
Expand: Towards an Extensible Pandoc System

Jacco Krijnen1, Doaitse Swierstra1, and Marcos O. Viera2

1 Department of Computer Science, Utrecht University, Utrecht, The Netherlands
2 Instituto de Computación, Universidad de la República, Montevideo, Uruguay

jaccokrijnen@gmail.com, doaitse@swierstra.net, mviera@fing.edu.uy

Abstract. The Pandoc program is a versatile tool for converting be-
tween document formats. It comes with a great variety of readers, each
converting a specific input format into the universal Pandoc format, and
a great variety of writers, each mapping a document represented in this
universal format onto a specific output format.

Unfortunately the intermediate Pandoc format is fixed, which implies
that a new, unforeseen document element cannot be added. In this paper
we propose a more flexible approach, using our collection of Haskell li-
braries for constructing extensible parsers and attribute grammars. Both
the parsing and the unparsing of a specific document can be constructed
out of a collection of precompiled descriptions of document elements
written in Haskell. This collection can be extended by any user, without
having to touch existing code.

The Haskell type system is used to enforce that each component is well
defined, and to verify that the composition of a collection components is
consistent, i.e. that features needed by a component have been defined
by that component or any of the other components. In this way we can
get back the flexibility e.g. offered by the packages in the LATEX package
eco-system.

Keywords: Document Formatting, Pandoc, Attribute Grammars, Pars-
ing, Haskell, Type System.

The nice thing about standards is that there are so
many to choose from.

— Andy Tanenbaum

1 Introduction

1.1 The Starting Point

The world is littered with document standards, from very simple ones such as
markdown for easily expressing markup in wiki based systems up to very elabo-
rate ones such as LATEX, not to mention all the proprietary standards associated
with programs like Word and its numerous brothers and sisters. It goes without

M. Flatt and H.-F. Guo (Eds.): PADL 2014, LNCS 8324, pp. 200–215, 2014.
c© Springer International Publishing Switzerland 2014

Expand: Towards an Extensible Pandoc System 201

saying that, besides all the differences, these standards have a lot in common,
and so do the programs which are used to process and generate documents based
on these standards. Unfortunately, once a document is created in one of these
formats there is no easy way back; your formatting commands have effectively
been stolen by the vendor of your document processing program.

Pandoc is a popular Haskell program which tries to alleviate such problems;
its architecture is centered around a “universal document format”, together with
a collection of readers which map documents written using some other format
onto this universal format, and a collection of writers, each mapping a document
represented in this universal format onto the desired output format.

The design of this intermediate format is no sinecure, since on the one hand
it is unrealistic to expect that it can represent all document elements which are
introduced by any of the existing or future standards, and on the other hand
it should not be so restricted that it cannot represents a substantial subset of
these elements.

When we look back at the mother of all document formatters, TEX, we see
no such limitations, since the language standard contains, besides a collection
of primitives, a powerful macro mechanism which can be used to express the
formatting of new document elements when the need arises. It is this extensibility
which has kept TEX alive and the TEX ecosystem growing over the last 40 years.

A first shortcoming, albeit not such a serious one, is that all formatting com-
mands are following the same lexical and syntactic structure. As a result of this
some people prefer to use something like the markdown format when typing a
document or to use a preprocessor like lhs2TeX which was used to add LATEX
formatting commands to the input for the paper you are reading, making the
Haskell code fragments look good. By using an adaptable syntax there are just
fewer symbols to type and the structure of the final document is better visible
in the input format of the document.

The second, but probably most serious shortcoming, is that the macro mecha-
nism of TEX can hardly be seen as a modern programming environment. Building
abstraction layer on top of abstraction layer by implementing what are effectively
programming language interpreters using TEX’s macro mechanism, makes result-
ing systems extremely slow and unforgiving in case the input contains any small
mistake. Those who have used TikZ in combination with lhs2TeX in the beamer
environment, which may cause a single slide to take seconds to format, can only
agree with this observation. Abstraction is nice, but comes at a large cost if the
abstraction mechanism itself is expensive. Furthermore the sequential nature of
TEX processing makes it cumbersome to collect information and make it avail-
able at other places in the output. In those cases we have to recur to writing
data into files and reading it back in the next run.

The question we seek to answer in this paper is whether we can deploy an
extensible document structure with a way to collect and distribute information
in the document, sharing common parts between the various readers and writers,
and in which we can describe how an element is to be formatted in a modern,
strongly typed programming language.

202 J. Krijnen, D. Swierstra, and M.O. Viera

1.2 Our Approach

In this paper we present our solution to the problems mentioned in the previous
subsection, demonstrating the use of the CoCoCo1 libraries written in Haskell,
which we developed over the years for constructing compilers in a compositional
way [9]. From now on we will talk about parsers instead of readers and about
semantics instead of writers, thus following conventional compiler construction
terminology. The full code can be found in the Haskell package expand2.

One of the libraries we base our solution on is the murder[11,10]3 library which
can be used to explicitly represent mutually recursive values. In our case these
will be grammar fragments which jointly describe the structure of the document
to be formatted or converted. Notice that each grammar fragment is represented
as a Haskell value, which can be combined, inspected, transformed, abstracted
from, etc. Once we have all grammar fragments, which together describe our
document, available we can construct the final grammar and map this grammar
onto an error correcting parser, using e.g. the uu-parsinglib4 library.

For describing the semantics of the document, i.e. the mapping of the recog-
nised structure onto the desired output format, we use AspectAG[13]5. This li-
brary provides a set of combinators for describing attribute grammar based frag-
ments of evaluators. Also here such fragments (or aspects) of the final semantics
are described by plain Haskell values, which are to be combined into the overall
semantics of the final document structure. Instead of using the fixed Pandoc
format our parsers and semantics are related to each other by an underlying
abstract document format for this specific class of documents.

Hence each Document Element Description (DED) consists of the following
elements:

1. some possibly new document kinds (non-terminals in the grammar) or new
element alternatives, thus extending the structure relating the reading and
writing phase of the document mapping

2. grammar fragments telling us how to recognise these new elements and how
they are to be mapped onto the intermediate document structure

3. common semantics to all possible output formats, such as the construction
of a table of contents

4. a description, in attribute grammar terms, describing how to map the newly
defined elements onto specific output formats.

1.3 Outline of the Paper

In the paper we will describe how we reimplemented a subset of the intermediate
Pandoc data type in such a way that it can be easily extended with new document

1 http://www.cs.uu.nl/wiki/Center/CoCoCo
2 http://hackage.haskell.org/package/expand
3 http://hackage.haskell.org/package/murder
4 http://hackage.haskell.org/package/uu-parsinglib
5 http://hackage.haskell.org/package/AspectAG

http://www.cs.uu.nl/wiki/Center/CoCoCo
http://hackage.haskell.org/package/expand
http://hackage.haskell.org/package/murder
http://hackage.haskell.org/package/uu-parsinglib
http://hackage.haskell.org/package/AspectAG

Expand: Towards an Extensible Pandoc System 203

Fig. 1. Architecture Fig. 2. Multiple Parsers and Semantics

elements. We assume that the reader is familiar with Haskell and its various
extensions, since our libraries depend on them. Emphasis will however be on the
underlying processes and techniques, and not so much on completeness.

In our example we start by showing how the usual top level structure of a doc-
ument, including its sections, subsections and paragraphs, may be represented
and mapped onto HTML. At the same time we show how some of the micro-
formatting, such as bold and italic text are realised. Emphasis will be here on
how we express the grammar for the input document, and how to generate some
simple output. In no way we claim that something spectacular is going on here;
it mainly serves as a basis from which we start to define our extensions in such
a way that we can leave the initial code completely intact, and do not even have
to recompile it. In the rest of the paper we describe two such extensions: the
labeling of section headers with their index number, and the addition of a table
of contents element, which displays information that is collected from various
places in the input text.

2 Implementing expand

The architecture of expand, which stands for “Extensible Pandoc”, is depicted in
Figure 1; boxes represent (groups of Haskell) modules and arrows denote import
relations.

The expand library is divided into three parts:

1. Declarations of abstract syntax for the general document format
2. Grammars that describe the parsers for concrete syntax of input languages.
3. Semantics that describe the unparsing for the concrete syntax of output

languages.

each of which contain modules that serve as a collection of building blocks for
the programmer.

As we show in Figure 2, multiple parsers (e.g. markdown , LATEX) and seman-
tics (e.g. generating HTML, RTF) can be defined following the same approach
as Pandoc does. What makes the difference between our approach and Pandoc
however, is that we can also extend, in a modular way, the parsers, semantics
and intermediate representations of documents. For example, in Figure 3 we ex-
tend the generation of HTML by adding a numbering system to the headers.

204 J. Krijnen, D. Swierstra, and M.O. Viera

Fig. 3. Generating HTML and Numbered
Headers

Fig. 4. Documents with Table of Contents

Notice that the original modules are neither inspected nor modified; they are
just imported. Thus there is no need to access to the source files of the former
semantics, which could have been distributed as binary code. In our approach,
extensions can be done to any of the three parts that compose to a complete
definition. For example, in Figure 4 we show how extensions to the grammar
and the intermediate document type and the semantics (may) depend on earlier
modules. Here we start with a subset of LATEX which does not include the pos-
sibility to define a table of contents and to which we will refer to as the LATEX
core; we extend the parser to recognise the \tableofcontents command, the
document structure to represent its abstract syntax, and the semantics describ-
ing how to collect the information, distribute the information in the document,
and the final formatting of this table. Note that the first two of these semantic
aspects are likely to be defined separately, since they are not HTML specific and
can be shared between different output formats.

In the following subsections we will show what such definitions look like. As
an example we will show how to construct a program that translates core LATEX
to HTML. We will also show how the extensions of figures 3 and 4 are expressed
in Haskell.

2.1 Declarations

In our attribute grammar fragments we use names6 to refer to children of nodes,
names to refer to attributes and names to refer to the non-terminals of the
abstract grammar. We use Template Haskell to generate such names from con-
ventional Haskell data type definitions as in Figure 5.

A document (Document) consists of a list of blocks (BlockL), each being
either a header or a paragraph. A header consists of an Int representing its level
(level header), and its text (InlineL). A paragraph contains text, some of which
can be bold or italic. The function deriveAG generates the necessary labels and
types to be used in the attribute grammars fragments describing computations
over trees described by the above types. The function deriveLang generates a
record data type containing a field for each non-terminal. Such a field holds the
function which maps the inherited attributes of the corresponding non-terminal
to its to synthesised attributes. Once such a record is constructed by combining

6 We use the HList label model as defined in the module Data .HList .Label4 .

Expand: Towards an Extensible Pandoc System 205

data Document = Document {blocks :: BlockL} deriving Show

type BlockL = [Block]

data Block = Header { level header :: Int
, inlines header :: InlineL}

| Paragraph {inlines par :: InlineL}
deriving (Show)

type InlineL = [Inline]

data Inline = Plain {str plainInl :: String }
| Bold {inlines boldInl :: InlineL}
| Italics {inlines italInl :: InlineL}

deriving (Show)

$ (deriveAG “Document)
$ (deriveLang "Doc" [“Document , “BlockL, “Block , “InlineL, “Inline])

Fig. 5. The Haskell data types describing our document structure

document → block∗

block → paragraph | header
paragraph → "\begin" "{" "paragraph" "}" inline∗"\end" "{" "paragraph" "}"

header → "\section" "{" inline∗"}"
| "\subsection" "{" inline∗"}"
| "\subsubsection" "{" inline∗"}"

inline → "\plain" "{" text "}"

| "\textbf" "{" inline∗"}"
| "\textit" "{" inline∗"}"

Fig. 6. The EBNF for our input language

all attribute grammar fragments for all non-terminals we pass it to the parser, so
the parser can apply the appropriate function for each recognised non-terminal.
Notice that we use a deforestated approach: the intermediate tree never comes
into existence, but is instead directly represented by its semantics, i.e. a function
mapping the inherited attributes of the root to its synthesised ones. We use
plenty of type synonyms, so we have names for all types that play a role as
non-terminal in the actual parser.

2.2 Grammars

In this subsection we show how to construct a parser. For a deeper explanation
and more information on the types involved, see [9] section 3.3. For simplicity
reasons we assume here that plain text is explicitly marked using the commands
\plain{...} and \begin{paragraph}. Such commands can be inserted by a
preprocessor, or be omitted by writing a more elaborate parser. The EBNF
expressing the concrete input syntax is given in Figure 6, where text is a string,
excluding the special characters: \, &, %, $, #, _, {, }, ~ and ^.

206 J. Krijnen, D. Swierstra, and M.O. Viera

gLatex sem = proc () → do
rec

document ← addNT ≺ � (pDocument sem) blockL �

blockL ← addNT ≺ pFoldr (pBlockL Cons sem, pBlockL Nil sem)
� block �

block ← addNT ≺ � header � <|> � paragraph �

paragraph ← addNT ≺ � (pParagraph sem) "\\begin" "{" "paragraph" "}"

inlineL
"\\end" "{" "paragraph" "}" �

header ← addNT ≺ let h (x ,name) = � (pHeader sem x) "\\" name
"{" inlineL "}" �

headers = [(1, "section")
, (2, "subsection")
, (3, "subsubsection")]

in foldr1 (<|>) (map h headers)

inlineL ← addNT ≺ pFoldr (pInlineL Cons sem, pInlineL Nil sem)
� inline �

inline ← addNT ≺ � (pPlain sem) "\\plain" "{"

(someExcept "\\&%$#_{}~^") "}" �
<|> � (pBold sem) "\\textbf" "{" inlineL "}" �
<|> � (pItalics sem) "\\textit" "{" inlineL "}" �

exportNTs ≺ exportList document (export cs document document
◦ export cs blockL blockL
◦ export cs paragraph paragraph
◦ export cs header header
◦ export cs inline inline
◦ export cs inlineL inlineL)

Fig. 7. Our EBNF encoded as a series of grammar transformations

With the abstract and concrete syntax in mind, we use combinators from the
murder library to straightforwardly encode this grammar fragment in Haskell,
as shown in Figure 7. Note that we can freely use Haskell abstractions where
this comes in handy, as in the case where we deal with various levels of section
headers; as a result our abstract grammar is more expressive than our input
grammar.

2.3 Arrows and Their Syntax

A grammar fragment in the murder library is expressed using the arrow interface,
which generalises the notion of a function, modelling effectful computations with
input and output. In our case we maintain a state containing an environment
holding the productions for each of the non-terminals introduced thus far.

Expand: Towards an Extensible Pandoc System 207

Because arrow syntax [3] can be a bit daunting, we give some analogies to
functions. When writing proc inp → ... (arrow abstraction), we define the arrow
equivalent of writing λinp → ... for functions. The pat ← a ≺ alternatives syntax
is used in a recursive do block (do rec), indicating that we apply the arrow a
to alternatives and match the output to the pattern pat (≺ is written as -<

in Haskell code). Such a do block allows for recursive bindings, similar to a let
block. Finally, we indicate the output of the grammar fragment with a ≺ input
(which should be the last statement in the do block), meaning that the output
of arrow a will be the final output of our grammar fragment arrow.

In the case of grammar fragments, the input of such an arrow provides infor-
mation how to refer to earlier introduced elements of the grammar under con-
struction (in this case we call the fragment a grammar extension). The empty
structure () indicates that our fragment does not need to refer to any other
fragment (we say the current fragment is an initial grammar).

In Figure 7 we introduce new non-terminals using the addNT arrow. A call to
addNT extends the state with a new non-terminal, it takes the initial productions
of this new non-terminal as input and returns a reference to the newly introduced
non-terminal, which we can use as non-terminal in further fragments. Fragments
as defined in Figure 7 are combined by means of arrow composition, as we will
see later.

Each production is expressed using the so called idiom brackets7 (iI and Ii in
Haskell code). The brackets enable a notation which closely follows the common
CFG notation, but reduce to normal applicative combinators. We have used
class overloading to let the type of each element decide what kind of parser to
construct. For example, when we write:

� (pBold sem) "\\textbf" "{" inlineL "}" �

we construct a parser that parses the strings "\\textbf" and "{", next applies
the parser for the non-terminal inlineL and finally parses the string "}". The
strings are not used and the result of the complete parse is constructed by
selecting the appropriate semantic function (pBold) from the overall semantics
sem, and applying it to the result of the parser inlineL.

Using the function exportList a list of non-terminals is constructed that can
be used in later extensions. Its first argument expresses that the starting point of
the grammar is document and that the extensible non-terminals are document ,
blockL, paragraph , header , inline and inlineL; they can be accessed using the
labels cs document , cs blockL, cs paragraph , cs header , cs inline and cs inlineL
which were generated by Template Haskell.

Note that the above grammar fragment is parameterised with a record sem
containing for each production its associated semantic function. The type of
this record is imported from the Declarations modules and was generated by
deriveLang . In this way we have decoupled what to do with the recognised
structure form the recognition process itself.

7 http://www.haskell.org/haskellwiki/Idiom_brackets

http://www.haskell.org/haskellwiki/Idiom_brackets

208 J. Krijnen, D. Swierstra, and M.O. Viera

2.4 Semantics

We can compute useful information from an abstract syntax tree by using an
attribute grammar. In an attribute grammar, each node in a parse tree is deco-
rated with a set of values, called attributes. There exist two kinds of attributes:
synthesised and inherited. Synthesised attributes are used to pass information
up to the parent node, while inherited attributes are used to pass information
down to children nodes. Attribute value computations can refer to inherited
attributes of the parent and synthesised attributes of the children. Attribute
grammar based specifications differ from function definitions in the way that in
case of the latter we have to specify both all arguments at the same time, and
the various parts of a computed result together in the body at the same time,
whereas in the former situation this specification can be given incrementally.
For a proper understanding it suffices to see each introduction of an inherited
attribute as adding an extra parameter to the semantics of a non-terminal and
each introduction of a synthesised attribute as an extension of its result.

We will now show how, using the AspectAG library, we define a synthesised
attribute containing the HMTL code for a piece of parsed input text. This library
allows us to define attribute grammar fragments which can be type-checked,
compiled, distributed and composed as any normal Haskell value. For naming
the individual attributes of a node we follow the same approach as we did with
naming the children and the non-terminals: we again use heterogenous lists [5]
(HList package), in which values of different types can be stored and accessed
by using a unique type as index.

Depending on whether we think of the abstract syntax as data type, a tree,
or a grammar we use the following words as synonyms:

1. “data type”, “parent node” and “left-hand-side (non-terminal)”
2. “data constructor”, “current node” and “production”
3. “data constructor field”, “child node” and “right-hand-side non-terminal”

Before introducing the definitions of the new attribute, we first create a unique
label html , using the Template Haskell function attLabels :

$ (attLabels ["html"])

For every production of the abstract syntax with which we associate the syn-
thesized html attribute, we provide a rule that states how to compute that
attribute html (a String); we use the syn function to specify the rules:

document html = syn html $ do blocks ← at ch blocks
return $ blocks # html

blockLnil html = syn html $ return ""

blockLcons html = syn html $ do block ← at ch hd BlockL Cons
blocks ← at ch tl BlockL Cons
return $ block # html ++ blocks # html

We define the rule for the only production (constructor) of the Document type
and the two productions of the BlockL type (derived form the list type defini-
tions). We use the Reader monad to get access to a small heterogenous record

Expand: Towards an Extensible Pandoc System 209

containing the attributes of the child nodes (constructor field). The (#) operator
is used to access the fields of those records. Thus, to compute the html attribute
for the production Document , we just return the value of the html attribute of its
only child. Note that we are not working with the actual data types, but merely
use the labels (i.e. ch blocks , ch hd BlockL Cons etc) that were generated from
the data types (this method is key to achieve extensibility of the AST). We show
two more rules, for the Block productions:

header html = syn html $ do level ← at ch level header
inls ← at ch inlines header
return $ "<h"++ show level ++ ">"

++ inls # html
++ "</h"++ show level ++ ">"++ "\n"

paragraph html = syn html $ do inls ← at ch inlines par
return $ "<p>" ++ inls # html ++ "</p>" ++ "\n"

In order to construct the semantic record using the defined attribute rules,
we use the generated function mkDoc (which explains the role of the "Doc"

parameter in the Template Haskell) which was also generated by deriveLang
(see section 2.1), and which collects the semantic rules for all productions. The
definitions of the other functions follows the same pattern as above.

semHtml = mkDoc blockLcons html
blockLnil html
bold html
document html
header html
inlineLcons html
inlineLnil html
italics html
paragraph html
plain html

The mkDoc function returns exactly the record structure with which we pa-
rameterised the grammar fragments.

2.5 Composing the Tool

Now that we have a definition for the semantics, we can finally put the tool to-
gether that maps LATEX onto HTML. We start by writing a small utility function
to build the converter:

buildConverter gram att input = let parser = compile $ closeGram gram
res = result (parse parser input)

in res emptyRecord # att

Thus, buildConverter takes an extensible grammar (e.g. a grammar fragment),
an attribute with which we can index in the heterogenous record with the syn-
thesized attributes of the root element, and an input string for the parser. We

210 J. Krijnen, D. Swierstra, and M.O. Viera

use the murder functions compile and closeGram to generate the parser, and
parse to run it. With result we drop extra information from the parsing process
and obtain the result: a function that takes a heterogenous record with inherited
attributes (in our case none, thus emptyRecord) and returns a record containing
the synthesized attributes, of which we select the one specified using (#).

We can now construct a converter tool for our language, by passing the defined
semantic functions to the parser description, and using buildConverter to build
and run the parser.

latex2html :: String → String
latex2html = buildConverter (gLatex semHtml) html

3 Extending Our Definitions

In this section we show how our design can be extended in three different ways:
extending the set of attributes, adding new non-terminals to the abstract syntax
and extending the grammar describing the input language.

3.1 Extending the Semantics: Numbered Headers

As a first use case, we extend the HTML generation. In LATEX section headers
are automatically numbered. In order to integrate this aspect into the HTML
generation, we define some extra attributes.

We model a header number as a value of type [Int], taking the level of headers
into account, e.g. 3.1.4 is represented as [3,1,4]. We write a small function to
format such an index

formatNH :: [Int] → String
formatNH = intercalate "." ◦map show

We introduce an attribute cHeaderNum , a chained header number, which
threads (or chains) the header indexes through the tree, updating it whenever
a header is encountered. Such a chained attribute is by convention a pair of an
inherited and a synthesised attribute having the same name, and has the same
effect as using a StateT monad transformer. We also define a local attribute
headerNum , which is only accessible from within the header node.

$ (attLabels ["cHeaderNum", "headerNum"])

-- the non-terminals which have chained cHeaderNum attributes:
cHeaderNum NTs = nt BlockL .*. nt Block .*. hNil

-- by default the attribute is copied in a state monad like fashion:
default cHeaderNum = chain cHeaderNum cHeaderNum NTs

-- initialise the list of Integers at the root of the document:
document cHeaderNum = inh cHeaderNum cHeaderNum NTs $ do

return (ch blocks .=. ([] :: [Int]) .*. emptyRecord)
-- compute a local attribute containing the new list of numbers:

Expand: Towards an Extensible Pandoc System 211

header headerNum = loc headerNum $ do
lhs ← at lhs
level ← at ch level header
return $ updateHeaderNum level (lhs#cHeaderNum)

-- return the updated list of numbers:
header cHeaderNum = syn cHeaderNum $ do

loc ← at loc
return $ loc # headerNum

-- auxiliary function which computes the next header number:
updateHeaderNum :: Int → [Int] → [Int]
updateHeaderNum level par = zipWith (+) par ′ (zeros ++ [1])

where par ′ = par ++ repeat 0
zeros = replicate (level − 1) 0

Note that the computation of this new attribute is independent of the output
language. Therefore, this attribute definition is defined in a separate module
and can be shared across different output languages. It is now easy to access
this attribute in our new definition of the html generation, where synmodM
creates a rule that will overwrite the original rule when extending it.

header html ′ = synmodM html $ do level ← at ch level header
inls ← at ch inlines header
loc ← at loc
let num = loc # headerNum
return $ "<h"++ show level ++ ">"

++ formatNH num ++ " "

++ inls # html
++ "</h"++ show level ++ ">"++ "\n"

We can now construct a new semantic record for html generation by combining
both the html and the cHeaderNum aspects:

semHtml ′ = mkDoc (default cHeaderNum ‘ext ‘ blockLcons html)
(default cHeaderNum ‘ext ‘ blockLnil html)
bold html
(document cHeaderNum ‘ext ‘ document html)
(header headerNum ‘ext ‘ header cHeaderNum

‘ext ‘ header html ′

‘ext ‘ header html)
inlineLcons html
inlineLnil html
italics html
(default cHeaderNum ‘ext ‘ paragraph html)
plain html

This is where the actual composition of semantics happens. The original
header html rule is extended from right to left, with rules for cHeaderNum ,
headerNum and a redefinition for the html attribute.

212 J. Krijnen, D. Swierstra, and M.O. Viera

3.2 A Table of Contents

As our second extension we show how to extend the grammar, abstract syntax
and semantics by computing a table of contents of the document.

We start out by computing the table of contents as a synthesised attribute,
since this computation requires no extension of the abstract syntax. Again, we
would like this attribute to be reusable for different output languages, so we
model the table as a value of type [([Int], String)], i.e. a list of section headers
tupled with the name of the section.

We start by defining two attribute labels: sToc contains the synthesised table
of contents, and toc the complete table of contents, to be passed down the tree
as an inherited attribute. In this way information collected from all over the
document is made available at all places where we might insert the table of
contents.

$ (attLabels ["sToc", "toc"])

sToc NTs = nt Document .*. nt Block .*. nt BlockL .*.HNil

default sToc = use sToc sToc NTs (++) []

header sToc = syn sToc $ do loc ← at loc
inls ← at ch inlines header
return [(loc # headerNum , inls # sInlStr)]

For sToc we provide a default rule that aggregates the synthesized table of con-
tents. The use function from the AspectAG library takes an operator to combine
the synthesized tables from all the child nodes, and a default value if a child
does not define the attribute. Next, we write a specific rule defining how to syn-
thesize a table of contents at the header node. We ask for the local attributes,
and reuse the headerNum attribute, defined in the previous subsection. We also
use the sInlStr attribute which formats the InlineL text as a simple string, while
ignoring text formatting such as bold and italics (we omit its implementation).

We now add an extension to the abstract syntax to be able to indicate where
the table of contents is to be inserted:

data EXT Block = Toc

$ (extendAG ’’ EXT Block [])
$ (deriveLang "DocToc" [’’ EXT Block])

The EXT Block should be read as an extension of the Block data type (defined
in section 2.1), thus introducing a new production for the table of contents. The
function deriveLang will also produce a new record type containing the semantic
function of the Toc production. Now that we have this semantic record available,
we can extend the LATEX grammar

gLatexToc sem = proc imported → do
let block = getNT cs block imported

toc ← addNT ≺ � (pToc sem) "\\tableofcontents" �
addProds ≺ (block ,� toc �)

exportNTs ≺ imported

Expand: Towards an Extensible Pandoc System 213

We retrieve the non-terminal block defined in the fragment from section 2.2
and introduce a new non-terminal toc that recognises the LATEX command. We
then add this new non-terminal as an extra alternative to the block non-terminal.
Now we can also define the synthesis of the html attribute for the Toc production:

toc html = syn html $ do lhs ← at lhs
return $ formatToc (lhs # toc)

formatToc :: [([Int], String)] → String
formatToc = foldr f ""

where f (x , section) table = ""

++ (formatNH x) ++ " "++ section
++ "
\n"++ table

We use the inherited attribute toc (the complete table) and format it using a
small helper function. From this, we can derive the required semantic record.

semHtmlToc = mkDocToc (default toc ‘ext ‘ toc html ‘ext ‘
default cHeaderNum ‘ext ‘ default sToc)

We also redefine the synthesised html attribute for the header node, using
its headerNum as a value for id in the HTML tag. This gives us a navigation
mechanism within the HTML document. We omit the implementation since it
closely resembles the html rule defined in section 3. We also do not show the
construction of a new semantic record semHtml ′′ with mkDoc since it is similar
to semHtml ′ in section 3, except for the addition of the newly defined rules.

We now have all the building blocks to create the new conversion tool:

latex2html ′′ :: String → String
latex2html ′′ = buildConverter (gLatex semHtml ′′ +>> gLatexToc semHtmlToc) html

The combinator +>> composes grammar fragments, such that its second argu-
ment extends the grammar in its first. It just composes two arrows, passing the
output of the first one (exported non-terminals) as input to the second one.

4 Conclusions, Related and Future Work

We have shown how our libraries can be used to construct a more flexible and
extensible Pandoc system. We have shown how to extend the underlying parsers
for the input language, how to extend the intermediate representation, and how
to extend and change computations over this intermediate data structure. The
consistency of all definitions is done by the Haskell compiler. We foresee a system
in which a document may come with references to the definitions of used doc-
ument elements (like DTD’s) including their semantics, i.e. how these elements
are to be formatted in combination with other elements.

We heavily lean of the Typed Transformations of Typed Abstract Syntax [1]
technique in realising this. One of the questions which arises is whether such
flexibility might have been achieved otherwise. On his website8 the designer of

8 http://johnmacfarlane.net/pandoc/scripting.html

http://johnmacfarlane.net/pandoc/scripting.html

214 J. Krijnen, D. Swierstra, and M.O. Viera

Pandoc, John Macfarlane, shows how some of the things we are doing using our
attribute grammar system may be achieved by some form of scripting, which
boils down to constructing the abstract syntax tree of the document, and sub-
sequently applying functions to this tree, before writing the tree out in some
specific format. We believe that, although this technique may work for simple
transformations, this is not the way to go. Such approaches look simple at first,
but become cumbersome to use once many (related) transformations are to be
applied. They are inefficient since the tree is to be inspected over and over again,
and worse, the programmer has to be aware of all the transformations, what they
do to the tree, what information to leave in the tree for further transformations,
and where to pick it up in further steps. Once one tries to use the Haskell type
system to check for the consistency of this process the types of the intermediate
trees change, defeating the whole underlying Pandoc philosophy. Of course this
problem can be circumvented by storing attributes in the tree in the form of
dictionaries, but then we move to the untyped world, where the type system
does not guarantee that entries referred to are present. If one wants to resort to
such untyped techniques one might look at systems which have been designed
to support this approach such as Stratego [2] (see however [4] for an extension
of transformation systems with attribute grammar facilities). The fact remains
however that in all these approaches the life of the programmer becomes much
more complicated because he loses strong typing and has to make the evaluation
order and the storage and retrieval explicit, whereas this is implicitly done by
the lazy evaluation underlying the attribute grammar approach. In a technical
report we show the viability of our approach in implementing a compiler for the
language Oberon0 in a stepwise fashion [9]. Other systems pursuing solutions
along these lines are Kiama [6] which uses Scala as the (host) implementation
language and Silver [8].

Once we have introduced a lot of attributes, the tree structures may grow,
and accessing the individual attributes may start to add to the overall cost. In
[12] we have described how the AspectAG code we have shown may be generated
by the Utrecht University Attribute Grammar Compiler (uuagc) from a less
verbose format. Another option which becomes available that way is to group
attributes such that they can be accessed faster [12]. The uuagc compiler can
also read a large collection of attribute grammar fragments, analyse the overall
dependencies and generate the tree-walk evaluators which have to be constructed
by hand in the more explicit approaches. In this way we can easily generate a
very fast compiler for the document type at hand.

Although we have hardly used the full power of the attribute grammar for-
malism we want to mention that for many kinds of computations over trees they
are the tool of choice: attribute grammars form a domain specific language for
describing computations over trees, where we do not have to limit ourselves to
non-circular grammars at all when we use an lazy evaluated underlying language.
In the online computation of pretty printed documents we essentially use lazy
evaluation to be able to evaluate a circular attribute grammar; something which
is not easily transformed into an explicitly scheduled version [7].

Expand: Towards an Extensible Pandoc System 215

References

1. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed abstract
syntax. In: TLDI 2009: Proceedings of the 4th International Workshop on Types
in Language Design and Implementation, pp. 15–26. ACM, New York (2009)

2. Bravenboer, M.: Exercises in Free Syntax. Syntax Definition, Parsing, and Assimi-
lation of Language Conglomerates. Ph.D. thesis, Utrecht University, Utrecht, The
Netherlands (January 2008)

3. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111
(2000)

4. Kats, L., Sloane, A., Visser, E.: Decorated attribute grammars: Attribute evalua-
tion meets strategic programming. In: de Moor, O., Schwartzbach, M.I. (eds.) CC
2009. LNCS, vol. 5501, pp. 142–157. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-00722-4_11

5. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Proc. of the 2004 Workshop on Haskell, pp. 96–107. ACM Press (2004)

6. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. In: Proc. of the Ninth Workshop on Language Descriptions,
Tools, and Applications (March 2009)

7. Swierstra, S.D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(01), 1–16 (2009)

8. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute
grammar system. Sci. Comput. Program. 75(1-2), 39–54 (2010)

9. Viera, M.: First Class Syntax, Semantics and Their Composition. Ph.D. thesis,
Utrecht University, Department of Information and Computing Sciences (2013)

10. Viera, M., Swierstra, S.D., Dijkstra, A.: Grammar Fragments Fly First-Class. In:
Proc.of the 12th Workshop on Language Descriptions Tools and Applications, pp.
47–60 (2012)

11. Viera, M., Swierstra, S.D., Lempsink, E.: Haskell, Do You Read Me?: Construct-
ing and composing efficient top-down parsers at runtime. In: Proc. of the First
Symposium on Haskell, pp. 63–74. ACM, New York (2008)

12. Viera, M., Swierstra, S.D., Middelkoop, A.: UUAG Meets AspectAG. In: Proc. of
the 12th Workshop on Language Descriptions Tools and Applications (2012)

13. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute Grammars Fly First-Class:
How to do aspect oriented programming in Haskell. In: Proc.of the 14th Int. Conf.
on Functional Programming, pp. 245–256. ACM, New York (2009)

http://dx.doi.org/10.1007/978-3-642-00722-4_11

	Expand: Towards an Extensible Pandoc System

	1 Introduction
	1.1 The Starting Point
	1.2 Our Approach
	1.3 Outline of the Paper

	2 Implementing
	2.1 Declarations
	2.2 Grammars
	2.3 Arrows and Their Syntax
	2.4 Semantics
	2.5 Composing the Tool

	3 Extending Our Definitions
	3.1 Extending the Semantics: Numbered Headers
	3.2 A Table of Contents

	4 Conclusions, Related and Future Work
	References

