordering among the nodes; (ii) compute the cost of each leaf
of the specified order; (iii) compute the cost of the tree as the maximal cost of the leaves.

The difficulty posed to ASP solvers by the above program lies in the rules defining
the cost of the nodes. Without bounding the cost C2 of the rule, the grounding process
does not terminate in any reasonable amount of time. Limiting the cost C2 to be the
sum of all (positive) costs allows CLASP to solve instances that have a small overall
communication cost between nodes (e.g., when the the bound to C2 is smaller than
1, 000). The grounder needs to ground all combinations of the second rule in this group
and this number increases with the bound. We observe that the system ASP{f} [2] could
be useful in this situation. An alternative approach to using functions is to inform the
grounder about the steps in computing the answer sets of the program via an extra
parameter (i.e., effectively exposing the stratification to the grounder):

cost(X, 0, 1) ← root(X).

cost(X,C1 + C2, T + 1) ← level(T), not root(X), order(Y,X), comm(Y,X,C1),

cost(Y,C2, T).

leaf cost(Y,C) ← leaf (Y), cost(Y,C, T + 1), level(T).

where level is a predicate defining the level in a tree, which can be at most the number
of nodes in the graph. With this change, CLASP is able to identify that C2 can only take
a small set of possible values and has no problem with the value of the weights. The
potential cyclic dependency between cost(X,C1+C2) and cost(Y,C2) is now
a single way dependency (i.e., first depends on the second). Although the method of
breaking dependencies works in this problem, it does not work in the next example.

Use Case #2: Approximated Supertree Computation. We consider phylogenies [12]
as trees where each internal node has at least two children. We will assume the tradi-
tional terminology for trees. For a tree T , let L(T) denote the set of leaves of T . An
internal edge is an edge connecting two internal nodes, one of which can be the root. A
cluster is the set of all the leaves that are descendants of the same internal node. Let us
denote with MRCA(S) the most recent common ancestor of the set of leaves S.

For two sets of leaves A,B ⊆ L(T), A <T B if MRCA(A) is a descendant of
MRCA(B). A tree T ′ is obtained from T by contraction if T ′ can be obtained from T
by contracting some internal edges. Let A ⊆ L(T). The subtree of T with the leaf set
A is the subtree of T whose root has A as its cluster; we refer to it as the subtree of

92 T.C. Son, E. Pontelli, and T. Le

T induced by A, and denote it with T |A. A tree T displays a tree t if t is an induced
subtree of T , or can be obtained from an induced subtree by contraction.

Let T be a collection of trees and S =
⋃

T∈T L(T). A supertree method takes T
as input and returns a tree T with the leaf set S such that T displays each element of
T [18]. Several popular algorithms to compute supertrees have been proposed; in this
section, we consider a rough approximation of the method in [19]. The approximation
has been developed to quickly generate putative supertrees as part of the CDAOStore
project [16]. For a tree T and a set of leaves S, pruned(T, S) denotes the tree obtained
from T by: (1) Deleting all the subtrees of internal nodes whose set of leaves is a subset
of S, and the edges coming into these internal nodes; (2) Deleting all the remaining
leaves appearing in S and the edges leading to such leaves; and (3) Simplifying the
remaining tree by removing all internal nodes which have only one child. A weighted
tree T is a tree with an associated weight w. Given T , a weighted graph ST is defined
as follows: (1) The nodes of ST are the leaves of T ; (2) Nodes a and b are connected if
a and b are in a proper cluster in one of the trees in T (i.e., if there is a tree in T where
MRCA(a, b) is not the root of the tree); (3) The weight of an edge (a, b) in the graph
ST is the total weight of all trees in which a and b are in a proper cluster.

The APPROXSUPERTREE algorithm is described in Algorithm 1. This program runs
in polynomial time in the size of the trees. The APPROXSUPERTREE algorithm can be

Algorithm 1. APPROXSUPERTREE(T)

Require: a set of k trees T , with leaves set S =
⋃

T∈T L(T) = {x1, . . . , xn}.
1: if n = 1 or n = 2 then
2: return a single node labeled by x1 or x1 and x2

3: end if
4: construct ST
5: if ST is connected then
6: Let Ecut be the set edges of minimal weight of ST
7: ST /Ecut is obtained from ST by deleting all edges in Ecut

8: Replace ST with ST /Ecut

9: end if
10: Let S1, . . . , Sk be the components of ST
11: for each component Si do
12: Ti =APPROXSUPERTREE(T |Si), where T |Si = {pruned(T,L(T) \ Si) | T ∈ T }
13: Construct a new tree T ′ by connecting the roots of the trees Ti to a new root r
14: end for
15: return T

implemented by an ASP program with the following basic components that implement
one iteration of the algorithm. To fully implement this algorithm, the predicates need to
be extended with an extra parameter denoting the iteration step.
• Encoding trees: a tree is described by a set of atoms of the form edge(t, n1, n2) and

a fact tree(tree name,weight). Rules for defining node, root, leaf, ancestor (anc),
etc. can be easily defined based on these predicates and are omitted to save space.

• Code for computing the pruned tree: this code computes the tree pruned(T, L(T) \
Si) (Line 12, Algorithm 1). We assume that the tree T and the pruned set of

Two Applications of the ASP-Prolog System 93

leaves S are given. Elements of S are specified by member(X,S). First, we de-
fine some descendants out(T, S,N) which is true whenever N—a non-leaf in the
tree T—has a descendant that does not belong to the pruned set S.

some descendants out(T, S,N) ← pruned set(S), node(T,N), leaf (T,N1),

not member(N1, S), ancestor(T,N,N1).

We then identify the nodes that should be deleted. These are the nodes whose leaf-
descendants belong to the pruned set.

delete node(T, S,N) ← pruned set(S), node(T,N), not leaf (T,N),

not some descendants out(T, S,N).

The above predicates are used to define the predicate simplify node(T, S,N), which
says that a non-leaf node that has not been deleted should be simplified if it has only
one child that is not deleted.

simplify node(T, S,N) ← pruned set(S), node(T,N), not leaf (T,N),

not delete node(T, S,N),

NC = #count{edge(T,N,N1) : not delete node(T, S,N1)

: not member(N1, S)}, NC < 2

A node remains after pruning if it is not deleted, not a member of the pruned set, and
not simplified. This is defined by the following predicate.

is new node(T, S,N) ← pruned set(S), node(T,N), not member(N,S),

not delete node(T, S,N), not simplify node(T, S,N).

This allows us to define the new tree pruned(T, S), that is the result of pruning S
from the tree by identifying the edges of the tree.

ptree edge(pruned(T, S), N1, N2) ← pruned set(S), tree(T,W), ancestor(T,N1, N2),

is new node(T, S,N1), is new node(T, S,N2), NA < 1,

NA = #count{ancestor(T,NM,N2) : ancestor(T,N1, NM)

: not simplify node(T, S,NM)}.
This rule says that there is an edge between two nodes N1 and N2 in the tree, after
pruning, if N1 is an ancestor of N2 and all the ancestors of N2 which are descendants
of N1 have been simplified.

• Code for computing the connected graph of leaves of a set of trees: this code creates
the weighted graph ST (Line 4, Algorithm 1). We first identify the cluster of a tree.
Two leaves A and B of the tree T with the weight W are in a proper cluster if they
share the same ancestor which is not the root.

in cluster(T,A,B,W) ← tree(T,W), leaf (T,A), leaf (T,B), node(T,N),

not root(T,N), ancestor(T,N,A), ancestor(T,N,B).

Next we define the edge of the graph. An edge of the graph is an edge between two
nodes in the same cluster. The weight of the edge is the sum of all the weights of the
corresponding trees in which the nodes appear in the same cluster.

graph(A,B,WG) ← leaf (T,A), leaf (T,B),

1{in cluster(T1, A,B,W):tree(T1,)},WG=#sum[in cluster(, A,B,W) = W].

• Code for constructing the supertree after one iteration: this code accomplishes the
task of computing Ti (Line 12, Algorithm 1). This starts with the construction of
the reduced graph by eliminating edges with minimal weight. To achieve this, we
compute the minimal weight (WM).

min edge(WM) ← WM = #min[graph(, ,W1) = W1].

94 T.C. Son, E. Pontelli, and T. Le

The reduced graph will contain edges whose weight is greater than the minimal
weight. We also introduce the predicate not reduced(A), to indicate that A is the
vertex of at least one edge that is not eliminated.

3{not reduced(A), not reduced(B), reduced graph(A,B,W)}3 ←
graph(A,B,W),min edge(WMin),WMin < W.

If all edges going out from a vertex are eliminated then the vertex is itself a compo-
nent of the reduced graph. We have the following rule to characterize this.

reduced graph(A,A, 0) ← graph(A,B,W),

min edge(WMin),WMin == W,not not reduced(A).

The next step in computing the supertree is to identify the components of the reduced
graph and select a representative for each component. The rule

{representative(A)} ← leaf (T,A).

defines that only leaves could be selected to be representatives. Since each compo-
nent has one and only one representative, we add the following rules:

connected(A,B) ← 1{reduced graph(A,B,), reduced graph(B,A,)}.
connected(A,B) ← reduced graph(A,C,), connected(C,B).

is connected(A) ← representative(B), leaf (T,A), connected(A,B).

is connected(A) ← representative(B), leaf (T,A), connected(B,A).

← leaf (T,A), not is connected(A).

← representative(A), representative(B),A �= B, connected(B,A).

The first four rules define the connectivity relationship, based on the edges of the
reduced graph. The next rules guarantee that exactly one representative is selected
for each component. Having computed the components and their representatives, the
supertree can be derived using the following rules. To identify the number of nodes
in a component, we define the degree of a node using the rule:

degree(A,D) ← representative(A),D = #count{connected(A,)}.
If the component is a singleton then it will be connected to the root, which is repre-
sented by the name of the pruned set.

edge s(S,A) ← representative(A),degree(A,1), pruned set(S).

If the component has exactly two elements, then a new root will be created and
connected to the root. The new root is connected to the two leaves. In the next rule,
@newName(S,A) creates a new constant that is a direct descendant of the pruned
set and is the parent of the two leaves.

3{edge s(S,N), edge s(N,A), edge s(N,B)} ← representative(A), degree(A,2),

connected(A,B), A �= B, pruned set(S),N := @newName(S,A).

If the component has more than two elements then a new root is created and the
algorithm computes the pruned set for the next iteration.

2{edge s(root,N), generated pruned set(N,A)} ← representative(A),

degree(A,D), D > 2, pruned set(S),N := @newName(S,A).

Here, generated pruned set(N,A) records a new pruned set, named N , related to
the representative A. The pruned set and its members are defined in the next rules.

new pruned set(N) ← generated pruned set(N,A).

new member(B,N) ← generated pruned set(N,A), ptree leaf (T,B),

not connected(A,B).

Observe that ptree leaf is defined in a similar fashion as leaf .

Two Applications of the ASP-Prolog System 95

Let us point out the following aspects that prevent an effective use of ASP for this
algorithm. The algorithm needs to be repeated until all components contain either one
or two leaves. In each iteration, the computation needs to identify the set of leaves that
will be pruned for the computation of the pruned trees. Given the set of leaves that will
be pruned, the pruned trees are uniquely identified. On the other hand, if the set of leaves
is unknown, the ASP solver will need to guess, i.e., it will have to ground all possible
combinations of the leaves of the trees. Thus, the proposed encoding can only deal
with problems with very few leaves (e.g., less than 10). A simple example commonly
encountered in the literature (12 leaves) cannot be solved. We observe that the full ASP
implementation of this algorithm also possesses a splitting sequence corresponding to
the iteration steps that the algorithm must go through in order to compute the supertree.

Use Case #3: Union of All MinCut Sets of a Weighted Graph. A MinCut of a
weighted graph is a set of edges of minimal weight that disconnects the graph. The
problem we consider is to compute the union of all MinCuts of a graph (useful, e.g., for
supertree computations). Unlike the previous problems, this problem has a polynomial
time algorithm but does not seem to have a straightforward ASP encoding.

If we only need to compute one MinCut, the ASP encoding is simple: generate a cut
and minimize its weight. The problem is no longer trivial when we need to generate
the union of all MinCuts. One can try to index the possible MinCuts and use multiple
minimization statements. Since the minimal weight is unique, one would have to add a
constraint that the weight of the cuts is unique. This encoding faces several problems,
e.g., it requires the number of MinCuts and the solver will try to find an answer set
where all weights are equal—which is not necessarily the minimal weight.

An alternative approach relies on the observation that, given a graph G = (V,E), an
edge e ∈ E is in at least one MinCut of G iff c(G) = c((V,E\{e}))+w(e), where c(G)
is the cost of the MinCut of G and w(e) is the weight of edge e. This can be captured
by distinct sets of rules that compute one MinCut for G and for each (V,E \ {e}), plus
a final rule that checks which edges have the above property. In this case, grounding is
not an issue, the repeated minimizations required to compute MinCuts lead to a very
large computation time (no results after 2 hours), while the individual sets of rules
can be executed in less than one second. Also in these cases, an interleaved grounding
and solving would help, by allowing the accumulation of MinCuts from iteration to
iteration, and combining the weights of MinCuts at the end to determine relevant edges.

3.2 ASP-Prolog for Decomposable Programs

Interleaving Grounding and Computation. The above three examples highlight a
real limitation of ASP solvers that employ the traditional ground-and-solve approach.
All three problems share a property that each program possesses a splitting sequence
corresponding to the steps that can be used in computing the answer of the problem.
This is characterized by the splitting sequence theorem in [11]. The theorem shows that,
for each answer set A of a program Π that has a splitting sequence 〈Si〉i≥0, there exists
a decomposition of A in a sequence of sets 〈Ai〉i≥0, such that Ai’s can be computed
step-by-step in the following fashion: (1) Compute an answer set A0 of the bottom
program bS0(Π) that consists of all rules in Π whose atoms belong to S0; (2) For each

96 T.C. Son, E. Pontelli, and T. Le

i ≥ 0, compute an answer set Ai+1 of the program eSi(bSi+1(Π) \ bSi(Π),
⋃

j≤i Aj).
In this definition, eS(Π,X) is a program containing rules determined as follows: (a)
remove all rules r ∈ Π such that either there is a positive atom in the body belonging to
S but not X or a negative atom belonging to S and X ; and (b) removing all occurrence
of a or not a for a ∈ S from the remaining rules. We refer to programs that admit a
splitting sequence as decomposable programs.

Decomposable programs can be seen as a sequence of lp-functions [9] 〈Πi〉i≥0 where
each lp-function Πi accepts a set of input predicates Ini and defines a set of output
predicates Outi, such that Ini ⊆

⋃
j<i Outj for every i. Under this view, decompos-

able programs are well-suited to encode iterative algorithms or dynamic programming
algorithms, that frequently occur in a variety of application domains.

Observe that every stratified program, whose answer sets can be computed in poly-
nomial time in the size of the program, is decomposable—while the converse does not
necessarily hold. Thus, computing answer sets of a decomposable program is not nec-
essarily a simple task. However, the computation of an answer set of a decomposable
program could potentially be done more efficiently, if the splitting theorem was applied
in the process. This is because the size of the program Πi depends not only on the orig-
inal program Π , but also on the answer sets computed up to that point (i.e.,

⋃
j<i Aj).

This requires the interleaving of grounding and solving. By interleaving grounding and
solving, some problems that cannot be solved with current ASP solvers may become
efficiently solvable—as the examples illustrated earlier in this paper.

This type of computation is quite natural to encode in the context of ASP-Prolog.
Assume that the program Π has been decomposed into a list L of components. The
following Prolog predicate can be used in ASP-Prolog to compute answer sets of Π .

solve([], Out, Out).

solve([H |T], In,A) ← use asp(H,H, In),H : model(M), collect facts(M,F),

solve(T, F,A).

To compute answer sets of the program Π with the list of components L, the goal
solve(L, [], A) should be issued. The predicate collect facts(M,F) col-
lects in a list F all elements of the answer set named M. Observe that the above imple-
mentation requires a prior decomposition of the program. The implementation could be
improved by introducing a module that analyzes the program and automatically identi-
fies the splitting sequence—a topic of future work.

Computing Iterative Algorithms. We will continue with a general methodology for
the implementation of iterative algorithms such as the supertree computation algorithm
detailed earlier. Observe that this type of algorithm can be characterized by a sequence
of values F (0), F (1), . . . , F (n), The computation stops when a boolean condition,
denoted by H , is satisfied. A generic procedure for computing iterative algorithms can
be roughly described as follows: (1) initialize settings and initialize counter i to 0; (2)
while the halting condition H is not satisfied, compute F i(v) using input F i−1(v) and
increment i; and (3) return F i(v).

Assume that the initialization (step (1) and the body of the loop in (2) can be
implemented by the ASP programs R and Q, such that Q has a splitting set S.
This assumption is, for example, met in the supertree computation problem—thus,
we can view algorithm 1 as a typical iterative algorithm and its implementation

Two Applications of the ASP-Prolog System 97

satisfies this condition—where the splitting set S of Q contains all but the atoms of
the form new pruned set(n), new member(b, n), and generated pruned set(n, a)
in Q. Under the above assumptions, we can use the following steps to implement the it-
erative algorithm in ASP: (a) add t as the last parameter for every predicate in S; (b) add
t+ 1 as the last parameter for every predicate not in S; and (c) add the declaration that
t is a constant in Q. The following pseudo code realizes the algorithm in ASP-Prolog:

solve(Q,R,A) ← solve(Q,R,A, 0).

solve(Q,R,A, 0) ← use asp(R,R, []), R : model(M), create file(M,File),

(satisfied(M,H) → A = File; solve(Q,A, F ile, 1)).

solve(Q,A, Prev, T) ← T > 0, create string(Paras,T, Prev),

use asp(Q,Q, [Paras]),Q : model(M), create file(M,File),

(satisfied(M,H) → A = File; solve(Q,A, F ile, T + 1)).

In the above code, create string(Paras,T,Prev) creates a string of the
form ‘-c t=@T @M’ where @T (@M) is replaced by the value of T (Prev) respec-
tively; and the predicate satisfied(M,H) indicates whether the current answer set
(described by module named M) satisfies the halting condition H on Line 3. This code
is problem specific and needs to be instantiated by the programmer. A simple way to
achieve this can be realized by adding a rule of the following form

incomplete ← not H.

to the program Q. For instance, for the program computing the supertree, the rule
incomplete ← new pruned set(N).

can be used. In this case, the test satisfied(M,H) is equivalent to checking the
membership of incomplete in M. We have applied this method in solving the problem
of computing the approximated supertree. We should note that, with this method, we
were able to compute the solutions for all three problems described in the three use
cases. In particular, we can solve the largest problem for computing the supertree that
was discussed in the literature (two trees, with 41 leaves and 31 leaves, respectively).

Before we conclude this section, we would like to point out that there are easy ways
to facilitate an interleaving between grounding and solving using current ASP solvers
(e.g., using a scripting language). However, we believe that an off-the-shelf ASP solver
with this feature would have a much larger impact, as it would open ASP to other types
of applications that have not been considered so far. Furthermore, we observe that this
feature could be implemented in a similar fashion as the ICLINGO system (as a matter
of fact, it could be a minor modification of ICLINGO).

4 Computing Equilibria

In this section, we will present another challenging application of ASP-Prolog. We de-
scribe a system, called ASP-PrologMCS , for computing the equilibrium semantics of
multi-context systems (MCS). Observe that the previous applications are concerned
with one program that can be decomposed into a sequence of programs, whose answer
sets can be computed sequentially. The second application is concerned with a set of
inter-connected programs whose semantics (an equilibrium) is a sequence of models. In
many cases, these models might not be computed sequentially as in the first application.
Before we detail the implementation of ASP-PrologMCS let us discuss the algorithms
that can be used in computing the equilibrium semantics of a MCS.

98 T.C. Son, E. Pontelli, and T. Le

Let M = (C1, . . . , Cn) be a MCS, where the logic for each context is logic pro-
gramming under answer set semantics [10]. For each context Ci = (Li, kbi, bri) and
for each bridge rule r in bri, we introduce a new set of “tagged” atoms in the language
of Li, of the form t(ck, pk), for k = 1, . . . ,m and ck �= i. We define the program R(r)
that consists of the following rules (for k = 1, . . . ,m and ck �= i):

0 {t(ck, pk)} 1 ←
s ← t(c1, p1), . . . , t(cj , pj), not t(cj+1, pj+1), . . . , not t(cm, pm).

where (ci, pi) is replaced by t(ci, pi). We denote the second rule above by t(r). Let
Pi = kbi ∪

⋃
r∈bri

R(r) and MP = (P1, . . . , Pn). The set of literals of the form
t(k, p) occurring in Pi is denoted by Ti. For the MCS M1 in Example 2.1, we have that
T1={t(2, d)} and T2={t(1, b)}.

For a belief state S=(S1, . . . , Sn) of M , we define t(i, S)={t(j, p)|t(j, p) ∈
Ti and p ∈ Sj}. We can show that a belief state S=(S1, . . . , Sn) is an equilibrium of
M if Si∪t(i, S) is an answer set of Pi. Continuing with the MCS M1 in Example 2.1,
S=({a}, {d}) is an equilibrium of M1 because we have that t(1, S)={t(2, d)} and
t(2, S)=∅; in this case, {a}∪t(1, S) is an answer set of P1, and {d}∪t(2, S)={d} is an
answer set of P2. On the other hand, S=({b}, {d}) is not an equilibrium of M1. We can
observe that t(1, S)={t(2, d)} and t(2, S)={t(1, b)}; thus, {d}∪t(2, S)={d, t(1, b)}
is an answer set of P2, but {b}∪t(1, S)={b, t(2, d)} is not an answer set of P1.

Two answer sets Zi and Zj of Pi and Pj are compatible if: t(i, p) ∈ Zj iff p ∈ Zi

and t(i, p) ∈ Tj , and t(j, p) ∈ Zi iff p ∈ Zj and t(j, p) ∈ Ti. Again, consider the MCS
M1 in Example 2.1, {a} is compatible with {c}; {a, t(2, d)} is compatible with {d};
however, {a} is not compatible with {d}.

We can show that for a sequence of answer sets Z=(Z1, . . . , Zn) of (P1, . . . , Pn),
Z ′=(Z1 \T1, . . . , Zn\Tn) is an equilibrium of M if Zi is compatible with Zj for every
pair of i �= j. This enables a naive computation of the equilibrium in a generate-and-test
fashion: (i) Generate a belief state Z = (Z1, . . . , Zn) of (P1, . . . , Pn); (ii) Check for
compatibility of Z . This is the first algorithm that we implemented in ASP-PrologMCS .

The naive algorithm, however, requires an excessive amount of memory when deal-
ing with programs that have a large number of answer sets. We can exploit the compat-
ibility between answer sets of the programs Pi’s in the construction of an equilibrium
S = (S1, . . . , Sn) of M in an incremental fashion.5 Given a MCS M = (C1, . . . , Cn),
the algorithm needs to first compute MP = (P1, . . . , Pn) and then compute a sequence
of compatible answer sets Z = compatible(MP). If Z is not a failure, then the
result will be S = (Z1 \ T1, . . . , Zn \ Tn). The function that computes a sequence
of compatible answer sets (compatible) is given in Algorithm 2. Observe that the
algorithm has two non-deterministic choices.

Both the naive and the incremental algorithms can compute MCS with arbitrary
topologies, and they can be easily implemented in ASP-Prolog. Before discussing this,
we consider some enhancements that take into consideration the topology of MCS. We
define the dependency graph GM = (VM , EM) of a MCS M = (C1, . . . , Cn) as
follows:
◦ The set of vertices is VM = {1, . . . , n};
◦ (i, j) ∈ EM if (i : p) appears in the body of some bridge rule in brj and i �= j.

5 This is possible since M is reducible [3].

Two Applications of the ASP-Prolog System 99

Algorithm 2. compatible(MP)

1: Input: MP = (P1, . . . , Pn)
2: Nondeterministically select Z in compatible(P1, . . . , Pn−1)
3: Assume that Z = (Z1, . . . , Zn−1)
4: if Z �= fail then
5: Let Q1

i = {← not p | t(n, p) ∈ Zi} for i < n
6: Let Q2

i = {t(i, p) ←| t(i, p) ∈ Tn and p ∈ Zi} for i < n
7: Let Q3

i = {← t(i, p) | t(i, p) ∈ Tn and p �∈ Zi} for i < n

8: Pn = Pn ∪
⋃n−1

i=1 (Q
1
i ∪Q2

i ∪Q3
i)

9: Select an answer set Zn of Pn, Zn compatible with Zj for j ≤ n− 1
10: return Z = (Z1, . . . , Zn−1, Zn)
11: end if
12: return fail

Intuitively, an edge (i, j) in EM indicates that if S = (S1, . . . , Sn) is an equilibrium of
M then the applicability of a bridge rule in brj depends on the belief set Si. It is well-
known that the graph GM specifies a topology that can be used in computing equilibria
of M . For instance, if (i, j) is an edge in GM and GM does not contain the edge (j, i),
it is sensible to compute the ith belief set before computing the jth belief set. This has
been utilized in the systems DMCS and DMCSOPT [6,1].6

Let us define an ordering ≺M between the contexts, where i ≺M j if there exists a
path from i to j in GM . We consider the following cases:

• ≺M is a partial order: it can be extended to a total order ≺∗
M over the set {1, . . . , n}.

• ≺M contains a cycle: let SCC1, . . . , SCCt be a set of strongly connected com-
ponents (SCC) of GM , SCCi = (Vi, Ei), such that VM =

⋃t
i=1 Vi and EM =

⋃t
i=1 Ei. Furthermore, the following induced order is a partial order over the SCCs:

SCCi≺MSCCj iff there exists some si∈SCCi and sj∈SCCj such that si≺Msj .

The order ≺M can be used for computing the equilibria of M as follows:

• Add the computation of the dependency graph GM , the SCCs of GM , and the order-
ing ≺M before the computation of MP.

• Sort P1, . . . , Pn using ≺M on the SCCs of GM and provide Algorithm 2 with the
ordering ≺M (for programs in the same SCC, an arbitrary order is used).

• Modify Algorithm 2 to eliminate the compatibility checking between Zn and Zi if
n ≺M i does not hold (Line 9).

The next section discusses the implementation.

4.1 ASP-PrologMCS

The current implementation of ASP-PrologMCS computes equilibria for MCS of the
formM = (C1, . . . , Cn) where the logic underlying each context is logic programming

6 In these systems, the dependency graph is defined in reverse order and used somewhat differ-
ently from our proposal.

100 T.C. Son, E. Pontelli, and T. Le

under answer set semantics [10]. Extending ASP-PrologMCS to allow different seman-
tics can easily be introduced since ASP-Prolog can support different types of semantics
for different modules. We assume that each Ci = (Li, kbi, bri) is stored in a file named
pi containing pi = kbi ∪ bri. The main predicates of ASP-PrologMCS are:

• load MCS(Input): this predicate prepares the computation of the equilibrium of the
MCS whose contexts are specified by the list Input. Its execution will:

◦ Create a Prolog module named pi, for each pi ∈ Input, and compute Pi = kbi ∪⋃
r∈bri

R(r) (as defined earlier);
◦ Create a dependency graph between contexts. This is achieved by defining a pred-

icate dependency/4 where, for each literal (ck : pk) in a bridge rule r of the
context ci such that ck �= ci, we assert the atom dependency(ci, s, ck, pk). Intu-
itively, the atom dependency(i, a, j, p) states that there is a dependence of atom a
in the context i to atom p in the context j.

• compute equilibrium(Input, Answer): two versions of this predicate have
been implemented. The first one implements the naive generate-and-test algorithm
and the second one implements the modified algorithm discussed above. The imple-
mentation of this predicate makes use of the infrastructure provided by ASP-Prolog.
Execution of this predicate will: load the files in Input, which is a list of files rep-
resenting the MCS, compute the answer sets of each program in Input (via the
predicate use asp/3), and call the predicate that implements the naive algorithm or
the Algorithm 2 to obtain the equilibrium.

• generate and test(Input, Answer): this predicate implements the generate
and test algorithm and returns the answer.

• compatible(Input, Answer): this implements the algorithm compatible and
returns the answer.

4.2 Experiments

We experimented ASP-PrologMCS with the set of benchmarks downloaded from the
DMCS system website.7 The benchmarks include five domains (Diamond, Ring,

Zig-zag, House and Binary tree). The name of each domain characterizes the
topology of the MCS, for example, in an instance of the Diamond domain, the contexts
are combined by multiple diamonds in a row.

Both algorithms were used in testing this set of problems. The experiments were
successful, showing a competitive performance. The only limitation encountered was
in problems where selected contexts have a large number of answer sets—e.g., sev-
eral thousands—in which case the answer sets occasionally saturated the streams cre-
ated by the underlying Prolog system—SICStus Prolog, used in the current imple-
mentation, imposes limitations on the number of concurrent open streams (around 200
streams). Only the generate-and-test algorithm can successfully solve all problems, due
to the limitations on the numbers of opened streams; the second algorithm cannot be
used for MCS with more than 200 contexts. However, whenever possible both algo-
rithms performed well. Overall, ASP-PrologMCS performs well in the search for an

7 www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html

www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html

Two Applications of the ASP-Prolog System 101

equilibrium after the contexts have been loaded. The complete evaluation can be found
at www.cs.nmsu.edu/˜tile/aspmcs/experiment.html.

4.3 Application of ASP-PrologMCS

Although ASP-PrologMCS was developed for MCSs, an interesting by-product of the
system is that it can be used to compute answer sets of decomposable logic programs.

Let Π be a decomposable logic program. For simplicity, let us assume that Π has a
splitting set S. Let us consider a partition (Π1, Π2) of Π , such that Π1 is the bottom of
Π with respect to S, i.e., Π1 = bS(Π) and Π2 = Π \Π1. Let M = (C1, C2) where
Ci = (Li, Πi, bri), Li is the logic of logic programming under answer set semantics,
br1 = ∅ and br2 = {l ← c1 : l | l ∈ S}. It is easy to see that X is an answer set of Π
iff X = X1 ∪X2 such that (X1, X2) is an equilibrium of M . This means that the equi-
librium of the MCS (C1, C2) can be computed by Algorithm 2 without backtracking,
i.e., ASP-PrologMCS could provide an alternative platform for the implementation of
decomposable programs and iterative algorithms, as the above observation can be gen-
eralized to a splitting sequence of Π . We will show next that ASP-PrologMCS could be
used to explore heuristics in answer set programming.

Let us consider the well-known graph coloring problem. Given a undirected graph
(V,E), we would like to know whether the graph has a 3-coloring solution. The ASP
encoding for computing a 3-coloring solution of a graph (V,E), denoted by Π(V,E),
is well-known and is omitted here to save space.

Table 1. ASP-PrologMCS in 3-coloring

Instance colorable
ASP-PrologMCS

Instance colorable
ASP-PrologMCS

Load MCS total Load MCS total
p10000e10000 y 20.63 10.16 30.79 p10000e11000 y 22.75 12.56 35.31
p10000e12000 y 24.99 13.53 38.52 p10000e13000 y 25.74 17.87 43.61
p10000e14000 y 27.42 14.93 42.35 p10000e15000 y 31.93 16.68 48.61
p10000e16000 y 37.37 20.93 58.30 p10000e17000 y 52.71 18.99 71.70
p10000e18000 y 50.73 12.51 63.24 p10000e19000 y 50.46 11.79 62.25
p10000e20000 y 53.57 10.80 64.37 p10000e21000 n 59.02 4.51 63.53

A well-known heuristic for solving the 3-coloring problem is as follows. Let the
degree of a node X , denoted by degree(X), be the number of edges that have one
endpoint in X . Let R(V,E) = (V ′, E′) be the graph obtained from (V,E) by removing
all vertices whose degree is less than 3 and all the edges to/from these vertices. It is easy
to see that Π(V,E) has an answer set iff Π(V ′, E′) does. This process can be repeated
until the degree of all vertices in the graph is at least three (including the possibility
of the graph becoming empty). This can be used to create a partition (V1, . . . , Vn) of
V , where Vi is the set of vertices with degree less than 3 in the graph consisting of the
vertices

⋃i
j=1 Vj and the edges among them that belong to E. Intuitively, Vi is the set of

nodes removed at the ith iteration of the process described above. Using this partition,
we can define a MCS M = (C1, . . . , Cn) where, for each i, (i) kbi contains the rules

www.cs.nmsu.edu/~tile/aspmcs/experiment.html

102 T.C. Son, E. Pontelli, and T. Le

Π(Vi, Ei), where Ei is the set of edges from E between nodes in Vi; (ii) bri contains
the following constraints: for each (p, q) ∈ E such that q ∈ Vi and p ∈ Vk with k < i:

← (k : color(p, C)), color(q, C).

The Prolog code for computing the above partition is straightforward. We exper-
imented this idea using the instances of the graph coloring problems obtained from
assat.cs.ust.hk/Assat-2.0/coloring-2.0.html. The results of this experi-
ment are presented in Table 1. In this table, each instance is of the form pnem, where n
is the number of vertices and m is the number of edges in the graph. All the reported
problems are randomly generated. The results show the simplicity of adding heuris-
tics in the process. The execution times are relatively high compared to optimized ASP
solvers (e.g., CLASP), due to the relative cost of decomposing the graph into MCS, but
show success where other systems (e.g., standard Prolog or CLP(FD)) would fail.

5 Conclusions

In this paper, we presented two applications of the ASP-Prolog system. The first ap-
plication deals with a large class of logic programs that are computationally easy, yet
sometimes unsolvable for current ASP solvers. We showed how answer sets of this type
of programs can be computed using the ASP-Prolog platform. The experimental results
with the use cases highlight the potential of ASP-Prolog as a viable platform for the use
of ASP in practical problems.

The second application is a centralized MCS system, ASP-PrologMCS , built using
the facilities provided by ASP-Prolog. We described the implementation of the com-
putation of equilibria semantics and encouraging experimental results. The system im-
plements various algorithms that are required for the computation of equilibria of MCS
systems; these are made possible by the specific capabilities of ASP-Prolog. The sys-
tem can be used in applications that can be formulated as MCSs. The experimental
evaluation is promising. Nevertheless, it also highlighted a need for improving the per-
formance of ASP-PrologMCS . We believe that this can be achieved via targeted opti-
mizations. In particular, we propose to explore mechanisms to optimize backtracking
among modules (e.g., through caching mechanisms) and communication. This will be
one of our goals in the nearest future.

As another future work of both applications, we propose to explore the role that the
specific capabilities of ASP-Prolog (e.g., constraint solving capabilities) can have.

References

1. Bairakdar, S.E.-D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The DMCS Solver
for Distributed Nonmonotonic Multi-Context Systems. In: Janhunen, T., Niemelä, I. (eds.)
JELIA 2010. LNCS, vol. 6341, pp. 352–355. Springer, Heidelberg (2010)

2. Balduccini, M., Gelfond, M.: The Language ASP{f} with arithmetic expressions and
consistency-restoring rules. CoRR, abs/1301.1387 (2013)

3. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems.
In: AAAI, pp. 385–390 (2007)

assat.cs.ust.hk/Assat-2.0/coloring-2.0.html

Two Applications of the ASP-Prolog System 103

4. Castro, L., Swift, T., Warren, D.: XASP: Answer Set Programming with XSB and Smodels.
SUNY Stony Brook (2002), xsb.sourceforge.net/packages/xasp.pdf

5. Citrigno, S., et al.: The DLV system: Model generator and application frontends. In: WLP,
pp. 128–137 (1997)

6. Dao-Tran, M., et al.: Distributed nonmonotonic multi-context systems. In: KR. AAAI Press
(2010)

7. Elkhatib, O., Pontelli, E., Son, T.C.: ASP-Prolog: A System for Reasoning about Answer
Set Programs in Prolog. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 148–162.
Springer, Heidelberg (2004)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260–265. Springer, Heidelberg (2007)

9. Gelfond, M., Gabaldon, A.: From functional specifications to logic programs. In: ILPS, pp.
355–370. MIT Press (1997)

10. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: ICLP, pp. 579–597
(1990)

11. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, pp. 23–38. MIT Press (1994)
12. Maddison, W., Maddison, D.: MacClade 4: Analysis of Phylogeny and Character Evolution.

Sinauer (2000)
13. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm, pp. 375–398. Springer (1999)
14. Nguyen, N.-H., Son, T.C., Pontelli, E., Sakama, C.: ASP-prolog for negotiation among dis-

honest agents. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp.
331–344. Springer, Heidelberg (2011)

15. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3,4), 241–273 (1999)

16. Pontelli, E., et al.: ASP at Work: An ASP Implementation of PhyloWS. In: ICLP. LIPICs
(2012)

17. Pontelli, E., Son, T.C., Nguyen, N.-H.: Combining Answer Set Programming and Prolog: the
ASP-Prolog System. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 452–472. Springer,
Heidelberg (2011)

18. Sanderson, M., Purvis, A., Henze, C.: Phylogenetic Supertrees: Assembling the Trees of
Life. Trends Ecol. Evol. 13, 105–109 (1998)

19. Semple, C., Steel, M.: A Supertree Method for Rooted Trees. Di. Ap. Math. 105, 147–158
(2000)

20. Simons, P., Niemelä, N., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

21. Son, T.C., Pontelli, E., Nguyen, N.-H.: Planning for multiagent using ASP-Prolog. In: Dix,
J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol. 6214, pp. 1–21. Springer, Heidelberg
(2010)

22. Yokoo, M., et al.: The Distributed Constraint Satisfaction Problem: Formalization and Algo-
rithms. IEEE Transactions on Knowledge and Data Engineering 10(5), 673–685 (1998)

23. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review.
Autonomous Agents and Multi-Agent Systems 3(2), 185–207 (2000)

xsb.sourceforge.net/packages/xasp.pdf

	Two Applications of the ASP-Prolog System:Decomposable Programs and Multi-context Systems
	1 Introduction and Motivation
	2 Background: Logic Programming, ASP-Prolog, and MCS
	3 Decomposable Programs
	3.1 Use Cases
	3.2 ASP-Prolog for Decomposable Programs

	4 Computing Equilibria
	4.1 ASP-PrologMCS
	4.2 Experiments
	4.3 Application of ASP-PrologMCS

	5 Conclusions
	References

