
The F# Computation Expression Zoo

Tomas Petricek1 and Don Syme2

1 University of Cambridge, UK
2 Microsoft Research Cambridge, UK

tp322@cam.ac.uk, dsyme@microsoft.com

Abstract. Program logic can often be structured using abstract compu-
tation types such as monoids, monad transformers or applicative
functors. Functional programmers use those abstractions directly while
main-stream languages often integrate concrete instances as language
features – e.g. generators in Python or asynchronous computations in
C# 5.0. The question is, is there a sweet spot between convenient, hard-
wired language features, and an inconvenient but flexible libraries?

F# computation expressions answer this question in the affirmative.
Unlike the “do” notation in Haskell, computation expressions are not tied
to a single kind of abstraction. They support a wide range of abstractions,
depending on what operations are available. F# also provides greater
syntactic flexibility leading to a more intuitive syntax, without resorting
to full macro-based meta-programming.

We present computation expressions in a principled way, developing
a type system that captures the semantics of the calculus. We demon-
strate how computation expressions structure well-known abstractions
including monoidal list comprehensions, monadic parsers, applicative
formlets and asynchronous sequences based on monad transformers.

1 Introduction

Computations with non-standard aspects like non-determinism, effects, asyn-
chronicity or their combinations can be captured using a variety of abstract
computation types. In Haskell, we write such computations using a mix of com-
binators and syntactic extensions like monad comprehensions [5] and “do” no-
tation. Languages such as Python and C# emphasize the syntax and provide
single-purpose support e.g. for asynchrony [1] and list generators.

Using such abstractions can be made simpler and more intuitive if we employ
a general syntactic machinery. F# computation expressions provide uniform
syntax that supports monoids, monads [22], monad transformers [10] and ap-
plicative functors [13]. They reuse familiar syntax including loops and exception
handling – the laws of underlying abstractions guarantee that these constructs
preserve intuition about code. At the same time, the mechanism is adaptable
and enables appropriate syntax depending on the abstraction.

Most languages, including Haskell, Scala, C#, JavaScript and Python have
multiple syntactic extensions that improve computational expressivity: queries,
iterators, comprehensions, asynchronous computations are just a few. However,

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 33–48, 2014.
© Springer International Publishing Switzerland 2014

34 T. Petricek and D. Syme

“syntactic budget” for such extensions is limited. Haskell already uses three no-
tations for comprehensions, monads and arrows [15]. C# and Scala have multiple
notations for queries, comprehensions, asynchronicity and iterators. The more
we get with one mechanism, the better. As we show, computation expressions
give a lot for relatively low cost – notably, without resorting to full-blown macros.

Some of the technical aspects of the feature have been described before1 [20],
but this paper is novel in that it uses more principled approach by developing a
new type system and relating the mechanism to well-known abstractions.

Practical Examples. We demonstrate the breadth of computations that can
be structured using F# computation expressions. The applications include asyn-
chronous workflows and sequences (§2.1, §2.3), list comprehensions and monadic
parsers (§2.2) and formlets for web programming (§2.4).

Abstract Computations. We show that the above examples fit well-known
types of abstract computations, including additive monads and monad trans-
formers, and we show that important syntactic equalities hold as a result (§4).

Syntax and Typing. We give typing rules that capture idiomatic uses of
computation expressions (§3.2), extend the translation to support applicative
functors (§2.4) and discuss the treatment of effects (§3.4) needed in impure
languages.

We believe that software artifacts in programming language research matter [9],
so all code can be run at: http://tryjoinads.org/computations. The syntax
for applicative functors is a reserch extension; other examples require F# 2.0.

2 Computation Expressions by Example

Computation expressions are blocks of code that represent computations with
a non-standard aspect such as laziness, asynchronicity, state or other. The code
inside the block is re-interpreted using a computation builder, which is a record
of operations that define the semantics, but also syntax available in the block.

Computation expressions mirror the standard F# syntax (let binding, loops,
exception handling), but support additonal computational constructs. For ex-
ample let! represents the computational (monadic) alternative of let binding.

We first introduce the syntax and mapping to the underlying operations in-
formally, but both are made precise later (§3). Readers unfamiliar with F# may
find additional explanation in previous publications [20]. To show the breadth
of applications, we look at five examples arising from different abstractions.

2.1 Monadic Asynchronous Workflows

Asynchronous workflows [19] allow writing non-blocking I/O using a mechanism
based on the continuation monad (with error handling etc.) The following exam-
ple compares F# code with an equivalent in C# using a single-purpose feature:

1 F# 3.0 extends the mechanism further to accomodate extensible query syntax. To
keep this paper focused, we leave analysis of these extensions to future work.

http://tryjoinads.org/computations

The F# Computation Expression Zoo 35

let getLength url = async {
let! html = fetchAsync url
do! Async.Sleep 1000
return html.Length

}

async Task〈string〉 GetLength(string url) {
var html = await FetchAsync(url);
await Task.Delay(1000);
return html.Length;

}
Both functions return a computation that expects a continuation and then

downloads a given URL, waits one second and passes content length to the
continuation. The C# version uses the built-in await keyword to represent non-
blocking waiting. In F#, the computation is enclosed in the async {. . .} block,
where async is an identifier that refers to a library-defined computation builder.

The computation builder async is an F# object with instance members such
as async.Bind. The members determine which of the pre-defined keywords are
allowed – e.g. Bind member enables let! which represents (monadic) binding.
Bind also enables the do! e expression, which is a shortcut for let! () = e.
Finally, the return keyword is mapped to the Return operation:

async.Bind(fetchAsync(url), fun html →
async.Bind(Async.Sleep 1000, fun () →

async.Return(html.Length)))

The Bind and Return operations form a monad. As usual, Return has a type
α → Aα and the required type of Bind is Aα× (α → Aβ) → Aβ (we write α, β
for universally qualified type variables and τ as for concrete types)2.

Sequencing and Effects. Effectful expressions in F# return a value () which
is the only value of type unit. Assuming e1 has a type unit, we can sequence
expression using e1; e2. We can also write effectful if condition without the else
clause (which implicitly returns the unit value () in the false case). Both have
an equivalent computation expression syntax:

async { if delay then do! Async.Sleep(1000)
printfn "Starting..."

return! asyncFetch(url) }
If delay is true, the workflow waits one second before downloading the page
and returning it. The translation uses additional operations – Zero represents
monadic unit value, Combine corresponds to the “;” operator and Delay embeds
an effectful expression in a (delayed) computation. For monads, these can be
defined in terms of Bind and Return, but this is not the case for all computations
(e.g. monoidal computations discussed in §2.2 require different definitions).

We also use the return! keyword, which returns the result of a computation
and requires an operation ReturnFrom of type Aα → Aα. This is typically
implemented as an identity function – its main purpose is to enable the return!
keyword in the syntax, as this may not be alway desirable.

2 For the purpose of this paper, we write type application using a light notation Tτ .

36 T. Petricek and D. Syme

async.Combine
((if delay then async.Bind(Async.Sleep(1000), fun () → async.Zero())

else async.Zero()), async.Delay(fun() →
printfn "Starting..."

async.ReturnFrom(asyncFetch(url)))))

Zero has a type unit → A unit and is inserted when a computation does not
return a value, here in both branches of if. A computation returning unit can
be composed with another using Combine which has a type A unit×Aα → Aα
and corresponds to “;”. It runs the left-hand side before returning the result of
the right-hand side. Finally, Delay, of type (unit → Aτ) → Aτ , is used to wrap
any effectful computations (like printing) in the monad to avoid performing the
effects before the first part of sequential computation is run.

2.2 Additive Parsers and List Comprehensions

Parsers or list comprehensions differ in that they may return multiple values.
Such computations can be structured using additive monads (MonadPlus in
Haskell). These abstractions can be used with F# computation expressions too.
Interestingly, they require different typing of Zero and Combine.

Monadic Parsers. For parsers, we use the same notation as previously. The
difference is that we can now use return and return! repeatedly. The following
parsers recognize one or more and zero or more repetitions of a given predicate:

let rec zeroOrMore p = parse {
return! oneOrMore p
return [] }

and oneOrMore p = parse {
let! x = p
let! xs = zeroOrMore p
return x :: xs }

The oneOrMore function uses just the monadic interface and so its translation
uses Bind and Return. The zeroOrMore function is more interesting – it combines
a parser that returns one or more occurrences with a parser that always succeeds
and returns an empty list. This is achieved using the Combine operation:

let rec zeroOrMore p = parse.Delay(fun () →
parse.Combine(parse.ReturnFrom(oneOrMore p),

parse.Delay(fun() → parse.Return([]))))

Here, Combine represents the monoidal operation on parsers (either left-biassed
or non-deterministic choice) and has the type Pα×Pα → Pα. Accordingly, the
Zero operations is the unit of the monoid. It has a type unit → Pα, representing
a parser that returns no α values (rather than returning a single unit value).

For effectful sequencing of monads, it only makes sense to use unit-returning
computations in the left-hand side of Combine and as the result of Zero. How-
ever, if we have a monoidal computation, we can define Combine that combines
multiple produced values. This shows that the computation expression mecha-
nism needs certain flexibility – the translation is the same, but the typing differs.

The F# Computation Expression Zoo 37

List Comprehensions. Although list comprehensions implement the same ab-
stract type as parsers, it is desirable to use different syntax if we want to make
the syntactic sugar comparable to built-in features in other languages. The fol-
lowing shows an F# list comprehension and a Python generator side-by-side:

seq { for n in list do
yield n
yield n ∗ 10 }

for n in list :
yield n
yield n ∗ 10

The computations iterate over a source list and produce two results for each
input. Monad comprehensions [5] allow us to write [n ∗ 10 | n ← list] to
multiply all elements by 10, but they are not expressive enough to capture the
duplication. Doing that requires rewriting the code using combinators.

The F# syntax works similarly to what we have seen for monads. The for
and yield constructs are translated to For and Yield operations which have the
same types as emphBind and Return, but provide backing for a different syntax
(each keyword is mapped to a specific named operation of the builder e.g. for uses
seq.For, so the members defined by seq determine which keywords are enabled):

seq.For(list, fun () →
seq.Combine(seq.Yield(n), seq.Delay(fun () → seq.Yield(n ∗ 10))))

Combine concatenates multiple results and has the standard monoidal type
[α] × [α] → [α]. For has the type of monadic bind [α] → (α → [β]) → [β]
and Yield has a type of monadic unit α → [α]. We could have provided the Bind
and Return operations in the seq builder instead, but this leads to a less intuitive
syntax that requires users to write let! for iteration and return for yielding.

As the Python comparison shows, the flexibility of computation expressions
means that they are often close to a built-in syntax. The author of a concrete
computation (parse, seq, async, . . .) chooses the appropriate syntax. For additive
monads, the choice can be made based on the laws that hold §4.2.

2.3 Layered Asynchronous Sequences

It is often useful to combine non-standard aspects of multiple computations. This
is captured by monad transformers [10]. Although F# does not support higher-
kinded types, monad transformers still provide a useful conceptual framework.

For example, asynchronous sequences [16] combine non-blocking asynchronous
execution with the ability to return multiple results – a file download can then
produce data in 1kB buffers as they become available. Using Async τ as the base
type, we can follow the list monad transformer [7] and define the type as:

type AsyncSeqInner τ = AsyncNil | AsyncCons of τ × Async τ
type AsyncSeq τ = Async (AsyncSeqInner τ)

When given a continuation, an asynchronous sequence calls it with either the end
of the sequence AsyncNil or with AsyncCons that carries a value together with
the tail of the asynchronous sequence. The flexibility of computation expression
makes it possible to provide an elegant syntax for writing such computations:

38 T. Petricek and D. Syme

let rec urlPerSecond n = asyncSeq {
do! Async.Sleep 1000
yield getUrl i
yield! iterate (i+ 1) }

let pagePerSecond urls = asyncSeq {
for url in urlPerSecond 0 do
let! html = asyncFetch url
yield url, html }

The urlPerSecond function creates an asynchronous sequence that produces one
URL per second. It uses bind (do!) of the asynchronous workflow monad to
wait one second and then composition of asynchronous sequences, together with
yield to produce the next URL. The pagePerSecond function uses for to iterate
over (bind on) an asynchronous sequence and then let! to wait for (bind on) an
asynchronous workflow. The for loop is asynchronous and lazy – it’s body is run
each time the caller asks for the next result.

Asynchronous sequences form a monad and so we could use the standard
notation for monads with just let! and return. We would then need explicit lifting
function that turns an asynchronous workflow into an asynchronous sequence
that returns a single value. However, F# computation expressions allow us to
do better. We can define both For and Bind with the following types:

asyncSeq.For : AsyncSeqα → (α → AsyncSeqβ) → AsyncSeqβ
asyncSeq.Bind : Asyncα → (α → AsyncSeqβ) → AsyncSeqβ

We omit the translation of the above example – it is a straightforward variation
on what we have seen so far. A more important point is that we use the fact
that operations of the computation builder are not restricted to a specific type
(the above Bind is not an ordinary binding making let! behave differently).

As previously, the choice of the syntax is left to the author of the compu-
tation. Asynchronous sequences are an additive monad and so we use for/yield.
Underlying asynchronous workflows are just monads, so it makes sense to add
let! that automatically lifts a workflow to an asynchronous sequence.

An important aspect of the fact that asynchronous sequences can be described
using a monad transformer is that certain laws hold. We discuss how these map
to the computation expression syntax later (§4.3).

2.4 Applicative Formlets

Applicative functors [13,11] are weaker (and thus more common) abstraction
than monads. The difference between applicative and monadic computations is
that a monadic computation can perform different effects depending on values
obtained earlier during the computation. Conversely, the effects of an applicative
computation are fully determined by its structure.

In other words, it is not possible to choose which computation to run (using
let! or do!) based on values obtained in previous let! bindings. The following
example demonstrates this using a web form abstraction called formlets [2]:

formlet { let! name = Formlet.textBox
and gender = Formlet.dropDown ["Male"; "Female"]
return name+ " "+ gender }

The F# Computation Expression Zoo 39

The computation describes two aspects – the rendering and the processing of
entered values. The rendering phase uses the fixed structure to produce HTML
with text-box and drop-down elements. In the processing phase, the values of
name and gender are available and are used to calculate the result of the form.

The structure of the form needs to be known without having access to specific
values. The syntax uses parallel binding (let!. . . and. . .), which binds a fixed num-
ber of independent computations. The rest of the computation cannot contain
other (applicative) bindings.

There are two equivalent definitions of applicative functors. We need two op-
erations known from the less common definition. Merge of type Fα × Fβ →
F (α × β) represents composition of the structure (without considering specific
values) and Map of type Fα× (α → β) → Fβ transforms the (pure) value. The
computation expression from the previous example is translated as follows:

formlet.Map
(formlet.Merge(Formlet.textBox,Formlet.dropDown ["Male"; "Female"]),
fun (name, gender) → name+ " "+ gender)

The computations composed using parallel binding are combined using Merge.
In formlets, this determines the structure used for HTML rendering. The rest
of the computation is turned into a pure function passed to Map. Note that the
translation allows uses beyond applicative functors. The let!. . . and. . . syntax can
also be used with monads to write zip comprehensions [5].

Applicative functors were first introduced to support applicative programming
style where monads are not needed. The idiom brackets notation [13] fits that
purpose better. We find that computation expressions provide a useful alterna-
tive for more complex code and fit better with the impure nature of F#.

3 Semantics of Computation Expressions

The F# language specification [20] documents computation expressions as a
purely syntactic mechanism. They are desugared before type-checking, which is
then performed on the translated code using standard F# typing rules. Similarly
to Haskell’s rebindable syntax, but to a greater level, this provides flexibility that
allows the users to invent previously unforseen abstractions.

The purely syntactic approach allows more experimentation, but does not
disallow erroneous uses. In this section, we present new typing rules that capture
such common uses and make the system more robust. Aside from guaranteeing
idiomatic use of computation expressions, it also enables better error messages.

3.1 Syntax

The full syntax of computation expressions is given in the language specification,
but the following lists all important constructs that we consider in this paper:

expr = . . . | expr { cexpr } (computation expression)
binds = v = expr (single binding)

| v = expr and binds (parallel binding)

40 T. Petricek and D. Syme

cexpr = let v = expr in cexpr (binding value)
| let! binds in cexpr (binding computation)
| for v in expr do cexpr (for loop computation)
| return expr (return value)
| return! expr (return computation)
| yield expr (yield value)
| yield! expr (yield computation)
| cexpr1; cexpr2 (compose computations)
| expr (effectful expression)

We omit do! which is easily expressed using let! To accommodate the applicative
syntax, binds is used to express one or more parallel variable bindings.

For space reasons, we also omit imperative while and exception handling con-
structs, but both of these are an important part of computation expressions.
They allow taking existing code and wrapping it in a computation block to
augment it with non-standard computational aspect.

3.2 Typing

The Figure 1 uses three judgments. Standard F# expressions are typed using
Γ � expr : τ . Computation expressions always return computation of type Mτ
and are typed using Γ �σ cexpr : Mτ . A helper judgement Γ �σ binds : MΣ
checks bindings of multiple computations and produces a variable context with
newly bound variables, wrapped in the type M of the bound computations.

The latter two are parameterized by the type of the computation expression
builder (such as seq or async). The operations supported by the builder deter-
mine which syntactic constructs are enabled. Typing rules that require a certain
operation have a side-condition on the right, which specifies the requirement.

In most of the side-conditions, the functions are universally quantified over
the type of values (written as α, β). This captures the fact that computation
should not restrict the values that users can work with. However, this is not
the case in the rules (seq) and (zero). Here, we can only require that a specific
instantiation is available – the reason is that these operations may be used in
two different ways. As discussed earlier (§2.1), for monads the result of Zero and
the first argument of Combine are restricted to M unit. They can be universally
quantified only if the computation is monoidal (§2.2).

Another notable aspect of the typing is that a single computation expression
may use multiple computation types (written M,N,L and D). In Bind and
For, the type of bound argument is M , but the resulting computation is N (we
require that bind returns the same type of computation as the one produced by
the function). This corresponds to the typing used by computations arising from
monad transformers (§2.3). Although combining multiple computation types is
not as frequent, computations often have a delayed version which we write as
D. This is an important consideration for impure langauges (§3.4).

Finally, we omitted typing for yield and yield! because it is similar to the typing
of return and return! (using Yield and YieldFrom operations, respectively).

The F# Computation Expression Zoo 41

Γ � expr : τ and Γ �σ binds : MΣ

(run)
Γ � expr : σ Γ �σ cexpr : Mτ

Γ � expr { cexpr } : Nτ

(∀α : σ.Run : Dα → Nα
∀α : σ.Delay : (unit → Mα) → Dα)

(bind-one)
Γ � expr : Mτ

Γ �σ v = expr : M(v : τ)

(bind-par)
Γ � expr : τ Γ �σ binds : MΣ

Γ �σ v = expr and binds : M(Σ, v : τ)

(∀α, β : σ.Merge :
Mα → Mβ → M(α× β))

Γ �σ cexpr : Mτ

(let)
Γ � expr : τ1 Γ, v : τ1 �σ cexpr : Mτ2

Γ �σ let v = expr in cexpr : Mτ2

(bind)
Γ �σ binds : MΣ Γ,Σ �σ cexpr : Nτ

Γ �σ let! binds in cexpr : Nτ

(∀α, β : σ.Bind :
Mα → (α → Nβ) → Nβ)

(map)
Γ �σ binds : MΣ Γ,Σ � expr : τ

Γ �σ let! binds in return expr : Nτ

(∀α, β : σ.Map :
Mα → (α → β) → Nβ)

(for)
Γ � expr : Mτ1 Γ, v : τ1 �σ cexpr : Nτ2

Γ �σ for v in expr do cexpr : Nτ2

(∀α, β : σ.For :
Mα → (α → Nβ) → Nβ)

(return-val)
Γ � expr : τ

Γ �σ return expr : Mτ
(∀α : σ.Return : α → Mα)

(return-comp)
Γ � expr : Mτ

Γ �σ return! expr : Nτ
(∀α : σ.ReturnFrom : Mα → Nα)

(seq)
Γ �σ cexpr1 : Mτ1 Γ �σ cexpr2 : Nτ2

Γ �σ cexpr1; cexpr2 : Lτ1

(∀α : σ.Delay : (unit → Nα) → Dα
∀α : σ.Combine : Mτ1 → Dα →Lα)

(zero)
Γ � expr : unit

Γ �σ expr : Mτ
(σ.Zero : unit → Mτ)

Fig. 1. Typing rules for computation expressions

3.3 Translation

The translation is defined as a relation [[−]]m that is parameterized by a variable
m which refers to the current instance of a computation builder. This param-
eter is used to invoke members of the builder, such as m.Return(. . .). Multiple
variable bindings are translated using 〈〈binds〉〉m and we define a helper mapping
〈binds〉 that turns bindings into a pattern that can be used to decompose a tuple
constructed by merging computations using the Merge operation.

As can be easily checked, our typing guarantees that a well-typed compu-
tation expression is always translated to a well-typed F# expression. The side-
conditions ensure that all operations are available and have an appropriate type.

Some readers have already noticed that our definition of [[−]]m is ambiguous.
The let! binding followed by return can be translated in two different ways. We
intentionally do not specify the behaviour in this paper – the laws (§4.2) require

42 T. Petricek and D. Syme

expr { cexpr } = let m = expr in m.Run(m.Delay(fun () → [[cexpr]]m))

[[let v = expr in cexpr]]m = let v = expr in [[cexpr]]m
[[let! binds in cexpr]]m = m.Bind(〈〈binds〉〉m, fun 〈binds〉 → [[cexpr]]m)

[[let! binds in returnexpr]]m = m.Map(〈〈binds〉〉m, fun 〈binds〉 → expr)

[[for v in expr do cexpr]]m = m.For(expr , fun () → [[cexpr]]m)

[[return expr]]m = m.Return(expr)

[[return! expr]]m = m.ReturnFrom(expr)

[[cexpr1; cexpr2]]m = m.Combine([[cexpr1]]m, m.Delay(fun () → [[cexpr2]]m))

[[expr]]m = expr ; m.Zero()

〈〈v = expr〉〉m = expr

〈〈v = expr and binds〉〉m = m.Merge(expr , [[binds]]m)

〈v = expr〉 = v

〈v = expr and binds〉 = v, 〈binds〉

Fig. 2. Translation rules for computation expressions

the two translations to be equivalent. For monads, this equivalence is easy to see
by considering the definition of Map in terms of Bind and Return.

In earlier discussion, we omitted the Run and Delay members in the transla-
tion of expr { cexpr }. The next section discusses these two in more details.

3.4 Delayed Computations

We already mentioned that side-effects are an important consideration when
adding sequencing to monadic comptuations (§2.1). In effectful languages, it
becomes apparent that we need to distinguish between two types of monads.

We use the term monadic computation for monads that represent a delayed
computation such as asynchronous workflows or lazy lists; the term monadic
containers will be used for monads that represent a wrapped non-delayed value
(such as the option type, non-lazy list or the identity monad).

Monadic Computations. The defining feature of monadic computations is
that they permit a Delay operation of type (unit → Mα) → Mα that does
not perform the effects associated with the function argument. For example, in
asynchronous workflows, the operation builds a computation that waits for a
continuation – and so the effects are only run when the continuation is provided.

Before going further, we revist the translation of asynchronous workflows using
the full set of rules to show how Run and Delay are used. Consider the the
following simple computation with a corresponding translation:

let answer = async {
printfn "Welcome..."

return 42 }

let answer = async.Run(async.Delay(fun () →
printfn "Welcome..."

async.Return(42)))

For monadic computations such as asynchronous workflows, we do not expect
that defining answer will print “Welcome”. This is achieved by the wrapping the
specified computation in the translation rule for the expr { cexpr } expression.

The F# Computation Expression Zoo 43

In this case, the result of Delay is a computation A int that encapsulates the
delayed effect. For monadic computations, Run is a simple identity (of type
Mα → Mα). Contrary to what the name suggests, it does not run the computa-
tion (that might be an interesting use beyond standard abstract computations).
The need for Run becomes obvious when we look at monadic containers.

Monadic Containers. For monadic containers, it is impossible to define a De-
lay operation that does not perform the (untracked) side-effects and has a type
(unit → Mα) → Mα, because the resulting type has no way of capturing uneval-
uated code. However, the (seq) typing rule in Figure 1 permits an alternative
typing. Consider the following example using the Maybe (option) monad:

maybe { if b = 0 then return! None
printfn "Calculating..."

return a / b }

Using the same translation rules, Run, Delay and Delay are inserted as follows:

maybe.Run(maybe.Delay(fun () → maybe.Combine
((if b = 0 then maybe.ReturnFrom(None) else maybe.Zero()),
maybe.Delay(fun () → printfn "Calculating..."

maybe.Return(a / b)))))

The key idea is that we can use two different types – Mα for varlues representing
(evaluated) monadic containers and unit → Mα for delayed computations. The
operations then have the following types:

Delay : (unit → Mα) → (unit → Mα)
Run : (unit → Mα) → Mα
Combine : M unit → (unit → Mα) → Mα

Here, the Delay operation becomes just an identity that returns the function
created by the translation. In the translation, the result of Delay can be passed
either to Run or as the second argument of Delay, so these need to be changed
accordingly. The Run function now becomes important as it turns the delayed
function into a value of the expected type Mα (by applying it).

Unified Treatment of Effects. In the typing rules (§3.2), we did not explicitly
list the two options, because they can be generalized. We require that the re-
sult of Delay is some (possibly different) abstract type Dα representing delayed
computations. For monadic computations, the type is just Mα and for monadic
containers, it is unit → Mα. Our typing is even more flexible, as it allows usage
of multiple different computation types – but treatment of effects is one example
where this additional flexibility is necessary.

Finally, it should be noted that we use a slight simplification. The actual F#
implementation does not strictly require Run and Delay in the translation of
expr { cexpr }. They are only used if they are present.

44 T. Petricek and D. Syme

4 Computation Expression Laws

Although computation expressions are not tied to any specific abstract compu-
tation type, we showed that they are usually used with well-known abstractions.
This means three good things. First, we get better understanding of what com-
putations can be encoded (and how). Second, we can add a more precise typing
§3.2. Third, we know that certain syntactic transformations (refactorings) pre-
serve the meaning of computation. This section looks at the last point.

To keep the presentation in this section focused, we assume that there are no
untracked side-effects (such as I/O) and we ignore Run and Delay.

4.1 Monoid and Semigroup Laws

We start from the simplest structures. A semigroup (S, ◦) consists of a set S and
a binary operation ◦ such that a ◦ (b ◦ c) = (a ◦ b) ◦ c. A computation expression
corresponding to a semigroup defines only Combine (of type Mα×Mα → Mα).
To allow appropriate syntax, we also add YieldFrom which is just the identity
function (with a type Mα → Mα). The associativity implies the following syn-
tactic equivalence (we use m as a placeholder for concrete computation builder):

m { cexpr1; cexpr2; cexpr3 } ≡ m { yield! m {cexpr1; cexpr2 }; cexpr3 }
A monoid (S, ◦, ε) is a semigroup (S, ◦) with an identity element ε meaning that
for all values a ∈ S it holds that ε ◦ a = a = a ◦ ε. The identity element can be
added to computation builder as the Zero member. This operation is used when
a computation uses conditional without else branch. Thus we get:

m { if false then cexpr1
cexpr2 } ≡ m { cexpr2 } ≡ m { cexpr2

if false then cexpr1 }
Although these are simple laws, they can be used to reason about list comprehen-
sions. The associativity means that we can move a sub-expression of computation
expression (that uses yield! repeatedly) into a separate computation. To use the
identity law, consider a recursive function that generates numbers up to 100:

let rec range n = seq {
yield n
if n < 100 then yield! range (n+ 1) }

The law guarantees that for n = 100, the body equals seq { yield 100 }. This is
an expected property of the if construct – the law guarantees that it holds even
for if that is reinterpreted by some (monoidal) computation expression.

4.2 Monad and Additive Monad Laws

Monad laws are well-understood and the corresponding equivalent computation
expressions do not significantly differ from the laws about Haskell’s do notation:

m { let! y = m { return x } in cexpr } ≡ m { let y = x in cexpr }
m { let! x = c in return x} ≡ m { return! c}

The F# Computation Expression Zoo 45

m { let! x = m { let! y = c in cexpr1 } in cexpr2 } ≡
≡ m { let! y = c in let! x = m { cexpr1 } in cexpr2 }

Resolving ambiguity. When discussing the translation rules (§3.3), we noted
that the rules are ambiguous when both Map and Bind operations are present.
The following can be translated both monadically and using the Map operation:

m { let! x = c in return expr }
The two translations are shown below. Assuming that our computation is a
monad, this is a well-known definition of Map in terms of Bind and Return:

m.Map(x, fun x → expr) ≡ m.Bind(x, fun x → m.Return(expr))

More generally, if a computation builder defines both Map and Bind (even if
they are not based on a monad), we require this equation to guarantee that the
two possible translations produce equivalent computations.

Additive Monads. Additive monads are computations that combine monad
with the monoidal structure. As shown earlier (§2.2), these can be embedded
using let!/return or using for/yield. The choice can be made based on the laws
that hold.

The laws required for additive monads is not fully resolved [8]. A frequently
advocated law is left distributivity – binding on the result of a monoidal operation
is equivalent to binding on two computations and then combining the results:

m.For(m.Combine(a, b), f) ≡ m.Combine(m.For(a, f),m.For(b, f))

We intentionally use the For operation (corresponding to the for keyword), be-
cause this leads to the following intuitive syntactic equality:

m { for x in m { cexpr1; cexpr2 } do
cexpr }

≡ m { for x in m { cexpr1 } do cexpr
for x in m { cexpr2 } do cexpr }

If we read the code as an imperative looping construct (without the computa-
tional reinterpretation), then this is, indeed, a valid law about for loops.

Another law that is sometimes required about additive monads is left catch.
It states that combining a computation that immediately returns a value with
any other computation results in a computation that just returns the value:

m.Combine(m.Return(v), a) ≡ m.Return(v)

This time, we intentionally used the Return member instead of Yield, because
the law corresponds to the following syntactic equivalence:

m { return v; cexpr } ≡ m { return v }
The fact that left catch corresponds to an intuitive syntactic equality about
let!/return while left distributivity corresponds to an intuitive syntactic equality
about for/yield determines the appropriate syntax. The former can be used for
list comprehensions (and other collections), while the latter is suitable e.g. for
the option monad or the software transactional memory monad [6].

46 T. Petricek and D. Syme

4.3 Monad Transformers

There are multiple ways of composing or layering monads [10,12]. Monad trans-
formers are perhaps the most widely known technique. A monad transformer is
a type constructor T m together with a Lift operation. For some monad M the
operation has a type M α → T M α and it turns a computation in the underlying
monad into a computation in the transformed monad.

The result of monad transformer is also a monad. This means that we can
use the usual syntactic sugar for monads, such as the do notation in Haskell.
However, a more specific notation can use the additional Lift operation.

We looked at computation expression for a composed monad when discussing
asynchronous sequences (§2.3). An asynchronous sequence AsyncSeqα is a com-
putation obtained by applying the list monad transformer [7] to the monad
Asyncα. Asynchronous sequences are additive monads satisfying the left dis-
tributivity law, so we choose the for/yield syntax for working with the composed
computation. We also provided additional Bind to support awaiting a single
asynchronous workflow using let! This operation is defined in terms of Lift of
the monad transformer and For (monadic bind) of the composed computation:

asyncSeq.Bind(a, f) = asyncSeq.For(asyncSeq.Lift(a), f)

There are two laws that hold about monad transforers. To simplify the presen-
tation, we use asynchronous workflows and sequences rather than showing the
generalised version. The first law states that composing Return of asynchronous
workflows with Lift should be equivalent to the Yield of asynchronous sequences.
The other states that Lift distributes over monadic bind.

Our syntax always combines Lift with For, so the following syntactic equiva-
lences also require right identity for monads and function extensionality:

asyncSeq { let! x = async { return v } in return x } ≡ asyncSeq { return v }
asyncSeq { let! x = async { let! y = c in cexpr 1 } in cexpr2 } ≡
≡ asyncSeq { let! y = c in let! x = async { cexpr1 } in cexpr2 }

The first equation returns v without any asynchronous waiting in both cases
(although, in presence of side-effects, this is made more complicated by cancel-
lation). The second equation is more subtle. The left-hand side awaits a single
asynchronous workflow that first awaits c and then does more work. The right-
hand side awaits c lifted to an asynchronous sequence and then awaits the rest.

4.4 Applicative Computations

The last type of computations that we discussed (§2.4) is applicative functor.
We use the less common definition called Monoidal [13]. It consists of Map and
Merge, together with a unit computation. The unit computation can be used to
define Zero. This is used only in the translation of empty computations f { () }.

The identity law guarantees that merging with a unit and then projecting the
non-unit value produces an equivalent computation:

f { let! x = f { () }
and y = c in return y }} ≡ c ≡ f { let! x = c

and y = f { () } in return x }}

The F# Computation Expression Zoo 47

The naturality law specifies that Merge distributes over Map, which translates
to the following code (assuming x1 not free in expr2 and x2 not free in expr1):

f { let! y1 = f { let! x1 = c1 in return expr1 }
and y2 = f { let! x2 = c2 in return expr2 } in expr } ≡

≡ f { let! x1 = c1 and x2 = c2 in let y1, y2 = expr 1, expr2 in expr }
As with the earlier syntactic rules, we can leave out the non-standard aspect

of the computations, read them as ordinary functional code and get correct and
expected laws. This means that the laws, again, guarantee that intuition about
the syntax used by computation expressions will be correct.

Finally, the Merge operation is also required to be associative – this does not
have any corresponding syntax, but it means that the user does not need to
know implementation details of the compiler – it does not matter whether the
parsing of binds in let!. . . and. . . is left-associative or right-associative.

5 Related Work

Haskell and its extensions support monad comprehensions [12] and “do” nota-
tion for monads, idiom brackets [13] for applicatives and arrows [15]. These are
similar to computation expressions in that they are not tied to concrete computa-
tions. However, they differ syntactically – they add multiple new notations, while
computation expressions add a uniform notation resembling standard language
structures. Adding arrows to computation expressions is an open question.

Python and C# generators, LINQ [14] in C# and “for” comprehensions in
Scala are just a few examples of syntax for concrete computations. Although
they can all be used with other computations, this is not generally considered
idiomatic use. Similarly to F#, the Scala async library [21] supports loops and
exception handling. However, it is implemented through full macro system.

Other encodings of effectful computations include effect handlers [17] and
continuations [3]. Providing syntactic support for these may be an interesting
alternative to our encoding. Interestingly, our Run operation resembles reset of
delimited continuations [18] and our Delay is similar to reify of Filinsky [4].

6 Conclusions

This paper is presents a principled treatment of F# computation expressions. We
develop a type system that captures the static semantics and relate the feature
to well-known abstract computation types. Computation expressions provide a
unified way for writing a wide range of computations including monoids, monads,
applicative formlets and monads composed using monad transformers.

Computation expressions follow a different approach than e.g. Haskell “do”
notation. They integrate a wide range of abstractions and flexibly reuse exist-
ing syntax (including loops and exception handling). The library developer can
choose the appropriate syntax and use laws of abstract computations to guar-
antee that the computation preserves intuition about the syntax.

48 T. Petricek and D. Syme

Such reusable syntactic extensions are becoming increasingly important. We
cannot keep adding new features to support comprehensions, asynchronicity,
queries and more as the “syntactic budget” is rapidly running out.

Acknowledgements. We are grateful to Dominic Orchard, Alan Mycroft, Sam
Lindley, anonymous reviewers and the audience of TFP 2012.

References

1. Bierman, G., Russo, C., Mainland, G., Meijer, E., Torgersen, M.: Pause ’n’ play:
formalizing asynchronous C�. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 233–257. Springer, Heidelberg (2012)

2. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: The essence of form abstraction.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 205–220. Springer,
Heidelberg (2008)

3. Filinski, A.: Representing layered monads. In: POPL, pp. 175–188 (1999)
4. Filinski, A.: Monads in action. In: POPL, pp. 483–494 (2010)
5. Giorgidze, G., Grust, T., Schweinsberg, N., Weijers, J.: Bringing back monad com-

prehensions. In: Haskell Symposium, pp. 13–22 (2011)
6. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-

actions. In: PPoPP, pp. 48–60 (2005)
7. HaskellWiki. Listt done right (2012),

http://www.haskell.org/haskellwiki/ListT_done_right
8. HaskellWiki. Monadplus (2012),

http://www.haskell.org/haskellwiki/MonadPlus
9. Krishnamurthi, S.: Artifact evaluation for software conferences (2012),

http://cs.brown.edu/~sk/Memos/Conference-Artifact-Evaluation/
10. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:

POPL (1995)
11. Lindley, S., Wadler, P., Yallop, J.: Idioms are oblivious, arrows are meticulous,

monads are promiscuous. Electron. Notes Theor. Comput. Sci. 229(5) (March 2011)
12. Lüth, C., Ghani, N.: Proceedings of the Seventh ACM SIGPLAN International

Conference on Functional Programming, ICFP, pp. 133–144 (2002)
13. Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-

gram. 18(1), 1–13 (2008)
14. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and

XML in the.NET framework. In: SIGMOD, p. 706 (2006)
15. Paterson, R.: A new notation for arrows. In: ICFP (2001)
16. Petricek, T.: Programming with F# asynchronous sequences (2011),

http://tomasp.net/blog/async-sequences.aspx
17. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP

2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)
18. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited

continuations by a type-directed selective cps-transform. In: ICFP (2009)
19. Syme, D., Petricek, T., Lomov, D.: The F# asynchronous programming model.

In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 175–189.
Springer, Heidelberg (2011)

20. The F# Software Foundation. F# language specification (2013)
21. Typesafe Inc. An asynchronous programming facility for scala (2013)
22. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

http://www.haskell.org/haskellwiki/ListT_done_right
http://www.haskell.org/haskellwiki/MonadPlus
http://cs.brown.edu/~sk/Memos/Conference-Artifact-Evaluation/
http://tomasp.net/blog/async-sequences.aspx

	The F# Computation Expression Zoo
	1 Introduction
	2 Computation Expressions by Example
	2.1 Monadic Asynchronous Workflows
	2.2 Additive Parsers and List Comprehensions
	2.3 Layered Asynchronous Sequences
	2.4 Applicative Formlets

	3 Semantics of Computation Expressions
	3.1 Syntax
	3.2 Typing
	3.3 Translation
	3.4 Delayed Computations

	4 Computation Expression Laws
	4.1 Monoid and Semigroup Laws
	4.2 Monad and Additive Monad Laws
	4.3 Monad Transformers
	4.4 Applicative Computations

	5 Related Work
	6 Conclusions
	References

