
Abstract Modular Inference Systems and Solvers

Yuliya Lierler1 and Miroslaw Truszczynski2

1 University of Nebraska at Omaha
ylierler@unomaha.edu

2 University of Kentucky
mirek@cs.uky.edu

Abstract. Integrating diverse formalisms into modular knowledge representa-
tion systems offers increased expressivity, modeling convenience and compu-
tational benefits. We introduce the concepts of abstract inference modules and
abstract modular inference systems to study general principles behind the de-
sign and analysis of model-generating programs, or solvers, for integrated multi-
logic systems. We show how modules and modular systems give rise to transition
graphs, which are a natural and convenient representation of solvers, an idea pi-
oneered by the SAT community. We illustrate our approach by showing how it
applies to answer-set programming and propositional logic, and to multi-logic
systems based on these two formalisms.

1 Introduction

Knowledge representation and reasoning (KR) is concerned with developing formal
languages and logics to model knowledge, and with designing and implementing cor-
responding automated reasoning tools. The choice of specific logics and tools depends
on the type of knowledge to be represented and reasoned about. Different logics are
suitable for common-sense reasoning, reasoning under incomplete information and un-
certainty, for temporal and spatial reasoning, and for modeling and solving boolean
constraints, or constraints over larger, even continuous domains. In applications in areas
such as distributed databases, semantic web, hybrid constraint modeling and solving, to
name just a few, several of these aspects come to play. Accordingly, often diverse logics
have to be accommodated together.

Modeling convenience is not the only reason why diverse logics are combined into
modular hybrid KR systems. Another motivation is to exploit in reasoning the trans-
parent structure that comes from modularity, computational strengths of individual
logics, and synergies that arise when they are put together. Constraint logic program-
ming [10] and satisfiability modulo theories (SMT) [20,2] are well-known examples
of formalisms stemming directly from such considerations. More recent examples in-
clude constraint answer-set programming (CASP) [13] that integrates answer-set pro-
gramming (ASP) [16,18] with constraint modeling languages [22], and “multi-logic”
formalisms PC(ID) [17], SM(ASP) [14] and ASP-FO [4] that combine modules ex-
pressed as logic theories under the classical semantics with modules given as answer-set
programs.

The key computational task arising in KR is that of model generation. Model-
generating programs or solvers, developed in satisfiability (SAT) and ASP proved to be

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 49–64, 2014.
c© Springer International Publishing Switzerland 2014



50 Y. Lierler and M. Truszczynski

effective in a broad range of KR applications. Accordingly, model generation is of crit-
ical importance in modular multi-logic systems. Research on formalisms listed above
resulted in fast solvers that demonstrate gains one can obtain from their heterogeneous
nature. However, the diversity of logics considered and low-level technical details of
their syntax and semantics obscure general principles that are important in the design
and analysis of solvers for multi-logic systems.

In this paper we address this problem by proposing a language for talking about mod-
ular multi-logic systems that (i) abstracts away the syntactic details, (ii) is expressive
enough to capture various concepts of inference, and (iii) is based only on the weakest
assumptions concerning the semantics of underlying logics. The basic elements of this
language are abstract inference modules (or just modules). Collections of abstract infer-
ence modules constitute abstract modular inference systems (or just modular systems).
We define the semantics of abstract inference modules and show that they provide a
uniform language capturing different logics, diverse inference mechanisms, and their
modular combinations. Importantly, abstract inference modules and abstract modular
inference systems give rise to transition graphs of the type introduced by Nieuwenhuis,
Oliveras, and Tinelli [20] in their study of SAT and SMT solvers. As in that earlier
work, our transition graphs provide a natural and convenient representation of solvers
for modules and modular systems. In this way, abstract modular inference systems and
the corresponding framework of transition graphs are useful conceptualizations clarify-
ing computational principles behind solvers for multi-logic knowledge representation
systems and facilitating systematic development of new ones.

We start the paper by introducing abstract inference modules.We then adapt transi-
tion graphs of Nieuwenhuis et al. [20] to the formalism of abstract inference modules
and use them to describe algorithms for finding models of modules. In Section 4, we
introduce abstract modular inference systems, extend the concept of a transition graph
to modular systems, and show that transition graphs can be used to formalize search
for models in this setting, too. We conclude by discussing related work, recapping our
contributions, and commenting on future work. Throughout the paper, we illustrate our
approach by showing how it applies to propositional logic and answer-set programming,
and to multi-logic systems based on these two formalisms. A version of the paper con-
taining proofs is available at http://www.cs.uky.edu/ai/ams.pdf.

2 Abstract Inference Modules

We start with some notation. Let σ be a fixed infinite vocabulary (a set of propositional
atoms). We write Lit(σ) for the set of all literals over σ. For a set M ⊆ Lit(σ), we
define M+ = σ∩M and M− = {a ∈ σ : ¬a ∈ M}. A literal l ∈ Lit(σ) is unassigned
by a set of literals M ⊆ Lit(σ) if M contains neither l nor its dual literal l. A set M of
literals over σ is consistent if for every literal l ∈ Lit(σ), l /∈ M or l /∈ M . We denote
the set of all consistent subsets of Lit(σ) by C(σ).

Definition 1. An abstract inference module over a vocabulary σ (or just a module, for
short) is a finite set of pairs of the form (M, l), where M ∈ C(σ), l ∈ Lit(σ) and
l /∈ M . These pairs are called inferences of the module. For a module S, σ(S) denotes
the set of all atoms that appear in inferences of S.

http://www.cs.uky.edu/ai/ams.pdf


Abstract Modular Inference Systems and Solvers 51

Intuitively, an inference (M, l) in a module indicates support for inferring l when-
ever all literals in M are given. We note that if (M, l) is an inference and l ∈ M , the
inference is an explicit indication of a contradiction. Figure 1(a) shows all inferences
over the vocabulary {a}. Figures 1(b) and 1(c) give examples of modules over the vo-
cabulary {a}. Here and throughout the paper, we present inferences as directed edges
and modules as bipartite graphs.

(a)
a

∅

¬a

∅

¬a

{a}

a

{¬a}

(b)

∅

a

{¬a}

(c)

{a}

¬a

∅ {¬a}

a

Fig. 1. All inferences and two inference modules over the vocabulary {a}

A set M ⊆ Lit(σ) is consistent with a set X ⊆ σ if M+ ⊆ X and M− ∩X = ∅. A
literal l ∈ Lit(σ) is consistent with a set X ⊆ σ if {l} is consistent with X . Let S be an
abstract inference module. A set X ⊆ σ of atoms is a model of S if for every inference
(M, l) ∈ S such that M is consistent with X , l is consistent with X , too. For example,
any set of atoms that contains a is a model of the module in Figure 1(b), whereas no
set of atoms that does not contain a is such. The module in Figure 1(c) has no models
due to inferences (∅, a) and (∅,¬a). A module is satisfiable if it has models, and is
unsatisfiable otherwise. The module in Figure 1(b) is satisfiable, the one in Figure 1(c)
is unsatisfiable.

Two modules that have the same models are equivalent.

Proposition 1. Abstract inference modules S1 and S2 are equivalent if and only if they
have the same models contained in the set σ(S1) ∪ σ(S2).

The semantics of modules is given by the set of their models. A module S over a
vocabulary σ entails a literal l ∈ Lit(σ), written S |≈ l, if for every model X of S,
l is consistent with X . Furthermore, S entails l with respect to a set M ⊆ Lit(σ) of
literals, written S |≈M l, if wheneverM is consistent with a modelX of S, l is consistent
with X , too. Modules are sound with respect to their semantics:

Proposition 2. Let S be a module and (M, l) an edge in S. Then S |≈M l.

In the paper we often consider unions of (finitely many) modules. We use the sym-
bol ∪ to denote the union of modules.

Proposition 3. Let S1 and S2 be abstract inference modules. A set X of atoms is a
model of S1 ∪ S2 if and only if X is a model of S1 and S2.

Modules are not meant for modeling knowledge. Representations by means of logic
theories are usually more concise. Furthermore, the logic languages align closely with
natural language, which facilitates modeling and makes the correspondence between
logic theories and knowledge they represent direct. Modules lack this connection. The
power of modules comes from the fact that they provide a uniform, syntax-independent



52 Y. Lierler and M. Truszczynski

way to describe theories and inference methods from different logics. We illustrate this
property of modules by showing that they can capture theories and inferences in clas-
sical propositional logic and in answer-set programming [8,16,18] (where theories are
commonly called programs).

Let T be a finite CNF propositional theory over σ and let σT be the set of atoms
that actually appear in T . We first consider the inference method given by the classical
entailment. By Ent(T ) we denote the module consisting of pairs (M, l) that satisfy the
following conditions: M ∈ C(σT ), l ∈ Lit(σT ) \ M , and T ∪ M |= l. Figure 1(b)
shows the module Ent({a}). Similarly, Figure 2 presents the module Ent(T ), where T
is the theory:

{a ∨ b,¬a ∨ ¬b}. (1)

We note that Ent(T ) has two models contained in {a, b}: {a} and {b}.1 More generally,
every model X of Ent(T ) contains exactly one of a and b.

{a} {a, b}

¬b

{b}

¬a

{¬a}

b

{¬a,¬b}

a

{¬b}

Fig. 2. Abstract module Ent(T ) for the theory T given by (1)

Focusing on specific inference rules of propositional logic also gives rise to abstract
modules. Unit Propagate is a standard inference rule commonly used when reasoning
with CNF theories. This inference rule is essential to all satisfiability (SAT) solvers,
programs that compute models of CNF theories or determine that no models exist. The
Unit Propagate rule gives rise to the moduleUP(T ) that consists of all pairs (M, l) that
satisfy the following conditions: M ∈ C(σT ), l ∈ Lit(σT ) \ M , and T has a clause
C ∨ l (modulo reordering of literals) such that for every literal u of C, u ∈ M .

Let T be the theory (1). The module Ent(T ) in Figure 2 coincides with UP(T ).
Thus, for the theory (1) the Unit Propagate rule captures entailment.

We say that a moduleS is equivalent to a propositional theory T if they have the same
models. Clearly, the module in Figure 2 is equivalent to the propositional theory (1).
This is an instance of a general property.

Proposition 4. For every propositional theory T (respectively, CNF formula T con-
taining no empty clause), Ent(T ) (respectively, UP(T )) is equivalent to T .

Unit Propagate is the primary inference rule of most SAT solvers. In the case of
answer-set programming, most solvers rely on several inference rules associated with
reasoning under the answer-set semantics. For instance, the classical answer-set solver
SMODELS [19] exploits four inference rules: the Unit Propagate rule, the Unfounded
rule, the All Rules Cancelled rule, and the Backchain True rule. To state these rules we
introduce some definitions and notations commonly used in logic programming.

1 We identify a model, an interpretation, of a propositional theory with the set of atoms that are
assigned True in the model.



Abstract Modular Inference Systems and Solvers 53

A logic program, or simply a program, over σ is a finite set of rules of the form

a0 ← a1, . . . , a�, not a�+1, . . . ,not am, (2)

where each ai, 0 ≤ i ≤ m, is an atom from σ. The expression a0 is the head of the rule.
The expression on the right hand side of the arrow is the body. For a program Π and an
atom a, Bodies(Π, a) denotes the set of the bodies of all rules in Π with the head a.
We write σΠ for the set of atoms that occur in a program Π .

For the body B of a rule (2), we define s(B) = {a1, . . . , a�,¬a�+1, . . . ,¬am}. In
some cases, we identify B with the conjunction of the elements in s(B), and we often
interpret a rule (2) as the propositional clause

a0 ∨ ¬a1 ∨ . . . ∨ ¬a� ∨ a�+1 ∨ . . . ∨ am. (3)

For a program Π , we write Πcl for the set of clauses (3) corresponding to all rules in
Π . We assume the reader is familiar with the definition of an answer set [8], as well
as the concept of unfounded sets [25]. For a set M of literals and a program Π , we
write U(M,Π) to denote a set that is unfounded on M w.r.t. Π (typically, such set
will be identified by some algorithmic method, but a specific way in which we find it is
immaterial for the purposes of this paper).

We are now ready to define the SMODELS inference rules. For a program Π , a set
M ∈ C(σΠ) of literals, and a literal l ∈ Lit(σΠ) \M :

Unit Propagate: derive l if Πcl contains clause C∨ l such that for every u ∈ C, u ∈ M ;

Unfounded: derive l if l = ¬a and a ∈ U(M,Π);

All Rule Cancelled: derive l if l = ¬a and for every B ∈ Bodies(Π, a), there is
u ∈ s(B) such that u ∈ M ;

Backchain True: derive l, if for some rule a ← B ∈ Π , a ∈ M , l ∈ s(B), and for every
B′ ∈ Bodies(Π, a) \ {B}, there is u ∈ s(B′) such that u ∈ M ;

Note that UP(Π) and UP(Πcl) are identical (and equivalent) even though they
concern different logics.

The four rules above give rise to abstract inference modules UP(Π), UF (Π),
ARC (Π) and BC (Π), respectively, each defined by taking the definition of the rule
as the condition for (M, l) to be an inference of the module. We note that the infer-
ence rule All Rule Cancelled is subsumed by the inference rule Unfounded. That is,
ARC (Π) ⊆ UF (Π). This is the only inclusion relation between distinct modules in
that set that holds for every program.

We say that a module S is equivalent to a program Π if for every X ⊆ σΠ , X is a
model of S if and only if X is an answer set of Π .2 None of the four modules UP(Π),
UF (Π), ARC (Π) and BC (Π) alone is equivalent to the underlying programΠ . How-
ever, some combinations of these modules are. Let us define

UPUF (Π) = UP(Π) ∪ UF (Π)

2 This is not the standard concept of equivalence as it is restricted to models over the vocabulary
of the program. It is sufficient, however, for our purpose of studying algorithms to compute
answer sets.



54 Y. Lierler and M. Truszczynski

and
smodels(Π) = UP(Π) ∪ UF (Π) ∪ ARC (Π) ∪ BC (Π).

Since ARC (Π) ⊆ UF (Π), it is not necessary to list the module ARC (Π) explicitly
in the union above. We do so, as the rule All Rule Cancelled is computationally cheaper
than the rule Unfounded and in practical implementations the two are distinguished.

The following result restates well-known properties of the inference rules [12] in
terms of equivalence of modules and programs.

Proposition 5. Every logic program Π is equivalent to the modules UPUF (Π) and
smodels(Π).

Let Π be the program
a ← not b
b ← not a.

(4)

This program has two answer sets {a} and {b}. Since these are also the only two mod-
els over the vocabulary {a, b} of the module in Figure 2, the program and the module
are equivalent. The module represents the reasoning mechanism of entailment with re-
spect to the answer sets of the program. Furthermore, that module also represents the
program (4) and the reasoning mechanism captured by the module smodels(Π).

Two other modules associated with program (4) are given in Figure 3. Figure 3(a)
shows the module UP(Π), which represents the program (4) and the reasoning mech-
anism based on Unit Propagate. This module is not equivalent to program (4). Indeed,
{a, b} is its model but not an answer set of (4). Figure 3(b) shows the module ARC(Π)
(which in this case happens to coincide with both UF (Π) and BC (Π)). Also this mod-
ule is not equivalent to program (4) as ∅ is its model but not an answer set of Π . The
union of the two modules in Figure 3 captures all four inference rules and is indeed
equal to the module in Figure 2.

(a)

{¬a}

b

{¬a,¬b} {¬b}

a

(b)

{a}

¬b

{a, b} {b}

¬a

Fig. 3. Two abstract modules based on the program (4)

3 Abstract Modular Solver: AMS

Finding models of logic theories and programs is a key computational task in declara-
tive programming. Nieuwenhuis et al. [20] proposed to use transition graphs to describe
search procedures involved in model-finding algorithms commonly called solvers, and
developed that approach for the case of SAT. Their transition graph framework can ex-
press DPLL, the basic search procedure employed by SAT solvers, and its enhancements
with techniques such as the conflict driven clause learning. Lierler and Truszczyn-
ski [12,14] proposed a similar framework to describe and analyze the answer-set pro-
gramming solvers SMODELS, CMODELS [9] and CLASP [6], as well as a PC(ID) solver



Abstract Modular Inference Systems and Solvers 55

MINISAT(ID) [17]. In the previous section, we argued that theories and programs can be
represented by equivalent abstract inference modules (Propositions 4 and 5). We now
show that the idea of a transition graph can be generalized to the setting of modules,
leading to an abstract perspective on the problem of search for models of modules, and
unifying the approaches to the model-finding task.

Let δ be a finite vocabulary. A state over δ is either a special state ⊥ (the fail state)
or a sequence M of distinct literals over δ, some possibly annotated by Δ, which marks
them as decision literals, such that:

1. the set of literals in M is consistent or M = M ′l, where the set of literals in M ′ is
consistent and contains l, and

2. if M = M ′lΔM ′′, then l is unassigned in M ′.

For instance, if δ = {a, b}, then ∅, a, ¬aΔ b, ¬a bΔ a and ⊥ are examples of states
over δ. If M is a state, by [M ] we denote the set of the literals in M (that is, we drop
annotations and ignore the order). Our definition of a state allows for inconsistent states.
However, inconsistent states are of a very specific form — the inconsistence arises
because of the last literal in the state. There is also a restriction on annotated (decision)
literals. A decision literal must not appear in a state following another occurrence of
that literal or its dual (annotated or not). Intuitively, a literal annotated by Δ denotes a
current assumption: thus once a literal is assigned in a state, there is no point of later
making an assumption concerning whether it holds or not.

Each module S determines its transition graph AMS . The set of nodes of AMS con-
sists of all states relative to σ(S). The edges of the graph AMS are specified by the
transition rules listed in Figure 4. The first rule depends on the module, the last three
do not. They have the same form no matter what module we consider. Hence, we omit
the reference to the module from its notation.

PropagateS : M −→ Ml if

{
[M ] is consistent, l /∈ [M ], and
for some M ′ ⊆ [M ], (M ′, l) is an inference of S

Fail: M −→ ⊥ if [M ] is inconsistent and M contains no decision literals

Backtrack: P lΔ Q −→ P l if

{
[P lΔ Q] is inconsistent, and
Q contains no decision literals

Decide: M −→ M lΔ if [M ] is consistent and l is unassigned by [M ]

Fig. 4. The transition rules of the graph AMS

The graph AMS can be used to decide whether a module S has a model. The follow-
ing properties are essential.

Theorem 1. For every module S,

(a) graph AMS is finite and acyclic,
(b) for any terminal state M of AMS other than ⊥, [M ]+ is a model of S,
(c) state ⊥ is reachable from ∅ in AMS if and only if S is unsatisfiable (has no models).



56 Y. Lierler and M. Truszczynski

Thus, to decide whether a module S has a model it is enough to find in the graph
AMS a path leading from node ∅ to a terminal node M . If M = ⊥, S is unsatisfiable.
Otherwise, [M ]+ is a model of S. For instance, let S be a module in Figure 2. Below we
show a path in the transition graph AMS with every edge annotated by the corresponding
transition rule:

∅ Decide−→ bΔ
PropagateS−→ bΔ ¬a. (5)

The state bΔ ¬a is terminal. Thus, Theorem 1(b) asserts that {b} is a model of S. There
may be several paths determining the same model. For instance, the path

∅ Decide−→ ¬aΔ Decide−→ ¬aΔ bΔ. (6)

leads to the terminal node ¬aΔ bΔ, which is different from bΔ ¬a but corresponds to
the same model.

We can view a path in the graph AMS starting in ∅ and ending in a terminal node as
a description of a specific way to search for a model of module S. Each such path is
determined by a function (strategy) selecting for each non-terminal state exactly one of
its outgoing edges (exactly one applicable transition). Therefore, solvers based on the
transition graph AMS are uniquely determined by the “select-edge-to-follow” function.
Such a function can be based, in particular, on assigning strict priorities to inferences in
S. Below we describe an algorithm that captures “classical” DPLL strategy. Assuming
M is the current state and it is not terminal, the algorithm proceeds as follows :

if M is inconsistent and has no decision literals, follow the Fail edge (this is
the only applicable transition); if M is inconsistent and has decision literals,
follow the Backtrack edge (this is the only applicable transition); if M is con-
sistent and PropagateS applies, follow the edge implied by the highest priority
inference of the form (M ′, l) in S such that M ′ ⊆ [M ]; otherwise, follow the
Decide edge.

This is still not a complete specification of a solver, as it offers no specification on
how to select a decision literal (which of many possible Decide transitions to apply).
Much of research on SAT solvers design, for example, has focused on this particular
aspect and several heuristics were proposed over the years. Each such heuristics for
selecting a decision literal when the Decide transition applies yields an algorithm.

Additional algorithms can be obtained by switching the preference over Propagate
and Decide rules. Earlier, we selected a Propagate edge and only if impossible, we
would select a Decide edge. But that order can be reversed resulting in another class of
algorithms. Finally, we could even consider a more complicated selection functions that,
when both Decide and Propagate edges are available, in some cases select a Propagate
edge and in others a Decide one.

We now show how the approaches proposed by Nieuwenhuis et al. [20] and Lierler
[12] to describe and analyze SAT and ASP solvers, respectively, fit in our abstract
framework. Let F be a CNF formula that contains no empty clause. Nieuwenhuis
et al. [20], defined the transition graph DPF to capture the computation of the DPLL

algorithm. We now review this graph in the form convenient for our purposes. All states



Abstract Modular Inference Systems and Solvers 57

over the vocabulary of F form the vertices of DPF . The edges of DPF are specified by
the three “generic” transition rules Fail, Backtrack and Decide of the graph AMS , and
the Unit Propagate rule below:

Unit PropagateF : M −→ Ml if

⎧
⎨

⎩

[M ] is consistent, l /∈ [M ], and
there is C ∨ l ∈ F , such that
for every u ∈ C, u ∈ [M ]

For example, let F be the theory consisting of a single clause a. Figure 5 presents DPF .

aΔ

∅

a

¬aΔ

¬aΔa

aΔ¬a

¬a

¬aa

⊥

a¬a

Fig. 5. The DPF graph where F = a

It turns out that we can see the graph DPF as the transition graph of the abstract
module UP(F ).

Proposition 6. For every CNF formula F with no empty clause, DPF = AMUP(F ).

Theorem 1, Proposition 6, and the fact that a CNF formula F and the module UP(F )
are equivalent (Proposition 4) imply the following result.

Corollary 1. For any CNF formula F ,

(a) graph DPF is finite and acyclic,
(b) for any terminal state M of DPF other than ⊥, [M ]+ is a model of F ,
(c) state ⊥ is reachable from ∅ in DPF if and only if F is unsatisfiable (has no models).

This is precisely the result stated by Nieuwenhuis et al. [20] and used to argue that
the graph DPF is an abstraction of the DPLL method. To decide the satisfiability of F
(and to find a model, if one exists), it is enough to find a path leading from the state ∅ to
a terminal state M . If M = ⊥ then F is unsatisfiable; otherwise, [M ]+ is a model of F .
For instance, the only terminal states reachable from the state ∅ in DPF are a and aΔ.
This translates into the fact that {a} is a model of F . Specific algorithm encapsulated by
the graph DPF (equivalently, AMUP(F )) can be obtained by deciding on a way to select
an edge while in a consistent state. Typical implementations of basic backtracking SAT
solvers follow a Unit PropagateF edge whenever possible, choosing Decide edges only
if nothing else applies. These algorithms differ from each other in the heuristics they
use for the selection of a decision literal.

Next, we show that our abstract approach to model generation in logics applies to
answer-set programming [8,16,18]. Lierler [12] introduced a transition system SMΠ to



58 Y. Lierler and M. Truszczynski

describe and study the SMODELS solver. We first review the graph SMΠ and then show
that Lierler’s approach can be viewed as an instantiation of our general theory.

The set of nodes of the graph SMΠ consists of all states relative to the vocabulary of
program Π . The edges of SMΠ are specified by the transition rules of the graph DPΠcl

and the rules presented in Figure 6.

UnfoundedΠ : M −→ M¬a if [M ] is consistent, ¬a /∈ [M ], and a ∈ U([M ], Π)

All Rule Cancelled : M −→ M¬a if

⎧⎨
⎩

[M ] is consistent, ¬a /∈ [M ], and
for every B ∈ Bodies(Π,a),
there is u ∈ s(B) such that u ∈ [M ]

Backchain True : M −→ Ml if

⎧⎪⎪⎨
⎪⎪⎩

[M ] is consistent, l /∈ [M ]
for some a ← B ∈ Π , a ∈ [M ], l ∈ s(B), and
for every B′ ∈ Bodies(Π, a) \ {B},
there is u ∈ s(B′) such that u ∈ [M ]

Fig. 6. Transition rules of the graph SMΠ

The following result shows that Lierler’s approach can be viewed as an instantiation
of our general theory.

Proposition 7. For every logic program Π , SMΠ = AMsmodels(Π).

Indeed, this proposition, Theorem 1 and the fact that Π is equivalent to the module
smodels(Π) (Proposition 5) imply the result stemming from Lierler [12].

Corollary 2. For every logic program Π ,

(a) graph SMΠ (AMsmodels(Π)) is finite and acyclic,
(b) for any terminal state M of SMΠ (AMsmodels(Π)) other than ⊥, M+ is an answer

set of Π ,
(c) state ⊥ is reachable from ∅ in SMΠ (AMsmodels(Π)) if and only if Π has no answer

sets.

Since UPUF (Π) is also equivalent to Π , we obtain a similar corollary for the transi-
tion graph AMUPUF (Π). Intuitively, this graph is characterized by the transition rules of
the graph DPΠcl as well as the rule Unfounded presented in Figure 6. Thus, AMUPUF (Π)

is a model of another correct algorithm for finding answer sets of programs. In fact, it
is so for any module S such that UPUF (Π) ⊆ S ⊆ smodels(Π).

Also the graph SMΠ describes a whole family of backtracking search algorithms for
finding answer sets of programs. They differ from each other by the way we select an
edge while in a consistent state. The selection function could be based on priorities of
the propagation rules.

Our discussion of SAT and ASP solvers shows that the framework of modules uni-
formly encompasses different logics. Furthermore, it uniformly models diverse reason-
ing mechanisms (the logical entailment, reasoning under specific inference rules). Our
results also show that transition graphs proposed earlier to represent and analyze SAT
and ASP solvers are special cases of transition graphs for abstract inference modules.



Abstract Modular Inference Systems and Solvers 59

4 Abstract Modular System and Solver AMSA

By capturing diverse logics in a single framework, abstract modules are well suited for
studying modularity in declarative formalisms and for analyzing solvers for such mod-
ular formalisms. As illustrated by our examples, abstract inference modules can capture
reasoning of various logics including classical reasoning with propositional theories and
reasoning with programs under the answer-set semantics. Putting modules together pro-
vides an abstract uniform way to represent hybrid modular systems, in which modules
represent theories from different logics.

We now define an abstract modular declarative framework that uses the concept of a
module as its basic element. We then show how abstract transition graphs for modules
generalize to the new formalism.

Definition 2. An abstract modular inference system (AMS) is a finite set of abstract
inference modules. The vocabulary of an AMS A is the union of the vocabularies of
modules of A (they do not have to have the same vocabulary); we denote it by σ(A). A
set X ⊆ σ is a model of A, if X is a model of every module S ∈ A.

Let S1 be a module presented in Figure 1(b) and S2 be a module in Figure 2. The
vocabulary of the AMS A = {S1, S2} consists of the atoms a and b. It is easy to see
that the set {a} is the only model of A contained in σ(A) (more generally, a set X is a
model of A if and only if X contains a). In Section 2, we observed that S1 = Ent(T )
(and also = UP(T )), for a propositional theory T , and that S2 = smodels(Π), where
Π is the program given by (4). This illustrates how abstract modular systems can serve
as an abstraction for heterogeneous multi-logic systems.

For a general example of a modular declarative formalism that can be cast as an
abstract modular system we now discuss the case of modular logic programs [15]. The
semantics of modular logic programs relies on the notion of an input answer set of a
program [14]. A set X of atoms is an input answer set of a logic program Π if X is
an answer set of the program Π ∪ (X \ Head(Π)), where Head(Π) denotes the set
of all head atoms of Π . Informally, input answer sets treat all atoms not occurring in
the heads of program rules as open so that they can assume any logical value. These
atoms are viewed as the “input.” To capture the semantics of input answer sets in terms
of inferences, we introduce a modified version of the propagation rule Unfounded:

Unfounded′: derive l if l = ¬a, a ∈ U(M,Π) and a ∈ Head(Π).

This rule gives rise to an inference module UF ′(Π) defined by taking the condition of
the rule as defining when (M, l) is to be an inference of the module. With the module
UF ′(Π) in hand, we define UPUF ′(Π) = UP(Π) ∪ UF ′(Π).

An inference module S is input-equivalent to a logic program Π if input answer
sets of Π coincide with models of S. We now restate Proposition 5 for the case of
input-equivalence.

Proposition 8. Every program Π is input-equivalent to the module UPUF ′(Π).

A modular (logic) program is a set of logic programs [15]. For a modular programP ,
a set X of atoms is an answer set of P if X is an input answer set of every program Π
in P . An AMS A is equivalent to a modular program P if answer sets of P coincide
with models of A.



60 Y. Lierler and M. Truszczynski

Proposition 9. Every modular program {Π1, . . . , Πn} is equivalent to the abstract
modular system {UPUF ′(Π1), . . . ,UPUF

′(Πn)}.

Theories in the logics SM(ASP) [15] and PC(ID) [17] can be cast as abstract modular
systems in the same manner.

We now resume our study of general properties of abstract modular systems. For an
AMS A = {S1, . . . , Sn}, we define A∪ = S1 ∪ . . . ∪ Sn. We can now state the result
showing that modular systems can be expressed in terms of a single abstract inference
module.

Theorem 2. Every abstract modular inference system A is equivalent to the abstract
inference module A∪.

Each AMS A determines its transition graph AMSA, which we define by setting
AMSA = AMA∪ . Theorem 1 implies the following result.

Theorem 3. For every AMS A,

(a) the graph AMSA is finite and acyclic,
(b) any terminal state M of AMSA other than ⊥ [M ]+ is a model of A,
(c) the state ⊥ is reachable from ∅ in AMSA if and only if A is unsatisfiable.

As in other cases, Theorem 3 shows that the graph AMSA is an abstract representation
of an algorithm to decide satisfiability of a modular system A. Such algorithm searches
in AMSA for a path leading from node ∅ to a terminal node by moving from a node to
node, selecting any edge originating in the current node. Theorem 3 guarantees that the
method terminates, the other two parts of that component ensure correctness.

For instance, let A be the AMS {S1, S2} where S1 is a module in Figure 1(b) and S2

is a module in Figure 2. Below is a valid path in the transition graph AMSA with every
edge annotated by the corresponding transition rule:

∅ Decide−→ ¬aΔ PropagateS2−→ ¬ aΔ b
PropagateS1−→ ¬ aΔ b a

Backtrack−→ a
Decide−→ a ¬bΔ.

The state a ¬bΔ is terminal. Thus, Theorem 3 (b) asserts that {a,¬b} is a model of A.
Let us interpret this example. Earlier we demonstrated that module S1 can be regarded
as a representation of a propositional theory consisting of a single clause a whereas
S2 corresponds to the logic program (4) under the semantics of answer sets. We then
illustrated how modules S1 and S2 give rise to particular algorithms for implementing
search procedures. The graph AMSA represents the algorithm obtained by integrating
the algorithms supported by the modules S1 and S2 separately.

We will now discuss some classes of algorithms captured by the graph AMSA. As
before, they are more specifically determined by a strategy of selecting an outgoing
edge from the current state. Let us assume that such a strategy is available for each
module S ∈ A. Let us also assume that the modules in A are prioritized. This leads
to an algorithm that proceeds as follows (assuming M is the current state and it is not
terminal):

if M is inconsistent, we always select the Fail or Backtrack edge (whichever is
applicable); if M is consistent then we select an edge determined by the highest
priority inference from the highest priority module.



Abstract Modular Inference Systems and Solvers 61

Assuming that modules in A are enumerated S1, . . . , Sk from the highest priority one
to the lowest, the described algorithm works as follows. It starts by moving along edges
implied by inferences of the module S1 (according to the selection strategy for that
module). If we reach ⊥, the entire search is over with failure. Otherwise, we reach a
consistent state, in which no inference from module S1 is applicable (that state repre-
sents a model of S1). The phase of search involving module S1 gets suspended and we
continue in the same way but now following edges determined by inferences in module
S2. In other words, we start the phase of the search involving module S2. If we reach ⊥,
the search is over with failure. If we reach an inconsistent state that contains decision
literals, we apply the Backtrack rule. If that rule backtracks to a literal introduced after
we moved to module S2, we remain in the module S2 phase and continue. If the back-
track takes us back to a literal introduced while a higher priority module was considered
(in this case, that must be module S1), we resume the module S1 phase of the search
suspended earlier. If Propagate or Decide edges in module S2 are available, we select
one of them following the strategy for module S2. If we reach a consistent state with
no outgoing edges implied by inferences of S2 (that state represents a model of both S1

and S2) we suspend the module S2 phase and start the module S3 phase, and continue
in that way until a terminal state is reached.

The main advantage of such an algorithm is that each phase is concerned only with
inferences coming from a single module and state changes involve only literals from the
vocabulary of that module. The literals established during phases involving higher pri-
ority modules remain fixed. Thus, the search space in each phase is effectively limited
to that of the module involved in that phase.

Clearly, other specializations of the graph AMSA are possible. For instance, we may
alternate between modules in a more arbitrary way, possibly switching from the current
module to another even in situations when the current state has outgoing edges implied
by the inferences of the current module. However, such algorithms may have to work
with search spaces that are larger than the search space for a single module.

DLVHEX: Our results apply to a version of the DLVHEX3 solver [5] restricted to logic
programs. DLVHEX computes models of HEX-programs by exploiting their modular-
ity, that is, representing programs as an equivalent modular program. Answer set pro-
grams consisting of rules of the form (2) form a special class of HEX-programs. There-
fore, DLVHEX restricted to such programs can be seen as an answer-set solver that
exploits their modularity. Given a program Π , DLVHEX starts its operation by con-
structing a modular program P = {Π1, . . . , Πn} so that (i) Π = Π1 ∪ · · · ∪ Πn and
(ii) answer sets of P coincide with answer sets of Π . It then processes modules one
after another according to an order determined by the structure of a program. That
process can be modeled in abstract terms described above. In particular, the graph
AMS{UPUF ′(Π1),...,UPUF ′(Πn)} can be seen as an abstraction capturing the family of
DLVHEX-like algorithms based on Unit Propagate and Unfounded′ inferences.

3 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/


62 Y. Lierler and M. Truszczynski

5 Related Work and Conclusions

In an important development, Brewka and Eiter [3] introduced an abstract notion of a
heterogeneous nonmonotonic multi-context system (MCS). One of the key aspects of
that proposal is its abstract representation of a logic that allows one to study MCSs
without regard to syntactic details. The independence of contexts from syntax pro-
moted focus on semantic aspect of modularity in multi-context systems. Since their
inception, multi-context systems have received substantial attention and inspired im-
plementations of hybrid reasoning systems including DLVHEX [5] and DMCS [1]. There
are some similarities between AMSs and MCSs. However, there is also a key differ-
ence. MCSs provide an abstract framework to define semantics of hybrid systems. In
contrast, AMSs explicitly represent inferences of a logic and provide an abstract frame-
work for studying model-generation algorithms. On a more technical level, another
notable difference concerns information sharing among modules. MCSs use to this end
the so-called “bridge rules.” In AMS information sharing is implemented by a simple
notion of sharing parts of the vocabulary between the modules.

Modularity is one of the key techniques in principled software development. This
has been a major trigger inspiring research on modularity in declarative programming
paradigms rooting in KR languages such as answer-set programming, for instance.
Oikarinen and Janhunen [21] proposed a modular version of answer-set programs called
lp-modules. In that work, the authors were primarily concerned with the decomposition
of lp-modules into sets of simpler ones. They proved that under some assumptions such
decompositions are possible. Järvisalo, Oikarinen, Janhunen, and Niemelä [11], and
Tasharrofi and Ternovska [23] studied the generalizations of lp-modules. In their work
the main focus was to abstract lp-modules formalism away from any particular syntax
or semantics. They then study properties of the modules such as “joinability” and an-
alyze different ways to join modules together and the semantics of such a join. We are
interested in building simple modular systems using abstract modules – the only com-
position mechanism that we study is based on conjunction of modules. Also in contrast
to the work by Järvisalo et al. [11] and Tasharrofi and Ternovska [23], we define such
conjunction for any modules disregarding their internal structure and interdependencies
between each other.

Tasharrofi, Wu, and Ternovska [24] developed and studied an algorithm for process-
ing modular model expansion tasks in the abstract multi-logic system concept devel-
oped by Tasharrofi and Ternovska [23]. They use the traditional pseudocode method
to present the developed algorithm. In this work we adapt the graph-based framework
for designing backtrack search algorithms for abstract modular systems. The benefits
of that approach for modeling families of backtrack search procedures employed in
SAT, ASP, and PC(ID) solvers were demonstrated by Nieuwenhuis et al. [20], Lier-
ler [12], and Lierler and Truszczynski [14]. Our work provides additional support for
the generality and flexibility of the graph-based framework as a finer abstraction of
backtrack search algorithms than direct pseudocode representations, allowing for con-
venient means to prove correctness and study relationships between the families of the
algorithms.

Gebser and Schaub [7] describe a form of a tableaux system to describe inferences
involved in computing answer sets. Several rules used in their approach are closely



Abstract Modular Inference Systems and Solvers 63

related to those we discussed in the context of modules designed to represent reasoning
on logic programs. However, the two approaches are formally different. Most notably,
the concepts of states in a tableaux and in an abstract module are different. Still, there
seems to be a connection between them, which we plan to investigate in our future
work.

We introduced abstract modules and abstract modular systems and showed that they
provide a framework capable of capturing diverse logics and inference mechanisms
integrated into modular knowledge representation systems. In particular, we showed
that transition graphs determined by modules and modular systems provide a unifying
representation of model-generating algorithms, or solvers, and simplify reasoning about
such issues as correctness or termination. We believe they can be useful in theoretical
comparisons of solver effectiveness and in the development of new solvers.

References

1. Bairakdar, S.E.-D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The DMCS solver for
distributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA
2010. LNCS, vol. 6341, pp. 352–355. Springer, Heidelberg (2010)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
Heule, M., van Maaren, H., Walsch, T. (eds.) Handbook of Satisfiability, pp. 737–797. IOS
Press (2008)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 385–390 (2007)

4. Denecker, M., Lierler, Y., Truszczynski, M., Vennekens, J.: A Tarskian informal semantics
for answer set programming. In: Dovier, A., Costa, V.S. (eds.) International Conference
on Logic Programming (ICLP). LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2012)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer set programming. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), pp. 90–96. Professional Book Center
(2005)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),
pp. 386–392. MIT Press, Cambridge (2007)

7. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg
(2006)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-
ski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and
Symposium, pp. 1070–1080. MIT Press (1988)

9. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)

10. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Program-
ming 19(20), 503–581 (1994)

11. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for multi-
language constraint modeling. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 155–168. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-04238-6_15

http://dx.doi.org/10.1007/978-3-642-04238-6_15


64 Y. Lierler and M. Truszczynski

12. Lierler, Y.: Abstract answer set solvers with backjumping and learning. Theory and Practice
of Logic Programming 11, 135–169 (2011)

13. Lierler, Y.: On the relation of constraint answer set programming languages and algorithms.
In: Proceedings of the AAAI Conference on Artificial Intelligence. MIT Press (2012)

14. Lierler, Y., Truszczynski, M.: Transition systems for model generators — a unifying ap-
proach. In: Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic
Programming (ICLP 2011), Special Issue 11(4-5) (2011)

15. Lierler, Y., Truszczynski, M.: Modular answer set solving. In: Proceedings of Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI 2013) (2013)

16. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer (1999)

17. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of proposi-
tional logic extended with inductive definitions. In: Kleine Büning, H., Zhao, X. (eds.) SAT
2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

19. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight con-
straints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

21. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: 17th Euro-
pean Conference on Artificial Intelligence (ECAI), pp. 412–416 (2006)

22. Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: van Harmelen, F., Lifschitz,
V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 181–212. Elsevier (2008)

23. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language modelling
of search problems. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 259–274. Springer, Heidelberg (2011)

24. Tasharrofi, S., Wu, X.N., Ternovska, E.: Solving modular model expansion tasks. CoRR
abs/1109.0583 (2011)

25. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of ACM 38(3), 620–650 (1991)


	Abstract Modular Inference Systems and Solvers
	1 Introduction
	2 Abstract Inference Modules
	3 Abstract Modular Solver:
	4 Abstract Modular System and Solver
	5 Related Work and Conclusions
	References




