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Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog in dealing with recursion
and redundant sub-computations. A critical component in the imple-
mentation of an efficient tabling framework is the design of the data
structures and algorithms to access and manipulate tabled data. One of
the most successful data structures for tabling is tries. In previous work,
our initial approach to deal with concurrent table accesses, implemented
on top of the Yap Prolog system, was to use lock-based trie data struc-
tures. In this work, we propose a new design based on lock-free data
structures and, in particular, we focus our discussion on the correctness
and efficiency of extending Yap’s tabling framework to support lock-free
expandable tries. Experimental results show that our new lock-free de-
sign can effectively reduce the execution time and scale better, when
increasing the number of threads, than the original lock-based design.
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1 Introduction

Tabling [3] is a refinement of Prolog’s standard resolution that can reduce the
search space, avoid looping and have better termination properties. Work on
tabling proved its viability for application areas such as natural language process-
ing, knowledge based systems, model checking, program analysis, among others.
Currently, tabling is widely available in systems like B-Prolog, Ciao, Mercury,
XSB and Yap. Multithreading in Prolog is the ability to concurrently perform
computations, in which each computation runs independently but shares the
program clauses. When multithreading is combined with tabling, we have the
best of both worlds, since we can exploit the combination of higher procedural
control with higher declarative semantics.

A critical component in the implementation of an efficient concurrent tabling
system is the design of the data structures and algorithms to access and ma-
nipulate tabled data. One of the most successful data structures for tabling
is tries [13], a tree-based data structure in which common prefixes are repre-
sented only once. To deal with concurrent table accesses, our initial approach,
implemented on top of the Yap Prolog system [15], was to use lock-based data
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structures [2]. However, lock-based data structures have their performance re-
strained by multiple problems, such as, convoying, low fault tolerance and delays
occurred inside a critical region. Yap’s framework supports the evaluation of
tabled programs according to the semantics of SLG resolution [3]. The practical
significance of this is that, in general, we know that a concurrent tabled program
will only execute search and insert operations over the table space shared data
structures. Yap’s shared data structures are only removed when the last running
thread abolishes the tables. Since no concurrent delete operations are performed,
the size of the shared tries always grows monotonically during an evaluation.

The main motivation of this work is then to refine our lock-based tries in
order to be as efficient as possible in the concurrent search and insert operations
and to maintain an efficient average node access as the size of the tries increases,
independently of the number of running threads. In order to achieve that, we
propose a new design based on lock-free data structures and we focus our dis-
cussion on the correctness and efficiency of extending Yap’s tabling framework
to support lock-free expandable tries, but our new design can be easily gener-
alized and applied to similar concurrent data structures. Lock-freedom allows
individual threads to starve but guarantees system-wide throughput. As we will
see, this is very important since it allows to avoid the bottlenecks and perfor-
mance problems mentioned above without introducing significant overheads for
multithreaded tabled evaluation.

Experimental results show that our new lock-free design can effectively reduce
the execution time and scale better, when increasing the number of threads,
than the original lock-based design. Several lock-free approaches do exist in the
literature, such as Shalev and Shavit split-ordered lists [16] or Prokopec et al.
CTries [12], however to the best of our knowledge none of them is specifically
aimed for an environment with the characteristics of our tabling framework. By
avoiding the node deletion complexity, we were able to produce a fresh and new
approach to deal with concurrency inside the tries.

The remainder of the paper is organized as follows. First, we briefly introduce
some background and discuss related work. Then, we describe our new lock-
free expandable tries design and we present the relevant implementation details.
Next, we prove the correctness of our implementation. Finally, we discuss exper-
imental results and we end by outlining some conclusions.

2 Background

The trie data structure provides complete discrimination for terms and permits
look up and possibly insertion to be performed in a single pass through a term,
hence resulting in a very efficient and compact data structure for term represen-
tation. An essential property of the trie structure is that common prefixes are
represented only once. Two terms with common prefixes will branch off from
each other at the first distinguishing token. Figure 1 shows an example for the
internal representation of the trie levels. For the sake of simplicity, we only show
two levels (the same idea applies to all trie levels).
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Fig. 1. Internal trie representation

The first level represents
a parent node P and the
second level represents how
the trie is adapted to the in-
sertion of distinguish child
nodes with values V 1, V 2,
V 3 and V 4. Figure 1(a)
shows the trie representation
after the insertion of V 1 and Fig. 1(b) shows the trie representation after the
insertion of V 2. Note that new nodes are always inserted on the head for the
level. Whenever the number of nodes in a level reaches a predefined threshold
value, Yap’s tries are expanded with a hash mechanism. Here, for the sake of
simplicity, we will use a threshold value of 2. Figure 1(c) shows the hash rep-
resentation after the insertion of values V 3 and V 4. The parent node P now
points to a special hash node H , which includes a pointer to a hash bucket array
with K entries, and the insert operation is now done on the head for the bucket
entry corresponding to the hash key value k, 0 ≤ k < K. Whenever the hash
bucket array becomes saturated, i.e., when the number of nodes in a bucket en-
try exceeds the threshold value and the total number of nodes exceeds K, then
the bucket array is expanded to a new one with 2 ∗K entries (we will give more
details about this expansion in the following sections).

To deal with concurrent table accesses, our initial approach was to use a lock-
based scheme that allows a single writer per chain of sibling nodes that represent
alternative paths from a common parent node, meaning that only one thread at
a time can be inserting a new child node starting from the same parent node [2].
For locking, we used either a locking field per trie node or a global array of
lock entries [1]. In order to reduce the lock duration, we also tried with trylocks
instead of traditional locks. With trylocks, when a thread fails to get access to
the lock, instead of waiting, it returns to the non-critical region, i.e., it traverses
the newly inserted nodes, if any, searching if the value V at hand was, in the
meantime, inserted by another thread. If V is not found, the process repeats
until the thread gets access to the lock or until V is found.

In this work, we are interested in taking advantage of the CAS (Compare-and-
Swap) operation, that nowadays can be widely found on many common architec-
tures. The CAS operation is an atomic instruction that compares the contents of a
memory location to a given value and, if they are the same, modifies the contents
of that memory location to a given new value. The atomicity guarantees that the
new value is calculated based on up-to-date information, i.e., if the value had been
updated by another thread in the meantime, the write would fail. The CAS result
indicates whether it has successfully performed the substitution or not. Besides re-
ducing the granularity of the synchronization, the CAS operation is at the heart of
many lock-free objects [6]. An object is lock-free if it can be accessed by multiple
threads concurrently without using any type of locking mechanism, such as spin-
locks, mutexs or semaphores. For this work, we are most interested in lock-free lin-
earizable objects as they permit greater concurrency since semantically consistent
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(non-interfering) operations may execute in parallel. Further, linearizability is a
local property, and is therefore independent of any underlying scheduling policy
or interaction between objects. Locality improves the portability and modularity
of large concurrent systems, and can simplify reasoning about concurrent objects.

3 Related Work

Despite the availability of both threads and tabling in several Prolog systems,
such as Ciao, XSB and Yap, the implementation of these two features such that
they work together implies complex ties to one another and to the underlying
engine. To the best of our knowledge, XSB and Yap are the unique Prolog
systems combining tabling with multi-threading. XSB offers two types of models
for supporting multi-threaded tabling: private tables and shared tables [8]. For
private tables, each thread keeps its own copy of the table space. For shared
tables, each tabled subgoal is computed independently by the first thread calling
it, the generator thread, and each generator thread is the sole responsible for fully
exploiting and obtaining the complete set of answers for the subgoal. Since both
XSB models avoid concurrency over the table space, Yap is thus the single Prolog
system that implements and supports concurrent table accesses.

We next briefly describe some of the state-of-the-art approaches for concur-
rent tries and lock-free hash tables using linked lists to deal with collisions.
The first practical work about a lock-free algorithm for hash tables with linked
lists was presented by Michael [10]. Experimental results showed that the lock-
free implementation outperformed, by significant margins, the best lock-based
implementations, both under high and low contention. Another lock-free algo-
rithm for expandable hash tables was presented by Shalev and Shavit [16]. It
is based in split-ordered lists and allows the number of hash buckets to vary
dynamically according to the number of nodes inserted or deleted, preserving
the read-parallelism. More recently, Triplett et al. presented a set of algorithms
that allow concurrent wait-free, linear scalable searches while shrinking and ex-
panding hash tables [17]. The experimental results showed a good performance
even when the hash table is under resizing.

Regarding concurrent trie data structures, Prokopec et al. presented recently
the CTries [12]. The CTries are trees composed of internal nodes (I-Nodes) and
leaves, combined with the support for a snapshot operation, where the updates
on the CTries are done on the I-Nodes. The work shows how the efficiency of
the CTries is directly related with the efficiency of the snapshots and how to
improve the efficiency of those snapshots.

4 Lock-Free Expandable Tries

This section presents our new lock-free design to support the concurrent search,
insertion, hash creation and expansion inside the trie structures. We start with
Fig. 2 showing a small example that illustrates how the concurrent insertion of
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Fig. 2. Concurrent insertion of nodes in the new lock-free expandable trie structure

nodes in the new lock-free trie structure is done. Again, for the sake of simplicity,
we are only considering two levels of the trie.

Figure 2(a) shows the trie configuration after the insertion of the child nodes
V 1 and V 2 in the parent node P . At this stage, the search/insert operation for a
node with a value V is straightforward. Initially, a thread follows the pointer of
P to access the next level of the trie. Then, the chain of sibling nodes is searched
for the value V at hand. If no such node exists, the pointer of P is used in a CAS
operation to guarantee the synchronization of the insertion of V in the chain.
During the search, a local counter is used to count the number of nodes on the
level which, in the case of a node insertion, is then used to verify if the trie level
has reached the predefined threshold value required for hash creation. For this
count, no synchronization is required, since only one thread will be able to have
its local counter equal to the threshold value.

Figure 2(b) then shows the trie configuration in the case where a thread has
started the hash creation process for a trie level. The thread first creates the
special node H , the initial bucket array with size K and initializes all entries in
the bucket array pointing to a special marking node M . The node M is then
used to implement a synchronization point with the first child node V of P
(node V 2 in the figure) that, whenever both are synchronized, will correspond
to a successful CAS operation on P that updates V to H . This means that, from
this point on, the access to the trie level will be done through the new hash node
H . If a thread has accessed the trie level before the hash creation, which means
that it has not seen H , in such case, when trying to insert a new node, the CAS
operation on P will fail because P is now pointing to H .

In the continuation, Fig. 2(c) and Fig. 2(d) show the adjustment process of
placing the child nodes in the correct bucket entries. To ensure lock-free synchro-
nization, we need to guarantee that, at any time, all threads are able to read the
correct values (starting from any bucket entry) and insert new values without
any delay from the adjustment process. To guarantee both properties, we use M
as a way to mark the beginning of the nodes not yet adjusted and we execute the
adjustment process in reverse order. Figure 2(c) shows the case where node V 1
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is first adjusted to be in the bucket entry En and Fig. 2(d) shows the case where
node V 2 is then adjusted to be in the bucket entry Em. Concurrently with the
adjustment process, other threads can be inserting nodes in the same bucket
entries. In Fig. 2(c), a new node V 3 is inserted after V 1 in entry En and, in
Fig. 2(d), a new node V 4 is inserted before V 2 in entry Em. To ensure that the
nodes not yet adjusted (after M) can always be accessed from any bucket entry,
the adjustment process may lead to cycles between the nodes. For example, in
Fig. 2(c), node V 1 is made to point to node M and since M is pointing to V 2
and V 2 is still pointing to V 1, we have a temporary cycle between these nodes.

At the end of the adjustment process, all bucket entries still access M . To
complete the hash creation process, the last operation is thus to remove M from
all entries. For each bucket entry E, if M is on the head of E, then a CAS
operation updating M to Null is necessary. Otherwise, if M is not on the head
of E, then we can simply mark as Null the pointer of the node that is pointing
to M (nodes V 1 and V 4 in Fig. 2(d)). This can be safely done without any CAS
operation since no other thread can write on those nodes.

We complete the presentation of our new lock-free design by describing how
a hash table with a bucket array of size K is expanded to a new one with size
2 ∗K. The decision of performing hash expansion is similar to the hash creation
process. During the search, a local counter is used to count the number of nodes
on a bucket entry which, in the case of a node insertion, is then used to verify
the conditions for hash expansion (please refer to Section 2). In order to ensure
that only one thread gains access to the hash expansion operation, we use a CAS
operation to tag a specific field on H . Figure 3 illustrates the hash expansion of
Fig. 2(d) after the insertion of a new node V 5 on the bucket entry En.
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Fig. 3. Expanding the hash tables

The thread that gains
access to the hash expan-
sion operation starts by
creating a new bucket ar-
ray B′ of size 2 ∗ K en-
tries. Next, for each old
bucket entry En, it re-
computes the hash func-
tion for the nodes on En and redistributes them on B′ accordingly to the new
hash values. In particular, for our hash function, this means that a node on the
nth entry of the old bucket array B (En on Fig. 3) will be assigned to the nth
or (n + K)th entry of B′ (entries E′n and E′m on Fig. 3). As before, we use
again a marking node M to implement a synchronization point between the old
bucket entry En and the new bucket entries E′n and E′m that, whenever both
are synchronized, will correspond to a successful CAS operation that updates
En to B′ (situation illustrated on Fig. 3). In the continuation, we follow the
same adjustment process as before and, at the end, we remove M from E′n and
E′m. At the end, when the process of bucket expansion is completed for all K
entries of B, we update H to point to the new bucket array B′ (and remove
simultaneously - same memory position - the tagging mark for hash expansion).
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5 Implementation Details

We now present in more detail the algorithms that implement the key aspects of
our new lock-free design. We start with Algorithm 1 that shows the pseudo-code
for the search/insert operation of a new node N in a given bucket entry E.

Algorithm 1. TrieSearchInsert(N,E)

1: markingNodeV isited ← False
2: oldF irst ← Null
3: repeat
4: first ← FirstNode(E)
5: while IsBucketArray(first) do
6: B ← BucketArray(first)
7: K ← Size(B)
8: E ← BucketEntry(B,Hash(K,V al(N)))
9: markingNodeV isited ← False
10: oldF irst ← Null
11: first ← FirstNode(E)
12: chain ← first
13: while chain �= oldF irst do
14: if V al(chain) = V al(N) then
15: return chain
16: else if IsMarkingNode(chain) then
17: if markingNodeV isited then
18: break
19: else
20: markingNodeV isited ← True
21: chain ← NextNode(chain)
22: if not IsMarkingNode(first) then
23: oldF irst ← first
24: NextNode(N) ← first
25: until CAS(E, first,N)
26: return N

In a nutshell, the algo-
rithm executes in a loop
until one of the following
situations occurs: (a) the
search operation is success-
ful, meaning that there is
already a node in the trie
level with the same value of
N (lines 14–15); or (b) N is
successfully inserted in the
trie (lines 24–25).

In more detail, the al-
gorithm starts by checking
(lines 4–5) if the bucket en-
try E is referencing another
bucket array (this happens
when another thread is do-
ing hash expansion). In
such case, it moves to the
new bucket array (variable
B at line 6) and updates
E (by recomputing the hash
function using the value on
N), markingNodeV isited,
oldF irst and first accord-
ingly (lines 8–11). The aux-
iliary variable markingNodeV isited denotes if the marking node was already
visited and the auxiliary variable oldF irst marks the beginning of the chain of
nodes on E that were already searched in a previous round.

On the second part of the algorithm, it then searches if there is a node with
the same value of N already in the chain (lines 12–21). Note that this search
is done while the nodes in the chain were not yet searched in a previous round
(while condition at line 13) and while the marking node was not visited twice
(lines 16–20). This second condition allows to break any potential cycle between
the nodes, as a result of a hash creation/expansion operation being done by
another thread. Finally, if the value of N is not found, the algorithm tries to
insert N on the bucket entry E by using a CAS operation that updates first to
N (line 25). In case of failure, this means that the head of E has changed in the
meantime, thus leading to a new round.

Next, Algorithm 2 shows the pseudo-code for the hash expansion operation
given a hash node H (due to the lack of space and since it is quite similar, we
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will leave aside the algorithm for hash creation). Please remember that to ensure
that only one thread executes the hash expansion operation for H , we use a CAS
operation to tag a specific field on H (not shown here for the sake of simplicity).

Algorithm 2. HashExpansion(H)

1: M ← MarkingNode(H)
2: oldB ← BucketArray(H)
3: oldK ← Size(oldB)
4: newK ← 2 ∗ oldK
5: newB ← AllocBucketArray(newK)
6: i ← 0
7: while i < oldK do
8: oldE ← BucketEntry(oldB, i)
9: if not CAS(oldE,Null, newB) then
10: newE1 ← BucketEntry(newB, i)
11: newE2 ← BucketEntry(newB, i+ oldK)
12: FirstNode(newE1) ← M
13: FirstNode(newE2) ← M
14: repeat
15: NextNode(M) ← FirstNode(oldE)
16: until CAS(oldE,NextNode(M), newB)
17: AdjustNodes(M,newB)
18: RemoveMarkingNode(M,newE1)
19: RemoveMarkingNode(M,newE2)
20: i++
21: BucketArray(H) ← newB
22: return

The algorithm begins by
initializing a set of local vari-
ables and by allocating a
new bucket array (lines 1–5).
Next, for each old bucket en-
try oldE, it redistributes the
chain of nodes on oldE to
the corresponding bucket en-
tries on the new bucket array
newB (lines 7–20). At line 9,
it executes a CAS operation
on oldE trying to update a
value ofNull to newB. A suc-
cessful CAS operation means
that oldE was empty and thus
no redistribution is necessary
(it just becomes a pointer to
the new bucket array). An
unsuccessful CAS operation
means that oldE has nodes to
be expanded. In such case, the
algorithm then computes the
entries on newB in which the nodes from oldE will fall (entries newE1 and
newE2) and initializes them to point to the marking node M (lines 10–13). The
marking node M is then used to implement a synchronization point between
the old bucket entry oldE and the new bucket entries newE1 and newE2 that,
whenever both are synchronized, will correspond to a successful CAS operation
that updates oldE to newB (lines 14–16). In the continuation (lines 17–19), the
algorithm proceeds by adjusting the nodes on the old chain (Algorithm 3 below)
and by removing M from the newE1 and newE2 chains (Algorithm 4 below).
At the end, when the process of bucket expansion is completed for all entries in
oldB, H is updated to point to the new bucket array newB (line 21).

Algorithm 3. AdjustNodes(N,B)

1: chain ← NextNode(N)
2: if NextNode(chain) �= Null then
3: AdjustNodes(chain, B)
4: K ← Size(B)
5: E ← BucketEntry(B,Hash(K,V al(chain)))
6: repeat
7: NextNode(chain) ← FirstNode(E)
8: until CAS(E,NextNode(chain), chain)
9: return

Algorithm 3 shows the
pseudo-code for the process
of adjusting a chain of nodes,
starting from a given node N ,
into a given new bucket array
B. One can observe that the
algorithm traverses the chain
of nodes recursively and that
the base case for recursion is
the last node on the chain
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(lines 1–3). For each chain node, it then calculates the bucket entry E in which it
will fall (lines 4–5). The bucket entry E is then used in repeated CAS operations
until successfully insert the chain node on the head of E (lines 6–8).

Algorithm 4. RemoveMarkingNode(M,E)

1: if not CAS(E,M,Null) then
2: chain ← FirstNode(E)
3: next ← NextNode(chain)
4: while (next �= M) do
5: chain ← next
6: next ← NextNode(chain)
7: NextNode(chain) ← Null
8: return

Finally, Algorithm 4 shows
the pseudo-code for the op-
eration of removing a given
marking node M from a given
bucket entry E. Initially, it
executes a CAS operation on
E trying to update an ex-
pected value M to Null.
A successful CAS operation
means that no nodes were ad-
justed to be on E (and E just
becomes a pointer to Null). An unsuccessful CAS operation means that at least
one node was adjusted to be on E. In such case, the algorithm then follows the
chain of nodes on E until reaching M and updates the node previous to M to
point to Null (thus removing M from the chain). This can be safely done with-
out any CAS operation, because at this stage no other thread can be writing at
this node.

6 Proof of Correctness

In this section, we discuss the correctness of our implementation.

6.1 Linearizability

Linearizability is an important correctness condition for the implementation of
concurrent data structures [7]. A concurrent operation is linearizable if it ap-
pears to take effect instantaneously at some moment of time Itime between its
invocation and response. The literature often refers to Itime as a linearization
point and, for lock-free implementations, a linearization point is typically a single
instant where its effects become visible to all the remaining operations. Lineariz-
ability guarantees that if all operations individually preserve an invariant, the
system as a whole also will. Our new implementation is linearizable, since ev-
ery trie manipulation operation takes effect in specific linearization points. The
linearization points for our algorithms are the following:

– TrieSearchInsert() is linearizable at successful CAS in line 25.
– HashExpansion() is linearizable at successful CAS in lines 9 and 16 and at

algorithms AdjustNodes() and RemoveMarkingNode() in lines 17–19:
• AdjustNodes() is linearizable at successful CAS in line 8.
• RemoveMarkingNode() is linearizable at successful CAS in line 1 and
at line 7 when the node previous to the marking node is updated to
Null.
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Due to the lack of space, we do not show the full proof of correctness of
the linearization points defined above. Instead, we focus on proving that our
implementation is ABA-free.

6.2 The ABA Problem

We now discuss how we address the ABA problem. We use the fact that a
memory location has not changed between two readings to assume that nothing
has changed during the period of time from the first to the second reading.
Although, this is a common technique when using the CAS operation, in some
cases, it can lead to the ABA problem. An example of that would be: a thread T
reads a value V 1 from a memory location L, uses V 1 to do some work, updates
L to a new value V 2 and, at the end of the work, changes the value of L again to
V 1. In such case, if another thread has read the memory location L before and
after the work done by T , then it will be deceived by the fact that the memory
location has not changed. In our implementation, a practical consequence of this
would be to insert more than once the same value on the same level of the trie.

To address the ABA problem, several techniques already exist, such as version
tagging [4], hazard pointers [11] or value semantics [5]. In general, these kind of
techniques rely on the fact that a writing over a memory position always cause
a transition from the current state of the system to a uniquely new different
state. To prove that our algorithm is ABA-free, we prove that each concurrent
memory location L only points once to the same value V 1, i.e., if L is updated
from V 1 to V 2 than L will never point to V 1 again. Our concurrent memory
locations are defined by the pointers on the parent nodes P , on the hash nodes
H and on the bucket entries E as described in the previous sections.

Theorem 1. The new implementation is ABA-free.

Proof. Assume that P , C, H, M and E already exist in a trie T and represent,
respectively, a parent node, a child node, a hash node, a marking node and a
bucket entry. Assume also that NC, NH and NB represent, respectively, a new
child node, a new hash node and a new bucket array.

The following writing situations may occur: (i) if a write occurs in P then a
NC or NH was added to the trie T ; (ii) if a write occurs in H then a NB was
added to T ; (iii) if a write occurs in E then a NC or NB was added to T or
the node adjustment process adjusted E to Null or to a child node C.

In the latter situation, if E is adjusted to Null that means that before the write
operation, E was pointing to a marking node M . Otherwise, if E is adjusted to
a child node C, then before the write operation, E was pointing to another node,
say N . N can be a new child node NC added in the meantime, a marking node
M , or another child node adjusted previously. In any case, N is necessarily
different from C and E will never point to N again.

Thus, all concurrent memory locations always point once to the same value
whenever a write operation occurs.
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6.3 Liveness

In this subsection, we prove that the insert and hash operations are lock-free
and that the search operation is wait-free. For that, we begin by enumerating
the following Lemmas.

Lemma 1. If the CAS operation in TrieSearchInsert() at line 25 succeeds,
then a new node was inserted in the trie.

Lemma 2. If the CAS operation in HashExpansion() at lines 9 or 16 succeeds,
then the bucket entry was updated to point to a new bucket array.

Lemma 3. If the CAS operation in AdjustNodes() at line 8 succeeds, then the
bucket entry was updated to point to a node that was already in the chain of the
bucket entry.

Lemma 4. If the CAS operation in RemoveMarkingNode() at line 1 succeeds,
then the bucket entry was updated to point to Null.

To prove the property of lock-freedom, we prove that the insert and hash
operations always lead to progress in the trie configuration. We start with Theo-
rem 2 that proves that progress is always achieved for the insert operation. The
proof is done on the point of the implementation where we try to insert new
nodes in the trie, i.e., the CAS operation in TrieSearchInsert() at line 25. Note
that, since we are assuming that the CAS operation was executed, this means
that the given node N was not found in the chain starting from first (lines 12
to 21) as otherwise the return at line 15 would have been executed.

Theorem 2. In TrieSearchInsert(), everytime a thread executes the CAS op-
eration at line 25, then the trie configuration has made progress when compared
to the time at which the thread has entered the repeat loop at line 4.

Proof. If the CAS operation succeeds then, by Lemma 1, a new node was inserted
in the trie thus leading to progress in the trie configuration.

Otherwise, if the CAS operation fails, then the value in the bucket entry E is
necessarily different from the initial one, as given by first (initialized at lines
4 or 11). Thus, the new value of E must be the result of one of the following
situations: (i) a new node was inserted by another thread (Lemma 1); (ii) the
current hash is being expanded by another thread (Lemma 2); or (iii) another
thread is performing the adjustment process on E (Lemmas 3 or 4). In either one
of these three cases, another thread has lead to progress in the trie configuration.

To prove that the hash creation/expansion operations progress even when
other threads are inserting new nodes, we can use as sketch the proof for Theo-
rem 2. Due to the lack of space, we are also omitting such proofs here.

Theorem 3. The new implementation is lock-free.
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Next, we prove the wait-free property of the search operation and, for that,
we show that any search operation is always completed in a bounded number of
visited nodes. In particular, this bound is always lower or equal to the number
of nodes in the chain being searched. Since the number of steps of the search
operation is finite, the proof that the bound exists is sufficient to prove that the
search operation is wait-free.

Theorem 4. The search operation is completed within a bounded number of
visited nodes.

Proof. Assume that CN is a chain of nodes and that a search operation in CN
is executed between two instants of time, Iinit and Ifinal. This corresponds to
the block of code between lines 12 and 21 in the TrieSearchInsert() algorithm.
Assume also that Ninit is the number of nodes at instant Iinit, Nnew is the
total number of new nodes inserted between Iinit and Ifinal, and that Nvis is the
number of nodes visited between Iinit and Ifinal.

The variable chain represents a node to be visited, the variable first rep-
resents the first node visited, and variable oldF irst represents the first node
that was visited on the previous search operation. On the first search operation,
oldF irst is always Null. We begin now the proof that Nvis is bounded for all the
configurations of CN .

If Ninit = 0, then first and oldF irst are both Null and thus Nvis = 0.
If Ninit �= 0, then first �= Null. Now, if oldF irst = Null then two situations

can occur. On the first situation, no concurrent hash expansion has interfered
with the search, thus the variable chain visits all nodes until reaching oldF irst,
and in such case Nvis = Ninit. On the second situation, a concurrent hash
expansion has interfered with the search, thus the variable chain may not visit
all Ninit nodes (some nodes may be scheduled to a different bucket entry) but a
node can be visited more than once (please remember that, during the adjustment
process, we may have cycles between the nodes). In any case, it stops either when
reaching oldF irst (line 13) or when the marking node is visited twice (line 17).
Thus, Nvis ≤ 2 ∗ (Ninit +Nnew).

Finally, if Ninit �= 0 and oldF irst �= Null, then the variable chain will not
visit all Ninit nodes (the ones after oldF irst) and thus Nvis ≤ Ninit.

7 Experimental Results

We now present experimental results for the new lock-free design using the set
of benchmarks from [1] which includes 19 different programs in total. We choose
these benchmarks because they have characteristics that cover a wide number of
scenarios in terms of trie usage. The benchmarks create different trie configura-
tions with lower and higher number of nodes and depths, and also have different
demands in terms of trie traversing. The environment for our experiments was
a machine with 32 Core AMD Opteron (tm) Processor 6274 using 32 GBytes of
memory and running the Linux kernel 3.6.6-1.fc17.x86 64 with Yap Prolog 6.3.
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To compare our new design, which we named Lock-Freedom (FD), we used
the four lock-based strategies from the previous design, which we named Local
Locks (LL), Global Locks (GL), Local Trylocks (LT) and Global Trylocks (GT).
All strategies use the Pthreads implementation for lock support. The LL and
LT strategies use a lock field per trie node. The GL and GT strategies use
a global array of 512 lock entries with a hash function that maps trie nodes
to lock entries. Through experimentation, we observed that the number of trie
nodes mapped by hash function to each lock entry shows a good balancing, thus
reducing contention points. To put our results in perspective, we also make a
comparison with XSB Prolog, version 3.4.0, using thread-private tables [8].

Note that our goal with these experiments is not to prove that we can speedup
the execution of tabled programs, despite this is an obvious goal of having a
concurrent implementation. Other works have already showed the parallel ca-
pabilities of the use of multithreaded tabling [8,9]. Since parallelism is highly
dependent on the available concurrency that programs have and on the way
synchronization is done, we can easily select/construct programs where linear
speedups can be achieved or, on the other hand, where no speedups exist. Here,
we are more interested in evaluating the robustness of our implementation when
exposed to worst case scenarios. Note that if we are able to deal well with such
scenarios, we will certainly have the conditions to better support parallelism.
Moreover, by doing that, we avoid the peculiarities of the program at hand and
we try to focus on measuring the real value of our new design.

Thus, we will follow a common approach to create worst case scenarios and
we will run all threads starting with the same query goal. By doing this, it is
expected that all threads will access the table space, to check/insert for subgoals
and answers, at similar times, thus causing a huge stress on the same critical
regions. To put the results in perspective, we experimented with intervals of 8
threads until 64 threads (two times the number of cores in our machine). Figure 4
shows the overhead ratios, comparing the execution time with 8, 16, 24, 32, 40,
48, 56 and 64 threads against the respective execution time with one thread, for
the average of five runs, when running the set of benchmarks.

By observing Fig. 4, the results show that XSB achieves the best ratio for
8 threads but then, for more than 8 threads, XSB is noticeably worse than all
Yap’s strategies, showing a clear tendency to worsen as we increase the number
of threads. For the sake of presentation, we are not showing the results for
more than 24 threads (for 32, 40, 48, 56 and 64 threads, XSB is respectively
17.35, 22.35, 27.21, 32.41 and 36.60 times slower than the execution with one
thread). On comparison with Yap, these results are even more important since
XSB shows, on average, base execution times (with one thread) higher than Yap.
Regarding Yap’s synchronization strategies, the results show that FD is always
the best strategy of all, regardless of the number of threads. The best lock-based
strategy is LT, for 8 to 32 threads, and LL, for 40 to 64 threads. In general,
the differences to the corresponding GT and GL strategies is meaningless, which
confirms the low contention observed for the global lock array.
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Fig. 4. Overhead ratios, comparing the execution time with 8, 16, 24, 32, 40, 48, 56
and 64 threads against the respective execution time with one thread

Starting from 32 threads, one can also observe that the LT and GT trylock
strategies start to diverge and that the LL and GL strategies keep the difference
to the FD design. This is explained by the fact that, in the Pthreads imple-
mentation, when a thread fails to get a lock it falls asleep, leaving the machine
resources available to the remaining threads. In particular, for the LL and GL
strategies, when the number of execution threads exceeds the number of cores,
this leads to an inversion on the execution priorities, which results in having the
machine resources always available to the threads inside the critical regions (i.e.,
holding the corresponding synchronization locks).

For a number of threads smaller than 32, the LT and GT trylock strategies
perform better. This is due to the fact that, for fewer threads than the number
of cores, they do not have to pay the cost of resuming the threads that fall asleep
when failing to get a lock but, for more threads than the number of cores, they
may have to pay the cost of not having machine resources always available to
the threads holding the synchronization locks. Again, since the FD strategy is
immune to the availability of machine resources, and since the CAS operation
was a lower synchronization overhead when compared with a lock-based design,
makes our new FD design clearly the best approach for both scenarios.

To better understand these results, we next show the overhead ratios, but
now comparing the average user time (Fig. 5(a)) and the average system time
(Fig. 5(b)) for 8, 16, 24, 32, 40, 48, 56 and 64 threads against the respective
execution time (walltime) with one thread for Yap’s synchronization strategies.
The results on Fig. 5(a) show us how concurrency affects, on average, the exe-
cution of a thread, i.e., how much more user code, on average, a thread has to
execute when compared with the base execution with one thread. One can ob-
serve that all strategies start to pay a huge cost for eight threads (between 2.32
(FD) and 3.04 (GL) times the execution time with one thread) and then this
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Fig. 5. Overhead ratios, comparing the average user/system time with 8, 16, 24, 32,
40, 48, 56 and 64 threads against the respective execution time with one thread

cost decreases gradually, except for the LT and GT trylock strategies that, for
more than 32 threads, start paying the cost of not having machine resources al-
ways available (as explained before). The results on Fig. 5(b) show us how much
more system (synchronization) code, on average, a thread has to execute when
compared with the base execution with one thread. One can observe that all
strategies show a similar tendency, with FD always showing the least overhead
of all, which confirms the lower synchronization overhead of the CAS operation.

8 Conclusions

We have presented a novel, efficient and lock-free design for expandable trie data
structures applied to the multithreaded tabled evaluation of logic programs. Our
main motivation was to refine the previous lock-based design in order to be as ef-
ficient as possible in the concurrent search and insert operations and to maintain
an efficient average node access as the size of the tries increases, independently
of the number of running threads. We discussed the relevant implementation
details and we proved the correctness of our implementation. Experimental re-
sults show that our new lock-free design can effectively reduce the execution
time and scale better, when increasing the number of threads, than the original
lock-based design. Further work will include extending our framework to sup-
port multithreaded mode-directed tabling [14], which includes studying how to
extend our new lock-free design to allow the concurrent deletion of trie nodes.
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